
NBS SPECIAL PUBLICATION 502

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to

strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this

end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and

technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro-

mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute

for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the:

Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist-

ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen-

tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab-

oratory Astrophysics- — Cryogenics' — Electromagnetics — Time and Frequency'.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure-

ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti-

tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air

and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOG"y provides technical services developing and promoting the use of .avail-

able technology; cooperates with public and private organizations in developing technological standards, codes, and test meth-

ods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of

the following divisions and centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product

Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Safety; Building

Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services

designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection,

acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus wthin the exec-

utive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer

languages. The Institute consist of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process

to facilitate technological change in the private sector by examining and experimenting with Government policies and prac-

tices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede

the innovation process.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific informa-

tion generated within NBS; promotes the development of the National Standard Reference Data System and a system of in-

formation analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services

to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the

following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library —
Office of International Standards — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

2 Located at Boulder, Colorado 80302.

Computers and Mathematical Programming

Proceedings of the Bicentennial Conference
on Mathematical Programming held at the

National Bureau of Standards, Gaithersburg,

Maryland, November 29-December 1, 1976

Edited by

William W. White

IBM Corporation

Poughkeepsie, New York 12602

Sponsored by:

Special Interest Group on Mathematical Programming

Association of Computing Machinery

1133 Avenue of Americas

New York, New York 10036

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued February 1978

and

Applied Mathematics Division

Institute for Basic Standards

National Bureau of Standards

Washington, D.C. 20234

acm
sigmap

Library of Congress Catalog Card Number: 77-600065

National Bureau of Standards Special Publication 502

Nat. Bur. Stand. (U.S.), Spec. Publ. 502, 383 pages (Feb. 1978)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1978

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. C13. 10:502). Stock No. 003-003-01893-7 Price $5.50

(Add 25 percent additional for other than U.S. mailing).

ABSTRACT

The Bicentennial Conference on Mathematical Programming, held in Gaithersburg on

November 29-December 1, 1976, examined the relationship between mathematical

programming and the computer. The more than 50 papers and panel discussions

exhibited this theme in terms of the design for, use of, implementation of, and implica-

tions for mathematical programming software and computations. Particular emphasis

was placed on bringing out computer-oriented subject matter not ordinarily presented

in a mathematical programming context. These resulting Proceedings document this

Conference, which was jointly sponsored by SIGMAP of the ACM and by the Applied

Mathematics Division of the Institute for Basic Standards of NBS.

Keywords: Mathematical programming; linear programming; nonlinear programming;
computer software; management science; operations research; computer science;

algorithm evaluation; mathematical programming education; software development;

databases

- iii -

I

I

BICENTENNIAL CONFERENCE COMMITTEE

GENERAL CHAIRMAN:

Dr. Harvey J. Greenberg, Federal Energy Administration

PROGRAM CHAIRMAN:

Dr. William W. White, IBM Corporation

FINANCE AND REGISTRATION CHAIRMAN:

Professor W. Charles Mylander, III, U. S. Naval Academy

PUBLICITY CHAIRMAN:

Mr. Clarence L. Haverly, Haverly Systems, Inc.

NBS REPRESENTATIVE:

Mr. William Hall, National Bureau of Standards

PROCEEDINGS EDITOR:

Dr. William W. White, IBM Corporation

CONFERENCE ADVISOR:

Professor Saul I. Gass, University of Maryland

- iv -

PREFACE

First I wish to thank the Bicentennial Conference Committee and our host. The

National Bureau of Standards, for their efforts in making this conference so very

successful. These proceedings record the presentations, but it is not possible to include

the many interesting discussions that took place among the leading researchers as well

as newcomers.

Special notice should be taken of subjects not previously considered in confer-

ences on mathematical programming. In particular, two subjects are: (1) interfaces

with the computing environment (hardware and software), and (2) database manage-

ment (including matrix generation/report writing). Bill White is to be congratulated in

developing a program that really spans the mainstreams of mathematical programming.

Further, he did so by inviting the leaders in these subjects and helping them to form

well organized sessions.

Finally, and by no means least, I extend special thanks to our plenary speakers,

George Dantzig and William Orchard-Hays. It is certainly appropriate for these

founders of the field of Mathematical Programming Systems (MPS) to have provided

the foundation for the rest of the program.

Harvey J. Greenberg

- V -

FOREWORD

The Bicentennial Conference on Mathematical Programming was held on November 29 -

December 1, 1976, at the National Bureau of Standards, Gaithersburg, Maryland. This Conference

was jointly sponsored by the Special Interest Group on Mathematical Programming (SIGMAP) of the

Association of Computing Machinery, and by the Applied Mathematics Division of the Institute for

Basic Standards, National Bureau of Standards, U. S. Department of Commerce.

The basic theme of the Conference was the relationship between mathematical programming and

the computer, and the presented papers and panel discussions exhibited this theme in terms of the

design for, use of, implementation of, and implications for mathematical programming software and

computations. Particular emphasis was placed on bringing out computer-oriented subject matter not

ordinarily presented in a mathematical programming context. Both contributed and invited papers

were presented, with the contributed papers being refereed: of 54 abstracts received, 47 full papers

were submitted, and 30 were selected for presentation by the Session Chairmen, together with the

Program Chairman, after the refereeing process.

The Session Chairmen functioned as an extended program committee, and, in consultation with

the Program Chairman, really assembled their respective sessions. Special thanks are due them for

their contribution to the technical content of the Conference. And thanks go to the referees: G.

Bennington, J. P. Blondeau, L. Bodin, B. Buzby, L. Cooper, J. Cord, R. Cottle, R. Davis, R. Dembo,

W. Drews, J. Dyer, J. Eddington, F. Fiala, S. Fromovitz, D. Gay, M. Gutterman, M. Harrison, G.

Hefley, D. Himmelblau, H. Hoc, R. Jeroslow, D. Klingman, T. Knowles, G. Kochenberger, J. Kowalik,

C. Krabek, M. Lenard, R. Marsten, C. McCallum, R. Meyer, M. Minkoff, J. Mulvey, R. O'Neill, T.

Prabahakar, L. Pyle, A. Ravindran, H. Salkin, L. Schrage, M. Smith, K. Spielberg, R. Stark, A. Waren,

'

C. White, and J. Whiton.

The Conference Committee did an outstanding job. Under the expert guidance of Harvey

Greenberg, the administrative chores were accomplished so as to permit the technical program to be

developed with a minimum of impact from secondary sources. In particular, Charles Mylander and

Larry Haverly (and his alter ego, Joyce Draper) did yeoman's work on their respective duties. Thel

advice from Saul Gass was especially welcome, particularly when the Conference was in its formative

stages. ^ J

The National Bureau of Standards was a most appropriate location for this Conference, having

)

been a center of activity in computation and optimization for over a quarter of a century. And, the

warm welcome given by B. H. Colvin, Chief of the Applied Mathematics Division, and by A. M
McCoubrey, Director of the Institute for Basic Standards, was reflected as well in the excellen.

conference facilities and logistics provided by NBS. Thanks and appreciation go to NBS, ano

especially to Bill Hall, the NBS representative, and to Sarah Torrence, of the NBS staff.

William W. White

VI

TABLE OF CONTENTS

REMARKS ON THE OCCASION OF THE BICENTENNIAL CONFERENCE ON MATHEMATICAL
PROGRAMMING: THE EARLY ROLE OF N.B.S.

G. B. Dantzig, Stanford University 1

KEYNOTE ADDRESS: Energy Models and Large-Scale Systems Optimization

G. B. Dantzig and S. C. Parikh, Stanford University 4

PLENARY ADDRESS: The Challenge of Analytic Use of Computers for Global Problems

W. Orchard-Hays, IIASA 11

RECENT ALGORITHMIC ADVANCES - I

Organized and Chaired by A. Orden, University of Chicago

Implementation and Application of a Nested Decomposition Algorithm

J. K. Ho, Brookhaven National Laboratory 21

A Stepping-Stone Parallel-Cut Method for Integer Programming

T. Cheung, University of Ottawa 31

Monomial Programming

T. L. Shaftel, University of Arizona and Queen's University

G. L. Thompson, Carnegie-Mellon University

Y. Smeers, Catholic University of Louvain 38

Implementation and Use of Nonlinear Cost Multicommodity Flow Subroutines

H. H. Hoc, Ecole Polytechnique 51

Implicit Representation of Triangularity Constraints in Linear Programming

G. Gunawardane, University of Sri Lanka and University of Chicago

L. Schrage, University of Chicago 59

An Efficient General Algorithm for the Computation of Linear Decision Rules

S. F. Thomas, Caribbean Industrial Research Institute 65

APPLICATIONS: PUBLIC SECTOR
Organized by M. Held, IBM Systems Research Institute, and Chaired by H. Crowder, IBM Research

*The Structure and Solution Techniques of the Project Independence Evaluation System

F. Murphy, Federal Energy Administration 73

National and Interregional Programming Models of Land and Water Use and the Environment

E. O. Heady, K. J. Nicol and D. Dvoskin, Iowa State University 86

A Nonlinear Programming Approach to Preference Maximized Menu Plans

J. L. Balintfy and P. Sinha, University of Massachusetts 97

*Denotes Invited Paper

- vii -

ISSUES IN THE EVALUATION OF MATHEMATICAL PROGRAMMING ALGORITHMS
Organized and Chaired by R. H. F. Jackson, National Bureau of Standards, Boulder

Sponsored by the Working Committee on Algorithms of the Mathematical Programming Society

*On the Analysis and Comparison of Mathematical Programming Algorithms and Software

R. S. Dembo, Yale University

J. M. Mulvey, Harvard University 106

Avenues for Research in the Evaluation of Mathematical Programming Algorithms

H. J. Greenberg, Federal Energy Administration

R. P. O'Neill, Louisiana State University (Presentation Only)

The Evaluation of Unconstrained Optimization Routines

L. Nazareth, Argonne National Laboratory

F. Schlick, University of Illinois 117

PANEL ON ISSUES IN THE EVALUATION OF MATHEMATICAL PROGRAMMING ALGORITHMS
Organized and Chaired by R. H. F. Jackson, National Bureau of Standards, Boulder

Sponsored by the Working Committee on Algorithms of the Mathematical Programming Society

R. S. Dembo, Yale University

J. J. Filliben, National Bureau of Standards

H. J. Greenberg, Federal Energy Administration

J. L. Kreuser, World Bank

R. P. O'Neill, Louisiana State University 134

APPLICATIONS: PRIVATE SECTOR
Organized and Chaired by D. Soults, Management Science Systems, Alexandria

*Large Scale Mathematical Programming: A Total System Approach

T. Prabhakar, Union Carbide, South Charleston 143

A Search Enumeration Algorithm for a Multiplant Multiproduct Scheduling Algorithm

S. Morito and H. M. Salkin, Case Western Reserve University 144

DATABASE MANAGEMENT SUPPORT
Organized and Chaired by H. Patton, Exxon

*An IMS-Gamma 3 Database Editor

E. B. Brunner, Gulf Oil, Pittsburgh 152

Software Tools for Combining Linear Programming with Econometric Models

M. J. Harrison, National Bureau of Econometric Research 165

Database Management Techniques for Mathematical Programming

R. H. Bonczek, C. W. Holsapple and A. B. Whinston, Purdue University 171

PANEL ON THE IMPLICATIONS OF THE HARDWARE ENVIRONMENT
Organized and Chaired by J. Tomlin, Stanford University

E. Hellerman, Census Bureau

D. Stevenson, Institute for Advanced Computation, Sunnyvale (Discussion Only)

*Denotes Invited Paper

- vui -

NUMERICAL METHODS
Organized and Chaired by R. Bartels, The Johns Hopkins University

Convergence of the Diagonalized Method of Multipliers

R. H. Byrd, The Johns Hopkins University 180

Direct Approaches for the Minimax Problem

A. R. Conn, University of Waterloo 184

Numerical Aspects of Trajectory Algorithms for Nonlinearly Constrained Optimization

W. Murray, National Physical Laboratory

M. H. Wright, Stanford Universit 194

Optimization Algorithms Derived from Nonquadratic Models

J. S. Kowalik, Washington State University 205

RECENT ALGORITHMIC ADVANCES - II

Organized by A. Orden, University of Chicago, and Chaired by S. I. Gass, University of Maryland

Algorithms for a Class of 'Convex' Nonlinear Integer Programs

R. R. Meyer and M. L. Smith, University of Wisconsin 210

Extreme Point Ranking Algorithms: A Computational Survey

P. G. McKeown, University of Georgia 216

A New Alternating Basis Algorithm for Semi-Assignment Networks

R. Barr, Southern Methodist University

F. Glover, University of Colorado

D. Klingman, University of Texas at Austin 223

Recent Developments in Vehicle Routing

B. L. Golden, Massachusetts Institute of Technology 233

Balasian-Based Enumeration Procedures: A Study in Computational Efficiency

J. H. Patterson, Purdue University 241

SOLUTION STRATEGIES AND TACTICS
Organized and Chaired by J. Kalan, University of Texas at Austin

A Study of the Effect of LP Parameters on Algorithm Performance

C. H. Layman and R. P. O'Neill, Louisiana State University 251

Sensitivity Analysis For Parametric Nonlinear Programming Using Penalty Methods

R. L. Armacost, U. S. Coast Guard

A. V. Fiacco, The George Washington University 261

Approximations in Linear Programming

J. Kalan, University of Texas at Austin (Presentation Only)

The Generalized Inverse in Nonlinear Programming — Equivalence of the Kuhn-Tucker,

Rosen and Generalized Simplex Necessary Conditions

L. D. Pyle, University of Houston 270

•Denotes Invited Paper

- ix -

MATHEMATICAL PROGRAMMING EDUCATION
Organized and Chaired by J. F. Shapiro, Massachusetts Institute of Technology

Teaching Mathematical Programming to the Consumer

M. L. Fisher, University of Pennsylvania 275

On Teaching Linear Programming Fundamentals

J. M. Mulvey and R. D. Shapiro, Harvard University 279

Experiments with Computer Aided Self Paced Instruction for Mathematical Programming

Education

A. Ravindran, A. Sinensky and T. Ho, Purdue University . 286

Importance of Modelling for Interpretation of Linear Programming Models

L. W. Swanson, Northwestern University 294

Interactive Computer Codes for Mathematical Programming Education

R. P. Davis and J. W. Chrissis, Virginia Polytechnic Institute and

State University 302

PANEL ON EXECUTOR/SUPERVISOR SUBSYSTEMS AND THE SOFTWARE ENVIRONMENT
Organized and Chaired by E. Hellerman, Census Bureau

D. Carstens, Burroughs Corp.

J. Kalan, University of Texas at Austin

C. B. Krabek, Control Data Corporation

W. Orchard-Hays, IIASA (Discussion Only)

PROBLEM SOLVING SYSTEMS: CAPABILITIES AND STRUCTURE
Organized and Chaired by J. L. Nazareth, Argonne National Laboratory

*A Problem Solving System for Nonlinear Least Squares

B. A. Arnoldy, Argonne National Laboratory

K. Brown, University of Minnesota 310

*An Iteratively Reweighted Least Squares System

V. Klema, National Bureau of Economic Research 319

An Experimental Interactive System for Integer Programming

M. Guignard, University of Pennsylvania

PANEL ON SELECTION AND EVALUATION
Organized and Chaired by A. C. Williams, Mobil Oil, Princeton

J. G. Colahan, Pennwalt Corp., Philadelphia

J. R. Ellison, Mobil Oil, Beaumont

M. M. Gutterman, Standard Oil of Indiana, Chicago

D. S. Hirshfeld, Management Science Systems, Falls Church 354

Denotes Invited Paper

K. Spielberg, IBM Corp., White Plains 328

An Accelerated Technique for Ridge Following Using Conjugate Directions

E. H. Neave, Queen's University

T. L. Shaftel, University of Arizona and Queen's University 338

- X -

SOFTWARE DEVELOPMENT
Organized by G. T. Martin, Control Data Corp., New York, and Chaired by C. B. Krabek,

Control Data Corp., Minneapolis

Development of Mathematical Programming Systems

D. S. Hirshfeld, Management Science Systems, Falls Church (Presentation Only)

Experiences in the Development of a Large Scale Linear Programming System

R. Sjoquist, Control Data Corporation, St. Paul 358

Experiences in Developing OMNI
C. L. Haverly, Haverly Systems Inc (Presentation Only)

Experiences in the Development of PDS/MAGEN
S. Halliburton, Haverly Systems Inc (Presentation Only)

OPERATIONAL MANAGEMENT
Organized and Chaired by J. R. Estabrook, Union Carbide, Bound Brook

Math Programming Users vs. the Computer Center (A Personal Perspective As Seen From

A Foxhole)

J. R. Ellison, Mobil Oil, Beaumont 362

Operational Management of Mathematical Programming Based Planning Systems

E. G. Kammerer, Union Carbide, South Charleston 364

Managing a Large Scale Production and Distribution Scheduling System

K. Goldfisher, Nabisco Inc 368

* Denotes Invited Paper

- xi -

I

I

I

REMARKS ON THE OCCASION OF THE

BICENTENNIAL CONFERENCE ON MATHEMATICAL PROGRAMMING

THE EARLY ROLE OF N.B.S.

George B. Dantzig

Stanford University

It's a great pleasur
I'm very glad that
Director of the In
Standards of the N
Standards , in his in
told us for whom NBS
consumer, industry,
community, and educat
It is nice to learn th
government truly work
of us had come to beli
other way around.

e to be here today.
Dr. McCoubrey, the
stitute for Basic
ational Bureau of
troductory remarks

,

worked, namely the
the scientific

ional institutions,
at some parts of the
for us because some
eve that it was the

Dr. McCoubrey mentioned the early days
of linear programming and the cooperative
role played by the Bureau with Air Force
Project SCOOP. I would like to make this
my theme today

.

As some of you may recall, I was the
mathematical advisor to the Air Force
Comptroller at the time that linear
programming was born. Thinking back to the
early days, I have discovered a remarkable
coincidence that I would like to pass on to
you between the date chosen for this
commemorative conference, November 29,
1976, and the date when linear programming
began. Preliminary flirtations with the
idea started in the fall of 1946. By
November 29, 1946, exactly 30 years ago,
linear programming was conceived.

During the war I took part in the
planning activities of the Air Force. In
the immediate postwar period, I was in the
throes of trying to decide whether to stay
with government, begin an academic career,
or do research for industry. I couldn't
make up my mind. There were some people in

Edited from a transcription taken at the
Conference. For additional background
information and more detailed references on
SCOOP and early mathematical programming
influences and activities, see Chapter 2 of
G. B. Pantzig, LINEAR PROGRAMMING AND
EXTENSIONS, Princeton University Press,
1963.

the Input-Output
(for which he

in 1973) could be
In the winter of

the Air Force (particularly Dal Hitchcock
and Marshall Wood) who were very keen on
having me stay. As bait they suggested
that I try to the mechanize of the planning
process. This challenge intrigued me. In
the fall of '46, I toyed with different
approaches. By November 29, 1946, the idea
came that perhaps
technique of Leontief
received the Nobel Prize
suitably generalized.
'46, my work began in earnest; by June of
'47, the linear programming model as we
know it today was well along.

Our research from early 1947 on was
influenced by a conference arranged by
Aiken at Harvard. It was here that
Marshall Wood and I became first exposed to
the idea of an electronic computer. It was
a wonderful conference. Although it was
only a gleam in the eyes of the speakers,
they talked about electronic computers as
if they really existed and indeed with
capabilities very much as they have today.
I was overwhelmed with the potential of
this new tool. To appreciate what happened
in the early stages of linear programming,
it's well to remember that we believed that
computers would become practical within a

year or two. We acted accordingly.

It would be interesting to speculate how
many important developments might never
have happened if one knew that it would
take almost two decades for powerful
computers to become a practical reality.

From the beginning, it was this gleam in
the eye of the designers that fast,
practical computers really would soon
become available that motivated
computational development of linear
programming. It resulted in the Air Force
decision to mechanize the planning
process. The name for the effort was Air
Force Project SCOOP, standing for
Scientific Computation of Optimum Programs.
The Office of Naval Research, particularly
Dr. Mina Reese, who is well known to many
of you, played an important role. She
introduced us to John Curtiss and his

1

mathematics group at the Bureau. Her
office subsidized related research.

Our group was not technically equipped
to supervise or evaluate the development of
computers. We turned to the Bureau of
Standards to serve as our technical agents,
to keep us informed about computer
developments. And so it came about that I

became one of the behind-the-scenes
sponsors of the early development of
computers. The Air Force Comptroller
transferred huge sums of money to the NBS
for this purpose. There were close
contacts with Sam Alexander whose group at
NBS built the SEAC . Air Force money helped
NBS fund the building of BINAC, UNIVAC, and
also some IBM component research. I don't
claim that SCOOP was the only sponsor
(directly or indirectly) in this field;
there were others , for example the Bureau
of the Census; nor did SCOOP sponsor the
building of SWAC under Harry Huskey at the
Bureau's Institute of Numerical Analysis at
UCLA,

I am particularly grateful for the
advice of Albert Cahn who worked for
Curtiss. He recommended two key people
whom he said I should consult regarding the
relation of linear programming to
economics, mathematics, and numerical
analysis: the first was the economist,
Tj ailing Koopmans; the other, the famous
mathematician, Johnny Von Neumann. In June
of 1947, I went to the Cowles Foundation at
the University of Chicago to see Koopmans.
This contact initiated his interest and
soon the interest of other young economists
(many now well known) in the relationship
between mathematical programming and
economics. In 1975 Koopmans received the
Nobel Prize for his contributions to the
theory of resource allocation. In the fall
of 1947, I went with Curtiss to Princeton
to see Von Neumann at the Institute of
Advanced Study. In the course of our
discusssions , Von Neumann stated the
duality theorem, related it to game theory,
and made other observations that laid the
mathematical foundations. (The history of
the duality concept makes an interesting
story in itself.)

In June of 1948, John Curtiss again
introduced me, this time to his
brother-in-law, Al Tucker at Princeton.
Soon thereafter Tucker with his students
Harold Kuhn and David Gale started a
seminar which resulted in their well known
contributions to duality theory, game
theory and nonlinear programming. Von
Neuman and Tucker spearheaded the interest
of mathematicians.

While this academic interest was
growing, work began in earnest within the
Air Force to mechanize the planning
process. During the period 1947-52 there
were two main branches to our efforts --

one practical, the other theoretical. The
goal of the practical branch was to

implement quickly and to solve routinely
very, very large dynamic programs required
for planning. These systems were so large
that, even by today's standards, they would
be beyond anyone's capability to optimize
as a single linear program. For practical
planning Marshall VJood and I invented a
hierarchical stepwise optimization scheme
called a "triangular model". We echelonned
the activities of the Air Force in
"parasitic" order -- namely on the top rung
were the combat units (which took from
everybody but gave nothing in return) ; next
below them were the support units in the
combat zone (which took from everybody
below them but gave nothing in return) ; and
so forth down to support units that
recruited and trained personnel and the
units which bought and distributed
supplies. Although called a triangular
model it could be applied to general
matrices by first making a triangular
approximation and then making iterative
corrections by adding on additional lower
rungs in the hierarchical ordering. Murray
Geisler's group formulated Air Force
planning problems in this manner. Sted
Nobel and others extended the formulation
to sectors of the national economy.

The triangular model scheme was
implemented computationally in the spring
of 1949 by Mike Montalbano of the National
Bureau of Standards. On the plane coming
to this conference I ran into Mike. We
reminisced about his achievement. Mike did
a very remarkable thing: he used IBM
punched card equipment, the only equipment
available, in a way that no one had ever
used it before. To iteratively carry out
the programmed steps, he processed the
cards through a sequence of machines:
tabulators, sorters, reproducers,
collaters , and IBM 604 's, all arranged in a

great big circle. Because the equipment
was unreliable, he also processed the cards
through two pieces of similar equipment
serially in order to have one machine check
the computations of the other.

One day during the development of the
computational system by Montalbano, Wassily
Leontief visited Washington. I asked
Wassily if he would like to come on over to
the Bureau of Standards to take a look
(they had a downtown office where tests
were being run) . It was a Sunday, and Mike
was pleased to put on a demonstration of
just how wonderful his system was. He
pointed out that the equipment was
unreliable and how he had to get after IBM
regularly to make it work. He pointed out
the features of his system for checking
errors. "For example", he said, "See those
two reproducers, one following the other?
If the holes punched by the second do not
match exactly those punched by the first,
the second reproducer will stop, turn on
red lights, and we will know that the last
card processed is wrong."

As the cards were running through the

2

second reproducer, Mike said, "You see, at
this point everything is working fine,
there are no red lights."

But on the side to me he said, "Isn't it
making a loud crunching noise?"

As he pulled the cards from the output
hopper, we saw that the columns were laced
full of holes -- indeed they were nothing
but confetti. The cards were clearly
overpunched, but no red lights had turned
on. Leontief tapped me on the shoulder and
said, with his Russian accent, "There,
there, I understand these things. Don't
vorry. A machine is like a voman, very
temperamental." This story is a classic
example of System Antics the science of
why complex systems work poorly if at all.
Something unforeseen always happens. In
this case someone the night before had
changed the standard positions of the
control brushes on the reproducer and
forgot to change them back.

Turning now to the theoretical branch,
namely research on the linear programming
model, here also the Air Force turned to
the Bureau for help. Jack Laderman and his
group at the Mathematical Tables Project in
New York, using hand calculators, solved
Stigler's nutrition problem using the
Simplex Method (December 1948) . This was
the first real test of the method. To do
the computations, Laderman handed out small
worksheets. These completed worksheets
were pasted together to form a huge "table
cloth". In going through some old
correspondence recently, I found a letter
from Oskar Morgenstern -- he wanted to come
down to Washington to see the famous table
cloth. I wonder whatever happened to it?

In early 1950, Montalbano with Corky
Diehm wrote the first Simplex Code and made
successful runs with it on the SEAC
computer

.

There were others at the Bureau well
known to you who contributed in a major way
to the early development. Alex Orden, who
is here today, was with the Bureau for a
brief period before he joined our Air Force
group. There was Ted Motzkin, Alan
Hoffman, and Leon Gainen. George Suzuki,
now with the Bureau, was with us at SCOOP,
as was Joe Natrella, whose wife Mary is
still at the Bureau. During the early
1950 's, Hoffman, Mannos , Sokolowsky and
Wiegman ran comparative tests of the
Simplex Method with alternative algorithms.
At I.N. A., Motzkin, Raiffa, Thompson, and
Thrall developed the Double Description
Method; Motzkin and Shoenberg developed
the Relaxation Method; and C. B. Tompkins,
the Projection Method.

Those were the days to remember! I,

personally, am grateful to the Bureau for
(1) their pioneering the construction of
computers and their sponsorship of others
in the field; (2) their design of the first
linear programming software; (3) their
contacts with economists and mathematicians
which brought about early interest by the
academic community; (4) their sponsorship
of symposia on mathematical programming;
(5) their research on mathematical
programming theory, algorithms, and their
making comparative tests. These
contributions played a major role in the
early rapid development of the mathematical
programming field.

3

ENERGY MODELS AND LARGE-SCALE SYSTEMS OPTIMIZATION*

George B. Dantzig and Shailendra C. Parikh

Stanford University

The optimization of large-scale dynamic
systems represents a central area of research
whose successful outcome could make important con-
tributions to the analysis of crucial national and
world problems. Although a great number of papers
have been published on the theory of solving large-
scale systems, not much in software exists that

can successfully solve such systems. We believe
that there has been little progress, because there
has been little in the way of extensive experimen-
tation comparing methods under laboratory-like con-
ditions on representative models. At Stanford's
Systems Optimization Laboratory (SOL), to bridge
this gap between theory and application, we

(1) develop experimental softv/are for solving
large-scale dynamic systems,

(2) systematically compare proposed techniques on
representative models,

(3) record and disseminate information regarding
experimental results.

PILOT Energy-Economic Model

Dynamic models that describe the inter-
actions between the energy sector and the general
economy help in providing a focus to our research
in experimenting with large-scale optimization
models. Models of this type are under development
by a number of groups to study the energy crisis
and a probable future crisis in the area of food
(agriculture). Developers of these models could
make effective use of techniques for solving
large-scale systems, if they were available.

Today's policy makers at industrial,
governmental and international levels are faced
with the decisions on providing the needed energy
in the years to come at acceptable social cost.

Such decisions must take into account many com-
plex interactions related to the technology of

Research of this paper was partially supported
by the Office of Naval Research Contracts
NOOOli+-75-C-0267, NOOOII+-75-C-O865; U.S. Energy
Research and Development Administration Contract
E(o1+-31-526 pa #18; the National Science Founda-
tion Grants MCS71-033^1 AOi+, DCR75-Oi+5'^'+; the
Electric Power Research Institute Contract
RP 652-1 ; and the Stanford Institute for Energy
Studies at Stanford University.

energy supply, environmental side effects, energy
resource conservation, etc., as well as the national
welfare considerations of unemployment, inflation
and living standards.

Some of the important questions that must
be considered in detail in the formulation of the
energy policy (or policies,) are the following:

(1) Are we using up our cheap energy resources too

quickly?

(2) Are we making sufficient investments now so

that new energy technologies will come into
commercial operation when needed in future
years?

(3) Do we have sufficient physical capacity to

build the required new plant and equipment in

the energy and nonenergy sectors without
seriously hampering growth in consumer con-
sumption, or will some sacrifice in consump-
tion be necessary?

{h) What are the various energy options under
different patterns of crude oil import price
realizations?

(5) What will the short and long term impact be
if oil and gas discoveries are less than pre-
dicted?

(6) Can we find an energy policy that is robust,
i.e., one which hedges against various con-
tingencies?

It is our belief that dynamic mathematical pro-
gramming models can, at the very least, provide
analysis and information on these and other ques-
tions and can substantially improve the understand-
ing of the interactions that must be considered.
Such models have been developed at IIASA, at the
Electricite de France and by various groups in the
United States.

In the Systems Optimization Laboratory at

Stanford we have under development a linear pro-
gramming model for assessing energy-economic op-
tions in the United States, called PILOT [7]. It

spans a wide spectrum of activities of the economy,
from exploration and extraction of raw energy to

industrial production and consumer demands for all
goods and services. The data requirements there-
fore cut across many different sources—consumer
surveys, import/export and trade balance data,

manufacturers surveys, mining data, input /output

4

and capital coefficients, energy consumption and
substitution data, energy technology data from
Brookhaven National Laboratory and oil and gas
exploration and production data. Hence, there is

a nontrivial problem of achieving consistency and
of selecting a meaningful level of detail so that
the model stands as a whole rather than as a con-
glomeration of parts that could collapse under
careful analysis. We believe that the initial ver-
sion of the model being built will meet this test.

The PILOT model is a statement in physical
flow terms, to the extent possible, of the broad
technological interactions within and across the
sectors of the economy, including, but in greater
detail, the energy sector. A typical run of the
model describes what the country could achieve in

physical terms over the long term, say ko years.

A preliminary version of the model has
been completed and several useful scenarios have
been run [l6]. In 1977, improved versions of the
model will be developed, with more detail regard-
ing exploration and extraction by regions, more
detailed modeling of various conversion processes,
better representation of foreign trade, substitu-
tion, financial flows and the effect of prices on
demand and production.

The initial version of the PILOT model is

an eight period, year model which has approxi-
mately 800 constraints and 2000 variables.

The model is a description in input/output
terms of the industrial processes of the economy
and the demands for consumption, capacity forma-
tion, government services and net exports. The
description of the processes that provide useful
energy to the economy constitutes the detailed
energy submodel. This consists of technological
input/output descriptions of the raw energy ex-
traction and the energy conversion processes as

well as the energy import and export activities.
Four linkages interconnect the energy sector and
the rest of the economy: energy demands of the
economy, bill of goods needed for energy process-
ing and capacity expansion, total manpower avail-
able to all sectors (including energy) and a trade
balance constraint which requires the equating of
total exports to total imports when these items
are evaluated in I967 dollars over successive
five year periods. See Figure 1, which shows the
major blocks of coefficients in a time period,
and its link to the next time period show below
and to the left of the dotted lines.

As noted earlier, the equations of the
model express the balances of various physical
flows. For the energy sector, the balances of
coal, oil, gas, etc. are each expressed in BTU
units. For the economy, the units are I967
dollars, which are obtained by weighting the
underlying physical flov/s of goods and services
(assumed to be in fixed proportions) by I967 prices
per unit.

The industrial sectors of the economy are
represented by a 23-order input/output matrix. The
sectors are grouped as follows: 5 energy sectors,
1 agriculture, 1 nonenergy mining, 5 energy inten-
sive manufacturing, h energy nonintensive manufac-
turing, h services and 3 capital formation.

Consumption is modeled in terms of the con-

sumption vector of the average consumer. This
sector does not have a fixed bill of goods per
capita but varies as a function of a parameter
representing the real consumption income attained
per capita. Based on an analysis of historical
data, consumption of any item as function of aver-
age consumption income is nearly linear [2].

Capacities for each of the I8 nonenergy
sectors and all of the energy processes are differ-
entiated from one another. The heterogeneous cap-

ital equipment of the nonenergy sectors is depre-
ciated, whereas the energy facility capacities are
assumed instead to have undepreciated, fixed life-
times. Construction lags are used to specify the
time it takes to build new capacity. These con-

struction lags may be chosen individually for all
18 nonenergy sectors as well as for all energy
facilities

.

The exports are treated as final demand
items. The imports are considered in two parts,

competitive and noncompetitive. The noncompetitive
imports are for those goods and services for which
no domestic substitutes exist. They are treated
as a part of the technology of the consuming in-
dustrial sector. On the other hand, competitive
imports of goods and services for which domestic
substitutes do exist are treated as activities that

can augment the domestic production. Finally, a

trade balance constraint ties together the amounts

of all Imports and exports. Typically, we have
assumed over a five year period that the value of
total exports be matched by that of imports.

The labor force is assumed to be exogenously
given. Also, average labor productivity is assumed
to grow at an exogenously given rate. In sample
runs, the "standard of living" attained appears to

be very sensitive to this factor. In the base
case, 2^ per year productivity growth is assumed.

The detailed energy sector contains the con-
ventional energy technologies, such as oil refinery,

coal fired plant, etc., as well as new technologies,
such as coal synthetics, oil shale, plutonium fired
reactors, etc.

The description of the energy sector includes

an accounting of reserves remaining of three ex-
haustible energy resources: oil, gas and uranium.

For oil and gas, finding-rate functions are used
to specify the amount of oil in place and gas re-

serves to be found for a given amount of drilling
effort. The level of drilling effort is endoge-
nously determined. The advanced (and expansive)
techniques of secondary and tertiary recovery are

also defined in the model. Alaskan oil production
and the Trans-Alaskan Pipeline System (TAPS) con-
struction are assumed to be exogenously given. For
natural uranium, increasing facilities and man-
power are required to extract a ton of ore as more
and more is extracted. In particular, progress-
ively higher amounts of uranium mining and milling
capacity are needed to process the poorer grade
ore per pound of uranium oxide obtained. While, in

principle, generalized linear programming could be

used to model the nonlinear functions, we, in faqt,

replaced the nonlinear functions by broken line

fits.

5
i

FIGURE 1

6

The PILOT model can be used in conjunction
with any desired social objective. Consideration
of reasonable alternative objectives requires
further investigation. Some objectives may re-

quire their expression partly in the form of extra
constraints as well as in the values of the coef-
ficients of the maximand. The objective chosen
in- the base case in the initial version of the

model is the undiscounted sum of the gross na-

tional consumption over all Uo years, subject to

I

(l) a "monotonic per capita" constraint which
states that the average per capita consumption must

be nondecreasing over time, and (2) an initial con-

dition which sets a lower limit on first period
consumption. Experimentation with other maximands

is possible. For example, we have experimented
with discounted gross national consumption.

The objective of PILOT is designed to per-
mit one to determine feasible solutions to our

I

economy— in particular, what level of investment
I (in physical terms) both in the energy and non-

energy sectors is necessary in order to have as

high a standard of living as possible for the grow-
ing population.

Once the physical flows are determined, it

is possible to solve a related financial invest-
ment model. The financial flow model calculates
a system of prices, taxes, salaries, profits, in-

terest rates, etc. that is internally consistent
in the sense that all economic agents—consumers,
producers, government, etc., —receive sufficient
monies to pay their expenses for the specified
physical flows. The prices generated by the model
can be adjusted to be, at the same time, nonin-
flationary, i.e., to have the same buying power as

base year prices. We also are giving some thought
to incorporating in the model production and demand
functions to adjust input/output coefficients as a

function of prices. In the initial version of the
model these coefficients are fixed, however.

To illustrate some of the output of the
model, a typical base case assumes a 2^o growth in

labor productivity, 20^ limit on the total amount
of energy purchased overseas, certain limits on
the rate of growth of coal production, etc. A base
case run computes consumption income (income after
taxes and savings). In 1975 this income per capita
(in 1975 dollars) was about $^500. Based on these
assumptions, the model states it is possible for
the country to have a future consumption income
per capita relative to consumption per capita in

1975 as follows:

1975 1980 1985 1990 1995 2000 2005 2010

1.0 1.0 1.2 1.6 1.7 1.8 2.0 2.2

This possible future can be compared with that ob-
tained from another scenario, which is the same as
the base case but restricts the use of nuclear
power plants. This naturally results in a lower
achievable per capita consumption income. Relative
to 1975, the results are as follows:

1975 1980 1985 1990 1995 2000 2005 2010

1.0 1.0 1.2 1.5 1.5 1.5 1.5 1.5

Comparing the two scenarios at the year 2010, we
have 2.2 vs. 1.5, i.e., the nuclear restriction

could reduce the " standard of living" achievable
by 2010 by 30^. This conclusion has been criti-
cized because the model assumes that consumption
patterns of people at different income levels will
remain unchanged (i.e. they won't practice conser-
vation or change their life styles) and that pro-
duction methods will be no more efficient in the
use of energy in the future than they are today.
This criticism we feel has merit and we are, ac-
cordingly, considering revisions in the model to

include more substitution and conservation possi-
bilities.

Because of excellent liaison with other
groups working in the energy field, we anticipate
that the proposed physical flow model will contri-
bute to the formulation and solution of the more
detailed specialized models under development
elsewhere. In particular, the PILOT model is one
being compared with other models by the newly
formed U.S. Energy Modeling Forum in its examina-
tion of the feedback effects from the energy sec-
tor on the economic growth.

Solving Multi-Time-Period Models*

Solving energy models by commercial linear
programming software is proving to be expensive.
Large-scale techniques, such as those under devel-
opment at the Systems Optimization Laboratory, are
currently under test to see if they can help solve
these models more efficiently.

Conceptually, the decomposition principle
[8] has proved to be a natural approach to break-
ing up large systems and to decentralized decision
making. So far, computational experience has been
limited, but it is known that several devices can
be effectively combined with the decomposition
principle to accelerate the iterative process.
Classic research along these lines can be found in

the work of Rosen [17], Beale [3], Gass [9], Bell
[k], Abadie [1], Bennett [5], as well as in the
joint work of Wolfe and Dantzig [8]. Areas of

SOL research include (l) intertemporal models
with staircase structures, (2) the continuous
simplex method for linear control problems with
state-space constraints, and (3) general large-
scale dynamic nonlinear problems.

Recently, experiments have been conducted
at SOL comparing the Decomposition Principle ap-

proach with a special variant of the simplex method
known as Generalized GUB. These tests were limited
in nature but indicated that Generalized GUB is

superior. Our research on dynamic systems is

therefore examining variants of the simplex method
as well as special methods for decoupling stair-

case and block-triangular systems. See Figure 2.

We plan to compare these approaches with the nested
decomposition algorithm of James K. Ho and Alan S.

Manne for staircase systems [12].

Staircase systems have historically proven
to be very difficult, usually requiring a dispro-
portionately large number of simplex iterations
to solve.

-X-

This section is based on a summary prepared by

J. A. Tomlin.

7

PLRIOD I^ERIOD 2 PERIOD T

FIGURE 2. The Staircase Structure of the PILOT Energy Model

J. A. Tomlin of SOL has experimented with
a partial decoupling of time periods within a
model by relaxing the intertemporal constraints.
The expectation is that such a relaxation will
result in a more easily solvable model, whose
solution can be used as a starting point for the
real model, using some "gradual" approach to re-
store the intertemporal constraints. As might be
expected, the results of this approach are quite
problem dependent, and sensitive to the degree and
the kind of relaxation employed. It appears that
tightly constrained economic planning models, of

the type available to us for these experiments,
require a more sophisticated approach. Other
types of staircase models are being acquired to
further test this idea.

One of the more promising methods that

have been investigated for reducing solution time
for dynamic models involves several modifications
to the simplex method designed to take advantage
of the special properties and behavior of such
models. The essential property of interest is the
tendency of the same type of activity to be basic
over several successive time periods. It there-
fore seems desirable to introduce a profitable
type of activity in as many time periods as possi-
ble simultaneously. To do this M.A. Saunders and
J.A. Tomlin have explored variants of the reduced-

gradient method (a nonlinear programming algorithm
already implemented by Murtagh and Saunders in

MINOS [1^]) on these linear problems to change
several nonbasic variables simultaneously, in

8

contrast to the standard simplex method which
changes only one nonhasic variable at a time. To

ensure that the correct nonbasic variables are
used, a "special pricing" technique is employed.

When the problem is read in, similar activities
in different time periods are identified (from the
column or variable names) and linked by a circular
list. Thus when an activity is priced out and
found to have a favorable gradient, the correspond-
ing vectors in other time periods can be easily
found and examined, and, if satisfactory, included
as candidates to be changed. It is then possible
to make a step which introduces an activity in

several successive time periods simultaneously.

Preliminary experiments with the above
approach have led to a reduction of 20-30/o in

Phase II iterations when compared to the standard
simplex method applied to the type of economic
planning models referred to above. It is clear
that many tactical variations of the scheme need
to be studied.

If it is advantageous to bring in an activ-
ity simultaneously in many time periods, then,

conversely, it should be advantageous to be able
to also force an unprofitable activity to its

lower bound in several time periods simultaneously.
This is rather more difficult, since one cannot
tell whether a whole group of variables can reach
their bounds while maintaining a feasible solution
(at least, not without incurring a heavy computa-
tional cost) . The approach we have implemented
identifies groups of unprofitable nonbasic activ-
ities close to their bounds and forms a direction
vector scaled in such a way that if one of these
variables reaches its bound then all of them do.

This method has had some success in reducing the
iteration count when combined with the "special
pricing" described above. Again many variations
are possible, and very considerable further ex-
perimentation is required to refine the methodology
and expand on the promising results achieved so

far.

While we have concentrated on means of
improving the solution path (iteration count)

above, another means of improving solution tech-
niques for staircase models is to speed up each
step of the simplex algorithm by taking advantage
of the special structure of the basis for such
problems. As early as 195^, G.B. Dantzig [6]

pointed out that such problems exhibit an "almost"
square block-triangular basis structure which
could be decomposed into a product of a true
square block-triangular matrix and another matrix
with only a few columns differing from the unit
matrix. The advantage of this procedure is that
square block-triangular matrices can themselves
be very efficiently decomposed to give a very
sparse factorization of the basis. A version of

this method, employing modern factorization tech-
niques, has been implemented at SOL by A.F. Perold
(a graduate student) and is now being tested on
problems of significant size. Early indications
are that this method of handling the basis can in-
deed be more efficient than a direct treatment
which does not take the staircase structure of
models into account. Perold' s code is based on
sol's LPMl linear programming code, as was the
nested decomposition code by J.K. Ho and A.S. Manne
[12] for the same class of problems. This should

facilitate comparison between the specialized
simplex and decomposition approaches to these
models.

An alternative to all of the above numer-
ical treatments of discrete multi-time-period
models is to attempt to solve the underlying con-
tinuous time problem, which can be thought of as a

linear control problem with state-space constraints.
G.B. Dantzig and R.E. Davis are investigating a

"continuous simplex method" for such problems. Al-
though progress has been made, much work remains
to be done.

Selected Bibliography

[1] Abadie, J.M. (1962), "Dual Decomposition
Method for Linear Programs," Comp. Center
Case Institute of Technology, July I962.

[2] Avriel, Mordecai (1976), "Modeling Personal
Consumption of Goods in the PILOT Energy
Model," Technical Report SOL 76-I7, Depart-
ment of Operations Research, Stanford Univer-
sity, Stanford, California.

[3] Beale, E.M.L. (1963), "The Simplex Method
Using Pseudo-Basic Variables for Structured
Linear Programming Problems," from Recent
Advances in Math. Prog. , R. Graves and P.

Wolfe, eds., McGraw-Hill.

[h] Bell, E.J. (196U), "Primal-Dual Decomposition
Programming," Industrial Engineering Depart-
ment, University of California, Berkeley,
unpublished Ph.D. Thesis.

[5] Bennett, J.M. (1966), "An Approach to Some
Structured Linear Programming Problems,"
Operations Research , Vol. ik, No. k, July-
August, 1966, pp. 656-6I45

.

[6] Dantzig, George B. (195^), "Upper Bounds,

Secondary Constraints, and Block Triangularity
in Linear Programming (Notes on Linear Pro-
gramming: Part VIII, X)," The RAND Corporation,
RM-I367, October 195^; also in Econometrica

,

Vol. 23, April 1955, pp. 17^-183.

[7] Dantzig, George B. and S.C. Parikh (1975),
"On a PILOT Linear Programming Model for

Assessing Physical Impact on the Economy
of a Changing Energy Picture," Energy; Mathe -

matics and Models , Fred S. Roberts, ed., Proc.

SIMS Conference on Energy, Alta, Utah, July

1975, pp. 1-23.

[8] Dantzig, George B. and P. Wolfe (1961), "The
Decomposition Algorithm for Linear Program-
ming," Econometrica, Vol. 29, No. h, October
1961.

[9] Gass, Saul I. (I966), "The Dualplex Method
for Large-Scale Linear Programs," Operations
Research Center, 1966-I5, University of
California, Berkeley, June I966, Ph.D. Thesis.

[10] Geoffrion, A. (1970), "Elements of Large-
Scale Mathematical Programming, Part I:

Concepts," Management Science , Vol. 16, No.

11, pp. 652^575:

9

[11] Geoffrion, A.M. (1971), "Large-Scale Linear
and Nonlinear Programming," in Optimization
Methods for Large-Scale Systems , D.A. Wismer,
ed., McGraw-Hill, pp. hi -Ik.

[12] Ho, J.K. and A.S. Manne (197^), "Nested De-
composition for Dynamic Models," Mathemat-
ical Programming, Vol. 6, pp. 121-1^+0,

197 i+.

[13] Lasdon, L.S. (1970), Optimization Theory for
Large Systems , MacMillan.

[\k] Murtagh, B.A. and M.A. Saunders (1976),
"Nonlinear Programming for Large, Sparse
Systems," Technical Report SOL 76-15,
Department of Operations Research, Stanford
University, Stanford, California.

[15] Orchard-Hays, W. (1973"), "Practical Problems
in L.P. Decomposition," in Decomposition of
Large-Scale Problems , North Holland.

[l6] Parikh, Shailendra C. (1976), "Analyzing
U.S. Energy Options Using the PILOT Energy
Model," Technical Report SOL 76-27, Depart-
ment of Operations Research, Stanford Uni-
versity, Stanford, California.

[17] Rosen, J.B. (1963), "Primal Partition Pro-
gramming for Block Diagonal Matrices,"
Computer Science Division, School of Human-
ities and Sciences, Stanford University,
Technical Report No. 32, November I963

;

Numerishe Math . , Vol. 6, No. 3 (196^4),

25O-26I4.

10

THE CHALLENGE OF ANALYTIC USE OF COMPUTERS
FOR GLOBAL PROBLEIIS

VJilliam Orchard-Hays
International Institute for Applied Systems Analysis

This year the United States is two
centuries old, as you may be tired of
hearing by now. Even if one goes back to
the early English settlements, this land
is only about three and one-half centuries
old. That is not very long, really. In
terms of generations, about 12 to 14. The
small city near Vienna where I have been
living for nearly two years goes back to
the tenth or eleventh century. There are
many active monasteries in Austria and
some have been in continuous operation
since the eighth or ninth century. So we
are a young nation in some ways; yet our
political institutions are among the
oldest in their present form, and in many
areas of technology and business we have
led the rest of the world.

The impact of the U.S. on the world
has been tremendous. One must live for
awhile outside North America to begin
really to understand this. Other peoples
have watched us--not necessarily their
governments--much longer than we have
watched them, and still do to a greater
degree. VJe began to be a world power
probably about the time of the Spanish-
American war, just over three-quarters of
a century ago. After World War I, U.S.
business became a dominant force in many
areas and grew with the world. And it
has grown. I was born just before the
end of World VJar I and the population of
the world was then much less than two
billion, or less than 45% of what it is
today. Approximately the same ratio
holds for the U.S. and the effect is
noticeable

.

During and after World War II, of
course, the U.S. became the mightiest
nation on earth--in almost any way you
want to measure except sheer population
figures. Yet it was five years after
that before computing as we know it to-
day could be said to be in its infancy.
(Vuegraph 1.) There were, of course,
antecedents going back much further, but
these are mainly of historical interest.
I started in the field at the RAND
Corporation in January, 1951. It was
three years later before we had a real
computer and we were among the first. I

had lived almost half a lifetime before

getting into computing and still my career
has spanned virtually its entire history.
So our field is very young indeed.

Nevertheless, the accomplishments of
the computing field during its first
quarter century are extremely impressive.
Furthermore, with apologies to our many
foreign friends and professional associ-
ates, computing is almost exclusively an
American development. There are three
technologies in which we are still clearly
supreme: telephone systems, commercial
aircraft, and computing. (The list is no
doubt longer but, I fear, getting shorter
as time goes on.) One flies almost every-
where in American aircraft, and foreign
computer manufacturers have all but given
up—with the possible exception of Japan
and the new imitative line which the
Eastern bloc is attempting to create.
Some very good software has come out of
France, particularly in the MP field, and a
little from England, but almost always in
connection with American manufacturers or
other multi-national corporations. The
bulk of system software comes from the U.S.
and a large part of application software.
(Vuegraph 2, with extemporaneous dis-
cussion of evolution of computing
technology .

)

I think no one in the 1950s really
understood the amount of effort required to
develop systems, application packages,
efficient compilers, and so on. Almost
nothing worked right during the whole
frustrating decade of the '60s. In retro-
spect, it is not surprising and we could
all be forgiven, I think, for a little
self-praise that so much was actually
accomplished. But those frustrations
often left a bad taste, a deep skepticism,
a rigidity of method and, in some cases,
bad feelings. One can still see the
effects of this.

But the '60s are behind us, and there
is no point in dwelling on the mistakes,
failures and unrealistic estimates. The
solid accomplishments far outweigh them.
In fact, the field has progressed so
rapidly that it is now possible for one or
two people to accomplish in a couple of
weeks what would have been considered,
only ten years ago, a sizeable project. I

11

have completed several such tasks in the
past several months, and surprised even
myself. But this doesn't happen always
and everywhere. It is surprising how
much computing is still done in old-
fashioned ways (if we can use that term
for so young a field) and how slowly newer
techniques spread. At one time, I fought
operating systems--not because I didn't
understand the problems but, on the
contrary, I understood them very well and
didn't trust anyone else to solve them in
a way satisfactory as a base for my work.
Against the advice of knowledgeable
colleagues, I long ignored telecommu-
nications, remote processing and inter-
active systems--except for a couple of
especially suitable uses— for the same
reason. But in all cases, enough people
worked long enough to make the various
systems operate in a satisfactory and even
elegant and fruitful manner.

Of course, most of us are not inter-
ested in the whole computing field. In
fact, it is now so extensive that it is
almost impossible to comprehend it. How-
ever, the math programming field is very
rich in itself and its growth has both
paralleled and been a component part of
the whole experience of the computing
field. It had its identifiable beginnings
at the same time as computers, that is, in
about 1947-8. That was when Dantzig
developed the simplex method in connection
with planning problems for the U.S. Air
Force. As with computers, about five
years passed during early developments
before linear programming began to
blossom into a practical technique. A
quarter of a century has passed since
then and, for most of this time, LP has
pushed the capacity of current computers
to the limit. LP and the simplex method
are still the foundation stones of the
whole field of math programjning and the
vanguard of OR techniques.

I first started working with George
Dantzig in December, 1952. I got the
idea somehow that I was supposed to build
an automated simplex method and that the
principle problems were the amount of
arithmetic, maintaining sufficient pre-
cision, and the large storage required.
We started out modestly. I tried for 25
rows on the old Card-Programmed-
Calculator and upped this to 40 when we
worked out the product form of inverse.
A year later we were trying to do 100
rows on the IBM 701 and, when I solved
Alan Manne ' s 101 -row gasoline blending
problem, I thought we had really accom-
plished something. We went to 256 rows
on the 704, later 512 and then 1024 rows
on the IBM 7090. It was ten years after I

started before we had a reasonably auto-
matic system for that size problem, and
then not always. Furthermore, the data
processing and service routines out-
weighed the algorithms. I didn't know
what I was getting into in 1952.

But then I suspect neither did George

Dantzig. The development of mathematical
programming in breadth, depth, prestige and
applications during the 1960s was fantas-
tic. VJe had our share of frustrations—
decomposition, in spite of much initial
interest, extensive software efforts, and a

later revival, has still not been per-
fected nor applied on a large scale; matrix
generation techniques, with perhaps even
more intensive efforts, still have no
widely accepted theoretical or practical
basis. This area is now commanding much of
my own attention. However, we have an
international Mathematical Programming
Society with its own Journal and which
draws a bigger attendance at its symposia
than the whole computing community in the
mid-50s. Professor Dantzig 's work has
been recognized by a Presidential award.
All this and much more is well known to
you

.

