Ultrasonic Tissue Characterization II
The National Bureau of Standards1 was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities1 — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to users in the public and private sectors to address national needs and to solve national problems in the public interest; conducts research in engineering and applied science in support of objectives in these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:


THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal Agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal Agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following divisions:

Systems and Software — Computer Systems Engineering — Information Technology.

1Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington,D.C. 20234.
2Some divisions within the center are located at Boulder, Colorado, 80303.
Ultrasonic Tissue Characterization II

A collection of reviewed papers based on talks presented at the Second International Symposium on Ultrasonic Tissue Characterization held at the National Bureau of Standards, Gaithersburg, Maryland June 13-15, 1977

Edited by

Melvin Linzer

National Measurement Laboratory
National Bureau of Standards
Washington, DC 20234

Cosponsors of Symposium on Ultrasonic Tissue Characterization:

National Bureau of Standards
(National Measurement Laboratory)

National Science Foundation
(Research Applied to National Needs, RANN)

National Institutes of Health
(Diagnostic Radiology Department, Clinical Center)

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary
Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued April 1979
National Bureau of Standards Special Publication 525
CODEN: XNBSAV
The Second International Symposium on Ultrasonic Tissue Characterization set the stage for establishing this series of meetings as the world's leading forums for the dissemination of the most recent and advanced research in the field. Undoubtedly, the Symposium contributed significantly to the contemporary improvement in medical diagnosis. This improvement has resulted from the application to instrumentation design of the results of measurements of the interactions of ultrasound with tissue and from the deeper understanding of the physical principles underlying these interactions.

The interdisciplinary approach of engineers, physical scientists, physicians, and mathematicians made the Symposium a unique and fertile occasion. This collection of reviewed papers which describes the research results presented at the meeting makes it possible for the benefits of this work to be shared by the whole community of those dedicated to the advancement of biomedical ultrasonics and its application to health care.

The National Bureau of Standards is pleased to be responsible for this publication and to have joined the National Science Foundation and the National Institutes of Health as cosponsors of the Symposium.

John D. Hoffman
Director
National Measurement Laboratory
National Bureau of Standards
PREFACE

This volume forms a comparison with Ultrasonic Tissue Characterization, NBS Special Publication 453 (1976). It contains extended versions of 43 of the 54 papers presented at the Second International Symposium on Ultrasonic Tissue Characterization which was held at the National Bureau of Standards on June 13–15, 1977. In a departure from the normal practice for conference proceedings, these papers were critically reviewed by experts in the field.

In the pages preceding the scientific papers, an overview of the meeting is presented. The first article in this chapter is a resume of the proceedings of the entire Symposium and it serves to put the presentations and discussions into perspective. This is followed by a report summarizing the Panel Discussion on Breast Cancer, which was one of the highlights of the meeting, and finally, by the introductory talk given by Dr. A. J. Eggers, Jr., who at the time of the meeting was Assistant Director for Research Application, National Science Foundation. The scientific papers presented at the meeting are grouped into chapters devoted to: attenuation and velocity I: mechanisms; attenuation and velocity II: methodology and measurements; scattering and attenuation; scattering; tumor Doppler signatures; propagation through bone and skull; image reconstruction; signal processing and pattern recognition; and tissue viability and tissue phantoms. A survey of velocity and attenuation data in mammalian tissue is included in an appendix.

The success of the Symposium was due to the dedicated efforts of many individuals. Acknowledgment is given to the members of the Program committee (F. Dunn, A. C. Kak, J. F. Greenleaf, J. G. Miller, R. C. Waag and P. N. T. Wells) and to the other individuals who served as reviewers for this volume. Special appreciation is due to Peter Wells for his contributions as cochairperson of the Panel Discussion on Breast Cancer and for his valuable collaboration in preparing the summaries of the Symposium and of the Panel Discussion. The efforts of Ronald B. Johnson and Sara Torrence and their conference staffs in the organization and management of the Symposium are gratefully acknowledged. Special thanks is given to Rosemary S. Maddock who has provided the coordination and the editorial assistance in the many phases of the preparation of this volume.

Melvin Linzer
Editor and
Symposium Chairperson
ABSTRACT

The Second International Symposium on Ultrasonic Imaging and Tissue Characterization was held at the National Bureau of Standards on June 13-15, 1977. The meeting was cosponsored by the National Bureau of Standards, the National Science Foundation, and the National Institutes of Health. This volume contains extended and reviewed papers based on 43 of the 54 talks presented at the Symposium. Topics covered include techniques for measurement of ultrasonic tissue parameters, the dependence of tissue properties on physical and biological variables (e.g., ultrasonic frequency, temperature), mechanisms of ultrasonic tissue interactions, propagation through bone and skull, tumor Doppler signatures, computerized tomography, signal processing and pattern recognition, and tissue phantoms. A survey of velocity and attenuation data in mammalian tissue is included in an appendix.

Key words: Absorption; attenuation; computerized tomography; Doppler; impedance; medical diagnosis; microscopy; pattern recognition; scattering; signal processing; tissue characterization; tissue parameters; ultrasound; velocity.

In order to describe experiments adequately, it has been necessary to identify commercial materials and equipment in this book. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment is necessarily the best available for the purpose.
# CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1. OVERVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report on the Symposium</td>
</tr>
<tr>
<td>Report on Panel Discussion: Ultrasonic Diagnosis of Breast Cancer</td>
</tr>
<tr>
<td>Introductory Address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2. ATTENUATION AND VELOCITY I: MECHANISMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of Tissue Characterization. Part I. Ultrasonic Propagation Properties</td>
</tr>
<tr>
<td>Absorption of Sound in Tissues</td>
</tr>
<tr>
<td>Carstensen, E. L.</td>
</tr>
<tr>
<td>Mechanisms of Ultrasonic Attenuation in Soft Tissue</td>
</tr>
<tr>
<td>O'Donnell, M. and Miller, J. G.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3. ATTENUATION AND VELOCITY II: METHODOLOGY AND MEASUREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of Tissue Characterization. Part II. Ultrasonic Propagation Parameter Measurements</td>
</tr>
<tr>
<td>A Device for Measuring Ultrasonic Propagation Velocity in Tissue</td>
</tr>
<tr>
<td>Sollish, B. D.</td>
</tr>
<tr>
<td>Measurement of the Temperature Dependence of the Velocity of Ultrasound in Soft Tissues</td>
</tr>
<tr>
<td>Ultrasonic Attenuation in Normal and Ischemic Myocardium</td>
</tr>
<tr>
<td>O'Donnell, M., Mimbs, J. W., Sobel, B. E., and Miller, J. G.</td>
</tr>
<tr>
<td>Acoustic Microscopic Analysis of Myocardium</td>
</tr>
<tr>
<td>Yuhas, D. E. and Kessler, L. W.</td>
</tr>
<tr>
<td>Acoustic Properties of Normal and Abnormal Human Brain</td>
</tr>
<tr>
<td>Kremkau, F. W., McGraw, C. P., and Barnes, R. W.</td>
</tr>
<tr>
<td>Frequency Dependent Attenuation of Malignant Breast Tumors Studied by the Fast Fourier Transform Technique</td>
</tr>
<tr>
<td>Fry, E. K., Sanghvi, N. T., Fry, F. J., and Gallager, H. S.</td>
</tr>
<tr>
<td>Correlation of Ultrasonic Attenuation with Connective Tissue Content in Breast Cancers</td>
</tr>
<tr>
<td>Kobayashi, T.</td>
</tr>
<tr>
<td>The Attenuation of Selected Soft Tissue as a Function of Frequency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4. SCATTERING AND ATTENUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Spectrum Analysis Techniques for Tissue Characterization</td>
</tr>
<tr>
<td>Lizzi, F. L. and Elbaum, M. E.</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>High Spatial Resolution Ultrasonic Measurement Techniques for</td>
</tr>
<tr>
<td>Characterization of Static and Moving Tissues</td>
</tr>
<tr>
<td>Johnson, S. A., Greenleaf, J. F., Rajagopalan, B., Bahn, R. C.,</td>
</tr>
<tr>
<td>Baxter, B. and Christensen, D.</td>
</tr>
<tr>
<td>Mapping True Ultrasonic Backscatter and Attenuation Distribution</td>
</tr>
<tr>
<td>in Tissue - A Digital Reconstruction Approach</td>
</tr>
<tr>
<td>Duck, F. A. and Hill, C. R.</td>
</tr>
<tr>
<td>Chapter 9. SIGNAL PROCESSING AND PATTERN RECOGNITION</td>
</tr>
<tr>
<td>A Comprehensive Ultrasonic Tissue Analysis System</td>
</tr>
<tr>
<td>Theoretical Analysis of Instantaneous Power Spectra as Applied</td>
</tr>
<tr>
<td>to Spectra-Color Ultrasonography</td>
</tr>
<tr>
<td>Jennings, W. D., Holasek, E., and Purnell, E. W.</td>
</tr>
<tr>
<td>Identification of Tissue Parameters by Digital Processing of</td>
</tr>
<tr>
<td>Real-Time Ultrasonic Clinical Cardiac Data</td>
</tr>
<tr>
<td>Joynt, L., Boyle, D., Rakowski, H., Popp, R., and Beaver, W.</td>
</tr>
<tr>
<td>Dynamic Autocorrelation Analysis of A-Scans In Vivo</td>
</tr>
<tr>
<td>Gore, J. C., Leeman, S., Metreweli, C., Flessner, N. J., and Willson, K.</td>
</tr>
<tr>
<td>Computer Spectral Analysis of Ultrasonic A Mode Echoes</td>
</tr>
<tr>
<td>Robinson, D. E.</td>
</tr>
<tr>
<td>Cepstral Signal Processing for Tissue Signature Analysis</td>
</tr>
<tr>
<td>Fraser, J., Kino, G. S., and Birnholz, J.</td>
</tr>
<tr>
<td>Recognition of Patterns in Ultrasonic Sectional Pictures of the</td>
</tr>
<tr>
<td>Prostate for Tumor Diagnosis</td>
</tr>
<tr>
<td>von Seelen, W., Gaca, A., Lock, E., Scheiding, W., and Wessels, G.</td>
</tr>
<tr>
<td>Recent Developments in Obtaining Histopathological Information from</td>
</tr>
<tr>
<td>Ultrasound Tissue Signatures</td>
</tr>
<tr>
<td>Preston, K., Jr., Czerwinski, M. J., Skolnik, M. L., and Leb, D. E.</td>
</tr>
<tr>
<td>Chapter 10. TISSUE VIABILITY AND TISSUE PHANTOMS</td>
</tr>
<tr>
<td>Damage and Death in Tissues and Associated Changes in Their</td>
</tr>
<tr>
<td>Mechanical Properties</td>
</tr>
<tr>
<td>Weiss, L.</td>
</tr>
<tr>
<td>A Human Abdominal Tissue Phantom</td>
</tr>
<tr>
<td>Tissue Simulators for Diagnostic Ultrasound</td>
</tr>
<tr>
<td>Eggleton, R. C. and Whitcomb, J. A.</td>
</tr>
<tr>
<td>Tissue Equivalent Test Objects for Comparison of Ultrasound</td>
</tr>
<tr>
<td>Transmission Tomography by Reconstruction with Pulse Echo Ultrasound Imaging</td>
</tr>
<tr>
<td>Appendix</td>
</tr>
<tr>
<td>Data of the Velocity and Attenuation of Ultrasound in Mammalian</td>
</tr>
<tr>
<td>Tissues - A Survey</td>
</tr>
<tr>
<td>Parry, R. J. and Chivers, R. C.</td>
</tr>
</tbody>
</table>
Chapter 1

OVERVIEW
The Second International Symposium on Ultrasonic Tissue Characterization had six principal objectives:

- to review the progress which had been made in the past two years since the first Symposium
- to provide a forum for the exchange of ideas among researchers, manufacturers, and clinicians
- to identify clinical problems which might be solved by ultrasonic tissue characterization
- to identify research opportunities
- to promote the transfer of new technological advances in medical ultrasound to commercial application
- to explore the potential for using ultrasonic tissue characterization as a mass screening technique for breast cancer.

The Symposium, which extended over three days, was cosponsored by the National Bureau of Standards (NBS), the National Science Foundation (NSF), and the National Institutes of Health (NIH). The introductory Session opened with a welcoming address by Dr. E. Ambler, Director of NBS. He spoke of the rapid growth in the application of ultrasonic diagnosis. The U.S. market was estimated to be $64M in 1977, increasing at 31 percent per year. Ultrasonic diagnosis was apparently safe. Quantitative methods were being developed, accelerated by the work of the Tissue Signature Project supported by NSF. One of the most exciting possibilities was that ultrasound might be useful in mass screening for breast cancer. The interest and involvement of NBS in these medical applications was increasing. Dr. A. J. Eggers, Jr., Assistant Director for Research Applications, NSF, emphasized the importance of interagency collaboration. He pointed out the dramatic decline in the cost of microelectronic systems; forecasts indicated that tasks requiring microelectronics presently costing $1M would cost (1977 money) $100K in five years, and only $10K in ten years. He predicted the imminent end of the "visible" computer age, anticipating the development of displays with integrated microelectronics for operator interaction. He referred to the 1973 findings of the study group sponsored by NSF, and to the resulting initiation of Experiment No. 5, which was designed to test the acceleration of technology transfer to industry through the vehicle of diagnostic ultrasound. This had been followed by the preparation by the Alliance for Engineering in Medicine and Biology (AEMB), with NSF support, of a five-year research and development agenda; 23 research categories had been identified. Finally, in addition to many project grants, NSF was supporting the Tissue Characterization Project of the Carnegie-Mellon Institute of Research. Dr. Eggers was followed by Dr. M. B. Lipsett, Director, Clinical Center, NIH. Dr. Lipsett outlined the NIH program of support for diagnostic ultrasonic research, presently running at about $5M per year. The National Cancer Institute (NCI) was funding projects concerned with breast pathology imaging and with endoscopy. The National Heart and Lung Institute (NHLI) was involved with real-time imaging and with Doppler studies of blood flow. The National Institute of General Medical Sciences (NIGMS) was supporting research in imaging systems and the biological effects of ultrasound. The Clinical Center was developing a real-time scanner, and was collaborating with NBS in the construction of a comprehensive tissue analysis system. Dr. Lipsett stated that NBS expected to continue to be concerned with the advancing horizon of ultrasonic diagnostics.

The Symposium Chairperson, Dr. M. Linzer (NBS, Gaithersburg, Maryland) discussed the present knowledge of the ultrasonic properties of tissues. He reviewed the advantages of ultrasonic diagnosis, particularly in comparison with x-ray imaging. He demonstrated these by state-of-the-art illustrations of ultrasonic data obtained in several leading laboratories -- Ultrasound Institute, Sydney, Australia, Duke University, Durham, North Carolina, and HORIZONS Research Laboratories, Fort Lauderdale, Florida. Comparably impressive results were beginning to be obtainable with commercial instruments. Dr. Linzer went on to discuss basic data necessary for further development of ultrasonic diagnostics and he spoke of new methods of display. He then recalled the First International Symposium on Ultrasonic Tissue Characterization which had been held two years previously at NBS in Gaithersburg. That meeting had been attended by more than 200 people and the proceedings were recorded in NBS Special Publication 453. As a result of the meeting, NSF had supported the Ultrasonic Tissue Signature Working Group and the Advisory Council of Users. Data on tissue parameters were being updated, and libraries of algorithms and scans were to be collected. In the present Symposium, there were to be more than 50 papers, both from within the United States and by 15 speakers from nine countries outside the United States. It was evident that measurements were more difficult to make in the clinic than in the laboratory. Dr. Linzer outlined the conference program which was designed to focus sharply on measurement of tissue characteristics. He emphasized that other considerations were also vital for clinical success, and that consequently the program for the Third Symposium, which would be held in June 1978, would have an expanded scope and would include imaging and Doppler techniques.

propagation properties. Different materials were considered in order of increasing complexity. In water, attenuation was proportional to the square of the frequency, although the absolute value of attenuation was rather greater than that which would be expected to be due to viscosity. Solutions of amino acids had similar properties to those of water; while those of polypeptides exhibited greater absorption probably due to such interactions as helix-coil rearrangements and proton transfers. Proteins were made up of large molecules, with relaxation absorption. Tissues had characteristic attenuation dependency on temperature and frequency. In general, both increasing attenuation and velocity seemed to be associated with decreasing water content and with increasing protein and collagen content. Bone and lung exhibited more complicated relationships. For non-gas-containing soft tissues, however, tissues with similar physiological functions had similar attenuation, and this property might be used to characterize tissues. In discussion, the authors stated that the strong frequency dependence of velocity in lung might be due to changing ultrasonic pathways, and they agreed that the role of collagen deserved further study. E. A. Carstensen (University of Rochester, Rochester, New York) then reviewed the absorption of ultrasound in tissue. He considered first the relatively small contribution to total absorption due to the cellular structural components of tissue. The non-linear frequency dependence of absorption suggested a spectrum of relaxation processes. The temperature coefficient of attenuation had been measured for few tissues, and data on dispersion were sparse. Experimental results, however, were consistent with the theory. Mechanisms of ultrasonic attenuation in soft tissue were further discussed by M. O'Donnell and J. G. Miller (Washington University, St. Louis, Missouri). They presented a theoretical analysis of losses due to cellular motion, and showed that in the limit for small scatterers there was a linear frequency dependence of attenuation. They concluded that losses due to microscopic inhomogeneities accounted for a substantial fraction of the total observed attenuation in soft tissues. The authors were questioned about the effects of concentration, which they said they had taken into account, and about the existence of dispersion, which they believed to be due to relaxation.

Session 2, Scattering and Attenuation, dealt with techniques for estimating attenuation from measurements of scattering. F. L. Lizzi and M. Elbaum (Riverside Research Institute, New York, New York) described clinical spectrum analysis techniques for tissue characterization. They had measured the echo amplitude decrement from within a narrow gated sample tracked increasingly deeply into homogeneous tissue layers. Moreover, spectral analysis revealed characteristic periodicities for different histologies. Within the eye and orbit, retina, hemorrhage, fat, melanoma and glioma could be distinguished. Using a model embodying scattering (from a fixed interface) and attenuation, S. Lévi and J. Keuwez (Hôpital Universitaire Brugmann, Brussels, Belgium) reported an attempt to characterize tissues in vivo by differential attenuation measurements on the basis of observations made at two frequencies (2 and 4 MHz). Results obtained in vivo with leiomyoma and cyst were encouraging. R. Kuc and M. Schwartz (Columbia University, New York, New York) and N. Finby and F. Dain (St. Luke's Hospital Center, New York, New York), in a joint paper on statistical estimation of the acoustic attenuation coefficient slope for liver tissue from reflected ultrasonic signals, discussed the separation of fixed and refrigerated liver tissue on the basis of spectral differences in the backscattered signals. The liver was treated as a random linear filter.

This Session was closely related to Session 3, Scattering. The surface of the lung was considered by T. L. Rhine (Massachusetts Institute of Technology, Cambridge, Massachusetts) to have an ultrasonic tissue signature which could be represented by a stochastic model. Dr. Rhine took special care to characterize the relationships of the ultrasonic transmitter, transducer, and receiver which he used. Recent developments in research into angle-scan and frequency-swept ultrasonic scattering characterization of tissue were reported by R. C. Waag, P. P. K. Lee, R. M. Lerner, L. P. Hunter, R. Gramiak, and E. A. Schenk (University of Rochester, Rochester, New York). Using an experimental arrangement giving a true analog of Bragg scattering, they demonstrated distinctive correlations for normal, cirrhotic, and fatty liver. Measurements of tissue in vitro were related to models and measurements of known suspensions. Some of the difficulties of measuring scattering had been solved by F. E. Barber (Harvard Medical School, Boston, Massachusetts), who described ultrasonic microprobe methods for tissue characterization. Dr. Barber's microprobe operated at 10 MHz, and had an almost Gaussian focus with a diameter of about 0.2 mm. Where large interfaces existed, they dominated the scattering. The relationships between interface dimensions and scattering directivity were elegantly demonstrated by reference to a micrograph of the experimental tissue. J. M. Reid and K. K. Shung (Providence Medical Center and Institute of Applied Physiology and Medicine, Seattle, Washington) presented quantitative measurements of scattering by heart and liver. They had plotted the scattering cross-sections of 12-20 cm² samples of tissue for many orientations, and they discussed these in relation to scattering equations for isotropic, plane, and linearly scattered fields. In particular, they considered the effects of attenuation, both within the sample and in the region between the transducer and the sample. The dependence of ultrasound backscatter from human liver tissue on frequency and protein/lipid composition was discussed by M. Freese and E. A. Lyons (Radionics Limited, Montreal, Quebec, Canada). They had used a system with a bandwidth equal to 25 percent of the center frequency, and found that a frequency of 2.25 MHz gave the best separation between normal and fatty liver. Significant correlations of the backscatter with protein content were observed in normal liver and with both protein and lipid content in abnormal fatty liver. Finally in this Session, M. Hanss and M. Boynard, (Faculte de Medecine et de Biologie, Bobigny, France) reported data on ultrasound backscattering from blood and its hematocrit and erythrocyte aggregation dependence. They stated that fluctuations in backscattered amplitude were increased in frequency with higher sedimentation rates during the sedimentation process, and explained this by a theory involving the existence of rouleaux in high sedimentation rate blood, and the occupancy
of potential scattering sites. They suggested that eventually a noninvasive ultrasonic measurement might supersede the contemporary pathology test.

Session 4, Tumor Doppler Signatures, consisted of two papers describing measurements of blood flow changes due to malignancy. P. N. T. Wells, M. Halliwell, A. A. Montford, R. R. Skinner, A. J. Webb, and J. P. Woodcock (Bristol General Hospital and Bristol Royal Infirmary, Bristol, United Kingdom) explained the hypothesis that an in situ carcinoma only becomes a rapidly proliferating tumor after initiation of vascularization. They showed that asymmetrical arterial blood flow patterns might be found with two breasts, one containing a malignant tumor. This was confirmed in the following paper on Doppler echography by G. Dale, Ch. M. Gros, M. Gautherie, and B. Gairard (Sorbonne-Hospices Civils, Strasbourg, France). These authors had used a pulsed 8 MHz Doppler system to study arterial flow patterns, and they explained the complementary nature of thermography in imaging venous flow. Returning to the paper by Wells and his colleagues, these authors had gone on to describe the discovery with an 8 MHz continuous wave system of asymmetrical flow signals, apparently associated with malignant tumor neovascularization, arising from within the breast lesions themselves. Such signals are not found in normal breasts, or associated with benign tumors. They reported that they had also detected similarly augmented blood flow signals, using a 2 MHz pulsed Doppler instrument, from within a malignant pancreatic tumor. In discussion, it was explained that the breast tumor signals were sometimes strongest at the edge of the lesion, perhaps because of necrosis at the center.

Three papers reporting studies of cardiac muscle were presented in Session 5, Attenuation and Velocity II: Myocardium. T. D. Franklin, Jr., N. T. Sanghvi, F. J. Fry, K. M. Egenes, and A. E. Weyman (Indiana School of Medicine and Indianapolis Center for Advanced Research, Indianapolis, Indiana) described ultrasonic tissue characterization studies of ischemic and infarcted myocardium. The impetus for this research came from the non-specificity of conventional echocardiography in evaluating infarction. Their preliminary results showed that attenuation fell immediately after infarct. A more extensive study by J. G. Miller, M. O'Donnell, J. W. Mimbs, and B. E. Sobel (Washington University, St. Louis, Missouri) of ultrasonic attenuation in normal and ischemic myocardium, involved measurements made with a cadmium sulfide phase-insensitive receiving transducer. The range of attenuation variation in normal myocardium was about 12 to 15 percent, and attenuation fell by about 20 percent when the temperature of the sample was increased from 20° to 37°C. The slope of a least-squares line fitted to the attenuation coefficient versus frequency data served as a convenient ultrasonic index. In dogs with experimentally-induced ischemia, this slope was less than the normal value if sacrifice was within about 1 day after occlusion, but with later killing it became greater. This may reflect an increase in collagen content in necrotic scar tissue. Acoustic microscopic analysis of myocardium by D. E. Yuhas and L. W. Kessler (Sonoscan Inc., Bensenville, Illinois) had yielded 100 MHz data on attenuation and velocity in formalin-fixed tissue. In kidney, it had previously been shown that the effect on attenuation of formalin fixing may not be significant. In normal myocardium, the attenuation was about 3.5 to 5.7 dB cm−1 MHz−1. Moreover, the detailed demonstration at high frequency of structures which were of wavelength-order dimensions at low megahertz frequencies was directly relevant to the study of scattering in conventional echography.

The second day of the Symposium began with Session 6, Image Reconstruction. G. H. Glover (General Electric Co., Milwaukee, Wisconsin) discussed in vivo measurement of ultrasonic refractive index distributions in human breasts by time-of-flight tomography. His laboratory instrument was a 5 MHz transmission computerized tomograph. The patient lay prone on a canvas sling with one of her breasts immersed in water at 32° to 36°C. Nine minutes were required to scan a slice of 5 mm thickness. Reconstructed two-dimensional images revealed cysts and fibroadenomas (having velocities around 2 percent higher than water) and malignant tumors (having velocities about 4 to 5.5 percent lower). Young normals (age range 24 to 42 years) had only wide velocity variations, but they might not need to be scanned in a mass screening program. Histograms of pixel velocity distributions, and cumulative pixel velocity plots, might provide accurate separation of normals from patients with breasts made asymmetrical by the presence of malignancy. Dr. Glover stated that he was developing a fan beam detector array with 127 elements, designed to reduce the examination time to 10 seconds per breast. Questions were raised by the audience concerning path straightness (Dr. Glover had ray plots), resolution (which was 1 ns, although 10 ns would have been adequate), point spread function (MTF = 1 mm), and accessibility (slices could be within 20 mm of the chest wall in the experimental system). Using a synthetic "fan beam," R. Balasubramanian, J. F. Greenleaf, P. J. Thomas, and S. A. Johnson (Mayo Clinic, Rochester, Minnesota) reported measurements of temperature coefficients of ultrasonic speed in various human tissue. Apart from that of fat, the temperature coefficients of liver, kidney, and other tissues were all about 2 m s−1 K−1. The possibility that tumors might be identifiable because of their elevated temperatures was mentioned during the discussion, but the authors had not investigated velocity changes with temperature in tumor tissue. Results obtained with computed tomographic reconstruction of attenuation images had previously been disappointing, but new approaches were suggested by A. C. Kak and K. A. Dines (Purdue University, West Lafayette, Indiana) in their paper on signal processing for the measurement of attenuation of soft tissue. They pointed out that reflection contributed a loss of about 4 percent at each major interface, making algebraic reconstruction techniques unsatisfactory. Other frequency and time domain methods, such as polynomial fitting, frequency averaging and energy analysis, might prove to be good candidates for attenuation measurements. For example, a reconstruction of a section through a dog's heart by the energy method demonstrated immunity to reflection artifacts. In discussion, members of the audience emphasized the importance of clinical practicability. S. A. Johnson, J. F.
Greenleaf, and B. Rajagopalan (Mayo Clinic, Rochester, Minnesota) and R. C. Bahn and B. Baxter (University of Utah, Salt Lake City, Utah), in a joint paper on the future role of high spatial resolution ultrasonic measurement techniques for characterization of static and moving tissue, discussed the determination by computerized tomography of three-dimensional fluid flow and temperature. They proposed the use of seismological approaches for high-resolution imaging. Another new method, possibly leading to mapping true ultrasonic backscatter and attenuation distributions in tissue -- a digital reconstruction approach -- was suggested by F. A. Duck and C. R. Hill (Institute of Cancer Research, Sutton, United Kingdom). By assuming that attenuation and scattering were constant and isotropic within each volume element of the object, they showed that the corresponding pixel values in the image could be calculated by algebraic reconstruction techniques (ART) in about six iterations. Discussion revealed that isotropic assumptions might not be satisfied in clinical practice.

Sessions 7 and 8, Signal Processing and Pattern Recognition I and II, contained a total of twelve papers. Region-of-interest analysis methods were used in feature extraction techniques designed to improve recognition of patterns in ultrasonic pictures of the prostate for tumor diagnosis, by W. V. Seelen (Johannes Gutenberg University, Mainz), E. G. Lock and G. Wessels (Deutsche Klinik für Diagnostik, Wiesbaden), U. Scheiding (Battelle Institut, Frankfurt), and A. Gaca (Deutsche Klinik für Diagnostik, Wiesbaden, Federal Republic of Germany). J. C. Birmholz (Harvard University, Boston, Massachusetts) then reviewed the elements of visual pattern recognition in ultrasonography. He showed some remarkably excellent gray-scale pictures. The influence of signal processing, and particularly of the detection method, on the quality of echograms was discussed by I. Beretsy, D. Arnold, and J. Cason (Searle Ultrasound Research and Advanced Development, Spring Valley, New York), in their paper on impulse detection in pulse echo ultrasound -- recent in vitro experiments with a human aorta. This was followed by a theoretical analysis of instantaneous power spectra as applied to spectra-color ultrasonography, by W. D. Jennings, E. Holasek, and E. W. Purnell (Case Western Reserve University, Cleveland, Ohio). The method was based on the separate display in the primary colors on the same image of three frequency bands constituting the echo signals. Session 7 ended with a paper by C. K. Kuni (University of Colorado Medical Center, Denver, Colorado) on tissue identification by spectral analysis of scattered ultrasound. Dr. Kuni discussed some of the problems of obtaining and interpreting backscattered spectra.

The following Session 8 began with a description of a comprehensive ultrasonic tissue analysis system by M. Linzer, S. I. Parks, R. W. Shideler, S. J. Norton, F. P. Higgins, and D. R. Dietz (National Bureau of Standards, Washington, D.C.) and J. L. Doppman and T. H. Shawker (National Institutes of Health, Bethesda, Maryland). Dr. Linzer described a dynamically-focused system using an expanding-aperture annular array with an approximately constant F-number, and an rf sub-system capable of operating with impulses, gated continuous wave, and chirp pulses. Chirp operation with 8:1 compression had been achieved. An ultrafast signal averager was developed for improvement of the signal-to-noise ratio of A-scans. This instrument had a sampling rate of 50 MHz and a 4-bit analog-to-digital converter, and had potential applications in the examination of obese patients, the study of higher frequencies, and the use of inefficient transducers. Next, an instrument called the "SonoChromascope" was described. Interfaced to a commercial two-dimensional B-scanner, this device formed a versatile digital real-time acquisition, signal processing, and display system. The 250 kbyte memory allowed operation in normalized averaging, maximum, minimum, and parameter comparison modes. Gray-scale, color, and window displays, as well as digital readout of area and average echo amplitude in regions-of-interest were possible. Finally, Dr. Linzer stated that other methods, including CT scanning, were being investigated at NBS. There was discussion about the rather low digitization accuracy of commercial transient recorders which do not contain sample-and-hold circuits. The subject of spectrum analysis was again considered in the following paper by L. C. Smith, D. Boyett, H. Rakowski, and W. Beaver (Stanford University, Stanford, California), on the identification of tissue parameters by digital processing of real-time ultrasonic clinical data. Data obtained with a real-time phased array sector scanner from selected regions within the myocardium in various clinical conditions were subjected to spectral analysis. Although there was substantial overlap between groups, spectra from patients with myocardial infarcts had much less fluctuation in their means and variances as a function of time. J. C. Gore and S. Leeman (Royal Postgraduate Medical School, London, United Kingdom) presented two short papers. The first, on the theoretical evaluation of backscatter of ultrasonic pulses from human tissue and its implications for tissue characterization, dealt with the effects of the characteristics of pulser, transducer, and receiver. The second paper, on autocorrelation analysis of A-scans in vivo and the possible clinical application of temporal changes in echo characteristics, revealed similarities between the echoes from different specimens of the same types of tissue, while different types of tissue had dissimilar autocorrelation functions. With the goal of implementing computer spectral analysis of ultrasonic A-mode echoes, D. E. Robinson (Ultrasoundics Institute, Sydney, Australia) had developed an on-line data acquisition system based on a clinical scanner, 10 MHz sample rate transient recorder, and Interdata 85 computer. Special consideration had been given by K. Preston, Jr. (Carnegie-Mellon University, Pittsburgh, Pennsylvania) and M. L. Skolnik (University of Pittsburgh, Pittsburgh, Pennsylvania) to the application of pattern recognition techniques to the separation of ultrasonic echoes from different types of tissue. Digitized A-scans had been converted to sound patterns as a preliminary to testing the feasibility of using the ear to distinguish the sound patterns from different types of tissue. The A-scans had been analyzed in terms of skew, kurtosis, and other statistical parameters. Initial results had been obtained from normal and neoplastic kidney. In order to determine the correlation function of echoes from a region-of-interest identified on a two-dimensional B-scan, J. Fraser and G. S. Kino (Stanford University,
Session 9 was a Panel Discussion on Ultrasonic Diagnosis of Breast Cancer. The cochairperson, P. N. T. Wells (Bristol General Hospital, Bristol, United Kingdom) in his introductory remarks pointed out that mortality from breast cancer had not improved over the last 20 years. He explained that in the Western World, breast cancer, which had many different pathological types, killed 1 in 10 women, was the main cause of death in females in the age range 40 to 44, and in the U.S. had an annual economic cost of $200M. Existing diagnostic methods were inadequate for mass screening. Interest in ultrasonic techniques hinged around the possibility that earlier detection by screening might improve prognosis. Cochairperson W. Pomerance (National Institutes of Health, Bethesda, Maryland) defined screening as the application of known methods to an asymptomatic population to detect early cancer. He considered that a successful method for breast screening would need to detect tumors of less than 5 mm diameter, and that it should be free from hazard and have at least a 90 percent success rate. Encouraging results with high-resolution scanning led to the suggestion that ultrasound might be capable of detecting lesions of 2 mm diameter. This would be an important although numerically modest improvement over the present ability to detect 5 mm lesions by manual palpation. He explained that it had been estimated that screening the whole adult female population with an effective ultrasonic method, if one should be developed, would have cost $620M per year in 1971, and he felt that it would therefore be necessary to restrict screening to women known to be at risk, or over 50 years old. J. L. Doppman (National Institutes of Health, Bethesda, Maryland) described the role of mammography, and stated that the x-ray exposure was presently less than 0.01 Gy. Mammography could ensure that the lesion was removed by the surgeon. Five years of experience of ultrasonic visualization of the breast in Japan were reviewed by T. Kobayashi (National Cancer Center Hospital, Tokyo, Japan). Ultrasonic screening was being made available by means of mobile units. G. Dale (Senologie-Hospices Civils, Strasbourg, France) described the complementary use of ultrasonic scanning, both pulse-echo and Doppler, together with thermography and mammography, to decrease the overall error rate. The results of research into high resolution pulse-echo imaging of the breast, and the problems of analyzing the scans, were presented by G. Baum (Albert Einstein College of Medicine, New York, New York). Elizabeth K. Fry (Indiana University School of Medicine and Indiana University Hospital, Indianapolis, Indiana) described a versatile ultrasonic breast scanning research instrument. She presented some scans, and discussed their interpretation, emphasized the importance of shadows, and the different patterns obtained with different transducers and frequencies. Cautious optimism was expressed by D. E. Robinson (Ultrascions Institute, Sydney, Australia). He demonstrated some excellent scans, obtained with a 4 MHz focused beam in a water bath scanner, and spoke of eight features of which the scans required to be examined in reaching a diagnosis. F. Greenleaf (Mayo Clinic, Rochester, Minnesota) described the role of ultrasonic computed tomography in obtaining data on tissue properties and in correcting two-dimensional B-scans. G. H. Glover (General Electric Company, Milwaukee, Wisconsin) had previously talked about his work on ultrasonic computed tomography in a paper presented during Session 6. As time was short, Dr. Glover did not add to the information which he had already given concerning the increase in velocity associated with malignancy in breast tissue. For the same reason, Dr. Wells did not elaborate on the potential of neovascularization blood flow Doppler detection, as he had mentioned this in Session 4: M. Linzer (National Bureau of Standards, Washington, D.C.) emphasized the vast quantity of data which would be obtained in scanning one patient, and of the refinements in methodology which would be necessary to make ultrasonic breast screening feasible. Members of the Panel and the audience then began an open discussion, and several points were made. The demonstration of microcalcification in ultrasonic scans was possible if sufficiently extensive. Ultrasonic scanning was beneficial in young women with "lumpy" breasts. Mammography did not contribute further when ultrasound had already detected a lesion. Present commercial equipment was unsuitable for starting a mass screening program. Mammography would in principle never be an acceptable mass screening method, as it would always involve exposure to some radiation. Dr. Wells closed the discussion with a short summary. Mass screening of selected groups of the female population would be worthwhile if a suitable technique could be developed. Such a technique might well be based on ultrasound but it would need to be accurate and economical. The present lines of research were promising; more resources should be devoted to solving the fundamental and technological problems, so that earlier clinical application would be possible.
and group velocities, and showed that scattering in the dipole made an important contribution to losses at frequencies in the range 0.5 to 2 MHz. The results and measurements of transmission through skull were presented, in a discussion of the acoustic characteristics of the skull, by D. N. White (Queens University, Kingston, Ontario, Canada). Dr. White explained that propagating ultrasonic energy appeared to be distributed between the bony and the soft tissue elements of cancellous bone resulting in substantial attenuation, although it was transmitted with relatively low loss through ivory bone. Inhomogeneities led to marked distortion of megahertz frequency beams transmitted through the skull. Because of this difficulty, F. J. Fry (Indianapolis Center for Advanced Research, Indianapolis, Indiana) had investigated the transskull transmission of axisymmetric focused ultrasonic beams in the 0.5 to 1 MHz frequency range, and its implications for brain tissue visualization, interrogation, and therapy. Beams at the relatively low frequency of 0.5 MHz were not greatly distorted in travelling through skull, and there seemed to be quite good correlation between transskull ultrasonic two-dimensional brain scans and x-ray computed tomographs. The potential for therapy resulting from the relatively low attenuation in the skull was demonstrated by a lesion induced in lucite by a beam of ultrasound which had passed through part of a cadaver skull. The feasibility of visualizing the brain was further demonstrated by some advances in acoustic imaging through the skull which were reported in a joint paper by S. W. Smith (Bureau of Radiological Health, Rockville, Maryland), D. J. Phillips (University of Washington, Seattle, Washington), and R. von Hausknecht (Duke University, Durham, North Carolina). Remarkable real-time pictures, showing brain structures and pulsating arteries, had been made with a phased-array sector scanner. Treating the skull as a random acoustic lens, optimal results were theoretically obtained at a frequency of about 1 MHz and an aperture width of about 35 to 40 mm. The ultrasonic images were well correlated with pictures from a brain atlas. The possibility was pointed out that phase correction for the effect of the skull could be obtained element-by-element across the array, if a suitable intracranial source of uniform wavefronts could be devised.

The following Sessions 11 and 12, Attenuation and Velocity III and IV had ten papers. S. A. Goss, R. L. Johnston, Y. Maynard, L. Nider, L. A. Frizzell, W. D. O'Brien, Jr., and F. Dunn (University of Illinois, Urbana, Illinois) reviewed ultrasonic propagation parameter measurements. They discussed the advantages, disadvantages, and accuracies of resonant cavities, interferometers, and thermocouple probes, and techniques based on velocity difference measurement, pulse superposition, radiation pressure, and time-of-flight measurement. The temperature dependence of the velocity of sound in soft tissues, a parameter of great importance in hyperthermia therapy for control of cancer, was reported by T. Bowen, W. G. Connor, R. L. Nason, A. Pifer, and R. Sholes (University of Arizona, Tucson, Arizona). With the exception of fat, vegetable oil, and water, which had negative temperature coefficients of velocity, all the other tissues investigated -- spleen, muscle, liver, and kidney -- had positive temperature coefficients over the range 36° to 44° C. A simple but effective device for measuring ultrasonic propagation velocity in tissue, both in vitro and, with suitable anatomy, in vivo, was described by B. D. Sollish (Mefismann Institute of Science, Rehovot, Israel). The following three papers were concerned with ultrasonic studies of the breast. T. Kobayashi (National Cancer Center Hospital, Tokyo, Japan) spoke about the correlation of attenuation in breast cancers with connective tissue content. He showed that stronger shadowing, associated with greater attenuation, was correlated with higher connective tissue content. Thus, strong shadows were produced by scirrhous carcinoma (rich in connective tissue), average shadows by papillary carcinoma, and weak shadows by medullary carcinoma (poor in connective tissue). The comments of the audience substantiated the conclusion that increasing attenuation was correlated with increase in collagen, as in operative scars and older breasts. Next, G. Dale, Ch. M. Gros, M. Gautherie, and B. Lairard (Senologie-Hospices Civils, Strasbourg, France) carefully reviewed diagnostic image features, in their paper on echoographic syndromes of breast cancer. This was followed by a multi-discipline approach to the detection of breast cancer by ultrasonic techniques, with intercomparison of signal-processed ultrasonic transmission data, ultrasound pulse-echo information, and whole breast pathology, by E. K. Fry, N. T. Sanghvi, and F. J. Fry (Indiana University School of Medicine and Indianapolis Center for Advanced Research, Indianapolis, Indiana) and H. S. Gallagher (University of Texas, Houston, Texas). Experiments with an excited, formalin-fixed breast revealed non-uniform attenuation particularly in and near the nipple. The authors asked about the contributions of reflections (which were felt not to be large), the possibility of the existence of bubbles and the effect of formalin, and, for in vivo measurements, the effects of lactation and the taking of the contraceptive pill. F. W. Kremkau, C. P. McGraw, and R. W. Barnes (Bowman Gray School of Medicine, Winston-Salem, North Carolina) reported the results of some careful measurements of the acoustic properties of human breast. The infant breast had about 60 percent lower attenuation than the adult. In adult breast, fixing with formalin increased velocity by about 30 percent. Fixed breast had a dispersion of about 1.6 m -1 MHz -1 and fresh breast about 2 m -1 MHz -1. The temperature coefficient of attenuation was negative, and attenuation was about three greater in in vitro matter than in gray. The tissue characterization using acoustic transmission and scattering parameters was further discussed in a joint paper by M. P. Kadaba, W. P. Cockerill, and P. K. Bhagat (University of Kentucky, Lexington, Kentucky), and R. W. Ware (Veterans Administration Hospital, Lexington, Kentucky). In tissues such as kidney, liver, and cardiac muscle, over the frequency range to 10 MHz, attenuation increased from about 2 to 16 dB cm -1 and velocity, from 1520 to 1580 m s -1 (i.e., by about 4 percent). In another joint paper, D. H. Le Croissette, R. C. Heyser, P. M. Gammell, and J. A. Roseboro (California Institute of Technology, Pasadena, California), and R. L. Wilson (University of Southern California, Los Angeles, California) reported values of the attenuation of selected tissues as a function of frequency. Using time-delay spectrometry, involving the measurement of the frequency difference between the received signal
and a transmitted frequency-modulated wavetrain, they studied attenuation over the range 1 to 8 MHz in liver, pancreas, muscle, and fat. In liver, for example, attenuation increased after death as a result of fixation. Apparently similar tissues often had very different attenuations. Finally in Session 12, D. Hughes, L. A. Geddes, and V. Newhouse (Purdue University, West Lafayette, Indiana) discussed the velocity and attenuation of ultrasound in blood at 37 °C. These data were required in order to estimate Young's modulus of the aortic wall. Besides presenting accurate values, Hughes reported that attenuation increased with packed cell volume (up to at least 60 percent packing), and velocity had a minimum value with a packed cell volume of about 10 percent.

The final session, Session 13, Tissue Viability and Tissue Phantons, began with a paper by L. Weiss (Roswell Park Memorial Institute, Buffalo, New York) on tissue signatures -- a matter of life and death. Dr. Weiss discussed the changes which took place in in vitro tissues, and the precautions which needed to be taken to minimize consequential changes in tissue signatures. For example, poor oxygenation might result in death within 5 minutes. Even in life, many tumors had dead or dying cells, and these differences probably affect ultrasonic imaging. Mechanically induced cell separation measurements were related to degenerative changes in tissue, and might possibly be used to standardize interactions with ultrasound. The remaining three papers in this Session were concerned with tissue equivalent materials for ultrasonic imaging. In a joint paper, P. Edmonds, Z. Reye, and D. Parkinson (Stanford Research Institute, Menlo Park, California), R. Filly (University of California Medical Center, San Francisco, California), and H. Busey (Picker Corporation, Northford, Connecticut) described a human tissue phantom for testing conventional ultrasonic scanners. After experimenting with several rubber and plastic materials, it was found that gelatin-water gels, loaded with glass microspheres or cellulose fillers as scatterers, gave satisfactory results. Questions from the audience were answered by statements that the gel had an acceptable dependence of attenuation on frequency, and that the plastic materials had attenuations which were too high to permit the addition of scatterers. R. C. Eggleton (Indiana University School of Medicine and Indianapolis Center for Advanced Research, Indianapolis, Indiana) mentioned the application of tissue simulators for ultrasonic diagnosis, in teaching and training, evaluation of scanner performance, and as models for basic research. He presented results obtained with a plastisol, and showed the effects of adding scatterers. A joint paper by P. L. Carson, L. Shabason, and D. E. Dick (University of Colorado Medical Center, Denver, Colorado) and W. Clayman (Alderson Research Laboratories, Inc., Denver, Colorado) on tissue equivalent test objects for comparison of ultrasound transmission tomography by reconstruction and pulse echo imaging, also discussed special plastic materials. Although these materials did have rather high attenuation (about 2 dB cm⁻¹ MHz⁻¹), scatterers could be added and phantoms satisfactory for testing systems could be constructed. Finally, Dr. Carson showed an ultrasonic CT scan of an in vivo breast indicating an attenuation coefficient of about 15 dB cm⁻¹ at 3.5 MHz.

In summary, the Second International Symposium on Ultrasonic Tissue Characterization brought the subject into focus and perspective. The 286 participants, including many of the leaders in the field, spent three days exchanging ideas and learning from each other. Mass screening for breast cancer in particular was identified as one of several clinical problems which might be solved by ultrasonic tissue characterization. Research opportunities were evident in the development of fundamental theories, the acquisition of data on velocity, attenuation and scattering, and in clinical validation. Image reconstruction, signal processing, pattern recognition, and Doppler blood flow signals, emerged as fruitful areas for investigation. New technological advances, for example, in tissue phantom materials, were identified as already being ready for transfer to commercial application.

M. Linzer
P. N. T. Wells
July, 1977
REPORT ON PANEL DISCUSSION
ULTRASONIC DIAGNOSIS OF BREAST CANCER

PANEL

Cochairpersons

William Pomerance
Diagnosis Branch
Division of Cancer Biology and Diagnosis
National Institutes of Health
Bethesda, Maryland

G. J. Dale
Senologie-Hospices Civils
Strasbourg, France

P. N. T. Wells
Department of Medical Physics
Bristol General Hospital
Bristol, United Kingdom

John L. Doppman
Department of Diagnostic Radiology
Clinical Center
National Institutes of Health
Bethesda, Maryland

Elizabeth K. Fry
Indiana University School of Medicine and
Indiana University Hospital
Indianapolis, Indiana

G. H. Glover
General Electric Company
Medical Systems Division
Milwaukee, Wisconsin

J. F. Greenleaf
Mayo Clinic
Rochester, Minnesota

Toshiji Kobayashi
Department of Internal Medicine
National Cancer Center Hospital
Tokyo, Japan

Melvin Linzer
National Measurement Laboratory
National Bureau of Standards
Washington, D.C.

D. E. Robinson
Ultrasoundics Institute
Sydney, Australia

Leonard Weiss
Roswell Park Memorial Institute
Buffalo, New York

In his introductory remarks, P. N. T. Wells pointed out that the overall mortality from breast cancer was the main cause of death in Western women between the ages of 40 and 44 years, and the annual economic cost of the disease in the U.S. was around $200M. Consequently, it was timely to review the contribution which ultrasonic diagnostics might make to the solution of the breast cancer problem. There were many different malignant tumors of the breast -- scirrhus, mammary duct, papillary, medullary, colloid, lobular, intracystic, apocrine and adenoid cystic carcinoma, Paget’s disease, lymphoma, and sarcoma. The earlier that breast cancer was treated, the better the prognosis. A patient treated with in situ carcinoma was cured. If the tumor was localized, the five-year survival was 85 percent; but this fell to 53 percent if there was lymph node involvement. A patient with distant metastases was incurable, although the survival time varied from patient to patient. Interest in screening hinged around the possibility that earlier detection might improve prognosis. Unfortunately, thermography was unsatisfactory as a screening method for breast cancer: in one series, for example, only 25 percent of those who developed cancer within 18 months were detected, and the false positive rate was approaching 15 percent. When combined with clinical examination, in another trial, only about 20 percent of cancers in women under 50 years of age would not have been detected without mammography. Moreover, mammography, whilst having a negligible risk as far as the individual patient was concerned, would itself induce by radiation a large number of cancers if every member of a large population were to be exposed to it.

William Pomerance said that it had to be admitted that contemporary methods of treating advanced breast cancer were ineffective, and that progress might depend on earlier detection. He defined screening as the application of known methods to an asymptomatic population to detect early cancer. He considered that an acceptable method for breast cancer screening would need to detect tumors of less than 5 mm diameter, and that it should be free from hazard and have at least a 90 percent success rate. The assessment of the value of breast cancer screening would take a long time, since the mortality of patients surviving treatment only coincided with that of the normal population after about 17 years. He thought that screening might have its biggest impact in detecting slowly growing asymptomatic tumors.
The fact that screening for cancer of the uterine cervix had resulted in a reduction in mortality led Leonard Weiss to hope that breast cancer screening might also be effective. Moreover, he was encouraged by results which he had obtained using a high-resolution ultrasonic scanner, that it might soon become possible to detect lesions of less than 2 mm diameter, although it might be difficult to distinguish histologically between different types of lesion. The detection of 2 mm diameter lesions would be an important but numerically modest advance from the present ability to detect 5 mm lesions by manual palpation; an improvement of 10 percent in effectively treated patients might result. Weiss stressed the importance of growth rate in determining prognosis. He then referred to a study of the feasibility of breast cancer screening, which had been carried out in 1971. If the 38 million women in the U.S. who might have benefited from screening were to have been given this advantage, it had been estimated that the annual cost then would have been around $620M. He felt that it would therefore be necessary to restrict screening to women known to be at risk, or over 50 years old.

The role of mammography was discussed by J. L. Doppman. He showed some typical mammograms, and explained that the method was best for visualizing microcalcification. Three-dimensional display was needed. A great advantage of mammography was that it could be used by the surgeon to ensure that he removed the entire lesion. Recent developments had resulted in a reduction in the x-ray exposure, which presently was generally less than 0.01 Gy (1 rad).

Next, experience with pulse-echo ultrasonic methods was reviewed. Toshiji Kobayashi had worked for five years in Japan on the ultrasonic visualization of the breast. For Japanese women, scanning through a flexible membrane at the bottom of a water-bath was satisfactory. Kobayashi described the distinctive echographic features of lesions of differing histologies, and he emphasized the importance of retrotumorous shadowing in deducing information about the attenuation by the lesion. Such was the confidence which was felt in the method in Japan that specially equipped minibuses were being used in mass screening trials. In the breast cancer clinic, both pulse-echo and Doppler investigations were complementary to thermography and mammography, according to G. J. Dale. He discussed the ultrasonic scans of two typical patients, and concluded that in breast cancer diagnosis the false positive rate was 0.6 percent; the false negative rate was 11 percent, but this fell to 5 percent when combined with clinical examination. Using pulsed Doppler, he had traced breast arteries of greater than 1 to 2 mm in diameter, and he explained that Doppler information related more to function than to structure. He had not studied the capillary system of malignant tumors by the Doppler method.

Gilbert Baum described the interpretation of breast echograms. Not only was textural analysis of breast tissue patterns difficult because of their wide variations, but also the skin of different individuals seemed often to transmit ultrasound differently. He felt that it was necessary to scan through water, particularly because lesions might otherwise be displaced by the pressure of the ultrasonic probe. Coupling through a water bath also allowed a large aperture transducer to be used, and the scanning motion could be automatic. Apart from the need to develop instrumentation capable of yielding reproducible results, the main problem was not to obtain the scans, but to find the time to analyze them. Furthermore, it was subjectively apparent that image degradation occurred when digitized either to fewer than 360 x 360 pixels, or to less than 32 gray levels. Sixty scans were obtained for each patient, and to reduce the analysis time he had tried color-coding, and the superimposition of seven serial scans on a three-dimensional optical display. Even with such techniques, it was obvious that screening could only be offered to selected groups of patients. Elizabeth K. Fry had constructed a versatile scanner for research into breast disease. This was important, because the modification of instruments primarily designed for the examination of other structures was unsatisfactory. The patient lay prone, her breasts immersed in water. A variety of transducers, operating at different frequencies, had been used to make many scans, producing a great range of patterns for analytical study. Cautious optimism was expressed by D. E. Robinson because of his experience with a water-immersion breast scanner using a 4 MHz transducer, with an aperture of 40 mm diameter and a focal length of 100 mm. Both simple and compound scans had been made with this instrument. The ultrasonic breast scan pattern depended on the age of the patient. Cysts could easily be demonstrated, and so could some parts of the ductal system. Robinson mentioned eight features, such as the degree of shadowing, for which scans of solid lesions required to be examined in reaching a diagnosis. It was easier to see skin dimpling associated with malignancy in immersed breasts, because of the extra support provided by the water.

The possible role of ultrasonic computed tomography in obtaining data on tissue properties was emphasized by J. F. Greenleaf. In any particular breast, it should be possible to measure the attenuation and velocity in the constituent image pixels and these data could be used to correct conventional two-dimensional pulse-echo scans. G. H. Glover had previously talked about his work on ultrasonic computed tomography in a paper presented during Session 6. As time was short, Glover did not add to the information which he had already given concerning the increase in velocity associated with malignancy in breast tissue. For the same reason, Wells did not elaborate on the potential of neovascularization blood flow Doppler detection, as he had mentioned this in the paper which he had already presented in Session 4.

Melvin Linzer emphasized that computed reflection and transmission tomography coupled with ray tracing and frequency-dependent time-gain-compensation techniques would be needed to make ultrasonic breast screening feasible. Because of the complexity of these calculations and the vast quantities of data which would be obtained in scanning only one patient, ultrafast processors with large memory are required. He felt that the potential advantages of ultrasonic investigation, and especially the possibility of safe serial surveys, justified the expenditure of substantial resources on research.
Members of the Panel and the audience then began an open discussion. M. L. Skolnik asked whether it was possible to demonstrate microcalcification on ultrasonic scans, and Dale replied that this was so if the calcification was sufficiently extensive. Fry pointed out that the echography was very helpful in monitoring young women with "lumpy" breasts, because a suggestion of the development of malignancy could be discovered early on; Robinson agreed with this. Pomerance asked Fry whether she felt that mammography had anything to contribute where a lesion had been detected by ultrasound, and although she thought that this might occasionally be the case, Weiss did not. C. R. Hill returned to the value of echography in managing patients with benign lesions, but he felt that the method was not helpful if the lesions were very small. Greenleaf stressed the importance of data obtained from time-of-flight computed tomography. Fry considered that past progress more than justified continued efforts to develop an ultrasonic breast screening method; but there was general agreement with Baum when he said that the presently available commercial equipment ought not to be used in a trial of ultrasonic breast cancer screening as this would inevitably bring the method into disrepute. F. E. Barber enquired about the potential of low-dose mammography, and Oppman replied that the accuracies of such techniques had not been assessed; he thought that it would be better to wait for a viable ultrasonic method, than to extend the use of mammography. According to Pomerance, even if the x-ray exposure were to be reduced to 2 mGy, mammography would be unacceptable for mass screening. A member of the audience asked whether it was the tumor which was demonstrated by echography, or the reaction of the surrounding tissue. Robinson replied that both features might be seen; for example, besides the echoes from the tumor, there might be skin thickening and shadowing. In this connection, Fry mentioned the change in the collagen content of the entire breast, which might be due to a malignant tumor. Wells closed the discussion with a short summary.

He said that it seemed to have been established that mass screening of selected groups of the female population for breast cancer -- those specially at risk, and those more than 50 years old -- would be worthwhile, if a suitable technique could be developed. Such a technique might well be based on ultrasound but it would not necessarily be a simple pulse-echo method. It would need to be accurate and economic. The present lines of research were promising; more resources should be devoted to solving the fundamental and technological problems, so that earlier clinical application would be possible.

P. N. T. Wells

July, 1977
INTRODUCTORY ADDRESS

THE RELATIONSHIP OF TISSUE SIGNATURE
RESEARCH TO IMPROVED HEALTH CARE

Alfred J. Eggers, Jr.
Assistant Director for Research Applications
National Science Foundation
Washington, DC 20550

It is a pleasure to be here today before such a distinguished audience. It has been only two years since the first conference devoted to ultrasonic tissue characterization. Much has been accomplished in those two years. Even more will be done in the future. You should be proud to be part of such a vigorous research effort, and I know you share my pleasure at the prospects for the improved medical devices that should derive from the efforts of all of you.

It is because of these prospects that the applications side of the National Science Foundation is so interested in your efforts. In addition, there is the revolution in microelectronics which has provided an order of magnitude reduction in cost and improved performance every five years for well over 25 years. Our technologists confidently expect another decade of the same. What does this mean? Suppose a highly sophisticated piece of equipment using the current tissue signature technology would cost $1,000,000 on the market today. I'm told that this is a reasonable ballpark estimate. Five years from now the cost could plummet to $100,000--still a bit rich for the average physician. But in another five, we find that $100,000 may drop to $10,000--much closer to what can be afforded.

Reflect for a moment on what the implications of these changes could be. We may be approaching the end of the "visible" computer because microelectronics can make a computer so small and inexpensive that it will disappear behind the imaging screen. One question is how will we exploit this capability? This is why efforts such as this conference are so important. It is one crucial step in preparing wisely for the future.

Of course, we must be aware that extrapolation is sometimes a hazardous experience. There is no assurance that wanting or expecting a major cost-performance breakthrough will make that change happen. Still, we would all be derelict in discharging our responsibilities if we were not ready. After all, the sums being devoted to research are not trivial, but they are really a low cost insurance payment if the predicted gains from electronics are realized. The real waste would be to have all this great technology available and not be ready to apply it for improved health care. You might be interested in the background for the Research Applied to National Needs (RANN) participation with the National Bureau of Standards and the National Institutes of Health in support of this conference. Early in the history of the applications directorate, we set up a series of experiments to investigate ways of accelerating the use of technology. One is of particular interest to you. The first step was to set up a study group in 1973 which evaluated the state of development of medical ultrasonic diagnostic instruments. This survey team found that existing technology could be marshalled into improved systems. Our group of R&D incentives experiments, therefore, included an Experiment No. 5 to encourage the industrial community to create these new systems. As in most experiments, we have learned and did not do everything to perfection. Overall, however, it was a useful investigation. Today there is new equipment on the market and clinical ultrasound is rapidly becoming an important part of diagnostic services.

That same report of 1973 also had another major finding. To make a major step forward beyond the experiment five objectives would take far more research across a broad front of activity. Later, we had the Alliance for Engineering in Medicine and Biology suggest in their report entitled, "A Five Year Research and Development Agenda for Ultrasonic Imaging Diagnostic Instrumentation," that a complete system look across 23 research categories was needed. In broad terms, the report pointed out the need to balance the total program and consider it as a system of interrelated parts. Funds for research on biohazard were described as needed. Still, it is silly to not avail oneself of the opportunity to acquire information at lower powers which are intuitively less risky. Both types of efforts were recommended. Included in this list was research on tissue characterization--the subject of this conference.

A direct outgrowth of the last tissue signature conference was a recognition that ultrasound tissue signature research was not yet a coherent body of knowledge. The RANN program provided grant funds to establish and disseminate a preliminary data base for ultrasound tissue characterization research. I understand that a newsletter is being published and that several of you in this conference will meet on June 16 to continue the task of systematically collating research results. I also understand that the first meeting will take the place of an advisory committee under the leadership of Dr. McClinney, past
president of the AIUM and professor of neurology at the Bowman Gray Medical School. Both of these groups are part of a major effort whose objective is clear. We want improved patient care. Moving from the present to the future is difficult, and we must be sure that all opinions are brought to focus on this objective.

Now, let me point out that we have three basic objectives in the RANN program. These are to:

- Increase the effective use of science and technology in dealing with national problems;
- Shorten the lead time between basic scientific discoveries and relevant practical applications; and
- Provide early warning of potential national problems and initiative assessments and research useful in avoiding or solving such problems.

It is clear that your research efforts satisfy these criteria. You will note that we emphasize national needs. I believe that each country shares our concerns about improved health care. It is a pleasure to join with all of you from many nations to present, hear, and discuss common research interests in this area. I wish you all the best in your efforts today, tomorrow, and in the future to use science and technology more effectively to make this world a healthier place in which to live and thrive.
CHAPTER 2
ATTENUATION AND VELOCITY I: MECHANISMS
ELEMENTS OF TISSUE CHARACTERIZATION

Part I. Ultrasonic Propagation Properties


Bioacoustics Research Laboratory
University of Illinois
Urbana, Illinois 61801, U.S.A.

Tissues can be characterized ultrasonically by their attenuation, absorption, and velocity, all of which correlate well with the presence of the major tissue components of water, and protein, particularly, collagen. This correlation is examined in solutions of biologically important molecules and in a number of tissues and organs. It is shown that tissues can be grouped according to similar ultrasonic propagation properties, physiological functions, and concentration of elementary constituents. The role of collagen in determining ultrasonic properties of normal and pathological tissues is discussed.

Key words: Absorption; amino acids; attenuation; frequency; mammalian tissues; polypeptides; proteins; tissue characterization; ultrasonics; velocity.

1. Introduction

The ultrasonic propagation properties of biological materials include the behavior of those measurable acoustic parameters, as functions of the state and acoustic variables, which characterize the fate of acoustic signals propagating within the biological environment. The ultrasonic attenuation includes not only the absorption of the ultrasonic signal, which is degraded to heat, but also losses due to other mechanisms by which energy is extracted from the propagating wave or is redirected by virtue of the inhomogeneous nature of the media. The ultrasonic velocity and the characteristic acoustic impedance, which can be determined with the addition of density information, embody within them both the inertial and restoring parameters of the particular materials. Thus, knowledge of the ultrasonic velocity and loss terms may provide a basis for developing tissue signatures for various biological materials.

The paper will deal with the ultrasonic propagation properties of tissues beginning with the elemental constituents. As water, soft tissues, and organs have very much the same densities and compressibilities, it is instructive to begin a review with properties of aqueous media.

2. Biological Molecules in Solution

A. Water

The measured ultrasonic absorption in water is proportional to the square of the frequency, over the range $10^{-2}$ to $10^{-3}$ MHz, with the frequency-free absorption coefficient, $a/f^2$, having a constant value of $15.7 \times 10^{-17} \text{s}^2/\text{cm}$ at $37 \degree C$. The magnitude of this absorption is greater than one would expect from consideration of the so-called classical absorption due to viscosity and thermal conductivity. This absorption in excess of the classical value has been attributed by Hall [1] to a structural relaxation mechanism involving a transition between two possible quasi-crystalline states for water. More recent experimental results [2] are consistent with the hypothesis that water undergoes a structural relaxation characterized by a time constant of $10^{-12}$ seconds, and supports the idea that water is a mixture of two or more states and that the relaxation processes consist of the independent jumping of molecules from one state to another.

The velocity of sound propagation in pure water exhibits a maximum at $75 \degree C$ due to the existence of a minimum in the product of density and adiabatic compressibility at that temperature [3]. Similar behavior is exhibited by dilute aqueous solutions, although the temperature of maximum velocity may be decreased since the solutes modify the structural arrangements of water. The velocity in water has been measured most precisely by McSkimin [4], Greenspan and Tschiegg [5], and DelGrosso and Mader [6].

B. Amino Acids

Since it has been observed that proteins play a dominant role in the absorption properties of ti-
sues, aqueous solutions of amino acids and polypeptides require attention, for completeness. When dissolved in water without additional ionic constituents to influence the state of charge of the amino acid, the solution exhibits a magnitude of the frequency-free absorption parameter, $a/f^2$, which varies little with frequency in the megahertz range, and differs only slightly from that of the solvent, water [7-12]. Amino acids in aqueous solution at neutral pH may be considered according to their action of structure making or structure breaking in the solvent. Herein, the amino acids are present as doubly charged molecules (zwitterions) and are susceptible to dissociation and recombination reactions upon a change of their environment. Hydrogen-bonding sites are located on both the amino and carboxyl groups, while the side chain may be acidic, nonpolar, or basic. Thus, the potential for breaking or making structure, in the vicinity of the solute molecules are considerable. Hamme and Pace [7] suggested that the predominate ultrasonic absorption mechanism in aqueous solutions of glycine, diglycine, and triglycine is that which involves solute-solvent (water) interaction. When the pH of an amino acid aqueous solution is within the range of 2 to 4 or 11 to 13, the relaxation behavior can be described by a single relaxation frequency. A number of amino acids have been investigated as a function of pH, viz., glycine [9, 13-16], serine and threonine [8], glutamic acid, aspartic acid and alanine [14], and arginine and lysine [10, 15]. Absorption maxima have been observed within the pH ranges 2 to 4, and 11 to 13, with such peaks being described quantitatively by assuming that the proton-transfer reaction dominates the absorption.

C. Polypeptides

When the amino acids are formed into polypeptide chains, the absorption increases dramatically, and the mechanisms believed to be responsible for the absorption in tissues may begin to appear. In general, aqueous solutions of polypeptides at neutral pH exhibit an ultrasonic absorption behavior greatly increased over those of amino acids in solution or of water, and with a somewhat lesser than the square-of-frequency dependence. The absorption in aqueous polypeptide solutions may involve any or all of the following four possible mechanisms, viz., proton transfer, helix-coil transition, solvation, and relaxation of the shear viscosity. Major interest has tended to be focused on the proton-transfer reactions [17-20] and helix-coil transitions [21-24].

D. Proteins

Continuing with increasing complexity of the biological media, the polypeptides may be considered to be arranged in a particular, ubiquitous way to form the globular proteinaceous state. Hemoglobin and serum albumin solutions have received considerable attention, partly because of the availabilities of the materials. Special consideration is given to other macromolecular species such as nucleic acids and polysaccharides.

When biological macromolecules, such as the globular protein hemoglobin are in aqueous solution, a certain amount of the solvent becomes an inherent part of the molecule since the polymer possesses ionic and polar groups which associate with water molecules. In addition, proteins contain a number of nonpolar side chains such that, within the vicinity of the macromolecules, some water structuring occurs. Thus, it is possible that the structure of liquid water, the hydration layer, increases in the neighborhood of the biological macromolecule. It is considered, therefore, that as an acoustic wave propagates through an aqueous solution of biopolymers, it perturbs the hydration layer manifesting absorption of energy by a structural relaxation process. The role of molecular conformation of the biopolymer has also been considered as the origin of the observed ultrasonic absorption. Figure 1 shows the excess frequency-free absorption per unit concentration for several biocmacromolecules and supports the view that structuring contributes to the ultrasonic absorption spectra [25]. Both dextran [26], a carbohydrate, and polyethylene glycol [27], a synthetic polymer, assume random coil configurations in aqueous solution and exhibit absorption magnitudes similar to that of gelatin. Hemoglobin has a quaternary structure, bovine serum albumin and ovalbumin have tertiary structure, polyglutamic acid [28], a synthetic polyamino acid, has secondary structure, and the double helix, DNA, has a rigid rod conformation [29]. However, hemoglobin in 5 molar aqueous guanidine hydrochloride solution exists as a random coil [30] and yet exhibits ultrasonic absorption spectra similar to that of hemoglobin in aqueous solutions [31]. The importance of molecular spatial arrangement is thus an unsettled question, though the polypeptide structure appears to be of considerable significance.

![Fig. 1. Excess frequency-free ultrasonic absorption per unit concentration][25]

Within figure 1, bovine serum albumin and hemoglobin have a molecular weight of 68,000 while that of ovalbumin is 46,000. $\beta$-lactoglobulin [32] (not on graph) with a molecular weight of 35,000, would fall in the range determined by hemoglobin, bovine serum albumin, and ovalbumin, while lysozyme [32] (not on graph) with a molecular weight of 14,600, would appear between hemoglobin at 25°C and dextran. Two random coil polymers, dextran and polyethylene glycol, have been studied as a function of molecular weight. For dextran solutions, the frequency-free absorption per unit concentration increases with increasing molecular weight to a molecular weight of about 10,000, which corresponds to approximately 100 monomer units, beyond which it is independent of molecular
weight [33]. Aqueous polyethylene glycol solutions show similar absorption behavior in that beyond a molecular weight of about 4500, which also corresponds to a chain length of about 100 monomer units, the absorption is independent of molecular weight [27]. Thus, ultrasonic absorption depends to some degree upon molecular weight. Possibly beyond about 100 monomer units, the macromolecule assumes random coil characteristics.

It is uncertain whether the absorption mechanism(s) responsible for energy loss in biological polymer solutions (usually of concentrations less than 10 percent by weight) are the same as those responsible for the absorption properties of tissue [34]. Kremkau and Carstensen [11] have suggested that more highly concentrated macromolecular solutions, promoting solute-solute (intermolecular) interactions, may better approximate the tissue environment, and from the point of view of biological effects, may be the most important level at which the ultrasound interacts. In the case of dilute solutions, where the absorption is considered to vary linearly with polymer concentration, the mechanism of absorption is attributed to processes involving the interaction between the solvent (usually water) and the solute. In other than dilute solutions, the absorption is found to increase nonlinearly, and it has been suggested that this phenomenon is due to intermolecular interaction processes [34-36]. It has recently been shown [37], from absorption measurements of bovine serum albumin, to concentrations of 40 g/100 ml, over the frequency range 3.4 to 15 MHz, and at 20 °C, that the absorption dependence upon concentration does not possess a linear region. Here, the excess ultrasonic absorption can be described adequately by a concentration dependence to the 1.2 power. It thus appears essential to consider intermolecular interaction over the entire range.

3. Tissues

The nearly linear frequency dependence of attenuation in liver, kidney, brain, muscle, fat, and other parenchyma, are considered in the approximate frequency range of 100 kHz to 100 MHz, and the recent findings with regard to the temperature dependence are discussed. Several tissues and organs, such as bone, lung, refractive media of the eye, and collagenous tissues, are singled out for special detailed consideration.

It is shown that classification of tissues according to certain ultrasonic propagation properties can be carried out with regard to water and collagen content, and with regard to certain teleological considerations. Pulmonary tissue is an exception here.

A. Frequency Dependence

The dependence of the ultrasonic absorption coefficient upon the acoustic frequency has been studied by numerous investigators. Goldman and Huerter [38] prepared an early compilation of ultrasonic velocity and absorption data in mammalian soft tissues. Therein it is seen that the velocity, excluding lung, is very nearly that of dilute salt solutions and varies only slightly among those tissues. Fatty tissues are exceptions in having a velocity about 10 percent less than the others. Figure 2, taken from their paper, is a graphical representation of the acoustic amplitude absorption coefficient per wavelength for several mammalian tissues in the frequency range of approximately 200 kHz to 10 MHz. As they attempted to include all measurements available at that time, by numerous investigators employing different experimental techniques, the scatter of the data exhibited by the bands, or broad shaded regions is thus not wholly surprising since many neglect to give either complete specifications of their experimental procedure or a description of the state of the specimen used. For example, it is not possible, in many cases, to determine from the literature the temperatures employed by the investigators reporting the data. It is, however, possible to discern several relatively simple relationships. For example, the absorption per cycle, α/f, is generally constant over the frequency range considered. For fat, α/f increases slightly in the frequency range from 1 to 10 MHz. The experimental results for striated muscle and liver appear to exhibit a minimum in the neighborhood of 2 MHz. Kessler [39] has shown that for kidney the linear dependence of the attenuation on frequency exists to about 100 MHz, after which a square law (or greater) dependence exists. Fry [40] has considered a viscous mechanism for the absorption of ultrasound in tissue, in which it is shown that the viscous forces acting between a suitably chosen distribution of suspended particles (or structural elements) and a suspending liquid can account for the experimentally observed linear relationship be-

Fig. 2. Acoustic amplitude absorption coefficient (in dB/cm) per wavelength versus frequency for several mammalian tissues [38].
between acoustic absorption coefficient and ultrasonic frequency. The frequency band over which linearity obtains (in the model) is determined by the limits of the distribution of values for the parameters chosen to describe the structural elements. Below the linear range the theory predicts a quadratic dependence, in agreement with experiment.

Figure 3 is another way of presenting the data which may be suggestive for determination of mechanisms of absorption [41]. Here, the logarithm of the absorption coefficient is plotted as a function of the logarithm of the ultrasonic frequency, and the slopes of the resulting curves are examined (the slope is the exponent of frequency upon which the magnitude of the absorption coefficient depends). Figure 3 shows data for several materials of increasing biological complexity, exhibiting correspondingly increasing complexity in absorptive behavior. The urea solution exhibits a slope of 2, indicative of classical viscous absorption for which \( \alpha/f^2 \) is a constant. Homogenized milk, a suspension of fat particles and hydrated casein complexes, exhibits a slope of nearly unity from approximately 1 to 40 MHz. Behavior of this type cannot be explained in terms of simple viscosity or scattering theories. The curves of the absorption coefficients of egg albumin, brain tissue, liver, and striated muscle (not shown in fig. 3) exhibit slopes between 1 and 2 in the neighborhood of 1 MHz and approach a slope of 2 at higher frequencies. Hueter [41] has suggested that this type of frequency dependence can be described for specific muscle preparations by a double relaxation process in which the bulk (volume) viscosity of the tissue possesses a relaxation frequency near 40 kHz, and the shear viscosity possesses a relaxation near 400 kHz. Although it is conceded that this is an oversimplification of a complicated process, it will be shown below that the temperature dependence of the acoustic absorption coefficient lends support to this view.

**B. Temperature Dependence**

Details of the absorption coefficient as a function of temperature and frequency have recently become available. Figure 4 shows observations on mammalian central nervous system, the only tissue for which such data are available.

![Figure 4. Frequency and temperature dependence of ultrasonic absorption in mammalian central nervous tissue [43].](image)

The curves for 0.26, 0.5, 0.7, and 1 MHz represent in vivo measurements in the spinal cords of neonatal mice (essential poikilotherms) [42-44] and those for 4.2 MHz are in vitro measurements in brains of adult cats (homeotherms) [45]. The relatively complex behavior of the frequency-free absorption coefficient with frequency and temperature suggests a family of curves whose maxima decrease in magnitude, and occur at ever higher temperatures, as frequency increases, supporting the suggestion mentioned above. It is not known whether other soft tissues exhibit similar behavior but Kishimoto [46] has observed a positive temperature coefficient for the absorption coefficient of bone in the frequency range 1.4 to 4.5 MHz. These data illustrate the necessity for complete specification of the state of specimens when reporting experimental results.

**C. Absorption and Velocity in Bone**

Bone is a tissue possessing acoustic propagation properties greatly different from those of the soft tissues discussed previously. An early study of specially prepared skull bone, in the frequency range 0.6 to 3.5 MHz (25 to 35 °C), yielded a quadratic dependence of the absorption coefficient upon frequency with a transition to a linear dependence beyond about 2 MHz [47]. An average value found for the acoustic amplitude

---

**Fig. 3. Acoustic amplitude absorption coefficient versus frequency for materials of different biological complexity [41].**
absorption coefficient per unit path length in skull bone, in the neighborhood of 1 MHz, was of the order of 1 cm\(^{-1}\), approximately an order of magnitude greater than that of soft tissues of the same temperature. However, recent observations have called these values into question, and Adler and Cook [48] have obtained absorption measurements of 1.5 cm\(^{-1}\) and 2.2 cm\(^{-1}\) in freshly frozen dog tibia at room temperature at, respectively, 3 and 5 MHz. Reports of measurements of the longitudinal speed of sound in bone are largely in agreement that it is approximately twice that of soft tissues [46,49-50]. Anisotropy of elastic properties and variations in density of bone present special problems for measurement and for interpretation of results [48-50].

D. Refractive Media of the Eye

Begui [51] has studied the acoustic properties of the refractive media of the eye in vitro. He determined the ultrasonic absorption coefficient of the aqueous and vitreous humors at 30 MHz and that of the lens at 3 MHz. The specimens were obtained from excised fresh calf eyes. At 30 MHz and 27.5 °C, the aqueous and vitreous humors both exhibit an acoustic amplitude absorption coefficient of 0.35 cm\(^{-1}\). Since this is approximately 50 percent greater than the absorption coefficient of dilute salt solutions, it suggests that the absorption coefficients of the humoral media of the calf eye possess a viscous-type dependence upon frequency; that is, the absorption coefficient probably increases as the square of the frequency.

The lens of the calf eye exhibits a value of 0.7 cm\(^{-1}\) for the acoustic amplitude absorption coefficient at 3 MHz and 28 °C. Since the lens contains a relatively high concentration of protein, it is reasonable to assume, in the absence of further information, that the frequency dependence of the absorption coefficient of the lens resembles that of other soft tissue for which the absorption appears to be dominated by the protein content, i.e., it is probable that the absorption coefficient per unit path length of the lens varies approximately with the first power of the frequency. Some investigators currently using ultrasonic methods for diagnosing disorders of the human eye feel that the lens absorption value given by Begui is larger than that for the human lens in vivo. The possible discrepancy may result because of species differences. Indeed, Begui observed that the viscosity of the intraocular fluid of calf eyes is greater than the values normally stated for the fluid media of human eyes. Further, the specimens used by Begui were first stored (at temperatures in the neighborhood of 0 to 5 °C) and were used for measurement purposes within a time interval of 10 days. Begui obtained for the speed of sound in refractive media of the eye 1497 m/s for the aqueous humor, 1516 for the vitreous humor, and 1616 for the lens. 

E. Pulmonary Tissue

Two earlier studies [52,53] showed that ultrasonic attenuation in freshly excised dog lung was unusually high, that the speed of sound was considerably less than that of water, and that both of these quantities had a strong dependence on pulmonary inflation and acoustic frequency. It was also shown that a pathological condition in-volving an accumulation of liquid-like matter within the pulmonary architecture, had the effect of appreciably reducing both the attenuation and the velocity. Two recent studies have provided details of the frequency and inflation dependencies. Dunn [54] has shown that for excised dog lung of inflation to a fraction of residual air, such that the specimen density is 0.4 g/cm\(^3\), the attenuation increases exponentially from 4 cm\(^{-1}\) at 1 MHz to 12 cm\(^{-1}\) at 5 MHz. In this same frequency range, the speed of sound increased linearly from 0.66 \(\times\) 10\(^5\) cm/s to 1.2 \(\times\) 10\(^5\) cm/s. These findings are in general agreement with those of Bauld and Schwan [55] who also showed that, for fixed inflated specimens, the energy reflected at the lung-liquid interface ever increases the gaseous inflation allowing for lesser amounts of energy to enter the lung.

4. Role of Collagen

Collagen is the most abundant single protein in the human body and the most common protein in the animal kingdom. It is closely associated in connective tissue of vertebrates and comprises between one-quarter and one-third of the total protein in the human body, being about six percent of the total body weight [56]. However, more than the prevalence of collagen in the body, there is some evidence to suggest that it contributes to the elastic properties of most soft tissues, together with other structural proteins, determines acoustic contrast during echographic visualization [57,58]. This hypothesis is based on the fact that the static or low-frequency elastic modulus of collagenous fibers is at least 1000 times greater than those of soft tissues. Since the ultrasonic velocity is proportional to the square root of the elastic modulus, collagenous tissues are thought to introduce a greater impedance mismatch than would be the case for a soft tissue interface, thereby increasing the acoustic reflectivity. The increased deposition of collagen and the concomitant increase in attenuation seen in many pathological conditions is a basis for ultrasonic differential diagnosis.

Table 1 contains ultrasonic attenuation, velocity, water content, total protein content, and collagen content for various tissues [59]. It is apparent that the greater the collagen content, the greater the attenuation. Dependence of attenuation and velocity upon water content are also apparent. These data allow empirical relations to be formed for more quantitative assessment of the role of collagen content of tissues upon their ultrasonic propagation properties. For example, figure 5 represents a summary of table 1 of the ultrasonic attenuation at 1 MHz as a function of the wet weight percentage of collagen for ten tissues. Using linear regression by the method of least squares, a reasonable fit to the data is provided by the relation

\[ A = 0.17 C^{0.3} \]  

where \(A\) is the ultrasonic attenuation in cm\(^{-1}\) and \(C\) is the wet weight percentage of collagen. The best fit parameter, the coefficient of determination, \(r^2\), yields a value of 0.71 (unity represents a perfect fit). Equation 1 is represented on figure 5 by the solid straight line. Logarithmic, exponential, and linear functions were also analyze-
Table 1. Ultrasonic attenuation and velocity for tissues of various water, protein and collagen content.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Attenuation at 1 MHz (cm⁻¹)</th>
<th>Velocity (m/s)</th>
<th>Water (%)</th>
<th>Protein (%)</th>
<th>Collagen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (20 °C)</td>
<td>0.0003</td>
<td>1483</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amniotic fluid</td>
<td>0.0008</td>
<td>1510</td>
<td>97</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Aqueous humor</td>
<td>0.10 - 0.017</td>
<td>1497</td>
<td>99</td>
<td>0.005 - 1</td>
<td></td>
</tr>
<tr>
<td>Vitreous humor</td>
<td>0.10 - 0.017</td>
<td>1516</td>
<td>99 - 99.9</td>
<td>0.02 - 0.25</td>
<td>0.014 - 0.067</td>
</tr>
<tr>
<td>CSF</td>
<td>0.0012</td>
<td>1499 - 1515</td>
<td>99</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>0.01</td>
<td>1571</td>
<td>90 - 95</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Testis</td>
<td>0.019</td>
<td>84</td>
<td>12</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>0.02</td>
<td>1571</td>
<td>74 - 83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td>0.04</td>
<td>1485</td>
<td>87</td>
<td>3 - 4</td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td>0.04 - 0.09</td>
<td>1410 - 1479</td>
<td>10 - 19</td>
<td>5 - 7</td>
<td>yes</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.06</td>
<td>1520 - 1591</td>
<td>76 - 80</td>
<td>17 - 18</td>
<td>0.5 - 1.2</td>
</tr>
<tr>
<td>Liver</td>
<td>0.07 - 0.13</td>
<td>1550 - 1607</td>
<td>68 - 78</td>
<td>20 - 21</td>
<td>0.1 - 1.3</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.09 - 0.13</td>
<td>1558 - 1568</td>
<td>76 - 83</td>
<td>15 - 17</td>
<td>0.5 - 1.5</td>
</tr>
<tr>
<td>Brain</td>
<td>0.09 - 0.13</td>
<td>1510 - 1565</td>
<td>75 - 79</td>
<td>10 - 10</td>
<td>0.04 - 0.3</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>0.09 - 0.12</td>
<td>64 - 80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Striated muscle</td>
<td>0.18 - 0.25</td>
<td>1568 - 1603</td>
<td>66 - 80</td>
<td>20 - 21</td>
<td>0.7 - 1.2</td>
</tr>
<tr>
<td>against grain</td>
<td>0.08 - 0.12</td>
<td>1592 - 1603</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with grain</td>
<td>0.16</td>
<td>1576 - 1587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>0.25 - 0.38</td>
<td>1572</td>
<td>77 - 78</td>
<td>17</td>
<td>0.4 - 1.6</td>
</tr>
<tr>
<td>Tongue</td>
<td>0.58</td>
<td>1575</td>
<td>62 - 68</td>
<td>14 - 17</td>
<td></td>
</tr>
<tr>
<td>against grain</td>
<td>0.28</td>
<td>1505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with grain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lens</td>
<td>0.10 - 0.20</td>
<td>1616</td>
<td>63 - 69</td>
<td>30 - 36</td>
<td></td>
</tr>
<tr>
<td>Articular capsule</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integument</td>
<td>0.40</td>
<td>1498</td>
<td>60 - 72</td>
<td>7 - 30</td>
<td></td>
</tr>
<tr>
<td>Cartilage</td>
<td>0.58</td>
<td>1665</td>
<td>23 - 34</td>
<td>70 - 63</td>
<td>10 - 20</td>
</tr>
<tr>
<td>against grain</td>
<td>0.54</td>
<td>1750</td>
<td>63</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>with grain</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. Attenuation at 1 MHz as a function of the percentage of tissue collagen for 10 tissue types [59].
ed but yielded worse fits than equation 1. Similarly, to a first approximation, the ultrasonic velocity was examined as a function of collagen content for 8 tissues, excluding integument, and yielded the expression

$$C = -1700 + 230 \ln v,$$

(2)

where $v$ is the ultrasonic velocity in meters/second and $r^2 = 0.91$. Again, first approximations for wet weight percentage of total protein, $P$, yielded

$$A = 0.004 P^{1.26}, r^2 = 0.77,$$

(3)

for 16 biological materials excluding integument. Thus to a first approximation there appear to be mathematical relationships which can be developed to relate the amount of tissue constituents to the ultrasonic propagation properties. There are some tissues, such as fat and integument, which may have to be treated separately but, otherwise, this approach suggests that such relationships may aid in developing ultrasonic tissue signatures which can be incorporated into clinical instrumentation.

5. Concluding Remarks

What emerges from all this is summarized in table 2, following Dussik and Dunn [60,61], which is an attempt to characterize tissues according to their ultrasonic propagation properties and biological function. It is seen that tissues can be grouped according to apparent teleology fashion with relatively narrow ranges of attenuation values within each group. The attenuation approximately doubles from group to group in the direction of increasing attenuation, and the speed of sound increases in the same direction. Further, proceeding from group to group in the same direction, tissues of ever-decreasing water content and ever-increasing structural protein content become included. Thus, it is seen that ultrasonic attenuation and velocity may be invoked to characterize tissues according to functional, structural, and teleological criteria. Possibly detailed measurements will allow assignment of resolvable unique values to each tissue structure, including usefuly differentiable values for pathological states. Should this be the case, ultrasonic attenuation and impedance values, as functions of state and acoustic parameters, media, etc., should specify uniquely tissues for diagnostic purposes.

Acknowledgment

The authors acknowledge gratefully the partial support for portions of the activities described herein by grants from the National Institutes of Health.

<table>
<thead>
<tr>
<th>Tissue attenuation categories</th>
<th>Attenuation at 1 MHz (cm⁻¹)</th>
<th>Assumed teleology</th>
<th>General trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Very low</td>
<td>0.03 serum</td>
<td>ion, metabolic, etc.,</td>
<td>Increasing increasing</td>
</tr>
<tr>
<td></td>
<td>0.01 blood</td>
<td>transport convection</td>
<td>structural speed of</td>
</tr>
<tr>
<td>2. Low</td>
<td>0.06-0.07 adipose tissue</td>
<td>energy and (water) storage</td>
<td>protein content</td>
</tr>
<tr>
<td>3. Medium</td>
<td>0.08-0.11 nervous tissue</td>
<td>physiological function</td>
<td>skeletal framework</td>
</tr>
<tr>
<td></td>
<td>0.11 liver</td>
<td>parenchymal tissue</td>
<td>Increasing</td>
</tr>
<tr>
<td></td>
<td>0.08-0.16 muscle</td>
<td></td>
<td>H₂O content</td>
</tr>
<tr>
<td></td>
<td>0.23 heart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3 kidney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. High</td>
<td>0.4 integument</td>
<td>structural integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 tendon</td>
<td>stromal tissues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6 cartilage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Very high</td>
<td>1 or more bone (mineralized)</td>
<td>gaseous exchange</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; 4 pulmonary tissue</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References


Zana, R. and Tondre, C., Ultrasonic studies of proton transfers in solutions of poly-(lysine) and poly(L-ornithine). Implications for the kinetics of the helix-cord transition of polypeptides and for the ultrasonic absorption of proteins, J. Phys. Chem. 76, 1737 (1972).


Wada, Y., Sasabe, H., and Tomono, M., Viscoelastic relaxations in solutions of poly-(glutamic acid) and gelatin at ultrasonic frequencies, Biopolymers 5, 887 (1967).


ABSORPTION OF SOUND IN TISSUES

Edwin L. Carstensen

Department of Electrical Engineering
University of Rochester
Rochester, New York 14627, U.S.A.

In spite of extensive applications of ultrasound in diagnosis, therapy and even surgery, there are still many problems to be solved in the basic physics of sound propagation in tissues. Absorption of longitudinal ultrasonic waves occurs primarily at the macromolecular level. There is evidence to indicate that this absorption can be profoundly modified by macromolecular interaction. The specific structural or chemical relaxation mechanisms responsible for the absorption are unknown. Microscopic inhomogeneities may lead to certain forms of relative motion viscous losses or thermal absorption. Macroscopic inhomogeneities in tissue affect sound propagation and can lead to artifacts in certain methods of measurement of tissue absorption. Shear waves are not important in the soft tissues of the body.

Key words: Absorption of ultrasound; macromolecular relaxation; relaxation phenomenon; ultrasonic tissue absorption.

Although acoustic absorption phenomena play an important role in every medical application of ultrasound, we still have only a rudimentary understanding of the responsible physical mechanisms forty years after the first work in this field [1]. This review of basic concepts attempts to outline what we know about these processes and to identify problems to be solved.

1. Absorption Data

Information on absorption of sound in tissues, as it is available to us today, is outlined in figure 1. (A more complete summary of absorption data is included in the paper by Johnston et al. [2].) Data for packed red cells are included because we can think of this preparation as a kind of simple modal tissue and because it has been studied over a wide range of frequencies. The absorption of sound in fatty tissue is significantly lower than the other soft tissues. Bone is much lossier than other tissues of the body. Water makes a negligible contribution to the absorption of tissues at low frequencies. Only a few measurements have been carried out above 10 MHz. We can guess that values of (αλ) for soft tissues will follow the pattern set by hemoglobin [3] and approach but remain significantly above that of water at frequencies of the order of 1000 MHz. From acoustic microscopy it is clear that sharp differences in absorption among components of cells exist at frequencies above 1000 MHz [4].

The range of values which have been reported for a given tissue type is large. This results in part from normal biological variability. In addition, there is a potential for error in measurement with inhomogeneous tissue samples.

![Fig. 1. Absorption of sound in biological materials. Solid lines are estimates of mean absorption coefficients from many investigators. The range of reported values is large particularly for bone. The high frequency extrapolation (dashed line) for concentrated red cells is based on measurements of hemoglobin solutions [3]. Extrapolation of the data for soft tissues (dashed line) to 100 MHz is based on measurements of kidney at 100 and 200 MHz [35].](image)

1Figures in brackets indicate literature references at the end of this paper.
For example, we found that in measuring sample attenuation with a phase sensitive receiver the apparent absorption for muscle could be as much as four times its true value [5]. It is interesting that the radiation force method used by Pohlman [1] in the first tissue absorption studies is still perhaps the most reliable technique available. Acoustoelectric receivers show great promise for this kind of investigation [6].

Almost all of the absorption studies have used excised tissue samples. Very few in vivo tissue absorption measurements have been made; but those few are in rough agreement with values for excised tissue. It was reported that freshly excised liver had a much higher absorption than aged tissue samples at frequencies near 1 MHz [7,8]. We have recently attempted to duplicate these observations without success [9]. Other aging studies have shown very little change in absorption of tissues with time after excision [10]. From the information available, it appears reasonable to assume that the data in figure 1 are valid for living tissues, but we should realize that this is an assumption which has not been thoroughly tested.

It is a surprising admission that after forty years of study we do not know the temperature dependence of the absorption coefficients for all of the tissues of the body. The absorption coefficients for blood [11], brain [12], and myocardial muscle [10] decrease slightly with temperature in the range 0 to 40°C. One study reports a positive temperature coefficient for bone between 0 to 60°C [13]. As discussed below, mouse spinal cord is reported to have a complex temperature dependence [14].

This discussion, of course, concerns longitudinal ultrasonic waves in tissue. The propagation constants for shear waves in tissues are not known in detail. However, recent rough measurements indicate that transverse waves will not be generated in any of the soft tissues of the body with any current medical application of ultrasound [9,15].

2. Macromolecular Absorption

The primary absorption of ultrasound in tissue appears to take place at the macromolecular level. This was demonstrated directly by Pauly and Schwan through a comparison in the absorption of sound in liver tissue and a subcellular homogenate of the tissue [16]. The near identity of the two values suggests that tissue structure had little influence on the absorption process.

A simpler biological system yields more detailed information. The absorption coefficients for packed red cells and for a solution of hemoglobin at the same concentration in which it is found in the erythrocyte (∼30 g/100 ml) are essentially identical. This is shown as the upper curves in figure 2. Now, if a 26 percent suspension of red cells in physiological saline is prepared, the volumes of cells are the same as in the packed preparation. Thus, the local concentration and environment of the hemoglobin in the cell remains the same, and hence the contribution to the absorption from the hemoglobin should be in direct proportion to amount of protein present as shown by the dashed line in the figure 2 [17]. Saline contributes little to the absorption especially at low frequencies. Actual absorption measurements on such a suspension show that the contributions of the hemoglobin solution in the cell accounts for most, but not all, of the observed loss. The excess absorption which arises from the inhomogeneous property of the medium will be discussed later.

Since none of the smaller molecules or ions in the red cell makes a significant contribution to the absorption, it appears that the primary loss comes from the presence of the protein itself. Even the amino acid building blocks of hemoglobin have much smaller specific absorptions (i.e., absorption per gram solute) than the intact protein as shown in figure 3. In fact, the absorption of a 10 percent solution of amino acids in the proportions found in hemoglobin is barely distinguishable from water itself, where
as the absorption of a 10 percent solution of hemoglobin is ten times that of water at 10 MHz [18]. A pronase-treated hemoglobin solution yielding subunits with molecular weight less than 10,000 showed a somewhat smaller specific absorption than that of the intact protein. A more subtle dissection of hemoglobin using quinidine hydrochloride produced specific absorptions which were both larger and smaller than that of intact hemoglobin as the fractionation proceeded [19].

The "whole much greater than the sum of its parts" is not limited to hemoglobin or, for that matter, to proteins. Figure 4 shows a very similar relationship among polysaccharides. The absorption for dextran is much greater than for simple sugars. It is interesting that the specific absorption of dextran and Ficoll molecules of the same molecular weight are roughly equal. Dextran is a long chain polymer whereas Ficoll is globular. As a result, the macroscopic viscosity of equivalent concentrations of the two molecules is dramatically different. This is just one of many observations that virtually eliminate classical viscous processes from consideration in tissue absorption.

Fig. 4. Specific absorption of polysaccharides vs. molecular weight [18]. Data for dextran are taken from reference [36]. Another polysaccharide, Ficoll, which is nearly spherical and thus has a much lower intrinsic viscosity than dextran, has approximately the same specific absorption as dextran.

A number of proteins, nucleic acids and polysaccharides have now been studied [2]. The specific absorption values for the macromolecules are uniformly greater than those associated with the small molecules and ions which make up tissue.

3. Macromolecular interaction

The increase in specific absorption with molecular complexity does not appear to stop at the macromolecular level. Association among macromolecules in some cases results in increased values for the absorption per molecule. This is a vague loosely defined concept and is not based on any specific, postulated mechanism. However, there are a number of observations which seem to fit this generic heading. The specific absorption of hemoglobin increases dramatically with concentration as shown in figure 5 [18]. At a concentration of 60 grams hemoglobin per 100 ml solution, where the mean spacing of molecules is very nearly equal to the molecular diameter, the absorption per molecule is five times greater than its value in a dilute solution. Whether by introducing a new mechanism or modifying an existing process, the interaction between macromolecules as the concentration increases causes a marked increase in the specific absorption.

There are many other clear examples where macromolecular interaction is associated with increased absorption. The hemoglobin in rat erythrocytes, when stored in sodium citrate at 4 °C for several days, becomes paracrystalline (fig. 6) [20]. The specific absorption of paracrystalline cells is at least twice that of normal rat erythrocytes [18]. Treatment of red cells with acrolein cross links the hemoglobin and leads to specific absorption values which are four times greater than the values for normal erythrocytes as shown in figure 7 [21]. Other examples may be found in figure 8. It is interesting that the sediment from homogenized liver has a specific absorption three times greater than the "supernatant" from that preparation [16]. Presumably the supernatant is a dilute solution of macromolecules; whereas the sediment consists of highly organized subcellular particles.

Perhaps these observations are no more than a series of coincidences. However, the information available today suggests that the trend toward increasing absorption with increasing interaction extends beyond the macromolecular level to interactions among macromolecules.
4. Relaxation Absorption

When stress-strain relationships for a medium depend upon shifts in chemical or structural equilibria, it is possible that a sound wave propagated in the medium will experience relaxation absorption. Specifically, the absorption per wavelength is

\[ \alpha = \frac{\pi c^2}{c_s^2} \left( 1 - \frac{c_{\text{low}}^2}{c_{\text{high}}^2} \right) \frac{1}{1 + (\omega \tau)^2} \]  

where \( \tau \) is the relaxation time of the internal system and \( c, c_s, c_{\text{low}}, c_{\text{high}} \) are the phase velocity, and the low and high frequency limits of the velocity respectively. As implied by the equation, the magnitudes of the absorption and the dispersion in the velocity are related. The relation has been tested quantitatively for hemoglobin [11]. The results are consistent with the hypothesis that a relaxation mechanism is responsible for the absorption [24]. The first velocity dispersion measurements reported for tissues support the hypothesis that relaxation absorption is involved in these materials as well as in macromolecular solutions.²

²To a very rough approximation we can write [11]

\[ \alpha \approx \frac{f}{c} \frac{\alpha c}{\Delta f} \]  

Kremkau [12] reports for brain values of \( \alpha \approx 0.015 \), in agreement with figure 1, and velocity dispersion of around 1 m/s/MHz near 1 MHz.
Relaxation

\[ \alpha = \frac{1}{\tau} = \omega_0 = A e^{-E/RT} \]

(2)

where \( E \) is the activation energy of the dominant rate process in the internal system, \( T \) the absolute temperature, \( A \) and \( R \) are constants. If a reference temperature \( T_0 \) is chosen so that

\[ T = T_0 + \Delta T, \]

we can write

\[ \log \omega_0 = \text{constant} + \frac{E}{RT_0} \Delta T. \]

(3)

The general behavior predicted by figure 9 is seen in a variety of simple systems i.e., the curves of \( \log (\alpha\lambda) \) vs. \( \log f \) shift to the right in increments proportional to the change in temperature. This is illustrated with MnSO₄ solutions in figure 10 [26]. The temperature coefficient of the absorption is negative if observations are carried out somewhat below the relaxation frequencies, while it is positive at high frequencies. Figure 11 shows the temperature dependence of \( (\alpha\lambda) \) for relaxation absorption with activation energies of 20 and 50 kcal/mol. As an example, data for lecithin vesicles at 1 MHz are shown [27].

Few biological materials can be characterized by a single relaxation process. Rather, in most cases there appear to be broad distributions of relaxation frequencies, in the case of hemoglobin, for example, extending from below 0.1 MHz to beyond 100 MHz (fig. 1). From our first order model, we would anticipate that increasing temperature would simply shift the curve of \( \log (\alpha\lambda) \) vs. \( \log f \) to higher frequencies. Where the slope of this curve is slightly positive this leads to small negative temperature coefficients for the absorption. Brain [12], blood [11], and heart muscle [10] (fig. 12) appear to have this characteristic. The absorption per wavelength in bone, as reported by Kishimoto [13] decreases with frequency (fig. 13). As anticipated, this leads to a positive temperature coefficient for the absorption. In all of these materials, the activation energies are of the order of a few thousand kilocalories per mole.
The in vivo data for mouse spinal cord [14] are unique among the limited sample of tissues for which temperature dependence of absorption has been studied (fig. 14). In contrast with other tissues which appear to have many relaxation frequencies, mouse spinal cord at 2°C shows a frequency dependence of \(\alpha\) which is too strong to be explained even by a single relaxation frequency. In addition, the shape of the \(\log(\alpha)\) vs. \(\log f\) curve changes with temperature. Because of these unusual properties, mouse spinal cord appears to be a particular candidate for further study. Since temperature studies may provide general information about the properties of internal relaxing systems and in a sense extend the range of frequencies observed, it would be desirable to have this information for a broad range of tissues.

Identification of the specific chemical or structural reactions which are responsible for relaxation absorption in tissues remains the pristine challenge of this field of study. Although some effort has been given to this problem, we must admit almost complete ignorance of the nature of tissue relaxation mechanisms at a meaningful, basic level.

5. Microscopically Inhomogeneous Materials

Although the absorption of sound in blood occurs primarily at the macromolecular level, a significant, measurable, contribution at frequencies below 10 MHz arises from the presence of intact red cells in suspension (fig. 2). Scattering, viscous relative motion, and thermal absorption have been considered as possible mechanisms for this excess loss [17,28-34]. Classical scattering is ruled out on qualitative and quantitative grounds. Relative motion absorption occurs when, because of density differences between suspended particle and suspending medium,
there is relative motion between the two phases with a consequent viscous loss. A comparison of observed, excess, non-protein absorption for suspensions of red cells in physiological saline with that predicted by theory for relative motion absorption is shown in figure 15 [17].

![Graph showing absorption coefficients](image)

**Fig. 15.** Comparison of non-hemoglobin absorption in suspensions of red cells in saline with that predicted by relative motion absorption (solid curves). Points are taken from the data in figure 2 and reference [17].

Thermal absorption arises when thermal expansion coefficients and specific heats of particles and the suspending medium differ significantly thus leading to irreversible heat flow between the two phases. If extreme assumptions are made for the thermal properties of blood cells, the predicted thermal absorption is almost as large as that predicted for viscous relative motion [33]. Definitive experiments to compare contributions from the two mechanisms have not been attempted. Present evidence, however, points to relative motion as the dominant process. The suggestion that relative motion may be important in the solid tissues [31,34] remains to be tested.

**Acknowledgments**

The author wishes to acknowledge the contribution of Dr. Robert Weed for the use of the electron micrograph of a paracrystalline red cell. This review and much of the research reported has been supported in part by U.S.P.H.S. Grant GM09933.

**References**


In efforts to account for the ultrasonic attenuation exhibited by soft tissue, two types of mechanisms have been considered: (1) structural or chemical relaxation of the macromolecular constituents [1-3], and (2) processes arising from the inhomogeneous nature of tissue, including scattering, viscous relative motion, and thermal losses [1,3-8]. In this paper we estimate the fraction of the total attenuation observed in the 1 to 10 MHz frequency range which is attributable to processes arising solely from the microscopically inhomogeneous nature of soft tissue, as opposed to that fraction presumed to arise from macromolecular relaxation processes.

We consider a model in which a longitudinal ultrasonic wave propagates through tissue which is viewed as a suspension of scatterers in a liquid medium (cytoplasm). For the sake of simplicity all scatterers are considered to be spherical in shape. At an interface between the medium and a scatterer, longitudinal, viscous, and thermal waves may be excited in the suspending medium due to the discontinuity of acoustic and thermal properties at the surface of the scatterer. Energy that is coupled into these waves is lost from the incident ultrasonic beam and thus contributes to the total attenuation that is observed.

For scatterers small compared to the wavelength of the incident wave the reradiated longitudinal wave corresponds to Rayleigh scattering. The effect contributes a term to the attenuation coefficient that varies as the fourth power of frequency and the third power of the scatterer radius for a fixed volume concentration of scatterers. The magnitude of Rayleigh scattering depends upon the square of the difference in adiabatic compressibilities of the scatterer and the suspending medium and upon the square of the difference in densities. The numerical value of the contribution due to Rayleigh scattering is several orders of magnitude lower than the observed attenuation coefficient of soft tissue in the frequency range 1 to 10 MHz [1,2].

Details of the scattering process for scatterers of dimensions which are not small compared to the ultrasonic wavelength are less well understood. (Specular reflections from objects much larger in size than the ultrasonic wavelength are explicitly excluded here.) The general features of the scattering problem indicate that the magnitude of scattering events depends primarily on the square of the differences in densities and compressibilities of the scatterer and the suspending medium. In soft tissue, scatterers of dimensions comparable to ultrasonic wavelengths in the 1 to 10 MHz range (i.e., scatterers of sizes ranging from 0.05 mm to 1 mm) exhibit densities and compressibilities very close to those of the suspending medium. Thus losses arising from these scattering events are expected to represent small contributions to the attenuation coefficient. Such scattering events, however, may be of central importance in scattering and reflection (i.e., 180° backscattering) experiments.

Viscous drag losses arise from the generation of a highly damped viscous wave in the suspending medium. The scatterers attempt to mirror the motion of the suspending medium to an extent determined by a function which depends upon the relative densities of the scat-
terers and the medium, the ultrasonic frequency, and the viscosity of the medium [4,7]. For fixed frequency, viscosity, and volume concentration of scatterers, the contribution of viscous damping to the attenuation coefficient is predicted to rise, reach a maximum, and subsequently fall as a function of scatterer size. A similar rise, plateau, and fall is predicted if viscous relative motion losses are plotted as a function of frequency for fixed scatterer size. Contributions to the attenuation of ultrasound in tissue by viscous relative motion losses were considered by Fry [6], Carstensen and Schwan [1], and Kremkau, Carstensen, and Aldridge [3].

An additional contribution to the ultrasonic attenuation arises from the generation of a highly damped thermal wave at the surface of a scatterer. (Strictly speaking, the viscous drag and thermal effects are coupled, but the strength of this coupling is sufficiently small that it can be ignored [4]). The magnitude of the losses associated with the generation of the thermal wave depends upon frequency and upon the relative heat capacities, coefficients of thermal expansion, and thermal conductivities of the scatterers and suspending medium. At low frequencies the system is in an isothermal limit in which energy is reversibly exchanged between the carrier medium and a scatterer, which closely follow each other in temperature ('isothermal'), so that relatively little loss of energy occurs. At high frequencies the system is in an adiabatic limit in which temperature changes in the suspending medium occur so rapidly that they cannot be communicated to a scatterer. Thus little heat transfer occurs ('adiabatic') and relatively little energy is dissipated. Maximum energy is dissipated in the intermediate range of frequencies where the thermal response of the scatterers to the incident compressional ultrasonic wave lags sufficiently behind that of the suspending medium that substantial energy is dissipated. Thermal losses in inhomogeneous media have been considered by Epstein and Carhart [4], Allegra and Hawley [7], Kremkau, Carstensen, and Aldridge [3], and Ahuja [8].

In order to evaluate the contribution to the observed attenuation arising from viscous and thermal effects, it is necessary to identify the relevant scatterers in biological specimens. In principle, all inhomogeneities contribute to the observed attenuation at any frequency. The physical arguments presented above, however, suggest that for a fixed range of frequencies only scatterers exhibiting specific physical properties that define the relatively narrow ranges over which either viscous or thermal losses are near maximum need be considered. Numerical computations discussed below indicate that for the range of scatterer dimensions which results in significant viscous relative motion losses or thermal losses, contributions to the attenuation coefficient exhibit an approximately linear dependence on frequency, i.e., log (attenuation) versus log (frequency) exhibits a slope of 0.8 to 1.2 over the frequency range 1 to 10 MHz. Therefore, the slope of the attenuation versus frequency curve over the range of 1 to 10 MHz (hereafter referred to as the slope of the attenuation) can serve as a useful index of ultrasonic properties. This conclusion, arrived at from theoretical considerations, is consistent with the results of experiments, which indicate an approximately linear dependence on frequency for the ultrasonic attenuation coefficient of soft tissue. The slope of the attenuation represents a desirable index since in transmission experiments it is less susceptible to errors associated with impedance discontinuities and may be less susceptible to errors resulting from phase cancellation effects than is the apparent attenuation coefficient.

![Graph](image_url)

**Fig. 1.** Slope of the attenuation versus frequency curve over the range 1 to 10 MHz arising from thermal losses plotted as a function of scatterer diameter.

In figure 1 the contribution to the slope of the attenuation arising from thermal losses is plotted as a function of scatterer size. The physical properties of the scatterers and the suspending medium used in calculating the results shown in figure 1 appear in table 1 which is discussed below. As illustrated in figure 1, contributions from thermal losses are largest when the thermal wavelength \( \lambda_t \) of the suspending medium approximately equals 2 \( \pi \) times the radius of the scatterer. (\( \lambda_t \) is on the order of 0.4 to 1.3 \( \mu \)m in the frequency range 1 to 10 MHz.)

The slope of the attenuation which results from the coupling of energy into a viscous wave is plotted as a function of scatterer size in figure 2. As illustrated, viscous relative motion losses are largest when the viscous wavelength \( \lambda_v \) of the suspending medium approximately equals 2 \( \pi \) times the radius of the scatterers. (\( \lambda_v \) is the order of 1.8 to 5.5 \( \mu \)m in the 1 to 10 MHz frequency range.)

Our calculations indicate that viscous relative motion losses dominate thermal losses in the 1 to 10 MHz frequency range for a wide range of scatterer properties consistent with the microscopic anatomy of soft tissue. We thus focus on viscous relative motion losses in an attempt to identify specific physical properties that must be exhibited by the relevant scatterers. The numerical magnitude of the viscous relative motion term is approximately proportional to \((\rho'p - 1)^2\), where \( \rho' \) is the density of the scatterer and \( \rho \) is the density of the suspending medium. Therefore, significant contributions to the observed attenuation result only from those scatterers which (1) exhibit sizes that maximize viscous relative mo-
tion losses, (2) have densities significantly different from that of the suspending medium, and (3) are present in sufficient concentrations. Aggregates of structural protein such as fibrils of collagen or muscle myofibrils appear to be the principal constituents of soft tissue which possess these properties. (Dunn and his colleagues have identified collagen as a significant determinant of the ultrasonic properties of soft tissue, in part because of its large compressional modulus and ubiquity [9,10].)

Limiting our attenuation to scatterers exhibiting the requisite physical properties, we estimate the contribution to the observed attenuation arising from microscopic inhomogeneities. Specific numerical values for the properties of the scatterers and the suspending medium which were used in our calculations are presented in table 1. An attempt has been made to estimate the contribution to the experimentally observed attenuation arising only from viscous and thermal effects for a representative substance in each of three attenuation categories: low (blood), medium (heart), and high (skin). Results of these calculations are summarized in table 2. Losses associated with viscous relative motion are seen to dominate thermal losses in the 1 to 10 MHz range, a feature which appears to be preserved over a wide range of scatterer properties.

The quantitative results presented in table 2 indicate that losses arising solely from microscopic inhomogeneities appear to account for a significant fraction (> 60 percent) of the total observed attenuation of heart and skin. These results suggest that inhomogeneity losses may contribute a non-negligible fraction to the attenuation of most soft tissue. Although the exact magnitude of these losses is certain to be altered by the use of more realistic assumptions (e.g., non-spherical scatterers and improved estimates of the values of physical properties specified in table 1), the general conclusions of this study would not be altered if the illustrative numerical results presented in table 2 were in error by 30 percent.

![Fig. 2. Slope of the attenuation (1 to 10 MHz) arising from viscous relative motion losses plotted as a function of scatterer diameter.](image)

Table 2. Slope of attenuation coefficient-vs-frequency (cm⁻¹·MHz⁻¹).

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Viscous Thermal Theoretical</th>
<th>Experimental</th>
<th>Percent accounted for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood (40% Hct)</td>
<td>0.003 0.000</td>
<td>0.003 0.031d</td>
<td>10</td>
</tr>
<tr>
<td>Heart</td>
<td>0.042 0.001</td>
<td>0.043 0.072e</td>
<td>60</td>
</tr>
<tr>
<td>Skin</td>
<td>0.101 0.001</td>
<td>0.102 0.170f</td>
<td>60</td>
</tr>
</tbody>
</table>

- Numerical results presented to 3 significant digits for illustrative purposes only.
- Sum of contributions from columns 2 and 3.
- Percent of experimentally observed values (column 5) accounted for by sum of contributions (column 4) arising from losses due to microscopic inhomogeneities.

Table 1. Acoustic and thermal properties of tissue scatterers (T = 20 °C).

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Scatterers</th>
<th>Size rangea (µm)</th>
<th>Density (g/cm³)</th>
<th>Volume concentration conductivity (cal/s·cm⁻²·°C⁻¹)</th>
<th>Thermal conductivity (cal/s·cm⁻²·°C⁻¹)</th>
<th>Coefficient of thermal expansion (10⁻⁴·cm·°C⁻¹)</th>
<th>Specific heat (cal/g·°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood (40% Hct)</td>
<td>Red cells</td>
<td>4.6 - 5.6b</td>
<td>0.09b</td>
<td>40b</td>
<td>1.1b</td>
<td>1.2c</td>
<td>0.8b</td>
</tr>
<tr>
<td>Heart</td>
<td>Muscle myofibrils</td>
<td>1.0 - 2.0d</td>
<td>1.32d</td>
<td>18d</td>
<td>0.4c</td>
<td>1.2c</td>
<td>0.4c</td>
</tr>
<tr>
<td>Skin</td>
<td>Collagen fibrils</td>
<td>0.7 - 1.5e</td>
<td>1.41f</td>
<td>259</td>
<td>0.4c</td>
<td>1.2c</td>
<td>0.4c</td>
</tr>
<tr>
<td>Suspenderb</td>
<td>1.03b</td>
<td>1.5b</td>
<td>1.4f</td>
<td>1.0b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Uniform distribution of scatterers with diameters expressed in micrometers.
- Estimated.
- Viscosity (1 to 10 MHz) estimated to be 2.5 centipoise.
Acknowledgment

This work was supported in part by grants HL19537, HL17646, and HL07081 from the National Institutes of Health.

Pranoat Suntharothok-Priesmeyer was responsible for production of the text and illustrations.

References


CHAPTER 3
ATTENUATION AND VELOCITY II:
METHODOLOGY AND MEASUREMENTS
ELEMENTS OF TISSUE CHARACTERIZATION

Part II. Ultrasonic Propagation Parameter Measurements


Bioacoustics Research Laboratory
University of Illinois
Urbana, Illinois 61801, U.S.A.

Methods employed at the Bioacoustics Research Laboratory of the University of Illinois for the determination of ultrasonic propagation properties of biological media are described, with attention devoted to attenuation, absorption and velocity measurements of both longitudinal and shear ultrasonic waves. These include systems specifically for the ultrasonic characterization of soft tissues and for solutions of biologically significant macromolecules. Each method is presented in terms of theory, limitations, applicability, and possible sources of error. Important new techniques from other laboratories are also discussed.

Key words: Ultrasonic absorption; ultrasonic attenuation; ultrasonic instrumentation; ultrasonic measurements; ultrasonic spectroscopy; ultrasonic tissue characterization; ultrasonic tissue parameters; ultrasonic tissue signature; ultrasonic velocity.

1. Introduction

A number of measuring techniques have been developed, or are otherwise employed, at the Bioacoustics Research Laboratory of the University of Illinois in the research efforts associated with the propagation characteristics of ultrasound in biological tissue, and toward a basic understanding of the mechanism(s) responsible for the acoustic properties exhibited by those tissues. These include specialized systems for biological liquids and for soft tissues which are capable of measuring attenuation, absorption, and velocity of longitudinal ultrasonic waves as functions of frequency, temperature and, where appropriate, pH and ambient pressure. In addition, a system is presently being developed to measure the shear acoustical properties of biological materials as a function of frequency and temperature. These techniques, thirteen in all, are described in this paper in terms of parameters measured, theory, application, precision/accuracy, frequency, and temperature range, so that each technique may be assessed separately.

2. Attenuation and Velocity Measurements in Soft Tissue

Attenuation of longitudinal waves in soft tissue specimens are determined using the radiation force, pulse transmission, and standing wave techniques. Velocity measurements in soft tissues can be made by observing the time of flight of an acoustic pulse through a known path length of a tissue sample, and by acoustic interferometry.

A. Attenuation: Radiation Force Method

The phenomenon of radiation force provides a primary method for the measurement of the second order quantities of intensity and power [1-4]. Radiation force is a direct result of energy transport by the sound wave, and is equal to the time rate of change of momentum of the wave. Thus a continuous wave incident on a reflecting or absorbing object will produce a time independent force on that object equal to, and in the direction of, the time rate of change of momentum. Consequently, a sensitive balance can be employed to measure the radiation force exerted by an ultrasonic beam incident on a suspended target. It then follows that force, measured as a change in tension of the suspending wire, on a perfectly absorbing target intercepting a vertically directed sound beam is

$$F = \frac{P}{c}$$

(1)

where F is the measured change in tension of the suspending wire, P is the time average power intercepted by the target, and c is the velocity of propagation. Thus, in water, 1 milliwatt of incident power will exert a force equivalent to a weight of 67 µg, which is measured as an apparent target weight change. Similarly, a perfectly reflecting target intercepting a vertically directed sound beam will produce a measurable change in suspension tension, given as

$\text{References at the end of this paper.}$
where $\theta$ is the angle between the beam axis and the normal to the target surface. Consequently in water, when the target is elevated 45° to the vertical, the sensitivity of the balance is again 67 $\mu$g/mW of intercepted power. Thus, a phase insensitive, frequency independent technique for power and intensity attenuation measurements becomes available by interposing a tissue sample between the sound source and the sound intercepting target, by determining that power lost or redirected with the tissue sample in place compared with measured power with the tissue absent [2,5,6]. Care must be taken to ensure that the system's sensitivity is actually that which predicted for such idealized cases. The attenuation present in the liquid media (water or physiological saline) will inevitably cause acoustic streaming which will lead to systematic errors in the power estimation. The streaming effect can be minimized by positioning an acoustically transparent barrier of, for example, stretched polyethylene, directly in front of the target.

A second possible source of error is due to the inherent insensitivity of the measurement system to horizontal forces. For maximum accuracy, the main lobe of the sound beam should be directed precisely vertically. Because the beam may contain components of momentum in the plane perpendicular to the main lobe, the radiation force balance method does not respond to all the energy emitted by the source. As the temperature of the target increases due to the fact that energy is being deposited in it, thermal expansion of the target can introduce an error by virtue of increasing its buoyancy and resulting in an apparent target weight change. The ultimate accuracy of the radiation force balance method is limited by noise associated with mechanical vibrations and atmospheric perturbations, which can be reduced by proper design considerations. However, in the presence of pressure gradients, the target is acted on by forces proportional to the target volume, making a small target advantageous.

B. Attenuation: Pulse Transmission Method

The pulse transmission technique is applicable to measurements of sound pressure attenuation in various types of biological specimens [7,9]. The instrumentation consists of a transmitting ultrasonic transducer immersed in a bath (usually physiological saline) which serves as the acoustic coupling medium and aligned axially with either a reflecting surface or a receiving transducer. The associated electronic instrumentation provides an RF pulse to the transmitting crystal and also triggers the sweep of an oscilloscope a variable, but selected, length of time after the initiation of the transmitting pulse. An oscilloscope serves to display the amplified received signal. Measurement of sound attenuation can be performed as follows. First, with no sample in the ultrasonic path, the gain of the receiving amplifier is adjusted to give a signal display of a predetermined amplitude. Then, with the specimen in place, the gain of the system is adjusted, either by increasing the receiving amplifier gain or by removing electrical attenuation in the signal path, to compensate for the loss of acoustic energy in the sample to bring the display trace to the same preselected amplitude. The attenuation measurement is repeated for other samples of the same material, but of varying thicknesses. The measured attenuation values are then plotted versus sample thickness, and the slope of the resulting straight line yields the attenuation per unit length of the specimen.

C. Velocity: Pulse Transit Time Method

Velocity measurements in tissue can be made simply by measuring the time of flight of an acoustic pulse over a known path length of the specimen [9,10]. Differential techniques should be used to minimize uncertainties in path length and time delay measurements, such as the uncertainty of the actual location of the active face of the transducer. If commercial transducers are employed, additional allowances must be made for the quarter-wave impedance matching layer on their surface. Errors may be encountered in time of flight measurements of the acoustic signal in inhomogeneous media, such as tissues. Since a short duration acoustic pulse contains a broad spectrum of components, the frequency dependent effects of velocity dispersion, attenuation, and multiple phase shifts at tissue interfaces, can distort and delay the signal [11]. Techniques which rely on the detection of the leading edge of the received acoustic pulse for timing are prone to the greatest inaccuracies under such distortions.

D. Velocity: Acoustic Interferometric Method

Nearly an order of magnitude improvement in accuracy can be realized by the use of acoustic interferometric techniques employing CW excitation [12,13]. By sandwiching the tissue sample between transmitting and receiving transducers, or between a transducer and a reflecting target, a standing wave is created in the tissue sample. It has been shown that tissue may be distorted in this manner up to 25 percent without affecting the measured velocity [12]. By monitoring the maxima and minima of the received acoustic signal as the path length is changed, the standing wave pattern and the wavelength of sound in the tissue can be measured. This information combined with the frequency employed for the measurement yields the velocity of sound in the sample. Alternatively, the path length may be held fixed and the frequency of excitation changed. The change in frequency necessary to move from one mode in the standing-wave pattern to the next is directly proportional to velocity. The accuracy of such interferometric techniques, under tight temperature control, can reach about 0.1 percent.

E. Attenuation and Velocity: Standing Wave Method

While the measuring techniques described above may be applied to the measurement of the ultrasonic absorption and velocity of most biological tissues, some specimens require specialized techniques. Lung, by virtue of its extraordinarily high attenuation, presents some problems in determination of its ultrasonic propagation properties. The following method has been developed and yields results in agreement with other similar ones [8].

\[ F = \frac{2P}{C} \cos^2 \theta \]
Briefly, the lung is suspended in the sound field between the sound source and an absorption chamber, to eliminate standing waves beyond the lung. The transient thermoelectric probe [14] provides a convenient acoustic detector to investigate (A) the acoustic field between the specimen and the source, to determine the axial standing wave pattern, and (B) the acoustic field between the specimen and the absorption chamber, to determine the wave amplitude transmitted beyond the lung specimen 15 (see fig. 1). Probing the field in A yields the fraction of incident energy reflected at the lung-saline interface. Assuming that infinitesimal wave acoustics prevails and that the attenuation in the lung is sufficiently great that multiple reflections within the specimen need not be considered, the speed of sound in the lung can be obtained from

\[(\rho v)_{\text{lung}} = (\rho v)_{\text{saline}} \left( \frac{1}{\text{SWR}} \right) \quad (3)\]

where the \(\rho\)'s are the known densities and SWR is the observed standing wave ratio (between the source and specimen) and is greater than unity. The attenuation coefficient per unit path length is determined from a knowledge of the energy reflected at the two lung-saline interfaces, the thickness of the sample, and the acoustic intensity detected by the probe in B in accordance with the relation

\[I_1 = I_0 e^{-2\alpha l} \quad (4)\]

where \(I_0\) and \(I_1\) are, respectively, the acoustic intensities at the lung-saline interface nearest to and farthest from the source, \(l\) is the thickness of the sample, and \(\alpha\) is the attenuation coefficient.

3. Absorption Measurements in Soft Tissue

The transient thermoelectric method is well suited for determining acoustic absorption in small volumes of highly absorbing liquid or tissue in vivo as well as in vitro, and may be the only method, applicable to tissues, that measures directly absorption rather than attenuation. As such it is invaluable in determining the portion of attenuation due to absorption vis-a-vis that portion due to scattering effects [16,17]. The method requires that a thermocouple junction of small diameter relative to the wavelength be implanted in the sample. The thermocouple and surrounding sample are then exposed to a plane traveling wave ultrasonic field having a temporally rectangular envelope of known intensity. The typical thermoelectric emf response to a 1 second ultrasonic pulse has an initial fast rise which results from conversion of acoustic energy into heat by the viscous forces acting between the thermocouple wire and the sample. This portion of the response approaches equilibrium very quickly with a magnitude that depends mainly upon the thermocouple wire radius, the viscous properties of the sample medium, the sound intensity, and the frequency. The fast rise is followed by a relatively linear rise (in the absence of thermal conduction processes) that is a result of absorption of the ultrasound in the surrounding medium. From a determination of the slope of the linear portion of the thermoelectric emf response as a function of time, the absorption coefficient can be calculated using the following relation,

\[\alpha = \frac{\rho C p K}{2 I} \left( \frac{dT}{dt} \right) \quad (5)\]

where \(\alpha\) is the absorption coefficient (cm\(^{-1}\)), \(\rho\) is the density (g/cm\(^3\)), \(Cp\) is the specific heat at constant pressure (cal/°C g), \(K\) is the mechanical equivalent of heat (4.18 J/cal), \(I\) is the acoustic intensity (W/cm\(^2\)), and \(\left( \frac{dT}{dt} \right)\) is the initial time rate of change of temperature due to absorption in the medium (°C/s). Effects limiting the

---

Fig. 1. Schematic diagram of the experimental arrangement for attenuation and velocity measurements in lung using the standing wave method [15].
accuracy of the method include any changes of the thermal properties of the tissue and/or the absorption itself with temperature. Provided the temperature rise during measurement is on the order of one degree or less these effects will be minimal. Dunn [18] has indicated that the total uncertainty in the determination of \( \frac{dT}{dt} \) is of the order of 5 to 10 percent. In application of the transient thermoelectric method the initial value of \( a \) is determined by using the ultrasonic intensity that would be present at the site of the junction were the sample absent. The measured depth of the thermocouple and the initial value of \( a \) are then used to calculate intensity at the site of the junction by correcting for absorption using an iterative method [18] until the value of \( a \) converges (note that if the value of \( a \) and/or the depth of the thermocouple are too large, the value of \( a \) will not converge).

This technique has been used at frequencies as low as 0.26 MHz [19] and as high as 7 MHz [20] in tissues, but modifications have been used to 2 GHz in fluid media [21]. The lower frequency limit is determined by the value of the absorption, since too low an \( a \) yields too low a temperature rise to be detected accurately without having to increase the exposing intensity to unacceptable levels. Also, at low frequencies and absorptions the initial viscous heating portion of the transient thermal emf may become a major portion of the signal, making the subtraction process a relatively erroneous one. At higher frequencies the limitations on accuracy of the method, as described for tissues are imposed by (1) availability of broad plane wave ultrasonic fields, (2) the size of the thermocouple relative to the wavelength so that the field is affected by scattering from the wire and thermal conduction along it, and ultimately by (3) nonconvergence in the iterative method of depth correction due to high absorption. The latter two limiting effects have not yet been troublesome in the region of application. The method has been found to be very useful and easily applied to most tissues over the frequency range from 0.5 to 4.0 MHz.

4. Absorption and Velocity Measurement in Biological Liquids

The primary mechanism(s) for the absorption of sound in biological material seems to occur at the macromolecular level. Carstensen, Li, and Schwan [22] discovered that the acoustical properties of blood are determined largely by the protein content, and that the absorption coefficient is directly proportional to the protein concentration, whether in solution or within the cell. Pauly and Schwan [23] have demonstrated that nearly two-thirds of the ultrasonic absorption of beef liver lies at the macromolecular level, with the remaining one-third due to structural features of the tissue. Since the primary mechanism for the absorption of sound in tissue seems to occur at the macromolecular level, it has been instructive to investigate the acoustic properties of simpler systems of macromolecules, such as solutions of biopolymers, with the hope that such studies may provide details applicable to the more complex systems.

Three measurement systems have been used at the Bioacoustics Research Laboratory to study acoustic absorption and velocity of solutions and suspensions of biomacromolecules as functions of molecular characteristics, pH, temperature, concentration, and frequency to aid in the elucidation of the mechanisms of interaction between ultrasound and biological tissues.

A. Absorption: High Frequency Method (5 MHz to 200 MHz)

The high frequency system applies pulsed ultrasound to solutions for the purpose of measuring absorption and velocity [24-26]. Two advantages of pulsed ultrasound are that heating effects and standing waves are virtually eliminated. Heating is proportional to the mean power. Using a 10 μs pulse at a repetition frequency of 300 pps results in a signal which is present for only 0.3 percent of the time. Thus the average intensity is much less than the peak intensity, and produces a negligible temperature rise. Since the signal is on for such a small fraction of the time, standing waves are not produced. The basic technique was first described by Pellam and Galt in 1946 [27]. Two transducers, arranged coaxially face each other at opposite ends of a cylindrical tank. The receiving transducer has its position fixed while the sending transducer moves toward or away from it at a constant speed. Assuming the relation governing the process is

\[ p(x) = p(o) e^{-a x} \]  

where \( p(x) \) is the wave pressure amplitude at the distance \( x \) from the transmitting transducer, \( p(o) \) is the pressure amplitude at \( x = o \) (i.e., at the face of the transmitting transducer), and \( a \) is the absorption coefficient, the natural logarithm of the ultrasonic pressure amplitude is proportional to the signal path length. The proportionality constant, i.e., the absorption coefficient, can be found by monitoring the pressure as a function of intertransducer distance. A block diagram of the system is shown in figure 2. A pulsed rf signal is amplified, passed through a variable

![Fig. 2. Block diagram of instrumentation used for high frequency (5 to 200 MHz) ultrasonic absorption measurements in biological liquids.](image-url)
attenuator, and impedance-matched to the sending transducer. Both transducers are air backed, gold-on-nickel plated X-cut quartz with a fundamental resonant frequency of, for example, 3 MHz, and operated at their odd harmonics. The wave passes through the liquid, where it is attenuated, and impinges upon the receiving transducer. Some of the ultrasound is then reconverted into an electric signal, while the remainder is reflected back through the liquid. A pulse height monitor continually detects the voltage peak of the primary signal (which is linearly proportional to \( p(x) \)) as the transducers are moved toward, or away from each other, and converts it to its natural logarithmic value. An on-line computer samples the output of the pulse height detector (a dc voltage proportional to the pulse height) via a digital voltmeter, calculates the attenuation coefficient, and corrects for diffraction effects by the method of Del Grosso [28] yielding the true absorption coefficient. Solute absorption is obtained by subtracting results of a solvent measurement from a solution measurement. Approximately one liter of sample is required for this technique, with measurement error in absorption of about 5 percent over the approximate frequency range 3 to 200 MHz. Greater errors occur in low absorbing liquids at low frequencies and are mainly due to relatively large diffraction effects.

B. Velocity: High Frequency Method

The acoustic velocity can be determined in the high frequency system to within 0.1 percent by measuring the period of the wave in the liquid. This is accomplished by superimposing a reference signal on the received signal, which results in an interference pattern. If the acoustic path length is changed at a constant rate, \( V_p \), the period of this pattern is \( T = (\lambda/V_p) \) where \( \lambda \) is the acoustic wavelength. Since \( \lambda = c/f \), where \( f \) is the excitation frequency, the acoustic velocity is given as \( c = TF_p \). The period \( T \) is measured using a time interval counter to determine the time required for the interference signal to go through a greater number (100) of maxima.

C. Absorption: Low Frequency Method (0.3 MHz to 20 MHz)

In the frequency range of 0.3 to 20 MHz, a pulse technique developed by Schwan and Carstensen [29] is employed in order to avoid having to make unreasonable corrections for effects of diffraction phenomena. A sending and a receiving transducer face each other; the former is in the reference liquid and the latter in the test liquid (see fig. 3). An acoustic window separates the two liquids. The distance between the transducers remains constant while the entire transducer ensemble is moved horizontally at a constant speed from a position such that the acoustic path is primarily in the test liquid to a position such that it is primarily in the reference liquid. The reference liquid is chosen to be dispersionless and acoustically well characterized with a sound velocity as near to that of the unknown as possible. Water is an appropriate choice for dilute aqueous solutions. Since the path length is constant, diffraction effects, due to the inequality of the velocities in the two liquids, are corrected by a computer using the method of Del Grosso [28]. Liquid volumes of 1 to 4 liters are used in each chamber, depending upon frequency. As with the high frequency system, measurement error ranges from 2 to 10 percent. The pressure amplitude in the receiving transducer is given by

\[
p_r = p_s e^{(\alpha_w - \alpha_x) x} e^{-a_x x}
\]

where \( p_s \) is the pressure amplitude at the sending transducer, and the other symbols are described by figure 3. This equation can be rewritten as

\[
\ln p_r = \ln p_s - \alpha_w d + (\alpha_w - \alpha_x) x
\]

Figure 3. Schematic diagram of apparatus used for ultrasonic absorption and velocity measurements at low frequencies (0.3 MHz to 20 MHz) in biological liquids [24].
and \( a_x \) can be obtained graphically from the slope since \( a_w \) is known.

As the acoustic window (polyethylene) reflects a negligible, but constant amount of the acoustic energy, it will affect the results only by changing the intercept, i.e., the slope is not affected. Signal processing to obtain the desired absorption coefficient closely resembles that used in the high frequency system, described above [14,24].

D. Velocity: Low Frequency Method

Velocity of the acoustic wave can be determined with the low frequency system to 0.01 percent [30] by superimposing the received and reference signals in the same fashion as was done for the high frequency system. If the velocities in the test and reference liquids are different, moving the transducer assembly will change the acoustic path length. By observing the interference pattern on the oscilloscope, one can position the transducers such that a maximum occurs. If this is position 1 in figure 3, the number \( n \), of acoustic wave lengths between the transducers is given by

\[
\begin{align*}
n &= \frac{d - x}{\lambda_w} + \frac{x}{\lambda_x} \quad (9)
\end{align*}
\]

If the transducers are moved a distance, \( dx \), such that the interference pattern undergoes an integral number, \( m \), of \( 2\pi \) phase shifts, the above expression becomes

\[
\begin{align*}
n + m &= \frac{d - x + dx}{\lambda_w} + \frac{x + dx}{\lambda_x} \quad (10)
\end{align*}
\]

where the positive sign applies when the velocity in the test liquid is larger than that of the reference liquid, as is usually the case. Eliminating \( n \) between these equations, expressing wavelength in terms of velocity and frequency, and a rearranging of terms yields

\[
\begin{align*}
c_x &= \frac{c_w}{1 \pm \frac{c_w m}{f x x}} \quad (11)
\end{align*}
\]

Note that some other procedure must be performed to determine the correct sign.

E. Absorption and Velocity Measurements in Small Liquid Volumes: Resonant Cavity Method

The various methods for determining the acoustic propagation properties of liquids discussed thus far were devised with little consideration for the volume of material necessary for measurement. The minimum volume required in the high frequency system is 500 ml, with greater volumes generally required at lower frequencies to avoid effects due to diffraction phenomena. The necessity for having such large volumes available becomes a serious problem when biological macromolecules are to be treated in solutions (usually in concentrations of 10 percent by weight), since only a few can be examined within the bounds of reasonable economics. It is possible to reduce the specimen volume to less than 50 ml using a resonance technique originally developed by Eggers [31], which employs two \( X \)-cut quartz disks, with a fundamental frequency of the order of 2 MHz, separated by a lucite ring, and forming a cylindrical cavity in which the specimen solution is placed. One transducer serves as a transmitter, and the other a receiver. When the transmitting transducer is excited with a sinusoidal voltage, standing waves in the specimen solution result at particular frequencies \( f_n \) that obey the resonance equation

\[
\begin{align*}
\rho_q q \tan \frac{\pi f_n}{f_q} &= \rho_s c_s \left[ \frac{\tanh \pi f_n}{\csc \pi f_s} \right] \quad (12)
\end{align*}
\]

where \( \rho_q \) and \( c_q \) are the density and speed of sound in the quartz transducers, and \( \rho_s \) and \( c_s \) are the corresponding quantities in the solution. The fundamental frequency of the transducer is \( f_q \), and of the liquid-filled cavity, \( f_s \). At the resonant frequencies \( f_n \), the receiving transducer registers pronounced voltage peaks, whose frequency separation depends on the sound velocity of the specimen solution, and the half-power (3 dB) bandwidth \( \Delta f \), of which is related to the attenuation per wavelength, \( \alpha \). Eggers [31,32] has shown that the velocity of sound \( v_f \) in an unknown medium may be related to the velocity of sound in some reference medium \( V_f \) by the expression

\[
\begin{align*}
\frac{v_f}{V_f} &= \frac{D_f}{D_r} = \frac{1 + 2(D_f Z_f - D_r Z_r)}{f q q} \quad (13)
\end{align*}
\]

where \( Z_f \) and \( Z_r \) are respectively, the acoustic impedance of the unknown and reference medium, and \( D_f \) and \( D_r \) are the respective separations in frequency units between adjacent resonances for the liquid and reference media, and \( f_q \) and \( Z_q \) respectively, are the frequency of the quartz and its acoustic impedance. Equation 13 may be approximated by a simpler expression (with a difference of only a few parts per thousand) as

\[
\begin{align*}
\frac{\delta c_f}{c_f} &= \frac{\delta f_n}{f_n} \quad (14)
\end{align*}
\]

where \( \delta c_f \) is the velocity difference between the unknown and reference media, \( \delta f_n \) is the difference between corresponding resonances, and \( c_f \) is the velocity of the reference medium at a frequency \( f_n \). In general, velocity measurements are more difficult to perform than absorption measurements due to temperature drift and other instabilities of the unit. The attenuation of the specimen solution may be calculated from the examination of the quality factor \( Q \) of the liquid filled cavity, defined as the frequency \( f_n \) divided by the 3 dB bandwidth, \( \Delta f_n \), of the resonance. This quality factor is a function of the mechanical clamping and the attenuation per wavelength \( \alpha \) of the ultrasonic energy and is expressed as

\[
\begin{align*}
Q &= \frac{f_n}{\Delta f_n} = \frac{\pi}{\alpha k} \quad (15)
\end{align*}
\]

The measured \( Q \), however, includes losses associated with attenuation in the solvent, as well as those arising from diffraction, wall effects, imperfect reflections at the quartz surface, etc.
in addition to the desired excess attenuation due to the solute. Assuming all of these energy losses are additive [32], the measured quality factor Q is given by

\[
Q_{\text{meas}} = Q_{\text{solute}} + Q_{\text{extra}}
\]

(16)

where \(Q_{\text{solute}}\) is the quality factor due to sound absorption in the solute, and \(Q_{\text{extra}}\) includes solvent and other cell losses previously discussed. The excess solute absorption can be obtained by means of a reference measurement in the same cell at the same frequencies with the reference liquid, having equal or very similar sound velocity to insure the same sound field pattern for both measurements. The excess absorption per wavelength in the specimen solution is then obtained from

\[
(\alpha)^{\text{excess}} = 2 \left( \frac{\Delta f_s - \Delta f_r}{f_n} \right)
\]

(17)

where \(\Delta f_s\) and \(\Delta f_r\) are the corresponding 3 dB bandwidths of the \(n\)th resonant peak in the sample and reference liquid, respectively. The application of an overpressure (usually about 10 psi) causes a slight concavity of the transducers, which reduces diffraction and boundary effects, and thereby reduces the minimum frequency of measurement [33]. This technique has been used in our laboratory over the frequency range from 0.5 to 10 MHz.

5. Absorption and Velocity Measurements of Shear Waves in Biological Specimens

A system based on a pulse superposition technique allows measurement of the shear acoustical properties of biological materials of interest [34]. The technique involves phase-amplitude balance to measure the magnitude and phase angle of the reflection coefficient of a shear wave impinging on a quartz-sample interface, and using the known impedance of the quartz, the complex shear specific impedance of the sample being investigated is obtained [35]. From the shear impedance and density, it is possible to calculate the dynamic shear stiffness \(\nu_1\), dynamic shear viscosity \(\nu_2\), shear velocity \(c_s\), and shear absorption coefficient \(\alpha_s\) as shown in the following relationships:

\[
\nu_1 = \frac{R_s^2 - X_s^2}{\rho}
\]

(18)

\[
\nu_2 = \frac{2R_sX_s}{\omega \rho}
\]

(19)

\[
c_s = \frac{R_s^2 + X_s^2}{\rho R_s}
\]

(20)

\[
\alpha_s = \frac{\rho \omega X_s}{R_s^2 + X_s^2}
\]

(21)

where \(\rho\) is the density, \(\omega\) is the angular frequency, \(R_s\) is the real part of the specific shear acoustic impedance and \(X_s\) is the imaginary part of the specific shear acoustic impedance. This method has been used to measure the shear acoustic properties of tissues and other biological specimens [36-38]. An improved system utilizing a gated carrier as opposed to a pulsed oscillator approach and an improved ultrasonic unit of beveled AT quartz is being developed that will be useful over the frequency range from 2 to greater than 20 MHz and for temperatures from 10 to 40 °C. These and additional improvements should provide accuracies for the real and imaginary parts of the specific acoustic impedance within ± 100 mech-ohm/cm² at 10 MHz, allowing more accurate measurement of impedance close to that for water.

6. Concluding Remarks

The measuring techniques for ultrasonic absorption, attenuation and velocity in biological specimens discussed above have been only those utilized at the Bioacoustics Research Laboratory. There are, however, techniques employed elsewhere which may provide the same information in a more efficient manner. For example, the above discussed methods provide information at discrete frequencies and loci, or, for spatial averages. Spectrum analysis methods [39-41] have been promoted to permit measurements over a somewhat broadened frequency range. The measurement of the spatial distribution of ultrasonic properties such as attenuation or velocity within a specimen may be possible using the algebraic reconstruction from two-dimensional acoustic projections [42,43], although only velocity reconstruction has been considered practical so far.

Recent studies have also considered improvements regarding possible error in established methods of ultrasonic parameter measurements. Artifacts in acoustic attenuation due to phase cancellation effects have been described by Marcus and Carstensen [6], who compared a piezoelectric receiver (phase-sensitive) with a radiation-force receiver (phase-insensitive), and also by Busse et al. [44], comparing the piezoelectric receiver with an acousto-electric receiver. Both studies found that measurements using piezoelectric (phase-preserving) receivers yielded higher apparent attenuation values than those obtained using phase-insensitive receivers. Phase cancellation artifacts are thought to be the source of this error.

Acknowledgment

The authors acknowledge gratefully the partial support for portions of the activities described herein by grants from the National Institutes of Health.

References


[31] Eggers, F., Eine Resonatormethode zur Be-
stimmung von Schall-Geschwindigkeit und Dämpfung an geringen Flüssigkeitsmengen, 
_Acustica_ 19, 323-329 (1968).

[32] Eggers, F. and Funck, Th., Ultrasonic measurements with milliliter liquid samples in 
the 0.5-100 MHz range, Rev. Sci. Instrum. 44, 969-977 (1973).

[33] Eggers, F., Funck, Th., and Richman, K. H., 
High Q ultrasonic liquid resonators with concave transducers, Rev. Sci. Instrum. 47, 

[34] Frizzell, L. A., Carstensen, E. L., and 
Dyro, J. F., Shear properties of mammalian 
tissues at low megahertz frequencies, J. 

[35] Moore, R. S. and McSkimin, H. J., Dynamic 
Shear Properties of Solvents and Polystyrene 
Solutions from 20 to 300 MHz, in Physical 
Acoustics, W. P. Mason and R. N. Thurston, 
ed., Vol. VI, Chap. 4, pp. 167-242 (Academic 

[36] Dyro, J. F., Ultrasonic Study of Material 
Related to Atherosclerotic Plaque—Dynamic 
Viscoelastic Properties of Cholesteric 
Esters, Ph.D. Thesis, University of Pennsyl-

[37] Dyro, J. F. and Edmonds, P. D., Ultrasonic 
absorption and dispersion in cholesteryl 
(1974).

[38] Frizzell, L. A., Ultrasonic Heating of 
Tissues, Ph.D. Thesis, University of Rochester, 

[39] Chivers, R. C. and Hill, C. R., Ultrasonic 
attenuation in human tissue, Ultrason Med. 

[40] Lizzi, F., Katz, L., St. Louis, L., and 
Coleman, D. J., Applications of Spectral 
Analysis in Medical Ultrasonography, Ultra-
sonics 14, 77-80 (1976).

[41] Le Croisette, D. H. and Heyser, R. C., 
Attenuation and Velocity Measurements in 
Tissue Using Time Delay Spectrometry, in 
Ultrasonic Tissue Characterization, M. 
Linzer, ed., National Bureau of Standards 
Spec. Publ. 453, pp. 81-95 (U.S. Government 

[42] Greenleaf, J. F., Johnson, S. A., Lee, S. L., 
Herman, G. T., and Wood, E. H., Algebraic 
Reconstruction of Spatial Distributions of 
Acoustic Absorption Within Tissue From Their 
Two-Dimensional Acoustic Projections, in 
Acoustical Holography, P. S. Green, ed., 
Vol. 5, pp. 591-603 (Plenum Press, New York, 
1974).

[43] Greenleaf, J. F., Johnson, S. A., Samaya, 
W. F., and Duck, F. A., Algebraic Reconstruc-
tion of Spatial Distributions of Acoustic 
Velocities in Tissue From Their Time of 
Flight Profiles, in Acoustical Holography, 
N. Booth, ed., Vol. 6, pp. 71-90 (Plenum 

[44] Busse, L. J., Miller, J. G., Yuhas, D. E., 
Mimbs, J. W., Weiss, A. N., and Sobel, B. E., 
Phase Cancellation Effects: A Source of At-
tenuation Artifact Eliminated by a Cds 
Acoustoelectric Receiver, in Ultrasound in 
Medicine, D. White, Ed., Vol. 3, pp. 1519-
A DEVICE FOR MEASURING ULTRASONIC PROPAGATION VELOCITY IN TISSUE

Bruce D. Sollish
Harry De Jur Diagnostic Instrumentation Laboratory
Department of Electronics
Weizmann Institute of Science
Rehovot, Israel

This paper discusses a device capable of measuring propagation velocity in tissue, both excised and in vivo. The device produces a 4-digit decimal readout of propagation velocity in the specimen relative to that in water. As presently constituted the device is capable of 1 velocity measurement per second, with one additional second required for printout of the result.

The theory of the device is described, and experimental results are presented for solids and soft tissues.

Key words: Propagation velocity; reflection technique; solids; tissue; ultrasound.

1. Introduction

Ultrasound propagation velocity has been measured in a variety of soft tissues. In a review article, Wells [1] has compiled some of the more significant velocity data published in the literature. It would appear that accurate measurement of velocity could help in characterizing soft tissues. Kossof et al. [2], for example, have measured ultrasonic velocity in the human female breast and have concluded that the results as to characteristics of tissue type correlate reasonably well with the findings of mammography.

One problem in velocity measurement is the need for determining thickness of the tissue along the path of propagation. Thickness can be measured directly or by the method of equivalent water path given by Kossof [2,3] for transmission and reflection velocity measurement techniques. For each new propagation path through the tissue, another thickness measurement must be made. The process of measuring velocity in a variety of paths through the tissue could therefore be quite time consuming.

In order to eliminate the need to determine tissue thickness along the propagation path, a new pulse-echo method for measuring ultrasound velocity has been developed. This technique utilizes a reflecting surface at a fixed distance from the transducer. The overall propagation path consists of a suitable medium, such as water, and the tissue sample.

Since only the overall distance between the transducer and reflector need be constant, the thickness of the tissue need not be measured. The technique can therefore be readily applied in velocity measurements in different samples or through different paths in the same sample.

2. Description of the Technique

The method used for measuring propagation velocity is illustrated in figure 1. A flat reference reflecting surface is positioned at a convenient fixed distance from the ultrasonic transducer. Both are immersed in a suitable propagating medium such as distilled water. An A-mode pulse-echo device displays an echo due to the reflecting surface. This echo is a reference echo for the remainder of the velocity measurement.

The tissue specimen is next interposed between the transducer and the reflector as shown in the figure. The A-scope is adjusted to display the echoes corresponding to the following interfaces: the anterior boundary of the specimen, the posterior boundary of the specimen, and the reflector surface as returned through the specimen. The reflector echo is shifted in time from its reference position if the velocity in the specimen is different from that in the medium.

As shown in the figure, there are in general two configurations for velocity measurement. In the first configuration, the specimen is positioned somewhere in between the transducer and the reflector. In this case four echoes of in-

---

1Figures in brackets indicate literature references at the end of this paper.
We note that $T_2$ is positive if the reflector echo is displaced toward the transducer when the specimen is in position, and negative if the reflector is displaced away from the transducer.

The thickness of the specimen along the path of propagation can be calculated from the above equations, as

\[ \varepsilon/\varepsilon_0 = \frac{V}{V_0} \]  

where

\[ \varepsilon_0 = \frac{V_0T_1}{2} \]  

We note that $\varepsilon_0$ is the thickness of the specimen measured by the A-scope calibrated for velocity in the medium.

The significance of eqs. (1) through (5) is that the ratio of $T_2$ to $T_1$ is independent of the thickness $\varepsilon$ of the specimen. Accurate measurement of times $T_1$ and $T_2$ will give an accurate measurement of velocity in the specimen relative to velocity in the medium. Even if the specimen is repositioned or if a different specimen is examined, $T_1$ and $T_2$ will both change accordingly, as long as the transducer to reflector distance remains unchanged. Thus, the technique enables rapid velocity measurements in a variety of tissues, as long as the reference echo is returned through the specimen.

3. Description of the Device

A block diagram of a device utilizing the reference reflector technique for measuring ultrasound velocity is shown in figure 2. An A-scope and an oscilloscope are required. In addition, a printer may be added for hard copy output of velocity data.
time-gated threshold detector and a pulse shaper. The processed echo from the reflector is displayed on the oscilloscope, together with a pulse whose position on the display is variable. The user presets the time delay of the variable pulse, so that the pulse overlaps the reference echo, as seen on the oscilloscope and confirmed by a front-panel LED indicator. This procedure, which stores in the data acquisition circuitry the propagation time from the transducer to the reflector, is performed only once before the specimen is inserted. At any time, calibration may be checked by removing the specimen, and noting if the overlap condition is resumed.

Following storage of the reference echo, the specimen is interposed between the transducer and the reflector. The data acquisition circuit, by adjustment of the time-gated threshold detector, eliminates internal echoes from within the sample. The present velocity device implements the configuration of figure 1c. Therefore only two echoes remain after processing: the anterior echo of the specimen and the echo at the interface between the specimen and reflector.

The data acquisition circuit now contains three pulses: the two echoes processed from the tissue specimen and the preset pulse supplied by the user as described earlier. Two gates are derived from these pulses. The first gate is opened by the anterior pulse and closed by the specimen-reflector boundary echo. The second gate is opened by the specimen-reflector boundary echo and closed by the preset pulse or opened by the preset pulse and closed by the specimen-boundary echo, depending on which signal arrives first. In the latter case, a flag is sent out to the calculator circuit to perform a subtraction instead of an addition, as discussed later.

Each gate enables one of two 4-digit BCD counters clocked at a rate of 15 MHz. By the end of the second gate, two data words have been loaded into the counters. These two 4-digit words, corresponding to \( T_1 \) and \( T_2 \) in eq. (3), provide all the information required for calculating velocity in the specimen (relative to water). The maximum count of 9999 corresponds to a round-trip travel time through 500 mm of water.

A 10-step hard-wired program sequentially controls the operation of a 4-function calculator chip. These steps include clearing the calculator, entering the values \( T_1 \) and \( T_2 \), performing the arithmetic operations of eq. (3), and displaying the result to 4 significant digits via a front-panel LED display. In the event of a flag generated by the data acquisition circuitry, the program treats \( T_2/T_1 \) as a negative number. If desired, the results of each measurement are printed by an IBM output writer, 10 measurements to a line.

The timing circuitry maintains synchronization among all elements of the velocity measuring system. When the user presses the start button after checking on the oscilloscope that the correct echoes are present, the timing circuit insures that only a single set of data words enters the calculator until calculation and printout of the results are complete. Using a free-running start signal, a new velocity value is calculated and printed every two seconds.

4. Experimental Results

A. Measurements of Velocity in Solids

Before conducting measurements of ultrasound velocity in tissues, it was necessary to check the accuracy of the reference reflector velocity technique and its implementation in the devices described in the previous section. For this purpose three objects were chosen: a 4-mm thick slab of polyvinylchloride (PVC), a 6-mm thick slab of perspex, and a 10-mm thick combination of the two materials. The ultrasonic frequency was 5 MHz. Fifty velocity measurements were made for each object.

Results of measurements of velocity in the three test objects are given in Table 1. Absolute values of velocity are found by multiplying the respective relative values by the ultrasound velocity in water, 1498 m/s. The standard deviations vary from about 0.3 to 0.5 percent of the measured values.

<table>
<thead>
<tr>
<th>Table 1. Velocity measurements of selected solids.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyvinylchloride (PVC)</td>
</tr>
<tr>
<td>Relative velocity data ( (\times 10^3) )</td>
</tr>
<tr>
<td>1486 1486 1479 1472 1486 1479 1479 1486 1486</td>
</tr>
<tr>
<td>1486 1486 1500 1500 1486 1486 1479 1479 1486</td>
</tr>
<tr>
<td>1486 1486 1500 1486 1486 1500 1486 1486 1500</td>
</tr>
<tr>
<td>1500 1486 1486 1486 1486 1486 1472 1472 1486</td>
</tr>
<tr>
<td>Average relative velocity: 1.8600</td>
</tr>
<tr>
<td>Average absolute velocity: 2226.0 m/s</td>
</tr>
<tr>
<td>Standard deviation: 11.2 m/s</td>
</tr>
<tr>
<td>Perspex</td>
</tr>
<tr>
<td>Relative velocity data ( (\times 10^3) )</td>
</tr>
<tr>
<td>1822 1811 1811 1811 1811 1811 1811 1822 1822</td>
</tr>
<tr>
<td>1811 1820 1811 1811 1822 1811 1820 1811 1820</td>
</tr>
<tr>
<td>1811 1820 1820 1800 1811 1822 1811 1811 1800</td>
</tr>
<tr>
<td>1822 1811 1811 1800 1820 1811 1811 1822 1820</td>
</tr>
<tr>
<td>1811 1811 1820 1820 1811 1831 1811 1820 1811</td>
</tr>
<tr>
<td>Average relative velocity: 1.8138</td>
</tr>
<tr>
<td>Average absolute velocity: 2717.1 m/s</td>
</tr>
<tr>
<td>Standard deviation: 9.4 m/s</td>
</tr>
<tr>
<td>PVC-perspex combination</td>
</tr>
<tr>
<td>Relative velocity data ( (\times 10^3) )</td>
</tr>
<tr>
<td>1670 1664 1664 1668 1674 1668 1674 1668 1668</td>
</tr>
<tr>
<td>1664 1658 1664 1664 1664 1664 1670 1670 1674</td>
</tr>
<tr>
<td>1658 1664 1664 1664 1664 1664 1664 1658 1664</td>
</tr>
<tr>
<td>1658 1664 1674 1674 1670 1674 1668 1668 1668</td>
</tr>
<tr>
<td>1668 1668 1664 1664 1674 1658 1674 1658 1668</td>
</tr>
<tr>
<td>Average relative velocity: 1.6664</td>
</tr>
<tr>
<td>Average absolute velocity: 2496.3 m/s</td>
</tr>
<tr>
<td>Standard deviation: 7.2 m/s</td>
</tr>
</tbody>
</table>

To check the accuracy of the results obtained for each object, the thickness given by eqs. (4) and (5) was compared to the thickness measured by a caliper. Propagation times were respectively 3.60 \( \mu s \), 4.42 \( \mu s \), and 8.02 \( \mu s \) in the PVC, perspex, and PVC-perspex combination. The corresponding thicknesses calculated from the data and eqs. (4) and (5) are 4.003 mm, 6.005 mm, and 10.01 mm, respectively, which are within 0.1 percent of the measured values.
B. Measurements of Velocity in Soft Tissues

In order to demonstrate measurement of velocity in soft tissue, a sample of fat in vitro and two human forearms in vivo were examined. As previously, the insonifying frequency was 5 MHz and 50 individual velocity measurements were taken for each target. Results of the measurements are given in Table 2.

Table 2. Velocity measurements of soluble soft tissues.

<table>
<thead>
<tr>
<th>Fat (bovine)</th>
<th>Relative velocity data (% 10^-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.991 0.991</td>
<td>Average relative velocity: 0.9884</td>
</tr>
<tr>
<td>0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991</td>
<td>Average absolute velocity: 1480.7 m/s</td>
</tr>
<tr>
<td>1.054 1.055 1.056 1.057 1.057 1.057 1.057 1.058 1.058 1.057 1.057</td>
<td>Standard deviation: 3.1 m/s</td>
</tr>
<tr>
<td>Forearm (subject A)</td>
<td>Relative velocity data (% 10^-3)</td>
</tr>
<tr>
<td>1.057 1.057 1.057 1.057 1.057 1.057 1.057 1.057 1.057 1.057 1.057</td>
<td>Average relative velocity: 1.0570</td>
</tr>
<tr>
<td>1.056 1.057 1.057 1.057 1.057 1.057 1.057 1.058 1.058 1.057 1.057</td>
<td>Average absolute velocity: 1583.4 m/s</td>
</tr>
<tr>
<td>1.056 1.057 1.056 1.056 1.057 1.057 1.057 1.057 1.057 1.057 1.057</td>
<td>Standard deviation: 1.0 m/s</td>
</tr>
<tr>
<td>Forearm (subject B)</td>
<td>Relative velocity data (% 10^-3)</td>
</tr>
<tr>
<td>1.056 1.056 1.056 1.056 1.056 1.056 1.056 1.056 1.056 1.056 1.055</td>
<td>Average relative velocity: 1.0564</td>
</tr>
<tr>
<td>1.055 1.055 1.055 1.056 1.056 1.056 1.056 1.056 1.056 1.056 1.055</td>
<td>Average absolute velocity: 1579.8 m/s</td>
</tr>
<tr>
<td>1.055 1.056 1.055 1.056 1.056 1.056 1.056 1.056 1.056 1.056 1.055</td>
<td>Standard deviation: 1.7 m/s</td>
</tr>
</tbody>
</table>

The specimen of bovine fat was refrigerated for several days and then warmed to room temperature before insonification. The velocity of 1481 m/s is approximately 1 percent higher than the velocity for cow fat given by Goldman and Huetter (4), but well within the limits for mammalian fat in general. The standard deviation in the present measurement is about 0.2 percent.

The next measurements were made in the forearms of two male subjects, the same age (27). Care was taken to investigate the same portion of forearm of each subject. The average velocities in the two subjects, 1583 m/s and 1580 m/s, respectively, lie within the range given by Goldman and Huetter for human limbs. The standard deviations are of the order of 0.1 percent of the measured velocities. More data would be required to determine if the difference in velocity between the two subjects is statistically significant.

5. Conclusion

A device for measuring ultrasonic propagation velocity in tissue using a reference reflector has been described. On the basis of experimental results in solids and soft tissue, it appears that velocity measurements accurate to within 0.2 percent can be achieved with the device.

An improved model is now under construction. It will incorporate microprocessor-based circuitry for increasing the number of measurements at a single location to 500 per second. This will increase the precision of the measured velocity as well as eliminate problems of motion during measurement. The new device should enable scanning a structure such as the breast with the object of studying local variations in propagation velocity.

Acknowledgments

The author wishes to express his gratitude to the Harry de Jur Foundation and the Rose Tierbaum Cancer Research Foundation for their partial support of this research. The author would also like to thank Professor E.H. Frei, and Y. Dreier, I. Gonen, E. Grimwald, A. Kuprak, J. Leibovitz, and M. Moshitzky of the Weizmann Institute for their roles in the project.

References


MEASUREMENT OF THE TEMPERATURE DEPENDENCE OF THE VELOCITY
OF ULTRASOUND IN SOFT TISSUES


Departments of Physics and Radiology
University of Arizona
Tucson, Arizona 85724, U.S.A.

The velocity of 5 MHz ultrasound is being measured in tissue samples in order to evaluate the feasibility of non-invasive monitoring of temperature distributions produced during hyperthermia treatments. By employing a pulsed-ultrasound technique in which the time of the first zero-crossing of the received signal is recorded, the velocity measurements are insensitive to reflections and to changes of attenuation. Results in the 35 to 45 °C range for fresh canine tissues, such as kidney, liver, and muscle, indicate that the rate of velocity change with temperature is correlated with the magnitude of the ultrasonic velocity, but the relationship appears to be altogether different for tissue fat. The results give encouragement to carry out the more extensive measurements, particularly in vivo, which would be needed to determine feasibility of an ultrasonic temperature monitoring system.

Key words: Non-invasive temperature monitoring; soft tissue; temperature dependence; ultrasound velocity; zero crossing detection.

1. Introduction

There has been increasing interest recently in hyperthermia as a promising modality for control of some types of malignancies [1-3]. In such treatments the tissue temperature must be raised from the usual body temperature of 37 °C to approximately 43 °C for a period of one-half to one hour. If the temperature is accidentally a few degrees higher, all cells will be killed; if a few degrees lower, the effect of the treatment will be negligible. A non-invasive temperature monitoring system is needed for this application. In addition, such a system might find other diagnostic applications where thermal anomalies are caused by changes in the circulatory system or in metabolic processes.

An ultrasonic temperature monitoring system might be devised for soft tissue if some ultrasonic characteristic varies in a known way with temperature. The most promising parameters appear to be ultrasonic velocity and attenuation. Earlier work on transmission-type tomographic image reconstruction systems [4] indicated that velocity data gives much more reproducible results. However, the task of utilizing velocity changes to measure temperature is not an easy one. At 37 °C the velocity of sound in water changes 1.8 m/s per °C or about 0.1% per °C. It is clear when one examines results for the velocity of ultrasound in any particular tissue type that the variation from one sample to another is much larger than the variation over a 10 °C temperature range; consequently, one cannot hope to measure temperature ultrasonically. However, it still might be possible to measure temperature changes ultrasonically, making use of the fact that the initial reference temperature, 37 °C, is known to be quite uniform and corrections for regional differences are also known.

Suppose it is desired to monitor a temperature change from body temperature (37 °C) to a treatment temperature in the neighborhood of 43 °C within ±10 percent for each tissue type in the region of interest. It is the purpose of this work to discuss the first experimental step toward answering whether or not this property of soft tissue can be predicted with such accuracy.

2. Experimental Arrangement

The experimental arrangement for the in vitro measurement of ultrasonic velocity in 1 to 10 cm thick tissue samples as a function of temperature is shown schematically in figure 1. The pulse generator provides a pulse which shock excites the 12.7 mm diameter 5 MHz ultrasound transmitter immersed in the water temperature bath. This pulse also starts the digital timer. The oscilloscope serves only to visually monitor the system; its trace is initiated by a trigger pulse from the pulse generator whose timing can be delayed or advanced relative to the main pulse so as to observe any part of
The signal at the receiver. The output of the 12.7 mm diameter ultrasound receiver, which is also immersed in the temperature bath, is connected both to the vertical oscilloscope input for observation of its amplitude and to a zero-crossing discriminator whose output stops the digital timer. The digital timer measures to the nearest 0.01 μs the transit time plus a fixed time related to the delays in the system not connected with the sound propagation. The fixed delays are found by an extrapolation to zero separation of a series of measurements of transit time in water as a function of separation within the errors of measurement. This agrees with the results of others who have found that, although the pressure distribution in the near field is very complicated, the average pressure sensed by a detector whose dimensions are large compared to a wavelength behaves like a plane wave [5]. Adjustment of the width of the shock excitation pulse from the pulse generator can provide a signal at the receiver in which only one or two cycles have large amplitude.

The zero-crossing discriminator is an essential component to define a time reference in a received signal burst. Its operation is illustrated in figure 2. By initiating discriminator action at the occurrence of the first zero crossing, the timing becomes independent of received signal amplitude. This is important when studying the temperature dependence of sound velocity as the attenuation (hence, the received signal amplitude) also varies with temperature.

A pulsed ultrasound system with the timing referenced to the first zero crossing not only is very stable in operation [6], but also is comparatively immune to the effects caused by multiple reflections, as these only disturb a later part of the received signal.

The frequency dependence of ultrasonic velocity and attenuation in tissue affects the shape of the received signal, which could introduce timing shifts. The change of velocity with frequency, or dispersion, causes the pressure pulse to propagate with a group velocity differing slightly from the phase velocity of a continuous wave. Tissue dispersion is typically 0.1 to 1.0 m/s per MHz [7], which at 5 MHz shifts the group velocity 0.5 to 5 m/s above the phase velocity. For sample thicknesses on the order of 2 cm the first zero crossing is still propagating with a velocity nearly equal to the group velocity, and only the leading edge of the first one-half cycle is distorted because the pulse is moving faster than its constituent frequency components [8]. A small velocity shift of this magnitude would have little effect upon the observed rate of change with temperature.

The increasing attenuation at higher frequencies in tissue changes the signal waveform with changing depth. However, the shape of the received waveform was not observed to change significantly over the 35 to 45 °C range of temperatures at fixed depth.

For path lengths on the order of 2 cm the transit time jitter is less than 0.001 μs. The 0.01 μs least count of the digital timer presently limits the timing precision, but this can be greatly improved with the same time digitization by adding an event counter and digital logic so that the transit time is automatically accumulated for, say, 1000 transmitted pulses. However, this improvement will come about only if the time reference oscillator is not synchronized with the start of the transit time measurement.
For samples more than a few centimeters thick, which may often be encountered for in vivo measurements, the optimum ultrasound frequency may be somewhat less than the 5 MHz initially employed. If $V(t)$ is the received transducer voltage as a function of time near the first zero crossing and if the voltage error in detecting the true zero point is given, it is desired to maximize $dV/dt$ at the zero crossing. This would be proportional in the near field to $f \exp (-\alpha f)$, where $\alpha$ is the spacing between transducers and $\alpha f$ is the ultrasonic amplitude attenuation coefficient for the tissue being examined. This function is maximum when $\alpha f = 1$, or $f = (\alpha f)^{-1}$. For example, $\beta \approx 0.01 \text{us-mm}^{-1}$ is typical for many soft tissues, so if $\alpha = 100 \text{mm}$, $(\alpha f) = 1 \text{ MHz}$. This result can be easily generalized for cases where the voltage error or noise is frequency dependent.

In a typical data-taking run, the temperature of the bath is increased at a rate of 0.4 °C/min. The rate must be reasonably high so that changes do not take place in the tissue which are a function only of time. However, the higher the rate of change of temperature, the greater the lag of temperature at the center of the sample. In order to correct the data for this temperature lag, a thermistor is inserted at the center of the sample to monitor the temperature difference with respect to the bath. It can be shown from the solution of the one-dimensional heat-diffusion equation when the temperature at the surfaces is a linear function of time that the average temperature along the ultrasound path at time $t$, $\theta(t)$, is approximately given by:

$$
\theta(t) \approx \frac{1}{3} \theta_{\text{bath}}(t) + \frac{2}{3} \theta_{\text{thermistor}}(t),
$$

where $\theta_{\text{bath}}(t)$ and $\theta_{\text{thermistor}}(t)$ are the temperatures at time $t$ of the bath (and sample surfaces) and center thermistor, respectively.

For samples more than a few centimeters thick and for in vivo measurement, other methods of heating the sample may be necessary to avoid large temperature inhomogeneities. This may often necessitate synchronized alternate pulsing of the heat source and the ultrasound transmission to avoid spurious electrical pickup.

Data obtained with the system outlined above for water is illustrated in figure 3. Note the excellent agreement when the rate of variation with temperature is compared with results obtained by others [9].

3. Results

Freshly excised samples of canine skeletal muscle, liver, kidney, spleen, brain, and fat were measured within one hour after sacrifice of the animal. Each run began at approximately 35 °C. When approximately 45 °C was reached the temperature was held constant for at least 30 minutes to verify that the observed changes were attributable to the changes of temperature and not to tissue degeneration. Some data were taken where the temperature was held constant at other values between 35 and 45 °C; no runs gave evidence of ultrasound velocity changes due to tissue degeneration for samples within the first hour after sacrifice. At later times (> 60 minutes after sacrifice), velocity changes (occasionally dramatic decreases) at constant temperature were observed with muscle samples. Each data run was least-square fitted to a polynomial in temperature containing linear and quadratic terms.

### Table 1. Ultrasound velocity at 37 °C and rate of change of ultrasound velocity with temperature, $dv/dt$, at 37, 40, 43 °C for fresh canine tissue samples, water, and corn oil.

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Sound velocity at 37 °C (m/s)</th>
<th>$(dv/dt)$ at 37-40 °C (m/s)/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal muscle</td>
<td>1589.1</td>
<td>1.23</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>1603.3</td>
<td>1.13</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>1598.8</td>
<td>1.16</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>1591.6</td>
<td>1.08</td>
</tr>
<tr>
<td>Liver</td>
<td>1591.7</td>
<td>0.93</td>
</tr>
<tr>
<td>Liver</td>
<td>1594.8</td>
<td>1.13</td>
</tr>
<tr>
<td>Liver</td>
<td>1604.0</td>
<td>0.99</td>
</tr>
<tr>
<td>Kidney</td>
<td>1570.2</td>
<td>1.35</td>
</tr>
<tr>
<td>Kidney</td>
<td>1566.5</td>
<td>1.29</td>
</tr>
<tr>
<td>Kidney</td>
<td>1571.1</td>
<td>1.29</td>
</tr>
<tr>
<td>Brain</td>
<td>1563.2</td>
<td>0.67</td>
</tr>
<tr>
<td>(white matter)</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>Spleen</td>
<td>1601.3</td>
<td>1.31</td>
</tr>
<tr>
<td>Water</td>
<td>1522.5</td>
<td>1.84</td>
</tr>
<tr>
<td>Stomach fat (fresh)</td>
<td>1411.9</td>
<td>-2.89</td>
</tr>
<tr>
<td>Stomach fat (refrig. 5 h)</td>
<td>1412.9</td>
<td>-3.43</td>
</tr>
<tr>
<td>Corn oil</td>
<td>1420.0</td>
<td>-2.75</td>
</tr>
</tbody>
</table>

Fig. 3. The speed of ultrasound as a function of temperature for water. The points represent data obtained in this work. The solid curve represents the results of J. R. Lovett, J. Acoust. Soc. Amer. 45, 1051 (1969).
Fig. 4. Typical data showing the dependence of ultrasound velocity on temperature for fresh canine skeletal muscle, liver, kidney, brain (white matter), and stomach fat, as well as for water.

The results are listed in Table 1 along with the results for water and corn oil for comparison. Typical curves of ultrasound velocity versus temperature are shown in Figure 4. In every case, the variation of ultrasound velocity with temperature, dv/dT, is less than the corresponding value for water, actually reversing sign for fat. For tissues other than fat at a specified temperature, a negative correlation between the magnitude of the ultrasound velocity, v, and dv/dT is apparent. This is shown in Figure 5, where dv/dT at 37°C is plotted against v at 37°C for each sample (except brain and fat) and for water. Except for one data point for liver and the single point for spleen in Figure 5, there appears to be a close connection between dv/dT and v for water and soft tissues having high water content.

4. Conclusions

The results of this study are encouraging in two respects: (1) Changes of ultrasound velocity in soft tissues with temperature can be simply, yet accurately, measured with readily available digital electronic circuitry. (2) The rate of change of ultrasound velocity in soft tissues with high water content in this study fell within ±10 percent of a prediction based only upon the magnitude of the velocity itself for 9 out of 12 samples. However, it is already apparent that the relative fat content of various tissues may be an important parameter. Before any conclusions can be reached concerning the feasibility of non-invasive ultrasonic temperature monitoring, further measurements, especially in vivo, must more precisely ascertain the predictability of ultrasound velocity temperature dependence in soft tissues.

References


ULTRASONIC ATTENUATION IN NORMAL AND ISCHEMIC MYOCARDIUM

M. O'Donnell, J. W. Mimbs, B. E. Sobel, and J. G. Miller
Washington University
St. Louis, Missouri 63130, U.S.A.

The ultrasonic attenuation coefficient of dog myocardium was measured in vitro over the frequency range 2 to 10 MHz. Changes in the attenuation of normal myocardium were measured as a function of time after excision at fixed temperatures. Results of measurements made on tissue maintained at 35 °C revealed progressive changes in the attenuation as a function of time, presumably indicative of tissue degradation. Results of measurements at 19.5 °C, however, showed no significant changes in attenuation up to 4 hours following excision. The temperature dependence of the attenuation was measured over the range ~ 20 °C to ~ 37 °C, yielding the result that the attenuation coefficient at 37 °C is about 20 percent lower than that at 20 °C. The attenuation coefficient was measured in vitro at ~ 20 °C in hearts from dogs previously subjected to coronary occlusion and sacrificed at intervals ranging from 15 minutes to 3 days following occlusion. Results of these measurements indicate a modest decrease in the attenuation of ischemic tissue measured at 15 minutes, 1 hour, 6 hours and 24 hours, and an increase in attenuation of ischemic regions studied 3 days following occlusion.

Key words: Ischemic injury; myocardial infarction; ultrasonic attenuation.

1. Introduction

Previous reports from our laboratory presented the ultrasonic attenuation in normal myocardium and in myocardium subjected to ischemic injury from dogs sacrificed 4 to 11 weeks after coronary artery occlusion. In this report, we present the results of a new series of attenuation measurements on dog left ventricle. Results from this series of measurements are analyzed to: (1) contrast attenuation in normal and ischemic zones of tissue from animals sacrificed 15 minutes, 1 hour, 6 hours, 24 hours, and 3 days following coronary occlusion, (2) examine changes in the ultrasonic attenuation of tissue in vitro at fixed temperatures as a function of time after excision, and (3) examine the temperature dependence of the ultrasonic attenuation of tissue in vitro.

2. Methods

A. Ultrasonic analysis

The instrumentation employed for ultrasonic analysis is depicted in figure 1. The transmitting transducer and driver yielded an ultrasonic pulse with frequency components of sufficient amplitude to permit operation over a range of 2 to 10 MHz. Details of transducer design are discussed subsequently. Under control of a timing unit, broadband ultrasonic pulses were gated into a slowly sweeping analogue spectrum analyzer. Output pulses from the spectrum analyzer, comprising the logarithm of the Fourier transform of the received ultrasonic pulses, were converted by a sample-and-hold unit into a slowly varying (dc) signal. As the spectrum analyzer was slowly swept through frequency, the output of the sample-and-hold and a voltage corresponding to the frequency being analyzed by the spectrum analyzer were transmitted to two analogue-to-digital converters (ADC's). The digital outputs from the ADC's were recorded on magnetic tape for subsequent analysis.

The procedure used for the quantitative measurement of the attenuation following transmission of ultrasound through tissue has been described in detail in previous reports [1,2] and is similar to a substitution technique developed by Schwan.

Fig. 1. Block diagram of the ultrasonic instrumentation used in this study.
and Carstensen [3]. If reflections at saline-tissue interfaces can be neglected (and in the absence of artifacts arising from phase cancellation effects), the ultrasonic attenuation coefficient \( a_t \) of tissue of thickness \( \Delta z \) is given by

\[
a_t = \frac{[V_A(v) - V_B(v)]}{\Delta z \log_{10} e}
\]  

(1)

where the term \([V_A(v) - V_B(v)]\) represents the signal loss, which is obtained by subtracting the logarithmic output of the spectrum analyzer in the presence of tissue \([V_B(v)]\) from that recorded in the absence of tissue \([V_A(v)]\). The signal loss (expressed in decibels) is calibrated compared with an electronic attenuation standard.

Figure 2 illustrates the use of the method to determine the attenuation coefficient of a test object, a flat polyethylene plate of \( \Delta z = 0.5 \) cm. The left panel of figure 2 exhibits a plot of \( V_A(v) \) with no specimen present (upper curve) and a plot of \( V_B(v) \) with the polyethylene specimen present (lower curve). The result of subtraction of the two curves in the left panel of figure 2 is displayed as the attenuation-frequency plot in the right panel, with data points calculated according to eq. (1). For cases in which reflections from saline-specimen interfaces cannot be neglected, the slope of the attenuation coefficient versus frequency curve displayed in figure 2 remains a valid ultrasonic index, although the attenuation coefficient \( a_t \) may not. (The ultrasonic pulse length used in these studies was less than 0.05 cm in a polyethylene plate of \( \Delta z = 0.5 \) cm. Thus standing wave effects could not occur.)

A possible source of artifact in the apparent attenuation coefficient \( a_t \) as determined from eq. (1) arises from phase cancellation effects [1,2]. Phase cancellation effects may occur if inhomogeneities in the tissue distort the ultrasonic field presented to a spatially extended piezoelectric receiving transducer. These wavefront distortions may result from transmission of ultrasound through tissue with variations in surface characteristics, internal structural characteristics, or both. When the wavefronts incident upon a piezoelectric receiver are distorted, the generated electrical signal is degraded because of the phase sensitive nature of the receiver. Phase cancellation effects can induce artifacts into attenuation data which might be interpreted incorrectly as reflecting only the absorption and scattering properties of a specimen [1,2,4].

An intensity sensitive ultrasonic receiving transducer which is inherently insensitive to phase cancellation effects is under continuing development in our laboratory [1,2]. This transducer makes use of the acoustoelectric effect in single crystal cadmium sulfide to convert the intensity of an incident ultrasonic wave into an electronic current in the semiconducting crystal. An illustration of phase cancellation effects is presented in figure 3, which contrasts the performance of a piezoelectric and an acoustoelectric transducer of equal diameters (1.3 cm). The upper panel of figure 3 illustrates the apparent attenuation coefficient as a function of frequency for four adjacent sites of dog left ventricle measured with the piezoelectric receiver. Marked variability is observed in data obtained from four morphologically similar regions. The lower panel depicts the results of measurements on the identical four sites: however, the intensity sensitive acoustoelectric receiver was used. The data of the lower panel exhibit more uniform consistency, presumably reflecting the reduction or elimination of artifacts due to phase cancellation.

The present configuration of the acoustoelectric receiver is cumbersome and would not permit the rapid collection of data that was required in experiments on ischemic tissue (see below). All data reported here were obtained using identical focused piezoelectric transducers (1.3 cm diameter, 5 cm focal distance) for transmitter and receiver. By positioning the specimen of interest so that it lay entirely within the depth of field of the focused transducers, phase cancellation artifacts were minimized. A comparison of the performance of the focused transducers and the acoustoelectric receiver is shown in figure 4. In this figure the apparent attenuation coefficient versus frequency plots obtained from analysis of the identical four adjacent sites of left ventricle are presented. The upper panel presents data obtained with the

![Fig. 2](image_url). The left panel is a plot of \( V_A(v) \) obtained without a specimen and \( V_B(v) \) obtained with a specimen (a polyethylene plate of \( \Delta z = 0.5 \) cm in this case). The right panel depicts the attenuation versus frequency plot determined using eq. (1) and the data shown in the left panel.
focused piezoelectric receiver and the lower panel presents data obtained with the acoustoelectric receiver. A focused piezoelectric transducer was used to obtain the results shown in both panels of figure 4. The focused piezoelectric transducer arrangement (fig. 4) is seen to offer significant improvement over the planar piezoelectric transducer arrangement of figure 3. Data reproducibility and consistency remain, however, more satisfactory with the use of the acoustoelectric receiver.

In an attempt to quantitate the extent to which phase-cancellation effects resulted in degradation of attenuation-frequency data, a statistical index was developed. Because phase cancellation effects in attenuation-frequency data may manifest themselves as erratic (non-monotonic) frequency dependences (in contrast with the expected monotonic variation of attenuation with frequency), one method of segregating the data is on the basis of a statistical test of the goodness of a fit to a monotonic curve. Using a
three parameter fit to the measured signal loss
date \([V_A - V_B]\) of eq. (1)], a root mean square
development (RMSD) was calculated. The RMSD was
defined by

\[
\text{RMSD} = \left( \frac{1}{v_1} \int_{v_1}^{v_2} \left[ y_m(v) - y_c(v) \right]^2 dv \right)^{\frac{1}{2}}
\]

where \(v\) is the ultrasonic frequency, \((v_2 - v_1)\) de-
defining the frequency interval of the measurements.
\(y_m(v)\) is the measured signal loss at frequency \(v\),
and \(y_c(v)\) is the calculated signal loss, deter-
mined by a least squares three parameter fit to the
data. The units of RMSD are the same as those of
\(y(v)\), in this case decibels (dB). The value of
RMSD was used to quantify the degree of non-
monotonicity and thus to estimate in a relative
fashion the contribution of phase cancellation ef-
facts. Large values of RMSD would be expected
whenever substantial phase cancellation contribu-
tions influenced the apparent attenuation.

The application of this approach is demonstrat-
ed in figure 5, which illustrates our progress in
systematically reducing artifacts due to phase
cancellation. The calculated RMSD for each at-
tenuation-frequency curve obtained with several
transducer combinations is shown. Data obtained
in 20 measurements with a 1.3 cm diameter planar
piezoelectric receiver are shown in panel A and
in 44 measurements using a 0.2 cm diameter planar
piezoelectric receiver in panel B. In both cases
the transmitter was a 1.3 cm diameter planar
piezoelectric transducer. The reduced RMSD's of
ments of panels A and B. (It should be noted,
however, that substantial artifacts due to phase
cancellation occur in the presence of intervening
tissue located outside of the focal zone. Thus,
for future applications in vivo, the use of a
focused transducer does not appear to be a satis-
factory method for minimizing artifacts due to
phase cancellation.) The results of the measure-
ments on 33 sites using the acoustoelectric re-
ciever are presented in panel D of figure 5. The
very small RMSD's obtained with the intensity
sensitive acoustoelectric receiver reflect the
inherent freedom from phase cancellation arti-
facts, making a transducer of this design poten-
tially suitable for future in vivo applications.

B. Tissue preparation and independent
indices of pathology

All measurements were carried out in vitro on
myocardial tissue obtained from adult, mongrel
15 to 30 kg dogs. In studies of ischemic injury,
each dog was intubated after anesthesia with
sodium pentobarbital (25 mg/kg, intravenously),
placed on a Harvard respirator, ventilated with
room air, and subjected to a left thoracotomy via
the fifth interspace. The pericardium was in-
cised, and the left anterior descending coronary
artery dissected free immediately distal to the
first ventricular branch and ligated. The peri-
cardium was left open. For dogs studied at 6
hours, 24 hours, and 3 days following occlusion,
the chest was closed conventionally, with intra-
pleural suction maintained for at least one hour
via a chest tube.

At the time of sacrifice, each animal was again
anesthetized with sodium pentobarbital (50 mg/kg,
intravenously). The heart was rapidly excised
and placed in a 0.9 percent NaCl solution. To
prepare the tissue for ultrasonic analysis an in-
cision was made at the root of the aorta, con-
tinued inferiorly along the left ventricular sur-
face of the interventricular septum to the apex,
and extended posteriorly and superiorly, terminat-
ing at the base of the heart. This permitted
prompt excision of a segment of the left ventric-
ular anterior and apical wall. This segment
comprised the area of infarction and surrounding
area of normal myocardium in all animals subject-
ed to coronary ligation. (We note that this seg-
ment was measured unaltered, i.e., no additional
preparation such as further slicing to achieve
flat or parallel surfaces was undertaken.) Except
as noted, ultrasonic analysis was initiated within
5 minutes following the death of the animal, and
completed within 45 minutes.

Tissue from animals sacrificed at 24 hours and
72 hours following coronary occlusion was analyzed
biochemically for creatine kinase (CK) content,
an established index of tissue pathology. One
centimeter diameter biopsies corresponding to re-
gions of ultrasonic analysis were obtained im-
mediately following ultrasonic measurement. To
facilitate comparison of data from different ani-
imals, regional CK activity was expressed as the
percentage of depletion compared to activity in
normal myocardium from the same animal. Sites
with CK depletion of greater than 40 percent were
classified as ischemic and those with CK depletion
less than 20 percent were classified as normal.

For dogs sacrificed from 15 minutes to 6 hours
following occlusion, colloidal carbon black was

Fig. 5. Histogram showing the range of cal-
culated root mean square deviations
(RMSD's) of attenuation-frequency
curves determined with four
different transducer configurations.

panel B as compared with panel A presumably re-
ject a decrease in the phase cancellation arti-
facts achieved by reducing the area over which
the ultrasonic field was integrated. Panel C
exhibits the results of measurements on 42 sites
made with a focused transducer pair and demon-
strates substantial improvement over the arrange-
injected into the left atrium fifteen seconds prior to killing the animal for the purpose of differentiating regions of ischemic and normal myocardium. Regions of ischemia did not change color after injection, while non-ischemic regions rapidly were stained black. Visual inspection of the tissue after excision was used to differentiate normal from ischemic tissue. Analysis of 60 sites from 4 control dogs indicated that the presence of dye did not alter the ultrasonic measurements of normal myocardium.

3. Results

Prior to addressing questions related to ischemic injury, it is necessary to determine experimentally the range of variability introduced into the results of ultrasonic attenuation measurements in vitro by variables such as: (1) the time interval that elapses between the sacrifice of the dog and the ultrasonic measurement, (2) the temperature of the tissue during ultrasonic measurement, and (3) the specific region of the left ventricle that is analyzed.

A. Time interval between sacrifice and measurement

In an effort to estimate the extent to which tissue degradation compromises the results of in vitro measurements, the ultrasonic attenuation coefficient of dog myocardium was measured at constant temperature as a function of time following excision. All experiments were performed in a 0.9 percent NaCl bath with temperature regulated to ± 0.2 °C by means of a controller and recirculator.

In table 1 data are displayed as a function of time following excision for experiments performed at two temperatures: (1) 19.5 °C (analysis of 27 regions from 3 hearts) and (2) 35 °C (analysis of 27 regions of 3 additional hearts). The ultrasonic attenuation coefficient as a function of frequency was approximately independent of time up to 4 hours following excision for tissue maintained at 19.5 °C. When the temperature was maintained at 35 °C, however, a definite change with time was observed. For measurements at 35 °C, the value of the slope of a least squares line fit to the attenuation versus frequency data changed from (0.061 ± 0.003) cm⁻¹MHz⁻¹ (mean ± standard error (S.E.)) at 15 minutes following sacrifice to (0.071 ± 0.003) cm⁻¹MHz⁻¹ at 4 hours following sacrifice. It thus appears that no statistically significant changes in attenuation occur for periods up to several hours following excision for tissue maintained at approximately 20 °C, although small (< 15 percent) but significant changes occur over that time interval for tissue maintained at 35 °C. These results indicated the choice of 20 °C as the temperature at which the extensive series of measurements on ischemic and normal myocardial tissue in vitro reported below were carried out.

<table>
<thead>
<tr>
<th>Time after</th>
<th>Number of dogs</th>
<th>Temp. °C</th>
<th>Attenuation coefficient (cm⁻¹) (mean ± SE)</th>
<th>Slope of α vs frequency (cm⁻¹ MHz⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>of excision</td>
<td>of sites</td>
<td></td>
<td>2 MHz</td>
<td>4 MHz</td>
</tr>
<tr>
<td>15 min</td>
<td>27</td>
<td>19.5</td>
<td>0.10 ± 0.02</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>2 h</td>
<td>27</td>
<td>19.5</td>
<td>0.10 ± 0.02</td>
<td>0.20 ± 0.02</td>
</tr>
<tr>
<td>4 h</td>
<td>27</td>
<td>19.5</td>
<td>0.10 ± 0.02</td>
<td>0.20 ± 0.02</td>
</tr>
<tr>
<td>15 min</td>
<td>27</td>
<td>35</td>
<td>0.09 ± 0.02</td>
<td>0.17 ± 0.03</td>
</tr>
<tr>
<td>2 h</td>
<td>27</td>
<td>35</td>
<td>0.09 ± 0.02</td>
<td>0.19 ± 0.03</td>
</tr>
<tr>
<td>4 h</td>
<td>27</td>
<td>35</td>
<td>0.11 ± 0.02</td>
<td>0.22 ± 0.03</td>
</tr>
</tbody>
</table>

B. Temperature dependence of the attenuation

To relate the results obtained at 20 °C to what might be expected if the measurements were carried out at 37 °C, an additional series of experiments was designed to elucidate the temperature dependence of the attenuation in a manner relatively independent of effects arising from tissue degradation. Results from the previous series of experiments (table 1) suggested the possibility that tissue might be temporarily stored at approximately 20 °C without undergoing significant degradation between measurements made at elevated temperatures. Using this approach, four freshly excised hearts were used for a measurement of the attenuation at 20.5 °C, 25 °C, 30 °C, and 37 °C. Each segment of left ventricle was placed in a 20.5 °C bath and analyzed ultrasonically immediately after excision. After analysis at this temperature, the tissue sample and holder were removed from the measurement bath and placed in a storage bath which was maintained at 19.5 °C. The measurement bath was heated to 25 °C and regulated to maintain this temperature to ± 0.2 °C. Upon stabilization of the temperature at 25 °C, the sample and holder were reintroduced into the original bath and allowed to equilibrate, whereupon the ultrasonic attenuation was measured. The same procedure was repeated for measurements at 30 °C and 37 °C, with the entire process lasting about 80 minutes. To check the validity of this method for identifying the true temperature dependence, the attenuation obtained at 37 °C using the above procedure was compared to the attenuation measured at 37 °C for 3 additional freshly excised hearts at 27 sites. The slope of the attenuation for these measurements made at 37 °C within minutes of ex-
cision was \((0.060 \pm 0.002) \text{ cm}^{-1} \text{ MHz}^{-1}\) in good agreement with the value \(0.058 \pm 0.002 \text{ cm}^{-1} \text{ MHz}^{-1}\) measured at \(37^\circ\text{C}\) for the 36 sites of tissue stored at \(19.5^\circ\text{C}\) between measurements. This result suggests that the procedure is methodologically sound.

Results of this series of experiments on 36 regions from 4 hearts designed to determine the temperature dependence of the attenuation coefficient are presented in table 2. The slope of a least squares line fit to the attenuation-frequency data decreases approximately linearly with increasing temperature over the range \(20.5^\circ\text{C}\) to \(37^\circ\text{C}\), with the value at \(37^\circ\text{C}\) being about 20 percent less than that at \(20.5^\circ\text{C}\).

C. Regional variations in attenuation

In order to identify possible variations in the attenuation coefficient as a function of the region of the left ventricle that was analyzed, 102 sites from 4 dogs not subjected to coronary ligation were studied and the results segregated into 4 groups based on the region investigated. Data from these experiments are presented in table 3. Values of the attenuation coefficient for regions in the mid-posterior and apical aspects of the left ventricle were essentially identical. Somewhat higher values were exhibited by regions in the papillary muscles and generally lower values were exhibited by regions near the base of the heart. These results are summarized in figure 6, utilizing the slope of a least squares line fit to the attenuation coefficient versus frequency plots for comparative purposes.

Based on the results of this study of regional variability of the ultrasonic attenuation coefficient of normal myocardium, subsequent studies were conducted primarily on sites from mid-posterior and apex, avoiding sites from the papillary muscles and the base. With this approach, the value of the slope of the attenuation for normal left ventricle, as determined from measurements at 245 discrete sites from 36 dogs, was \((0.072 \pm 0.001) \text{ cm}^{-1} \text{ MHz}^{-1}\) (mean ± S.E.).

![Diagram showing regional variation of slope](image)

**Table 2. Ultrasonic attenuation of normal myocardium as a function of temperature.**

<table>
<thead>
<tr>
<th>Number of sites</th>
<th>Number of dogs</th>
<th>Temp. °C</th>
<th>2 MHz</th>
<th>4 MHz</th>
<th>6 MHz</th>
<th>8 MHz</th>
<th>10 MHz</th>
<th>Slope of a vs frequency (cm⁻¹ MHz⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>4</td>
<td>20.5</td>
<td>0.10 ± 0.02</td>
<td>0.19 ± 0.02</td>
<td>0.34 ± 0.03</td>
<td>0.48 ± 0.03</td>
<td>0.64 ± 0.03</td>
<td>0.071 ± 0.002</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>25</td>
<td>0.10 ± 0.02</td>
<td>0.19 ± 0.02</td>
<td>0.33 ± 0.03</td>
<td>0.45 ± 0.03</td>
<td>0.61 ± 0.03</td>
<td>0.068 ± 0.002</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>30</td>
<td>0.10 ± 0.02</td>
<td>0.17 ± 0.02</td>
<td>0.31 ± 0.03</td>
<td>0.43 ± 0.03</td>
<td>0.58 ± 0.03</td>
<td>0.064 ± 0.002</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>37</td>
<td>0.11 ± 0.02</td>
<td>0.19 ± 0.02</td>
<td>0.31 ± 0.03</td>
<td>0.41 ± 0.03</td>
<td>0.56 ± 0.03</td>
<td>0.058 ± 0.002</td>
</tr>
</tbody>
</table>

**Table 3. Regional variation of ultrasonic attenuation in normal myocardium.**

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of sites</th>
<th>Number of dogs</th>
<th>Temp. °C</th>
<th>2 MHz</th>
<th>4 MHz</th>
<th>6 MHz</th>
<th>8 MHz</th>
<th>10 MHz</th>
<th>Slope of a vs frequency (cm⁻¹ MHz⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>21</td>
<td>4</td>
<td>20</td>
<td>0.11 ± 0.02</td>
<td>0.20 ± 0.02</td>
<td>0.34 ± 0.02</td>
<td>0.46 ± 0.03</td>
<td>0.62 ± 0.03</td>
<td>0.064 ± 0.002</td>
</tr>
<tr>
<td>Mid-posterior</td>
<td>21</td>
<td>4</td>
<td>20</td>
<td>0.10 ± 0.02</td>
<td>0.19 ± 0.02</td>
<td>0.34 ± 0.02</td>
<td>0.48 ± 0.03</td>
<td>0.64 ± 0.03</td>
<td>0.070 ± 0.002</td>
</tr>
<tr>
<td>Apex</td>
<td>39</td>
<td>4</td>
<td>20</td>
<td>0.10 ± 0.02</td>
<td>0.19 ± 0.02</td>
<td>0.35 ± 0.02</td>
<td>0.49 ± 0.03</td>
<td>0.65 ± 0.03</td>
<td>0.071 ± 0.002</td>
</tr>
<tr>
<td>Papillary</td>
<td>21</td>
<td>4</td>
<td>20</td>
<td>0.13 ± 0.02</td>
<td>0.26 ± 0.02</td>
<td>0.41 ± 0.02</td>
<td>0.55 ± 0.03</td>
<td>0.76 ± 0.03</td>
<td>0.079 ± 0.002</td>
</tr>
</tbody>
</table>
D. Effects of ischemic injury

To investigate changes in physical properties of tissue resulting from ischemic injury, ultrasonic measurements were carried out on freshly excised hearts previously subjected to coronary occlusion for intervals of 15 minutes, 1 hour, 6 hours, 24 hours, and 3 days. Results of these measurements are summarized in Table 4. The attenuation measured at 15 minutes, 1 hour, 6 hours, and 24 hours following coronary occlusion is lower than that exhibited by normal myocardium, while that at 3 days following occlusion is higher than that of normal.

The attenuation values reported in Table 4 represent averages of the values obtained for all sites analyzed. Results illustrated in Figures 4 and 5 suggest that artifacts arising from phase cancellation effects may occur in data obtained using the focused transmitter-focused receiver configuration. To eliminate measurements exhibiting probable phase cancellation effects from further consideration, an index based on RMD5 (eq. 2) was used to segregate the data. Attenuation coefficient versus frequency curves exhibiting RMD5's greater than 0.25 db were deleted from further consideration. The value 0.25 db was selected for segregating the data because it represents an RMSD two times the maximum RMSD exhibited by data obtained using the phase cancellation insensitive acoustoelectric receiver. The results of segregating the data in this way are illustrated in Table 5. The average values of the slope of the attenuation versus frequency curves are presented for two groups: (1) data including sites exhibiting phase cancellation effects, and (2) data excluding sites exhibiting phase cancellation effects. A comparison of the number of sites contributing to the average slope in each group indicates that a modest but significant number of attenuation versus frequency curves were compromised by phase cancellation effects.

The results of experiments on normal and ischemic myocardium are summarized in Figure 7. The average slope of the attenuation (last column of Table 5) is shown at 15 minutes, 1 hour, 6 hours, 24 hours, and 3 days following coronary occlusion. The slope of the attenuation of ischemic myocardium is significantly lower than that of normal myocardium for times ranging from 15 minutes through 24 hours following coronary occlusion and is significantly larger at 3 days following occlusion.

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of sites</th>
<th>Number of dogs</th>
<th>Temp. °C</th>
<th>Attenuation coefficient (cm⁻¹) (mean ± SE)</th>
<th>Slope of a vs frequency (cm⁻¹ MHz⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>245</td>
<td>36</td>
<td>20</td>
<td>0.10 ± 0.02 0.19 ± 0.02 0.33 ± 0.02 0.48 ± 0.03 0.65 ± 0.03</td>
<td>0.072 ± 0.001</td>
</tr>
<tr>
<td>Time after occlusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 min</td>
<td>56</td>
<td>5</td>
<td>20</td>
<td>0.10 ± 0.02 0.17 ± 0.02 0.32 ± 0.02 0.43 ± 0.03 0.57 ± 0.03</td>
<td>0.063 ± 0.003</td>
</tr>
<tr>
<td>1 h</td>
<td>64</td>
<td>8</td>
<td>20</td>
<td>0.09 ± 0.02 0.17 ± 0.02 0.32 ± 0.02 0.43 ± 0.03 0.57 ± 0.03</td>
<td>0.063 ± 0.003</td>
</tr>
<tr>
<td>6 h</td>
<td>59</td>
<td>5</td>
<td>20</td>
<td>0.08 ± 0.02 0.16 ± 0.02 0.30 ± 0.02 0.44 ± 0.03 0.57 ± 0.03</td>
<td>0.066 ± 0.002</td>
</tr>
<tr>
<td>24 h</td>
<td>29</td>
<td>11</td>
<td>20</td>
<td>0.08 ± 0.02 0.16 ± 0.02 0.29 ± 0.02 0.43 ± 0.03 0.59 ± 0.03</td>
<td>0.067 ± 0.002</td>
</tr>
<tr>
<td>3 d</td>
<td>31</td>
<td>7</td>
<td>20</td>
<td>0.11 ± 0.02 0.20 ± 0.02 0.38 ± 0.02 0.52 ± 0.03 0.69 ± 0.03</td>
<td>0.079 ± 0.002</td>
</tr>
</tbody>
</table>

Table 5. Slope of the ultrasonic attenuation of normal and ischemic myocardium.

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of dogs</th>
<th>Temperature °C</th>
<th>Character of sites</th>
<th>Including sites exhibiting phase cancellation effects</th>
<th>Excluding sites exhibiting phase cancellation effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time after coronary occlusion</td>
<td></td>
<td></td>
<td></td>
<td>Number of sites Slope (cm⁻¹ MHz⁻¹)</td>
<td>Number of sites Slope (cm⁻¹ MHz⁻¹)</td>
</tr>
<tr>
<td>15 min</td>
<td>5</td>
<td>20</td>
<td>normal</td>
<td>58 0.073 ± 0.003 45 0.072 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>15 min</td>
<td>5</td>
<td>20</td>
<td>ischemic</td>
<td>56 0.063 ± 0.003 49 0.062 ± 0.002</td>
<td></td>
</tr>
<tr>
<td>1 h</td>
<td>8</td>
<td>20</td>
<td>normal</td>
<td>69 0.072 ± 0.003 52 0.071 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>1 h</td>
<td>8</td>
<td>20</td>
<td>ischemic</td>
<td>64 0.063 ± 0.003 57 0.062 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>6 h</td>
<td>5</td>
<td>20</td>
<td>normal</td>
<td>59 0.072 ± 0.002 51 0.072 ± 0.002</td>
<td></td>
</tr>
<tr>
<td>6 h</td>
<td>5</td>
<td>20</td>
<td>ischemic</td>
<td>59 0.066 ± 0.002 49 0.064 ± 0.002</td>
<td></td>
</tr>
<tr>
<td>24 h</td>
<td>11</td>
<td>20</td>
<td>normal</td>
<td>29 0.073 ± 0.002 24 0.068 ± 0.002</td>
<td></td>
</tr>
<tr>
<td>24 h</td>
<td>11</td>
<td>20</td>
<td>ischemic</td>
<td>29 0.067 ± 0.002 27 0.060 ± 0.002</td>
<td></td>
</tr>
<tr>
<td>3 d</td>
<td>7</td>
<td>20</td>
<td>normal</td>
<td>30 0.072 ± 0.002 25 0.072 ± 0.001</td>
<td></td>
</tr>
<tr>
<td>3 d</td>
<td>7</td>
<td>20</td>
<td>ischemic</td>
<td>31 0.079 ± 0.002 28 0.082 ± 0.002</td>
<td></td>
</tr>
</tbody>
</table>
4. Discussion

Emphasis in the present studies was placed on systematic measurements making use of carefully defined control experiments. Either creatine kinase depletion or reduced uptake of colloidal carbon was used as an independent index for documenting myocardial ischemia. Care was taken to eliminate artifacts due to ultrasonic phase cancellation effects, a potentially significant source of variability in attenuation coefficient measurements. Methods suitable for conducting meaningful experiments on excised tissue were developed and validated. Results of the study addressing the problem of tissue degradation following excision led to the choice of \( \sim 20^\circ \text{C} \) rather than \( 37^\circ \text{C} \) for the present series of investigations. The possibility of significant changes in the ultrasonic properties of tissue measured in vitro as a function of time following excision was considered by Hueter [5], and more recently by Frizell and Carstensen [6], and by Bamber et al. [7]. Previous studies examined changes for time intervals substantially larger (tens of hours) than the present experiments, which had the more limited goal of defining the range of validity of attenuation measurements on freshly excised tissue.

The temperature dependence of the attenuation of normal myocardium was measured over the range \( \sim 20^\circ \text{C} \) to \( \sim 37^\circ \text{C} \) using a technique designed to minimize artifacts arising from tissue degradation. Results of these measurements suggest that the data obtained at \( 37^\circ \text{C} \) might be expected to differ by only about 20 percent from that obtained at \( 20^\circ \text{C} \). However, these limited measurements on normal myocardium do not adequately address the possibility of differences in the temperature dependence of the attenuation exhibited by ischemic as opposed to normal tissue.

Results of this study indicate a small decrease in the attenuation in the early stages of a myocardial infarct (up to 24 hours following coronary occlusion). Although mechanisms responsible for the attenuation of soft tissue are inadequately understood [8], a decrease in attenuation might be expected to accompany edema, which is a recognized correlate of recent ischemic injury. If the small decrease in attenuation of ischemic tissue is corroborated by measurements in vivo, the use of an index based on the ultrasonic attenuation to characterize the state of myocardium might be approached. Efforts to use an index based on attenuation to characterize the state of myocardial tissue might utilize each heart as its own control thus abrogating data variability due to regional myocardial variations as documented in table 3.

An increase in attenuation over that of normal myocardium is observed in tissue subjected to ischemic injury and measured three days following coronary occlusion. Previous reports from this laboratory documented substantial increases in attenuation in tissue studied 4 to 11 weeks after coronary occlusion [2,9]. This increase in attenuation, evident at three days following occlusion and reaching substantial magnitude weeks after occlusion, appears to be related to the onset of scar formation, reflecting the increase in the collagen content of necrotic tissue.

Acknowledgments

Lawrence J. Busse carried out the investigations of phase cancellation effects described in the text and presented in figures 3, 4, and 5. Pranoot Suntharathok-Priesmeyer was responsible for production of the text and illustrations. This work was supported in part by grants HL19537, HL17646, and HL07081 from the National Institutes of Health.

References


ACOUSTIC MICROSCOPIC ANALYSIS OF MYOCARDIUM

Donald E. Yuhas and Lawrence W. Kessler
Sonoscan Inc.
720 Foster Avenue
Bensenville, Illinois 60106, U.S.A.

Acoustic microscopy can be employed to measure variations in the ultrasonic attenuation and velocity over spatial dimension of tens of micrometers. Knowledge of the interactions at this fine-structure level provides a more complete understanding of the response of tissues at diagnostic frequencies. In this article we investigate the ultrasonic characteristics of formalin-fixed infarcted and normal myocardium at the microscopic level. The elastic microstructure of normal tissues is found to be uniform over spatial dimensions of hundreds of micrometers. The attenuation coefficient \( a \), at 100 MHz, ranges from 37 to 68 cm\(^{-1} \) while the velocity varies less than \( \pm 20 \) m/s. Acoustic anisotropy, attributed to muscle fiber orientation, is found to be a primary source of attenuation variability. The elastic microstructure in the zones of infarction is very distinct from that in normal zones. With infarction, variations in the attenuation ranging from 38 to 100 cm\(^{-1} \) occur over dimensions of hundreds of micrometers. Accompanying this variability in attenuation is a wide distribution of velocity. The most highly attenuating regions in the infarcted tissue show localized increases in the velocity of more than 75 m/s. Such large variations in sonic velocity are sufficient in magnitude to be an important source of phase cancellation in low frequency attenuation measurements. Additionally, the 100 MHz data indicate that the frequency dependence of the attenuation coefficient observed in the 1 to 10 MHz range for infarcted and normal myocardium may not hold in the 10 to 100 MHz frequency interval.

Key words: Acoustic microscopy; anisotropy; attenuation; elastic microstructure; infarct; interferogram; phase cancellation; myocardium; velocity.

1. Introduction

The complete ultrasonic characterization of tissue can be divided into two distinct levels of interaction: 1) structures greater than the wavelength of diagnostic ultrasound and 2) structures that are finer. The larger structures give rise to specular reflections which are used to define the outlines of tissues and organs seen in conventional B-scan echograms. The finer structures give rise to characteristic scattering properties of tissue and are also responsible for intrinsic attenuation and velocity. It is this sensitivity to fine structure, that makes the diagnostic frequency ultrasonic parameters so important in determining tissue pathologies.

As an aid to understanding the low frequency scattering, attenuation, and velocity data, direct visualization of the finer structures is desirable. Conventional microscopy (optical and electron) can be used to delineate various structural components, but these methods do not provide the required information regarding the ultrasonic properties of the tissue.

On the other hand, the elastic microstructural information obtained through acoustic microscopy is directly applicable to the lower frequency (1 to 10 MHz) characteristics. Acoustic microscopy provides a means for visualizing directly the elastic architecture as well as for measuring variations in the ultrasonic attenuation and velocity properties over areas tens of micrometers in diameter. By using this technique, valuable insight can be gained into mechanisms responsible for the attenuation of sound as well as factors which influence tissue characterization measurements at lower frequencies.

This preliminary study consists of a series of acoustic microscope observations of myocardial tissue. Previous reports have shown that quantitative changes in ultrasonic attenuation over the frequency range 2 to 10 MHz are associated with regional myocardial infarction [1-4]. The ultrasonic attenuation in normal tissue was found to exhibit a linear frequency dependence, while infarcted tissue exhibits a significant quadratic dependence. As a clue to elucidating the nature of the change in attenuation at lower frequencies, acoustic microscopy was used to investigate the elastic microstructure of normal and infarcted myocardium.

2. Methods

Acoustic micrographs were obtained with a commercially available 100 MHz scanning laser acoustic

\(^1\)Figures in brackets indicate literature references at the end of this paper.
microscope, SONOMICROSCOPE 100. A brief description of the technique is presented here for completeness. For a more detailed description, the reader may refer to the listed references [5-9].

Figure 1 illustrates the instrument used to produce 100 MHz acoustic micrographs. A sample is placed on a glass stage between an insonifying transducer and receiver. The transmitting transducer is a piezoelectric element which is bonded to a glass substrate, and the receiver is a scanning focused laser beam. The acoustic energy is coupled to the specimen through the glass substrate without need for an acoustically lossy water bath. The specimen is moisturized with liquid to ensure good acoustic coupling. The sound is transmitted through the sample at an angle of 10° with respect to the normal. In order to provide a specularly reflecting surface for the scanning laser beam receiver, the specimen is covered with a partially silvered coverslip. The coverslip allows a small amount of light to penetrate to the sample and render an optical view simultaneously with the acoustic.

Fig. 1. Schematic diagram of the acoustic microscope used in this study. The instrument employs a scanning laser beam technique for detecting the amplitude and phase of acoustic energy transmitted through the sample. Acoustic and optical images are produced simultaneously and are presented on separate monitors.

The acoustic energy transmitted through the specimen imparts a slight oscillatory mechanical perturbation to the coverslip surface. The amplitude of these perturbations, which vary with the acoustic frequency, is inversely proportional to the localized ultrasonic attenuation properties in the underlying sample. By sensing the perturbations and displaying the signal on a TV monitor, an acoustic image is formed. Images are obtained in real time and displayed at a magnification of about 70×. The bright regions seen on the acoustic micrographs correspond to areas of high transmission through the sample, whereas the darker areas correspond to regions of higher ultrasonic attenuation.

Quantitative attenuation measurements of the tissue observed in the microscope can be made anywhere within the field of view by an optical technique described previously [10]. With the sample in place, an acoustic image is obtained. Areas of interest are noted and readings of the image brightness are obtained with a light meter. Once the image brightness is recorded the sample is removed and replaced by an equivalent thickness of coupling medium. For this work formalin (10 percent formaldehyde) was used. Electrical attenuation is then inserted into the electro-acoustic signal path to restore the image brightness to its previous level. Although the acoustic field is quite uniform, care was taken to ensure that the same region of sound field was measured for the cases with and without the sample in place. Using this technique, attenuation can be measured over an area as small as 5 × 10⁻⁵ cm². The sensitivity of the photo cell used in these studies permitted discrimination of sound levels to within ± 1 dB, which introduced a 3 to 8 percent uncertainty in the measured attenuation coefficient. Because the acoustic image of the specimen is observed during the course of the measurement procedure, it is possible to select regions of low contrast structural details, thereby assuring the attenuation values obtained were free from artifacts arising from vessels or fluid filled cavities.

In addition to recording the transmissivity of specimens, the scanning laser acoustic microscope is equipped with an acoustic interferogram mode of operation. Acoustic interferograms display the localized distribution of transit times through the sample. For specimens of uniform thickness these transit time variations are directly related to localized variations in sonic velocity. Interferograms can be conceptualized with reference to figure 2. In this schematic, an ultrasonic plane wave is incident on the sample at an angle with respect to the normal. The intersection of the wavefronts with the plane below the specimen results in a series of fringes (indicated by the dots) which run in and out of the plane of the page. Using phase sensitive detection, the positions of these equiphasic lines are displayed on
the image monitor. Figure 3 is a micrograph of an interferogram recorded with no specimen on the stage. In this case the interferogram lines (fringes) are straight and parallel. Going from left to right, each successive interference fringe represents an increase in transit time through the glass stage of exactly one period of oscillation (10 nanoseconds at 100 MHz).

![Fig. 3. Interferogram obtained with no sample on the microscope stage showing equally spaced, parallel, interference fringes. This is the same type of interferogram that would be obtained on a sample that exhibited no regional changes in sonic velocity.](image)

Figure 2 also illustrates the effect of elastic inhomogeneity on the position of the interferogram fringes. As the wave enters the sample it refracts according to Snell's law. In the areas of the sample with uniform propagation velocity (white areas) the separation of successive fringes after propagating through the specimen is the same as that measured with no sample. When structures with variations in propagation velocity are present, illustrated by the hatched area, the separation of successive fringes in the vicinity of the elastic inclusion changes. The magnitude of the fringe shift, $N$, is directly related to the propagation velocities of the two components by the following relations [11]:

$$ N = \frac{\Delta \phi}{\lambda_1} (\cot \theta_1 - \cot \theta_2) \quad (1) $$

where $N$ is the dimensionless magnitude of the lateral fringe shift normalized by the unperturbed fringe spacing; $\lambda_1$ is the wavelength of sound in the specimen; $\Delta \phi$ is the specimen thickness; and $\theta_1$ and $\theta_2$ are the propagation angles in regions 1 and 2 respectively.

The relationship between the propagation angles and the sonic velocity is given by Snell's law:

$$ \frac{\sin \theta_1}{c_1} = \frac{\sin \theta_2}{c_2} \quad (2) $$

where $c_1$ and $c_2$ are the respective propagation velocities.

Using eqs. (1) and (2) and knowing the magnitude of the sonic velocity of one component in the field of view, the sonic velocities of all other areas can be determined. The primary factor determining the sensitivity of the technique for measuring variations in velocity is the sample thickness. For the sample thicknesses used in this study, a displacement of a fringe by $1/10$ of the unperturbed fringe spacing (i.e., $N = 0.1$) corresponds to a velocity change of $5 \text{ m/s}$.

3. Myocardial Samples

The specimens used in this study were taken from regions of formalin-fixed canine myocardium. Sections $0.05 \pm 0.005 \text{ cm}$ in thickness were made in several different myocardial regions extending from the apex to the base of the heart. The plane of dissection was oriented approximately at an angle of $45^\circ$ with respect to the long axis of the heart and each section extended from epicardial to endocardial surface. Samples were taken from regions of infarcted and non-infarcted tissues with the regions of infarction lying nearer to the apex of the heart. Analysis was carried out on section taken from a single heart which had been formalin fixed for more than a year and was originally excised 4 weeks after coronary occlusion.

4. Results

Figure 4 presents an acoustic micrograph (a) and interferogram (b) obtained on a myocardial section taken from a non-infarcted region. Brightness variations in this micrograph (fig. 4a) generally range from light to dark grey. A band of lighter material approximately $1 \text{ mm}$ wide can be seen running almost vertically through the central portion of the micrograph. On either side of this acoustically transmissive region are darker areas oriented both perpendicular and parallel to the band. Except for the dark structure (indicated by the arrow), which is attributed to a vessel, the change in brightness between the various regions is relatively subdued and gradual. The interferogram of this region (fig. 4b) shows a uniform contrast in velocity distribution. Only the area indicated by the arrow exhibits an abrupt disruption of the interferogram lines showing a slight increase of sonic velocity of $20 \text{ m/s}$. Throughout most of the sample the lateral shifts in the interferogram lines going from the top to the bottom of the micrograph over the entire field are less than 4 fringes indicating velocity changes of less than $\pm 10 \text{ m/s}$ in the vertical direction.

Figure 5 illustrates an interesting effect, that of acoustic anisotropy in myocardial tissue. These micrographs were obtained on the same sample shown in figure 4; however, the sample has been rotated $90^\circ$ in the plane of the stage. Recall that the angle of insonification is approximately $10^\circ$ from the specimen normal. Thus, while the major component of the propagation vector $k$ is perpendicular to the sample, a small off-axis component leads to some dramatic changes in image contrast on rotation. The amplitude micrograph shown in figure 5a reveals two distinct regions. The upper half of the micrograph shows acoustic morphology similar to that observed in the previous micrographs. The lower half of the micro-

---

2Samples provided courtesy of Washington University, Division of Cardiology, St. Louis, Missouri.
Fig. 4. Acoustic amplitude micrographs (a) and interferogram (b) of normal myocardium. The field of view in each micrograph is 2.3 by 3.0 mm and the sample thickness is 500 micrometers. In the amplitude micrograph the light areas are regions of low attenuation. The interferograms are arranged so that a lateral shift to the right corresponds to a region of increased velocity and a shift to the left, lower velocity. A shift of one fringe corresponds to a velocity change of 50 m/s. Typical variations in this sample are ± 10 m/s.

graph is significantly different, showing bands of acoustically light and dark material running horizontally across the field of view. The change of acoustic contrast is abrupt across these boundaries and their morphology suggests that they arise from muscle fiber orientation. In this micrograph the off-axis component of the propagation vector k is parallel to the acoustic striations seen in the micrograph, i.e. with the grain, whereas in the previous figure it is perpendicular or across the grain.

It should be emphasized here that the portion of the sample comprising the lower half of this field of view (fig. 5a) is the same area as that imaged in the left half of figure 4a. Some of the most highly attenuating areas seen in figure 5a become the least attenuating areas as the sample is rotated in the sound field. The acoustic interferogram of the same region is shown in figure 5b. Again, the spatial distribution character of sonic velocity in the upper portion of the micrograph is similar to that seen in figure 4b. The sonic velocity in this region is 1580 m/s with typical variations less than ± 5 m/s. In the darker regions the interferogram lines become quite jagged, indicative of sharply localized changes in sonic velocity. Typical shifts here are on the order of 0.8 normalized fringes, corresponding to an increase in velocity of 40 m/s.