Perhaps not so well known is the
institute where I am presently working.
It is called the International Institute
for Applied Systems Analysis or IIASA.
This represents a further extension of the
field of operations research to an inter-
national setting. It is not clear what we
should call this whole field of which we
are a part. It is not easy to define
systems analysis concisely, in fact one
program at IIASA is to produce a set of
definitive publications for the field.
Perhaps of more immediate interest is the
genesis and make-up of IIASA. It has been
in formal existence only since late 1972
but this was preceded by several years of
planning, negotiations and agreements.
Professor Howard Raiffa from Harvard was
its first director. In his speech at the
Council meeting in November 1975, he said
the following: "I believed in the con-
cept of IIASA when I was first introduced
to the idea by McGeorge Bundy back in
1968. ...Scientific detente then as now is
critically necessary if we are to have a

sane world." To what extent political
detente was a driving force in the for-
mation of IIASA is not clear to me--my
first introduction to the Institute was in
October 1973 when Dantzig asked me to
attend one of its organizational con-
ferences. In any event, it truly is
international in character with particular
emphasis on shared sponsorship and
direction by both East and West. The U.S.
and the U.S.S.R. each contribute equally
and in by far the largest amounts. There
are 13 or 14 other countries who each
contribute an equal but much smaller
amount. This funding is not done directly
as government grants but through Academies
of Science or equivalent organizations in
the various countries. Austria contri-
butes in a special way through providing
facilities at very low or even token rates,
which is in conformity with their policy
of becoming an international meeting
ground. The Institute is housed in the
refurbished summer palace--or Schloss, as
it is called—of Maria Theresa, at

12

Laxenburg about 10 miles south of Vienna.
(It is quite an experience working in the
midst of imperial splendor.) As to its
mission, I can do no better than to again
quote Raiffa: "I believe IIASA has a

mission. It must keep its doors open, so
that scientists who have a broad vision of
tomorrow's world can communicate with each
other. VJe cannot afford to let these
doors shut tightly because of some
ephemeral, trivial problems. We must
learn today how we can jointly grapple
with the stream of equally devastating
problems that will surely shake our
societies in the not too distant future."

Raiffa 's remarkable performance in
getting the Institute under way has become
almost legendary. He was replaced a year
ago by Dr. Roger Levien from the RAND
Corporation. The chairman remains
Professor Jermen Gvishiani from the USSR
Academy of Sciences.

For the past few months, I have been
working with the Energy Research Program,
headed by Professor VJolf Hafele from the
Federal Republic of Germany who is also
deputy director of IIASA. Hafele was one
of West Germany's leading experts in
nuclear energy and is well known in the
energy field. The Energy Program is
currently the largest at IIASA with about
two more years to go under present plans.
But there is not time for more details
about IIASA' s organization and operations.

There are many aspects to the Energy
Program but one is the formulation,
implementation, coordination and opera-
tion of a set of models with emphasis on
strategies for a transition from fossil
to nuclear fuels. At least that is the
way it started out. Hafele and Alan
Manne , with some assistance also from
Dantzig, produced an energy supply model
in 197U. It was a dynamic LP model and
there have been several variants and sub-
sidiary models. It remains the center-
piece of the modelling system but many
other areas have had to be investigated
and models are under development for some
of them. These include energy resources,
energy demands, long-range economic
forecasts (the last two being among the
most difficult) and secondary investment
requirements. Hafele asked me to
coordinate—he calls it orchestrate--the
computerization of the entire modelling
effort. In a practical sense, this turns
out to involve somewhat more than merely
computer aspects. When one is trying to
coordinate computations with a set of
models variously formulated by Russians,
Germans, Americans, Austrians, Frenchmen
and others, one must become involved with
concepts, definitions, nomenclature,
feasibility of approach and so on. One
must also push aside with some diplomacy
certain formulations and levels of detail
which are unsuitable for the overall task.

Many of the models are LP models.
The Russians, in particular, use LP to an
almost unbelievable extent in their

national planning and so it is under-
standable that they take the same approach
to international models. We also hope to
have not only many component models but
versions for at least a few regions of the
world with a global model of some kind on
top. Hafele has misgivings about the
appropriateness of LP for some of these
purposes, and so do I, but there is
clearly much LP work to do in any event.

It is clear that we will have to
solve some models many times on an inde-
pendent basis in order to get started. It
is my hope that we may learn enough this
way to be able to circumscribe the meaning-
ful ranges on parameters and devise
scenario parts which can be combined for
various cases. We don't yet know how to
handle the entire system of models in one
piece so why not cut it up and solve some
of the pieces a number of times to get
boundary conditions for the others. Maybe
you call this suboptimization but it is
better than no solution. However, for this
to be meaningful, as many of the models as
possible must be put into a consistent
framework with respect to style, structure,
nomenclature, indexing conventions and so
on

.

However, my main difficulty right now
is that I don't have a suitable computer
even for the pieces. I have the software,
and there is much other useful software
available to us, but not the computers.
Considering the nature of the place where
I'm working, this shouldn't be so. I am
now more than a little envious of all the
hardware I've seen in corporate head-
quarters, investment houses--yes, and
universities—which people are really just
playing around with. I don't want to take
it away from them because there are
beneficial side effects--a point I'll re-
turn to at the end. But there is some-
thing badly wrong with a world economic
order that gives its best tools to those
who really don't have an essential need
and denies them where they are needed for
studies with global implications.

At the Math Programming Symposium in
Budapest last August, I listened to a

Hungarian give a paper on a state planning
project he had been involved in. They
worked over a year and went through all
kinds of devious methods to solve their
model. Essentially, it was a big GUB
problem. All he needed was a few hours
with MPS-III on a 360/65 or better and the
problem would have been solved. I spent
some hard years developing GUB in MPS-III.
Here was someone who really needed it but
couldn't get at it for political and
economic reasons. It strikes me that there
is also something wrong with developing
tools and then not making them available
when they are needed. The money is spent
anyway. If the Hungarians do a better job
of planning with our tools, how can this
possibly hurt us? Oh, I'm fully aware of
the differences between East and West and
the difficulties of normal economic

13

relationships. Somehow this doesn't seem
very important anymore.

Perhaps you think I'm either off-base
or just naive. I think not. As short as
the history of our field is, it will be a

shorter time still before enormous human
calamities begin to occur. I don't mean
big wars--God forbid the world becomes
embroiled in any more of those, although
I could point out a couple of disadvan-
tages we now face if it did happen. But
calamities are already happening. Tens
or hundreds of thousands of people have
already starved in Bangladesh and middle
Africa, in just one season. Some people
now think India is a hopeless case.
Closer to home, the United Kingdom is a

catastrophe. V?ithin living memory, the
British Empire was the greatest power on
earth. It appears that England may soon
be reduced to a poor country. Even some
Frenchmen feel bad about it. Here at
home, we have had one oil crisis—you
took it seriously if you were living in
Boston at the time. There will be more.
It appears likely that OPEC oil prices
will go to $15.00 per barrel this month.
That is not yet a catastrophe for the
U.S. but prices will go higher and higher
unless some drastic changes are made in
our economic policies—that is. Project
Independence and much more must become a
reality

.

Eduard Teller visited IIASA last
month and gave a most wonderful talk on
alternate sources of energy. He said he
didn't know whether the really serious
problems of the world could be solved
but he was sure of one thing—they
couldn't be solved without plenty of
energy available. Furthermore, much of it
has to be in a form which is usable in
small doses in many places. For example,
it would do no good to put a thousand
megawatt reactor in an undeveloped
country. They simply don't have the
wires to carry the electricity away or to
distribute it to all the places it is
needed. The only form we presently have
which is usable this way is petroleum.
But if the U.S. keeps gobbling up 4555

of the world's production, the price will
keep going up putting it out of reach of
many nations who can barely pay for what
they use now. Furthermore, we only
hasten the day and postpone the prepara-
tion for it when we will begin to run
short ourselves. And unless we drasti-
cally change our style of living, that
will be a catastrophe here.

I bring these things to your atten-
tion to indicate the kind of problems
the world must be about solving--and
immediately. I will add to Teller's
remark and say the really serious problems
can't be solved without effective use of
computers on a wide scale. Not for
keeping accounts, or printing electric
bills and bank statements, or even for
simulating the aerodynamic qualities of a
new airfoil, but for systems analysis or

whatever you wish to call it, seriously
and expertly applied. That may not be
sufficient but it is necessary. Further-
more, the studies, planning and decisions
must be international in scope and that
means across East-VJest boundaries, among
others. Otherwise, either they will be
ineffective or there will be counterplays
which come to the same thing. And the
world has run out of time for playing such
games

.

I was talking to a senior French
analyst the day after Teller's talk and we
got to philosophizing a bit. I said I

thought there would be such dislocations in
the world during the next quarter century
that no one could predict how the global
economic order would change. He agreed
and even gave some examples from history.
I then added that I thought a catastrophe
in one area would be bound to have an
effect on the rest of the world. Here he
shook his head. No, he said, if a million
people died in India or Africa, some
people in Paris would send a little money
to the Post Office for a relief fund but
otherwise life would go on just the same.
No one would really care. Did the French
care when Spain was living in poverty?
No, it was a fine place for cheap vaca-
tions .

Still, I must believe that the cumu-
lative effect of a series of calamities
will be widespread, the more so as they
begin to be chronic rather than excep-
tional. The decline of British power, for
example, is probably a tragedy of greater
consequence than starvation in some un-
developed country. Why? Because, whether
the British were liked or not, they nearly
always left things in a better state than
they found them. If they can not now
manage their own affairs, the world has
lost one force for improvement and gained
still another problem. At the least, it
should be a sobering lesson to us.

I think all of us, even including
knowledgeable scientists and high officials
of state, have a tendency to disbelieve
what seems monstrous and new. We think of
such things abstractly unless and until
they come down to affecting our daily
lives. We might do well to remember Marie
Antoinette and the Romanovs. Optimism and
courage are great virtues but they lie
very close to foolhardiness . It is
commendable to be astute and shrewd in
business but this should be guided by
vision

.

The basic outline of approaching
world problems was recognized twenty years
ago. The late J.D. Williams gave some
very easily understood, dramatized papers,
unfortunately probably heard or read by
very few people. I attended a series of
seminars at the American Management
Association in 1961 and one lecture was a

partly humorous but highly convincing
dramatization of the alarming positive
rates of change in a variety of areas.
(I regret that I have forgotten the

14

speaker's name; he was from VJashington .

)

He presented this regularly to a variety
of business and government gatherings.
Perhaps he made it too easy to laugh.

History tells us over and over that
no arrangement is permanent. It is
foolish to believe that because we are
strong we can continue to consume far more
than our proportionate share of the world's
goods. If it were only a matter of others
attaining the degree of affluence we enjoy,
then it might be considered reasonable for
the technological leader to have the most.
This has been pretty much our attitude.
Western Europe has in fact gone a long way
toward catching up though their per capita
consumption of energy, for example, is
slightly less than half what ours is. In
other areas there is a discrepancy of an
order of magnitude and, in some cases,
almost two orders. Some of these areas
must increase energy consumption just in
order to provide food. But the ready
supply of easily distributed energy forms
is becoming limited. Our own strength
and prosperity depend on highly developed
uses of these same forms. We need not
moralize but only consider being placed
in competition with people who must have
some of what we want simply to survive.
In only another 25 years, the population
of the world will have increased another
50%, that is, by more people than were
living when I was born. If any substan-
tial number of these people improve their
living standard by even 10% to 20%--
which is almost nothing--the strain on
world capacities will be fantastic.

Let me put it another way. There
have been extensive, serious and competent
studies of world problems for a number of
years. Most of these are based on 1967,
occasionally 1970, figures. They talk
about 5 year, 10 year or 25 year pro-
jections, with a few attempts at long-
term forecasts for 50 years or longer.
But it is this minute very close to 1977.
More than five years have passed since
1970, nearly ten since 1967, and the
leaves of the calendar keep flipping. It
will soon be 1980 and then 1985. Already
world population will be at about 5

billion. When one measures this against
the time for building an industrial com-
plex, improving a transportation system,
resolving political issues, achieving
international accord for even modest
pro jects--well it is clear that many
babies born this very day are doomed
already. There is no such thing as
opportunity to improve their lot or free-
dom to choose their career.

So what can we do? Over the past two
decades, we have developed very powerful
tools for analysis and planning. A great
deal of hardware and software now works
and works well. Modelling techniques,
though far from perfect, are well advanced.
We are now in a position technically to
make real inroads on world problems, to
undertake the kind of work which

originally motivated the development of
large computers, and planning and ana-
lytical techniques. But we have not yet
learned to coordinate their use consis-
tently on a broad scale, nor to convince
the actual decision-makers that they can
place considerable reliance on results.

We must find ways to make the use of
our marvellous tools more effective.
First of all, this means use of inter-
active systems on both large and small
computers, tied together with networks in
a consistent manner. All these things
exist, piecemeal, and are in daily,
reliable use. We have the technology but
we lack coordination and singleness of
purpose. In the West, this is due to
business competition— including the
universities and research centers which
are nothing more or less than large
businesses. In Europe, the discontinu-
ities between traditional nations and
peoples add further dichotomies. Between
the free market countries and the
planned-economy bloc, fundamental policy
differences exist. Comparing all these
more or less developed countries with
underdeveloped countries, one finds that
the latter don't even understand the game.
They know something of the basic tools but
very little about motives, incentives, and
other driving forces. Of course, there
are individual exceptions.

Usina comouters with common conventions
for analvtical work can be a very strong
unifying force. No doubt much of the work
of this kind has been of small value but
if it brings diverse peoples together a

little, this is in itself an accomplish-
ment. Moreover, some of the efforts are
certainly first rate and fruitful. The
more widely they can be understood and
appreciated, the more quickly we can make
effective use of them on a scale appro-
priate to the global problems we are all
facing. In short, our discipline needs
more standardization.

Of course, standards mean different
things in different contexts. Some are
essentially a legalization of what is
already considered good practice, such as
state commissions and examining boards
over a wide range from barbers to lawyers
and doctors. For more technically com-
plicated areas or when massive or tedious
data must be gathered, we have such in-
stitutions as the National Bureau of
Standards and the American Standards
Association. But with apologies to our
hosts, these approaches do not apply to
the present discussion.

De facto standards—usually due to
economic forces--are often among the most
effective. Several years ago there was
much discussion of electronic modes of
recording on magnetic tape. Many people
claimed IBM's methods were not very good.
I don't know whether they were or not but
they worked and, to stay in business,
other manufacturers had to be compatible
with them. Now one can put a tape in his

15

brief-case, travel over a large part of
the world and have the tape read by a

computer in some remote place. This is a

great advantage. I think no one would
claim today that the MPS/360 input formats
are very good, but for the same reasons,
they are an effective standard. As a

result, problems can be shipped around and
solved on various computers. Furthermore,
it only takes one word to describe the
format, another great advantage.

Unfortunately, economic forces can
also work the other way. One sometimes
suspects that economists, operations
researchers, and other system analysts--
not to speak of software designers--are
just as happy if their techniques cannot
be measured and compared too clearly and
precisely, another result of intense
competition. But competition won't solve
today's problems; collaboration is much
more to the purpose.

In the task I'm presently engaged in,
it is necessary to devise some sort of
standards and, one way or another, to en-
force their use. To do this, they must be
logically consistent and explainable--
which is perhaps the best kind of stand-
ardization. I have discovered that this
is not an easy task but, more importantly,
the attempt leads to considerable clarifi-
cation of fundamental ideas. Let me
illustrate this with the problem of iden-
tifiers .

As most or all of you know, an LP
model has got to have unique row and
column identifiers and, in a practical
sense, these are limited to 8 characters
with only 36 to 38 graphics available.
Since some formulations require five or
six indices, one must be extremely frugal
with encoding schemes. This forces one
to study very carefully just what it is
that one is trying to represent and this,
in turn, leads to some rather deep con-
siderations. One runs into such problems
as what constitute substances, what can
be called processes, is there a funda-
mental distinction between primary and
secondary conversions, what are capac-
ities and how are they related to other
variables? What is capital and what is
labor? These last two gave me consider-
able trouble but finally I thought I had
them correctly classified. I spent most
of a Sunday reading the encyclopaedia to
see if my conclusions were correct and
found that essentially they were. I

learned much more which I would never have
comprehended if I hadn't been trying to
figure out how to automate matrix and re-
port generation and to make them con-
sistent over a range of models. Some
economists would do well to go through the
same drill to clarify their own thinking.

Once the manipulation of the models
is conveniently automated, we can then
begin paying attention to the really im-
portant questions--the validity of data
and its meaning, the effect of variations,
i.e. sensitivity analysis, the effect of

changes in hypotheses and how this relates
to model structure and its projection in
reality. It must be possible to sit down
at a console and, during a morning, get
solutions to several variants of a model,
with human interaction with the computer
quickly and cryptically communicated. This
means interactive systems and, in most
situations--certainly ours— it means
reliable telecommunication facilities.
Only then can we begin to get some feel
for the possible behavior of our compli-
cated world.

Thus the computer, used as an analy-
tical tool--in fact, almost as a
colleague--will be not only a computational
engine but a unifying and standardizing
force. There will still be plenty of
differences of opinions but the issues will
be clearer and facts--as nearly as we can
approximate them--will stand out.

But all this will happen only if those
of us who are skilled in and motivated by
the effective use of computers begin to
assume leadership. The world is buried in
scientific and technical journals and there
is no end to ever-multiplying complexity
of thought and confusion of detail. It is
almost a sickness. The need now is to take
hold of all our skills, tools, and proven
techniques and mobilize them to the best
of our ability in order to clarify issues,
influence meaningful decisions, promote
rational cooperation, and continually
sharpen our perceptions. We have nothing
to lose and we might just discover a
world order that is workable.

16

ELECTRONICS (FEASIBILITY)

MILITARY (EXPERIENCE. DRIVE)

BUS, MCHNE. CO-S (MONEY, MARKETING) - -

TABULATING (PUNCHED CARD EQUIP)

CALCULATORS (MECHANICAL GEARING)-

- - COMPUTERS

COMPUTERS
CARD CALCS

ACE
MARK I

RADAR
AIRPLANES

AUTOMOBILES
HOLLERITH - - TABULATING

TELEPHONE
ELECTRICITY

MECHANIZED WARFARE
TELEGRAPH ,** .-

RAILROADS .•* /*

STEAM ENGINE .•*

BABBAGE
(LADY LOVELACE)

PROGRAMMING •

IBM 701

UNIVAC --

EDSAC
EDVAC

ENIAC

FERMAT - - CALCULATORS

XVI 1800 1850 1900 1950

—r-
1975

1 . DEVELOPMENT OF COMPUTERS

WORLD GLOBAL PLANS ? ?

PROBLEMS NETWORK APPL ? ?

INTERACT. APPL. SYS
ORGANIZED STD. INTERACT. SYS
INDUSTRY MINICOMPUTERS

.REMOTE USAGE

BASIC
TOOLS

CONSOLIDATION
MORE ORDERLY

PLANNING

NETWORKS
BUSINESS REORGANIZATIONS

EXPER. INTERACTIVE SYS
VIRTUAL MEMORIES
SEMI-STANDARDIZATION

LARGE-SCALE
DEVELOPMENT

MASSIVE SOFTWARE
TELECOMMUNICATIONS
COMPUTER SCIENCE
INTERNATIONAL APPLIC. SYS

CLOSED SHOP

COMPUTING SERVICE CO S

COMPILERS
SYSTEMS
SERVICES

SOFTWARE CO-S
COMPREHENSIVE OP SYS

APPLICATION SYSTEMS
FORTRAN
DP PACKAGES COBOL

COMPILERS
LP PACKAGES

LINK-LOADERS
ASSEMBLERS
RELATIVE LOADERS
PROFESSIONAL SOCIETIES
BASIC PROGRAMMING, SUBROUTINES

CD. CALCS (MANUAL PROCS)
SINGLE COMPUTERS (PROJECTS)

1950 1955 1970 1975

2. DEVELOPMENT OF PROGRAMMING

17

r

SOME RELATED LP-MP SYSTEMS

USAF CARD CALCULATORS (MANUAL) (1948)

RAND CPC (CARDS+WIRES) (1953)

IBM 701 (CODES)

•..JOHNNIAC

IBM 704 (CODES IN CARD DECKS)

CEIR SCROLL (ROUT. LIBRARY, CONTROL

I

CDS) (1958)

LP/90 (FULL SYSTEM) (1961)

1 u . MOTHER DESIGNS)

SCICON LP/90/94 O-H&CO. LP/94 LP/40-1.2.3 ALPS (H-800)

I MPS/360 DESIGN

I L
I LP/600 (GE 635)

(1964)

iBM MPS/360

I
OPTIMA (CDC 6000)

UMPIRE (UNIVAC) I

MSS MPS-III + DATAFORM

NBER SESAME

(1968)

MPSX

(1972)

NASA 777 (1975)

3. EXAMPLE OF EVOLUTION OF APPLICATION SYSTEMS

RESOURCES
&

ENVIRONMENT

HUMAN
SETTLEMENTS
& SERVICES

MANAGEMENT
&

TECHNOLOGY

SYSTEM &
DECISION
SCIENCES

GLOBAL
ENERGY
SYSTEMS

\

UNIVERSAL
REGIONAL
DEVELOP-
[MENT

18

THE APPROACH TO ENERGY SYSTEMS

0 1 2 3456 7 8910 kW/cap

19

GLOBAL ENERGY SCENARIOS

— 5 kW/cap

—- 3 kW/cap ,^^3,^„3— 2 kW/cap AS USUAL)

nolo

io9

1950 I 2000

1975

2050 2100
YEAR

F MARKET SHARE
F

h0.90

• 0.50

0.10

0.01

ENERGY MARKET
PENETRATIONS:

WORLD

MARCHETTI, NASA

1 850 1900 1950 1975

20

IMPLEMENTATION AND APPLICATION
OF A NESTED DECOMPOSITION ALGORITPIM*

James K. Ho

Applied Mathematics Department
Brookhaven National Laboratory

Upton, NY 11973

ABSTRACT

This paper considers a nested decomposition algorithm for multi-stage linear
programs with the staircase structure. Computational aspects of the algorithm essential
to an efficient implementation are discussed. Experience with using experimental codes
of the algorithm on problems arising from real applications, such as energy models,
engineering design, and dynamic traffic control is presented. It is observed that nested
decomposition can be an efficient technique for large-scale systems.

*Work performed under the auspices of the ERDA.

1 . The Staircase Algorithm

We consider the linear programming
problem of minimizing

subject to

"t-1 t-1 *t \ = \' '

X,. 2 0, t = 1,

(1)

as fol lows :

'

minimize

subject to

for t = 1,

t+1 t t '^t t t

\ ^ " °t = "'t

t

(2)

(3)

(4)

The various terms in the subproblems
are defined recursively as follows, pre-
ceded by their dimensions. A prime denotes
a transpose.

In L 3] and [7], the Staircase algo-
rithm is developed from an application of
nested decomposition to (1). Using this
algorithm, the original problem is re-
placed by a sequence of smaller, indepen-
dent subproblems coordinated by primal
(proposals) and dual (prices) information
in the sense of Dantzig and Wolfe [2].

scalar: p

1

scalar: p[

k
^1 •"'l

1 k-

1

1 X k: p,. = (0, p p)

1 2 k-1-

"-t
' °t = °' "Jf 't "t J

(t = 3 T)

(t = 2,

(t = 2,.

T)

T)

> (6)

A cycle of the Staircase algorithm,
indexed by k, consists of T subproblems

denoted by SP^, t = 1,..., T, and defined

1 k k
For SP^, delete the terms involving \^ and

also equation (4) . For SP^, delete the

term n , B from (2)

.

T+1 T

21

(t = 2, T) (7)

scalar: 6!= = if (xl^ , x1 .) is ^
<=easible 3„,^^^„>

homogeneous

1 X k: 6^ = (1,

1 X m^: -1

0' '"t-1, -t-i

(t = 2 T)

,k-l1 a2
-f 't' . (t T)

(8)

scalar

^.
J.

is the vector of dual variables tor (3).

k
is the dual variable for (4).

SP^ is read as subproblem t at cycle k.

SP^ denotes subproblem t at an unspecified

k k
cycle. The (1 + m^) x 1 vector (P^/ q^)

k k
is called a proposal from SP^ ^ to SP^.

The prices for SP^ are given by

k
(n

t+1' "t+1^

The three phases of the Staircase
algorithm are summarized below.

Phase 1:

unbounded. If t = 1, go to
Step (v)

.

Step (iv): Set t = t - 1. Return to
Step (iii)

.

Step (v) : Test for optimality:

k
z = E Ti d . If optimal,
^ t=l

t ^

go to Phase 3. Otherwise,
set k = k + 1; go to Step (ii).

Phase 3^

:

Step (i): Set t = T, Yrj,
-

' compute

d -Ay.
T T T

Step (ii): Set t = t - 1. Solve SY^.

If t = 1, stop. Otherwise
compute d^ - y^. Return

to Step (ii)

.

A flow diagram of the algorithm is

-given in Figure 1.

Step (i)

Step (ii)

Phase 2;

Step (i)

Set t

Start with an artificial basis
for SP^. Set the objective

to be the sum of the infeasi-
bilities in SP Use the

Phase 2 procedure to solve
the subsystem [SP^ , . . . , SP^l

.

If the optimal value of the
objective > 0, stop: problem
is infeasible. Otherwise, go
to Step (iii) if t < T; go to
Phase 2 if t = T.

Step (iii): Generate a proposal for SP
t+1'

Set t = t + 1. Go to Step (ii).

Set k = 1,

2 . Implementation

The computational efficiency of an
implementation of the Staircase algorithm
depends essentially on the following three
aspects

:

(i) data structure: This pre-
scribes the amount of data
required to define a subprob-
lem, and the amount of data
transfer required to update
a subproblem.

(ii) solving a subproblem: This
is how the subproblems are to

be solved as linear programs.

(iii) coordinating information:
This is how prices are incor-
porated and how proposals are

generated in a subproblem.

Step (ii) : Set t = T.

k
Step (iii] Solve SP. If t < T, send a

k+1
proposal (if any) to SP^^-j^.

If t > 1 and subproblem is

bounded, send prices to SP^ ^,

otherwise go to Step (ii) ; if

t = T and subproblem is un-
bounded, stop: problem is

^Define for t=T-l 1.

minimize
"^t^t

* ^t^t
SY :

subject to h^y^ + Q^w^. =

- ''t+l^t+l

*t^t = ^

For SY^ delete terms involving li^.

22

For our experimental codes, we adopted
the guide-line of making full use of ad-
vance simplex techniques in linear program-
ming for solving the subproblems (see e.g.

[11], [141). Efficient designs for (i) and
(iii) compatible with such a scheme are
then identified. Although we have been
limited by the scope of this research to

give certain considerations to convenience
of programming, the underlying concepts are
nonetheless general and should be applica-
ble to even the most sophisticated imple-
mentation .

The amount of basis data that needs to be
stored depends on the subproblem solution
procedure. In our case, these are simply
index vectors identifying a basis. Class
(iv) consists of data for the current con-
straint matrix, while (v) contains data
for the new columns to be added to form a

new subproblem in the following cycle.
The necessity to differentiate between (iv)

and (v) depends on the relative efficiency
in concatenating data records, which is in
turn determined by the data storage device
and mode of data transfer being used.

3 . Data Structure

Large scale problems are usually very
sparse. The density of nonzero entries in

the constraint matrix is typically less

than one percent [1^. Although the nonzero
entries concentrate in blocks for staircase
structures, the subproblems defined on

these blocks should still be sparse. For
example an 0.1% density in a 10-period
1,000 X 10,000 (row by column) problem im-
plies an average density of 0.526% for the,

non-zero blocks. Therefore, the subproblem
data should be stored in packed form. Many
schemes are available for storing only the
nonzero elements (see e.g. [8], [12l).
Since our algorithm consists mainly of col-
umn operations, we use a column packing
scheme. The nonzeros are packed in a vec-
tor (one-dimensional array) , by column or-
der. A second vector of the same length
contains the row indices of the correspond-
ing entries in the first vector. A third
vector gives for each column the position
of its first entry in the other two vec-
tors. In the Staircase algorithm, the sub-
problems are modified by the addition of
proposals, which form new columns in the
constraint matrices. With the above scheme,

appending a new column is done by simple
extension of the three vectors.

In general, the data for each subprob-
lem can be classified as follows:

(i) constraint type data,

(ii) right-hand-side data,

(iii) basis data,

(iv) constraint matrix data,

(v) proposal data.

The first two classes remain unchanged
from one cycle to the next during Phase 1

and Phase 2. They are modified in Phase 3.

Subproblem data are stored out of

core. Regions in out-of-core memory are
designated for the various classes of data.

Each region is subdivided into T subre-
gions , corresponding to the number of pe-
riods in the problem. To solve a subprob-
lem, data from the appropriate subregions
are read into the work region (scratch
space) in core. Outputs from the subprob-
lem are written into the appropriate sub-
regions as data for later cycles. The
data flow for a subproblem is illustrated
in Figure 2.

4. Solving a Subproblem

To solve the subproblems efficiently
as linear programs, we use a product-form-
inverse (PFI) revised simplex routine with
an inversion subroutine designed to pro-
duce sparse representations of the basis
inverse. This routine is based on LPMl,

an in-core LP code written by J. Tomlin in

1970 [14].

5 . Coordinating Information

The typical subproblem can be arranged
in the form shown in Figure 3 where ** de-
notes a non-binding row. No pivot opera-
tion is to be performed on such a row.

Apart from being consistent with the data
structure described in Section 3, this full
subproblem formulation has the advantage
of allowing (a) dual prices to be incor-
porated into the objective function with-
out any change in original data and (b)

primal proposals to be inferred from the
updated right-hand-sides of the non-binding
rows. To show this, we use the simplifying
notation in Table 1.

Now, suppose we maintain a basis for

the full subproblem including the non-
binding rows. Such a basis will have the
following form:

23

A
M =

1
A
c 0

A
0 A 0

A
0 a I

(9)

where the entry 1 and the identity sub-
matrix I indicate that the slacks of the
non-binding constraints are always basic
since no pivoting is done on such rows.
The basis inverse is then

Suppose we now require ^ to satisfy

TTM = (1, 0, -r^^^j_) (12)

so thaf

t+1

m

components

M
'-1

AA-1
1 -cA 0

0 0

AA-1
.0 -BA I .

(10)

The objective function for SP^, as given

by (2) is (dropping the superscript k for
convenience)

,

TT = (1, 0,

(1, 0, -n^^^)

1

0

0

AA-1
-cA 0

A-1
A

AA-1
-BA

0

I

A A, A-1 .

= (l--{c - n^^iB)A ,
-n^^^) .

which is to be minimized. In the present
notation

,

(11)

We argue that it is not desirable to set
up explicitly. First, a direct multi-

plication of
^^j^Y

^'^'^ ^ would make it nec-

essary to distinguish between data in A
and B. This is cumbersome since the ma-
trix data are packed column by column.
Secondly, to update the objective, we need
to store the original c separately since
this is used every time we compute a new

Finally, updating requires the accom-

modation of new nonzeros . This cannot be
done efficiently in the data structure
being used. All these complications can
be circumvented as follows. Recall that
without the t'^_|_-j^B term in the objective,

the simplex multiplier n for the basis M
would satisfy

Tti components

TT& = (1, 0, 0)

This gives a reduced cost of 1 to s^, the

slack variable in the objective row which
is always basic since the objective row is

nonbinding, and zero reduced costs to the
other basic variables.

Letting = (c - n, -,^)A , we have
t t+ i

n = (1, ~^^-_)_]_) ^'^'^ the reduced costs

are

— A A, A-1
c = TTM = c - (c - n^_j_^B)A A - "t+iB

= (c - n^^^B) - TT^A

so that we are effectively using z

(14)

t

Note that (12) implies that the re-
duced costs of the slacks variables in the
last

"^^^.-i^
rows are precisely ~"^_(.-[^- These

variables are always basic since the cor-
responding rows are nonbinding. Therefore,
we can interpret (12) as the setting of
prices on the inputs and outputs described
by the matrix B.

Next, consider the updated right-hand-

side given by (15) where x gives the values
of the basic variables in the current ex-

k
treme point solution x of SP The non-

basic variables in x are, of course, at

zero value.

^This is the backward transformation or

BTRAN step in the revised simplex method.

24

3 =

L'3

= M d =

r AA-1
-cA

M-^ d.

AA
-ex

A
X

AA
-BX

(15)

Therefore, according to (5), (5), and (15)

a proposal corresponding to x is given by

(16)

'p' 'cx"
_AA _
CX

q Bx
,\A
BX

which, apart from the sign, is part of the
updated right-hand-side S.

Proposals corresponding to extreme

ray solutions of SP^ can be generated as

follows. Suppose a column in M, say

N =

B

is priced out to be the pivot column. Its
transformation'*' with respect to the basis

-s _ A-1 s „ , k .

If A = A A ' 0, then SP^ is

unbounded from below, with

1, 0 0, (-A^)., 0 0)= (0, 0,

th

0,

.th

(IS)

I

position: j position
where

th
basic in

row

p' • s ~ s n
c - CA

r- 3 AA-1 S"
C - CA A

q
3 -3

.B - BA
,

3 AA -I s
,B - BA A . >3.

A
.

M IS

as a homogeneous solution on the extreme
ray (cf. Theorem 2.1, p. 35 in [13]). By
definition, the extreme ray is simply
X, /(e-x,) where e= (1,..., 1). Observe
n h

that by (5), (6), (17) and (18), the pro-
posal corresponding to x.^ is

(19)

which is part of the transformed column N.

The proposal corresponding to the extreme
ray can, of course, be obtained from (19)

by scaling with l/{e-x^). However, this is

not necessary and we may simply send the
k+

1

proposal in (19) to SP^_^^. This is equiva-

lent to an implicit scaling of the corre-
k+

1

spending \ variable in SP . by e-x, , hence
t+1 h

there is no loss of generality.

Finally, to determine whether a pro-
k+

1

posal is profitable to according to

the prices
''^.(-^l'

have to test whether^

N =

L^3J

A-1
M N =

AA-1
1 -CA

A-1
0 A

AA-1
. 0 -BA

0

0

IJ LB

z - a , < 0
t t+1

for extreme point proposals

< 0

,for extreme ray proposals,

c

LB -

AA-1 S
CA A

A-1 S
A A

AA-1 ,S
BA A

(17)

This second case is always satisfied since
is unbounded from below. Hence, no

computation is required. For the first
case we compute

*This is the forward transformation or
FTRAN step in the revised simplex method.

^ In the Staircase algorithm, "proposal" and
"profitable proposal" are used synonymous-
ly, so that strictly speaking, the vector
defined in (16) is a proposal only if it

passes the test.

25

AA
t+1

= -L9. (20)

which is essentially the evaluation of an
inner product.

We have shown that as the result of
applying the revised simplex procedure to
the full subproblem

minimize cx

subject to L Jx ^ d

X s 0

(21)

(a) the dual information tt^_|_-|^ is efficient-

ly utilized as part of the prices n
for (21)

;

(b) the primal information [^] is effi-
q

ciently generated, being a by-product
of right-hand-side updating in the
case of extreme points, and forward
transformation of a pivot column in
the case of extreme rays.

6 . Ref inements

Within the basic framework summarized
in Section 1, many refinements of the
Staircase algorithm are possible. Such
modifications are called computational
strategies. Some are designed to acceler-
ate convergence; others to reduce storage
requirements and the amount of data trans-
mission. Most of them are motivated by
heuristics and have to be validated empir-
ically. Moreover, good strategies for one
class of problems may turn out to be poor
ones for another. Therefore, it is im-
portant to parametrize such refinements so

that a process of fine tuning is possible
for any given class of problems. We iden-
tify three important strategies here. For
more detail, the reader is referred to [3].

(a) Degree of Decomposition:

For a given amount of core storage,
it is often feasible to vary the number of
subproblems by grouping two or more as a

single stage. A higher degree of decompo-
sition gives smaller subproblems which are
easier to solve, but is likely to require
more interactive adjustments before

obtaining an optimal coordination among
the subproblems. Initial experience with
the Staircase algorithm l3] suggests that
whenever nested decomposition algorithms
are intended for routine applications on a
particular class of problems with a fixed
amount of core storage, one should prede-
termine empirically a good strategy for the
degree of decomposition.

(b) Multi-proposal Generation:

By generating (when possible) more
than one proposal from each subproblem,
convergence may be accelerated. However,
if too many proposals are transmitted in a

cycle, the inferior ones, which may never
become useful, simply cause an unnecessary
increase in the size of a subproblem.
Moreover, proposals that are too similar
may give rise to numerical instability.
Therefore, a heuristic procedure is re-
quired to select a limited number of pro-
posals. A limit of five provided good re-
sults in most cases we encountered.

(c) Proposal Purging:

As proposals are introduced, the grow-
ing size of a subproblem may cause diffi-
culties for in-core storage. As far as the

optimization of SP^ is concerned, the only

proposals that need be kept are the cur-
rently basic ones (for feasibility) and the
latest profitable ones (for improvement).
All others could be dropped as they will
be generated again if and when they become
profitable on later cycles. we use a

scheme to purge as many non-basic proposals
as necessary to keep the subproblem size
within limits determined by core availabil-
ity. However, a modification of Phase 3

is also required to allow for proposal
purging

.

7 . The Experimental Codes

Two experimental codes, named SC73 and
SC74 have been written in FORTRAN. Input
data is in standard MPS format plus a sec-
tion on information characterizing a pat-
tern of decomposition, except for the data
handling features. The two codes are iden-
tical.

SC73 runs on an IBM 360/91 at the
Stanford Linear Acceleration Center. It
requires approximately 200K bytes of core
storage when dimensioned for problems with
a maximum of 20 periods, each having up to

500 rows (as a full subproblem) and 3000

26

nonzero coefficients (including proposals).
Secondary storage is on 220 tracks (one
track = 7294 bytes) of IBM type 2314 mag-
netic disk. Data transmission is by di-
rect access I/O using variables length re-
cords with a block size of 7294 bytes.

SC74 runs on the CDC 6000 and 7000
series computers. It requires approxi-
mately 35K words of SCM core storage when
dimensioned for problems with a maximum of
10 periods, each having up to 500 rows (as

a full subproblem) and 6000 nonzero co-
efficients (including proposals). Second-
ary storage requires 170K words of ECS
(extended core storage) or LCM (large core
memory) . Block transfer of data between
SCM and LCM is used.

For comparison with a direct simplex
approach, we used MPS/360 and LPMl [14],
the latter being the simplex procedure
used in SC73 and SC74. Roughly the same
storage configuration is used in each
comparative run.

8 . Experience with Applications

This section presents computational
experience with the successful application
of the Staircase algorithm to three classes
of multi-stage linear programs. In each
case, we describe the nature of the pro-
blem briefly and summarize the performance
of the Staircase algorithm as compared to

a direct simplex approach.

(a) Optimal Design of Multi-stage
Structures [4] :

The problem is to design multi-stage
planar trusses for minimal weight over a

class of feasible member sizes and config-
urations. The design is based on limit
analysis subject to a single set of loads.
The variables x^ represent forces in mem-

bers of stage t in the truss. The equi-
librium conditions for stage t are ex-
pressed through while B^ represents the

coupling between stage t and t + 1. The
external loads are given in d^. Typically,

these problems have a large number of col-
umns in proportion to the number of con-
straints. Therefore, the efficiency of

the Staircase algorithm could be due part-
ly to a partial-pricing effect. See
Table 2.

(b) Dynamic energy model [5]:

These test problems are derived from
a staircase version of Manne's model of
U.S. options for a transition from oil and
gas to synthetic fuels [9]. They seek
minimum-cost strategies to meet future
energy demands under a series of alterna-
tive scenarios. The latter depends on
estimates of the remaining quantities of
domestic oil and gas resources, and the
technical and environmental feasibility of

new methods for synthetic fuel production.
The variables are production capacities
and investment in the energy sectors. The
single-period constraints exert bounds on
new capacity introduction rates and relate
production to final demands in energy out-
put. The dynamic constraints relate capac-
ity inventories and investment, model the
nuclear cycle, and exert bounds on cumula-
tive resource extraction.

The model has 16 periods representing
five-year intervals from 1970 to 2045.
However, a four-period decomposition is

used for reasons explained in section 6a.

All new technologies are allowed in pro-
blem 4A (see Table 3) while most of them
are suppressed in problem 2A. The per-
formance of the direct simplex approach
(LPMl) reflects this variation in complex-
ity. Whereas, by decomposition, such
effects are "felt" by each subproblem from
the start. This may explain why SC74 took
roughly the same amount of time for all
four problems.

(c) Dynamic Traffic Assignment [6]:

In the Merchant and Nemhauser model
of dynamic traffic assignment [10], a

traffic network is represented by a di-
rected graph. One of the nodes is desig-
nated as the destination. The planning
horizon is divided into a finite number of
discrete time periods. For each time per-
iod, external inputs are allowed at any
node except the destination. For each arc,

there is an exit function which relates the

amount of traffic entering and leaving the
arc during a time period. Congestion is

modeled by assuming the exit functions to

be nondecreas ing , continuous, piecewise
linear and concave. The problem is to find
the feasible traffic flow which minimizes
the total amount of traffic over the plan-
ning horizon.

Here the unknowns are the amount of

traffic in each arc in each time period.
They are transformed to convex combinations

27

of the grid points for the piecewise
linear exit functions. Therefore, the
variables are the interpolation weights

for these combinations. The single-period
constraints are the flow balance equations
for the nodes. The dynamic constraints
are the flow balance equations for the
arcs .

The Staircase algorithm is used as
part of a hybrid algorithm [6] for this
class of problems. See Table 4.

Remarks

It has been observed in [3] that re-
lative to a direct simplex approach, the
Staircase algorithm tends to become more
efficient with increasing problem size.
However, the threshold problem size dif-
fers considerably for different classes of
staircase problems. The results presented
here, though favoring decomposition in
every case, simply substantiate that obser-
vation. They should not be interpreted as
measures of the relative performance of
the two approaches in terms of absolute
problem size.

ACKNOWLEDGEMENT

Part of this paper is based on the
author's doctoral dissertation at Stanford
University. The author is indebted to
Alan Manne, George Dantzig and John Tomlin
for their guidance and encouragement.

llnpuT dola
1

Phose =
1

Stt T = 1

h = 1

Problem feasible = End Phase I

Phose ' 2
= T
' 1

OBJ = c

S<t t T

Setup SP'

Solve SP^

Oufpuf SPf

Figure 1. Flow Diagram of the Staircase Algorithm

REGION IN

vOUT-OF-CORE t

vSTORAGE

CLASS
OF
DATA

,:, CONSTRAINT
ID TYPE

right hand
""side

(III)
BASIS

' 'IDENTIFICATION

(iv)
CONSTRAINT
MATRIX

t 1 + 1

WORK
REGION

IN

CORE

PROPOSAL DATA

3l

Figure 2. Data Flow for a Subproblem in the Staircase Algorithm

28

X
C til c

'

(111^ f I t ^
J

(kl 1^ 1

A

1 0 A Q

L u 1 0 i

(m r I) - (m . 1 ^ m , * n » k)
^

t ' t ttl t
'

b |0 I 01

r I ^
]

0 A
C C t 1' ^ c t . I L

'

d (0, d^, 1, 0) (l^m ,l>in

a subse c o [' cliijse

0 1 NAME
e.g., M i. (I , . 1 , . (1 . , I . n,^

^ ^

)

Table I. NoLations for a Full Subproble

Dimena ions

(slacks Jnd actiflcals)

o

o o

-\ PROBLEM

STATISTICS "^-^^^^
SCSDl SCSD2 SCSD3 SCSD4 SCSD5

PERIODS 3 3 4 6 20

ROWS 78 78 148 102 403

COLUMNS 938 838 2043 834 4228
NONZEROS 3226 3226 8288 3112 16604
% DENSITY 4.94 4. 94 2.73 3.66 0.96

o
CPU SECONDS 6.3 8.7 33.9 9.7 >120.

MPS/

rn CPU SECONDS 4.1 4.9 12.7 3.6 41.6
O

Table 2. Statistics of the Structural Design Problems

Fig. 3. A Full Subproblem

PROBLEM SCRS8

STATISTICS lA 2A 3A 4A

0.

PERIODS
ROWS
COLUMNS
NONZEROS
% DENSITY

4

491
1538
443 3

0.55

4

491
1633
4460
0.56

4

491
1649
4476
0.55

4

491
1660
4520
0. 55

LPMl

CPU SECONDS 30.8 26.7 30.3 40.1

SC74

CPU SECONDS 20.8 19.2 18. 5 19.4

Table 3. Statistics of the Dynamic Energy Model problems

~^~^PROBLEM SCTAP

1

SCTAP2 SCTAP

3

STATISTICS

PERIODS 10 10 10

ROWS 311 1101 1491

COLUMNS 791 2981 3971

NONZEROS 3683 14395 19045

% DENSITY 1. 50 0.44 0.32

LPMl

CPU SECONDS 7.3 103.8 223. 3

CPU SECONDS 3.8- 15.6 17.7

u
w

Table 4. Statistics of the Dynamic Traffic

Assignment Problems

29

REFERENCES

[1] Beale, E. M. L. , "Sparseness in
linear programming", in Large Sparse
Sets of Linear Equations , ed .

,

J. K. Reid, Academic Press, London,
1971, pp. 1-15.

[2l Dantzig, G. B., and P. Wolfe, "Decom-
position principle for linear pro-
grams". Operations Research 8, 1960,

pp. 101-111.

[3] Ho, J. K. , "Nested decomposition of
large scale linear programs with the
staircase structure". Doctoral dis-
sertation, Stanford University,
California, 1974. (Also Technical
Report 74-4, Systems Optimization
Laboratory, Department of Operations
Research, Stanford University, May,
1974.

)

[4] Ho, J. K. , "Optimal design of multi-
stage structures: a nested decompo-
sition approach". Computers and Struc -

tures 5, 1975, pp. 249-255.

[11] Orchard-Hays, W. , Advance Linear
Programming Computing Techniques ,

McGraw-Hill Book Company, New York,
1968.

[121 Pooch, u. W. , and A. Nieder, "A sur
vey of indexing techniques for sparse*
matrices". Computing Survey 5, 197 3,

109-133

.

[13] Simonnard, M., Linear Programming ,

Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1966.

[14] Tomlin, J. A., "Pivoting for size
and spars ity in linear programming
inversion routines". Journal of the
Institute of Mathematics and its
Applications 10, 1972, pp. 289-295.

[15] Tomlin, J. A., "LPMl user's manual".
Systems Optimization Laboratory,
Department of Operations Research,
Stanford University, 1973.

[5] Ho, J. K. , "Nested decomposition of

a dynamic energy model". Technical
Report AMD 705, Brookhaven National
Laboratory, New York, June, 1975.

(To appear in Management Science)

[6] Ho, J. K. , "A hybrid algorithm for

the dynamic traffic assignment pro-
blem". Technical Report AMD 731,

Brookhaven National Laboratory,
New York, March, 1976.

[7] Ho, J. K. , and A. S. Manne , "Nested
decomposition for dynamic models".
Mathematical Programming 6 (1974)
121-140.

[8] Kalan, J. E., "Aspects of large-scale
in-core linear programming", in Pro-
ceedinqs of A.CM. Annual Conference ,

1971, pp. 304-313.

[9] Manne, A. S., "U.S. Options for a

transition from oil and gas to syn-
thetic fuels". Discussion Paper
No. 26D, Public Policy Program,
John F. Kennedy School of Government,
Harvard University, January, 1975.

[10] Merchant, D. K. , and G. L. Nemhauser,
"A model and an algorithm for the
dynamic traffic assignment problem".
Technical Report No. 247, Department
of Operations Research, Cornell
University, New York, January, 1975.

30

A Stepping-stone Parallel-cut Method for Integer Programming

by To-Yat Cheung
Department of Computer Science

University of Ottawa
Ottawa, Ontario, Canada

ABSTRACT

This paper presents a cutting plane method for

integer programming. Let ag be the optimal point
of the associated linear program and n be the nor-
mal to the objective function hyperplane at ag.

On the halflines of the cone incident at ag, we

determine those points where the halflines inter-
sect the coordinate planes and then project them
onto n. With the projections as stepping-stones,
the objective function hyperplane (the parallel
cut) is pushed into the cone step by step. At

each step, a minimum number of integer points is

generated for feasibility and optimality tests.

The first feasible integer point 'trapped' by
the parallel cut is the optimal point of the inte-
ger program.

Other main features of this method are

:

(1) In practice, it is not necessary to compute
the cut. (2) In general, the candidates gene-
rated at each step give better value to the objec-
tive function than the candidates generated at the
next step. (3) Reoptimization is not required.

Keywords: Integer programming, cutting plane

,

cone, normal, projections.

1. INTRODUCTION

This paper presents a cutting plane method
for integer programming. The cut is always
parallel to the hyperplane of the objective func-
tion (called a parallel cut) . Let ag be the opti-
mal point of the associated linear program and n

be the normal to the objective function hyperplane
at ag . On the halflines of the cone incident at
ag, we determine those points where the halflines
intersect the coordinate planes . The intersection
points are projected onto n. These projections
are then used as stepping-stones for moving the
parallel cut into the cone step by step. At each
step, the intersections on the halflines are used
to generate a set of integer points for feasibility
and optimality tests. The process terminates as

soon as a feasible integer point is 'trapped' by
the parallel cut.

Our parallel-cut method is closely related to

three other approaches developed in the last few
years, namely the methods of convexity cuts [1,2,

3,8,11,12], enumerative cuts [4,5,6], and cut-

search [7,8,9]. However, these approaches have
some or all of the following disadvantages:

1. There exist no criteria for the choice of

convex regions (in the case of convexity cuts and
enumerative cuts) or for the choice of halflines
(in the case of cut-search)

.

2. Extra computational work is required to

generate the cuts. The amount of work depends
mainly on the convex region used.

3. A cut may be either very shallow or in the
wrong 'inclination', i.e. too many bad candidates
may be generated.

4. Reoptimization is required.

5. Usually, even after a feasible integer
point has been 'trapped' by a cut, search for a

better solution still has to be continued.

In contrast, our parallel-cut algorithm has

the following main features:

1. No choice of convex regions or edges is

required. A parallel cut is generated step by step
in a definite manner.

2. A parallel cut is merely a conceptual cut.

In practice, no computation is involved in its gen-
eration .

3. The direction of a parallel cut is steepest
and hence may be regarded as the proper 'inclina-
tion'. Together with stepsize control, a parallel
cut generates, at each step, a minimum number of

good candidates.

4. Reoptimization is not required.

5. Once a feasible integer point is 'trapped'

by a cut, it is optimal and the process terminates.

Parallel cuts are also used, conceptually, in

Hillier's bound-and-scan algorithm [10], but in a

different manner.

2. GEOMETRIC INTERPRETATION OF THE PARALLEL-CUT
METHOD

In this section, we illustrate by an example

31

the geometrical motivation of our parallel-cut
method. For expository purposes, we shall use the

following definitions.

Definition (0-plane , 0(x*) -plane) An 0-plane is

a hyperplane of the form cx=a , where cx is the

objective function and a is a constant. In parti-
cular, an 0{x*) -plane has the form cx=cx* , where
X* is a fixed point on the plane.

In Figure 1, Cj and are two halflines
incident at and n is the (negative) normal to

the O(aQ) -plane at a^. We observe that the coor-
dinate planes through an integer point inside the

cone intersects at least one of the halflines. For
example, the coordinate planes through I^ intersect
Cj and C,

the coord

n 1

at H, and Hii respectively,
inates of (and H^) must

Hence, one of

be integral

.

Definition (H-point) An H-point is a point on a

halfline incident at ag such that at least one of

its coordinates has integral value.

Starting from a^, let us move the 0-plane in

the direction of n. As it moves forward, it will

'trap' infinitely many integer points, some lying

outside the cone (e.g. Ij)» some lying inside the

cone but violating certain nonbinding constraints

(here 1 3) 'trapped' is obviously the optimal point.
Note that if these integer points are projected
perpendicularly onto n, the image of the optimal
integer point has the shortest distance from a^
among all feasible integer points.

Using the projections PgfPj/Pj'Ps' Pl, arid p^
as stepping-stones. Table 1 shows the H-points,
integer coordinates and integer points newly gene-
rated at each step. Note that, at p^, 1 3 becomes
optimal, because it is the first
point 'trapped'.

feasible integer

Pi H-points
integer

coordinates
integer points

Po

P2

P3

none

Hi

Hi

Hi

Xj = 2

X2=l

x
j
= 3

none
none
none
I2 (infeasible)

,

1 2 (curr. optimal)
I^ (rejected, worse

than I

Hi

Table 1

Information newly generated at each step in Fig. 1.

(e.g. The first feasible integer point

Figure 1 Illustration of the parallel-cut method.

32

PROBLEM FORMULATION AND MATHEMATICAL
PRELIMINARIES

Consider the pure integer linear program

maximize cx

0: S subject to Ax<b

[x-L>0 , integer, ieN,

(3.1)

where N={ 1 , 2 , . . . ,n } , c, x are n-vectors , A is an

itKn matrix and b is an m-vector. Throughout this

paper

,

ables

.

we refer to x; , ieN, as the structural vari-

The associated linear program Q' is obtained
from the integer linear program Q by dropping the

integrality requirement. Introducing m slack vari-

ables s=col (Sj (S^ .

.

standard form
,
Sjv,) ,

Q' can be written in the

3

basic structural variables
basic slack variables

is obtained from the optimal simplex tableau of Q"

,

where and Y3 correspond to the columns of the
current optimal point and the nonbasic slack vari-
ables, whereas and Y^^ correspond to the columns
of the nonbasic structural variables. Then the
column vectors a^ of (3.4) are the columns of the
following nx(n+l) matrix

basic structural variables
nonbasic structural variables,

where I is an identity matrix.

Furthermore, suppose ygj' jsN, are the rela-
tive-cost factors obtained from the optimal simplex
tableau. Then

(maximize
^

Q": <s\±)ject to Ax+s=b (3.2)

[
x^>Q, ieN, sj>0, jeM,

where M={l,2,...,m}.

Suppose Q" has an optimal solution. Let B

and J be the index sets of the basic structural
and basic slack variables respectively and y^j be

the coefficients of the optimal simplex tableau.