Figures 6a and 6b show a comparison between interferograms obtained on normal and infarcted tissue. The interferogram obtained on the normal...
specimen (fig. 6a) shows similar characteristics as discussed previously, i.e. uniform attenuation and velocity over the field of view. In contrast, the most distinctive feature of the infarcted tissue (fig. 6b) is its overall microelastic inhomogeneity. There are small regions of this micrograph which show uniform velocity profiles and attenuation characteristics (similar to normal tissue), however, there also exists a number of highly attenuating (darker) areas. These dark areas show increases in sonic velocity of more than 75 m/s compared to that seen in the neighboring tissue. The complex interference fringe pattern indicates that, in the infarcted zones, there is considerable variation in the sonic velocity on a microscopic scale.

On several sections, ultrasonic attenuation measurements were made at 100 MHz. The results are presented in table 1. Sections A through C were obtained from normal regions while sections D and E were obtained from zones of infarction. Each attenuation measurement was made on a small region of tissue (1 x 10^-4 cm^2) and, in general, several different areas on each section were measured. The range of attenuation measured in a section is given in column 2 of the table. The variations tabulated here represent structural variations in the tissue as opposed to uncertainties in the measurement technique (which are on the order of ± 10 percent). The number of measurements made on each section was governed primarily by the image contrast as seen on the TV monitor. Areas that looked distinct on the monitors were subsequently measured. Thus, sections with uniform attenuation properties were subjected to fewer measurements than sections displaying a variety of brightness levels.

The attenuation values obtained in the 3 sections of normal tissue range from 37 to 68 cm^-1. For section B, two entries are presented in the table corresponding to the two different orientations of the section in the sound field. The first entry, B1, represents measurements made on section B in the orientation depicted in figure 4a, while the second entry, B2, presents measurements made in the orientation depicted in figure 5a. The attenuation measured in the B orientation show relatively minor variations from the typical value of 43 cm^-1. In contrast, measurements on the same section in the B2 orientation yield values ranging from 41 to 68 cm^-1. Perhaps the most striking feature of the acoustic anisotropy is the observation that the same area that yields an attenuation coefficient of 45 cm^-1 in orientation B1 gives a value of 68 cm^-1 in the B2 orientation. Thus, variations in attenuation which are attributed solely to anisotropic propagation are of the same magnitude as variations observed in different sections.

The attenuation measured in the zones of infarction serve to quantify the visual impression given by the acoustic micrographs. Infarcted zones show inhomogeneous attenuation properties with variations ranging between 27 and 100 cm^-1 for the two sections analyzed. The highly attenuating zones with attenuation coefficients in excess of 70 cm^-1, are morphologically distinct from any features present in the non-infarcted regions.

<table>
<thead>
<tr>
<th>Section</th>
<th>Attenuation range (cm^-1)</th>
<th>Number of measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A non-infarct</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>B non-farct^a</td>
<td>43b</td>
<td>2</td>
</tr>
<tr>
<td>B non-infarctc</td>
<td>41 - 68</td>
<td>2</td>
</tr>
<tr>
<td>C non-infarct</td>
<td>37 - 61</td>
<td>2</td>
</tr>
<tr>
<td>D infarct</td>
<td>38 - 100</td>
<td>5</td>
</tr>
<tr>
<td>E infarct</td>
<td>27 - 70</td>
<td>5</td>
</tr>
</tbody>
</table>

^a Off-axis component of sound is perpendicular to grain.
^b Off-axis component of sound is parallel to grain.
^c Typical value.
This study presents some acoustic microstructure characteristics of myocardial tissue at a frequency of 100 MHz. The features revealed in the acoustic micrographs as well as the quantitative attenuation and velocity data can lead to important conclusions with regard to the complete ultrasonic characterization of tissues.

First of all, 100 MHz acoustic micrographs can be used to distinguish between and recognize infarcted and normal tissue. The most distinctive feature of the infarcted zone is the high degree of localized variations in attenuation and velocity. Such acoustic contrast could result from fibrous scar tissue distributed in a matrix of normal myocardium. The highly attenuating, high-velocity regions can be attributed to areas of substantial scar. This identification is consistent with low frequency measurements on tissues rich in collagen [12].

Secondly, significant acoustic anisotropy, arising from muscle fiber orientation, has been observed at 100 MHz. One of the sections analyzed (sample B) showed a large orientational dependence, and this may have been due to the particular geometry of the fibers. With a small component of the propagation vector K along the fiber an increase in attenuation was observed. This is in the same direction as the attenuation anisotropy previously observed in striated muscle at lower frequencies [13]. The magnitude of change in attenuation is rather substantial, 45 to 68 cm^{-1}, indicating that structural aspects and tissue architecture play an important role in determining overall attenuation. This orientation effect favors scattering type loss mechanisms.

Thirdly, the large velocity variations measured in the infarcted tissue may have important consequences for low frequency attenuation measurements. Phase cancellation losses have been implicated as a primary source of artifact in attenuation measurement made using piezoelectric receivers [14,15]. Although small diameter (~.2 cm) receiving transducers or confocal pairs of transducers can be used to minimize phase cancellation loss, they do not completely eliminate it. Phase cancellation occurs when inhomogeneities in the tissue distort the ultrasonic phase fronts presented to a spatially extended piezoelectric receiving transducer. The interferogram, figure 6b, displays the high degree of wavefront distortion which actually occurs in infarcted myocardium. Quantitatively, the distortion is greater than 1.5 fringes or 540° in phase over a distance which is smaller than the diameter of the small receiving transducer (.2 cm) measurement reported at lower frequency [2-4].

Lastly, it is interesting to compare the attenuation measurements made at 100 MHz with those obtained at lower frequencies. Figure 7 is a plot of the attenuation coefficient divided by frequency (a/f) vs f. The data in the frequency range 2 to 10 MHz were reported previously and are average attenuation values obtained on fresh myocardium excised 4 to 5 weeks after vascular occlusion [4]. On the other hand, the 100 MHz data, taken from table 1, represent the range of attenuation values in the infarcted and non-infarcted zones.

Analysis of figure 7 indicates that for normal tissue, in the frequency interval 2 to 10 MHz, a/f has a relatively constant value of .07 cm^{-1} MHz^{-1}.

The 100 MHz values reported here are substantially higher (.37 to .68 cm^{-1} MHz^{-1}). For the infarcted tissue, the 2 to 10 MHz a/f values increase with frequency. Linear extrapolation of these data would predict a value of 1.9 cm^{-1} MHz^{-1} at 100 MHz. However, the most highly attenuating regions observed in the infarcted zones at 100 MHz have a/f values of 0.1 cm^{-1} MHz^{-1}, a value significantly lower than that predicted. Thus, the a/f versus f dependence for normal and infarcted tissue predicted in the range 1 to 10 MHz may no longer hold in the interval 10 to 100 MHz.

The following limitations to this conclusion should be pointed out. First of all, the referred to low frequency data were obtained on freshly excised tissue, while this 100 MHz investigation used formalin fixed tissues. Although data obtained on other tissues, e.g., kidney, indicate that the effect of formalin on the overall attenuation values at 100 MHz may not be significant [10], this has not yet been verified for the myocardium. The second point concerns orientation effects. The lower frequency measurements were made by transmitting sound through the myocardial wall roughly perpendicular to the epicardial surface, while the 100 MHz measurements were done in a plane perpendicular to this. Results presented in this study indicate the presence of an orientational effect on the acoustic properties.

Although more comprehensive work needs to be done to quantify the extent to which orientation and fixing influence the acoustic properties, the results of this study show that high frequency acoustic microscopy can play an important role in the understanding and characterization of tissues at diagnostic frequencies.

Acknowledgment

The stimulating discussions with W. D. O'Brien, University of Illinois are gratefully acknowledged.

References

[1] Lele, P. P. and Namery, J., A computer-based ultrasonic system for detection and mapping


ACOUSTIC PROPERTIES OF NORMAL AND ABNORMAL HUMAN BRAIN

F. W. Kremkau, C. P. McGraw, and R. W. Barnes

Bowman Gray School of Medicine
Winston-Salem, North Carolina 27103, U.S.A.

Attenuation and propagation speed at 1, 3, and 5 MHz and specific acoustic impedance at 2 MHz were measured in vitro in 10 tissue samples from 8 abnormal human brains. The results were compared to values resulting from a study of 5 normal human brains reported elsewhere. Conclusions from literature review are that attenuation is lower in glioblastoma than in normal brain and attenuation, propagation speed and impedance are higher in meningioma than in normal brain. Conclusions from the data of the present study are that subarachnoid hemorrhage appears acoustically normal; infarcts have normal attenuation but increased speed; clots, intracerebral hemorrhage, and metastases have increased attenuation and speed; hydrocephalic brain has very low attenuation and low speed. In general, it appears that abnormal conditions produce increases in all three acoustic properties studied.

Key words: Attenuation; brain tumor; clot; hemorrhage; hydrocephalus; impedance; infarct; speed; ultrasonic.

1. Introduction

As part of a study of acoustic properties of normal and abnormal tissues, attenuation and propagation speed at 1, 3, and 5 MHz and specific acoustic impedance (hereafter called impedance) at 2 MHz were measured in vitro in 10 tissue samples from 8 abnormal human brains. Results from our study of 23 tissue samples from 5 normal human brains are reported elsewhere [1]. The important observations were:

(a) attenuation measured with piezoelectric transducers resulted in higher values (0 to 50 percent) than those obtained using radiation force method;
(b) attenuation (using transducer method) was 0.9 dB/cm at 1 MHz and was a function of $f_1^{-1}$ over the range 1 to 5 MHz;
(c) propagation speeds at 1 MHz were 1546 and 1539 m/s for fresh and fixed tissues, respectively;
(d) speed dispersion was 2 m/s$^{-1}$ MHz$^{-1}$ and 1.6 m/s$^{-1}$ MHz$^{-1}$ for fresh and fixed tissues, respectively;
(e) white matter had attenuation 1.4 times that for gray;
(f) attenuation of adult brain was 2.7 times that for infant;
(g) one day aging reduced attenuation up to 20 percent;
(h) attenuation depended upon temperature to the power -0.1 and -0.5 at 1 and 5 MHz, respectively;
(i) propagation speed as a function of temperature exhibited a minimum at approximately 15°C.

The differences between white and gray matter and between infant and adult attenuation can be explained on the basis of tissue water content. The minimum in propagation speed with respect to temperature may indicate a sensitivity to the crystal-liquid crystal phase transition for membrane phospholipid bilayers.

There are several reports in the literature regarding the acoustic properties of normal and abnormal human brain tissue. A review of the data for normal brain may be found in our earlier report [1]. In addition, reported values for impedance are $1.59 \times 10^6$ MKS rayl (kg/m$^2$s) for "brain" [2], 1.60 for cerebellum [2], 1.51 for cerebrum [3], and 1.52 for white matter [4].

An early paper by Wild and Reid [5] showed differences in received echo patterns for normal brain and several malignant and benign tumors. More recently Fishman, Heyser, and Le Croissette [6] reported high attenuation in tumor regions of human brain sections using qualitative transmission images. A summary of the data for abnormal brain is given in table 1. Only tumors are cited as no other abnormality was found in the literature. Table 2 shows an attempt to simplify this summary and draw some conclusions from it. It lists reports of greater (+), equal (=), or lesser (-) values for attenuation, speed, or impedance as compared to the same authors' values for normal brain tissue. Citing only those situations where at least two reports are in agreement, the following are concluded:

(a) attenuation is lower in glioblastoma than in normal brain;
(b) attenuation is higher in meningioma than in normal brain;
(c) propagation speed and impedance are higher in meningioma than in normal brain.

---

1 Figures in brackets indicate literature references at the end of this paper.
2. Materials and Methods

Normal and abnormal human brain tissue samples were obtained at autopsy. Measurements were made at 37°C after at least 24 hours of fixation in 10 percent formalin. Except during measurement, tissues were stored at 4°C. Tissue samples were cut to fill the sample holder—a Teflon® ring with inner diameter 33 mm, outer diameter 45 mm, and (sample) length 15 mm. Saran® membranes were stretched over both sides of the chamber to provide flat tissue surfaces and acoustic windows. The sample holder fit into a guide in a temperature controlled water bath which provided consistent placement (within 1 mm in each coordinate) relative to source and receiver transducers. The transducers were one inch diameter Valpey-Fisher polished 1 MHz X-cut quartz. The source transducer was driven by an Aarenberg PG-650C pulsed oscillator. Bursts were typically 20 cycles long and reasonably characterized by a single (fundamental) frequency. The receiver transducer was connected to the input of a 7A18 amplifier in a Tektronix 7904 oscilloscope with a 7892 dual time base. Amplitude of received burst, with and without tissue sample between transducers, was measured and attenuation coefficient, calculated from the following relation:

\[
m = \frac{1}{d} \left( \frac{20 \log_{10} \frac{A_0}{A_1} - m_w}{m_w} \right) + m_w
\]

where \(m\) and \(m_w\) are attenuation coefficients in dB/cm of tissue sample and water, respectively, \(m_w\) is window loss in dB, \(d\) is sample thickness in cm, \(A_0\) is received amplitude with sample not present (water path), and \(A_1\) is received amplitude with sample present. Amplitudes were measured with precision ± 2 percent or better and accuracy (based on Tektronix specification) within 2 percent. Measurements were taken at 1, 3, and 5 MHz. Corrections for \(m_w\) and \(m_w\) are normally less than 1 percent except \(m_w\) at 3 and 5 MHz (typically 2 and 7 percent, respectively). The value for \(m_w\) is obtained by measuring the received amplitude change when a water filled chamber is inserted between the transducers. Additional reflection loss resulting from impedance discontinuity between water and tissue is not significant.

Propagation speed was calculated using the arrival time change occurring when the sample was inserted between source and receiver transducers. \(c = d/|t_2 - t_1|\), where \(c\) is propagation speed in the tissue sample in m/s, \(d\) is sample thickness in meters, \(t_2\) is propagation time in seconds in d path length of water, and \(t_1\) is arrival time change in seconds when sample is introduced into sound path. Arrival time changes are typically 200 to 400 ns read to a precision of ± 10 ns and accuracy (based on Tektronix specification) within 5 percent. Measurements were taken at 1, 3, and 5 MHz.
Acoustic impedance was measured using the method of Gregg and Palagallo [4]. A Parametrics Pulser/Receiver 5050PR was used with a Hoffrel 310A 2.0 MHz, 13 mm diameter diagnostic transducer. Display was produced on the Tektronix 7904 oscilloscope.

3. Results

The results of seven abnormal conditions are given in Table 3. With respect to attenuation and propagation speed, the following observations are made:
(a) subarachnoid hemorrhages appear normal acoustically;
(b) infarcts have normal attenuation but increased speed;
(c) clots, intracerebral hemorrhage, and metastases have increased attenuation and speed;
(d) hydrocephalic brain has very low attenuation and low propagation speed. Impedance values do not correlate well with tissue type or with propagation speed values.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Attenuation (dB/cm)</th>
<th>Speed (m/s)</th>
<th>Impedance (10^4 Mks rayl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 MHz</td>
<td>3 MHz</td>
<td>5 MHz</td>
</tr>
<tr>
<td>normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metastatic lung carcinoma</td>
<td>1.5</td>
<td>5.6</td>
<td>11.0</td>
</tr>
<tr>
<td>ventricular clot</td>
<td>2.3</td>
<td>9.6</td>
<td>12.2</td>
</tr>
<tr>
<td>subarachnoid hemorrhage</td>
<td>0.9</td>
<td>3.2</td>
<td>5.6</td>
</tr>
<tr>
<td>intracerebral hemorrhage</td>
<td>1.9</td>
<td>8.2</td>
<td>12.8</td>
</tr>
<tr>
<td>hemorrhagic infarct with necrosis</td>
<td>0.9</td>
<td>3.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Island of Riel infarct</td>
<td>0.9</td>
<td>3.2</td>
<td>6.6</td>
</tr>
<tr>
<td>hydrocephalus</td>
<td>0.2</td>
<td>0.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

*See reference [1]. Impedance value was obtained by measurement on one normal brain of the five studied with respect to attenuation and propagation speed.

4. Discussion

In general, it appears that abnormal conditions produce increases in all three acoustic properties studied. The measured metastatic carcinoma values agree reasonably well with those of others [4,7] (see Table 1). The low attenuation for hydrocephalus is similar to that reported for infant brain where high water content was suggested as an explanation [1]. The low propagation speed for hydrocephalus was not observed in the normal infant. Our results show normal attenuation for infarcts [1 to 5 MHz]. Miller et al. [15] observed an increase in attenuation for dog heart after infarct but this was evidenced only at frequencies above 5 MHz. Lele and Namery [16] reported increased attenuation above 2 MHz for infarcted dog heart compared to normal. They also observed reduced impedance for infarct brain which was not observed in our study of brain.

Few of these abnormal tissues have been studied by more than one group. Much more data will be required before confident generalizations can be agreed upon.

Acknowledgments

The authors are grateful for technical assistance from Ms. S. Gaskey.
This work was supported in part by NINCDS Contract NO1-NS-4-2304.

References


FREQUENCY DEPENDENT ATTENUATION OF MALIGNANT BREAST TUMORS
STUDIED BY THE FAST FOURIER TRANSFORM TECHNIQUE

E. Kelly Fry, N. T. Sanghvi, and F. J. Fry
Indiana University School of Medicine and
Indianapolis Center for Advanced Research
Indianapolis, Indiana 46202, U.S.A.

and

H. S. Gallagher
The University of Texas System/Cancer Center
Houston, Texas 77025, U.S.A.

The work discussed in this paper comprises one aspect of an experimental design concerned with the use of multi-discipline examination methods to provide detailed information on the interaction of normal and malignant breast tissues with a high frequency sound field. The complete experimental design included x-ray and needle biopsy examination of the breast of a patient prior to mastectomy, followed by: x-ray examination of the excised breast (the malignant tumor remained intact in the excised breast); ultrasound visualization and FFT studies of the formalin-fixed, excised breast specimen; x-ray examination of 0.5 cm thick, whole breast sections of the tissue; and, finally, sectioning and histological staining of the primary malignant tumor region and other tissue areas of interest. Emphasis is given in this preliminary report to a study of attenuation of the sound beam as a function of frequency for specific tissue paths (i.e., from skin to back surface of the excised breast), which included (1) the malignant tumor, (2) the nipple and (3) the areola.

For the tissue path which included the malignant tumor, the FFT studies indicate that the attenuation for the full range of frequencies studied (1.1 to 4.4 MHz) was greater than that of any other area of the breast. A significant result of the investigations reported in this paper is the determination that this analytical technique is feasible and can yield data on malignant and normal regions of breast tissue which correlate with the ultrasound visualization imaging information and with the tissue structure information as revealed by histological examination.

Key words: Attenuation of areola; attenuation of breast tissue; attenuation of malignant tumors; breast cancer detection; breast carcinoma; breast examination techniques; FFT techniques for breast; histology of breast tumors; signal processing for tissue; x-ray examination of breast.

1. Introduction

At the present time, ultrasound visualization techniques, if used in conjunction with other clinical examination methods, can improve the level of success in the differential diagnosis of breast pathologies [1]. However, the theoretical capability of ultrasound for providing a successful method of early detection of breast cancer is not presently realized, in part because of the lack of sufficient clinical studies with this method and, in addition, because of the need for more basic experimental studies on the interaction of ultrasound and breast tissue. There is, in fact, a serious need for relatively so-

1Figures in brackets indicate literature references at the end of this paper.

phisticated investigations concerned with (1) the complex structure of normal breast in terms of its interaction with sound fields and (2) the variability in structural features of malignant tumors (including those in the same pathology classification) insofar as this variability is significant to medical diagnostic data obtained by ultrasound examination of such tumors.

The experimental work discussed in this paper comprises one aspect of an overall approach of using multi-discipline examination methods, namely, x-rays, ultrasound visualization, signal processing of ultrasound transmission data (i.e., Fast Fourier Transform (FFT) techniques) and histological techniques to provide detailed information on the structural features of breast tissue and their interaction with a high frequency sound field. In the initial experimental stages,
procedures such as the FFT are best performed on an excised breast. A special preparation, namely, an excised, formalin-fixed breast with a known intact malignant tumor, was used in the investigations discussed in this paper. Detailed examination of such breasts, by both standard and experimental breast cancer detection methods, and the correlation of the results with tissue structure information provided by histological investigations, can yield data that is pertinent to early breast cancer detection [2-8]. The rationale, validity and value of studying such fixed, whole specimens by ultrasound visualization techniques have been discussed in detail by Kelly Fry and Gallager in a previous publication [8]. Additionally, Calderon et al. have published results of an investigation on the ultrasound attenuation values of formalin-fixed breast tumors [9].

In capsule form, the overall experimental design called for collection of data first by x-ray examination of the breast of the patient prior to surgery, followed by: x-ray examination of the excised breast; detailed ultrasound visualization and FFT studies of the formalin-fixed excised breast specimen; whole breast sectioning of the tissue in blocks of approximately 0.5 cm in thickness; x-ray examination of each of these cross sections and, finally, sectioning and histological staining of the primary malignant tumor region and other tissue areas of interest.

The FFT studies were considered in the nature of a feasibility study and it is in that regard they are reported in this paper. Emphasis is given in this preliminary report to a study of attenuation of the sound beam both in the region of the malignant tumor and in other areas of the breast tissue (such as nipple and areola) as a function of frequency. As used in this paper, the term "attenuation" designates all losses in sound pressure amplitude or intensity as the acoustic beam traverses the tissue, including those due to specular reflection, scattering, refraction, absorption and diffraction.

Both the location (as revealed by x-ray examination of the whole excised breast) and the malignant character of the primary mass (as revealed by needle biopsy) were known at the time of the ultrasound visualization and FFT studies. At the time of this writing, the histological classification of the primary malignant tumor has been determined and detailed histological studies are underway. The precise correlations between information revealed by histology, ultrasound visualization and FFT techniques will be the subject of a later paper.

2. Experimental Methods

The tissue specimen used in the subject study was an excised, formalin-fixed, left breast of a female subject who was 49 years of age at the time of the mastectomy. Since the diagnosis of breast carcinoma had been made by x-ray and needle biopsy prior to surgery, the mastectomy was carried out without a surgical biopsy so that the excised breast contained the previously detected malignant mass in an essentially undisturbed state. After excision, the breast was made to assume its approximate normal contour by pinning it to a layer of paraffin, was x-rayed and then formalin-fixed. The fixation process consisted of covering the pinned breast with 10 percent formalin solution, completely draining this solution and adding a fresh formalin solution every other day for a total period of two weeks. After the completion of this process, the breast was maintained in formalin solution except for periods of ultrasonic examination.

The instrumentation used for pulse-echo examination of the excised breast was a linear scan, B-mode visualization system which included a variety of types of transducers. Only two of these transducers were used as transmitters in the FFT studies, namely, 1.1 MHz and 4.4 MHz center frequency units. Most of the FFT studies were carried out with the 4.4 MHz unit and the results obtained will be discussed in this paper. This transducer has a diameter of 1.9 cm, a 7.5 cm focal length, a midband frequency response of 4.4 MHz, a band width of 3 MHz just above noise, and 1 MHz at the 3 dB point.

During the visualization scanning procedures, the breast and examining transducers were completely immersed in mammalian Ringer's solution at room temperature (23 °C) so that there was direct fluid coupling of the ultrasound to the tissue. Both transverse (medial-to-lateral) and longitudinal (superior-to-inferior) scans were taken at distance intervals of 1 to 2 mm. In order to relate data recorded on the echograms to specific areas of the tissue, an anatomical landmark on the tissue (such as the center of the nipple or the center of a prominent skin discoloration over the area of abnormality) was selected and a highly reflective and attenuating acoustic target placed on this landmark. With the focus of the transducer set on the target center, the echogram of the breast tissue showed a distinct, easily identified front surface reflection and an attenuation shadow of the target. Since the linear coordinates (X and Y) were recorded for each echogram, subsequent scans of the tissue with the target removed could be directly related to the chosen anatomical landmark. These surface landmarks were subsequently used in the FFT experiments for identification of desired sound transmission situations.

For the ultrasound attenuation studies in the transmission mode, the previously described axisymmetric focused transducer was used as a transmitter, and a 4 mm diameter, 10 MHz frequency, PZT ceramic sandwich-type piezoelectric probe was used as a receiver. A Panametrics Model 5050R unit pulse-excited the transmitter, and a series unit step attenuator was used to attenuate the ultrasonic received signals prior to their entrance into an amplifier receiver. The breast preparation was mounted on a three-motion coordinate system in a temperature controlled mammalian Ringer's bath (average temperature 23 °C) and positioned between the sending and receiving transducers, with the anterior aspect of the tissue facing the sending transducer (fig. 1). With this arrangement, any area of the tissue could be easily examined and the tissue could be moved in 1 mm steps in the three-axis coordinate system.

In order to record the system's reference waveform, transmitter and receiver transducers were placed facing each other and adjusted in position to receive the optimum plane wave acoustic signals. A linearity test of the system was performed by setting the attenuator unit at different values and comparing the corresponding outputs of the FFT
Experimental and computer is separate x and computer is the 2.5 waveform, waveform.

Fig. 1. Experimental arrangement of examining transducer (left), excised breast (side view) and receiving transducer.

spectrum. The system was found to be accurate to ± 1 dB in the useable frequency band, for any particular transmitting transducer. The received ultrasonic waveforms were digitized at a sampling rate of 10 or 20 nanoseconds using an eight bit Biomation Model 8100 digitizer and then transferred to a PDP-11/45 computer. Generally, four waveforms were digitized for each tissue region of interest (i.e., nipple, areola, etc.), stored on a computer disc, and later processed using a 1024 point FFT. In order to obtain attenuation and phase-angle versus frequency plots, they were deconvolwed with the original system's reference waveform. The waveforms were transformed into the frequency domain and the absolute amplitude for each waveform was compared with the amplitude of the reference waveform for the relative attenuation measurement. To obtain the phase angle for each waveform, the phase was compared with the reference waveform and subsequently linearized for each frequency. For optimum frequency resolution, appropriate sampling intervals were selected on the Biomation digitizer. The output was presented in a graphical form in three different formats; namely, normalized pressure amplitude, attenuation and phase-angle spectra. The phase-angle data is presented in a separate paper [10].

The tissue was sampled at various selected regions by moving the specimen across the ultrasound beam on the three-axis system. The regions of interest chosen for this study were specific tissue paths (i.e., from skin to back surface of the specimen) which included 1) the malignant tumor, 2) the nipple and 3) the areola. In that regard, eighteen separate transmission mode studies were made in the tumor path, nine in the areola path and eight in the nipple path. In addition, the upper inner aspect of the breast was chosen as representative of normal, middle-aged, mammary adipose tissue and test ultrasound transmissions were made in that region.

Following completion of the FFT studies, the tissue was longitudinally sliced to produce whole breast sections from 5 to 8 mm in thickness. Each of these cross sections was x-rayed and the radiographs studied to determine which specific regions of the breast would be further examined by means of histological techniques. Tissue cubes 2 x 2.5 cm in overall dimensions were excised from the selected regions of interest and prepared for histological study. The primary malignant mass was included in one of these cubes of tissue.

3. Results

The ongoing histological studies indicate that the primary malignant mass was an invasive carcinoma of duct cell origin with an intermediate degree of differentiation. The mass was multinodular, fairly well circumscribed b related, with a dense fibrotic center and a peripheral shell (3 to 4 mm thickness) of neoplastic cells. The fibrotic tissue, representing the major tumor mass, was highly collagenous but the cellular shell had a minimum deposit of collagen.

Included in the illustrations shown in this paper are duplications of the recorded system reference waveform (normalized pressure amplitude versus frequency) for sound wave transmission through Ringer's solution, compared to the waveforms recorded for sound transmission through breast tissue immersed in Ringer's solution. Such pressure amplitude graphical displays are presented in order to demonstrate the characteristics of the reference waveform and the dynamic range limitations of the system.

Before discussing the results obtained for the tissue path that included the malignant tumor, it is of interest to consider the attenuation values obtained for the areola and nipple tissue path regions of the breast which, on the basis of the x-ray examination, can be assumed normal. In calculating precise attenuation values, on the basis of the recorded, normalized pressure amplitude values, the tissue path length was taken as the distance between the anterior surface of the skin overlying the nipple or areola and the posterior surface of the breast specimen (as determined by the previously obtained ultrasound visualization images of the breast specimen). Therefore, it is emphasized here that the attenuation values shown in figures 3 and 4 are not specifically for areola or nipple, but are for the tissue path that includes these structures.

Figure 2 presents recorded pressure amplitude waveforms for four sound transits through the nipple at entrance points separated by 2 mm of surface tissue. These waveforms show the maximum variability in pressure amplitude (differences in pressure amplitude for waveforms A, B, C, D) found for the nipple region. The attenuation frequency spectrum plot for the nipple path shown in figure 3 is based on the pressure amplitude waveforms shown in figure 2 and the tissue path length (surface of nipple to back surface of the specimen) traversed by the sound wave.

Figure 4 is the attenuation frequency spectrum for the areola region of the breast. As in the case of the nipple, this data is also based on differences in pressure amplitude response curves (three sound transits through the areola region at entrance points separated laterally by 1 mm of surface tissue) and the tissue path length (areola skin to back surface of the specimen). All other sound transmits from the areola path gave results within the range of values shown in figure 4. The tissue region of greatest attenuation, as shown in figure 4, was located closer to the nipple in comparison to the other two sound transit regions.
Fig. 2. Computer recorded display of: (a) reference waveform for ultrasound transmission through Ringer's solution only; (b) waveforms A, B, C, D for ultrasound transmission through four separate regions of the "nipple tissue path" of an excised, formalin-fixed breast immersed in Ringer's solution.

Fig. 3. Attenuation frequency spectrum for "nipple tissue path" based on waveforms shown in figure 2.

Fig. 4. Attenuation frequency spectrum for "areola tissue path" based on three sound transmissions through separate regions of the areola.

Fig. 5. Computer recorded display of: (a) reference waveform for transmission through Ringer's solution only; (b) three waveforms for ultrasound transmission in separate regions of the "tumor tissue path" of an excised, formalin-fixed breast immersed in Ringer's solution.
The waveform recordings shown in figure 5 resulted from three sound transits in the tumor tissue path, with each of the test points separated by 1 mm of tumor tissue in terms of skin surface distance. In contrast to results obtained in all other tested regions of the breast, the recorded waveform data show a total lack of recorded pressure amplitude response in the higher frequency regions. This result indicates that there is at least 40 dB of amplitude loss, for the tissue path from skin to back surface, in the frequency regions above approximately 2 MHz. At the lower end of the frequency spectrum, pressure amplitude response was recorded but, as shown later in this paper, the level of these pressure amplitudes indicates a greater attenuation for the tumor tissue path than for that of the nipple tissue path.

For the main body of the primary malignant tumor, the overlying tissue is approximately 1.5 cm in depth (from skin to anterior border of overt mass); the tumor has a diameter of 1.5 cm in depth and the tissue below the tumor is approximately 2 cm in depth. X-ray examination of the excised breast indicated the tissues surrounding the tumor were primarily fatty in nature. Consequently, if the attenuation for the 3.5 cm of tissue surrounding the tumor is considered to be that of normal breast adipose tissue and, further, if the attenuation value for such tissue is assumed comparable to that found in the present studies for tissue paths (skin to back of tissue) through other fatty regions of the breast, namely, 2.5 dB/cm at 2.0 MHz, then the tissues surrounding the tumor account for 8.8 dB of the attenuation. It should be noted that the 2.5 dB/cm value for breast adipose tissue is in general agreement with that found by Calderon et al. [9], namely 2.3 dB/cm at 2.25 MHz for formalin-fixed, excised, normal breast tissue. Deducing the 8.8 dB from the 40 dB maximum dynamic range response of the system and taking into account the 1.5 cm tumor path, it is found that the attenuation for the malignant tumor itself is 21 dB/cm at a frequency of 2 MHz. Since this value is in general agreement with that of Calderon et al. which found an attenuation of 20 dB/cm at 2.25 MHz for formalin-fixed, excised, malignant breast tumors, it is expected that the 40 dB dynamic range limitation, which represents a factor of 100 in pressure amplitude and 10,000 in intensity, is close to an adequate dynamic range response.

Carrying out the same type of calculation, using the pressure amplitude data shown in figure 5 for the lower frequencies, gives an attenuation value for the malignant mass of 8 dB/cm at a frequency of 1.5 MHz. This is calculated on the basis of 3.5 cm of normal fatty breast tissue, with an attenuation value of 2.0 dB/cm at 1.5 MHz (as found for other normal fatty regions of this breast specimen) and a 1.5 cm depth of tumor mass.

Of the total of 18 separate runs through the tumor tissue path, with the exception of two sound transits in a particular region of this path, all recorded results indicated that for frequencies above 2 MHz there apparently was total attenuation of the sound wave (i.e., within the 40 dB recording level capability of the system). The exceptional cases showed 1) a pressure amplitude waveform that was highly, but not completely, attenuated by the tumor path and thus was within the 40 dB maximum dynamic range of the system and 2) for a sound transit in an area just 2 mm laterally distant from that of number one above, a pressure amplitude waveform which had precisely the same frequency spectrum, pressure amplitude response as that found for normal fatty regions of the breast. On the basis of this result, it was assumed, prior to the histological examination, that the tumor included a border region of less density (conjectured to be a mixture of normal and neoplastic tissue) than the central mass and an adjacent region of distinct adipose tissue. Based on pressure amplitude data and the known tissue path, an attenuation value of 13 dB/cm at a frequency of 2 MHz was calculated for this border area of neoplastic tissue.

The histological studies, to date, clearly show adipose tissue immediately adjacent to and surrounding the malignant mass, thus accounting for the characteristics of the waveform which duplicated those of the fatty regions of the breast. The 3 to 4 mm thick neoplastic shell located adjacent to the adipose tissue and surrounding the fibrotic center of the tumor presumably accounted for the 13 dB/cm attenuation value.

4. Discussion

At the present time, in clinical studies concerned with the use of pulse-echo methods for breast examination, differential diagnosis is primarily based on the characteristics of the wall of the tumor, the presence and nature of the echoes from the internal structure of the tumor and the existence or absence of a shadowing phenomenon resulting from the attenuation of acoustic energy by a malignant mass. In evaluating each of these parameters, considerable emphasis and reliance is placed on the so-called "attenuation shadow" which, when present, is generally considered to be indicative of the presence of a malignant mass. However, precise knowledge regarding attenuation characteristics of normal, benign and malignant breast tissue is extremely limited. This is a serious deficit since its consequence may be misdiagnosis of the benign or malignant nature of a breast tumor.

Considerable care should be used in interpreting attenuation shadows produced by pulse-echo examination of breast, with specific regard to the question of whether normal or benign tissues can produce significant shadowing effects. In that regard, Kobayashi has found that fat necrosis results in an attenuation shadowing comparable to that produced by a malignant mass, as judged by pulse-echo visualization [11]. Calderon et al.'s studies at a frequency of 2.25 MHz of formalin-fixed excised breast tissue gave values of 20 dB/cm for malignant masses, 9 dB/cm for benign masses and approximately 2.3 dB/cm for normal breast tissue surrounding the tumors [9]. Although there is a significant difference between attenuation values for benign and malignant tumors as found by these investigators, it must be realized that in the clinical pulse-echo methods, differential diagnosis is made on the basis of a comparison between the image pattern of the overt mass and that of the surrounding normal tissue. Therefore, the Calderon et al. data indicate that for pulse-echo techniques in which the sound beam makes two passes through the breast, common sized benign tumors (2 cm and above) with an attenuation of 9 dB/cm could result in shadowing in relation to surround-
ing normal tissue with an attenuation value of 2.3 dB/cm. Additionally, the first author of this paper recently found, in the case of several clinical patients, each with an overt, benign mass within the breast (identified by x-ray examination and confirmed by surgical biopsy), that the echograms obtained using standard pulse-echo methods at frequencies of 4.4 MHz to 5.0 MHz displayed distinct shadows in the region of the mass. The significance of this result, as far as the present paper is concerned, is the recognition of the need for quantitative attenuation data on multiple types of benign and malignant breast tumors, as opposed to simple visual inspection of shadow phenomena. For such masses and consideration of whether signal processing techniques may provide some of the needed data [12].

The FFT studies discussed in this paper, for the tissue path which included the malignant tumor, showed that the attenuation for the full range of frequencies studied (1.1 to 4.4 MHz) was greater for this tissue path than for that of any other area of the breast. Further, these findings were consistent with those found in the visualization echograms, that is, to say, even at a frequency of 1.1 MHz, this specific tumor could be recognized by "pale shadowing," while at the higher frequencies the attenuation shadow was more opaque and formed a distinctive border in relation to adjacent tissue.

From the viewpoint of possible in vivo breast examinations by FFT methods, it is of interest that in the present study the dual structural components of the tumor (as shown by the two attenuation values) and the adipose tissue surrounding the tumor were recognized prior to any histological investigations. Further, the finding that the total malignant mass was attenuating but the greater attenuation was in the region of fibrosis agrees with earlier studies [8] relating attenuation (as judged by nonquantitative pulse-echo methods) of breast tumors with specific tumor tissues (as revealed by detailed histological studies). The highly delaminated nature of the primary malignant mass combined with its high attenuation values and the minimum collagen content of the surrounding cellular shell is of interest in regard to the relative importance of elastic properties versus physical structural make-up for sound reflection and transmission through overt tissue masses [13]. The ongoing histological studies and the preliminary phase-angle data may provide some information on this aspect [10].

There are many factors, both tissue and instrumentation related, associated with the attenuation in the nipple path region as determined by the FFT ultrasound transmission studies discussed in this paper. Included in the tissue aspects are the non-uniform structure of the skin surface and the variable tissue components within the nipple and in the regions deep to the nipple. Although the above factors may be significant, information which is relevant to present pulse-echo clinical techniques can be derived from the preliminary FFT data without complete analysis of such parameters. In that regard, for example, the results shown in figure 3 are important in relation to detection of an overt breast mass located in the region directly posterior to the nipple. If pulse-echo techniques are applied to scan directly over the nipple region, there may be a lack of success in detecting such masses (particularly at frequencies of the order of 5 MHz) because of their location in the attenuating path of the nipple. For the purposes of tumor detection, therefore, the tissues deep to the nipple should be viewed by scanning from the side regions of the breast and by using lower frequencies. These two approaches to visualizing structures deep to the nipple were successfully applied by the present authors in the case of the excised breast discussed in this paper, and breasts studied in vivo.

To accomplish the overall aim of the studies carried out in this preliminary investigation, that is, to correlate x-ray, visualization, FFT analysis and histological findings, requires extensive and time-consuming investigations. However, if some of the significant parameters that are relevant to differential diagnosis of breast tumors by ultrasonic techniques are to be determined by methods other than the necessarily slow process of interpreting ultrasound clinical data, such detailed investigations are necessary. A significant result of the investigation reported in this paper is the determination that this computer-based, signal processing technique is feasible and can yield data on malignant and normal regions of breast tissue. It also appears evident from these experiments that similar investigations could be carried out on freshly excised whole breast tissue. If such investigations are successful, then this technique could be considered for application to breast patient examination.

Success in that regard could lead directly to development of an ultrasound breast examination technique which might eventually limit the need for surgical biopsy to a small number of exceptional cases.

Acknowledgments

Grateful acknowledgment is made to the assistance of George W. Gallager, ultrasonic technologist, in all aspects of the above studies. This research was supported by the Grace M. and Ralph W. Showalter Residuary Trust, and by the Indianapolis Center for Advanced Research, Inc.

References


[5] Fry, E. Kelly, Gallager, H. S., and Franklin,


CORRELATION OF ULTRASONIC ATTENUATION WITH CONNECTIVE TISSUE CONTENT IN BREAST CANCERS

Toshiji Kobayashi
Division of Clinical Electrophysiology
Department of Internal Medicine
National Cancer Center Hospital
5-1-1, Tsukiji, Chuo-ku, Tokyo-104, Japan

In recent years, ultrasonic techniques have been applied to the diagnosis of breast cancer. Various characteristics suggestive of tumor pathology have been determined. In this paper, some of these signs, such as the acoustic middle shadow and the complete disappearance of the distal limit of the tumor mass echo, are correlated with the connective tissue content of various breast cancers. Because of the high acoustic impedance of connective tissue relative to the other tissues, tumors rich in connective tissue are believed more strongly to attenuate the ultrasonic waves and thus to cause shadows in the tissues beyond them.

Key words: Attenuation; breast cancer; cancer; connective tissue; differential diagnosis; medullary carcinoma; papillary carcinoma; scirrhous carcinoma; shadowing; ultrasound.

1. Introduction

Because of its noninvasive nature, diagnostic ultrasound is a good clinical tool for the fine visualization of soft tissue pathologies. This technique has been applied in the past several years to the differential diagnosis of breast tumors with high diagnostic accuracies. Echographic criteria for differentiating malignant and benign lesions have been reported by several investigators [1-8].

Echographic patterns of shadowing beyond tumors (retromammary shadowing) provide reliable and accurate diagnostic information for the diagnosis of breast cancer. In this paper, various malignant signs, such as the acoustic middle shadow sign and the complete disappearance of the distal limit of the tumor mass echo, are shown to be correlated with the connective tissue content within the breast cancer. Because of the high acoustic impedance of connective tissue relative to the other tissue, tumors rich in connective tissue are believed more strongly to attenuate the ultrasonic waves and thus to cause shadows in the tissues beyond them.

2. Method and Results

During the past five years, 1617 cases of palpable breast tumors were examined echographically and all cases with breast cancer were verified by mastectomy. This material forms the basis of this retrospective study. The method of examination is shown in figure 1. The criteria for the differential diagnosis of breast tumors can be divided into three major categories comprising (1) the boundary echoes and shape, (2) internal echoes, and (3) shadowing, as illustrated in figure 2.

Fig. 1. Method of scanning the breast. The 5 MHz probe is moved automatically along the arc of a circle, and ultrasonic coupling to the patient is through the water in the flexible plastic bag.
The first two categories, that is, the boundary echoes and shape, and internal echoes, result from echo patterns mainly confined to the tumor mass itself or its vicinity. The third category, shadowing, is a result of various attenuation mechanisms such as multiple reflections, changes in beam velocity, and scattering due to the impedance discontinuities within the tumor.

The boundary echoes provide important diagnostic information, producing outlines which are usually irregular in the case of breast cancers, and regular in the case of benign lesions such as cysts and fibroadenomas. A cancerous tumor is uneven with a jagged edge, sometimes triangular, rectangular or irregular in shape, whereas a benign tumor is usually round, oval or hemi-oval. Moreover, the internal echo pattern in a malignant tumor is usually irregular both in size and distribution, in contrast with the either homogeneous or anechoic internal echo pattern of a benign lesion.

Other diagnostic criteria result from echo patterns due to multiple reflections from the tumor mass, modifying the shadowing. It is this phenomenon which is the principal subject of this paper. The tadpole-tail sign arises from the low energy loss in the beam as it passes normally through the distal wall of a cyst leaving sufficient energy to cause multiple reflections or "ringing" between the distal cyst wall and the chest wall. The difference in velocities in tissue and cyst may play an important role in causing this pattern. This sign is usually not seen in the majority of malignant lesions except in some cases of medullary carcinoma. The lateral shadow sign is believed to be formed by the almost total reflection of the ultrasonic beam at the lateral wall of cystic lesions as, for example, with benign tumors [6]; an explanation of the formation of this sign has recently been published [9].

A characteristic of malignant lesions designated as "acoustic middle shadow sign" is sometimes observed. This phenomenon is believed to be caused by the high attenuation of the ultrasonic energy by malignant tumor tissue, due to large acoustic impedance discontinuities within such tissue.

The reliability of these various signs for the differential diagnosis of various histological types of breast cancer is seen in Table 1. Diagnostic accuracy is greatest in scirrhous carcinoma and lowest in medullary carcinoma.

Echographic characteristics suggestive of malignant lesions, such as the acoustic middle shadow sign and the complete disappearance of the distal limit of the tumor mass echo, have been correlated with the connective tissue content of tumor masses for various histological types of breast cancer. The grading of the connective tissue content was divided into three categories based on the observation of many microscopic field specimens. These categories were expressed as follows: 1) the connective tissue over 75 percent (rich), 2) 25 to 75 percent (moderate) and 3) less than 25 percent (poor). The specimens were stained by hematoxylin and eosin and are shown magnified by approximately 100.

The results of the analysis are shown in Tables 1, 2, 3 and 4. The acoustic middle shadow sign as well as the complete disappearance of the distal limit of the tumor mass echo, were most frequently seen in the cases with abundant connective tissue, whereas the tadpole-tail sign and the lateral shadow sign were often seen in cases with little connective tissue content, mainly in medullary carcinoma. These analyses were carried out on 12 cases of various breast cancers (4 scirrhous carcinomas, 5 papillary carcinomas and 3 medullary carcinomas).
Table 1. Reliability of various criteria for the differential diagnosis of breast cancer (53 cases).

<table>
<thead>
<tr>
<th>Type of carcinoma</th>
<th>Medullary</th>
<th>Papillary</th>
<th>Scirrhous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic accuracy rate</td>
<td>20/24 (83%)</td>
<td>13/15 (87%)</td>
<td>14/14 (100%)</td>
</tr>
<tr>
<td>Complete disappearance of distal limit of tumor echo</td>
<td>17/24 (70%)</td>
<td>12/15 (80%)</td>
<td>11/14 (78%)</td>
</tr>
<tr>
<td>Irregular boundary echo</td>
<td>23/24 (95%)</td>
<td>14/15 (93%)</td>
<td>11/14 (78%)</td>
</tr>
<tr>
<td>Acoustic middle shadow sign</td>
<td>18/24 (75%)</td>
<td>11/15 (73%)</td>
<td>14/14 (100%)</td>
</tr>
</tbody>
</table>

Table 2. Connective tissue content of 12 cases of carcinoma. Rich = over 75 percent; moderate = 25 to 75 percent; poor = less than 25 percent. High consistency is indicated by (+++), intermediate consistency by (++), and low consistency by (+).

<table>
<thead>
<tr>
<th>Connective tissue content</th>
<th>Nonconnective tissue content</th>
</tr>
</thead>
<tbody>
<tr>
<td>rich</td>
<td>moderate</td>
</tr>
<tr>
<td>1) Scirrhous carcinoma (T1)</td>
<td>(+++)</td>
</tr>
<tr>
<td>2) Scirrhous carcinoma (T1)</td>
<td>(+++)</td>
</tr>
<tr>
<td>3) Scirrhous carcinoma (T2)</td>
<td>(+++)</td>
</tr>
<tr>
<td>4) Scirrhous carcinoma (T2)</td>
<td>(+++)</td>
</tr>
<tr>
<td>5) Papillary carcinoma (T1)</td>
<td>(+++)</td>
</tr>
<tr>
<td>6) Papillary carcinoma (T1)</td>
<td>(+++)</td>
</tr>
<tr>
<td>7) Papillary carcinoma (T2)</td>
<td>(+++)</td>
</tr>
<tr>
<td>8) Papillary carcinoma (T2)</td>
<td>(+++)</td>
</tr>
<tr>
<td>9) Papillary carcinoma (T2)</td>
<td>(+++)</td>
</tr>
<tr>
<td>10) Medullary carcinoma (T1)</td>
<td>(+)</td>
</tr>
<tr>
<td>11) Medullary carcinoma (T2)</td>
<td>(+)</td>
</tr>
<tr>
<td>12) Medullary carcinoma (T2)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

Table 3. Correlation between appearance of various echo signs and connective tissue contents in 12 cases of carcinoma, classified according to echo signs. Signs indicated by circled letters in the table have the higher reliabilities. A = acoustic middle shadow sign; C = complete disappearance of distal limit of tumor mass echo; N= no change of shadow or intermediate pattern; T = tadpole-tail sign; L = lateral shadow sign.

<table>
<thead>
<tr>
<th>Connective tissue content</th>
<th>rich</th>
<th>moderate</th>
<th>poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Scirrhous carcinoma (T1)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>2) Scirrhous carcinoma (T1)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>3) Scirrhous carcinoma (T2)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>4) Scirrhous carcinoma (T2)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>5) Papillary carcinoma (T1)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>6) Papillary carcinoma (T1)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>7) Papillary carcinoma (T2)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>8) Papillary carcinoma (T2)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>9) Papillary carcinoma (T2)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>10) Medullary carcinoma (T1)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>11) Medullary carcinoma (T2)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
<tr>
<td>12) Medullary carcinoma (T2)</td>
<td>A C N T L</td>
<td>A C N T L</td>
<td>A C N T L</td>
</tr>
</tbody>
</table>
Table 4. Correlation between appearance of various echo signs and connective tissue contents in 12 cases of carcinoma, classified according to carcinoma type. (S) = scirrhous carcinoma; (P) = papillary carcinoma; (M) = medullary carcinoma.

<table>
<thead>
<tr>
<th>Connective tissue content</th>
<th>Nonconnective tissue content</th>
</tr>
</thead>
<tbody>
<tr>
<td>rich</td>
<td>moderate</td>
</tr>
<tr>
<td>Acoustic middle shadow sign</td>
<td>(S)</td>
</tr>
<tr>
<td>Complete disappearance of distal limit of tumor mass echo</td>
<td>(S)</td>
</tr>
<tr>
<td>Tadpole-tail sign</td>
<td>(P)</td>
</tr>
<tr>
<td>Lateral shadow sign</td>
<td>(P)</td>
</tr>
<tr>
<td>No shadow or intermediate pattern</td>
<td>(P)</td>
</tr>
</tbody>
</table>

3. Demonstration of Typical Echograms and Tissue Characteristics

Tables 3 and 4 show the correlations between the amount of connective tissue and the various echo patterns described in the following paragraphs.

A. Scirrhous Carcinoma (T1 and T2)

A series of echograms recorded by the sensitivity-graded method [6] show typical patterns of shadowing (acoustic middle shadow sign) suggestive of T2 malignancy (fig. 3).

The distal limit of the tumor mass echo gradually fades as the attenuation increases, as may be seen on the echograms taken at -15 to -20 dB attenuation, and finally completely disappears. The microscopic picture shows the tissue type content to be predominantly connective in cellular structure. The echogram in figure 4 is a typical pattern of early scirrhous carcinoma (T1), showing the acoustic middle shadow underneath the tumor mass echo. Histologically, the connective tissue component is predominant.

![Fig. 3. Echograms of breast with T2 scirrhous carcinoma (acoustic middle shadow sign) recorded at a range of sensitivities, together with corresponding histological section magnified approximately 100 times.](image1)

![Fig. 4. Echogram of breast with T1 scirrhous carcinoma (acoustic middle shadow sign), together with corresponding histological section magnified approximately 100 times.](image2)
The echogram in figure 5 shows another typical acoustic middle shadow pattern suggestive of T1 malignancy. The microscopic picture also shows rich connective tissue. These results suggest that rich connective tissue content may play an important role in producing the acoustic middle shadow sign and in the complete disappearance of the distal limit of the tumor mass echo in clinical echograms of scirrhous carcinoma.

B. Papillary Carcinoma (T1)

The echogram of early papillary carcinoma shows a typical attenuation of the shadowing, so that the acoustic middle shadow sign is not clear. Moreover, the typical benign signs such as tadpole-tail sign and the lateral shadow sign do not appear either (fig. 6).

The histological picture shows connective tissue and nonconnective tissue approximately evenly distributed. Therefore, this pattern of papillary carcinoma may lie in between those of scirrhous carcinoma and medullary carcinoma (see C below) with respect to the connective tissue content. This kind of evenly-distributed connective and non-connective tissue produces an equivocal echographic pattern which makes it difficult correctly to diagnose early papillary carcinomas.

C. Medullary Carcinoma (T2)

This echogram shows a rather homogeneous in-

ternal echo, mimicking a benign cyst, and an atypical tadpole-tail shorter than that of tadpole-tail usually seen in the case of benign tumors (fig. 7). Consequently correct diagnosis is rather difficult. The histological picture shows rich non-connective tissue content, and especially abundant and uniformly distributed tumor cells. This kind of homogeneous and even distribution of tumor cells should produce little sonic reflection from within the tumor mass, thus mimicking the pattern of benign cysts.

4. Discussion

In the past several years, researchers have hypothesized that the ultrasonic characteristics of malignant breast tumors could be attributed to the increased attenuation of ultrasonic energy by the cancerous tissue with greater internal acoustic impedance discontinuities, and hence increased scattering losses, as compared with those with normal breast tissue and benign breast tissues.

In direct measurements of the attenuation of ultrasound within 18 samples of various normal, benign and malignant breast tissues, significant differences have been found [10]. At 2.25 MHz, malignant tissue had the highest attenuation (1.2 dB per wavelength), whilst benign tissues had a median value of 0.6 dB per wavelength. These results support the hypothesis.

From a histological standpoint, the percentage of connective tissue (consisting of fibroblasts
and fibrous tissue) has been suggested to be one of the principal factors responsible for ultrasonic attenuation in neoplastic tissue [11].

In an analysis [12] of 53 cases of breast cancer for the incidence of the appearance of various echographic characteristics such as the acoustic middle shadow sign, the complete disappearance of the distal limit of the tumor mass echo was suggestive of malignancy, and the tadpole-tail sign and the lateral shadow sign was suggestive of a benign condition. Diagnostic accuracy rates were 100 percent, 87 percent and 83 percent in scirrhous carcinoma, papillary carcinoma and medullary carcinoma respectively, as may be seen in Table 1. It is interesting to note that the tadpole-tail sign and the lateral shadow sign appeared most rarely, and the disappearance of the distal limit of the tumor echo was most frequent, in medullary carcinomas. Generally these signs suggest benign lesions, and this may account for the fact that the lowest diagnostic accuracy is obtained with medullary carcinomas.

The connective tissue content seems to be generally rich in scirrhous carcinoma and poor in medullary carcinoma. The tumor cellular component usually predominates within the nonconnective tissue of medullary carcinoma and this tissue structure may be responsible for the bioacoustical homogeneity observed within the tumor mass. This homogeneity in medullary carcinoma may produce less attenuation of ultrasonic energy, resulting in shadowing suggestive of benign tumors, such as the tadpole-tail sign and the lateral shadow sign. In the present investigation, these echographic characteristics appear regardless of the tumor size and the location of the tumor mass within the breast.

Medullary carcinoma has lower attenuation than other types of carcinoma [10]; its measured value at 2.25 MHz falls in a range comparable to that of benign tumor tissue, whereas the attenuation is highest in scirrhous carcinomas followed by papillary carcinomas. It is interesting to note that the discrimination on the basis of attenuation was very clear between normal breast tissue, benign tumors, and malignant tumors, except for the case of medullary carcinoma. This finding is in agreement with the hypothesized echographic origin of the medullary carcinomas even at the frequency of 5 MHz used in the present analysis.

As to the other factors contributing to the echographic characteristics of tumors, especially irregular and nonsmooth boundary echoes of various carcinomas, the incidence rate of its irregularity is 95 percent for medullary carcinoma, 93 percent for papillary carcinoma and 78 percent for scirrhous carcinoma. This kind of irregularity may be closely related with infiltrative pattern of cancerous cells, and the reflection coefficient at the tumor interface as well as other factors.

It should be emphasized that the correlation of clinical echographic signs with the histological characteristics of the tumors does not imply that in any given case, a particular sign is indicative of any histological type. Because of inadequacies of the clinical equipment used in this study, these correlations should only be considered qualitative. The principal conclusion is that the amount of connective tissue within the tumor mass may play an important role in the formation of the acoustic middle shadow sign and the complete disappearance of the distal limit of the tumor mass echo, and that it is probably due to the increased ultrasonic attenuation caused by the high acoustic impedance of the connective tissue.

References


THE ATTENUATION OF SELECTED SOFT TISSUE AS A FUNCTION OF FREQUENCY

D. H. Le Croissette, R. C. Heyser, P. M. Gammell, and J. A. Roseboro

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103, U.S.A.

and

R. L. Wilson1

School of Medicine
University of Southern California
Los Angeles, California 90033, U.S.A.

Measurements of attenuation versus frequency have been made on pancreas, kidney, fat and liver specimens of hog tissue. Hogs were of the "Berkshire" variety and the tissue obtained from a slaughterhouse. The measurements were taken under controlled conditions of temperature and formalin fixing to determine the effects of aging and fixing on the tissue. A swept-frequency transmission system was used operating over the range of about 1.5 to 9.5 MHz. The curves show the changes occurring in fresh tissue as a result of several days of aging at refrigerator temperatures (5 °C) and the effects of fixing the tissue in formalin immediately post-mortem or after several days at 37 °C. All measurements were made at 37 °C.

Key words: Attenuation; tissue properties; transmission; ultrasound.

1. Introduction

The recent interest in characterizing soft tissue by ultrasound is based upon measurements made as early as 1952 [2] and later observations by scientific investigators attempting to lay the groundwork for a new technique of ultrasonic diagnosis. The work reported here is the start of a systematic attempt to measure the attenuation of soft tissue as a function of frequency. This topic was chosen because of the belief, substantiated by initial measurements [2], that there is a variation in the attenuation of ultrasound through tissue as a function of frequency that can be correlated with the pathological state of the tissue. The measurements reported here were made on excised tissue obtained from hogs. This paper reports data obtained from fresh, aged and fixed specimens.

In a typical pulse-echo ultrasound imaging system, the frequency variation of attenuation cannot usually be identified. Furthermore, the increase in attenuation of normal tissue as a function of frequency tends to mask the high frequency behavior of tissue when a measurement is made over a long path length, i.e., far from the transducer. These two factors have made the identification of pathological tissue by its frequency-dependent characteristic unlikely and so this phenomenon plays little part in the subjective pattern recognition techniques used in contemporary diagnostic ultrasonography. It is believed, however, that if an identification mechanism based on frequency-dependent phenomenon can be found, suitable instrumentation will be devised for tissue identification.

Measurements on tissues of known pathologies can greatly increase the knowledge of tissue characterization needed to develop such instrumentation. Specimens obtained from cadavers are especially useful since the individual organ can be studied. Most autopsy material, however, is not available until after a one or two-day delay. Furthermore, the general availability of pathological tissue is greatly enhanced if a study is not constrained to specimens a few hours old. This study is therefore to determine the acoustic attenuation characteristics of several organs as a function of time after death and after fixing in formalin solution.

2. Methodology

There are two major methods for examining the ultrasonic propagation behavior of tissue as a function of frequency. The most popular method [3-5] uses the frequency spectrum that is emitted by a heavily damped transducer operated in a pulse mode. This method is capable of giving usable data at frequencies several times the natural resonant frequency of the crystal with adequate signal-to-noise ratios. By contrast,
the technique used in this work does not pulse the transducer but sweeps the operating frequency over a wide band. This technique [6], known as Time Delay Spectrometry (TDS), reduces the effects of multipath propagation and reverberation by using a swept frequency transmitter and receiver so that the frequency acts as a "time tag" to the signal. The sweep of the receiver is delayed from that of the transmitter so it will only respond to the signals with the proper time delay. This discriminates against signals with different arrival times, especially those due to reverberation and multipath propagation.

The data were taken with a standard swept-type spectrum analyzer-tracking generator which has been modified by offsetting the tracking generator by a constant frequency. A Panoramic SPA-3 spectrum analyzer and Panoramic G6 tracking generator were used. This tracking generator can be adjusted to compensate for the time of transit of the ultrasound through the sample. A sweep rate of 100 MHz-s⁻¹ and 3 dB intermediate frequency bandwidth of 600 Hz were used. If the sweep frequency versus time of the spectrum analyzer is linear, this constant frequency offset will exactly compensate for a constant time delay of the ultrasound through the specimen. The time delay will be constant across the frequency sweep if both the specimen and the medium in which it is immersed are nondispersive. Dispersion of the medium and the sample will not affect the measurements by more than 1 dB, provided the average velocity of the sample and medium does not change by more than 1 percent. Linearity requirements on the sweep of the spectrum analyzer are extreme, however.

The measurements were made over the frequency range 1.5 to 9.4 MHz. Two Aerotech Alpha transducers were used. The 10 MHz, 0.63 cm diameter (0.25 inches) transducers were selected so that the resonant frequency was just above the range of interest. This frequency was chosen so that the transducer sensitivity increased with frequency over the band. This compensates for the increase in tissue attenuation with frequency to give a more nearly constant signal-to-noise ratio over the selected frequency spectrum. The specimen was located midway between the transducers, which were 12 cm apart.

3. Specimen Handling

Specimens of tissue from hogs were studied no more than four hours after slaughter. The tissue type and the time sequence of the measurements are shown in figure 1. All specimens were heat sealed in a plastic bag containing either 0.9 percent saline or formaldehyde diluted 1:1 with water (i.e., approximately 4 percent). The liver specimens were sliced to approximately 15 mm thickness; the kidney and pancreas specimens were studied intact. The backfat specimen was left in the form of a slab as it was stripped from the carcass. The thickness of all of the specimens was calibrated at the locations studied. Fat is normally removed one day after slaughter which accounts for the one-day delay shown in figure 1(b).

Figures 2 through 9 show the measured attenuation versus frequency for the hog tissue at 37°C. Four or five locations on each specimen were studied. Obvious ducts, vessels, and tapered edges were avoided. In the case of the kidney, measurements were not made in the central portion, which contains the large vessels and the renal pelvis. All of the kidney measurements were made in the region of the pyramids, and so include both cortical and medullary matter. The locations studied on any given specimen can be identified by the shape of the symbol used on figures 2 through 5. That is, the circle, square, or triangle represents the same visible location on the specimen when studied on the day of slaughter, five days later, and after fixing. Care was taken to avoid multipath effects by visual inspection of the area of the specimen and by observing the spectrum analyzer for obvious signs of multipath interference. Since no fine structure was observed in the attenuation versus frequency curves, the data are reported at 0.5 MHz intervals.

Each specimen was measured at four or five points. This is a compromise between sampling enough locations to insure that the measurements are representative and reducing experiment time to a minimum. Since tissue is known to deteriorate rapidly at 37°C, it is important that the experiment time be kept as short as possible. Stray air bubbles that initially clung to the specimen were gently brushed away. No gas evolution was subsequently observed visually.

<table>
<thead>
<tr>
<th>SPEC. NO.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROZEN</td>
<td>O</td>
</tr>
<tr>
<td>DATA</td>
<td>O</td>
</tr>
<tr>
<td>SPEC. NO.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>FAT</td>
<td>O</td>
</tr>
<tr>
<td>SPEC. NO.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>LIVER</td>
<td>O</td>
</tr>
</tbody>
</table>

Fig. 1. Specimen history: (a) pancreas and kidney, (b) fat and liver.
These measured values of tissue attenuation exhibit considerable variability. At this stage in the experiments it was considered that little was to be gained by applying statistical analysis on the four or five readings taken although it is recognized that a mean and variance will be meaningful on readings from a higher number of points. Accordingly, the averaged or summarized data are presented in the form of band diagrams in figures 6 through 9. These bands were selected to follow the data with no more than 10 percent of the points falling outside of the band.

4. Data Acquisition

The response of the system was recorded with attenuations of 0, 5, 10, 15, 20, 25, and 30 dB switched into the system. The response with the specimen between the transducers was then recorded on the same polaroid film. Since the sweep of the spectrum analyzer only covers a 5.5 MHz range in the present equipment, it was necessary to take the data in two parts. As a check, readings taken from both spectra are reported in the range of overlap, which is 4.5 to 5.5 MHz. If only one reading is reported at a given loca-
Fig. 3. Attenuation versus frequency for hog kidney: (a) 3 hours post-mortem (fresh), (b) 5 days post-mortem (fresh), (c) 4 hours post-mortem (fixed), (d) 5 days post-mortem (fixed).

5. Measurements

Figure 2 shows the plot of attenuation versus frequency for hog pancreas under four conditions; (a) six hours post-mortem (fresh), (b) five days post-mortem (fresh), (c) fixed five hours post-mortem, and (d) fixed five days post-mortem.

Storage of the fresh tissue at 5 °C results in a decreased attenuation particularly at the higher frequencies. These data do not seem conclusive, however, since figure 2(b) shows a bimodal distribution of readings. The organ lacks rigidity and so accurate placement and replacement of the
Fig. 4. Attenuation versus frequency for hog backfat: (a) 1 day post-mortem (fresh), (b) 6 days post-mortem (fresh), (c) 1 day post-mortem (fixed), (d) 6 days post-mortem (fixed).

Transducers on these specimens is very difficult. In addition, the pancreas contains lobules of glandular tissue on the order of 1 cm, interspersed with fat. It is therefore considered that the wide spread in data can be accounted for by the lack of rigidity and the inhomogeneity of the specimen. Figure 6 shows the bands of attenuation versus frequency for the fresh specimens under two conditions; six hours and five days post-mortem.

The measurements on fresh and fixed kidneys are shown in figure 3 and the corresponding bands of attenuation are given in figure 7. For the fresh specimens, storage of the tissue at 5 °C for five days has resulted in a decrease in attenuation, especially at the higher frequencies. Measurements taken 48 hours post-mortem (not reported here) lie between the two values. This decrease is just sufficient to separate the band curves. The attenuation of fixed tissue is above that of the tissue just post-mortem.

Figures 4 and 8 made on hog fat show that there is little effect of aging on the attenuation characteristics. Little significance can be placed on the differences at low frequencies shown in figure 8 since the attenuation is only of the order of
the uncertainties in the measurements. Fixing the specimens gives a slightly higher attenuation. There is considerable difference between this fat and typical fat found in human studies so that these data should be applied with caution. Hog fat is white and of a uniform texture whereas human fat is yellow and has a lobular structure with connective tissue interspersed.

Figures 5 and 9 show the data for hog liver. Here the storage of a fresh specimen results in a lower attenuation over a five-day period. The fixed specimens show increased attenuation. The data bands are fairly narrow probably because of the homogeneity of the tissue at the resolution level studied.

These tissue specimens were stored at 5 °C and heated to the measurement temperature of 37 °C over about a one-hour period. Following this procedure, each specimen was returned to the refrigerator for storage until the next measurement was made or until the specimen was fixed. For comparison, some specimens were held undisturbed at 5 °C until a single measurement was taken. No significant difference in attenuation could be seen between the two groups.
Fig. 6. Attenuation versus frequency data bands for hog pancreas: 6 hours and 5 days post-mortem (fresh).

Fig. 7. Attenuation versus frequency data bands for hog kidney: 3 hours and 5 days post-mortem (fresh).

Fig. 8. Attenuation versus frequency data bands for hog backfat: 1 day and 6 days post-mortem (fresh).

Fig. 9. Attenuation versus frequency data bands for hog liver: 5 hours and 5 days post-mortem (fresh).
6. Discussion

The accuracy of these measurements relies upon the internal sweep linearity of the spectrum analyzer to provide a constant time delay across the frequency band matching the constant transit time of the sound energy through the specimen. Slight non-linearities in the sweep were observed to give an error as high as 1 dB in the measured attenuation. Some indication of this error may be seen in the region between 4.5 and 5.5 MHz. In practice, two sets of data were taken; the lower half extended from 1.5 to 5.5 MHz and the upper part from 4.5 to 9.5 MHz. Small errors in the overlapping region are indicated by two values being plotted with the same symbol. In many cases identical values were obtained or the error was small. Since these measurements were taken, a new system has been built in which the sweeps of the transmitter and receiver are obtained from digitally programmed phase-coherent synthesizers. This will insure that the system is aligned over the entire frequency range of 1 to 10 MHz and will materially improve the quality of the data.

Acknowledgment

This paper presents the results of one phase of research conducted at the Jet Propulsion Laboratory, California Institute of Technology for the National Science Foundation, by agreement with the National Aeronautics and Space Administration.

References


CHAPTER 4

SCATTERING AND ATTENUATION
Clinical Spectrum Analysis Techniques for Tissue Characterization

Frederic L. Lizzi and Marek E. Elbaum

Riverside Research Institute
80 West End Avenue
New York, New York 10023, U.S.A.

A spectrum analysis system is being used in a clinical measurement program to examine the reflectance characteristics of intraocular structures. The on-line system computes power spectra descriptive of echoes returned from well-defined tissue segments chosen by the examiner. Clinical data are digitized for subsequent post-processing and cataloguing. This paper presents an overview of the theoretical analysis used to formulate system design and to guide data interpretation. The analysis accounts, for stochastic tissue architectures and treats the specific illumination conditions employed in the system. The paper also discusses system parameters as related to observable tissue characteristics and presents typical test data and clinical spectra for several pathologic conditions.

Keywords: Clinical ultrasound; ocular tumor; power spectra; Rayleigh scattering; ultrasonic spectrum analysis.

1. Introduction

Within the past few years, a variety of advanced techniques have been employed to measure the ultrasonic properties of soft-tissue structures [1-3]. This paper describes a clinical spectrum analysis technique [4] which has been used to measure the frequency-domain characteristics of ultrasonic backscatter from tissues of the eye and orbit. The technique employs a clinical, on-line system together with computer post-processing and data cataloguing. Following laboratory verification, an extensive series of clinical measurements has been carried out. The in vivo spectral data base is now being evaluated in terms of potential diagnostic significance and is also being employed in analytic modeling of tissue reflectance.

The spectrum analysis techniques have been designed to accommodate the stochastic nature of clinically relevant tissue structures, such as ocular tumors and vitreous hemorrhages. These structures exhibit randomness in terms of the size, orientation, and/or spatial position of their constituent internal scattering centers. Single reflectance measurements made on such stochastic entities exhibit a significant degree of statistical fluctuation which can preclude the reliable identification of pertinent tissue characteristics. Accordingly, the spectrum analysis techniques described below incorporate on-line ensemble averaging: the resulting power spectra determinations constitute statistically stable descriptors of tissue properties. In addition, compensatory procedures are employed to account for extraneous spectral weighting introduced by the transfer functions of transducers and electronic subsystems.

The spectral techniques can ultimately be employed clinically to examine organs other than the eye. However, their in vivo application is now practicable in ocular examinations since the media of the eye do not present additional constraints found in other organs. If transmission through the ocular lens is avoided [5], acoustic attenuation and refraction do not present significant obstacles in viewing intra-ocular structures at center frequencies higher than 10 MHz. The large bandwidths that can be realized at these high frequencies permit spectral sensitivity to morphological features whose scale sizes are significantly less than 0.5 mm. In addition, the narrow beam-widths (e.g., 0.3 mm) available at these center frequencies provide precise spatial definition of tissue segments to be analyzed and permit meaningful ensemble averaging, even within small tissue volumes.

To date well over 200 clinically derived spectra of normal and abnormal structures have been acquired, processed, and catalogued in disease-indexed digital files. Previous publications have discussed the operation of the spectrum analysis system and presented clinical findings [6,7]. This paper first outlines the analytic framework which has guided system design, clinical operation, and data interpretation. It then describes system operation emphasizing the relations between system performance parameters and observable tissue characteristics. Lastly, it presents representative test results for comparison with clinical data obtained for several ocular pathologies.

2. Outline of Analytic Framework

The clinical deployment of the spectrum analysis techniques employed in the present system has been
guided by an analysis which accounts for both the
stochastic nature of tissue architectures and the
group velocity and temporal spectrum of the ultrasonic
illumination beam. This analysis is presented in
outline form to facilitate discussions in follow-
ing sections. (A more comprehensive treatment will
be presented elsewhere [8].)

The analysis is discussed, first, in terms of
its general formulation which accounts for the use
of focused illumination conditions. Second, tis-
sue architectures which are statistically station-
ary are discussed. Lastly, attention is given to
tissues which can be modelled as randomly distrib-
ed Rayleigh scatterers.

A. Basic Formulation

The geometry involved in the analysis is shown
in figure 1. A focused transducer emits a short,
broadband ultrasonic pressure pulse. Radio fre-
cuency echo signals received from scatterers within
a range-gated segment (0-L) are subjected to spec-
trum analysis. The range gate is positioned within
the focal volume of the transducer and its time
duration is chosen to be much larger than the dura-
tion of echoes from a single scatterer. The trans-
mission characteristics of all intervening struc-
tures are assumed to be statistically homogeneous
and to result in negligible attenuation.

![Diagram of Transducer and Gated Segment](image)

Fig. 1. Geometry for spectrum analysis measurements.

The received signals are analyzed in the fre-
cuency domain. The classic results obtained by
O'Neil [9] are applicable for the weakly focused transducers used in this program. These results
show that, at a point Q in the focal zone, the inci-
dent wave is essentially planar and its pressure
amplitude is given by

\[ p'(\omega) = kA P(\omega) e^{-jkr} \frac{1}{2\pi r} \]  

(1)

where \( k = \omega/c \) is the wave number; \( \omega \) and \( c \) are
radian temporal frequency and propagation velocity,
respectively; \( P(\omega) \) is the pressure amplitude at the
transducer surface with area \( A \). The function
\( F(r,\theta) \) describes the beam pattern at a constant
range from the transducer and is equal to

\[ 2j(k \sin \theta)/(k \sin \theta) \]

where \( J_1(\theta) \) represents a Bessel function of the first kind and first order with argument \( \theta \).

It is useful to simplify this expression at the
outset. By virtue of the narrow angular beam-
widths (e.g., 0.3 degree) and small fractional
range segments, \( L/R \), that are of interest, the
beam pattern over the gated segment can be ex-
pressed as a function of cross-sectional arguments
only: i.e., \( F(r) = F(y, z) \). Also, the range, \( r \),
can be replaced by \( R + x \). Thus, eq. (1) can be
rewritten as

\[ p'(\omega) = (j\omega A/c) P(\omega) e^{-j\omega R/c} e^{-j\omega R/c} F(y, z). \]  

(2)

The backscatter from the gated tissue volume is
categorized in terms of a scattering function,
\( S(\omega; x, y, z) \). This function relates the amplitude
of the incident pressure at a point \( (x, y, z) \) within
the volume of interest to the strength of the back-
scattered spherical wave originating at that point.
The backscattered wave is sensed by the transducer
which responds to the spatial average of the pres-
sure distribution generated over its surface. The
spatially averaged pressure received from each
scattering element is proportional to \( F^2(y, z) \) and
is readily calculated by using the coordinate
system employed by O'Neil [9]. The total received
pressure is then obtained by integration over the
gated volume, \( v_m \)

\[ p_m(\omega) = B(\omega) \int S(\omega; x, y, z) F^2(\omega; y, z) e^{-j2\omega x/c} dx dy dz \]  

(3a)

where \( B(\omega) \) is

\[ B(\omega) = (j\omega A/c) P(\omega) e^{-j\omega R/c} (2\pi)^2 \]  

(3b)

and the sub-index \( m \) indicates the \( m \)-th measurement.

As a first approximation for many tissues of
interest, \( S(\omega; x, y, z) \) characterizes weak scatter-
ing of identical, randomly distributed, isotropic
scattering elements. Under these conditions it
is convenient to factor the scattering function
as follows

\[ S(\omega; x, y, z) = H(\omega) N(x, y, z) \]  

(4)

Here \( H(\omega) \) defines the reflectance characteristic
of a single scattering element while \( N(x, y, z) \)
describes their effective spatial concentration.
With eqs. (3) and (4), the total received pres-
sure in the \( m \)-th measurement can be written as a
Fourier transformation, with respect to axial range,
of the product of the gating function \( G(x) \) and
a function characterizing the weighted concentra-
tion of tissue elements; i.e.

\[ p_m(\omega) = B(\omega) H(\omega) \int G(x) \int N(x, y, z) F^2(y, z) dy dz e^{-j2\omega x/c} dx \]  

(5)

The function \( G(x) \) describes the length of the range
gate and the range-weighting function (e.g., Ham-
It is important to notice the stochastic nature of \( Q_m(\omega) \) resulting from the stochastic nature of the tissue concentration function, \( N(x,y,z) \). Qualitatively, for equal, but non-overlapping tissue volumes, \( p_m(\omega) \) can vary randomly from measurement to measurement, as different tissue realizations are illuminated with the ultrasonic beam. This stochastic process can be meaningfully characterized in terms of the power spectrum, \( p \), computed by forming an ensemble average of the modulus-square of \( p_m(\omega) \); i.e.,

\[
\hat{p} = \frac{1}{M} \sum_{m=1}^{M} |p_m(\omega)|^2
\]

\[
= |B(\omega)|^2 |H(\omega)|^2 M^{-1} \sum_{m=1}^{M} |Q_m(\omega)|^2
\]  

In the present technique, the ensemble average is computed from a series of observations of \( |p_m(\omega)|^2 \) taken along adjacent, non-overlapping beam headings within the examined tissue. The resulting function \( p \) then constitutes an estimate of the "true" power spectrum, \( \langle p \rangle \). (The symbol \( \langle \cdot \rangle \) refers to ensemble averaging over all realizations of the structure of interest.)

The statistical fluctuations associated with estimates of \( \langle p \rangle \) are of significant practical importance. For tissues characterized by a Gaussian-distributed concentration function and a correlation volume much smaller than the sampling volume, \( V_m \), \( p_m(\omega) \) has a Gaussian distribution and \( |p_m(\omega)|^2 \) obeys Chi-square statistics. (Tissues which possess many independent scattering centers within \( V_m \) obey these statistics as well by virtue of the law of large numbers.) It follows from the properties of the Chi-square distribution that independent measurements of \( |p_m(\omega)|^2 \) exhibit significant variability; in fact, at any value of \( \omega \), the standard deviation, \( \sigma \), of such measurements is equal to their mean value, \( \langle p \rangle \). The relative fluctuations which persist after averaging \( M \) independent realizations of \( |p_m(\omega)|^2 \) can be assessed from the ratio

\[
\frac{\langle p \rangle \pm \sigma}{\langle p \rangle} = 1 \pm M^{-1/2}.
\]

In spectral measurements, this degree of fluctuation is evidenced at each value of \( \omega \) producing a statistical "ripple" of the above magnitude about the mean spectral shape. This result has been employed to select a value of \( M \) that is suitable for clinical measurements as discussed below.

B. Statistically Stationary Architectures

If the concentration function, \( N(x,y,z) \), is a weakly stationary process, then its autocorrelation function can be expressed as

\[
\langle N(x,y,z)N(x_1,y_1,z_1) \rangle = R_N(\Delta x,\Delta y,\Delta z)
\]

where \( \Delta x = x-x_1, \Delta y = y-y_1, \Delta z = z-z_1 \). For this case, substitution into eqs. (5) through (7) can be carried out with considerable simplification. The expected value of \( \hat{p} \), taken in the sense of an average over the ensemble of tissue realizations becomes

\[
\langle \hat{p} \rangle = \langle |p_m(\omega)|^2 \rangle
\]

\[
= |B(\omega)|^2 |H(\omega)|^2 \int \int \int R_G(|A_x|) R_F(|A_y|,|A_z|)
\]

\[
R_N(|A_x|,|A_y|,|A_z|) \times e^{-2|\omega|A_x/c} d(|A_x|) d(|A_y|) d(|A_z|)
\]

where \( R_G \) and \( R_F \) are the autocorrelation functions of the gate function, \( G \), and directivity function, \( F \), respectively.

For a limiting case that is of practical interest here, the correlation volume defined by the system-related functions \( R_G \) and \( R_F \) is much larger than that of the tissue function \( R_N \). Equation (10) can then be approximated as

\[
\langle \hat{p} \rangle \simeq |B(\omega)|^2 |H(\omega)|^2 R_N(0) R_F(0,0,0) T(\omega)
\]

where \( T(\omega) \) depends only on the tissue structure and is given by

\[
T(\omega) = \int \int \int R_N(|A_x|,|A_y|,|A_z|) d(|A_y|) d(|A_z|)
\]

\[
e^{-2|\omega|A_x/c} d(|A_x|).
\]

C. Spatial Distribution of Rayleigh Scatters

The above discussions are applicable directly to tissues which can be modelled as a set of randomly distributed, discrete Rayleigh scatterers: i.e., scatterers whose sizes are much smaller than the illumination wavelengths. We next treat the case where the number of Rayleigh scatterers within a unit volume is a Poisson process; i.e.,

\[
N(x,y,z) = \sum_{i=1}^{K} \delta(x-x_i) \delta(y-y_i) \delta(z-z_i)
\]

where \( \delta \) is the Dirac delta function and \( (x_i,y_i,z_i) \) are the random coordinates of the \( i \)th scatterer which are uniformly distributed over the inspected tissue volume. \( K \) is the number of scatterers per unit volume and obeys Poisson statistics with parameter \( \langle K \rangle \). It follows [10] that \( R_N \), the autocorrelation function of \( N \), is

\[
R_N = \langle K \rangle \delta(\Delta x) \delta(\Delta y) \delta(\Delta z) + \langle K \rangle^2
\]
Using eq. (14) for $R_N$ in eq. (10), one obtains

$$\langle \hat{p} \rangle = |B(\omega)|^2 |H(\omega)|^2 \left\{ \langle K > R_G(0) R_F(0,0) + \right.$$  

$$\left. \langle K >^2 G(\omega) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_F(\Delta y, \Delta z) d(\Delta y) d(\Delta z) \right\}$$

where $\hat{G}(\omega)$ is the Fourier transform of $R_G(\alpha)$.

The first term in eq. (15), proportional to the expected number of scatterers, is identified with non-coherent scattering. The second term, proportional to the square of the expected number of scatterers, is identified with coherent scattering. The relative contributions of both components to the total measurement vary with frequency. The non-coherent spectral component is distributed over the frequency domain, whereas the coherent component primarily contributes at zero frequency providing that the power spectrum $|G(\omega)|^2$ can be adequately approximated as a Dirac delta function at the frequency origin.

In practice, non-coherent spectra predominate in clinical observations. This occurs because spectral observations are carried out at high frequencies and a time-weighting function is used to suppress the side lobes of $|G(\omega)|^2$. These side lobes fall off at a rate which is more rapid than the $\omega^{-2}$ characteristic associated with a rectangular gating function.

Equation (15) can be used to address the topic of spectral normalization. The non-coherent term is proportional to $|H(\omega)|^2$ which for Rayleigh scatterers has an $\omega^4$ dependence. However, other system-related terms are also frequency-dependent. To account for these factors, spectral data are normalized using calibration spectra obtained from a flat, water-glass interface viewed at normal incidence and located at $R + L/2$. It can be shown that this normalization removes the system-related frequency dependence in the non-coherent component of eq. (15) and that the normalized spectrum is indeed proportional to $\omega^4$. Experimental results verifying this conclusion are presented in a subsequent section.

These results and those of preceding sections are applicable to a variety of tissue structures. However, all tissues of interest do not fall within simple categories and further analysis is warranted to treat more complex tissue structures and to investigate the most appropriate approaches to data normalization. Such analyses are being conducted as the clinical data base is expanded and histologic preparations become available.

3. Spectrum Analysis System

The spectrum analysis techniques described above have been implemented with an on-line clinical system. The system is integrated with a high-resolution A- and B-scan instrument which is employed routinely in ophthalmic examinations (fig. 2). The operation of the system is described elsewhere [6] and is only briefly summarized here. The tissue segment to be analyzed is selected by observing A- and B-scan displays in which the position of the moveable, system range gate is superimposed. These displays are also monitored to insure that the beam does not traverse the absorptive ocular lens and that the tissue segment to be analyzed lies within the transducer's focal zone.

After the range gate has been placed over the desired tissue segment, processing is initiated. First, the gated rf echo complex is multiplied by a time-weighting function to suppress spectral side lobes which would prevent accurate measurements of steeply rising or falling spectra. Then, the gated signals are applied to a scanning electronic spectrum analyzer which computes the desired spectrum comprised of 50 spectral elements occupying adjacent 300-KHz frequency bands.

An ensemble of these spectra are computed along 13 adjacent, non-overlapping beam headings and entered into an on-line averager. The spectral ensemble is obtained by executing a slow sector scan during which an optical encoder initiates a spectrum analysis computation each time the trans-

![Diagram](image)

**Fig. 2.** Configuration of spectrum analysis system.
Producer heading is incremented by one angular beam-width (0.3 degrees at 10 MHz). (In practice, 100 partly redundant spectra are averaged to improve electronic signal-to-noise ratios.) Averaged spectra are presented on a strip chart recorder which also displays frequency and amplitude calibration signals for use in subsequent processing.

After each examination session, calibration spectra are recorded from an optically flat glass plate situated at each of the ranges used in tissue measurements. The calibration spectra and tissue spectra are subsequently digitized and entered into a computer for spectral normalization, smoothing, regression analysis, and data cataloging.

Table 1 lists the salient system parameters which influence the detail with which tissue characteristics such as $|H(\omega)|^2$ and $T(\omega)$ can be examined. As discussed below, the frequency coverage, spectral resolution, and number of non-overlapping beam positions are of central importance in tissue studies.

<table>
<thead>
<tr>
<th>Frequency coverage</th>
<th>5 to 13 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral resolution</td>
<td>0.6 MHz</td>
</tr>
<tr>
<td>Gating function</td>
<td>0.3 MHz</td>
</tr>
<tr>
<td>Spectrum analyzer</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Gated range segment</td>
<td>4 mm</td>
</tr>
<tr>
<td>Lateral scan dimension</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Beam width (10 MHz)</td>
<td>30 to 35 dB</td>
</tr>
</tbody>
</table>

The frequency coverage achievable in spectral measurements has been found to approximate the 20-dB system bandwidth as defined by glass plate spectra. This coverage is nominally 5 to 13 MHz for a broadband transducer with a 10 MHz resonant frequency. Beyond this range, limited signal-to-noise ratios are encountered and spectral normalization can become incorrect. The available frequency coverage determines the spectral characteristics of tissue elements with specific scale sizes. Within the above frequency range, Rayleigh scattering is encountered for spherical elements whose diameters are less than 35 μm. As discussed below, membranes, or periodic features, with axial dimensions larger than 100 μm will produce periodic spectra with at least one spectral cycle displayed over the achievable 8 MHz coverage. In addition, tissue septa whose thicknesses are less than 30 μm will exhibit monotonically rising spectra.

Spectral resolution is determined by the 2-us gate duration and the weighting function. These variables have been chosen to achieve a 0.6 MHz resolution while the spectrum analyzer employs a 0.3 MHz filter bandwidth. The short gate duration corresponds to a 1.5 mm tissue depth permitting analysis within small ocular tumors and avoiding significant signal weighting due to attenuation within the gated echo complex.

The number of independent spectra which are ensemble averaged is an important factor in assessing the residual statistical fluctuation with estimations of mean spectral shape and amplitude. Usually, 13 spectra from non-overlapping beam positions are used to form the ensemble average. For the condition described with reference to eq. (8), a statistical spectral "ripple" of approximately ± 1 dB is expected. While spectral fluctuations are often confined within this range, there are situations where significantly larger excursions occur suggesting that the analyzed tissues exhibit relatively large correlation volumes. (Further analyses of these parameters in terms of the accuracies of spectral slope and attenuation estimations have been presented in a previous publication [7].)

4. Representative Results

Before clinical deployment, the performance of the spectrum analysis system and the applicability of the theoretical approach was verified on a number of test targets. One type of test target was a thin plastic membrane immersed in distilled water and viewed at normal incidence. For this target, $N(x,y,z)$ is proportional to $\delta(x-x_0) - \delta(x-x_0-0)$ where $D$ represents thickness and $x_0$ locates the proximal membrane surface. From eq. (5) and (7), the calculated power spectrum, is proportional to $\sin(2\pi f_0/c)$ so that spectral minima will occur at frequencies separated by an interval equal to $c/2D$. The observed spectrum, shown in figure 3, exhibits a scalloped shape in agreement with this result. The measured frequency interval between successive spectral minima is 3.6 MHz which corresponds to a calculated thickness of 360 μm. This value is within 5 percent of the measured membrane thickness.

Spectral data were also obtained for dilute solutions of plastic microspheres with 25 μm diameters. These dilute solutions ensure that single scattering from points is approximated over the spectral measurement band. Moreover, it is reasonable to assume that their spatial distribution forms a Poisson process since the random position of each scatterer should be independent and uniformly distributed within the analyzed volume. Accordingly, measured spectra should be described by eq. (15).

Figure 4 shows normalized spectra measured for two microsphere concentrations. The spectral curves agree very closely with the $\omega^4$ dependence expected from the normalized, non-coherent spectral component in eq. (15). In addition, a fourfold change in microsphere concentration was found to produce a proportional 6-dB change in spectral amplitude. This amplitude change is consistent with non-coherent scattering, in which received spectral power is proportional to the mean number of scattering particles.

Clinical measurements have been carried out on a wide variety of normal and diseased structures in the eye and orbit. In vivo data on more than 200 cases have been acquired and digitally cataloged as part of an on-going research effort. The following paragraphs review some of the observed spectral features which relate directly to cases treated in the preceding discussions of analytic and experimental results.
Detached retinas, observed prior to the development of gross degenerative processes, constitute thin membranes bounded, anteriorly, by vitreous humor and, posteriorly, by fluid exudate. Spectra obtained from these structures display a marked scalloped appearance similar to that seen for the plastic membrane (fig. 3). This fact is demonstrated in figure 5 which shows clinical spectra in decibels relative to a glass plate (dBr) obtained from three different cases of retinal detachments. Retinal thickness can be computed from the frequency repetition interval of these spectra. Using a nominal propagation velocity of 1.5 mm/μs for the retina, the computed values include
Fig. 5. Clinical spectra obtained for detached retina (3 cases). dBr units indicate dB levels with respect to glass plate spectra.

Fig. 6. Clinical spectra obtained for vitreous hemorrhages (9 cases). Spectral amplitudes have been off-set by indicated values.
trated cases are on the order of 190 μm and are consistent with expected retinal dimensions.

Vitreous hemorrhages have been studied extensively with the spectrum analysis system. In their unorganized state, these hemorrhages contain randomly placed aggregations of hemorrhagic debris dispersed in sections of the vitreous humor. Unorganized hemorrhages consistently produce spectra whose amplitudes increase markedly with increasing frequency as shown in figure 6. The rate of increase can sometimes be as rapid as the $f^4$ characteristic associated with Rayleigh scattering: this fact indicates scattering from a uniform distribution of elements that are smaller than 35 μm. Spectral amplitudes are typically -70 dB near 5 MHz: these very low levels can often be exceeded by returns from isolated specular reflectors or, in the extreme, by the system noise level. At higher frequencies, the spectral amplitudes produced by hemorrhagic debris are significantly larger and exceed these background levels.

Occasionally, other spectral shapes have been observed within an examined vitreous hemorrhage. They indicate a possible high-density packing or organization of the hemorrhagic debris. The presence of membranes has also been found to affect the observed spectral shape. For example, figure 7 shows the scalloped spectra received from a range-gated volume which contained both hemorrhagic debris and a thickened intravitreal membrane.

5. Conclusion

The analysis outlined in the preceding sections has proven extremely useful in designing the spectrum analysis system and in selecting system parameters, such as gate dimensions, for clinical application. It has also formed a constructive framework for interpreting in vivo data, especially for detached retinas, vitreous hemorrhages, and intra-vitreal dispersions of cholesterol aggregations.

The analysis is being extended to accommodate more complex tissue architectures. This effort is proceeding using clinically measured spectra and subsequent histologic preparations when available. Of particular interest are intra-ocular tumors such as malignant melanomas and metastatic carcinomas.

Other topics under investigation include the use of spectral data to estimate tissue attenuation characteristics. Presently, attenuation estimates are formed from ratios of power spectra measured at sequential range sites separated by ΔR. If the examined tissue architecture satisfies certain conditions (e.g., statistical homogeneity), then such ratios describe the attenuation experienced within ΔR. Spectral data indicate that this approach is appropriate for some tissues (e.g., orbital fat) but is not applicable to other tissues (e.g., heterogeneous tumors). In these latter cases, spectral ratios might serve as a useful index of statistical homogeneity.

As the clinical data base is expanded, these investigations can proceed toward the ultimate goal of applying spectrum analysis techniques to supplement conventional A- and B-scan ultrasonography.

Acknowledgments

The authors wish to acknowledge the collaboration of D. Jackson Coleman and Louise Franzen in the clinical aspects of this work. They also wish to thank Angel Rosado for his assistance in data processing.

Portions of this work were supported by Public Health Service Grants EY-01212-04 and EY-01218-04 from the National Eye Institute.

Fig. 7. Clinical spectrum obtained for a vitreous hemorrhage and associated intravitreal membrane.
References


TISSUE CHARACTERIZATION IN VIVO BY DIFFERENTIAL ATTENUATION MEASUREMENTS

Salavatore Lévi and José Keuwez
Ultrasound Lab and F.R.E.S.E.R.H., Hôpital Brugmann
Université Libre de Bruxelles, Brussels, Belgium

A practical ultrasonic method has been applied for the differentiation in vivo of pelvic tumors. This method has the advantage of being applicable during usual ultrasonic examination and does not require information about the tissues involved, nor the surrounding tissues.

The method is based upon the fact that the ultrasonic attenuation increases with frequency; the comparison of the echoes from the posterior and anterior boundaries of the tumor leads to a coefficient of differential attenuation. This coefficient has been determined in examinations of 95 gynecological patients; the organs and tumors explored were normal uteri, leiomyomas and ovarian cysts. The values of the coefficient of differential attenuation obtained for these three categories of tissue are sufficiently separated, which enables us to make a differentiation.

Key words: Characterization; differential attenuation; tumor; ultrasound.

1. Introduction

Ultrasound has been shown to be effective in the diagnosis of tumors and is generally capable of differentiating between solid and liquid components. The current acoustic methods, which have been applied for a number of years, give dependable results in 93 percent of the leiomyoma cases and in 84 percent of the cases involving ovarian cysts [1].

Ultrasound imaging has reached a high level of accuracy, especially with the application of "grey-scale" techniques. However, other aspects of diagnostic ultrasound have not yet reached their full potential. More precise information on the viscoelastic properties of tissues, especially those of tumors, should be the next step in research on diagnostic methods.

Quantitative studies should produce more meaningful numerical data regarding the various types of tumors investigated. Such data will be representative of the acoustical properties of the tissues and complete the subjective data produced by imaging.

One of the most important of these properties is the attenuation of sound. The loss in acoustic intensity in travelling through the biological tissues is caused mainly by absorption and scattering. These causes may be grouped under the term "attenuation". It is difficult to assess the individual contribution of these mechanisms (absorption, scattering, ...) and it is therefore quite preferable to confine oneself to examining attenuation as a whole.

The importance of the various mechanisms is dependent on the wave frequency; therefore the attenuation is a function of frequency. The attenuation is a characteristic of a tissue, but generally it is quite impossible to measure it in vivo without invasive techniques. We chose the determination of the variation of the attenuation with frequency as a basis for the differentiation of tissues [2-4]. A similar concept has been proposed by Kossoff [5,6], but no results have been published. For a good understanding, we envisioned a model similar to that published by Hill [7].

2. Model and Analysis

The following analysis is approximate and does not take into account various mechanisms which could be important. The objective of this analysis is to give an idea of the relation between the ultrasonic properties of tissues under investigation and the coefficient of differential attenuation which will be defined below.

Generally any mass consists of several layers of tissue which have their own properties: for example, the uterine fibroma in which a layer of normal muscle surrounds pathological tissues. The model (fig. 1) has been constructed in order to represent the different layers of the region under investigation and of the mass. Each layer is characterized by an acoustic absorption coefficient, and each interface by a back-scattering cross-section ($\alpha$). ($\alpha$ is used here to take account of all the mechanisms which contribute to the loss of energy at this interface.)

These layers are separated into two sets; $p$ layers between the transducer and the mass, the mass being constituted of $r - p = n$ layers. In each layer, one of the important mechanisms in

1 Figures in brackets indicate literature references at the end of this paper.

2 In this paper, the term "mass" will include the normal uterus, leiomyoma, and cyst.
which acoustic energy is degraded as heat by internal friction of viscosity is the absorption. This loss of acoustic energy follows the relation given by the equation:

$$A = A_0 \exp(-\alpha x)$$  \hspace{1cm} (1)

where \( \alpha \) is the amplitude absorption coefficient, \( A_0 \) and \( A \) are, respectively, the wave amplitude at some reference point and the amplitude at a further distance, \( x \), from that reference point.

Let us consider a sound wave propagating from the source \( S \) to the point \( R \) (fig. 1). The amplitude of that wave at \( R \) is given by

$$A(R,v) = A_0(v) \sigma(R,v) \exp(-\alpha_1(v) \delta_1)$$

$$\ldots \exp(-\alpha_r(v) \delta_r)$$  \hspace{1cm} (2)

where \( v \) is the wave frequency, \( \alpha_i \) and \( \delta_i \) are, respectively, the amplitude absorption coefficient and the thickness of the layer \( i \); \( \sigma(v) \) is a factor which describes the decrease of amplitude at the several interfaces. The amplitude, \( SA \), of the reflected wave coming from \( R \) on to the transducer is related as follows:

$$SA(R,v) = A_0(v) \sigma(R,v) \exp(-2 \sum_{i=1}^{r} \alpha_i \delta_i)$$  \hspace{1cm} (3)

If \((v_1, v_2)\) are two different frequencies, let us consider the ratio of the amplitudes \( SA(R,v_1) \) and \( SA(R,v_2) \); according to eq. (3), this ratio is given by the following equation:

$$\ln \frac{SA(P,v_1)}{SA(R,v_2)} = \ln \frac{A_0(v_1)}{A_0(v_2)} + \ln \frac{\sigma(R,v_1)}{\sigma(R,v_2)}$$

$$- 2 \sum_{i=1}^{r} (\alpha_i(v_1) - \alpha_i(v_2))$$  \hspace{1cm} (4)

Similarly, (see fig. 1)

$$\ln \frac{SA(P,v_1)}{SA(P,v_2)} = \ln \frac{A_0(v_1)}{A_0(v_2)} + \ln \frac{\sigma(P,v_1)}{\sigma(P,v_2)}$$

$$- 2 \sum_{i=1}^{p} (\alpha_i(v_1) - \alpha_i(v_2))$$  \hspace{1cm} (5)

Now we introduce \( J \) as the difference of eqs. (4) and (5).

$$J = \ln \frac{SA(R,v_1)}{SA(R,v_2)} - \ln \frac{SA(P,v_1)}{SA(P,v_2)}$$

$$J = \ln \frac{\sigma(R,v_1)}{\sigma(P,v_1)} - \ln \frac{\sigma(R,v_2)}{\sigma(P,v_2)}$$

$$- 2 \sum_{i=p+1}^{r} (\alpha_i(v_1) - \alpha_i(v_2)) \delta_i$$  \hspace{1cm} (6)

Equation (6) can be written in the following form:

$$\frac{J}{2d} = (\eta(v_1) - \eta(v_2)) - (\hat{\alpha}(v_1) - \hat{\alpha}(v_2))$$

$$= \Delta \eta - \Delta \hat{\alpha}$$

where

$$\sum_{i=p+1}^{r} \alpha_i \delta_i = \hat{\alpha} d$$ \hspace{1cm} (7)

$$\ln \frac{\sigma(R,v)}{\sigma(P,v)} = 2d \eta(v)$$  \hspace{1cm} (8)

Examining eq. (8), we see that \( J/2d \) depends only on the ultrasonic properties of the layers comprised between \( P \) and \( R \); \( J/2d \) is a characteristic of the mass and tells us about the variation of attenuation with frequency.

Let us remark that, for the calculation of the value of \( J \), we only need the knowledge of four amplitudes, and no information is required about the tissues involved nor the surrounding tissues.

3. Materials and Methods

We have defined eq. (6)

$$J = \ln \frac{SA(R,v_1)}{SA(R,v_2)} - \ln \frac{SA(P,v_1)}{SA(P,v_2)}$$

which is the basic equation for characterization based upon differential attenuation. For the calculation of \( J \) it is necessary to measure the amplitudes of the waves reflected by the anterior and posterior boundaries of the mass. This measurement must be performed at two frequencies \((v_1 \text{ and } v_2)\). Theoretically, it is possible to undertake these measurements with a single pulse [6], however, we have chosen to adapt eq. (10) by considering that these amplitudes are for waves generated by two relatively narrow band (0.5 MHz) transducers.

These amplitudes have been measured with the ultrasonic equipment "Kretz-Combison I" [2-4]. For each amplitude measurement, all the settings were identical except that of the master gain. This last one was adequately adjusted to obtain an amplitude of given level on the A-Scope for the echo of interest (I). The corresponding reading
L(I,v) (in dB) was used in the following equation based on eq. (12)

\[ \gamma = \frac{1}{2d} (L(R,v_1) - L(R,v_2) - (L(P,v_1) - L(P,v_2))) \] (13)

where \( d \) = dimension of the mass. We call \( \gamma \) the coefficient of differential attenuation. This attenuation coefficient has been determined in examining 95 gynecological patients. The masses under investigation were the normal uterus, leiomyoma and cyst. The nominal frequencies were 2 MHz and 4 MHz.

4. Results

At present, twelve cases have been labeled as normal uterus, and 34 other cases have been classified as leiomyoma or cyst after surgery. We plotted the values of the differential attenuation coefficient, \( \gamma \), versus the dimension, \( d \), of the mass (fig. 2). The plot shows that \( \gamma \) is not influenced by \( d \) and that the \( \gamma \) belonging to the three categories of tissues (normal uterus, leiomyoma and cyst) are quite characteristic. Some cysts have shown an abnormally high differential attenuation for masses with liquid content; we also obtained negative values for some cysts, however, this peculiarity has been reported and explained [8]. The values of \( \gamma \) for the normal uterus are higher than those obtained for the leiomyoma, which is in agreement with the ultrasonic properties of these tissues and with previous results [4]. The results of the statistical analysis are shown in Table 1.

![Fig. 2. Plot of the values of the differential attenuation coefficient, \( \gamma \), versus the dimension, \( d \), of the mass.](image)

<table>
<thead>
<tr>
<th>Organ</th>
<th>No.</th>
<th>Mean</th>
<th>( \gamma ) (dB/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal uterus</td>
<td>12</td>
<td>1.39</td>
<td>0.27</td>
</tr>
<tr>
<td>Leiomyoma</td>
<td>22</td>
<td>0.57</td>
<td>0.22</td>
</tr>
<tr>
<td>Cyst</td>
<td>10</td>
<td>0.13</td>
<td>0.20</td>
</tr>
</tbody>
</table>

The absolute values are not interesting by themselves because \( \gamma \) is also depending on the instrumentation.

5. Comments and Discussion

If in vitro it is possible to imagine transmission methods, it is more difficult in vivo where generally only reflections methods are applicable. Unfortunately, it is not enough to know the amplitude of the reflected signals to tell something about the tissues involved. It is also necessary to know the properties and the orientation of the interfaces which have partially reflected the sound waves.

When working in vitro, the samples can generally be chosen, cut and positioned as desired. In vivo, many constraints have to be taken into account. Theoretically our method avoids some of them; for instance no information concerning the surrounding tissues is required. However, difficulties due to the orientation of the interfaces remain. Sometimes it was difficult to obtain a posterior echo because of the orientation of the tumor with respect to the abdominal wall. The orientation is also affected by the cardiac respiration movements. Besides the difficulties of measurement, one should be aware that the refraction properties are frequency dependent. This could cause important differences in amplitude when using two frequencies \( v_1 \) and \( v_2 \) at oblique incidence. The dispersion of our results can in part be explained by this last discussion as well as by considering effects due to the beam geometry.

We characterized our transducers [4]; however this characterization was made in a nonattenuating medium (water). In our experiments the sound was propagating into an inhomogeneous and attenuating medium (for instance the abdominal wall) which could strongly influence the beam geometry. Therefore it is illustrous to pursue this discussion based on our transducer characterization. However one must be aware that the beam geometry can dominate the results. That is probably the reason we did not obtain coherent results when working with other transducers. This method, as it is applied, considerably extends the duration of the examination, which is generally performed with a full bladder. Under these circumstances it is difficult for the patient to lie still. Technical improvements are necessary.

6. Conclusion

The characterization of tissues based upon the variation of attenuation with frequency seems to be suitable and helpful in cases where scans alone do not permit an accurate diagnosis. However, we would like to emphasize that it was not always possible to determine the coefficient of differential attenuation, for several reasons developed
in the previous paragraph. The results reported in this paper are those obtained for frequencies of 4 and 2 MHz; however, we also determined this coefficient for frequencies of 2 and 1 MHz. The results obtained in this last case were incoherent and the overlap between the three categories of tumors investigated was important.

The various inconveniences described above should be resolved by a better choice of transducers and the way of determining the various amplitudes required for the computation of the coefficient of differential attenuation.

Acknowledgments

We wish to thank Professor R. C. Eggleton (Indianapolis Center for Advanced Research, Indianapolis, Indiana) for helpful suggestions in preparing this paper, and Mrs. J. Drake for her secretarial assistance.

References


STATISTICAL ESTIMATION OF THE ACOUSTIC ATTENUATION COEFFICIENT SLOPE
FOR LIVER TISSUE FROM REFLECTED ULTRASONIC SIGNALS

Roman Kuc,1,2 Mischa Schwartz,1 Nathaniel Finby,2 and Frank Dain2

1Department of Electrical Engineering and Computer Science
Columbia University
New York, New York 10027, U.S.A.
2Department of Radiology
St. Luke's Hospital Center
New York, New York 10027, U.S.A.

The acoustic attenuation coefficient measured in dB/cm is known to increase linearly with frequency for liver tissue. The slope of this linear function, denoted by \( \beta \), has been shown by other investigators to be an indicator of tissue state. \( \beta \) is usually measured from the change in the log spectrum experienced by an acoustic pulse when it is transmitted through the tissue. This paper presents research in estimating \( \beta \) from the reflected signals which are currently used in the clinical environment to generate diagnostic images. The reflected signals from internal tissue structures (in liver - the vascular and biliary systems) are distorted by the irregular reflector shapes. By modeling the roughness of the typical acoustic reflector, the distribution of the received spectra can be derived and the 95 percent confidence limits for the measured \( \beta \) can be calculated. The confidence limits are presented in terms of the tissue size and average reflector density. Experimental results using the reflected signals from in vitro refrigerated and formalin-fixed liver sections are presented.

Key words: Computer processing; estimation theory; liver attenuation; spectral analysis; statistical modeling; ultrasonic tissue characterization.

1. Introduction

As an acoustic pulse propagates through liver tissue it experiences a frequency dependent attenuation. Pauly and Schwan [1] observed that the acoustic attenuation was a linear function of frequency and postulated that this behavior was primarily the result of macromolecular relaxation processes. Lele et al. [2] confirmed the linear frequency dependence of the acoustic attenuation and in addition experimentally demonstrated that the slope of the linear dependence increased for necrotized tissue. Lele's experiments were performed by transmitting an acoustic pulse of known shape through a thin liver section and observing the change in the log power spectrum as the pulse propagated through the tissue. In this paper we discuss our work in estimating the slope of the linear frequency dependent attenuation, which we denote by the coefficient \( \beta \), from the reflected acoustic signals, typical of those currently used in the clinical environment to generate the acoustic images.

The reflections observed from liver tissue are caused primarily by the vascular and biliary sys-

1Figures in brackets indicate literature references at the end of this paper.
The average values of $\beta$ that we obtained for in vitro refrigerated and fixed liver specimens are shown in figure 1. These values agree with those found by other researchers [1,2]. The transmission technique works well when thin, parallel cut sections of tissue are used. When large heterogeneous tissue specimens, or tissue specimens which have irregular shapes are used, the propagating pulse becomes distorted producing artifacts in the measurements [3,4].

We will extend this technique of measuring $\beta$ to signals reflected from tissue structures by subtracting the log spectra of signals from two reflectors within the tissue. But because of the distortion to the spectra caused by the irregular reflectors the observed spectral difference will be a distorted linear function. The coefficient $\beta$ will be estimated by fitting a straight line to the spectral difference and dividing by the round-trip distance between the reflector locations. In order to find a suitable estimation technique and the confidence intervals for the resulting estimate we will derive the distribution of the distortion to the log spectrum in the next section.

3. Reflector Model

We propose to model the irregular reflector as a random linear filter with an impulse response, denoted by $r(n)$ for $n = 1, 2, \ldots, KT_g$, which is a sample function from a zero mean, white Gaussian process. The probability density function ($p$) of $r(n)$ is then given by

$$p(r(n)) = \frac{1}{\sqrt{2\pi} \sigma_r} \exp\left(\frac{-r^2(n)}{2\sigma_r^2}\right)$$

(2)

For a white Gaussian process, the values of $r(n)$ and $r(m)$ for sampling times $n \neq m$ are independent. This appears to be a reasonable assumption in this work, considering the irregularity of the reflecting vascular structures [5]. This is verified by the experimental results to be described later.

If $S_x(f)$ is the power spectrum of the acoustic pulse incident to the reflector having the impulse response $r(n)$, then the power spectrum of the reflected signal, $S_R(f)$, can be written as

$$S_R(f) = |R(f)|^2 S_x(f)$$

(3)

where $|R(f)|^2$ is the power transfer function of the reflector [6].

We will estimate $\beta$ from the log spectral difference. The logarithm (in units of dB) of eq. (3) is equal to

$$10 \log S_R(f) = 10 \log S_x(f) + 10 \log |R(f)|^2$$

(4)

$$= 10 \log S_x(f) + n(f).$$

(5)

The last equation indicates that the effect of an irregular reflector is an additive distortion to the log spectrum of the incident pulse at the reflector location. Furthermore, since the reflector impulse response is assumed to be zero mean, white Gaussian, it can be shown [6] that the random variables

$$C_i = |R(f_i)|^2$$

(6)
are mutually independent and have an exponential distribution (the chi-square distribution with two degrees of freedom), at frequencies $f_i$ which are separated by the fundamental frequency, $F = \frac{1}{T_s}$.

Since we are seeking the distribution of the distortion in the log spectral domain (in dB) we set

$$n_i = 10 \log \left| R(f_i) \right|^2$$

(7)

Using the relation for the pdf of a transformed random variable [7,8] the pdf of the distortion to the log spectrum $n_i$ is found to be equal to

$$p(n_i) = \frac{1}{4.34 \sigma_r^2 r_s} \exp \left[ \frac{n_i}{4.34} - \frac{n_i^2}{2 \sigma_r^2 r_s} \right]$$

(8)

for $\infty < n_i < \infty$. This distribution is shown in figure 2a.

If we let $h = 10^\sigma_T T_s$, then $\sigma_T^2 T_s = e^h$. Eq. (8) can then be written

$$p(n_i) = \frac{1}{4.34} \exp \left[ \frac{n_i}{4.34} + h - e^{-n_i} \right]$$

(9)

This last result shows that the effect of the variance of the reflector impulse response $\sigma_T^2$ on the distribution of the log spectral distortion is only a shift by an amount $h$.

We shall now describe the technique we have developed to partition the total reflected signal from a liver tissue into segments which are used for calculating the sample spectra of the returns from the irregular reflectors.

4. Processing of Reflected Data

An acoustic pulse having an arbitrary power spectrum $S_x(f)$ propagates into a tissue medium and reflections due to changes in tissue acoustic impedance are detected by the transducer. A typical reflected signal denoted by $y(n)$, is shown in figure 3. The envelope of $y(n)$ is calculated by rectifying the sample values and low pass filtering with a digital nonrecursive filter. The envelope is observed to contain a series of $N$ maxima which have random amplitudes and occurrence times. We assume that the occurrence of a maximum, or peak, in the reflected signal envelope indicates the presence of an irregular reflector. This is the same assumption used in the equipment producing sonograms in the clinical environment. The time series is divided into $N$ nonoverlapping data segments corresponding to the signals returned from the individual reflectors.

The shape of the reflected signal envelope suggests a way of segmenting the reflected data. For our reflected signal analysis the data was segmented about the peaks in the envelope using the locations of the adjacent minima to delimit the segment. Each segment is then assumed to represent the return from an irregular reflector, with the position of the envelope peak in the total reflected signal defined as the reflector location within the tissue. This procedure produces a set of nonoverlapping data segments which are assumed to be statistically independent.

The data segment corresponding to the $k$th reflector will be denoted by $y_k(n)$, $n = 1, 2, ..., M_k T_s$. The sample power spectrum, denoted by $S_k(f)$, is calculated from $y_k(n)$ by using the squares of the cosine and sine transforms given by

$$S_k(f) = \frac{T_s}{M_k} \left[ \sum_{n=1}^{M_k T_s} y(n) \cos 2\pi n f \right]^2$$

$$+ \left( \sum_{n=1}^{M_k T_s} y(n) \sin 2\pi n f \right)^2$$

(10)
Because of the symmetry of the power spectrum it suffices to consider the positive frequencies only. In a manner similar to the transmission experiment we will calculate the differences between the sample spectra to estimate the value for \( \beta \). For \( N \) segments there are \( N/2 \) independent spectral differences as shown in Figure 3. From each observed spectral difference we will estimate a value for \( \beta \), denoted by \( \beta_k \) for the \( k \)th spectral difference. The estimate for \( \beta \) using the entire reflected signal will be taken as the average of these individual estimates. A technique for pairing the segments to minimize the estimator variance will be discussed later.

The power spectrum of the incident pulse has significant energy only in a band of frequencies, from \( f_L \) (for lower) to \( f_U \) (for upper). It is in this usable range that the log power spectral difference given in eq. (1) will be approximately linear. Outside this range noise effects cause random deviations. The set of frequencies \( f_i \) separated by the fundamental frequency spacing are confined to be within this usable range, i.e.,

\[
f_i \in [f_L, f_U]
\]

In the analysis we shall assume that there are \( m \) frequencies within the usable range, with \( f_1 \) defined as the smallest.

5. Distribution of the Log Spectral Difference

Now let us consider the log spectral difference between the returns from two irregular reflectors, \( \varepsilon \) and \( j \) \((\varepsilon < j)\), separated by a distance \( d_{\varepsilon j} \). If the corresponding power spectra of the reflected signals are denoted by \( S_{\varepsilon}(f) \) and \( S_j(f) \), then their log spectral difference in \( \text{dB} \) at the harmonic frequencies is equal to

\[
z_i = 10 \log S_{\varepsilon}^k(f_i) - 10 \log S_j^k(f_i)
= 10 \log S_{\varepsilon}^k(f_i) - 10 \log S_j^k(f_i)
+ n_{\varepsilon}(f_i) - n_j(f_i)
\]

for \( i = 1, 2, \ldots, m \)

where \( S_{\varepsilon}^k(f) \), \( k = \varepsilon, j \), is the power spectrum of the propagating pulse at the \( k \)th reflector. For a tissue with a linearly increasing attenuation with frequency, the difference between the propagating pulse log spectra is the same as the transmission experiment results given in eq. (1). In our case, it is equal to

\[
10 \log S_{\varepsilon}^k(f_i) - 10 \log S_j^k(f_i) = 2d_{\varepsilon j} f_i
\]

for \( i = 1, 2, \ldots, m \).

If the difference of the spectral distortions at the harmonic frequencies is defined as

\[
e_{\varepsilon j} = n_{\varepsilon}(f_i) - n_j(f_i) = n_{\varepsilon, i} - n_{j, i}
\]

then eq. (12) can be written as

\[
z_i = 2d_{\varepsilon j} f_i + e_{\varepsilon j}
\]

for \( i = 1, 2, \ldots, m \).

In words, this last result states that the log spectral difference between two reflected signals at the harmonic frequencies is a distorted linear function of frequency with a slope equal to the value of \( \beta \), the coefficient to be estimated, and the round-trip distance between the reflectors.

Fig. 3. Probability density functions. With the rough boundaries modeled as linear filters with random zero-mean Gaussian impulse responses, the values of the power spectrum at the harmonic frequencies are independent and distributed as the function shown in (a). The values of the power spectral difference at the harmonic frequencies are also independent and distributed as the function shown in (b).
The distortion enters as an additive noise term. Since \( e_i \) is the difference of random variables which are independent and identically distributed (iid) at the harmonic frequencies, \( e_i \) is also iid and the variances are equal at the harmonic frequencies. Therefore, we can drop the \( i \) subscript and denote the variance by \( \sigma_e^2 \). We can show that \( \sigma_e^2 \) is independent of the individual reflector variances and is equal to 62 (dB)\(^2\) [7]. Therefore, the distortions to the straight line calculated by using the log spectra from any two reflectors will have the same variance as the reflectors are spaced farther apart (larger \( d_{ij} \)) the slope of the log spectral difference will increase. But since the statistical roughness is assumed to be constant for all reflectors, the distortions should remain the same. We shall use this fact later in how we pair segments to calculate the spectral difference.

Since the attenuation coefficient \( \beta \) affects only the slope in eq. (15), the mean value of the distortion \( e_i \) can be eliminated by translating the axes. This can be accomplished by defining new variables \( Z_i = z_i - \bar{z} \) and \( F_i = f_i - \bar{f} \) where

\[
\bar{z} = \frac{1}{m} \sum_{i=1}^{m} z_i
\]  
(16a)

and

\[
\bar{f} = \frac{1}{m} \sum_{i=1}^{m} f_i
\]  
(16b)

The statistical model with zero mean distortion and centered frequency axis can be written as

\[
Z_i = 2\beta d_{kj} F_i + \phi_i
\]  
(17)

for \( i = 1, 2, ..., m \).

The pdf of the additive noise term \( \phi_i \) with zero mean can be shown [7] to be equal to

\[
p(\phi_i) = \frac{1}{4.34} \left( \frac{1}{e^{\phi_i / 8.68} + e^{-\phi_i / 8.68}} \right)
\]  
(18)

We plot \( p(\phi_i) \) in figure 2b. For comparison we also show the Gaussian pdf having mean 0 and variance \( \sigma_e^2 \) in dashed lines. Because of their similarity, we will approximate \( \phi_i \) by a Gaussian random variable having mean 0 and variance \( \sigma_e^2 \), i.e.,

\[
p(\phi_i) = \frac{1}{\sqrt{2\pi} \sigma_e} e^{-\phi_i^2 / 2\sigma_e^2}
\]  
(19)

The statistical model given by eq. (17) describes the log spectral difference between 2 reflectors separated by distance \( d_{kj} \). The entire reflected signal contains \( N \) segments from which we can calculate \( N/2 \) independent log spectral differences. We will show later that depending on how the segments are paired it may be desirable to use \( N' \) differences from which to estimate \( \beta \), where \( N' \leq N/2 \). The statistical model using the entire reflected signal can be written

\[
Z_{ik} = 2\beta d_{kj} F_i + \phi_{ik}
\]  
(20)

for \( i = 1, 2, ..., m \) \( k = 1, 2, ..., N' \leq N/2 \)

where \( Z_{ik} \) is the observed value of the \( k \)th log spectral difference (after the mean value is subtracted) at frequency \( F_i \) using signals from reflectors spaced \( d_k \) apart.

6. Derivation of Maximum Likelihood Estimator for \( \beta \)

The results of the previous section indicated that the additive distortions to the log spectral difference are closely approximated by independent and identically distributed Gaussian random variables with mean zero and variance \( \sigma_e^2 \).

Under these conditions the maximum likelihood estimate of \( \beta \), denoted by \( \hat{\beta}_{ML} \), is found to be equal to

\[
\hat{\beta}_{ML} = \frac{1}{d_{kj}^2} \frac{\sum_{k=1}^{N' \leq N/2} d_{kj}^2 k}{\sum_{k=1}^{N' \leq N/2} d_{kj}^2}
\]  
(21)

where

\[
\hat{\beta}_k = \frac{1}{d_{kj}^2} \frac{\sum_{i=1}^{m} Z_{ik} F_i}{\sum_{i=1}^{m} F_i^2}
\]  
(22)

is the maximum likelihood estimate of \( \beta \) using only the information in the \( k \)th spectral difference. It can be shown that this estimator is efficient, i.e., it has the smallest variance of any unbiased estimator [7]. The variance of the resulting estimator can be shown to be equal to

\[
\text{Var}[\hat{\beta}_{ML}] = \frac{\sigma_e^2}{4 \sum_{k=1}^{N' \leq N/2} d_{kj}^2 \sum_{i=1}^{m} F_i^2}
\]  
(23)

For notational convenience let us define \( S \) as

\[
S = \frac{\sigma_e^2}{\sum_{i=1}^{m} F_i^2}
\]  
(24)

The estimator variance given in eq. (21) can then be written as

\[
\text{Var}[\hat{\beta}_{ML}] = \frac{S}{4 \sum_{k=1}^{N' \leq N/2} d_{kj}^2}
\]  
(25)
We want to minimize the estimator variance by properly selecting the segments used in calculating the spectral difference. If adjacent peaks are chosen, all the dk's will be small and the variance will be large. Physically, this occurs because the acoustic attenuation doesn't affect the signal significantly for small tissue distances while the irregular boundary effects are large. If we take segments far apart so that the effect of acoustic attenuation is more apparent, the number of spectral differences N' becomes smaller. We will find the optimum separation by considering a simple tissue model.

For heuristic purposes let us consider a statistically homogeneous tissue L cm long and having a reflector density equal to l reflectors per cm. The average spacing between reflectors is 1/l and the average number of peaks in the reflected signal is N = lL. If the segments to be used in calculating the log spectral differences are chosen such that the distances between them are constant and equal to d = n/l, N/2 ≤ n ≤ N-1, the number of independent differences that can be formed is equal to N' = N-n. The minimum variance can be shown to occur for n = 2N/3. Then from eq. (25) we find the minimum variance to be

$$\text{Var}[\hat{\beta}_{\text{ED}}]_{\text{min}} = \frac{S}{16l^2N^2} \frac{27}{2} \mu^2$$

(26)

The ED denotes equal distance separations between reflectors. To relate this to tissue size we substitute N = lL to get

$$\text{Var}[\hat{\beta}_{\text{ED}}]_{\text{min}} = \frac{S}{27} \frac{1}{l^3}$$

(27)

Recalling that lL = N we can write eq. (27) as

$$\text{Var}[\hat{\beta}_{\text{ED}}]_{\text{min}} = \frac{S}{27} l^2N^2$$

(28)

This shows that in addition to decreasing as 1/N, the variance also decreases as 1/L^2. This demonstrates intuitively the result that for larger tissues, the acoustic attenuation becomes increasingly discernible relative to the boundary distortion.

7. Confidence Intervals for the Estimator

In the previous section we derived the variance of the ED estimator as a function of tissue size and reflector density. For Gaussian random variables, the 95 percent confidence interval is defined as an interval 1.96 times the square root of the variance about the estimate of the parameter. From eq. (27) the confidence interval width is given by

$$\left( \frac{c_1}{l^{1/2}L^{3/2}}, \frac{c_1}{l^{1/2}L^{3/2}} \right)$$

(29)

with c1 = \sqrt{27/16} S. For a given reflector density u the confidence intervals will indicate the tissue size required for a desired estimator resolution.

We will now present some experimental results using refrigerated and formalin-fixed liver tissue specimens.

8. Experimental Results

A 2.0 MHz transducer was used to obtain data from in vitro refrigerated and fixed liver specimens. The thickness of the refrigerated liver was 6.7 cm. After 1 month of formalin-fixation the tissue size was 7.5 cm. From transmission tests the average values of \( \beta \) were observed to be equal to 0.63 dB/cm-MHz for refrigerated liver and 1.20 dB/cm-MHz for formalin-fixed liver. These values agree favorably with those observed for refrigerated liver by Pauli and Schwan [1] and for formalin-fixed liver by Lele [2]. The usable bandwidth was determined from the transmission experiments to be 1.5 to 2.4 MHz. The envelope of the reflected signal was calculated by using a 15 point lowpass filter with a Gaussian shape truncated at ± 3 \( \sigma \). This particular filter was chosen because its impulse response matched the envelope of the incident pulse. With this filter the average density of peaks, u, in the reflected signal envelope was observed to be equal to 7. The data were partitioned into non-overlapping segments delimited by the locations of the envelope minima. The same power spectrum was calculated for each segment by using eq. (10). The coefficient \( \beta \) was estimated from the difference of spectra separated by a distance approximately equal to 2L/3, where L is the total size of the tissue.

In the above analysis we were concerned with the estimator performance as a function of tissue size. In order to verify the predicted performance of the confidence intervals with respect to tissue size, small tissue sizes were simulated by taking the equivalent amount of data from the total signal reflected from the liver, starting at the beginning of the record. The results then indicate the experimental performance of the estimator as the tissue size is increased. The confidence intervals, instead of being taken about the estimated value, for purposes of comparing the results of different runs, are taken about the average values of \( \beta \) observed from the transmission experiments.

With the 15 point filter the average segment size was 18 samples at \( T_s = 0.1 \) us, producing a fundamental frequency equal to 0.6 MHz. Two independent values per spectrum, located at 1.5 (F1 = -.3) and 2.1 (F2 = +.3) MHz were used. From eq. (24) the resulting value for \( S \) is 345. For \( n = 7 \) the variance given by eq. (27) is equal to

$$\text{Var}[\hat{\beta}_{\text{ED}}] = \frac{83}{L^4}$$

(30)

From eq. (29) the resulting 95 percent confidence intervals are given by

$$CI = \left( \hat{\beta} - \frac{18}{L^{3/2}}, \hat{\beta} + \frac{18}{L^{3/2}} \right)$$

(31)

The ED estimates as a function of tissue size for 4 independent (nonoverlapping) runs, denoted
by R1 through R4, through refrigerated liver are shown in figure 4. The 95 percent confidence intervals are indicated. From the figure it is noted that the confidence intervals are a reasonable prediction of the estimator performance: wider variations and extreme values are found at the smaller tissue sizes with the variations decreasing as the tissue size increases. The confidence intervals are rather wide indicating that large tissue sizes are required to determine $\hat{\beta}$ accurately with this technique.

The estimates for 6 independent runs, F1 to F6, through fixed liver are shown in figure 5. The confidence intervals are centered about the average value of $\hat{\beta}$ observed for fixed liver. Again the confidence intervals reasonably predict the observed performance.

The averages of the independent runs for refrigerated and fixed livers are shown in figure 6. The confidence intervals have been reduced to account for the averages of independent values (by $1/2$ for refrigerated liver, by $1/6$ for fixed liver). Here again the confidence intervals are consistent with the observed results. Even for the averaged estimates the reduced confidence intervals are still overlapped at 8 cm. Even though the experimental results shown here differ noticeably for refrigerated and fixed liver, the fixed liver estimates are close to the upper confidence interval predicted for refrigerated liver.

9. Conclusion

The first order model of the irregular reflector presented in this paper offers a reasonable description of the actual results obtained from refrigerated and fixed liver samples. The resulting confidence intervals, however, are wide and overlap significantly indicating that a large amount of data is required for a reasonable estimator resolution. The spread in the estimates predicted by the confidence intervals are due to the wide variations possible in the reflected signal power spectrum caused by the white Gaussian impulse response model of the irregular reflector. To decrease the confidence intervals, and hopefully the resulting experimental estimates, a more accurate model of the typical reflector is required. In the reflector model assumed here we have ignored possible deterministic reflections and have assumed the reflector effects to be completely random. We plan to study an improved model, combining both deterministic and random effects, for which better estimation techniques can be derived to produce more accurate estimates from smaller tissue samples.
Fig. 6. Comparison averaged \( \hat{\beta} \) estimates for refrigerated and fixed livers. The respective confidence intervals are indicated about the values observed in transmission experiments. The averages of the 4 refrigerated liver runs and 6 formalin-fixed liver runs indicate a separation in their values.

Acknowledgment

This research was made possible by the loan of the fast analog-to-digital converter and paper tape unit by the Picker Corporation.

References


CHAPTER 5
SCATTERING
AN ULTRASONIC TISSUE SIGNATURE FOR THE LUNG SURFACE

Theodore L. Rhine
Massachusetts Institute of Technology and Massachusetts General Hospital
Cambridge, Massachusetts 02139, U.S.A.

The normal lung surface is modeled as a statistically rough surface composed of the air-containing alveolar sacs at the periphery. The ultrasonic reflection (scatter) from the rough surface is analyzed as a random process and a frequency signature, which depends upon alveolar sac radii statistics, is predicted for the reflectance. Pulse-echo ultrasonic instrumentation for the measurement of the absolute reflectance from the lung surface is presented. Lung reflectance data confirming the lung surface frequency signature is presented for humans. Applications of the model are discussed to the detection of pulmonary embolism, atelectasis, pulmonary edema, and chronic lung disease.

Keywords: Detection of lung disease; frequency signature; statistical scattering; tissue signature; ultrasonic scattering; ultrasound.

1. Introduction

Ultrasonic characterization of tissue represents a considerable challenge to the researcher in that he must exploit essentially "second order" phenomena while current clinical techniques have already exploited the "first order" phenomena. The "second order" phenomena (dispersion, reflection, scattering, movement, etc.) are often measurable only after suitable instrumentation has been developed. The researcher is especially challenged to select from an infinity of possible instrumentation approaches and plausible phenomena in order to arrive at a clinically useful diagnostic technique. The work reported here is the development of a tissue characterization for the normal lung surface using an analytical approach. The approach is quite possibly as significant as the results since it offers a path through the complex decisions involving instrumentation design, study of phenomena, and definition of the useful measurement.

The analytical approach used here is summarized in the four interactive steps outlined below. The interplay of each step can be followed as the normal lung model is developed.

1) Calibration of the transmitter-receiver circuitry and transduction process to either an absolute or traceable standard for measurement of tissue acoustic properties that are independent of the instrumentation.

2) Design of the transmitted acoustic signal waveform to accentuate the desired tissue phenomena.

3) Development and validation of analytical models for the tissue target which characterize the measurable acoustic phenomena of tissue in the normal and diseased states.

4) Development of signal processing operations performed by the instrumentation to detect and quantify echo parameters that characterize the normal and diseased states of the tissue.

2. Normal Lung

The lung is a very large organ whose surface lies within a few centimeters of the skin over most of the chest. As shown in figure 1a, a transducer coupled to the skin may direct ultrasonic waves through the soft tissues of the intercostal space that lies between adjacent ribs. If a sufficiently small transducer is utilized, the lung surface can be examined with no interference from nearby ribs.

A normal lung has a gross density that is approximately one third that of water. Thus, the lung is approximately two thirds air and one third soft tissue. At the periphery the schematic of the magnified lung surface in figure 1b indicates the relationship of the air-containing alveolar sacs to the soft tissues that surround the sacs. The alveolar sac is the end-respiratory airway and is divided up into the familiar alveolar chambers.

The marked difference in acoustic impedance between the air and the surrounding soft tissue causes nearly perfect reflection at the air to soft tissue boundary. For our purposes we postulate an "ultrasonic" lung surface which is a roughened planar surface composed of the outer walls of the multitude of peripheral alveolar sacs that lie just inside the pleural membrane.

The physical lung surface (as opposed to the "ultrasonic" surface) is a pleural membrane which forms a unique bearing with a second pleural membrane that is attached to the inside of the chest.
"ultrasonic" lung surface is a rough surface normal to the disk and of infinite extent. The rough surface may move laterally with no change in range, thus presenting new portions of its surface to the area directly underlying the disk.

3. Calibrated Instrumentation and Signal and Design

Wave propagation between the radiating (and receiving) aperture and lung surface forms a central issue in the calibrated measurement of echoes reflected from the lung surface. If we further simplify the situation represented in figure 2 to a lossless media and a flat perfectly reflective plane, we have a classic radiation (or diffraction) problem. By virtue of the finite size of the radiating and receiving disk plus the wave speed of the media, waves launched by the disk produce filtered echoes as they reflect from the plane and return to the disk. The radiation (or diffraction) filter response is given in Appendix A as developed in the literature [1]. If the response is graphed as in figure 3 for a representative situation, we see that the radiation filter is a high pass filter. The nearly flat response of the radiation filter depends on the selection of aperture size, frequency, and range so that the surface lies within the near-field of the transducer. This is the case for the lung surface measurements. Subsequently, the radiation filter will be used both for calibration and adjustment of lung surface data.

Fig. 3. Frequency response of the radiation filter between a radiating disk of radius 0.0125 inch and a flat perfectly reflecting plane 1.5 cm distant.

The pulse echo instrumentation is diagrammed in the network of figure 4. It consists of a transmitter, a receiver, and a transducer, each linearly coupled to a common transmission system. The transmitting waveform \( V_t(t) \) excites the system. The waveform \( V_t(t) \) propagates through the transmission line to the transducer. The transducer couples the electrical domain to the acoustic radiation field. Energy launched by the radiating disk of figure 2 is represented as energy consumed in the radiation resistance. Conversely, echo waves striking the disk are represented by the wave

\[ R = \frac{V_r(t)}{V_t(t)} \]

Figures in brackets indicate literature references at the end of this paper.
potential $V_e(t)$. The radiated waveform is $V_e(t)$ as filtered by the transmission line and the transducer. The received waveform $V_r(t)$ is the wave potential $V_g(t)$ as filtered once again by the transducer and transmission line.

If the transmitter (plus receiver) matches the impedance of the transmission line, then the filtration of the transmission line consists of simple time delays of the transmitted and received signals. Also, the impedance presented to the transducer is $R_0$ in series with $V_t(t)$. Thus, matching effectively removes the transmission line from the network of figure 4. The net effect of the instrumentation is the filtration of transmitted and received signals by the transducer.

In order to measure transducer response and the magnitude of echoes from a target, it becomes important to define a measure of absolute signal loss. This is done by energy conservation of the energy in the transmitted wave $V_e(t)$, a portion of which ultimately returns as the received echo $V_r(t)$. Loss is defined here as the ratio of the exchangeable power of the transducer to the received power in eq. (1). This is more conveniently expressed as the gain (always less than unity) or transfer gain in eq. (2) which can be expressed in decibel or magnitude notation.

$$\text{Loss (dB)} = 10 \log_{10} \left( \frac{V_e^2}{V_r (4R_0)} \right) = 20 \log_{10} \frac{V_t}{2V_r}$$

$$\text{gain} = \frac{2V_r}{V_t}$$

Since the transmitted acoustic waveform is determined by $V_e(t)$, we are free to choose it so as to accentuate some property of the target. Here, the magnitude of the lung surface echo is the important property. Furthermore, the returned lung echo will be corrected by the radiation filter and transducer filter magnitudes. Therefore, we select a transmitted waveform which is a carrier burst of sufficient duration to allow the transducer and the radiation process to reach their steady-state or Fourier responses. The transmitted pulse waveform is completely described by the magnitude, frequency, and duration of the sinusoidal carrier. Conversely, the carrier burst must be sufficiently short in time to allow range discrimination of the lung echo from other echoes. The values for $V_e$ and $V_r$ utilized in loss calculations are the instantaneous values of the envelopes of carrier waves.

The transducer frequency response is experimentally determined as an absolute quantity using the selected signals, the definition of loss, the radiation filter correction (fig. 3), and an experimental geometry as in figure 2 (with a flat perfectly reflective planar test target) [2]. It is interesting to note that absolute dosimetry may be determined as the power dissipated in the radiation resistance of figure 4 [2,3]. The transducer of figure 4 provides a transformer and a lossless matching network in addition to the transducing plate and associated radiation and dissipation loads. Modeling of the transducing disk is extensively discussed elsewhere [2,3] where it is shown that a simple model for transducer gain exists at half-wave resonance. Also, it is shown that optimum loop sensitivity results from adjustment of the transformer for impedance matching of transducer to transducer impedances. The adoption of a transmission system impedance plus specification of transducer transfer function could form the basis of standardization for pulse echo instrumentation.

4. Scattering Model for the Lung Surface

Returning to the measurement of the reflection from the lung surface depicted in figure 2, we are motivated by the microscopic structure to model the lung as a randomly rough surface. The essential difference between the flat surface of figure 3 and a rough surface is that the rough surface has a finite thickness or scattering depth and is said to be range-spread. Mathematically, this is described in eq. (3) as an integration over all range of some range-spread function $m(r)$ with the impulse response of the radiation coupling $f(\ldots)$, which is the time domain pair to eq. (A-1).

$$r(t) = \int_0^\infty f(r, a, t) m(r) \, dr$$

For a "thinly rough" surface we may expand the function $f(r, a, t)$ about some fixed range ($r_0$), make a change of variables for fixed wave speed $c$, and thus turn the equation into the time convolution in eq. (4).
\[
    r(t) = \int_{-\infty}^{\infty} f(r_0, a, t-\tau) \frac{m(\tau)}{2} d\tau \tag{4}
\]

Equation (4) is highly significant in that the received signal \( r(t) \) is the result of a linear filtration in cascade with the radiation filter of eq. (A-1). The frequency equivalent of eq. (4) is simply a product of transfer functions in eq. (5), where \( G(f) \) is the transfer function associated with \( m(\tau) \).

\[
    R(f) = F(r, a, f) G(f) \tag{5}
\]

The filter \( G(f) \) and its transform pair \( G^*(f) \) and \( m(\tau) \) represent the filtration of a randomly rough surface and, therefore, are themselves random. In a sense the precise \( G(f) \) depends upon the particular ensemble of scattering elements that lie in the field pattern of the transducing disk of figure 2. The value of the Fourier function \( G(f) \) is the magnitude (and phase) of the reflection due to a long carrier burst. By allowing the transducer, radiation filter, and reflection filter to reach steady-state as discussed above, one may make direct measurement of the magnitude of \( G(f) \). The measured value will vary as different ensembles of scattering elements sweep in front of the transducer. The characterization of the lung surface lies in relating the statistical properties of the lung surface to the probability density function (and its mean and variance) for the random variable \( |G(f)| \).

A randomly rough surface representing the normal lung consists of a planar array of the alveolar sac wall segments shown in figure 1(b). Between adjacent alveolar sac chambers cusp-like regions are formed which contain soft tissue which readily support wave propagation. The depth of these cusps constitutes the thickness or scattering depth of the "ultrasonic" lung surface. The lung surface is characterized as having a mean scattering depth \( w_0 \) and standard deviation of scattering depth \( \sigma_w \). Figure 1(b) indicates that the scattering depth \( w_0 \) is approximately equal to the mean radius of the peripheral alveolar sacs. If the wavelength of the ultrasound is very much greater than \( w_0 \), one expects the surface to reflect as though it were flat. Conversely, at some critical wavelength related to the mean scattering depth \( w_0 \), one would expect destructive interference.

The degree of the destructive interference would of course depend upon the regularity of the scattering surface with greater destructive interference occurring for smaller \( \sigma_w \).

Using the above model for the lung surface plus several additional assumptions the probability density function plus its mean and standard deviation for \( |G(f)| \) are predicted in Appendix A. The density function is a Ricean function whose shape depends upon \( w_0 \), \( \sigma_w \), and the frequency \( f \). The most significant measurable properties of \( |G(f)| \) are the mean \( \langle Z \rangle \) and standard deviation \( \sigma_z \) given in figure 5 as functions of frequency. At lower frequencies the curves approach those of a perfect reflector (0dB). Conversely, there is a destructive interference minimum at a frequency where one-half a wavelength equals the mean scattering depth \( w_0 \). Figure 5(a) demonstrates the dependence of the dip frequency on \( w_0 \). In figure 5(b) we note that the depth of the dip increases for greater regularity in the scattering depth (smaller \( \sigma_w \)).

![Fig. 5. Families of curves for the mean \( \overline{z} \) and standard deviation \( \sigma_z \) of the predicted echo amplitude, dB versus frequency; (a) curves for two values of scattering depth \( w_0 \) and fixed \( \sigma_w \); (b) curves for two values of \( \sigma_w \) and fixed \( w_0 \).](image)

5. Experimental Results

Experimental measurement of the lung surface reflection can be made to confirm the above model. Measured values are corrected for radiation, transducer, transmitted voltage, and bulk tissue effects as in eq. (6). The resulting experimental value \( Y \) is

\[
    Y = 2V\sqrt{\frac{1}{12} (1/20) 2r0.897 \times 10^{-6}} \frac{|F(r, a, f)| V_t |T(f)|^2}{|G(f)|} \tag{6}
\]

is a measure of the absolute reflectivity \( |G(f)| \) of the lung surface at the frequency \( f \). In the equation \( V_r \) and \( V_t \) are envelopes of sinusoids as discussed earlier. The function \( |T(f)|^2 \) is the measured transducer loop transfer function and \( F(r,a,f) \) is the radiation transfer function for range \( r \) and frequency \( f \). Correction is made for bulk tissue loss using an attenuation constant of 0.897 dB/cm.

By averaging over many values of \( Y \) at a single frequency for successive pulse echo transmissions with the lung surface scanning before the transducer, we arrive at the mean reflectance \( \overline{Y} \) for
Fig. 6. Experimental data for the mean and standard deviation of lung reflection $\bar{Y}$ for a normal human volunteer.

That frequency. Similarly, one may compute the standard deviation ($\sigma_Y$) for $\bar{Y}$ over the data for a single frequency. When multiple frequencies are examined and the data reduced for $\bar{Y}$ and $\sigma_Y$, the experimental data in figure 6 is arrived at. Note that the destructive dip is present near 5.2 MHz and the curve rises toward 0 dB at lower frequencies. A more extensive discussion shows close correlation between the predicted probability density function of Appendix B and experimental histograms [2,3]. These data confirm the analytical model of tissue thus completing step 3 in the approach to tissue characterization.

6. Applications

The final element in the approach to tissue characterization is to define the signal processing functions of figure 4 to perform some clinically useful application. Two areas of application are suggested for the normal lung tissue signature developed here, they are: a) detection of acute infiltrative disease and b) detection of chronic pulmonary disease.

The normal lung surface strongly reflects the ultrasound due primarily to the presence of air at the periphery. Several diseases, including pneumonia, edema, atelectasis, and pulmonary embolism, which acutely alter the air content at the periphery should be detectable as a departure from the normal model. Preliminary clinical evidence suggests that reductions in lung reflectivity from 10 dB to 30 dB are associated with these acute diseases [2,3]. An optimal method of detecting the reduction in reflectivity has been suggested [2,3] utilizing the predicted probability density function to determine a sufficient statistic which is the root mean square reflection. An ultrasonic instrument embodying this technique is shown in figure 7. The performance of this detection scheme can be evaluated in terms of probability for false positive and false negative with the testing threshold ($T$) set to optimize performance.

The chronically abnormal lung can be postulated to produce reflection functions differing from those of figures 5 and 6 due to rearrangement of tissue structures at the periphery of the lung. Diseases such as emphysema and pleural diseases are of clinical interest. Figure 8 demonstrates the reflection data ($\bar{Y}, \sigma_Y$) for a subject with severe chronic pulmonary disease. The destructive interference dip has been suppressed presumably by the higher variance in the scattering depth ($\sigma_W$) of the diseased structures at the periphery. Indeed, if a greater value of $\sigma_W$ is used in the model of figure 5(b) the dip becomes obliterated. A suggested application to chronic disease is to fit predicted curves to experimental data and take the resulting scattering parameters $\sigma_W$ and $\sigma_Y$ as indices of the lung surface [2,3].

The above applications depend upon detecting departures from the normal model. Further development of this tissue characterization approach suggests developing detailed models (step 3) for the diseased states so that further clinical applications can be defined (step 4).

$$\bar{Y} = \frac{2}{1 - \left| \frac{F(r, a, f)}{V_1} \right|^2} \left( \frac{1}{2 \pi f} \right)^2$$

$$\sigma_Y = \sqrt{\frac{1}{2 \pi f} \int \left( \frac{1}{2 \pi f} \right)^2} \left[ 1 + \frac{1.381 \times 10^{-4}}{1} \right]$$

$$\sigma_W = \sqrt{\frac{1}{N} \sum_{m=1}^{N} \frac{v_m^2}{v_m^2}}$$

Fig. 7. Ultrasonic instrument for detecting acute lung disease using a sufficient statistic for testing against a threshold.
Appendix A
Radiation Filter Response

The radiation filter response reported in the literature [1] and tabulated [2] is given in eq. (A-1) for the definitions in eqs. (A-2). It is an exact solution to the radiation coupling between two coaxial disks spaced at distance 2r apart.

\[ F(r,a,f) = \left[ \cos(2\pi ft_3) + j\sin(2\pi ft_3) \right] \left[ \frac{c^2 t_3 t_d}{a^2} \left[ \frac{t_4 + t_2}{t_4 + t_1} \right]^{\frac{1}{2}} \right. \]
\[ \left. + \frac{c^2 t_3}{a^2} \left[ \frac{t_4 + t_2}{t_4 + t_1} \right]^{\frac{1}{2}} \left[ 1 - \frac{1}{2}t_4 \frac{1}{t_4 + t_1} + \frac{1}{2}t_4 \frac{1}{t_4 + t_2} \right] \right] \]
\[ \left. \left[ J_0(2\pi ft_3) + jJ_1(2\pi ft_3) \right] + \frac{J_0(2\pi ft_3) - jJ_1(2\pi ft_3)}{2\pi ft_3} \right] + \text{higher terms} \]
(A-1)

In the equations c is the wave speed, f is the frequency, a is the disk radius, and r is the range between disk and plane. The functions \( J_0 \), \( J_1 \) are Bessel functions of the first kind.

Appendix B
Detailed Scattering Function for the Lung Surface

This appendix is a summary of a more detailed development of the scattering function for the lung given elsewhere [2,3]. The range spread function \( m(r) \) is considered to be the incremental reflectance of the rough surface due to surface elements between \( r \) and \( r+dr \) in range. In order to simplify the development the following assumptions are made:

1) Reflection is a first order scattering process involving no shadowing of reflective elements nor multiple reflection among elements.
2) The dimensions of roughness elements are small compared to the diameter of the transducer.
3) The soft tissue to air interfaces perfectly reflect with no other loss mechanism.
4) The disk is normal to the surface.
5) The scattering depth is thin compared to variations in the radiation transfer function.
6) The incremental reflectance from an individual scattering element is of constant amplitude over the depth of the element.
7) The scattering elements are statistically independent.
8) The lung surface approaches a flat perfectly reflective plane as the frequency approaches zero.

The transfer function for an individual scattering element of depth \( w_m \) is given in eq. (B-1). The overall transfer function is a sum over a large number of individual scattering elements in eq. (B-2).

\[ L(f,w_m) = \frac{k}{j2\pi f} \left[ 1 - \frac{-j2\pi f w_m}{c} \right] \]
(B-1)

\[ F(f) = \frac{1}{N} \sum_{M=1}^{N} L(f,w_m) \]
(B-2)

Invoking the central limit theorem \( G(f) \) becomes a Gaussian random variable with independent real and imaginary parts with means \( R_0 \), \( Q_0 \) and variance \( \sigma^2 \). When the value of \( k \) in eq. (B-1) is adjusted to normalize the magnitude as in assumption 8, the essential values for \( R_0, Q_0 \) and \( \sigma^2 \) are arrived at in eqs. (B-3) and (B-4).

\[ R_0^2 + Q_0^2 = \frac{c^2}{4w_0^2(2\pi f)^2} \left[ 1 + \frac{-4\sigma^2(2\pi f)^2}{c^2} \right] \]
(B-3)

\[ -2 \cos \frac{(2\pi f w_0/2)^2}{c} \frac{-2\sigma^2(2\pi f)^2}{c^2} \]

Fig. 8. Experimental data for the mean and standard deviation of lung reflection \( Y \) for a subject with severe chronic pulmonary disease.
\[ \sigma^2 = \frac{C^2}{8w^2(2\pi f)^2} \left[ 1 - e^{-4w^2(2\pi f)^2} \right] \] (B-4)

If we are concerned only with the magnitude \( Z \) of \( G(f) \) the probability density function becomes Ricean as in eq. (B-5). The mean and a variance of the magnitude are given in eqs. (B-6) and (B-7) respectively. The functions \( I_0(\cdot) \) and \( I_1(\cdot) \) are modified Bessel functions.

\[
p_Z(Z) = \frac{Z}{\sigma^2} e^{-\frac{Z^2}{2\sigma^2}} I_0 \left( \frac{Z(R^2 + Q^2)}{\sigma^2} \right),
\]

\( Z \geq 0 \) (B-5)

\[
\begin{align*}
\bar{Z} & = e^{-\frac{(R^2 + Q^2)}{4\sigma^2}} \frac{\sigma^2}{2} \left[ \left( 1 + \frac{R^2 + Q^2}{2\sigma^2} \right) I_0 \left( \frac{R^2 + Q^2}{4\sigma^2} \right) \right. \\
& \left. + \frac{R^2 + Q^2}{2\sigma^2} I_1 \left( \frac{R^2 + Q^2}{4\sigma^2} \right) \right]\end{align*}
\]

(B-6)

\[
\sigma^2_Z = \frac{R^2 + Q^2}{\sigma^2} + 2\sigma^2 - \bar{Z}^2
\] (B-7)

The mean squared lung surface reflectance in eq. (B-8) expresses the energy scattered at a given frequency. This function is essentially the scattering function discussed in radar.

\[
|G(f)|^2 = Z^2 = R^2 + Q^2 + 2\sigma^2
\] (B-8)

Acknowledgments

This paper is essentially a summary of work reported in the three references cited. It was felt that it would be useful to the reader to report the essential results here in summary form and to refer the interested reader to the more extensive discussions and numerous literature citations to be found in the basic papers.

The work summarized here and in the basic papers was supported by the Ambrose Monell Foundation and the G. Unger Vetlesen Foundation.

References


ANGLE SCAN AND FREQUENCY-SWEPT ULTRASONIC SCATTERING CHARACTERIZATION OF TISSUE


Departments of Electrical Engineering, Radiology, and Pathology
University of Rochester
Rochester, New York 14627, U.S.A.

Ultrasonic wave interference has been applied to characterize tissue by measuring scattered wave intensity as a function of frequency and angle. A theory of acoustic wave propagation and scattering in an inhomogeneous medium has been employed to show that received ultrasound may be expressed in terms of medium refractive index variations via a Fourier transform. Using a computer-based system, measurements were made on model targets and post-mortem liver specimens. Model studies demonstrate that regular scatterer spacing can be inferred from measured diffraction data by Fourier inversion and that scattering differences can be observed from random media consisting of particles of different average sizes. Scattering from liver indicates there is significantly more energy scattered at small angles than is backscattered. Correlation of ultrasound scattering with structure observed through a microscope has been obtained by computing the diffraction pattern of the two-dimensional optical transmittance images acquired through a microscope-TV chain attached to the computer. Average particle sizes of the model random media determined by Fourier analysis that exhibited diffraction rings of the digitized cross-sections yielded scattering predictions which were in agreement with measured acoustic data.

Key words: Angular scattering; characterization of tissue; optical correlation; scattering; swept-frequency diffraction.

1. Introduction

Although ultrasound has been widely accepted as a valuable diagnostic tool in medical imaging, its use in quantitative characterization of tissue is just beginning to emerge. Among methods which employ amplitude, phase, frequency, and attenuation of ultrasound signals, diffraction-based techniques offer the potential of characterizing acoustic scattering element distribution on a scale corresponding to the wavelength within a finite volume probed by the ultrasound beam [1-6]. Success of wave interference methods in x-ray studies of materials as well as in atmospheric probing by radar motivates the development of the methodology for acoustic studies of tissue. However, realization of practical tissue characterization systems based on diffraction require more detailed understanding of the acoustic scattering process, including development of useful models and knowledge of practical measurement limitations.

In this paper, our ultrasonic scattering studies of model targets and preliminary results from liver tissue are described. A model is developed to show the fundamental relationship between scattered acoustic waves and tissue structure. The measurements demonstrate feasibility of the method and identify problems. The results indicate the promise of the concept but point out the need for additional data to characterize tissue.

Our research combining angle scanning and frequency sweeping is intended to provide a foundation for characterization of tissue by its ultrasonic scattering properties.

2. Theoretical Basis

A. Acoustic Scattering Model

The model we use relates the scattered intensity to the acoustic structure of the tissue and indicates that different levels of organization may be studied with ultrasound by appropriate choice of frequency and geometry. The resulting acoustic characterization can then be compared to microscopic determinations of structure to establish tissue pathology. The theory is analogous to that used in x-ray diffraction of amorphous materials and allows the structure of the medium to be inferred from measurements of the scattered acoustic wave.

The tissue is modeled as an inhomogeneous medium in which the acoustic properties exhibit variations from point to point. Since wave propagation is affected by the local environment, wavefronts are distorted and scattered. The derivation has followed the basic approach used in modeling wave propagation and scattering for acoustic studies of the lower atmosphere [7].
The analysis begins with consideration of a plane wave propagating through a lossless unbounded medium which has small variations in refractive index. Small values of absorption do not change the basic relationships [6].

Assuming a monochromatic incident plane wave, weak single scattering, and a receiver in the far-field, the resulting scattered wave velocity potential \( \phi_1(r, k) \) is given by

\[
\phi_1(r, k) = \frac{A_0 k^2 e^{ikr}}{2\pi r} \int \frac{e^{ikr'}}{V'} n_1(r') dV'
\]

in which

- \( A_0 \) = incident plane wave amplitude
- \( k \) = incident wave number
- \( k \) = scattering wave vector
- \( n_1(r') = \) variations of acoustic refractive index
- \( V' \) = scattering volume
- \( r \) = distance from the scattering volume center to the reception point

Thus, the velocity potential at a receiving point \( r \) is equal to the product of a frequency-dependent factor and the three-dimensional spatial Fourier transform of the acoustic refractive index variations.

The theory also relates the mean square value of velocity potential to the correlation function of the acoustic refractive index variations in a random medium if the variations are stationary in space. The relation is

\[
<|\phi_1(r, k)|^2> = \frac{A_0^2 k^4 V'}{4\pi^2 r^2} \int \frac{e^{ikr'}}{V'} B_n_1(p) dV'
\]

where

\[
B_n_1(p) = <n_1(r') n_1(r' + p)>
\]

where \(< >\) denotes ensemble averaging. This shows that the average intensity of the scattered wave is proportional to the three-dimensional spatial Fourier transform of the correlation function of the acoustic refractive index variations.

The expression for the mean square velocity potential allows determination of the correlation function of the acoustic refractive index variations in the medium by inversion of the transform relating the measured average scattered intensity as a function of scattering vector [8]. Alternatively, a specific form for the correlation function can be employed to evaluate the average scattered intensity for comparison with experimental data. The latter approach has been used to evaluate scattering from a cloud of scatterers assuming a correlation function with a Gaussian shape modified to remove the dc spectral component [9]. Neglecting density variations, the resultant expression for the scattered intensity per unit incident intensity is

\[
\frac{I_s}{I_i} = NV^2 \frac{1}{2\pi} k^2 a^2 \sin \frac{\nu}{2} |\gamma_k|^2
\]

\[
\times \left( \frac{1}{8} k^2 a^2 \sin^2 \frac{\nu}{2} \right) e^{-2k^2 a^2 \sin^2 \frac{\nu}{2}}
\]

\( \nu = \) scattering angle
\( NV = \) mean number of scatterers in sample volume
\( a = \) mean radius of the particles
\( \gamma_k = \) mean value of compressibility variations between scatterers and medium

The result predicts that smaller particles scatter more energy off-axis than large particles for a fixed incident frequency.

### B. Optical Correlation

Optical data for comparison to ultrasound angle scattering data can be obtained by computing the diffraction pattern of a sample region with variable transmission representing spatial distribution of scattering inhomogeneities. In the far-field of a plane through the region, the diffracted optical field is given in terms of the two-dimensional Fourier transform of the transmission pattern [10].

\[
\psi(r) = \frac{A k^2 r}{\alpha} \int T(r') e^{ikr'} dr'
\]

where

- \( A = \) constant
- \( k = 2\pi r / \lambda \)
- \( T(r') = \) transmittance of aperture \( S \)

The intensity of \( I(r) \) of the pattern is then

\[
I(r) = \psi(r) \psi^*(r)
\]

The dimensions over which diffraction occurs are determined by the wavelength or, equivalently, the sampling interval of the optical transmittance and can be readily chosen in analysis to yield a scale comparable to that in ultrasound diffraction. Averaging the two-dimensional diffraction intensity patterns of any collection of typical cross-sections in the region results in a statistical characterization of diffraction by a random medium.

For an isotropic random medium with local order, the predicted average diffraction intensity takes the form of concentric rings [11]. The spacing of the rings gives nearest neighbor distance while the width of the rings is a measure of the spread in scatterer size and the number of visible rings indicates ranges of local order. Optical diffraction also allows qualitative determination of patterns describing known optical morphology for comparison with similar parameters derived ultrasonically when there is no order since the width or general shape of the power spectra can be used in these cases.

### 3. Experimental Methods

#### A. Acoustic Scattering

Initial studies employed frequency sweeping with fixed transducer-target orientation. The scattering experiments were performed in a water-filled tank containing a fixture on which transducer holders were mounted. The holders could be angled to align the ultrasonic beams and could be slid along the fixture as well.
The electronic instrumentation used for this investigation consisted of a transmitter capable of frequency sweeping, a range-gated receiver and a recorder. Bursts of ultrasound were gated from a variable frequency master oscillator to a power amplifier which drove a wideband 9.5 mm diameter transducer with a 5 MHz center frequency. The frequency of the master oscillator was slowly swept over a range of 2 to 8 MHz by a linear ramp function that produced negligible carrier frequency variation over any single pulse.

The scattered ultrasound pressure was detected by a receiving transducer matched to that used for transmission and the amplified RF signal was energy-detected to give a video signal proportional to the incident wave peak intensity which was then recorded.

Arrays of cylinders were studied to provide information about the influence of geometric alignment and beam uniformity. The scatterer positions for array measurements were established by five sets of uniformly spaced grooves two centimeters in length. A rubber sheet was used to shield the holder exposing only one set of wires for acoustic measurements. The center of the array was nominally set at the intersection of the transducer beams for each study with the array elements lying along the bisector of the angle formed by the beams.

The energy detector output was bandpass filtered to produce a signal that was displayed as a function of frequency on the face of an oscilloscope for photographic recording. The analog curves were sampled at 0.115 MHz intervals and quantized into integers in the range 0 to 255 for calculation of Fourier transforms.

Ultrasound scattering as a function of angle was measured in a water tank using an acoustic diffractometer [12] that provided precise control of transducer position relative to the scattering volume. The scattering medium was contained in a cylindrical column 28 mm in diameter by a 0.254 mm thick cellulose tubing that minimized reflected energy loss at the perimeter of the sample. Transmitting and receiving transducers containing 4.76 mm radius ceramic disks as active elements were rotated in equal increments but opposite directions about the axis of the cylindrical sample. Transmitter and receiver distances from the axis of rotation were each equal to 13.6 cm. This scanning procedure maintains a constant scattering vector direction while changing the scattering angle, \( \phi \), and hence the scattering vector magnitude. The centers of transducer rotation were maintained to within \( \pm 0.3 \) mm during the angle scan.

The electronics were the same as in the swept-frequency measurements. The receiver electronics were also the same as used in the previous studies except that a log amplifier was added to accommodate both the small off-axis scattering and the large direct transmission signals. The energy detected output was sampled by the computer and recorded in digital form along with appropriate positional information for statistical analysis and display.

A typical scattering experiment consisted of sixteen angle scans taken at 2.5 mm increments along the axis of the cylindrical sample. In each angle scan, data was collected at 163 equally spaced increments of \( 2^\circ \) from a scattering angle of \(-153^\circ\) to \(-165^\circ\). The transmitted tone burst was 10 \( \mu \)s long while the receiver gate was 6 \( \mu \)s long and centered in the scattering volume.

Fresh samples of pig liver and human liver samples obtained at autopsy have also been studied ultrasonically by angle scanning and varying frequency. Cylindrical plugs were taken from peripheral regions near the capsule to minimize the inclusion of large vessels. Transmit pulse length and receiver gates were set as in the random medium model studies to minimize inclusion of specular reflectors from the surface.

B. Optical Data

Optical data was acquired under computer control by sampling a TV image obtained through a transmission microscope. Drops of the particle suspensions were spread over a microscope slide and typical areas digitized. Five different images from a smear of each particle suspension were obtained for analysis. The individual images consisted of 8-bit samples representing light intensity transmission over a field of 1.7 mm spanned by 384 x 384 matrix elements.

The cylindrical liver specimens were fixed in formalin and standard sectioning and staining procedures used to evaluate histomorphologic changes in the sections that were studied ultrasonically. Each stained section was digitized into a 256 x 256 matrix covering a field of 4.5 mm. In the optical studies of liver tissue, a Van Gieson connective tissue stain was employed to bring out structures believed to cause ultrasonic scattering and the computed average power spectra were used to characterize the architecture for comparison with ultrasound angle scan data.

The digital representations of the optical images obtained through the microscope-TV system were enhanced to improve the contrast between the particle boundaries and the background. This was accomplished by forming histograms of original image amplitudes and using these histograms to develop mappings that spread the original light intensity transmission values over wider ranges.

The far-field diffraction pattern of each optical image was obtained by a two-dimensional Fourier transformation implemented using an integer FFT algorithm. The log magnitude of the resultant spectra was calculated to facilitate display of a wide range of spatial frequency amplitudes. Averages of the log magnitude spectra from the five sample functions of the same particle size distribution were computed. The spherical symmetry of this spectral estimate was used to produce additional smoothing by averaging spatial frequency amplitudes determined along radii spaced \( 1^\circ \) apart. The results were used to find average nearest neighbor distances.

4. Results

Data was collected by frequency scanning 10 mil monofilament nylon cylinders in arrays with spacings of 0.72 and 1.52 mm at a range of 11.0 cm and a Fourier transform was applied to infer the spacings (fig. 1). The influence of transmitted range on measurements of diffraction by an array spacing of 1.52 mm was observed for ranges of 4.5 and 11.5 cm (fig. 2). The distances (0.76 and 1.55 mm) indicated by the peaks on the transformed data in each of the measurements are within 4 percent of the actual values. The envelope of the data collected at 4.5 cm is different from the far-field measurements, but did not invalidate calcula-
Fig. 1. Swept-Frequency Diffraction by Arrays. Measured values of scattered energy as a function of frequency are shown (left) on a linear scale with their corresponding Fourier transforms (right) also on a linear scale for array spacings of 1.52 mm (top) and 0.76 mm (bottom) at a transmitter range of 11.0 cm. The ultrasonically determined spacings were 1.55 mm and 0.78 mm respectively.

Fig. 2. Swept-Frequency Diffraction as a Function of Range. Measured curves of energy as a function of frequency are displayed (left) on a linear scale with corresponding Fourier transforms (right) also on a linear scale for transmitter ranges of 4.5 cm (top) and 11.5 cm (bottom) for an array spacing of 1.52 mm. The ultrasonically determined spacings were 1.48 mm at the far range and 1.55 mm at the near range.
Fig. 3. Frequency-Dependent Angular Scattering by a Random Medium Model. Measurements of average intensity are shown (left) on a logarithmic scale along with calculated scattering (right) on the same scale for a frequency of 3.8 MHz (top) and 6.0 MHz (bottom). The measured data obtained from a suspension of particles demonstrates more forward scattering as frequency increases and compares well with computations of scattering from a cloud in which the average particle radius is 128 µm.

Enhanced optical transmittance images of five sample functions and the corresponding average log magnitude spectra were obtained from smears of three particle grades (fig. 5). A smoothed spatial frequency amplitude distribution was found by averaging the amplitudes along radii from which the nearest neighbor distances may be determined (table 1).

Pilot studies of acoustic scattering from human and pig liver tissue by angle scanning have been carried out (fig. 6). The data shows that there

---

2Trademark of Pharmacia Fine Chemicals.
Table 1. Nearest neighbor spacing determined by Fourier transform analysis of optical transmittance.

<table>
<thead>
<tr>
<th>Particle distribution</th>
<th>Mean spacing (μm)</th>
<th>Spread of spacings (±1σ) (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G50M</td>
<td>93.3</td>
<td>63.2 - 177.6</td>
</tr>
<tr>
<td>G50F</td>
<td>84.3</td>
<td>57.3 - 159.4</td>
</tr>
</tbody>
</table>

is significantly more scattered energy at small angles than in the backscattered mode. Scattering in the forward direction becomes greater as the frequency increases. Optical data obtained from these specimens shows the well-defined regular lobular structure of pig liver and the irregular structure of a post-necrotic cirrhotic human liver (fig. 7). The power spectra and their corresponding average radial distributions show the same trend of increased omnidirectional scattering from pig liver that the acoustic data demonstrate.

5. Discussion

The measured scattering from arrays of nylon cylinders yields element spacings that correspond well to actual values and shows the influence of near-field variations of transducer beams on the determination of scatterer spacing. The number of peaks in the transformed data indicates diffraction by integer multiples of the basic spacing and are a measure of the number of scatterers in the beam or the effective width of the common scattering volume which contains more array elements as the spacing decreases.

Diffraction-based measurements of array element spacing as a function of range from the transmitter show peaks that do not vary in position when the scatterers are in the near-field of the transducers. These measurements also support the utility of a model that employs the far-field assumption for inferring structure even when the far-field assumption is not strictly satisfied.

Acoustic scattering from Sephadex was measured using a wavelength that ranged from 2 to 30 times the particle diameters and corresponds to a transition region between point scattering and diffraction by individual spheres. This relationship of wavelength and particle size was chosen for its potential similarity to situations of interest in medical ultrasound. Differences in scattering due to particle size are still demonstrated by the analysis of both the acoustic and optical data. The acoustic data from the Sephadex experiments agrees with the predictions of the expression describing scattering from a cloud of particles.

For the coarse grade of particles, the computed results agree well with the experimental data. The mean value size parameter of 128 μm is well
within the range of the manufacturer's specifications on sizes and is also confirmed by the optical determinations. Both experimental data and calculations show that the scattering becomes greater in the forward direction as frequency increases. Polar plots of average acoustic intensity as a function of scattering angle also show that a distribution of small particles scatters relatively more energy at larger angles than does a distribution of large particles.

These results are in agreement with theoretical predictions about scattering off-axis as a function of particle size, and support the swept-frequency studies in which small particles scattered more energy at high frequency than did large particles reported earlier [4]. The experiments are comparable because the Sephadex suspensions are isotropic so that angle scanning produces the same result as frequency scanning.

The acoustic scattering data was collected under conditions that reasonably approximate the plane wave, point receiver, and weak scattering assumptions employed in the theoretical development. The 170 microseconds between transmit and receive gates correspond to transducer distances of 12.6 cm from the center of the scattering volume. This distance normalized by the ratio, the square of transducer radius to the wavelength, is 10.9 and is well within the far-field resulting in a plane wave incident on the scattering volume. The distance also results
Fig. 6. Comparison of Average Angular Scattered Intensity From Normal Pig Liver and Cirrhotic Human Liver. Specimens studied at 3 MHz (upper panels) show that the normal pig liver scatters more omnidirectionally than cirrhotic human liver and that, as the frequency is increased to 6 MHz, the forward scattering component increases in both cases. This is consistent with scattering from collagen which is arranged in a smaller, more uniform matrix in the pig liver than in the cirrhotic human liver.

in a maximum phase variation of 16.4° across the face of the receiving transducer for a wave originating from a point at the center of the scattering volume and thus a point receiver approximation is justified.

The logarithmic compression of the received ultrasound signal near 0° scattering angle, needed to allow simultaneous demonstration of scattering signals at other angles, indicates that the assumption of weak, single scattering or the Born approximation is valid.

The polar plots do not demonstrate symmetric scattering about each side of the 0° scattering angle beam as anticipated from the isotropy assumption. A reason for this is that a slightly different scattering volume was sampled on each side of 0° due to error in concentricity of the transducer arms.

Optical characterization of a distribution of spheres shows a ring which agrees with theory. The good agreement between theory and final ring structures obtained by processing only five samples supports the notion that the particle distribution used for a random medium model is isotropic. Since the particles are closely packed, the spacings observed by light transmittance analysis are equal to particle size.

Parameters for the particle distributions derived from averages of radial lines in the two-dimensional log spectra are in excellent agreement with the values supplied by the manufacturer as well as being in qualitative agreement with analysis of acoustic scattering data.

The angle scan data from pig and human liver specimens demonstrate differences as a result of the different architecture of the tissues. The pig liver scatters more omnidirectionally than the human liver. At lower frequencies, the pig liver also shows a lobe structure indicative of local order in the lobular arrangement, while the human liver scattering, which is predominantly in the forward direction, results from larger, more irregular spacings. The increase in forward scattering at high frequencies as in the Sephadex ex¬
Fig. 7. Optical Image Analysis of Liver. In (a), normal pig liver (left) and cirrhotic human liver have been stained to show connective tissue as dark bands. The power spectra (b) obtained by averaging show that the pig liver produces a broader distribution of scattering than the human liver. The relatively isotropic patterns have been reduced to a one-dimensional form (c) by averaging radial lines at 1° increments to produce data comparable to ultrasound angular scattering when viewed as a Cartesian plot. The optical analysis demonstrates the same increased spread in scattering from pig liver that the acoustic patterns contain.
periments indicates that important scattering may take place from elements in the size range included in the Sephadex studies. The data also implies that backscattered energy, while easier to monitor in practical situations, represents only a small amount of tissue structure information. It remains to determine whether observed peaks in the scattering pattern are due to many randomly spaced scatterers in the tissue or a few large single scattering objects.

Further investigation is also required to determine the specific structural changes observed acoustically, correlate these results with histopathology, and establish the reproducibility of the results from these initial studies of liver specimens.

6. Conclusion

Experimental observation of acoustic diffraction by arrays using swept-frequency ultrasound have agreed well with theoretical predictions. The experiments indicate that near-field beam nonuniformities need not invalidate inference of scatterer spacing from a model employing a far-field approximation. However, more results are needed to bound limitations imposed on measurement of scattering by acoustic diffraction as a result of beam non-uniformities and misalignments.

The ultrasound angle scan data from Sephadex shows size-dependent scattering and agrees with theoretical predictions as well as with optical analysis. The Fourier analysis of optical data accurately confirms the particle size distribution information provided by the vendor and demonstrates a way optical images can be quantitatively analyzed to provide a reference for comparison with ultrasound data. The results obtained indicate the potential for remote probing with ultrasound to characterize a random medium from its scattering and the use of digitally processed optical data to confirm the results.

Preliminary data from swept-frequency and angle scan experiments with pig and diseased human liver tissue shows the importance of scattering at small angles and also that this technique may lead to a useful diagnostic tool. However, additional data is needed to characterize tissue and thus point the way to optimum parameters for clinical determinations of tissue structure from diffraction effects with ultrasound.

Acknowledgments

We wish to acknowledge important assistance in the conduct of this work by Edward E. Eyler, C. Robert Hoffman III, and Jeffrey Astheimer who developed computer programs, and Frank H. Slaymaker and Peter H. Helmers who designed major parts of the mechanical and electronic hardware used in these studies.

This work was supported by the National Science Foundation under grant #APR75-14890 and the National Heart and Lung Institute under grant #HL15016.

References


Quantitative backscattering measurements have been made using the substitution method used to measure the scattering properties of blood previously. We have obtained preliminary experimental values for the backscattering coefficients of liver and myocardium, fully corrected for equipment and transducer parameters as well as attenuation of the scattering tissue. Results show that scattering for both liver and myocardium is an increasing function of frequency up to 10 MHz. This increase indicates that the tissue elements responsible for the scattering must be less than 30 micrometers in diameter. The level of scattering from liver tissue indicates that if it is isotropic scattering the scattering loss is large enough to account for about 20 percent of the total attenuation reported at 10 MHz frequency.

Key words: Absorption; attenuation; heart; liver; scattering; scattering cross-section.

1. Introduction

The recent interest in characterizing biological tissues through noninvasive ultrasonic means has resulted in investigations and reports on values of velocity, attenuation, impedance, and scattering and echo strength. The first three quantities are nearly always measured in a quantitative sense, the last two are usually measured in a relative sense. The last two quantities are sometimes spoken of interchangeably as if they were the same thing. However, echo strength is the result of the operation of a number of factors: (1) the absolute scattering strength of the tissues; (2) the absorption of the tissues (including the tissue that is doing the scattering); and (3) many equipment parameters.

Although it may appear to be expeditious to do characterization on the basis of echo amplitudes produced by existing equipment, we believe it preferable to obtain the data under conditions which allow the absolute scattering coefficients to be calculated independent of tissue absorption and equipment parameters. Knowledge of absolute scattering parameters is useful for the identification of mechanisms and the prediction of possible applications in medicine. An even more exciting use, however, is in the design of new equipment utilizing new approaches to tissue characterization which can generally only be done if the data obtained are independent of the taking equipment.

Quantitative backscattering measurements can be made using a substitution method which has already been used to measure the scattering properties of blood [1-4]. We have used this method to obtain preliminary experimental values for the scattering properties of liver and myocardium. Further more extensive studies on human tissues will be conducted. Animal tissues were used for convenience in adapting the system to solid tissues.

Results have been presented by Nicholas [5] on backscattering coefficients per solid angle for liver, spleen and brain. No details are given on the formalism used to derive the backscattering coefficient. Nicholas' values for liver are about an order of magnitude greater than our values, and at the higher frequencies would predict a scattering loss which equals the entire observed attenuation. Since this a relatively new field, we believe it essential to give as many details of the measurement and data reduction process as possible and, in this article, will present our complete procedure.

2. Method

The backscattering coefficient defined as power scattered per unit solid angle in the backward direction by a unit volume of scatterers was calculated by comparing the RMS value of the backscattered wave to that of a known reflected wave. The coefficient can be defined to be independent of the measuring system and the attenuation characteristics of the tissue [1,2].

Measurements were performed in a large water
tank which was filled with normal saline solution. The temperature of the saline was kept at 18 °C ± 1 °C. The samples were fixed on a sample holder about 15 cm away from the transducer. Excised calf liver and heart were obtained immediately after the sacrifice of the animal and stored in normal saline solution at a temperature of 4 to 6 °C. Measurements were carried out within three days.

Five liver specimens and five heart specimens were used with each cut into sample regions which were examined so that only those samples free of gross connective tissue or blood vessel interface were used for the measurements to better define the bulk properties of each tissue type. The samples were 2 cm x 2 cm squares with a thickness of 3 to 5 cm. The liver samples were examined in a number of randomly chosen orientations so that 30 to 45 experimental values were calculated for each point on the results. In the measurements of myocardium samples, the direction of the sound beam was always perpendicular to the muscle fibers.

Ultrasonic transducers (Panametrics) with resonant frequencies at 3, 5 and 10 MHz and a diameter of 0.635 cm were used. Electronic equipment consisted of a gated burst generator, pulse echo receiver, and a controllable receiver gating circuit [2,3]. All time measurements were made on an oscilloscope and the output gated echo measured by a true RMS voltmeter. A calibrated attenuator, impedance matched to the receiver input circuit, was adjusted to obtain the same reference reading on the voltmeter for the reflected wave and the scattered wave.

The backscattering coefficient was calculated from the attenuator readings, equipment and equations expressing the received available power from targets located on the axis in the far field of a round piston transducer [1]. The received available power in the wave reflected from a plane interface can be written

$$P_r = \frac{E^2 A^2 e^{-2 \alpha R}}{R^2 T \rho A^2} k^2,$$  \hspace{1cm} (1)

where $P_r =$ received available electrical power (RMS) $E =$ transmitter electrical power (RMS) $A =$ transducer efficiency (a function of frequency) $R =$ transducer area $T =$ transmitted pulse length $\lambda =$ wavelength $\alpha =$ pressure attenuation coefficient for propagation medium $k =$ amplitude reflection coefficient between propagating medium and reflector

In a similar manner, the available power in a wave scattered from a distribution of lossy scatterers, $P_s$, can be written [2]:

$$P_s = \frac{E^2 A^2 S^2 e^{-4 \alpha R}}{R^2 T \rho A^2} \frac{\alpha}{c},$$  \hspace{1cm} (2)

where $P_d = \text{backscattering coefficient per unit solid angle, per cm}^3$ $S =$ cross-sectional area of the sound beam, cm$^2$ $\alpha =$ attenuation coefficient of the scattering tissue $c =$ velocity of sound in the scattering tissue $R =$ range to surface of scattering tissue $t_1 =$ time from first surface echo to opening of receiver gate $t_2 =$ time from first surface echo to closing of receiver gate

Equation (2) neglects the front surface reflection of the sample since the cut specimens we employed did not include surface covering membranes, the usual source of such reflections. The terms in brackets are correction factors to account for the total attenuation losses of the scattering material. These losses include absorption of the sound in the scattering tissue between its surface and the region from which scattered echoes are gated into our receiver and measuring circuit, absorption of sound during the transmitted pulse and interaction factors which depend on the absorption of the wave during the duration of the receiver gate and the transmitted pulse. The scattering coefficient can be found by dividing eq. (2) by eq. (1) and solving for the coefficient. The resulting equation is:

$$\eta_d = \frac{P_r}{P_s} \frac{2 k^2 R^2 \alpha^2 c T}{S(e^{-2 \alpha t_1} - e^{-2 \alpha t_2})(e^{\alpha t} - e^{-\alpha t})}$$  \hspace{1cm} (3)

The ratio of $P_s$ to $P_r$ is obtained from the change of the input attenuator settings necessary to make the RMS readings of the pulse from the flat reflector equal the reading of the gated, scattered waves. Theoretically, this ratio should be expressed in terms of the open circuit transducer voltages due to the scattered and reflected waves. When the attenuator is connected we read instead a loaded or closed circuit voltage. Since we use the same transducer and receiver impedance for the two waves, the loaded voltage is less than the open circuit voltage by a complex frequency-dependent factor which depends on the impedances in the circuit. This factor is the same for the scattered wave as for the reflected wave, however, and hence divides out when the ratio is taken. Therefore, the ratio is the same for the open-circuit as for the loaded condition. The other factors in eq. (3) can be obtained by direct measurement of apparatus dimensions, oscilloscope time settings and separate measurements of attenuation and velocity within the scattering tissue.

In this investigation, these tissue properties were taken from the published literature [6-8]. The time lapse between the receiver gate and the tissue - saline surface ($t_1$) is in the order of 10 to 20 $\mu$s. Attenuation losses in this layer as well as losses in the sample volume are corrected for by use of eq. (3). The amplitude reflection coefficient between the saline and tissue surface was less than 0.1 and assumed negligible.

Figure 1 is the data collection sheet filled out by the experimenter at the time of measurement for one specimen at one frequency. The section of the sheet before the calibration run consists of equipment parameters. The calibration run allows
Data Collection Sheet for the Scattering Experiment

Specimen: Calf Myocardium
Wave Frequency: 10 MHz  Pulse Repetition Rate: 1 kHz
Temperature of Water Bath: 18 °C  Pulse Width: 4 μs
Gate Width: 10 μs  T2: 10 μs
Transducer Position: 34 cm  Reflector Position: 54 cm
Sample Position: 52.7 cm
Bean Width: 0.27 cm  Bean Cross-Section: 0.057 cm²
Calibration Run:

<table>
<thead>
<tr>
<th>Reflector Position cm</th>
<th>Attenuator Reading dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>79</td>
</tr>
<tr>
<td>52</td>
<td>81.5</td>
</tr>
<tr>
<td>50</td>
<td>84.5</td>
</tr>
<tr>
<td>56</td>
<td>76.6</td>
</tr>
<tr>
<td>58</td>
<td>74.4</td>
</tr>
</tbody>
</table>

Reference on RMS Meter: 0.003 V, -5.5 dB

\[ R(\text{Distance between Transducer and Sample}) = 15.4 \text{ cm} \]
\[ \alpha(\text{Attenuation Coefficient for Sample}) = 0.1 \text{ Neps/cm} \]
\[ c(\text{Velocity of Propagation}) = 1.58 \text{ cm/second} \]

<table>
<thead>
<tr>
<th>DATA</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>79</td>
</tr>
<tr>
<td>50</td>
<td>76.6</td>
</tr>
<tr>
<td>58</td>
<td>74.4</td>
</tr>
</tbody>
</table>

Fig. 1. Sample data collection sheet. For each specimen at each frequency the data shown were recorded by the experimenter.

Fig. 2. Measured backscattering coefficient for the myocardium as a function of frequency. Experimental points are the average of 30 to 45 separate measurements on five or six samples. Bars indicate the standard deviation vs. frequency slopes for Rayleigh, fourth power scattering and for third power scattering.

One point using tissue fixed with 10 percent formalin is included for comparison. The data show that liver is a much stronger scatterer than heart tissue at the lower MHz frequencies. Also, the fixed tissue has a stronger scattering than the normal tissue in each case. The backscattering from both myocardium and liver increases with frequency. Figure 2 shows reference lines drawn through arbitrary points to give the attenuation slope for both fourth power (Rayleigh) and third power scattering. At the higher frequencies, the heart tissue appears to be approaching approximate fourth power dependence and the liver tissue less than a third power dependence. It must be recognized that the program is still in its early stages since only a few data points have been taken and positive conclusions, particularly with respect to frequency dependence, are not warranted. Scattering does appear to increase with frequency, however.

Since the scattering at 10 MHz is still increasing with frequency (fig. 2), it appears that the

3. Results and Discussion

The experimentally determined values of scattering coefficient are plotted in figures 2 and 3.
structure responsible for producing the scattering must be smaller than the wavelength. For a spherical particle it is known that the circumference must be less than one wavelength, indicating that the diameter of such tissue elements in liver is less than 30 microns.

From these data, it is possible to estimate the contribution to attenuation caused by scattering alone. In cases where the angular dependence is known the total scattering loss, \( \alpha_s \), can be found from

\[
\alpha_s = \int_0^{\pi} \frac{d\phi}{4\pi} \Phi_{180} \omega, \tag{4}
\]

where \( \omega \) = the solid angle
\( d\phi \) = differential scattering coefficient
1 = the incident direction of the wave
0 = the direction of observation

As a first approximation, let us assume that the scattering from liver is isotropic, then,

\[
\alpha_s = 4\pi \Phi_{180} \theta
\]

At 10 MHz frequency the attenuation coefficient for liver due to scattering alone is then 0.3 neper/cm. This loss is about 28 percent of the total attenuation found in the literature [7].

This investigation has obtained experimental evidence that the scattering from within functionally homogenous tissue may be strong enough to influence the total attenuation. Since the scattering contribution is a strong function of frequency, we might expect that at a sufficiently high frequency the attenuation of some tissues or tumors might increase at a rate greater than the first power dependence found by previous investigators working at lower frequencies. If verified, such behavior could have great importance for tissue characterization, whether it be done using scattered waves or measurements of attenuation.

References


It has to be noted this figure obtained was based on a very rough assumption. In reality, the scattering from liver is not isotropic as indicated by the experimental results of Gramiak et al. [9]. Our measurements do average \( n \) over many directions, so we feel the conclusions are warranted.
DEPENDENCE OF ULTRASOUND BACKSCATTER FROM HUMAN LIVER TISSUE
ON FREQUENCY AND PROTEIN/LIPID COMPOSITION

M. Freese
Radionics Ltd.
Montreal, Quebec, Canada

E. A. Lyons
Winnipeg Health Sciences Center
Winnipeg, Manitoba, Canada

The dependence of ultrasonic volume backscatter on frequency, lipid and protein content in normal and fatty human (post-mortem) liver tissue was investigated with a view towards the possible development of a noninvasive quantitative diagnostic test for fatty liver. Mean values of the backscatter coefficient, its range and frequency dependence were determined for normal liver in the 1 to 5 MHz range and for fatty liver at frequencies of 2.25 and 3.56 MHz. The results indicate that frequencies below about 2 MHz should be avoided for quantitative measurements of the backscatter in liver. Although the measurements revealed considerable variation in the backscatter levels of normal liver, the backscatter levels in moderately and severely fatty liver were significantly greater than the normal range. Simple linear correlation of the backscatter magnitude with the lipid content for 21 samples (10 normal, 8 fatty, 1 cirrhotic, 2 other abnormal) yielded a value of 0.94, significant at the 1 percent level.

Key words: Backscatter frequency dependence; cirrhosis; composition-dependent scattering; fatty liver; stochastic scattering; tissue characterization; ultrasound attenuation; ultrasonic tissue scattering.

1. Introduction

Quantitative data on the dependence of ultrasound scattering on the physical structure and composition of tissue is needed to understand the underlying scattering processes, to aid the development of optimum diagnostic scattering methods and to serve as a reference in clinical applications. From the standpoint of these objectives, specifically, the possible development of a noninvasive diagnostic test for fatty liver [1], this paper describes the results of a series of quantitative measurements of ultrasonic volume backscatter in the 1 to 5 MHz range for normal and fatty post-mortem human liver as a function of frequency and protein-lipid content. The results suggest that a noninvasive quantitative test for fatty liver based on the magnitude of the backscatter is feasible if the in vivo measurement problems can be overcome.

2. Methodology

The pulse echo technique and the calibration procedure employed for the backscatter measurements have been described in detail elsewhere [2]. Essentially, the received backscatter from the tissue is range gated, passed through either a square-law or linear envelope detector and integrated; time varied gain is employed to compensate for sample attenuation. The measurements are referenced to stainless steel ball bearing targets of known cross-section.

A. Backscatter Parameters

The parameters used to describe the backscattering are the average backscatter coefficient \( \langle \sigma \rangle \) and the average "envelope" backscatter coefficient \( \langle r \rangle \), the brackets denoting ensemble averaging. For monochromatic (CW) frequencies, \( \langle \sigma \rangle \) is identical to the average backscatter cross-section per unit volume, while for pulses, the difference between \( \langle \sigma \rangle \) and the corresponding CW value is dependent on the absorption coefficient-path length-pulse bandwidth product and the scatterer frequency responses [2,3]. (The maximum estimated error due to the finite pulse bandwidth was approximately 0.1 dB in these measurements.) The envelope backscatter coefficient \( \langle r \rangle \) is proportional to the average magnitude of the backscatter signal but is normalized to be consistent with the statistical relation \( \langle \sigma \rangle = \langle r \rangle^2 \).

1Figures in brackets indicate literature references at the end of this paper.
B. Signal Processing

Stochastic signal process theoretical results were employed to determine appropriate thresholds for refining of the raw data. Scattering by the larger blood vessels in the liver poses a problem because its contribution tends to be largely extraneous to the scattering process of interest. To reduce this interference, the raw data were refined by rejecting individual measurements with values of the coefficient of variation \( \gamma \geq 0.81 \), the coefficient of variation being defined as \( \gamma = \frac{\langle \sigma^2 \rangle - \langle \gamma \rangle^2}{\langle \gamma \rangle^2} \). The presence of isolated large specular echoes tends to increase the expectation value of \( \gamma = 0.52 \) for a random process described by a Rayleigh distribution [4]. Ordinarily, the probability of \( \gamma \) exceeding 0.81 is about 7 percent. The A-scan time averaging employed reduced this probability to 5 percent at 1.1 MHz decreasing to 0.5 percent at 3.56 MHz.

To further improve the averaging and avoid the long delay path required for far-field measurements, the measurements were performed in the near fields of the transducers. The measured values were then converted to equivalent far-field values using the experimental results obtained by Freese [5]; the same transducers were used in the present measurements. The near-to-far-field conversion factors ranged from +1.4 and +1.1 dB at 1.1 MHz to -1.1 dB at 4.88 MHz.

Time varied gain based on running mean absorption estimates were employed during the measurements with appropriate corrections based on the measured absorptions being applied at the completion of the experiments [6].

C. Measurements

The ultrasonic measurements on the liver samples were conducted with two exceptions within one to three days post-mortem. The samples were removed from the cadaver prior to any postmortem infusion procedures, and were cut from the anterior portion of the liver extending below the ribs, with the backplane of the sample sliced roughly parallel to the external liver surface. With the samples immersed in physiological saline held at 20 °C and the ultrasonic beam incident perpendicularly on the external liver surface, the backscatter was measured at two depths extending from 0.6 cm to 1.8 cm, and from 1.2 cm to 2.4 cm below the surface, respectively. Four separate measurements were made at each depth. The total insonified volume averaged about 10 cm³ per sample (5 cm³ per sample in the case of the 1.1 MHz measurements).

The absorptions were measured by means of a substitution technique. To the extent possible, all of the measurements were carried out under double-blind conditions.

D. Diagnostics and Biochemical Assays

Subsequent to the ultrasonic measurements, the samples (nineteen male, six female) were classified on the basis of clinical and autopsy data as either normal or abnormal. The abnormal group (eight male, four female) was then further categorized according to the lipid content—fatty (seven male, two female) or nonfatty. One normal and one fatty sample were rejected because of technical problems. The lipid, protein, and moisture contents of the samples were determined by B. Guy Hunt Laboratories (Winnipeg) using standard chemical analytical methods.

3. Results and Discussion

The average lipid content and physical data for the normal samples (table 1) are in good agreement with generally accepted values [7]; however, the protein content appears to be about 20 percent low. Detailed data on the abnormal samples is given in table 2.

Table 1. Composition and physical characteristics of normal liver samples.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lipid (%)(^b)</td>
<td>4.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Protein (% nitrogen x 6.25)</td>
<td>14.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Moisture (%)</td>
<td>77.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>1680</td>
<td>280</td>
</tr>
<tr>
<td>Age of deceased ((y))</td>
<td>55</td>
<td>26</td>
</tr>
<tr>
<td>Weight of deceased (kg)</td>
<td>67</td>
<td>9</td>
</tr>
</tbody>
</table>

\(^a\) Eleven male, one female, ranging in age from 15 to 93 years.

\(^b\) Estimated accuracy of lipid analytical determination ± (0.1 (% lipid) + 1%).

A. Normal and Fatty Liver Tissue

Ultrasound Attenuation

The attenuation was measured in eight of the normal samples, and yielded a mean value of 0.64 dB/cm/MHz for the frequency normalized absorption coefficient, \( a/f \). Possibly reflecting a lower protein content, this value is about 10 percent lower than the mean value quoted by Wells [8] for the 3 to 5 MHz range. The average attenuation for the normal samples at the 2.25, 3.56 and 4.88 MHz frequencies were 1.5, 2.3 and 3.2 dB/cm, respectively.

In the case of the fatty livers, the absorptions were determined for all but the 7.7 percent lipid sample (table 2). Excluding the 45.6 percent lipid sample, which exhibited anomalously high absorption, the average value of \( a/f \) for the fatty livers was 0.86 dB/cm/MHz or about one third greater than for the normal livers.

The two extremely fatty samples (table 2) were rather interesting for, although similar in appearance, they had markedly different absorptions. The 35.5 percent lipid sample measured 2.74 dB/cm at 3.56 MHz (six replicates) which is only slightly more than in normal liver, while the 45.6 percent lipid sample measured a remarkable 14 dB/cm (three replicates). The reason for this anomalously high absorption is not certain but it seems to point to the possible presence of gas bubbles in the latter sample, despite the fact that the liver sample was obtained one day post-mortem. Also, un-
Table 2. Composition and clinical data for the abnormal samples.

<table>
<thead>
<tr>
<th>Group</th>
<th>Total lipid %</th>
<th>Protein %</th>
<th>Moisture %</th>
<th>sex</th>
<th>age</th>
<th>height m</th>
<th>weight kg</th>
<th>history</th>
<th>Liver weight, g</th>
<th>Liver appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>16.0</td>
<td>72.2</td>
<td></td>
<td>M</td>
<td>--</td>
<td>1.63</td>
<td>52</td>
<td>alcoholism</td>
<td>1630</td>
<td>--</td>
</tr>
<tr>
<td>9.0</td>
<td>14.0</td>
<td>71.1</td>
<td></td>
<td>M</td>
<td>26</td>
<td>1.70</td>
<td>69</td>
<td></td>
<td>1690</td>
<td>--</td>
</tr>
<tr>
<td>11.4</td>
<td>11.4a</td>
<td>74.3</td>
<td></td>
<td>M</td>
<td>--</td>
<td>1.65</td>
<td>64</td>
<td>alcoholism</td>
<td>1940</td>
<td>pale yellowish</td>
</tr>
<tr>
<td>14.7</td>
<td>13.2</td>
<td>64.1</td>
<td></td>
<td>M</td>
<td>45</td>
<td>1.80</td>
<td>59</td>
<td></td>
<td>1900</td>
<td>alcoholic hepatitis, mod. fat infilt.</td>
</tr>
<tr>
<td>14.9</td>
<td>13.2</td>
<td>71.2</td>
<td></td>
<td>M</td>
<td>54</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>11.9</td>
<td>70.1</td>
<td></td>
<td>F</td>
<td>69</td>
<td>1.63</td>
<td>66</td>
<td></td>
<td></td>
<td>pale</td>
</tr>
<tr>
<td>35.5</td>
<td>10.6</td>
<td>52.5</td>
<td></td>
<td>M</td>
<td>60</td>
<td>1.82</td>
<td>84</td>
<td></td>
<td>3450</td>
<td>yellow</td>
</tr>
<tr>
<td>45.6</td>
<td>8.4</td>
<td>44.4</td>
<td></td>
<td>M</td>
<td>50</td>
<td>1.68</td>
<td>117</td>
<td>alcoholism</td>
<td>5600</td>
<td>yellow, fatty</td>
</tr>
<tr>
<td>Nonfatty</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>18.1</td>
<td>79.8</td>
<td></td>
<td>M</td>
<td>64</td>
<td>1.74</td>
<td>82</td>
<td>cirrhosis</td>
<td>1730</td>
<td>yellow, firm</td>
</tr>
<tr>
<td>3.7</td>
<td>15.2</td>
<td>79.6</td>
<td></td>
<td>F</td>
<td>91</td>
<td>1.56</td>
<td>40</td>
<td>diabetes (diet)</td>
<td>1220</td>
<td>nodular</td>
</tr>
<tr>
<td>3.8</td>
<td>16.8</td>
<td>78</td>
<td></td>
<td>F</td>
<td>76</td>
<td>1.51</td>
<td>37</td>
<td></td>
<td>730</td>
<td>adv. cirrhosis</td>
</tr>
</tbody>
</table>

\( ^a \)Estimate.

like the 35.5 percent lipid sample, the 45.6 percent sample was buoyant in the 0.1 N saline solution.

B. Normal Liver Backscatter Coefficient, Range and Frequency Dependence

The backscatter coefficients and corresponding envelope backscatter coefficients for the normal samples are plotted as a function of frequency in figure 1(a) and (b). (A number of single data points are also included.) The ranges of the backscatter coefficients at each of the measurement frequencies are extremely broad. For example, at 2.25 MHz, \( \langle \sigma \rangle \) varies from 0.17 to 2.9 mm²/cm²—a range of over 12 dB. With the exception of a single low value at 4.88 MHz, which may have been the result of a faulty measurement, the largest range is exhibited by the 1.1 MHz values. It is tempting to attribute this primarily to first-order diffraction effects [9,10] and to the greater statistical fluctuation at this frequency, but a more careful analysis of the measurements does not seem to support this view. While large fluctuations in the individual measurement values were observed in many of the samples, when the measurements were repeated on the same sample using slightly different aspect angles and insonified sites, the mean values seldom differed by more than 1 or 2 dB. Furthermore, if we take into account the dimensions of the blood vessels in terms of wavelength, the decrease of the highest \( \langle \sigma \rangle \) values between 1.09 and 2.25 MHz is consistent with oblique incidence scattering by cylinders of corresponding radii in the transition region from Rayleigh to geometrical scattering (i.e., the vessels will tend to scatter specularly with increasing frequency). Since the larger blood vessels tend to radiate towards the liver surface, the oblique aspect angles would be more probable in our measurements resulting in an effective decrease in the backscatter at the higher frequencies. In contrast to the vessel orientations, the orientations of the liver lobule "fascia" appear essentially random over the extent of the insonified volumes. This would lead one to expect the ensemble averaged backscatter to be independent of aspect angle. In attempting to answer the question concerning the relative contributions of the liver lobules, blood vessels and other liver structures to the overall scattering process [11], our results would seem to indicate that scattering by the larger vessel inhomogeneities, if present in the insonified volume, will tend to dominate the backscatter below about 1.5 MHz.

The average frequency dependence of \( \langle \sigma \rangle \) over the 2.25 to 3.56 MHz range is given by \( f^0.8 \) (fig. 1(a)), decreasing to about \( f^0 \) in the 1.09 to 2.25 MHz interval, and increasing to \( f^1.5 \) between 3.56 and 4.88 MHz (if we exclude the 4.88 MHz value for the borderline sample). While there are too few values to provide more than a rough estimate of the frequency dependence in the latter two intervals, these values are in good agreement with those obtained by Nicholas [12] using spectral analysis. The relatively low frequency dependence observed illustrates the effect that the presence of even a relatively small number of "geometrical region" scatterers can have on the composite frequency dependence. For this reason the frequency dependence of diffuse volume backscatter may not be as useful a parameter for some tissue diagnostic applications as the magnitude, the angular dependence or the absorption.
Fig. 1. (a) Backscatter coefficients as a function of frequency for samples of normal liver tissue. The logarithmic mean values of <p> for the 2.25 and 3.56 MHz data are indicated by connecting heavy barred lines. The dashed lines correspond to ± 6 dB about the logarithmic means and bound essentially all of the measured values in this frequency range. The sample with the lowest backscatter coefficients suggests a borderline sample. Its moisture content of 81 percent was second highest of the normal samples.

Similar comments apply to the envelope backscatter coefficient shown in figure 1(b) although the frequency dependence is only half as great (or less if the scattering process is inhomogeneous). The principal advantages of using <T> are that it simplifies the electronics requirements and is less sensitive to isolated large extraneous echoes thereby reducing the consequent error. For these reasons, we will consider mostly <T> instead of <p> in the following paragraphs. However, to obtain an estimate of <p> one need only compute (1 + γ^2)<T> using the average measured value of 0.6 for γ instead of the theoretical value of 0.52.

C. Backscatter Dependence on Lipid and Protein Content

Values of <T> were compared with the lipid and protein contents of both the normal and abnormal samples. Figure 2 shows the 2.25 MHz values of <T> as a function of the protein content (F) for normal samples. The value of the simple linear correlation coefficient r_Tp = 0.776 and is significant at the 1 percent level (t-test assuming r_Tp = 0; ten samples). Comparable results were obtained at the higher frequencies. This implies that in normal liver inherent differences in the protein content may result in <T> varying as much as 9 dB.

(Conversely, taking the protein into account and assuming the scattering processes add in quadrature, the 12 dB range of the 2.25 MHz values in figure 1(a) and (b) can, in principle, be reduced by 4.5 dB.)

Fig. 2 Dependence of <T> on protein content in normal liver; the correlation coefficient r_Tp = 0.776.
No significant correlation was observed at 1.1 MHz. This fact coupled with the previous observations would seem to indicate that frequencies below about 2 MHz should be avoided for quantitative measurements of volume backscatter from liver tissue.

In contrast to the correlation of the backscatter with protein content, the correlation of $<r>$ with the lipid content of the normal samples was not significant. The presence of glycogen and other minor hepatic constituents (moisture tends to correlate inversely with lipid and protein) has been neglected but their contribution is not likely to be significant in normal liver.

The effect of the lipid becomes apparent in the fatty liver samples, which ranged from 7.7 to 45.6 percent lipid. The backscatter and lipid content (L) are highly correlated ($r_{TL} = 0.980$ and 0.978 at 2.25 and 3.56 MHz, respectively) and suggest a roughly linear relationship between the two as shown in figure 3 for the 2.25 MHz values.

However, in view of the limited number of measurements and the possibility that the 45.6 percent lipid sample may have contained gas bubbles, the latter is probably at least partly due to coincidence since a linear dependence for a lipid content approaching 50 percent would seem unlikely.

The histological appearance of mildly and severely fatty livers are shown in figure 4(a) and (b). It can be seen from these pictures that the structural changes that occur in hepatic tissue with increasing lipid content span the spectrum from nearly normal to grossly abnormal. If we combine the two groups of samples and take the protein content into account, the multiple linear regression equation for $<r>$ at 2.25 MHz becomes $<r> = -1.4 + 0.10L + 0.12P$ with $r_{LP} = 0.966$. This indicates that the effective scattering contributions by the protein and lipid (either directly or indirectly) are roughly comparable on a percentage weight basis, with the protein contributing about 40 percent more to $<r>$ at this frequency than the lipid for equal per-

Fig. 3 Dependence of $<r>$ on lipid content in fatty liver; the correlation coefficient $r_{TL} = 0.980$; $f_c = 2.25$ MHz.

![Graph](image)

Fig. 4. (a) Mildly fatty liver in an alcoholic. Many of the hepatocytes contain large lipid globules (clear areas in the stained cytoplasm). Magnification 25X.
(b) Severe fatty liver in an alcoholic. The nuclei of the cells are displaced by large lipid globules; little cytoplasm remains. Magnification 25X.
centages of the two constituents. The corresponding result at 3.56 MHz was $<r> = -1.9 + 0.10L + 0.17F$ with $r_{L,F} = 0.939$. In this case, data was available for only eight normal and six fatty samples. Additional measurements will be needed to establish if the difference in the relative contributions implied by these two regressions (and therefore the frequency dependence of the normal and fatty samples) is significant.

For predictive purposes we require the percent lipid as a function of $<r>$ and the percent protein. Moreover, the remaining abnormal nonfatty samples, listed in table 2, should also be included in the regression. The resultant linear regression equation obtained at 2.25 MHz was $L = 15.1 + 9.2 <r> - 1.2P$, with $r_{L,P} = 0.971$. This regression with 18 degrees of freedom (21 samples) and F-test value $= 157$ is significant at the 1 percent level. Comparing it to the previous 2.25 MHz regression, the effect of the additional samples is seen to be minimal.

![Graph](Fig. 5 Dependence of $<r>$ on the lipid content for the combined group of normal and abnormal samples; the correlation coefficient $r_{L} = 0.943$.)

In potential diagnostic applications the percent protein would most likely not be available. The resultant simple two variable linear regression equation obtained, $L = -442 + 11.0 <r>$, is graphed in figure 5. The correlation coefficient $r_{L} = 0.943$ is essentially the same as when the nonfatty abnormal samples were excluded. Figure 5 shows that the backscatter coefficients are substantially greater for the moderately and extremely fatty livers. The corresponding regression at 3.56 MHz, based on 17 samples, resulted in $L = -6.2 + 11.3 <r>$ and $r_{L} = 0.914$. In view of the limited number of samples and the large weighting by the two extremely fatty livers, these regressions can only be considered preliminary. Nevertheless, they seem to suggest that a simple quantitative diagnostic test based on the magnitude of the backscatter is feasible in principle.

4. Summary

Experimental values of the volume backscatter coefficients and estimates of their distribution and frequency dependence were obtained for normal liver. These were discussed and compared from the point of view of the underlying scattering processes, the liver composition and potential diagnostic requirements. The results indicate that in the case of liver, frequencies under 2 MHz should be avoided for quantitative diagnostic backscatter measurements.

Significant correlations of the backscatter with protein content were observed in normal liver and with both protein and lipid content in abnormal fatty liver. In the case of the latter, regressions significant at the 1 percent level were obtained.

Acknowledgment

This work was supported in part by the Department of Environment, Freshwater Institute, Winnipeg, Canada.

References


ULTRASOUND BACKSCATTERING FROM BLOOD: HEMATOCRIT AND ERYTHROCYTE AGGREGATION DEPENDENCE

M. Hanss and M. Boynard
Laboratoire de Biophysique
UER Expérimentale de Médecine et de Biologie
74, rue Marcel Cachin - 93000 Bobigny
and
UER Biomédicale des Saints-Peres
45, rue des Saints-Peres - 75006 Paris

The ultrasound back-scattering of blood has been shown to be increased when the erythrocytes sedimentation rate is high. Moreover, in this case, temporal fluctuations of the back-scattered intensity have been also demonstrated. To explain these results, a simplified theory of ultrasound back-scattering by blood is presented. The model of the blood structure used is: the erythrocytes are associated to form spherical transient aggregates having the same cell number, m. The acoustic wave is scattered by these clusters called "scattering units." The scattered intensity is calculated for one scattering unit taking a spherical elastic model, then for a blood unit volume, when the hematocrit H is very low. It is found that the back-scattered intensity is proportional to H and to m. When H is not negligible, a simplified statistical theory is proposed. The main result is that the back-scattered intensity is still proportional to m but that it passes through a maximum value when H is near 0.3. An explicit relation between the mean relative value of the intensity fluctuation, H and m is given. Therefore, the aggregation state of blood can in principle be determined through ultrasound scattering studies. Further theoretical developments are in progress so as to take into account the distribution of the number of erythrocytes in each kinetic units and the variation of this number with H.

Key words: Blood erythrocytes aggregation; blood hematocrit; ultrasound back-scattering from blood.

When an ultrasound echographic probe is placed on top of a vertical cylindrical tube filled with blood, it has been found that the echo pattern of the sedimenting blood varies according to its sedimentation rate [1]. For high sedimentation rate samples, the mean back-scattered intensity is larger; furthermore the echo amplitude at a given depth in the erythrocyte column presents characteristic temporal fluctuations. We wish to present a simple theoretical approach in order to explain these phenomena. Though the scattering of ultrasound by blood is increasingly used in clinical medicine, the fundamental data on this property are very scarce, and mainly due to Reid and co-workers [2-5]. Fluctuations (temporal and spatial) in the echo amplitude have also been reported by Atkinson and Berry [6]. However, none of these studies can give a straightforward explanation of our experimental results.

1 Figures in brackets indicate literature references at the end of this paper.

Blood Model

The red blood cell (RBC) concentration is usually defined by the hematocrit H, that is, the time average of the RBC volume fraction in a given blood volume. For a normal blood sample, H is rather large (H = 0.45) so that the RBC interact each with the other. We will describe these interactions by assuming that m RBC are mechanically correlated during a period Tc larger than the ultrasound pulse, giving rise to a transient aggregate which we assume to be spherical, with radius A; this dimension could be thought of as a correlation length. We will also suppose that each aggregate has the same number m of RBC. The ultrasound wave is scattered by these aggregates which therefore will be called the scattering units (S.U.).

If v is the number of S.U. per unit volume and vH the RBC volume, the usual hematocrit number H is given by:

\[ H = mv_H \]  (1)
However we are interested in the volume fraction of the S.U. and not the static hematocrit H. We will introduce a "dynamic" hematocrit number H' as follows:

\[ H' = \nu v'_{su} \]

where \( v'_{su} \) is the excluded volume of the S.U. (fig. 1) which takes into account the S.U. volume, \( v_{su} \), and the trapped plasma between the S.U.:

\[ v'_{su} = v_{su} + p_{su} \]

where \( p_{su} \) is a dimensionless number greater than or equal to 1. The volume of one S.U. must also be equal to the trapped plasma inside the S.U.:

\[ v_{su} = m v_{hph} \]

where \( p_{h} \) is another dimensionless quantity greater than or equal to 1. If the RBC were perfectly packed without free volume for the plasma, \( p_{su} \) and \( p_{h} \) would be equal to 1. For an imperfect packing, they are greater than 1. The dynamic hematocrit \( H' \) is greater than \( H \) because in the course of their motions the RBC's and S.U.'s carry with them a fraction of the plasma. Its value is:

\[ H' = m v_{hph} \]

Using this model, the S.U. radius is given by:

\[ A = \left( \frac{3}{4 \pi} \frac{m v_{hph}}{} \right)^{\frac{1}{3}} \]

\[ (3) \]

Fig. 1. Blood model used, showing the transient spherical aggregation (scattering unit S.U.).

Ultrasound Back-Scattering by One S.U.

Let \( I_{0} \) be the incident wave intensity per unit area of a spherical scattering center, with radius \( A \) smaller than the wavelength. The scattered intensity per unit solid angle in the direction \( \theta \) is \( I_{D} \). The detecting solid angle being \( d \theta \), the differential scattering cross-section is:

\[ d \sigma = \frac{i_{D} d \omega}{i_{0}} \]

In back-scattering experiments, the angles \( \theta \) and \( \phi \) values are 180° and 90° respectively (fig. 2). The detecting solid angle depends on the probe surface \( S \) and the distance \( x \) between the probe and the S.U. One can take into account these parameters by introducing a geometrical factor \( g(x) = S/x^2 \).

\[ I_{D} = \frac{d \sigma}{d \omega} I_{0} G(x) \]

Fig. 2. Scattering coordinates.

We can only measure intensities emitted and received by the probe, \( I_{0} \) and \( I_{D} \). They differ from \( I_{0} \) and \( I_{D} \) because of the attenuation of the incident and scattered beams by the medium between the probe and the S.U. They also differ because the ultrasonic field varies with distance. We can lump all these factors in a general function of the distance \( x, G(x) \) so that one can write

\[ I_{D} = \frac{d \sigma}{d \omega} I_{0} G(x) \]

The factor \( G(x) \) is not essential in our final results. It could be determined by a substitution method as described, for instance, by Sigelmann and Reid [3].

The differential scattering cross-section is known for some simple models [7]. Using the results for an elastic sphere, the back-scattered intensity is finally:

\[ I_{D} = I_{0} G(x) \frac{m v_{hph}}{g_{c} c_{0}} \left[ 1 - \left( \frac{c_{p}^{2} \rho_{0}}{c_{p}^{2}} \right) + 3 \left( \frac{\rho - \rho_{0}}{2 \rho + \rho_{0}} \right)^{2} \right] \]

\[ (5) \]

\[ I_{D} = I_{0} G(x) \frac{m v_{hph}}{g_{c} c_{0}} A^{k} \]

where \( c \) and \( c_{p} \) are the sound wave velocities in the S.U. and the plasma respectively, and \( \rho \) and \( \rho_{p} \) the corresponding densities. We assume that the S.U. coefficients, \( c \) and \( \rho \), are identical to the RBC coefficients, \( c_{h} \) and \( \rho_{h} \).

Back-Scattering by Whole Blood

The scattering of dense particle medium is a complex theoretical problem which has already been treated by Twersky [8-10] and applied by Shung, Sigelmann and Reid [4,5]. The following simplified approach can be used. Let \( s' = \sigma_{su} \) be the functional diametral area of one S.U.,
where \( s \) is the diametral area of one S.U. and \( q_{su} \) is a dimensionless number, usually greater than 1, and which is characteristic of the S.U. packing. For a spherical S.U. one has:

\[ s' = q_{su} \pi A^2. \]

We are interested by the intensity \( I_{\Delta x} \) scattered by a cylindrical volume element having the same axis as the ultrasonic wave with height \( \Delta x \) and base area \( S \) at a distance \( x \) from the probe (fig. 3).

\[ \text{Fig. 3. Simplified diagram of the sedimentation tube with the echographic probe.} \]

We will consider in this volume an elementary slab \((S, 4A)\) defined by the two sections with distances \((x + 2A)\) and \((x - 2A)\). The maximum number of S.U. which can exist in this slab is \( 2N = 25/s' \); we will call \( N \) the number of sites, each composed of two cells, which can be occupied by 0 or 1 or 2 S.U.

Figure 4 shows a simplified slab with 7 sites occupied in such a way that the ensemble average of the hematocrit is 4/7. Eq. (5) only applies to the sites "f"; for the other ones, eq. (5) indicates that the scattered intensity is zero.

\[ \text{Fig. 4. Statistical model. The slab} (x - 2A, x + 2A) \text{has} 7 \text{sites with an occupation probability of} 4/7. \text{Only the "f" replacements have a favorable configuration for backscattering.} \]

By a simple calculation in order to find the probability that a given site is in a favorable configuration (as regards back-scattering), it can easily be shown that the number of sites, \( N_f \), which have a favorable configuration in an elementary slab \( 2A \) is:

\[ N_f = NH'(1 - H') \]

Assuming that \( I_0 \) and \( I_0 \) do not depend on \( x \) in the volume \( \Delta x \) (this point is justified by the low values of the attenuation and reflection coefficients in blood), each slab \( 2A \) back-scatters with the intensity:

\[ I_{2A} = NH'(1 - H')I_D \]

As there are \( \Delta x/2A \) elementary slabs in the interrogated volume \((\Delta x, S)\), one has:

\[ \frac{I_{\Delta x}}{\Delta x} = \frac{NH'}{2A} (1 - H')I_D \]

This expression can be further transformed by replacing \( N \) by \( S/s' \) and \( H' \) by \( p_{su}p_{HH} \), using eq. (5) for \( I_D \). As we have used an impenetrable spheres model with a cubic packing, the factor \( p_{su}/s' \) is equal to \( 3/2 \). Finally one obtains:

\[ \frac{I_{\Delta x}}{\Delta x} = \left( \frac{3}{4\pi} \right)^2 \frac{S_{0}^4}{c^4} \frac{\mu^4}{6} G(x) k_{mv} p_{HH}^2 (1 - p_{HH}p_{HH}) \]

In this derivation we have added the individual intensities and not the wave amplitudes, thus ignoring the interference problem. This is justified in a first approach because the distribution of the scatterers in the interrogated volume is random.

Back-Scattering Fluctuations

Examination of eq. (8) shows that the only fluctuating quantities are \( H \) or \( H' \) (the packing factors do not fluctuate as we have assumed a spherical model for the aggregates. It is also assumed in the model that \( m \) is constant. For an elemental variation \( dh' \) of \( H' \) in a slab \((2A)\), the scattered intensity will vary according to eq. (7):

\[ dI_{2A} = I_D N(1 - 2H')dH' \]

The relative mean quadratic fluctuation \( F_{2A} \) is defined as follows:

\[ F_{2A} = \frac{<(dI_{2A})^2>^{1/2}}{<I_{2A}>} \]

and can be written:

\[ F_{2A} = <(1 - 2H')^2>^{1/2} <(dH')^2>^{1/2} \]

\[ F_{2A} = a<(dH')^2>^{1/2} \]
If one transforms $dH'$ into $dv$, one obtains:

$$F_{2A} = av_h p_h p_{su} m dv^2 = \frac{<v>^{1/2}}{(2\pi)^{1/2}}$$

As in the initial model the site occupancy probabilities are independent, the S.U. distribution obeys Boltzmann statistics and $<dv>^2$ is given by [11]:

$$<dv>^2 = \frac{<v>^{1/2}}{(2\pi S U) m}$$

Therefore $F_{2A}$ can be written:

$$F_{2A} = a(2\pi S U) p_h p_{su} m$$

The corresponding fluctuation coefficient for the blood column $A_x$ is $F_{Ax}$:

$$F_{Ax} = \frac{<(dI_{Ax})^2>^{1/2}}{<I_{Ax}>^{1/2}}$$

Assuming independent fluctuations for the $A_x/2A$ elementary slabs in $A_x$, the total fluctuation is given by:

$$F_{Ax} = \left( \frac{2A}{A_x} \right)^{1/2} F_{2A}$$

or:

$$F_{Ax} = \left( \frac{36}{\pi^2} \right) v_h p_h p_{su} m^{1/6}$$

This equation shows that the standard deviation of the fluctuations, given by $F_{Ax} <I_{Ax}>$, is proportional to $m^{1/6} S U^{1/2}$.

Discussion

In our model, the interactions between RBC lead to monodisperse spherical aggregates. Indeed, microscopic observations show reversible aggregation in normal and pathological blood [12]. Our picture may be oversimplified, as these transient aggregates are polydisperse in dimension and shape. We feel however, that introducing polydispersity function would not change our treatment fundamentally.

Equation (8) is very similar to a previous result obtained by Shung et al. [4] using Tversky's theory [8-10]. However, as this theory predicts that the back-scattering goes through a maximum for $H = 0.50$, Shung et al. introduced an empirical fitting constant as their experimental results showed a maximum for hematocrit values between 0.25 and 0.30.

We have plotted on figure 5 their experimental results and a theoretical curve obtained by using eq. (8) and the following values:

- $v_h = 10^{-10} cm^3$
- $p_h = 2$
- $G(x) = 1$ (negligible attenuation)
- $m = 2$ (slight aggregation)
- $p_{su} = 1$
- $\omega = 2 \pi 5.2 \times 10^6 s^{-1}$
- $\rho_0 = 1.076; \ p = 1.223$
- $C_0 = 1550 m s^{-1}; \ c = 1610 m s^{-1}$
- $\lambda = 1.223$
- $10^{-6}$

Shung et al.'s scattering coefficient $a$ is identical to:

$$\frac{1_{Ax}}{I_0} \frac{1}{S_{Ax}}.$$

The quantitative agreement between the two results seems satisfactory. Our treatment can directly explain the experimental results of Shung et al. [4,5]. The aggregation dependence of the scattered intensity by whole blood is also shown in eq. (8) and has recently been demonstrated by Shung and Reid [13].