Then the objective function value and each of the

basic structural variables can be expressed in

terms of the nonbasic (structural and slack) vari-

ables tj as

jsN^Oj j

y.^t. , i£B.V^iO SeN'ij^j'
(3.3)

Let us replace every y^^^ in (3.3) by another
notation sl^-^, for isB and jeiOluN. Attaching, for
each nonbasic structural variable Xj^, the trivial
relation setting Xj^ equal to itself, i.e. a rela-
tion of the form (3.3) in which a^Q=0 , a^^=-l and
a^-=0 for 1^= j , ieN-B, and rewriting in vector
notation, we obtain the following linear program
over a cone

maximize

subject to

^0=y00-^jeNy03tj

x=ao-i:. a.t.>0, t.>0

x^ integer, i£N.

(3.4)

The fundamental relation between the problems
C and Q is as follows: Let t* be an optimal solu-
tion to C and x*=a.-2: ,

,a.t*. Then x* is an opti-
0]eN]]

mal solution to Q if and only if x* also satisfies
those constraints of Q which are not binding at

in'0-

by
The j''^ halfline of the cone (3.4) is defined

C .
:

3
ao-a,t_.

: " :

The quantities a

t .>0. (3.5)

jeN, will be used
Q , a j and ca j ,

in Section 4 . The next lemma shows that they can
be obtained from the optimal simplex tableau of
the linear program Q"

.

Lemma 1 Suppose the following mx (n+1) matrix

caj=-yQj, j£N. (3.6)

Proof. The first part of the lemma follows from
the definition of a j . To derive (3.6), we see that,
for every t., jeN, y„.=6.-Z. ^Oy . .-I. . „c.y..=

] Od D leJ ID leB i"" i]

-Z . - c.a. .-Z. „c.a. .=-ca., where 6. is equal to
leB 1 1] leB 1 1] 3]

^

the cost associated with t. if tj is a structural
variable, and is equal to 3 if tj is a slack vari-
able, and B=N-B. (Q.E.D.)

4. THE PARALLEL-CUT ALGORITHM

In this section, we develop the parallel-cut
algorithm first under the assumption that the opti-

mal solution of the associated linear program Q'

is unique and non-degenerate. Non-uniqueness and

degeneracy will be discussed in Section 4.5.

The parallel-cut algorithm includes the
following operations

:

1. Generate H-points on the halflines.
2. Project the H-points onto the normal n.

3. Using the projections as stepping-stones,
generate a set of candidates at each step for

feasibility and optimality tests.

The details of these operations are described
in the next four subsections.

4.1 GENERATING H-POINTS ON THE HALFLINES

The use of H-points was first developed by
Glover [7,8]. However, he used them for generating

cuts directly; whereas we use them for generating

projections and candidates. Let us first restate

without proof one of his lemmas, using our nota-
tions. .-

Lemma 2 (First cut-search lemma of Glover)

Assume x' is contained in the truncated cone

of points satisfying both (3.4) and

Ej^,(l/t*)t..l, (4.1)

where t*>0 for all jeN. Then every hyperplane
L(x-x')=0 through x' (for L a non-zero row vector)

intersects at least one of the edges of the trun-

33

cated cone incident at (i.e. the line segments

x=ao-ijtj, t*>tj>0).

In particular, let x' be an integer point in-
side the cone (3.4), t^='» for every jeN, and
L=(0,0, . . . ,0,1, . . . ,0) , where 1 is in the i^*^ com-
ponent, i=l,2,...,n. Then, Lemma 2 implies that
every coordinate plane through an integer point in

the cone intersects at least one of its halflines.
The H-points generated on the j^h halfline are

U - - u
? .=a.-a .t . ,

D 0 3 :

(4.2)

where the increasing sequence of parametric values
of t. are defined as follows:

t!=min{t
.

I t . >0 and a. -a..t, is a nonneqative
: r D- lO ID 3

integer for some i

}

W+ 1 . r I
U - -

t . =mintt . t . >t . and a . „-a , , t . is a non-
: 3' D 3 lO 1] D

negative integer for some i}.

If there is no value of tj that can be gene-

rated in this way, the tj or t^ is defined to be
equal to <». Numerically, the values of t^ satis-
fying the above definition may be obtained as
follows

:

its distance from ag along n.

4.3 SETS OF CANDIDATE INTEGER POINTS

In this subsection, we describe how (4.6) is

used to generate integer points for feasibility
and optimality tests. Every p^cP corresponds to
one or several H-points, each of which in turn
corresponds to one or several integer values of
the coordinates x^'s. Hence, for each pj^ , n dis-
crete sets of values of the coordinate x-

X^(k)={x?-,x2,. .. ,x^}, i£N (4.7)

can be uniquely determined. (v depends on i and
k.) Candidate integer points are then obtained by
forming all the possible combinations as follows:

(x, ,x„ , . . . ,x. , . . . ,x), x.£X.(k), ieN.
i I 1 nil

The following lemma shows that each of the
discrete sets Xj^ (k) consists of consecutive inte-
gers without gaps.

Lemma 3 The discrete set Xj^(k) can be expressed
in the form

X . (k) ={x.
I

il. (k) <x. <u. (k) , X. integer},
1 11 11 1

t°=0, t^'''"'"=t*^+min{i|). }, y =0,l,2
3 3 3 ifiN 1

(4. 3)

where

.=

((a.
13 3

-<a.
iO ij j

t.>)/a. . if a. .<0
13 13

((a. -a.
lO ID D

t':')-{a. „-a. .t':'})/a
lO 1] 3

if a. .>0
13 13

otherwise

,

<z> denotes the smallest integer greater
than z

,

and {z} denotes the largest integer smaller than
z

.

4.2 PROJECTING THE H-POINTS ONTO THE NORMAL

Let n be the (negative) normal to the ©(ag)-
plane at ag. The distance of any point x from the
0(ag) -plane is given by

d(x) Ec(aQ-x)/||cl|, (4.4)

where II
•

|{ denotes the Euclidean norm. In parti-
cular, the distance between ig and the projection
of an H-point (4.2) on n is given by (see Lemma 1)

d(c'^) = (ca./||cll)t^=(-y„ ./\\c\\)\}'., j£N.
3 3 3 O3 3

(4.5)

Note that the quantities yg .<0 can be obtained from
the optimal simplex tableau-'of the problem Q" . If

ag is the unique optimal point, we have ygj<0 for
every j£N.

Let us denote these projections by an
increasing sequence

P={Pg,Pl,P2 Pk'---}' (4.6)

where Pg=0, p.^P^^j. When there is no confusion,

p^ is used to denote both a projection image and

where il, (k) and u. (k) are non-negative integer
bounds

.

Proof. Without loss of generality, we may assume
that the elements of Xi(k) satisfy

I 7 Q Q+1
0<xJ <xt< . . . <xr<xr <...<x.. Suppose there is aII 11 1

gap of size g (>2) between x? and x? , i.e.

q+1 q q , q+1
X. =x.+g. Let x? and x. correspond to two H-11 1 1

points on the halflines and Cg respectively
(the possibility that a=6 is not excluded), i.e.

there exist t*>0 and •t-'>0 such that

x'?=a.„-a. t*, x?^''"=a . „-a . „ t ' .

1 lO la a 1 lO iS
g

We distinguish between two cases:

(4.8)

(1) x'^''""'">a. .+1; and (2) x'^^'''<a . „+l . For the case
1 lO 1 = lO

(1), (4.8) implies that -a^gtpl. Define:

t°=tl+l/a.„ and x°Ha
.
„-a

,

„t°. It follows easily
1

o"^ a^l +1 q
that t;>t°>0 and x? >x°=x*^ -l>x'^ -g=x*'. This66 111 11

— — o
means that, on C. , we can find an H-point a^-a.t^

(in front of the H-point a -at') which generates
+ 1

the integer x? between x? and x? a contradic-
1 1 ition. Similarly for the case (2) , we can find on

C^ an H-point which generates an integer between

x"^ and x?"^-"-. (Q.E.D.)
1 1

As a result of Lemma 3 , it is computationally
much easier to generate candidates. Instead of

(4.7) , we simply keep track of a pair of bounds
I. (k) and u. (k) for every x. , i£N, and every p, ,

1 1 1 k

k=0,l,2,..., using the following stipulation:

(i) i. (-l) = [a. J, u.(-l) = |a, I. (4.9)
1 lO 1 LiOJ

(ii) Let S_^(k) be the set of integral x^

34

I. (k)=
1

values associated with those H-points
which are projected onto pj^. Then

min { 8, . (k-1) ,x . } if S . (k) is not empty,111
x.eS.(k)
^ ' (4.10)

i^(k-l) if S^(k) is empty,

u. (k)
1

max {u.(k-l),x.} if S.(k) is not empty

x.eS.Ck)
111

I

^ (4.11)

u^(k-l) if S^(k) is empty,

where [zj (or [z]) is the largest (or

smallest) integer which is smaller (or

greater) than or equal to z. Note that
there exists, for each k, at least one i

such that either i . (k) < {, . (k-1) or

u. (k) >u. (k-1) . ^
^

1 1

Hence, the set of candidates generated by

{p^ ,p^ , . . . ,Pj^ } , is of the form

I(k) = {xk. (k)<x.<u. (k) , x. integer, (4.12)
1 11 1 • .,-1

4.4 FEASIBILITY AND OPTIMALITY TESTS

At the projection p^^, our subproblem is

maximize x„=cx
l^subject to Ax<b , x€l(k)

(4.13)

A direct or algorithmic search may be
required to determine whether (4.13) is infeasible
or has an optimal solution. If infeasible, we
proceed to the next projection P]^^-|^- Otherwise,
(4.13) has an optimal solution. One of the main
features of our parallel-cut algorithm is pro-
vided by the next result.

Theorem 4 Suppose x(k) is an optimal point of

(4.13). If d(x(k))<Pj^, then x(k) is also an
optimal point of the integer linear program 0.

Proof. We shall prove this theorem by showing the
contradiction that, if x' is a feasible point of 0
satisfying cx(k)<cx'. Then x'el(k).

algorithm follows:

Step 0 Solve the associated linear program Q' by
the simplex method and let a^ be its opti-
mal point. If ajj is integral, it is also
an optimal point of the integer program Q.

Otherwise, go to Step 1.

Step 1 (Initialization)
1.1 Formulate the cone problem C. (see

Lemma 1 of Section 3)

.

1.2 On each of the half lines C., jeN, gen-
erate a sequence of H-poinis by (4.2)

and (4.3). For each of the H-points,
keep track of its integer coordinate (s)

1.3 By (4.5), project perpendicularly the

H-points onto the normal n and arrange
the sequence of projections in increas-
ing order or magnitude

P=-tPo'Pi 'P 2'

where Pn=0, p. <p.^0""' ^i+l
1.4 Let k=-l.

Step 2 (Moving the parallel cut into the cone)

2.1 Let k=k+l
2.2 Solve (4.13). If (4.13) is infeasible

or has an optimal point x(k) such that

d(x(k))>Pj^, repeat Step 2. Otherwise,
the optimal point x (k) , for which
d(x(k))<jp , is also an optimal sol

tion of the integer program Q.

In practice, the following refinements may

be incorporated into the above formal description
of the algorithm.

Since the algorithm may terminate early in

the process , it would be a waste of time to gen-

erate too many H-points and projections at the
outset. Instead, we may specify intervals on n

and the halflines and generate the H-points and

projections within these intervals one after

another only when they are needed. Suppose H is

the size of the interval on n, then the corres-
ponding interval size for t_. is -il lie ||/yp_. , jeN.

Also, Step 2 of the algorithm may be replaced
by the following more elaborate one:

Consider the halfspace associated with the
O (pj^) -plane

^j.N'^/*j'*j=^' ^j=°' (4.14)

where t*=Pj^ l|c||/ (-y^ ^) >0 ,
jeN. (See (4.5) and

[1].) iuppose there exists a feasible point
x'San-I. .,a.t'. of Q such that cx(k)<cx'. Then, by

0 leN 3 3

(4.4), we have d (x ') =c (a^-x ') /II c 11
=

c ([ag-x (k)] + [x (k) -X]) /II c || <d (x (k)) <p^ and

t^<d(x") ||c||/(-y|j J<t^, jeN. This implies that x'

satisfies (4.14). By Lemma 2, every coordinate
plane through x' intersects a half line C. at
a„-a.t°, say, for some t°<t^. By definiiion of

(Q.E.D.)
0 3 3- 3= 3

I(k), we have x'el(k).

4.5 DETAILED DESCRIPTION OF THE PARALLEL-CUT
ALGORITHM.

A detailed description of the parallel-cut

Step 2

'

(Moving the parallel cut into the cone)

2.1' Find the smallest k, say k , such
that the set {x|Ax<b, xel (k)} has

at least one feasible point. (If

such k does not exist, the integer
program Q does not have a feasible
solution .

)

2.2' Solve (4.13) with k=k°. Let x(k) be

the optimal point.
2.3' If d(x(k))<pj^, then x(k) is also an

optimal point of Q. Otherwise, go
to Step 2.4'.

2.4' Set k=k+l. Test whether the set

T (k) ={x |Ax<b, xel (k) -I (k-1)

,

cx>cx (k-1)

}

is feasible. If not, define
x(k)=x(k-l) and go to Step 2.3'.

Otherwise, go to Step 2.5'.

2.5' Solve the problem max{cx |xeT (k) } by

any direct or algorithmic searching
method. Let x(k) be the optimal

35

point. Go to Step 2.3'.

4.6 DEGENERACY, NON-UNIQUENESS AND FINITENESS

In this subsection, we show that the parallel-
cut algorithm works without any modification when
the optimal solution of the associated linear pro-
gram Q' is degenerate. We also discuss the rela-

tion between the finiteness of the algorithm and

the uniqueness of this optimal solution.

Suppose (ag,s) is the optimal point of 0".

Degeneracy occurs when some of the basic compon-
ents of ajj or s have zero value. Define the index
sets

B°={i|a.^ basic and a, =0};
' lO lO

M°={i|s, basic and s.=0}.
' 1 1

Geometrically, in the n-space of the structural vari-
ables, degeneracy implies that the hyperplanes
associated with the halfspaces Z. ,a. .x.<b., ieM

^
^ jeN 1] 1= 1

or x.>.0, i£B also pass through a^. In the same

space, let us define

X={x|Z. „a..x.<b., ieM; x.>0, jeN}
' 3eN xj D= 1 J=

and

X' = {:<|S. a..x.<b., ieM-M°,- x.>0, jeN-B°}.
']£N 13 3= 1 j=

Thus, X' is obtained from X by dropping the con-
straints associated with those variables (struc-

tural or slack) which are basic but have value 0.

Obviously, X<=X ' . Balas [1] proves the following
lemma

.

Lemma 5 a^ is the vertex of X' and cx=ca^ is a

supporting hyperplane for X'. X' has n distinct
edges adjacent to a^, and each halfline (3.5) con-
tains exactly one such edge.

Interpreted geometrically (see Figure 2),

this lemma implies that, in case of degeneracy,
some of the halflines (3.5) may not contain any

edge of the cone (incident at a^) of the feasible
region X of the problem Q' . However, each half-
line (3.5) contains an edge of another polytope
X' .

Figure 2 degeneracy at a

In connection with our parallel-cut algorithm,
it is obvious that the halflines (3.5) can also be
used to generage H-points, which in turn are used
to generate integer points to be tested for feasi-
bility with respect to X. In other words, the
algorithm works without any modification.

There is a close relation between the unique-
ness of the optimal solution of the associated
linear program Q' and the finiteness of the parallel
cut algorithm.

If the optimal point of Q' is unique, the
following argument shows that the algorithm is

finite. Let x' be an arbitrary feasible integer
point (assumed existing) of Q. Then, the 0(x')-
plane intersects every halfline at a finite point
and d(x') is an upper bound on the projections to

be generated. Thus, the numbers of distinct
H-points and projections are finite. Hence, the

number of steps and the number of candidates to be
tested at each step are both finite.

If some of the relative-cost factors y„ . are
Oj

zero, the optimal point of Q' is not unique.
Define the index set D={j|jeN, y^ .=0} and the poly-
tope ^

X"={x |x=a„-I . a.t.,t.>0, xex}.

Geometrically, non-uniqueness implies that X" lies

on the 0(aQ)-plane (see Figure 3). Hence, all the
H-points and integer points lying in X" are projec-
ted onto slq , and the discrete set 1(9) as defined
in (4.12) may not be empty. We distinguish between
the following two cases

:

(i) X is bounded.

For such a case, the number of H-points gene-
rated on each of the halflines C., jeD is finite.

By similar argument as in the uniqueness case, we

can show the parallel-cut algorithm is finite if

boundedness is incorporated into the definition
(4.3) .

(ii) X is unbounded.

For such a case, it may be necessary to gene-
rate infinitely many H-points on some of the C

.

,

jsD. If X" contains an integer point, Q becomes
a problem of locating any such integer point. How-

ever, it may happen that, theoretically at least,
X" does not contain any integer point but there
exist feasible integer points of Q which are arbi-
trarily close to X". (See the remark below.) Thi£

implies that, at the initial projection p^ of the
algorithm, search for the best feasible integer
point over the infinite set 1(0) never terminates.
In practice, such situation may be remedied by
introducing an artificial constraint (the dotted
line of Figure 3) . Then an approximate solution
is sought over a bounded portion of the unbounded
feasible region.

Remark: It seems to the author that, theoretically

speaking, this situation gives rise to trouble for

most of the existing integer programming methods.

36

bound

11. H. Tui, "Concave programming under linear con-
straints", Doklady Akademii Nauk SSSR
(1964), in Russian; English transl. Soviet
Math. (1964) 1437-1440.

12. R.D. Young, "Hypercylindrically deduced cuts in

zero-one integer programming", Oper. Res.

19 (1971) 1393-1405.

ACKNOWLEDGEMENT

This research was supported by the Canadian
National Research Council Grant #A8963.

Figure 3 Non-uniqueness of optimal point

Application of the underlying ideas of the

approach presented in this paper can obviously be

extended to mixed integer programming, and probably
to nonlinear integer programming with linear con-

straints .

REFERENCES

1. E. Balas, "Intersection cuts — a new type of

cutting planes for integer programming"

,

Oper. Res. 19 (1971) 19-39.

2. ,
"Integer programming and convex

analysis: Intersection cuts from outer
polars". Math. Programming 2 (1972) 330-

382.

3. E. Balas, V.J. Bowman, F. Glover, D. Somer,

"An Intersection cut from the dual of the
unit hypercube", Oper. Res. 19 (1971)
40-44.

4. C.A. Burdet, "Enumerative cuts: I", Oper. Res.

21 (1973) 61-89.

5. , "Convex and polaroid extensions".
MS Report #73-21, Univ. of Ottawa, (1973).

_, "On the algebra and geometry of

integer cuts", MS Report #74-8, Univ. of
Ottawa, (1974).

7. F. Glover, "Cut search methods in integer pro-
gramming". Math. Programming 3 (1972),
86-100.

8. ,
"Convexity cuts and cut search".

Oper. Res. 21 (1973), 123-134.

'Polyhedral annexation in mixed
integer and combinatorial programming".
Math, programming 8 (1975) 161-188.

10. F.S. Hillier, "A bound-and-scan algorithm for
pure integer linear programming with gen-
eral variables", Oper. Res. 17 (1969), 638-

679.

37

MONOMIAL PROGRAMMING*

T.L. Shaftel
The University of Arizona, Tucson and Queen's University, Kingston, Ontario

G.L. Thompson
Carnegie-Mellon University

Y. Smeers
Catholic University of Louvain

Abstract

A monomial programming problem is one
of minimizing a polynomial in several
variables subject to monomial constraints.
A log transformation changes it into a
problem with non-linear objective and
linear constraints which, under certain
conditions can be solved by Zangwill's
convex simplex method. We show a direct
method, based on our previous work, of
solving the problem using a simplex-like
tableau

.

1. INTRODUCTION

In a recent series of papers [3, 4,

5, 6], we have presented simplex-like
algorithms to several special kinds of
problems arising in modular design,
geometric programming, and elsewhere. In
the present paper we shall specialize the
general algorithm of [4] to the case of a
programming problem in which the
constraints involve monomial expressions.
For this case a true simplex algorithm is
possible in the sense that any of the

* This report was prepared as part of the
activities of the Management Sciences
Research Group, Carnegie-Mellon Univer-
sity, under Contract #N00014-67-A-0314-
0007 NR 047-048 with the U.S. Office of
Naval Research. Reproduction in whole
or in part is permitted for any purpose
of the U.S. Government.

Management Sciences Research Report #333,
Management Sciences Research Group,
Graduate School of Industrial Adminis-
tration, Carnegie-Mellon University,
Pittsburgh, Pennsylvania 15213.

standard linear programming routines can
rather easily be modified to solve monomial
constrained problems. Also all of the
techniques for handling large scale linear
programming problems, such as the revised
simplex method, decomposition, lexico-
graphic ordering, etc., are immediately
transferable to the new algorithm. It
therefore follows that monomially
constrained problems in hundreds of
variables can be solved.

In Sections 2-7 we present a
description of the new method. Computa-
tional results are presented in Section 7.'

A monomial model concernina excess
inventories is presented and solved in
Section 8.

2. NOTATION

Because we will be working with
monomial expressions and their derivatives
in several variables we introduce some
special vector and matrix notation to make
it easy to do so. We define the O
product of an n-component row vector h and
an n-component column vector x as;

(i; h O X = (h 1'
•

""l ^2 ... \
""l ^2

We extend this definition in the obvious
way to the O product of an mxn matrix H
and an n-component column vector

(2) H O

38

where h. is the ith row of H. As a
1

numerical example observe that: / \

1 0 -1\ /3\ / 9/4 \

(3) (0 1 J O 1
I

=

0 0 2/ \4/3/ y4/3)y

Using the Q product and the
ordinary matrix product we can easily
write a polynomial in several variables;
let d be an m-component row vector, H an
mxn matrix, and x an n-component column
vector; then;

(4) d(H O x) = d^x^^^. . .x^-"" +
In

.+ d X,
m 1

ml mn

is a polynomial in the variables.

We recall next the definition of the
Schur product of vectors. Let a and b be
two m-component row vectors; then the
Schur product is defined as:

(5) a*b = (a^,...,a^)*{b^,...,b^)=

(^1^ ^m^m'-
Using this we can write the derivative of

a polynomial d(HOx). Let h'^' be the
(j)

'

be itsjth column of H and let h

transpose; let h'-^' be the matrix H with 1

subtracted from each entry in the jth
dx'^ n-1

column. Since tne formula -
dx

nx

works even when n=0, it follows that;
3 (j) ' w„(j)

(6)
3x.

(d(H O x)) = (d*h^^')
(H^J ' Ox)

From this it further follows that:
3

(7) x
j 3X

.

(d(H O x))
=

(d*h'^^ ') (H O x)

.

^123^-,45
As an example, f = 6x-|^X2X2 + '^]^^2

can be expressed in the form of equation

(4) with d = (6,7) and H = 0 ^ ^ .

3f ^23^_„35 , 3f ,123,= 6x^x^ + 28x,Xt and x,-r = 6x,x_x-, +
3x^ 23 12 13 x^ 123

4 5
28x^X2 can then be expressed as m

(1)
'

equations (6) and (7) with h ^ = (1,4)
, „(1) /O 2 3^and H = (3 5 0)

•

3. PROBLEM STATEMENT

By a monomially constrained problem
we shall mean a problem of the form

Minimize d (C O x) = g

(8) Subject to A O X ^ b

X ^ 0

where d is Ixk, c is kxn, A is mxn, x is
nxl, and b is mxl. We assume b>0.

Note that by making the transforma-
tion :

(9) x. = e
:

and taking logarithms we could change (8

)

into the problem (using the obvious
definitions)

:

Minimize d(C0e^)
(10)

Subject to Ay >_ Inh
Problem (1) has linear constraints, but y
is not constrained to be nonnegative.
Following Charnes and Kirby [1] we then
say that (8) is transformably linear.

The following facts are well known.

If d>0 then d{cQe^) is a strictly convex
function of y,,...,y . If d>0 then the

-'I n —
same function is a convex (but not
necessarily strictly convex) function of
these variables.

If d(cOs"'') is a convex function of
y we could use Zangwill's convex simplex
method [9] to solve problem (10) and thus
(8). However in this paper we shall
specialize our previous work [4] on
simplex-like methods for solving nonlinear
problems with nonlinear constraints to
provide a simplex method that is somewhat
more general than the convex simplex
method for solving problem (8) directly.

Let A =
(]_'•••'

""^i^)

Ixm vector

of Lagrange multipliers for the constraints
of (8). Then the Lagrangian of (8) is:
(11) L = d(C O X) - A (A O x-b)
where A Q x = h now is considered to
include the constraints x>^0 . Taking the
partial derivative of L with respect to
Xj , using (6), and setting the result equal

to zero yields:
3L

(12) ^ = (d*c'^' ') (C*^' O X) -
3x

(A*a^^^ ') (A*^' O X) = 0

Multiplying (12) by x. and use (7) to

obtain

:

(13) (A*a*^^ '

) (A O x) = {d*c*^' '

) (C O x) .

We now use the well-known Kuhn-Tucker
complementary slackness condition:
(14) A^(a^^^Ox) = A^b^ for all i

where a
(i)

is the ith row of A and define

(15) p . = A . b. for all i

.

Substituting (14) and (15) into (13) gives:

(j) _(16) pa'-'' = (d*c^^^) (C O x) for all j.
We shall call p . the dual variables and

(16) the dual equations .

As in linear programming duals
associated with constraints of the type
x>0 must be zero for basic variables so
that at the optimum (16) must be satisfied
for the original m constraints. If we let
the right hand side of (16) be q-^ for the

39

basic variables then in matrix form pB =

and p = qB where B is the basis. Like-
wise ignoring the nonnegativity con-
straints (16) becomes:

(d*c'^' ') (C O x) - pa^^' ^0 for
nonbasic variables.
The left hand side of this inequality
corresponds to the " reduced cost ", r ^

,

values in linear programming, or
expl icitly

:

(16b) r
j
= (d*c (C O x) -qfi-'a

all j nonbasic,

b"-'" a*^' is me
the present tableau.

1 (j) for

where B a'^' is merely the jth column of

4. RELATIONSHIP TO LINEAR PROGRAMMING

Note the similarity between the
ordinary linear programming dual equations
and (16). If the ith constraint in (8) is
not tight = 0 and if it is tight P

j,
^ 0.

Hence we can use the p^'s or equivalently

A .
=

1
in the same way as they are used

in ordinary linear programming.

If we assume that one of the monomial
constraints in (8) is tight and use it to
eliminate a variable, say x., from the
rest of the equations then it is not hard
to see that this transformation will make
linear changes in the exponents of the
other monomials and log linear change in
the right hand sides.

For instance, consider the polynomial
equations

:

2
x^x^ = 3

^1^2 = ^

^1^2 = 4

Using the notation of the previous section
these can be written A Q x = b, or in
detached coefficient form as:

where A is the 3x2 matrix on the left and
b is the 3x1 vector on the right. If we
now want to use the second equation to
eliminate x^ from the other two equations

we can multiply by the corresponding pivot
matrix (see [2]) in front as follows:

2
1 2 3 0

3
1

2 1 9 1
1

2
3

1 1 4 0
1

2

4

3

Note that we used ordinary matrix multipli-
cation in the A area of the tableau, but
O multiplication in the b-area. All the
familiar rules of pivoting in linear
programming apply if they are appropriately
modified for operation on the right hand
side .

Most of the problems encountered in
solving ordinary linear programming pro-
blems such as degeneracy (which can be
handled by perturbation techniques or
lexiographic orderings) can occur, and
some new difficulties as well. For
instance it is possible that one of the
factors of the objective function could
tend to zero without a basis change being
needed. To handle such problems we can
employ regular i zation constraints of the
form (C O x) . > k . > 0 where k . is a small^11 1

number. Most of the other difficulties
can be handled by similar modifications of
well known linear programming techniques
and will not be discussed further here.

We next describe a simplex method for
solving problems of the form (8). To start
it we need a Phase I procedure. To this
end we add slack variables z. and

artificial variables

of

u. to the constraints
1

(8) to obtain the equivalent problem:
'Minimize d(C{3'x)

(17)
Subject to

(A, -I, I) O
. u

.

1' 1-

Let f be a column vector of all ones.
If b>^f it follows that an initial feasible
solution is x=f, u=b, so that the initial
tableau for the simplex Phase I start is:

x z

(18) u

If, however, some components of b are <1 ^

then the initial feasible basis can be made
up of the components of u^ for which b^>l

and the components of z^ for which b^;^l

.

We now use a Phase I objective function
e Q u (where e is an m-column vector of
all ones) and pivot until all the u^

artificial variables have been eliminated
in complete analogy to ordinary linear
programming.

|

In the next section we describe in
detail the simplex method for monomially
constrained problems which is based on the
general method described in our paper [4].
The main differences from the ordinary
linear programming simplex method are that
the variables are not constrained to be >_1

and second that nonbasic variables can
take on values other than 1 or 0 . The
latter is necessary in order that we can
find optimun solutions that are not neces-

40

I

sarily determined by intersections of
constraining hyperplanes. We use this
method of describing the algorithm rather
than the parametric programming method of
[4] because it seems to be simpler in the
present context.

5. THE SIMPLEX ALGORITHM FOR MONOMIALLY
CONSTRAINED PROBLEMS

The description of the algorithm is
similar to that for ordinary linear pro-
gramming. All of the variants of the
latter can be made to the present
algorithm without difficulty so we do not
go into detail in their discussion here.

Phase I . Set up the problem, find
the quantities. A, b, c, and d and sub-
stitute them into the initial tableau (18).

(A) Go to the MAIN routine usina the
objective function g = u-|^U2...u^. If the

problem has a solution with value greater
than 1 then the original problem has no
solution; stop. If the problem has a
solution with value 1 then all the
artificial variables are nonbasic (or can
easily be made nonbasic and eliminated
from the tableau)

.

Phase II . Set g = d (C O x) and go to
the MAIN program. When that program is
complete it will provide an answer to the
originally stated problem, or to the
regularized problem if infinite solutions
are found.

MAIN program.

1. Dual Solution Routine

(a) For each basic variable v.
1

calculate the value of q. at the

current solution.

(b) For each nonbasic v_. calculate

the reduced cost, r ^ , using

(16b) where the second term
sumation is to be taken over the
basic variables and hence the
sum calculation can be done from
the current tableau.

2. Find Incoming Vector.

Calculate the sets

^1
= V. is non basic, v.

3 J

is tight at a lower bound and
r^ > 0.}

S_ = {v.lv. is non basic, v.

is not tight at a lower bound
and r . 7^ 0 . }

:

If U S2 = the current solution is

optimal

.

Go to 7. Else go to 3.

Find largest indicator.

Find j as the index that maximizes

Max{Max
|
r,

|

, Max |r v |}.
keS^ ^ keS^ ^ ^

If jeS^ or j£S2 and r_.>0 go to 4.

If jeS^ and r.<0 go to 5.

Find solution with larger v..
:

(a) Find the maximum extent v_. to

which V. can be increased while
3

keeping feasibility. This can be
done by using the column of the
current tableau under v. and the

D

right hand side column.
Determine outgoing vector Vj^.

(b) Solve the auxiliary problem for

variable v.; let v. be its
3 J

optimum value.

(c) If v"']^ <_ v'? go to 6

.

(d) If V. > v., set v.=v. m the
3 3 3 3

tableau, calculate the modified
right hand sides and go to 1.

Find solution with smaller v..
:

(a) Find the maximum extent v. to3
which V. can be decreased while

3

keeping feasibility. This can be
done by usina the column of the
current tableau under v . and the

]

right hand side column.
Determine the outgoing vector Vj^.

(b) Solve the auxiliary problem for

variable v.; let v^ be its
: :

optimum value.

(c) . I f v
j 2^ V j go to 6 .

(d) If V. < v*?, set v.=v? in the
: : 3 3

tableau, calculate the modified
right hand side arid go to 1.

Pivot exchange: make v^ basic and v^^

nonbasic. Let P be the corresponding
pivot matrix (see [2]); then use the

calculation PA^^^^^' = A^^^^' for the -

A part of the tableau and pQb'°"'"'^' =

j^(new)
^ part of the tableau

End of MAIN program.

41

AUXILIARY problem routine for non-
basic variable v..

3

1. Evaluate the objective function g at
the current solution but assuming v^

is a variable. Let g(v_.) be the

corresponding function.

2. Use a search (or other) technique to
find the unconstrained minimum value

Vj of g (Vj)

.

6 . EXAMPLES

We work two examples in order to
illustrate the method. We state first the
constraints

:

2 ,
^1^2 ^ ^

2
x^X2 ^ 9

(19) ^1^2 - ^

x^,X2 ^1

The feasible region is shown in Figure 7.

Adding slack and artificial variables
these become.

2 -1
x-j^X2Z Uj^ = 3

2 -1

(20) ^1^2^2 ^^2 ^

^1^2"3^^3 = ^

The constraints x-|^>^l, ^2—-^ will be imposed

by the method in order to keep tableaus
small. We now use the Phase I objective
function u^u^u^ and do the Phase I calcula-

tions in condensed tableau form (Figure 1).

v.Sg.
It IS easy to show that — = u,u_u^ for

8v. 12 3
1

i = 1,2,3. The corresponding dual
varialbe calculations appear on the right
and below the tableau. The pivot element
is circled; the new tableau with variable
u-j^ dropped appears in Figure 2. The Q
operation was performed on the right hand
side. There is one positive indicator
(reduced cost) in column 2. The second
and third rows indicate the relationships

3-2 1
^2^1 ^2 ^1"1

when is decreased U2 and u^ are

decreased. Since we don't want U2 to go

below 1 we pivot; the new tableau with
variable U2 dropped appears in Figure 3.

Using the same reasoning as before we

pivot on the circled ^ in Fiqure 3 and

obtain the primal feasible tableau of
The solution x-^^ = 9/4, X2 = 16/%Figure 4

= 64/

is feasible for the constraints (20)

z^ = 64/27, Z2 = z^ = 1 and '-'j ~ ^2 ~ ^3

Suppose now we wish to solve the
problem:

4Minimize x x = g(x ,x)

(21)
'

Subject to constraints (19).
The tableau of Figure 4 with dual variable
calculations for this objective function is
shown in Figure 5. If we increase z^ we

-1 2 2have x^ = (9/4) z^ and X2 = (4/3) z^ so

that g(z^) = (9/4) ^ (4/3) ^z~^ so that

increasing z^ decreases q{z^) indefinitely.

But the limit on increases of z^ is the

requirement x-|^^l . Therefore we pivot on

the circled 1 in Figure 5 giving the
tableau of Fiqure 6.

X2 = 9,

Hence the optimum solution is x-|^ = 1,

1, z^ = 9/4 which can^1 " ^'^
'

^2

be seen in the graph of Figure 7. The
value of the objective function is
g(x^,X2) = 9.

We now solve a problem with the same
constraints but a different objective
function in order to show the solution of
the auxiliary problem. The new problem is:

(22)

Minimize x^X2 2x^^X2

Subject of constraints (19) I

2 -1 0 0 3 = "1 "l"2"3
'--- 108

2 1 0 -1 0 9 = "2 "l"2"3
== 108

1 1 0 0 -1 4 = "3 ^"2"3
'= 108

432 432 -108 -108 -108

Figure 1

42

J

r .
=

J

^2 ^1 "2 ^3

2 -1 0 (: 3 0

-3 0 -1 0 ^ "2 "l"2"3
= 4/3

-1 1 0 -1 4/3
"l"2"3

= 4/3

-16/3 U -4/3 -4/3

Figure 2

X2 ^2 '3

1

2

1

"2 0 0

3
"2

1

"2 0
^ = ^1 0

© 1

2
-1

4

3
= "3 "l"2"3

2 2 4

3 3
"3

Figure 3

"2 ^3

-1 1 9/4 =

1 -3 (4/3)-^ =

1 -2 (4/3)2 ^

Figure 4

"2 '3

-1 0)

1 -3

1 -2

-3(9/4)^(4/3)2 2(9/4)^(4/3)2

Figure

9/4

(4/3)-

(4/3)^

'^i =

4x^X2 = 4(9/4)^(4/3)2

4 4 2
x^x, = f9/4) (4/3)

9/4 =

(4/3)^(9/4)^

(4/3)2(9/4)2

4 4 4

^1 ^2

Figure 6

43

Figure 7

44

The tableau of Figure 4 with dual
variable calculations for the new objec-
tive function is shown in Figure 8. We
see that we should try to increase as

in the previous example. From Figure 8 we
-1 2 2

see that = {9/A)z^ and = (4/3)

so that the auxiliary problem is to:

Minimize gCz^) = (9/4
)

^ (4/3) ^z^^ +

2(4/9) (4/3)^73.

Differentiating g with respect to z^,

setting g' (z^) = 0 and solving gives the

solution

:

x^ = 1.25

=13.97

X2 = 5.80

Z2 = 1, Z3 = 1, 81

g(x^,X2) = 23.28

The final dual solution shows that this
solution is optimal as shown in Figure 9.

Figure 7 shows the graph of g(Xj^,X2) =

23.28 touching the boundary of the
feasible set at the optimum point.

7. COMPUTATIONAL RESULTS

Some computational results are shown
in Tables 1, 2 and 3. The program used
was written in Basic and run on a

Burroughs' 6700. Processing time included
all central processing time except that
used for input/output. The probem para-
meters were generated randomly. The
exponents for the constraints were
integers between minus one and three
while the right hand sides were integer
numbers between one and one hundred. The
exponents in the objective function were
random integers between zero and four

multiplied by one half. Finally, the term
coefficients in the objective function
were random integers between zero and nine

In the three tables a pivot means the
same as in linear programming i.e., a

basis change. A pass is the operation of
modifying the value of some variable
thereby changing the solution. In some
cases, of course, this modification will
lead to a pivot but not always. As we
would expect from linear programming,
pivots seem to be very fast. Problems wit!
a high proportion of total passes being
pivot operations have comparatively low
solution times. As is obvious from
Table 1 problems with many constraints
relative to variables are solved mostly
through pivoting. This fact seems to
result from the reduced feasible region
and the resulting high probability of
finding the optimum at an extreme point or
at least, the intersection of several con-
straints. This can be verified again in
Table 3. As can be seen in Table 2, more
complex objective functions also seem to
block out extreme point solutions.

In presenting these computational
results certain considerations must be
made concerning the program itself:

ONE DIMENSIONAL SEARCH PROCEDURE.
Since pivots can be done rapidly compared
to searching, the search procedure is not
used unless pivoting would yeild a worse
or equal solution than the initial value
(with the exception that for degenerate
situations pivoting is always performed)

.

This criteria seems to reduce the total
number of searches which must be performed
thereby reducing total time. When
searching in undertaken a combination
quadratic fit and Fibonacci search

1 1

1 -3

1 -2

-133.53 86.39

9/A = X
1

(4/3)-^ = z

(4/3)^ = X,

1

Figure 8

4(9/4)^(A/3)^-2(9/4)"-^(A/3)^ = 180.67

(9/4)'^(4/3)^+2(9/4)'\4/3)^ = 47.14

1.81

46.56

0

23.28

Figure 9

45

Phase I Phase II Processing
Constraints Variables Pivots Variables Pivots Passes Time (Sec.)

5 15 6 10 0 1 1.1
c 20 5 15 4 6 2.5
cD OA30 5 25 4 58 48.0

1 AIV 25 11 15 1 1 1. 3

iu O A30 14 OA20 5 6 3. 5

10 35 16 25 8 29 24 . 3
1 c
iD 43 21 30 12 13 7 . 5

Id C A50 26 35 16 21 17 .

5

15 55 25 40 24 44 4 7.4

20 45 25 25 1 1 4 . 2

60 37 40 6 6 10. 5

Z5 55 OA30 30 3 3 7 .

4

0 c1 J £. AbO 42 35 o
3 3 10 . 7

03 4 /
/ A40 6 6 13. 8

25 70 54 45 15 15 20.5
25 75 45 50 27 46 95.5

/ u c
J

c
J 10 . o

30 80 73 50 22 22 37.5
30 85 75 55 23 23 39.2

35 100 68 65 22 22 51.6

Table 1: Time results

.

Objective function
has five terms - no uncons trainted
variables

.

Terms in

Objective Function

5

10

15

Phase I

Pivots

5

5

5

Phase II

Pivots Passes

4 6

3 5

3 35

Processing Time

(Sec.)

2.5
3.9

73.7

Table 2: Time results. 5 constraints
20 variables in Phase I; 15 variables

in Phase II - no unconstrainted
variables

.

Unconstrained
Variables Constraints

Variables Phase I

Phase I Phase II Pivots
Phase II

Pivots Passes
Processing
Time (Sec.)

0

5

0

10

5

5

10

10

15

15

30

30

10

10

20

20

6

5

14

10

1

9

6

21

2.5
8.7

3.5

28.3

Table 3: Time results. Objective function
has five terms.

46

procedure is used. This por
program was written to take
the speed of quadratic predi
robustness of the Fibonacci
Search is stopped only when
tolerance (twelve significan
the objective function is re
the predicted points are so
the objective functions are
in twelve significant digits

tion of the
advantage of
ction and the
search

.

the machine
t digits) in
ached, i.e.,
close that
equal to with-

STOPPING RULES. Stopping rules in
nonlinear programming are by necessity
extremely complex. Straight limits on
the maximum allowable size of the
reduced costs associated with movable
variables is difficult since the impor-
tance of these reduced costs can only be
considered in terms of the absolute size
of the objective function. Also, when the
one dimensional search is used the result-
ting minimum solution is only an approxima-
tion which leads to nonzero reduced costs
associated with the last variable moved.
(Exact solutions in the liner search would,
of course, lead to a zero reduced cost for
this variable) . Typically even small
deviations in the linear search seem to
yield large nonzero reduced costs - thus
the choice of as fine a tolerance as
possible in the search portion of the
program. From these two considerations
two stopping rules were developed both of
which lead to program termination. The
first rule is used after a variable is
modified but no pivot has occurred. The
reduced cost associated with this
variable should be zero but will never
actually equal zero. During the next
pass the reduced costs are tested against
the reduced cost, say r^, of the variable

just modified. If no other variable
which is a candidate for modification
under section 3 of the algorithm has a

reduced cost whose absolute value
exceeds 2r then the program stops and

the present solution is printed out as
optimum. The second criteria is invoked
after a pivot. This rule stems from the
fact that the reduced cost is v.3g/3v..

J 3

We wish to stop when the objective
function is changing by extremely small
amounts relative to the objective
function. In our program if no
candidate for modification has a
reduced cost whose absolute value

-7 -5
exceeds 10 g(x) or (10 whichever is
greater) then the program stops and the
present value is printed out as the
optimum. The stopping rules for the
computational results displayed in
Tables 1, 2 and 3 were purposely very
stringent. Figure 10 shows the converg-
ence properties of two of the longer runs.
In these situations the objective
function levels off very quickly. These
results indicates that for practical
purposes the times shown are quite high.

CODING EFFICIENCY. Use of equation
(7) when calculating partial derivatives
enhances the program considerably since
for a given solution the bulk of the
calculation H O x stays constant across all
variables. It should be pointed out that
similar efficients were not coded into the
search routine. In particular the
objective function is reevaluated for each
new point of the search procedure even
though only m+1 variables of the total
variables are being modified. The linear
search itself seems to be time consuming
which suggests that improvements here are
possible. Indeed it may prove to be true
that high precision in these searches is
not necessary early in the solution
procedure

.

8. EXAMPLE PROBLEM

Due to exogenous economic factors an
automobile manufacturer is faced with a

large inventory of completed new automobiles.
The company sells three basic types of
cars - large, medium and small. Each size
has a different number of cars in
inventory. The manufacturer also knows
that sales of one type car has a
significant effect on sales of the other
two types. The manufacturer wishes to
determine a short term price structure
which will allow him to maximize revenue
while turning a significant proportion of
his surplus inventory.

Sales of each type of car are fore-
casted via the following Cobb-Douglas
equation

:

sales of car type i = S^=

K.P,
11 i2 i3

i = 1,2,3

where p^ are the prices for the three cars.

Revenue from total sales is of course
y
. S. P.. Assume we know the following111
parameters which predict sales:

i\ 1 2 3

1 -.6 .4 . 8

2 . -.5 .A

3 .5 .3 -.5

K. =
1

1x10"

8x10"

3x10"

47

48

and

Inven tor\' = I

.

1

A5,000

128,000

150,000

25,000

Minimum
Desired Sales

6A,000

90,000

Maximum and minimum prices as set by
management are:

Lower Upper
bound bound

none none

none 5,000

1,000 3,000

Management wishes to determine a
price for each car which maximize net
short run revenue from sales.

The monomial model for this problem
will be:

Max. ap{\-\^-'+ 8p^- -p, -p/ +
.45 .5 .4

'2 P3

.5 .3 .5, 3

3p^ P2 P3) 10

S.t. 25x10^ £ 1x10-^ p^'^^'^Ps"^ 1 45x10^

3 3 45 - 5 4 3
64x10 _< 8x10 Pj^ P2 P3 1 128x10

90x10^ £ 3x10-^ p^'^p^'^p^'^ 1 150x10-^

0 1 Pi

0 _< P2 1 5,000

1,000 1 P3 ^ 3,000

The algorithm described in this paper
took 1.8 seconds to solve the above model.
Prices and predicted sales are shown below.

Optimum
Prices, =

1 $9030 75

2 5000 00

3 1526 94

Sales for

these prices

4 5,000

128,000

93,921

Net revenue generated from this short term
9pricing strategy will be $1,190x10 .

9, DISCUSSION

In this paper we have presented an
efficient algorithm for the solution of
monomial problems. Certain comments
should be made here concerning the
algorithm presented. (1) Although the
program of the algorithm was written for
polynomial objective functions this is not
necessary. Any di f ferentiable objective
could be easily substituted for the one
chosen in this paper. The one used
however is totally general within the
framework of polynomial functions.
(2) The program was written to solve
both constrained and unconstrained
variable problems, it could easily be
modified for upper bounded variables
without the necessity of using them in the
constraints. (3) As was stated earlier in
the paper all the typical linear programm-
ing techniques can be easily modified to
fit within the framework of monomial
programs. (4) The algorithm itself is
very similar to Zangwill's convex simplex
method [9] and Wolfe's reduced gradient
m^hod [7] and [8]. However in our
algorithm no transformation are required.
(5) Computational results from this
algorithm are very encouraging particular-
ly in the light of possible computational
improvements which can be made within the
linear search routine.

BIBLIOGRAPHY

[1] Charnes, A., and M. Kirby, "Modular
Design, Generalized Inverses and
Convex Programming, " Operations
Research , Vol. 13, pp. 836-847,
(1965) .

[2] Gaver, D.P., and G.L. Thompson,
Programming and Probability Models in
Operations Research") Brooks/Cole

,

1973 .

[3] Shaftel, T.L., Y. Smeers, and G.L.
Thompson, "A Simplex-Like Approach to
a Class of Geometric Programming
Problems," Management Sciences
Research Report No. 282, GSIA, May
1972.

[4] Shaftel, T.L., Y. Smeers, and G.L.
Thompson, "A Simplex-Like Approach
for Nonlinear Programs with Nonlinear
Constraints," Management Sciences
Research Report No. 285, GSIA, July
1972.

49

[5] Shaftel, T.L., and G.L. Thompson,
"Computational Experience with the
Continuous Modular Design Problems,"
Management Sciences Research Report
No. 309, March 1973.

[6] Shaftel, T.L., and G.L. Thompson,
"The Continuous Multiple Modular
Design Problem, " Management Sciences
Research Report No. 254, GSIA,
January 1972.

[7] Wolfe, P., "Methods of Nonlinear
Programming," in Recent Advances in
Mathematical Programming , R. Graves
and P. Wolfe (eds.), McGraw-Hill,
New York, 1963, pp. 67-86.

[8] Wolfe, P., "Methods for Linear
Constraints," in Nonlinear Programm-
ing , J. Abadie (ed.), North-Holland
Publishing Co., Amsterdam, 1967,
pp. 120-124.

[9] Zangwill, W. , Nonlinear Programming:
A Unified Approach , Prentice-Hall,
Inc., Englewood Cliffs, New Jersey,
1969 .

50

IMPLEMENTATION AND USE OF NONLINEAR

COST MULTICOMMODITY FLOW SUBROUTINES

Hoang Hai Hoc

Department of Electrical Engineering
Ecole Polytechnique, Montreal, Canada

ABSTRACT

Several mathematical programming formulations of

nonlinear cost multicommodity flow problems as well

as a few of their applications and solution algori-

thms are considered. Three algorithms are imple-

mented and tested on moderate size problems; they

are adapted Frank and Wolfe's method, Darfemos'

explicit path flow exchange procedure and speciali-

zed convex simplex algorithm. Experimental results

seem to indicate that Frank and Wolfe's method is

sufficiently competitive when some what less preci-

se solutions are accepted. The specialized convex

simplex algorithm is particularly suited to "post-

optimization" tasks and is computationally superior

to the explicit path flow exchange procedure.

1. THE PROBLEM AND ITS APPLICATIONS

We consider the following nonlinear cost multi-

commodity flow problem. Given a network with n no-

des, let Cl,2,...,p}, p S n, denote the set of

nodes which are either supply points (sources, ori-

gins) or demand points (sinks, destinations), or

both. In addition, every node in the network can

be used as transhipment point. Let A be the set

of arcs in the network and D denote a p x p matrix

whose (i, j) entry indicates the nonnegative number

of units which must flow between nodes i and j.

Let the cost of shipping x. . units along (i, j) be

f . .(x. .), where the cost is''a function of the total

fiJw aiong the arc. Let us use x^. . to denote flow

along arc (i,j) with origin s, the''"Aalticommodity

flow problem which we address is then

(1)^

Minimize f(X)= S f..(x. .)= S f . .(I) x^. .)

(i,j)eA^^ (i,j)€A^Js=l

subject to

D(s,j) + I x% = I ^ (2)

k=l J" i=l

(j,k)€A (i,j)€A

for all j = 1, 2, m, s = 1, 2, p, j 7^ s

X _ s 0 for all (i,j)€ A, s = 1, 2,.,., p

We ranark that (l)-(3) represent what we call many

(destinations) to one (origin) node-arc formulation

of the multicommodity flow problem, A more intuiti-
ve form of the flow conversation equations (2^ can

be obtained by considering separately flow x .

.

along arc (i,j) and associated with origin s and

destination t. We have then the one (destination)

to one (origin) node-arc formulation of the multi-
commodity flow problem.

Minimize

f,J Ex'^ Jf (X) = E f . .(x. .) = E

(i,j)€A (i,j)6A s,t
(4)

subject to
st st2 _ - _

i^ (i,j)€A^ ij~ k^(j,k)f=A jk

-D(s,t),j = s, j = 1, 2, n

=
< 0, j 7^ s,t s,t =1, p

D(s,t), j = t, t ^ s (5)

x^^^jSO for all (i,j)6A, t, s = 1, 2, , ,. ,p s (6)

However, the most intuitive formulation of the pro-

blem considered is perhaps the arc-chain formulation.

This formulation is derived by providing, for each

(s,t) commodity, a set P^-^ of paths from node s to

node t and path flows x for all q 6 P
^ q st

Minimize

f(X) = E f.. (E a^^*? x^*)

(i,j)6A s,t,q

subject to

E x^* = D(s,t) all s,t = 1,2, ...,p, s 7^ t

q€P
st

st
^ 0 all q€P , s,t = 1,2, ...,p, s ^ t

st

(7)

(8)

(9)

where

stq fi, if arc (i,j) belongs to path q € P

^ij = '^10)
lO, otherwise.

51

The nonlinear multicommodity network flow for-
mulations presented above have been used as mathe-
matical programming models for interesting and

practical problems in transportation networks, in

packet switched computer communications networks,

etc. We call the reader's attention to two specific

applications: the equilibrium traffic assignment
problem in a road network [1,2,3,17,19,20] and the

optimal static routing problem in a computer commu-

nications network [8,13], A more general multicom-
modity flow problem based on the arc-chain formula-
tion mentioned above and including continuous arc

capacity augmentation can be found in Reference

[14], where arc capacities are explicitly accounted
for and the total cost is not necessarily a function

separable or not, of only total flows on each arc.

defines a descent direction with respect to X
,

provided that X*^ is not an optimal point.

The first specialized version of the feasible

direction method for solving the nonlinear cost

multicommodity flow problem can be obtained by

observing that in this particular case the L.P.

problem (11) is equivalent to computing shortest

path flow with respect to the distances

for all (i,j) e A

X. .
= X .

The specialized algorithm obtained [2,8,17] can be

stated as follows.

2. THE SOLUTION ALGORITHMS

It is possible to present various algorithms for

solving the nonlinear cost multicommodity flow pro-

blem considered within the general framework of

either Zoutendijk's feasible direction method [19]

or the Conditional Gradient Method [14]. Since our

principal interest is testing specialized algorithms,

we choose to restrict ourselves to the first alter-
native. Then, the feasible direction method for

solving the problem of minimizing a continuously
diff erentiable function f from R^^ into R over a con-

vex polyhedral set F = [X^R^ : G^^ X = 0, X s o]

can be stated as follows. ^

Algorithm A-O

(1) Find an initial feasible solution X°€F. Set

k = 0.

(2) If X does not satisfy the stopping criteria,

then go to (3).

(3) F^d a descent direction d with respect to

X , i.e. a vector d € R*^ such that

(X*^ + td"^) € F, for all t 6 [O, a],

f{X^ + td^) < fiX^), for all t € (O, y)

(4) Find a solution t to the one-dimension search
problem

Minimize {f (x"^ + td"^) |te [o, a]]

k+1 k k k
(5) Set X = X + t d , k = k + 1, and go to (2).

A close examination of the algorithm A-0 revesils

that the determination of descent directions plays

on important role in characterizing different

specialized versions of the feasible direction me-
thod as applied to various problems. A simple way
to obtain such a direction, which consists in linea-
rizing the objective function, was suggested by
Frank and Wolfe [7]. In fact, let y^ be an optimal
solution of the following linear programming problem

Algorithm A-1

(1) Let the current feasible solution be

x"" = (x*"..
I
(i,j) € A)

df . .

(2) Compute C^ = ^ and
ij X. .= x . .

set = 0 for all (i,j) € A. Set s = 1.