In order to derive the fluctuation coefficient, it has been assumed that the probability of finding a S.U. in a given elementary volume is proportional to the S.U. number concentration and independent of the occupation state of the neighbouring elementary volumes. This would be the case for pure Brownian motion. However, as has already been pointed out by Atkinson and Berry [6], the thermal diffusion of RBC's is much too slow (10^8 s) to travel one wavelength.

Two other mechanisms could be postulated. The first one is evaporation streams which break apart, associate, rotate and translate the aggregates, so that the occupancy of a given elementary volume fluctuates to and fro in the occupation probability. The second explanation can be found in the dissociation-association kinetic of the S.U. In that case it is $m$ which would fluctuate. Further ex-
periments are needed in order to assess the respective importance of the mechanisms.

Summary

The ultrasound back-scattering of blood has been shown to be increased when the erythrocyte sedimentation rate is high (Fig. 1). Moreover, in this case, temporal fluctuations of the back-scattered intensity have also been demonstrated. In order to explain these results, a simplified theory of ultrasound back-scattering by blood is presented.

The following model of the blood structure is used: the erythrocytes are associated to form spherical transient aggregates having the same cell number, m. The acoustic wave is scattered by these clusters called "scattering units".

The scattered intensity is calculated for one kinetic unit taking a spherical elastic model, then for a blood unit volume, when the hematocrit H is very low. It is found that the back-scattered intensity is proportional to H and to m.

When H is not negligible, a simplified statistical theory is proposed. The main result is that the back-scattered intensity is still proportional to m but that it passes through a maximum value when H gets near 0.3.

An explicit relation between the mean relative value of the intensity fluctuation, \( H \) and \( m \) is given.

Therefore, the aggregation state of blood can in principle be determined through ultrasound scattering studies. Further theoretical developments are in progress so as to take into account the distribution of the number of erythrocytes in each kinetic unit and the variation of this number with H.

References


CHAPTER 6
TUMOR DOPPLER SIGNATURES
TUMOUR DETECTION BY ULTRASONIC DOPPLER BLOOD-FLOW SIGNALS

P. N. T. Wells, M. Halliwell, R. A. Mountford, R. Skidmore, A. J. Webb and J. P. Woodcock

Bristol General Hospital and Bristol Royal Infirmary
Bristol, United Kingdom

An in situ cancer is avascular and harmless. Vascularisation is necessary before a tumour is potentially capable of rapid growth. Distinctive continuous-wave ultrasonic Doppler signals have been obtained transcutaneously from malignant breast tumours. Similar signals have been detected from abdominal malignancy, by means of a pulsed Doppler. These signals may form the basis of a practicable method of screening for breast cancer, and of improving the accuracy of cancer diagnosis.

Key words: Blood flow; breast cancer; diagnosis; Doppler; screening; ultrasonics.

1. Tumour Blood Flow

A single aberrant cell is almost certainly the origin of every solid malignant tumour. This cell divides to form a colony of malignant cells, called an in situ cancer. An in situ cancer is avascular and harmless, and cannot grow beyond the volume limited by diffusion of nutrients and wastes. The event which converts an in situ cancer into a "tumour" is apparently the release by the malignant cells of a diffusible chemical substance, called the "tumour angiogenesis factor" [1]. Once the tumour is vascularised it is potentially capable of rapid growth. The blood flow in normal tissue like that of the breast is in the range 10 to 30 ml min⁻¹ kg⁻¹ [2]. The blood flow in lymphomas is about 380 ml min⁻¹ kg⁻¹, in differentiated tumours, 140 ml min⁻¹ kg⁻¹, and in anaplastic tumours, 110 ml min⁻¹ kg⁻¹ [3].

The possibility that changes in blood flow might be used to detect malignant tumours is discussed in this paper, and some preliminary results are presented. Most of the experimental work was done with breast lesions, because of their accessibility and the potential importance of the method in screening for breast cancer.

The blood vessels which serve the breast are illustrated in figure 1. The mass of a typical female breast is about 0.3 kg. Assuming that the three main arteries each serve one third of the breast, the normal flow rate in each artery would be around 1 to 4 ml min⁻¹. A malignant tumour with diameter of 20 mm would require a flow rate of about 0.5 to 1.5 ml min⁻¹. Therefore, in an individual, there might be a significant difference between the flow in an artery supplying a tumour and part of the breast, and the flow in the corresponding artery serving the normal breast. There is at present no non-invasive method of measuring blood flow volume which would enable this

Fig. 1. Principal blood vessels serving the right breast.

to be tested. It may be that a change might occur in the pulsatility index of the flow [4], but this would be difficult to establish since every pair of arteries (serving the two breasts) would need to be studied.

In biomedicine, liquid flow through small ducts has previously been recognised in backscattered ultrasonic Doppler frequency-shifted signals [5] in two situations. The first of these is in the placenta [6] and the second, in the fetal lung during breathing [7]. Recently it has been reported that characteristic blood flow signals are associated with neovascular flow in malignant tumours [8] and additional data are presented in this paper.

2. Breast Investigations

Breasts were examined as illustrated in figure 2. A regular continuous-wave ultrasonic Doppler blood-flow detector [5] was used. The hand-held probe had a diameter of about 10 mm, and contained two separate 8 MHz transducers, one for transmitting and one for receiving. The transducers were

Figures in brackets indicate literature references at the end of this paper.
aligned so that the volume sensitive to motion extended axially beyond the end of the probe. For each patient, the Doppler signals obtained from over the lesion were compared with those from the corresponding site on the opposite breast. Both breasts of each normal individual were thoroughly explored to search for Doppler signals which were asymmetrical and characteristic of neither normal arterial nor venous flow.

The results are summarised in table 1. Sonograms of the signals recorded from a normal mammary artery, a malignant breast tumour, and tissues at the corresponding site in a normal breast, are shown in figure 3.

Table 1. Ultrasonic Doppler signals obtained from breast in various clinical conditions.

<table>
<thead>
<tr>
<th>Confirmed diagnosis</th>
<th>Number of patients with neovascularisation signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Normal</td>
<td>2</td>
</tr>
<tr>
<td>Mastitis</td>
<td>1</td>
</tr>
<tr>
<td>Mammary duct papillomatosis</td>
<td>1</td>
</tr>
<tr>
<td>Mammary duct ectasia</td>
<td>2</td>
</tr>
<tr>
<td>Benign mammary dysplasia</td>
<td>2</td>
</tr>
<tr>
<td>Cyst</td>
<td>1</td>
</tr>
<tr>
<td>Fibroadenoma</td>
<td>0</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>0</td>
</tr>
<tr>
<td>Carcinoma</td>
<td>0</td>
</tr>
</tbody>
</table>

aNumber of patients = 16.

3. Investigations of Other Tumours

Signals apparently associated with malignant neovascularisation have been detected in the abdomen. Two-dimensional scanning was used to locate a pancreatic tumour. The ultrasonic beam of the scanner probe was directed through the tumour. The probe was then connected to a 2 MHz pulsed Doppler [5]. Blood flow signals were detected when the Doppler was range-gated into the tumour.

4. Discussion

A. Breast Cancer

Breast cancer is the most common malignancy in Western women. In the United Kingdom, breast cancer affects at least 80 in 100,000 females; it kills 1 in 50 women, 1 in 75 women between the ages of 35 and 60 years, and 1 in 3,500 females of all ages every year. Breast cancer is the main cause of all deaths among women between the ages of 40 and 44. Extrapolating from 1973 U.S. data [9], the present economic cost of breast cancer in the United Kingdom is in the order of $40 million per year (and $200 million per year in the United States).

Earlier diagnosis and treatment of breast cancer might improve the survival time of the patient [10]. If the cancer is removed whilst it is still in situ, the patient is cured. The next step in the natural progress of the disease is when the growing cancer begins to invade the surrounding tissue. For a time, the cancer cells remain localised. If diagnosed and treated at this stage, the 5-year survival rate is around 85 percent. If untreated, the cancer metastasises with regional involvement of the lymph nodes which drain the breast, and the 5-year survival rate falls to about 53 percent. If left untreated, metastases occur in more distant parts of the body. This advanced cancer is virtually incurable, although the time taken for the patient to die is variable.

The treatment of patients with early breast cancer is more successful than that of those in whom the disease is advanced. Breast cancer is usually discovered when the patient herself feels a lump. Even in a “suitable” breast, the smallest lump which can be detected by manual palpation is not much less than 10 mm in diameter [11]. The risk of the presence of distant metastases from a tumour with a doubling time of 1.5 months increases from 22 percent when its diameter is 1 mm, to 43 percent, when it is 10 mm. Once a lump has been discovered in a breast, present diagnostic procedures are already adequate, although there may be
disagreement about the best course of treatment if the lump is a malignant tumour. The possibility exists, however, that diagnosis of pre-symptomatic lesions by an effective screening procedure might lead to a reduction in breast cancer mortality as a result of earlier treatment.

Mammography, either conventional or xeroradiographic, seems to be the best contemporary method of detecting early breast cancer [12]. Unfortunately, however, mammography as a screening procedure confers no benefit on women who are well and under the age of 50 [13]. In these women only 19 percent of cancers would not have been detected without mammography, and so the benefit (which has to be set against the risk of radiation-induced cancer as a consequence of mammography [14]) is small. Even if technical developments were to result in a reduction in x-ray exposure to an acceptable level, the logistics of interpreting the vast number of mammograms which would be obtained in a screening programme pose apparently insoluble problems of manpower, boredom, and expense.

Thermography has been used to study breast tumours [15] but initial enthusiasm for the method has declined. Thus, in a series [16] of 2523 volunteers, 1 patient out of 4 who developed cancer within 18 months of the examination was detected by thermography; 344 had abnormal or suspicious scans, but no abnormality. These and other results are so poor that the method (at least when used alone) seems to have no role in screening for breast cancer.

Conventional two-dimensional pulse-echo ultrasonography is capable of producing images of the breast of quite high resolution [17-20]. Unfortunately, the normal breast is a complex irregular structure, the recognition of small tumours is very unreliable, and there seems to be no way of automating the analysis of the vast number of scans which would result from even only a modest screening programme. The results reported in the present paper indicate that characteristic Doppler signals may be a cancer-specific ultrasonic tissue signature. They might form the basis of a practicable breast cancer screening method.

B. Other Tumours

Cancer-specific Doppler signals could have an important place in the interpretation of the inadequate data which sometimes results from conventional diagnostic tests such as radiography, echography, scintigraphy, and computerised tomography. These opportunities, which are quite distinct from screening, include, for example, the differentiation of small solid and cystic renal lesions, and the differentiation of ophthalmic tumours and organised haematomas.

References


CHAPTER 7
PROPAGATION THROUGH BONE AND SKULL
A THEORY RELATING SONIC VELOCITY TO MINERAL CONTENT IN BONE

Sidney Lees
Forsyth Dental Center
Boston, Massachusetts 02115, U.S.A.

and

Carell L. Davidson
University of Amsterdam
Amsterdam, The Netherlands

Bony tissues consist primarily of mineral hydroxyapatite (HAP) crystallites embedded in a matrix of a much softer material, collagen. Currey and others suggested that bone is a two-phase composite, like mineral filled plastics, but the known laws of mixtures give at best a crude approximation of the observed elastic properties of bone. We have investigated the problem by measuring the ultrasonic velocity in mineral filled particulate composites as a function of the mineral concentration.

It was found that the ultrasonic velocity can be predicted for some mineral filled plastics by applying the Reuss formalism to the longitudinal elastic modulus, indicating that these are families of Reuss solids in some sense. Other mineral filled plastics do not seem to obey this rule, the ultrasonic velocity being greater than predicted. Bone appears to belong to this latter class of particulate composites.

The literature indicates that in certain situations the mineral filler affects the plastic matrix, giving the plastic constituent a higher modulus. A maximum longitudinal modulus is ultimately attained so that two Reuss formalism bounds can be obtained, the lower one calculated from the modulus of the unfilled plastic, the upper using the maximum modulus. The ultrasonic velocities of a system of fluorapatite (FAP) filled epoxy was found to lie between such bounds.

Currey and his successors assumed bone collagen has the same elastic properties as tendon collagen and that these are invariant with respect to contained HAP. The literature shows the contrary, that bone collagen, even when demineralized, is more highly cross linked than any other collagen. Moreover, the literature indicates that HAP crystallites are chemically bonded to the collagen molecules.

It is postulated that bone collagen is stiffened because HAP crystallites form on the intermolecular cross links, encasing them and making their effective lengths very short. It is shown that the sonic velocity for bone can be bounded by two Reuss formalism curves in the same manner as for FAP epoxy.

Key words: Bone; collagen; crosslinking modification; curvelinking; hydroxyapatite; sonic velocity.

1. Bony Tissues

Bony tissues are essentially a mineral, hydroxyapatite (HAP), embedded in an organic matrix, mostly collagen. HAP is an hexagonal crystallite which in bone and dentin is usually less than 100 nm in any dimension. The shape and size distribution of the crystallite in bone has been studied for many years with inconclusive results, except that they are small. Certain x-ray diffraction studies indicate the crystallites are needlelike, others that they are platelets. Electron micrographs show platelets, but the needle form is not thereby excluded. There is reason to believe both forms are present depending on the site of formation. There is also a strong contention that a significant fraction of the mineral is amorphous [1].

Collagen is a generic term for a class of protein that make up much of the body tissue. Bone collagen differs from other collagens in the body because it is so insoluble, indicating a high degree of intermolecular cross linking. The organic part of bone constitutes about 65 percent by volume of the tissue of which 95 percent is collagen. The mineral occupies 35 percent of the volume. Since collagen is such an important body constituent, its chemistry has been studied intensively for many years and is

[1] Figures in brackets indicate literature references at the end of this paper.
still a major field of biochemistry. Very recently the sonic and elastic properties of some types of collagen have begun to be studied because of the need to determine the presence of collagen in tissues and to identify its extent. All collagens are highly structured materials in a multilevel hierarchal order. The molecular weight of the basic collagen molecule, defined as tropocollagen, is approximately 300,000 daltons, which is a very large molecule even in organic chemistry. The molecule is much like a piece of spaghetti having a wet diameter of 1.5 mm and a length of about 300 mm. It is difficult to draw to scale and all figures in this paper are purely schematic. As noted, bone collagen differs from other body tissue collagens by an extensive network of intermolecular cross links that render it insoluble in even the most potent of solvents. On the other hand, tendon collagen is reported to be mostly lacking in intermolecular bonds but having many hydrogen bonded intramolecular links, so that it can be dissolved and reconstituted readily. While other tissues like arteries and joints calcify, there is reason to think that the special structural characteristics of bone collagen cause it to calcify in a unique manner [2].

2. Two Phase Mineral-Filled Plastic Composites

It is the contention of this paper that the mechanical properties of bone can only be understood in the light of the chemical interrelationship between the mineral crystallites and bone collagen. Previously Currey [3], Welch [4] and Katz [5] have considered bone to be a mechanically mixed two phase mineral-filled polymer composite. Their concept yields a crude representation of the variation of elastic modulus with mineral content, but the detailed correlation is not good. Currey [6] even suggested that the crystallites are much longer than observed in order to attribute a fibrous mineral structure to bone to account for the observed elastic and strength properties.

We believe that the difficulties of our predecessors are due to several causes. The elastic modulus of collagen is not well known and there has been no distinction among the various types. Previous investigators used estimates for tendon fibers rather than bone collagen. Except for Mason's [7] sonic velocity measurement on kangaroo tail tendon fibers, the estimates of the elastic modulus were based on low strain rate tests. Secondly, there was no attempt to examine the chemical structure of collagen or the effect of the structure on the properties of bone. Collagen was considered a structureless homogeneous isotropic continuum and the short range order of body tissue collagen was ignored. Thirdly, there is little understanding even at this date how the HAP crystallites are laid down despite a long and intensive investigation over many years by many investigators. Fourthly, the estimates of the elastic modulus of bone have been mostly those obtained by standard stress-strain testers. Bone is viscoelastic. Strain rates and the magnitude of the strain in conventional stress-strain testing causes hysteresis and often permanent distortion. In this paper we use only ultrasonic velocity measurements where the amplitude of displacement is of the order of an angstrom and the period is much less than any relaxation time of the medium.

3. Ultrasonic Measurements

It was the availability of measurements of the ultrasonic velocity of several hard tissues that led to the elastic theory presented here. Conventional procedures for measuring elastic properties are difficult because bone is a viscoelastic material and the data must include the rate of change of strain as well as the strain itself. Moreover, the sample is significantly affected by the test process, so that repeated tests are not consistent. Such a situation requires further interpretation to make sense of the data which is particularly difficult where the material (bone) varies widely due to its biological origin. Ultrasonic velocity measurements, on the other hand, can be repeatedly performed on the same sample with an uncertainty that depends mostly on the measurement technique and not on the sample. The contribution of biological variation can be treated separately apart from the measurement process.

There is a need to relate the elastic properties obtained at high strain rates with the more conventional techniques. Papadakis [8] has designed and tested an infrasonic resonator for testing plastics at about one hertz but which he says can be increased to 1000 hertz. It will be useful to find the sonic velocity measurements in bone at these low frequencies, but the limitations imposed by the inhomogeneities of biological material will require considerable modification of the Papadakis equipment.

4. Rule of Mixtures

It is reasonable to consider bone to be a two-phase mineral-filled composite as Currey did, but it is necessary to know the relationship by which the elastic properties of the composite can be calculated from those of the constituents. A number of rules of mixtures have been proposed for estimating the elastic moduli of the composite but each has limited applicability. Generally they work reasonably well when the properties of the two constituents are nearly alike but when there is a tenfold or greater ratio in density, the mixing rules do not seem to apply.

A number of mineral filled plastics were studied to determine a relationship between longitudinal sonic velocity and mineral content. The first series included tungsten-filled vinyl, crystabolite-filled polymethylmethacrylate, and crystabolite-filled epoxy. It was discovered that one of the known mixing rules did apply. Reuss postulated an expression of the form:

\[
\frac{1}{K} = \frac{\nu_1}{K_1} + \frac{\nu_2}{K_2}
\]

where \( \nu_1 \) = volume fraction of the plastic constituent
\( \nu_2 \) = volume fraction of the mineral constituent = 1 - \( \nu_1 \)
\( K \) = elastic modulus of composite
\( K_1, K_2 \) = elastic moduli of constituents.
In this application the longitudinal modulus was used rather than the bulk and shear moduli which was Reuss's intention. Since

\[ K = k + \frac{4}{3} \mu \]  

(2)

where \( k = \) bulk modulus and \( \mu = \) shear modulus, another value for the longitudinal modulus can be calculated from Reuss's expression applied first to the bulk modulus and then to the shear modulus, but it will be quite different from the value yielded by eq. (1) for the longitudinal modulus directly inserted. Consequently, the expression in eq. (1) is designated the Reuss formalism.

The sonic velocity is calculated as usual from the relation:

\[ c = \frac{K}{\rho} \]  

(3)

where \( \rho = v_1 \rho_1 + \rho_2 V_2 \) and \( \rho = \) density.

Figures 1, 2 and 3 taken from Lees and Davidson [9] show how well Reuss's formalism applies to these examples. It is not obvious why and we do not have an explanation. It is characteristic of these figures that the sonic velocity decreased, or at least does not increase much, as the mineral content increases on the left hand side of the curve, even though calculations show the longitudinal modulus of the composite is increasing. It was found that the density in this regime increases much more rapidly than the elastic modulus. When \( v_1 \) is large and \( K_2 \) is ten times \( K_1 \) the first term on the right side of eq. (1) dominates.
5. Modified Conditions for Rule of Mixtures

As the investigation proceeded a new type of mineral-filled plastic, fluorapatite-filled epoxy, was found which apparently does not follow Reuss's formalism. Fluorapatite (FAP) closely resembles HAP but unlike HAP it can be obtained in large crystals. Powdered FAP is much more crystalline and well behaved crystallographically than HAP. Both FAP and HAP are surface active materials. In figure 4, the lower curve shows the variation of sonic velocity of the composite with mineral content when the longitudinal modulus of the unfilled plastic is taken as the value of $K_1$. It may be observed that all the measured values are above the lower curve and that there is some scatter among them.

![Graph showing modified conditions for rule of mixtures](image)

Fig. 4. Epoxy-fluorapatite composite system (from Lees and Davidson [9]).

The only difference between the situations of figures 3 and 4 is the replacement of one mineral filler by another. It must be concluded that sometimes the filler can influence the mechanical behavior of the plastic matrix. Now it is well known that polymers become stiffer as the cross linking density increases so it is inferred that FAP must cause the epoxy to increase the cross linking density. A similar situation was described by Kumins [10] who found that titanium dioxide causes an increase in cross linking density in epoxy, apparently by a factor of ten when about 3 volume percent titanium dioxide was added. Burhans et al. [11] showed a strong dependence of the elastic moduli on the maximum cross link length, so that either an increased cross linking density, or a decreased maximum cross link length, or both can increase the elastic moduli.

In order to see how this could be applied to the FAP-epoxy composite system, the maximum value for the compressive modulus reported by Burhans et al. was used as a basis for estimating the corresponding maximum value for the longitudinal modulus. A new Reuss curve was calculated using the higher modulus. When plotted on figure 4 it provided an upper bound, so that all the experimentally determined velocities fell between two Reuss curves. This is interpreted to mean that FAP can affect the cross linking density of the matrix. The scattered values of the ultrasonic velocity indicates a variability in the cross linking density from one experiment to the next. The samples were not always prepared the same way and the changed conditions could possibly modify the influence of the filler. For example, the samples were compressed, after mixing, in an attempt to achieve higher mineral content. This caused a gray exudate to ooze from the mold, the gray color being attributed to the very fine FAP particles. But these fine particles are most likely to have maximum influence on cross linking density because of their increased surface area.

6. Structure of Collagen

It is now possible to study ultrasonic wave propagation in bone with these two concepts in mind. First, that for a specific two phase mineral-filled polymer the longitudinal modulus of the composite can be found from the Reuss formalism and, second, the longitudinal modulus of the matrix can be affected by the presence of the filler.

While collagen is a polymer and bone may be considered a two-phase mineral-filled polymer, bone is not formed by starting with a mix of mineral and monomer. Collagen is laid down first and then it becomes mineralized when the HAP crystallites are deposited. When bone is de-mineralized the collagen matrix can be recovered as a rubbery solid having the form and shape of the original bone. However, when collagen is removed the mineral structure left behind is a weak solid that easily crumbles into a powder. It must be concluded that the collagen forms a continuous medium but the mineral does not. The mineral fills voids in the collagen.

Collagen has been studied for many years and much is now understood about its chemistry and ultrastructure but many unresolved problems remain such as the three-dimensional order, the chemical character of the intermolecular cross links and the location of the cross links (Ramachandran [13], Gallop and Paz [14], Vels [15]). Collagen exhibits many levels of order terminating in a fibrous structure. The successive levels of organization can be understood with the aid of figure 5a from Lees and Davidson [2]. The smallest element is the alpha-helix which spontaneously combines in triplets to form a
superhelix molecule, the tropocollagen (TC) unit. In turn TC forms microfibril ropes, which in their turn form three-dimensional fibrils. Fibrils join to form fibers seen in tendon.

1. The basic element, the α-helix chain, has a molecular weight of about 100,000 and several types have been identified depending on the amino acid composition. The α1 chain has 1052 amino residues of which 1011 are in triplet sets where the first term is glycine. The N terminus has 16 nonhelical residues beginning with an amino (NH2) group while the C end has 25 nonhelical residues terminating in a COOH group. Gallop and Paz [14] as well as Hulmes et al. [16] show the residue map. It is the triplet with first term glycine that defines the characteristic pattern through all subsequent hierarchal levels.

2. Three α-helices are wound into a superhelix about 300 nm long, 1.5 nm diameter (wet) and a molecular weight of about 300,000 (Rama-chandra). This is the basic molecule, the TC unit. In experiments, the α-helix spontaneously links up to form collagenous materials which have important industrial and medical uses but the product is not the ordered collagen of bone and tissue. It does demonstrate that the hydrogen bonded state between the α-helices is stable and the basis for interaction between TC units in the higher levels of structure.

3. TC units join in sets that exhibit "quarter staggering" in tissue as illustrated in figure 5b, based on a submolecular length of 67 nm or 234 residues, the D-length (Hodge [17]). A TC unit is 4.4 D units long and packs into a structure exhibiting a repeated 0.6 D unit gap between TC ends. It is a requirement of Hodge's scheme that no two quarter stagger gaps can be adjacent, which imposes a severe restriction on the three-dimensional structure that has not yet been resolved (Segrest and Cunningham [18]).

4. The nonhelical chains at each end of the TC unit and some of the adjacent glycine coded triplets are probably the links between molecule ends but may also serve to link helices within a single molecule, i.e., the inter and intramolecular links are similar. However, many of the intramolecular links must be hydrogen bonds, while much of the intermolecular links between parallel molecules must be chains covalently bonded as side chains to residues in the backbone of the molecule.

5. A number of three-dimensional structures have been proposed for the microfibrils, fibrils and fibers. We use Smith's five strand rope of TC units [19] as modified by Miller and Parry [20]. It is shown in figure 5c as Smith proposed the model with a 67 nm axial stagger, 72° axialithal displacement between axes of nearest neighbors and 43 nm hole between colinear TC units. It incorporates a repeating pattern after 5 x 67 nm and a helix with a five-fold

---

Fig. 5a. The tropocollagen unit (from Lees and Davidson [2]).

Fig. 5b. "Quarter" staggering scheme (from Lees and Davidson [2]).

0.6 D HOLE REGION

N END = 16 RESIDUE LONG NONHELICAL END + TRANSITION HELICAL REGION

C END = 25 RESIDUE LONG NONHELICAL END + TRANSITION HELICAL REGION

D = REPEAT LENGTH OF 234 RESIDUES

(Adapted from Gallop and Paz, 1975 [14])
screw axis (five subunits per screw turn characterized by the holes). The pentagonal unit is 4 nm in diameter when the wet TC unit is 1.5 nm diameter and the lumen is 1.1 nm.

6. Miller and Parry indicated that the five-strand rope must be twisted to produce a four-fold symmetrical supercoil, where the holes are now 90° apart, but there is still a pentagonal packing of the strands. The colinear TC units are inclined about 2.5° to the rope axis to accommodate the twist.

7. Miller and Parry have deduced a fibril packing structure based on a square or tetragonal cell of four microfibrils as in figure 5d. While Miller and Parry did not say so, the pattern of successive helical structures suggests that the microfibrils are coiled about each other while maintaining the four unit cell.

On the basis of this description, the ultra-structure of collagen can be schematically represented as in figure 6 where the microfibrils
are tied together with cross links of organic chains. The TC units are probably very stiff along their major axis. Enemoto and Krimm [21] calculated a value for the Young's modulus of a very similar molecule, polyglycine II, which they found to be 41 GPa, a value far in excess of any reported value for collagen or even for bone (26 GPa). Polyglycine II has a triple helix hydrogen bonded molecule and closely resembles collagen in its structure (Ramachandran [13]). The Young's modulus for TC is probably about the same value, which indicates that the collagen structure is more yielding than the TC units because the cross links are softer. Moreover, the long skinny TC units must bend quite easily unless they are severely restrained, which makes collagen tissue softer than its component molecules.

7. Mineralization of Bone

As the tissue mineralizes, HAP crystallites begin to fill the voids in the quarter stagger gaps, between microfibrils and between fibrils. The loci are inferred because they have been sited definitely only between fibrils (White et al. [1]). It is our contention that the crystallites form on the cross links until they grow to a size that fills the voids. It is implied that the crystallites start with the cross links as the nucleating seeds, which further implies that the stereochemistry of the organic chain must be favorable to the hexagonal habit of HAP. There is no accepted theory to explain how crystallites form and grow in tissue but some workers indicate that the process is mediated by a sequence of chemical stages rather than precipitating from a saturated solution. Whatever the process it entails a mineralization of the organic cross links until the crystallite encases the links. In figure 7 a schematic representation of the mineralized microfibrils shows the crystallites embedding the cross links and effectively shortening them. There is a cross link from one microfibril to a crystallite and its continuation on the other side connects the crystallite to a second microfibril. The connections are made to TC units in the strands of the microfibrils, hence to side chains of the residues on the helix.

The effect of mineralization in bone is to shorten the cross links and thereby increase the longitudinal modulus of the matrix. There may well be additional cross links formed at the same time or prior to mineralization, but the cross linking is most likely mediated by a different chemical process than that for mineralization. The stiffening of the collagen matrix need not necessarily be associated with a greater cross linking density.

8. Ultrasonic Velocity of Mineralized Tissues

In order to apply the theory it has been necessary to estimate the equivalent isotropic sonic velocity for hard tissues. Since bone and dentin are anisotropic the estimates are not well based and the ultimate test and evaluation of this theory requires a better way to find the isotropic velocity equivalent. Alternatively, it may be possible to extend the theory to deal with the anisotropy as Yoon and Katz [22] are attempting to do but the theory is still incomplete.

Figure 8 shows representative values for the longitudinal sonic velocity of bone, dentin and enamel. There are four bone values, one for normal bovine bone by Lang [23], and three by Abendschein and Hyatt [24]. The latter include one normal human bone and two of lower density from ill people. It is interesting that the normal human and normal bovine bone values coincide despite the quite different methods for making the measurements.

Unlike the mineral filled composites we do not yet have good values for the elastic properties of the constituents of bone, particularly bone collagen. Several Reuss curves were calculated based on the different published estimates for the elastic modulus of collagen, usually the Young's modulus which was converted to the longitudinal modulus by assuming Poisson's ratio to be 0.35 (Katz [5]).

Three Reuss curves are shown in figure 8. The lowest bound is based on the longitudinal modulus suggested by Currey [3] and Katz [5], 3.75 GPa. The intermediate bound is calculated from Mason's value [7] measured ultrasonically on kangaroo tail tendon. The upper bound was obtained by using Reuss's formalism backward on the sonic velocity and density of normal bone.

It can be seen from figure 7 that the intermediate and upper curves bound the experimental data, much like the two bounding curves in figure 4. The lowest bound is based on a value of longitudinal modulus based on low strain rate test data, a technique that characteristically
yields low values compared to ultrasonic measurement techniques.

The data represented in Figure 8 can only be regarded as indicative and not definitive. In particular, the value of enamel cannot be taken as properly a member of this class of materials because it is not a collagenous tissue. Enamel is formed by a totally different process than that for bone and dentin. The HAP content of enamel is so high that the mineral component of Eq. (1) dominates, which will be true for a comparable mineralized collagenous tissue. However, the theory developed here shows that it is unlikely to have so much mineralization in bony tissues.

Acknowledgment

S. L. is pleased to acknowledge support from NSF Grant GH-42515 and National Institute of Dental Research, NIH, Research Grant Number R01-DE-3992. Some of the experimental data was obtained while at the Department of Materials Science, University of Amsterdam with funds from the National Science Foundation and the University of Amsterdam.

Note added in proof:

The authors have recently learned that some of the concepts presented here were surmised by McCutchen [25]. In his paper he says "I suggest that collagen is the prime tension carrier in bone, and that bone’s stiffness modulus is much greater than isolated collagen because intimate association with the mineral raises the collagen’s tensile stiffness."

References

[14] Gallop, P. M. and Paz, M. A., Posttranslational protein modifications with special


ULTRASONIC PROPERTIES AND MICROTEXTURE OF HUMAN CORTICAL BONE

Hyo Sub Yoon and J. Lawrence Katz
Center for Biomedical Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181, U.S.A.

The wave propagation in human cortical bone (dried) was investigated, using an ultrasonic pulse transmission method at room temperature. Firstly, it has been found that the symmetry of human cortical bone is consistent with the hexagonal system, based on the ultrasonic velocity measurement and microscopic observations. The five independent elastic stiffnesses were determined at 5 MHz, and they are (in GPa): $c_{11} = 23.4 \pm 0.31$, $c_{33} = 32.5 \pm 0.44$, $c_{44} = 8.71 \pm 0.13$, $c_{12} = 9.06 \pm 0.38$, $c_{13} = 9.11 \pm 0.55$.

Secondly, this study shows that bone filters and polarizes ultrasonic waves. Thirdly, since, in a piezoelectric medium such as bone, the wave propagation (or elastic stiffnesses) is modified by the piezoelectric coupling, the piezoelectric contribution or "stiffening" was calculated for bone, employing the piezoelectric and dielectric constants of bone reported in the literature. Compared with the corresponding values of two well-known piezoelectric materials, a-quartz (single crystal) and "poled" barium titanate ceramic (polycrystalline), it has been found that the piezoelectric "stiffening" in bone is negligible. Finally, the sound velocities were measured over the frequency range of 1 to 5 MHz for the transverse mode and of 2 to 10 MHz for the longitudinal mode. For all the eight independent modes the ultrasonic velocities are found to increase with increasing frequency, implying that bone is viscoelastic even at these high frequencies.

Key words: Anisotropy; dispersion; elasticity; human bone; microhardness; microstructure; piezoelectricity; thermodynamics; ultrasound; viscoelasticity; wave propagation.

1. Introduction

The material symmetry is an important concept for interpreting and analyzing the structure-property relationships of a material, from both theoretical and practical points of view. This is especially true when one has to deal with many tensorial properties of a multiphase-composite material such as bones and teeth. The maximum use of symmetry elements in the medium simplifies the analysis enormously and provides a clearer physical picture for any phenomenon than otherwise.

It is known that bone has a remarkably well organized structure, consisting mainly of the protein (collagen, not well crystallized), the inorganic phases (crystalline hydroxyapatite and possibly a type of amorphous calcium phosphate) and a fluid phase (in vivo). Therefore, one can expect that several crystal-physical phenomena occur in bone. It has, in fact, been reported that bone is both pyroelectric (first-rank tensor) and piezoelectric (third-rank tensor). When employing ultrasonic waves of low strain levels much less than $10^{-6}$, as in diagnostic ultrasound, one must take into account these interactions between thermal and electrical properties, and between elastic and electrical properties, respectively. In other words, it is necessary to regard bone as a thermodynamic system. However, the situation becomes more complicated for a more realistic case than the above idealized one because bone appears to be viscoelastic even at ultrasonic frequencies.

It is now clear from the above information that one cannot treat each physical or thermodynamic property independent of the others, as has been done in the past, e.g., [1,2]. Instead, one should start with a simple situation when studying bone, then move to a more complex model by adding one or more independent variables, as was followed in the present investigation on human compact bone. For this purpose it is convenient to assign hierarchal levels of structural organization to bone, that is, molecular, ultrastructural, microscopic and macroscopic. The wavelengths of ultrasound employed (3.7 x $10^{-1}$ to 2.2 mm) are of the order of magnitude appropriate to the microscopic level. This is the level at which conventional metallographic techniques are best suited to study the microstructure or microtexture of bone. Note that the microtexture of human bone is different from

\footnote{Figures in brackets indicate literature references at the end of this paper.}
that of bovine, canine, or any other mammalian bone.

The simplest situation for ultrasonic studies of bone is one in which temperature (room) and frequency (5 MHz) are kept constant. This circumstance corresponds very closely to the situation of plane wave propagation in an elastic medium and yields a set of elastic stiffnesses for bone. As the next step, the piezoelectric contribution was considered for the ultrasonic wave propagation in bone. So far, bone has been treated as an elastic dielectric. In order to determine the existence of a frequency dependence or dispersion of the ultrasonic velocities at room temperature, the sound velocities were measured over the frequency range of 1 to 5 MHz for the transverse mode and of 2 to 10 MHz for the longitudinal mode. These results are important when it is necessary to accurately delineate ultrasonic paths, as in ultrasonic encephalography, monitoring of fracture healing, and other medical and dental diagnoses since the attenuation of ultrasonic waves in calcified tissue is substantially larger than that in soft tissue.

2. Theoretical Background:
The Thermodynamics of Bone

In order to derive the relationships between the mechanical, electrical and thermal properties of bone, i.e., to establish the thermodynamic aspects of bone, let us, following Voigt [3], introduce a thermodynamic potential per unit volume, \( E \), as a function of ten independent variables: stress \( T \), electric field strength \( E \), and entropy \( \sigma \), combined with the appropriate coefficients, elastic stiffness \( c_{\mu \nu} \), dielectric permittivity \( e_{ij} \), specific heat \( C \), piezoelectric stress constant \( e_{\mu} \), thermal stress coefficient \( q_{\mu} \), pyroelectric constant \( p_{\mu} \) and absolute temperature \( T \). Thus:

\[
\varepsilon = -\frac{1}{2} c_{\mu \nu} S_{\mu \nu} + \frac{1}{2} e_{\mu} E_{\mu} E_{\nu} + \frac{1}{2} \frac{q_{\mu} E_{\nu}}{C} S_{\mu \nu} + \frac{1}{2} \frac{p_{\mu} S_{\mu \nu}}{S} E_{\nu},
\]

where summation over repeated indices is implied, and \( i, j = 1, 2, 3; \mu, \nu = 1, 2, \ldots, 6 \). A superscript indicates the quantity to be kept constant. Here magnetic effects are not included in eq. (1) because they are usually very small compared to electric effects. Also, bone is treated as an anisotropic linear elastic solid, i.e., as a linear elastic dielectric, rather than as either metallic, ferromagnetic, or ferro-electric solids. That is, for simplicity the viscoelastic properties are considered separately.

Since the propagation of ultrasonic waves through a medium is an adiabatic process (isentropic), eq. (1) is simplified to

\[
\varepsilon = -\frac{1}{2} c_{\mu \nu} S_{\mu \nu} + \frac{1}{2} e_{\mu} E_{\nu} E_{\nu} + \frac{1}{2} \frac{q_{\mu} E_{\nu}}{C} S_{\mu \nu} + \frac{1}{2} \frac{p_{\mu} S_{\mu \nu}}{S} E_{\nu}
\]

Differentiation of eq. (2) with respect to \( S_{\mu} \) and \( E_{\nu} \), respectively, gives the well-known equations of state (or constitutive equations) for a piezoelectric medium:

\[
\begin{align*}
-\left( \frac{\partial \varepsilon}{\partial S_{\mu}} \right)_{E_{\nu}} &= T_{\mu} = c_{\mu \nu} S_{\nu} - e_{ij} E_{i} \\
\left( \frac{\partial \varepsilon}{\partial E_{\nu}} \right)_{S_{\mu}} &= D_{\nu} = e_{ij} E_{i} + S_{\mu} e_{\nu}
\end{align*}
\]

which now define stress \( T_{\mu} \) and electric displacement \( D_{\nu} \). Note that the coefficients on the leading diagonal represent the principal effects while the off-diagonal coefficients (equal to each other) measure the coupled effects.

For the pulsed ultrasonic measurements of thickness vibration, the elastic stiffness appropriate for the vibration would properly be designated as

\[
c_{\mu \nu}^{\text{pyroelectric}} = \frac{e_{\mu} e_{\nu}}{S_{\mu} S_{\nu}}
\]

meaning that the normal component of the electric displacement and the transverse components of the electric field are constant (usually zero). By combining Newton's second law of motion with the constitutive eqs. (3) and (4) and substituting plane wave solutions \( u_{j}(=U_{j} \exp(\imath(\omega t - k \cdot x))) \) for the medium of density \( \rho \), it may be shown that:

\[
\rho \frac{\partial^{2} u_{i}}{\partial t^{2}} = c_{ij \kappa \ell}^{\text{Voigt}} \frac{\partial^{2} u_{\kappa}}{\partial x_{j \ell}}
\]

where:

\[
c_{ij \kappa \ell}^{\text{Voigt}} = c_{\mu \nu}^{\text{pyroelectric}} = c_{\mu \nu} + \frac{e_{\mu \nu} e_{\nu \mu}}{c_{\mu \nu}^{\text{pyroelectric}}}
\]

with \( m \) being fixed.

Note that the directions \( i, n, m \) are parallel to one another, and that

\[
D_{\mu \nu}^{\text{pyroelectric}}
\]

is, in general, different from \( c_{\mu \nu}^{\text{pyroelectric}} \) which is given by:

\[
D_{\mu \nu} = c_{\mu \nu}^{\text{pyroelectric}} + e_{\mu \nu} e_{\nu \mu}
\]

For more details the reader is referred to references [4-6].

3. Experimental Procedure
A. Specimen preparation

Bone samples were cut with a band saw out of the right femoral mid-diaphysis from the cadaver of a 57-year-old male who died of gastric adenocarcinoma. Two well-oriented specimens in the shape of a rectangular parallelepiped (0.5461 cm x 0.8933 cm x 0.6233 cm for \( X_{1}X_{2}X_{3} \) cut and 0.4750 cm x 0.5641 cm x 0.7645 cm for 45° cut), were then cut using an Isomet low speed saw with a diamond blade 10.16 cm diameter and 0.03048 cm thick. Distilled water was used as the lubricant.
and coolant during cutting. The specimens were oriented using a straight surface in the medial quadrant, which is always parallel to the bone axis (X₃ axis) in any femur, taking the X₁ axis along the radial direction and the X₂ axis perpendicular to both, thus forming a right-handed rectangular coordinate system. The lateral quadrant of the mid-diaphysis was selected for obtaining the specimens because, for this particular bone, this quadrant was macroscopically more uniform than was the rest of the cross section.

Conventional metallographic techniques were then employed for grinding and polishing the specimens. In order to prepare a pair of parallel surfaces for ultrasonic measurements, the specimen, mounted on a parallel-face device with double-stick tape, was ground under a flow of cooling water, with an AB Handimet Grinder on which a 600 grit silicon carbide paper strip was pasted. This was followed by polishing with 0.3 μm alumina slurry on a 20.32 cm diameter bronze wheel covered with wool broadcloth. Each time after grinding and polishing, the specimen was cleaned in an ultrasonic cleaner for 3 minutes. The orientation of a specimen was checked by microscopic observation of osteon arrangement in the transverse cross section.

Each specimen, wrapped with soft tissue papers, was dried very slowly to avoid undesirable results such as cracks and distortions. This was done by keeping the specimen in a glass vial whose plastic lid was tightly closed, for a day, followed by placing it first in a desiccator for 10 days, and subsequently in a vacuum oven at 24 °C and 533 Pa for 4 days. Finally, the specimen was dried in a vacuum line equipped with both a mechanical pump and a diffusion pump at room temperature for 3 days. Before proceeding with the ultrasonic velocity measurements, the moisture content of the specimen was stabilized by keeping it in air until changes in the specimen's dimensions were recorded as less than 0.1 percent.

B. Micrographs and microhardness measurements

From the same mid-diaphysis of human bone, another cylindrical specimen 0.5 cm long was prepared in the identical manner as described before. This specimen was used both for obtaining micrographs (75X) of the transverse cross section and for Vickers (HV) microhardness measurements, employing a Bausch & Lomb Metallograph and a Kentron Tester, respectively. A typical microstructure of the transverse cross section is shown in figure 1a. Compare it with that of young bovine bone shown in figure 1b. The hardness of the bone specimen was measured with a 200 g load at locations equally spaced radially on the four quadrants: anterior, posterior, lateral and medial. Care was taken to make all indentations away from Haversian canals or lacunae.

C. Ultrasonic setup and measurements

A block diagram for the pulse through-transmission technique is shown in figure 2. For each frequency step, a pair of PZT-5A piezoelectric transducers (chromium-gold plated on both faces) was used to transmit and receive the ultrasonic pulses. For the specimen holder, a pair of parallel faces of aluminum buffer disc was prepared by hand-grinding it on 400- and 600-grit silicon carbide paper strips, as explained previously, and by polishing with a 3 μm diamond compound; the disc was cleaned ultrasonically after each step. The transducer was cemented on one face of the buffer disc with salol (melting point 43 °C), the other face being in contact with a face of the specimen during the transit-time measurements. No coupling medium was used.
between the buffer disc and the specimen surface since dried bone is porous and the specimen volume was very small. Instead, the acoustic coupling was formed by lightly pressing down the upper part of the specimen holder with a screw. For more details see reference [7].

Pulse transit (or delay) times in the specimen were measured from the shift of the pulse positions as observed on the horizontal axis of the oscilloscope with and without the specimen between the aluminum alloy buffer discs. The horizontal (time) axis of the oscilloscope was calibrated with a Time-Mark Generator 180A. The accuracy of the pulse transmission method was checked by measuring the transit times both of AT cut quartz oscillator plates of known frequencies, and a beryl single crystal whose values

were determined previously by Yoon and Newnham [8] using a pulse superposition method [9].

4. Experimental Results and Discussion

A. The homogeneity and microtextural symmetry of human cortical bone

Figure 3 shows that the bone is "intrinsically" homogeneous within the limit of experimental errors along the radial direction on the four quadrants. Weaver [10] has also observed a wide zone of mid-cortical bone of uniform hardness for autopsy and surgical bone specimens. Kallieris' results [11] show no significant differences in hardness between fresh human bones of various structural designs in different layers of compact bones. These findings justify somewhat the use of small specimens for measurements of the physical or mechanical properties of bone.

Rauber [12] and Dempster and Liddicoat [13] have shown that bone has different physical and mechanical properties along and perpendicular to its long axis. Therefore, the symmetry (or pseudosymmetry) of the microstructural texture of bone may be either orthorhombic, tetragonal, trigonal, or hexagonal. Since bone is an opaque, microstructural composite, neither optical nor single crystalline x-ray diffraction techniques can be employed to determine its full textural symmetry. An ultrasonic wave propagation method can provide information about both the symmetry and the elastic (and viscoelastic) properties of either crystalline or non-crystalline materials. The microstructure on the transverse cross section of bone shows a pseudo-hexagonal close-

---

**Fig. 2.** Block diagram of pulse transmission method.

---

**Fig. 3.** Microhardness (Vickers Hardness) of human femur (dried). P = periosteum and E = endosteum.

---

Relative scale
packing of Haversian systems or osteons. Previously, Katz [14] and Katz and Ukrainick [15] suggested that the arrangements of osteons and interstitial lamellae could be considered to be pseudo-hexagonal. Thus, the tetragonal and trigonal systems can be eliminated. The ultrasonic measurements have shown that \( c_{11} \) and \( c_{22} \) or \( c_{44} \) and \( c_{55} \) are equal to each other, thereby leaving only hexagonal symmetry as appropriate for bone.

B. The elastic stiffness of bone

Table 1 shows the ultrasonic velocities together with their standard deviations at room temperature and 5 MHz along various directions in the human femur specimens. The eight independent velocity measurements provide four internal cross-checks. For comparison the corresponding sound velocities in a Durango fluorapatite single crystal [16] are included. From these velocities and the independently measured mass density \( \rho \), the elastic stiffnesses of bone were calculated, as shown in Table 2 where the pseudo-single crystal elastic stiffnesses of hydroxypatite (HAP) [15], enamel and dentin [17] are included, in addition to the elastic stiffnesses of fluorapatite (FAP) [16]. Note in the case of the mineralized tissues that the stiffnesses, in general, increase with the amount of apatite.

![Graph showing angular dependence of elastic stiffnesses of human bone.]

while the degenerate transverse mode \( \alpha T \) along the bone axis \( X_3 \) is separated out into the two branches, \( 45 T_y \rightarrow \gamma T_3 \) and \( 45 T_h \rightarrow \gamma T_1 \). In a hexagonal medium there exists, in general, three pure mode directions \((x, y, z)\) along each of which one purely longitudinal and two purely transverse modes of propagation occur, forming a mutually orthogonal set. Of these the \( x \) and \( y \) directions (see Table 1) are known from the symmetry of the hexagonal medium. The \( z \) direction, which lies on a conical surface between the \( X_3 \) axis and its perpendicular, is given in terms of the elastic stiffnesses of the material. It has been found that no \( z \) direction exists in bone. It may be that in bone the structural arrangement of the collagen fibrils and fibers and the osteons may not allow any direction of high symmetry for the \( z \) pure mode. This can explain the observed phenomena that bone polarizes and filters the ultrasonic waves.

C. The piezoelectric "stiffening"

Following Fukada and Yasuda [18] and Fukada [19], point group 63 was chosen as the piezoelectric class of symmetry for bone, which is also consistent with the pyroelectric measurements on bovine bone by Lang [1]. In Table 3 is summarized the piezoelectric contribution to the elastic stiffnesses of bone, except for the two

\[ ^3 \text{While it is true that bone does not exhibit crystalline symmetry in the usual sense, as would be demonstrated by x-ray diffraction analysis, 6 is the appropriate point symmetry to describe the microstructural level of the organization of bone in that it is consistent both with the morphological observations and with the ultrasonic data within the precision of the measurements.} \]
Table 3. Piezoelectric corrections to elastic stiffnesses of bone.

<table>
<thead>
<tr>
<th>Mode</th>
<th>$c_{Dn,Et,a}^{Dn,Et,a} - c_{E,a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha L$</td>
<td>$E_{33} + \frac{e_{33}^{2}}{e_{33}}$</td>
</tr>
<tr>
<td>$\alpha T$</td>
<td>$E_{44}$</td>
</tr>
<tr>
<td>$\gamma L$</td>
<td>$E_{11}$</td>
</tr>
<tr>
<td>$\gamma T\alpha$</td>
<td>$E_{66}$</td>
</tr>
<tr>
<td>$\gamma T\beta$</td>
<td>$E_{66} + \frac{e_{11}^{2}}{e_{11}}$</td>
</tr>
<tr>
<td>$45T\alpha$</td>
<td>$\frac{1}{2} \left( E_{66} + \frac{e_{11}^{2} + e_{33}^{2}}{e_{11} + e_{33}} \right)$</td>
</tr>
</tbody>
</table>

mixed modes ($45L$ and $45Tv$), employing the piezoelectric constants for horse femur [19] and the permittivities of bovine bone by Gundjian and Chen [20] with the correction for frequency dependence following Liboff and Shamos [21]. Note that the piezoelectric "stiffening" in bone is very small and may therefore be neglected within the experimental errors. Table 4 compares the values

$$\frac{(c_{Dn,Et,a}^{Dn,Et,a} - c_{E,a})}{c_{E,a}}$$

of the typical piezoelectric materials $\alpha$-quartz and polarized barium titanate ceramic, with the corresponding values of bone (see 2. Theoretical background).

Table 4. Comparison of the piezoelectric contribution to the elastic stiffnesses of bone, $\alpha$-quartz and BaTiO$_3$ ceramic.

<table>
<thead>
<tr>
<th>uv</th>
<th>Bone (room temp.)</th>
<th>$\alpha$-Quartz (20 °C)</th>
<th>BaTiO$_3$ ceramic (25 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(room temp.)</td>
<td>$\times 10^{-2}$</td>
<td>$\times 10^{-2}$</td>
</tr>
<tr>
<td>11</td>
<td>0.18</td>
<td>0.86</td>
<td>0.93</td>
</tr>
<tr>
<td>33</td>
<td>0.19</td>
<td>0</td>
<td>17.0</td>
</tr>
<tr>
<td>44</td>
<td>82.0</td>
<td>0.072</td>
<td>28.0</td>
</tr>
<tr>
<td>12</td>
<td>0.46</td>
<td>-11.0</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td>0.56</td>
<td>0</td>
<td>-8.4</td>
</tr>
<tr>
<td>14</td>
<td>---</td>
<td>-0.99</td>
<td>---</td>
</tr>
<tr>
<td>66</td>
<td>0</td>
<td>1.9</td>
<td>0</td>
</tr>
</tbody>
</table>

D. The frequency dependence of ultrasonic velocities

Figure 5 shows how the eight sound velocities in dried human bone change with frequency at room temperature. In all cases the ultrasonic velocities are found to increase with increasing frequency. All the transverse modes exhibit almost similar dispersion behavior, while one of the longitudinal modes ($\gamma L$) has a steeper slope than the rest of modes.

Brillouin [22] summarizes the explanations of the geometric dispersion due to a periodic or discrete lattice, which were originated by Cauchy and refined by Powell and Kelvin. This book also includes Brillouin's own research on the subject. More recently, Sutherland and Lingle [23] reported the geometric dispersion of acoustic waves by an elastic-elastic composite of tungsten wires embedded in an aluminum matrix over the incident frequency range of 0.63 to 8.57 MHz. They also
reported the existence of pass- and forbidden-bands, in addition to the shift of the incident frequency upon propagating through the material. In their case the phase velocity always decreases with increasing frequency within each pass band.

For a linear viscoelastic solid, e.g., polymethyl methacrylate, Asay, Lamberson and Guenther [24] reported on the viscoelastic dispersion of ultrasonic waves, in which the phase velocity increases with increasing frequency and approaches a plateau. These results can be explained by relaxation phenomenon of "molecular" units (see Grof [25]).

As mentioned earlier, bone is a hierarchical composite on many levels of structure. Of principal concern here is the microstructural level of organization. In this case the osteons behave as stiff hollow elastic fibers ensheathed by a compliant viscoelastic material, mainly collagen and protein polysaccharides.

It is clear that much additional data are needed with respect to ultrasonic attenuation in bone over a wide frequency range as well as spectral analysis of both transmitted and reflected pulses. In addition it would be valuable to perform studies on synthetic composites of collagen and hydroxyapatite in various combinations in order to obtain dispersion data from controlled composites. Still from the modelling described above, it is reasonable at present to explain the dispersion of the phase velocities in human compact bone in terms of its viscoelastic components.

Acknowledgment

Contribution No. 94 from the Laboratory for Crystallographic Biophysics; this work was supported by US PHS through NIDR Grant No. 5TI-DE-117-14.

References


ATTENUATION AND DISPERSION OF ULTRASOUND IN CANCELLOUS BONE

James E. Barger
Bolt Beranek and Newman Inc.
Cambridge, Massachusetts 02138

Measurements of the insertion loss and insertion phase shift for ultrasound transmitted through sections of cancellous bone from human skull are reported as functions of frequency over the range extending from 0.3 MHz to 3.0 MHz. The frequency dependence of insertion loss and of phase speed are both found to be caused principally by scattering of sound by the blood and fat filled interstices in the bone matrix. Independent scattering measurements made at all observation angles confirm the scattering phenomenon. It is concluded that both the high attenuation and the significant dispersion at frequencies above about 1 MHz will limit the ability to characterize brain tissue by its backscatter at these high frequencies. Also, most reported sound speeds in cancellous bone have been calculated from the time-of-flight of broadband pulses, and are therefore group speeds. These group speeds will exceed the phase speeds by about 15 percent in magnitude.

Key words: Attenuation; dispersion; skull bone; sound speed; ultrasound.

1. Introduction

The objective of this research was to measure, as a continuous function of frequency in the range extending from 250 kHz to 2.5 MHz, both the insertion loss and the phase speed of ultrasound in cancellous bone. These measurements are especially important as design data for ultrasound systems that are to characterize tissue through skull bone, which comprises two outer tables of ivory bone and an inner layer of cancellous bone, called diploe. This diploe layer is known to contribute most of the ultrasonic attenuation, as well as pulse waveform distortions, at diagnostic system frequencies [1].

Successful tissue characterization involves frequency spectrum analysis, over a rather broad band of frequency, of the sound scattered by a range-gated segment of tissue [2]. The attenuation that occurs when scattered sound is transmitted through diploe can change the spectrum in the band in which signal amplitude exceeds noise amplitude by an amount sufficient to permit spectrum identification. Also, the pulse waveform distortions owing to frequency-dependent sound speed, also called dispersion, can substantially reduce the range resolution of the broadband scattered sound.

The experiments reported in this paper were all performed on cancellous bone samples obtained by removing the ivory tables from a 9.5-mm thick section of human skull that had been fixed for about six months in buffered formalin.

The experimental apparatus is described schematically in figure 1. A pulse generator applies a broadband, high-voltage pulse to a focused transducer. This transducer generates at its focus a pulse having a peak pressure of about eight bars and a bandwidth (defined at 10 dB down points) of about 300 kHz to 2.5 MHz. The pulse is captured and digitized at 20 MHz and subsequently transmitted to a PDP11/40 computer for spectral analysis.

The ultrasonic waveforms are measured at the focus of the transducer with a small piezoelectric
disc probe 3 mm in diameter and 0.3 mm thick. The
disc is positioned with its major response axis
collinear with the axis of the ultrasonic beam.
The disc diameter is equal to the diameter of the
sound beam at about its 6-dB down points, so that
the probe output voltage is proportional to the
sound pressure averaged over the sound beam.

The insertion loss and phase of the diploe
sample are functions of the Fourier coefficients
T(f) of the pulse at the focus beyond the diploe
sample and of the Fourier coefficients S(f) of the
pulse also measured at the focus, but without the
diploe sample. The insertion loss in dB and the
insertion phase angle are defined in eq. (1). Both
functions are calculated at 19.5-kHz intervals of
frequency by the computer.

\[ \text{IL} = -20 \log |T/S| \]  
\[ \phi = \text{arg } T - \text{arg } S. \]  \hspace{1cm} (1)

The phase speed of sound, \( c_1 \), in the diploe
sample can be calculated from the frequency ratio
of the insertion phase angle, \( \phi/f = \phi' \). The inser-
tion phase angle is the increase in phase of sound
transmitted through the diploe layer less the in-
crease in phase of sound transmitted through a water
layer having the same thickness, \( h \), as the diploe
layer. This increase is expressed in eq. (2),
where \( \phi \) is the phase angle in degrees and \( c_0 \) is the
phase speed of sound in water.

\[ \phi = 360 f h (c_1^{-1} - c_0^{-1}). \]  \hspace{1cm} (2)

Solving for the phase speed in diploe, we have

\[ c_1 = c_0 (1 + \phi' c_0/360h)^{-1}. \]  \hspace{1cm} (3)

If the phase speed \( c_1 \) is a function of frequency,
which it will be if \( \phi' \) is not constant, the trans-
mision is said to be dispersive.

2. Experimental Results

A. Insertion Loss

The insertion loss for a 4-mm thick sample of
diploe as a function of frequency is shown on
figure 2. These data show very little loss at 0.3
MHz, with a sharply increasing loss between 0.7 and
about 1.3 MHz. At higher frequencies, loss in-
creases more slowly with increasing frequency,
reaching about 40 dB at 2 MHz.

B. Phase Speed

The insertion phase angle for a 4-mm thick
diploe sample is shown as a function of frequency
on figure 3. We see that the phase angle does not
increase linearly with frequency. Three different
values of phase angle are noted at three different
frequencies. The phase-frequency ratios \( \phi' \) are
used together with eq. (3) to calculate the phase
speeds at the three different frequencies. The
results at 0.5 MHz and 1.5 MHz are \( c_1 = 2190 \text{ m/s} \)
and \( c_1 = 2530 \text{ m/s} \). Similar data on the 4-mm thick
diploe sample at 3.5 MHz showed \( c_1 = 2800 \text{ m/s} \) [3].
This tangent is sketched on figure 3, where it is
seen to match with the data for frequencies above
2 MHz.

C. Scattered Sound

The insertion-loss measurement apparatus was
modified, as follows, to measure the sound scat-
tered by the diploe layer. A 6-mm diameter core
was cut from the skull sample and positioned co-
axially at the focus. The probe was then scanned
around a 9-cm radius circle centered on the focus
and including the incident sound axis. The sound
pressure levels at 9 cm relative to the sound
pressure level at the focus are shown on figure 4
as a function of observation angle. The narrow
beam directed back towards the source is sound
reflected from the outer table. The small in-
crease in sound pressure level at 180° is the
transmitted sound. Sound reaching the probe at
all other angles has been scattered by the skull
core.

3. Discussion of Results

A. Insertion Loss

The insertion loss is shown on figure 2 to be a
rapidly increasing function of frequency. The
scattered sound shown on figure 4 is approximately
omnidirectional. Both of these experimental facts
lead us to suspect that sound is being scattered by
the fat- and blood-filled interstices in the
spongy bone matrix. Omnidirectional scattering is
caused by small discontinuities in the bulk modu-
The average bulk modulus of the diploe sample was calculated from measured mass density and sound speed. The result was $B_0 = \frac{\rho c^2}{1 + \nu} = 7.61 \times 10^4$ $\mu$bar. The bulk modulus of the interstitial materials was taken to resemble blood, $B = \frac{\rho c^2}{1 + \nu} = 2.54 \times 10^4$ $\mu$bar. The average interstitial volume was calculated from the average diameter $d$ of the interstices, namely, 0.6 mm. The probability density distribution for interstice volumes is not known, but we will assume it to be a Rayleigh distribution, for which $\bar{d} = 4/\pi$.

When these quantities are substituted into eq. (7), we have for the attenuation due to scattering

$$\frac{IL}{\lambda} \text{ (dB/cm)} = 4.344 \times 13.2 F^4,$$  
(9)

where $F$ is frequency in MHz.

The fundamental result, eq. (4), is valid only for scattering elements that have diameters smaller than about one-third wavelength. For our sample, then, valid results occur at frequencies less than 1.3 MHz. At higher frequencies, the scattering law saturates and changes to a frequency-squared increase [4]. Therefore, the complete analytical representation of scattering is given by eq. (10).

$$\frac{IL}{\lambda} \text{ (dB/cm)} = 13.2 F^4 + F^2 F_0 - 13.2 F^2 F_0 F_0,$$  
(10)

where $F_0 (\text{MHz}) = \frac{c}{13d} 10^{-6}$.

In addition to attenuation by scattering, there is attenuation by absorption. A typical value of the pressure attenuation coefficient in bone is 1.5 nepers/cm at 1 MHz [5]. The associated insertion loss per cm is $IL/\lambda = 13.2 F$. The total attenuation, namely, the sum of absorption and scattering attenuation, is plotted on figure 2 for a 4-mm thick section. The agreement is very good between the experimental and the theoretical values of loss, indicating general accuracy of the scattering theory.

### B. Sound Power Balance

The sound power balance used to obtain eq. (10) can be checked with the data shown on figure 4. The incident sound power, $W_i$, is given in terms of the incident sound intensity, $I$, and the radius, $a$, of the focus, $W_i = \pi a^2 I$. The reflected sound power, $W_r$, is given in terms of the reflected half-beamwidth, $\theta$, and the reflected intensity, $I_r$, measured at distance $r_0$, $W_r = \pi (r_0 \sin \theta)^2 I_r$. The scattered sound power, $W_s$, is given in terms of the scattered sound intensity, $I_s$, measured at distance $r_0$, $W_s = 4\pi r_0^2 I_s$.

The sound power balance requires power incident, $W_i$, to equal the power scattered, $W_s$, plus power reflected, $W_r$, plus power absorbed, $W_a$. We observed in the preceding section that attenuation by absorption is equal to attenuation by scattering at a frequency of 1 MHz. The scattered data on figure 4 are for this frequency, so we take $W_a$ =
Dividing both sides of the power balance by the incident power, \( W_i \), we have eq. (11).

\[
\frac{W_s + W_r + W_a}{W_i} = 8 \left( \frac{r_0}{a} \right)^2 \left( I_s + I_r \right)
\]

\[ + \left( \frac{r_0 \sin \theta}{a} \right)^2 \left( I_s + I_r \right). \]

The value of \( r_0 \) is 9 cm, the value of \( \theta \) is about 5° (at 3-dB down point), and the focal radius is 2 mm. The value of \( I_s/I_r \) is equal to \( 10^{-4} \), \( 5.0 \times 10^{-5} \) and the value of \( I_p/I_r \) is equal to \( 10^{-1} \), 1.2 \times 10^{-2}, because the reflected pressure is 19 dB less than the incident pressure and the average scattered pressure is 43 dB less than the incident pressure. Substitution of all parameters into eq. (11) gives the result \( (W_s + W_r + W_a)/W_i = 0.994 \). Since a value of 1.0 confirms the hypothesis, this result is very good, and the sound power is accurately accounted for by reflection, scattering, and absorption. The transmitted power was neglected, since it is scarcely more intense than the forward-scattered sound.

C. Sound Speed

The phase speed, \( c_p \), is defined in terms of the wavenumber, \( k : c_p = \omega/k \). This is the speed that an observer of an harmonic wave would travel in order to see a constant wave pressure. The group speed, \( c_g \), is defined also in terms of the wavenumber: \( c_g = d\omega/dk \). This is the speed that an observer of a "packet" of sound energy, having by necessity a finite bandwidth, would travel in order to see a constant wave pressure. The two speeds are different whenever the medium is dispersive or whenever \( k \) is not a linear function of frequency. We see clearly from the data on figure 3 that sound propagation in diploe is dispersive. This result is consistent with our finding that attenuation is due mainly to scattering, for sound propagation is then dispersive [6].

Experimental measurements of sound speed in bone, including diploe, have almost universally used the time-of-flight of a sound impulse from which to calculate sound speed. This method yields the group speed, although experimenters have not generally noted this. Their results cannot properly be compared with measurements of phase speed in diploe, unless the difference is accounted for.

The definition of group speed yields eq. (12), which expresses the group speed in terms of phase speed.

\[
c_g = c_p \left[ 1 - \frac{\int \frac{dc_p}{df}}{c_p} \right]^{-1}.
\]

The phase speed calculation from our data on the 4-mm skull sample (fig. 3 and ref. [3]) are plotted on figure 5. We see that a simple frequency-power law fits the experimental data quite well, according to \( c_p \propto f^n \), where \( n = 0.131 \). In this case eq. (12) gives

\[ c_g = c_p (1 - n)^{-1} = 1.15 \ c_p \]

This calculated group speed is plotted on figure 5 together with the experimental values of phase speed.

![Fig. 5. Measured values of phase speed and group speed in diploe shown with group speed calculated from the phase speed.](image)

The sound speed of the 4-mm diploe sample was measured by the time-of-flight method, using three pulses containing most of their energy between 0.3 to 0.4 MHz, 1.0 to 1.5 MHz, and 2.0 to 3.0 MHz [3]. These measurements give the group speed, and the values are plotted also in figure 5. It can be seen that the measured values of group speed are higher than measured values of phase speed, and that they agree rather well with the calculated values.

D. Use of Focused Beam

A focused beam was used to make the measurements reported herein because only in this way can a narrow beam be generated several transducer-diameters away from the transducer. The scattering of sound by the bone adversely affects the beam shape at the focus only if a parameter \( \beta = \sqrt{\nu / \pi} k^2 aL \) exceeds unity [7]. The mean square deviation of the index of refraction is \( \nu^2 \), the average diameter of a scatterer is \( a \), and the distance traversed by the sound beam is \( L \). For the 4-mm thick skull sample, the value of the parameter \( \beta \) is only about 0.01, so that no sensible beam distortion or phase aberration is caused at the focus by the scattering in the diploe layer.

4. Conclusions

We conclude that scattering of diagnostic ultrasound by the blood- and fat-filled interstices in diploe dominates sound attenuation at frequencies above about 0.7 MHz and also introduces dispersion.

The detrimental effects of large diploe attenuation can be largely avoided by using interrogation pulses that contain no frequency components greater than about 0.7 MHz. Attenuation due to scattering in the diploe studied equals the attenuation due to absorption at 1 MHz and exceeds it at higher frequencies.

The detrimental effects due to diploe dispersion are confined only to the higher frequency range, where scattering dominates attenuation. Therefore, if low-frequency pulses are used, there will be little dispersion. If, however, high frequencies are necessary to obtain trans-skull tissue characteristics by spectral analysis, dispersion can significantly reduce range resolution. For example, if a pulse contains energy in the band from 0.5 to 2.0 MHz, and was transmitted through a 6-mm thick diploe layer, the depth
smearing in the brain due to dispersion would be 0.73 mm, but the nominal depth resolution of the same 1.5-MHz bandwidth pulse in an undispersive water-like medium is 0.5 mm.

We find that almost all reported sound speeds in bone have been obtained by the time-of-flight pulse method and are, therefore, actually group speed. There is no evidence that sound propagation in ivory bone is dispersive, so these data are equivalent to phase speed. Since we find sound propagation in diploe to be dispersive, most published sound speed values in diploe will be higher than correct values for phase speed.

References


TRANSKULL TRANSMISSION OF AXISYMMETRIC FOCUSED ULTRASONIC BEAMS

IN THE 0.5 TO 1 MHz FREQUENCY RANGE:

IMPLICATIONS FOR BRAIN TISSUE VISUALIZATION, INTERROGATION, AND THERAPY

F. J. Fry

Ultrasound Research Laboratories of the
Indianapolis Center for Advanced Research
Indianapolis, Indiana 46202, U.S.A.

In order for ultrasound to become a practical clinical technique for diagnosis of many intracerebral diseases in the adult human, it has been necessary to answer questions concerning insertion loss of skull, temporal and spatial characteristics of beams operating in the 0.5 to 1.0 MHz range (the requisite frequency is a function of the particular adult skull) have a maximum single pass skull insertion loss of nearly 10 dB (20 dB for a pulse echo system) which can be handled with present techniques to provide adequate signal strength from normal and pathological features of brain. In this frequency range, for skulls in our studies, the appropriately selected frequency is unchanged after double pass skull transmission, the 6 dB beam width is increased by a maximum of 40 percent and the beam focus is shifted laterally by a maximum of 3 mm. Resolution of string targets or live brain targets has been demonstrated to be in the 2 to 3 mm range at 1 MHz and at 0.5 MHz it appears that 4 to 6 mm resolution can be achieved.

A high intensity focused ultrasonic beam (1 MHz) has been transmitted through an excised adult skull and used to produce a focal thermal flaw in lucite. This simulation test indicates that the induction of transskull focal lesions in live adult brain may now be possible.

Key words: Axisymmetric; beams; focal thermal flaw; skull transmission; ultrasound.

1. Introduction

In the adult human skull the diploe layer is a dominant factor in determining the magnitude of insertion loss for a transmitted ultrasonic beam. Insertion loss characteristics for human skull as a function of frequency have been documented in the literature [1-4] but only recently has the acoustic character of the specific skull layers been more clearly defined [5]. These measurements indicate that frequencies less than 0.5 MHz are necessary to have a single pass insertion loss less than 10 dB for some adult human skulls. Skulls we have studied with a loss of this magnitude at a given frequency will transmit an ultrasonic signal of this same frequency with minimal temporal distortion. For infants, the skull insertion loss at ordinarily used diagnostic frequencies (2.25 MHz) is less than 20 dB since there is essentially no diploe layer. Since the two-way insertion loss is twice the one-way loss in a pulse echo regime, the 20 dB maximum skull insertion loss (at the appropriate frequency) is not a serious impediment to pulse echo visualization and interrogation of brain features. Preservation of temporal coherence in the wave is also an important feature and this can be achieved when the appropriate ultrasonic frequency range is selected.

Use of an axisymmetric focused beam in previous studies indicated that preservation of the beam spatial focal character was achieved in a qualitative sense and that the maximum lateral displacement of the beam was of the order of 3 mm. Studies with phased array systems indicated a need for phase compensation at the receiver array to correct for local skull thickness variations which change the arrival time of the waves at the receiver elements [6-8]. Such variations also lead to variable insertion losses over the skull.

This report covers studies in which low intensity axisymmetric focused ultrasonic beams suitable for diagnostic medicine have been transmitted through excised adult human skull sections. The beams have been studied for their temporal and spatial preservation as well as displacement after skull transmission. Transskull B-scan presentations of physical targets and live human brain indicate considerable potential for clinical diagnostic medicine.

1Figures in brackets indicate literature references at the end of this paper.

203
No previous literature seems to exist which indicates the possibility of transmitting an intense focused ultrasound beam through an adult human skull which would be capable of producing focal lesions in brain. A series of experiments reported here shows that a high intensity focused ultrasonic beam of a frequency appropriate for a given skull can be transmitted through the excised adult human skull and produce a thermal focal "lesion" in lucite [9]. Previous studies show that lucite, in the physical model sense used here, can simulate live brain tissue [10].

2. Materials and Methods

Measurement of frequency dependent attenuation loss in skull was made with a system described elsewhere [5]. A schematic diagram of the essential components is shown in figure 1.

![Fig. 1. Schematic diagram for skull insertion loss measurements as a function of frequency.](image1)

- PA = pulser
- T = focused transducer
- S = skull (formalin fixed)
- P = probe
- D = digitizer (8 bit 100 MHz Biomation 8100)
- C = computer (PDP-11/45)
- PP = printer/ploter (Versatec 1100)
- x-y-z = (3 orthogonal) motion coordinate system

Sound from the transducer passes through the skull section under study and is received on a 3 mm diameter ferroelectric probe (10 MHz fundamental resonance). The acoustic signal from the probe is analyzed by an FFT (Fast Fourier Transform) method in the skull and non-skull case, and the difference of the Fourier coefficients at each frequency is taken as the insertion loss at that frequency.

Measurements of beam configuration and displacement after skull transmission were made by moving the probe in a direction perpendicular to the sound transmission axis. The skull is also mounted on a coordinate system so that it can be moved in 3 orthogonal directions. Rotational axes are also provided so that the central ray of the transducer can be angulated with respect to the skull surface.

B-scans of physical models or patients were made with the apparatus shown schematically in figure 2. This apparatus provides a mechanically driven linear scan path. Such a path is very limiting for scans involving skull since it is important to approximately follow the skull contour so that the central transducer ray is normal to the skull surface for minimal insertion loss. In order to have minimal beam displacement, this normal angulation configuration should be preserved.

For the high intensity focused beam study involving production of thermal "lesions" in lucite (lucite used here as a brain simulation target) the system configuration is shown in figure 3. A 1 MHz high power transducer [11] with a 6 dB down (ultrasound intensity) beam diameter of 2.2 mm was used for this part of the study. The skulls used were obtained from

![Fig. 2. Schematic diagram for B-scan imaging.](image2)

- PA = patient
- T = transceiver
- W = water bath
- X = mechanically driven linear motion
- P = pulser
- A = amplifier
- D = detector
- SC = scan converter
- M = monitor

![Fig. 3. Schematic diagram for high power transkull test.](image3)

- T = high power focused transducer
- S = skull (formalin fixed)
- L = lucite block (2 inch x 2 inch x 2 inch)
- W = temperature-controlled water bath
- PA = power amplifier (1 kW)
- TG = timing gate
- FS = frequency source

204
patients at autopsy and were immediately placed in Ringer's solution and stored in the refrigerator. By the time the experiments reported here were conducted, the skulls had been placed in formalin and stored at room temperature. The storage procedure has been shown to provide the necessary conditions for long-term stability of the acoustical properties of skull starting from the fresh excised state properties [12].

3. Results

One particular adult human skull has been selected from a group used in the preparation of an extensive manuscript [5] on acoustic properties of skull to illustrate the frequency filtering properties of adult skull having a diploe layer. Figure 4 shows the free field probe received waveform transmitted from a focused transducer with a damped resonant frequency of 2.5 MHz. When the skull is inserted between the transducer and the probe the signal strength is greatly attenuated, as will be described later, and the dominant transmitted frequency is 0.56 MHz. When a 0.5 MHz frequency damped pulse is transmitted through the skull, reflected from a glass plate and passed again through the skull, the received waveform recorded from the original transducer is shown on figure 5. The double pass transmission loss is 10 dB for this skull. Use of ultrasonic frequencies in this range (0.5 MHz) is an advantage because of the temporal coherence preservation.

Spatial aspects of beam displacement and distortion after skull transmission for a 0.5 MHz focused beam is demonstrated on figure 6. These beam aspects have been studied with skull-to-probe distances from 2 to 10 cm, which is the range needed for brain target delineation in the intact skull case with the live patient. In these two adult skulls the maximum beam displace-
placement from the free field condition is 2.5 mm for any probe-to-skull position, and the maximum insertion loss variations for the same range were within ±0.1 dB of the mean value for all axial distances studied. These studies also show that the 6 dB beam width is increased by a maximum of 40 percent. Other studies show [5] that when a focused transceiver is used with the probe as a target, the 6 dB beam widths decrease in all cases over the 6 dB beam widths in the single pass transmission case with the probe as receiver.

On the basis of temporal and spatial coherence and beam displacement, a 0.5 MHz frequency is appropriate for adult human skulls. The insertion loss characteristic as a function of frequency for adult human skull, shown on figure 7, indicates the desirability of this frequency (0.5 MHz) from a system sensitivity viewpoint if skull insertion loss is to be minimized. Given these indicators for using 0.5 MHz ultrasonic frequency for transkull visualization and interrogation of brain, the important remaining aspect is resolution. Within the scope of these studies, using a very preliminary transceiver prototype (0.5 MHz) and no signal processing to provide image enhancement, the scan of a string target without intervening skull is shown on figure 8. Although the image quality is not ideal, it can be seen that targets spaced 5 mm apart in real space can be resolved. Note also that range resolution has not been optimized since this prototype transceiver is not highly damped.

500 kHz transducer
4 mm diameter disc probe
A = free field plot
B = L = 2 cm (skull in place)
C = L = 4 cm
D = L = 6 cm
E = L = 8 cm
F = L = 10 cm

Fig. 6. Beam distortion and displacement after single pass skull transmission as a function of probe-to-skull distance (L) for a fixed transducer-to-probe distance (20 cm). Lateral beam plots and beam displacement obtained by moving the probe for the field plots (using setup shown on fig. 1 with oscilloscope connected in front of D to display the receiving probe output as a function of space coordinate). Insertion loss variations for skulls 6 and 8 were within ±0.1 dB of the mean insertion loss value for all skull-to-probe distances L. Curves for each L distance are shown vertically displaced on the graph for reading convenience.

Fig. 7. Insertion loss as a function of frequency for single pass skull transmission (skull 6 section - formalin fixed).
This resolution will be improved with a larger aperture angle, and with appropriate signal processing this resolution will be apparent over a wide dynamic range of signal strengths. When the skull is interposed there are targets which show evidence of lateral resolution similar to that in the non-skull case. Note that because of this scanning system's inability to follow the skull contour not all strings can be visualized. A scan mode in which the scanning transducer axis is maintained perpendicular to the skull surface at the point of passage of the central ray of the focused beam will resolve this problem.

Our studies include a transskull visualization of a glioblastoma in a live adult patient in which an x-ray transaxial tomographic scan was also made. Results of these scans are shown on figure 9. In this case the skull insertion loss was small enough so that a 1 MHz focused transceiver could be used (this unit is somewhat more optimal than the 0.5 MHz prototype). The tumor tissue was verified by pathological examination at the time of surgery. The computerized axial tomographic scan showed presumed evidence of a tumor on normal brain structural grounds (ventricular outlines and displacement), but not on a tissue density difference basis. The ultrasound scan clearly shows tissue differentiation. The linear motion scan mode used does not follow the skull contour so that the patient-transceiver angle was selected to permit best viewing over the tumor region. Spatial resolution of some targets in the lateral direction is 2 mm and in the longitudinal direction is 3 mm. It is anticipated that resolution using an appropriate 0.5 MHz transceiver will be no worse than twice these dimensions.

The above material is relevant to ultrasonic regimes for transskull diagnostic purposes and as such uses ultrasonic intensities appropriate to that usage (low milliwatt average intensity range). The subsequent material covers experiments demonstrating transmission through excised adult human skull of intense ultrasonic focal beams suitable for such interactions as focal lesion production in brain. For this study, the high power transducer was used to produce focal thermal "lesions" in the lucite block brain tissue simulator [10]. These lesions were first produced with no skull intervening in the acoustic path. The human skull section was then inserted in the acoustic path.
and focal lesions were produced of a size similar to those produced in the non-skull case. A number of focal thermal lesions were produced at various distances from the lucite surface (typically 2 cm deep). The skull intervening beam plot compared to the free field case is shown in Figure 10. The single pass insertion loss was 12 dB for this skull at the 1 MHz operating frequency of the transducer. More extensive coverage of this work is provided in other material [9].

![Graph](image-url)

**Fig. 10.** Lateral beam plot obtained with high intensity focused ultrasonic transducer, with and without intervening skull. Measurements made with systems shown on Fig. 1.

A = without skull
B = with skull, the beam axis was shifted 2 mm laterally from the free field position (A) and the insertion loss was 12 dB so no direct intensity comparisons should be made from this figure.

4. Conclusion

This work has shown that for ultrasound to have a significant impact in medicine for diagnosis and/or therapeutics of brain disorders, it is necessary to use ultrasonic frequencies in the 0.5 to 1.0 MHz range. In this range, the single pass insertion losses can be held to a maximum of 10 to 12 dB and the temporal coherence of the wave can be maintained. It has also been shown that the focused beam configuration can be maintained after skull transmission so that the advantages of resolution and intensity gain can be utilized. In diagnosis, these advantages lead to excellent pictorial images of brain structures and ability to perform tissue interrogation on temporally undisturbed waves due to skull transmission. For potential therapeutics in brain, these ultrasonic techniques offer the possibility of transskull ablation of tumor tissue or other tissues such as that involved for focal epilepsy and modification of blood-brain barrier for enhancing chemotherapeutics of tumor therapy or other brain disorders. When appropriate ultrasonic frequencies and focal beams are used, it seems apparent that a significant impact can now be made in brain diagnosis and possibly therapeutics with ultrasonic devices and techniques.

Acknowledgments

Work reported here was supported by NIH Grant No. N01-NS-3-2319, NSF Grant No. APR75-14487 and The Indianapolis Center for Advanced Research.

References


SOME ADVANCES IN ACOUSTIC IMAGING THROUGH SKULL

S. W. Smith
Food and Drug Administration
Rockville, Maryland 20852, U.S.A.

D. J. Phillips
Center for Biomedical Engineering
University of Washington
Seattle, Washington 98105, U.S.A.

O. T. von Ramm and F. L. Thurstone
Department of Biomedical Engineering
Duke University
Durham, North Carolina 27706, U.S.A.

Previous attempts to image the adult brain through the skull using diagnostic ultrasound have resulted in images of poor lateral resolution and limited dynamic range. The skull can be modeled as an acoustic lens whose attenuation increases rapidly above 1 MHz and whose thickness variations introduce phase aberrations on the order of several wavelengths across the transducer aperture. Statistical analysis of skull thickness data indicate that an electronic sector scanner using a 1 MHz linear array transducer is less sensitive to these effects of the skull than traditional pulse echo systems operating at higher frequencies. Representative ultrasound tomograms of the brain are shown. In addition, water tank experiments are described in which the skull phase aberration, $\phi(x)$, was measured on line and removed by incorporating a compensating phase variation, $-\phi(x)$, into the transmit and receive timing of a digitally controlled real time phased array imaging system. Preliminary results show that the lateral resolution of the imaging system is restored in both the transmit and receive modes.

Key words: Brain scanning; echoencephalography; neurology; phase compensation.

1. Introduction

Since the initial development of B-mode ultrasound, there have been many attempts (Fry et al. [1]; Brinker and Taveras [2]) to produce high quality cross-sectional images of the brain through the intact adult skull. Real time B-mode echoencephalography was initially demonstrated by Somer in 1968 using phased array techniques. Despite these efforts, B-mode echoencephalography is seldom used clinically because of the poor quality of the images obtained with current techniques. One reason for the immediate widespread application of computerized tomography in the head has been the failure of B-mode ultrasonic imaging of the brain. The intervening presence of the skull results in poor signal to noise ratio, limited dynamic range and reduced lateral resolution.

Three characteristics of skull bone are responsible for poor quality brain images: (1) substantial attenuation of diagnostic ultrasound by the skull bone; (2) rapid increase of that attenuation with the frequency of ultrasound; and (3) the variation of thickness of the inner table of the skull. In order to optimize B-mode ultrasound images of the brain, these aberrating effects of the skull bone must be overcome. By a proper choice of transducer frequency, aperture size, image format, and the use of effective signal processing techniques, significant improvement may be achieved in ultrasound tomographs of the brain. In this manuscript these three problems of acoustic imaging through the skull will be examined. In addition, one promising technique will be described in which the effects of phase variations due to the skull have been removed by a phase compensation process implemented with the real time, swept focus, phased array imaging system under current evaluation at Duke University (von Ramm and Thurstone [3]).

Figures in brackets indicate literature references at the end of this paper.
2. Ultrasound Attenuation of the Skull

A propagating ultrasonic pulse is strongly attenuated after two passages through the skull by such phenomena as diffractive scattering, mode conversion, absorption, and the impedance mismatch at the skull-brain interface (White [4]). Previous measurements (Hueter [5]; Smith et al. [11]; Fry et al. [6]) indicate that the attenuation of ultrasound by the skull is strongly frequency dependent increasing from approximately 10 to 20 dB/cm at 1 MHz to 50 to 60 dB/cm at 2 MHz.

In figure 1 the solid curve shows skull attenuation data from Hueter [5] normalized to a 1 cm thickness. The dashed line shows similar data which we obtained from a preserved segment of the adult skull. The data indicate that a 2 MHz signal is attenuated approximately 50 dB/cm of travel through skull bone. The attenuation at 1 MHz is approximately 12 dB/cm. Much of the energy lost from the interrogating pulse returns to the imaging system as unwanted acoustic noise. Such a high background reduces the signal to noise ratio, obscuring low level echo information and restricting the useful dynamic range of the imaging system. The result is usually a high contrast B-mode image of the brain in which only the strong specular echoes are displayed. From the figure it can be seen that using a 1 MHz transducer substantially reduces the problem of high attenuation due to the skull.

The rapid increase of attenuation with frequency also degrades the lateral resolution of a B-mode imaging system (Smith et al. [11]). For a typical broadband diagnostic transducer, the ultrasonic pulse contains significant amounts of energy above and below the center-frequency. After two passes through an adult skull the high frequency content of the pulse has been significantly reduced relative to the low frequency components. The center frequency of the ultrasound is effectively shifted to a lower frequency. For a fixed transducer aperture, such a frequency shift will result in degraded lateral resolution. Our experience with linear array transducers and broadband piston transducers has indicated that an interrogating 2 MHz pulse will show a center frequency of approximately .8 MHz after two passes through the temporal region of an adult skull. This results in more than a twofold loss in resolution capability in the lateral dimensions. A 1 MHz ultrasonic pulse is also shifted to approximately .8 MHz but the resultant loss of resolution is not as significant since the original transducer aperture will normally be larger at 1 MHz. For acoustic imaging through the skull, a 1 MHz transducer would appear to be a reasonable compromise considering the requirements of system resolution, adequate sensitivity and transducer size.

3. Thickness Variation of the Skull Bone

Of equal importance is a consideration of the effects of the thickness variation of the skull bone on image quality. In the temporal and parietal areas of the skull where most neurological ultrasound examinations are made, the inner table of the skull bone undergoes variation in thickness on the order of 1 to 2 mm. It has been shown that phase variations are introduced across the transducer aperture when acoustic energy propagates through such a section of skull (Phillips et al. [8]). Figure 2 (Phillips et al. [8]) shows two elements of a one dimensional transducer array simultaneously transmitting an acoustic pulse through a section of skull. (An analogous situation would apply in the receive mode.) Since the acoustic velocity differs between bone and soft tissue, variations in skull thickness will produce relative changes in the phases of the acoustic wavelets emerging from the inner table of the skull. The velocity of sound has been reported to be approximately 3050 m/s in skull bone (Martin and McElhaney [9]) while the velocity in brain has been measured to be approximately 1540 m/s (Wells [10]). The phase variation $\Delta\phi$ can be described by

$$\Delta\phi = 2\pi\left(\frac{\Delta y}{C_S} - \frac{\Delta y}{C_B}\right)$$

where $\Delta y$ is the thickness variations of the skull bone; $C_S$ is the velocity of sound in the skull.
bone and $c_B$ is the velocity of sound in brain.

Based on the attenuation data and skull thickness variation, the skull bone can be modeled as an attenuating plate of varying thickness positioned in front of the transducer array. The validity of this model has been demonstrated by studies of acoustic transmission through skull flaps performed in a water tank environment with a linear array transducer (Phillips et al. [8]). Acoustic field plots, experimentally measured through skull, were compared with calculated field plots using thickness data from the same skulls. If the proposed model of the skull is valid as a first order approximation, then the character of the calculated plots should correlate closely with the experimental field measurements. Sections of skull from the temporal region were frozen upon removal, thawed before experimental use and then continuously stored in water. A diagram of the experimental arrangement is shown in figure 3. The multielement array measured 24 mm in length and consists of 16, equally-spaced, transducer elements. Each element is 0.35 mm in width and 14 mm in elevation. The center frequency was experimentally measured to be 1.8 MHz in water. The linear array was placed just under the surface of the water with the skull flap positioned in close proximity. Independent control of the transmit timing delay for each element was provided by continuously variable, mono-stable multivibrators whose outputs were directly coupled into the solid state transmitter pulsers. The acoustic field patterns of the array were recorded using a small transducer probe which could resolve small spatial variations of acoustic pressure. A Helix transducer probe measuring 0.46 mm in diameter was used for this purpose. The acoustic pressure was displayed on a cathode ray tube and recorded on photographic film as a function of the lateral position of the translated field probe.

The Helix probe was then moved aside and a simple piston transducer 12.5 mm in diameter was used as an illuminating transducer which provided a smooth acoustic wavefront incident at the inner table of the skull. The relative arrival times of the acoustic energy were recorded at the individual array elements. The arrival time or phase variations are directly related to the variations in thickness of the skull across the transducer aperture. As a theoretical check of the proposed model of skull bone, computer simulations of acoustic field pressure were constructed using the relative phase shifts of the acoustic pulses which had traveled through the skull to the individual array elements.

Figure 4 compares the experimental and calculated acoustic field plots which are used to evaluate the ultrasound beam character. Relative acoustic pressure was normalized to the spatial maximum of each scan and plotted as a function of lateral position. The extent of the lateral translation is 25 mm. The element transmit delays were set for a 10 cm Gaussian focus, and the experimental field plot was recorded in the focal plane.

The upper plot shows the measured acoustic pressure at a range of 10 cm without the presence of a skull flap; the middle plot shows the measured acoustic pressure when the adult skull is placed in front of the linear array. Of particular interest is an azimuthal shift of the main lobe to the right and the broad main lobe beamwidth. The bottom plot shows the computer calculation where the experimentally measured arrival times were incorporated into the transmit timing sequence to simulate the acoustic field pattern. In each simulation a transmit pulse character was specified along with an attenuation factor for each element to more accurately represent the experimental situation. However, the amplitude variations across the transducer aperture appeared to be of little significance for thickness variations on the order of ultrasonic wavelengths. If the proposed model of the skull is valid as a first order approximation, then the character of the simulation should correlate closely with the acoustic field plot obtained experimentally. The computer simulation shows an azimuthal shift of 4.9 mm to the
right compared with the 5.0 mm shift in the experimental plot. The 6 dB beamwidths in both plots are noted to be 7.0 mm. The overall geometrical similarities lend considerable support to the proposed first order model of the skull.

4. Resolution Limitations in the Presence of Phase Variations

One should now consider what is the extent of image degradation due to skull thickness variation in B-mode echencephalography. As has been briefly discussed in a previous publication (Smith et al. [7]), the skull thickness itself and hence the phase across a one-dimensional transducer can be written as an $n$th order polynomial:

$$\phi = A + B_x + C_x^2 + D_x^3 + E_x^4 + \ldots$$

where $\phi$ is the phase variation and $x$ is the location on the skull or transducer. Thus the phase variation due to the skull can be described as the sum of a mean phase shift, a linear phase variation and higher order terms. On the average the magnitude of the coefficients will decrease with higher orders, i.e., the finer grain variations will have smaller amplitudes than, for instance, the linear thickness variation of the skull across the transducer. It is also evident that the thickness variations of the skull will have less significance for imaging systems using longer wavelengths.

The mean thickness and the 1st order thickness variation of the skull make up the first two terms of the phase polynomial. The mean thickness of the skull with its acoustic velocity of 3050 m/s results in a range shift in an individual A-mode or B-mode line. A linear thickness variation of the skull results in a refraction of an A-mode or B-mode line according to Snell's law. A range shift or an azimuthal shift does not alter the beam width of a transducer. Hence, these effects do not degrade the resolution of an A-mode line or individual line of a B-mode image. However, for a linear B-scan or a compound B-scan, a linear skull phase variation which changes as a transducer is moved across the skull can cause distortions and misregistration in both the range and lateral dimensions. A phased array sector scanner as described by Somner [11] or Thurstone and von Ramm [12] produces a B-scan image in real time through a single fixed spot on the skull. Targets comprising such a sector image are shifted uniformly in range and azimuth by the first two terms of the phase polynomial and consequently there is no image distortion.

Second and higher order skull phase variations across the transducer aperture act like an undesired lens and degrade the lateral resolution of a single A-mode line and every type of B-mode scanner. The more random the phase variations, the more disrupted is the diffraction pattern of the transducer. In fact, an upper limit can be put on the resolution capability of conventional imaging through a phase aberrating medium (Goodman [13]). If $\Delta$ is the average linear dimension of the transducer over which the phase aberration is constant to within, say, one radian, then the resolution capability of the system is approximately that of a diffraction limited system with an effective transducer aperture, $D_{eff}$, related to $\Delta$ by

$$D_{eff} = \frac{F}{\rho} \Delta$$

where $F$ is the distance from the transducer to its focal point, and $\rho$ is the distance from the transducer to the aberrating medium. Transducer apertures of size greater than $D_{eff}$ collect more energy but have no greater resolution capability. Note that the most severe resolution limitation occurs for $\rho = 0$. That is, when the perturbing medium is directly adjacent to the transducer in which case $D_{eff} = \Delta$. Thus, a contact scanner, no matter what its aperture size, is limited to the same resolution as a transducer of size $\Delta$. Long path, focussed mechanical water bath scanners such as have been described by Fry et al. [1] and Thurstone et al. [14] can maintain larger effective apertures, since the transducer is sufficiently removed from the head so that the surface area of the skull subtended by the beam is very small and the relative phase variation is less significant. However, these mechanical scanners must move over the surface of the skull making them susceptible to registration errors due to refraction effects.
from linear phase variations as explained above. Tomograms from a contact electronic sector scanner suffer no distortions from linear phase variations. Therefore, if much of the thickness variation of the skull is a linear variation, an electronic sector scanner will be able to maintain much of its normal resolution capability.

One should now consider how large the thickness variation or phase variation is in the skull in the areas most commonly used for acoustic windows.

For a conventional imaging system, the amount of deviation of \( \phi(x) \) from the constant value \( A \) in eq. (2), will be a good predictor of how badly the image resolution will be degraded by phase aberrations.

Fried [15] has considered this question for astronomical imaging, wherein the changing refractive index of the moving air causes a phase aberration affecting optical telescopes. One function which can be used to predict resolution limitation is the root mean square phase variation, normalized to aperture size plotted as a function of aperture size.

\[
R = \left\{ \frac{1}{D/2} \int_{-D/2}^{D/2} \left[ \phi(x) - \phi(x) \right]^2 dx \right\}^{1/2}
\]  

(4)

\( \langle > \) is an ensemble average, \( \phi(x) \) is the mean phase across the aperture, and \( \phi(x) \) is the phase shift due to the skull at some point, \( x \), within the aperture. To examine this function, phase variations were measured for the 16 elements of a linear array which are separated by 1.5 mm. Sets of readings were taken at 10 different positions in the temporal regions from an adult skull and a pediatric skull. The measurements were made by recording the time of flight of an acoustic pulse as it propagates through the skull and arrives at the elements of the linear array.

For a given aperture size, the mean phase was first determined, and then the squares of the deviations were calculated for each element within that aperture. The sum of the squares was taken and then normalized to the aperture size. This was done for every possible aperture of elements within one set of measurements e.g., for an aperture size of eight elements there are nine possible apertures within each 16 element array. The procedure was performed for each of the ten sets of measurements; a final ensemble average was made, and the square root was taken.

Figure 5 shows the result of the calculations for two frequencies. The root mean square phase variation is plotted in terms of radians versus aperture size for 1.8 MHz and 1 MHz. The function is monotonically increasing at least up to an aperture size of 24 mm. It will level off at some larger size since the maximum thickness variations of the bone are not more than a couple of millimeters.

Fried [16] chooses the criterion that for root mean square (rms) phase variations of 1 radian (\( \sqrt{2} \) radians), the resolution capability has reached an upper limit no matter what the aperture size. Increasing the aperture dimension beyond this point, increases the phase variation so rapidly that many elements on the aperture are always out of phase. From figure 5, the phase variation is one radian for an aperture of 6 mm at 1.8 MHz. Therefore, the maximum effective aperture for a conventional contact ultrasonic scanner at 1.8 MHz is 6 mm, i.e., a numerical aperture of 7.3 wavelengths (ratio of aperture size to wavelength) and a resolution capability of 7.8 degrees using the Rayleigh criterion. At 1 MHz the rms phase variation reaches one radian for an aperture size of 18 mm. Therefore, the maximum effective aperture for a conventional contact ultrasonic scanner at 1 MHz is 18 mm or a numerical aperture of 12.2 wavelengths and a resolution capability of 4.6 degrees. One concludes then that in the presence of such skull variations a conventional contact B-scanner can achieve a larger useful numerical aperture and hence better lateral resolution at 1 MHz than at 1.8 MHz.

At this point it would be interesting to make another set of calculations which would be applicable to an electronic sector scanner using a contact transducer. It has been mentioned that such an imaging system is insensitive to linear phase variations across its aperture. Consequently, the relevant function to be calculated is the rms phase deviation, \( R \), from the phase slope for a given aperture size; i.e., the deviation from

\[
\phi_L(x) = A + Bx
\]  

(5)

Following the same line of thought as above, we now calculate

\[
R_L = \left\{ \frac{1}{D/2} \int_{-D/2}^{D/2} \left[ \phi(x) - \phi_L(x) \right]^2 dx \right\}^{1/2}
\]  

(6)

where \( \phi_L(x) \) is the slope of the phase data for a given aperture size. In this series of calculations, using the same data as above, the slope and intercept were determined by the least squares methods, and the calculations proceeded as above. Figure 6 shows the results to be as expected. For an electronic sector scanner at 1.8 MHz, the rms phase variation reaches a critical value of
one radian at an aperture size of approximately 14 mm. Therefore, on the average, the maximum effective aperture size will be 14 mm or 17 wavelengths and the resolution capability will be 3.4 degrees.

Now at 1 MHz, the rms phase variation for a sector scanner never reaches one radian for the aperture data which we measured. If we extrapolate this curve, we find that it will reach one radian near 1.25 inches or 32 mm. This corresponds to a maximum effective numerical aperture of 21 wavelengths and a resolution capability of 2.7 degrees.

These calculations, based on limited data, have yielded consistent results. For the one-dimensional skull data analyzed here, a 1 MHz transducer can achieve a larger effective numerical aperture and hence better lateral resolution than can a transducer operating at a higher frequency. The considerations of the increasing attenuation with frequency of ultrasound by the skull lend added support to the choice of a 1 MHz transducer for transkull imaging. In addition since a phased array sector scanner is insensitive to linear phase variations due to the skull, such a system would offer advantages in maintaining its resolution capability over conventional B-scanners.

A representative image is shown in figure 7 using the real time phased array B-scan system with a 1 MHz, 31 mm linear array transducer. A horizontal ultrasound tomogram through the skull of a 45 year old female is compared to an anatomical cross-section (Roberts and Hanaway [17]). As indicated, one can see the far skull, the mid-cerebral fissure, the posterior areas of the lateral ventricles, mid-line structures and echoes from the sylvian fissure. The corpus callosum appears as the relatively echo free band between the mid-cerebral fissure and the posterior areas of the lateral ventricles. Images of similar quality along with real time
display or pulsating cephalic blood vessels have been obtained in both horizontal and coronal sections.

Figure 8 shows a coronal scan in a ten year old normal female taken slightly posterior to the pinna of the ear. In this view the far skull, the mid-cerebral fissure, the anterior horns of the lateral ventricles, the third ventricle and the near side sylvian fissure are visualized. Furthermore, the corpus callosum is again seen as a relatively echo-free band above the anterior portions of the lateral ventricles. In this view the posterior cerebral arteries are consistently seen as pulsating echoes in the lower portion of the scan on both sides of the mid-line. In addition, the branch of the middle cerebral artery is also seen quite frequently in the area of the sylvian fissure.

5. Resolution Improvement via Phase Compensation

Having arrived at an improved transducer configuration to overcome partially the attenuation and phase aberration effects of the skull, signal processing techniques have been used in preliminary experiments to remove more completely the effects of skull thickness variations in a phased array imaging system.

Perhaps the most logical signal processing method is to measure the phase variation $\phi(x)$ of the aberrating-medium before an image is made, determine a compensating phase variation, $-\phi(x)$, and then add such a phase compensation to the imaging system in the form of an acoustic lens. Independent control over each element of the transducer array in transmit and receive modes provided a method to produce any desired wavefront response within the limitations imposed by element size and spacing with respect to the wavelength of ultrasound used. Such a process has long been recommended to compensate for lens aberrations in optical telescopes (Tsuijuchi [18]).

Recently several groups have reported construction of large sampled aperture telescopes whose mirror elements will move to compensate for the time varying phase aberrations of the turbulent atmosphere in real time (Muller and Buffington [19]; Hardy et al. [20]).

Figure 9 illustrates the basic principle of the phase compensation technique in an electronic phased array scanner (Phillips et al. [8]). Five representative elements of the transducer array are chosen with a section of skull placed in front of them. Part A shows the phase aberrated wavefronts emerging from a variable thickness skull when the elements are phased to produce a focused wavefront in a medium of constant acoustic velocity. In B, an acoustic wavefront provided by another source passes from the inner table of the skull to the transducer elements. Knowledge of the spatial character of the incident wavefront and the arrival times at each transducer element allows for the determination of the relative changes in skull thickness in front of the elements comprising the aperture. When these relative phase variations are incorporated into the transmit timing as shown in C, the emergent wavefronts exhibit a restored phase character similar to that originally intended.

![Fig. 9. Principle of the phase compensation technique.](image)

The following experiment using the equipment configuration of figure 3 is presented to illustrate preliminary findings (Phillips et al. [8]) utilizing phase compensation. As shown in figure 10a the control field plot was recorded at a range of 10 cm when the transducer elements were phased for a 10 cm focus and the skull removed. The 6 dB beamwidth was experimentally measured to be 4.5 mm compared with a calculated 4.3 beamwidth for the diffraction limited aperture. Figure 10b shows the beam plot with the adult skull positioned between the array and field probe. The 6 dB beamwidth was increased to 14.0 mm, and a main lobe refraction of 3.0 mm to the right is also apparent. The relative phase changes as a function of skull position in front of the linear array were measured, and the phase compensated beam profile is shown in figure 10c. Although the acoustic beam is attenuated due to a single transmission through skull bone, the phase character due to variations in skull thickness is restored. The refracted lobe was returned to within 0.5 mm of the axis defined in the control, and the 6 dB beamwidth was significantly improved and measured to be 4.5 cm. Although the foregoing studies were performed for the transmit mode in a direction normal to the face of the transducer, it was hoped that similar improvements could be realized when the ultrasound pulse was electronically steered and focussed in the receive mode.

The next step was to perform phase compensation studies for the transmit-receive mode in the water tank environment through a
The output from the delay lines are unable to provide phase coherence for an echo returning from a point target when the skull is interposed. In part C the received echoes from the same point target through the skull flap are restored to phase coherence by adjusting the delays of each delay line under software control, so that all outputs arrive in time coincidence with that of one channel chosen as reference. This procedure removes the timing errors caused when imaging through skull of varying thickness or composition.

Results are shown in the images of figure 12. Each image was made with the gain and reject controls set for optimum resolution. The left hand control image shows the ultrasound image of a line target used to produce the illuminating wavefront and a series of strings of variable spacing (5 mm to 10 mm) without the presence of a skull. The center image shows clearly the degraded resolution in the image of the same targets through a section of bone from the temporal area of the skull. The right hand image shows a significant restoration of image resolution for the line target and the strings in the center of the field of view. Decreased off-axis sensitivity
through the skull as the critical angle was approached was responsible for the target dropout at the edges of the field of view. The phase compensation technique clearly reduced the spot size of the targets imaged through the skull, thus restoring much of the azimuthal resolution of the system.

Implementation of the phase compensation technique in a clinical environment will be more complex since additional procedures and techniques must be utilized for ease of clinical use. Of basic importance is the necessity of producing a smooth acoustic wavefront incident at the inner table, within a live, intact head. One can speculate that the pineal gland which is calcified in most adults or the relatively planar structures of the third ventricle or the far side of the skull may serve as adequate reflectors to use to measure the phase variation of the inner table of the skull.

The results presented here are still preliminary. It is difficult to predict how much improvement will be necessary in lateral resolution and target dynamic range before B-mode images of cephalic structures routinely provide information of diagnostic value. However, the improvements presented here are encouraging and may lead to new techniques of acoustic imaging of cephalic structures having acceptable resolution for diagnostic evaluation.

Acknowledgments

This work was supported by USPHS grants HL-12715, HL-14228, HS-01613, and by the Food and Drug Administration, Bureau of Radiological Health.

References


Chapter 8

IMAGE RECONSTRUCTION
CHARACTERIZATION OF IN VIVO BREAST TISSUE BY ULTRASONIC
TIME-OF-FLIGHT COMPUTED TOMOGRAPHY

G. H. Glover

General Electric Company
Medical Systems Division
Applied Science and Diagnostic Imaging Lab
Milwaukee, Wisconsin 53201, U.S.A.

The use of ultrasonic time-of-flight (TOF) computed tomography for characterization of tissue in live breasts is reported. Quantitative distributions of the refractive index within a tomogram of the specimen were obtained by reconstruction from 5 MHz TOF projection data. Fifteen breast cancer patients and five asymptomatic volunteers were scanned during the clinical feasibility study. The results indicate that young, dense breasts have wide variation in the refractive index distributions. In older subjects, however, various lesions are found to have distinctive indices. Histograms of the reconstructions show differences between pathological and normal breasts.

Key words: Breast cancer; computerized tomography; mammography; time-of-flight; tissue characterization; ultrasonic imaging; ultrasound.

1. Introduction

Ultrasonic energy potentially provides an attractive modality for mass screening programs in breast cancer detection. Its advantage is particularly evident in light of the recent publicity concerning suspected hazards of radiographic procedures. It is, therefore, of interest to characterize quantitatively the ultrasonic properties of breast tissue, with an eye towards differentiation of various neoplasms and breast parenchyma. A useful vehicle for this purpose (and perhaps for mass screening as well) is computerized time-of-flight (TOF) tomography.

TOF tomography was first published by Greenleaf et al. [1] in 1975. Since then, several other workers [2,3] have published reports on other aspects of this technology. In this technique, the speed of propagation of an ultrasonic wave is accurately measured along many uniformly sampled paths through the specimen (see fig. 1). The data are obtained from measurements of the time delay for reception of a short pulse traversing the path. In the parallel-scan geometry shown in figure 1, the set of values corresponding to a given angle relative to the specimen collectively form one TOF projection (or view). Other projections are then obtained by rotating the scanner relative to the specimen. A two-dimensional refractive index distribution is then obtained from the projection data by computerized image reconstruction techniques [4]. The result-

Fig. 1. Geometry of scanner. A single pair of transducers are translated in 1 mm steps to form one projection. One hundred projections are obtained by rotation of the scanner through 180 degrees. Other slices are acquired with the scanner lowered relative to the breast (side view).

1Figures in brackets indicate literature references at the end of this paper.
ing images are displayed as an array of square pixels, each of which represents the local speed of propagation supported by the tissue. The process is very much analogous to x-ray computed tomography methods.

The speed of propagation of an ultrasound wave depends upon the elasticity and mass density of the propagating medium. Thus, the TOF reconstructions directly provide quantitative, localized information about significant mechanical properties of the bulk tissue. (By contrast, echo amplitude is a very complicated function of interfacial and bulk tissue ultrasonic characteristics, as well as of geometry.) The propagation velocity has been found to vary by several percent in various types of soft tissue [5]. In this paper, velocity measurements of tissue structure in in vivo breasts are presented and analyzed with the aid of histograms. In the following section, the experimental technique is described.

2. Experiment
   A. Technique

Only a brief description is given here as the details have been presented elsewhere [3,6]. The scanner used in the study is shown in figure 2. A transmitter and a receiver transducer (Panametrics, 5 MHz) were rigidly mounted on a carriage which could be translated by a stepping motor. Samples were acquired at 1 mm intervals (163 samples/projection). The tank was mounted under a canvas sling supported by a metal and wooden structure so that the subject lay prone with the breast immersed in the water of the inner tank. Thus, horizontal slices 5 mm thick transaxial to the breast were obtained as shown in figure 1. After the first projection was acquired, additional projections were measured as the tank was rotated through 180 degrees in 1.8 degree steps by a second motor. The TOF data (ns seconds of delay) were stored on digital cassette tape for later reconstruction.

The reconstructions were obtained using the convolution algorithm [4]. The original reconstruction utilized time-sharing software and were displayed in a 57 x 57 matrix format [6]. For the present work, the images were re-reconstructed in a 64 x 64 matrix representing 12 x 12 cm with a minicomputer. Reconstruction time was about 60 seconds using conventional FORTRAN coding.

The velocity values \( v \) are given in CTU values, defined as [6]

\[
\text{CTU} = \frac{v - v_0}{v_0} \times 1000, \tag{1}
\]

where \( v_0 \) is the velocity of propagation in the water (at about 34 \( ^\circ C \)). Thus, +10 CTU corresponds to a velocity 1 percent greater than for water.

The clinical study was performed at the Albany Medical College. Fifteen symptomatic patients and five asymptomatic volunteers were scanned. Mammograms and clinical reports for the patients were available before the scans to help localize the region of interest. Generally, three slices 1 cm apart for the pathological breast and one slice of the contralateral breast were acquired. After the TOF scans, biopsies were performed on the suspicious breasts. These results were then made available for comparison with the reconstructions. A thorough historical comparison would have been desirable, but was outside the scope of this study.

B. Results

Figures 3 and 4 show typical reconstructions of breasts having lesions. In these pictures, high velocities are depicted as black. Figure 3 shows a right breast (age 53) containing a large (benign) fibroadenoma. The CTU values for the lesion are 20-28, while the mammary fat (white areas) has CTU values of about -60. The left breast depicted on figure 4 (age 44) contains infiltrating ductal carcinoma with CTU numbers 40-45. The mammary fat has CTU values similar to those in figure 3.

The streaking artifacts in these pictures derive from patient motion during the long scan time required to obtain the data (about 9 minutes/slice). As a result, the pictures are much noisier (standard deviation, \( \sigma \approx 10 \) CTU in the water bath) than the intrinsic velocity resolution of the system determined with a stationary phantom (\( \sigma \approx 2 \) CTU). Nevertheless, the reconstructions are of sufficient accuracy to characterize the large-mass lesions studied here.

Table 1 presents a summary of the CTU values for several types of lesions as well as fat and asymptomatic breasts.

<table>
<thead>
<tr>
<th>Table 1. Summary of CTU values for several types of lesions, fat and asymptomatic breast parenchyma.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CTU numbers</strong></td>
</tr>
<tr>
<td>Symptomatic patients (ages 33 to 85)</td>
</tr>
<tr>
<td>mammary fat</td>
</tr>
<tr>
<td>normal parenchyma</td>
</tr>
<tr>
<td>fibroadenoma/fibrocystic disease (benign)</td>
</tr>
<tr>
<td>carcinoma</td>
</tr>
<tr>
<td>inflammatory skin thickening</td>
</tr>
<tr>
<td>Asymptomatic subjects (ages 24 to 29)</td>
</tr>
<tr>
<td>fibrotic mammary glands, ducts</td>
</tr>
</tbody>
</table>

Fig. 2. Scanner mechanism mounted in wooden frame. Both tanks are water filled. The breast is immersed in inner tank, which is isolated for electrical precaution.
tomatos (presumed normal) breast parenchyma. In
the older patients, the CTU values were found to
be distinctive for fat, normal parenchyma, fibrotic
tissue, and carcinoma. Malignant lesions and in-
flammatory skin thickening due to the presence of
an internal malignant neoplasn have characteristic
CTU numbers greater than 40, while benign lesions
(fibrocystic disease, fibroadenoma) have CTU values
less than 30. However, the CTU values for the
dense breasts of the younger asymptomatic subjects
span the entire range. It is, therefore, impos-
sible to differentiate solely on the basis of CTU
value neoplastic tissue from normal fibrotic
parenchyma in such cases.

In several slices wherein the lesion did not
completely fill the 5 mm axial slice thickness, the
CTU values were less than the bulk numbers in the
table. These partial volume effects arise because
the component of transmitted signal which arrives
earlier due to traversal through the high velocity
lesion ultimately becomes too low in amplitude to
be detected relative to the signal components which
exclude the lesion. The transition is not perfect-
ly sharp due to refraction and tissue dependent
attenuation effects. Excluding such cases, however,
there were no counter-examples to the CTU values
classifications in the table.

3. Statistical Analysis

A rudimentary statistical analysis of the re-
constructions was performed by computing the
histograms and cumulative distribution functions.
For this purpose, a program was developed which
searched the matrix for the edge of the breast, fit
an arbitrary ellipse to the boundary points by
regression, and calculated the histogram for
those elements within the ellipse. The class
interval was chosen as 3 CTU numbers in com-
puting the histograms. The results were normal-
ized to remove variations in specimen size.
Figure 5 shows histograms for a young, asymp-
Fig. 3. Reconstruction of breast with large
fibroadenoma (black region).

tomatic subject. Note that the two normal
breasts have similar tissue distributions. This
was not always the case, although generally the
skew and kurtosis of the histograms were similar.
The distributions are peaked near CTU = 0 and
contain considerable fibrotic tissue with high
CTU numbers. The variations in the histograms
for different young subjects were quite wide.
This is illustrated by plotting the (inverse)
cumulative probability function.

\[ \theta_j = \sum_{i=j}^{N} f_i \]  

(2)

Fig. 4. Reconstruction showing infiltrating duct-
tal carcinoma (lower quadrant) and in-
flammatory carcinoma central region.

Fig. 5. Histograms of right (solid) and left
(dashed) breasts of 24 year old asympto-
matic subject. The distributions are
very similar and centered near CTU = 0.
Considerable fibrotic structure is evident
from the peak position and area under the
high valued tails.
where \( f_i \) is the frequency for the \( i \)th CTU value. Curves for three of the subjects are shown in figure 6. As may be seen, the curves span a large range of CTU values.

Figure 7 shows histograms for a 58 year old patient with carcinoma in the right breast and a normal left breast. Note that the peak for the normal histogram has shifted position to low negative values relative to figure 5. This reflects the atrophy of glandular structure (high CTU) and replacement by fat (low CTU) in the post-menopausal breast. Although not enough data is available from this study, undoubtedly the peak position is a decreasing function of age [7]. The histogram for the pathological breast has markedly dissimilar shape (skew and kurtosis) and extends to higher CTU values. The carcinoma is contained in the high valued region. (The peak near zero probably represents some water being included in the histogram by the algorithm.) Figure 8 shows examples of cumulative distribution plots for older normal breasts, and breasts containing fibrotic and carcinoma tissue. In general, figures 6 and 9 tend to reflect the results of all the scans summarized in table 1.

4. Discussion

Human female breasts are constituted of time varying fractions of various components. It appears plausible that each of these components (parenchyma, glands, fat, etc.) have ultrasonic properties which are relatively similar between different subjects. Indeed, the wide variation in average and peak CTU numbers observed for young dense breasts probably represents an incomplete analysis of the volumetric fractions of glandular tissue, fat, and ducts present in any given subject. In any case, a single number representing velocity values averaged over the volume of a breast [7] is probably too simplistic to be representative of the breast.

The symptomatic subjects examined in this study were chosen to have large, unambiguous lesions in order to acquire data on the various tissue components. These data, however, represent a statistically insignificant number of cases on which to
base any absolute conclusions. In fact, a larger data base will probably show wider variation in values than was found in this study. Nevertheless, the present results suggest a distinction between normal and neoplastic tissue which is encouraging for mammographic application.

There are potentially several methods of utilizing the TOF data in cancer detection suggested by the histograms. When available, histograms of the contralateral breast provide a reference which could form part of a comparative basis. Alternatively or additionally, a reference base which depends on age and other variables can be accumulated. Besides the histograms, which present a volumetric picture of the constitutive elements, the individual pixel values, rates of change, and geometry can be searched for characteristic patterns. Application of such speculation, however, must await the acquisition of more massive amounts of data.

Acknowledgments
The clinical data was acquired with the help of R. W. Sponzo, M.D., his staff and colleagues at the Albany Medical College.

References
VARIATION OF ACOUSTIC SPEED WITH TEMPERATURE IN VARIOUS EXCISED HUMAN TISSUES STUDIED BY ULTRASOUND COMPUTERIZED TOMOGRAPHY

B. Rajagopalan, J. F. Greenleaf, P. J. Thomas, S. A. Johnson, and R. C. Bahn

Biodynamics Research Unit
Departments of Physiology and Biophysics, and Department of Pathology and Anatomy
Mayo Clinic and Mayo Foundation
Rochester, Minnesota 55901, U.S.A.

Variation of acoustic speed as a function of temperature was measured in fresh excised human liver, psoas muscle, spleen, spinal cord, kidney and fat, parenchyma and muscles associated with female breasts. Tissues were encased in rubber finger cots and suspended in a temperature controlled water bath. A prototype clinical ultrasound breast scanner was used to obtain data required to reconstruct distributions of acoustic speed within two-dimensional planes through the tissue specimens over a temperature range of 20 to 40 °C. Quantitative images (printer listings of acoustic speed) of 64 x 64 pixels were used to obtain averages of up to 16 speed measurements within the image of each tissue. The acoustic speed in most tissues increased monotonically with temperature following the behavior of water. Acoustic speed of fat showed an anomalous decrease in acoustic speed around 34 °C suggesting possible phase transition.

Key words: Aperture synthesis; computed tomography; Doppler; fluid flow; high resolution; reconstruction; temperature reconstruction; ultrasound.

1. Introduction

Historically, production of images by ultrasound scanning has been done by displaying either the pulse echo reflected from an object (B-scan) or by displaying the attenuated signal (C-scans) transmitted by an object[1]. These modalities, although useful, give only a qualitative mapping of tissue interfaces and geometries. Images representing quantitative distributions of basic mechanical tissue properties as characterized by ultrasound scattering cross section, impedance [2,3] and acoustic speed [4] may be intrinsically more valuable than the qualitative images representing tissue borders and geometries. A quantitative imaging modality would eliminate operator-dependent variations one often finds in the qualitative imaging modalities. Ultrasound computerized tomography [4] is one such imaging modality by which the distribution of one fundamental mechanical parameter, i.e., acoustic speed, in a tissue can be studied.

The purpose of this report is to describe methods and initial results of applying computerized tomography to the problem of obtaining quantitative images representing the distribution of acoustic speed and the effect of temperature on these values for tissues from various parts of the body, especially the human breast. The knowledge of temperature coefficients of acoustic speed in tissues may be useful in estimating the temperature change in a region of tissue occurring due to external causes such as ultrasonic heating or drugs. Since various disease processes alter tissue temperature, the temperature coefficients may also be helpful in the interpretation of computerized tomography images of live tissues.

The reconstruction problem in ultrasound computerized tomography has been described elsewhere [4] and will not be described in detail here. A good introduction to the basic mathematics of computerized tomography and a general overview of the analytical and iterative algorithms can be found in the review articles by Gordon and Herman [5] and Brooks and Dichiro [6]. The convolution reconstruction algorithm for the divergent beam geometry was first derived by Lakshminarayanan [7] and later a mathematically rigorous treatment of the same problem leading to identical results was given by Herman and his coworkers [8]. This divergent beam convolution reconstruction algorithm is used exclusively for all the reconstruction images in this paper.

2. Experimental Arrangement

In ultrasound computerized tomography the profile data consist of measurements of time-of-
flight of an acoustic pulse through the sample along different rays or directions. The data are obtained by divergent beam scanning with a single pair of transducers one on each side of the region of interest. The schematic of the data collection geometry is shown in figure 1. The scan angle is $\phi$ and is incremented at 0.15° intervals using a stepping motor. After the scan the ultrasound transmitter-receiver arm is rotated to a new $\phi$ position and another scan is initiated. Thus, for each $\phi$ position there is one profile of time-of-flight data. One hundred twenty profiles separated in view by 3° increments are gathered over the 360° range.

The schematic of the experimental arrangement for collecting computerized tomography data is shown in figure 2. The system is driven by an Interdata 7/32 minicomputer which controls the height and rotation angle ($\phi$) of the scanner arm and collects the time-of-flight data from the digital output of the time-of-flight (TOF) clock and control box. This TOF clock and control box is interfaced to the digital I-O of the minicomputer and upon a command from the computer collects time-of-flight data, outputs the data, steps the scanner arm to the next orientation in the scan and repeats this process until one profile of data are collected. At the end of the scan the scanner arm is rotated to the new $\phi$ position by a command from the minicomputer and the process of collecting profile data resumed by a trigger to the TOF clock and control box. These time-of-flight profiles represent propagation delay of acoustic pulses along many rays through the tissue under examination are input to the reconstruction programs to obtain quantitative distributions of acoustic speed in the transverse plane through the tissue.

3. Reconstruction Algorithm

The mathematical steps to arrive at the reconstruction picture from the set of profile data are given in this section without attempting to derive any of them. These steps known as the reconstruction algorithm are treated extensively in the literature and the derivation for divergent beam geometry starting from Radon transform [9] can be found in the reference mentioned earlier [8].

The raw data of each profile consist of time measurements (in seconds x $10^{-8}$) at each increment along the arc of the scan. The data for the 20 or more points closest to each end of the profile are the time-of-flight for sound through water, and never vary by more than one unit ($10^{-8}$ s) from the lowest to the highest. The average of the first few points is subtracted from each point of the profile and the differences $P(j,\phi)$ represent the profile data for reconstruction. Here $\phi$ is the angle made by the central ray of the scan with x-axis (arbitrarily chosen) and $j = -n ... -1, 0, 1, ... n$ indexes the angles of the 2n+1 individual rays of the scan with $j = 0$ at the center of the scan. For each rotation angle $\phi$ the profile data are reduced by the cosines of the angles of the individual rays from the center line.

$$P(j,\phi) \text{ modified} = P^*(j,\phi) = P(j,\phi) \cos(\varepsilon)$$

where $\varepsilon$ is the constant angular increment in the scanning motion (0.15°). The modified profile
\( \mathbf{P}(j,e) \) is convolved with a kernel to give the convolved modified profile \( C(k,e) \), i.e.,

\[
\begin{align*}
C(k,e) &= \sum_{i=k_{\text{min}}}^{k_{\text{max}}} A_i \mathbf{P}^* (i-k,e) \\
&= \frac{k_{\text{max}}}{k_{\text{min}}} A_i \mathbf{P}^* (i-k,e)
\end{align*}
\]  

(2)

The kernel is given by

\[
A_i = \left( \frac{1}{4} \right)^i D e^{-(i^2 \sin^2 \theta)}
\]

(3)

\( A_i = 0 \) for even \( i \) and \( i = 0 \)

where \( D \) is the distance from the axis of rotation for the scanning motion to the axis of rotation for rotate motion and \( k_{\text{min}} \) and \( k_{\text{max}} \) indicate the lower and upper limits of the scan. Finally, the back-projection is formed, along the lines of the acoustic rays, converging at the axis of scan motion, with the back-projected \( C(k,e) \) weighted with the inverse square of the relative distance of the point from the axis of the scan to distance \( D \). Thus, for each time-of-flight profile at an angle \( \theta \) the matrix \( f(x,y) \) forming the reconstructed picture is incremented by

\[
\Delta f(x,y)_0 = \frac{e}{2} C(k,e) \frac{D^2}{r^2}
\]

(4)

where \( r = \) distance of the point \((x,y)\) from the axis of the scan. \( C(k,e) \) is interpolated if a ray fails through the point \((x,y)\). The sum of all the back-projected \( \Delta f(x,y)_0 \) for all \( \theta \) values yields the reconstructed image at \((x,y)\).

\[
f(x,y) = \sum_{\text{sum over } \theta} \frac{e}{2} C(k,e) \frac{D^2}{r^2}
\]

(5)

When the back-projection is finished, the value for each pixel will be the increase or decrease in time per centimeter at that point, compared with water. The time-of-flight for water (in the same units, calculated from the measured time and known distance, and verified by the known velocity of sound in water for the particular temperature) is added to the value of each pixel, and the reciprocal of the sum is scaled to give the final result in meters per second. The reconstructed digital images represented by a matrix of \( 64 \times 64 \) pixels can be displayed in gray scale in a Ramtek display system.

4. Experimental Results and Discussion

The accuracy with which the acoustic speed can be determined using ultrasound computerized tomography is demonstrated in figure 3 in the high correlation of our data with the literature value \((10)\) for 2.5 percent salt solution. Thin rubber finger cots filled with saline served as the test object. The agreement of the literature values with the experimental results over the entire temperature range is within \( \pm 0.3 \) percent. Since the reconstructed image is a matrix giving the acoustic speed in each pixel (pixel size \( \approx 1.5 \) mm\(^2\)) mean and root mean square deviation of the acoustic speed are easily determined by analyzing the quantitative distribution of acoustic speed in the image. Similar statistical analysis was done on the reconstruction images of all the tissues that were studied and reported in this paper.

Tissues were obtained and selected by a pathologist as being representative of selected tissue types. Samples of tissue acquired were about 2 to 3 centimeter square and 5 centimeter long and were suspended in a bath of normal saline. Reference objects such as finger cots filled with saline of known concentrations were also suspended with the tissues. Later in the study the tissues were packed into finger cots under normal saline and suspended in the water bath. This procedure simplified the tissue handling considerably and the effect of finger cots on the quantitative results was found to be negligible.

The temperature of the water bath was increased in increments of about 2°C and the tissues were allowed to equilibrate with the bath water prior to each new scan. The temperature of the bath was controlled \( \pm 0.1 \)°C and experiments were done over a range of approximately 22 to 42°C.

The ultrasound computerized tomography images for the acoustic speeds in spleen, kidney, liver, spinal cord and psoas muscle at two different temperatures are displayed in figure 4. Since the two pictures are displayed in the same gray scale any increase in the acoustic speed with temperature is seen as an increase in the brightness of the corresponding regions of the image. The water background is brighter in the image for 33.2°C for the same reason. Figure 5 gives a similar picture for breast tissues at temperatures 14°C and 41°C. Because of the very large temperature change, the corresponding changes in the acoustic speeds are seen strikingly in this picture. The water background goes from dark to bright and the image of salt solution gets brighter at the higher temperature. Images of the breast fat which were brighter than the water

![Fig. 3. Comparison of acoustic speed in 2.5 percent salt solution (2.5 g salt in 100 cm\(^3\) of water), as determined by ultrasound computerized tomography, with the literature values. The literature values have an accuracy of ± 4 cm/s. Acoustic speed values were taken as the average of 20 samples in the reconstructed image](image-url)
background at the lower temperature become darker at the higher temperature since the acoustic speed in the breast fat has decreased with increasing temperature. The dark streak from fat to fat in the picture for 41°C is an artifact caused by the lens effect of the cylindrically shaped tissue. The increase in the acoustic speed in parenchyma with temperature is also seen from this picture.

Results of the statistical analysis of the reconstruction images giving the mean and standard deviation of the acoustic speeds at various temperatures in all the tissues studied are given in tables 1 and 2. These data are graphically illustrated in figures 6, 7, and 8. From figure 6 it is clear that the tissues liver, psoas muscle, spleen, spinal cord and kidney have higher acoustic speeds than water and their temperature variations are similar to that of water. The breast muscle and parenchymal tissue are about 3 percent higher in acoustic speed than normal saline. Their temperature behavior is also very similar.

Table 1. Temperature variation of acoustic speed in excised human breast tissues.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>22.5°C</th>
<th>25.8°C</th>
<th>27.8°C</th>
<th>30.2°C</th>
<th>32.2°C</th>
<th>35.1°C</th>
<th>38.0°C</th>
<th>40.1°C</th>
<th>42.5°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt finger (2.5%)</td>
<td>1516.7</td>
<td>1523.2</td>
<td>1529</td>
<td>1533.6</td>
<td>1538.4</td>
<td>1544.8</td>
<td>1549.6</td>
<td>1552.8</td>
<td>1556.5</td>
</tr>
<tr>
<td>(2.1)</td>
<td>(2.1)</td>
<td>(2.6)</td>
<td>(2.1)</td>
<td>(2.8)</td>
<td>(3.1)</td>
<td>(3)</td>
<td>(4.2)</td>
<td>(3.8)</td>
<td></td>
</tr>
<tr>
<td>Fat breast</td>
<td>1480.7</td>
<td>1466.9</td>
<td>1472.1</td>
<td>1477.4</td>
<td>1478.1</td>
<td>1458.3</td>
<td>1435.6</td>
<td>1438.7</td>
<td>1441.8</td>
</tr>
<tr>
<td>(2.5)</td>
<td>(9.9)</td>
<td>(9.6)</td>
<td>(9.9)</td>
<td>(11.4)</td>
<td>(15.6)</td>
<td>(18.4)</td>
<td>(18.4)</td>
<td>(17.5)</td>
<td></td>
</tr>
<tr>
<td>Fat with parenchyma</td>
<td>1499.7</td>
<td>1487.5</td>
<td>1491.5</td>
<td>1497.8</td>
<td>1500.9</td>
<td>1471.3</td>
<td>1471.3</td>
<td>1474.2</td>
<td>1475.9</td>
</tr>
<tr>
<td>(4.1)</td>
<td>(5.5)</td>
<td>(5.5)</td>
<td>(5.7)</td>
<td>(6.2)</td>
<td>(9.7)</td>
<td>(13.1)</td>
<td>(13.4)</td>
<td>(12.8)</td>
<td></td>
</tr>
<tr>
<td>Parenchyma</td>
<td>1539.4</td>
<td>1545.7</td>
<td>1551</td>
<td>1558.1</td>
<td>1562.1</td>
<td>1564.5</td>
<td>1564.3</td>
<td>1569.6</td>
<td>1571.8</td>
</tr>
<tr>
<td>(4.5)</td>
<td>(4.0)</td>
<td>(4.6)</td>
<td>(3.9)</td>
<td>(4.1)</td>
<td>(4.6)</td>
<td>(4.6)</td>
<td>(6.3)</td>
<td>(6.4)</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>1543.1</td>
<td>1551.4</td>
<td>1554.2</td>
<td>1562.4</td>
<td>1565.5</td>
<td>1566.9</td>
<td>1570.7</td>
<td>1574.6</td>
<td>1579.5</td>
</tr>
<tr>
<td>(5.2)</td>
<td>(6.2)</td>
<td>(6.5)</td>
<td>(7.1)</td>
<td>(6.4)</td>
<td>(4.5)</td>
<td>(6.9)</td>
<td>(6.7)</td>
<td>(5.4)</td>
<td></td>
</tr>
<tr>
<td>Background (normal saline)</td>
<td>1504.0</td>
<td>1512.5</td>
<td>1519.2</td>
<td>1523.7</td>
<td>1528.4</td>
<td>1535.4</td>
<td>1539.1</td>
<td>1541.9</td>
<td>1546.4</td>
</tr>
<tr>
<td>(3.2)</td>
<td>(3.6)</td>
<td>(2.8)</td>
<td>(2.5)</td>
<td>(2.4)</td>
<td>(4.0)</td>
<td>(2.9)</td>
<td>(3.0)</td>
<td>(2.8)</td>
<td></td>
</tr>
</tbody>
</table>

aVelocity, m/s.
bStandard deviation.
Table 2. Temperature variation of acoustic speed in selected excised human tissues.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.0 °C</td>
</tr>
<tr>
<td>Liver</td>
<td>1547.0(^a)</td>
</tr>
<tr>
<td>Kidney</td>
<td>1508.5 (4.3)</td>
</tr>
<tr>
<td>Spleen</td>
<td>1528.0 (1.8)</td>
</tr>
<tr>
<td>Psoas muscle</td>
<td>1542.5 (3.0)</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>1509.0 (4.5)</td>
</tr>
</tbody>
</table>

\(^a\)Velocity, m/s.
\(^b\)Standard deviation.

Fig. 6. Variation of velocity of sound with temperature in various tissues. Ultrasound computerized tomography data. Values are averages of about 15 values taken in the visually defined center of respective tissue samples within the image. Bars are ± RMSD.

Fig. 7. Variation of acoustic speed within pectoralis muscle and normal parenchyma of breast. Values obtained in the manner described in figure 6.

Phase transitions just below the body temperature (37 °C). Hoyer and Nolle [11] studied the behavior of nematic and cholesteric liquid crystals near the isotropic to liquid crystal transition by measuring the propagation constants of ultrasonic waves. Their study indicates that the acoustic speed goes through a minimum at the temperature of the phase transition. Dyro and Edmonds [12] investigated ultrasonic dispersion in cholesteric esters and their results show that the acoustic speed exhibits markedly different behavior around the phase transition. Though the fat sample in the present study is not a homogeneous, "clean", one-component system, the possibility of a phase transition of some kind cannot be excluded. More detailed studies using different physical chemistry techniques such as differential scanning calorimetry may shed some light into the anomalous temperature behavior of the breast fat.
Variation of acoustic speed in normal breast fat. Slope of alteration in acoustic speed with temperature is negative for fat in certain regions of temperature. Vertical shift in curves is apparently due to presence of parenchyma which has temperature dependence much like water (see fig. 7).

Alterations of temperature within various tissues can be expected under various inflammatory processes such as infections. It is also well known that certain carcinomas are associated with a high temperature due to their increased metabolism. Knowledge about the temperature variations of acoustic speed in diseased tissues and in normal tissues should be valuable in future studies of acoustic speed distributions within patients whose tissues are undergoing various disease processes. Computerized ultrasound tomography may provide the possibility of quantitatively measuring acoustic speed in breast tissues in vivo.

Acknowledgments

The support from Dr. Earl H. Wood, Dr. Erik L. Ritman, and the staff of the Biodynamics Research Unit, Mayo Clinic, is appreciated. This research was supported by Grants HL-07111, HL-00170, HL-00060, RR-00007, HL-04664, NIH-RT-4-2904 from the National Institutes of Health, United States Public Health Service, and NCI-CB-64041 from the National Cancer Institute.

References


HIGH SPATIAL RESOLUTION ULTRASONIC MEASUREMENT TECHNIQUES
FOR CHARACTERIZATION OF STATIC AND MOVING TISSUES

Steven A. Johnson, James F. Greenleaf, and B. Rajagopalan
Biodynamics Research Unit
Department of Physiology and Biophysics
Mayo Foundation
Rochester, Minnesota 55901, U.S.A.

Robert C. Bahn
Department of Pathology
Mayo Clinic and Mayo Foundation
Rochester, Minnesota 55901, U.S.A.

Brent Baxter
Department of Computer Science
University of Utah
Salt Lake City, Utah 84112, U.S.A.

Douglas Christensen
Departments of Bioengineering and Electrical Engineering
University of Utah
Salt Lake City, Utah 84112, U.S.A.

Clinical and pathology-based arguments are presented for the need for higher resolution ultrasound images. The theoretical foundation and experimental characteristics of a high resolution, sampled aperture, reflection technique termed "synthetic focus" imaging are given. It is shown by theory and simulation that such synthetic focus images may be corrected for attenuation and refraction effects and thereby approach one-half wavelength resolution. The similarity between synthetic focus and seismic migration techniques is discussed. An example of a high resolution, seismic processed (i.e., migrated) image obtained from real data at medical ultrasound frequencies is shown. Synthetic focus imaging theory is extended to moving coordinate systems and the effect of Doppler shift effects on echo pulse shape is discussed. A generalized aperture Doppler imaging theory is presented which suggests further improvements in signal-to-noise ratio, spatial resolution and flow velocity over narrow aperture systems is possible. A new computed tomographic flow measurement and reconstruction technique based on transmission measurements is presented. This technique permits imaging the three flow velocity components and temperature of homogeneous fluids in a three-dimensional domain.

Key words: Aperture synthesis; computed tomography; Doppler; fluid flow; high resolution; reconstruction; temperature reconstruction; ultrasound.

1. Introduction

This paper presents theoretical and experimental evidence that useful measurements of tissue characteristics with limiting spatial resolutions of about one-half wavelength are possible in static and moving media (e.g., tissues). This paper has three objectives: First, to present the case for striving for higher resolution images of tissue parameters, second, to describe the theoretical and experimental techniques whereby such high resolution images may be obtained and, third, to report progress toward obtaining such high resolution images.
2. The Case for Seeking Higher Resolution Images

A. Higher Resolution Images of Static Tissues

The first goal or purpose of this paper is in part philosophical, yet is demonstrable, and calls attention to an important area of investigation (improved resolution) where future research progress can be made. It can be argued that reliable tissue characterization requires attention to at least three independent requirements: First, choosing an adequate set of tissue dependent acoustic parameters to be measured; second, measuring the parameters with accuracy and precision in some set of regions in the tissue; and third, making this measurement region as small as possible and as densely arranged or packed as possible (i.e., forming an image).

The third requirement is not always necessary to gain some information on tissue type but its inclusion improves the certainty of characterization. Certainly, it is clear that an early diagnosis of a disease state (such as cancer) is enhanced by detection of smaller masses made possible by higher resolution and better tissue identification. In some cases the tissue type may well be primarily determined by the morphology and pattern of its structure and the change in these patterns of the surrounding tissue [1,2]. This has its analog in microscopic pathologic techniques where both stain (acoustic tissue characterization parameter is its analog) and pattern are important in tissue typing or characterization.

In the long range, the improvement of resolution may be the most important objective for future research progress. At present, the primary attempt to detect small focal processes such as cancers, abscesses, infarcts of less than 0.5 to 1 cm in diameter is difficult and may not be justified economically. However, often more fundamental than the focal lesion itself, regardless of its size, is the state of the tissue surrounding circumscribed lesions. The pattern of the adjacent tissue plays a crucial role in the identification of specific diseases by supplying the physician with information concerning the local context of the process under consideration.

Compared to tumor nodules, the structures of the surrounding "normal" tissues are relatively delicate. Their patterns are essentially determined by the dimensions of the fibrous and vascular framework of an organ. It would be desirable to image such delicate patterns associated with the tertiary branching of major arteries of the heart, brain, kidneys, and lungs, the bronchial tree, the biliary ducts of the liver and the ductular system of the breast. Since vascular or ductal systems at the level of tertiary branching involve tubular structures approximately 0.5 to 1.0 mm in diameter, this objective fixes the upper limit of useful picture element size at about 0.25 to 0.5 mm. From a practical point of view, this level of resolution would provide at least 20 resolvable picture elements (pixels) over an area 2.5 millimeters in diameter. Such an area would correspond roughly to the cross-sectional area of the lumen and portions of the wall of a coronary artery.

In this manner, imaging studies can eventually become focused upon pathogenesis, prevention, and early detection of disease rather than upon the diagnosis of gross advanced lesions.

B. The Case for Seeking High Resolution Images of Moving Tissues

The velocity of moving tissue may be obtained by two general methods. First, by a differential method in which velocity is computed from images of the location of the tissue at two separate times separated by a short time interval (this could be done by comparing two separate real-time B-scans of the heart, for example), and second, by direct methods which make use of alterations in frequency or phase in the received ultrasound signals. Examples of images produced by this latter method are the familiar pulsed Doppler B-scan technique [3] and the new fluid velocity vector reconstruction technique developed by Johnson et al. [4].

Images produced by the first or differential method have application in understanding moving solid tissues such as the heart and circulatory system and their components (e.g., valves, vessels, etc.). Any improvement in the spatial and temporal resolution of methods for imaging these moving structures would produce a corresponding improvement in imaging the velocity of these structures at high spatial resolution. The effort which has been and now is being made in the field of x-ray angiography [5] is an indication of the potential contribution which such high spatial and temporal ultrasound imaging methods could make to health care.

Images produced by the direct velocity imaging techniques (based on frequency or phase shift techniques) have application in measuring the velocity of fluid produced or modified by tissues (e.g., air in the respiratory system, urine, etc.) or the velocity of fluid tissues (e.g., the blood). The well-known Doppler technique (a reflection method) measures the velocity of scattering centers (e.g., the red and white cells) in the blood. The new velocity vector reconstruction method (a transmission method) measures the velocity of the carrier (i.e., the plasma) of the scattering centers or a combination of the velocity of the two constitutive components. Thus, the two methods are complementary. The ability to obtain images at high spatial and temporal resolution of blood flows promises to be of great value for several reasons. First, it may be argued that since the x-ray angiographic method is of proven worth, then any competitive ultrasound technique would also be valuable. Second, the new pulsed Doppler systems now in development or use, although of limited to moderate imaging capability, are proving to be of great value [6]. For example, the SRI-built carotid scanner, now undergoing clinical trials at Mayo, is proving the value of its Doppler flow measuring features (the scanner has real-time B-scan capability also) [7]. Third, ultrasound procedures are noninvasive and have no demonstrable cumulative toxic effect when power and energy levels are controlled. Fourth, ultrasound procedures are painless and usually can be completed quickly.

1 Figures in brackets indicate literature references at the end of this paper.
3. Imaging Methods for Static Media

A new high resolution reflection imaging mode has been developed in the Mayo laboratory to image or characterize tissue structures in the body where a full 360 degree data collection geometry is precluded by the ribs, the spine, and other body structures [7,8]. This new method is termed synthetic focused imaging [7]

The mathematics for synthetic aperture imaging may be derived by reference to figure 1. Let \( P_k \) define a measure of the probability for acoustic amplitude scattering or reflection toward the detector aperture from picture element \( k \) when illumination from each transmitter element in the

\[
R_{j,k} = \left[ \exp \left( \int \alpha(s) ds \right) \right]^{\frac{1}{2}} \left[ \int \frac{ds}{V_{j,j}} \right]^{\frac{1}{2}} \left( n_j, s_k, j \right)^{-1} \tag{2}
\]

where \( \alpha \) is the attenuation coefficient along the ray path connecting \( k \) and \( j \), \( q \) is a rational number from 0.5 for cylindrical waves to 1.0 for spherical waves, and \( s_k \) is the unit target vector at \( j \) of the ray which passes from \( k \) to \( j \). \( T_{k,m} \) is the corresponding transmitter function between the \( k \)-th pixel and \( m \)-th array (transmitter) element. Thus, \( R_{j,k} \) and \( T_{k,m} \) affect the energy normalizations referred to in the definition of \( P_k \). \( N \) is the number of array elements. The factor \( K_{t,j} \) is a kernel function for performing convolution or cross correlation operations on the raw data \( V_{i,j,m} \). If \( V_{i,j,m} \) is of the appropriate pre-transmitted form or post-received processed form, then \( K_{t,j} \) may be of the form of a delta function \( \delta_{t,j} \). The limits \( t \pm w \) are related to the transmitter pulsewidth \( t_w \) which is less than some arbitrary bracketing interval \( t_b \) which contains the transmitted pulse of width \( t_w \).

Then,

\[
t = \left( \int \frac{ds}{U(s)} + \int \frac{ds}{U(s)} \right) \frac{1}{\Delta t}, \tag{3}
\]

\[
w = t_w/2\Delta t \tag{4}
\]

where \( \Delta t \) is the sampling interval time between successive samples in the digitized signal, and \( u \) is the effective velocity of sound in the insonified medium. The two line integrals are taken along the rays connecting transmitter \( m \) to \( k \) and \( k \) to receiver \( j \) respectively.

An important modification to the synthetic focus equations above would change the sum over \( i \) to allow for refraction or bending of acoustic rays. The effect of this bending is manifest in shifts in the values of \( s \) and \( d \) compared to that obtained by computing the round trip pulse time in a homogeneous medium. This effect is illustrated in figure 2. The value of \( t \) would be replaced by the correct round trip time computed using curved rays obtained from ray tracing techniques [9,10]. The coordinate system set up by the intersection of rays and wavefronts and the corresponding slight shift in round trip (a few percent) will allow a low spatial resolution perturbation correction to be made to the basic homogeneous media round trip time equations.

Another useful modification to the basic synthetic focusing scheme presented above would

array aperture, measured at picture element \( k \), is normalized. The probability for energy scattering is the square of \( P_k \). For the case of a very narrow pulse of ultrasonic energy, \( P_k \) is given by

\[
P_k = \sum_{m=1}^{N} \sum_{j=1}^{N} \sum_{i=t-w}^{t+w} V_{i,j,m} R_{j,k} T_{k,m} T_{t,1} \tag{1}
\]
orthogonal hyperbolic fixed unique kernel convolved line, heavy TT In sine Reflection 21T Illustration unique homogeneous to Pixel and The Pixel hard-value faster software obtaining not forms can be thought of as a line integral in data space:

1) In the x-ray case the reconstructed value at each pixel in the tomogram is obtained by integration along a unique path in the convolved data space. The convolved data space is composed of the collected projection profiles convolved with a kernel function. The curved path associated with each pixel is a sine wave modified in phase and amplitude for the special case of parallel ray projections, hence, the name "sino-gram" space for this representation of the data.

2) In the ultrasound synthetic focus method, the image value at each pixel in the tomogram is obtained by integration along a unique path, also in a convolved data space. The values in the convolved data space can be obtained by either transmitting the required waveform or by digital processing or equalization of the received data. In the case of a homogeneous material in the object space, e.g., water, the set of echoes from each receiver element for a fixed transmitter position falls on a hyperbolic curve in data space. The synthetic focus algorithm reconstructs the scattering amplitude at each pixel by integration along the hyperbolic curve which is unique to that pixel.

Back projection, as just described, may be termed "pixel driven" because the value at each pixel is computed to completion before a value is

performing the inner products in software using the kernel $K_{t,j}$ as indicated by equation (1). Figure 3 shows the similarities between the x-ray computer assisted tomography and synthetic focus ultrasound algorithms. It is seen that back projection in both instances can be thought of as a line integral in data space:

1) In the x-ray case the reconstructed value at each pixel in the tomogram is obtained by integration along a unique path in the convolved data space. The convolved data space is composed of the collected projection profiles convolved with a kernel function. The curved path associated with each pixel is a sine wave modified in phase and amplitude for the special case of parallel ray projections, hence, the name "sino-gram" space for this representation of the data.

2) In the ultrasound synthetic focus method, the image value at each pixel in the tomogram is obtained by integration along a unique path, also in a convolved data space. The values in the convolved data space can be obtained by either transmitting the required waveform or by digital processing or equalization of the received data. In the case of a homogeneous material in the object space, e.g., water, the set of echoes from each receiver element for a fixed transmitter position falls on a hyperbolic curve in data space. The synthetic focus algorithm reconstructs the scattering amplitude at each pixel by integration along the hyperbolic curve which is unique to that pixel.

Back projection, as just described, may be termed "pixel driven" because the value at each pixel is computed to completion before a value is

fixe to replace $V_j$, $j, m$ with the output of a hardware or software correlator, allowing transmission not only of pulses of energy, but arbitrary waveforms as well. This may be a faster method for obtaining the optimum resolution waveforms than

Fig. 2. Orthogonal coordinate systems for describing ray paths from transducer elements in constant (left) and variable (right) refractive index media. On the left the ray paths between each transducer element and receiver element are segments of straight lines. The lines of equal time of propagation are circles. On the right the ray path and equal time lines are from transmitter element $m$ to scattering site $k$ and the time $t_{jk}$ from $k$ to receiver element $j$ is shown as a heavy line. (Reproduced with permission from [9]).

be to replace $V_j$, $j, m$ with the output of a hardware or software correlator, allowing transmission not only of pulses of energy, but arbitrary waveforms as well. This may be a faster method for obtaining the optimum resolution waveforms than

Fig. 3. Illustration of the similarity between "back projection" reconstruction in the x-ray case and echo mode synthetic focus image formation with ultrasound.

Left panel - Reflection Ultrasound Data Space - Pixel driven synthetic focus algorithm generates a unique hyperbolic curve along which "back projection" algorithm performs a line integral for the data value at each pixel value.

Right panel - Transmission X-ray Data Space - Pixel driven convolution algorithm generates unique sine wave-like curve along which "back projection" algorithm performs a line integral for the data value at each pixel value.
assigned to a new pixel. The line integration along curves in data space is assigned to each pixel in this mode of computation.

An alternative conceptualization of back projection is possible in which each data point in data space is used to influence the value of all pixels in the image space before a new data point is processed. This formulation may be termed "profile driven" back projection for the reasons just given, or termed "smear and add" back projection because the pixels which are influenced most by each data point are located on or near a curve in image space. The "smear" may refer to convolution. In the x-ray case, the "smear and add" occurs back along the original x-ray path which produced the data value at the detector. This is a very strong intuitive reason for the term "back projection". In the ultrasound case, the back projection in the image space occurs along an ellipse (not a hyperbola) for each data space. The ellipse, of course, represents the locus of points of equal transmitter-receiver pair round trip time. The superposition of the set of values along all ellipses for all such transducer pairs constitutes the final ultrasound scatter amplitude image in an analogous manner to the formation of an x-ray convolution algorithm image by the sum of all back projected convolved projections. This viewpoint is further explained in figure 4.

![Diagram](image)

**Fig. 4.** Illustration of the ultrasound analog of back projection of a convolved projection profile.

The left figure shows the signal voltage $V_{15}(t)$ received on element 5 when transmitting from element 1 as a function of time. Also shown is the voltage $V_{14,11}(t)$ for receiver 11 and transmitter 14. For simplicity, it is assumed that the object space contains only one scattering point Q. The data $V_{15}(t)$ is assumed to be ready for back projection. The right figure shows an x-ray source and object with a dense point at P which produces the sharply peaked projection profile. Reconstruction of the object is achieved by back projection of the convolved profiles for all source positions around 360°. In the ultrasound case, the receiver echo data is projected along ellipses in the object space (note that this is equivalent to summing along a set of hyperbolae in the data space). As in the x-ray case, back projection of non-negative unconvolved raw projection profile data does not give optimum resolution but instead gives the true object convolved with a blurring function. The effect of the blurring function may be nearly removed (deconvolved) if the projection profiles are first convolved with a deblurring kernel. Such kernels usually have a strong central maxima with symmetric heavily damped bipolar side lobes. In the ultrasound case maximum resolution (the Rayleigh limit and even much better) is achieved when the impulse response of a single scatterer is made to look like such a kernel in the data space.

**A. Diffraction Considerations**

Although no diffraction theory has been used in the derivation of the synthetic focus equations, it is still true that images obtained from their application are very nearly diffraction limited (at least qualitatively and quantitatively in some cases). The reason for this, perhaps surprising, result lies in the use of an extremum ray path time between the scattering center (image point) and the transducer element in the synthetic focus method. These ray paths are often identical to, or very nearly equal to, the characteristic solution lines to the wave equation (the wave equation includes diffraction effects). Thus, although some energy travels by diffracted paths, a large fraction usually will travel by the extremum paths used by the synthetic focus method.

**B. Comparison With Seismic Methods**

Many similarities exist between the synthetic focus ultrasound algorithm developed by Johnson et al. [7] and classical seismic migration methods [11]. One similarity is in the method of collecting data. Both migration and synthetic focus methods use the concept of separate source or transmitting points and geophone or receiving points respectively. This is illustrated in figure 5 for the case of a linear geophone and circular synthetic focus ultrasound arrays.

![Diagram](image)
Fig. 5. Illustration of the similarities between classical seismic data collection with linear geophone arrays and ultrasound imaging with circular transducer arrays. The left most column of figures illustrates the major parameters used to describe seismic data collection in one-dimensional, i.e., linear, arrangements of source positions (shot point = s) and receivers (geophone = g). The right most column of figures illustrates how the circumference of a circular arrangement of sources and receivers may be described in terms of the analogous parameters in the left column. The shot position s is replaced by source angle $\theta_f$ and geophone position g is replaced by the receiver angle $\theta_g$.

In the top most left figure, typical source s is located at position -3 and typical geophone gd is located at position t+1 (arbitrary units). The mid point of the (s, gd) pair is at position -1 and is defined as the mid point y (i.e., y = -1). The separation of s and gd from the midpoint is -2 and +2 respectively and is defined as the offset f (f for "offset"). Note f is positive when g is on the positive side of the midpoint.

Also shown is a typical seismic data collection geometry with a source (dynamite blast) located at -3 and geophones at -2, -1, 0, 1, 2. This particular source-receiver combination is plotted as points a, b, c, d, e on the g-s plane. Point d at (-3,1) in the g-s plane, represents time history data for a source at -3 and a geophone at +1. The midpoint and offset coordinates (-1, 1) of data point d can be found from its projection onto the midpoint and offset axes respectively. The directions of straight line sets of data points at angles of 0, 45°, 90°, and 135° to the s-axis have important properties and are given characteristic names. A vertical line is a profile and corresponds to a data point with a common source (the usual mode of seismic collection). A horizontal line is a common receiver profile (rarely used), a line at 45° is a seismic section (common offset) and is often obtained by rearrangement of multiple profiles. A seismic section is also commonly generated by towing a geophone at a fixed separation behind a source in the ocean. A line at 135° is called a common midangle gather.

The top most drawing on the right shows how the concepts described in the left column can be applied to circular geometries. The
linear parameters $s$, $g$, $y$, and $f$ have their angular analogues, $\theta_s$, $\theta_g$, $\theta_y$, and $\theta_f$ respectively.

The $s$-$g$ plane, which extends to infinity on all sides, is replaced by a finite and bounded $\theta_s$-$\theta_g$ plane (bounded by $\pm \pi$). The $\theta_s$-$\theta_g$ plane provides a convenient means for displaying the data collected for x-ray or ultrasound transmission computed reconstruction tomography. In the top right figure, a circular receiving array covering $180^\circ$ is shown opposite the source $s$. Transmission data collected by this array is contained in the trapzoids DEFG and HIJK.

Reflection data for $s$ coincident with $g$ is found on the line AOB. Reflection data for the receiver offset from the source line AOB. Reflection data for the receiver offset from the source as shown is found along lines mnpq and mn. (This is one line mnpqr when the periodic nature of the data space is considered).

The direction of straight line data sets in the $\theta_s$, $\theta_g$ plane can be given analogous names as those defined in the $s$-$g$ plane. These data sets are shown at the bottom of the right column (i.e., circular profile, common receiver circular profile, common midangle gather, and acoustic circular sections).

The similarity between linear array seismic methods and synthetic focus medical ultrasound methods exists for both linear and circular scanning geometries. Circular geometries are found in x-ray computed tomographic reconstruction instruments and in their ultrasound counterparts developed at Mayo Clinic by Greenleaf and Johnson [12]. This similarity is explored and developed in figure 5 and its legend. Many of the important features of transmission mode reconstruction imaging such as "sinogram" space, or transformation from fan beam to parallel beam geometries, can be analyzed with the aid of the well-known seismic $s$-$g$ plane data representation ($s$-$g$ means source and geophone pair location for each data record).

The nature of the $s$-$g$ data domain representation in circular geometries can be extended to include the time variable. An explanation of the features of this three-dimensional data domain is given in figure 6. There it is shown that the domain can be partitioned into two regions by a surface which corresponds to the earliest arrival time of an acoustic pulse or signal. The distance between a point $P$ on this surface and the $s$-$g$ plane corresponds (nearly inversely proportionally) to the "merit" of the echo spatial resolution contained in the signal associated with the point $P$ (i.e., a receiver opposite a source can have no or little echo information).

The synthetic focus method reported by Johnson et al. [7], according to the seismic nomenclature,
collects a profile for each transmitter position. The side looking radars or side looking synthetic aperture radars can be classified in seismic terms as producing one zero-offset section per flight path. It is well-known that superior focused (i.e., "migrated") seismic images can be obtained by the use of multiple profiles rather than by the use of one zero-offset section [11]. Thus, our synthetic focus method should produce images superior to those produced by literal adaptation of side looking radar or synthetic aperture techniques to medical imaging.

Also, in radar technology, refraction (i.e., normal moveout corrections) are not usually, if ever, made (but should be for medical imaging).

4. Imaging in Moving Media

A. General Considerations

Imaging in the presence of moving media requires that certain changes be made to the basic image forming equations for both reflection and transmission modes of imaging. We will show that consideration of these requirements provides not only a method for imaging structures embedded in the moving media (points in the moving media) but also methods for imaging the velocity distribution of the moving media itself.

The equations of synthetic focusing can be adapted to the case of moving media by using the time of travel associated with the ray paths which have been bent by the moving media. Thus, the expression for the time t of travel must be replaced by an expression containing the velocity of the media. For the case where the velocity of the media is small compared to the acoustic speed, this may be written as (by modifying equation 3)

\[
t = \int_{m}^{k} \frac{1}{u} \left(1 - \frac{\vec{V} \cdot \vec{T}}{u}\right) ds + \int_{k}^{j} \frac{1}{u} \left(1 - \frac{\vec{V} \cdot \vec{T}}{u}\right) ds
\]

(5)

Here, u is acoustic speed, \(\vec{V}\) is fluid velocity, and \(\vec{T}\) is a unit target vector along the ray path connecting k to the transducer elements m or j. A more exact expression for t, in the case when \(\vec{V}\) is not very small in comparison to u, has been given by Johnson and others [10,13]. In addition to time shifts, a moving media also produces a compression or expansion of the shape of a waveform. When more exact imaging is required, the effect of this stretching may be removed by use of an appropriate compensating algorithm as is now shown. Let \(g(y) = b \cdot h(t-t_{0})\) be the received synthetic focus waveform for \(\vec{V} = 0\). Here, b is the scattering strength and h is the transmitted waveform (for simplicity, the frequency dependence of the scattering process is assumed to be found in H(\(\omega\))). Let an upper case letter represent the Fourier transform of a corresponding lower case letter. Then, the corresponding expression in frequency space is \(G(f) = b \cdot \exp(-2\pi ft_{0})H(f)\).

The Doppler frequency shift due to motion of the media has the effect of replacing \(f\) by \((f + \Delta f)\). Here, \(\Delta f\) is given by \(\Delta f = \vec{V} \cdot (\vec{T}_{R} + \vec{T}_{S})/u\), where \(\vec{V}\) is the velocity of the flow and where \(\vec{T}_{R}\) and \(\vec{T}_{S}\) are the unit target vectors from the scattering center in the flow to the receiver and transmitter (source) respectively. For \(|\vec{V}|/u << 1\), the effect of this frequency shift changes the form of \(G(f)\) to \(G_{0}(f)\) given by \(G_{0}(f) = b \cdot \exp(-2\pi ft_{0})H(1 - \beta f)\), where \(\beta f = \Delta f\). The corresponding time functions are given by

\[
g_{0}(t) = \frac{b}{(1 - \beta)} h((t - t_{0})/(1 - \beta)).
\]

Thus, movement of a scattering center toward a source and receiver produces a shortening of pulse width and an increase in pulse amplitude.

B. Synthetic Focus Doppler Imaging

The principle of synthetic focusing may be applied to Doppler velocity imaging to improve the spatial and velocity resolution and to capture most of the Doppler scattered signal (by the use of a larger receiving aperture) and thereby increasing the signal-to-noise ratio in the final velocity image. Simply increasing the aperture of a single transducer may not improve Doppler resolution and signal-to-noise ratio because the Doppler shift will not be constant over the large aperture. A method is needed which will make use of the different Doppler shifts on a large sampled aperture.

For simplicity, a method suitable for flows restricted to a plane will be given first. It is assumed that the transmitting and receiving transducers are also restricted to this plane and are located on part of, or on the complete, circumference of a circle. Assume that the transmitter produces a narrow beam of pulsed-energy which constitutes a cord of this circle. Let the velocity of the flow at each point along the cord be \(\vec{V}(q)\). Let \(\vec{T}_{j}(q)\) and \(\vec{T}_{j}(q)\) be the unit target vectors from the scattering center \(q\) to the transducer source \(s\) and receiver \(j\) respectively. The use of time gates to achieve spatial resolution is assumed. Then the Doppler shift \(\Delta f\) is given by \((f/u)\vec{V} \cdot (\vec{T}_{R} + \vec{T}_{S})\). This may be written as

\[
\Delta f(q) = (f/u)(\vec{V} \cdot \vec{T}_{j}) [\cos \phi_{t} + \cos \phi_{j} V_{x} + (\sin \phi_{t} + \sin \phi_{j}) V_{y}] q.
\]

This constitutes a set of simultaneous equations in \(V_{x}\) and \(V_{y}\). This set is usually over determined since the set can be spanned with only two independent values of \(\phi\), but the over-determination provides for better signal-to-noise level. The upper equation may also be written as

\[
\Delta f(q)_{j} = [f/u(q)] [((\vec{V}(q)) [\cos(\vec{V},\vec{T}_{j})]
\]

(7)

+ \cos(\vec{V},\vec{T}_{j})], j = 1,2...

Note that the first term is a frequency bias and the second term has a period of 2\(\pi\) in \(\phi\). The direction of the flow \(\vec{V}\) and its magnitude may be found from this set of equation by several schemes:

1) The Fourier transform of the above equation may be taken with respect to angle \((\vec{V},\vec{T}_{j})\). The square root of the sum of the squares of sin and cos terms with period 2\(\pi\) is equal to \((|\vec{V}|/u)\) while the angle \((\vec{V},\vec{T}_{j})\) is proportional to the arc tangent of the ratio of these terms.

2) A least squares fit of a phase shifted cosine function can be made to the data. This least squares technique can also be applied to three-dimensional flows and two-dimensional detectors. The velocity \(V\) can then be obtained.

These two schemes and the theory presented above to this point assume that a unique value of \(\phi\) may be found for each point \(q\) and detector \(j\).
This is not exactly true because in practice, the frequency measure is broadened due to: 1) noise, 2) ambiguity due to range gating, and 3) turbulence in the flow. In most or many cases, the broadening may be tolerated by the use of offset frequency quadrature Doppler detection schemes which produce an output voltage whose mean is proportional to the mean Doppler shift of a broadened signal [3].

C. Flow Reconstruction by Acoustic Transmission

We have previously suggested that fluid flow within a measurement region may be determined by transmitting and receiving acoustic energy through the measurement region along a plurality of rays such that each volume element is traversed by a set of rays having components in each direction for which flow components are to be reconstructed [10]. The propagation time of the acoustic energy along the plurality of rays constitutes the only measurements required by this method which has now been verified for flows with velocities small compared to the speed of sound [4]. Since this method is analogous to computer reconstruction tomography methods and has been reported elsewhere, the corresponding theory is not reported here.

D. Synergistic Flow Reconstruction

It is clear that both transmission reconstruction and Doppler methods could be applied simultaneously with sufficient parallel data collection and processing capability. Such an approach, combining larger apertures and both imaging modes, although perhaps impractical at this time, has several theoretical advantages: 1) greater signal-to-noise ratios, 2) greater spatial and velocity resolutions, 3) the transmission reconstruction mode can provide refractive index information for correction of the Doppler imaging mode, and 4) drag velocity might be calculated from the difference between the Doppler mode velocity image (scattering center velocity) transmission mode velocity image. These principles could be applied to statistically steady-state flow using one Doppler channel and one transmission channel by time multiplex methods.

5. Computer Simulation and Experimental Studies

An example of the resolution capability of the synthetic focus technique is demonstrated in figure 7. This figure is very significant because it presents experimental evidence that resolution of less than one-half wavelength (at the center frequency of a pulse) can be obtained with ultrasound; at 3 MHz this corresponds to 0.25 mm. It is expected that, when synthetic focusing, refractive index reconstruction and other ultrasound imaging modalities are combined, a synergistic union will result. Thus, each mode will not only add its own form of new information but will also help remove some of the limitations of other forms of imaging. For example, knowledge of refractive index can correct for defocusing effects in echo imaging mode [9,11].

Thus, a major limitation to applying the complete capabilities of the synthetic focus technique to complex tissues can be solved by the synergistic treatment of the problem of refraction of ultrasound. Consequently, an iterative correction of refraction has been developed. This ray tracing technique has also been approached from established geophysical seismic imaging theory. The corrections used by seismologists to unscramble their seisimographic results indicate the feasibility of this approach. An example of the order of improvement attending images originally collected by synthetic focus methods, when seismic image correction techniques are used, is given in figure 8. This image is significant because it represents (to our knowledge) the first application of seismic wave migration techniques to real ultrasound data. This image has been presented in an earlier paper [9].

In these images presented in figures 7 and 8, no attempt has been made to accurately control the waveform of the echo from a single point to maximize resolution. Although, the right-hand
given by \( H(f) = H_0 |f| \) for \( |f| \leq f_m \) and \( H(f) = 0 \) for \( |f| > f_m \). This function is the well-known Ramachandran Lakshminarayanan kernel [15]. A data collection geometry of a 12 cm radius ring of 120 common transmitter and receiver positions equally spaced on 360 degrees was simulated. Imaging was confined within a concentric 7 cm circle. The value of \( f_m \) was set at 1 MHz and the simulated received echo signals were sampled at 100 ns intervals. The simulated received echo signals were back projected along ellipses in the image space as per figure 4. The 2-D point response function (2-D PRF) was found not to differ significantly between points near the center and edge of the 7 cm radius imaging region. Various (time) frequency filtered versions of the above kernel were tried also. Only slight improvement in 2-D PRF was observed with some kernels but reduction in 2-D side lobe response could be obtained with an attendant slight loss in resolution with other kernels. Some of the results of these studies are presented in figure 9.

Since the experimental image obtained by application of the new transmission mode fluid temperature and vector velocity technique have been published in more detail previously [4], only one example reconstruction is presented here. Figure 10 shows reconstructions of fluid flows made in the refractive index reconstruction breast scanner at Mayo Clinic. Applications of these techniques, for example, for measurement and reconstruction of tissue temperatures during hyperthermia cancer therapy have been reported elsewhere [16].

Fig. 8 Refraction corrected synthetic focus image. The bottom portion of figure shows a plastic wedge and pattern of nylon threads which spell "Mayo", however, only the "MA" portion is visible in the figure. An array of 32 transducer elements is located to the left but is not shown. Sonic waves produced by the array refract through the wedge, reflect or scatter from the threads, pass back through the wedge and are then received by the array. No recognizable image was produced when the corresponding data was processed with a simple synthetic focus algorithm which assumed constant speed of the ultrasound waves. The out-of-focus image produced by this simple algorithm is not shown here.

The image at the top is the result of application of a geophysical data processing algorithm which corrects for refraction without prior information of the presence of the wedge. This is accomplished by "wave front migration" techniques which determine the effective refractive index layer by layer as the algorithm works itself away from the array. Such algorithms work for layered materials but could be extended to structures found in the human body. The center frequency of the damped burst transmitted from the array is 3 MHz. The target is the same one reported in Volume 6 of Acoustical Holography by S. A. Johnson et al. [7].

side of figure 7 shows the image produced by a deconvolution process which satisfies only the general requirements. Therefore, a computer simulation study was undertaken to investigate the maximum 2-D resolution limit which can be obtained with a signal constrained to have no frequency components greater than an upper frequency limit \( f_m \). This transmitted kernel signal \( h(t) \) was chosen to have a frequency distribution
Experimental data and reconstruction of vector components of fluid vortex. Top left shows experimental data and is an image of the difference between the time of arrival with flow and without flow (fast arrival = white, no change gray, slow = black) vs. scan position (left to right) vs. angle of view (top to bottom). Top right shows reconstructed planar fluid speed \( (v_x + v_y)^{1/2} \), black is zero, white is positive. Bottom left shows \( x \) component of velocity \( v_x \). Bottom right shows \( y \) component of velocity \( v_y \). In \( v_x \) and \( v_y \), black is negative, gray is zero and white is positive. Reconstructed flow is maximum (73 cm/s) at a radius of 0.62 cm. Reconstructions are 64 pixels per side. Geometry of vortex scanning plane, and vortex generator are shown in top and side views in right margin. (Reproduced with permission from Greenleaf et al., Quantitative Imaging from Transmission Ultrasound (in press.).)

6. Conclusion

We suggest that instruments capable of producing higher resolution images of specific ultrasound tissue parameters would provide a valuable service in clinical applications. Wide aperture techniques are known which can provide this high resolution. To be successfully applied in the human body, these wide aperture techniques must be modified to compensate for refraction and possibly, in some cases, also diffraction effects. Candidate techniques can be found in the synthetic focusing methods developed in our laboratory and in analogous geophysical or seismic methods. These techniques can provide resolution of one-half wavelength in homogeneous, isotropic media. It seems reasonable that this degree of resolution may be approached in the body by use of wide apertures and improved refraction and absorption compensating algorithms. Improvement of resolution from one wavelength to one-half wavelength is difficult because knowledge of the spatial and temporal history of the transmitted and received waveform is necessary for application of these algorithms. This knowledge may, in principle, be obtained with the proper transducer design and scanner geometry. Our computer simulation and laboratory experiments provide encouragement and evidence that resolutions of about one to one-half wavelength should be feasible in some applications. We further predict that efforts to design economical scanners to provide this resolution will be a fruitful research and development endeavor. We believe such endeavors will rely heavily upon the use of high speed digital data processing methods and sophisticated mechanically and electronically scanned apertures with large solid angles.

Acknowledgment

The support from Dr. Earl H. Wood, Dr. Erik Ritman, and the staff of the Biodynamics Research Unit, Mayo Clinic, is appreciated. The refraction corrected image of the "MA" shown in figure 9 was computed using seismic migration techniques with the help of John Farr, of Houston, Texas, and his help is greatly appreciated. This research was supported by Grants HL-00170, HL-00060, RR-00007, HL-04664, NIH-HT-42904 from the National Institutes of Health, United States Public Health Service; NCI-CB-64041 from the National Cancer Institute.

References


MAPPING TRUE ULTRASONIC BACKSCATTER AND ATTENUATION DISTRIBUTION IN TISSUE - A DIGITAL RECONSTRUCTION APPROACH

F. A. Duck and C. R. Hill

Physics Division, Institute of Cancer Research
Clifton Avenue, Sutton, Surrey, United Kingdom

The back-scattered intensity from any location in an ultrasonically irradiated medium is dependent upon both the local back-scattering cross-section and the attenuation by the overlying medium. An iterative digital reconstruction technique has been investigated which is capable of mapping quantitatively and separately the distributions of attenuation coefficient and back-scatter cross-section using multiple pulse-echo data. Such a technique will enable tissue to be characterised on the basis of these two separate acoustic parameters. A description of the technique is given, together with results from simulation studies leading to an improved processing technique. The potential and limitations of the method are discussed.

Key words: Attenuation; back-scattering cross-section; digital reconstruction; iterative; ultrasound.

1. Introduction

A major deficiency of currently used pulse-echo techniques for tissue characterisation and imaging is their failure to give truly quantitative measurements of tissue-specific acoustic parameters. The problem arises since the observed time-dependent echo amplitudes result from two sets of unknown quantities. These are back-scattering cross-sections of the interrogated volumes and attenuation coefficients of the volume in the transmission path. In conventional B-Scan practice it is usual to emphasise the use of back-scattering cross-section as the useful tissue characterisation parameter, and suppress, or compensate for, the amplitude changes due to the tissue attenuation. This latter is done in two ways. In the first place, a time-gain-compensation (TGC) amplifier is used which compensates for attenuation under the assumption that attenuation, if not uniform, varies in a way which is identical irrespective of transducer position and orientation. The precise form of the attenuation versus time (or depth) variation is often under operator control. Secondly, compound scanning techniques are used which result in an evening-out of the shadowing effects of overlying tissue layers, with any given TGC function. Automatic methods have been developed for adaptive gain compensation [McDicken et al. [1]; De Clercq et al. [2]]. These have shown that some improvement in gain compensation can be obtained, and presumably the TGC function generated could be used diagnostically. However such techniques are designed to operate on multiple pulse-echo data taken from a particular orientation, assume uniform back-scattering and have an operating time constant of several seconds. In contrast, the method we have developed, and which is described below, generates separately two-dimensional maps of attenuation coefficient and back-scatter cross-section, from multiple orientated pulse-echo data which may be gathered very rapidly for subsequent processing. The two clear incentives for investigating this technique are: 1) It provides a quantitative map of acoustic attenuation coefficients which may be used diagnostically for tissue characterisation. 2) It provides a correctly attenuation-compensated B-Scan, a map which can now be correctly referred to as a backscatter map.

2. The Method

As noted above little or no diagnostic information from local attenuation variations is available when compound B-Scanning is used. In simple scanning, however, regions which differ significantly from the expected local attenuation will, by virtue of the pre-set TGC used throughout the scan, result in modified signal levels from regions beyond them. For example a local, dense athero-sclerotic lesion will cast a shadow below it, and a fluid filled cyst of low attenuation will result in increased amplitude signals from tissue beyond it since the gain is over-compensating for attenuation losses. Such signs are used clinically for diagnosis but only under those circumstances where the local effects are clear. The basic concepts are shown simply in diagrammatic form in figure 1, which shows images of a localised increase in attenuation (at A) in a uniform scattering medium. A simple linear scan results in an
Fig. 1. The generation of separate maps of back-scatter cross-section and attenuation coefficient from multiple pulse echo data. A local increase in attenuation at A with-in a scattering medium casts shadows S and T in simple linear scan images (a) and (b). The combination of these by peak detection gives a first guess at a scatter map (c). The differences as between this and a, b are used to generate d, the attenuation coefficient map and correct c.

image (fig. 1a) in which a shadow (S) is cast through the image behind the local attenuating site. In this simple case it would normally be assumed that there was indeed a locally high attenuation at A. However, an identical image could have been generated if there was an elongated region of low backscatter cross-section which was coincident with the shadow region S. These two situations can be easily distinguished by carrying out a second simple linear scan at a new angle (a) (fig. 1b). Now the region which was in shadow (S) is imaged clearly and there is a new shadow (T). Combining the two simple scans gives a compounded scan (fig. 1c) which may destroy the attenuation information. Comparing the simple and compound scans enables the true attenuation map to be inferred.

In general of course, all tissue layers will cast an acoustic shadow on tissue layers behind them to a greater or lesser extent, and the real situation is additionally complicated because the scattering characteristics of the medium vary. However, as seen below, account can be taken of both sets of parameters simultaneously.

The physical situation described is in many ways conceptually similar to the problem handled in axial tomography, and whose computed solutions are exploited widely in clinical medicine for the reconstruction of x-ray attenuation coefficients from transmitted x-ray intensities. Here the problem of the reconstruction in 3 dimensions of a parameter map from a set of 2-dimensional profiles is reduced to that of the reconstruction of a set of parallel, 2-dimensional distributions of the parameter from related 1-dimensional profiles. Such transmission imaging techniques have been investigated in ultrasound for the reconstruction of acoustic attenuation from transmitted pulse amplitudes (Greenleaf et al. [3]) and for the reconstruction of acoustic refractive indices from transmitted pulse times-of-flight (Greenleaf et al. [4]). The analytic description for this problem was formulated by Radon [5] and a range of computational techniques, based on this analysis or on the use of iterative techniques, have been reported (e.g., Gordon et al. [6]). In transmission imaging the reduction in intensity (or shadow) in the transmitted energy can be measured directly. In the present situation however this reduced intensity signal cannot be measured directly but is re-radiated with a strength depending upon the local back-scatter cross-section. A new set of unknown quantities is therefore introduced. Although the values of these back-scattered cross-sections are unknown their related positions in space are known since the position and orientation of the transducer and time delay can be measured.

3. Theory

The mathematical formulation of the problem is designed to establish a set of simultaneous equations based upon an assumed model; the equations may then be solved iteratively by computational techniques. At present there is no equivalent formulation to that of Radon for the reconstruction of distributions of parameters from transmitted profiles. Indeed it may well be that if there were it would not be of direct use computationally because of the necessary assumptions made in the model.

The back-scattered intensity \( I_r \) received from any position \( r \) in an ultrasonically irradiated field, can be given as

\[
I_r = I_{ref} \cdot A(r) \cdot \exp\left(-2 \int_0^r \alpha_x \, dx \right) \cdot \sigma_r / r^2 \quad (1)
\]

where \( A(r) \) is a factor depending upon the beam geometry;
\( r \) = the distance of the scattering target from the acoustic centre of the transducer;
\( \alpha \) = the local attenuation coefficient; and
\( \sigma \) = the local back-scattering cross-section per unit volume per steradian.

In logarithmic forms this becomes

\[
\ln \left( \frac{I_r}{I_{ref}} \right) = \ln \left( \frac{A(r)}{r^2} \right) - 2 \int_0^r \alpha_x \, dx + \ln(\sigma_r) \quad (2)
\]

In order that the situation is amenable to a digital solution the region to be imaged can be modelled as a rectangular grid of \( n \) elements, within each of which \( \alpha \) and \( \sigma \) are constant, with the only changes being at the boundaries of the elements. This geometry is illustrated in figure 2. In addition it is assumed that there are no losses from absorption and scattering processes outside the region to be imaged. Then, for any image element within this set, eq. (2) can be rewritten as

\[
\ln \left( \frac{I_r}{I_{ref}} \right) = K_r - 2 \sum_{n=1}^n \alpha_n W_n + \ln(\sigma_r) \quad (3)
\]
where $k_r$ is a potentially known geometric factor, and where $W_i$, $i = 1...n$, are a set of geometric weighting factors related to the image grid and beam geometry. If ray geometry is assumed then $W_i$ is the length of intersection of the ray with the image element $P_i$. In general $W_i = 0$ for any $i$. If a multiplicity of measurements $I_r$ are made from a number of directions then eq. (3) extends to a set of simultaneous equations in which $a_i$, $i = 1...n$ and $c_i$, $i = 1...n$ are the unknowns. One characteristic of this set of equations is that it is sparse since, as pointed out above, many values of $W_i$ are zero. A digital iterative technique is suited to the solution since it can handle such large sets of equations under conditions where exact solutions may be multiple, or not exist at all. As pointed out above, such techniques have already been used highly successfully in medicine for the reconstruction of the distribution of x-ray attenuation coefficients from transmitted profiles and in radiation emission tomography.

4. Computational Procedure and Results

As presented, the problem is closer to that posed in emission than in transmission tomography. In the former case the isotopic distribution is to be mapped in the presence of attenuation. In general however the techniques described in emission tomography either ignore the effect of attenuation or compensate for it simply by comparing opposed views. In general no serious attempt is made to generate attenuation maps for diagnostic use. Clearly, our formulation set out above allows for the computation of both back-scatter cross-sections and attenuation coefficients simultaneously. The successful implementation of this approach is described later.

A variety of iterative approaches are available and are under investigation. The technique which at present appears most promising and has been investigated most fully generates the $(n + 1)$th value of attenuation coefficient from the $n$th value $a_i^n$ by

$$a_i^{n+1} = a_i^n \left(1 + \frac{e \cdot W_i}{\Sigma (W_i^2) + c^2}\right)$$

(4)

where $e$ is the difference between the data value from any location and the predicted value from the current image arrays, and $c$ is a weighting factor for the back-scatter cross-section. $(W_i^2)$ is summed only over the image elements in the beam up to the position related to the data value used. Similarly, the $(n + 1)$th value of $a_j$ is generated from the $n$th value using eq. (5)

$$a_j^{n+1} = a_j^n \left(1 + \frac{e \cdot c}{\Sigma (W_j^2) + c^2}\right)$$

(5)

These expressions are similar to those used by Gordon et al. [7] in the transmission reconstruction algorithms ART.

The program set up to investigate this approach can receive either simulated or real data. Simulation enables up to 10 circular fields of specified radius, position and acoustic properties to be used. Figure 3 shows a reconstructed image using simulated data from a cylindrical scattering region containing smaller cylindrical regions of increased attenuation. The larger region is of 12 mm radius and has an attenuation coefficient of

![Fig. 2. Image grid geometry. The image consists of $n$ cells $P_1...P_n$. Each cell $P_r$ has associated with it acoustic parameters of attenuation coefficient $a_i$ and back-scatter cross-section, $a_i W_n$ is the ray/cell intersection length.](image1)

![Fig. 3. Reconstructed attenuation coefficient map from simulated data after 4 cycles. The image is on a 33 x 33 matrix of 1 mm square cells. The object was a cylindrical region 12 mm diameter, attenuation coefficient 0.2 neper cm$^{-1}$ including 4 regions 4, 3, 2, 1 mm diameter, attenuation coefficient 0.1 neper cm$^{-1}$. Data was from 10 linear scans with pulse spacing 0.5 mm. The associated scatter field was uniform.](image2)
0.2 neper cm$^{-1}$. The smaller regions have radii 4, 3, 2, and 1 mm and attenuation coefficients of 0.1 neper cm$^{-1}$. The image shown was generated after 4 iterative cycles, i.e. after all the data had been used 4 times. The convergence and numerical accuracy of the computation is indicated in figure 4. The attenuation coefficient values in pixels along column 18 are plotted for the second, fourth and sixth iterative cycles. There is little alteration in the values from the third to the fifth cycle and the solution clearly is converging to values which are numerically correct.

Such rapid convergence to a low noise image is dependent very largely upon the choice of iterative procedure used. In particular it has been found that the most rapid convergence has been from a primary scatter map generated from all the data either averaged or peak detected, with a primary attenuation map set to zero. Convergence did occur from a primary scatter map generated from a single linear scan, but was very slow and oscillatory in pattern. The sequence of iterative corrections has also been observed to alter the noise characteristics of the final image. Several sequence orders have been investigated including sequencing along a pulse train, in a forward or reverse sequence.

Fig. 4. The convergence of attenuation values along column 18 of figure 3 after 2, 4 and 6 cycles compared with the simulated object values. The starting assumption was $a = 0$ everywhere. Pulses taken in sequence and pulse values in reverse sequence.

Fig. 5. Reconstructed maps of backscatter cross-section (upper) and attenuation coefficient (lower) from overlapping regions. The objects are shown on the left. The reconstructed maps with high threshold are shown in the center. An edge artifact appears in the attenuation map. Low threshold images (right) are less noisy and show suppression of the artifact.
verse direction, and changing order in which pulses are used. An additional weighting not included in eqs. (4) and (5) has also been used which improved convergence, to compensate for the fact that pixel values close to the transducer are modified more often than those at a distance along a sampled pulse.

A abrupt changes in the scatter level have been found to result in edge artifacts occurring in the attenuating field. This is illustrated in figure 5, which shows reconstruction of a 3-component simulated field with overlapping regions of altered \( \sigma \) and \( \alpha \). A ring artifact in the attenuation plot is clearly evident, associated with the perimeter of the small scattering region. However, when a threshold is introduced to limit the conditions under which eqs. (4) and (5) operate (as in fig. 5, right) the edge artifact is suppressed. It is clear that in tissue it is unlikely that such an abrupt change will occur but such a threshold also enables a control to be kept on the effect of highly directional spectral reflections.

5. Discussion

A convergent iterative computational procedure has been developed to solve the set of equations describing quantitatively the back-scatter of sound from a distributed scattering and attenuating medium. It has been shown that, under simulation conditions, accurate reconstructed maps of both back-scatter and attenuation distributions can be obtained. Some problems posed by the application of the techniques to real data have already been investigated. Since an iterative procedure is being used, it is possible to include controls which limit the range of application within the iterative process to include only those which are deemed to force the process to converge effectively. It is clear however that the success of the application in tissue will depend upon the extent of validity of some of the assumptions used in the model, and this is yet to be evaluated. Anisotropy in \( \sigma \) or \( \alpha \), position errors caused by refractions and the effects of a finite beam width and diffraction errors must all place some ultimate limitation on the method. Within these limitations however the techniques offer the potential of a quantitative imaging of back-scatter cross-section and attenuation coefficients from pulse-echo data.

6. References


CHAPTER 9
SIGNAL PROCESSING AND PATTERN RECOGNITION
A COMPREHENSIVE ULTRASONIC TISSUE ANALYSIS SYSTEM


National Measurement Laboratory
National Bureau of Standards
Washington, D.C. 20234

and

T. H. Shawker and J. L. Doppman

Clinical Center
National Institutes of Health
Bethesda, Maryland 20014

A progress report on the development of a comprehensive system for ultrasonic tissue characterization is presented. Major elements of the program include computerized tomography studies, particularly for breast cancer detection; opto-acoustic visualization of ultrasonic fields, for testing of new imaging schemes, studies of propagation through inhomogeneous media, in vitro measurements, and transducer calibration; electronic focusing, especially annular array imaging; sensitivity enhancement, using digital signal averaging and pulse compression techniques; computer and chirp waveform techniques for compensation of frequency-dependent attenuation; the Sonochromoscope, a digital device for real-time acquisition, processing, and display of B-scan images; and computer-based image processing.

Key words: Annular array; breast cancer; chirp signals; imaging; opto-acoustic; pulse compression; sensitivity; signal averaging; signal processing; tissue characterization; tomography; transducers; ultrasonics.

I. INTRODUCTION

This paper reports on the progress of a Comprehensive Ultrasonic Tissue Analysis System (CUTAS) which is being developed by the Signal Processing and Imaging Group, Center for Materials Science, NBS, and clinically-evaluated by the Department of Diagnostic Radiology, Clinical Center, NIH. Three principal areas are being emphasized in this work:
1. Computerized tomography studies, particularly for breast imaging,
2. Optical visualization of ultrasonic fields.
3. General purpose clinical studies.

II. COMPUTERIZED TOMOGRAPHY STUDIES

Major emphasis to date has been the development of backprojection algorithms for reconstruction of cross-sectional images of reflectivity using a circular array of transducer elements enclosing the object. Three basic modes of data acquisition and image reconstruction were analyzed (fig. 1): (1) the same element serves as transmitter and receiver and data is backprojected along circular paths centered at the

![Fig. 1](image-url) Operation of circular array with same element serving as transmitter and receiver. Each point in the A-scan is the sum of echoes arising from scatterers along a circular arc centered at the active element. (b) Operation of circular array with separate transmitter and receiver elements. Each point in the A-scan is the sum of echoes arising from points lying along an elliptical arc whose foci are the transmitter and receiver.

1Present address: Western Electric Company, Princeton, New Jersey
2Present address: McDonnell Douglas Corporation, St. Louis, Missouri
wavelength corresponding to the cut-off frequency of the pulse (fig. 2). When backprojection is performed along elliptical paths, corresponding to two separate elements, the mainlobe of the PSF was shown to be broadened by a factor proportional to the cosine of half the angle subtending the two elements at the center of the array. This behavior places a practical restriction of about 45° on the angular separation of the elements. Computer simulations confirmed the salient properties predicted by the analytically-derived PSF's. The characteristics of the PSF's were calculated as a function of the number of array elements, the position of the reflecting point within the object, and the shape of the pulse.

The backprojection analysis has been extended to three-dimensional reconstructions (using spherical transducer arrays) and to incorporate corrections for velocity inhomogeneities in the medium. Work in progress includes the development of a perturbation approach for correcting velocity images and algorithms for frequency-dependent time-gain compensation. A prototype breast scanner is now under construction and will be used to evaluate these various developments in ultrasound tomography.

III. OPTICAL VISUALIZATION OF ULTRASONIC FIELDS

A major laboratory facility for reconstruction and optical visualization of ultrasonic fields has been developed. The system is based on the use of a Michelson interferometric system which is capable of measuring the displacement of a thin metallized 150 mm diameter pellicle immersed in water. Major advances of the NBS development over previous designs include measurement of both the amplitude and phase of the displacement, and absolute calibration of the displacement to approximately one percent accuracy.

This capability of measuring the complex ultrasound field over a large aperture, coupled with computer acquisition and analysis of the experimental data, has provided us with a powerful research tool for visualization and reconstruction of ultrasonic wavefronts. In our initial work, the ultrasonic field of a transducer was measured at the plane of the pellicle placed near the transducer face. The exact (plane wave) solution was used to reconstruct the field at other planes, including that of the transducer face. The ultrasonic wavefronts at other planes were also measured and compared to the calculated values. Both narrowband (gated-cw) and wideband (pulsed) waveforms were used to excite the transducer. Computerized holographic reconstructions of several model targets were also made. An example of a reconstructed plane in the field of a pulsed transducer is shown in figure 3. Other planned uses of the system include studies of new ultrasonic imaging schemes, measurements of ultrasonic parameters of tissue in vitro, and examination of ultrasonic propagation through inhomogeneous media.

IV. GENERAL-PURPOSE CLINICAL STUDIES

A general-purpose clinical scanner is now under active development (fig. 4). Major components of the system include annular array focusing for improving resolution; sensitivity enhancement techniques using A- and B-scan averaging, chirp-radar approaches and focusing; first-order corrections for frequency-dependent attenuation in the medium; and improved signal processing approaches combining the real-time acquisition, processing, and display capability of the Sono-Chromoscope with computer post-processing. To date, our approach has been to evaluate each component separately as it is developed. Eventually, we expect to integrate these various elements into a unified field for clinical ultrasound examinations.

A. Annular Array

1. Expanding-Aperture Annular Array

A dynamically-focused annular array system for contact B-scanning has been developed (fig. 5). The design is based on a constant F-number approach, whereby, at short focal lengths, the aperture is expanded in proportion to the focal length. This approach allows the use of wider array elements, thus increasing the sensitivity of the system and reducing radial-mode coupling. Other major advantages include a substantial reduction in the delays and refocusing rates required for the lens synthesis with a corresponding reduction in the electronic complexity of the system. The initial design employs an array,
Fig. 4. Block diagram of general purpose clinical ultrasound system.

Fig. 5. Operation of the expanding-aperture array with dynamic focusing on receive. Operating at 2.25 MHz, with four annulli active at the near focal length of 1.5 cm. As the focal length increases, the array expands to a maximum of twelve rings, with 4.0 cm outer diameter, for focal lengths greater than 12 cm. A single, tapped delay line with 1 μs total duration provides the time delays for focusing on receive. A continuously-variable point or line focus is provided on transmit. Experimental measurements provide the time delays for focusing on receive. A continuously-variable point or line focus is provided on transmit. Experimental measurements of the focusing properties of the system have been made. Some of these results are shown in figures 6 and 7. Clinical evaluation of the annular array scanner is now underway.

Fig. 6. B-scans of AIUM test object with a single fixed-focus transducer (a) and with the dynamically-focused annular array (b).

Fig. 7. Measured response of the annular array focused at 10 cm on transmit and receive.

2. Wideband Annular Array Response

Theoretical studies of the effect of bandwidth on the focal plane response of a circular lens and annular array were carried out. Particular emphasis was placed on lens systems operating at approximately 50 percent bandwidth, typical of those used in ultrasound imaging. An analytical model of the focal plane response of both the circular lens and annulus, driven by an impulse, was developed. The wideband response was then calculated by convolving the impulse response with the driving function. For a circular lens, the beam width in the focal plane, as well as the position and height of the sidelobes, was analyzed as a function of bandwidth and aperture weighting. The wideband model of an annulus was used to calculate the response of an annular array. A detailed comparison was made of this model with the experimentally-measured response of an array, operating at 2.25 MHz with 40 percent bandwidth (fig. 8).

B. Ultrafast Signal Averaging and Pulse Compression Techniques

A signal averager and pulse compression system has been developed for sensitivity enhancement in ultrasonic diagnosis. Potential applications include the use of transducers which are ineffi-
Fig. 8. Field pattern at 10 cm generated by a 0.4 mm diameter piston transmitter and a thin, 1.4 mm diameter, annulus receiver. The solid line is the calculated response and the dashed line is the measured response.

cient but otherwise have very desirable features (e.g., point and line sources, polymer transducers, CDS phase-insensitive transducers); higher frequency operation for improved pattern recognition and increased resolution; detection of small reflections; examination of obese patients; and penetration through skull and bone. These systems also make it possible to reduce peak power while keeping average power, and hence sensitivity, constant.

1. Signal Averager

The signal averager is capable of real-time (unbuffered) averaging at 50 MHz rates. To our knowledge, this device is the fastest digital averaging device in existence. Major features include 4K 24-bit words, 12.5 KHz maximum repetition rate, computer interface, 6-digit cursor readout of signal amplitude, region of interest expansion (up to a factor of 16), 3-digit settleability of sample rate, internal/external trigger, internal delay, segmented memory capability (full, halves, quadrants, octants), plug-in ADC's (4 bit, 50 MHz; 8 bit, 20 MHz), ADC resolution enhancement (via ordered dither), display normalization and semi-real time display at high frequencies. The sensitivity-enhancement capability of the averager was demonstrated on a PZT line source and on a number of highly-attenuating biomaterials, including human tibia (fig. 9), and a fiber composite (fig. 10) used in synthetic implants.

2. Pulse Compression

The pulse compression circuit incorporates a surface acoustic wave (SAW) "chirp" filter. Pulse compression ratios of 30:1 and 8:1 have been obtained in the case of 8 MHz and 3 MHz filter bandwidths, respectively. An example of both an expanded and compressed (8:1 compression ratio) echo from a human heart in vivo is shown in figure 11. The chirp system was also used to compensate for frequency-dependent attenuation in the medium by modulating the amplitude of the

Fig. 9. Ultrasonic reflection from posterior cortex of tibia; (a) no averaging; (b) after averaging for $2^{15}$ scans.

Fig. 10. Backwall reflection from 5 cm thick fiber composite: (a) no averaging; (b) after averaging for $2^{15}$ scans.

Fig. 11. Preamplified echo from a human heart in vivo. The initial transient is the clipped transmission pulse; the remaining echoes are from tissue: (a) expanded pulse; (b) pulse after 8:1 compression. The expanded stimulus pulse as a function of time. Since the frequency of this pulse was also time-dependent, the strongly-attenuated frequencies were enhanced. This approach has important implications for improving range resolution and for tissue characterization and is now under detailed investigation.
C. SonoChromascope

The SonoChromascope (fig. 12) is a state-of-the-art device for the digital acquisition, processing, recording, and display of ultrasonic B-scan images.

Acquisition algorithms include a choice of log or linear detection; recording the minimum and/or maximum echo for each pass through a pixel (thus, for example, providing a measure of scattering anisotropy); unconditionally writing the last value; and summing with normalization (thereby improving sensitivity). A combination of up to four different algorithms may be applied simultaneously to produce different spatially-congruent images during the same B-scan.

After acquisition, the image or images are displayed on two color-TV monitors. Images in complementary colors may be overlaid to permit visual discrimination of subtle differences. A variety of thresholding and display modes, augmented by a lightpen, permit semiquantitative measurements of ultrasound echo intensity. To use the lightpen, the operator “paints in” the area of interest. As he does so, the average image intensity (or intensities) and the area painted in are displayed on digital readouts.

If more sophisticated processing or storage is required, the data may be transferred to a minicomputer. Processed or stored images may be returned to the SonoChromascope for display.

Spatial and amplitude resolution depend upon the acquisition mode. For example, in the “unconditional write” mode, the word size is 8 bits and the picture contains 480 x 480 pixels; in the sum mode, the word size is 14 bits and there are 480 x 240 pixels.

The SonoChromascope is presently interfaced to a commercial B-scan system, from which it receives the rf or log-detected A-scan signal and appropriate information about transducer position. It is now undergoing clinical evaluation.

V. SUMMARY

A major effort is now underway in developing a comprehensive system for ultrasonic tissue characterization. The program encompasses imaging, including electronic focusing and computerized tomography; sensitivity enhancement; measurement of tissue parameters in vitro; studies of ultrasound propagation through inhomogeneous media; computer and chirp techniques for compensation of frequency-dependent attenuation; real-time digital processing and display techniques; and computer-based image processing. Several of these developments have already been completed, and, where appropriate, are undergoing clinical testing. Complete descriptions of this work will be published shortly.
THEORETICAL ANALYSIS OF INSTANTANEOUS POWER SPECTRA
AS APPLIED TO SPECTRA-COLOR ULTRASONOGRAPHY

W. D. Jennings, E. Holasek, and E. W. Purnell

Department of Surgery, Division of Ophthalmology
School of Medicine
Case Western Reserve University
Cleveland, Ohio 44106, U.S.A.

Spectra-color ultrasonography (SCU), a technique for two-dimensional (B-mode) display of ultrasonic spectral data, has been analyzed theoretically. The analysis includes the use of an instantaneous power spectrum calculated from broadband gated echo spectra produced by an analog spectrum analyzer. The results of the analysis indicate that additional signal processing factors must be added to the SCU system as it was originally designed. With the inclusion of these modifications, the SCU scan represents a true low resolution instantaneous spectral analysis of ultrasonic echo waveforms. An experiment was performed to test the theoretical equations we have developed relating SCU to an instantaneous spectral analysis. The comparison of the SCU signals and the computed SCU equivalent based on an instantaneous power spectrum is presented.

Key words: Instantaneous power spectra: Color-coded B-scan; spectra-color ultrasonography (SCU); spectrum analysis; ultrasonic spectroscopy.

1. Introduction

Several years ago we developed spectra-color ultrasonography (SCU) which was originally designed as an approximate spectroscopic technique to display two-dimensional (B-mode) spectroscopic information from a sector scanned tissue segment [1,2]. Originally, the SCU image was formed by first passing a broadband B-scan ultrasonic echo train through a voltage tuned filter set at three different center frequencies (bandpass positions). Each of the three resultant filtered B-scans was then assigned a color (red, green or blue). The three colored B-scans were then superimposed to form a single frequency-dependent color coded B-scan display. The final colored B-mode image displayed frequency-dependent properties of the tissue being scanned, though the precise meaning of the display was not apparent.

The subject of this presentation is an analysis of the SCU process in terms of an instantaneous power spectrum. An instantaneous power spectrum is a time dependent spectral decomposition of a signal. The conventional Fourier Power Spectrum of a signal is defined by an integral of the signal over all time, and thus, is independent of time. An instantaneous power spectrum, however, is a function of both time and frequency. It is the dual functionality of instantaneous power spectra that makes them applicable to signals that originate from spatially distributed sources with varying spectral content, such as ultrasonic echo waveforms.

Several definitions of an instantaneous power spectrum have been devised. We began our work on instantaneous power spectra by attempting to adapt a particular instantaneous power spectrum, the one defined by Chester Page [3], to spectra-color ultrasonography. During our investigations, experimental evidence led us to the conclusion that for spectra-color ultrasonography to represent a true instantaneous power spectrum, it is appropriate to use Morris Levin's modification of Page's definition of an instantaneous power spectrum, rather than Page's original definition. This paper is an account of those investigations.

2. Theory

Essential to the analysis of spectra-color ultrasonography, is the concept of an instantaneous power spectrum. We began with the approach of Chester Page [3] which we will briefly review here. For any time domain signal $g(t)$, the running Fourier transform of $g(t)$ is defined as

$$G_t(\omega) = \int_{-\infty}^{t} g(x)e^{-j\omega x} dx.$$  

(1)

In our case, $g(t)$ is the receiving transducer voltage corresponding to the instantaneous acoustic pressure on the transducer face.

Figures in brackets indicate literature references at the end of this paper.
That is, \( G_t(\omega) \) is the Fourier transform of the semi-infinite signal \( g(x) \) taken from \( x = -\infty \) to \( x = t \). Note here that \( x \) is a dummy variable, allowing us to use the time variable \( t \) as the trailing edge of the gate on \( g(t) \). The instantaneous power spectrum of \( g(t) \) can then be defined as

\[
\rho(t, \omega) = \frac{2}{\omega t} |G_t(\omega)|^2 .
\]  

(2)

Page also shows that \( \rho(t, \omega) \) can be represented by

\[
\rho(t, \omega) = 2g(t)Re \left[ e^{j\omega t} \int_{-\infty}^{t} g(x)e^{-j\omega x} dx \right] .
\]  

(3)

Using eq. (3) as a starting point, we have analyzed SCU as follows: In the original SCU implementation, the signal \( g(t) \) was passed through a voltage tuned filter set at three different bandpass positions. In the frequency domain, the \( i \)th filter can be described by some function \( C_i(\omega) \). In general, \( C_i(\omega) \) is a complex function, including phase delays introduced by the filter as a function of frequency. The time domain representation of the filter will be designated by \( c_i(t) \), which is also complex in general. The function \( c_i(t) \) is the inverse Fourier transform of \( C_i(\omega) \), and is the impulse response of the filter.

\[
c_i(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} C_i(\omega)e^{j\omega t} d\omega .
\]  

(4)

Thus, the filtered signal can be described in the time domain by

\[
S_i(t) = Re \left[ c_i(t)^*g(t) \right] .
\]  

(5)

What we would like to display is the band-limited instantaneous power spectrum of the signal. That is, the desired display is

\[
J_i(t) = \int_{-\infty}^{\infty} \rho(t, \omega)C_i(\omega)d\omega .
\]  

(6)

(7)

\( J_i(t) \) is the instantaneous power (as defined by Page) of the signal \( g(t) \) in the frequency band described by \( C_i(\omega) \). Substituting eq. (3) into eq. (6) and rearranging we get

\[
J_i(t) = 2g(t)Re \left[ \int_{-\infty}^{t} c_i(\omega)e^{j\omega t} \int_{-\infty}^{t} g(x)e^{-j\omega x} dx d\omega \right] .
\]  

(7)

If we assume at this point that the filter function \( C_i(\omega) \) is a real valued function, rather than complex, we can write

\[
J_i(t) = 2g(t)Re \left[ \int_{-\infty}^{\infty} c_i(\omega)e^{j\omega t} \int_{-\infty}^{\infty} g(x)e^{-j\omega x} d\omega dx \right] .
\]  

(8)

By combining the exponential terms, and interchanging the order of integration we get

\[
J_i(t) = 2g(t)Re \left[ \int_{-\infty}^{\infty} c_i(\omega)Re \left[ \int_{-\infty}^{\infty} g(x)e^{j\omega x} d\omega dx \right] \right] .
\]  

(9)

or

\[
J_i(t) = 2g(t)Re \left[ \int_{-\infty}^{\infty} g(x)e^{j\omega x} \int_{-\infty}^{\infty} c_i(\omega)e^{-j\omega x} d\omega dx \right] .
\]  

(10)

By use of eq. (4), eq. (10) becomes

\[
J_i(t) = 4\pi g(t)Re \left[ \int_{-\infty}^{\infty} g(x)c_i(\omega)\omega dx \right] .
\]  

(11)

For a filter that is causal in the time domain \( (c_i(t) = 0 \ for \ t < 0) \), eq. (11) becomes

\[
J_i(t) = 4\pi g(t)Re \left[ \int_{-\infty}^{\infty} g(x)c_i(t-x)dx \right] .
\]  

(12)

The integral in eq. (12) is the convolution integral for \( g(t) \) and \( c_i(t) \). Using the notation of eq. (5), eq. (12) becomes

\[
J_i(t) = 4\pi g(t)S_i(t) .
\]  

(13)

Thus, we come to the conclusion that for SCU to represent a true color coded low resolution instantaneous spectral analysis we must modify the original system in two ways:

(1) The filters used must have filter functions that are real in the frequency domain, or be modified so as to be effectively real.

(2) The filtered waveforms must be multiplied by the broadband signal before video processing and display.

3. Experimental Approach

We have tested the theory by comparing \( J_i(t) \) calculated by eq. (6) with \( J_i(t) \) defined by eq. (13), which mathematically represents the modified SCU system. Calculation of \( J_i(t) \) by eq. (6) requires measurement of the filter functions \( C_i(\omega) \). We used three fixed filters with 1.6 MHz bandwidths centered at 7, 9, and 11 MHz. The fixed filters replaced the voltage tuned filter used in earlier implementations of spectra-color ultrasonography. The spectrum of the ultrasonic echo from a glass block was used as a reference spectrum, and the spectrum of the signal passed through each filter was recorded. The filtered spectra and reference are shown in figure 1. The spectra are plotted from 5 to 15 MHz. A 5 MHz crystal controlled oscillator was used to provide a frequency marker for accurate spectral measurements. All spectra were recorded by our automated data acquisition.
Fig. 1. Wideband reference spectrum and spectra of the low, middle and high bandpass filtered reference signals.

A natural sponge was used as the target material because of its stability and similarity to human tissue in acoustical properties. The instantaneous power spectrum $\rho(t,\omega)$ required by eq. (6), was calculated by eq. (2). To produce the semi-infinite signal $g(t)$ we constructed a programmable gating system. Using the crystal controlled 5 MHz source as a clock, the gate could be automatically varied in length in 200 nanosecond increments. Power spectra $|G_t(\omega)|^2$ of the signal gated at increasing lengths were recorded. The value of $(\partial^2/\partial t^2)|G_t(\omega)|^2$ was calculated by subtracting spectra of gated signals of increasing length to approximate the differential. $J_{i(t)}$ was then calculated as the summation of $G_t(\omega) \cdot (\partial^2/\partial t^2)|G_t(\omega)|^2$ over all frequencies to approximate the integral in eq. (6).

To determine $J_{i(t)}$ by eq. (13), the filtered signal, $Si(t)$, was multiplied by the broadband signal, $g(t)$, using a double balanced modulator. A broadband pulse amplifier was used to bring the level of $g(t)$ into the operating range (approximately one volt) of the modulator. The modulator provided bipolar multiplication of the two signals, as shown in figure 2. The multiplied signal for each of the three bandpass filters is shown in figure 3.

For each filter, an appropriate precision delay line was added to the broadband signal before multiplication in the modulator. The delay lines were necessary to compensate for the group delay through the filters. Group delays were approximately 1 microsecond, but were different for each filter. Thus, the requirement that the filter functions be real was approximately satisfied.

Figures 4a, 4b, and 4c, show $J_{i(t)}$ calculated by eq. (6), and $J_{i(t)}$ determined by the signal multiplication described in eq. (13) for the three filters. The time resolution of the calculated signals is one point every 200 nanoseconds, while the analog multiplied $J_{i(t)}$ is a continuous function of time. The calculated $J_{i(t)}$ represents the average of $J_{i(t)}$ over the 200 nanosecond interval.

Noise in the system was reduced by averaging in the case of the calculated $J_{i(t)}$. The plots shown in figure 4, represent an average of 40 scans through the 5 microsecond section of sponge. Figure 5 shows the individual scans before averaging, and figure 6 shows plots of the averaged signals. The noise becomes progressively higher with deeper signal penetration, as shown in figure 5. This effect is due to the internal noise of the spectrum analyzer. The signal to noise ratio of the spectrum analyzer was constant for all signal levels, since the spectrum analyzer was used in the logarithmic mode. Thus, for higher signal levels
(longer gates) the absolute noise level increased. This resulted in a decreased signal to noise ratio for the differential power spectrum of higher level signals.

It is interesting to note that the time resolution of the multiplied signal $J_j(t)$ is better than the resolution of the broadband signal $g(t)$ and significantly better than the resolution of the filtered signals, $S_j(t)$ used in the original SCU implementation (see fig. 2). This is interpreted as a result of having increased the information bandwidth of the broadband signal $g(t)$ by the bandwidth of the filtered waveform $S_j(t)$ in the multiplied signal $J_j(t)$.

We can also observe that agreement between the calculated $J_j(t)$ and the analog multiplied $J_j(t)$ progressively improves as we go from the high frequency band to the low frequency band. This trend is probably due to the fact that the assumption of a real filter function is better justified for the low frequency filter than for the high frequency filter. The time delay error which was approximately constant for the three filters, is most disruptive to the high bandpass filter, because of the shorter repeat period of the filtered signal.

The results of this experiment show only fair agreement between the band limited instantaneous power calculated by eq. (6), and the band limited instantaneous power produced according to eq. (13). This result demands that we reexamine the assumptions made in the theoretical analysis. The first assumption of a real valued filter function is reasonably valid because of the broadband delay line compensation for the group delay through the filters. The appearance of predominately positive signals in the multiplied waveforms indicates that the filtered and broadband waveforms are largely in phase, though the filters have some dispersive effects. The second assumption was that the filter is causal in the time domain. This assumption also appears valid for passive filters. However, close examination reveals that the two assumptions above are mutually exclusive. That is, if a filter function is real valued in the frequency domain, it must be noncausal in the time domain. This is true.
because a real valued function, when transformed by eq. (4), must have a real part (the integral of the cosine terms) that is an even function of time. An even function of time must be noncausal. Hence, the transition from eq. (12) to eq. (13) is not valid.

5. Time Reversal Symmetry

From the above discussion, it appears impossible to display Page's instantaneous power spectrum by simple signal filtering and broadband multiplication. The restriction to non-causal filters required by eq. (8) introduces a contribution to the instantaneous power from the signal at future times. The time reversal symmetry of the filter function in the time domain means that eq. (13) corresponds to an average of Page's instantaneous power and a similar instantaneous power with the time scale reversed (i.e., a signal taken from \( t \) to time \( t \)). An instantaneous power spectrum of this type has been introduced by Morris Levin [5].

Levin defines an instantaneous power spectrum analogous to Page's except with the added property of time reversal symmetry. According to Levin, the symmetric instantaneous power spectrum is given by

\[
\rho_S(t,\omega) = \frac{1}{2} \frac{\partial}{\partial t} \left[ |G_t(\omega)|^2 - |G_t^+(\omega)|^2 \right] \tag{14}
\]

where

\[
G_t(\omega) = \int_{-\infty}^{t} g(x)e^{-j\omega x}dx \tag{15}
\]

and

\[
G_t^+(\omega) = \int_{-\infty}^{\infty} g(x)e^{-j\omega x}dx . \tag{16}
\]

Levin also shows that \( \rho_S(t,\omega) \) is given by

\[
\rho_S(t,\omega) = g(t)\text{Re} \left[ G(\omega)e^{j\omega t} \right] \tag{17}
\]

where

\[
G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt . \tag{18}
\]

\( G(\omega) \) is simply the frequency spectrum of the complete waveform \( g(t) \). By analogy to eq. (6) above, we redefine the band limited instantaneous power \( J_i(t) \) (for Levin's spectrum) to be

\[
J_i(t) = \int_{-\infty}^{\infty} \rho_S(t,\omega)C_i(\omega)d\omega \tag{19}
\]

where \( C_i(\omega) \) is defined as before. Substituting eq. (17) into eq. (19) gives

\[
J_i(t) = \int_{-\infty}^{\infty} g(t)\text{Re} \left[ e^{j\omega t}G(\omega)C_i(\omega) \right]d\omega . \tag{20}
\]

Again, assuming \( C_i(\omega) \) is real valued rather than complex, eq. (20) becomes

\[
J_i(t) = g(t)\text{Re} \left[ \int_{-\infty}^{\infty} G(\omega)C_i(\omega)e^{j\omega t}d\omega \right] . \tag{21}
\]

The integral in eq. (21) is the inverse Fourier transform of the product \( G(\omega)C_i(\omega) \), and hence becomes the convolution of the two corresponding time domain signals

\[
J_i(t) = 2\pi g(t)\text{Re} \left[ g(t^\star)C_i(t) \right] \tag{22}
\]

or

\[
J_i(t) = 2\pi g(t)S_i(t) \tag{23}
\]

where \( S_i(t) \) is defined by eq. (5). No assumption of causality of \( C_i(t) \) is required in the derivation of eq. (23) because of the time reversal symmetry of Levin's instantaneous power spectrum.

Thus the two modifications of the SCU system stated above (broadband delay and signal multiplication) produce a band limited instantaneous power corresponding to Levin's instantaneous power spectrum, rather than Page's spectrum as initially intended.

6. Conclusions

The analysis we have presented indicates that spectra-color ultrasonography should be modified in two ways. First, the filters used must have real filter functions in the frequency domain, including compensation for the time delays through the filter. Second, the appropriate signals to color code and display are the products of the filtered signals with the broadband echo waveform, rather than the simple filtered waveforms.

With these two modifications in effect, SCU represents a true low resolution instantaneous spectral analysis of ultrasonic echoes corresponding to the instantaneous power spectrum of Morris Levin. In addition, the time resolution of the new system exceeds that of the broadband signal.

Acknowledgments

This work was supported in part by National Institute of Health Grant #CY 00124-15 and The Ohio Lions Research Foundation.

References


IDENTIFICATION OF TISSUE PARAMETERS BY DIGITAL PROCESSING OF
REAL-TIME ULTRASONIC CLINICAL CARDIAC DATA

L. Joynt, D. Boyle, H. Rakowski, R. Popp, and W. Beaver

Center for Integrated Electronics in Medicine
and Division of Cardiology
Stanford University
Stanford, California 94305, U.S.A.

A study to assess the feasibility of obtaining diagnostically useful tissue characterization information by digitally processing clinical cardiac data is described. Normal subjects, myocardial infarction, IHSS, and amyloid patients were studied. The data acquisition system used to record data from a real-time scanner is also described. Significant changes in the RF signals and frequency spectra as the heart moves were noted over very short time intervals, indicating the need for a dynamic tissue characterization measure. Wide variation in the spectral characteristics of the signals from the normal population were found. Behavior of the spectra for the MI patient data were noted which differentiated them from the other subjects.

Key words: Clinical cardiac data; Fast Fourier Transform; digital processing; frequency spectra; in vivo; microprocessor-controlled data acquisition; myocardial infarction; real-time; tissue characterization; ultrasound diagnosis.

1. Introduction

The possibility of obtaining diagnostic information by processing clinical ultrasound data from cardiac patients is explored in this paper. Lele et al. [1] and Yuhas et al. [2] have differentiated between normal and ischemic or infarcted heart muscle in vitro on the basis of measurements of acoustic attenuation. Extension of these methods to clinical ultrasound examinations is complicated by factors including cardiac motion, intervening tissue, and the angle of incidence of the ultrasound beam to the interrogated tissue [3]. The most direct approach to exploring the effects of these difficulties in the clinical environment is to interface to an instrument in clinical use. Coupling a real-time scanner to a high-speed data acquisition system makes it possible to obtain information on the dynamic state of the heart. A preliminary study on a limited number of patients and normal subjects was done in order to assess the feasibility of deriving diagnostically useful information about the type and state of cardiac tissue by digital processing of clinically acquired data.

2. Data Acquisition

A. The Data Acquisition System

The design of the data collection system for this project is based on a number of considerations.

1Figures in brackets indicate literature references at the end of this paper.

In order to eliminate possible information loss due to the detection process, the RF signal is digitized for off-line computer processing. Experience with an earlier version of the data system had shown that large changes occur in signals recorded at 100 ms intervals. Accordingly, the current version was designed to record as continuously as feasible so that these changes could be observed in more detail. Thus, large quantities of data must be recorded at a very high rate. A compromise solution, trading off the speed of semiconductor memory for the low cost of tape memory, is used in the present system. A Bioquant 8100 Transient Recorder is used as the A/D converter and high speed buffer. The data is then transferred to a large low speed buffer, consisting of 32 kilobytes of microcomputer memory, which stores data from a number of scan lines for subsequent recording on a magnetic tape drive having a transfer rate of 30 kilobytes/second. This device provides mass storage and convenient input to a computer for later processing.

The data acquisition performance of the system is determined by the limitations of the digital hardware and by the characteristics of the scanner. When the Varian real-time sector scanner is used as the signal source, data may be acquired from any one cursor-selected scan line every 600 microseconds or from the sequence of scan lines comprising a frame every 30 milliseconds. The RF signal is digitized at 20 MHz so that about 100 microseconds or 7 cm of data can be stored in the transient recorder's 2048 word memory. Only those samples actually corresponding to the area of interest are transferred to the microcomputer memory buffer. The total time to re-
cord data from one scan line is under 2 milliseconds. Thus, a substantial portion of a frame can be digitized at real-time rates. The system also includes the option to record a sequence of lines at 30 ms intervals in order to cover a complete cardiac cycle in one buffer. When the data buffer is filled the recording process is interrupted for a few seconds while the data is transferred to magnetic tape.

Data acquisition is triggered at a pre-selected point of the cardiac cycle. A simultaneous Polaroid picture can be obtained. If more than one buffer is required, subsequent buffers also begin at the selected point of the cardiac cycle.

The data system has been designed to be easy to use in a clinical environment. The operator can interact with the microcomputer software system to specify the data-taking procedure. Information about the portion of the frame to be digitized is stored in a table and written on the tape along with the data for use in processing. Comments can be added from the operator's CRT terminal to record additional information about the tissue under study.