(3) Find the shortest path between node s and

every node in the network using the C. 's as

distances,

(4) For each destination t in the network, set

y^j
=

y^^
+ D(s,t) for every arc (i,j) on the

shortest path between node s euad node t,

(5) If s is not equal to the number of origins,

set s = s + 1 and go to step 3; otherwise go

to step 6,

k
(6) Let y = (y. .|(i,j)€A). Minimize the function

f along the4ine segment between X** and y^,

using a one-dimensional search technique,
k+1

Let the minimizing point be X .

(7) Test the stopping criterion, and go to step 2

if it f ail sj otherwise, stop.

Another way of obtaining a descent direction at

a feasible solution X is described below. It is

more involved than Frank and Wolfe's procedure,

and very similar to the simplex algorithm for L.P,

problems.

Let Q be a basis of the constraint coefficient

matrix G. By partitionning the variables into

basic and non-basic sets, indexed by I and J respec-

tively, and renumbering them if necessary, one can

choose as a feasible direction any direction

d = (dj,dj)

Minimize [f (X*") + Vf (x'')'^(y-x'')
1 y € F] (11)

satisfying the following conditions;

then.
,k k k
d = y - X

52

and

= -[Q~ R]dj

d. s 0 for all j € J such that x. = 0
^ ^ (12)

d. s 0 for all i € I such that x. = 0
X X

[Vf (X)j - (Q Vf (X)jf dj < 0 (13)

Choose

r^ = 0

rj = Vf (X)j - (Q~-'-R)'^ Vf (X)^

r. = min [r
.

]

""t. i

r . X. = max fr. x.

}

i„ 1^ 11
2 2 1

one can obtain either a descent direction of redu-

ced gradient type

r-r., if r < 0,

j
L~''"j''^j'

otherwise; for all jSj

(14)

dj = -(Q~ R) dj

or a descent direction of convex simplex type

[1
ifj=i^

[O if j € J, j 7^ i^

-1 if j = i.

d .
=

d .
=

0 if j € J, j 7^ i.

d , if r. > r. x.

d, =

II

d
J

otherwise

-(Q -"^R) d.

^2 ^2

(15)

under the following assumption:

(a) > 0 (the basis Q is non-degenerate)

or

(b) for every i £ I, — < ~- for all j € J.
ox , ox

.

1 J

In the following algorithm we will restrict

ourselves to the reduced gradient descent direction

and the arc-chain formulation since the convex

simplex descent direction is a special case of the

reduced gradient descent direction. This algorithm

solves a series of restricted problems defined over

a series of restricted sets of allowed paths. It

uses a sequential optimization approach obtained by

decomposing a restricted problem into a series of

subproblems, each corresponds to an origin-destina-
tion (O-D) pair. Successive restricted problems
are obtained by the path (column) generation tech-
nique described below [16,19],

Algorithm A-2

(l) Let be given for each O-D pair (s,t) associa-
ted with a positive D(s,t) a restricted set

of allowed paths P° ^ from node s to node t,
s, t

^
and an arbitrary path flow {h jqGP }

Set -1 = 0,
*^

(2) Solve the restricted multicommodity flow pro-
blem over the restricted set of allowed paths

=,V . P^' as follows,
(s,t) s,t

(2.1) Seti^=l, i^p, =0.

(2.2) If i is equal to the total number of
opt

O-D pairs M, go to (3). Otherwise,

set i^

1 = 1.

set i^ = i^ + 1, k = i^ modulo (M) +1,

(2.3) Solve the subproblem associated with the
k^h O-D pair (s,t) as follows.

(2. 3, a) Compute

df . .(x, J
ij

1.1 1.1

dx. .

ij

for all (i,j) e A,

(^^c^ a^^'i' c. . for all q€P^ ^,(x,j)€A ij xj ^ s,t'

mxn

q e P
st

(2,3.b) Compute

(u - u) h^* , if h >€ and
Iv

d =\
q

b q' q

0, otherwise.

E

q 1
> e

2,

^^^s,t

(2.3,c) If > 0, then go to (2.3,d). Other-

ths in P ^ sati

Lons. T&en, if

+ 1 and go to

wise, the flows on paths in P ^
satisfy

the optimality conditions. T&en, if

-L < 1 let i ^ = X ^opt opt

(2,2); otherwise, i.e. 1^2, let

i =1 and go to (2.2).
opt

(2.3.d) Search for tr--- minimizing
E f . .(x. . + tw. .)

(i,j)€A iJ iJ iJ

53

where

and

w. . - ,Z a . . d
xj q€{*^^ IJ q

0 < t < min{-

st
1—^

I

q € P d < 0}
a St q

(2) then an optimal solution is attained. Other-
wise, let i^ = i^ + 1 and k = i^ modulo (N^) + 1.

(3) Solve the flow problem associated with the

origin node k as follows.

(a) Let t = 0 and compute the distances

(2.3.e) Let h®^ = h^^ + r-d , all q € P
,

q q q st'

X. . = X. . + t"- w. ., all (i,i) € A,

t = -t + 1, and go to (2. 3. a).

(3) For every 0-D pair (s,t), find a shortest

path b from s to t with respect to the
, . st
dxstances

df . .
(X.

.) TT C • • \ C Ac. . = 1.1 1.1 for all € A.
^^ dx.

'

Let u be the length of b , and z be the
ft st st
ength for all significantly positive flow

paths in F*^ ^.^ st

Set

st

,-t,+l

P^ U {b }, if
^— ^>

st st ' z .
2'

st

P" , otherwise.
^ st '

U P

s,t

-t+1

st

-t.+l -t
If P CP then stop; otherwise, set 1=1 + 1

and go to (2).

Close examination of Algorithm A-2 reveals that

it would be a cumbersome, if not clumsy, book-

keeping task to store all positive flow paths, to

check and to update all path flows, separately.

Storage requirements could be fantastically large,

even for mass storage devices, if the networks

considered are of considerable size. Fortunately,

there exists an equivalent, but very compact repre-

sentation of path flows based on the node-arc

formulation of multicommodity flow problems. Moreo-

ver, time-consuming shortest path calculations can

be avoided completely by using a generalized version

of the augmented precessor index method [9] to solve

the flow subproblem associated with an origin node

k, while maintaining all other flows constant. These

considerations have given rise to the following

algorithm [20],

Algorithm A-3

(1) For every origin node k, find arbitrary flow

(x'5., (i,j) ^ A) and spanning arborescence

E(kj rooted at k. Let i„ = -1 and i =0,
T opt

(2) If i is equal to the number of origins N„,
opt S

df. .(x. .)

c^. = for all (i,j) 6 A,

ij

(b) Compute for each node i 7^ k the length of

the path J, . from k to i in E(k) : z.=, E.^, c .

ki ' ' 1 (u,v)€j|^ uv

Compute for each arc (i,j) ^ E(k) the reduced length

r..=c..+z. -z.

(c) Define

= [(i,j) ^ E(k)| ^ < -€^}
i

I = [(i,j) ^ m)\^>^2 ^""^ \] >

If either I.^^ or I^ ^s nonempty go to (d).

Otherwise; the flows x. .originating at k satisfy

the optimality conditiotls. Thus, if < 0 then

let ^ ~
•'-0 ^ -'- SO to (2); Otherwise,

let i°^ = l°Ind go to (2),
opt

(d) Determine
(^-j^'^l^

^''2'^2^ such that

in[

h

k k
r. minfr] and r. . x. . = max[r x],
1^1 3^

uv ^2^2 V2 I2

If |r. .
I

^ r X , then let (i, j)=(i,,j,)

and a = +1; Otherwise let (i, j) = (i , j) and

01 = -1,0,

Retrace the cycle

L. j=(j,.U{(i,J)}UJ,j=L..UL=j

Let

d =<
uv

f 0 (u,v) ^ Lr
J

a (u,v) e L+T- J for all (u,v) € A,

-01 (u,v) e L T T
1 J

(e) Determine

minfx |(u,v) € L - t] if a = 1
uv 1 j

k +
minfx (u,v) 6 L r t] if q- = -1

^ uv ' ' 1 J

If a > go to (g); otherwise, perform the fol-

lowing pivoting operation.

54

(f) Let E(k) = E(k)U{(u,v)}-{(i3, j)} where

((u,v) is an arbitrary element of the set

I = [(u,v) i E(k)
I
V = j and xjj > 1

(if is empty replace (i^, j^) by its sucessor on

L - - or Lt- T and determine again a new I^, and
1 J 1 3 3'

so on) and go to (b).

(g) Find t""" minimizing

E f . .(x. . + td. .) for t € [0, a]

(i,j) €L.-
1 J

(h) Let

X = X + tr""d ,uv uv uv

X = X + t'"-d ,

uv uv uv

c = f (x), for all (u.v) € L- t
uv uv uv 1 J

Set -L = -f, + 1 and go to (b).

computing time per iteration of Algorithm Al is

independent of the number of 0-D pairs. Conse-
quently, for the Sioux Falls' network, we solved

only one test problem with 528 0-D pairs. Moreover
to reveal the convergence speed of algorithm Al, we
have plotted in Figure 1 the value of the objective
function, maximum percentage change in flow compo-
nents, and computing time as functions of the
number of iterations.

A convergence difficulty inherent to Frank and

Wolfe's algorithm occurs when the objective functi-
on assumes a minimum point in the interior of the

feasible region. In such a case, the direction
indicated by the gradient may change veiy rapidly

as the sequence of points approaches the optimal

solution. Consequently, the points may zig zag

around the optimal solution. In our test problems,

although the gradient of the objective function
can not be zero at the optimal solution (since the

objective function is strictly increasing and has

no stationary point in the feasible region) the

convergence seems to slow down appreciably when

approaching the optimal solution.

3. ALGORITHM IMPLEMENTATION, TESTING AND USE

In this section we discuss the implementation

of a basic version for each of the algorithms Al,

A2, and A3 presented in Section 2. Basic versions

of the algorithms were programmed and tested on

relatively moderate size problems. The tests were

planned to gain insight into the computational
behavior of the algorithms.

(3. a) For test problems on networks with about a

hundred nodes and a thousand arcs, the implementa-
tion of algorithm Al does not present any serious

problem. At iteration k of the algorithm it is

necessary to find the shortest paths for all 0-D

pairs with respect to the distances equal to the

marginal costs of traveling on arcs at current

flows X^. Shortest path flows y'^ are obtained by

sending for every 0-D pair (s,t) the flow requi-

rement D(s,t) along the shortest path joining s

and t. Floyd's algorithm [5] has been used to

determine the shortest paths between all pairs of

nodes of a network. This choice has been made in

order to facilitate programming tasks. Computing

time could be significantly reduced by repeatly

using Dijkstra's algorithm [4], especially when the

number of origins N^ is much smaller than the to-

tal number of nodes. The Golden Section method

[15] has been used for searching a minimum of the

function f along the line segment [x'^, y'^]. The

algorithm is started from the initial shortest
path flows with respect to any estimated distances.

Two test networks are considered: one is the 76

arc, 24 node network of the City of Sioux Falls,
South Dakota [17], and the other is the 376 arc,

155 node network of the City of Hull, Canada [19].

Global computational results are presented in Table

1 for comparison with the algorithms A2 and A3.

We remark that for the basic version implemented,

(3.b) The basic version of algorithm A2 is essen-

tially the computer program given in [16], imple-
menting Dafermos' algorithm using a column genera-
tion technique. In this variant of algorithm A2

the descent direction in (2.3 b) is actually repla-
ced by the following

u = min (u q € P)
a q ' Stq

u, = max (u
I

q € P"^ , h^^ > O)
D q ' St q

d = 1

-1

d = 0 for all q P P , q 7^ a, q 7^ b
q St 5 -1 '

An appropriate move along d means shifting flow

from the maxim\am cost path to the minimum cost

path in order to equalize travel costs on these

paths.

The program has been modified in order to acco-

modate much more 0-D pairs than the maximum number

of 20 originally allowed. These minor modifica-

tions are straight-forward and consist in reducing

the core storage required to memorize path and

path flow data. This reduction is easily achieved

by performing flow adjustments for one 0-D pair at

a time. Only data associated with the 0-D pair

considered need to be in core. When all path flows

for this 0-D pair satisfy the optimality conditions,

updated data are written on disks for latter uses.

(3.c) The essential part of algorithm A3 consists

in solving an one-commodity flow problem associated

with an origin node. This is achieved by a gene-

ralized version of the augmented predecessor index

55

method. For strongly connected networks, it is al-

so possible to work only with a basis which can be

represented by a spanning arborescence E(k) rooted

at origin node k. For the arborescence representa-
tion, we use triple-label notation [12] in which

each liode i receives three labels

- child (i) pointing to first node j such that

(i,j) € E(k),

- parent (i) pointing to the node j for which

(j,i) e E(k), and

- sibly (i) pointing to node j 7^ i such that

(parent (i), j) € E(k).

Node numbers z. are then readily obtained by

traversing arborescence E(k) in end-order. Reduced

arc lengths computed from node numbers and marginal

costs permit us to verify the optimality conditions,

and to choose an out-of-kilter arc for which some

flow adjustment is performed.

Let (i, j) be the out-of -kilter arc considered,

and let us suppose that the reduced length rr t is

negative. Thus, flow adjustment consists in"'"t?'ans-

fering flow from (q, r, s, j) to (q, t, i) to

reduce r- t to zero. The same adjustment process

as that us^d in [16], i.e. an interval halving

method, is adopted, since in this process no itera-

tions are required if integral (lump) flow transfer

occurs. This speeds up the computation, expecially

at the beginning of the solution process, and gives

better results than the golden section method.

Basis changes are frequently required. To per-

form a basis change, a zero flow arc (r,s) in E(k)

is replaced by a positive flow arc (u,s). Such an

arc (u,s) exists necessarily, if flow on (s,j) is

positive. Otherwise, (s,j) is considered instead

of (r,s), and can in fact be replaced by (i,j).

After a basis change, if arc (u,v) is inserted into

the new arborescence, then only sub-arborescence

rooted at u needs to be considered for purpose of

updating node numbers.

To start the algorithm, initial arborescences

rooted at different origin nodes as well as arbitra-

ry initial flows are required. We calculate the

shortest path from an origin to every node in the

network by means of Dijkstra's algorithm. At the

end of the shortest path calculation we obtain the

shortest path flows, and for each node the shortest

distance as well as its predecessor node on the

shortest path from the origin to the node itself.

This does mean that we have for each origin an

arborescence represented in predecessor index nota-

tion, which is easily transformed into triple-label
notation and used for basis representation. The

shortest path flows obtained are used as initial
flows,

(3.d) We will now discuss experimental results

obtained from solution of the test problems by

means of algorithms A-1, A-2, and A-3.

First, it is clear from the statement of the

algorithms and presentation of the basic versions
implemented of that algorithms A-2 and A-3 are quite

similar. For both algorithms we may interpret the

underlying itterative computational process within

the framework of traffic equilibrium as a process

by which rational drivers acquire knowledge about

their travel cost, switch to cheaper routes, conges-

ting them, and causing a new flow pattern to en-

volve. This interpretation gives rise to a realis-

tic stopping criterion for algorithms A-2 and A-3,

which requires that the most expensive and the

cheapest used paths as well as the cheapest unused

path from an origin to a destination must not

differ more than, say, 5% in travel cost. Such

stopping criteria may also be used to generate

solutions simulating a well accepted fact that c/fo

of drivers do not care for differences of ^% in

travel cost between paths from their origin to

their destination.

Second, although flow adjustments in algorithms
A2 and A3 are quite similar, algorithm A3 uses a

more compact representation of flows without ex-
plicitly storing all paths allowed. Thus, we may
expect algorithm A3 to provide better performances
than algorithm A2 in terms of core and mass storage
requirements as well as computing time since less
book-keeping is necessary and the shortest path
calculation avoided. The experimental results ob-
tained confirm this conjecture in a very striking
manner. Figure 2 shows a relation between compu-
ting time and number of 0-D pairs for a series of
4 Sioux Falls network test problems presented in
Table 1. The computing time of algorithm A2 is
seven times greater than that of A3. All runs were
executed on an IBM/System 360- Model 50 with Ampex
ECS under OS-MVT, using Fortran IV Level G Compiler.

Third, the computational behavior of algorithm
Al is significantly different from that of algo-
rithms A2 and A3. Defining an iteration as a

shortest path flow calculation (essentially an ex-
ecution of Floyd's algorithm) followed by an one-
dimensional search, the value of the objective
function, maximum percentage change in flow compo-
nents, and computing time are shoivTi iteration by
iteration in Figure 1, The results indicate that
improvement per iteration is very substantial at
the beginning of the iterative process, but that
the rate of convergence slows when approaching the
optimal solution. This means that increasing the
precision of the solutions is atime consuming task.

56

Such a characteristic couU be ennoying for people

attempting to use algorithm Al in selecting net-

work topology or network improvement projects.

(3.e) We are in fact searching for an efficient

network configuration evaluation procedure to be

used in selecting network improvement projects sub-

ject to a budget constraint. For a regional road

network, where congestion may reasonably be negli-

gible, we have proved a superadditive property of

a natural objective function and devised a power-

ful branch search procedure [10], which was later

greatly improved and reported in [5], Interesting

results presented in [5] also show that heuristics,

related to those suggested in [10], give solutions

extremely close to the optimal ones. We are

presently developping similar procedures for net-

works where congestion is no longer negligible [11]

In such a case it is necessary to perform post-

optimality analysis by removing a link from or ad-

ding a link to a network configuration. Algorithm

A3 seems particularly suited to this reoptimiza—

tion task. Table 2 shows computing time required

as function of link insertions/deletions,

REFERENCES

[1] M,J, Beckman, C,B, McGuire, and C.Br Winsten,

"Studies in the economics of transportation",

Yale University Press, New Haven, Conn., 1956.

[2] M. Bruynooghe, A. Gilbert, and M. Sakarovitch,

"Une methode d 'affectation du trafic", in

W. Lentzback and P. Baron (Eds), Strassenbahn

und Strassenverkehrstechnik, Proceedings of

the 4th International Sjonposium on the Theory

of Traffic Flow, pp. 198-204, Bonn, 1969.

[3] S.C. Dafermos and F.T. Sparrow, "The traffic

assignment problem for a general network",

J. Res. Nat. Bureau of Standards-B, Vol. 73B,

pp. 91-118, 1969.

[4] E.W. Dijkstra, "A note on two problems in

connexion with graphs", Numerische Mathematik,

Vol. 1, pp. 269-271, 1959.

[5] R. Dionne, "Recherche d'un algorithme effi-

cace pour le probleme du choix optimal d'un

reseau", Publication No. 174, Departement

d 'informatique, Universite de Montreal, Mai

1974.

[6] R.W. Floyd, "Algorithm 97: Shortest Path",

Communications of the ACM, Vol. 5, p. 345,

1952.

[7] M. Frank and P. Wolfe, "An algorithm of qua-
dratic programming". Naval Research Logistics

Quarterly, Vol. 3, pp. 95-110, 1956.

[8] L. Fratta, M. Gerla, and L. Kleinrock, "The

flow deviation method: An approach to store-

and-forward communication network design".

Networks, Vol. 3, pp. 97-133, 1973.

[9] F. Glover, D. Karney, and D, Klingman, "The

augmented predecessor index method for loca-

ting stepping stone paths and assigning dual

prices in distribution problems", Transporta-
tion Science, Vol, 6, pp, 171-180, 1972.

[10] Hoang Hai Hoc, "A computational approach to

the selection of an optimal network". Mana-
gement Science, Vol. 19, pp. 488-498, 1973.

[11] Hoang Hai Hoc, "Network Improvements via

Mathematical Programming", Paper presented

at the IX International Symposium on Mathe-

matical Programming, Budapest, August 23-27,

1976.

[12] E. Johnson, "Networks and Basic Solutions",

Operations Research, Vol. 14, pp. 619-623,

1966.

[13] L, Kleinrock, "Analytic and Simulation Me-
thods for Computer Network Design", 1970

SJCC, AFIPS Conf, Proc, Vol. 36, pp. 569-

579, AFIPS Press, Montvale, N.J. 1970.

[14] R, W. klessig, "An Algorithm for Nonlinear

Multicommodity Flow Problems", Networks,

Vol. 4, pp. 343-355, 1974.

[15] J. Kowalik and M.R. Osborne, "Methods of

Unconstrained Optimization problems",

Elsevier, N.Y., 1968.

[16] T.L. Leventhal, G.L. Nemhauser, and L.E.

Trotter, "Traffic assignment: Computer

program II", DT-FHA Report No. 25, Depart-

ment of Operations Research, Cornell Uni-
versity, November 1971.

[17] L.J. Leblanc, E.M. Morlok, and W.P.

Pierskalla, "An efficient approach to sol-

ving the road network equilibrium traffic

assignment problem". Transportation Research,

Vol. 9, pp, 309-318, 1975,

[18] E.F. Moore, "The shortest path through a

maze", Proc. of the Int. Symp. on the Theory

of Switching, pp. 285-292, Harvard University

Press, Cambridge, Mass., 1959.

[19] S. Nguyen, "Une approche unifiee des methodes

d'equilibre pour 1 'affectation du trafic",

Publication No, 171, Departement d'informati-

que, Universite de Montreal, Mars 1974.

[20] S. Nguyen, "An algorithm for the traffic assi-

gnment problem". Transportation Science,

Vol. 8, pp, 203-216, 1974.

57

200

150

100

50

Number of

0-D pairs
A-1 A -2 A-3

Sioux Falls
167 -;< % -Sc (541, 2.831) (72, 2.821)

Network

(24 nodes, 75 arcs)

252 (675, 215.9) (98, 217.0)

376 K- •>-« (783, 107.3) (112, 107.3)

528 (133, 76.55) (1020,73.42) (145, 72.79)

Hull Network

(155 nodes, 376 arcs)
720 (1615, 4.023)

-X- -X- -rf- (283, 3.985

Table 1 - Computational results for the algorithms A-1, A-2, and A-3:

(Computing time in seconds, normalized final value of the

objective function).

COMPUTING TIME

OBJECTIVE FUNCTION

^\
\ MAXIMUM % CHANGE

1 1

408

406

404

402

'I

J 1

2000

sec.

COMPUTING TIME/ 60^ ^1500
/

/
/

/
/ 4052 JlOOO

7 /OBJECTIVE FUNCTION
' >/ "^--^

w 1 /\ /\ 20^ ^ 500

/
1/ V
MAXIMUM % CHANGE

10 20 30 40 50 10 15

Figure l.a.- Computational indices vs iteration

number (Sioux Falls Network, Algorithm Al).

150

sec

100

50

. Computing time of A2

+ 7 * Computing time of A3

100 200 300 400 500

Figure 2- Computing time vs number of 0-D pairs.

Figure l.b.- Computational indices vs iteration
number (Hull Network, Algorithm Al).

Number of

successive link

modifications

Average computing

time required

in seconds

0 145

1 154

2 186

3 218

4 266

5 269

Table 2 - Network reoptimization
after link modifications.

58

IMPLICIT REPRESENTATION OF TRIANGULARITY
CONSTRAINTS IN LINEAR PROGRAMS

Gamini Gunawardane
University of Sri Lanka and

University of Chicago

Linus Schrage
University of Chicago

ABSTRACT

In certain linear programs, for example, those

arising out of production-inventory type problems,
a large number of constraints have a special form.

Examples are: simple upper bounds, generalized
upper bounds, variable upper bounds, and general-
ized variable upper bounds. This paper identifies
a class of constraints which enables us to obtain
a large triangular submatrix in any feasible basis.
Also presented is a method for representing these
constraints implicitly within a modified version
of the revised simplex method.

1 . Introduction

From the early fifties on, there has been a steady
progression of optimization strategies and tactics

for solving large linear programs . 1 Such large

LP's are common in problems in production and

operation management. Examples are those derived

from mixed integer linear programs arising out of

such problems as production-inventory planning
and facilities location. Consideration of multi-
periods and/or multi-products increases the size
of these problems substantially. Another factor
contributing to the increase in size in some
problems is the possibility of tighter formula-
tions of integer programs as opposed to loose
formulations. Importance of such tighter
formulations is well explained by Schrage
(1975b)

.

One area of research on large LP's is that of
tactical variations in pricing and pivot
selection. Another area, which is the area of
our interest, is the exploitation of special
structures to reduce storage and computation
time by avoiding explicit consideration of a

full inverse. Examples of such special struc-
ture constraints which have been represented
implicitly are simple upper bounds (SUB)

,

generalized upper bounds (GUB) , and more
recently variable upper bounds (VUB) (cf . Schrage
(1975a)) , and generalized variable upper bounds
(GVUB) , cf . , Schrage (1975b). Mention should also
be made of angular structures and factorizations
described in Lasdon (1970) and Graves and MacBride
(1973) .

This paper identifies a class of constraints
appearing in certain dynamic production management
problems which allow us, by judicious row and
column permutation, to obtain a large lower trian-
gular submatrix in any feasible basis of the prob-
lem. Section 2 introduces these constraints and
illustrates with examples instances where such
constraints occur. Section 3 discusses the
importance of having a large lower triangular sub-
matrix. Section 4 outlines the detailed develop-
ment of a solution method based on a modified
version of the revised simplex method. Implement-
ation considerations currently underway are also
discussed

.

2 . Triangularity Constraints

In this section we define triangularity constraints
and also give some examples of where they arise.

First define

Eligible set of row i = the variables -

including slacks - that have a strictly posi-
tive coefficient on the LHS of row i; i.e.
[x . : a. . > O]

.

3 ID

Now we define triangularity constraints.

A set of constraints of a linear program is

called triangularity constraints - - or T

constraints - - if

(a) their RHS are nonnegative, and
(b) the set of constraints can be per-

muted so that in a feasible basis
to the problem, a variable in the
eligible set of any T constraint
does not have a nonzero element in
any other T constraint lying above
this constraint.

Example 1 : One Machine, Multiproduct, Multiperiod
Scheduling Problem with Setups.

P

Min E

T-1
. k z +

p=l t=l ^ p=l i=l j=i+l
(j

For a recent review of some of this research see
Beale (1975) and also the preface of the same
pxiblication.

i) h r X . .

P P IIP

(1)

59
lit

s. t.

3

E X.

i=l PD
all P, j

(2)

straints is that we are able to get any feasible
basis into the form:

P
I

p=l
y. <
ip - all (3) (8)

z. > y. - y . , all i, p
ip - ip 1-1,

p

(or, y. - y. , - z. < 0)
ip 1-1, p ip -

(4)T
where T is composed of constraints (4) and (5)

,

and is lower triangular. Note that in order to

get this form we had to place (4) and (5) in that
order at the bottom of the constraints.

X. . < y. all i, j , p (5)T
i:p - iP

Example 2: Dynamic Plant Location Problem (Rood-

man and Schwarz, 1974)

X. . > 0
IIP

- i, j, p (6)

y. , z. = {O, 1} all i, p (7)
ip ip

where

Pt

r

iDP

= demand for product p in period t

= units of p which can be produced in

period t

= setup cost for product p

= one period holding cost for product p

fraction of production capacity in

period i used to satisfy product p
demand in period j

1 if product p is produced in

period i

IP

ip

0 else

1 if a setup is made in period i

for product p

10 else.

Note that the LP relevant to our discussion is

the relaxation: Min (1), s.t. (2) - (6). The
letter T against constraints (4) and (5) indicates
that they are T constraints. Now consider these
two sets of constraints together.

For any RHS constant which is zero, without loss
we can assume it to be a small positive number.
Thus one of the variables with a positive coeffi-
cient in the LHS of each constraint of (4) and (5)

must be in a feasible basis. For these variables
of (5) , there are no other nonzero elements in

their columns within (4) and (5) . This is no

surprise as (5) is in fact of VUB form. In (4)

,

the y. columns have no elements above the posi-
iP

tive element corresponding to the row in which a

particular y. is basic in a row of (4) . Thus
iP

(4) and (5) qualify to be T constraints.

The immediate advantage in recognizing the T con-

Min T. F.y. + T. c.x..
, ^ if'it . . ^ i]t i]t
i,t i,J,t

(9)

s.t. Ex.. =1
i

-y. + y. < 0
-'it i,t-l —

X . . < y

.

ijt - "it

i]t It —

all j, t (10)

all i, t (11)T

all i, j, t (12)T

(13)

y is integer (0, 1)
it

(14)

where

F.^ = fixed cost of operating plant i in

period t

c. .
= cost of transporting a unit from i

to j in period t

x^.^ = fraction of requirement at j supplied

by i in period t

fl if plant i is "open" in period t

It
0 else.

The LP relaxation is: Min (9), s.t. (10) - (13).

Now, following arguments similar to those in exam-

ple 1, we can get any feasible basis into form (8).

(11) and (12) become the triangularity constraints.

To summarize, the motivation behind identifying T

constraints was the ability to get any feasible

basis into the form (8) . The T constraints form

the lower triangular T, and in the examples given

above it would be seen that T is fairly large.

Thus, considerable savings could be anticipated

if these T constraints are implicitly represented.

To do this, we exploit some special properties of

triangular matrices.

3 . Usefulness of the Triangular Submatrix

The following properties of triangular matrices

make it convenient to have a large lower triangu-

60

lar submatrix in the basis.

(i) In our problem T is nonsingular. Thus

T exists. T is also lower triangular.

(ii) T can be computed by iterative substi-

tution. (In general, T is not explicitly
needed .

)

(iii) Pre-multiplication of matrices or vectors

by T can be done without finding T exolic-
itly. For instance, let R be an n x m matrix

and we want F = T ''"R. If we partition F and
R by columns,

f. = T"-^r. .

1 1

Now if we solve the system Tf. =r. {i=l, 2,

. . . , n) , by back substitution we can get T '^R in
2

,mn /2 multiplications. In using the revised sim-
plex method pre-multiplications of this type occur
several times.

(iv) Both (ii) and (iii) are simplified if T
has further special structures, e.g., band struc-
tures. Some practical problems tend to have such
band matrices in place of T.

4- Implicit Representation of T Constraints

x .
> 0

Constraint z + Z a„.x. = 0 will be the top row
j=l °3 D

(row zero) in the tableau. If we had the full

B , the top row of this would have been the
vector of dual prices {tt^}. Also, let m (< M)

be the last explicit ro'>', i.e., T constraints
are in rows m + 1, M.

Construction of the Pricing Vector

All elements of the pricing vector {ri^} can be

computed from the smaller inverse and the other
information we carry. If i < m, then tt . is

^ — 1

simply element i of row zero of (C -DT E)

For i = m, we can compute t:_^ starting from

i = M as follows. Denote by b(i) the column
basic in row i. Then,

for i = M: E TT a + tt a_ = 0
k)c] M Mb (M)

I.e., TT

k=0
" mb(M)

We saw earlier that for problems with T constraints
a feasible basis could be written in the form:

i = M - 1: J Vkb(M-l) + VlVl,b(M-l)
k=0

B =
I

E_
I

T

With this form of B, we have

(C - DT •""£) (C - DT ""£)
"'"(-D)t'''"

r "'"(-E)(C-DT """E) T~'''(-E) (C-DT~'''E) (-D) T~''"+T
"'"

(15)

We plan to carry only the smaller inverse

(C - DT """E) and not the larger B . Informa-
tion in the coefficient matrix A would be
carried in part explicitly and in part using
pointers and link lists. The next step is to
apply the revised simplex method to this reduced
working basis. To do this, we write the entire
LP in standard form:

Max z

N

E a . X ,

j=l °^ ^

N
s.t. E a..x. =a

j=l 13 3 10
i = 1, 2, . , M

\^Mb(M-l)

In neneral for

m

E

k=0
k k]

M
E

p=i p pb(p)

In fact, we do not always have to start computing
TT. 's from the last row. Certain tt. 's, namely
1 1

those corresponding to columns of T which have

only the diagonal element nonzero, are also direct-

ly computed. This property is useful in imple-
menting the pricing procedure. When we need a

TT., i > m, but do not have the price of a later
1

row, we find the column basic in that row and

price it out. This loop will produce the required

TT. as soon as we reach a column with only the
1

diagonal element nonzero. In a typical implement-

ation we would price out only a small portion of

the columns at any iteration. If none of the

columns priced have elements in row i, then

that TT^ is not computed. The fact that a^_.

are usually simple elements (0, 1, -1) also helps

in reducing multiplications.

Selecting an Entering Column
M

This is done by computing E 't, a . for selected
k=0 ^ ^3

61

nonbasic colunuis. The only saving here possibly
would be by using the knowledge that some of the
a, . ' s are +1 or -1

.

Generating the Updated Representation of the
Entering Column

Define the following notation:

a.. = the column vector consisting of

a., a.,..., a.
Oj 13 M]

Df. In an implementation currently under way, we
plan to store D by columns. f is quite sparse
and we need access only those columns of D

corresponding to the few nonzeros of f. Because

T "'"a
, , , . is a column vector, DT '''a

,

(m+l;M)3 (m+l;M)3
is easily computed. Recalling that

(C - DT ''E) is the smaller inverse we are
carrying, a,„ , . is now available.

^ ^ (0;m)]

Consider (17) simplifying further.

a .
= B ^a .

a, = T """{-£)[(C - DT ""£) (C - DT """E)
(m+l;M)

]

a. . = element i of a., i=0, 1, ...,M.
13 •] -(D)T a. , + T a . ^ ^, .

3 (m+l;M)]

The notation (i;k) when used as a subscript
denotes elements i through k along the associ-
ated dimension, e.g., a ,

= a,„ .

.

•3 (0;M)]

If j is the entering column, then we want to get

B '''a__. = a y From the previously encountered

form of B '^

, this gives:

= ^"'<-^'^0;m)j ^ ^''Nm+l;M)j

-1,

^^(m+l;M)j ^°'(0;m)j

= f - T Ea
(0;m)

j

^0;m)j
= - Dt"'e)-^I: "DT-^a ..

.L.1 MX = [(T~'''(-E) (C - Dt'^^E) : T ^(-E)
(m+l;M)

3

(C - Dt"'''E) """(-DjT + t""" ja

Consider (16) : simplifying further.

(16)

(17)

We already have f and a

E • a
(0;m)

j'

{0;m)

j

and pre-multiply by T

Now we compute

Pre-

multiplication by T

already discussed.

-1
follows the simpler method

a, , , ., and hence the entire a ,, is now
(m+l;M)]

available

.

a . .
= (C - Dt'^^E) "^(a,^ + ("Dt"''")

(0;m)3 (0;m)]

^(m+l;M)

Selection of the Pivot Row

This is done very much in the usual fashidn by

computing ratios. We already have the updated

version of the entering column, and we need the

updated RHS

:

(DT ^)a, , . is computed easily if we use the
(m+l;M)]

special properties of T stated in section 2.

Let

f = T -"-a

(m+l;M)
j

Then

Tf = a
(m+l;M)

j

and we solve this system as in Section 2. Usually
a, contains only a few nonzero elements,
(m+l;M)]

and we start with the top-most nonzero element in
a, The row corresponding to it gives the
(m+l;M)3

corresponding f^. The next step is to compute

C „ = B a „•0 -0

a ,„ > „ is given by :

(0;m)0

"(C-nOO = - '^^"'^'''<"(0;m),0 " °^''^m+l;M) 0>

We could follow the same steps in the previous

section and compute Ct,„ but a better way
(0;m)0

to carry a,
^ „ explicitly and update each

(0 ; m) ,0

pivot by considering it as another column of

(C - dt~"'')e"''".

a is computed by back substituting the
(m+1 ;M)

0

values of variables basic in implicit rows that

have nonzero coefficients in a given explicit row.

We need only the elements of " [4)0
^^^^^

correspond to a, ^ f 0. The actual proce-
(m+l;M)3

62

dure to get the required a. ' s by back substitu-
lO

tion is similar to the looping discussed in

constructing the pricing vector where the stair-

case structure of T is exploited.

Pivoting

The type of pivot to be performed depends on
whether the departing column is basic in an explic-
it row or an implicit row. Let us consider the
several cases that may arise.

Let

c = entering column

d = departing column

The change of a column in (D, T) ' does not affect

It affects DT '"a, if
(0;m)b(i) (m+l;M)b(i)

column b(i) has a nonzero in E in any row that
communicates with row r of T. In other words,
there will be no effect if a, ,,,.,= 0, where

(q;r)b(i)

q is the largest numbered row in T above r,

which has only a lone nonzero element (the +1 in

the diagonal) and such that all a
rk

0 for

k < q. The reason for this lies in the fact that

under these circumstances, the solution to

(m+l;M)b(i)

Case (i)

row.

row in which column d is basic.

Departing column basic in an explicit

remains the same even after the change in T.

Once we have identified a column b(i) for which

all zeroes in a, ., ... are not zero, we com-
pute

(q;r)b(i)

Column c replaces d in (C, E) ' . The change
affects only C and E, and the effect is to.

-1.
to change only one column in

-1

(C DT E) . The new

column in (C - DT E)

In computing the updated version of

a,^
< - DT

(0;m)c ^(m+l;M)
we had

^(0;m)b(i) ' °n'^n ^ (m+1 ;M) b (i)

using the new D and T. Premultiplication of

this by the current R gives us the pivot column.
The pivot is made in row i

.

°(0;m)c = - °^"'^>"'(N0;m)c " '^^"'^m+1 ; M) c^
•

Thus the new (C - DT "'"E) is obtained by using
ci/^ v„ as pivot column and pivoting on element
(0;m)C

a . Thus, this pivot is identical to a conven-
rc
tional revised simplex pivot.

Case (ii) a . Departing column basic in an implic-
it row, and c can directly replace d in row
r , i.e., r > m and a . =0 for m < i < r

,

a =1.
rc

Case (ii) b . Departing column basic in an implic-
it row, but c cannot replace d in row r, i.e.

the entering column not of special form as in case
(ii) a.

This means that the entering column (call it t)

cannot replace d. If it did, it would destroy
the partial triangular structure. As in GVUB, we
handle this in two steps.

Step 1 . Find a column c currently basic in an

explicit row that can replace d. Such a column
exists, because the new basis—with t in place
of d—is a feasible basis, and it too should be

adjustable to form (8)

.

Now a column is changed in (DT) ' . The difficult
part in this case, as well as in the next case,
(ii) b, is identifying which columns of

(C - DT ''"E) have been affected by this column
change.

Let 0/n as a subscript denote the old/new

matrix; e.g.

,

column in (DT)

'

T^"*" is T "' before change of a

Let

R = (C - DT~ '£)"'

We have to repivot in any row i (i = 1, . . . , m)

for which

R(a
(0;m)b(i) n {m+l;M)b(i)' ^ i

where e^ is a 0 vector except for a 1 in row i.

Once c is found, step 2 is like case (ii) a.

As many pivots as there are columns changed in

(C - DT would be needed to update its inverse

Step 2 . Now replace c by t.

This is like case (i) , and requires a pivot on a
Pt

using a,„ , as the pivot column.
(0;m)t ^

Though it is more complicated than the VUB and
GVUB implicit representation, the implicit repre-
sentation of triangularity constraints also saves
much computation in the early steps of the revised
simplex method. The pivoting step, particularly
case (ii) a, may involve several pivot operations,
but this may well be compensated by the savings
due to having these operations performed in the
smaller inverse instead of the full inverse.
Storage-wise, implicit representation is efficient
in that it enables us to store problems with a

large numbe r of triangularity constraints entirely
in main memory.

63

REFERENCES

Beale, E. M. L. "The Current Algorithmic Scope
of Mathematical Programming," Mathematical
Programming Study 4 (December 1975)

.

Graves, W. G. and R. D. McBride, "The Factoriza-
tion Approach to Large-Scale Linear Program-
ming," Working Paper, Graduate School of

Management, UCLA (August 1973)

.

Hadley, G. Linear Programming . Addison-Wesley

,

1962.

Lasdon, L. S. Optimization Theory for Large
Scale Systems . Macmillan, 1970.

Roodman, G. and L. Schwarz, "The Dynamic
Plant Location Problem," Working Paper,
University of Rochester (1974).

Schrage, L. S. "Implicit Representation of
Variable Upper Bounds in Linear Programs,"
Mathematical Programming Study 4 (December
1975a)

.

. "Implicit Representation of Generalized
Variable Upper Bounds in Linear Programs,"
Report #7543, Center for Mathematical Studies
in Business and Economics, Graduate School of

Business, University of Chicago (1975b).

AN EFFICIENT GENERAL ALGORITHM FOR THE
COMPUTATION OF LINEAR DECISION RULES

SIDNEY F. THOMAS

Caribbean Industrial Research Institute,
Tunapuna Post Office,

Trinidad.

ABSTRACT

The Z-transform technique is applied to the

optimization problem consisting of a quadratic
objective function and linear difference equations.
A rigorous proof of the general solution is offered,
and a computational method is described which is

likely to be more efficient than matrix inversion
or matrix iteration approaches.

INTRODUCTION

In a recent paper. Hay and Holt /4/ have
presented a general solution for the optimization
problem in which the objective function is quadratic,
and the variables are subject to linear difference
equations, utilizing a technique known as the
Z-transform. This technique is an alternative to

other solution methods currently in use, such as

matrix inversion (e.g. Theil /7/ and matrix
iteration (e.g. Bellman /I, p. 78 et.seq./. Chow /2/)

.

While the developments in /4/ have contributed some

additional insight into the class of quadratic-

linear optimization problems, the Z-transform
technique as presented seemed to have little
computational significance, for as the authors
stated, "... matrix iteration or matrix inversion
are likely to be computationally superior approaches..",
/op.cit. p. 257/.

In this paper, I return to the Z-transform
technique for solving quadratic-linear optimization
problems. I pay particular attention to the question
of computational efficiency, and reach the conclusion
that the Z-transform technique can in fact lead to

solution methods computationally superior to either
matrix iteration or matrix inversion, at least under
certain stationarity assumptions, contrary to what
is suggested in /4/. In arriving at this conclusion,
I suggest an algorithm that is different from that
in /4/, in the way certain characteristic roots are
determined. These developments were made as part of

an investigation /8/ of an educational planning
problem, where because of the large number of system
variables, and the long lead times involved (which
result in difference equations of high order)

,

computational efficiency is placed at a premium.

Altogether apart from the issue of

computational efficiency, the proof of the general
solution is different in certain respects from that

found in /4/. Specifically, the proof is both
simpler and more rigorous. Not only that, but the
particular notational devices used in constructing
the proof, lead naturally to the more efficient
algorithm developed, in contrast to /4/, where the
"otational devices are such that it is not so easy
to see the (computationally) important equivalence
between the characteristic root problem, and the
eigenvalue problem for a suitably constructed
matrix. Thus this paper sets out to make a

contribution at two levels: firstly, in respect of
computational efficiency, and secondly in respect
of a further consolidation of the theory underlying
the use of Z-transform techniques for the quadratic-
linear optimization problem.

This paper is structured into two parts. Part
1 describes the basic approach of the Z-transform
method of solution, following /4/ but utilizing
different notational devices. Part 2 is where the

real contribution of this paper lies, addressing
the two critical issues arising from the Z-transform
approach, viz. (i) the question of the existence of

certain roots needed in the solution procedure; and

(ii) the question of an efficient computational
routine for locating those roots. The relative
efficiencies of alternative computational approaches
are then compared, and the paper concluded.

PART 1 - THE Z-TRANSFORM APPROACH

In this part of the paper, the Z-transform
approach to quadratic-linear optimization problems

is described. Following a general statement of the

problem, the (first-order) conditions for a maximum
are derived. Some restricting (stationarity)

assumptions are then introduced, and the Z-transform

technique used to show how a solution could be

derived from the system of linear equations defining
the maximum conditions.

THE GENERAL PROBLEM

The problem under consideration, following

Theil' s /7/ canonical form, is the following :-

Find y which maximizes

$ (x,y) = a'x + b'y + ijx'Ax + hy'By + hx'Cy

+ ^jy'C'x (la)

s.t. X = Ry + s. (lb)

65

That is, we have a quadratic criterion in two sets
of variables x and y. The set of variables y are
the decision variables, which (it is assumed) can
be manipulated by the decision-maker. The set of
variables x are called state variables. These
are affected by the decision variables in accord-
ance with the linear side relations given in
equation (lb) . The state variables are also
affected by the set of variables s, which are
uncontrollable from the decision-maker's viewpoint,
and exogenously specified. The parameters of the
problem are the vectors a and b, and the matrices
A, B, C, and R.

The sets of variables x, y and s are time-
partitioned as follows :-

i.e. $ (y) =kQ+k'y+y'Ky

—1 ' —2
'

•
• •

' 2t

i^' ^1 ^-1

STxl

DTxl

STxl

(2)

That is , for each of T periods in the planning
horizon, there are S state variables, S exogenous
variables, and D decision variables, so that x is
of dimension STxl, y is of dimension DTxl, and s

is of dimension STxl.

The vector and matrix parameters a,b,A,B,C,R,
are of dimensions which conform to x and y. That
is, a is STXl, b is DTxl, A is STxl, B is DTXDT,
C is STxDT and R is STxDT.

The linear decision rule consists in finding
the optimal /trst-period decisions, that is y^

,

when the planning horizon T ->- as a function of
the exogenous variables, the asterisk in y*, being—0
used to denote optimality. Note here that when
X, y and s are as defined in (2) , the exogenous
variable s_^ can be expressed as a function of the

most recently observed state Xq. For this reason,

writing a first-period linear decision rule as a

function of the exogenous variables s^, s^^,

is equivalent to a feedback control law, (Chow /2/)
in which the optimal decision in the t-th period,
y;*, is written as a function of the most recently

observed state x
t-1*

In this paper, therefore.

and contrary to Chow's /2, p. 17/ viewpoint, we
take the practical view that we are dealing
essentially with differences in computational
method when we compare matrix iteration, matrix
inversion and Z-transforra methods for solving
the problem stated.

MAXIMUM CONDITIONS

The formal first order conditions for a
maximum, are obtained by substituting for x in (la)

by making use of (lb) , and then differentiating and
setting the result equal to zero (Theil /7/) , as
follows: Substituting (lb) into (la), we get:-

^ (y) = a' (Ry + s) + b ' y + »5 (Ry + s) ' A (Ry + s)

+ ijy'By + 55 (Ry + s)'Cy + '5y'C'(Ry + s)

(3)

where

,

k^ = a's + ^s'As

k =a'R+b'+R'As+s'C

K = IjfR'AR + B + R'C + C'R}

(4)

(5a)

(5b)

(5c)

Differentiating (4) with respect to y and setting
the result equal to zero, we get the formal first
order conditions for a maximum, thus:-

Ky' = -k (6)

We are concerned in this paper only with
methods for solving the system of equations given
by the first-order conditions. The second-order
conditions for a maximum are not discussed here,
although it may be remarked in passing that
sufficient, but not necessary, second-order
conditions are that K be negative-definite. See
Theil /I/ for a discussion of this issue.

ASSUMPTIONS

We now introduce the following assumptions :

-

(i) Assume that A, B and C are real, band
block-diagonal matrices, with (time -)

invariant band, and that A and B are
also symmetric.

(ii) Assume that R is lower band block-
diagonal and real, with (time -)

invariant band.

(iii) Assume that all variables and parameters
are real, if not already so specified.

(iv) Assume that the parameters A, B, C and
R have values such that the second-
order conditions are satisfied.

Underlying assiimptions (i) and (ii) is the
more basic assumption that cross-temporal effects,
both in the criterion function and in the system
dynamics (the linear side-relations), are limited
in the number of periods they span. Furthermore,
the assumption is made that these cross-temporal
effects are time-invariant, so that for any given
cross-temporal span, the relevant parameters are
the same, regardless of where in the planning
horizon the span is actually taken. Considering
the fact that we are letting T <», this would seem
to be a necessary assumption in most cases.

The symmetry assumption for A and B can be
made without loss of generality since we are dealing
with quadratic forms. The assumption that R is

lowev band block-diagonal amounts to saying that
current values of the state variables are dependent
only on previous decisions, and not at all on future
decisions, which would seem to be a necessary
assumption in most problem situations.

The assumption that all parameters are real
needs no justification. It would be difficult to
give a practical interpretation of complex
parameters in most applications.

66

Following on assumptions (i) and (ii) , we
have the result that K must necessarily be band
block-diagonal, symmetric and real. This result
can be quite easily proved, though with some tedium
using the defining relation {5c)

.

Taking the relevant cross-temporal 'span' of

the system to be 'd' periods, therefore (this may
be a system lead time; for example, in an
educational system, the lead time between initial
enrolment and final graduation may be considered to
be (at most) six years, or periods, in which case
d =6), and with the symbol (') denoting trans-
position, we may write K as follows :-

K =

K.
d-1

d-l d-1

^d-l d-1

d-1 d-1

^0 d-1

DTxDT

d-1

(7)

This is merely a general characterisation of a

band block-diagonal, real, symmetric matrix. When
T -> the infinite-band portion has "width" 2d+l,

made up of the 2d+l block elements K^, ... , ^,

'^d' Vl' Note that in this character-

isation we must have that is symmetric, which

it is, from (5c). Note also that each block
element has dimension D>^D, and can be obtained
from (5c) by first time-partitioning A, B, C, and

R, into block elements conforming to Assxmptions
(i) and (ii) , and then carrying out the indicated
operations. The result (7) which then follows
will form the basis for the method of solution to
which we are headed.

METHOD OF SOLUTION

Substituting (7) into (6) , letting T ^
and taking the Z-transform^ of the result, we get:

2d-l
S Q. (z)y* + zS(z)Z(y*) = Z(k)

i=0 ^ ^ -t
(8)

where Z(.) denotes the Z-transform of a (vector,
in this case) sequence of variables; Q^(z),

i = 0, 2d-l/ are the polynomial matrices that
premultiply yj, yj, yt , , , which are

-2d-l
obtained upon taking the Z-transform, and F(z) is

the aharaateristio polynomial (matrix) associated

with the infinite-band portion of (7) . F (z) is

defined by the following:-

F(z)

d-1
= Z

i=0
z"k'.

1

d

+ Z

i=0

z K
d-i

(9)

Note that for any arbitrary value of the
variable z (8) is an equation in the (2d+l)D
variables y^, y*.

Now multiplying (8) through by F(z), the
adjoint of F(z), and making use of the fact that
for any general square matrix A, AA = |a|i, where A

denotes the adjoint of A, |a| denotes the determin-
ant of A, and I the identity matrix, we get:-

' 2d-l
F { Z Q^y*} + z !F|z(y^)

i=0

F Z(k) (10)

where the z arguments denoting the dependence of

the polynomial matrices F, F, Q^, Q^, ... , Q^^ ^

on z, have been dropped for notational simplicity.

Now, if we choose z within the unit circle
such that F{z) 0, the term in Z (y*) drops out;

and if further, the sequence 'fk^' t = 0,1,2, ...}

is bounded above, then Z(k^) is finite.^ We would

thus have an equation in only the 2dD variables

' ^2d-l-
Such a z would be by

definition a root of the characteristic polynomial
|f(z) |. Furthermore, we know from the result in
Linear Algebra /3 , p. 61/ that F(z) has rank unity
for any root of |f(z)|. Consequently, substitution
in (10) of any z , say, within the unit circle,

m
which is a root of |f(z)

|

, yields exactly one
linearly independent equation in the 2dD variables
V* y*^ ^, obtained by taking a single

non-zero row from F (z)

m
Denoting such a row by

f (IxD)
ra

we have on substitution of a root z into
m

(10) , one linearly independent equation defined
thus :

-

2d-l
f { t Q. (z)y^} = f Z{k)m . „ 1 m —1 m —

t

1=0
(11)

In order to solve for the 2dD variables

y^, y*, ... , y2(3_]^' ^® need exactly 2dD linearly

independent equations. We may obtain dD linearly
independent equations from the original conditions
for a local maximum. Observe there that the first
dD equations contain only the 2dD variables

y^, Y*^, ... , The remaining dD linearly

independent equations may be obtained from equation

(11), by substituting dD roots z^ satisfying |z^I<l,

m = 1,2, ... , dD. It is obvious that this pro-
cedure can only work if there are exactly dD roots
of |f(z)| lying within the unit circle of the

complex plane. Furthermore, the computational
efficiency of this procedure depends critically
upon the efficiency with which the roots z ,m
m = 1,2, ... , dD can be found. The rest of this

paper addresses itself to these two questions.

67

Note in passing that the occurence of complex
roots poses no insuperable problems. See /4, 5, 8/
for methods of handling complex roots.

Proof : The proof follows easily from the
definition of a symmetrical polynomial, and is

therefore omitted.

PART 2 - A PROOF OF EXISTENCE, AND
A METHOD FOR FINDING THE ROOTS

In this part of the paper, firstly we prove
the existence of exactly dD roots of |f(z)| lying
within the unit circle of the complex plane, using
a different and more rigorous approach than Hay
and Holt /4/. Secondly, we describe an efficient
method for obtaining the dD roots of |f{z)

|

lying
within the unit circle. Thirdly, a brief
comparison is made of the relative efficiencies
of the alternative approaches.

EXISTENCE PROOF

To prove the existence of dD roots of |f(z)

|

lying within the unit circle of the complex plane,
the approach is as follows: The concept of a

syrmetrical polynomial (Definition 1) is introduced,
and it is proved that symmetrical polynomials have
an even number of roots, half of which lie within
the unit circle of the complex plane (Theorem 1)

.

It is then shown that |f(z)| is a symmetrical
polynomial of degree 2dD (Theorem 2) , from which
the required result immediately follows (Theorem 3).

To prove that |f(z)| is symmetrical, it is necessary
to introduce the concept of the reverse of a

polynomial (Definition 2) and to prove first,
several lemnata involving this, and the concept of

symmetrical polynomials.

DEFINITION 1 : A symmetrical'^ polynomial is a
2n r

polynomial of even degree 2n, say, Sax such

that a = a^ , r
r 2n-r

f (x)

r=0 r

0, ... , n. Example :-

3 + 2x + 4x^ + 2x3 + 3x^

is symmetrical.

DEFINITION 2 : The reverse of an n-degree
n X

polynomial I„ a x is defined to be the n-degree
r=0 r
n X r ^

polynomial a x . Let Ri .) denote the reverse
r=0 n-r

of a polynomial. Example :-

r{3 + 2x + 4x^} = 4 + 2x + 3x^

THEOREM 1 : A symmetrical polynomial of degree
2n possesses exactly n roots, x^, i = 1, ... , n,

some possibly repeated, satisfying \x^\<l,

i = 1, ... , n; provided only that there is no root
X such that \x\ = 1.