B. Data Acquisition Procedure

A variety of patients with different myocardial pathologies were chosen to exhibit various degrees of focal or diffuse replacement of normal myocardium. Included were patients with transmural myocardial infarction (2), idiopathic hypertrophic subaortic stenosis (IHSS) (3), and cardiac amyloidosis (1). Three normal subjects were studied as controls.

Consideration of changes in the echoes due to motion and muscle contraction during the cardiac cycle is particularly important in a clinical study of cardiac patients. In order to study these changes single scan lines through the septum and posterior wall of the left ventricle were recorded at 2 ms and 30 ms intervals. Data-taking was synchronized with the patient's electrocardiogram to commence at end systole and end diastole. In the patients with myocardial infarction, the area of infarction was identified as an akinetic left ventricular segment corresponding to the region denoted by Q waves on the electrocardiogram. Data was collected from this segment and compared to normally contracting segments in the same patient. In the patients with IHSS, the region of asymmetric septal hypertrophy could easily be identified and often has an abnormal ground-glass appearance when viewed in the real-time image [4]. Again, comparison was made with adjacent areas of normal myocardial appearance and thickness and with the posterior left ventricular wall. In the patient with diffuse myocardial involvement with cardiac amyloidosis, representative areas of interventricular septum and posterior left ventricular free wall were studied.

3. Data Analysis

The recorded ultrasonic data was processed on an HP21MX minicomputer. Fourier transforms of each recorded data trace were computed using the Fast Fourier Transform (FFT) algorithm. By taking the Fourier transform of a single echo, one obtains information about the overlying tissue through which the acoustic pulse has passed, while the Fourier transform over an interval containing several echoes gives information about the spatial structure of the tissue through interference effects. Periodicities of the spectral peaks due to constructive interference between scatterers spaced by a distance d will be spaced by Δf = c/2d, where c is the acoustic velocity.

The system impulse response of the Varian scanner is illustrated in figure 2. The limited bandwidth, from about 1.8 to 2.9 MHz, has implications for both kinds of tissue information sought. In vitro studies by other workers [1-8] have shown that differences in frequency-dependent attenuation between normal and ischemic or infarcted heart tissue are small over this range. Only periodicities corresponding to spatial separations larger than 0.75 mm will appear in this narrow bandwidth. Thus the available tissue characterization information would be derived from observing shifts in the overall shape of the spectrum.

A primary interest was to note the effects of cardiac motion on the spectra of returned echoes. We tried to assess changes in the spectra as a function of time in order to see possible differences in the spectra corresponding to the anatomic differences between the normal and diseased heart muscle. Figures 3 through 7 show examples of the data processing sequence for the long axis view of the septum at end diastole for one patient in each of the groups studied.

4. Results

Substantial changes in the RF signals returned from the heart and their spectra were observed over time intervals short compared to the cardiac cycle. Data recorded at 2 ms intervals appeared to adequately represent the dynamically varying signal, whereas data recorded at 30 ms changed abruptly and apparently randomly between traces. Figures 8 and 9 demonstrate this effect. A dynamic characterization of heart tissue is probably indicated since parameter measurements derived from the frequency
Fig. 2. a) Impulse response of Varian Real-time Sector Scanner measured by recording a single echo returned from the front side of a Lucite block in a water tank. This echo was digitized at 100 MHz. b) 1024 point FFT of impulse response.

Fig. 3. a) Photograph of the scanner image. The rf signal was recorded along the scan line indicated by the bright cursor line on the image. b) The recorded rf trace is synchronized to the desired point in ECG and to the picture of the scanner image. The operator chooses the origin of the time scale. Here, echoes from the septum were recorded. c) 512 point FFT. The portion of the rf trace used in the FFT is outlined in figure b.

The first, second, and third central moments were used to characterize the spectrum of each tissue sample, permitting study of changes in the shape of the spectrum. Differential frequency-dependent attenuation, as indicated by a shift in the first moment, for normal versus damaged myocardium was not observed. In fact, attenuation/centimeter appeared to be constant across the frequency range involved. It is likely that frequency dependent effects are overshadowed by the effects of imaging a tissue volume deep within the body, due to overlying tissue, diffraction spreading of the beam, and orientation of the tissue to the ultrasound beam. There was a wide range of normal spectral moments which overlapped those of the diseased patients. Disappointingly, the IHSS tissue, which presents a different appearance on the scanner image, was not distinguishable from the normal by the shape of the Fourier spectra. A comparison of normal and IHSS tissue spectra is depicted in figure 10. The myocardial infarction (MI) patients were set apart from the others by much less fluctuation in their spectral mean and variance curves (fig. 11). This implies that the tissue is moving or contracting less than normal tissue which correlates well with the observed image on the real-time display. There
Fig. 4. a) Photograph of scanner image. b) Recorded rf signal from selected scan line. c) 512 point FFT.

Fig. 5. a) Photograph of scanner image. b) Recorded rf signal from selected scan line. c) 512 point FFT.

Fig. 6. a) Photograph of scanner image. b) Recorded rf signal from selected scan line. c) 512 point FFT.
Fig. 7. a) Photograph of scanner image. b) Recorded rf signal from selected scan line. c) 512 point FFT.

Fig. 8. a) Sequence of rf echo traces from normal septum. Signals were recorded at 2 ms intervals. Bottom trace occurred first in time. b) FFT spectra of signals in a.

was also a spectral shift of approximately 100 kHz in the means of the spectra between the long axis and short axis views for the MI data. This is likely due to a more tangential view of the tissue in short axis, demonstrating the substantial effect of orientation to the ultrasound beam.

5. Conclusions

Straightforward application of methods [1,2,8] which have differentiated between normal and ischemic or infarcted myocardium in vitro to in vivo data derived from current clinical instruments is not likely to be successful due to the triple whammy of limited bandwidth, overlying tissue, and cardiac motion. Spectrum skewing due to broad frequency interference effects and analysis of the time sequence of spectral changes may show some utility. The substantial changes in the rf and frequency spectra over very short time intervals lead to speculation that they reflect the state of contraction of cardiac muscle as well as changes in geometry. The data acquisition system described in this paper represents a significant advance in the state
Fig. 9. a) Four frequency components of the FFT of normal septum data recorded at 2 ms intervals. Each component is plotted as a function of time. b) Same four frequency components plotted as a function of time for data recorded at 30 ms intervals.

Fig. 10. Comparison of mean and variance of spectra of normal and IHSS spetal tissue. Moments are plotted as a function, 2 ms per point.

of the art of the digital recording of ultrasound rf in terms of flexibility and ease of use as well as in the kind of data it makes available.

Acknowledgment

This work was supported by the U.S. Department of Health, Education, and Welfare under grant GM-17940.

References

Fig. 11. Means of the spectra of data from two infarcted septums. Data is plotted at 2 millisecond/point for the long and short axis views for both patients.


DYNAMIC AUTOCORRELATION ANALYSIS OF A-SCANS IN VIVO

J. C. Gore,1 S. Leeman,1 C. Metreweli,2 N. J. Plessner,1
and K. Willson1

1Department of Medical Physics
2Department of Diagnostic Radiology
Royal Postgraduate Medical School
Hammersmith Hospital, London, England

A realistic tissue model has been analysed to indicate the information that may be derived from autocorrelation studies of in vivo A-scan echograms, as well as to show some of the limitations of such techniques. Although many of these difficulties are not easily overcome when considering single, or even averaged, realisations of the autocorrelation function (ACF), an analysis of the time course of the ACF is less subject to such objections.

Several potentially useful clinical applications of such temporal changes are being investigated. These include measurements of echoes from within heart muscle throughout the cardiac cycle as a possible indicator of cardiac disease; similar variations in echoes from the stomach wall during gastric emptying are demonstrated, and a relationship to contractile state is postulated.

Results are also presented which indicate that the perfusion of tissues with blood may be assessed by this technique, and, on a different physiological time scale, changes in the placenta throughout pregnancy have been investigated. The technique is being extended to the study of the response of malignant tumours to treatment.

Key words: A-scan; correlation analysis; temporal changes.

1. Introduction

Tissue characterisation may be defined as the attempt to establish what quantitative parameters, other than range information, may be extracted from ultrasound probing of human tissue; the quantities derived should reflect intrinsic tissue properties and in particular its physiological state, be useful diagnostically, or for pre- and post-operative assessment, or for monitoring response to treatment. The attempt is not necessarily restricted to an ultrasound technique, but this modality is particularly attractive, not only for the usual reasons, but also because it provides the facility for receiving and analysing a signal from a reasonably localised region of tissue, as well as providing images to enable that region to be accurately placed. Clearly, only physical properties of tissue, or their possible change with time, are amenable to detection—often micro-structural features are of interest, but other possibilities (e.g., temperature measurement) are certainly not excluded.

Isolated echo structure may be probed in tissue characterisation analyses [1-3], even though the extracting of purely physical, as opposed to geometrical, data is more complicated than may appear at first sight [3]. Here we will restrict ourselves, as have many others, to the scattered low-level signals from a region of tissue, and perform what may be termed tissue characterisation by "echo ensemble" analysis. The extent to which these two methods are complementary is not known at present, but it may be noted that both are implicit in qualitative attempts to extract diagnostically useful data from grey-scale images.

2. Some Theoretical Ideas

A conceptual basis for the empirical approach may be laid from theoretical considerations, just as the impedance mismatch concept simplifies the interpretation of much of conventional ultrasound scanning.

The tissue model adopted here comprises an in-

3Figures in brackets indicate literature references at the end of this paper.
homogeneous medium, with local density and compressivity fluctuations generating the ultrasound scattering. In this context, the aim of tissue characterisation by echo ensemble analysis is to uncover the three-dimensional spatial, and even temporal, distribution of these fluctuations; while the hope of the technique is that all, or preferably some, of the information is sufficient to establish unambiguously the state of the tissue.

A convenient starting point is the wave equation for ultrasound propagation in a medium with stationary inhomogeneities of the type described above [4].

$$\nabla^2 p - \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = \frac{1}{c_0^2} \gamma (r) \frac{\partial^2 p}{\partial t^2} + \psi_0 [\mu (r) \nabla p]$$  \hspace{1cm} (1)

where \( p(r,t) \) is the acoustic pressure at location \( r \) and time \( t \);
\( \mu (r) \) is the density fluctuation,
\[ \mu = (\rho - \rho_0)/\rho \]
with \( \rho_0 \) the mean, and \( \rho (r) \) the exact local density;
\( \gamma (r) \) is the compressibility fluctuation,
\[ \gamma = (\kappa - \kappa_0)/\kappa_0 \]
with \( \kappa_0 \) the mean, and \( \kappa (r) \) the exact local compressibility.

\( c_0 \) is the mean velocity,
\[ c_0^2 = (\rho_0 \kappa_0)^{-1} \]

The right-hand side of eq. (1) is conventionally called the source term, since it is easily demonstrated [5] to be a "source" of waves, and it describes the interaction of the medium with the ultrasound field. The source term depends on both the fluctuations in the medium and the local, instantaneous value of the pressure wave, as it must do if it is to describe a scattering situation.

The tissue model described by eq. (1) may be shown [5], to contain that of Waag and Lerner [6] as a special case. Since the scattering is known to be weak, both \( \gamma \) and \( \mu \) may be taken to be small quantities.

Any scattering calculation requires the initial conditions to be clearly specified, and we have adopted an initial pulse \( p_{in} \) incident along the Z-direction, of the form:

$$p_{in}(r,t) = a (z - c_0 t) b (h) \exp \left\{ i (k_0 z - \omega_0 t) \right\}$$  \hspace{1cm} (2)

where \( a \) is the (axial) pulse shape, \( b \) is the beam profile, \( h \) is the spatial coordinate transverse to \( Z \), \( k_0 \) is the carrier wave vector amplitude, and \( \omega_0 = c_0 k_0 \). Eq. (2) is a good approximation to pulses from diagnostic machines over much of the range of interest.

For weak scattering, and for weakly focused incident fields, the far-field final result [7] shows that the back-scattered pressure amplitude is generated by the pulse-smoothed density/compressibility fluctuations in the medium. The power spectrum, of the backscattered echoes (with boundary effects neglected), is given by:

$$|p_s(\omega)|^2 \propto |\omega|^{2} \left| A \left( \frac{\omega}{c_0} - k_0 \right) \right|^2 \left| \Gamma \left( \frac{2 \omega}{c_0} \right) \right|^2$$  \hspace{1cm} (3)

where \( A \) is the Fourier transform of the axial pulse shape, \( \omega \) represents a "Rayleigh" factor, and the effect of the medium is contained only in the structure factor,

$$\Gamma = \Gamma_y - \Gamma_\mu$$

with

$$\Gamma_\mu (k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \langle \mu \rangle e^{ikz} dz$$

and similarly for \( \Gamma_y \). \( \theta \) is the angle variable in the cylindrical polar coordinates \((h, \theta, z)\) used in the calculation. The Z-integration may be extended to infinite limits, since the fluctuations are presumed to vanish outside the (finite) scattering volume. The structure factor \( \Gamma \) is the spatial frequency spectrum of the beam-profile smoothed tissue structure, and it is seen that, for the backscattering case, the density and compressibility fluctuations contribute equally, but with different phase. At other scattering angles the two types of fluctuations will contribute with differently varying magnitudes, and they may be regarded as two different types of scattering element: the one (compressibility) scattering as an acoustic monopole, and the other (density) behaving as an acoustic dipole. This behaviour may be deduced from the form of the source term in eq. (1), or more directly, from straightforward physical arguments [5]. Since the relative importance of the two types of scattering element varies with direction, different observers employing a fixed-angle scattering technique may obtain apparently conflicting results from the same tissue. In general, at least six independent one-dimensional experimental functions would have to be measured in order to reconstruct both \( \gamma \) and \( \mu \) from the data, and since this would seem to be impracticable, it is emphasized that, for the characterization of anisotropic tissues by fewer independent functions, it is essential to specify internal tissue landmarks with respect to which scanning planes and directions may be fixed. If not, intercomparison of results between different workers, and the repeatability of a single investigator's findings, cannot be established.

Quite apart from difficulties inherent in trying to quantitate the effect of overlying tissues and interfaces, the above calculation shows that pulse shape, beam profile, and carrier frequency are important quantities which fundamentally influence the scattered pressure power spectrum, and which must be specified or, better, deconvoluted from the data. Moreover, in regions where the incident pulse is sharply focused (\(|\nabla p_{in}| \) large), scattering from the density fluctuations becomes more prominent; this may well prescribe a suitable technique for mapping the density and compressibility scattering elements individually, if so desired. In addition, the measured backscattering is further modified by the transfer properties of the receiver [8], but
all these "system" artifacts are measurable, and should be prescribed, if not specifically allowed for.

Pulse smoothing implies a certain loss of fine detail: scattering experiments do not indicate the tissue micro-structure (<\alpha>) as such. It is quite clear from the above that measured pressure power spectra from the same tissue may differ with different transducer apertures and excitations, but it is also worth emphasizing that, in principle, the same backscattered power spectrum may be seen from different tissues, with different density and compressibility fluctuations, provided that $v_r$ remains the same. This merely underlines the fact that, even for isotropic media, a single backscattering experiment is in general insufficient to characterize tissue unambiguously. Fortunately, in practice, the situation may be less complicated as there is some indication that, for most tissues, only the compressibility (i.e., elasticity) fluctuations are of importance for the production of echoes [9].

3. Method

As indicated in eq. (3), by measuring the power spectrum of echoes, the structure factor, $f$, may in principle be determined over a limited band of spatial frequencies to within an accuracy set only by noise and the uncertainty in knowledge of $|A|$. However, we have chosen to explore the use of the time-domain autocorrelation function (ACF) of echo amplitudes; as well as being easier to calculate, the ACF contains all the information included in the power spectrum, and although the errors inherent in its estimation differ from those in power spectrum calculations, it seems likely that on-line ACF measurement may be at least as suitable for "in vivo" tissue characterization in real time as Fourier methods. The desired autocorrelation function is given by

\[ c(\tau) = \int_{-\infty}^{\infty} p(t)p(t+\tau)dt \]

where $p(t) =$ the backscattered acoustic pressure amplitude at time $t$.

From eq. (3), it can be shown that

\[ c(\tau) = \beta(\tau) * \xi(\tau) \]

where $*$ denotes convolution, $\beta(\tau)$ = the ACF of $<y>$ - $<y>$ and is an indicator of tissue structure.

\[ \xi(\tau) = \text{the ACF of the second derivative of the impulse response of the pulse-echo system [8].} \]

The convolution with the system function, $\xi$, limits the information available unless steps are taken to remove its influence, but such further processing has not yet been attempted by us.

The equipment used in these studies is a Nuclear Enterprises NE 4102 Diasonograph, operated with weakly focused transducers centred on 2.5 MHz, with total system bandwidth approximately 1 MHz. Signals from the A-scan receiver are at present recorded photographically from an oscilloscope, and the echo envelope is then digitised with a sonic pen (SAC Graf Pen), interfaced to a HP 2100A computer via a Tektronix 4010 visual display unit. With this arrangement effective sampling rates of up to 15 MHz are achieved, although at present it is more usual to sample echoes from a region $\sim 2$ cm in extent at a rate of $75$ MHz, consistent with providing estimates of the ACF at lag intervals corresponding to $100$ $\mu$m of tissue.

The discrete, normalised ACF, $c_j$, is estimated from $N$ echo samples, $p_i$, using the unbiased estimator [10],

\[ c_j = \frac{c_j}{c_0} = \frac{1}{N} \sum_{i=1}^{N-j} p_i - \hat{p}_{i,M} \frac{p_{i+j} - \hat{p}_{i+j,M}}{j} \]

where

\[ \hat{p}_{i,M} = \frac{1}{(2M+1)} \sum_{i-M}^{i+M} p_i \]

is the running mean of the echo amplitude. The moving average is calculated over a distance that is sufficiently large not to influence the fine structure of the ACF estimate but which filters spurious low frequency fluctuations and strengthens stationarity. Such detrending is performed typically over intervals of $\sim 1$ cm.

4. Data Analysis

In general, the entire ACF must be considered when characterizing a single train of echoes, but one or more particular features of each ACF may be extracted in order to summarise quantitatively any given set of echo samples. For example, the positions (and to a lesser extent the shapes) of peaks within the ACF indicate distances over which there exists structural coherence; prominent and regular peaks indicate a regular arrangement of scattering sites. The mean number of crossings, moments of the function, or curve fitting techniques using small numbers of parameters, may each be used to describe concisely the essential details of an estimated ACF, but the method of feature extraction chosen will depend on the particular application.

In order to overcome some of the objections that have been indicated above against the use of single realisations of echo characteristics in one dimension, the analysis has been restricted to situations where the tissue investigated has been found to be isotropic, or where only the changes with time of echo characteristics are deemed to be clinically useful. In this way, by following the time course of echo features, each tissue acts as its own internal standard and less reliance need be placed on the values of individual, single measurements. Time-plots of echo features such as those described above depict changes in scattering structure, whilst polar phase diagrams are useful when the change is periodic. Cross correlation of the ACFs realized at different times are calculated to yield information about changes, relative to a chosen reference time, and examples are given below.

In analysing echoes in this fashion, the ACF features to be emphasized have often to be chosen arbitrarily, and caution has to be exercised when attaching significance to any particular one.
There are some reliable guidelines that may be derived by standard techniques to suggest which ACF values may be regarded as spurious, but a final decision as to the significance (or otherwise) of any derived result can be made only on the basis of clinical, in vivo investigations. However, as an interim indicator of our awareness of artifactual correlations, the results given below are marked with the 95 percent confidence limits (σ) for an autocorrelation function generated with N data points from a random process [11],

\[ \sigma = \frac{1}{N} \pm \frac{2}{\sqrt{N}}. \]

5. Results

There are several clinical problems which may be explored by using temporal characteristics of the ACFs of echoes to indicate changes within tissues and three classes may be distinguished.

First, there are cyclic events in which echo characteristics alter in synchronism with some physiologically significant, repetitive process, such as respiration, or with the cardiac cycle, whose phase is easily monitored on the electrocardiograph (ECG). It is, for example, reasonable to suppose that myocardial activity will be associated with a redistribution of scattering centres in the tissue, since it necessarily involves changes in both its elastic state and density. The time course of scattered echoes from within the left ventricular posterior wall is easily followed in the conventional mitral valve echoimage scanning direction. Figure 1 depicts the ACFs measured from a normal heart in end-systole and end-diastole, showing typical changes from one phase to the other. The interpretation of this in terms of alterations in muscle fibre dimensions or elastic state remains to be confirmed, whilst the degree of change in disease remains to be established, but the possibility clearly exists of measuring in vivo characteristics which may be related to myocardial contractility.

The flow of blood in the systemic circulation is also directly coupled with cardiac events. Following the notion that the perfusion of certain organs with blood proceeds in synchronism with the heart's action, the possibility of identifying poorly perfused transplanted kidneys is under investigation. Figure 2 indicates how echoes from the anterior region of the upper pole of a viable kidney, investigated some months after successful transplantation, change with time. The obvious changes between phases, and the reversal in the subsequent cycle, is suggestive of a cyclic, cardiac-synchronised structural reorganisation within the kidney. This approach to the quantitation of echo characteristics may also be applicable to other organs, such as the liver and placenta, and possibly to tumours.

Fig. 1. The ACFs of echoes from the left ventricular posterior wall of a normal heart, measured in end-systole (S) and end-diastole (D).

Fig. 2. Characterisation of echoes from cortex of transplanted kidney at different times. Three autocorrelations were measured, at (cardiac) end-diastole, end-systole, and the subsequent end-diastole. Curve A is the cross-correlation of the first diastolic ACF with itself, curve B is the cross-correlation of the first diastolic and systolic ACFs, whilst curve C is the cross-correlation of the two diastolic functions, and shows a reversion back to the original state in synchronism with the heart.

A different cyclic process with less regular period is the muscular activity associated with gastric emptying. The contraction of the stomach wall in normal digestion (which may be monitored over cycles with periods of approximately 20 seconds with conventional M- and B-scan techniques) [12] produces changes in echo characteristics not dissimilar to those associated with myocardial contraction, and this lends support to our interpretation of the origin of heart wall echo changes. Thus, a similar model, viz., contraction of muscle elements causing changes to their acoustic scattering properties, may be employed to interpret the results of both cardiac and gastric measurements. ACFs of echoes from the anterior stomach wall are shown in figure 3, and cross correlations of the ACFs from different phases in figure 4: the position of the first principal minimum is plotted as a rotating phasor in figure 5.
Fig. 3. The ACFs of echoes from the anterior stomach wall, contracted (C) and relaxed (R).

Fig. 4. Characteristics of echoes from stomach wall at different times. The ACF at time 0 is cross-correlated with itself (A), with the ACF at a time ~ 4 seconds later when the stomach is contracted (B), and with the ACF at a time ~ 8 seconds after contraction, when the muscle has again relaxed (C). These events were chosen by reference to the stomach M-scan. Note the general shape of the cross-correlation function does not change but the first minimum moves with contraction.

A second class of time change being investigated is the alteration in scattering characteristics of tissues with age or maturity, and of particular interest are changes in the placenta throughout pregnancy. Ageing placentas present different grey scale B-scan appearances: cross-correlation of ACFs obtained at different stages of normal pregnancy are shown in figure 6. This technique may also reveal differences between normal and insufficient placentas of the same maturity.

A third class of application is the monitoring of structural changes in tumours during and after treatment. Such changes have already been observed in B-scan images of irradiated malignant tumours and in vivo ultrasonic tissue characterization using the techniques outlined above may provide a clinically useful method of assessing tumour kinetics [13].
Conclusions

The use of single autocorrelation functions to characterize complex, three-dimensional scattering media may be severely limited because different tissues may realize similar results. Many of the objections raised against the use of one-dimensional techniques, however, are overcome if the time course of events is followed and only changes in echo characteristics are regarded as significant. Whilst the ACF summarizes the information contained in a single train of echoes, the cross correlation of sequentially produced ACFs summarizes dynamic features of scattering. New diagnostic information may possibly be derived from a study of cyclic changes in gastric and cardiac muscle, and in other organs blood perfusion may be assessed. Changes in the nature of tissues with age or treatment may have important significance which, as yet, we are unable to evaluate.

A limited number of patients and volunteers have so far been investigated with this "dynamic" technique, and it is impossible to unequivocally claim success in any particular application; but there is equally no cause to reject the original concept that echo ACFs reveal changes in the physiological state of tissues. The influence of factors such as tissue movement or anisotropy and the relative merits of different transducers and methods of signal processing will have to be carefully evaluated, and the optimal choice of echo ACF features to be extracted remains uncertain. Despite the problems, there is every reason to hope that dynamic tissue characterization is an appropriate path to obtaining information of genuine clinical utility.

Acknowledgements

We gratefully acknowledge Mr. George Hooker's help with the analysis of data, and thank Dr. E. W. Emery for his useful discussions and comments. S. L. is in receipt of a Wellcome Fellowship.

References


COMPUTER SPECTRAL ANALYSIS OF ULTRASONIC A MODE ECHOES

D. E. Robinson

Ultrasonics Institute
Sydney, Australia

Tissue attenuation as a function of frequency measured by the effect on the power density spectrum of the echo from glass shadowed by the tissue sample is shown to give results comparable to those published previously. A method of measuring attenuation within tissue by comparison of the scattered echoes from shallow and deep scatterers is investigated and shown to have limitations. An assessment of properties of the scatterers from investigation of the spectral properties of the echoes from a scattering region is suggested.

Key words: Acoustic; computer processing; digital acquisition; digital signal processing; pulse-echo techniques; spectrum analysis; ultrasonics.

1. Introduction

At present the bulk of tissue characterisation by ultrasound in clinical practice is done by qualitative examination of the grey scale B Mode echogram. The current work is directed to deriving quantitative characterisation data by spectral analysis of 180° backscattered echoes, or ultrasonic A Mode, following the approach of Lizzi [1].

2. Measuring Equipment

The transducer beam pattern requires to be narrow to give good spatial resolution and with a well behaved spectrum to avoid complications in spectral analysis techniques [2]. This is achieved in the focal zone of a focussed transducer of aperture 65 mm and curvature 35 cm and usable frequency range from 1.5 to 4 MHz. The 20 dB echo beamwidth at the focus is 6.7 mm.

The receiver amplifier gain is variable in 1 dB steps allowing an input dynamic range of 100 dB without overload. Receiver gain variation is used instead of transmitter power control as it is found that due to non-linearities in the transmitter, the transducer or the medium, significant changes in echo wave shape occur with changes in transmitter power. The signals are digitised at 10 MHz sampling rate using an 8 bit Biomation 8100 waveform recorder interfaced to an Interdata Model 85 computer. The computer and an interactive signal processing program have been described elsewhere [3].

The spectrum used here is the square magnitude of the Discrete Fourier Transform (DFT) of the echo signal or Power Density Spectrum. All spectra shown in this paper have been interpolated as described by Rabiner et al. [4] by extending the set of 128 or 256 recorded time samples with zero valued samples up to a total signal length of 1024 before computing the DFT. Comparisons between spectra are made by calculating the logarithm of the ratio of the spectra (log ratio) and observing the ordinate at 2.5 MHz in dB and the slope in dB/MHz. The log ratio for point and plane target echoes remain within 3 dB and the slope within 2 dB/MHz for distances from the transducer focus of ± 30 mm.

A B-Mode display of the examined tissue is provided for A mode beam position selection and guidance. An example of input data and corresponding B mode display is shown in figure 1.

3. Experimental Techniques

First the echo from a thick glass block at the focus with no intervening tissue is recorded, and regarded as the impulse response of the system. The tissue specimen is then placed in a polyethylene bag in front of the glass block and echoes from a series of 30 adjacent beam positions at 3 mm intervals were recorded from three locations, from the glass block behind the tissue and from shallow and deep within the examined tissue. In each case the transducer was moved so that the echoes were recorded from the focal area of the transducer beam. In the case of the scattered echoes, a region was selected which did not have large discrete echoes on the B Mode scan.

4. Signal Processing

When measuring the spectrum of a statistical signal, some form of averaging is required to obtain a smooth and stable spectral estimate [5]. This can be done in the spatial domain by translating the beam axis as described by Lizzi [1] and adding the spectra corresponding to a number of adjacent lines of sight to obtain an average spectrum. This has the effect of reducing the amplitude of ripples in the spectrum.
It should be noted that the "fine structure" in the spectrum of individual echo signals may be a function, not of the statistical nature of the sample, nor of the local tissue structure, but simply of the length of the time window. For instance, given a signal \( x(t) \) with transform \( X(f) \) and spectrum \( X(f)^2 \) the sum of two identical shifted signals \( x(t) + x(t - \tau) \) has a spectrum \( 2X(f)^2 (1 + \cos \omega \tau) \). The factor \( (1 + \cos \omega \tau) \) gives rise to "wiggles" in the measured spectrum which are not directly related to local tissue "structure" but are merely phase effects between widely spaced echoes. Figure 2a and 2b show the spectra for a single echo and two identical echoes separated by 5 mm. This effect is reduced by windowing in the autocorrelation domain, or lag windowing. The autocorrelation function is the Inverse Fourier Transform of the Power Density Spectrum. The Autocorrelation functions of the single echo and two identical echoes spaced at 5 mm (64 sample intervals) are shown in figure 2c and 2d. Also shown in figure 2d is a Hamming window in the Autocorrelation (lag) domain suitable for removing the effect of widely spaced echoes. Multiplication by the window function has the effect of removing contributions to the Autocorrelation function of lags greater than 32 sample intervals (2.5 mm) and leaving only the contributions from closely spaced echoes. The smoothed Power Density Spectrum obtained by re-transforming the weighted Autocorrelation function into the frequency domain is shown in figure 2e. The effect of this procedure on tissue echoes is shown in figure 3 where the original time sample of scattered echo data is windowed with a Hamming window of length 128 (corresponding to 10 mm of tissue). The lag windows are of length 64, 32 and 16 samples increments corresponding to correlation lengths of 5, 2.5 and 1.25 mm and thus limiting the effect on the spectrum to structures of these sizes.

In the analysis of the echoes off glass no time windowing or spectral smoothing is necessary since we are dealing with only deterministic single echo waveforms and not statistical signals. The power density spectra of the echo off glass with and without shadowing by the tissue were calculated, and the log ratio formed. A typical set of results is shown in figure 4. The log ratio is a measure of the attenuation due to the tissue as a function of frequency. The values are only significant for frequencies contained in the original power density spectrum of the unshadowed glass echo. A line of best fit was computed on a least total weighted squared error basis with the weighting function being the original power density spectrum values for the echo off glass at the focus.

The parameters of the line \( y = ax + b \) where \( y \) is the best fit to the log ratio value and \( x \) the frequency value are given by:

\[
\begin{align*}
  a &= \frac{\sum_i W_i \sum_i x_i y_i W_i - \sum_i x_i W_i \sum_i y_i W_i}{\sum_i W_i \sum_i x_i^2 W_i - \left(\sum_i x_i W_i\right)^2} \\
  b &= \frac{\sum_i y_i W_i \sum_i x_i W_i}{\sum_i W_i} - a
\end{align*}
\]

Fig. 1. B-Mode echogram showing tissue sample in front of glass block. The two lines indicate the area used for A Mode acquisition. The complete A mode signal and the part of the signal near the focal region are also shown.
where the $x$, $y$, and $W$, are the values of the frequency, log ratio and weighting function for the successive frequency samples.

For echoes from scatterers within the tissue the echo signal was windowed using a time window of length 128 samples or 10 mm and the spectrum was smoothed by a lag window of 64 lags corresponding to 5 mm. The log ratio between deep and shallow echo spectra was formed and the weighted best fit line calculated as before. A typical result is shown in figure 5.

**Fig. 2.** a) Power density spectrum of a single echo off glass; b) spectrum of two echoes separated by .5 mm; c) autocorrelation function corresponding to spectrum in a; d) autocorrelation function of spectrum shown in b and 64 point Hamming lag window; e) smoothed spectrum obtained from the lag windowed autocorrelation function shown in d.

5. Results

Being initial experiments readily available animal material was used. The material was skeletal beef muscle along and across the fibre direction and calf liver. The results are shown in table 1. The log ratio curve, indicating tissue attenuation was approximately linear within the pass band for all tissue samples using the shadowed glass approach. For this reason more confidence is placed in the determination of attenuation slope by this
Fig. 3. Effect of lag windowing on echo spectrum. A single line of data was windowed with a 1 cm Hamming window and the spectrum a) smoothed with a Hamming lag window of b) 5 mm, c) 2.5 mm and d) 1.25 mm.

Table 1. Tissue attenuation determined by the shadowed glass method and by the scattered echo comparison method.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Quoted atten. (Wells [6])</th>
<th>Shadowed glass Slope</th>
<th>Atten. at 2.5 MHz</th>
<th>Scattered Atten. at 2.5 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dB/cm MHz</td>
<td>dB/cm MHz</td>
<td>dB</td>
<td>dB/cm MHz</td>
</tr>
<tr>
<td>Muscle along fibres</td>
<td>1.3</td>
<td>1.5</td>
<td>4.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Muscle across fibres</td>
<td>3.3 (1)</td>
<td>0.65</td>
<td>1.5</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>0.78</td>
<td>1.8</td>
<td>0.15</td>
</tr>
<tr>
<td>Liver</td>
<td>0.94 (1)</td>
<td>0.82</td>
<td>2.2</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>0.73</td>
<td>3.1</td>
<td>0.53</td>
</tr>
</tbody>
</table>
method. The values attenuation versus frequency in dB/cm MHz were in reasonable agreement with previously published values for the muscle along the fibres and for liver. The values for muscle across the fibres were similar to the other values but not in agreement with Wells [6]. The log ratio curves for the scattered echo measurements all showed significant ripples, indicating that some phasing effects still remain. The values for liver and muscle along the fibres agreed reasonably well with the shadowed glass method, but the muscle along fibres gave widely different results.

6. Discussion

It is obvious that further work is needed before the scattered echo comparison method will be useful for attenuation determination. The shadowed glass method appears to give repeatable results but is not suitable for clinical examinations.

The current approach in scattered echo analysis is to average in the power spectral domain with the aim of reducing the ripples in the spectrum to obtain a smooth and stable spectral estimate. It appears that an alternative approach is to average in another domain to obtain a stable estimate of the underlying spectral ripple, which is a measure of the "structure" of the echo signal. Two obvious candidates are the Autocorrelation and the cepstral domains. This structure can be postulated from the same model of distributed discrete point scatterers that is used to justify the single frequency scattering versus angle approach to tissue characterisation.

References


Fig. 5. Results of scattered measurement showing a) shallow and b) deep echo spectra, c) the ratio and d) log ratio with best fit line superimposed. Note the large ripple content of the log ratio.


CEPSRUAL SIGNAL PROCESSING FOR TISSUE SIGNATURE ANALYSIS

J. Fraser and G. S. Kino

Stanford University
Stanford, California 94305, U.S.A.

J. Birnholz

Harvard Medical School
Boston, Massachusetts 02115, U.S.A.

The reflected signal received by an ultrasonic transducer is modeled as a convolution of a transducer response with a reflection function for the target region. Cepstral analysis translates that signal into a domain where those components interact additively rather than through convolution and where separation can be accomplished with simple bandpass filtering operations. The cepstral transform of the pulse echo signal also provides direct access to any periodic behavior of reflectors arising from their spacing. As an example of these capabilities, the technique is used experimentally to describe the characteristic spacing of macrostructural reflecting elements in the pig liver in vitro and to determine the frequency dependent attenuation behavior of normal human liver in vivo.

Key words: Attenuation; B-scan; cepstrum; computer; convolution; de-convolution; liver; power spectrum; signal processing; tissue characterization; tissue parameters; ultrasound.

1. Introduction

We describe in this paper preliminary experiments with new types of non-linear signal processing used for eliminating certain types of signal distortion in conventional acoustic imaging systems which preclude unambiguous identification of specific tissue features.

An acoustic propagation path through a tissue region can be treated as a one-dimensional array of reflectors. While each individual reflector may be expected to replicate the time characteristics of a self-convolved transducer impulse response (assuming an impulsive excitation), that pulse form is altered or distorted during propagation by the frequency dependent attenuation processes of the medium intervening between reflector and transducer. Previous studies have indicated that tissue specific information is derived from both attenuation properties of the region, as well as the distribution and backscatter features of the individual reflectors [1]1. Therefore, an effective signal processing scheme must provide a means of eliminating the transducer response and separating frequency dependent attenuation effects from target signal components. Our approach has been to take advantage of certain properties of the cepstrum, or Fourier transform, of the signal log power spectrum [2]. The rationale for this choice derives from previous uses in comparable signal processing tasks: (1) homomorphic deconvolution of speech and music waveforms for improved recording fidelity [3]; (2) dereverberation enhancement of seismic data [4]; and (3) recognition and characterization of flaw configuration in nondestructive testing [5]. This method has not been applied to medical diagnostic ultrasound previously.

2. Analysis of the Return Echoes

We consider first what occurs when a signal is incident on body tissue. We will mainly be interested in the situation in which we observe a reflected signal with the same transducer used to illuminate the tissue. Techniques for looking at off-axis reflections can, in principle, provide a great deal more information. But, in practice, they are extremely difficult to employ without the use of arrays of transducers to carry out repeatable measurements of this kind. Even with the use of arrays of transducers, because of the distortions along the body path to an organ of interest, the problems are very severe in terms of repeatability. In that case, it is probably better to concentrate on the development of imaging systems first, then process the images in some detail. Thus, the method described here is entirely devoted to the use of a single transducer operating in a reflection mode.

The signal received by a reflection mode system can be considered to arise from a one-dimensional reflection function R of distance z along the beam path R(z). In the far field of a plane transducer,
or the focal zone of a focused transducer, the phase fronts are roughly planar and normal to the beam. Under these conditions, it can be shown by perturbation theory that $R(z)$ is the weighted sum across the beam of the component along the beam of the gradient of the acoustic impedance of the tissue. That is, if the beam pattern is $P(r)$, and the impedance is $Z(r,z)$ which varies slightly around an average value of $Z_0$,

$$ R(z) = \frac{1}{Z_0} \int_0^\infty 2\pi r P(r) \hat{z} \cdot \hat{Z}(r,z) . \quad (1) $$

We wish to work in the time domain, using $R(t)$, where, with $V$ the acoustic velocity in tissue

$$ t = 2z/V \quad (2) $$
since the time required is for a round trip. Any information about $R(t)$ which can be obtained will be related to changes of impedance in the tissue, and, hence, may be of use in tissue characterization.

A region of tissue is interrogated by passing a pulse $A(t)$ of ultrasound through it and observing the return signal $S(t)$. $S(t)$ is given by the convolution of $A(t)$ and $R(t)$:

$$ S(t) = \int A(t) R(t - \tau) \, dt \quad (3) $$

which can be represented symbolically as

$$ S(t) = A(t) \ast R(t). \quad (4) $$

We do not necessarily seek to recover $R(t)$ exactly, but rather to derive statistical information about it. We are interested in knowing the distribution sizes of the objects response for the reflected signal, and how regularly they are spaced in the tissue. We may also be interested in the evolution of $A(t)$ as the pulse passes through tissue with frequency dependent attenuation.

Since the autocorrelation function responds to structures with strong peaks, it could be considered a possible processing technique to extract structure information from $S(t)$. However, it can be shown that the autocorrelation of two convolved functions is the convolution of their autocorrelations. Using $\ast$ to represent correlation,

$$ S(t) \ast S(t) = (A(t) \ast A(t)) \ast (R(t) \ast R(t)) . \quad (5) $$

Since $A(t)$ is an oscillatory function, $A(t) \ast A(t)$ is also, and the autocorrelation of $R$ is confused by the convolution. The best that can be done in this case is to recover the envelope of the autocorrelation. A convenient technique for this purpose is to find the envelope of the analytic function associated with the autocorrelation by taking the Fourier transform, zeroing negative frequency components, and taking the magnitude of the inverse transform [6]. Since the autocorrelation is normally performed by inverse transforming the power spectrum, very little additional effort is needed. One merely zeros the negative frequencies in the power spectrum.

An example of a typical ultrasound echo is shown in figure 1. This echo represents the return from a pig liver, using a 3.5 MHz transducer. A pattern of multiple echoes is evident, but not readily quantifiable. The envelope of the auto-

![Fig. 1. The recorded ultrasonic echo from a section of fresh pig liver, in vitro, using a nominally 3.5 MHz transducer. This represents 1.9 cm of tissue.](image)

![Fig. 2. The envelope of the autocorrelation function of the signal in figure 1. Several peaks are discernable, but none is dominant. A more sophisticated technique is sought.](image)

3. The Inversion Process

In tissue signature analysis, responses from the tissue are weighted by the form of the transducer response. In addition, there is distortion due to the tissues on the way to the organ of interest. So a process is desired which, given $S(t)$, can separate $A(t)$ and $R(t)$. Under ideal conditions, if one of two convolved functions is known, the other may be found. Deconvolution is performed by Fourier transforming, inverse filtering, and inverse Fourier transforming.

If eq. (4) is Fourier transformed, the convolution leads to a product, and rearranging gives:

$$ R(\omega) = \frac{\tilde{S}(\omega)}{\tilde{A}(\omega)} . \quad (6) $$

Several factors prevent the use of this formal inversion process in the present case. The presence of finite noise in the recorded signal means that $S(\omega)$ is not known exactly. In addition, as the ultrasonic transducer responses are band-limited, $A(\omega)$ becomes vanishingly small in the same frequency ranges where $S(\omega)$ is dominated by noise, so the noise has a disproportionate influence on the recovery of $R(\omega)$. Finally, since the signal has propagated through a tissue of unknown and frequency dependent attenuation, $A(\omega)$ is not known. A different approach is, therefore needed.
4. Homomorphic Processing

We have used so-called homomorphic processing, or cepstral analysis, for this purpose. At the present time, we have by no means developed this type of processing to its limit, but we have made a start on techniques employing it and our intention is to develop the techniques further. The basic idea behind homomorphic processing is to turn a nonlinear process into a linear process.

Consider the convolution to the signal from the transducer \( A(t) \) with the tissue response \( R(t) \) in the time domain

\[
S(t) = A(t) \ast R(t)
\]  

(7)

In the frequency domain, the two components derived from these signals are

\[
\hat{S}(\omega) = \hat{A}(\omega) \cdot \hat{R}(\omega)
\]  

(8)

A product form is also obtained for the power spectrum

\[
|\hat{S}(\omega)|^2 = |\hat{A}(\omega)|^2 \cdot |\hat{R}(\omega)|^2
\]  

(9)

By taking the logarithm of \( |\hat{S}(\omega)|^2 \), the multiplication is converted to a sum. This enables normal linear signal processing techniques to be used.

Let

\[
\hat{S}(\omega) = \log|\hat{S}(\omega)|^2
\]  

(10)

\[
\hat{A}(\omega) = \log|\hat{A}(\omega)|^2
\]  

(11)

\[
\hat{R}(\omega) = \log|\hat{R}(\omega)|^2
\]  

(12)

then

\[
\hat{S}(\omega) = \hat{A}(\omega) + \hat{R}(\omega).
\]  

(13)

Finally, if we take the Fourier transform of \( \hat{S}(\omega) \) defined as \( S(t) \), we can write

\[
\hat{S}(t) = \hat{A}(t) + \hat{R}(t)
\]  

(14)

\( \hat{S}(t) \) is called the cepstrum of \( S(t) \). The notation is used to distinguish it from \( S(t) \). Figures 3, 4, and 5 demonstrate the convolution of a simulated transducer impulse response with an impulse pair, and the additive property of the log power spectra and cepstra.

We note that in the log power spectrum domain the system is linear and subject to all the rules and techniques of linear filtering. Such filtering may be accomplished by taking one more Fourier transform, yielding the cepstrum of the

\[\text{Fig. 3. (a) A simulated transducer impulse response of the form } e^{-\pi(t/8)^2} \cos 2\pi(t/8).\]

\[\text{(b) An impulse pair with spacing } 16.\]

\[\text{(c) The convolution of (a) and (b).}\]

\[\text{Fig. 4. The log power spectra of figure 2(a), (b), and (c) respectively.}\]
The cepstrum of the reflection pattern is not known and varies from tissue to tissue.

Some examples of the cepstra of impulse trains can yield insight into what may happen in tissue, and suggest features which will be meaningful. Two impulses with separation \( t \) will yield a string of impulses with separation \( t \) and of strength decaying fairly rapidly toward zero away from the origin, as seen in figures 3(b) and 5(b). If more than two impulses exist with the same spaces, the cepstrum is similar, but with a slower decay rate. This is depicted in figure 6. Figure 6 also demonstrates a problem which often arises in the digital implementation of the cepstrum. When the logarithm of the power spectrum is taken, the nonlinear process generates harmonics in the time domain which can cause aliasing in the cepstrum, even though the original spectrum bandwidth was well within the Nyquist bandwidth of the sampling process. In general, any repetitive pattern in a signal will lead to a peak at a time equal to that spacing in the spectrum, as well as lesser peaks at multiples of that spacing. The cepstrum itself may not be easy to interpret for ultrasound echoes from tissue unless the tissue has a fairly simple and distinct structure. But the decay rate of the cepstrum is related to the spacings and numbers of periodic reflections in the tissue, and hence, may be useful for tissue characterization.

If the minimum spacing between strong reflections in the tissue is somewhat greater than the wavelength of the interrogating sound, all information about the periodicities of reflections will be separated from the information about the character of an individual reflection in the cepstrum. In this case, it should be possible to filter the cepstrum and recover the average of the power spectral densities of the individual reflections from a region of tissue. This should be a good

5. Possible Applications

Filtering in the cepstrum domain is useful only if the cepstra of the two components fall in different regions of the domain. The spectrum of a broadband transducer impulse response can be close to a Gaussian response in frequency. So its logarithm is close to a parabolic response in frequency, and cepstrum is a relatively narrow pulse centered at the origin, which has a time width of the same order as the original impulse. This effect can be seen in figures 3(a) and 5(a). The

Fig. 5. The cepstra of figure 3(a), (b), and (c) respectively.

Fig. 6. (a) Four impulses with spacing 16. (b) The cepstrum of the convolution of the impulse response of 3(a), with the impulse train of 6(a).
approximation to the spectrum of the transmitted ultrasound pulse as it passes through the region of tissue within an unknown constant. If such a calculation is carried out on signals from two succeeding regions of tissue along the line of sight, the difference between them will contain information about the frequency dependence of the attenuation of ultrasound in the tissue between these two regions.

6. Experimental Techniques

A surplus B-scan imaging system, loaned by the Radiology Department of the Stanford University Medical Center, was obtained, originally as a means of positioning the ultrasound transducers and generating images for identification of the source of echoes to be processed. It was found that the pulse generator and receiving amplifier of the system, a Picker, were of excellent quality. Also, a depth marker was available, which could be used to select a portion of a trace. By tapping a small amount of the received signal with a high impedance isolation transformer at a low impedance point in the receiver, a high quality radio frequency signal was obtained without compromising either the operation or safety of the existing B-scan system. The tapped R-F signal was further amplified and monitored by an oscilloscope and a Biomation 8100 transient recorder, which was set to record when armed by a pushbutton accessible to the operator of the B-scan system. A PDP11/10 minicomputer was used to store the digitized R-F signals from the transient recorder on a magnetic disc, and later to read the stored records and process them as desired. In practice, the operator manipulated the transducer until the beam passed through the desired area, using the B-scan image, if desired; then placed the depth marker at the beginning of the region of interest, checked the signal on the oscilloscope, and initiated recording with the pushbutton. This was found to be quite fast and convenient. The system is depicted schematically in figure 7.

After some experimentation, it was decided to standardize the format of recorded data in order to simplify the signal processing programs. A sample rate of 20 MHz was chosen, giving a usable signal bandwidth of 10 MHz. Record length was standardized at 512 samples, which represented 25.6 μs, or about 1.9 cm of tissue. This was found to be long enough for most purposes, but a provision was made to store four consecutive records if desired, representing 7.7 cm of tissue. Fourier transforms could be calculated on 512 point records in 10 seconds, and cepstra in 23 seconds, fast enough for interactive studies on the effects of various types of filtering.

Two types of experiments have been run to collect data for various purposes. In the first type, the scanning arm of the B-scan system is not used. The transducer is fixed in a water tank, suspended from a micrometer adjustable frame. The transducer's beam could be aligned to reflect from the water surface for transducer characterization and reference purposes, or targets suspended from a rotatable mount, or on tissue samples pinned to a sponge on the bottom of the tank. In the second mode, the scanning arm was used and identification of tissues was made using the images formed.

Single reflections from the surface of the water tank were used to obtain data on the efficiency and spectral characteristics of both purchased and fabricated transducers, and to verify the structure of the cepstrum of a transducer impulse response. Impulse responses and cepstra for two commercial transducers are shown in figures 8 and 9. A transducer was then aimed at the rotating mount, and a fixture holding three 1.1 mm diameter rods side by side in the beam at a spacing of 2.5 mm was attached, as shown in figure 10. The array of rods was rotated from perpendicular to the beam to parallel, and on to perpendicular again, and the reflections recorded at five degree increments in angle to provide reflections of various spacings. The envelope of these cepstra is plotted as a function of angle in figure 11. The sinusoidal dependence of spacing on angle can be clearly seen. The short spacing is seen best on one side of 90°, and the long spacing on the
The large periodic characteristic of this organ, representing the periodicity.

In order to demonstrate the ability of the cepstrum to detect a periodic structure in biological tissue, a particularly simple sample was chosen: pig liver. Pig liver is a large organ, readily available in a fairly fresh state, and having a characteristic and simple period structure [8]. Our sample was several centimeters thick, and was observed to have an internal structure consisting largely of spherical lobules of fairly uniform size, about 2 mm in diameter. Several echoes were recorded from various parts of the liver, using a 3.5 MHz focused transducer in the water tank. The best of the cepstra recovered is shown in figure 11. Moduli of cepstra recovered from the scheme of figure 10, as a function of angle.

The signal from which it was derived was shown in figure 1. The strong peak at 2.5 μs corresponds to a spacing of 1.9 mm between reflectors, which corresponds well with the observed size of the lobules. Other cepstra were not always so simple.

Cepstra were also calculated for signals from various regions of human livers from autopsies, as well as from thigh muscles and the area of the liver, in vivo. The details of the structure of both the power spectrum and the cepstrum were found to vary markedly among the samples, and even between two consecutive 5 mm long regions of single records. Some cepstra showed substantial single peaks; some did not. The decay rates of the cepstra varied substantially also. We conclude that the tissues studied are sufficiently inhomogeneous to prevent easy interpretation of these results. A broad statistical study of a large number of signals documented as to the location and possible pathology of the tissue, original transducer response, and thickness of intervening tissue, will be needed to prove the usefulness, or lack thereof, of such techniques.
7. Attenuation Estimation

Since the cepstrum is the Fourier transform of the log power spectrum, low pass filtering, or smoothing, of the log power spectrum may be done by multiplying the cepstrum by a window function which leaves short time responses untouched and eliminates long time values. The resultant gated signal may then be Fourier transformed to the frequency domain again. If the variations in the spectrum are due to reflections with relatively large spacing tissue, and, hence, are rapid compared to the finite bandwidth of the incident beam of sound, the rapidly varying spectral components can be filtered out, leaving a good approximation to the log power spectrum of the incident beam distorted by the average attenuation in the tissue. If such an approximation is made for two consecutive regions of tissue along the same ultrasonic beam path, the difference between them should exhibit the frequency dependence of the attenuation of ultrasound through the path between them. Such a calculation does not require as strong an assumption about the variations in the log power spectrum due to the tissue reflections. There may be slow variations; if they are the same in the two regions of tissue, their difference will be zero. Since slow variations in the log power spectrum arise from structure fine compared to the ultrasonic pulse length, the success or failure of this technique to predict a plausible frequency dependence for the attenuation of ultrasound will give a measure of the similarity of the structure of the two regions of tissue on the scale of the ultrasonic pulse length.

Since the advantage of this technique would be its ability to measure attenuation in vivo non-invasively, it was applied to the data recorded in vivo. This procedure is illustrated in figures 13 and 14. First the data is windowed to the proper length and Fourier transformed, and log power and spectra obtained. The signal to noise ratio has been artificially decreased to 20 dB to de-emphasize the random spectral components outside the useful bandwidth of the transducer, 1 to 3 MHz. The cepstra are then computed and low pass filtered with a sine-squared window, which closely approximates a Gaussian window, but completely cuts off long time components. Fourier transforming again yields the smoothed log power spectrum. Subtracting one such spectrum from the other and dividing by the path length between them yields a curve which, over the useful bandwidth of the transducer, estimates the frequency dependence of the loss over that path. The absolute loss is not estimated here, although with attention to time-gain control settings and assumption of equal reflection amplitudes in the two regions, it could be. In this example in which the signals were taken from two regions about 1 cm long and 2 cm apart in the area of the liver of a person with a presumed normal liver, the estimated loss follows fairly well a linear frequency dependence, although with a coefficient of 0.8 dB/cm MHz, slightly lower than the previously reported in vivo value [9].

![Figure 13](image1.png)
![Figure 14](image2.png)

**Fig. 13.** (a) and (b), log power spectra from two consecutive 1 cm long regions of in vivo human liver tissue with 2 cm center spacing, recorded with a 2.25 MHz transducer.

**Fig. 14.** (a) Solid line, the cepstrally smoothed log power spectrum derived from that of figure 13(a). Dashed line, the same function of the spectrum of figure 13(b).

(b) Solid line, the difference between the two smoothed spectra, divided by the path length. Dashed line, the slope of the attenuation in the frequency range where both spectra are above noise. This slope is .8 dB/cm.
An interesting phenomenon has been found in the two in vivo livers and the one in vitro liver studied with this technique so far. In many of the log power spectra calculated, there is a deep notch, representing an absence of reflection at frequencies varying from 2.4 to 2.7 MHz. This notch has been seen with both focused and unfo- cused transducers of both 2.25 and 3.5 MHz center frequency. This phenomenon violates the conditions under which one can get a good estimate of attenuation. It occurs only once in the useful bandwidth of the transducers used, and so cannot be considered rapidly varying. Its frequency varies enough from region to region that it does not cancel when two spectra are subtracted. The very deep notch is almost, but not quite, re- moved by the smoothing operation. Since the attenuation calculation takes the difference between two similar functions, it is sensitive to the small error which remains. An example of this problem is shown in figures 15 and 16. Such a phenomenon probably arises because most of the reflections in a region are coming from a single type of structure: one with a constant size of a fraction of a millimeter. Measurements over a broader bandwidth could determine more exactly what type of structure this is. If it could be identified, there might be clinically useful information available.

8. Conclusions

From this limited study, we conclude that:
(a) Cepstral analysis, by converting ultras- onic signals from a domain in which the output is the convolution of an impulse response with a reflec- tion function to a domain in which it is a sum, allows the separation of information about the distribution of spacings between reflectors from information about the incident impulse.

Fig. 15. Log power spectra analogous to those of figure 13, but from a different region of the liver.

Fig. 16. (a) Smoothed log power spectra from those of figure 15.
(b) Attenuation estimated from figure 16(a). No estimate is possible in this case.

(b) Two potentially useful parameters for tissue characterization in vivo are the form of the cepstrum of ultrasound echoes from tissue, which can identify periodicities in the tissue; and attenuation coefficient estimation by cepstral smoothing of log power spectra.

A lack of consistency from one region to another within a tissue suggests considerable variability in the tissue. Further work, utilizing statistical studies on large data bases, will be required to verify the usefulness of these techniques. Cepstral analysis should prove useful, since averaging over similar samples will enhance the tissue-dependent information. This is in marked contrast to the power spectral domain, where averaging over similar samples tends to eliminate tissue-dependent information and approximate the power spectrum of the measuring system.

Acknowledgments

The work reported in this paper was supported in part by the National Science Foundation under Grant No. ENG 75-18681, and in part by the Kaiser Foundation.

References


RECOGNITION OF PATTERNS IN ULTRASONIC SECTIONAL PICTURES
OF THE PROSTATE FOR TUMOR DIAGNOSIS

W. von Seelen,^1 A. Gaca,^2 E. Loch,^2 W. Scheiding,^3 and G. Wessels^2

^1Institut für Zoologie
Arbeitsgruppe III (Biophysik)
D-6500 Mainz, Federal Republic of Germany

^2Deutsche Klinik für Diagnostik
D-6200 Wiesbaden, Federal Republic of Germany

^3Battelle Institut e.V.
D-600 Frankfurt/M., Federal Republic of Germany

We examined the prostate with ultrasonics to diagnose tumorous alterations of the organ. We scanned directly from the abdominal wall through the filled bladder (transvesical). The research is aimed at: 1) improvement and mathematical preparation of the ultrasonic pictures to assist the physician in his diagnosis; and 2) ascertainment of significant parameters which allow the classes "normal prostate," "adenoma" and "carcinoma" to be distinguished in screening examinations. The results show that with ultrasonics, adenomas and carcinomas are recognizable in 96 percent of the examined patients and can be differentiated from normal prostate tissue. The palpation finding was used as a reference in most cases.

Key words: Pattern recognition; prostate tumors; ultrasound.

1. Introduction

Carcinoma of the prostate ranges third in cancer mortality in the Federal Republic of Germany. Besides the subjective rectal palpation findings which give the physician signs of organic alterations, it is useful to look for other examination methods.

The aim of this investigation is to analyze the value of the ultrasonic scan for differential diagnosis and treatment control of tumor diseases and to check in establishing preclinical findings the possibility of a screening procedure allowing a quick separation between suspect and non-suspect cases in large groups of patients.

The apparatus available for the methodical part of the investigations are two ultrasonic scanners: Combison II Kretz (Compound-Scanner) Vidoson. Siemens (Realtime-Scanner) as well as a computer (PDP 11/34). The apparatus is shown schematically in figure 1. This study includes both examinations in vivo and some examinations in vitro. Transvesical representation of the prostate was chosen for in vivo examination. The ultrasonic pictures are taken from under the organ by scanning in sections of 3 mm; the angle at which the sound waves enter is either $\alpha = 15^\circ$ or $\alpha = 20^\circ$ from the vertical.

Figure 2 shows the position of the organ as well as the direction of entry of the sound used to produce the pictures discussed below. The frequencies are 2.25 MHz and 4 MHz. Linear scanning is used to cover the area of the organ with a slightly altered angle of entry for the forward and reverse runs. The B pictures gained in this way are recorded on a video tape which serves as mass storage. For the computer analysis the video signal can be digitized by a specially developed interface and read into a 512 x 512 matrix; a region of interest can be marked out within the picture. In addition, it is possible to feed the non-demodulated HF signal or the A signal into the PDP 11 computer. Two control techniques were employed in the analysis of the ultrasonic pictures: comparison with the urologists' palpation findings and in vitro examinations of dissection material taken during operations.

The ultrasonic pictures reproduce the geometrical arrangement and form of the density gradients in the tissue which are situated perpendicular to the direction of the sound. Since not enough is known about the reflecting properties of the various tissues, the picture features for the different picture classes cannot be defined exactly a priori. The study was therefore carried out in the following stages:

1. Definition of a limited learning sample which can be diagnosed as certainly as possible with the palpation findings and histological controls.

2. Determination of as many apparently significant features as possible.

3. Generation of an adaptive classifier which begins with a fixed initial weighting of the features. This weighting is changed in the course of the classification of the learning sample so as to eliminate errors. In this way the physician
supervises the determination of features and class limits.

4. Ascertainment of the validity of the individual features to determine a precise set of distinguishing features which does not involve too difficult or costly application. The criterion for validity is provided by the alteration in detection rate for the relevant feature.

Figures 3, 4 and 5 each show one representative of the classes normal, adenomatous and carcinomatous respectively. While the normal organ's interior is characteristically largely echo free, the adenoma appears highly structured. The carcinoma in the right half causes a "shadow" which penetrates the capsule areas. Other features of the pictures will be discussed below.

2. Preprocessing of the Pictures

Preprocessing the pictures is intended to allow the doctor to make the most certain possible diagnosis. For this it is necessary to eliminate disturbances and distortions in the picture and to create the possibility of accentuating features relevant to suspected cases, if this is required. To this end the operations described below were im-

Fig. 1. Flow chart of apparatus for producing and analyzing the ultrasonic pictures.

Fig. 2. Method of transvesical scanning the organ.

Fig. 3. Ultrasonic picture of a normal prostate.

Fig. 4. Ultrasonic picture of an adenomatous prostate.

Fig. 5. Ultrasonic picture of a carcinomatous prostate.
implemented on the digital computer and then first tested by subjecting them to the same classification procedure as the original pictures. The following operations were carried out on the pictures (for different numbers of patients in each case).

a. Definition of a "region of interest." This operation consists in limiting the organ area on the screen and reducing the amount of data taken over in the computer from the picture to 128 x 128 picture points (6 bits per point) which thus refer to the region of interest. This limitation of the picture is carried out by the physician treating the case.

b. Standardizing the intensity of the picture. The spatially dependent intensity of the picture \( x(r,s) \) in the B scan picture varies a great deal from patient to patient (age, corpulence, etc.) and also depends on the amplification of the experimental device. Therefore, parameters dependent on intensity should only be used in the diagnosis when \( x(r,s) \) is divided by the mean value \( x(r,s) \) determined in a defined organ area. The resulting picture is the basis for several computer operations.

c. Inverse filtering. To eliminate the loss in lateral focus due to the form \( H_i(r,s) \) of the sound beam as far as possible, the values ascertainment under water for this space dependent coupling were used to determine the filter characteristic value \( H_i(r,s) \). The conditions for the realization of \( H_i(r,s) \)

\[
F(H_i(r,s)) \cdot F(H_1(r,s)) = 1
\]

were replaced by

\[
F(H_i(r,s)) \cdot \frac{1}{1 + F(H_1(r,s))} = 1
\]

for numerical reasons. \( F \) characterizes the Fourier transform according to the two space coordinates \( r,s \). Figure 6a shows the sectional picture of a 0.5 mm thick wire in the tank of water as well as its filtered representation with improved radial focus.

d. Symmetrical filtering. The convolution of the picture \( X(r,s) \) with any optional symmetrical, and thus phase free transmission function \( H(r,s) \) allows a far-reaching alteration of the pictures, when one varies the parameters \( m_1, m_2, b_1, b_2 \) in

\[
Y(r,s) = X(r,s) \ast H(r,s)
\]

with

\[
H(r,s) = U_{m_1}e^{-(r^2+s^2)/b_1^2} - U_{m_2}e^{-(r^2+s^2)/b_2^2}
\]

Two phase free band pass filters with different mean frequencies \( U_{m_1} \) and \( U_{m_2} \) were realized for \( m_1b_1 = m_2b_2 \) and \( b_2 > b_1 \). Figures 6b (c) and 6c (g) show the result of the operation for \( U_{m_2} > U_{m_1} \). The classes can be better distinguished in the filtered version of the picture \( (F, U_{m_1}) \) than in the original picture (cf. Section 4). The second filter operation (c) is interpreted so that the picture amplitude is approximately proportional to the gradient of the intensity in the original picture. This variable has to be taken into consideration at the boundary of carcinomas.
e. Phase dependent filters. It is easier to judge the pictures, if the function $H(r,s)$ is not symmetric, i.e.: 

$$H(r,s) = U_{m1} e^{-(r^2+s^2)/B_1^2} - U_{m2} e^{-(|r-r_0|^2+|s-s_0|^2)/B_2^2}$$

with $B_1 << B_2$. In this case the Fourier transform $F(H(r,s))$ is complex and a phase shift exists. In this way a picture is produced which is interpreted as pseudo three-dimensional when viewed. If $H(r,s)$ characterizes a differentiating space filter combined with a nonlinear characteristic curve, then the same effect occurs together with an accentuation of the intensity modulation. Figure 7 shows two examples for different $H(r,s)$ (paper in preparation). All filter operations, insofar as they are linear, can be combined to one operation.

![Phase dependent filters](image)

**Fig. 7.** Filtering with asymmetrical functions $H(r,s)$.

f. Equidensities. It is easier to analyze the weak modulations in the area of the organ more exactly when the low pass filtered original picture is provided with lines of equal intensity. Figure 8 shows an example with an increased number of picture points.

![Equidensities](image)

**Fig. 8.** Carcinomatous prostate represented in equidensities in a low pass filtered sectional picture.

It depends on the problem in question which of the procedures described is best suited for the physician's diagnosis. Only the $F$ and $G$ pictures have been tested with the classification procedure (cf. Section 4).

3. Feature Extraction

The problem of feature extraction has to be solved in two ways. The reference vectors are determined on the basis of the physician's palpation findings and the vectors $x_i$ are obtained from the ultrasonic pictures. The palpation finding takes into consideration size, consistency, surface state and simple form parameters [1-5]. The analysis of the ultrasonic picture refers to global and local features which in the first phase are still partly obtained by visual scrutiny of the screen picture. Should these features prove to be effective in distinguishing classes, the procedure will be completely automated.

In particular, the following features are quantified:

1. Longitudinal diameter of the organ.
2. Rise in the base of the bladder.
3. Local gaps in the capsule.
5. Fine fibrous structure in the interior.

The automatic determination of features 4 and 5 by multiple correlation of the picture with texture pictures in which the form of the elements is optional (e.g., elliptical) but their location is statistical, is being implemented at present.

After the picture has been transferred from the video recorder to the computer, the following parameters are extracted according to the definition of the region of interest:

6. Surface of the sectional picture Fig.
7. Autocorrelation $F_x (0,0)$
8. The standardized signal power in the region of interest, i.e., $F_{xx} (0,0)/x(r,s)^2$.

Figures in brackets indicate literature references at the end of this paper.
9. The amplitude density distribution \( p(x(r,s)) \) with the relevant first three moments or central moments respectively

\[
E(x(r,s)), \quad E(x(r,s) - x(r,s))^2, \quad E(x(r,s) - x(r,s))^3.
\]

10. Curve of the autocorrelation function along a line through the suspect zones \( \phi_x^r_x(r') \).

11. Coherence width and relative extremes of the autocorrelation function \( \phi_x^r_x(r) \) along a line through suspect zones.

12. Power and energy above a threshold or within an amplitude window respectively. This operation has so far only been implemented on 60 statistically selected patients.

In order to include local form parameters in the consideration, the features 6 through 11 were determined in the original picture and in two filtered pictures \((F,G)\) and classified separately. In this way the efficiency of the filtering in distinguishing these features was tested. The effect of picture standardization and parameter 12 have so far only been studied on 60 patients. The validity of all the parameters mentioned is being tested with an adaptive classifier.

4. Classification

If \( \eta_i \) is a feature vector, then classification consists in the division of feature space by class limits so that

\[
D_i(\eta) > D_j(\eta), \quad i, j = 1, 2, \ldots, m, \quad i \neq j
\]

when \( \eta_i \) is correctly classified; \( D \) is a discriminant function [6]. In this project an adaptive linear classifier was chosen at first with

\[
D_i(\eta_i) = \sum_{k=1}^{n} k_i W_k + n_i W_i
\]

The variable \( W_k \) designates the \( k \)th component of the reference vector \( W \) which is generated in \( p \) steps with the aid of a learning sample according to the rule

\[
W_{i,\delta+1} = W_{i,\delta} \quad \text{if } \eta_i \text{ was correctly classified}
\]

and

\[
W_{i,\delta+1} = W_{i,\delta} + C_\delta \cdot \eta_{i,\delta} \quad \text{if } \eta_i \text{ was incorrectly classified}
\]

classified with

\[
C_\delta = \text{sign} \left[ \frac{W_{i,\delta} - \eta_{i,\delta}^T}{\eta_{i,\delta} \cdot \eta_{i,\delta}^T} \right].
\]

In the case of a Gaussian distortion of the features, the decision rule minimizes the quadratic distance between the reference vector and the vector to be classified. The decisions on a correct or incorrect classification in the adaptive process described above are based on the physician’s palpation findings. After generation of the reference vector, the pictures were classified in stages. First, the set of features 1 through 5 was applied (Part I), then the parameters 6 through 11 for the original pictures as well as two filtered versions of the picture (Part II) and then parameter 12 on intensity standardized pictures for 60 patients. A classification on the basis of the complete featureset \((I + II + III)\) will be realized if feature 12 is determined for all patients. The class-specific reference-vectors were established with 25 patients per class in the first stage of the project. Therefore the following number of patients can be considered as a test data set.

Part I. After taking palpation findings from 500 patients, the parameters 1 through 5 (Section 3) were extracted and the classes normal (N) and (adenomatous (A), carcinoma (C)) distinguished. The physician's diagnoses were:

a) 97 patients normal
b) 324 patients adenomatous or carcinomatous
c) 79 patients nonspecifically suspect (prostatitis, congestion etc.)

If \( P(N/A + C) \) characterizes the probability that a patient classified as normal nevertheless has an adenoma or carcinoma (false negative) one obtains the following results for false classification.

In the case of unequivocal diagnosis:

\[
P(N/A + C) = 3.2 \% \text{ (false negative)}
\]

\[
P(A + C/N) = 7.4 \% \text{ (false positive)}
\]

If the nonspecific suspect cases are also taken into consideration then \( P(N/A + C) = 7.2 \% \). The increase in error due to group C can be further lowered with more precise examination. If the total number of false classifications is considered, the probability of error is 3.9 percent. In the 3 group problem the mean error rate increases to 8 percent.

Part II. The classification of the pictures from 198 patients classified the 1 through 11 resulted in a mean error of 11.9 percent for the 2 group problem (normal/not normal) with the original pictures and 10 percent for the filtered version F and 14 percent for the filtered version G. Results are now available for studying the weighting of the individual features and altered decision strategies but the analysis has not been completed.

Part III. Using feature 12 presupposes standardizing the picture intensity. In a set of 60 patients selected statistically the rate of error for the 2 group problem was 0 percent. The mean error for the 3 group problem was 9 percent and \( P(C/N + A) = 0 \% \). This study is at present being extended to the whole group of patients (500). An improvement in the classification can be expected.

As the features in the three classification experiments are at least partially independent from each other, it is to be expected that the rate of error can be reduced with a combined set of features. The systematic study of these combinations, which are intended to attain a better feature vector with a few easily calculable components has not yet been completed.

The further studies are concerned with ascertaining a histologically tested learning sample, determining the sharpest distinguishing parameter and obtaining a classifier which takes the statistical parameters of the features into consideration.
References


RECENT DEVELOPMENTS IN OBTAINING HISTOPATHOLOGICAL INFORMATION FROM ULTRASOUND TISSUE SIGNATURES

K. Preston, Jr.,1 M. J. Czerwinski,1 M. L. Skolnik,2 and D. E. Leb3

1Department of Electrical Engineering Carnegie-Mellon University Pittsburgh, Pennsylvania 15213, U.S.A.

2Ultrasound Laboratory University of Pittsburgh Medical Center Pittsburgh, Pennsylvania 15213, U.S.A.

3Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania 15261 U.S.A.

Statistical, signal-analytic techniques may be applied to ultrasonic pulse-echoes received from organs of the human body. Simultaneous tissue biopsies of these organs may be sectioned, stained, and measured by the computerized optical microscope using various image-analytic techniques. This paper reports some preliminary work along these lines as related to the kidney and liver.

Key words: Picture processing; signal analysis; ultrasound.

1. Introduction

In the 1950s Wild and Reid [1] noticed that there appeared to be a correlation between the properties of the A-scan in mammography and the histopathology of breast tissue in human subjects. Later Fry [2] compared the histopathology of animal tissue (feline and porcine) with the B-scan echogram. More recently Mountford and Wells [3], using digitized A-scans from both normal and cirrhotic subjects, found that specific signal parameters (amplitude, rise time, etc.) correlated with liver pathology. Ossoining [4], Fields et al. [5], and Taylor and Milan [6] made further observations of B-scan texture, amplitudes and positions of the peaks in the demodulated A-scan, and A-scan amplitude probability distribution functions ("histograms"), respectively.

The advent of high-speed digitizers and inexpensive digital computers has now opened this field to many new investigations. One of these investigations was commenced by the authors under a grant from the National Science Foundation (APR75-08154) in mid-1975. A preliminary report was presented by Preston[7] at the first meeting of this international seminar at Gaithersburg in 1975. The Carnegie-Mellon University program is being conducted along the lines of a project in classical pattern recognition in distinction to a project in biological modeling. The work is being conducted on both humans and animals in vivo in cooperation with the Departments of Radiology, Renology, and Pathology of the University of Pittsburgh Health Center. Each subject, or more specifically, the target organ within the subject, is considered to reside in Signal Space. This space is interrogated in three ways. A standard B-scan is made using commercial equipment (Picker Echoview) and, at the same time, several A-scans are digitized using a special-purpose digitizing system (Stahl Research Labs.). Finally, in addition to the ultrasonogram and the digitally recorded A-scan, a tissue biopsy is made of the organ under examination. These interrogations furnish information which constitutes what we term "Data Space."

A visual diagnosis is made from the ultrasonogram by the staff of the Ultrasound Laboratory and is combined with the histopathological diagnosis carried out by the Department of Pathology. This furnishes information on disease type and severity. At the same time a numerical analysis is performed on the digitized A-scan using the statistical methods described below. These various methods of analysis of the information in Data Space provide us with numerical information which is contained in Measurement Space. These measurements, taken over a population of patients, are then processed in a supervised fashion (correlation of measurements with predetermined disease types) using a standard discriminant function software package (University of California BMD7M) to generate points in Classification Space. Finally, images of the tissue biopsy are digitized by the Biomedical Image Processing Group at Jet Propulsion Laboratory and analyzed using the Biomedical Image Processing Unit of the Department of Radiation Health at the University of

1 Figures in brackets indicate literature references at the end of this paper.
The balance of this paper discusses A-scan digitizations, A-scan analysis, image digitization and processing, and reports results to date in these areas.

2. Materials and Methods

The ultrasound digitizer is the basic unit used for digitizing A-scans. The digitizer (Stahl Research Labs. model 4036) is a complete digitizing system rather than a simple analog/digital converter. Its block diagram is shown in figure 1. The unit requires only two inputs, namely a synchronizing or gating signal and the analog waveform to be digitized and stored. The digitizer runs under control of an internal 15 megahertz clock. Burst length and skip burst values are entered using digitiswiches on the control panel of the model 4036. When a synchronizing pulse is received, the digitizer proceeds to sample and digitize the input data at a 15 megahertz rate until the number of words stored equals the burst length. The unit then begins counting additional synchronizing pulses until the count has reached the number set for the skip burst. When this count has been reached, the next synchronizing pulse causes another burst to be digitized. This continues until the 4096 word memory is full (each word is one 8-bit byte). At the present time we are using a burst length of 128 which corresponds to 8.5 microseconds of recorded signal over which the pulse-echoes are received from about 0.65 centimeter of tissue.

The digitizer incorporates a modem and complete memory teletype (Texas Instruments model 700) having twin digital cassettes each of which is capable of storing 250,000 words of digitized A-scan data. When the user desires to transmit data to a remote computer, the modem is interfaced via the telephone system, a dial-up connection is made, and the digital cassettes are activated and transfer their data via the communication link. In our present program the computer used is a Digital Equipment Corporation PD10 model KA at Carnegie-Mellon University.

In all experiments to date, the A-scan is digitized directly from the output of the radio frequency (rf) amplifier. The unit employed for both pulsing the transducer and amplifying the A-scan is a Panametrics model 5055 custom-modified to provide bandwidth to 20 MHz. In our experiments we have used the model 5055 at its full gain setting (60 dB) and with full bandwidth with the interval damping resistor set to 250 ohms. The organs of interest have been the liver and kidney for which we obtain signal levels at the output of the model 5055 rf amplifier ranging from a few tens to a few hundreds of millivolts. (The least significant digit of the digitizer corresponds to approximately 8 millivolts.)

The transducer utilized is a Panametrics custom-made biopsy transducer whose characteristics have been measured by the Acoustics Branch, National Bureau of Standards, and are presented in figure 2. As can be seen, the resonant frequency is close to 4 MHz with a 25 percent 3 dB bandwidth.

![Fig. 2. Transducer 1-way frequency response as determined by the National Bureau of Standards.](image)

![Fig. 1. Block diagram showing the three modes of operation of the Stahl Research Laboratory model 4036 digitizer.](image)
Fig. 3. Five signal regimes for the normal liver: (a) normalized rf waveform; (b) rectified; (c) video; (d) frequency spectrum; (e) deconvolved spectrum. Here time samples are taken each 100 ns with the frequency domain covering 0 to 5 MHz in 0.08 MHz intervals.

3. A-Scan Analysis

Five signal regimes (see figs. 3 and 4) are used in the analysis of the waveform: (1) Direct rf waveform, (2) Rectified rf waveform, (3) Video waveform (the rf envelope), (4) The rf Wiener spectrum, (5) The selectively deconvolved rf Wiener spectrum. For regime (5) the frequency spectrum of the transmitted signal is used to normalize the spectrum of the received A-scan, except at those frequencies where the uncertainty in determining the transmitted spectrum is large. Computationally, the selectively deconvolved spectrum $D(\omega)$ is given by

$$D(\omega) = \frac{S_i(\omega)}{S_p(\omega)} \left( \frac{1}{1 + c^2} \right) + \frac{S_i(\omega)}{1 + c^2} \left( \frac{c^2}{1 + c^2} \right)$$

where $S_i(\omega)$ is the spectrum of the direct rf signal, $S_p(\omega)$ is the spectrum of the transmitted signal from which the A-scan echoes are produced, and quantity $c$ is the coefficient of variation of the transmitted pulsed (taken over an ensemble of transmitted pulses). This quantity is in itself a function of the frequency $\omega$.

Fig. 4. The five signal regimes in the same order as in figure 7 for the normal kidney.

Figure 5 shows a computer generated graph of four sequential pulse echoes from a phantom consisting of a multiplicity of polyethylene disks immersed in water. This figure shows the graphical plot (above) and (below) a graytone M-scan rendition. The slight shift in pulse position which is evident in the M-scan output is an artifact due to synchronization problems. The pulse consists of about four cycles at the resonant frequency of the transducer and is, therefore, about one microsecond in duration. Figure 6 shows the Wiener spectra of the same four pulses presented in figure 5.

Fig. 5. Digitally produced A-scan plots and M-mode graphs of pulse-echoes reflected from a plane surface.

Fig. 6. The frequency spectra corresponding to the pulse-echoes shown in figure 9.
Using a burst length of 128 words, the full memory holds 32 bursts. We are currently employing two settings of skip burst, namely, 0 and 256. At a skip burst setting of 0 the entire recording takes place during 32 pulses which, with the Picker Echoview running at a PRF of 1 kHz, takes 32 milliseconds. The skip burst setting of 256 lengthens the recording interval to 8 seconds. A comparison of recordings taken at the two skip burst settings provides a measure of signal stationarity (see figs. 7 through 14).

A comparison of recordings taken at the two skip burst settings provides a measure of signal stationarity (see figs. 7 through 14).

Fig. 7. Thirty-two pulse-echoes obtained from a normal region of the human kidney in vivo. Echo separation is a 0.001 second.

Observation of figures 12 and 14, which were taken at the skip burst 256 setting, indicate that long-term stability of the frequency spectrum does not exist. This observation raises some doubt as to the validity of spectral measurements which have been previously reported in the literature for use in tissue identification. Most researchers using spectral signatures have neither considered nor even discussed short-term versus long-term stability problems. In using the A-scan as a tissue signature, these researchers must remember that all observations in vivo are of a dynamic system. Even with held inspiration, the organ in the patient is moving throughout the cardiac cycle and, in typical clinical ultrasound laboratories using scanners with hand-held transducers, further movement is introduced through the inability of the ultrasonographer to hold the transducer steady.

Fig. 8. Thirty-two pulse-echoes obtained from a carcinomic region of the same kidney ensonified in preparing the data shown in figure 11. Pulse-to-pulse separation is 0.001 second.

Fig. 9. The thirty-two frequency spectra corresponding to the A-scans shown in figure 11.
Fig. 10. The thirty-two frequency spectra corresponding to the A-scans shown in figure 12.

Fig. 11. Thirty-two pulse-echoes obtained on a long-term basis from a normal region of the same kidney ensonified in preparing the data shown in figure 11. Pulse-to-pulse separation is 0.25 second.

Fig. 12. Thirty-two pulse-echoes obtained from a carcinomic region of the same kidney, again with a pulse-to-pulse separation of 0.25 second.

Fig. 13. The thirty-two frequency spectra corresponding to the A-scans shown in figure 16.
As can be seen the most successful measure is the mean echo amplitude at the mid-point of the time-window. The associated t-test value indicates an extremely high success rate in separating normals from cirrhotics over this particular patient population. Other significant measures are the mean rise-time and the total number of peaks and troughs. It is somewhat surprising, since these measures directly relate to the frequency of the signal, that the authors state that "(the) restricted bandwidth of the system used in the present study appears to prejudice the possible use of frequency spectrum analysis as a diagnostic index."

Subsequent to the above-reported experiment the authors modified their experimental approach, discarded photographic recording of the A-scan, and developed equipment for real-time digitization. In their second experiment 100 time-samples were extracted per patient the sampling interval being 0.1 microsecond (corresponding to a tissue span of 2 centimeters). The initiation point of their digitizations was 6.5 centimeters beyond the anterior abdominal wall. Ten normals and three cirrhotics were examined with 180 A-scans recorded in interrupted quiet respiration and an additional 180 A-scans recorded at held maximal inspiration (except for cirrhotics in which recordings were made only at held maximal inspiration). In the second experiment the only measures reported were the rate of mean echo amplitude decay and the mean echo amplitude and intercept. The frequency utilized was 1.67 MHz and it can be inferred from the authors' discussion that the pulse duration was approximately 3 microseconds. The sampling aperture was 12 ns with digitization at 6-bits. Because of the small sample size the t-test was not calculated, but it was found, as before, that the mean echo amplitude at mid-point (for held maximal inspiration) could successfully be used to separate normals from cirrhotics. Interestingly, the data spread in this experiment appears to be far greater than in the initial experiment indicating that the earlier low error rate values may be subject to question. After these first two experiments were conducted, no further investigations apparently have been carried out.

Our own analysis has gone beyond that of Mountford and Wells in that there is equal emphasis on both frequency-domain analysis and time-series analysis. The analysis has been carried out according to traditional statistical lines (see, for example, Wilks [10]). This approach also appears to have been taken by Decker et al. [11] at the University of Bonn, in the analysis of A-scans taken from the eye. In our own work we consider each of the five regimes of our data as a tissue signature and, for each A-scan recording for each subject, make the same statistical measures. The signature is represented as follows:

\[ \text{Signature} = f(x_i) \quad i = 1, \ldots, 128 \]

The function \( f \) may represent any one of the five signal regimes. In other words, it may be either the rf recording, the rectified rf, the envelope of the rf, or the Wiener spectrum or deconvolved Wiener spectrum of the rf.

Measures With Respect to the Argument

Eight measures are made with respect to the argument \( x \). Before making these measures the function is normalized in the following manner:

<table>
<thead>
<tr>
<th>Measure</th>
<th>( t_{-test} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of mean amplitude decay</td>
<td>1.28</td>
</tr>
<tr>
<td>Mean echo amplitude at intercept</td>
<td>12.38</td>
</tr>
<tr>
<td>Mean echo amplitude at mid-point</td>
<td>13.31</td>
</tr>
<tr>
<td>Mean trough-to-peak rise-time</td>
<td>4.20</td>
</tr>
<tr>
<td>Mean peak-to-trough fall-time</td>
<td>2.39</td>
</tr>
<tr>
<td>Mean trough-to-peak amplitude</td>
<td>2.07</td>
</tr>
<tr>
<td>Total number of troughs</td>
<td>3.55</td>
</tr>
<tr>
<td>Total number of peaks</td>
<td>3.59</td>
</tr>
</tbody>
</table>

Fig. 14. The thirty-two frequency spectra corresponding to the A-scans shown in figure 16.

4. Data Reduction

In the early 1970s Mountford and Wells [3,8,9] described their work in the quantitative analysis of A-scans taken from normal and cirrhotic livers. Initially their data was obtained from oscilloscope photographs of the rf A-scan obtained from the subcostal examination of supine patients through the anterior abdominal wall (the same physiological approach taken in our own work). Thirty A-scan oscillograms were recorded per patient over a population of 30 normal and 13 cirrhotics using an ultrasonic frequency of 1.5 MHz (with an unrecorded bandwidth). One hundred data points were recorded for each A-scan over a time-span of 65 microseconds which corresponds to approximately 4.8 centimeters of tissue (digitizations started at approximately 5 centimeters beyond the anterior abdominal wall). Measures were made which related to signal amplitude, the rate of change of signal amplitude, frequencies, rise-times, fall-times, peak-to-peak amplitudes, etc. The most significant of these measures in separating the normal from the cirrhotic liver (using Student's t-test) are tabulated below.
\[ \sum_{i} f(x_i) = 1 \]

This normalization is applied to both time-series and frequency-domain data and can be thought of as a normalization to a standard acoustic pressure for the time-series data and to a standard acoustic power for the frequency-domain data. After normalization summations are carried out over four "bins" of the data points as follows:

\[ \text{N}^{\text{th}} \text{ Bin} = \sum_{i} f(x_i) \]
\[ N = 1 : i = 0-15 \]
\[ N = 2 : i = 16-31 \]
\[ N = 3 : i = 32-47 \]
\[ N = 4 : i = 48-63 \]

This produces the first 4 measures for each regime. Next the moments of \( f \) are calculated as follows:

\[ \text{N}^{\text{th}} \text{ Moment} = \sum_{i} (x_i - x_0) f(x_i) \]
\[ x_0 = \sum_{i} x_i f(x_i) \]

The above equations produce 8 measures with respect to the argument \( x \). Next the statistical properties of the values of \( f \) are computed. A histogram or probability density function of the values of \( f \) is calculated and called \( p(y_j) \) where \( p \) is the likelihood that \( f \) has the value \( y_j \). The probability density function is normalized to 0 mean and unit variance as follows:

\[ \sum_{j} y_j p(y_j) = 0 \]
\[ \sum_{j} y_j^2 p(y_j) = 1 \]

This normalization once again insures that arbitrary settings in acoustic amplification and on received power levels do not effect the results. (Note that, in contradistinction to the experiments by Mountford and Wells, we do not operate a system which has open-loop control on the transmitted and received signal levels but, rather, operate in an arbitrary level mode). Once the function \( p \) has been computed, we record its third and fourth moment which, of course, are proportional to the skew and kurtosis of this function, respectively.

Then the co-occurrence matrix or diagram is generated, i.e., \( p(y_j,y_k) \) which is the likelihood that two adjacent values of \( f \) have precisely the values \( y_j \) and \( y_k \). This function is two-dimensional and may be represented using a scatter plot of the values \( y_j \) and \( y_k \) as is shown in figure 15. As can be seen from figure 15, an ellipse may be fitted to the data from which we compute eigenvectors (the major and minor axes), eigenangle (the angle made to the \( y_j \) axis), and the eigenvalue (area of the ellipse).

Finally, the 3-gram is computed. Since there are only 128 values of \( f \), a three-dimensional scattergram is sparsely filled from a statistical point of view so that, rather than fitting a three-dimensional ellipsoid, an 8-bin histogram is computed with the values of \( f \) inarized with respect to a threshold equal to the mean value of \( f \) so that the bins of the histogram are given by

\( (y_j,y_k,y_2) = 000,000,\ldots,111 \)

The range of this binary 3-gram is then entered as the final measurement. This leads to 8 measures with respect to the argument \( x \), 2 measures related to first order probability, 3 measures related to second order probability, and 1 measure of third order probability. Since all of these measures are computed for each of the five data regimes, a total of 14 measures are made per regime, leading to 70 measurements per A-scan.

5. Biopsy Tissue Image Analysis

As mentioned in Section 1, biopsied tissue is being prepared not only for visual examination but also computer analysis. Using standard 4 um thick tissue slices stained with hematoxylin-eosin and mounted on microscope slides, the Automatic Light Microscope Scanner (ALMS) at the Jet Propulsion Laboratory produces 512 x 512 pixel (picture point) digitizations of the previously ensonified sample as shown in figures 16 and 17. Each image field is approximately 0.5 millimeter square selected so that a statistically sufficient number of various tissue cell types are displayed. A software system, called AUTOPIC, was written incorporating cellular logic commands for image analysis in the Cartesian tessellation patterned after the hexagonal parallel pattern transforms of Golay [12]. These transforms have been found useful by Preston [13,14] in the analysis of images of human white blood cells, chest x-rays, ophthalmological ultrasonograms, etc. Using AUTOPIC applied to the images shown in figures 16 and 17 normal cell nuclei and inflammatory cell nuclei were located (Figs. 18 and 19) using a command sequence which caused the analysis flow-charted in figure 20 to be carried out. Since an increase of inflammatory cells (called "microcytes" in fig. 20) is an indicator of disease, this analysis provides an index of histopathology which may be correlated with the A-scan measures to determine the relevance of these measures in assaying disease entities.

Fig. 15. The d1-gram (scatter plot) corresponding to a single A-scan taken from a normal liver using 5-bit digitization over 28 points taken at 100 ns intervals.
6. Results

Most of the program to date has been allocated to both the construction and calibration of hardware and to the development of a software system for both the computation and graphical display of the data gathered. In this paper we report on our first human biopsy patient, a female aged 64 years, whose pathology was a large carcinoma of the kidney. By observation of the B-scan the region to be digitized is readily located. Using the equipment described in Section 2, the A-scans given in figures 7 through 14 were recorded. Thirty-two of these A-scans were of normal kidney tissue and 32 of the carcinoma. Using the short-term data given in figures 7 through 10, all 70 measures were examined for the 64 recordings and the two measures most useful in differentiating normal and pathological tissue were found to be the second moment with respect to the argument x where x was selected in the frequency-domain and the contents of the second bin (or quartile) of the rectified time-
series. Scatter plots of these measures are shown in figure 21 for the 32 A-scans of both the normal kidney and the abnormal kidney under short-term conditions. The Mahalanobis Distance was taken as a measure of separability and indicates a high degree of confidence in telling these two types of tissues apart. However, when the A-scan data taken under long-term conditions (figs. 11 through 14) were utilized, the Mahalanobis Distance indicated somewhat worse differentiation between the two types of tissue (fig. 22) typifying the effects of the dynamic variability of the A-scan.

The other experiment which is reported here involved the introduction of pyelonephritis in the animal kidney and the comparative analysis of A-scan data and histologic data derived from images of biopsies of the ensonified tissue. The animal model selected was the rabbit.

The disease was introduced unilaterally. At the acute stage, four weeks after introduction of the disease, the kidneys (both normal and abnormal) were operatively exposed and 128 A-scans were recorded for each organ via a 6 cm water bath coupler suggested by Dr. Goans of the Oak Ridge National Laboratory. This avoided signal corruption by intervening tissue.

Results of the A-scan analysis (for animal R06) are shown in figure 23, which is a scattergram of the data on 256 A-scans taken in groups of 32 in 8 second intervals over several minutes using the two best computer measures for separating normal from abnormal. The Mahalanobis Distance is 3.2 and the classification success rate is 98 percent. Similar results (100% classification) were obtained for the tissue image analysis (fig. 24) using a single measure, i.e., the count of microcyte density in the four 0.25 x 0.25 mm regions shown in figures 17 and 19. Pictorial and A-scan data taken from six other animals is now being analyzed.

The other experiment which is reported here involved the introduction of pyelonephritis in the animal kidney and the comparative analysis of A-scan data and histologic data derived from images of biopsies of the ensonified tissue. The animal model selected was the rabbit.

Fig. 21. Scatter plot of 64 points in a 2-coordinate space representing the best measures for differentiating ultrasonic pulse echoes from those received from carcinomic human kidney tissue in vivo. The coordinates are the variance of the power spectrum (PSM2) and the second quartile sum of the rectified waveform (RED2). The plot is derived from the short-term data shown in figures 7-10.
Fig. 22. Scatter plot similar to figure 23 using data extracted from figures 11-14 showing A-scan information gathered in the long-term (8 seconds). Dynamic variance of the data causes the classification success to drop to 87 percent for normal human kidney tissue and to 91 percent for carcinomic human kidney tissue.

Fig. 23. Scatter plot of 256 points using the two measures which were found to be best for distinguishing ultrasonic echoes from normal and pyelonephritic rabbit kidney in vivo. These measures are the fourth moment of the power spectrum (PSD4) and the variance (second moment) of the rectified signal data histogram. Classification success for this long-term data is 100 percent for normal tissue; 93 percent for pyelonephritic.

7. Acknowledgements

In addition to the workers and colleagues acknowledged in the text, the authors would like to acknowledge the work of Dr. Riel Wald, Chairman of the Department of Radiation Health, University of Pittsburgh and the staff of his Biomedical Image Processing Group, Jet Propulsion Laboratories for assistance in image analysis and recording; Dr. Donald Eitzen, Ultrasonic Standard Group, National Engineering Laboratory, National Bureau of Standards, and his staff for performing the calibration of our transducer; Dr. Frank Fry, Ultrasound Research Laboratories, Indianapolis Center for Advanced Research, and his students for calibration of the beam pattern of the transducer and measurements of its performance using phantoms; Drs. Andrew Dekker, Denis Borochovitz, Jeffrey D. Hubbard, University of Pittsburgh Health Center, for visual reading and reporting on tissue section pathology; Dr. Terrance Matzuk, consultant, for providing ultrasound interface electronics; Mr. Gilbert Arnold, Mellon Institute, and his staff for providing the illustrations; Mrs. Tanya Rogers, Department of Electrical Engineering, Carnegie-Mellon University for typing the manuscript.

Fig. 24. Histogram based on the microcyte count per quadrant (0.25 x 25 mm) in figures 18 and 19 showing 100 percent success in computerized differentiation between normal and pyelonephritic rabbit kidney tissue images. The microcyte count is indicative of inflammation and is significantly higher in pyelonephritis.
References


CHAPTER 10
TISSUE VIABILITY AND TISSUE PHANTOMS
DAMAGE AND DEATH IN TISSUES AND ASSOCIATED CHANGES IN THEIR MECHANICAL PROPERTIES

L. Weiss
Roswell Park Memorial Institute
Buffalo, New York 14263, U.S.A.

Mechanical effects of tissue damage associated with artefactual change during examination, and that developing naturally during tumor development, have been demonstrated by a quantitated cell detachment test. Although the precise relationship between this semi-destructive test of tissue properties and ultrasonic, nondestructive tests is uncertain, it appears feasible to consider the following points in studies of the interaction of ultrasound with tissue specimens: a) thin specimens should be examined quickly to avoid anoxic and hypoxic damage; b) note must be made of the heterogeneities within solid tumors, particularly those produced by necrosis; c) degenerative changes in a tumor and surrounding non-malignant tissues may act as image-enhancers.

Key words: Cell detachment; mechanical properties; tissue damage; tissue death.

1. Introduction

The interactions of ultrasound with tissues, depends in a sense on their mechanical properties. In this presentation, two facets of tissue damage will be examined from a mechanical viewpoint. The first is a consideration of the hypoxia which results and its possible artefactual effects, when pieces of tissue are examined. The second is a consideration of the mechanical heterogeneity in and around solid cancers.

The mechanical properties of tissues depend partially on the properties of their individual cells and partially on the properties of the material lying between them, in much the same way as the properties of a brick wall depends on the properties of the bricks, the mortar and the bonds between them. Tissue properties may be measured by nondestructive techniques, such as those involving ultrasound, or by destructive techniques which result in reduction of the tissue into either subcellular dimensions, or into its component living cells. The release of living cells from tissues have been studied, particularly solid cancers, as part of a program on the mechanisms of metastasis [1-3]. In this work, quite sensitive quantitative techniques have been developed to measure cell detachment, which is dependent on the strength of the intercellular material. In tissues, the intercellular material represents a modification of the extramembranous, peripheral regions of cells which is rich in glycoproteins.

2. Cell Detachment from Tissues

Cylinders are punched from tissues using a 13 gauge (\(\sqrt{2}\) mm) trocar and cannula, and these are then divided into 1 or 2 mm lengths over a scale, under magnification. Two such cylinders are placed into each of a number of screw-capped, glass vials, 4.5 cm long and 1.3 cm diameter, containing 2 ml of cold Hanks' balanced saline solution. These operations, which take 20 to 30 minutes, are all done in solutions at 4 °C to minimize metabolic differences.

The vials are clamped onto a reciprocating shaker, making 275 oscillations per minute, with an excursion of 4.5 cm, for 40 minutes, at room temperature (25 °C). In some experiments, tissue cylinders were shaken for 10 minutes only. After shaking, 0.25 ml of 10 percent buffered formaldehyde is added to each vial and mixed by gentle inversion. When present, the macroscopic remains of the cylinders rapidly settle to the bottoms of the vials, and the released cells and cell clusters in the supernatant fluid are counted in a Fuchs-Rosenthal chamber, and their diameters measured with an image-splitting eyepiece (Vickers-A.E.I., England) at a final magnification of X300. It has previously been demonstrated that the described formaldehyde-fixation does not affect these two numerical determinations.

An estimate of the volume of tissue liberated by shaking was obtained from the product of the cube of the mean "particle" radius and the mean number of such cell units. Volume functions of this type are used for purposes of comparison.

Small pieces of tissue were fixed in formalin and subsequently examined in 4 µm stained sections. Aliquots of liberated cells are centrifuged onto
slides (Cytospin: Shandon-Elliot, England), and morphologically characterized after reaction with Wright's stain. A full description of the technique and its use is given elsewhere [4].

The cell detachment test described here is non-destructive as far as the component cells of a tissue are concerned, and their viscoelastic properties must play a role in cell detachment. However, assuming that the plane of detachment lies within the cell periphery/intercellular region, then the tests are destructive for this tissue component in the sense that they are essentially concerned with obtaining a "yield-point". In contrast, the ultrasonic techniques discussed here are completely non-destructive. Thus, although the precise relationship of the two techniques is problematical and the results are expected to be somewhat different in general terms it would be expected that changes in tissues detected by one procedure might well be reflected in the other. Proposed work will hopefully clarify this relationship, which at present is simply presented as a working hypothesis.

3. Examination Artefacts

In determining parameters of the interactions of ultrasound with tissues, the tissues themselves are held in a tank of fluid in the ultrasonic beam, for varying periods of time. From many biologically oriented studies, it is well-known that unless the fluid is of physiologic tonicity and pH, and that unless the tissues themselves are well-oxygenated, tissue damage will occur. The relevant question is, how much artefactual alteration will be produced in the ultrasound/tissue interaction by this damage? From a practical viewpoint, it is unnecessary to investigate the effects of unphysiologic fluids on the interactions, because many solutions are available which maintain optimal conditions of ionic strength and constitution, pH etc. [5]. However, one outstanding problem is the possibility of inadequate tissue oxygenation, and the consequences of it. In the case of isolated tissue slices, Warburg [6] showed that their limiting thickness in cm (H) for O

Thus, in pure oxygen, the maximum thickness of tissue permitting the passive penetration of O

2 to its center is 0.47 mm. In air ([O

2] = 21 percent) the corresponding maximal thickness of tissue is only 0.21 mm. Similar considerations have to be taken into account in determining the depth of fluid covering examined tissues. Studies on the kinetics of gas diffusion in cell culture systems by Mc-Limans et al. [7] have demonstrated that as predicted by Fick's Law, the passive diffusion of oxygen through unstirred fluid to actively metabolizing tissues is very sensitive to the depth of fluid, and that in the case of isolated liver cells covering by only 1.6 mm of physiologic saline, the total initial equilibrated concentration of oxygen will be exhausted in only 1280 seconds, normal biologic syntheses will be impaired and, if left under these conditions, the cells will die.

In order to get a feeling for tissue-oxygenation under the conditions in which ultrasonic tissue characterization experiments will be made, freshly isolated cylinders of rat liver 1 cm in diameter and 0.5 cm in length, were obtained from exsanguinated rats. These were then placed in a beaker containing 100 ml Hanks' balanced saline solution, a commonly used mammalian "physiologic" solution, buffered at pH 7.2, and maintained at 37 °C. The pO

2 was measured at various depths in the liver cylinder determined with a micrometer, with oxygen ultramicroelectrodes having a tip diameter of 15 μm. The electrode has been described elsewhere [8]. It was shown that in the five minutes required to start measurements after removal of the liver cylinders, the oxygen tensions at depths of 1 to 2.5 mm were near zero, and at a depth of 0.5 mm, they were approximately 60 mmHg. These measurements compare with mean values for the liver in the unanesthetized, spontaneously respiring rat of 20 to 30 mmHg [9]. Thus, there is good reason for considering the effects of hypoxia in ultrasonic experiments, since in most of these, comparatively thick pieces of tissues are used.

It has been shown that lysosomal changes in rat hepatic parenchymal cells are induced by subjecting animals to hypoxia [10]. It has also been shown that activation of lysosomes with release of lysosomal enzymes into the tissues can cause massive tissue degradation [11] within hours, and changes detectable by cell detachment tests on cellular monolayers, within 2 minutes [12].

In order to determine if the treatment of the 1 cm diameter cylinders leading to anoxia or hypoxia resulted in analogous changes, shaking-tests of the type described earlier were made on this material. After incubation in Hanks' solution at 37 °C for periods up to 2 hours, plugs were cut from the 1 cm cylinders, and the volumes of cells released at the different times, from the outermost 1 mm regions near to the cut surface and the innermost 2 mm thick regions at the center of the 5 mm thick cylinder were compared. The results shown in table 1 indicate that greater (0.02 > p > 0.01) volumes of cellular parenchymal cells are released from the outer than the innermost layers of the center of liver cylinders than from the outer parts. During the experiments, detectable amounts of protein and acid phosphatase (a lysosomal hydrolase) are released into the medium, but this facet of the experiments needs developing.

It should be noted that examination of standard histologic preparations of the liver revealed no clear-cut evidence of damage after 2 hours incubation, and would not have permitted predictions of the detachment experiments. It is of interest that Hueter, in experiments cited by Dunn [13] was unable to detect changes in the ultrasonic absorption coefficient of liver, measured over the range of 1 to 6 MHz, until 9 hours after death, when it progressively decreased. It is difficult to compare these experiments with those reported here, since Hueter's were made at 25 °C (c.f. 37°) and the tissue was maintained at 10 °C between measurements, and it is well-known that reduction in temperature retards post-mortem change. Future work will hopefully clarify the correlation between changes detected by the shaking test and ultrasound.

If degenerative, autolytic changes due to lysosomal mobilization prove to be an inconvenience
in ultrasonic measurements, it is worthy of note that the analogous changes observed in vitro [11, 12] were inhibited and/or retarded by adding small quantities (c. 10 μg/ml) of hydrocortisone hexisuccinate to the medium.

4. Mechanical Heterogeneity in Tumors

The essence of the successful treatments of cancer is early diagnosis. In the breast for example it can be seen (fig. 1) that depending on the clinical type [14], the probability of metastasis varies considerably with the size of the cancer at the time of diagnosis. In the most malignant (Type A) the slowest rate of increased probability of metastasis, where therapeutic intervention would be most effective, is in lesions of 1 to 7 mm diameter. In the least malignant (Type B), there is an increased probability of metastasis from 22 to 36 percent, as the lesion increases in diameter from 1 to 5 mm. It is therefore pertinent to ask whether changes in or around a cancer as it develops can so modify the mechanical properties of the cancer itself or the surrounding nonmalignant tissues, that the image of the tumor is enhanced and/or changes in the surrounding tissues effectively increase the "lesion" size.

From previous considerations of examination of artefacts, the question arises of whether various tissue interactions caused by, or resulting in degenerative change in a solid cancer could fill this role of "image enhancer". Cell death, or necrosis is a salient feature of many solid cancers. One contributory cause of this is that blood vessels entering or leaving cancers from their peripheries, tend to be occluded by tissue pressures associated with growth, leading to vascular stasis and thrombosis. The inward diffusion of nutrients, and the outward diffusion of metabolic products becomes inadequate, and tissue death results. There are other contributory causes of necrosis in and around tumors; including cell and humorally mediated cytotoxicity associated with inflammatory change, but the end result is the same. In a cancer with

![Fig. 1. The probability of distant metastases in breast cancers of types A and B, of different size at the time of diagnosis.](image)
well-developed necrosis, the necrotic material liquefies and the lesion becomes cystic. The different absorptive properties of the liquefied and solid regions lead to image enhancement--as is well-recognized on a macroscopic scale, and represents an example of the heterogeneity of tumors [15].

Much previous work has not taken into account the heterogeneity of normal, and particularly pathologic tissues. This heterogeneity may be due to normal anatomic structures such as large blood vessels, fascial planes etc., or to local pathologic situations such as necrosis, cyst formation, cellular infiltrations, tissue edema etc. Very few pathologic lesions consist of a "pure" tissue type, and for this reason average, integrated interaction data collected from a large volume of tissue may be inappropriate for tissue signature studies. In any general consideration of ultrasonic tissue characterization it is mandatory to consider not only the macroscopic or average features of lesions, but also their individual "microscopic" components. By "microscopic", a region of a lesion is implied which has the dimensions of the narrowest ultrasonic beam used for tissue characterization experiments. With this in mind, the mechanical properties of different regions of the same tumor, and the nonmalignant tissues around it have been determined by the cell detachment technique, on Walker 256 "carcinosarcomas" transplanted in livers of rats.

A. Effect of Site Within Tumor

Cystic, subcutaneous Walker 256 tumors were selected, with necrotic centers of approximately 3 cm mean diameter, and with wall thicknesses of 2 to 5 mm of "healthy" cancerous tissue. The release of cells from the inner and outer 1 mm lengths of cylinders taken radially through the cyst walls are shown in Table 2. In the two representative examples shown, 3 and 6 times greater volume of tumor was released from the inner, juxta-necrotic regions of the cyst walls than from their outer parts.

B. Effects of Necrotic Extract on Tumor Cell Release

The subcutaneous tumors from which material was obtained fell into two groups. The first were roughly spherical, with diameters of approximately 1 cm, and contained minimal, friable necrotic cores. The second group, were roughly egg-shaped with diameters of approximately 4 cm and 6 cm in the short and long axes respectively, and were largely necrotic, with healthy cancerous "rims" varying from 2 to 4 mm in depth.

Cylinders obtained from the peripheral regions of the tumors were first incubated with 1/10 dilutions of necrotic extracts in HBSS for 20 minutes at 37 °C and then shaken for 10 minutes at room temperature (24 °C). The representative results of 6 separate experiments with 3 separate batches of necrotic extract are summarized in Table 3. In the case of the 1 cm diameter tumors, 8 to 11 times greater volume of tumor was released after exposure to necrotic material than in the appropriate controls. In the case of the largely necrotic tumors, it is seen that pretreatment with necrotic extract produced no significant increase in the volume of tumor released by shaking, compared with controls.

C. Effects of Tumor on Surrounding "Normal" Tissues

Following the direct injection of Walker ascites cells (10^7 cells in 0.2 ml HBSS) into the liver, tumors of approximately 1 cm diameter grew within 10 days. The tumors and the surrounding liver were bisected, and cylinders of liver were removed at its junction with the tumor, and at 0.5 and 1.0 cm from this interface. The results of 10 separate experiments, together with release data from 2 normal livers are given in Table 4. It is shown that a greater volume of parenchymal cells are released from tumor-bearing than normal livers. In addition the closer the normal liver samples are to the tumor interface, the more readily are cells detached from them.

Table 2. Tumor cells released from inner and outer parts of walls of subcutaneous cystic Walker 256 tumors.

<table>
<thead>
<tr>
<th></th>
<th>&quot;Cell&quot;-release (X 1000) ± SE (n)</th>
<th>Mean size µm ± SE (n)</th>
<th>Volume ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inner 1 mm</td>
<td>Outer 1 mm</td>
<td>Inner 1 mm</td>
</tr>
<tr>
<td></td>
<td>(9) 202 ± 65</td>
<td>(9) 77 ± 12</td>
<td>(99) 77 ± 3.5</td>
</tr>
<tr>
<td></td>
<td>(10) 90 ± 26</td>
<td>(10) 36 ± 8.2</td>
<td>(100) 110 ± 3.3</td>
</tr>
</tbody>
</table>

Table 3. Tumor cylinders incubated with necrotic extract for 20 minutes at 37 °C, then shaken for 10 minutes.