Proof : For any (in general complex) number x,

either
| x |

<1 or |x]>l, if 1x1 ?^1.

Furthermore, |x|>l <=> <1.

Now, by Lemma 1, f (x) =0 <=> f {—) = 0. More-
X

over, being of degree 2n, f (x) must have exactly 2n
roots (some possibly repeated)

.

By symmetry, therefore, f (x) must have exactly
n roots satisfying |x|<l and exactly n satisfying
|x|>l (some possibly repeated); provided only that
there is no root x such that |x| =1. QED.

LEMMA 2 : The sum of symmetrical polynomials <

of the same degree is also symmetrical. i

Proof: The proof is obvious and therefore
omitted.

LEMMA 3 : The Sum of an even-degree polynomial
and its reverse is a symmetrical polynomial. That
is, f(x) + B[f(x)} is symmetrical if f(x) is of
even degree.

Proof : The proof follows easily from the
definitions of a symmetrical polynomial and the
reverse of a polynomial, and is therefore omitted.

LEMMA 4 : The reverse of a product of
j

polynomials is the product of reverses of the i|

individual polynomials making up the product. That
'

. -RCf }.
P

is, R{f^-f^-fp} Rff^l-Rff^}'

Proof : The proof is by induction. It is

shown first of all that if the result holds true
for the product of p (p >_ 2) polynomials, that it

must also hold for the product of p+1 polynomials.

Assume

The reverse of an n-degree polynomial f (x) may
be defined alternatively as follows :-

R{f(x)} E x"f(-)
X

The equivalence of the two alternative
definitions may be easily proved. Example :-

R{3 + 2x + 4x } = x^(3 + - + -2) = 4 + 2x + 3x^

as before.

LEMMA 1 : If X is a root of the symmetrical
2

polynomzal f(x), then its reciprocal — is also a

root. That is, if f(x) is symmetrical, f(x) =

0 <=> f(l) = 0.

R{f,-f2-

Then,

R{f,.f2-

•f }

P
R{f^}'R{f2}- •R{f }.

P

•f -f ^,

}

p p+1
R{f^'f2}'R{f3}-

R{f^}-R{f2}-R{f3}- •R{f ^,}.
p+1

(12)

•R{f
p+1

(13)

That is the result must then also hold for p+1
polynomials.

Secondly, the result is proved for two

polynomials. That is, we wish to show

68

RCf^'f^} = R{fj^}*R{f Recall first from the

definition, that for an n-degree polynomial f (x)

,

R{f(x)} = x"f (^) . Now suppose that f ^ (x) is of

degree n and that f 2 (x) is of degree m. Then,

R{f.}-R{f-} = x"*"f. (i) f,(i),
1 2 1 x 2 X

by definition of reverse. Now, let

fj^Cxj-f^Cx) = $(x)

Thus

n+m . ,1.= X $ (-) ,

x

by definition of reverse; that is

R(f,.f2} = x-%(i).f2(i),

(14)

(15)

(16)

of f . . (z) ; that is f . . (z) = R{f . . (z) } , i, j , . . . , D.
1] 31 13

226/
Now by definition of a determinant /6, pp. 225,

|f(z)| = X '=^"'k iSi ^a^(i),i'^^'

(19)

where 0^(1), ... , Oj^(D) is the k-th permutation of

the integers 1, ... , D where the sum is taken over
all such permutations. The symbol (sgn)^ denotes

+1 if the integers a (1) , ... , a (D) can be con-
K K

verted into 1, ... , D by an even number of inter-
changes; otherwise, (sgn)j^ = -1.

Note that every term in the summation consists
of a product of D polynomials each of degree 2d.

Consequently |f(z)| is a polynomial of (even) degree
2dD, provided of course that K^^ is non-null, which

we may assume without loss of generality.

by (15). Hence, by (14)

R{fj^'f2} = R{fj^}'R{f2} QED.

LEMMA 5 ; An even-degree polynomial which is
its own reverse is a syrmetriaal polynomial. That
is, f(x) = R[f(x)] => f(x) is symmetrical.

Furthermore, every term in the summation is

either symmetrical, or has its reverse in the
summation. To prove this assertion, consider the
k-th term in the summation:

^^^"'k iSiV (i),i'^''
k

(20)

Proof : The proof follows easily from the
definition of a symmetrical polynomial, and is
therefore omitted.

THEOREM 2 ; The determinant of F(z) , where
FCz) is the polynomial matrix as defined in

equation (9), is a symmetrical polynomial of
degree 2dD.

since f . . (z) = R{f . . (z) } , i, j = 1, ... , D and in
Di in

view of Lemma 4, the reverse of the k-th term can
be obtained quite simply by reversing the subscripts
on the polynomials in the product and keeping the

sign, to get:-

(sgn), .n, f . „ , ,
(z)

k 1=1 1,0^^ (1)
(21)

Proof: F(z) is a polynomial matrix whose
ij-th element is a polynomial of (even) degree 2d

given by equation (9) , elaborated here for conven-
ience.

i, j = 1, ... , D

(17)

Now let a (1) , a (2) , ... , a , (D) be the
k K K

permutation of 1,2, ... , D defined by the first
subscripts on rearranging (21) so that the second
subscripts are in the order 1,2, ... , D. But

0^^,(1), 0^,(2), ... , Oj^, (D) is clearly another

permutation of 1,2,. ..,D, with (sgn)j^= (sgn)j^. , and so.

(sgn), ,
.n f . (z)

k' 1=1 a^, (1) ,1

where (•)j^j denotes the ij-th element of the matrix

in brackets.

Making use of the fact that K, = K', and that
a a

(K^)j. = (Vij' ^ " 0'1'2» ... / d-1, by the

definition of transposition, we have,

d V d-1 , d+k

^ji^^> = kio ^Vij^^klo ^'^•d-k^ij^ '

i, j = 1, ... , D

(18)

that is we have shown that f .. (z) is the reverse

must be a term in the summation. If it is identical
to the k-th term, then by Lemma 5 we have that the
k-th term is symmetrical. If it is not identical
to the k-th term, it is by construction, the reverse
of the k-th term. Hence we have the result that
every term in the summation in (20) is either
symmetrical or has its reverse in the summation.

Therefore, by Lemmas 2 and 3, we have that
the summation of 2dD-degree polynomials defining
|f(z)| is symmetrical, and of degree 2dD. QED.

THEOREM 3 : l^^z^l possesses exactly dD roots,

, dD, some possibly repeated, satis-z ., % = 1, ...

fying \z^\<l,

there exists no root z such that \z\

i = 1, , dD; provided only that

= I.-

69

Proof : By Theorem 2, we have that |f(z)| is where the time-partition k' = |k^, k^, k^, ...j has
a symmetrical polynomial of degree 2dD, which is

even.

By Theorem 1, therefore, 1f(z)| must possess
exactly dD roots, z^, i = 1, ... , dD, some

possibly repeated, satisfying |z^|<l; provided

only that there exists no root z such that |z| = 1.

QED.

FINDING THE ROOTS

The computational efficiency of the
Z-transform method of solution depends critically
upon the method used to find the roots of |f(z)

|

.

Hay and Holt /4, p. 242/ report the use of gradient
methods. The efficiency of this approach is not
discussed in that paper, but the authors seem to

suggest /op.cit., p. 257/ that matrix iteration or
matrix inversion are "... likely to be superior
approaches . .

. " . The method that is suggested in

this paper^ seems able to make the Z-transform
method conputationally superior to either matrix
iteration or matrix inversion, and is developed in

this section.

of

The method is as follows: To find the roots

|f(z) |, first form the 2dDx2dD matrix.

'2d

-I

-I 0

been used. Note that (23) defines a set of

diffevenoe equations of order 2d. F (z) is the
ohavaatevistic polynomial matrix obtained from
taking the Z-transform of this set of difference
equations. To prove the theorem, (23) will be
written as an equivalent /irst-order difference
equation, whose characteristic polynomial is

(zl + k). The roots of the aharaateristia equation
obtained in either case must be identical, and in
the latter case the roots of the characteristic
equation are the eigenvalues of the matrix k, by
definition .

^

Now, premultiplying (23) by K
-1

0
' we get:-

2d-l
I <

i=0

-1

Now, let

2d-i4+i ^ ^^+2d = ^0 ^it+d' t = 0,1,2 .

(24)

I^" =4.2d-i' i = 2d; (25)

t = 0,1,2,

and define

,(1)

4^'
t = 0,1,2, (26)

,(2d)

The 2d-order difference equation in (24) can there-
fore be equivalently written as the following first-
order difference equation:-

^ \ ^ \+l <1>^, t = 0,1,2, (27)

where k .

K^, i = 1, ... , d

^o' ^2d-i'
i =

and compute its 2dD eigenvalues using one of the

several available computer programmes /9/ to do

this. The eigenvalues of this matrix are the
roots of |f(z)|. Note that this procedure

requires that K^^ exists. We therefore wish to

prove the following theorem.

where we have let

*t
=

'^o''^ -t+d

0

2dDxl

, t = 0,1,2, . .

.

(28)

THEOREM 4 : The roots of \f(s)\ are identical

to the eigenvalues of <, provided that exists.

The characteristic equation of this system is

Izl +k| = 0 (29)

Proof: Substituting (7) into (6) and letting
T ->-'>= as before, we have from the infinite-band
portion:

-

iij n il^M ^ iio '^d-iil^+d+i

0,1,2, (23)

the solution to which is given by the eigenvalues

of <, by definition. But, from (23) the character-

istic equation of the same system is given by

|f{z)
I

=0

Hence, by a fundamental property of linear dynamic

70

systems, we have that the eigenvalues of k must be
identical to the roots of |f{z)|. QED.

COMPARISON OF APPROACHES

In the Z-transform method suggested, the

number of arithmetic operations required is

dominated by two steps, viz., locating the eigen-
values of a 2dDx2dD matrix, and inverting a 2dDx2dD
matrix. Each of these steps require in the order
of (2dD)-' arithmetic operations to be carried out,

say k(2dD)-^ altogether, where k is an appropriate
factor.

Matrix iteration methods (e.g. Chow /2/) assume
a finite horizon T. We can write T = nd, where n

is a number chosen so that T approximates infinity,
insofar as the convergence of the first-period
solution is affected. (In practice this would seem
to require n'j:4, if the results in Theil /7, p. 167/
are any indication) . The matrix iteration method
requires a number of arithmetic operations
dominated at each iteration by the multiplication
of two (d+l)D X {d+l)D matrices. (This assumes
that in the case of lagged variables, the state
vector is augmented by these lagged variables so

as to retain the first-order system dynamics
assumed by Chow /2/, and that the state vector is

of order not less than the decision vector) . This
3 3multiplication requires in the order of 2(d+l) D

arithmetic operations, and needs to be carried out
nd times altogether. Matrix iteration therefore

3 3requires in the order of 2nd(d+l)'^D operations.
This number of operations would therefore exceed
that for the method suggested roughly whenever
2nd(d+l)'^ > 8kd-^. Assuming n = 4, this is always
true if k < 6, which will almost certainly be the
case.

Matrix inversion (e.g. Theil /7/) would
proceed by attempting to invert the large matrix
in (7), for T large enough to approximate infinity
and ensure convergence of the first-period
solution. The number of arithmetic operations
required to perform this inversion is in the
order of (DT)-^. Writing T = nd, as before, this
is in the order of (ndD) operations.

Assuming n = 4, this number would exceed
k(2dD)-^, the number required for the method
suggested, whenever k < 8, which again will almost
certainly be the case.

These are very rough calculations, but they
indicate that the Z-transform method is likely to
be computationally superior to either matrix
iteration /I, p. 78 et.seq. , 2/ or matrix inversion
/I/ . This is contrary to what Hay and Holt /4/
suggest, but is based on a different method of

calculating the characteristic roots, than the
gradient methods to which they allude /op.cit.,

p. 242/ .

CONCLUSION

This paper has sketched an algorithm based on
Z-transform methods, for the numerical solution of

the optimization problem in which the objective
function is quadratic, and the constraints are
linear difference equations. It is shown that the

method suggested is likely to be more efficient than
either matrix inversion or matrix iteration.

Also included in this paper is a proof of a

theorem guaranteeing the existence of the requisite
number of roots of a characteristic polynomial
satisfying conditions for the successful application
of the Z-transform method to the problem. A recent
proof by Hay and Holt /4/ uses a different approach
and is perhaps not as rigorous.

The not too restrictive assumptions on which
these developments have been based are that the span
of cross-temporal effects be finite, and the system
parameters be time-invariant. The other assumption
that all parameters be real needs to be made in any
case. A number of ancillary issues and extensions
discussed in Hay and Holt /4, p. 249/ are not
discussed here, specifically the treatment of
complex roots, zero roots, time-varying parameters,
and time-discounting of the objective function.

REFERENCES

/I/ BELLMAN, R.E. and KALABA, R. : dynamic
Programming and Modern Control Theory, New
York: Academic Press, 1965.

/2/ CHOW, C.C.: "Optimal Control of Linear
Econometric Systems" , International Eoonomia
Review, 13 (1972), 16-25.

/3/ FRAZER, R.A., W.J. DUNCAN, A.R. COLLAR:
Elementary Matrices, Cambridge University
Press, 1938.

/4/ HAY, G.A. and HOLT, C.C.: "A General
Solution for Linear Decision Rules: An
Optimal Dynamic Strategy Applicable Under
Uncertainty", Econometriaa, 43 (1975),
231-259.

/5/ HOLT, C.C., F. MODIGLIANI, J.F. MUTH, and
H.A. SIMON: Planning Production, Inventories
and Work Force, Englewood Cliffs, N.J.:
Prentice-Hall, 1960.

/6/ NOBLE, B. : Applied Linear Algebra, Englewood
Cliffs, N.J.: Prentice-Hall, 1969.

/!/ THEIL, H. : Optimal Decision Rules for
Government and Industry, Amsterdam, North
Holland Publishing Co., North Holland
Pxiblishing Co. , 1964.

/8/ THOMAS, S.F.: "A Quadratic Optimization
Approach to Educational Enrolment Planning"

,

(Unpublished) M.A. Sc. Thesis, Department of
Industrial Engineering, Univ. of Toronto,
1974.

/9/ WILKINSON, J.H., C. REINSCH: "Linear Algebra"
Handbook for Automatic Computation, Vol. II
(Edited by F.L. BAUER et al) , New York
Heidelberg Berlin: Springer-Verlag, 1971.

71

ACKNOWLEDGEMENTS

I am deeply indebted to I.B. Turksen of the
Department of Industrial Engineering, University of
Toronto, for his helpful comments and criticisms
during the preparation of the thesis on which this
paper is based. That thesis was partially
supported by a Norman Stuart Robertson Fellowship.
I am also indebted to P. A. Morris and D. Beckles
of the University of the West Indies, Mathematics
Department, to C.C. Holt of Yale University, and
to R.L. Graves of the European Institute for
Advanced Studies in Management, all of whom made
comments and criticisms of an earlier draft.

FOOTNOTES

^ For a scalar sequence {a^|t =0,1,2, ...) the

Z-transform of this sequence is defined as

Z(a^) = z a^ where z is a complex variable.

The Z-transform of a vector sequence is defined as

the vector whose elements are the Z-transforms of

the individual elements of the original vector. See
Frazer et al /3/ for a discussion of the algebra of

Z-transforms.

°° t
More precisely, Z(k^) = E„ z k is finite—t t=o —

t

if the term k grows at a slower rate than the term

z declines.

^ In /8/ on which this section is based, the
word "symmetric" was used. The term "symmetrical"
is used here in a narrowly defined sense, without

regard to any other meaning which might be attached

to the word in the mathematics literature.

"* It should be pointed out that the existence of

a root z such that | z |
= 1 is a very unlikely hair-

line case, almost impossible to achieve in numerical
computations.

^ In the case where (23) were a scaiav difference
equation, the matrix k would be known as the

adgaaenay matrix, and Theorem 4 would be a known
result. I am indebted to D. Beckles for pointing
this out. The extension to vector difference
equations implicit in Theorem 4, though somewhat
straightforward, I haven't been able to find in the
literature.

^ First developed in /8/ (unpublished)

.

^ It is well known that matrix inversion requires

in the order of n'^ operations for a matrix of order
n. See /6. p. 69/. The assertion that in the order

of n"^ operations are required to locate the eigen-
values of a general matrix of order n, is based on
an analysis of algorithms found in /9, contributions
11/12, 11/14/. Also, see /6, Ch. 10/.

72

THE STRUCTURE AND SOLUTION TECHNIQUES OF
THE PROJECT INDEPENDENCE EVALUATION SYSTEM

FREDERIC H. MURPHY
FEDERAL ENERGY ADMINISTRATION

INTRODUCTION

The Project Independence Evaluation System (PIES) forecasts the state of the energy economy in selected

future years (1980, 1985 and 1990) and reflects the impacts of a range of potential Federal policies on

the prices paid for energy commodities, on the level of demands for these commodities, and on the level

of imports of oil. The methodology used assumes that the role of government is to establish policies

allowing participants in the economy to act in their own self-interest within the constraints imposed by

these policies. The approach taken is to construct models for the different components of the energy

system and then integrate the submodels or the outputs of the submodels into a forecast. This modulari-

zation allows for the ongoing improvement of the various segments of PIES without having to alter the

entire system.

OVERVIEW

There is a set of supply models for each of the major raw materials, coal, oil and gas. They are built

to simulate the response of the industry producing the raw material to increases and decreases in prices

and are used to construct supply curves. Next, miniature models of refineries and electric utilities

transform raw materials into consumable forms of energy. Estimates of the production capabilities of

emerging technologies are added as well. The products consumed within the system are six petroleum

products, gasoline, distillate, residual, jet fuel, liquid petroleum gases and other products from crude

oil (lubes, waxes, etc.), and four other products, natural gas, electricity, bituminous coal and

metallurgical coal. A large data base and set of econometric models are used to construct a demand

model which estimates how the demand for each final product varies as the price of that product and the

prices of other products change. As an example of how the price of one product impacts the demand for

another, natural gas can be replaced by distillate for many industrial uses on approximately a BTU for

BTU basis and vice versa. Therefore, if the per BTU price of one fuel gets out of line with the other

and both are available, the lower-cost fuel is substituted for the higher-cost fuel. Since natural gas

and distillate are not perfect substitutes, more fuel switching becomes economic and occurs in the model

as the prices of the two commodities continue to diverge. The demand function is a log-linear approxima-

tion to a set of sector-specific demand models, that is.

73

k k 10 k k

InQj = aj + I b Inp for j = 1, ,10.

1=1 ij i

k k

where Q. is the quantity of product j demanded in sector k when fuels sell at the retail prices p . The
J

k i

sectors are household, commercial, raw material, industrial and transportation. When i=j, b is refer-

k ^'J

red to as the own elasticity for product i and is negative. If i/^j, then b^ ^ is a cross elasticity and

in our case is positively signed. With all other prices constant, an x percent change in p leads to an

xblj-j percent change in the demand for product j. A full discussion is contained in (2), describing

each segment of the demand model in detail.

Demands are forecasted for a larger slate of products than is available from the supply structure.

Also, the supply prices are wholesale as opposed to retail prices. To evaluate the demands for the ten

supplied products at the supply (wholesale) prices, the following steps are taken. First, each demand

product is associated with one of the supply products, e.g., petroleum coke with other petroleum

products. Markups appropriate for going from wholesale to retail prices in the given sector are then

added to the wholesale prices and the demand equations for each fuel are evaluated. The resultant

quantities are then aggregated across the appropriate demand products and across sectors to determine

the demand for the supply product at the wholesale price.

The various components of the system are tied together by a transportation network that moves raw

materials or products from where they are produced to where they are consumed or where they are used to

produce other energy products. The flows within the system are shown in Figure 1.

FIGURE 1

Flow of Materials

Supply Conversion 0«mand

Shale Regi<

Oil Regie

Gas Hegii

Coal Region:

Imports

74

The supply functions, the demand function, and the conversion activities are combined by the PIES

integrating system. The output of the integrating system is a general equilibrium solution (Figure 2)

of the mathematical representation of the energy economy, i.e., a set of balanced supplies and demands

as well as market clearing prices for each fuel is provided. Formally stated, the problem is to find

a vector of prices p such that the vector of demands D(p) = S(p) the vector of supplies at p.

FIGURE 2

Integrating Model Framework

Conservation Options

Demand Model
Sectors/Fuels

Economic Forecast

Equilibrating

Mechanism

Reports

Supply Options and
Assumptions

Supply Models

Extraction

Transformation
Transportation

REGIONAL STRUCTURE

Each raw material has a regional structure in the model that represents the unique characteristics of

its resource base. There are also specific regional definitions for conversion and demand activities.

The purpose of all of the regional detail within the model is not to provide results for regional

analyses but to provide better national figures. Western low sulfur coal would implicitly be used in

New England, for example, if transportation cost differentials were ignored. Also, more nuclear plants

would be built if a national average transportation cost were used for coal.

There are twelve coal regions which are chosen so that each is relatively compact and contains only a

few coal categories of bituminous coal. Some regions also contain metallurgical coal. Coal is

separated into five BTU categories, and each of the bituminous categories is divided into three sulfur

types: high, medium and low sulfur. The coal regions are shown in Figure 3. Transportation is a

substantial part of the costs in using coal. Within the model, the more compact the coal region, the

better the estimate of transportation costs from the coal region to the utility or demand regions.

As a consequence, even though some regions such as Central and Southern Appalachia contain the same

75

categories of coal, they are modeled as two separate regions to have a better estimate of transportation

costs. To further refine the costs of shipping, a transshipment network is used. Coal moves from the

coal region to a collection of transshipment nodes: cities such as Cincinnati, New Orleans and Atlanta.

Instead of shipping the coal to the demand regions from the transshipment points, it is shipped to a

selected set of cities in the demand region with the demand in each city a fixed fraction of the demand

region needs.

FIGURE 3

PIES Coal Supply Regions

There are 12 oil and 13 gas regions based on National Petroleum Council (NPC) regions and special

Alaskan Regions. The refinery regions are Petroleum Allocation for Defense Districts or PADD's. The

crude oil (condensates, etc., from gas regions) are moved into the refinery regions from the oil and gas

regions by pipeline or tanker. And the six product groups are moved from the refinery regions to either

the utility or demand regions.

For ease in modeling, the utility and demand regions are the same. They are FEA regions. Unlike the

regions for supplying other forms of energy, a utility region may serve only the corresponding demand

region except for the shipment of hydroelectric power from the Northwest to California. This greatly

simplifies the calculating of the average cost of electricity, that is, the price of electricity to

consumers.

76

SUPPLY ACTIVITIES

The traditional approach used by economists is to estimate output as a function of capital and labor

without serious regard to the resource base (see, for example [2]^ This is inappropriate here because

the most important factor affecting the supply of fuels is the character and extent of the resource base.

Rather than using historical time series data and statistical techniques to directly predict future raw

material and product availability, operations research-based process models are built to simulate the

actual production capabilities given the resources of an energy sector.

The supply models are used to construct supply curves that are step-function approximations to continous

functions. For example, each step of the coal supply curve for each region represents the annual rate

of production from a specific mine type within two mine classes, surface and deep. In Figure 4 the

lowest-cost steps on the coal supply curves are associated with existing mines or mines that are about

to be opened. Here the capital is sunk or mostly sunk and the mines will be operated as long as the

marginal revenue is at least equal to the operating cost. The higher-cost steps ensure the capital

recovery necessary for opening a new mine. There are supply curves for each oil and gas region that

distinguish primary, secondary and tertiary production. Different crude types such as West Coast heavy

and Wyoming Mix are distinguished by region. Each crude type is produced in proportion to its historic

share for the region.

FIGURE 4

Midwest Low Sulfur PIES Coal Supply Curve

5 10

Annual Production (10^ Tons)

77

CONVERSION ACTIVITIES

The electric utility and refinery sectors of the PIES system are embedded directly into the general

equilibrium model. In this respect, the conversion models are different from the supply models for coal,

oil and gas where only the outputs (supply curves) are directly included in the general equilibrium model.

The key to modeling electric utilities is that they cannot inventory their product and must produce

electricity on demand. This means that utilities must own some equipment that runs most of the time and

some equipment that runs only during peak demand periods. The demand levels for electricity during a

year are represented by the load duration curve. A point (x, y) on the load duration curve in Figure 5

shows that for x hours during the year at least y kilowatts were demanded. This curve, for modeling

purposes, is divided into three pieces: base, intermediate, and peak. The kinds of generation equipment

that can be used include nuclear, hydroelectric, coal -fired (with and without scrubbers), residual fired,

natural gas fired, and simple-cycle and combined-cycle distillate plants as well as new technologies.

Any of these types of equipment, other than nuclear, can operate in base, intermediate, or peak, whichever

is most economic for the utility. Nuclear operates in base only.

FIGURE 5

Annual Load Duration

Load |KW)

Peak Load
Generation

Intermediale
Load Generation

Base Load Generation

Utilization

Per Year
'

8,760 Hours
(1 year)

The major role of the refinery sector is to reflect the appropriate relative prices for different crude

types based on crude oil attributes and the appropriate relative prices for the four product classes

based on product characteristics. What should happen is that factors such as the quantities of the four

products consumed and the quantities of the different types of crude oils should interact in the refinery

78

sector based on relative demands and availabilities. Crude oils with greater yields of the more heavily

demanded products should be more valuable and the products that dominate demand, such as gasoline, should

be more expensive.

A primary product yield from each crude oil is estimated using historical data. Next, by parametrical ly

varying the yields of a large-scale refinery linear program, the costs of shifting the product slate are

determined. The result is a model that is an extreme point representation of a refinery.

THE INTEGRATING MECHANISM

The solution procedure involves inserting a step-function approximation to the demand function into a

linear program containing the supply curves and the models of conversion activities. The approximation

to the demand function ignores the effects of the price of one product on the demands for other products,

e.g., only the natural gas price affects natural gas demand. The linear program is then solved with the

objective of maximizing the area under the difference between the demand and supply curves. This is

mathematically equivalent to finding where the supply and demand curves intersect (Figure 6). How close

the prices and quantities are to being on the demand function containing the cross price effects is then

measured. If the linear programming quantities are not within one percent of the demand function quanti-

ties evaluated at the prices taken from the linear program, the equilibration process continues with a

new demand demand function approximation. The demand function containing the cross price effects is

evaluated at an average between the prices from the linear program and the previous estimate of the

equilibrium prices; and a new approximation to the demand curve is constructed around this point.

FIGURE 6

Price

Market
Clearing
Price

Balanced Quantity
Supply and
Tloiii.'ind

In the past, people have tried to find economic equilibria by just inserting a single demand point and

successively replacing the demand quantities with new values from the demand model evaluated at the dual

variables. The dual variables seemed to oscillate and not converge. By inserting a demand curve

approximation, an equilibrium is achieved after 6 to 8 iterations involving the solution of linear

programs. Currently, we vary all prices the same percentage simultaneously in calculating the step

widths. If the convergence were slower, we would try varying all prices with percentages proportional

to a trajectory of prices from successive iterations. Other procedures have been considered but not tested.

79

THE RELATION OF PIES TO GENERAL EQUILIBRIUM THEORY

The Neoclassical model of exchange may be described as follows. Each consuming unit i for i=l,..., m has

an initial endowment of assets:

Wi = (W]...,wi).

At a price vector it = (tti , . . . ,TTp) , consuming unit i demands a vector of products d-j(7r) and has an income

i " i
"

of P = Z TT W . For convenience, Z it =1 is usually added as a requirement, i.e., the analysis is in
j=l j j j=l J

terms of constant dollars. Since in equilibrium an individual cannot spend more than the revenue from the

sale of his assets,

Trd-j (it) = ttW^ .

This leads to Walras law:

m
i

ttZ di(7r) = iT Z W,
i=l i=l

m
That is, the monetary value of what is demanded equals that of what is supplied. Letting g-j(T:) = Z

J
i=l

(d'^(TT) - wi) be the excess demand function for asset j, for j=l,...,n an economy is in equilibrium when

gj(^) 1 0

TTj gj(TT) = 0.

That is, either supply equals demand or supply exceeds demand and the price of the asset is zero. When

the pure exchange economy is generalized to include activities for the conversion of one asset into another

using linear activities, we have the following definition of a competitive equilibrium:

Def ini tion - A price vector it* and a vector of activity levels y* constitute a

competitive equilibrium if:

a. Supply equals demand in all markets, or d(TT*) = By* + W

where B is the matrix of possible activities; and

b. production is consistent with profit maximization in the

sense that Z 'T^.*b-jj50 with equality if y*>0-

Part b is a requirement that excess profits are associated only with rents on scarce resources.

In PIES the assets are raw materials such as coal, oil and biomass as well as electrical generation

equipment, refineries, pipelines, etc. Added to these is an aggregate asset which represents capital for

new equipment and for developing new resources, labor and other nonenergy resources. The components of

this aggregate asset are priced in terms of 1975 dollars, giving us the objective function cost coefficients

in the linear programming subproblem. The number of assets in PIES is large because each step on each

regional supply curve of a fuel is a different asset in the exchange economy with a different equilibrium

price (dual variable on the bound row). Every bounded variable is an asset, as is every product in every

demand region. In PIES an economic equilibrium is found where all assets are priced relative to the

n

aggregate asset. The prices may then be normalized to achieve Z
^

'Tj=l This leads to an alternative

interpretation of the PIES mechanism for searching for an equilibrium. The goal at each iteration is to

80

satisfy Walras law with the dual variables as prices and a successively improved approximation to the

demand model

.

NONCOMPETITIVE PHENOMENA MODELED IN PIES

There are three areas where regulatory actions that alter the structure of the economy are modeled.

These are the average cost pricing of electricity, current oil import entitlements and interstate

regulation of natural gas.

UTILITY REGULATION

Since there are increasing returns to scale to power transmission and distribution, the electric utilities

constitute a natural monopoly which must be regulated in some fashion. Currently, public utility commissions

regulate utilities to provide them with a reasonable rate of return on their total investment. This means

that customers are charged the average, not marginal, cost of delivering electricity. The cost curves for

delivery look as follows:

FIGURE 7

A B Q

Given a set of fuel prices, the marginal cost curve is a step function where each step represents bringing

into use a different kind of generation equipment. The higher costs are due to using less efficient

equipment or including the capital costs for acquiring new equipment. For low quantities of electricity

the average cost curve is higher than the marginal cost curve. This is because the cost of the existing

equipment is included in the average cost of electricity.

The prices from a linear program are marginal prices. Therefore, for the demand model to respond to

average instead of marginal prices an adjustment must be made to the linear program. The approach taken is

to approximate the average cost curve with the marginal cost curve. This is done in the following manner.

81

Say the amount of electricity demanded in a given region at the end of a linear programming step is B. The

difference between the marginal and average costs of electricity is C-D. In revising the linear program

for the next iteration the transmission cost is changed so that the marginal cost is approximately equal to

the average cost at B. Letting a be the adjustments to the true transmission cost in the linear program

from the previous iteration, the new adjustment is (C-D + a)/2. The average is taken for smoothing purposes.

This average cost pricing mechanism can have a substantial effect on convergence. First, if the quantity

of electricity is less than A, then a decreasing average cost curve is approximated by a nondecreasing

function. The result is a perverse behavior where the amount of electricity generated decreases at each

iteration while the cost increases. We have also experienced another form of non-convergent behavior because

of our implementation. We have seen the quantity of electricity oscillate between two steps on the marginal

cost curve, causing the correction between average and marginal costs to fluctuate and not stabilize. This

means that the marginal to average cost adjustment is fluctuating, leading to an oscillation in prices and

quantities. This occurred in the Northwest where there was a big jump in marginal cost in going from hydro

power to fossil and/or nuclear power as the marginal source of electricity. We do not have a complete n

explanation of this phenomenon. Our best guess is that it has to do with the behavior near the minimum of o

the average cost curve of our implementation of this approach to average cost pricing.

OIL ENTITLEMENTS

The current regulations on oil production require that the average price of domestically produced oil be

below $8.00. Since the marginal price of oil in the United States is the world price because of our import

dependence, the marginal price of oil products would be refining costs plus crude oil costs at the world

price if there were no other provisions in the law. The regulations specify that refiners who use domestic

oil pay $X per barrel into a fund from which refiners who use imported oil receive $Y per barrel. This

entitlement to the users of imported oil makes them indifferent between domestic and imported oils, that is,

Pd + X = Pi-Y

where Pq is the average domestic oil price and Pj is the import price. It is also important that the fund

never run deficits or surpluses, that is,

XQd = YQi

where Qq is the domestic production and Qj is imports. There also are entitlements to different types of

domestic oil. There is a legal definition of what is called "old" oil and "new" oil with "old" oil having

a substantially different price from "new" oil.

Entitlements are modeled as follows. The total domestic oil production given the regulations is estimated.

The supply curves for oil in the linear programming matrix are replaced by this supply point and the cost

in the objective function is the average price for this oil. New activities are added to the matrix that

essentially tax domestic oil an amount X and give a credit of Y to imported oil. The X and Y are

82

recalculated between L.P. iterations using the above equations. In equilibrium we, therefore, have a

scheme where these equations are satisfied and a forecast of the impact of this form or regulation.

NATURAL GAS REGULATION

Currently, there are two markets for natural gas: the unregulated intrastate markets and the Federally

regulated sales of natural gas across state boundaries. By law the interstate gas price is based on

historical costs; this has lead to a two tier market and has developed where intrastate gas sells at a

higher price than interstate gas. Consequently, the only new sales of interstate gas are coming from

onshore areas where fields are close to interstate pipelines and there are no intrastate pipelines nearby

or from the outer-continental shelf which is under Federal jurisdiction. The supply of interstate natural

gas in a given year can be estimated by taking the current rate of production and reducing it by the

natural decline from existing wells in the onshore regions and adding to this the production from the

outer-continental shelf. Since the customer must be charged the average cost of interstate gas (there are

three price levels for various vintages of domestically produced interstate gas plus the costs of liquefied

natural gas (LNG) and imports from Canada), there is a shortfall in supply in regions where there is little

or no intrastate gas available.

To deal with the shortfall a priority scheme has been developed by the FPC to allocate gas to states by

classes for a given pipeline. Each state then allocates the gas available from the pipeline. Each state

then allocates the gas available from the pipeline to customers within the state based on its own priority

structure.

The modeling approach taken is to assume that gas customers fall into two distinct groups: those with

interstate gas and those that must use intrastate gas or a bundle of other fuels with the bundle containing

such fuels as electricity and distillate. To determine the customers who receive interstate gas, the

available domestically produced gas is allocated in an approximation to the FPC priority scheme across

the nation rather than by individual pipeline. The priorities, in order, are residential, commercial, raw

material and industrial. After a region receives its share of domestically produced gas, imported gas

available to the region is then rolled in until either all demand is satisfied or there is no more gas

available. Excess demand in curtailed sectors is satisfied first by intrastate supply to the extent it is

available at creditable prices and then by a displacement or switching of this demand to other fuels in a

way that is sensitive to other fuel prices, sector-specific end use efficiencies and historical shares.

Say for illustration residential demand is satisfied but only a of commercial demand is satisfied and

there is no raw material or industrial demand to be satisfied.

83

The total supply to all commercial customers is

FIGURE 8

INTER- INTRA- SUBSTITUTE BUNDLE AND
STATE STATE INTRASTATE GAS
GAS GAS

The demand for natural gas is the sum of the demand satisfied by interstate gas at the interstate gas

price plus the demand for intrastate gas and the substitute fuel bundle. Ignoring cross elasticities the

demand for gas is Q = a where P is the natural gas price, e is the elasticity of natural gas demand

and and a is a constant. At the interstate price Pp;, the quantity of gas demand met, Q, is aaPp. This

means that the demand curve for intrastate gas and the substitute bundle is (l-a)aPp. In Figure 9 the

demand curve for gas is D'. Because the inter- and intrastate markets are separate, the total demand for

natural gas is represented by the demand curve D where Q = + (l-a)aP^. That is, the quantity of

intrastate gas and the substitute fuel bundle demanded at P^ is E -
Q[^. The quantity of intrastate gas

consumed is A - Qr and the quantity of demand met by the fuel bundle is E-A. The price of the gas dis-

placement bundle is a sector-specific market price constructed from its fuel components. As the diagram

shows, this activity is assumed to dominate the further movement up the interstate supply curve. The

assumption which justifies this is that the process model of fuel substitution on the demand side is more

reliable than the econometric model at very high prices.

FIGURE 9

Qr A E Q

84

Note that the total quantity of gas demanded with this demand curve is greater than the quantity demanded

with the original demand curve D'. This is because consumers of interstate gas see the low interstate

gas price and not the higher intrastate price.

COMPARISONS OF PIES TO OTHER PROCEDURES FOR FINDING A COMPETITIVE EQUILIBRIUM

The only other technique for finding a competitive equilibrium with computational results involves

discrete approximations of the simplex of prices and a search for a fixed point. The fixed point approach

of Scarf [3] with enhancements by Hanson [3] has results that cannot be seriously compared with PIES

because the problems solved are on a much smaller scale. Appendix 2 in [3] gives computational experience

for Scarf's algorithm. He estimates that computation time varies as m^. On an IBM 360-50 he estimates

the time to solve a 15 asset problem to be about 2 minutes. Extrapolating, a 100 asset problem would

then take more than 2,000 minutes. The solution step in PIES with 100 products consumed, not counting

intermediate products or raw materials which are in the thousands, takes from 20 to 30 minutes on a

370-168 under MVS with the number of linear programs to be solved ranging from 6 to 8. When natural gas

regulation is in the model the number of iterations increases to 15-20. The reason for the increase in

iterations is that supply of intrastate natural gas is inelastic in many regions leading to large price

changes for little quantity change.

BIBLIOGRAPHY

1. Federal Energy Administration, 1976 National Energy Outlook , FEA-N75/713.

2. MacAvoy, P. W. and R. S. Pindyck, "Alternative Regulatory Policies for Dealing with the Natural
Gas Shortage," The Bell Journal of Economics and Management Science , Autumn, 1973.

3. Scarf, H., Computation of Economic Equilibria , Yale University Press, New Haven, Connecticut, 1973.

85

NATIONAL AND INTERREGIONAL PROGRAMMING MODELS OF
LAND AND WATER USE AND THE ENVIRONMENT

by
Earl 0. Heady, Kenneth J. Nicol, and Dan Dvoskin
The Center for Agricultural and Rural Development

Iowa State University, Ames, Iowa

Abstract
A set of large-scale programming models has been developed and quantitatively applied to

analyze land use, water use, environmental restraints and impacts, agricultural and food
policies, export problems, income redistribution patterns and other facets of the nation's
agricultural sector. Perhaps these are the largest operationally useful mathematical
programming models in existence. The models incorporate nine land class restraints in each
of 223 producing regions. They include 51 water resource regions with corresponding re-
straints and 35 market regions with demand relations for all relevant endogenous commodities.
The models generate results at national, state, regional or local levels. Their results
have been used by all major national commissions on food policy, water allocation, and land
use

.

Many applications of mathematical programming
models have now been made. We have completed and
underway a set which is rather unique in its size,

scope and national policy uses. While we employ
both linear and quadratic specification, main
reliance is placed on linear models. These na-
tional and interregional models applied to agri-
culture and natural resources have been under
evolution for a dozen years. This time period has
allowed us to build up a vast data bank and add
many dimensions to models. At various stages in

their development, the models have been the main
quantitative base for various commissions deal-
ing with national policy. They have served this
role for the President's Food and Fiber Commis-
sion [3], the National Water Commission [4], the
Water Resources Council's National Water Assess-
ment [7], and the Midwest Governors Conference on
Land Use [5] and for numerous applied studies for
the Environmental Protection Agency [6], the

National Water Quality Commission [9], and the
Soil Conservation Service [10]

.

In this paper, we report on one set of models
capable of evaluating water and land use and
their impacts on the environment at both national
and regional levels [8] . While we apply one such
model to evaluate potentials in environmental
improvement through controlling soil loss or

sedimentation from farm land, the general model
set is capable of analyzing many other facets of

resource use and environmental impacts as these
relate to trade, agricultural or other policies.
We also have completed models which incorporate
legislative or price restraints to attain energy
conservation [1], to promote environmental quality
through reduced use of nitrogen fertilizer and
pesticides [2], which enhance the environment
through stream flow regulations to protect wild-
life habitats and others.

The models have the capacity to evaluate simulta-
neously variables and outcomes in (a) national markets
prices, incomes and employment and (b) production pat-
terns, resource use and economic structure of rather
small resource regions, under the posed imposition of

alternative policies or futures. We believe that

models with these characteristics and capabilities

are extremely important for the future as nation-

al, state and local entities evaluate and consider
implementation of environmental, land use, water
and other resource and technological restraints
related to problems emerging under the nation's
advanced state of economic development. Other-
wise, the programs and policies imposed by states,

municipalities and regional planning bodies will
encounter unexpected economic effects, causing
them to be nullified because they give inequitable
distributions of the costs and benefits of the

goals attained. For example, initial solutions M
of our models pose the certainty that individual I
states which impose restrained patterns of land I
use, water runoff, sedimentation and technologies!
will find that, through market impacts, producers!
and resource owners of other states and location
will realize economic gains while those of the

imposing state will bear the costs in lower in- m

comes and reduced resource prices. Even for cer-
tain quality controls imposed at the national
level, relative returns can be positive in some

regions and negative in other regions.

Models Reviewed

The models reviewed in this paper encompass the

whole of U.S. agriculture and the land and water

use relating thereto. These demand-allocation
models incorporate all major agricultural quality
interaction reflecting restraints in resources
for 223 agricultural producing regions (Figure 1)

,

soil characteristics in 1,891 land resource
groups, water resources for 51 water supply

86

Figure 1. The 223 producing areas

regions (Figure 2) , in the 17 Western States, and
demand or commodity balances in 30 consumer mar-
ket regions (Figure 3). The models, which in-
corporate a transportation submodel for commodi-
ties and water and product transfer activities,
allow selection of optimal resource use patterns
and environmental quality impacts for the nation
in future time periods. They also reflect com-
parative advantage in the allocation of land and
water to competing alternatives as represented in

relative yields, general technologies, environ-
mentally restrained technologies, production
costs, transport costs and imposed environmental
restraints. They allow substitution of land at

one location for water at another location a

thousand miles away (or vice versa). Similarly,

they allow and analyze these substitutions when
environmental restraints are applied to restrain
the technologies used in any one resource region.
Finally, they allow evaluation of various policy
alternatives in use of land and water resources,
and environmental quality controls in interaction
with commercial agricultural policies, export
goals and domestic demands in both regional and
national markets.

Ob j ectives

Our overall objectives in building these models

are to determine (a) whether the nation has

enough land and water resources to meet domestic

and export food needs when various environmental

quality restraints are imposed, (b) the optimum

spatial allocation, for the nation and internally

for each individual producing, land and water

region, of these resources accordingly, (c) the

extent to which sacrifices must be made in envi-

ronmental quality goals as other goals (food

prices, exports, treasury costs, farm income,

energy use, resource values, income distribu-

tion, etc.) are attained—or vice versa, (d) the

cost to regions and the nation as various land

use patterns and environmental quality goals are

attained, (e) the optimal selection among alter-

native producing technologies and land use pat-

terns, for each region and for the nation, as

various environmental quality restraints are im-

posed, and (f) miscellaneous impacts including

those relating to farm size and income, the

87

Figure 3. The 30 consumer market regions

distribution of the costs and benefits of these

patterns or allocations, employment and income

generation in rural areas.

Environmental quality controls based on runoff

and sediment transport, for example, will have

direct impact on crops produced and technology
used on erodible lands (e.g., slope of land and

amount and intensity of rainfall). However, these

environmental restraints also will have "chain
reactions" in optimal land use in regions 100 or

1,000 miles away which are not subject to runoff

and sediment loss since, nationally, a new con-

figuration of comparative advantages will be cre-

ated in relation to both the environmental re-

straints and commodity and resource markets.

Land with characteristics giving rise to runoff

and sediment loss may be required to shift to

more forages, livestock production or forest prod-

ucts—although the outcome also will depend on

row crop yields, costs and returns under mechani-

cal erosion control practices. In the "chain
reaction" or regional interdependence relation-
ships, land at one distant location not subject
to erosion which once produced cotton may now
optimally be allocated to soybeans to meet nation-
al demands while at a different location, non-

erodible land once allocated to wheat now may be
specified for feed grains as the national live-

stock ration and export demands are met. Re-
straints on chemical fertilizers and pesticides
have similar remote and complex interactions in

resource use among the many different land re-

gions of the nation. Generally, those regions of

ample rainfall and irrigation water will be shift-
ed towards a less intensive use of land while
adapted regions with less runoff and relatively
less dependence on imported technological inputs
will tend towards more intensive land use (e.g.,

more grain and less forage and livestock produc-
tion) .

Because of regional interdependencies , it is im-

possible to plan -nationally efficient uses of

land and environmental quality controls on a

region-by-region or regionally independent basis.

The models used incorporate interdependencies
among the hundreds of land resource regions and

allow for both direct and indirect impacts among
regions whether they are contiguous or distant

from each other. Not only do they need to in-

corporate these interdependencies among land re-

source regions, water regions and market regions,

but also they need to allow them among resources
and commodities. They need to allow substitution
of land at one location for water at a different
and distant location, since a policy restraint
which limits the use of capital technology on
land at one location can be offset by a realloca-
tion or extended use of water at another loca-
tion—or vice versa. Great flexibility prevails
in the national livestock ration, the major de-
mand determinant in national land use, and shifts
in or restraints on land use can allow or cause
limits on grain production in one location to be
replaced by soybean, forage or a substitute feed
grain in another location. An efficient land
use-environmental quality model needs to allow
all of these interdependencies over the nation
with reflection back to optimal land employment
for each land resource region.

Nature of Models

To illustrate the general nature of the models
involved, under the restraint of presentation
space and time, we use a model projecting to the
year 2000 for a population of 284 million, free
market conditions with trend levels of agricul-
tural technology in each of 223 agricultural pro-
ducing regions. This model, only one in a series
we are building, emphasizes optimal land use pat-
terns, agricultural water allocation, agricultur-
al technology and soil conservation methods under
environmentally restrained soil loss. (Subse-
quent formulations of the model set includes en-
vironmental limits on chemical fertilizers, pes-
ticides and livestock wastes.) The objective
function in equation (1) minimizes the cost of

producing and transporting the various crop and
livestock commodities among producing and land
resource regions of origin, regions of process-
ing, and regions of consumption. The costs allow
the system to consider different technologies
(cropping or land use systems and mechanical
pracpices) in restraining soil loss to alterna-
tive environmental quality levels. The costs of

water consumption and transfer also are included
in equation (1) . The programming prices and

costs cover all factor costs (except land rents

88

which are reflected in shadow prices) and thus
allow simulation of a long-run market equilibrium
for each commodity with a national allocation re-
flecting the comparative advantage of each of

the 223 producing regions, subject to environment-
al restraints and the level and location of consu-
mer demands. The objective function is minimize
OF where:

OF = X., UC, + lY., UC, + ZZ., UC,)
. , ikm ikm ikn ikm ikm ikm
1 k m n m

+11. UC. + DPP. UC. + IPP. UC. + Dlffl. UC.^ipip 11 11 11
+ IWH. UC. + FLO. UC. + FP. UC.) + Z(WB UC11 11 11 WW

w

+ WD UC + WT UC) + Z Z T UC (1)WW WW tc tc
t c

where the variables, parameters, and other terms
are defined in a following section.

Restraints and variables

Each land group has alternative crop management
systems producing commodities with associated
yields and soil loss subject to the soil types,
average weather prevailing and the conservation
tillage practices utilized. Data were developed
in conjunction with the Soil Conservation Service,
U.S.D.A., to represent soil loss per acre under
various mechanical practices and rotations or

land use systems. The soil loss alternatives are
evaluated through the .universal soil loss equation
(2) . The equation used for each crop management
system is of the form

SL = K-L-S-R-C-P (2)

where
SL is the per acre gross soil loss;
K is the erodibility factor associated with

the soil type;

L is the computed value relating slope
length to soil loss control;

S is the derived from a nonlinear function
relating slope gradient to level of soil
loss;

R is an index of erodibility for the rain-
fall of the area accounting for varying
levels of intensity, duration and measured
rainfall;

C is an adjustment factor giving an index of
the relative ability of alternative crop-
ping patterns to reduce soil loss;

P is an adjustment factor to account for the
potential soil loss reduction from adopt-
ing conservation practices.

Each activity in the model represents an alterna-
tive crop management system which incorporates a
given rotation, crop tillage method and a conser-
vation practice for an individual land resource
group. The rotation and tillage method combine
to give unique C value and the conservation prac-
tice determines the P factor. The K, L, and S

factors are dependent on the soil characteristics
and the regional rainfall patterns determine the
R factor.

Associated with the alternative crop management
systems are specific per acre crop costs and crop

yields for each region. The cost data reflect
expenditures on machinery, labor, pesticides, non-
nitrogen fertilizers (nitrogen is balanced endog-
enous to the model) , and miscellaneous production
items. The component costs reflect different
efficiencies of farming resulting from working
land in straight rows, contours, strip cropping,
with terraces, under minimum tillage or under
conventional tillage. The alternative costs also
reflect the higher pesticide requirements and
lower machinery and labor requirements for crops
under a reduced tillage cultivation pattern. The

costs sum to an aggregate which depends on the

particular cropping management system and when
combined with the outputs from the system, reflect
the comparative advantage of each system on each
land class in each region.

The outputs from the system reflect yields of

each crop and the associated quantity of soil loss

per acre per year. The interaction within the

system also is reflected in a nitrogen balance
subsector where the nitrogen flows in the model
are examined. The entire cost and yield section
of the model is interlocked with alternative
technologies, levels of resource input and alter-
native input uses to meet domestic and export de-
mands. The nitrogen-fertilizer-crop yield section
is an example of other interrelationships in the

model. Nitrogen available in each region is an

independent variable in the crop yield equation
but the source of the nitrogen may vary. It can

be supplied from chemical fertilizers, livestock
wastes and from nitrogen fixation by legumes. The
livestock wastes available are dependent on the

type and quantity of feed available for livestock
and the concentration of the animals in the re-
gion. Also affecting the yields of the crop is

the land class on which it is grown and the con-

servation and tillage practice associated with
the cropping management system.

Both dryland and irrigated crop variables are in-

cluded for producing regions in the 17 Western
States which grow irrigated crops and the model
allows selection among dryland or irrigated
farming for each region. A range of livestock
rations (variables) is allowed in all 223 produc-
ing regions since the least-cost feed mix can be

drawn from various grain, forage and pasture crops

grown in the region or imported (where allowed)
from others. The model includes variables repre-
senting various cropping systems and technologies
affecting soil loss, livestock production, commod-
ity transportation, water transfers, consumer
demand fulfillment and alternative export levels.

Each of the 223 producing regions has land re-
straints of the nature indicated in equations
3-9. Each region has a soil loss restraint as in

equation (10) , a nitrogen balance equation as in

(11) and a pasture restraint as in (23) . Each
of the 51 water supply regions has a water re-
straint as in equation (13), where variables and
parameters are defined subsequently.

Each of the 30 consuming regions has net demand
equations, for all of the relevant crop and

livestock activities as illustrated by equation

(14) . Regional consumer demand quantities were
determined exogenously from geographic and

89

national projections of population, economic
activity, per capita incomes and international ex-
ports through the region for 2000. National de-
mands were defined for cotton and sugar beets as

indicated in equation (15) . Poultry products,
sheep, and other livestock were regulated at the

consuming region level. International trade was
regulated at the regional levels as indicated in
equations (16) and (17)

.

Commodities included in the endogenous analysis
are soil loss, nitrogen, water, oorn, sorghum,
wheat, barley, oats, soybeans, cotton, sugar
beets, tame hay, wild hay, improved pasture,
unimproved and woodland pasture, cropland pasture,
public grazing lands, forest lands grazed, all
dairy products, pork, and beef. Also accounted
for prior to solution of the model are other crops
including fruits, nuts, vegetables, rice, flax
and broilers, turkeys, egg production, sheep and
other livestock.

Dryland cropland restraint, each region by land
class

:

I X., a., < LD.,
ikm ikm = ik

m
(3)

Irrigated cropland restraint, each region by land
class

:

I Y., a., + I Z., a., <. LR., (4)ikn ikn ikm ikm — ik
n m

Dryland wild hay restraint, each region:

- IPP. f. - DWH. f. - IWH. f. - FLG. f. = 0 (11)11 11 11 11
Pasture use restraint, each region:

1(1 X., r., + I Y., r., + L Z., r.,) + DPP.
, ikm ikm ikn ikn ikm ikm ikm n m

r. + IPP. r. + FLG. v. - I L. q.
1 11 11 ip ID

P

- EL. q. >. 0 (12)11-
Water use restraint, by water region:

WB + WT + VJI - WO - WX - WE + WD - Iw-w-w w w w w.
lEW

IWH. d. - I IPP. d. - I I (I X., d., +11. 11,. ikm ikm
i£V7 k lew m

I Y., d., + Z Z F., d.,)
- I I L. d.

ikn ikn ikm ikm . ip ip
n m lEw p

- I PN. d. i 0 (13)
1 1 —

1£W

Commodity balance restraint, each consuming
region:

I I (l X., cy., + I Y., cy., + I Z.,
, . . ikm ikmc ikn iknc ikm
k i£j m n m

cy.,) + I E L. cy. + Z + E . - E
ikmc - . . ip ipc - ^ . tc - ic . .

lej p ^ tej lej

DWH. a. < ADWH,
1 1 — 1

(5) PN. cy. - EL. cy. ^> 0
1 ic J jc - (14)

Irrigated wild hay restraint, each region:

IWH. a. < AIWH.11= 1
(6)

Dryland permanent pasture restraint, each
region:

DPP. a. < ADPP.
1 1 — 1

(7)

Irrigated permanent pasture restraint, each
region:

IPP. a. < AIPP.
1 1 — 1

(8)

Forest land grazed restraint, each region:

FLG. a. < AFLG.
1 1 — X

(9)

Soil loss restraint, each region, each land
class, each activity:

SL.,
. <, ASL.,

,ikm+n — ikm+n (10)

National commodity balance restraints, for cotton
sugar beets and spring wheat:

Z Z(Z X., cy., + Z Y., cy., + Z Z., cy.,.
. , ikm ikmg ikn ikng ikm ikmgikm n

Z PN. cy. - EX > 0

i
1 ig c =

National export restraints:

Z E. > EX
1 c — c

National import restraints:

Z E. , < IM
,ic+e — c+e

1

Non-negativity restraints:

(15)

(16)

(17)

X., ,Y., ,Z., ,L. , DWH., IWH., DPP. IPP.,
ikm ikn ikm ip i i i, i

FLG
.

, FP
.

, EL
.

, WB , WT , WI , WD , WX , WE , PN

.

i' i' i' w' w' w' w' w' w 1

Nitrogen balance restraint, by region:

FP. + Z b. L. + EL.,.. - EC.^. - Z(Z X.,
1 ip ip ibi ifi , ikm

p km

f., + Z Y., F.,^ + Z Z., f.,) - DPP. f.
ikm ikn ibn ikm ikm i i

n m

, E. , E. > 0
tc jc icre = (18)

The subcripts and variables for the above equa-

tions are defined in the section below.

90

Subscripts and variables of the model

The subscripts and variables relating to the equa-
tions in the text are those which follow:
subscripts

c = 1,2,..., 15 for the endogenous commodi-
ties in the model,

e = 1,2,..., 5 for the exogenous livestock
alternatives considered,

g = 1,2,3 for the commodities balanced at

the national level,
i = 1,2,..., 223 for the producing areas of

the model,

j = 1,2,..., 30 for the consuming regions of

the model,

k = 1,2,..., 9 for the land classes in each
producing area,

m = 1,2,..., for the dryland crop management
systems on a land class in a producing
area,

n = 1,2,..., for the irrigated crop management
systems on a land class in a producing
area,

p = 1,2,..., for the livestock activities de-
fined in the producing area,

t = 1,2,..., 458 for the transportation routes
in the model,

w = 1,2,..., 51 for the water supply regions
in the model.

variables
a, the amount of land used by the associated

activity from the land base as indicated
by the subscripts;

AIPP, the number of acres of irrigated permanent
pasture available in the subscripted pro-
ducing area;

ADWH, the number of acres of dryland wild (non-
cropland) hay available in the subscripted
producing area;

AFLG, the number of acres of forest land avail-
able for grazing in the subscripted pro-
ducing area;

ADPP, the number of acres of dryland permanent
pasture available for use in the subscript-
ed producing area;

AIWH, the number of acres of irrigated wild (non-
cropland) hay available in the subscripted
producing area;

ASL, the per acre allowable soil loss subscript-
ed for land class, producing area and
activity;

b, the units of nitrogen equivalent fertilizer
produced by livestock, subscripted for pro-
ducing area and activity;

cy, interaction coefficients (yield or us-i) of
the relevant commodity as regulated by the
associated activity and specified by the
subscripts;

d, the per unit of activity water use coeffi-
cient as regulated by the associated activ-
ity and specified by the subscripts;

DPP, level of use of dryland permanent pasture
in the subscripted producing area;

DWH, level of use of dryland wild (non-crop-
land) hay in the subscripted producing
area;

E, level of net export for the associated
commodity in the associated region as
specified by the subscripts;

EC, level of exogenous crop production by

subscripted region;

EL, level of exogenous livestock production con-
sistent with the subscripted region;

EX, the level of national net export for the sub-
scripted commodity as determined exogenous
to the model;

f, the units of nitrogen equivalent fertilizer
required by the associated activity and speci-
fied by the subscripts;

FLG, level of forest land grazed in the subscripted
producing area;

FP, number of pounds of nitrogen equivalent fer-
tilizer purchased in the subscripted producing
area

;

IM, level of national net imports for the sub-
scripted commodities as determined exogenous
to the model;

IPP, level of use of the irrigated permanent pas-
ture in the subscripted region;

IWH, level of use of the irrigated wild (non-crop-
land) hay in the subscripted region;

L, level of the livestock activity with the type
and region dependent on the subscripts;

LD, number of acres of dryland cropland available
for use as specified by the region and land
class subscripts;

LR, numier of acres of irrigated cropland avail-
able for use as specified by the region and
land class subscripts;

PN, level of population projected to be in the
subscripted region;

q, units of pasture, in hay equivalents, consumed
by the associated livestock activity and spec-
ified by the subscripts;

r, units of aftermath or regular pasture, in hay
equivalents, produced by the associated crop-
ping or pasture activity and identified by
the subscripts;

SL, level of soil loss associated with any activi-
ty over the range m+n in the region and land
class designated by the subscripts;

T, level of transportation of a unit of the
commodity either into or out of the consuming
region designated by the subscripts;

WB, level of water purchase for use in the water
balance of the water supply region designated
by the subscript;

WD, level of desalting of ocean water in the water
supply region designated by the subscript;

WE, level of water to be exported from the water
supply region subscripted;

WI, level of movement of water in or out of the
water supply region through the interbasin
transfer network;

WO, level of water requirement for onsite uses
such as mining, navigation and estuary main-
tenance in the water supply region subscript-
ed;

WX, level of water use for the exogenous agricul-
tural crops and livestock in the water supply
region subscripted;

X, level of employment of the dryland crop man-
agement system, rotation, in the region and
on the land class as designated by the sub-
scripts ;

Y, level of employment of the irrigated crop man-
agement system, rotation, in the region and
on the land class as designated by the sub-
scripts;

Z, level of employment of the dryland crop man-
agement system, rotation, on the land class

91

in the region as designated by the subscripts when
the land has been designated as available for

irrigated cropping patterns.

Illustration of Results

Solution of the model provides indication of opti-
mal land use in each producing region or each of

the 1,891 land resource groups at prescribed
levels of environmental quality restraints, con-
sumer demand and distribution, export levels and
other policy, or market and technology parameters.
Our illustration is in the case where the only
environmental restraint is soil loss. It also
designates the level of production in each re-
gion and the optimal flows of commodities to

consuming regions and export markets. For pur-
poses of illustration, we refer to solutions where
(a) soil loss is not restricted and (b) soil loss
is restricted to 5 tons per acre per year for
each of the 1,891 soil resource groups and exports
are at a modest level. While land use could be
mapped or indicated by each of the 1,891 land
resource groups, we illustrate on the basis of

the 223 producing regions only. The model indi-
cates not only land devoted to each crop use in

each region and group, but also can indicate
technologies for each such as dryland or irrigat-^

ed, alternative rotations, conventional or reduced
tillage methods and others which affect land and
water use and sedimentation.

Figure 4 indicates an optimal distribution of row
crop acreage among the 223 producing regions.
Figure 5 indicates an optimal distribution of the
close grown crops and Figure 6 gives the hayland
distribution when no restraints are placed on
soil loss or chemical nitrogen use.

for seven major geographic regions of the U.S.

because of time and space restraints. While solu-
tions of the model were made for several soil
loss, export and nitrogen restriction levels, we
similarly summarize solutions only for two soil
loss levels, one export level and unrestrained
nitrogen use (except for nitrogen balance within
a producing region)

.

Restricting soil loss per acre to five tons would
distribute land use and technologies interregion-
ally to reduce national soil loss to 727 million
tons. VJithout the restriction, interregional
land use allocations and technologies to meet
export demands would generate a national soil loss
3.5 times greater, or 2,677 million tons. As Table
1 indicates the reduction in average per acre soil
loss, as a source of sedimentation, would be ex-
tremely large on land classes V-VIII which are
most erosive. While we do not do so here, our
models allow indication of soil loss changes by
each individual region.

Regional variation in reduced soil loss per acre
is great. Largest reductions take place in the
South Atlantic (18.2 tons per acre) and South
Central (11.5 tons per acre) regions where land
and current land use methods give rise to serious
erosion (Table 2) . The reduction in soil loss
when a 5 ton per acre limit is imposed is attained
especially by a switch from conventional tillage-
straight row farming to contour, strip-cropping
and terraces (Table 3) . There also is a signifi-
cant shift to reduced tillage farming practices
to attain the environmentally attained soil loss
of five tons per acre. Acres receiving reduced
tillage practices increase from around 21 million
in the unrestricted solution to near 58 million

Figure 4. Location of dryland and irrigated row crops
with no soil loss restriction in 2000.

Soil loss

While land use, tillage methods and soil loss are
generated in the models by producing regions and
land resource groups, we summarize results only

acres under the five-ton solution. Conventional
tillage practices decline from 248 million acres
under the unrestricted soil loss to 201 million
acres under the solution for a five-ton soil
loss. Within the conventional tillage group.

92

Irrigated • d

Figure 5. Location of dryland and irrigated close grown
crops with no soil loss restriction in 2000.

Dryland

Irrlgited

Figure 6. Location of dryland and irrigated hay with no
soil loss restriction in 2000.

Table 1. National soil loss total and average per acre by land resource
groups for two levels of soil loss restriction, 2000.

Item Unrestricted 5 ton
soil loss soil loss

Total tons (million ton) 2677 727

Average tons per acre

class I 6« II land 6.2 2.7

HIE & IVE land 17.8 3. 1

other III & IV land 15.6 2.8

V - VIII land 28.5 1.5

national average 9.9 2.8

93

Table 2. Average per acre soil loss by major region for two levels of soil

loss restriction models, 2000.

Region
5 ton

soil loss soil loss

National 9.9 2.8

Nortn AC lanu ic 9 0 3.5

S ou th Atlantic 21 .

5

3.3

Nortn Lentrai 2. 8

South Central 15.1 3.6

Great Plains 3,2 1.5

North West 2.3 1.7

South West 3.3 2.6

Table 3. Thousand acres of

practices for two

cultivated land by conservation
levels of soil loss restriction,

- tillage
2000.

Conservation
tillage

Unrestricted
soil loss

5 ton

soil loss

Conventional tillage 247,894 201,238

straight row 233,475 129,120

contoured 11,254 37,116

strip cropped & terraced 3,165 35,002

Reduced tillage 21,219 57,644

straight row 21,219 24,822

contoured 0 18,902

strip cropped & terraced 0 13,920

straight-row farming is nearly halved. Contour-
ing is tripled and strip cropping-terracing prac-
tices are increased 1,000 percent to meet soil

loss restrictions (Table 3) . While reduced till-
age nearly triples and very large increases occur
in contouring, terracing and strip cropping,
straight-row methods of reduced tillage do not in-

crease importantly.

The shift in acreages (Table 4) is partly hidden
in the reduction of 16^5 million acres used for
grain crops and a corresponding increase of only
5.5 million acres in hay on cultivated lands
(Table 4) . Part of the production required to

meet national demands comes from an increase in

noncropland roughage production (permanent hay
and pasture) . More of the reduced acreage re-
quired to meet the demand for agricultural products,

results because of the shift in production to the
higher cost and higher yielding erosion control
practices. Also a shift in acreage between land
classes puts the grain crops on the higher yield-
ing and less erosive lands.

Costs of production, in conjunction with the
transportation network and the soil loss restric-
tions imposed, determine the national equilibrium

prices for the commodities. Table 5 indicates the

relative equilibrium prices of the commodities
generated by the model under the two levels of

soil loss and a single export level. Soil loss
restrictions have the largest effect on prices for

commodities which concentrate on land with high
soil loss potential. Compared to absence of soil

loss restrictions, cotton and soybean prices in-

crease over 20 percent while wheat and hay crops

increase by less than 10 percent. The increase
in grain prices result in corresponding increases
in cattle prices. In evaluating the effect of

any environmental policy alternative, the effect
on the desired parameter and the change in farm
price of agricultural products are two easily
observed changes in our models.

Changes summarized at the national level do not,

of course, reflect the effects in particular re-
gions and on individual enterprises. These, how-
ever, are all available from our models. The
shift in production from one region to another re-
sults in income repercussions on the rural commu-
nity affected. The effect of such a shift depends
on the degree of multiple level resource use.

The data in Tables 1-5 indicate that American

94

REFERENCES

1. Dvoskin, D. and E.O. Heady. U.S. Agricultur-

al Production Under Limited Energy Supplies, High
Energy Prices, and Expanding Exports. CARD Re-

port 69. Center for Agricultural and Rural De-
velopment, Iowa State University, Ames, Iowa,

Nov. 1976.

2. Dvoskin, D. and E.O. Heady. U.S. Agricultur-
al Export Capabilities Under Various Price Alter-
natives, Regional Production Variations, and

Fertilizer-Use Restriction. CARD Report 63.

Center for Agricultural and Rural Development,
Iowa State University, Ames, Iowa, Dec. 1975.

3. Heady, E.O. and L.V. Mayer. Food Needs and

U.S. Agriculture in 1980. National Advisory
Commission on Food and Fiber, Washington, D.C.

Aug. 1967.

4. Heady, E.O., H.C. Madsen, K.J. Nicol, and

5. H. Hargrove. Agricultural Water Policies
and the Environment. CARD Report 40T. Center
for Agricultural and Rural Development, Iowa

State University, Ames, Iowa, June 1972.

5. Huemoeller, W.A. , K.J. Nicol, E.O. Heady,

and B. Spaulding. Land Use: Ongoing Develop-
ments in the North Central Region. Center for

Agricultural and Rural Development, Ames, Iowa,

Nov. 1976.

6. Madsen, H.C, K.J. Nicol, and E.O. Heady.

Environmental Impacts and Costs in Agriculture
in Relation to Soil Loss Restrictions and Nitro-
gen Fertilizer Limitations. Report to the U.S.
Environmental Protection Agency. Center for
Agricultural and Rural Development, Iowa State
University, Ames, Iowa, Nov. 1973.

7. Meister, A.D., E.O. Heady, K.J. Nicol, and
R.W. Strohbehn. U.S. Agricultural Production in

Relation to Alternative Water, Environmental,
and Export Policies. CARD Report 65. Center
for Agricultural and Rural Development, Ames,
Iowa, June 1976.

8. Nicol, K.J., and E.O. Heady. A Model for

Regional Agricultural Analysis of Land and Water
Use, Agricultural Structure, and the Environment:

A Documentation. Center for Agricultural and

Rural Development, Ames, Iowa, July 1974.

9. Nicol, K.J. and E.O. Heady. The Economic
Impacts of Abatement Control of Irrigation Re-
turn Flows and Pollutant Run-off from Nonirrigat-
ed Agriculture. PB 248 807. National Technical
Information Service. Springfield, Virginia,
July 1975.

10. Nicol, K.J., E.O. Heady, and H.C. Madsen.
Models of Soil Loss, Land and Water Use Spatial
Agricultural Structure, and the Environment.
CARD Report 49T. Center for Agricultural and
Rural Development, Ames, Iowa, July 1974.

11. Wade, J.C. and E.O. Heady. A National

Model of Sediment and Water Quality: Various
pacts on American Agriculture. CARD Report 67

Center for Agricultural and Rural Development,
Iowa State University, Ames, Iowa, July 1976.

95

Table 4. National production of row crops, close grown crops and rotation
roughage crops for two levels of soil loss restriction, 2000.^

Land use
soil loss

5 ton

soil loss

Acres cultivated (000) 269,113 258,882

Row crops (000) 148,226 136,035

Close grown crops (000) 75,535 73,478

Rotation roughage crops (000) 45,352 49,369

Non-rotation roughage crops (000) 303,060 310,697

Demand levels are based on projected per capita food consumption level
284 million people in 2000 and international trade of grains equal to the
1969-1971 annual averages.

Table 5. Relative farm level prices for some agricultural commodities with
two levels of soil loss restriction 2000.

Commodity
Unrestricted

soil loss

5 ton
soil loss

Corn 100 107

Wheat 100 103

Soybeans 100 115

Cotton 100 112

Hay 100 101

Cattle 100 104

Hogs 100 105

Milk 100 100

agriculture has great capacity and flexibility in
adapting to certain environmental quality goals.
By shifting land use among the many producing re-
gions and land resource groups in terms of their
comparative advantage in yields, commodity costs,
location, and transportation, national and region-
al demands can be met without large increases in
food prices and costs for consumers at the export
level examined. The level of exports per se may
have greater impact on consumer food costs than
does a relatively wide adaptation of agriculture
and land use to environmental quality goals. We
will, however, provide quantitative analysis of
these possibilities, along with other environ-
mental quality practices, in upcoming presenta-
tions .

96

A NONLINEAR PROGRAMMING APPROACH

TO PREFERENCE ^LAXIMIZED MENU PLANS

Joseph L. Balintfy
and

Prabhakant Sinha
University of Massachusetts

Amherst

I INTRODUCTION

Human diet problems fall into two major cate-
gories known as food planning and meal planning
problems. Both problem areas have been shown to

be amenable to mathematical definition, formulation
and solution.

Food planning is concerned with decisions as

to which food entity, and how much, to purchase
subject to given budgetary, nutritional, and accep-
tability requirements. The first statement of this
problem in the context of the cost of subsistence
is due to Stigler [17]. This was later reformulat-
ed by Dantzig [10] as the classical example of a

linear programming model , and was refined later
with respect to consumer acceptance by Smith [15].

The concept is still in use in terms of food groups
in connection with USDA family food plans [15].

Meal planning is a decision problem of find-
ing an optimum sequence of meals consisting of com-
binations of prepared foods, called menu items, to

be eaten by a person or a population, such that the

required structure of the meals and given budgetary,
nutritional and food production specifications are
met. The entities of meal planning are menu items
of known portion size, with the food ingredients
per portion defined by the respective recipes.
This problem was first identified and solved as a

mathematical programming problem by Balintfy [2].
The first approach and some of the later refinements
[3] were considering one meal (or day) at a time,
using what is now called a multistage menu schedul-
ing algorithm. Each meal was a least-cost (best

buy) combination of items selected on the basis of

avoiding incompatibility of items between meals and
within meals. The former rule was effected by
requiring a minimum separation of meals between
consecutive appearance of the same item or the
same kind of item on the schedule. The latter
rule was observed by restricting items from the
same attribute class to occur in the solutions.

The concept of minimum separation of items
was not only useful in menu scheduling as a safe-
guard for variety, i.e., acceptability, but it

could also be used to establish upper bounds on
the frequency of items in a given time period.
This realization led to the development of a

bounded linear programming model to meal planning
[5] which defined in a single stage the optimum
(least cost) frequencies of menu items for a period.

called a menu plan, which later could be scheduled
into a sequence of meals.

Initially, both versions of these modeling
approaches to meal planning had cost-minimizing
objective functions and assured acceptability oper
ationally only by variety and entry restrictions.
The cost minimization objective was selected pri-
marily to show the economic impact of mathematical
optimization as opposed to conventional methods.
Another rationale for cost minimizing was the

paucity of data and methodology to represent food

preferences quantitatively as meal planning object
ives. Indeed, cost savings from 10-30 percent of

food cost have been achieved in a variety of appli
cations [9,11]

.

These applications were initiated in hospi-
tals, although a variety of other institutional
feeding programs, such as school lunch service,
college food service, as well as nursing home,

detention home, and military food service opera-
tions also could utilize a better approach than

the prevailing conventional method of menu plan-
ning. Such methods cannot take into consideration
explicitly and quantitatively the population pref-
erences, the nutrient composition and the cost of

menu items, and hence the resulting conventional
menus are ipso facto suboptimal and often infeas-
ible relative to the stated objectives and con-

straints [3] .

The role of food preferences has been long

recognized, and food preference and preferred
serving-frequency data have been routinely collect

ed in the food service industry. Such information
was, however, utilized only subjectively in menu
planning, mostly because the functional relation
between the preference for an item and its serv-
ing frequency was not recognized. Benson [8] was

the first who represented this relation by fitting
data to a polynomial function, but no attempt was

made to use his results either in menu planning or

in mathematical programming formulations.

Major developments in the last years have
taken place in the mathematical modeling of food

preferences by the discovery of the existence of

time-related preference functions. The impact of

this new development on the modeling of meal plan-
ning decisions as mathematical optimization prob-
lems is investigated in the sections that follow.

97

II MATHEMATICAL FORMULATION OF FOOD PREFERENCE
FUNCTIONS

It is assumed - as is observable in reality -

that most food is consumed in discrete portions at

discrete points in time. Consequently, one can
relate a measure of satisfaction with the event
that a fixed quantity of food is consumed at a

given time. One can also assume that for foods
that are familiar and are more or less routinely
consumed by an individual, satisfaction with foods
is not only experienced but also anticipated to such
a degree that a measure of utility can be elicited
by collecting preference ratings for a set of foods
on some centered scale. In this investigation,
therefore, it will be assumed that preference rat-
ings are estimates of the measure of satisfaction
of an individual with a food. The word food is

used here as a collective term applicable to the
special cases of both food groups and menu items
as the case may be.

Let h(t) be the preference rating of an indi-
vidual for a given food item at time t where t

is measured from the last time when the item was
consumed. Clearly h(t) is a function for which the
following properties can be postulated:

(a) h(0) = -»; since zero time interval
between eating a fixed portion of a food

is impossible as well as intolerable.

(b) hC"") = a; where "a" is a positive con-
stant expressing the preference for a

known food item when it has not been
available (hence not consumed) for a

long time. It is possible that "a" is

itself some function of absolute time
reflecting shifts of taste or seasonal-
ity, but these effects are not considered
here

.

(c) h[atj + (l-a)t2] lah(tj) + (l-a)h(t2)
for 0 <^ a _< 1 and 0 < tj < t2 <

which means that the preference-time
function is assumed to be concave. The
evidence for this assumption is indirect,
but convincing. The concavity of h(t) is

consistent with the observation that most
people tend to separate their preferred
food items on the time scale with fairly
equal time intervals as opposed to clus-
tering them on a succession of meals.

(d) 4"^[h(t)/t] = 0 at some unique value of
at

t = T^, (0 < To < ») where h(t)/t=g(t)
is the preference function averaged over
time, and it is postulated that this
time-average has a unique maximum at
time Tg. This property of g(t) is sup-
ported by the evidence that people can
estimate values of T^ by the ability of
responding to questions such as "how fre-
quently do you like to eat this given
item?"

Empirical verification of the above assump-
tions is available in a report : Modeling Food
Preferences Over Time [6]. It was found that pre-
ference for a particular menu item can be best
described by the recursive formula

(1) h(t^) = f(tn-tn_i) - e ^^"""^"-l^
[f (-) -h (t^.i)]

where r > 0 and t^ indicates the absolute time
scale when the item was consumed n times before.
Figure 1 shows the analytical form of this recur-
sive relation in terms of parameters estimated from
observed data.

Here

(2) f(t„-t^_p = f(t') = a-be
-ct'

where a > 0, b > 0, and c > 0 are parameters of a

first order differential equation which postulates
that the rate of increase of preference in time is

proportional to the effect of "monotony" expressed
by the [a-f(t')] difference.

Substituting (2) into (1) and letting

Lim h(tj^) = h(t)

nt
n

(1) reduces to

(3) h(t) = a
be

ct

1-e
-rt

This is the expression of preference-time rela-

tions with the assumption that the item is repeat-
edly consumed at identical t time intervals.
From (3) the time averaged function of preference
is obtained as

(4) g(t) =
f

be
-ct

t(l-e)

Figure 2 shows the shapes of the f(t), h(t)

and g(t) functions for a particular item as rated
by one subject. It is seen that f(t) > h(t) for
all values of t and g(t) has a unique maximum at

T^ = 5 days.

The authors' earlier report [6] has shown the
methods and the results of estimating the parame-
ters of the h(t) function from questionnaires.
It is noted, however, that one of the four parame-
ters, r , is needed basically only for the compu-
tation of the recursive relations in (1) . For con-

siderations where the time intervals can be regard-
ed as equidistant, a direct analytical expression
for h(t) can be attempted with more economy in

parameters. For this reason an approximation of

h(t) by H(t) is introduced in the form

(5) H(t) = a

ut

It is obvious that H(t) satisfies conditions (a)

through (d) stipulated for preference-time func-
tions. Moreover, it is possible to estimate the

parameter of H(t) from that of the h(t) function.
Conditions (a) and (b) are clearly satisfied at

the same value of "a" for both functions. By im-

posing two additional conditions, the two other
parameters of the H(t) function can be uniquely
defined. These two conditions are as follows:

1. Requiring that both functions have identi-

cal zero crossing, i.e.

98

h(t) = H(t) =0 at t = t(.

This is satisfied if

(6)
be

The value of t^^ can be determined by solv-
ing the implicit nonlinear equation

*(t(,) = a(l-e ""^o) be '^^o = 0

by some numerical analytical method.

2. Requiring that the time averaged preferences
have maximum at the same t = time for
both functions. As in expression (4), G(t)
is defined as

from data. It is of some practical significance
that conventional food preference questionnaires
are sufficient to estimate these two parameters.
In most of these questionnaires the subjects are
asked to indicate how frequently they want to eat a

given item, and they also have to rate their pref-
erences for the item on some hedonic scale. With
the assumption that their preference rating is con-
ditioned by the estimated time interval Tq , corre-
sponding to their frequency rating, the preference
ratings can be regarded as direct estimates of
pCTq), i.e., a point on the preference-time func-
tion. This assumption, of course, can be made oper-
ational by the appropriate phrasing of the ques-
tions .

With the estimated values of pCTq) ^''^^
"^o avail-

able, (10) is one of the conditions, and

ut

(11)
d_

dt

p(t) ^
t

-a +
ut

= 0

Then the condition that
is the other condition that the parameters a and
u must satisfy. Both conditions are satisfied if

iG(t) = f^g(t) =0 at t = T„

implies that

^ +^ = 0
,,2 ^v+2
To

I.e.

(8)
v+1

ut!

where Tq is already determined in the esti-
mation of h(t) and gCt).

By meeting these two conditions, the values of
parameters v and u of the H(t) function are
determined, since expressions (6) and (8) yield the
implicit form

1 t„ V
(9)

v+1 =(t„)

which has a unique solution for v and by substi-
tution into (6) and (8) the value of u obtains.

Figure 3 shows the tabulation of the estimated
parameters of the h(t) and H(t) functions as ob-
tained from the ratings of two selected subjects
for an assortment of dessert items. The last three
columns are obtained from the first four columns,
with the exception of , which is the subjects'
preferred time interval for the items and is part
of the input data. It is noticeable that for most
items the value of v is fairly close to one.

(12) 2p(To) 2/aT^

The analytical properties of this simplified
preference-time function imply that the estimated
preference at t = =° is twice as much as the prefer-
ence at T^ time interval. It is interesting that
the observed preference-time data (Figure 3) are
not too far from satisfying this property, since
the estimated value of the parameter v was
fairly close to one.

In the previous part the preference-time func-
tion was introduced as a measure of satisfaction if

a fixed portion of a food is consumed by an indi-

vidual at identical time intervals of length t .

Here we consider a particular food item (or menu
item) denoted by the subscript j , and will util-
ize the H(t) and G(t) functions to get an expression
for the measure of satisfaction over the whole plan-
ning horizon of a menu plan.

Let N be the total number of days included in

the menu plan. With a serving time interval of t

days, the number of times menu item j is offered
is denoted by Xj . With the standardized portion
size for which the preference-time functions are

evaluated, the following identity holds

(13) x. = N/t

Consequently, the preference at each consumption as

a function of the frequency, the number of times

item j is offered on the menu plan, is

(14) H(xJ a. - (l/b^)(Xj/N)'j

For reasons of analytical simplicity, the H(t)
function will be used as the analytical model of
preference-time relations in the following parts of
this paper. One can, however, further simplify the
function by assuming that v = 1 for most items.
This way a two-parameter approximation of the pref-
erence-time function obtains in the form

(10) p(t) = a

where parameters a

_ 1

ut

and u are to be estimated

The total preference derived by offering menu item

j Xj times is obtained by multiplying H(xj) by xj

to yield G(xj)

.

(15) G(xj)

or more simply

(16) G(xj)

(l/bj)(xj/N)"j

- '^j

V-i+1X.J
J

99

where

(1/bj) • (1/N)

It is readily seen that G(xj) is a unimodal
function of xj ,

implying that it has a unique maxi-
mum at some value of Xj . This implies that indi-
viduals tend to pace their consumption of food j

on the time scale such that the preferred number of

times in the cycle length N is given by the maxi-
mum of the G(Xj) function. In other words, for
menu item j ,

G(xj) is the preference objective
function to be maximized by one individual. G(Xj)
is a quadratic function if Vj =1.

Until now, G(Xj) was tacitly assumed to be the
preference function of a given individual for food

j . It is very likely that different individuals
may have nonidentical preferences for the same set
of foods. Consequently, the notation G^(x^) will
be introduced as the preference function of the
i-th individual of a given population for food item

j •

In particular

(17) Gi(xj) = aijXj - h^.x.

will replace the notation used in (16). The param-
eters a-j^j , b^j and vij can be established from
questionnaires by the earlier described methods.
Clearly, the Gj^(xj) functions are concave for each
individual i , so one can express the preference
function of a set of individuals, M , for item j

as follows

:

(18) Gj^(xj) =
I Gi(xj)

ieM

where Gj^(x.) will have a unique maximum at some
value of Xj , since the sum of concave functions is

also a concave function. Thus, one can say that
for a given population the preference realized from
food item j is a maximum for Xj is equal to x.

,

where

(19) Gj^(x°) = max I G^(x.) .

This is not to say, however, that the maximum
of Gj^(xj) functions of individuals in the popula-
tion, especially if the population is very hetero-
geneous with respect to their preferences for
foods. This problem can be resolved by partition-
ing the set of individuals into subsets, clusters
such that the within cluster homogeneity of indi-
viduals is maximum with respect to the set of
foods under consideration. The smaller the clus-
ters are, the more clusters are needed, and the

o
cluster maximum Gj^(x.) will be closer and closer
to the maximums of the G-;^(Xj) functions within the
clusters. It suffices to say here that for any
number of desired partitionings of set M , tech-
niques of cluster analysis are available to find
the most homogeneous set membership of clusters and
thus the corresponding values of the Gj^(xj) func-
tions for any set of food items.

The function Gj^(xj), as defined by (18), needs
3xM parameters for its evaluation. Parameter
reduction can be performed on Gj^(xj), too.

(xj) =
I (a^jXj - bijXjiJ

ieM

= ''jt I ^ij - I ^ijxj^]
ieM ieM

By noting that
oo

xjj = I (vj In Xj)"/n:
n=0

the expression for Givi(xj) can be written as

Gi^(xj) = Xj[);aij - lb±jl(v^ In Xj)"/n:
i in

Xj[Ia.j - Ibij - In xjIbjijVj

1 1

,2
(In x^)

21
i

13 j

In (x^) 3

By denoting w = J(b..v?/nl)
n ^ ij J

a. = y(a. .-b. .)
J 5;

IJ IJ

the above expression reduces to
oo

(20) Gj^(x^) = X. [I. -
I (In X.)" • w^]

n=l

We note that the summation in the above expression
forms a monotonically decreasing convergent series,

and hence an arbitrarily accurate approximation to

the Gj^(x.) function can be obtained by retaining a

finite number of terms in the summation. Although
no tests have been performed to observe how fast

the series converges, it seems that for large M ,

much fewer than 3xM parameters need to be used to

obtain an accurate approximation to the function.

It is realized that computing w^^ initially uses all

the original parameters. However, this need be
done just once, and it can be done before the param-

eters are actually put to use in the nonlinear pro-

gramming model described in the next section.

Expression (16) for G(xj) was obtained from

(5) , which was obtained from (3) to effect an econ-

omy in the number of parameters in the function.
One can, of course, obtain the G(xj) function di-
rectly from (3) ,

using all of the four parameters
in it. The resulting function is

-c'/xi

(21) G(xj) = axj
be

where c'=Nc and r'=Mr. Figure 4 displays the form

of the G(xjj) functions as obtained from a Skylab

astronaut for two entrees.

Ill NONLINEAR PROGRAMMING SOLUTION TO THE MENU
PLANNING PROBLEM

The fundamental problem of menu planning is to

define which menu items and how many times should

100

appear in a given time period - called a cycle - on
the menu. According to the definition adopted here,
menu planning is a decision problem which concen-
trates on the whole cycle, and attempts to find an

optimum plan in terms of finding optimum frequen-
cies of the items under consideration. In contrast,
menu scheduling is defined as a problem of deciding
which item should appear in which meal and day.

Scheduling and planning, of course, are intim-
ately related in the sense that the time aggregate
of the menu schedule for a cycle is the menu plan.
In turn, a properly structured menu plan can be
partitioned, i.e., scheduled into a sequence of
menus. The presentation of the material will be
based on this latter principle. For the sake of
conceptual clarity, nonselective menus will be con-
sidered first.

It is assumed that a set of n menu items is

subject to menu planning decision such that for

each item j ,
optimum quantities x

• , (j =1 , 2
, • •

•
,n)

should be determined for a given set of individuals
and for a menu cycle of s days. In this context
the meaning of Xj is the number of unit portions of
menu item j to be allocated on the menu during s

days. It is assumed further that the set of n

menu items can be partitioned into K subsets
according to the course structure, such as entrees,
starch, vegetable, etc. of the meals for a day.
Let Wj^ (k=l,2,"-", K) be the relative weight of

course k in the total preference of the meals.
With these notations, the total preference of a set

of individuals M
pressed as follows

;

(22) G(X) =

for n menu items can be ex-

K n,^

I "k I GmCxj)

where nQ=0, njr=n, (nj.- nj^_2) is the number of menu
items in course k , X
ponents, and

is the n-vector of Xj com-

(23) G^(Xj) = lHi-r
leM

as in (18) , or as defined in (20) to achieve param-
eter economy. Consequently, G(X) is a weighted
additive function of nonlinear expressions which
all depend on the aggregate preference-quantity
functions of a population for each of the n items
involved. Inasmuch as the objective of menu plan-
ning is to select menu items for a cycle of s

days which will be most preferred, this objective
can be reached by finding the maximum of the G(X)
function. To insure, however, that the resulting
vector X is appropriate for the purposes of sched-
uling as well as from the point of view of other,
such as budgetary, nutritional and compatibility
considerations, only the constrained maximization
of G(X) will provide, in general, acceptable re-
sults. This leads to a nonlinear programming
formulation of menu planning.

Accordingly, menu planning with preference
maximization objective can be formulated as a non-
linear program problem stated as follows:

c X 1 c„(24) max. G(X) s.t

AX>B, MX<S, RX<D

where
G(X) is the nonlinear objective function iden-

tical to (20) .

T
c is the n-vector of unit portion costs of

menu items.

A is the mxn matrix of the nutrient compo-
sition of menu items, with a^^ element
indicating the amount of nutrient i in
one portion of menu item j .

B is the m-vector of the nutrient allow-
ances for some reference person for s

days

.

M is a Kxn incidence matrix containing
staggered rows of unit coefficients corre
spending to the availability of the items

for given courses.

S is a K-vector of components s or 2s

for nonselective menus indicating the
number of items needed for a course for a

cycle of s days.

R is an Lxn matrix of coefficients for
assorted attribute constraints, propor-
tionality constraints, production con-
straints, etc. which define feasibility
conditions for scheduling the vector X .

D is an L-vector defined by the constraints
above

.

X is the vector notation for the menu plan
which is fully defined by the values of

the components of X . If the j-th com-
ponent of X in the solution is not zero

Xj represents the number of portions of

menu item j to be allocated for s days

The above definition of Xj and its role with
respect to the feasibility of scheduling requires
that all the components of X be integers.

Strictly speaking, menu planning is a nonlinear and

integer programming problem. Such problems are

still considered intractable in theory. In prac-
tice, however, the problem is not too serious be-

cause of two favorable factors. First, s can be

rather large. Sixty day or 90 day menu cycles are

common, so the number of portions to be represented

by the Xj components can be large integers where
the effects of rounding are relatively minor.

Second, the nonlinear programming problem posed in

(24) is well suited for solution by piecewise lin-

earization and convex separable programming tech-

niques where the grid points of the linearized var-

iables can be conveniently selected to coincide

with unit portions. This way all the upper bounds

of the auxiliary variables will correspond to inte-

ger values and experience with such upper bounded

linear programming models for menu planning has

shown that in such cases a sizeable majority of the

bounds tend to bind, and thus most of the compon-

ents of the X-vector will be integer valued.

It should be mentioned here that an alternate

nonlinear programming formulation of menu planning

can be derived from (24) and considered as useful

for institutional feeding programs where the man-
agement objective is to maintain a given food

101

preference level aC minimum cost. This version of
the problem is explicitely stated here for further
reference

:

(28)

m+K+L

1
i=l

q. .X. + n'^.- G„(x.)

(25) Min. c X s.t. G(X) >^ u^

AX>^B, MX<_S, RX<_D.

Here Uq is some minimal level of preference to

be maintained while the rest of the notations mean
the same as in expression (24). This structure is

similar, but not superior, to the "best buy" linear
programming models discussed in [5] , where the non-
linear constraint is replaced by a set of upper
bounds

.

The nonlinear programming problem (24) , after
the addition of slack and surplus variables can be
written in the form

K

(26) max. G(X) =
I Wj^

);
G^(x^)

j""k-l+l

s.t.
^ lij^j^ '^i

i=1.2,''-, m+K+L

j

xj > 0

The above problem, although it is nonlinear
and large in size, (well over 50 constraints and

400 variables for food service establishments) , is

amenable to efficient solution techniques in exist-
ence [13]. The objective function of problem (26)

is additively separable, and this makes the appli-
cation of what Wolfe [19] has termed grid-lineari-
zation particularly efficient.

We recapitulate briefly the features of a

grid-linearization algorithm for the solution of

the nonlinear additively separable problem (26)

.

An initial set of grid points {xjj.} is

defined for each variable Xj ,
yielding the linear-

ized program in the variables ^ j j-

•

(27)

K n.

k=l j=nj^_i+l t

I ^jt GM(^jt)

, m+K+L•t- I ll. .x.^X.^=d. i=l,2,---
V 11 It It 1 '

'

I X.^ = 1 for all j

t

X. . > 0 for all i , t

If the initial number of grid points for each
variable in problem (27) is large, an acceptable
approximation of the nonlinear objective function
may result. However, if fewer grid points are used,
new grid points can be created in the framework of

the solution algorithm.

If, at iteration r , the linearized program
is solved, an optimal solution f^jj-} and simplex
multipliers (11 , 11^) are available. For any vari-
able Xj , a new grid point is sought such that it

produces the most negative reduced cost factor.
This corresponds to solving the unconstrained
problem

Note that if G[^(xj) is concave, the above function
in Xj is convex and the minimum is unique. The
minimum in (28) can be efficiently determined by
any appropriate technique such as the Method of

Golden Sections [18]. The new grid point thus cre-
ated can be added to the current set, and a new
iteration begins.

Earlier convergence proofs [10] required that
all columns be retained from iteration to iteration.
However, recently Murphy [14] has developed some
column dropping procedures, although no experience
of the efficacy of such procedures is cited.

It may be mentioned that the constraints in

problem (27) of the form ^ Xjj. = 1 can be handled
t

as generalized upper bounds. Moreover, the columns
generated can be implicitly stored.

IV DISCUSSION

An optimum integer vector X from solving
either (24) or (25) produces only the menu plan
which is to be scheduled by some other method. It

is important to realize that the plan X already
satisfies the most significant conditions pertain-
ing to population preferences, total cost, nutri-
tion, and other general aspects of feasibility.
The only remaining objective of scheduling is to
assure compatibility among the menu items within
meals and between meals. Compatibility is a prop-
erty of interactions between items, and not neces-
sarily a property of the items per se. Thus, in

scheduling we deal with acceptability aspects of
combinations of items , which was not directly con-
sidered in the objective function. The model pro-
posed thus separates the criteria of menu planning
and scheduling into two distinct optimization pro-
cesses for technical reasons. In the planning
phase, food preferences are maximized as separable
functions by the powerful method of nonlinear pro-
gramming. In the scheduling phase, compatibility
is to be maximized by techniques still in the
exploratory stages. One obvious possibility is the

arrangement of items by manual methods. More exact
approaches are conceivable by algorithms based on

multidimensional scaling and graph theoretical
methods presently under investigation [4,12].

For populations which are heterogeneous with
respect to their preferences for a given set of

menu items, nonselective menus cannot be optimal

[7]. An improvement on the optimality can be

effected by partitioning the set of individuals M
into subsets of individuals M
where t

1m

i=l

(i=l,2,---, t)

M, and each of the t subsets will

be more homogeneous with respect to preferences
than the set M if the partitioning is done by
cluster analytic methods [12]. In this case the

Gj^_ (X-"-) function for cluster M^ will have its

optimum Xj values closer to the individuals' pref-

erence-quantity function optimums than is possible

for set M . This is simply the theoretical inter-

pretation of the rationale of offering selective

102

menus. In short, each cluster corresponds to a po-
tential different optimum menu plan, hence a poten-
tial need for a choice on the menu which is expect-
ed to be exercised by the individuals in the par-
ticular cluster. By increasing the value of t

,

more homogeneous clusters can be created, more
individual preferences will coincide with the

respective Gj^ (X-"-) optimums, but also more choices
i

will be needed and more kinds of items are to be

prepared for each meal. It is conceivable that t,

i.e., the potential number of distinct choices, has
some practical bound, and there is evidence [7]

that the greatest improvements in preferences occur
at low values of t , such as t=2 or t=3

.

storage to solve 30-constraint , 320-variable prob-
lems, where the number of variables refers to the
number before linearization. No passive storage is
used. Approximately 7000 words of storage are
problem-size-independent. Since integrality of the
solution is desired, only integer grid points are
used, and the program has the capacity to enforce
different upper bounds on the variables.

Twenty-constraint, 220-variable problems re-
quire approximately 20 CPU seconds, and 20-con-
straint, 120-variable problems take less than 10

CPU seconds on the CDC 6600. Furthermore, if a

"good" starting solution is used, the solution
times decrease markedly.

The menu planning problem for a heterogeneous
population is therefore pictured as the (joint)
solution of t nonlinear programming problems with
objective functions &», (X^) corresponding to clus-
ters , (i=l , 2 ,

• • •
, t) yielding optimum nonidenti-

cal menu plans X-"- for each cluster . This is to say

that the planning problem associated with selective
menus is not particularly different from the one
described earlier. The scheduling problem becomes,
however, somewhat complicated.

Let us denote the cardinality of cluster by
m^, and the cardinality of M by m^, where

V 1
m^ =

I '^±- The consistency between menu plans X
,

2 t
X ,

• •

• , X and the corresponding selective menu
schedule requires that if item j is represented..12 t ^m the plans m quantities x^ , x_. ,

' ' "

,
x_. , then

the time averaged marginal probabilities of choos-
ing these items from the schedule in s days must
be equal to the marginal probability of choosing
item Xj from other items in the given course by the

total population in s days, which is equal - on
the basis of cluster preferences - to

1 V i
(29) p. =— I m.x^

J sm^ .^^ 1 3

It is a difficult and thus far unresolved problem
to schedule selective menus which satisfy this cri-
terion, because compatibility between menu items
affects the joint probabilities of selections.
Even if condition (29) is satisfied, the freedom
of choice provided by selective menus introduces
random variables in the food service system, and
necessitates redefining the food cost, nutritional,
and other constraints in probabilistic terms.

One can, of course, avoid some of these prob-
lems by scheduling each of the X^ option plans as

nonselective menus, offering selectivity only
among the menus, but not the items, and hoping that
on the average, population cluster will prefer
to select the corresponding X^^ menus from the
schedule. Obviously, more research is needed on
these points.

V COMPUTATIONAL RESULTS

The grid-linearizing algorithm to solve the
preference-maximizing menu-planning problem was
coded in FORTRAN for the CDC 6600. The program
requires approximately 25000 words of active

Portions of the solutions to two sample prob-
lems are presented below. The nutrient and cost
attributes are from a U.S. Army Master Recipe File.
The problems consist of determining serving frequen-
cies of menu items for a 42-day evening meal cycle.
Although six-course meals were planned, the display
contains frequencies of only the entrees under raw
food cost budget limits of $42.00 and $35.00 for
all the courses.

NO. ITEM NAME SERVING FREQUENCY
(per 42 days)

Budget=$35 Budget=$42

1 ROAST BEEF 3 00 4. 00

3 GRILLED BEEF STEAK 3 00 5. 70

6 SWISS STEAK W/BROWI>I ORA^'Y 1 00 2. 00

8 MEAT LOAF 2 00 2. 00

9 GRILLED SALISBURY STEAK 3 00 2. 00

11 SWEDISH MEATBALLS 2 00 1 00

15 BAKED HAM 1 00 1. 00

22 GRILLED SAUSAGE PATTIES 1 00 0

23 BARBECUED RIBS 26 1 00

24 ROAST VEAL 1 00 1 00

26 BAKED CHICKEN 2 00 2 00

27 FRIED CHICKEN 4 00 4 00

28 ROAST TURKEY 1 00 1 00

29 HOT TURKEY SANDWICH 4 00 3 00

30 FRIED FISH 1 00 30

36 FRENCH FRIED SHRIMP 2 00 2 00

37 SEAFOOD PLATTER 2 00 2 00

40 SPAGHETTI W/MEATBALLS 4 00 4. 00

42 BEEF STEW 1 00 1 00

44 CHILI CON CARNE W/ BEAMS 3 74 3 00

PREFERENCE 85 24 86 69

In both solutions, the use of integer grid points
helps make the solution almost integer, with only
two fractional values for the variables. We are

currently using a search procedure to round the

solution obtained from the nonlinear program by

permitting fractional variables to change only to

the next lower or next higher integers, and non-
fractional variables to change by at most one.

Other schemes such as in [1] are also possible.

Even with a 42-day budget reduction of 15%,

the solution is able to exploit item substitution
to yield less than a 2% reduction in acceptability
Unlike conventional trial-and-error menu planning
procedures, this method prevents over-reaction to

budgetary and price fluctuations.

An apparent shortcoming of the procedure is

that acceptability and schedulability of the item

103

frequencies obtained from the mathematical program
depends on putting together day-to-day combinations
of items that are compatible. The nonlinear pro-
gram bypasses the issue of compatibility. However,
blatant compatibility effects can be incorporated
in the form of constraints. For example, if a

sandwich appears on the menu, there may be no need
to serve bread in addition. This situation can be
handled via the constraint

jeS jeB
N

where N is the number of days in the cycle, B

is the index set of breads, and S is the index
set of items that preclude bread from appearing on
the menu. We enforce such "exclusion" constraints
for several courses. Another type of constraint is

the "inclusion" constraint, which enforces the
appearance of one item if another appears. Thus
Applesauce can be forced to appear as often as Pork
Chops. In our experience, once the constraint set
considers schedulability , the compatibility prob-
lem becomes easy to handle.

^^f^ SUBIECT CODE - S07

-V DESSERT CODE - 5909

1 H

9 13 17

TIME (T DAYSJ

21 25

Figure 2. The shape of the f(t), h(t) and g(t)
functions for parameter values of
a=90.67, b=67.14, c=0.0884 and
r=0.3760.

Source: Reference [5],

Subject/Item
Codes a b c r To V 1/u

SO6/5909 20 00 10 34 0 0336 1 3308 1.0 1 14 30 0 2074

SO6/6011 25 00 11 61 0 0374 0 2817 4.0 1 0001 0 0200
SO6/5037 itO 00 15 17 0 0334 0 J4S0 5.0 0 9590 0 0104
S06/5111 30 00 9 12 0 0359 0 0713 7.0 1 0631 0 00359
SO7/5082 80 00 87 0 0628 0 1848 7.0 0 9089 0 00407
S07/5909 90 00 54 64 0 0624 0 2986 5.0 0 9189 0 00486
SO7/5107 100 00 45 78 0 0805 0 3442 3.0 0 9288 0 00695
S07/5013 60 50 21 27 0 0451 0 0114 30.0 1 4754 0 000271

Figure 3. Estimated parameters of two analytical
models of the preference-time function
for foods.

Source; Reference [6].

TIME

Figure 1. The change of preference over time when
the item is consumed on davs 9, 16, 19
and 28, the item having been consumed
9 days prior to day 1. The parameters
of the preference-tine function used for
this plot are: a=100, b=40, c=0.05,
r=0.4.

Source: Reference [7].

FILET MIGNON

4,00 600 12.00 16.00

QUANTITY(SERVINGS IN 28 DAYS)

Figure 4. Unconstrained preference-quantity
functions of an astronaut for two

entrees

.

20.00

104

REFERENCES

[1] Armstrong, R.D., J.L. Balintfy, P. Sinha, "A

Multistage Scheduling Algorithm for Preference
Maximized Selective and Nonselective Menus,"
ONR Technical Report No. 7, School of Business
Administration, University of Massachusetts,
July 1973.

[2] Balintfy, J.L., "Menu Planning by Computer,"
The Communications of ACM , Vol. 7, April 1964,

pp. 255-259.

[3] , "A Mathematical Programming System for

Food Management Applications," Interfaces
,

Vol. 6, No. 1, Pt. 2 (1975) pp. 13-31.

[4] ,
"Large-Scale Programming Properties of

Menu Planning and Scheduling," in Optimization
Methods for Resource Allocation , ed. R.W.

Cottle and J. Karp
,
English Universities Press

Ltd, London, 1976, pp. 81-98.

[5] , J. Neter, W. Wasserman, "An Experimen-
tal Comparison Between Fixed Weight and Linear
Programming Food Price Indexes," J. Amer . Stat .

Ass . , Vol. 65, No. 329, March 1970, pp. 49-60.

[6] ,
W.J. Duffy, P. Sinha, "Modeling Food

Preferences Over Time," Operations Research
,

Vol. 22, No. 4 (1974) pp. 711-727.

[7] , P. Sinha, "Computational Principles of

Choicegroup Generation for Selective Menus,"
ONR Technical Report No. 5, School of Business
Administration, University of Massachusetts,
October 1972.

[8] Benson, P.H., "Psychometric Approach to Pre-
dicting Consumer Behavior," Personnel Psy-
chology , Vol. 13, No. 1 (1960)pp. 71-80.

[9] Bowman, J.D. , E.M. Brennan, "Computer Assisted
Menu Planning Provides Control of Food Service,"
Hospitals , Vol. 43, No. 103, August 1969,

pp. 107-113.

[10] Dantzig, G.B., Linear Programming and Exten-
sions , Princeton University Press, 1963.

[11] Gelpi, M.J., J.L. Balintfy, L.C. Dennis,
I.K. Findorff, "Integrated Nutrition and Food
Cost Control by Computer," J. Amer. Diet. Ass .,

Vol. 61, No. 6, December 1972, pp. 637-646.

[12] Green, P.E., F.J. Carmone , Multidimensional
Scaling and Related Techniques in Marketing
Analysis , Allyn and Bacon, Boston 1970.

[13] Lasdon, L.S., Optimization Theory for Large
Systems , The Macmillan Company, New York 1970.

[14] Murphy, F.H., "Column Dropping Procedures for

the Generalized Programming Algorithm,"
Management Science , Vol. 19, No. 11, July 1973,

pp. 1310-1321.

[15] Peterkin, B., USDA-ARS. Personal Communication.

[16] Smith, Victor E., Electronic Computation of

Human Diets
, Michigan State University Business

Studies, East Lansing 1953.

[17] Stigler, G.J., "The Cost of Subsistence," J.

Farm Econ . , Vol. 27, No. 2, May 1945, pp. 303-

314.

[18] Wolfe, P., "Foundations of Nonlinear Program-
ming," in Nonlinear Programming , J. Abadie, ed

.

,

John Wiley & Sons, Inc., New York 1967.

105

ON THE ANALYSIS AND COMPARISON OF
MATHEMATICAL PROGRAMMING ALGORITHMS

AND SOFTWARE

Ron S . Dembo
Yale University

John M. Mulvey
Harvard University

Abstract

Although mathematical programming al-
gorithms and related computer software
have been in existence for over twenty-
five years, and new methods are being in-
vented, revised and implemented at a rapid
pace, there have been few (if any) con-
crete suggestions for conducting experi-
ments to evaluate competing numerical tech-
niques. Yet the computer-operations re-
search folklore abounds with information
about the reputed efficiencies of various
programs. In an initial attempt at improv-
ing this condition, we analyze the problem
from a statistical point of view. The ap-
proach is contingent on the existence of a
well-defined population of test problems
from which a statistical sampling is car-
ried out. By measuring the relative per-
formance of various codes on the sample
problems, predictions can be made as to
their relative performance on the popula-
tion of problems under consideration. Fur-
thermore, the significance of these predic-
tions can be measured in a rigorous way us-
ing standard statistical procedures. As a
demonstration of our methodology we con-
sider in detail a comparison of a primal-
simplex network code with one based on the
out-of -kilter method. We show how one may
define, in a precise manner, a population
of test problems and what conclusions may
be drawn from a simple random sampling
procedure

.

I. Introduction

Since the inception of the simplex
method for linear programming thirty years
ago and the simultaneous development of
computers, researchers have been concerned
with analyses and comparisons of mathe-
matical programming techniques. At first,
variants of the simplex method such as the
revised simplex method, and product form
of the inverse, were proposed as alterna-
tives to the original simplex design and
later as internal routines for a variety of
nonlinear and combinatorial programming
techniques. One of the first empirical an-
alysis of these proposals was by Wolfe and
Cutler [1963]. A plethora of computational

studies have followed (cf. Kuhn and Quandt
[1963], Florian and Klein [1970], Gilsinn
and Witzgall [1973] , Srinivasan and Thomp-
son [1973] , Zanakis [1973] and Barr et al
[1974]) . Paralleling these studies have
been a host of informal unpublished exper-
iences from which a substantial folklore
about the relative effectiveness of vari-
ous techniques has arisen; despite these
studies, there is still little agreement
today. Since the out-of-kilter network al'

gorithm (a primal-dual approach) was pub-
lished in Ford and Fulkerson [1962], for
example, a debate has raged over the rela-
tive superiority of this method versus the
network-specialized primal simplex methods
(see Dantzig [1963] , Aashtiani [1976],
Klingman et al [1974], and Hatch [1975]).