<table>
<thead>
<tr>
<th>Tumors</th>
<th>Numbers released (X 1000) ± SE (n)</th>
<th>Clump diameter (µm) ± SE (n)</th>
<th>Numbers released (X 1000) ± SE (n)</th>
<th>Clump diameter (µm) ± SE (n)</th>
<th>Volume ratio E:C</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. 1 cm</td>
<td>171 ± 56</td>
<td>57 ± 2.0</td>
<td>245 ± 16</td>
<td>23 ± 0.3</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>(100)</td>
<td>(17)</td>
<td>(100)</td>
<td></td>
</tr>
<tr>
<td>&gt; 4 cm</td>
<td>376 ± 56</td>
<td>23 ± 1.0</td>
<td>477 ± 61</td>
<td>21 ± 0.6</td>
<td>1.0:1</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>(199)</td>
<td>(10)</td>
<td>(197)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Release of "normal" liver parenchymal cells surrounding tumors as function of distance from tumor interface.

<table>
<thead>
<tr>
<th>Distance from tumor edge</th>
<th>Numbers released (X 1000) ± SE (n)</th>
<th>Clump size (μm) ± SE (n)</th>
<th>Volume ratio (cf. normal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 cm</td>
<td>324 ± 16 (65)</td>
<td>42 ± 0.6 (510)</td>
<td>4.1:1</td>
</tr>
<tr>
<td>0.5 cm</td>
<td>256 ± 20 (36)</td>
<td>43 ± 0.6 (306)</td>
<td>3.7:1</td>
</tr>
<tr>
<td>1.0 cm</td>
<td>224 ± 17 (19)</td>
<td>38 ± 0.5 (204)</td>
<td>2.3:1</td>
</tr>
<tr>
<td>Normal liver</td>
<td>350 ± 16 (84)</td>
<td>25 ± 0.2 (400)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

D. Effects of Necrotic Extract on Liver Cell Release

Standard tissue cylinders were obtained from the livers of normal rats. These were incubated for 20 minutes at 37 °C, in either 10 percent necrotic extract in HBSS, or in BSA control solutions. The cylinders were shaken for either 10 or 40 minutes. Representative results of 4 separate experiments given in table 5 show that after 10 minutes shaking, 3 times greater volume of cells were released from liver cylinders pretreated with necrotic extract than from the control series; after 40 minutes shaking, the ratios of extract-treated to controls increased to 50:1.

The results of experiments (A) through (D) show clear-cut differences in the mechanical properties of different parts of the same tumor, and in the tissues surrounding them. The changes appear to be related to the presence and diffusion of necrotic material. If the increased detachment patterns is due to liberated lysosomal enzymes in which the necrotic material is rich, then it must be remembered that some of these may be contributed by macrophages and polymorphs [16] which are frequently found in association with tumors and necrotic tissues.

5. Conclusions

If these results, based on cell detachment, are indicative of changes detectable by ultrasound, and studies presently underway will hopefully clarify this, then three positive suggestions come from this work:

A. Attention must be given to the microenvironmental conditions under which specimens are maintained while being examined, and the time spent on examination must be minimized.

B. It is not enough to determine the characteristics of whole tumors: individual regions must be characterized and identified at a "microscopic level".

C. Changes consequent to degeneration, occurring in a cancer, and in the nonmalignant tissues surrounding it, may enhance its detection by ultrasound by creating new differentials within these tissues.

Acknowledgments

My thanks are due to Dr. H. Bicher and Mr. L. D’Agostino, Department of Radiotherapy for making measurements of oxygen-tension, and to Ms. J. Holmes, D. Lombardo and Mr. D. Graham for their technical assistance.

This work was partially supported by Grants #PDT-14 from the American Cancer Society Inc. and CA-17609 from the National Institutes of Health.

Table 5. Release of parenchymal cells from normal liver ± necrotic extract.

| E: Controls (C) | | |
|----------------|---|---|---|
| Time shaken    | Numbers released (X 1000) ± SE (n) | Clump diameter (μm) ± SE (n) | Volume ratio |
| 10 m           | 88 ± 4.4 (10)                        | 31 ± 1.2 (137)               | 3:1          |
| 40 m           | 250 ± 4.9 (10)                       | 51.3 ± 2.9 (100)             | 50:1         |

References


diffusion in mammalian cell culture systems.


A HUMAN ABDOMINAL TISSUE PHANTOM

P. D. Edmonds, Z. Reyes, D. B. Parkinson
Stanford Research Institute International
Menlo Park, California 94025, U.S.A.

R. A. Filly
University of California Medical Center
San Francisco, California 94108, U.S.A.

H. Busey
Picker Corporation
Northford, Connecticut 06472, U.S.A.

The objective of this work was to determine the feasibility of constructing a phantom that would simulate human abdominal tissues when interrogated by advanced B-scan diagnostic ultrasound equipment operating at 2.25 and 3.5 MHz. Satisfactory results were obtained with gelatin based components having dispersed scatterers and embedded sponge, plastic tubes and rubber bulbs filled with saline solution. Stability of the gelatin was achieved by addition of a stabilizing agent, a preservative and impervious coatings to prevent water evaporation.

Key words: Gelatin; human abdominal tissues; phantom.

In the course of producing and installing ultrasonic diagnostic equipment, a need arises for a phantom object with stable acoustic properties, that will generate displays suitable for optimizing the adjustment of various pre-set equipment levels, particularly in the grey-scale circuitry. The need extends beyond the concerns of a single company because there is a lack of basic standardization in the industry. The general availability of a suitable phantom would improve uniformity of displays obtained with different ultrasonic imaging systems. This paper describes the evolution of a phantom object intended to simulate many of the ultrasonic properties of human abdominal tissue when imaged by a Picker Echoview System 80L Laminograph. Figure 1 is an abdominal B-scan showing the variety of textures to be simulated.

The design specification called for:
- attenuation coefficient at 2.25 MHz = 1.7 ± 0.1 dB/cm;
- velocity of propagation at 22 °C (72 °F) = 1540 ± 50 m/s;
- simulation of fine and coarse texture of normal and pathological liver, as well as the specular reflection of capsular interfaces and blood vessels, cysts with or without sediment, and abdominal aorta, utilizing the full range of grey levels;
- density = 1.05 ± 0.1 g/cm³;
- mechanical stability up to 65 °C (150 °F);
- flexible exterior surface permitting limited sector scanning;
- abrasion resistant surface in the presence of mineral oil and aqueous gels.

Less importance was attached to reproducing specific organ geometries or spatial relationships. Initial work focused on the selection of a base material. Classes of materials considered were room temperature vulcanizing (RTV) silicone rubbers, "pc" rubbers, gelatin gels, 3M® percussion pads and "Hydron®" polymer. In order to simulate "texture", it would be necessary to incorporate scattering centers in the base material. Hence, some part of the overall attenuation coefficient, A, of an acceptable simulating material would be attributable to scattering and the residual absorption coefficient, a, of the base

Fig. 1. Human abdominal B-scan showing variety of textures to be simulated.
material without scattering had to be correspondingly less than the desired overall attenuation coefficient: \( a = A - a_g \), where \( a_g \) is the attenuation per centimeter due to scattering.

Measured absorption coefficients and propagation velocities of the candidate base materials are given in Table 1. The absorption data were obtained by the substitution method and the velocity data by the pulse travel time method [1]. The techniques of sample preparation as described in the notes may have influenced the data. It is evident that only RTV 602 and gelatin had sufficiently low absorption coefficients to permit additional attenuation due to scattering without exceeding the specified overall attenuation coefficient. Both these materials had disadvantages. The velocity of RTV compounds is only two thirds of the desired figure. The gelatin is liable to drastic changes of dimensions and properties as water evaporates from the gel.

Consideration was given to accepting a base material (such as RTV) with a velocity outside the specified range and scaling the sizes of phantom components so that the travel times of pulsed signals would correspond to those in the organs being simulated. However, this approach was judged inherently unacceptable and it was anticipated that a base material could be found or formulated with the desired combination of properties. Also the RTV silicone rubber was believed to suffer from long term instability of acoustic properties [2]. In retrospect, it seems probable that the same precautions to combat instability that are described below for gelatin-based compounds would be applicable to RTV silicones in applications where scaling sizes might be acceptable.

Gelatin gels were considered suitable for subsidiary experiments in which various scattering materials were dispersed in the gelatin before molding; the objective was to produce a fine textured image and the specified attenuation coefficient. From both laboratory measurements and imaging, with the controls on the diagnostic equipment set for abdominal imaging, it was found that a 1 percent dispersion of a cellulose fiber or a 0.05 percent dispersion of glass microspheres in 10 percent gelatin in water produced the desired results. The cellulose fiber had an average fiber length of 70 to 140 \( \mu \)m; the glass microspheres ranged from 10 to 250 \( \mu \)m in diameter.

The next objective was to identify materials which, when embedded in gelatin, would simulate the acoustic aspects of abdominal organs. Trial and evaluation led to a selection of materials each of which was embedded separately in a gelatin block containing scatterers. These blocks could then be stacked in various sequences and coupled with mineral oil for trial imaging.

Figure 2 illustrates the various inclusions imaged at 3.5 MHz. The top block contains the base scattering material consisting of 1 percent cellulose fiber in 10 percent gelatin in water. A gelatin filled natural sponge is placed near the left edge.

The middle layer contains a soft rubber bulb filled with saline solution to simulate a large cyst or fluid filled organ. The bright spot in the center of the bulb is an artifact caused apparently by a focusing action. The right side of the center layer contains a natural sponge filled with the gelatin containing scatterers, which might be used to simulate metastatic liver disease.

The lowest level contains a variety of tubing. The parallel lines display the 1/8 inch wall of a soft rubber tube filled with clear gelatin. The upper wall is seen near the junction between the blocks and the lower wall in the center of the block. This is offered as an example of the resolution available at a depth of 14 cm through

---

Table 1. Measured material properties at 2.25 MHz, 22°C.

<table>
<thead>
<tr>
<th>Material</th>
<th>Absorption coefficient (dB cm(^{-1}))</th>
<th>Propagation velocity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Electric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTV 602</td>
<td>1.34 ± 0.2</td>
<td>980 ± 10</td>
<td>a</td>
</tr>
<tr>
<td>RTV 615</td>
<td>2.55 ± 0.3</td>
<td>980 ± 10</td>
<td>b</td>
</tr>
<tr>
<td>Goodrich</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#35080 &quot;pc&quot; rubber</td>
<td>2.84 ± 0.11</td>
<td>1546 ± 3</td>
<td>c</td>
</tr>
<tr>
<td>3M® percussion pad, style 3290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Hydron ®&quot;, dry</td>
<td>1.7 ± 0.2</td>
<td>1490 ± 10</td>
<td>d</td>
</tr>
<tr>
<td>&quot;Hydron ®&quot;, wet</td>
<td>16 ± 2</td>
<td>2050 ± 12</td>
<td>e</td>
</tr>
<tr>
<td>10% gelatin/water</td>
<td>13 ± 2</td>
<td>1950 ± 12</td>
<td>f</td>
</tr>
<tr>
<td>+ 1% chrome alum</td>
<td>&lt;0.5</td>
<td>1539 ± 10</td>
<td>g</td>
</tr>
<tr>
<td>Specification</td>
<td>&lt;1.7 ± 0.1</td>
<td>1540 ± 50</td>
<td>h</td>
</tr>
</tbody>
</table>

- a. 0.25% SRC55 catalyst; cured 48 hours at room temperature.
- b. 10% 615 catalyst; cured 48 hours at room temperature.
- c. Sample formed from uncured rubber stock by milling and molding for 45 minutes at 6.6 kg/m\(^2\) and 150°C.
- d. Measured as received in sheet form.
- e. The sample from Hydron, Inc. (2-hydroxy ethyl methacrylate polymer in water) was dried and then molded at 175°C under pressure. This produced a hard, brittle, opaque cylinder which was immersed in distilled water to swell and soften. The resultant swelling was irregular. Internal bubbles and interfaces became visible. The attenuation was greater than 10 dB/cm at 2.25 MHz, 22°C. This sample was then recovered by dissolving in ethanol; the solution was placed in a dessicator in the presence of ethanol and dried over a period of 2 months to yield a translucent 1/8 inch thick disc. The "dry" sample was this disc equilibrated with air.
- f. A portion of the disc was cut and immersed in distilled water for 24 hours. It became opaque white and evidently different from contact lens material. This was the "wet" sample.
- g. Photographic gelatin swollen in water and softened by heating. Diluted to 10% solution in distilled water; 0.1% sodium benzoate added as a preservative. Softening point 25°C (77°F).
- h. 1% chrome alum added as a stabilizer. Softening point > 95°C (203°F).

---

\(^1\) Figures in brackets indicate literature references at the end of this paper.
the various phantom components. At the lower right, some cross sectional images of tubes compare favorably with normal images of the portal vein or abdominal aorta. The tubes are polyolefine shrink tubing 5/16 inch o.d. with 0.02 inch wall and clear vinyl tubing 7/16 inch diameter with 1/16 inch wall. These phantom components were scanned at both 2.25 MHz and 3.5 MHz with improvements in resolution at the higher frequency corresponding to that found in biological tissue. Figure 3 shows an image at 2.25 MHz with resolution clearly inferior to that of figure 2.

Fig. 2. Phantom components imaged at 3.5 MHz.

Fig. 3. Phantom components imaged at 2.25 MHz.

The echo discontinuities and interfaces between layers should be eliminated when a continuously molded phantom is produced rather than the individual blocks shown here. Gelatin gels were originally considered undesirable as the base material because of their obvious instability under heat and evaporation of water and their susceptibility to degradation while nourishing mold organisms. However, the addition of chrome alum as a thermal stabilizer and sodium benzoate as a preservative eliminated two of these undesirable features. The problem of evaporation of water is not so easily solved if it is required that the propagation velocity remain in the range 1540 ± 50 m/s. Two solutions appear possible: a substantial fraction of the water can be replaced by hydrophilic compounds that have at least as high a boiling point as water and preferably higher. Table 2 shows some results of this approach; all the velocities are too high. Alternatively, samples can be coated to prevent the water from evaporating; this approach was undertaken.

Table 2. Velocities at 2.25 MHz, 22 °C.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% gelatin, 89% water</td>
<td>1539 ± 10</td>
</tr>
<tr>
<td>1% chrome alum</td>
<td>1900</td>
</tr>
<tr>
<td>10% gelatin, 20% water</td>
<td>1900</td>
</tr>
<tr>
<td>70% glycerol</td>
<td>1900</td>
</tr>
<tr>
<td>10% gelatin, 20% water</td>
<td></td>
</tr>
<tr>
<td>67% glycerol, 3% PEG 200</td>
<td>1770</td>
</tr>
<tr>
<td>10% gelatin, 45% water</td>
<td></td>
</tr>
<tr>
<td>45% PEG 600</td>
<td>1749</td>
</tr>
<tr>
<td>10% gelatin, 20% water</td>
<td></td>
</tr>
<tr>
<td>60% PEG a 200, 10% sorbitol</td>
<td>1746</td>
</tr>
<tr>
<td>10% gelatin, 45% water</td>
<td></td>
</tr>
<tr>
<td>45% PEG 200</td>
<td>1717</td>
</tr>
<tr>
<td>10% gelatin, 45% water</td>
<td></td>
</tr>
<tr>
<td>45% DEG</td>
<td>1703</td>
</tr>
<tr>
<td>10% gelatin, 20% water</td>
<td></td>
</tr>
<tr>
<td>70% DEG b</td>
<td>1644</td>
</tr>
<tr>
<td>10% gelatin, 30% water</td>
<td></td>
</tr>
<tr>
<td>60% carbitol</td>
<td></td>
</tr>
</tbody>
</table>

aPEG = Polyethylene glycol
bDEG = Diethylene glycol

First the base material was slightly modified by inclusion of 5 percent polyethylene glycol 200 in the formulation, to provide compatibility with the first of five coatings that were applied to the test blocks of gelatin. Then, successive coatings of a butadiene-acrylic rubber, a mixture of this rubber with paraffin, and two coats of a mixture of the same rubber with polyvinyl acetate were applied. By grading the coatings in this manner, good adhesion and acoustic contact between coatings was obtained, while providing the desired properties in succession. The paraffin prevented water evaporation, and the polyvinyl acetate provided the tough flexible exterior surface. Water evaporation through this coated specimens has been reduced to 0.25 percent per day with the specimen open to air. It is expected that a practical phantom would be enclosed in a protective case, within which the humidity can be somewhat controlled as long as a reservoir of water is replenished. Consequently, the problem of water evaporation is considered to be under control, although further improvements in coating formulations are under study.

In conclusion, specific combinations of materials have been identified to make possible the construction of a phantom object to simulate many of the acoustic characteristics of human abdominal tissue. Such a phantom should aid in the standardization of operating conditions of ultrasonic diagnostic equipment.
Acknowledgments

The authors wish to acknowledge the invaluable assistance of William Mullen in performing acoustical measurements, Marie Comas and Irving Illing in preparing test samples, and Linda McKay, Cheryl Wilson and Diane Eskelson in scanning the many test components.

The work reported in this paper was carried out on behalf of the Picker Corporation.

References


TISSUE SIMULATORS FOR DIAGNOSTIC ULTRASOUND

Reginald C. Eggleton and James A. Whitcomb

Ultrasound Research Laboratories of
The Indianapolis Center for Advanced Research, Inc.
Indianapolis, Indiana 46202, U.S.A.

Factors are presented related to the design, construction and use of phantoms to replace human patients or subjects in the development, testing, clinical training and promotion of ultrasonic diagnostic equipment. Materials are described which match the acoustic properties of tissue. Realistic echograms can be obtained by scanning properly configured phantoms using such materials.

The phantoms may be simple geometric test patterns, sections of human torso or complete human torsos simulating dynamic cardiovascular and respiratory movements to evaluate the real-time systems.

Key words: Training phantoms; tissue signature; tissue simulators; ultrasonic phantoms.

1. Introduction

Tissue simulators or phantoms, as they are sometimes called, may be utilized in the field of medical ultrasound for purposes of quantitatively and qualitatively evaluating the performance of diagnostic or therapeutic equipment. They may also be used for purposes of training. Yet another application is basic study of the interaction of sound with tissues for purposes of improving existing diagnostic criteria, understanding the mechanisms of acoustic image formation and for devising new diagnostic methods.

The design and construction of realistic ultrasonic phantoms to substitute for human patients or subjects during the early training of technicians and physicians is based upon knowledge from several diverse fields of study. The anatomy of the phantom must be correct with respect to the details visualized by ultrasound. Landmark features used by ultrasonographers to orient and identify the scan planes must be accurately represented. The acoustic properties of biological materials important to the appearance of the image must be catalogued for the tissues that will be represented in the phantoms. A knowledge of materials that can be used in the construction of the phantoms is necessary. It is essential to know how to control various acoustic properties such as attenuation, scattering, speed of sound, impedance, etc. Likewise it is necessary to have a knowledge of the chemistry of the materials to select components which will give the phantoms adequate stability and a useful life.

A knowledge of fabricating techniques required in the construction of the phantoms is also necessary. The methods for casting and welding of phantom materials to obtain the shapes and contours necessary to adequately model the human anatomy are also required. It is also desirable to have the necessary artistic ability to create an aesthetically acceptable model which will have the feel and appearance of the structures it purports to represent.

2. Materials and Methods

Hydrocolloid gels are ideally suited for construction of ultrasound tissue phantoms because of the flexibility and control over acoustic parameters and the stability with respect to time. There are two hydrocolloid systems which are particularly suitable for this application; one which is reversible, and the other irreversible. A combination of the two allows great flexibility in fabricating techniques.

Irreversible Hydrocolloid - Alginic acid was first prepared and analyzed by Stanford in 1886 [1] who established it as a weak organic acid that readily forms salts and bases. Nelson and Cretcher [2] hydrolyzed alginic acid to obtain the salt of D-mannuronic acid. X-ray and chemical evidence suggest that alginic acid is a high molecular weight polymer made up of D-mannuronic acid. Several different methods indicate that the commercial sodium alginates have a molecular weight between 3200 and 200,000 and a degree of polymerization from 0.180 to 0.930. Recent evidence has been obtained showing that the polymer molecule is entirely linear, consisting of linked mannuronic acid units and α(1→4) linked glutamic acid units [3-5]. Models constructed from x-ray diffraction data indicate that the D-mannuronic acid units are in the C-1 chair configuration, whereas the L-glutamic acid units are in the 1-C configuration [6].

1 Figures in brackets indicate literature references at the end of this paper.
Thus algin is a copolymer and not simply a mixture of mannuronic acid and glucuronan.

The copolymers are linked together with an alternating composition. The statistical description of the structure of algin is best obtained by assuming that the copolymer is formed according to the penultimate-unit theory of addition copolymerization [7].

Water soluble salts of alginic acid include those of alkaline metals, ammonia and low molecular weight amines. Sodium alginate is the most common salt and is readily available. Solutions can be made in either hot or cold water. Alginates dissolve most easily when sifted into water and vigorously agitated. High speed stirring and gradual addition of solid increases the rate of dissolution. Facilitation of the process can be achieved by wetting the alginate with ethanol or glycerol or other water-miscible liquid before it is added to the water. With a good dispersion the alginate dissolution should be completed in a few minutes.

The properties of alginate solutions can be changed readily to provide either slow, fast or intermediate types of flow [8]. Algin solutions are strongly influenced by covalent ions such as calcium which increase the viscosity and lower the flow properties, with little change in the acoustic properties. Alginates show increasing non-Newtonian flow characteristics with increased degree of polymerization and substitution of calcium for sodium [9], and become thixotropic at low levels of calcium. The effect of this ion in causing increased viscosity is more pronounced in alginates with higher D-mannuronic acid content [10]. The viscosity of sodium alginate solutions can be depressed by using sodium with potassium salts. The high viscosity alginate can attain a viscosity of at least 2000 cps at a concentration of 1 percent in water, whereas a low viscosity product will have a viscosity of less than 10 cps at the same concentration as a function of molecular weight. Algin solutions behave like other fluids in their dependence of viscosity on temperature and may decrease approximately 2.5 percent per °C with increasing temperature. The viscosity of water soluble alginate changes only slightly as a function of changes in pH, in the range of 4 to 10.

The cross-linking created by the substitution of calcium for sodium renders the alginate insoluble. When the insoluble salt is formed by the reaction of the sodium alginate in solution with a calcium salt, for example, the calcium ion may replace the sodium ions in two adjacent molecules to produce a cross-linking between the two molecules. As the reaction progresses, a cross-linked molecular complex or polymer network forms. Such a network constitutes the micelles structure of the gel. Solutions of sodium alginate are stable for long periods at room temperature but, like other polysaccharides, are depolymerized in the presence of a number of autoxidizable substances such as phenolic compounds. Sodium alginites tend to retard the growth of many microorganisms or are passive with respect to others. Although the algin is resistant to the attack of microorganisms, its solutions are subject to some bacterial action during prolonged storage. Agents such as Zephiran chloride can be added in small quantities to further decrease the bacterial growth. Small amounts of calcium increase the stability of sodium alginate solutions.

Pure algin in water form gels having excellent optical clarity. By altering the formulation, gels can be varied in texture from those which are soft and exhibit flow characteristics to those which are tough and elastic. This range of properties exhibits little effect on the acoustic impedance or acoustic velocity characteristics of the material. As a result, algin gels are ideally suited to tissue simulation in that structures can be molded and the attenuation and scattering properties can be independently controlled.

In general, the gels are formed by the gradual and ultimate release of either calcium or hydrogen ions, or a combination of the two throughout the algin solution. The setting time can be controlled by the addition of a limited amount of a compound such as phosphate or polyphosphate that is capable of combining with calcium. Frequently calcium sulphate and a phosphate buffer are combined to control the gelation rate of the alginate solutions.

The acoustic properties of the gel are determined largely by the water. Two percent sodium alginate solution is the usual concentration in combination with small quantities of salts. The acoustic velocity using the phase method [13] is approximately 1550 meters per second at 37 °C; the density of the 2 percent gel is approximately 1.04 grams per cubic centimeter, thus the acoustic impedance falls in the center of the plot of tissue characteristics (see figure 5). The attenuation for the gel without the scatterers incorporated is approximately 0.5 dB cm⁻¹ MHz⁻¹.

Reversible Hydrocolloid - An organic hydrophilic colloid of polysaccharide can also be utilized for construction of acoustic test objects. A commonly available form utilizes the sulphuric ester of a linear polymer of galactose. This material undergoes a reversible reaction, sol + gel, under the influence of temperature changes.

In the gel state the binding forces are secondary forces, e.g. dipole interactions or van der Waals forces. When the concentration of the dispersed phase in the hydrocolloid is of the proper amount, the sol can be changed to a semisolid gel when the temperature is decreased below the critical point (< 110°F). The gelation is complete at approximately 100°F. In this process the dispersed phase agglomerates to form chain fibrils, referred to as "micelles." The process continues until a three-dimensional matrix is formed with much branching and intermeshing of the micelles to form a "brush heap" structure. The intermeshing and weak binding forces contribute strength to the structure. The interstices of this structure are filled with water; the water predominantly contributes to the acoustic properties of the gel. It will be noted upon warming that the sol state is again attained but the temperature must be maintained at 120°F for a period of time be-
fore liquefaction is achieved. The temperature lag between gelation and liquefaction is described as a hysteresis phenomenon.

In the gel state the structure exhibits both elastic and viscous properties. If the gel is deformed it requires time to recover. Likewise, if the gel loses water, it will tend to absorb water approaching the initial state. The strength of the gel is decreased at elevated temperatures, but can be substantially increased with the addition of a small amount of borax. The borax accomplishes this by increasing the interaction of the micelle framework. The borax also increases the viscosity in the sol state. The addition of absorbers and scatterers also increases the viscosity, as well as adding to the strength of the gel. A suitable composition would consist of water (83.5 percent), polysaccharide (14.2 percent), potassium sulphate (2 percent) and borax (0.2 percent). The potassium sulphate is introduced to minimize the amount of syneresis as well as the osmotic pressure of the dispersion medium and thus helps to stabilize the system. The polysaccharide frequently used is extracted from seaweed and is a linear polymer of galactose, shown below.

The acoustic properties of the gel with embedded scatterers and absorbers closely match those of tissue. The specific acoustic properties can be adjusted by varying the composition of the gel.

The choice of whether to use the reversible or irreversible hydrocolloid will be dictated by the fabrication requirements. For example, an inclusion within a simulated organ could be constructed from an irreversible hydrocolloid and then later cast in the reversible hydrocolloid so that the temperature of the embedding material would not affect the shape of the inclusion. One obvious advantage of the reversible hydrocolloid during the development phase is that the materials can be re-used, and it is therefore more economical, but once the design has been established, this advantage disappears.

The acoustic properties of the reversible polysaccharide hydrocolloid gels are: density - 1.044 g/cm³; velocity of sound - 1,540 m/s; attenuation - 0.4 dB cm⁻¹ MHz⁻¹. These values are remarkably close to those measured for the irreversible hydrocolloid and for tissue.

Test objects utilizing this material were constructed in which various concentrations of scatterers were incorporated as layers. Because there is no difference in the characteristic acoustic impedance across interfaces, the only reflection produced is due to the scattering (no specular reflection is obtained). Figure 1 shows two test objects developed to display a wide dynamic range of backscattering targets. The relative concentration of scatterers is indicated for each level, and ranges from 0.1 to 100 as marked on the test object.

Silastic Phantoms - A tissue simulator not previously described in a publication was submitted to the AIUM Standards Committee in 1970 [12]. This silastic device contained both interfaces of graded reflectivity and scattering sources. The test block was constructed as indicated in Figure 2 using silicone rubber (RTV 3110) and a silicone rubber fluid (DE200-20cs).

<table>
<thead>
<tr>
<th>Composition of mixture</th>
<th>Silicone rubber</th>
<th>Silicone fluid</th>
<th>Density (g/cm³)</th>
<th>Sound velocity (m/s) at 37.0 °C</th>
<th>Characteristic Impedance (rayl)</th>
<th>Z (10⁻⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTV 3110</td>
<td>100%</td>
<td>0%</td>
<td>1.129</td>
<td>0.960</td>
<td>1.084</td>
<td></td>
</tr>
<tr>
<td>97%</td>
<td>3</td>
<td>1.124</td>
<td>0.962</td>
<td>1.082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94%</td>
<td>6</td>
<td>1.120</td>
<td>0.964</td>
<td>1.080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91%</td>
<td>9</td>
<td>1.115</td>
<td>0.967</td>
<td>1.078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88%</td>
<td>12</td>
<td>1.110</td>
<td>0.969</td>
<td>1.076</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85%</td>
<td>15</td>
<td>1.105</td>
<td>0.971</td>
<td>1.073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
<td>0.971</td>
<td>0.975</td>
<td>0.947</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Scattering test objects are constructed with Dextran spheres dispersed in a reversible hydrocolloid (polysaccharide). The relative concentration ranges from 0.1 to 100 as marked to produce a range of scattering intensities. To scan the test object the transducer is placed against a thin plastic window at the top of the device.

Fig. 2. The tissue simulator shown schematically above was constructed using mixtures of Silastic and fluid to achieve a range of impedance differences across an interface.
Materials exhibiting a range of acoustic impedances are achieved by varying the ratio of a two-component plastic system where the individual components have different acoustic properties. In this instance, silicone rubber and silicone fluid are mixed to vary the acoustic impedance over a 1 percent range. These components are then assembled in a test block to provide interfaces of varying reflectivity.

This mixture provided a range of acoustic impedances (fig. 3). Suspended in the silicone fluid were particles whose mean diameter was 7 μm. These particles represented a source of acoustic scattering, thus an ultrasound B-mode scan of the test block revealed the interface between silastic blocks of various composition and scattering which occurs in the bulk medium (fig. 4). Panels A, B, C and D show the test block at four gain levels 40, 30, 20 and 10 dB. An adjustment was then made to the visualization system which sacrifices sensitivity for higher longitudinal resolution, better signal-to-noise ratio and dynamic range compression, but displays the weak specular reflectors at the interfaces with good "gray scale" and resolution, but without displaying the scatterers. Panel E shows the effect of optimizing the system response for visualizing the interfaces within the test block. The response curve was adjusted to give an output of 1 volt for an interface with 1.0 percent difference in acoustic impedance (minimum detectable brightness on the display). The echoes from the scatterers then fell below 0.1 volt level. This is an example of the way in which the test object can be used to standardize the equipment performance so as to optimize the display of a particular type of target, organ or condition.

Plastisol Phantoms - Phantoms constructed of plastisol are more suitable for basic studies on the interaction of sound and tissue because of their inherent stability and the precision with which the characteristic acoustic impedance, velocity and density can be controlled to achieve precise acoustic properties. Because of its relatively high attenuation it is not ideally suited for construction of training phantoms where properties and distances of 15 to 20 cm are required.

By using various plasticizers and by adjusting the resin/plasticizer ratio, it is possible to modify the characteristic acoustic impedance of the system throughout the range of soft tissue structures. The acoustic properties of a system using epoxy soya plasticizer are shown in figure 5. Also plotted are a number of tissue characteristics for reference. It will be noted that it is possible to match the impedance, velocity or density of most any tissue and that the other parameters will be nearly equivalent. The attenuation of this plastisol system is higher than tissue and ranges from about 2 dB cm\(^{-1}\) MHz\(^{-1}\) to 4 dB cm\(^{-1}\) MHz\(^{-1}\) for the materials shown in figure 5.

Analysis of the frequency characteristics is achieved by making measurements with a range of transducers operating in a pulsed mode. A Fast Fourier Transform (FFT) for displaying the frequency spectrum of the pulse transmitted through the specimen is compared with the spectrum obtained for a pulse transmitted through water [13]. Figure 7 shows the normalized frequency response for both the reference and sample waveforms. Amplitude comparison between the reference and sample transformed responses yields the normalized attenuation as a function of frequency, as shown in figure 8. Additional transducers may be utilized to extend the frequency range. Phase comparisons between the reference and sample responses give the phase velocity, as plotted in figure 9.
Fig. 1. Acoustic properties of a plastisol system in which the resin/plasticizer ratio is adjusted to match the impedance of biological materials.

Fig. 2. The normalized attenuation as a function of frequency is shown for two plastisol samples having impedances of $1.52 \times 10^5$ Rayl and $1.63 \times 10^5$ Rayl respectively. Note that the former closely matches the impedance of water so that the reflection losses at the interface are minimal. In the second specimen, the reflection losses average 1.4 dB per surface. Inasmuch as most normal soft tissue has a much lower attenuation rate than that shown for these two samples, materials of this type would be utilized to represent highly attenuating pathological states such as those commonly found in breast tumors.

Scatterers - The vast majority of echoes obtained by scanning a patient are from scatterers rather than specular reflectors. These scatterers produce echoes which are not individually resolved but add constructively when they are in phase to produce a spot on the display. To duplicate this phenomenon in tissue phantoms, it is necessary to embed small scatterers (like the cells in tissue) whose dimensions are small compared to the wavelength of the sound. Spherical scatterers adequately represent cells whose geometry is essentially spherical, but elongated scatterers are required to represent tissues in which...
the cellular makeup is other than spherical, like in muscle, for example.

Small plastic microspheres are available in a variety of material types which can be embedded in the acoustic medium to produce scattering. The particles come in a variety of sizes. In general the particle size should approximate the dimensions of the scatterers of tissue, if the frequency dependence of scattering is important.

One of the common sources is the Dextran particles (Sigma Chemical Company, for example) used in Sephadex columns. This type of particle tends to imibe water, thus the dimension in the dry state will be different than the dimension in the aqueous medium. Particles can be sized by putting the powder through graded sieves. Waag et al. [14] have used three grades, each of which contains a wide range of sizes. There may be occasions when the range of sizes would be desirable in simulating tissue. It is characteristic of tissues to have rather uniform cellular dimensions.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5OM</td>
<td>86 - 257 μm</td>
</tr>
<tr>
<td>G5OF</td>
<td>34 - 137 μm</td>
</tr>
<tr>
<td>G50SF</td>
<td>17 - 68 μm</td>
</tr>
</tbody>
</table>

The uniformity of unscreened microspheres compared with screened microspheres is shown in figure 10. A uniform population of microspheres may be used to study the frequency dependence of scattering and will simulate tissues having spherical cells. The range of frequencies for the transition from Rayleigh to Bragg scattering is very broad if the distribution of microspheres as shown in figure 10A is used in a tissue phantom, but is abrupt with scatterers in figure 10B. This point will be further developed later (see fig. 14).

Acrylic microspheres are available as a dental repair material. These microspheres can also be sifted through graded sieves to obtain uniform size distribution. In some instances the more intense scattering provided by the acrylic microspheres is desirable. Further, the dimensional stability is very much greater, therefore, for applications in which dimensional stability is crucial, the acrylic microsphere should be considered.

Another source of microspherical particles is Teflon microspheres, which are similar to the acrylic microspheres in terms of scattering, strength and dimensional stability. Both the Teflon and acrylic microspheres may need to be mixed with a wetting agent, such as alcohol, to promote suspension. Since these spheres are denser than water, they tend to settle out faster than the Dextran.
Fig. 10. The Sephadex column packing spheres are useful sources of acoustic scatterers and are available in three size ranges; however, each of the size ranges has a spectrum of scatterer sizes. The photograph on the left shows the distribution of sizes obtained for the medium range. The photograph on the right shows the 20 μm sizes selected by a screening process.

Hollow glass microspheres show the greatest difference in impedance compared with the medium (fig. 11A). The glass microspheres are lower in density than water and tend to float.

Between these four spherical scatterers with their various acoustic properties, it is possible to simulate many different tissue conditions. Scatterers are added to the medium in a concentration of approximately 1 percent per unit volume. For Dextran this gives a backscattering characteristic equivalent to a highly reflecting tissue. In many cases less than 1 percent is adequate to mimic the desired tissue.

The angular dependence of scattering can reveal information on the orientation of asymmetrical scatterers. It is therefore important to include such sources in the test target that are aligned in a specific direction. Targets containing such scatterers will exhibit angular dependence of scattering more like that of muscle.

Fig. 11. Scattering particles consist of cellulose acetate filaments or plastic spheres. The acetate fibers are 5 μm in diameter and 0.1 mm in length, and the spheres shown in the photograph are approximately 10 μm in diameter, but other sizes can readily be obtained by putting the random spheres through screens of the appropriate size mesh. Alignment of the fibers is achieved by flowing the medium prior to curing. The number of scatterers per unit volume, the size of the scatterers, the difference in acoustic index of refraction of the scatterers compared with the embedding medium, the form factor, the diameter/length ratio and the degree of order are all factors which influence the statistical distribution of scattering.

Rod-like scatterers can be obtained by using flocking, which is a cellulose acetate material (see fig. 11B). The flocking is an acetate filament and is available in various size ranges. Alignment of the rods can be achieved by causing the material to flow, then gelling the substrate before diffusion reorients the rods. The rods exhibit an angular dependence of scattering when
they are all aligned in the same direction. Flocking is available in a variety of size ranges, but typical dimensions are 15 micrometers by 1 millimeter.

Attenuators - The attenuation of the hydrocolloid materials is low and comparable to water. The addition of scatterers increases the attenuation, but this may still be below the level needed to simulate many tissues; therefore, it is necessary to add a substance to further increase the attenuation without increasing the scattering properties. A substance to achieve this property would be any insoluble powder whose particle size is very small compared with the wavelength of the examining beam. Numerous powders will fulfill this requirement. Among those used is diatomaceous earth, talcum powder, powdered chalk, graphite, lamp black, etc. We have used diatomaceous earth for this principally because of its availability. The powder is mixed with the scattering spheres and hydrocolloid until the desired attenuation has been achieved. Using this technique the scattering and attenuation can be adjusted independently over some range of acoustic characteristics.

Fabrication Techniques - Organs can readily be molded by using natural organs or models of natural organs. Any of several molding techniques is suitable, including gel molds. The positive replica of the organ is cast in the gel and the mold is partially opened. The replica is extracted by deforming the gel mold.

The surface of the mold may be covered with glycerin or other suitable parting agent and the warm sol solution is poured into the mold. Sprues can be provided to carry away gas as the gas in the mold is displaced by the sol.

If the organ is to represent a kidney, for instance, it would be desirable to cast the organ in several stages to build up a structure which simulates the internal architecture of the kidney. In this case the core is held in place by struts while the cortex is being cast in the mold. Afterwards, the struts are removed and the void is filled with sol, using a syringe. The completed kidney is then encapsulated in a film to minimize evaporation and add stability and convenience of handling. The film can be applied by dipping or by sealing the material with such as a thin polyethylene over the surface of the organ and heat sealing the edges. The very thin polyethylene is easily stretched over the organ and if the procedure is carefully done, it is possible to avoid inclusion of air between the skin and the kidney. The thickness of the skin will determine the specular reflection from the surface of the organ.

Specular reflectors can also be generated by casting smooth interfaces between materials having different acoustic impedances and scatterers are introduced by mixing plastic microspheres or rods in the compound before the heat treating (solvation). The plastic microspheres should be of a size which is very small compared to the wavelength and comparable in dimensions to cells in tissue, i.e., in the order of 10 micrometers in diameter. The material of the microsphere could be chosen so that it will not be affected by the embedding material. In order to avoid introducing gas bubbles into the mixture it is necessary to wet the microspheres with a small quantity of liquid which is miscible with the plasticizer and which does not interfere with its properties, such as alcohol.

3. Classification of Tissue Simulators

As noted in the Introduction there are three major applications for tissue simulators, or phantoms: 1) a training device to be used in place of human subjects; 2) a device for evaluating the performance of ultrasonic visualization systems; and 3) a model for studying the basic interactions between sound and tissue.

Each of the three areas of application imposes design requirements on the construction of tissue simulators. The training device should yield realistic echograms when scanned with conventional diagnostic equipment so that the trainee can learn scanning techniques and the interpretation of echograms. The training device should also be fabricated to include both normal and abnormal anatomy (fig. 12) illustrating the diagnostic criteria. The phantom should contain all of the necessary landmarks and reference points used by ultrasonographers in their diagnostic protocol. The dimensions of the training device should hold a 1:1 correspondence with the dimensions of the structures represented, therefore, the attenuation in the tissue simulator should correspond closely with the attenuation experienced in the corresponding human anatomy.

Fig. 12. Simulation of a cross-sectional slice of the human torso which can be scanned with an ultrasonic transducer. The resulting echograms exhibit a 1:1 correspondence to the same section through the human body. The training device would be constructed to show both "normal" anatomy and simulate pathology.

Tissue simulators used to check the performance of ultrasonic diagnostic equipment should include means for examining the sensitivity and resolution (both lateral and longitudinal) of the equipment over the dynamic range of signal intensities encountered in clinical applications (fig. 13). It is desirable that these test objects be stable with respect to time so that instabilities in the diagnostic equipment can be measured. Using the simulator as a standard, equipment adjustments can
be made to optimize the system performance for displaying certain tissue characteristics, such as was done in optimizing the display of weak scattering interfaces in figure 4, panel E.

Tissue simulators used for basic studies will vary widely in their design as dictated by the experimental conditions under study. We have been using simple disc-shaped test objects of uniform thickness with known scattering densities and impedance characteristics to examine the angular and frequency dependence of scattering in tissue. It is important to control the size of the scatterer. For scatterers which are very small compared to the wavelength of sound, scattering is of the Rayleigh type and has a fourth power cross section. In the range of Bragg scattering, there is a power of two dependence of frequency on the scattering cross section (fig. 14). This plot is an extension of data presented by Freese et al. [15] and nicely illustrates the regions of Rayleigh and Bragg scattering for oil droplets in gelatin and lipid filled cells in fish muscle.

4. Conclusion

Tissue simulators are necessary to meet various requirements with respect to the application of ultrasound to medicine which are not fulfilled by test targets such as the ATRM 100 mm test object. Recently there has been an interest in developing tissue equivalent targets from several sources and this interest stems from both a requirement to provide more quantitative diagnostic methods as well as an interest in reducing unnecessary exposure of patients to ultrasound. Although as yet no toxic effects have been documented for visualization systems used in the customary manner, it is prudent to minimize unnecessary exposure whenever possible. Because it is possible to accurately simulate body structures for ultrasonic scanning, construction of such phantoms would appear to be an important current objective.

Fig. 13. A test block incorporating low reflectivity specular reflectors, scatterers and wedges for resolution measurements are cast in a plastic block which can be utilized to examine the performance of visualization equipment.

Fig. 14. The plot of the backscatterers' cross section vs. frequency for oil droplets in gelatin and for lipid droplets in muscle display both Rayleigh and Bragg scattering phenomena. The Rayleigh scattering has a fourth power dependence, whereas the Bragg scattering has a second power dependence on frequency.

Acknowledgments

This work was supported in part by NSF Grant APR75-15908, a Smith-Kline Fellowship, and by the Indianapolis Center for Advanced Research. The computer processing technique was developed by Francis J. Fry and Narendra T. Sanghvi.

References


TISSUE EQUIVALENT TEST OBJECTS FOR COMPARISON OF ULTRASOUND TRANSMISSION TOMOGRAPHY BY RECONSTRUCTION WITH PULSE ECHO ULTRASOUND IMAGING

Paul L. Carson and Leonard Shabason
Department of Radiology
University of Colorado Medical Center
Denver, Colorado 80020, U.S.A.

Donald E. Dick
Department of Physical Medicine
University of Colorado Medical Center
Denver, Colorado 80020, U.S.A.

and

William Clayman
Alderson Research Laboratories, Inc.
Stamford, Connecticut 06903, U.S.A.

Tissue equivalent materials have been investigated for evaluation and comparison of pulse echo ultrasound imaging and ultrasound transmission tomography by reconstruction (UTTR). Investigations have centered primarily on various urethane polymers and 3M Reston Brand Flotation Pad material. Attenuation coefficients of the urethane polymers still are somewhat too high, and thus initial test objects or "phantoms" have been constructed from the flotation pad material. One phantom chosen to simulate several characteristics of human breast tissue consists of an annulus of unaltered flotation pad material surrounding a center region in which scattering polystyrene microspheres are embedded. Contrasting material such as polyethylene rods can be inserted between the inner and outer areas of the phantom. The UTTR technique clearly delineates polyethylene rods in the phantom as small as 0.6 mm in diameter. The scattering at 2.2 to 3.5 MHz nominal frequency exhibits a pulse echo appearance, similar to that of liver tissue, and causes only approximately a 5 percent increase in the attenuation coefficient of the pure flotation pad material.

Key words: Computed tomography-ultrasonic; diagnosis-ultrasonic; tissue equivalent test objects and phantoms; ultrasound imaging; ultrasonic tissue characterization.

1. Introduction

Among the various properties of tissue that can be detected with ultrasound, attenuation and velocity have attracted a great deal of attention. This interest has been intensified by evidence that malignant and benign breast tumors can be distinguished from each other and from normal tissue by significant differences in attenuation of ultrasound by these different tissues [1]. The goal of the main project leading to this study has been to develop a system for the quantitative estimation of the spatial distribution of attenuation and velocity coefficients in living tissue. This instrumentation development has been accompanied by the development of various tissue-equivalent test objects or phantoms to help ensure accurate and reliable results.

Simultaneous measurement of velocity and attenuation can be performed with direct approaches to ultrasound computerized tomography (CT), although many questions exist as to the accuracy of these measurements. To study the potential of quantitative and visual diagnosis with the technique, a system for performing ultrasound transmission tomography by reconstruction (UTTR) has been designed and constructed [2]. The attenuation image shown here was obtained with this new instrumentation.

1 Figures in brackets indicate literature references at the end of this paper.
using principles delineated in reference [3]. Basically, opposed transmitting and receiving transducers are scanned on either side of the imaged object in the translate-rotate motion of early x-ray CT scanners. The amplitude of the rectified and integrated pulse waveform was linearized and used as the input variable in a convolution reconstruction program. The complete UTR system soon will include the capability for simultaneous generation of pulse-echo images as well as CT scans of velocity, and attenuation. The system has enough flexibility to serve as a general purpose research instrument, but the initial investigations will focus on breast imaging. This emphasis was chosen because of the high incidence of breast cancer in women coupled with the need for more reliable, non-invasive techniques to detect and characterize breast lesions. Another factor is the existence of preliminary encouraging results obtained by others with ultrasound velocity CT images [4].

To provide a controlled comparison of the various imaging approaches, tissue equivalent objects have been developed. This development has followed three approaches which have been pursued concurrently:

1. Development and identification of stable plastics which are equivalent to tissue in terms of physical density, sound propagation velocity, and attenuation as a function of frequency.
2. Simulation of pulse echo scattering using small reflectors embedded in available plastics.
3. Molding the available tissue equivalent plastics and scattering materials into phantoms to allow evaluation and comparison of alternative imaging approaches.

2. Developments

To date, most of the investigation on tissue equivalent plastic has been directed to various urethane polymers such as TDI polyether urethane prepolymer with high molecular weight polyol chain-extenders, and to the 3M Company material used in Reston Flotation Pads. The urethane polymers can be made with densities and ultrasound propagation velocities in the soft tissue range. Shown in figure 1a is an example of attenuation measurements on one of these polymers, which has a density and ultrasound propagation velocity at 27°C of 1.1 x 10^3 kg/m^3 and 1544 m/s, respectively. Work is progressing on reducing the ultrasound attenuation coefficient in these materials to that of various soft tissues. Advantages of this class of polymer are that the materials are rigid enough to support test objects in known locations, properties can be varied, and the materials are stable in time. The 3M flotation Pad material exhibits ultrasound interaction characteristics similar to that of fat except for a somewhat higher attenuation coefficient as shown in figure 1b. The amplitude attenuation coefficient in SI units is related to the attenuation coefficient in dB/cm by a(m-1) = 11.513 · α(dB/cm). Also, μ/f(s/m) = 1.1513 x 10^-5 · α/f(dB/cm-MHz). The speed of ultrasound propagation in the flotation pad material at 27°C is 1461 m/s and its density is 9 x 10^2 kg/m^3. Figure 1 was obtained using broadband transmitters with working frequencies of 2.2 and 4 MHz with diameters of 19 and 13 mm, respectively. A 0.25 mm diameter miniature hydrophone was employed as a receiver in the far field of the transmitter, and attenuation of gated sine waves was measured by interposing and removing samples of the materials under study.

Polystyrene microspheres in the range of 15 to 300 μm in diameter have been embedded in various plastics, and their pulse echo imaging characteristics have been studied in densities of 0.2 to 2.0 spheres per mm^3. At these densities, 80 μm diameter polystyrene microspheres scatter more weakly than normal liver, as determined with commercially available pulse echo imaging systems at 2.2-5 MHz. Consequently, polystyrene microspheres of 175 μm diameter, in densities of approximately 0.3 spheres per mm^3, have been chosen for initial simulation of soft tissue scattering.

The phantom designed for comparisons of the various ultrasound imaging techniques is dia-

![Fig. 1. Semilogarithmic plots of attenuation coefficient as a function of frequency at two temperatures (a) urethane polymer; (b) 3M flotation pad material.](image-url)
annulus and the central cylinder allow rods and liquid-filled cylinders of various attenuating materials to be inserted between the scattering and nonscattering materials.

3. Examples of Use

Pulse echo images of the phantom obtained with a commercial ultrasound scanner are shown in figure 3. Polyethylene rods of 1.9, 2.7 and 3.3 mm diameter are displayed from left to right at the edge of the inner cylinder. In this image, the polyethylene rods are in the focal zone of the 3.5 MHz transducer and the shadowing of the scattering material by the rods is visualized easily. Figure 4 is an UTTR image of attenuation in the same phantom with rods of 3.3, 2.7, 1.9 and 0.6 mm diameter. As may be seen, each of the four rods was delineated clearly. Phase cancellation at the receiver due to the increased speed of sound in the rods may have contributed to their detectability in both the attenuation image and the pulse echo shadowing of discrete scatterers. The same effect should contribute to the detection of highly attenuating lesions in the body.

Attenuation coefficients for the flotation pad material obtained in the reconstruction are \( \alpha = 2.88 \pm 0.01 \) dB/cm or \( \mu = 33.2 \pm 0.2 \) m\(^{-1}\). The quoted errors are the standard error of the mean of several hundred pixels in the reconstructed image. These attenuation coefficients correspond to \( \alpha/f = 0.82 \) dB/cm-MHz at the 3.5 MHz working frequency employed for the reconstruction. If the frequency averaged attenuation coefficient of \( \alpha/f = 0.9 \) dB/cm-MHz at 21 °C is accepted from figure 1b as the true value for the flotation pad material, then the effective frequency of the

---

Fig. 2. Top view and side view of the Tissue Equivalent Test Object. The central cylinder contains isotropic scatterers. Rods and tubes may be inserted between the central cylinder and the outer annulus. The three nylon bolts shown in the drawing have been replaced by 0.13 mm diameter nylon monofilament.

Fig. 3. Pulse echo image of the tissue equivalent phantom using a conventional scanner with a 3.5 MHz transducer focused at the top side of the central cylinder containing scattering particles. Shadowing of the scatterers by 3.3, 2.7, and 1.9 mm polyethylene rods is apparent.

Fig. 4. Attenuation image of the phantom by ultrasound transmission tomography by reconstruction. The polyethylene rods visible in the image range in diameter from 0.6 to 3.3 mm.
broadband ultrasound pulses used to create the UTTR image may be taken to be 3.2 MHz. By comparison, the mean attenuation coefficient of the flotation pad material containing scatterers is 3.02 ± 0.02 dB/cm. This measured value in the central scattering region may be slightly low due to beam hardening effects. Nevertheless, the measured difference in the attenuation coefficient of the material with and without scatterers is only 5 percent, and the real difference probably is not much greater. The greater attenuation in the scattering material is visualized easily in UTTR images displayed at high contrast.

The maximum reconstructed attenuation coefficients at the centers of the 3.3, 2.7, 1.9 and 0.6 mm diameter polyethylene rods are 20, 12, 12 and 6 dB/cm, respectively. Clearly, these apparent attenuation coefficients for the smaller rods are reduced by resolution effects. Bulk measurements of attenuation coefficients of the polyethylene rods were not obtained, because the rods were made by heating and stretching larger, low density polyethylene rods. This process probably would affect the density of the polyethylene, and consequently the ultrasound attenuation coefficient.

Pulse echo imaging of large samples of the flotation pad material containing polystyrene microspheres has indicated that the flotation pad material at 21 °C attenuates ultrasound somewhat more rapidly than normal liver tissue in vivo. It was assumed, therefore, that the flotation phantom would be a rigorous test of UTTR and pulse echo systems for breast imaging. Initial measurements on the female breast in vivo, indicate that there are relatively large quantities of tissues in many young, female breasts which are much more attenuating than anticipated. These materials, presumably dense, fibrous tissues, often may be aligned parallel to the skin surface and thus provide a long, attenuating path for transmission imaging in coronal sections of the breast. Attenuation coefficients averaging 15 dB/cm in these highly attenuating tissues have been measured with the 3.5 MHz pulses. It should be noted, however, that much of the attenuation obtained in the UTTR system is due to phase cancellation and refraction at the interface between tissues or phantom materials with relatively low and relatively high speeds of ultrasound propagation.

The breast phantom developed to date will be useful for comparing UTTR and pulse echo imaging under the best conditions, but much more complex phantoms will be required to simulate many important features of normal and abnormal breasts.

Acknowledgments

This investigation was supported in part by grants APR 76-05944 from the National Science Foundation and ST32 CA 9073 awarded by the National Cancer Institute, Department of Health, Education, and Welfare.

We gratefully acknowledge the contributions of the University of Colorado Medical Center personnel: Will Carter, Tom Oughton, Mary Dick, Elliott Bayly, Gary Thieme, and William R. Hendee, as well as the contributions of Paul E. Hansen, of the 3M Company, who provided sample materials and useful information.

References


APPENDIX

DATA OF THE VELOCITY AND ATTENUATION OF ULTRASOUND IN MAMMALIAN TISSUES - A SURVEY

R. J. Parry and R. C. Chivers

Physics Department
University of Surrey
Guildford, England

A compilation of the reported values of velocity and attenuation of ultrasound in mammalian tissues is presented to give a clear picture of the state of knowledge and enable it to be assessed. In the twenty years since the last such compilation, the progress in estimating the relative contributions of the animal species, tissue condition, temperature and frequency at which measurements were made and the method of measurement to the observed variation has been small. It is hoped that this compilation will both be of practical use and also encourage the establishment of a stronger body of fundamental information for the application of ultrasound in medicine and biology.

Key words: Attenuation; mammalian tissues; ultrasound; velocity.

1. Introduction

With the increasingly recognized importance of fundamental work on the interaction of ultrasound with tissue there is a need for ready access to currently available data of the acoustic parameters of mammalian tissues. There are summaries of velocity and attenuation data [1-3] but all lack some of the information needed to make a critical assessment of the present state of knowledge. In view of this we have attempted here to produce a survey which is both accurate - not always a feature of previous surveys - and useful in providing such information.

The grouping of the data is primarily by type of tissue and mammalian species and subsequently by tissue condition and temperature. Tissue condition in vitro is categorized as fresh, fixed or refrigerated (though for comparisons to be properly valid more precise details of the history of the tissues must be known).

It is assumed that the measurements were made at sufficiently low intensity such that non-linear effects were not significant. However, only Dussik et al. [4] and Fry and Fry [5] report values for ultrasonic intensity. This may arise from the present state of the literature on the measurement of intensity [6].

The quoted attention coefficient, $\alpha$, is defined by $A = A_0 e^{-ax}$, where $A$ is the amplitude of a plane wave of initial amplitude $A_0$ after travelling a distance $x$ in the tissue. Assuming a realistic plane wave, or that any geometrical effect on the amplitude has been removed, this represents the sum of the energy absorbed within the tissue and the energy scattered by inhomogeneities in the tissue [7]. It must also be assumed that the intensities used were low enough for there to be no irreversible changes caused in the tissue and thus that $\alpha$ is not dependent on the intensity. To convert the values quoted to decibels they should be multiplied by 8.686.

The tables include the number of measurements, $N$, and some indication of the spread of values about the quoted mean: where possible the standard deviation (SD) or standard error (SE) of the set of measurements, otherwise the range of values or some unspecified "variation".

As a guide to what may be expected of the measurements reported, it was thought useful to indicate the measurement technique used. For the velocity measurements these have been divided into pulse transmission or reflection (pulse), interferometric and sing-around techniques and for attenuation into broadband, using pulses containing only a few cycles of vibration, or narrow band, with 20 or more cycles. Results obtained with broadband pulses [10-12] are usually quoted as being at one particular frequency without any detail of how this frequency was selected. For preference the frequency specified should be that of the maximum amplitude in the frequency spectrum of the pulse. Recently the whole frequency spectrum of a broadband pulse has been used to measure attenuation [7,13] and there is the possibility of using swept frequency techniques [60]. Further consideration of measurement methods is out of place in the present context and the reader is referred to the review article by McSkimin [8] and the work of Wehr [9,14] for discussion of the various techniques and the relative errors involved.

\footnote{Figures in brackets indicate literature references at the end of this paper.}
The information collected in the tables below is that relating to whole tissues only. Thus much data on blood is excluded as it is concerned with the constituents rather than whole blood (see Hussey [3] for a summary), and in other reports the "whole blood" is a dilution with plasma of centrifuged red blood cells [57,59]. Nor was it felt appropriate to include all the data from isolated references on the variation of parameters with other features of the tissues, for example the variation of velocity in fat with water content [15,16] and the work on liver homogenates [17,18]. For such information the reader is referred to the original literature.

Summary

The result of a survey such as this should perhaps be some set of values of parameters or curves that may be taken to be characteristic of the various tissues considered. However, considering the data presented here, all that may be concluded is that at the present time it is virtually impossible to separate any variation between different types of tissue from those variations due to the many other factors involved, such as the measurement technique, temperature, condition and treatment of the tissue, the species from which the tissue came and its pathological condition. To produce any "characteristic" values many assumptions would have to be made, the validity of which cannot be ascertained from the information available. Thus all that the present authors have set out to do is to present the data with the relevant information, where possible, in order that each worker may draw his own conclusions about average values and their limitations.

The table A, for velocity data and B, for attenuation data contain this information; blank (--) indicates that the appropriate information is not stated in the original paper. To examine the frequency and temperature dependence of velocity, the (a priori unwarranted) assumption is made that the results for different species and conditions may be directly compared and the measurements for two temperature ranges are then represented in figures 1 and 2. The ranges chosen were 23 ± 3°C and 36 ± 1°C, the former being rather wide in order to encompass the large body of measurements made at 20°C and 26°C. It is left to the reader to opine about the existence of velocity dispersion or to assess temperature dependence of velocity from significant differences between figures 1 and 2 - a task made difficult by the lack of data at 36 ± 1°C (although some data in the tables does not appear in these figures as it was averaged over a wide frequency range [10]). The remaining figures (3-9) show plots of α/f against f for various tissues - no account being taken of species, condition or temperature. This presentation was chosen as it readily permits assessment of the oft-quoted linear relation between α and f. Comments on the temperature dependence of α are limited by the consistent disinclination of authors to specify this parameter when reporting their results and their tendency to average over wide temperature ranges.

In conclusion, it is only possible to echo Goldman and Hueter's statement of 20 years ago, "No critical discussion is indicated at this time, but it is anticipated that the accumulation of further data on the basis of more precise and extensive measurements should permit important generalizations on the acoustic characteristics of living matter." [1], and in doing so express the hope that future reports on the literature will include sufficient information about tissue condition and measurement technique to enable valid conclusions about their contribution to the spread of parameter values to be assessed and thus permit the "important generalizations on the acoustic characteristics of living matter."

Table. Compilation of (A) velocity and (B) attenuation of various tissues under various conditions.

<table>
<thead>
<tr>
<th>Species</th>
<th>Condition</th>
<th>Temp. (°C)</th>
<th>f (MHz)</th>
<th>c (m/s)</th>
<th>Variation (m/s)</th>
<th>N</th>
<th>Technique</th>
<th>Precision (%)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>heparinised</td>
<td>22.4</td>
<td>2</td>
<td>1565</td>
<td>125</td>
<td>12</td>
<td>sing-around</td>
<td>.1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.6</td>
<td></td>
<td>1570</td>
<td>24</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.2</td>
<td></td>
<td>1549.6</td>
<td>10.8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.2</td>
<td></td>
<td>1556.4</td>
<td>4.7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, orbit</td>
<td>fresh</td>
<td>20</td>
<td>6-14</td>
<td>1582 SD</td>
<td>20.4</td>
<td>65</td>
<td>pulse</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td>1462 SD</td>
<td>23.7</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, breast</td>
<td>fresh/dry</td>
<td>25</td>
<td>2.0</td>
<td>1470</td>
<td>--</td>
<td>--</td>
<td>pulse</td>
<td>0.2</td>
<td>20</td>
</tr>
<tr>
<td>man, breast</td>
<td>refrigerated</td>
<td>24</td>
<td>1.8</td>
<td>1465 SE</td>
<td>2</td>
<td>2752</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>man</td>
<td>--</td>
<td>24</td>
<td>1.8</td>
<td>1476 SE</td>
<td>2</td>
<td>2752</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1444 SE</td>
<td>2</td>
<td>58</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>37</td>
<td>.5-7</td>
<td>1440</td>
<td>--</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>21</td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1465 SE</td>
<td>3</td>
<td>21</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>horse</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1443 SE</td>
<td>4</td>
<td>56</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>Species</td>
<td>Condition</td>
<td>Temp. (°C)</td>
<td>f (MHz)</td>
<td>c (m/s)</td>
<td>Variation (m/s)</td>
<td>N</td>
<td>Technique</td>
<td>Precision (%)</td>
<td>Source</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>man</td>
<td>--</td>
<td>24</td>
<td>1.8</td>
<td>1585</td>
<td>SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1587</td>
<td>SE = 3</td>
<td>7</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>25</td>
<td>2.5</td>
<td>1553</td>
<td>SD = 15.5</td>
<td>7</td>
<td>interferometric</td>
<td>0.5</td>
<td>22</td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1590</td>
<td>SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1578</td>
<td>SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>horse</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1580</td>
<td>SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1581</td>
<td>SD = 16.8</td>
<td>8</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td>rabbit</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1599</td>
<td>SE = 1</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>guinea pig</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1575</td>
<td>SD = 9.4</td>
<td>13</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td>man, healthy</td>
<td>refrigerated</td>
<td>24</td>
<td>1.8</td>
<td>1570</td>
<td>SE = 4</td>
<td>18</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>rabbit, bled</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1607</td>
<td>SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>guinea pig, bled</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1589</td>
<td>SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1560</td>
<td>SE = 4</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>25</td>
<td>2.5</td>
<td>1558</td>
<td>SD = 15.6</td>
<td>5</td>
<td>sing-around</td>
<td>0.5</td>
<td>22</td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1568</td>
<td>SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1572</td>
<td>SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>horse</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1558</td>
<td>SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1559</td>
<td>--</td>
<td>2</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td>rabbit</td>
<td>--</td>
<td>--</td>
<td>5</td>
<td>1566</td>
<td>1560 - 1571</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>24</td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1578</td>
<td>SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>25</td>
<td>2.5</td>
<td>1515</td>
<td>SD = 15.2</td>
<td>4</td>
<td>sing-around</td>
<td>0.5</td>
<td>22</td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1577</td>
<td>SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1578</td>
<td>SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>horse</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1595</td>
<td>SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1570</td>
<td>--</td>
<td>2</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>35.0 ± 0.5</td>
<td>0.98</td>
<td>650</td>
<td>0</td>
<td>2</td>
<td>reflection coefficient²</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>35.0 ± 0.5</td>
<td>1</td>
<td>658</td>
<td>--</td>
<td>2.25</td>
<td>reflection coefficient²</td>
<td>less than 10 ms⁻¹</td>
<td>52</td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>--</td>
<td>0.39</td>
<td>300</td>
<td>--</td>
<td>1</td>
<td>pulse</td>
<td>--</td>
<td>55</td>
</tr>
<tr>
<td>dog</td>
<td>fresh/dry</td>
<td>35</td>
<td>0.98</td>
<td>340</td>
<td>0</td>
<td>1</td>
<td>reflection coefficient²</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>man, breast</td>
<td>fresh/dry</td>
<td>25</td>
<td>2.0</td>
<td>1545</td>
<td>--</td>
<td>--</td>
<td>pulse</td>
<td>0.2</td>
<td>20</td>
</tr>
<tr>
<td>Normal Connective Tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Muscle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Skeletal muscle: parallel to muscle fibres

<table>
<thead>
<tr>
<th>Species</th>
<th>Condition</th>
<th>Temp. (°C)</th>
<th>f (MHz)</th>
<th>c (m/s)</th>
<th>Variation (m/s)</th>
<th>N</th>
<th>Technique</th>
<th>Precision (%)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1592</td>
<td>SD = 5.0</td>
<td>7</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td>rabbit</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1603</td>
<td>SD = 7.9</td>
<td>13</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
</tbody>
</table>

345
<table>
<thead>
<tr>
<th>Species</th>
<th>Condition</th>
<th>Temp.</th>
<th>f (MHz)</th>
<th>c (m/s)</th>
<th>Variation (m/s)</th>
<th>N</th>
<th>Technique</th>
<th>Precision (%)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal muscle: perpendicular to muscle fibres</td>
<td>man, external eye</td>
<td>fresh</td>
<td>20</td>
<td>6-14</td>
<td>1612 SD = 12.5</td>
<td>83</td>
<td>pulse</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>man, breast</td>
<td>fresh/dry</td>
<td>25</td>
<td>2.0</td>
<td>1545 --</td>
<td>--</td>
<td>pulse</td>
<td>0.2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>dog</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1576 SD = 9.6</td>
<td>8</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>rabbit</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1587 SD = 5.5</td>
<td>18</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td>Skeletal muscle: direction unspecified</td>
<td>man, pectoral</td>
<td>refrigerated</td>
<td>24</td>
<td>1.8</td>
<td>1568 SE = 5.5</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>man</td>
<td>--</td>
<td>24</td>
<td>1.8</td>
<td>1585 SE = 6</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>pig</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1580 SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1581 SE = 4</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1580 SE = 4</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>cow</td>
<td>refrigerated</td>
<td>25</td>
<td>2.5</td>
<td>1580 SD = 16</td>
<td>12</td>
<td>sing-around</td>
<td>0.5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>horse</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1598 SE = 4</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>Cardiac muscle</td>
<td>pig</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1587 SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1584 SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>cow</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1570 SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>horse</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1584 SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>dog</td>
<td>fresh</td>
<td>26</td>
<td>4 &amp; 12</td>
<td>1572 --</td>
<td>3</td>
<td>interferometric</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td>Normal Nervous Tissues</td>
<td>man, brain (term foetus)</td>
<td>fresh</td>
<td>24</td>
<td>5</td>
<td>1524 --</td>
<td>--</td>
<td>pulse</td>
<td>0.1</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>man, brain</td>
<td>--</td>
<td>24</td>
<td>1521</td>
<td>1540 --</td>
<td>--</td>
<td>pulse</td>
<td>0.1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>pig, brain</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1565 SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>pig, brain</td>
<td>fresh</td>
<td>25</td>
<td>2.5</td>
<td>1506 SD = 15</td>
<td>7</td>
<td>interferometric</td>
<td>0.5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>cow, brain</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1560 SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>cow, brain</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1569 SE = 3</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>horse, brain</td>
<td>fresh</td>
<td>24</td>
<td>1.8</td>
<td>1560 SE = 2</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>dog, brain</td>
<td>fresh</td>
<td>25</td>
<td>2.5</td>
<td>1515 SD = 15</td>
<td>5</td>
<td>sing-around</td>
<td>0.5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>cat, brain</td>
<td>living/fresh</td>
<td>24</td>
<td>4.2</td>
<td>1557 --</td>
<td>--</td>
<td>pulse</td>
<td>--</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>rabbit, brain</td>
<td>--</td>
<td>24</td>
<td>5</td>
<td>1508 1380-1570</td>
<td>3</td>
<td>--</td>
<td>0.1</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>man, optic nerve</td>
<td>fresh</td>
<td>20</td>
<td>6-14</td>
<td>1644 SD = 25.4</td>
<td>30</td>
<td>pulse</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>man, cerebro- spinal fluid</td>
<td>fresh</td>
<td>21.8</td>
<td>2</td>
<td>1499 30</td>
<td>11</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>man, meningeoma</td>
<td>fixed 3 h</td>
<td>19.0</td>
<td>2</td>
<td>1524.2 6.1</td>
<td>20</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>man, meningeoma</td>
<td>fixed 48 h</td>
<td>19.8</td>
<td>2</td>
<td>1524.5 7.5</td>
<td>20</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>man, meningeoma</td>
<td>--</td>
<td>19.7</td>
<td>2</td>
<td>1557 31</td>
<td>20</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>man, glioma</td>
<td>fresh</td>
<td>22.2</td>
<td>2</td>
<td>1529.1 9.1</td>
<td>20</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>man, glioma</td>
<td>fixed 22.3</td>
<td>2</td>
<td>1500 45</td>
<td>17</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Condition</td>
<td>Temp. (°C)</td>
<td>f (MHz)</td>
<td>c (m/s)</td>
<td>Variation (m/s)</td>
<td>N</td>
<td>Technique</td>
<td>Precision (%)</td>
<td>Source</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>----</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>man, astrocytoma</td>
<td>fresh</td>
<td>27.5</td>
<td>2</td>
<td>1545.4</td>
<td>6.2</td>
<td>41</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
</tr>
<tr>
<td>man, astrocytoma</td>
<td>fixed</td>
<td>24.9</td>
<td>2</td>
<td>1517</td>
<td>121</td>
<td>27</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
</tr>
<tr>
<td>man, ependymoma</td>
<td>fixed</td>
<td>20.0</td>
<td>2</td>
<td>1501</td>
<td>45</td>
<td>18</td>
<td>sing-around</td>
<td>0.1</td>
<td>19</td>
</tr>
<tr>
<td>man, lens</td>
<td>in vivo</td>
<td>body</td>
<td>--</td>
<td>1585 ± 74b</td>
<td>53</td>
<td>--</td>
<td>--</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>man, lens</td>
<td>fresh</td>
<td>34.1 (mean)</td>
<td>4</td>
<td>1641 SD = 16c</td>
<td>7</td>
<td>interferometric</td>
<td>--</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>man, lens</td>
<td>(autopsy)</td>
<td>37</td>
<td>4</td>
<td>1641.0 SD = 1.3</td>
<td>35</td>
<td>interferometric</td>
<td>0.6</td>
<td>30d</td>
<td></td>
</tr>
<tr>
<td>pig, lens</td>
<td>fresh</td>
<td>23</td>
<td>4</td>
<td>1665 SD = 6e</td>
<td>10</td>
<td>interferometric</td>
<td>--</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>cow, lens</td>
<td>refrigerated</td>
<td>26-31</td>
<td>5</td>
<td>1616 1500 - 1680f</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>rabbit lens</td>
<td>--</td>
<td>5</td>
<td>1540 SD = 66</td>
<td>5</td>
<td>--</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, vitreous</td>
<td>in vivo</td>
<td>body</td>
<td>7</td>
<td>1544 ± 37b</td>
<td>53</td>
<td>--</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, vitreous</td>
<td>fresh</td>
<td>35.2 (mean)</td>
<td>4</td>
<td>1530 SD = 5c</td>
<td>10</td>
<td>interferometric</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, vitreous</td>
<td>(autopsy)</td>
<td>37</td>
<td>4</td>
<td>1532 SD = 0.6</td>
<td>35</td>
<td>interferometric</td>
<td>0.6</td>
<td>30d</td>
<td></td>
</tr>
<tr>
<td>pig, vitreous</td>
<td>fresh</td>
<td>22</td>
<td>4</td>
<td>1495</td>
<td>--</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>31</td>
</tr>
<tr>
<td>cow, vitreous</td>
<td>fresh</td>
<td>22</td>
<td>4</td>
<td>1495</td>
<td>--</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>31</td>
</tr>
<tr>
<td>cow, vitreous</td>
<td>refrigerated</td>
<td>26-31</td>
<td>5</td>
<td>1516 1490 - 1544f</td>
<td>--</td>
<td>interferometric</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>rabbit, vitreous</td>
<td>--</td>
<td>5</td>
<td>1472 SD = 16</td>
<td>6</td>
<td>--</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>guinea pig, aqueous</td>
<td>fresh</td>
<td>22</td>
<td>4</td>
<td>1550</td>
<td>--</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>31</td>
</tr>
<tr>
<td>cow, cornea</td>
<td>fresh</td>
<td>22</td>
<td>4</td>
<td>1630</td>
<td>--</td>
<td>--</td>
<td>interferometric</td>
<td>0.5</td>
<td>31</td>
</tr>
<tr>
<td>man, lens-</td>
<td>cataractous</td>
<td>fresh</td>
<td>35.8</td>
<td>4</td>
<td>1643</td>
<td>1</td>
<td>interferometric</td>
<td>--</td>
<td>29</td>
</tr>
</tbody>
</table>

**Abnormal Ophthalmic Tissues**

| man, lens-           | cataractous | fresh      | 35.8    | 4       | 1643           | 1  | interferometric | --            | 29     |

**Normal Bone**

| cow, phalanx         | fresh       | --         | 5       | 4030 SD = 110 | 252 | pulse          | SD ~ 3        | 32     |
| cow, phalanx         | dried       | --         | 5       | 4360 SD = 170 | 120 | pulse          | SD ~ 3        | 32     |
| cow, femur           | dried       | --         | 5       | 4060 SD = 40  | 144 | pulse          | SD ~ 3        | 32     |
| guinea pig, femur    | --          | 0.1        | 3158    | 2870 - 3541g | 40  | pulse          | --            | 33     |

**Long bones: across axis**

<p>| cow, phalanx         | fresh       | --         | 5       | 3160 SD = 170 | 252 | pulse          | SD ~ 3        | 32     |
| cow, phalanx         | dried       | --         | 5       | 3270 SD = 160 | 120 | pulse          | SD ~ 3        | 32     |
| cow, femur           | dried       | --         | 5       | 3420 SD = 340 | 144 | pulse          | SD ~ 3        | 32     |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Condition</th>
<th>Temp. (°C)</th>
<th>f (MHz)</th>
<th>c (m/s)</th>
<th>Variation (m/s)</th>
<th>N</th>
<th>Technique</th>
<th>Precision (%)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long bones:</td>
<td>direction unspecified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, cortical</td>
<td>in vivo body</td>
<td>5.0</td>
<td>3406</td>
<td>3700</td>
<td>--</td>
<td>18</td>
<td>pulse</td>
<td>~ 6</td>
<td>34</td>
</tr>
<tr>
<td>dog, tibia</td>
<td>refrigerated</td>
<td>22</td>
<td>3 &amp; 5</td>
<td>3210 - 3620&lt;sup&gt;9&lt;/sup&gt;</td>
<td>--</td>
<td>pulse</td>
<td>--</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>horse</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>pulse</td>
<td>--</td>
<td>36</td>
</tr>
<tr>
<td>Skull bone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>fresh body</td>
<td>0.8</td>
<td>3360</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>continuous wave reflection</td>
<td>--</td>
<td>37</td>
</tr>
<tr>
<td>man</td>
<td>fixed outer layer</td>
<td>--</td>
<td>2920</td>
<td>SD = 160</td>
<td>23</td>
<td>pulse</td>
<td>4</td>
<td>38&lt;sup&gt;1&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diploe layer</td>
<td>--</td>
<td>3198</td>
<td>SD = 93</td>
<td>5</td>
<td></td>
<td>pulse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inner layer</td>
<td>--</td>
<td>3098</td>
<td>SD = 220</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>guinea pig,</td>
<td>fresh completely healed</td>
<td>--</td>
<td>0.1</td>
<td>2968</td>
<td>2788 - 3371&lt;sup&gt;9&lt;/sup&gt;</td>
<td>15</td>
<td>pulse</td>
<td>--</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>broken femur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>partially healed broken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>femur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, pre-menopause</td>
<td>in vivo body</td>
<td>2.0</td>
<td>1510</td>
<td>1450 - 1570&lt;sup&gt;1&lt;/sup&gt;</td>
<td>~ 110</td>
<td>pulse</td>
<td>0.2</td>
<td>20&lt;sup&gt;k&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>man, post-menopause</td>
<td>in vivo body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, carcinoma</td>
<td>refrigerated</td>
<td>24</td>
<td>1.8</td>
<td>1573</td>
<td>SE = 7</td>
<td>--</td>
<td>pulse</td>
<td>0.2</td>
<td>16</td>
</tr>
<tr>
<td>man, carcinoma</td>
<td>in vivo body</td>
<td>2.0</td>
<td>1478</td>
<td>SD = 28</td>
<td>17</td>
<td>pulse</td>
<td>0.2</td>
<td>20&lt;sup&gt;1&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>man, fibrocystic</td>
<td>in vivo body</td>
<td>2.0</td>
<td>1531</td>
<td>SD = 23</td>
<td>28</td>
<td>pulse</td>
<td>0.2</td>
<td>20&lt;sup&gt;1&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>man, fibroadenosis</td>
<td>in vivo body</td>
<td>2.0</td>
<td>1529</td>
<td>SD = 30</td>
<td>6</td>
<td>pulse</td>
<td>0.2</td>
<td>20&lt;sup&gt;1&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>man, fibroadenoma</td>
<td>in vivo body</td>
<td>2.0</td>
<td>1529</td>
<td>SD = 21</td>
<td>6</td>
<td>pulse</td>
<td>0.2</td>
<td>20&lt;sup&gt;1&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Obstetric Tissues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, cervix</td>
<td>pregnant in vivo body</td>
<td>5</td>
<td>1625</td>
<td>SD = 1.63</td>
<td>108</td>
<td>pulse</td>
<td>.006</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nonpregnant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, amniotic</td>
<td>fluid in vivo</td>
<td>25</td>
<td>5</td>
<td>1510</td>
<td>--</td>
<td>--</td>
<td>pulse</td>
<td>0.2</td>
<td>20</td>
</tr>
<tr>
<td>man, milk</td>
<td>--</td>
<td>30</td>
<td>2</td>
<td>1540</td>
<td>--</td>
<td>--</td>
<td>pulse</td>
<td>0.1</td>
<td>26&lt;sup&gt;u&lt;/sup&gt;</td>
</tr>
<tr>
<td>man, foetal brain</td>
<td>fresh</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>pulse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 weeks</td>
<td>24</td>
<td>1490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2 samples)</td>
<td>24</td>
<td>1495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>1520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>1523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 weeks</td>
<td>24</td>
<td>1498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2 samples)</td>
<td>24</td>
<td>1502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>1528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>1529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 weeks</td>
<td>24</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2 samples)</td>
<td>24</td>
<td>1524</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>1540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>1540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Condition</td>
<td>Temp. (°C)</td>
<td>f (MHz)</td>
<td>α (m⁻¹)</td>
<td>Variation</td>
<td>N</td>
<td>Technique</td>
<td>Precision Source</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>dog (citrated)</td>
<td>fresh</td>
<td>30</td>
<td>.58</td>
<td>1.09</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.73</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td>3.22</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>6.33</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
<td>12.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>.58</td>
<td>1.15</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.78</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td>3.45</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td>6.91</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
<td>12.7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>man, orbit</td>
<td>fresh</td>
<td>37</td>
<td>5.9m</td>
<td>230 SD = 22</td>
<td>9 - 13 broadband</td>
<td>--</td>
<td>spectrum analysis of a broadband pulse</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>220 SD = 15</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>330 SD = 24</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
<td>250 SD = 18</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>320 SD = 26</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>360 SD = 15</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>430 SD = 20</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>450 SD = 24</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.46</td>
<td>500 SD = 30</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.9</td>
<td>670 SD = 28</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>man, orbit</td>
<td>in vivo</td>
<td>--</td>
<td>6</td>
<td>180©</td>
<td>--</td>
<td>--</td>
<td>spectrum analysis of a broadband pulse</td>
<td>--</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>360</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>man</td>
<td></td>
<td>18 ± 2</td>
<td>1</td>
<td>10 at least</td>
<td>spectrum analysis of a broadband pulse</td>
<td>5m⁻¹</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>106 SD = 3</td>
<td>6 per point:</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>35</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>47</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>63</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>84</td>
<td>1 point per 100 kHz</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>115</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>man/cow</td>
<td>fresh</td>
<td>--</td>
<td>.8</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6.9 SD = 2.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>18</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>26</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>pig</td>
<td>fresh</td>
<td>37</td>
<td>1.6</td>
<td>6.9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td>21</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>40</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>56</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>75</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>-- (melted)</td>
<td>20 - 35</td>
<td>.87</td>
<td>4.6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td>8.7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4</td>
<td>16</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>in vivo</td>
<td>body</td>
<td>1.67</td>
<td>20.3</td>
<td>--</td>
<td>--</td>
<td>900 broadband</td>
<td>--</td>
<td>44</td>
</tr>
<tr>
<td>man</td>
<td>fixed</td>
<td>18 ± 2</td>
<td>1</td>
<td>13.8 typically</td>
<td>spectrum analysis of a broadband pulse</td>
<td>5m⁻¹</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>27.6 SD = 6</td>
<td>6 per point:</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>43</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>56</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>69</td>
<td>1 point per 100 kHz</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>81</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>93</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>20 - 35</td>
<td>1.5</td>
<td>16</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>18</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>40</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>--</td>
<td>1.5</td>
<td>15</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>18</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>38</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Condition</td>
<td>Temp. (°C)</td>
<td>f (MHz)</td>
<td>α (m⁻¹)</td>
<td>Variation (m⁻¹)</td>
<td>N</td>
<td>Technique</td>
<td>Precision</td>
<td>Source</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----</td>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>25</td>
<td>1</td>
<td>7.7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>± 10%</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>ground</td>
<td>(± ~ 0.5)</td>
<td>1.5</td>
<td>13</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>refrigerated</td>
<td></td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>29</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>54</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>71</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.4</td>
<td>104</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>fixed</td>
<td>--</td>
<td>0.35</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.575</td>
<td>6</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>10</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>9</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td></td>
<td>20 – 35</td>
<td>0.3</td>
<td>11</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10%</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.87</td>
<td>9.5</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td>14</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4</td>
<td>27</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td></td>
<td>--</td>
<td>2</td>
<td>12</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>narrow band⁵</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>man/mouse</td>
<td>fresh/frozen/</td>
<td>22 – 31</td>
<td>1000</td>
<td>96</td>
<td>SD = 86</td>
<td>7</td>
<td>--</td>
<td>± 25%</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>fixed</td>
<td></td>
<td>222</td>
<td>5000</td>
<td>SD = 760</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>20 – 35</td>
<td>1.5</td>
<td>19</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>26</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>51</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>fresh</td>
<td>--</td>
<td>1.5</td>
<td>18</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>25</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>53</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>fixed</td>
<td>--</td>
<td>0.25</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>4</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>5</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>6</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>7</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>5</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>9</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>7</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>pig</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>18</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>narrow band⁵</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>fixed</td>
<td>18 ± 2</td>
<td>1</td>
<td>3.5</td>
<td>typically</td>
<td>7</td>
<td>--</td>
<td>5m⁻¹</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at least spectrum</td>
<td></td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>13</td>
<td>SD = 4.6</td>
<td>6</td>
<td>per analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>26</td>
<td></td>
<td>6</td>
<td>point: of a broadband</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>40</td>
<td>1 point pulse⁴</td>
<td>4</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>56</td>
<td>per 100</td>
<td>6</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>74</td>
<td></td>
<td>7</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>96</td>
<td></td>
<td></td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>fresh</td>
<td>--</td>
<td>1</td>
<td>350</td>
<td>--</td>
<td>--</td>
<td>narrow band</td>
<td>0.25 dB</td>
<td>4</td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>35.0 ± .5</td>
<td>.98</td>
<td>470.0</td>
<td>10.0</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>35.0 ± .5</td>
<td>1</td>
<td>430</td>
<td>410 - 470³</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.25</td>
<td>590</td>
<td>560 - 640³</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1160</td>
<td>1040 - 1210³</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>27 ± 2</td>
<td>2.4</td>
<td>440</td>
<td>SE = 160</td>
<td>--</td>
<td>broadband</td>
<td>0.1 dB</td>
<td>56⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td>900</td>
<td>SE = 140</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td>1000</td>
<td>SE = 130</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>25</td>
</tr>
</tbody>
</table>

**Normal Kidney**

**Normal Spleen**

**Normal Lung**

**Abnormal Lung**
<table>
<thead>
<tr>
<th>Species</th>
<th>Condition</th>
<th>Temp. (°C)</th>
<th>f (MHz)</th>
<th>( a ) (m(^{-1} ))</th>
<th>Variation (m(^{-1} ))</th>
<th>N</th>
<th>Technique</th>
<th>Precision</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td><strong>Normal Connective Tissues</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, skin</td>
<td>fresh</td>
<td>--</td>
<td>1</td>
<td>40</td>
<td>SD = 14</td>
<td>--</td>
<td>narrow band</td>
<td>0.25 dB</td>
<td>4</td>
</tr>
<tr>
<td>man/cow, tendon</td>
<td>fresh</td>
<td>across grain</td>
<td>1</td>
<td>54</td>
<td>SD = 12</td>
<td>3</td>
<td>85</td>
<td>SD = 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>along grain</td>
<td>5</td>
<td>195</td>
<td>SD = 28</td>
<td>5</td>
<td>106</td>
<td>SD = 25</td>
<td></td>
</tr>
<tr>
<td>man/cow, articular capsule</td>
<td>fresh</td>
<td>1</td>
<td>38</td>
<td>SD = 10</td>
<td>3</td>
<td>81</td>
<td>SD = 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cartilage</td>
<td>5</td>
<td>130</td>
<td>SD = 62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cow, elastic</td>
<td>fresh</td>
<td>across grain</td>
<td>1</td>
<td>73</td>
<td>SD = 2</td>
<td>3</td>
<td>188</td>
<td>SD = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>along grain</td>
<td>5</td>
<td>286</td>
<td>SD = 53</td>
<td>5</td>
<td>137</td>
<td>SD = 3</td>
<td></td>
</tr>
<tr>
<td>cow, rectum</td>
<td>fresh</td>
<td>wall</td>
<td>1</td>
<td>6.9</td>
<td>SD = 1.7</td>
<td>3</td>
<td>18</td>
<td>SD = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>28</td>
<td>SD = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Skeletal muscle: parallel to muscle fibres</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>fresh</td>
<td>37</td>
<td>5.9(^{\text{th}})</td>
<td>180</td>
<td>SD = 18</td>
<td>9-13</td>
<td>broadband</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>210</td>
<td>SD = 18</td>
<td>7.5</td>
<td>240</td>
<td>SD = 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
<td>220</td>
<td>SD = 16</td>
<td>8.4</td>
<td>310</td>
<td>SD = 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>320</td>
<td>SD = 25</td>
<td>9.8</td>
<td>410</td>
<td>SD = 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>400</td>
<td>SD = 24</td>
<td>10.46</td>
<td>440</td>
<td>SD = 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.9</td>
<td>590</td>
<td>SD = 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man/cow</td>
<td>fresh</td>
<td>--</td>
<td>1</td>
<td>16</td>
<td>SD = 3</td>
<td>3</td>
<td>48</td>
<td>SD = 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>71</td>
<td>SD = 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>--</td>
<td>20 - 35</td>
<td>.3</td>
<td>9.0</td>
<td>SD = 1.7</td>
<td>.87</td>
<td>18.0</td>
<td>1.7</td>
<td>25.4</td>
</tr>
<tr>
<td><strong>Skeletal muscle: perpendicular to muscle fibres</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>fresh</td>
<td>37</td>
<td>5.9(^{\text{th}})</td>
<td>120</td>
<td>SD = 16</td>
<td>9-13</td>
<td>broadband</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>170</td>
<td>SD = 21</td>
<td>7.5</td>
<td>200</td>
<td>SD = 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
<td>130</td>
<td>SD = 18</td>
<td>8.4</td>
<td>220</td>
<td>SD = 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>280</td>
<td>SD = 35</td>
<td>9.8</td>
<td>290</td>
<td>SD = 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>300</td>
<td>SD = 23</td>
<td>10.46</td>
<td>370</td>
<td>SD = 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.9</td>
<td>480</td>
<td>SD = 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man/cow</td>
<td>fresh</td>
<td>--</td>
<td>1</td>
<td>8</td>
<td>SD = 1</td>
<td>3</td>
<td>30</td>
<td>SD = 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>40</td>
<td>SD = 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>--</td>
<td>20 - 35</td>
<td>.3</td>
<td>7.5</td>
<td>SD = 1.7</td>
<td>.87</td>
<td>5.5</td>
<td>3.4</td>
<td>26.5</td>
</tr>
<tr>
<td>Species</td>
<td>Condition</td>
<td>Temp. (°C)</td>
<td>f (MHz)</td>
<td>$\alpha$ (m$^{-1}$)</td>
<td>Variation (m$^{-1}$)</td>
<td>N</td>
<td>Technique</td>
<td>Precision</td>
<td>Source</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>Skeletal muscle: direction unspecified</td>
<td>man</td>
<td>--</td>
<td>.8</td>
<td>9.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>cow</td>
<td>--</td>
<td>2</td>
<td>--</td>
<td>21 - 115$^g$</td>
<td>--</td>
<td>--</td>
<td>narrow band$^b$</td>
<td>54</td>
</tr>
<tr>
<td>Cardiac muscle</td>
<td>cow</td>
<td>fresh</td>
<td>20 - 35</td>
<td>1.5</td>
<td>30</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>45</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>80</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cow</td>
<td>fresh</td>
<td>--</td>
<td>1.5</td>
<td>30</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>45</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>80</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cow</td>
<td>fixed</td>
<td>--</td>
<td>.3</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.35</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.4</td>
<td>8</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.575</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.6</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.7</td>
<td>14</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.8</td>
<td>14</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>fresh</td>
<td>--</td>
<td>2</td>
<td>20</td>
<td>SD = 10</td>
<td>12 per spectrum analysis</td>
<td>--</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>32</td>
<td>point: of a broadband</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>50</td>
<td>1 point pulse$^h$</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>66</td>
<td>1 point pulse$^n$</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>92</td>
<td>kHz</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tongue: parallel to fibres</td>
<td>cow</td>
<td>fresh</td>
<td>20 - 35</td>
<td>1.5</td>
<td>23</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>32</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>65</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Tongue: perpendicular to fibres</td>
<td>cow</td>
<td>fresh</td>
<td>20 - 35</td>
<td>1.5</td>
<td>45</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>65</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Tongue: direction unspecified</td>
<td>cow</td>
<td>fresh</td>
<td>--</td>
<td>1.5</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>32</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>62</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Abnormal Muscle</td>
<td>dog, infarcted fresh cardiac muscle</td>
<td>--</td>
<td>2</td>
<td>0</td>
<td>SE = 10</td>
<td>7 per spectrum analysis</td>
<td>--</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cardia...</td>
<td></td>
<td></td>
<td>4</td>
<td>20</td>
<td>SE = 10</td>
<td>point: of a broadband</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>60</td>
<td>SE = 15</td>
<td>1 point pulse$^h$</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>115</td>
<td>SE = 15</td>
<td>1 point pulse$^n$</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>190</td>
<td>SE = 10</td>
<td>kHz</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Nerve Tissues</td>
<td>man, brain fixed</td>
<td>20 - 35</td>
<td>.3</td>
<td>8.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.87</td>
<td>14.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td>18.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4</td>
<td>36.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>man, brain</td>
<td>--</td>
<td>1</td>
<td>17</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>36 - 51</td>
<td>12</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>pig, (whole brain) (white matter)</td>
<td>fresh</td>
<td>2.5</td>
<td>18</td>
<td>16 - 21</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>pig, brain fixed</td>
<td>--</td>
<td>.35</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.6</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.8</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cow, brain</td>
<td>fresh</td>
<td>20 - 35</td>
<td>.87</td>
<td>8.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td>14.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4</td>
<td>33.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Condition</td>
<td>Temp. (°C)</td>
<td>f (MHz)</td>
<td>α (m⁻¹)</td>
<td>Variation (m⁻¹)</td>
<td>N</td>
<td>Technique</td>
<td>Precision</td>
<td>Source</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>dog, brain</td>
<td>in vivo</td>
<td>body</td>
<td>97</td>
<td>5.4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1%</td>
<td>41</td>
</tr>
<tr>
<td>cat, brain</td>
<td>in vivo</td>
<td>37</td>
<td>4.2</td>
<td>--</td>
<td>28 - 50</td>
<td>--</td>
<td>broadband</td>
<td>--</td>
<td>11</td>
</tr>
<tr>
<td>rat, spinal</td>
<td>in vivo</td>
<td>30-31.5</td>
<td>.98</td>
<td>10</td>
<td>8 - 12</td>
<td>7</td>
<td>narrow band</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>mouse, spinal</td>
<td>in vivo</td>
<td>2 ± .1</td>
<td>1</td>
<td>1.7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 ± .1</td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 ± .1</td>
<td></td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel to nerve fibres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, optic nerve</td>
<td>fresh</td>
<td>37</td>
<td>5.4m</td>
<td>290</td>
<td>SD = 14</td>
<td>9 - 13 broadband</td>
<td>--</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>280</td>
<td>SD = 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>430</td>
<td>SD = 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
<td>400</td>
<td>SD = 47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>600</td>
<td>SD = 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>500</td>
<td>SD = 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>620</td>
<td>SD = 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>670</td>
<td>SD = 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.46</td>
<td>600</td>
<td>SD = 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.9</td>
<td>740</td>
<td>SD = 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, medulla</td>
<td>--</td>
<td>20-35</td>
<td>1.7</td>
<td>14</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10%</td>
<td>43</td>
</tr>
<tr>
<td>oblongata</td>
<td></td>
<td></td>
<td>3.4</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cow, sciatic</td>
<td>--</td>
<td>20-35</td>
<td>3.4</td>
<td>35</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10%</td>
<td>43</td>
</tr>
<tr>
<td>Perpendicular to nerve fibres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, optic nerve</td>
<td>fresh</td>
<td>37</td>
<td>5.4m</td>
<td>210</td>
<td>SD = 20</td>
<td>9 - 13 broadband</td>
<td>--</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>240</td>
<td>SD = 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>310</td>
<td>SD = 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
<td>230</td>
<td>SD = 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>370</td>
<td>SD = 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>350</td>
<td>SD = 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>320</td>
<td>SD = 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>410</td>
<td>SD = 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.46</td>
<td>500</td>
<td>SD = 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.9</td>
<td>630</td>
<td>SD = 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, medulla</td>
<td>--</td>
<td>20-35</td>
<td>1.7</td>
<td>21</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10%</td>
<td>43</td>
</tr>
<tr>
<td>oblongata</td>
<td></td>
<td></td>
<td>3.4</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cow, sciatic</td>
<td>--</td>
<td>20-35</td>
<td>3.4</td>
<td>55</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10%</td>
<td>43</td>
</tr>
<tr>
<td>Normal Ophthalmic Tissues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, lens</td>
<td>--</td>
<td>10°</td>
<td>92P</td>
<td>--</td>
<td>--</td>
<td>spectrum analysis</td>
<td>--</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>156</td>
<td></td>
<td>of a broadband pulse⁹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cow, lens</td>
<td>fresh</td>
<td>28</td>
<td>3.25</td>
<td>64</td>
<td>6</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>12</td>
</tr>
<tr>
<td>cow, lens</td>
<td>--</td>
<td>22</td>
<td>10</td>
<td>230</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>58</td>
</tr>
<tr>
<td>cow, vitreous</td>
<td>--</td>
<td>22</td>
<td>6</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>58</td>
</tr>
<tr>
<td>cow, aqueous/</td>
<td>fresh</td>
<td>25-28</td>
<td>30</td>
<td>33</td>
<td>9</td>
<td>large broadband</td>
<td>15%</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>vitreous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man, skull</td>
<td>fresh</td>
<td>--</td>
<td>.3</td>
<td>23</td>
<td>7</td>
<td>--</td>
<td>broadband</td>
<td>--</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.6</td>
<td>52</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.8</td>
<td>92</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>170</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
<td>320</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td>430</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

353
<table>
<thead>
<tr>
<th>Species</th>
<th>Condition</th>
<th>Temp. (°C)</th>
<th>f (MHz)</th>
<th>α (m⁻¹)</th>
<th>Variation (m⁻¹)</th>
<th>N</th>
<th>Technique</th>
<th>Precision</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>man, skull</td>
<td>fresh/fixed</td>
<td>2.25</td>
<td>530</td>
<td>160</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>man, skull</td>
<td>fixed</td>
<td>3.5</td>
<td>780</td>
<td>230</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>man, skull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outer diplo</td>
<td></td>
<td>--</td>
<td>.8</td>
<td>150</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inner</td>
<td></td>
<td>--</td>
<td>--</td>
<td>24</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>man, skull</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>man/cow</td>
<td>fresh</td>
<td></td>
<td>1</td>
<td>150</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>dog, tibia</td>
<td>refrigerated</td>
<td></td>
<td>3</td>
<td>150</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>220</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>horse</td>
<td></td>
<td></td>
<td>1.43</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.86</td>
<td>460 - 580</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>920</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obstetric Tissues

|            | fresh          |            | 16 | 19.6 | SD = 2 | narrow band | 0.25 dB | 4 |

---

a The velocity was calculated from measurements of the reflection coefficient made with a thermocouple probe in a standing wave field.

b The authors do not indicate what this figure represents.

c Measurements were made on samples from eyes with a variety of tumors although no pathological condition was seen in the components of the eye.

d Reference 30 contains information on the variation of velocity with time after death.

e Data for the calculation of the standard deviation were taken from the graphs in the reference.

f Calculation of the standard deviation was not possible since each figure quoted by the author is a mean of 16 to 25 measurements.

g The authors do not give individual measurements but only quote this range.

h The authors do not specify the frequency used, except that the pulse used contained substantial components in the range 3 to 4 MHz.

i The "average value" for bone quoted by these authors must be disregarded because of the manner in which it was obtained.

j Only the range can be obtained from the data which are represented graphically.

k This includes data from U.S.A. and Australia, and a study comparing measurements with radiographic findings.

l Data used to calculate the mean and standard deviation were those marked "a" in tables II to V of reference 20 (i.e. those breasts diagnosed by pathology studies of excised tissue).

m These figures refer to the dominant frequency in the acoustic pulse from a reflector in water, but the authors comment that this may change by as much as 12 percent.

n This method gives the attenuation as a continuous function of frequency, but the authors did not include diffraction corrections necessary for accurate results.

o Frequency resolution 300 kHz.
p The attenuation coefficient was assumed to be linear with frequency.

q This author also gives some indication of the temperature variation of the attenuation coefficient.
r Pulse technique using piezoelectric receiver.
s Continuous wave technique using radiation balance receiver.

t These authors also give information on the variation of the attenuation coefficient with the degree of inflation of the lung.

u Reference 26 contains further information on the variation of velocity in foetal brain with the gestational age of the foetus.
Fig. 1. Frequency dependence of the velocity of ultrasound in various normal tissues at $23 \pm 3$ °C.

Fig. 2. Frequency dependence of the velocity of ultrasound in various normal tissues at $36 \pm 1$ °C.
- Buschmann et al. [10]
- Chivers and Hill [7]
- Pohlman [42]
- Dussik et al. [4]
- Schwan et al. [21]
- Colombati and Petralia [43]
- Goldman and Hueter [1]
(pooled data)

Fig. 3. Attenuation of ultrasound in normal fat.

- Mountford and Wells [44]
- Chivers and Hill [7]
- Hueter [45]
- Hueter and Pohlman [46]
- Pauly and Schwan [17]
- Esche [47]
- Colombati and Petralia [43]
- Goldman and Hueter [1]
(pooled data)

Fig. 4. Attenuation of ultrasound in normal liver.

Kidney: - Kessler [48]
- Hueter [45]
- Hueter and Pohlman [46]
- Esche [47]
Spleen: - Chivers and Hill [7]
Uterus: - Dussik et al. [4]

Fig. 5. Attenuation of ultrasound in normal abdominal organ tissue (other than liver).
Fig. 6. Attenuation of ultrasound in normal muscle.


Fig. 7. Attenuation of ultrasound in normal brain.


Fig. 8. Attenuation of ultrasound in normal nervous tissues (other than brain).
References


Absorption, 19, 29, 43, 153
Acoustoelectric effect, 63
Amino acids, 19
Anisotropy, 73, 189
Attenuation, 19, 37, 43, 63, 73, 81, 85, 93, 101, 121, 125, 153, 157, 197, 203, 209, 247, 255, 281, 287, 343
Backscattering, 153, 157, 165, 247, 275, 327
Beam displacement, 203
Beam distortion, 203
Blood, 165, 173
Bone, 19, 179, 189, 197
Brain, 81, 203, 209
Breast, 13-16, 85, 93, 173, 221, 255
Cell detachment, 317
Cepstrum, 287
Collagen, 19, 73, 179, 189
Color-coded B-scan, 255, 261
Computed tomography, 227, 235, 247, 255, 337
Convolution, 287
Correlation analysis, 275
De-convolution, 287
Dispersion, 81, 189, 197
Doppler, 173, 227, 235
Dynamic autocorrelation analysis, 275
Elasticity, 73, 189
Estimation theory, 125
Eye, 19, 111
Filtering, 299-300
Hamming window, 281
Heart, 43, 73, 153, 267
Homomorphic processing, 287
Hydroxyapatite, 179, 189
Hyperthermia, 57
Image analysis, 255, 303
Imaging,
  annular array, 255
  brain (transskull), 235
  Doppler (moving media), 235
  image reconstruction (see computed tomography)
  synthetic focus, 235
Impedance, 81
Inhomogeneity thermal losses, 37
Interferogram, 73
Kidney, 303
Lag windows, 281
Lipids, 157
Liver, 125, 153, 157, 287, 303
Lung, 19, 135, (see scattering)
Microscopy, myocardium, 73
Myocardium, 63, 73, 153, 267
Opto-acoustic visualization, 255
Pattern recognition, 297, 303
Phantoms, 179, 323, 327, 337
Phase compensation, 209, 235
Polypeptides, 19
Probability density functions, 125
Prostate, 297
Proteins, 19, 157
Pulse compression, 255
Relaxation phenomenon, 29
Scattering, 37, 111, 135, 143, 153, 157, 281 (see also backscattering)
Sensitivity enhancement, 255
Signal averaging, 255
Skull, 197, 203, 209
Spectral analysis, 43, 111, 125, 143, 261, 267, 281, 287
Speed, (see velocity)
Temperature dependence of ultrasonic properties, 57, 63, 203, 227, 235
Temporal changes, 267, 275
Thermal "lesions", 203
Thermal wave, 37
Thermodynamics, 189
Tissue death, 317
Tomography, (see computed tomography)
Transducer calibration, 255
Velocity, 19, 43, 53, 57, 63, 73, 81, 179, 189, 197, 343
Visco-elasticity, 189
Viscous relative motion, 37
AUTHOR INDEX

Bahn, R. C., 227, 235
Barger, J. E., 197
Barnes, P. W., 81
Baxter, B., 235
Beaver, W., 267
Birnholz, J., 287
Bowen, T., 57
Boyle, D., 267
Boynard, M., 165
Brady, J. K., 19
Rusey, H. S., 323
Carson, P. L., 337
Cartensen, E. L., 29
Christensen, D., 235
Chivers, R. C., 343
Clayman, W., 337
Connor, W. G., 57
Czerwinski, M. J., 303
Dain F., 125
Davidson, C. L., 179
Dick, D. E., 337
Dietz, D. R., 255
Doppman, J. L., 255
Duck, F. A., 247
Dunn, F., 19, 43
Edmonds, P. D., 323
Eagleton, R. C., 327
Elbaum, M. E., 111
Filly, R. A., 323
Finby, N., 125
Fraser, J., 287
Freeny, M., 157
Frizzell, L. A., 19, 43
Fry, E. K., 85
Fry, F. J., 85, 203
Gaca, A., 297
Gallagher, H. S., 85
Gammell, P. M., 101
Glover, G. H., 221
Gore, J. C., 275
Goss, S. A., 19, 43
Gramiak, R., 143
Greenleaf, J. F., 227, 235
Halliwell, M., 173
Hanss, M., 165
Heyser, R. C., 101
Higgins, F. P., 255
Hill, C. R., 247
Holasek, E., 261
Hunter, L. P., 143
Jennings, W. D., 261
Johnson, S. A., 227, 235
Johnston, R. L., 19, 43
Joynt, L., 267
Katz, J. L., 189
Kessler, L. W., 73
Keuewe, J., 121
Kino, G. S., 287
Kobayashi, T., 93
Krenek, F. W., 81
Kuc, R., 125
Leb, D. E., 303
Le Croissette, D. H., 101
Lee, P. P. K., 143
Leeman, S., 275
Lees, S., 179
Lerner, R. M., 143
Levi, S., 121
Linzer, M., 255
Lizzi, F. L., 111
Lock, E., 297
Lyon, E. A., 157
Maynard, V., 19, 43
McGraw, C. P., 81
Metreweli, C., 275
Miller, J. G., 37, 63
Mimbis, J. W., 63
Mountford, R. A., 173
Nasoni, R. L., 57
Nider, L., 43
Norton, S. J., 255
O'Brien, W. D., Jr., 19, 43
O'Donnell, M., 37, 63
Parkinson, D. B., 323
Parks, S. I., 255
Parry, R. J., 343
Phillips, D. J., 209
Pifer, A. E., 57
Plessner, N. J., 275
Popp, R., 267
Preston, K., Jr., 303
Purnell, E. W., 261
Rakowski, H. E., 267
Reid, J. M., 153
Reyes, Z., 323
Rhine, T. L., 135
Robinson, D. E., 281
Rajagopalan, B., 227, 235
Roseboro, J. A., 101
Sanghvi, N. T., 85
Scheid, W., 297
Schenk, E. A., 143
Schwartz, M., 125
Shabason, L., 337
Shawker, T. H., 255
Shideler, R. W., 255
Sholes, R. R., 57
Shung, K. K., 153
Skidmore, R., 173
Skolnik, M. L., 303
Smith, S. W., 209
Sobel, B. E., 63
Sollish, B. D., 53
Thomas, P. J., 227
Thurstone, F. L., 209
von Ramm, O. T., 209
von Seelen, W., 297
Webb, R. C., 143
Weiss, L., 317
Wells, P. N. T., 173
Wessells, G., 297
Whitcomb, J. A., 327
Wilson, K., 275
Wilson, R. L., 101
Woodcock, J. P., 173
Yoon, H. S., 189
Yuhas, D. E., 73
The Second International Symposium on Ultrasonic Imaging and Tissue Characterization was held at the National Bureau of Standards on June 13-15, 1977. The meeting was cosponsored by the National Bureau of Standards, the National Science Foundation, and the National Institutes of Health. This volume contains extended and reviewed papers based on 43 of the 53 talks presented at the Symposium. Topics covered include techniques for measurement of ultrasonic tissue parameters, the dependence of tissue properties on physical and biological variables (e.g., ultrasonic frequency, temperature), mechanisms of ultrasonic tissue interactions, propagation through bone and skull, tumor Doppler signatures, computerized tomography, signal processing and pattern recognition, and tissue phantoms. A survey of velocity and attenuation data in mammalian tissue is included in an appendix.
NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology, and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent NBS publications in NBS and non-NBS media. Issued six times a year. Annual subscription: domestic $17.00; foreign $21.25. Single copy, $3.00 domestic; $3.75 foreign.

Note: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS

This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, $11.00; Foreign $13.75

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically validated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash., D.C. 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.


Order following NBS publications—NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.


NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature survey issued biweekly. Annual subscription: Domestic, $25.00; Foreign, $30.00.