There are several underlying causes for

this lack of agreement: (1) the absence
of a graded set of standard test problems,
(2) uncertainties about the efficiencies
of different computers, (3) incomplete des-
criptions of the experimental design vari-
ables when reporting computational exper-
ience, and (4) a lack of guidelines for
performing computational experiments.

In other areas of mathematical program-
ming such as nonlinear programming, at-

tempts have been made to compare algor-
ithms, see for example Colville [1970] ,

Dembo [1975] and Rijckaert [1975]. Here,
it is much more difficult to come to any
firm conclusions regarding the relative
performance of the particular codes in

question than in the case of (say) network
algorithms. Factors such as internal tol-

erance settings, accuracy of the solution
and whether or not a code actually com-

puted a Kuhn-Tucker point, all play a cru-
cial role in evaluating the behavior of a

coded alborithm.

There is no question as to the need
for evaluating the relative performance of

coded algorithms. From a theoretical
point of view, algorithms are often evalu-
ated on a "worst case" basis. This type

of analysis is often misleading in a coded
form of the algorithm. For example, it is

106

widely accepted in the mathematical pro-
gramming literature that Kelly's cutting
plane algorithm [1960] is not a good
method for solving convex programming prob-
lems in the sense of convergence rates and
numerical stability. It is probably be-
cause of this folklore that one hardly ever
hears of nonlinear codes based on Kelly's
cutting plane algorithm. It is quite con-
ceivable, however, that such a method might
provide a basis for a relatively efficient
and robust code for certain useful classes
of mathematical programming problems. This
has actually been demonstrated recently for
small- to medium-sized geometric program-
ming problems. In two independently con-
ducted comparative GP studies (Dembo [1975]
Rijckaert [1976]), a cutting plane algor-
ithm was shown to be one of the most effic-
ientl and robust^ codes tested.

One of the major obstacles in conduct-
ing computational analyses involves concep-
tual differences between mathematical al-
gorithms, the computer software and the de-
tailed, problem-specific tactics which oc-
cur when empirical results are collected.
Figure 1 graphically depicts the situation.

MATHEMATICAL

ALGORITHM

(level 1) there are a host of computer
software implementations (level 2) with
widely varying degrees of effectiveness.
These implementations range from under-
graduate student LP projects to IBM'sMPSX
system. It is important to note that a
basic, and distinguishing property of level
2 is the underlying information structure.

For each computer software implementa-
tion, there are usually many control set-
tings which define internal tactics that
the program utilizes in solving a particu-
lar problem or a problem-class. These con-
trol settings can result in drastic dif-
ferences in efficiency, especially for
large-scale mathematical programs. To il-
lustrate the variation which can occur, a
single assignment network with 10,000
nodes (constraints) and 30,000 arcs (vari-
ables) was solved (see Mulvey [1975]) with
three different pivot strategies, that is,
the procedure for selecting which eligible
non-basic variable enters the basic at each
pivot. The computational results are as
follows

:

Pivot Strategy

(1)

(2)

(3)

Seconds" Pivots

3076 472 ,999

3028 28 ,113

971 136 ,204

T
1 1 1

\

'f TLEMENTATION

i

1
1 ' 1

!.LEVEL_3j
INTERNAL

TACTICS

empirical

Figure I

Concept, ial Franiework

Mathematical algorithms occur at the high-
est level of abstraction (level 1) ; follow-
ing Zangwill [1969], we define algorithm as
a sequence of point-to set mappings from
which theoretical results can be derived -

for example, infinite convergence proper-
ties, or algorithmic efficiency as defined
by the number of iterations in a worse
case analysis. Moving down to the next
level of detail, we encounter computer
software. For each mathematical algorithm

In terms of standardized central process-
ing time.

2
In terms of the number of problems for

which the code actually computed a correct
solution

.

A similar phenomena occurs in nonlinear
programs where a small change in the tol-
erances causes large shifts in computa-
tional results (see for example Dembo
[1975]) .

Admittedly, the elements at each level
(mathematical algorithm, software implemen-
tation, internal tactics) cannot be pre-
cisely defined and universally accepted.
To some, a minor change in internal tactics
is really a change in the fundamental math-
ematical algorithm. To avoid these diffi-
cult issues, we took a different approach
for developing a framework with which we
could analyze and compare mathematical al-
gorithms and related software.

In the next section, we review the
various types of test problems that may be
used in numerical comparisons, and Section
3 provides the above mentioned framework by
concentrating on well-defined collections
of test problems. A statistical analysis
is then undertaken in Section 4. In these
experiments, it is not our primary inten-
tion to exhaustively test specific tech-
niques, but to show how these comparisons
can be conducted in light of a statistical
analysis

.

IBM 370/155 seconds, Fortran G compiler.

107

2, Test Problems

There are two main categories of prob-
lems that are currently used for reporting
numerical results in the mathematical pro-
gramming literature. Problems are either
hand-selected or are randomly generated
using a pseudo-random number generator. In
both cases one encounters serious draw-
backs when attempting a scientific analy-
sis of computer codes used to solve a par-
ticular class of problems.

On the one hand, the behavior of com-
puter codes on randomly generated problems
does not in general reflect the behavior
of these same codes on similar sized real
world problems. This may be due in part to
the fact that in real world problems there
is usually some degree of correlation
among variables. Correlation may be in-
corporated in randomly generated problems
to accurately model real world behavior;
however, both the nature of the applica-
tion and the degree of correlation among
variables would have to be known and thus
the problem generator would have to vary
from application to application.

On the other hand, if used for com-
parative purposes, computational results
obtained from problems that have been
selected from models of real-world situa-
tions make a statistical analysis of re-
sults questionable. In this case, conclu-
sive statements regarding the performance
of these codes can only be made for the
particular problem set under considera-
tion and any generalizations must be
treated with suspicion.

The relative merits of the above
categories of test problems are summa-
rized below:

Hand'-Selected Frobiems

Usually representative
or real-vv-orld behavior.

Expensive to collect,
document and send from
one researcher to
another.

Population of problems
from which sample pro-
blems are drawn is not
known. Thus, general-
izations based on the
sample are question-
able.

Randomly Generated Problems

Usually not representative
of real-v;orlc behavior.

Problem generators can be
designed to be portable
and machine independent.

Population of problems is
known and can be control led.
If sampling method is known,
generalizations based on
sample statistics can be
made with a known degree of
certainty

.

In this Study we will restrict our-
selves to pseudo-randomly generated prob-
lems. We have chosen to do so because in-
ferences can be made about populations of
test problems in a precise manner.

Since this is an initial attempt in a
field that is relatively untouched, we
have decided to restrict our attention to

comparing the performance of two network
codes on a well-defined population of
assignment problems. Part of our aim will
be to set out on defining a standard format
for researchers to follow when reporting
results on the behavior of coded
algorithms

.

The two codes considered in the next
section are:

KILTER : A network code based on an out-
of-kilter algorithm and written
by Aashtiani [1976]

and

LPNET : A network code based on the
primal simplex method and writ-
ten by Mulvey [1975]

.

There are a number of reasons for
starting our analysis with network codes as
applied to the solution of assignment prob-
lems. First, network calculations involve
manipulation of integers and therefore tol-
erances which are difficult to standardize
and which play such an important role in
comparing nonlinear programming algorithms,
can be avoided. Secondly, a widely used
pseudo-random problem generator, NETGEN
(Klingman, Napier, Stutz [1974]), is avail-
able for constructing feasible network
problems. Finally, as previously des-
cribed, the recent literature on network
codes has been filled with controversy as
to whether either the out-of-kilter or the
primal simplex method are the best ap-
proaches to solving assignment problems.

3. Notation and Methodology

The primary aim of computational com-
parisons is to make inferences about the
relative behavior of the various algor-
ithms under consideration. It is widely
recognized that such comparisons cannot
lead to any hard conclusions regarding al-
gorithms themselves; rather, one can only
derive information on the relative per-
formance of the software implementations of
these algorithms. What is not realized in
most cases is that the problem of comparing
software performance is a statistical one.
Namely, the behavior of a number of comput-
er codes on a specially selected set of
problems is measured in terms of certain
performance indicators and from this data
inferences are made about the behavior of
these codes on a larger class of problems.
This is clearly a case of statistical
sampling and in order for these inferences
to have any firm basis, an experimental de-
sign should be carefully thought out with a
view to the nature of the inferences that
are to be made. Such a decision must

(i) identify the population from which
sampling is to take place,

(ii) describe the statistical sampling
method, and

108

i.

(iii) state the hypotheses that are to
be tested.

If the above three factors are care-
fully developed, then once the computer
runs have been made and the appropriate
variable measured, inferences can be drawn
as to the relative behavior of these codes
on the population of problems identified
in (i)*. Furthermore, the significance of
these inferences can be accurately meas-
ured using well known statistical tech-
niques. In order to demonstrate the meth-
odology, we perform, in detail, a statis-
tical comparison of the network codes
KILTER (Aashtiani [1976]) and LPNET (Mul-
vey [1976])

.

In order to describe a general frame-
work we need to define the following sets.

P is the set of all problems that the
mathematiaal algorithm upon which the
code is based, is theoretically cap-
able of solving.

For example, P (KILTER) is the collection
of all transshipment problems solvable by
the out-of-kilter algorithm and P (LPNET)
is the set of all transshipment problems
solvable by network specialized primal sim-
plex algorithms.

Pq is the set of all problems for
which the particular code was designed.

For example, P^ (KILTER) is the set of all
transshipment problems with less than 2000
arcs and 500 nodes and P(. (LPNET) is the
set of all transshipment problems with
less than 2000 arcs and 500 nodes.

Pj. is the population of test problems
and is a subset of ^ P^-,-} where I

T
i £.1

is the set of codes under znvesttga-
tion.

In our case, P^ is taken to be the
set of all feasible assignment problems
as generated by NETGEN (Klingman, Napier
Stutz [1974]), with the following
characteristics

:

. number of nodes between 200 and
500,

. number of arcs between 1000 and
200, and

. range of cost coefficients between
a lower bound of 1 and an upper
bound greater than 100 but not ex-
ceeding 5000.

Here, P^ was chosen because of the physical
limitations of the computer used, our
self-imposed restriction that the runs
should be carried out internally, and the
desire to compare these codes with respect
to sparse, small-scale assignment problems.
Table 1 below gives the details of the
storage (high-speed memory) requirements
and other important factors that are re-
quired for reproducability of our experi-
ment .

Internal Memory
Requirements

Language

Computer

Compiler

Precision

Table 1

CODE SPECIFICATIONS

P (KILTER)

37K Words

Standard Fortran

DEC 1070 (HBS-')

Fortran-F40

Integer

P (LPNET)

16K Words

Standard Fortran

DEC 1070 (HBS)

Fortran-F40

Integer

A typical
the following.

sampling procedure would be
Draw a simple random sam-

ple, p, of n problems from the test prob-
lem population P^ . The size of n is

chosen to be large enough so as to ensure,
for example, that the distribution of
sample means (of the particular perform-
ance measure, e.g., run time) is normal.
Methods for choosing n are described in

any elementary statistics text. A decid-
ing factor in the choice of n might be a

limit on the acceptable probability of
rejecting an hypothesis that is actually
true (Type I error)

.

In our case the simple random sample
was chosen with the aid of NETGEN, a

feasible pseudo-random network problem
generator developed by Klingman, Napier
and Stutz [1974]^. This choice was pri-
marily guided by a desire to make our
experiment easily reproducable ; NETGEN
serves this purpose since it may be
readily obtained from its authors and is
already widely used. Details of our sim-
ple random sampling procedure are given
below.

All testing was performed at Harvard Uni-
versity on the DEC 1070 computer with a
maximum of 64K words of high-speed memory.

2Without resorting to auxiliary memory.

^Harvard Business School.

4
The authors are willing to perform iden-

tical experiments with other generators
provided the I/O formats conform to the
SHARE convention and the generating pro-
gram can be successfully compiled on the
DEC 1070 computer (FORTRAN)

.

The nature of the population and exactly
what it represents is not addressed here
and is a subject for future research.

109

Procedure for Selecting a Simple Random

Sample of Test Problems from the

Population P-|-

Step 1 . Generate a random integer, d, in
the range 100 to 5000. This fixes the
range of cost coefficients to the
range 1 to d.

Step 2 . Generate a random integer,
between 1000 and 2000. This fixes
the number of arcs (variables) to n^.

Step 3 . Generate a random integer, m,
between 200 and 500. This fixes the
number of nodes (constraints)

.

Step 4 . Given the problem parameters
specified in Steps 1, 2 and 3 use
NETGEN to generate a single feasible
assignment problem with n-^ variables
(Step 2) and m constraints (Step 3)

and cost coefficients randomly selected
from a uniform distribution in the
range 1 to d.

Table 2

PROBLEM SPECIPICATIONS FOR FIRST FIFTY TEST CASES

Random
Cost Co- Nujnbcr

OBS 9 Nodes 9 Arcs efficient Density Seed

1 284 1426 2176 .071 284
2 422 1376 4394 .031 422
3 466 1160 4930 .021 466
4 488 1776 4086 .030 488
5 234 1985 1041 .145 234
6 430 1447 2859 .031 430
/ 474 1082 1136 .019 474
8 434 1217 539 .026 434
9. 304 1628 2144 .070 304

10 486 1080 2081 .018 486
U 324 1669 4206 .064 324
12 462 1395 2553 .026 462
13 398 1353 2348 .934 398
14 4S6 1160 150 .022 456
Is 268 1188 4421 .066 268
16 416 1813 689 .042 416
17 280 1579 3567 .081 280
18 282 1663 3185 .084 282
19 300 1775 1653 .079 300
20 396 1755 3987 .045 396
21 438 nil 4933 .023 438
22 296 1504 4444 .069 296
23 240 1722 2066 .120 240
24 496 1609 1830 .026 496
25 494 1897 2708 .031 494
26 268 1534 4235 .085 268
27 296 1870 3765 .085 296
28 340 1927 2603 .067 340
29 340 1731 3087 .060 340

30 348 1348 4653 .045 348

31 402 1880 4447 .047 402
32 242 U87 2594 .081 242

33. 378 1672 1659 .047 378

34 216 1706 4520 .146 216
35 382 1497 2771 .041 382
36 290 1309 233 .062 290

37 494 1944 3865 .032 494
38 460 1097 3592 .021 460
39 482 1541 2837 .027 482
40 232 1260 3473 .094 232
41 454 1951 2522 .038 454
42 224 1493 3985 .119 224
43 386 1560 891 .042 386

44 364 1448 4823 .044 364

45 380 1853 4137 .051 380
46 242 1471 4809 .100 424
47 430 1836 1689 .040 430

48 202 1466 4176 .144 202

49 304 1157 1746 .050 304

50 278 1240 1980 .064 278

Step 5. Repeat steps 1, 2, 3 and 4 until
the desired sample size has been
reached

.

We should note here that we assume
that the number of arcs and the number of
nodes are uniformly distributed in the
ranges 1000 to 2000 and 200 to 500 re-
spectively .

In order to perform the statistical
analysis in Section 4, we selected two
independent simple random samples each
containing 50 problems. The problem sets
are all the necessary information re-
quired to reproduce them are given in
Tables 2 and 3 below. The optimal solu-
tions as well as the CPU run times
required by LPNET and KILTER are given in
Tables 4 and 5.

In the following section we perform
a statistical analysis of the results.

Table 3

PROBLEM SPECIFICATIONS FOR SECOND FIFTY CASES

Majclmum Random
Cost Co- Number

OBS (Nodes t Arcs efficient DeasltT Seed

51 442 1716 4200 .035 442
52 208 1611 2578 .149 208
53 420 1293 1063 .029 420
54 358 1428 4233 .045 358
55 266 1965 3811 .111 266
56 402 1673 1601 .041 402
57 466 1033 666 .019 466
58 402 1993 860 .049 402
59 342 1063 2493 .036 342
60 348 1598 2345 .053 348
61 462 1966 792 .037 462
62 362 1769 3152 .054 362
63 478 1800 3412 .032 478
64 216 1689 1176 .145 216
65 352 1734 4280 .053 352
66 294 1283 3546 .059 294
67 258 1479 1279 .089 258
63 234 1747 1244 .128 234
69 356 1469 1999 .046 356
70 292 1798 3520 .084 292
71 330 1180 1450 .043 330
72 274 1076 1769 .057 274
73 422 1464 2241 .033 422
74 452 1168 1704 .023 452
75 326 1530 3003 .058 326
76 236 1676 4062 .120 236
77 450 1267 2074 .025 450
78 356 1813 3906 .057 356
79 246 1450 122 .096 246
80 238 1225 2545 .087 238
81 356 1102 3719 .035 356
82 216 1205 1239 .103 216
83 488 1536 3201 .026 488
84 468 1863 128 .034 468
85 244 U19 1751 .075 244
86 454 1550 4512 .030 454
87 308 1537 4549 .065 308
88 486 1499 4375 .025 486
89 442 1698 1476 .035 442
90 232 1415 2596 .105 232
91 250 1307 3163 .084 250
92 228 1258 4336 .097 228
93 372 1363 3278 .039 372
94 256 1468 181 .090 256
95 292 1508 734 .071 292
96 496 1583 4176 .026 496
97 420 U14 3781 .025 420
98 398 1020 3388 .026 398
99 382 1207 3049 .033 382

100 424 1657 4445 .037 424

110

Table 4

RUN TIME RESULTS FOR FIRST 50 PROBLEl'lS

(DEC 1070 seconds)

Optimal Objective
OBS KILTLR T Tl'fcTT7T'LrNET Function Value

1 10.700 3.5?00 54393
2 15.900 6.800 232241
3 15.300 7.100 354043
4 17.600 9.400 235820
5 11.700 4.600 17057
6 13.900 6.400 141765
7 7.200 4.500 87847
8 16.100 6.500 36739
9 11.600 4.100 59286

10 13.600 6.900 171024
11 16.300 5.200 132492
12 20.600 6.300 175529
13 1.400 5.700 117919
14 8.700 6.000 10228
15 8.100 3.100 128061
16 23.200 7.100 30992
17 12.100 3.900 89323
18 16.000 3.900 77548
19 13.000 5.100 43025
20 19.500 7.100 154219
21 10.200 4.200 329131
22 13.200 4.600 109068
23 12.300 3.100 37046
24 24.300 7.900 118056
25 21.700 9.200 143626
26 9.300 3.800 97023
27 17.700 5.100 90408
28 18.900 5.100 18911
29 13.400 5.000 94035
30 14.300 4.100 190304
31 21.200 8.000 175347
32 6.900 2.300 56866
33 15.300 7.700 67607
34 14.600 3.300 69186
35 16.100 4.900 108440
36 5.200 4.900 6944
3/ ZD. 200 7 . 500 213927
38 10.600 5.400 260746
39 19.300 7.100 160290
40 6.300 3.300 75499
41 27.100 8.800 123985
42 12,600 3.100 70750
43 18.700 6.400 38006
44 12.800 5.600 190868
45 21.800 5.500 158790
46 13.000 3.600 110732
47 22.700 7.300 81686
48 8.800 3.000 39916
49 10.200 4.100 64907

50 10.700 4.100 57996

Table 5

RUN TIME RESULTS FOR SECOND FIFTY PROBLEMS
(DEC 1070 seconds)

LPNET Time

Optimal
Objective
Function
Value

51 6.950 218462
52 3.940 37489
53 6.500 61535
54 4.260 168882
55 3.690 72642
56 7.890 67737
57 5.700 55139
58 7.250 33258
59 4.090 118324
60 6.060 86894
61 7.800 41309
62 6.470 103369
63 8.220 188851
64 4.170 17434
65 5.990 144286
66 3.390 99763
67 3.400 32124
68 4.000 23338
69 5.810 83422
70 5.040 85787
71 4.600 66249
72 3.470 57980
73 7.470 109052
74 4.670 115475
75 5.950 97911
76 4.260 75170
77 6.520 130922
78 7.000 131819
79 3.600 2806
80 3.810 56397
81 4.100 172230
82 2.960 23385
83 8.600 208613
84 8.680 6732
85 3.320 46686
86 8.710 253162
87 4.310 139037
88 7.860 30102
89 8.250 80863
90 3.500 52679
91 3.100 72179
92 3.640 89093
93 5.590 148160
94 3.310 4304
95 5.110 19390
96 7.200 263007
97 5.400 226245
98 4.570 202128
99 5.650 153775
00 7.140 199224

111

4. A Statistical Comparison of Assign -

ment Codes

Summary statistics for the sample
sets are given in Tables 6 and 7.

Table 6

SUMMARY STATISTICS FOR FIRST FIFTY PROBLEMS

Mln Max Mean Std.Dev.

Nodes 202 496 360.04 89.98

Arcs 1080 1985 1526.96 267. 5

Cost 150 4933 2944.36 1438

Density .018 .146 .058 .0337

Table 7

SUMMARY STATISTICS FOR SECOND FIFTY PROBLEMS

Min Max Mean Std.Dev.

Nodes 208 496 350.2 88.56

Arcs 1080 1993 1479.

3

264.7

Cost 122 4549 2584. 06 1330

Density .019 .149 .059 .0337

Notice the relatively large standard dev-
iations for the number of nodes and arcs,
and the cost range; this is due to the
usage of a uniform density function in
generating problems. Since the problems
within p are "small-scale" examples, we
wanted the characteristics of the prob-
lems within p to be selected with equal
likelihood. For this reason a uniform
density function was employed.

Turning to the computational results
displayed in Table 4, it is interesting
to observe that, although KILTER is fully
2.7 times slower than LPNET on the aver-
age, there is some variability. Specif-
ically, KILTER is only 1.45 times slower
than LPNET for problem #14, and a similar
occurance is demonstrated for problem #36.

Tabu •

SAMPLK CORRELATKm C0EmCIgrr9 fOR PAIUWETERS

(PBOBLfMS I'SO)

Modal Urea Coat Danalty Kiltar LPMXT

1 - .0330 -.1S16 -.9022 .9400 .1333

Aros 1 .037S .2<97 .(713 .3<21

Cost 1 .157! .0409 -.1472

Daasity 1 -.3377 -.«6ao

Ran-TlOM-UItsr 1 .7286

lun-Tllu-LPHEt 1

It is interesting to observe that
LPNET and KILTER are moderately corre-
lated among themselves with a positive

correlation coefficient of .7286, and
that their relative dispersions (means/
standard deviations) are approximately
equal (see Table 9)

.

The next set of experiments tested
LPNET on problems 51 through 100. Notice
in Table 9 that the summary statistics,
that is, the mean run time, standard
deviation and s/x ratio for the experi-
ment, are approximately-'- equal to the
summary statistics for the first 50 prob-
lems. Since this set is independent of

Table 9

RUN TIME SUMMARY STATISTICS

KILTER LPNET

First 50
X = 14.698 X = 5.426

Problems s = 5.223 s = 1.750

s/x = .355 s/x

x

= 0.323

= 5.459
Second 50

s = 1.743
Problems

s/x = 0.319

the first 50 problems, we are able to
examine the distribution of sample means
of size 50 for LPNET run time. Because
of the relatively large sample size, 50,
the distribution of sample means is nor-
mal, regardless of the nature of the dis-
tribution of individual run times. The
sample mean is 5.459 which is a point
estimate of the population mean run time.
The estimated standard error of the mean
is 0.249^. The small standard deviation
is a result of the relatively large num-
ber of observations in the sample p. In
a similar fashion, a point estimate of
the mean run time for KILTER is 14.7 and
an estimate of the standard error of the
mean is 0.75.

The distribution of sample means may
also be used to generate confidence inter-
vals on the mean CPU execution times for

There are many useful tests that may be
executed with data obtained from two in-
dependent simple random samples. For
example, inferences made using the first
sample may be checked using hypothesis
testing based on statistics measured on
the second sample

.

2 "
Standard error of the mean a = s/ Vn-1 .

112

the population of problems, P-j- , for both
KILTER and LPNET. If we denote by y^,
and Pl mean CPU time in seconds for
KILTER and LPNET for the population Pt

,

we can construct the following 95% con-
fidence intervals:

13.238 i y„ i 16.162
JS.

4 . 936 ± u-^ i

7.704

5.916

< 10.798
L

Since CPU times can be influenced
by the number and type of other programs
which were operating during execution, we
carried out the following experiment to
measure the extent of the variability
which can occur in the DEC-1070 environ-
ment at Harvard. A single test problem
(456 nodes, 1512 arcs, cost range
[1,1414], seed 228) was solved by LPNET
at seven randomly selected times during a
one week period. The resulting CPU times
are

:

{ " fully occupied)

1) 8.400 seconds
2) 8. 331 II

3) 8. 933 II

4) 8.210 II

5) 7. 966 II

6) 7. 919 n

7) 8. 575 It

(* empty)

Thus from the above data we can expect
the maximum error in measured CPU time
to be of the order of 13%. It should
be noted that these variations are
caused by automatic "swapping" of jobs
between central memory and auxiliary
storage. This phenomenon occurs when-
ever a computer installation performs
in a multiprogramming environment.

A linear regression analysis based
on the first sample of 50 problems was
undertaken to determine the overall com-
bined effects of problem specifications
and performance, as measured by CPU time.
Several regression models were tried.
The most appropriate linear regression
equation for LPNET was found to be:

Y/LPNET = 3q + e-j^x^ + 62^2

where

Y/LPNET = run time for LPNET in seconds

x^ = number of nodes

X2 = number of arcs

and the estimated coefficients are
given by

^0 = -4.393 with a standard deviation of
. 72

B, = 0.01654 with a standard deviation of
.00120

3p = 0.00255 with a standard deviation of
.00038

The estimated standard deviation of
the residual for the above regression

equation was .72 and the coefficient of
determination (sample R) was computed to
be 0.845. The relatively* small standard
deviations of the sample regression coef-
ficients 30' 3]_ and 32 indicate that the
sample estimates 3o, Si and 32 are sig-
nificant. Another way of saying this
would be that the CPU run time of LPNET
depends to a significant extent on the
number of nodes and number of arcs in the
problem being solved. The high r2 (.845)
means that 84.5% of the variance can be
explained by the size of the problem as
measured by the number of nodes and arcs.

Although the relationships are ap-
proximately linear over this collection
of problems , we do not expect that a
strictly linear extrapolation can be made
to larger problems. Caution should be
taken not to use this regression equation
to make predictions for populations other
than the one considered in this study.

A second regression model fits
kilter's run time to the problem specifi-
cations with the resulting coefficients:

Y/KILTER = ^0 ^1^1 ^2^2

where

Y/KILTER = run time for KILTER in seconds

x-j^ = number of nodes

X2 = number of arcs

and the estimated coefficients are given
by

3
0

-17.63 with a standard devia-
tion of 2.63

3-, = 0 . 03267 with a standard devi-
ation of .00409

32 = 0.01347 with a standard devi-
ation of .001376

The estimated standard deviation of the
residual for the above regression equation
was 2.601 and the coefficient of determin-
ation (R^) was computed to be .767. This

*
The quantities of interest are actually:

4 . 393
0/a

0

2/0,

.72

. 01645
0.0012

0. 00255
0. 00038

= 6.1

= 13.7

6 . 7

Since these numbers are much larger than
3 and the 3j are approximately normally
distributed we conclude that 3o' 3i and
32 are all significantly greater than

113

model is not-as predictive as the pre-
vious, but R remains relatively high;
here, 76.7% of the variance can be ex-
plained by the number of nodes and arcs.

When an independent variable repre-
senting the cost range was added to this
model the sample increased slightly
to 77.7%. This insignificant improvement
did not warrant inclusion of a third
independent variable. Hence the simpler
two variable model was selected. -'-

From these two regression models, we
see that LPNET seems to depend to a
greater degree on the number of nodes than
the number of arcs in the network
(B-|_ = . 01645, 32 = .00255), whereas
KILTER depends upon the number of nodes
to a much lesser degree (S^ = .03267,
32 = .01347). Loosely speaking, this
means that LPNET is more node-dependent
than KILTER, while KILTER is more arc-
dependent than LPNET. This result is
intuitively appealing since the primal-
simplex algorithm LPNET works with a

basis spanning tree (m-nodes) which must
be maintained -- thus the dependence on
the number of nodes. The out-of-kilter
algorithm, on the other hand, works pri-
marily with arcs which are "out-of-kilter"
-- thus the greater dependency on the
number of arcs.

Besides being used for understand-
ing the interdependence of problem char-
acteristics and program performance,
these regression analyses can be employed
for forecasting CPU times for problems
in the population P^ . This can be done
as follows by making point estimates
by substituting for xi and X2 in the
regression equations or by setting up
confidence intervals for the predicted
run times Y/LPNET and Y/KILTER.

For example, a point estimate of
the LPNET run time for a problem with
456 nodes and 1160 arcs (see problem 14)
would be:

Y/LPNET = 6.058 seconds

The actual run time for problem 14 was
6.000 seconds. Here the error in the
point estimate is approximately 1%.

A 98% confidence interval for
Y/LPNET would be:

''lPNET " *.98/2 °y - "lPNET = ''lPNET * ^.98/2 °y

where Y^ is the point estimate run
^LPNET

time, a- is the estimated residual stan-
ard deviation of Y, and 8 „„ is the

In a similar analysis carried out on
larger problems, the cost coefficient
range became more important

.

standard normal deviate.

Hence, in our case with 98% certainty

6. 058 - 2. 303 1 . 72) < Vj_p^j..j, < 6. 058 + 2. 303 (. 72), or

"•"O S ^LPNET i

Thus we predict with 98% certainty
that for problems with 456 nodes and 1160
arcs and any cost coefficients falling in
the range defined by our population LPNET

,

will take no longer than 7.716 seconds
and no less than 4.400 seconds to find an
optimal solution.

Clearly, many other statistical
tests could be carried out, depending
upon what the specific objectives of the
experiments were. Since our aim is to
introduce a methodology rather than ex-
haustively compare KILTER and LPNET, we
did not conduct further testing.

5. Conclusions

The statistical analysis in Section
4 shows that the code LPNET is clearly
superior to the code KILTER for problems
within the collection Pt • The conclusions
are not unexpected since LPNET dominates
KILTER. Nonetheless, we are able to mea-
sure precisely the extent of the super-
iority and propose confidence limits with
a statistical framework. Despite this
analysis, there are many unanswered ques-
tions about LPNET ' s superiority to prob-
lems outside of P^ but within collections
Pc and P. It is an open question whether
similar conclusions would be obtained if
the objective of the comparative study
was to evaluate how well the codes reop-
timize, that is, how well the codes re-
start from a nearby basic feasible solu-
tion. Thus we caution the reader to treat
these results as conclusive over set Pt»
but not outside of this domain.

The primary purpose of this report
was to develop an initial framwork for
analyzing and comparing mathematical pro-
gramming software. Obviously there is
much unfinished work to be accomplished.
A thorough study of problem generators
as relating to real-world examples is an
important next step. If the complexity
of real-world problems could be better
understood, it might be possible to design
problem generators which more closely re-
flect the characteristics of realistic
problems. The following idea which pro-
poses a synthesis of the two categories
of test problems described in Section 2

might be useful for building generators.

Start by choosing a representative
test case t from the class of problems
under study, for instance, a particular
nonlinear programming design problem.
Place perturbations on various parameters.

114

such that the cost coefficients, and
call the resulting population • (It
is left up the researcher to select the
appropriate parameters and ranges.)
From this population a sample p is drawn
and inferences about Pt are made. Since
the population Pt is defined to be with-
in an e-neighborhood of the original
test case, conclusions about Pt, in some
sense, reflect a sensitivity analysis
for problem t. For instance, the stand-
ard deviation of run time measures how
sensitive the performance of the code is
to small changes in the original data.
As a secondary consideration, it might
be interesting to execute the programs
from different starting points.

These concepts fall within the pur-
view of experimental design. Since it
is important to minimize the computer
costs for testing, especially for large-
scale examples, a sound experimental de-
sign can reduce the variances of the
estimates and thereby result in lower
computational costs. As an example, the
simple random sampling procedure which
was performed in this paper can be re-
placed by stratified sampling.

Another important area for future
research lies in developing a clearer
view of the relationships between the
sets Pt/ Pc ^'^'^ ^^ estimate on the
upper and lower bounds of CPU time for
problems within Pt might lead to an
accurate estimate for average CPU time
for problems within Pc • The same might
be said for P as well.

The ultimate benefit of the sta-
tistical framework is for assessing
competing software codes or systems so
that a systematic choice can be made as
to the best technique for a particular
user. Clearly this decision is a diff-
icult multi-attributed problem and until
these types of decisions can be handled,
we must be content to list a profile of
characteristics and performance measures
for each code. From this profile, the
user can select the appropriate tech-
nique for his or her particular needs.

Finally, we should mention that the
working committee on algorithms (WCA) of
the Mathematical Programming Society is
actively engaged in computational-related
research. (The authors are members of
the committee.) The ambitious goals of
the WCA are

:

1) collect a graded set of test
problems

,

2) act as a focal point for knowledge
of computer programs that are
available for the same calculation,

3) recommending "best buys" where
several techniques are available
for the same calculations.

4) encouraging persons who distribute
programs to meet certain standards
of portability, testing, ease of
use and documentation, and

5) define guidelines for conducting
and reporting computational exper-
iences .

One of the most important, and most dif-
ficult, goals is the last -- to define
journalistic guidelines. The imposition
of fair guidelines could markedly improve
the state of computational work by pro-
viding better information to researchers
and software users.

Acknowledgements

The authors would like to thank
Norman Archer, George Wesolowsky and
Stanley Zionts for their constructive
criticism of an earlier version of this
paper

.

References

Aashtiani, H. "Solving Large-Scale Net-
work Optimization Problems by the
Out-of-Kilter Method," Master ' s thesis

,

MIT, 1976.

Aashtiani, H.A., and T.L. Magnanti,
"Complementing Primal-Dual Network
Flow Algorithms," Operations Research
Center, MIT, OR 055-76, 1976.

Barr, R.S., F. Glover, and D. Klingman,
"An Improved Version of the Out-of-
Kilter Method and a Comparative Study
of Computer Codes," Mathematical Pro -

gramming , 1_, 1, 1974.

Colville, A.R., "A Comparative Study of
Non-Linear Program Codes," in Proc .

Princeton Symposium on Math. Program-

ming , Princeton University Press, 1970.

Dantzig, G.B., Linear Programming and
Extensions , Princeton University Press,
1963.

Dembo, R. , "Current State of the Art of
Computer Codes for Geometric Program-
ming," Presented at the ORSA/TIMS
Chicago conference. May 1975. (To

appear .

)

Florian, M. and M. Klein, "An Experimental
Evaluation of Some Methods of Solving
Assignment Problems," Can. Op. Res .

Soc. Journal , £, 1970.

Ford, L.R. and D.R. Fulkerson, Flows in
Networks , Princeton University Press,
1962.

Gilsinn, J. and C. Witzgall, "A Perform-
ance Comparison of Labeling Algorithms
for Calculating Shortest Path Trees,"
NBS Technical Notes 772, 1973.

115

Glover, F., D. Karney, and D. Klingman,
"Implementation and Computational
Study on Start Procedures and Basis
Change Criteria for a Primal Network
Code," Networks , 20 , 1974.

Glover, F., D. Karney, and D. Klingman,
and A. Napier, "A Computational Study
on Start Procedures, Basis Change
Criteria, and Solution Algorithms for
Transportation Problems," Networks ,

20_, 5 , 1974 .

Hatch, R.S., "Bench Marks Comparing
Transportation Codes Based on Primal
Simplex and Primal-Dual Algorithms,"
Operations Research , 2

3

, 6 , 1975.

Kelly, J.E., "The Cutting-Plane Method
for Solving Convex Programs ,

" Journal
of the Society for Industrial and
Applied Mathematics , 8_, 4 , 1960.

Klingman, D. , A. Napier, and G.T. Ross,
"A Computational Study on the Effects
of Problem Dimensions on Solution Time
for Transportation Problems," Univer-
sity of Texas at Austin Research Re-
port CS 135, 1973, to appear in JACM.

Klingman, D., A Napier, and J. Stutz

,

"NETGEN: A Program for Generating
Large-scale Assignment, Transportation,
and Minimum Cost Flow Network Prob-
lems," Management Science , 20 , 5, 1974.

Kuhn, H.W. and R.W. Quandt , "An Experi-
mental Study of the Simplex Method,"
Proc. Symposia in Applied Mathematics ,

15, 107-124, 1963.

Lee, S., "An Experimental Study of the
Transportation Algorithms," Master's
thesis, Graduate School of Business
Administration, UCLA, 1968.

Mulvey, J.M., "Testing of a Large-Scale
Network Optimization Program," Harvard
University Working Paper, HBS 75-38,
1975.

Rijckaert, M.J. and X.M. Martens, "A Compar-
ison of Generalized Geometric Program-
ming Algorithms," Katholieke Univer-
siteit Leuven, Report CE-RM-7503. 1975.

Smith, D.M. and W. Orchard-Hays, "Com-
putational Efficiency in Product
Form LP Codes," in R. Graves and
P. Wolfe (eds.). Recent Advances in
Mathematical Programming , McGraw-
Hill Book Company, Inc., 1963.

Srinivasan, V. and G.L. Thompson, "Bene-
fit-Cost Analysis of Coding Techniques
for Primal Transportation Algorithms,"
JACM, 20^, 1973.

Wolfe, P. and L. Cutler, "Experiments in
Linear Programming," in R. Graves and
P. Wolfe (eds.). Recent Advances in
Mathematical Programming , McGraw-Hill
Book Company, Inc., 1963.

Zanakis, S. "Experimental Comparison of
Nonlinear Programming Algorithms in
Deriving Maximum-Likelihood Estimates
for the Three-Parameter VJeibull Distri
bution," Ph.D. dissertation, Penn-
sylvania State University, 1973.

Zangwill, W.I., Nonlinear Programming :

A Unified Approach, Prentice Hall,
Inc., Englewood Cliffs, N.J., 1969.

This research project was partially
funded by Associates of the Harvard
Business School and the National
Research Council of Canada, Grant
214-1977-361.

116

THE EVALUATION OF UNCONSTRAINED OPTIMIZATION BDUTINES

by

L. Nazareth
Applied Mathematics Division
Argonne National Laboratory
Argonne , IL

and

F. Schlick
University of Illinois
Chainpaign-Urbana, IL

Abstract

We discuss different approaches to evaluating
optimization routines and describe a particular
method which uses parameterized test problems. We
illustrate this approach through a siitple case
study of three well known unconstrained optimiza-
tion routines applied to three parameterized test
problems. In particular we display our results as
a set of graphs.

1. INTRODUCTION

Evaluating mathematical routines is a diffi-
cult task, and one that requires both qualitative
and quantitative measures of performance. A fun-
damental reqijiremsnt is that the testing environ-
ment simulate an actual environment of use since,
if it did not, the evaluation would be valid, but
in all likelihood, irrelevant. Furthermore, the

overall quality of a code can only be gauged after
investigating a broad range of issues, for exairple,

efficiency, robustness, usability, usefulness of
documentation, ability to fail gracefully in the
presence of user abuse, rounding error difficul-
ties or violation of underlying assunptions. A
testing method usually concentrates on efficiency
and robustness, evaluating these by exercising
the code on a set of wall chosen and hopefully
realistic problems.

Our aim in this paper is to discuss sane of
the issues pertinent to the evaluation of opti-
mization routines, and to describe an approach
viiich employs parameterized test problems, first
introduced for the purpose of evaluating routines
for numerical quadrat-ure by Lyness and Kaganove

[1] . We describe in Sections 2 and 3 aux par-
ticular motivation for and usage of such functions.

To illustrate this approach three well known opti-
mization routines were evaluated in a sirtple case
study. In Section 4 and 5 we describe the routines
and test problems, and present the results in
graphical form. We believe that this case study
gives sane interesting exarrples of how uncon-
strained optimization routines behave v^en applied
to parameterized test problems. The study is,

however, very limited in scope, and we discuss

soTie of these limitations in the concluding
section.

*

Work performed under the auspices of U.S. Energy
Research and Development Administration.

2. DIFFERENT APPROACHES TO TESTING

To date the most ccmmon method of evaluating
optimization routines has beccme known as 'battery'
or 'simulation' testing. The first really cannpre-
hensive study along these lines is that of
Hillstran [2] . Battery testing has two basic com-
ponents, namely, a set of test problems given by
an objective function and a starting vector, and a
number of measures of performance.

Test functions are chosen fron the literature,
or fron real life applications, usually because
they have seme praninent feature, such as a curving
valley possibly helical, a singular Hessian at the
minimum, badly scaled variables or large dimension-
ality. The choice of starting points is, of
course, crucial to performance. Many routines per-
form well fron the standard starting points. How-
ever, as discussed in [2], the use of a number of
widely dispersed starting points, reveals much
about the strengths and weaknesses of a code, for

exanple, how robust it is, the suitability of its
convergence criteria, or the code's ability to

handle long searches through non-quadratic regions.

A variety of different measures of performance

have been used. The most ccftmon measure is the

number of calls to the routine which develops in-

formation about the function, or the number of

equivalent function evaluations; since the cost of

gradient information is hardly ever the equivalent

of n function evaluations (where n is the problem

dimension) , the appropriate weighting of gradients

leads to the DCU or Homer unit scheme of

Hillstrcm [2]. Other measures include overhead

and average rate of convergence.

Whilst battery testing yields very valuable

information about the behaviour of optimization

routines, it is nevertheless subject to limita-

tions vSiich often make a clear ranking of methods

difficult to discern. First, it is difficult to

know how much confidence should be attached to the

measures of performance, since slight variation of

starting point or geonetry of test problem can

lead to substantial variation in a performance

measure. Second, when starting points are varied

substantially, one can, in effect, get very differ-

ent test problans. For exairple, Rosenbrock's

function f (x) = 100(x?-X2)2 + (l-Xi)^ is

more difficiiLt to solve if started at the point

(-2,2) than if started at (2,2); in the former

case, a routine must follow a steep curving

117

valley, particularly taxing at the point (0,0)

.

Thus, vvhen evaluating a routine's ability to cope
with a particular feature it may not be advisable
to average a performance measure over widely differ-
ing starting points; however, if no averaging is

done, one may be swairped with numbers.

In attenpting to deal with same of these dif-
ficulties, v« have utilized parameterized test
problems, introduced originally into the evaluation
of routines for numerical quadrature by Lyness and
Kaganove [1]. We will not, however, use the
Lyness-Kaganove term performance profile testing
v\4iich involves a somevtet specific usage of
parameterized test problems to rank "black-box"
mathanatical routines. Though v« also want to com-
pare routines, our usage of parameterized test
problems is oriented toward the gathering of infor-
mation on the performance of an algorithm, with a

view to further developnent of its inplementation.
Thus our bias is toward the development of tools
to aid the process of algorithm development rather
than tools to aid mathanatical software evaluation;
though we are also concerned with the latter it is,

in our opinion, a much harder problem. In the
next section we discuss our method.

3. OUR APPROACH

Test problems are chosen in vi^ich a prcminent
feature can be varied by changing the value of a

parameter A occurring in the problems mathematical
formulation. We have departed frcm the Lyness-
Kaganove approach vdiich is to parameterize a prob-
lem in such a way as to provide many different
'incarnations' of a test problem, all of approxi-
mately the same level of difficulty, by parameteriz-
ing e.g. the position of the peak of a unimodal

function but not its shape. Varying our parameter
alters significantly the overall difficulty
of the problem. Thus one can test a routine's
effectiveness with respect to a particular fea-

ture and study the routine's performance as this

feature becanes more and more prominent. For
example, the feature may be a steep curving valley,

viiose steepness or curvature increases with A . At
the same time measures of performance for values
of A_in the neighborhood of any particular value,
say A, will give an idea of the variability of the

performance measures.

Starting points are, of course, critical to
the minimization process and often bias the path
of search. In addition to running each test using
a conventional or fixed starting point, the
initial points were varied using a random number
generator. The motivation for this approach is

twofold: 1) it was desired to obtain the "spread"

between the maximum and minimum number of calls to

FCN and thus determine how sensitive each routine
is to a change in the starting point; and 2) by
obtaining average values and using these for con-
parison purposes, it was hoped that the results
would be less biased with respect to the starting

points.

Clearly, an iirportant consideration is how
the points should be varied. We chose to vary
starting points within a "box" surrounding the
conventional starting point thus producing dif-

ferent initial points but the same general

starting location with respect to the topography.
A hypercube of dimension 0.1 units was used for aj
the tests in which the starting points were varied
Another important aspect is that the same starting
points were used for each run (i.e., for each
value of A) by resetting the random number
generator

.

The statistics gathered for each test functicj'
include the following:

1. A table for each optimization routine us-
ing conventional starting points. The
number of FCN calls, the number of itera-
tions, the solution point, gradient, and
function value for each A are given.

2. A table for each optimization routine us-
ing the randan starting points. The
average, maximum and minimum number of PCi:

calls, and the average number of itera-
tions for each X are given.

3. Plots of the maximum, minimum, and avera^
number of FCN calls versus A for each
routine used.

4. A superimposed graph of three plots (cor-j
responding to the three routines) of

|

average number of FCN calls versus A. i

The graphs were plotted using Fortran subroutines.

4. A CASE STUDY

In order to illustrate these ideas, a sinple
case study was carried out involving three routine^
and three parameterized test problans.

4.1 Routines Used

The following three unconstrained nonlinear
optimization routines were used in this study.

1. cay[IN - a modularized version of the
f\mction minimization Harwell Library
routine VA08A written by R. Fletcher
[3] which uses the Fletcher-Reeves
version of the conjugate gradient
technique (see [7]).

2. BFGS - a modularized version of the
Davidon-Fletcher-Powell quasi-Newton
function minimization algorithm [4,5]
with a BFGS (Broyden-Fletcher-
Goldfarb-Shanno) [6] update to the
Hessian (see [7])

.

3. OCOPTR - a modularized inplementation of
C. Davidon's [8] optimally conditioned
algorithm for calculating the minimum
of a function of several variables.

A user-supplied subroutine FCN which evaluates the
function value F and the ccmponents of the
gradient G at the point X is needed by each of the
above routines.

In addition, the user must supply the follow-
ing information in the calling program to CCMLN:

118

1. the number of variables (i.e. the dimen-
sion of X) .

2. the initial estimate of the solution vec-
tor X.

3. an estimate RFN of the expected reduction
in F (used on the first iteration only)

.

4. the accuracy required in the solution, ej.

The first condition for a normal return
is that the differences between the com-
ponents of two successive estirrates of
the solution are less than e i

.

5. an additional accuracy requirement, ej.

The second condition for a normal return
is that the gradient norm is less than ej.

6. the limit on the number of calls to the
function evaluation subroutine FCN. If

the limit is exceeded before a minimum is
attained, CGMIN will terminate abnormally
with an appropriate error code.

For all of the runs, RFN was set equal to 1.0; ei

and E2 were set equal to 10~^. For all three of
the routines, the limit on the number of FCN calls
was set at 200, 500, or 1000 depending on the test
function.

The routine BFGS requires the following infor-
mation from the calling program:

1. & 2. (same as for COCLN)

.

3. the accuracy required in the solution, e.

A normal return occurs if the sum of the
absolute values of the ccnpDnents of the
solution difference and direction vectors
are both not greater than e.

4 . an estimate of the minimum value of F (X)

.

5. the limit on the number of calls to FCN.

In all cases, e was set to 10"^ and the estimate of
the minimum was set equal to 0.

The necessary parameters in the calling pro-
gram to the optimization routine OOOPTR are:

1. & 2. (same as for CGMIN)

.

3. the limit on the number of FCN calls.

4 . the accuracy sought e . A normal return
occurs if g-'-Hg < e, vAiere H is the current
approximation to the inverse hessian, and

g is the gradient at the current iterate,

5. an estimate on the lower bound of the
function, e was set to 10"^, and the
lower bound estimate was set equal to 0.

4.2 Problems Selected

The following test functions were parameterized
and inplemented in the evaluation of the above al-
gorithms (Xq represents the conventional or original
value of the parameter)

:

(Xq = 100)

1. Parameterized Rosenbrock test function

.2 2.2

,2

F = (l-X^)" + A(X2-X^)

||_=_2(l-x^) -4X(X2-X^)'

% =
(V^i)

c. conventional starting point is (-1.2,1.0).

The function F has a global minimum at
(1.0,1.0). The random starting points were
generated over the component intervals
X^ (-1.3,-1.1) , X2(0.9,l.l)

.

2. Powell Parameterized badly scaled function of
two variables (^q = 10,000)

a.

b.

^1 " ^^iV""-' ^2 " ^

F = f2 + f2

1.0001

3F_

3X,
= 2f^(XX^) 2f2e"^i

2f2e-^2

d. conventional starting point is (0.0,1.0).

For A = 10**, the function F has global minima
at (1.098xl0~5,9.106) and (9.106,1.098xl0~5)

.

The random starting points were generated over
the ccnponent intervals X, (-0.1,0.1)

,

X2(0.9,l.l).
^

3. Perturbed Quadratic Function

F = X^ + 2X2 + 3X^+4XJ

3F

3X,

4 4 4 4
+ A(X^ + 3X2 + 4X3 + 6Xp

= 2X^ + 4AX^

3F

SX^

3F

3X,

ex^ + 16A

8X. + 24AX^
4 4

c. fixed starting point is (10,20,30,40)

The function F has a global minimum at

(0,0,0,0) . The random starting points were
generated over the cortponent intervals

Xi (9. 9, 10.1), X2(19.9,20.1) , X3 (29.9,30.1)

,

X^ (39.9,40.1)

.

All the tests reported in this paper were run
in double precision (~16 significant digits) on an
IBM 370/195. The numerical underflow and overflow,

and the divide check interrupts were suppressed.

The random starting points were obtained using the

ANL ^plied Mathematics Division library random
number generator G552S.

119

5. TEST RESULTS

Grapliical results descri±)ed in Section 3 are
given in Appendix 1 for the above problans. (Tal>-

ular results are not given because of space
limitations.) Only the initial portions of the
graplis are reproduced here, these being sufficient
to illustrate the points raised during the dis-
cussion in Section 2.

a) Parameterized Rosenbrock's function
F(X) = (1-Xi)2 + A(X2-X?)2

For A = 100 this is a well known, difficult
to minimize test function, which has a descending
parabolic valley as its dominant feature. The
starting point (-1.2,1.0) is chosen to bias the
search down the valley. The parameter \ was varied
from 20 to 1000 in steps of 20; increasing X in-
creased the difficulty of the problon by making the
valley steeper. The limit on number of calls to
FCN was set to 200.

Figure lA shows quite clearly that the perfor-
mance of caviIN and BFGS are conparable, with OCOPTR
performing substantially better. Figures IB, IC
and ID show the sensitivity to starting points of
each routine. In Figixre IC note in particular how
substantial the variation can be for certain values
of X, e.g. for X = 120. Such a choice of X in a
battery test could suggest a very misleading rank-
ing of the methods. Although we have not atterrpted

to track down the reasons for the poor performance
of the BFGS method in certain instances, such detec-
tive work would undoubtedly lead to inprovements in
the implementation.

b) Powell's Badly Scaled Function
F(X) = (AXiX2-l)2 + (e~^l + e"^2 _ 1.0001)2

The test problem is a 1:rough shaped function
for Viiiich X was varied fron 10 to 1000 in steps of
10. Changing X makes this function more badly
scaled and thus more difficult to minimize. The
limit on the number of calls was set to 1000.

Figure 2A shows that a ranking based upon one
particular value of X can be misleading. For
X < 180 the performance of OCOPTR and CayLTN are
conparable, with OCOPTR scmewhat superior. BFGS
performs decidedly worse. However as X increases
the performance of CCMN deteriorates rapidly.
Furthermore, Figs. 2B and 2D demonstrate that for
CQ4IN and OCOPTR results are sensitive to starting
points v\hilst Fig. 2C shows that the performance
of BFGS is relatively insensitive to starting
points.

c) Perturbed Quadratic Function
F(X) = liX^ + X(Xi + 3X2 + 4X3 + 6X4)

This test function is a parameterized combi-
nation of a quadratic and a quartic function.
When X = 0, the function is a simple quadratic and
is easy to minimize. However, as X increases, the
quartic beccmes more and more significant. X was
varied from 0 to 1 in steps of .025.

Except for the case X = 0, CCMTN proved su-
perior to BFGS for this problem. Again OCOPTR
performed the best and for X > 0 was quite insen-
sitive to the particular value of X. Also, viien

the starting points were varied, the spread be-
tween the maximum and minimum number of calls was
very small in all cases, indicating that the
initial point is not extremely critical in this
case.

6 . CONCLUSIONS

Our primary aim has been to develop a testing
method and software tools centered around '

parameterized test problans and graphical display
of results, these being designed to aid the process;
of algorithm development. We have illustrated thisi

method and shown the use of the tools in a simple
case study. The results of this study provide
interesting examples of how optimization routines
behave vdien applied to parameterized test problans.
The case study, of course, suffers frcm a number

|

of drawbacks which must be remedied in a practical
|

evaluation of optimization routines. For example: '

a) Each routine studied employed a different con-
vergence criterion. This introduces a lack
of uniformity in the corparison.

b) A more detailed investigation should study
each routine's performance initially, at inter!

mediate stages, and in the final stage v^ien

it is near the minimum.

c) A broad set of test problems should be used,
in particular problans with large or variable
dimension

,

d) For each test function more than one starting
box should be used in order to sanple a wider
region of the topography.

ACKNOWLEDGEMENTS

Our thanks go to James Lyness for sharing his
insights into testing with us and for a useful
critique of this paper.

7. REFERENCES 1

[1] Lyness, J. N. and Kaganove, J. J., Conments
on the nature of autcsnatic quadrature rou-
tines, ACM Trans, on Math. Softuare, 2_, 65-81

(1976) .

[2] Hillstrom, K. E. , A simulation test approach
to the evaluation and conparison of uncon-
strained nonlinear optimization algorithms.
Report No. ANL-76-20, Argonne National Labor-
atory, Argonne, Illinois.

[3] Fletcher, R. , A FORTRAN subroutine for mini-
mization by the method of conjugate gradients,

Report No. R-7073, A.E.R.E. , Harwell, England

(1972)

.

[4] Davidon, W. C, Variable metric methods for

minimization, AEC Res. & Dev. Report No.

5990, Argonne National laboratory, Argonne
Illinois (1959)

.

[5] Fletcher, R. and Powell, M.J.D., A rapidly
convergent descent method for minimization,

Comput. J. , 6, 163-168 (1963)

.

120

Broyden, C. G. , The convergence of a class of
double-rank minimization algorithms, J. Inst,

of Math. & Applies., 6^, 76-90 (1970).

Hillstrcm, K. E., Optimization Routines in
AMDLIB, Tech. Memo ANL-AMD 297, Argonne
National Laboratory, Argonne, Illinois (1976)

.

Davidon, W. C, An optimally conditioned
optimization algorithm without line searches.

Math. Prog. , 9, 1-30 (1975)

.

Legend for Figures

a) Figures lA, 2A, 3A: Average number of calls taken over set of starting
points, plotted against X. Superinposed plots are given for CafflN(*)

,

BFGS((a) and OCOPTR (#) .

b) Remaining Figures: For each routine, ffeximum (+) , Average (0) and
Minimum (X) number of calls for set of starting points, plotted
against X.

121

irrRkce vonDtB or cutis to rcf

BO 100 170 1Q0

• a

« s

•a

a •

a*

•a

a*

•

a •

a

a •

Figure lA

RDsenbrock ' s Function - Average number of calls

122

lioiBrB or cdLLS tn rci

0 20 00 60 no 100 120 1«0 ICO 100 200
LitnRDt

10 . xo •

20 I 10*
30 I in 4

«0 I > •

so . to*
60 . 10 *

10 ! I <

to I 10 •

90 I i *

100 ! I 0 •

»10 '. to •

120 '. 10 •

130 '. 10 •

1&0 . 10 *

150 r 10 4

160 . 10*
170 I 10 4

1B0 . X o 4

ISO I 10 4

200 I 10 4

210 ! X O 4

220 I 10 4

230 I 10 4

2aO '. I 0 •

250 I ' •

260 '. XO 4

270 ! 10 4

285 ! 10 4

217 ! 10 4

•>oi , O 4

310 I 10 4

320 ! X o 4

333 '. 10 4

3Q0 . 10 4

350 ! 10 4

360 ' 10 4

370 ! J o 4

3S0 . 10 4

390 '. in 4

«00 . XO 4

«10 . X 0 *

•20 . 10 4

•30 I X 0 4

••0 ! XO 4

•SO '. 10 4

• 60 . X 0 4

•70 I 10 4

•80 ! I 0 *

• 90 . X n 4

SOO I 10 4

510 . 10 4

S20 ! I o •

S30 I 10 4

S«D I X o 4

SSO I I 0 *

S60 I X 0 •

S70 I 10 4

SSO r X o 4

S90 I 10 4

600 . I o 4

610 . X n 4

620 4 10 4

Figure IB

RDsenbrock's Function - cavHN

123

0 20 00 €0 BO 100 120 H>0 160 ino jqq

nrnD*

10 ! X 0 «

70 '. to*
30 . B *

00 ! I o «

50 ! X O <

60 ! X 0 •

70 ; '0 .

80 . I 0 •

90 . JO*
100 . X 0 •

110 .

120 . 10
130 ! X 0 •

IQO . X 0

150 ! X 0

160 ! 1 0 *

170 ! « 0

160 ! X O •

190 ! X 0 *

200 '. TO

210 .
•

220 ! » 0

230 ! »0 *

210 '.
*

2S0 i
X 0 •

260 ; ID*
270 ;

*

2B0 ! I O *

290 :
10*

11-. ;
»

'>
'

310 ! 9 <

320 . 10*
330 . XO

310 . X 0 «

350 . X 0

360 . XO *

370 ! B 4

360 . X 0

390 . X O

aoo . X 0 •

lilO . X O

020 . 14
030 . X O

QUO . X O

S0 ! 10
060 . X O

O70 . 10*
ObO . XO •

090 . X 0 «

500 . X O

510 I X O

520 '
X 0

530 '. XO

500 . X O

550 . X O

560 . I n

57 0 X 0

580 X 6

590 . . X n • .

600 . I O *

610 '. X O *

in*

Figure IC

RDsenbrock's Function - BFGS

124

60 75 90 IPS

10 . xo «

20 10

30 I •

40 \ XO «

50 ! X 0 *

60 . to «

70 I X 0 *

SO .*

X 0 *

90
.' 10 •

100 I 0 «

110 ! X 0 *

120 X 0 4

130 I X 0 •

IttO ! ID 4

150 ^ X 0 »

160 !

no I

X 0

X 0 *

180 [in «

190 X 0 •

200 ! 10 4

210 10 4

220 ! X 0 4

230 ! 10
240 I X 0 *

250 .' 10 *

260] 10 •

270 ! 10 4

280 I X 0 4

290 ! 10 4

in 4

310 '.

X 0 4

320 ! X 0 4

.330 ! X 0 4

340 ! I 0 4

350 I Z 0 4

360 ! X 0 4

370 ! X 0 4

380 I 10 4

390 I X 0 4

«00 ! xo

K10 I 10 4

«20 I 1 0 *

<I30 I X 0 f

I 0 4

«so ! X o «

*60 I Z 0 *

*70 ! X 0 4

«B0 I X 0 •

• 90 ! X 0 •

500 I X 0 4

510 I X 0 *

520 ! X 0 4

530 I 1 0 4

540 J X o *

550 ! X 0 *

560
'

X 0 4

570 ; X 0 •

580 [X 0 • 4

590 I X 0

600 I X 0 4

610 I X n

620 I I 0

Figure ID

RDsenbrock's Function - OCOPTR

125

HrHACE KtinBEB OF CM.LS TO fCH

50 100 150 200 3bfi)00 J50 UOO OSO

I

I • «

I •

I • a

• • 8

I • i

I • i

• • B

• 5j

Figiore 2A

Badly Scaled Function - Average Number of Calls

126

KURIirF OP CHliS TO fCN

200 250 TOO

Figure 2B

Badly Scaled Function - COVIIN

127

Hor-Drn nr cu ts 'o rcK

wo ISO ino

1 0

I n

I n

X n

X r

I c

Figure 2C

Badly Scaled Function - BFGS

128

0 25 50 75 100 125 150 175 ?ro 225

10 xc*

20 I 0

30 XO «

«0 I 0 •

50 X 0

60 X 0

70 I 0

60 X 0

90 X 0 4

100 X 0 *

110 : X 0 «

120 I 0 4

150 X 0 *

lao ! X 0

ISO z 0

160 X 0 4

170 X 0

160 X 0 *

190 X 0

200 X 0

210 X 0

220 X 0 4

230 X 0 4

2Ut> X 0 *

250 X 0

260 X 0 «

270 X 0 *

260 X 0

290 X 0 *

Til 0 *

310 X 0 •

320 X 0 •»

330 X 0 •

360 X 0 4

350 X 0 4

360 X 0 4

370 X 0 4

360 I 0 4

390 X 0 4

400 X 0 *

fllO X 0 4

il20 X 0 4

«3D X 0 4

«Q0 X 0 4

«50 X 0 4

«60 X 0 4

•70 z 0 •

460 X 0 4

B90 X 0 4

SOO X 0 4

510 X 0 4

520 ! X 0 •

S30 ! X ' 0 4

540 ! X 0 4

550 ! X 0 4
*

560 *.

X 0 4

570 I X 0 * 4

560
'

X 0 4

590 '.

X ft 4

600 I X 0 4

610
'

X 0 4

Figure 2D

Badly Scaled Function - OCOPTR

129

»veih<;e nornEii op calls to rcn

10 10 60

ao 50 60

ATEBAGE BU1BEP nP CALLS "O TC«

LEGEND

• ccniH

• OCOPTS

a BFGS

Figure 3A

Perturbed Quadratic - Average Number of Calls

130

HDRBER OP CALLS TO PC

B

0 10 70 30 HO 50 60 70 60 90
LMtBOA

0.0 .

0. 25000-01 . I

0. 50000-01 . *

0.7500D-01 . I

0. lOOOD 00 . I

0. 12500 00 . K*

0. 1500D 00 . •

0. 17500 00 . »

0.2000D 00 . B

0.2250D 00 . I

0. 2500D 00 .

0. 2750D 00 .

0. 30000 00 .

0.3250D 00 . I

0.3500D 00 . «*

0. 3750D 00 .

O.UOOOD 00 . >

0.1250D 00 .

0.15000 00 . XO*

0.17500 00 . I*

0. 5000D 00 . I*

0.52500 00 .

0.55000 00 '. I

0.5750D 00 . I

0.C.000D 00 . «

0. 6250D 00 .

0. 65000 00 .

0.67500 00 .

0.7070D 00 . 9 *

0.72500 00 .

0.7500D 00 . XO

0.7750D 00 . XO*

0. 80000 00 .

0.82500 00 . TO «

0. 85000 00 . X 0*

0. 8750D 00 . XO*

0.90000 00 . XO*

0. 92500 00 . It

0.9500D 00 . 10*

0. 9750D 00 . B

0. 10000 01 . I •

lABBDA
0 10 20 30 «0 50 60 70 80 90 100

BO!IBEa OF CALLS TO PCS

LEGEND

« mxinoB vunBEB cp rcN calls

0 AVEBAGE NOIBER OF PCS CALLS

X BINinOl NOBBEl! OF PCN CALLS

LEGEND

IB NUBBEB CP FCN CALLS

;E NOIBER OF PCS CALLS

ri NOBBER OF FCN CALLS

Figure 3B

Perturbed Quadratic - CGMEN

131

Nonnrn or c«i.ls to pc»

uo 10 r.o

0 •

X 0

X 0 •

I 0 «

J 0 »

10 •

10*

X 0

0

I 0

X n

X 0

X o

0 •

X 0

X o »

X o

xo »

xn

X o •

xo

10

xo

no 50 60

nunBES or culls to rcf

lEGESO

Buxinun NU1HER of fck calls

IVEBAGE KOriDES OF ECU CALLS

niNinun nuider of fcn calls

Figure 3C

Perturbed Quadratic - BFGS

132

NDPIBKR OP CALLS TO FCtl

20 25 30

X 0 <

X 0

X 0 »

X 0 »

II

X 0 *

X 0 •

X 0 »

X o »

10

» •

X 0 «

X 0

X 0 <•

X 0 »

lot

s

a <

X 0

R

s

X 0 »

X o »

X 0 »

X 0 •

X n

X 0

X 0

X 0 •

X 0

« *

X 0 »

X 0

a *

X 0

X 0 •

X 0

X 0

15 20 25 30

NOnBER OF CALLS TO FCK

LEGEND

•• BAXinOn NOflDER OF PCS CALLS

0 J7EEAGE NDnBtR OF FCK CALLS

1 nimnuB nonBER of fcn calls

Figure 3D

Perturbed Quadratic - OCOPTR

1

"ISSUES IN THE EVALUATION OF MATHEMATICAL PROGRAMMING ALGORITHMS

PART 2: A PANEL DISCUSSION

CHAIRMAN

Richard H. F. Jackson
National Bureau of Standards

Boulder

PANELISTS

Ron S. Dembo, Yale University
Jerome L. Kreuser, World Bank

John M. Mulvey, Harvard University
Richard P. O'Neill, Louisiana State University
James J. Filliben, National Bureau of Standards

Harvey J. Greenberg, Federal Energy Administration

Provided herein is a summary of the comments made during this panel discussion.
Although every attempt was made while summarizing to portray accurately the
essence of each contribution, inaccuracies will persist. Responsibility for

all such inaccuracies or misrepresentations lies with R. Jackson, who prepared
this summary and functioned as chairman during the discussion. Names and

addresses of all contributors to the discussion appear at the end of this

text.

R. JACKSON : I would like to welcome you to the

panel discussion on "Issues in the Evaluation of

Mathematical Programming Software" sponsored by

the Committee on Algorithms (formerly the Working

Committee on Algorithms) of the Mathematical

Programming Society. The Committee on Algorithms

was created by the MP Society in 1974 with the

charge to concern itself with knowledge, informa-

tion, communications, recommendations, and other
actions on mathematical programming algorithms

and testing methodologies. The ambitious goals

of the Committee were identified to be:

0 ensuring that there is available to the

MP community a suitable basis for comparing
algorithms (e.g., a graded set of test

problems)

;

0 acting as a focal point for knowledge
of computer programs available for

general computations;

0 recommending "best buys" where several codes

are available for the same computation, and;

0 encouraging developers to meet certain
standards of portability, ease of use,

and documentation (e.g., by producing
"standards" or guidelines for the repor-
ting of computational results).

This session, then, is being viewed by the
Committee as another opportunity to create a

dialogue between the committee and the math-
ematical programming community. We hop ; to
focus the discussion today around the question
of guidelines for the publication of the results
of computational experiments, an item that I just
mentioned as being one of our goals. With that
then, I would like to throw the floor open for
questions either from the audience of from the
panelists.

R. DEMBO : I have a comment to make on the paper
that Dick O'Neill presented in the morning session.
In that paper, he conjectured that randomly gen-
erated problems tend to be more difficult to

solve than real-world problems. It has been
my experience that the reverse of that conjec-
ture is true for Knapsack problems. I wondered
if anyone else had a similar experience.

R. O'NEILL : I'll mention quickly that I can

generate problems that will be solved in one

134

major iteration by the Dantzi g-Wol fe convex
programming algorithm. So you can generate
problems that are very easy to solve. I didn't

want to make that conjecture as strong as it

might have seemed, and I am sure that there are

classes or sub-classes of problems that have been

excluded, but some of the work we have done at

LSU indicates that there is some truth to this
conjecture. In addition, Darwin Klingman and
Gordon Bradley also agree there is some truth

to this conjecture. One point that can be made

however, is that if you can develop a problem
generator that generates difficult problems, you
are in a good position to test codes that will
eventually be run on real-world problems.

C. WITZGALL : In Jim Ho's lecture today on stair-
case problems, he mentioned that Martin Beale found
staircase problems to be rather more difficult to

solve than general, more distributed, linear pro-
gramming problems. This could perhaps be a piece
of evidence that works the other way, because
staircase problems are highly non-random.

H. GREENBERG : But the proper comparison would be

to have a generator generate staircase problems,
so you would still be comparing staircase problems
with staircase problems. It's just that one has
random entries and the other has some real data.
You would not compare a general LP with a stair-
case problem.

R. JACKSON : Is there a generally agreed upon
definition of what a randomly generated problem
is?

H. GREENBERG : I think it was at least alluded to
In the presentations of O'Neill and Mulvey this
morning, where they referred to specific structures
with controllable parameters. But the situation
is that you have a set of controllable parameters
like sparsity and row counts and that the randomness
appears in costs and right-hand-sides.

J. FILLIBEN : I would like to make a comment on the
relationship between the typical math programming
problem discussed earlier in the afternoon and a

measurement process that one usually runs into in

scientific experimentation. What you are really
doing when you discuss what should and should not
be controlled in a mathematical programming problem
generator is specifying a measurement process. A

well-defined measurement process has all of the
components ofthat process identified; for example,
the domain of variation. It should be noted that
this is different from the simple injection of
randomness into a procedure. For example, in the
simplest situation, one lets everything vary with
nothing under control, and from a statistical point
of view, you are assuming least, and you end up
with least. A better situation is what statisti-
cians refer to as a "constrained randomization
problem", where certain of the problem components
are removed from the random domain and put into the
deterministic domain. The remaining components
that we can't control we then randomize. In es-
sence, you have recognized that there are certain
problem parameters that are of special interest,
and in this case these are the ones that are to
be controlled. What we can't control, we randomize.
Two of the three talks that I heard this afternoon

dealt with situations that could be described as

constrained randomization. The other dealth with
a completely random situation. But the point that
I really want to make is that there is a relation-
ship between testing by setting up problems in

order to check out algorithms, with the corres-
ponding problem in the scientific community of
defining a measurement process by specifying
exactly what conditions should be placed on the
variables that we intend to control. It has to

do with much more than just having a random num-
ber generator.

C. MYLANDER : It seems to me that in this discus-
sion of using randomly generated or real -world
test problems, we haven't made it as clear as we
should just what the purposes of this testing are.
It seems to me that we are testing codes and
algorithms for two purposes. One is to have a

code certified and safe for the user to use and
the second is to compare algorithms for solution
strategies so that developers of codes can decide
what is the best solution strategy to build into
a code. I would like to hear that kind of issue
discussed a little bit more. From the point of
view of a user, I'm willing to pay for computer
inefficiencies so that I can use a small collec-
tion of codes rather than a larger collection of
specialized codes. And then, on another topic,
the one about efficiency of a code on a particular
kind of test problem, I think my experience is

that the way a problem is formulated causes much
greater variance in computer efficiency than
either the codes or algorithms themselves.

R. DEMBO : I think the two different objectives
you mentioned, that of designing safe codes and

designing robust codes, conflict to some extent.
If you want to conduct experiments in order to
have better equipment for designing codes, you
should probably use the ideas presented in Larry
Nazareth's talk this morning, because thereyou
are testing specific properties of an algorithm.

On the other hand, if you just take arbitrary
problems and generate them, you have no idea

whether you are testing to see if there is a

very steep valley you are going into or what
happens if you elongate the valley. So, if you
want to design algorithms, I would say what you
should do is pick problems by hand and perturb
them. If you want to test robustness however,

you would probably take as wide a class of

problems as you can generate. But that means,
of course, that if you are really interested in

testing robustness, that's probably all the
information you get.

H. GREENBERG : I think there are at least three

purposes for doing any kind of experimentation
along the lines we have been discussing. The
first purpose has to do with program correct-
ness: to see whether the program is correct.
I really don't know how to do that, especially
when you consider that the set of inputs that

absolutely would guarantee correctness is larger
than the total number of bit patterns in the input
data. A second reason is to do benchmarking for

the purpose of selecting an algorithm that you are

going to buy to solve problems. I think the £-

perturbation method that Larry Nazareth proposed
is a good approach to that problem. A third

135

reason for conducting such experiments is to dis-
cover the poorer aspects of a given algorithm so

that that poor aspect can be fixed, thereby yielding
a better algorithm. I should note that you want to

be careful not to gear algorithm improvement towards
a worn-out test problem, like Rosenbrock's function.
I think too many algorithms have been designed to

do well on Rosenbrock's function, especially Rosen-
brock's algorithm, but it is not clear to me that
using Rosenbrock's function will necessarily do

anything for improving your ability to solve non-
linear programming problems in general. So I

think that we have to take great care in designing
a collection of problems that in some way contri-
butes insights into algorithm improvement.

C. MYLANDER : I think we have to check the battery
approach against sporadic selection of all sequences
of test problems that are available to code devel-
opers .

H. GREENBERG: But in that case you only have a

dozen hand selected problems with no indication
of their properties or what happens when you start
to vary things. I think the generation approach
is more helpful in that avenues for research in-

clude getting a handle on a reasonably small set
of parameters that is large enough to capture every
aspect of problem structure that in some sense
gives you reasonable representation of the real-
world class being addressed.

D. SHIER : I wanted to follow along with the
earlier topic of defining "randomly generated"
problems I sometimes feel a little queasy about
the definition of what is a randomly generated
problem and what one actually gets out. I'd like
to give you an example. Suppose I want to have
five randomly chosen numbers that sum to one.

One way to do this is to generate four of the
numbers that sum to lass than one and then sub-
tract that sum from one to get the fifth number.
Another way to do it is to generate five numbers
randomly, and then divide them by the sum. How-
ever, that will not give you a uniform distribu-
tion over the space of interest. My point is that
I think we have to look very carefully at what
exactly constitutes a random problem. I also
think that when you start to specify side condi-
tions, especially the Kuhn-Tucker conditions for

a given problem, there may be some problems there
that I don't believe have been addressed by those
who have produced test problem generators.

R. O'NEILL : I agree with you. In one of the
experiments that I conducted, the only thing that
changed in a problem from one run to another was
that the cost row was generated by way of the
Kuhn-Tucker conditions, as opposed to being ran-
domly generated with values between 1 and 100.

In one comparison, the Kuhn-Tucker generated problem
took significantly more time, but in another case,

the times were about the same. So I agree with you
that we should try to determine the properties that

these test problem generators have, but that's a

difficult area.

J. FILLIBEN : I might mention this point: that

there are a wide variety of statistical tests

that, one can use for checking various random
number generators.

R. DEMBO : Let me add one thing to this. When Johi

Mulvey generated the test problems for the paper
we presented this morning, we discovered that
another problem with generation comes into the
type of sampling that you want to do as well. We

wanted to do simple random sampling, so we had,
in some sense, defined our population. We there-
fore picked a problem at random from that popula-
tion. Now, we had each random variable varying
uniformly according to certain distributions but
I'm still not sure if what we did can properly
be called simple random sampling. I wish I were
sure of that.

R. O'NEILL : It's not clear whether test problem
generators have any sort of inherent biases in

them and I'm not sure whether you can ever deter-
mine that conclusively.

R. DEMBO : They do have a bias: feasibility.

H. GREENBERG : There are other kinds of biases
too. There are generators that may be biased
toward certain kinds of algorithms, so they would
necessarily show that kind of algorithm in a

favorable light. That's very little understood
and I think one of the interesting avenues of

research is directed toward understanding gener-
ator biases.

J. MULVEY : We have to be realistic about some of

these things. Certainly it's very important to

analyze the differences between real -world prob-
lems and generated problems but I think that as

researchers if we're ever going to solve large
numbers of problems, we'll have to use test prob-
lem generators. I think that for the future we

can draw some parallels from some of the other

scientific disciplines. For example, there is

an American Society for Testing Materials that
meets in this building, in fact, which is res-

ponsible for developing standards for testing

materials. I believe that is something that

will eventually happen to software: it will be-

come an engineering function to test programs.
But I think until such a society or institute
is created, we're going to have to look at these
portable generators for methods of comparing
our algorithms. They're much easier to use
than trying to shift large amounts of problems
back and forth between researchers. I just
don't think that's realistic at this time.

R. DEMBO : But that doesn't detract from testing
the statistical properties of test problem gen- .

erators.
'

J. MULVEY : No, in fact we should look more at

the statistical properties of generators be- ;|

cause I think that's the way the research is I

going to go.

i

D. SHIER : Let me add a comment to that. At one "

time we had a summer student who was doing some

work on scheduling problems and had occasion to us

one of the standard pseudo-random number generator

Turned out that whenever the number of items being

scheduled was divisible by 2, very unpredictable i

results occurred. For example, regardless of the

number of items being scheduled, in some cases

he had hundreds of classes, it all could be

scheduled within two hours. It turned out that

136

J

2 was the seed of the random number generator. So

that sometimes it comes and hits you on the head

that it really is necessary to dig down and look

at the random number generators that we're using.

J. FILLIBEN : This brings up the point that a given

random number generator is only "random enough" by

comparison to the purpose for which it is to be

used; and it sound like, for mathematical program-

ming test problem generation, there are some strong

dependencies on very subtle properties of random

number generators that are being used. Furthermore,

these properties may in fact depend on the algorithm

on which the problem is to be run. So that a given

random number generator may be alright for a certain

type of algorithm but not alright for another type

of algorithm in the worst possible case. So getting

back to my original point, I'd like to emphasize

that whether a given set is random enough really

depends on for what purpose that set is to be used.

This in turn implies a need for a thorough under-

standing of the various kinds of mathematical pro-

gramming algorithms and the properties of each algo-

rithm as they relate to test problem generation. I

don't think that such understanding exists yet.

R. JACKSON: This appears to indicate, then, that in

addition to investigating algorithm performance on

particular classes of problems, we should also in-

vestigate the correlation between a particular algo-

rithm and the particular random number generator

used in the test problem generator that produced

the problems on which an algorithm will be evalu-

ated. And if this is true, then we have identified
another avenue for research in evaluation metho-
dology.

R. DEMBO : I would like to suggest that we move on

to an important topic with immediate consequences:

the issue of guidelines for publications. I think

it's very important that we tighten up the criteria
used for selecting articles for publication when

they contain computational results. I would like

to put it out as an open question for the audience
to inform us if they have any suggestions as to

what guidelines could be implemented immediately.
Certain guidelines are, to my mind, obvious. For

example, specifying a compiler when you run a prob-

lem; specifying convergence criteria when dealing

with nonlinear programs, but I could go on and on.

R. JACKSON : This general issue of guidelines is

a very difficult one and I agree with Harvey that

trying to discuss the general question of publica-
tion guidelines might be difficult. However,
certainly there are aspects of that question that
we could get into,

J. MULVEY : I think we could go right to the ques-
tion of test problems. For example, should we
require researchers to provide test problems to

other researchers when they publish results? I

think that is a question that we can pose for re-

produci bi 1 i ty

.

R. JACKSON : Before we move into the discussion of
the collection of test problems, I would like to

provide a little background. In the first place,
we are assuming that in the absence of any other
well accepted method of comparing one algorithm
against another, the test battery method is a

valid one. Furthermore, given the fact that the

137

test battery method is an acceptable method, then

there ought to be produced a well accepted set or

perhaps even a graded set of test problems that
are to be used by all researchers. So the question
becomes then, how can such a set of test problems
be created? This has been looked into by a number
of groups over the years; SHARE did that, Wolfe
did that, along with many others. The question
confronting the committee now is what kinds of
ways are available to produce such a graded set
of test problems? One suggestion is to require
that anyone publishing a paper containing a com-
putational comparison of codes should make those
codes available to all other researchers and

perhaps even a central facility should be created
for storing them.

H. GREENBERG : I think the question that has now
been brought to the floor is not guidelines for

running tests, but guidelines for publication of

tests. We are narrowing the subject to just the

issue of publication criteria where the contribu-
tion hinges on the claim of a better algorithm.
One of the proposals then is that no one should be

allowed to publish results claiming better perfor-
mance of an algorithm on a set of problems that
are not in the public domain. More specifically,
whatever problems have been used by researchers
must be made available either for the sake of

reproducability by referees or for other research-
ers to try out their methods on the same set of

problems. In short then, it's the publication
issue that's been put on the table, not the
general issue of guidelines.

R. O'NEILL : Can I confound the problem? How
about providing the code itself?

R. DEMBO : I suggest that we attack the easier
things first before we get on to the trickier
problems like exactly which guidelines you would
suggest for publication. There are certain stan-

dards that could be implemented immediately. For

example, reproducibility: a referee should be con-

vinced that an experiment could be reproduced.

That's an example of what I think is an important

cri teri on.

R. O'NEILL : I could add that I think all of the

important controllable parameters should be in-

cluded like machine, compiler, operating system.

It is not necessary to pile up the paper, but

this could be included in an appendix.

H. GREENBERG: I'd like to point out that in the

early days of the development of the SIMPLEX

method, if very severe restrictions had been

placed on the publication of results, it may
never have gotten published.

J. GILSINN : In these days of page limits per

article, trying to include a listing of a computer
code is probably not a realizable idea, but per-

hpas it is possible to require that enough back-

ground information be included in such an article

that would then allow reproducibility if one

established contact with an author. Another
choice would be to provide some central reposi-

tories where the codes could be obtained. But I

think there is a conflict here that must be

resol ved.

i

H. GREENBERG : I think you have a line drawing
problem because some codes have thousands of lines
and it is not possible to include much information
about serious large scale systems.

J. 6ILSINN : Yes, but I also want something more
than just so and so's algorithm. I want informa-
tion about how that algorithm was implemented. I

want to know information about what research tech-
niques were used.

A. WILLIAMS : Both problems have been handled
simply by having the author include a statement
that a listing of his code is available. A number
of the journals are encouraging authors to do this
kind of thing.

H. GREENBERG : What do you do then about proprietary
systems where it's informative to get into a journal
some analysis but where the owners of that system
are not going to release their proprietary informa-
tion about the code in the form that you're dis-
cussing, Most certainly they're not going to make

available source listings of such systems as MPSX.
Can we eliminate that from the journals?

A. WILLIAMS : In my opinion, seriously, we wouldn't
eliminate it, but we would charge them an advertising
fee.

H. GREENBERG : I think it's not a binary situation.
I think that there is much useful information that
can be contained in an article without requiring
that a listing be associated with it.

R. DEMBO : When I originally mentioned this, I

di dn ' t have in mind a requirement that authors
submit listings. My concern was with requiring
referees somehow to convince themselves that given
a listing, they could reproduce the results. They
had to convince themselves of the integrity of the
authors

.

H. GREENBERG : I don't think that integrity is the
issue. I think the transmittal of information is

the issue.

E. HELLERMAN : In this connection, what worries me
is that when comparisons are made, they're made
against your code and someone else's code. Very
frequently, it's someone else's code that is at
stake and in this case we don't know what kind

of implementation that person has of that other
person's code. This is worrisome.

R. JACKSON: I think we should keep in mind the

purpose for requiring additional information about
algorithm or code. We're seeing lately that it is

no longer sufficient to run a few problems on two

codes and report overall CPU times which are then
used to support claims of superiority. It is be-
coming more and more important to understand what
is going on in the interior of the codes that are
being compared. Knowledge of pivot strategies,
for example, is important. And if you deal with
proprietary codes then there is no satisfactory
way to get information about what kinds of tech-
niques are used in the algorithm of which that
code is an implementation. In this case then,
we're left in a situation where that code simply
cannot be compared.

J. MULVEY : If you really want to be strictly
scientific, I think you have to have a code avail-
able because we're testing codes, not algorithms.
I think we've thrown about the words algorithm,
code and software a little haphazardly and that

in our experiments we deal with codes and make
inferences about algorithms. So that, if we're
going to be scientists, those codes should be

available. However, I don't think that is a feas-

ible suggestion right now. There will be people
who are unwilling to make their codes available
and that would just shut off what fearful little
results we have now, at least reduce it quite a

bit. I think we can work slowly toward requiring
more and better information to be provided either
through an appendix, or by way of the authors
themselves. Our problem then, is to determine
how to increase the informational flow.

H. GREENBERG : I think it has to be acknowledged
though, that there is a trade-off. The goal is

to increase the transmittal of useful information
but if you impose restrictions saying "You will

report this", that doesn't necessarily result in

an increase of information because the reply can

be "No, I won't."

R. JACKSON : The situation then becomes what Al

suggested where authors should be charged for

advertising. Papers would be appearing that are

essentially a claim of superiority with no sup-

porting information allowing a replication of

the experiment or even the checking of the types

of strategies and techniques used within a code.

I'm not saying that is not transmitting more
information. I'm simply saying as a code com-

parison or a claim of superiority, there is much

room for improvement.

J. MULVEY : I think there's an analogy to be drawi

in consumer unions in the sense that they go out

and test and break, and produce good results on

that empirical evidence. In our case we could

have a group that goes to a particular installa-

tion with a battery of test problems and says

"Here, solve it on your machine, on your algo-

rithm, etc." The big question is: who's going

to do that work? That's not clear.

E. HELLERMAN : I think a bigger question is: ,

who's going to pay for it? I

C. MYLANDER : The suggestion that ought to be put

forward is that requirements for publication ough

to be that the test problems and the hour that th

test was run are fully specified. I don't think

that it's necessary to specify the codes also. I

this way, if I have a code to solve a class of

problems, I could run on exactly the same test ,i

problem if I wanted to go out and rent time on
|

that same computer and run under the same opera-
j

ting system so that a valid comparison could be
j

made. 1

J. MULVEY : I think he used an adjective that

forces you into the situation of sending out code

and that was that the experiment must be fully

described. Fully described means that you have

to have a code. You can summarize it, certainly,

but you will be losing information.

138

ur\IKNOWN : It seems to me that we have two different
items here; algorithms and codes, and that they're
completely different. If someone wants to say "I

have a code and it's a good one but I don't want to
tell you what's in it" that's fine, so long as he

presents the problems that he ran and presents his

tests along with the environment in which he ran

it. If it's an algorithm he's pushing, it's a

different story. He must describe the algorithm
behind the code in detail to make it valid, and he

must also provide a listing.

H. GREENBERG : I think a good example is the
Hellerman-Rarick invert routine, where the invert
code was not made available for free, but it was
nevertheless a valuable contribution to the litera-
ture to have it published.

A. WILLIAMS : Why, though, would something like
that be published as a scientific paper rather
than as an advertisement or flyer?

H. GREENBERG: I don't think the name "Management
Science Systems" meant anything to someone reading
the article so I don't think it was an advertise-
ment. I think rather it was a major contribution
to understanding how reinversion should be done.

A. WILLIAMS : I'm not familiar with the details.
Did they speak broadly about what was done, not
specifical ly?

H. GREENBERG : No, they gave specific algorithms
but the implementation of the algorithm and the
code was not specified and that makes a big dif-
ference when you try to duplicate.

A. WILLIAMS : I guess I don't understand. When
there's some kind of a mathematical procedure,
unless you knew the real trick when coding it,
you mo'-^n you could net code it?

H. GREENBERG : No, you could code it. I coded it.

But you almost certainly don't have as good an
implementation as the one Dennis Rarick had. So
that if you tried to compare MPSX's invert routine
with your homegrown code, you won't necessarily
be comparing like items unless you're as skilled
a programmer as Dennis Rarick was. Very few
people are, Nevertheless, the whole algorithm
is there and there's enough information for you
to code it. On the other hand, it's not just an
algorithm. It offered a whole new concept of
looking at reinversion. The idea of a spike was
introduced in that paper which has become a class-
ical paper in the literature of mathematical
programming systems. Much subsequent research
has taken place because of it.

J. MULVEY : Why does the company allow you to
publish an algorithm which gives the essence of
an idea and not publish the software. It seems
to me that both the idea and the implementation
are proprietary.

H. GREENBERG : It's for precisely that reason.
Because the full power of the method rests upon
such clever coding that they were unafraid of
the competition and allowed it to be published.

E. HELLERMAN: Actually, P3 was described in terms
of ALGOL. There were ALGOL-like statements descri-
bing every facet there. Also, I've gotten reports
from a number of universities stating that they
implemented the algorithm strictly on the basis of
what we had written in that report, P3. It was
clear cut that they could write their own code
and have it working almost immediately.

M. GUTTERMAN : Actually the code itself is depen-
dent not only on the machine, but on the data
structure with which you happen to choose to rep-
resent your LP matrix and LP inverts.

UNKNOWN : We're actually introducing a third prob-
lem here because the code structure is another
dimension completely.

H. GREENBERG : Absolutely. You run into that all

the time where a major revision in the data struc-
ture has a greater impact on the resulting per-
formance of a code than a major change in the
algorithm tactics.

M. GUTTERMAN : I can testify to that one personally
since I've been involved in looking at the results
of three separate implementations of the Kalan
Matrix Packing Ideas on the same computer.

R. JAC KSON: Perhaps we're getting to the point
where we ought to broaden our definition of what
exactly an algorithm is.

R. DEMBO : No, I think my original comments re-
ferred not to whether an algorithm was published
in coded form or not. I agree with the comment,
by the way, that if you publish the code it would
mean less than publishing a mathematical descrip-
tion. But let's take the paper P3 as an example.
If claims were made in that paper that the new
P3 invert procedure was much better than what had
been done previously, the question then becomes
whether enough information was given in that paper

to allow those claims to be tested by someone else

willing to code the invert procedure. It must be

understood that these comments are made with the

understanding that this new researcher might be a

worse programmer than Dennis Rarick was.

J. GILSINN : I'd like to go back to a previous
topic of conversation. Are you thinking in this
set of guidelines of not allowing a paper to be

published if it presents computational results
about a code that is a proprietary one? Because
it seems to me that users of codes are most inter-

ested in knowing the performance of a particular
code against one of the better known codes and
very often these better known codes are the

proprietary ones. Whose going to restrict that
kind of a situation?

H. GREENBERG : I think the correct answer is that
we don' t know.

R. JACKSON : The issue is getting a little more
complicated, and I'm not sure we're defining our
terms very well. Our original topic of conversa-
tion was the development of a set of guidelines
for the publication of computational results where
the ultimate aim is to see better comparisons made.

We went off into the tangent of discussing whether
the code itself should be published as a result

139

of the comment that if you don't see the code you
can't do a proper comparison. Another issue has

been raised, however, that in the absence of com-

plete listings of the code for whatever reason,
proprietariness or unwillingness of journal editors

to include listings, is there anyway that a fair

computational comparison can be made about codes?
I would like to see that topic discussed moreso
than the current topic of whether codes should be

published or not. It is clear that proprietary
codes are not going to be published.

W. ORCHARD-HAYES : But related to that question is

the argument that there is no such thing as repro-
ducable complicated coding. It depends on too
many factors including the style of the author,
the compiler you're using and whatnot.

R. DEMBO : I didn't mean reproducing code, I meant
reproducing experiments.

W. ORCHARD-HAYES : No, I mean reproducing results.

R. DEMBO : Well, I think you're right. There are
a lot of different factors that enter into it, but
you should be able to attack the same problems,
using the same tolerance criteria as the authors
did and produce the same results.

W. ORCHARD-HAYES: I guess the way I'm reading it,
it's a question of relevance. What difference does
it make?

R. JACKSON : The answer to that revolves around
the question of replication as a necessary part
of scientific endeavor.

R. DEMBO : The point is that you're making infer-
ences .

H. GREENBERG : I thin! the payoff is a bit better
than tRat now. I think it's hard to understand
when there are no controls. If one person runs
an experiment with one problem and someone else
runs another experiment with another problem,
there is no way of knowing whether you've made
any progress. I think the value of reproducibility,
to the extent that it's feasible, is that it does
give you a measure of progress.

J. MULVEY : I think there is some value in saying
why one code is better than another in that when
someone else tries to duplicate the experiment
they can at least have some systematic way of
trying to get the same kind of results.

H. GREENBERG : I think it's true for the opposite
reason, namely to inject the objectivity that make
it less dependent on the judges. I think that's
the point of reproducibility.

E. HELLERMAN : I think there's an awful lot of pure
artistry here, artistry in implementation. Now, I

would stack anything that Bill writes against any-
thing that anybody else writes, and I know it's
going to be better because Bill's an artist at
this kind of thing. It's like looking at a painting
of the same landscape by two different artists.
They're going to look a little different no matter
how hard they try to be the same. I don't know if

you can develop a criteria for pitting one against
another to determine which one is better.

R. JACKSON : I think I would like to disagree with
you on that. I agree with you that there's an

incredible amount of artistry in producing some
of these codes, but artistry, I think, once it is

around long enough and used over and over again
is no longer artistry. It becomes documented
fact. Let's take list structures as an example.
At some point in time years ago, how data were
stored, organized and retrieved was almost a

black art. But now techniqjes for organizing data
and retrieving it appear in textbooks. And this

is getting back to what I mentioned awhile ago,

that it might be necessary to expand our defini-
tion of an algorithm to include such items as

specific coding tricks.

W. ORCHARD-HAYES : Why not just say "list/structure"
then? Why isn't that sufficient?

R. JACKSON : My point here is that there are
probably other aspects of what is now artistry
that should be included in this expanded defini-
tion of an algorithm.

H. GREENBERG : I agree that what was art ten years
ago may be partially science now.

U. ORCHARD-HAYES : I'd like to make one more point
about comparing codes and that point has to do with
portability. I just can't believe that it's pos-
sible to carry one code from one machine to another
machine and compare it. Codes just aren't that
portable anymore.

H. GREENBERG : Right. We have identified machine
characteristics as a set of variables to be reck-
oned with in the design of an experiment. I think

through scientific investigation we can get a much

better understanding of the various computer and

algorithmic effects on the results of an evalua-
tion. That, of course, is the point of the inves-
tigation: to understand the effects of the vari-

ables. It's my feeling that there will be some

interesting results from the work done recently

by Dick O'Neill. I believe there will be some

very strong and counter-intuitive results from

that work.

M. GUTTERMAN : I personally don't believe in prin-

ted publication of codes. I think that code

aval 1 abi 1 i ty by publication, the creation of a

collection and dissemination center for machine
readable code, is a valuable contribution in many
cases. But despite the artistry of Bill Orchard-
Hayes's coding, I've never gotten much benefit
from having a listing of it in front of me.

R. O'NEILL : You know, if you chose the test prob-

lems correctly, you could actually design an experi-'

ment to test one person's artistry in coding against

another's. You could in fact make inferences about

arti stry

.

UNKNOWN : This sort of thing is being done and re-

sults have been reported in a book called The

Psychology of Computer Programming . The experiments

were designed to test whether a code produced by

different people varied according to the stated

goals. It made a tremendous difference whether

the stated goals were to produce code as quickly

as possible or whether the code was meant to be

as efficient as possible. In any event, this kind

140

of experiment is being done and the results are
very interesting.

E. HELLERMAN : I'd like to point out something here
about characteristics of computer programming. I

actually recall an instance where one of the oil

companies was approached by Bonner and Moore and
informed that their problems could be running in

one third the time that they're currently taking.
Bonner came to our installation to run it and
spent a lot of time fiddling around with the formu-
lation of the problem until he finally met his
objective of solving the problem in one third the
time that it was currently taking for that oil

company. But the reason that he was successful
is that he knew enough about the characteristics
of his code and what is required in the way of the
characteristics of the formulation, in order to

take maximum advantage of his code characteristics.
So these are a few other things one runs up against
when trying to measure code performance.

M. GUTTERf'^AN : Another question to be answered
however, is what would have happened if they had
taken the new formulation of the problem and put
it on LP90 - would it have run faster in that
case?

E. HELLERMAN : Another important point, though, is

that Bonner knew enough about the oil company's
problem to say that if you can live with an error
larger than was being allowed by LP90, you can get
the kind of reduction in time that he was talking
about. And he indeed came up with a solution that
had an error at the maximum rate, a rate that would
never have been tolerated byLP90. The question
then becomes what can you live with? How large
an error are you willing to tolerate?

R. JACKSON : That question of what you can live
with is a difficult ore and makes me think of the
comment Chuck Mylander made earlier about wanting
to keep only a small selection of codes. There
are people that I've done work for who want only
one nonlinear programming code. One man doesn't
care whether there's a few seconds difference
between the code that he's got and the other codes
that he might be able to use. He wants only to
learn how to operate and become familiar with one
code rather than have to deal with a large number
of them.

C. MYLANDER : As a referee, I still get alot of
papers in which an algorithm is proposed but the
paper doesn't have any other merit than the pro-
posed algorithm and it hasn't even been coded.

H. GREENBERG : Why don't you reject it?

C. MYLANDER : I do. It's just that I think it
would be a good idea to propose a standard for
people who publish algorithms and computational
results making it mandatory that they have run
the code, specified some test problems, and
listed the environment in which it ran.

H. GREENBERG : The evolution I see, for example
in nonlinear programming, is that fifteen or
twenty years ago we were pretty hungry for al-
gorithms making it possible for an algorithm to
be proposed with no more justification other than
that it was a clever new idea. As time went on.

however, it became necessary to provide empirical
evidence, or theoretical evidence like rate analy-
sis, about the efficiency of a clever new idea.

At that time, say in the sixties, it was acceptable
to do an experiment consisting completely of a

randomly generated problem. In the seventies,
however, we're discovering that is no longer accep-
table and there appears to be a move toward much
more sophisticated design of experiments to test

whether an assertion of a superior algorithm is

true.

H. CROWDER : What's the possibility of sending
programs and listings to referees that can be

used in refereeing the paper. For example, I

once was asked to referee a paper for TOMS. The

editor. Milt Gutterman, sent me a deck, and a

listing, and the third example I tried on the code

failed. I simply packed it all up and sent it

back to the editor and it's back in the hands of

the author now.

R. DEMBO : When I originally brought the topic

up, I was thinking about the kind of article that's

published in which the authors say "Here is a new

algorithm that took two seconds to solve Rosen-

brock's function and therefore this is a really

neat new algorithm. That kind of article is still

being published, for example, in Mathematical
Programming . It shouldn't be. We are now at the

point where we need much more information than

that it took two seconds to solve Rosenbrock's
Function.

UNKNOWN : One thing I haven't heard mentioned
today is the situation where an algorithm is pro-
posed to solve a previously unsolved problem or

for some other reason there are no other algo-

rithms to compare against it. My question is

should the proposer of the algorithms be required

to program it? There may be a number of math-
ematicians who simply are unwilling to do that.

H. GREENBERG : As I understand the spirit of the

guidelines, they're based on the assumption that

they will be applied only for papers whose primary

contribution is based on a claim of superiority

or some other way related to competition with

other algorithms for solving problems. Only in

that circumstance are the guidelines applied and

the authors are asked to satisfy certain experi-

mental design criteria. Not much thought has

been given to the situation you're describing.

R. O'NEILL : Before the session ends, I would like

to ask the audience a few questions about some of

the topics we've discussed today. I'd like to

know, for example, how many people here think that

the computer hardware should be mentioned or spe-

cifically included in a paper to be published

about computational results? What about the

operating system? The compiler? The specific

test problems used? Should the test problems be

made available? I think we have a consensus.

H. GREENBERG : One more question. How many care

whether the publications carry that kind of

informati on?

R. DEMBO : It appears, gentlemen, that we have

won.

141

R. O'NEILL : One more question - how about the

code? How many people think the code should be

made available? No consensus. What about avail-

able, but not published? No consensus. What

about available to the referees only, for evalua-

tion? A consensus.

M. GUTTERMAN : That's a suitable compromise.

R. O'NEILL : What about proprietary codes? Should

they be made available to the referees only for

evaluation? No consensus on that topic.

R. DEHBO : We've asked a lot of questions here and

got some very good input from the audience. The

next question we have is what exactly should we do

with it? How do we go about getting these ideas

implemented?

J. FILLIBEN : Isn't that a problem for the editor-

ial boards?

H. GREENBERG : Yes. As I understand it we should
next send a letter to Michelle Balinski, the editor
of Mathematical Programming, with copies to editors
of other journals of our field. Since we're a

Committee of the Mathematical Programming Society,
and since Balinski has already indicated a great
desire to have us produce these guidelines, we can

expect favorable treatment.

R. JACKSON : It's time now to sum up this session,
since we have run out of time. I would like to

point out that the next step for the Committee on

Algorithms is to draft a set of proposed guidelines.
We plan a panel discussion at the San Francisco
meeting of ORSA in the spring of next year where
these guidelines will be discussed by seven asso-
ciate editors of the journals of our field. After
that, a final version of the guidelines will be

sent to the editors of those journals. The commit-
tee also is organizing a research exchange or news-
letter to keep informed those persons who are
interested in the work of the committee. We will
be compiling a mailing list of "friends of the
committee", and if anyone is interested please
send your name and address to any member of the
committee. With that, we can end the session by
saying thank you all for coming.

CONTRIBUTORS

CROWDER, H.

IBM Research Center
Yorktown Heights, NY 10598

DEP'IBO, R. S.

Yale University
56 Hillhouse Avenue
New Haven, CT 06520

FILLIBEN, J. J.

Statistical Engineering Laboratory
National Bureau of Standards
Washington, DC 20234

GILSINN, J. F.

Applied Math Division
National Bureau of Standards
Washington, DC 20234

GREENBERG, H. J.

Chief, Supply & Integration Di

Federal Energy Administration
Washington, DC 20461

GUTTERMAN, M. M.

Standard Oil Company of
Indiana

5049 Lee Street
Skokie, IL 60076

HELLERMAN, E.

System Software Division
Bureau of Census
Washington, DC 20233

KREUSER, J. L.

World Bank
1818 'H' Street, NW

Washington, DC 20433

MULVEY, J. M.

Harvard Business School
Harvard University
Soldiers Field Road
Boston, MA 02163

MYLANDER, W. C.

U. S. Naval Academy
Annapolis, MD 21402

O'NEILL, R. P.

Dept. of Computer Science
Louisiana State University
Baton Rouge, LA 70803

ORCHARD-HAYES, W.

International Institute for

Applied Systems Analysis
2361 Laxenburg
Austria

SHIER, D. R.

Applied Math Division
National Bureau of Standards
Washington, DC 20234

WILLIAMS, A. C.

Mobil Oil Corporation
Box 1025

Princeton, NJ 08540

WITZGALL, C.

Applied Math Division
National Bureau of Standards
Washington, DC 20234

142

LARGE SCALE MATHEMATICAL PROGPIAWING

(A TOTAL SYSTEMS APPROACH)

T. Prabhakar
Union Carbide Cornoration

Building 82/507
Post Office Box 8004

South Charleston, West Virginia 25303

The modeling and solution of large-scale mathematical program-

ming systems have been heavily influenced by the advent of large

and high speed digital computers, powerful commercial software sys-

tems for mathematical programming, and special languages for matrix

generation and report writing, and finally, by the increasing com-

plexity of decision making in the business world. An attempt is

made here to show how modeling and solution for large-scale busi-

ness applications is approached nowadays from a total system view

point starting from the problem definition and including the design

of input and output systems, the formulation of the mathematical

programming model, and the generation of financial and other busi-

ness reports by drawing the information from the optimal solution

and sensitivity analyses. A large linear programming application

in use for production and distribution planning vzill be used for

illustration

.

143

A SEARCH ENUMERATION ALGORITHM FOR A
MULTIPLANT, MULTIPRODUCT SCHEDULING PROBLEM*

Susumu Morito Harvey M. Salkin

Department of Operations Research
Case Western Reserve University

Cleveland, Ohio 44106

CONTENTS

Contents
Abstract

1. Introduction
2. A Brief Description of the Production

Process
3. Formulation of the Problem
4. The Algorithm
5. An Illustrative Example
6. Computational Experience
7. Conclusion

References

ABSTRACT

The concept of search enumeration in integer
programming is applied to find the optimal
schedule in a plastic injection industrial
process. The production process involves
molding parts using a molding machine which
usually has several cavities. Each cavity
accomodates a die which makes a single part.

Given a set of customer orders which require
certain production days (known) , the problem
is to find a schedule which minimizes the num-
ber of molding machine setups, while satisfy-
ing all technological and logistical con-
straints. This paper presents a search
enumeration algorithm to find an optimal
schedule. The algorithm is followed by an
illustrative example. Some computational
results are mentioned, and other comments
concerning algorithm improvements are also
given.

All work discussed here relates to part of an
actual case study for a medium size Northeast
Ohio Corporation. The entire case study
resulted in the development of a computer
system for production scheduling as well as

for due date assignment, inventory control,
machine allocation, and extensive data
processing. In this article we concentrate
our efforts on the optimization phase and
its implementation for the production
scheduling part of the system.

*No part of this document may be reproduced with-
out explicit written permission of both authors.

1. INTRODUCTION

The concept of search enumeration in integer
programming is applied to find the optimal
schedule in a plastic injection industrial
process. The production process involves
molding parts using a molding machine which
usually has several cavities. Each cavity
accomodates a die which makes a single part.
Given a set of customer orders which re-
quire certain production days (known)

,

the problem is to find a schedule which
minimizes the number of molding machine
setups, while satisfying all technological
and logistical constraints. This paper
presents a search enumeration algorithm to
find an optimal schedule. The algorithm
is followed by an illustrative example.
Some computational results are mentioned,
and other comments concerning algorithm
improvements are also given.

All work discussed here relates to part
of an actual case study for a medium
size Northeast Ohio Corporation. The
entire case study resulted in the develop-
ment of a computer system for production
scheduling as well as for due date assign-
ment, inventory control, machine allocation,
and extensive data processing. In this
article we concentrate our efforts on the
optimization phase and its implementation
for the production scheduling part of the
system.

2. A BRIEF DESCRIPTION OF THE PRODUCTION
PROCESS

In this section, we describe the production
process which involves molding plastic parts
via a molding machine. A molding machine
accomodates several (usually 6 or 8) dies,

each of which corresponds to a specified
part. Dies in a machine may be all different,
but certain technological restrictions exist.
Most importantly, these are die position
constraints, and die length constraints. That
is, due to their geometric characteristics
and ease of removal from the die, certain
parts must be produced by dies located in a

mold position near the machine operator. These
dies are said to require a "front position"

144

in the mold, and are labelled "front runners."
In contrast, the remaining dies can have ei-
ther a front or rear position, where a rear
position is at a farther distance from the oper-
ator. In addition to front or rear die posi-
tions, quality control dictates that some
dies must be located closer to the center of

the mold. Also, to avoid part breakage
during their removal from the machine, the
difference of lengths of adjacent dies can
be no more than 3/4".

It is undesirable and costly to stop the
molding machine during a production run.

Thus the molding operation is basically a

continuous production process. New jobs
to be processed correspond to orders for
distinct parts. Based on an order quantity,
the number of production days required is

obtained. At the end of production for a

certain job, a die must be pulled out of a

cavity in the molding machine and a new die
required for the next job is inserted.
During this setup, the whole molding machine
must be stopped, which means that production
is lost. Although a setup can be completed
fairly quickly, say in 30 minutes, it could
take several hours until production stabilizes
and acceptable parts are molded. Therefore,
in order to maximize production, it is desired
to minimize the number of setups.

Even though our actual problem involves mul-
tiple plants and multiple machines, as well
as some other constraints (such as mold speed,
plant specification, etc.), in order to

simplify the discussion, we concentrate on
a one-machine example. We also assume that

orders correspond to distinct parts, only one
die is available for each order and the sched-
uling period is known. (It is actually de-
termined from a previous model in the sys-
tem.) Our goal is to find a schedule, which
minimizes the number of setups, while satis-
fying all technological constraints. The
next section describes a search enumeration
algorithm which finds an optimal schedule.

An Illustrative Example (1 machine, 11 orders)

Order Production Die Die Length
Number Days Position (inch)

1 2 Front 3.6
2 5 Rear 2.5

3 3 Front 3.2
4 7 Rear 2.8
5 3 Front 3.6

6 1 Front 3. 3

7 3 Front 2.9
8 1 Rear 2.8
9 3 Front 3.0

10 4 Rear 3.0
11 4 Rear 2.7

The initial conditions of the machine schedule
(usually due to the previous schedule) and
an arbitrary schedule which satisfies the
technological constraints is shown in Figure 1.

In the figure, the shaded area indicates the
initial conditions and the numbers in the
shaded blocks are the die lengths. The

scheduling period is assumed to be 5 days,
and the search algorithm discussed in the next
section seeks an optimal schedule which fills

up this scheduling period with the smallest
number of additional setups.

Die Position

Front Rear

SSi: 1 2 3 4 5 6 7 8

*Front runner

<^Additional setups

FIGURE 1. Initial Conditions (shaded area) 6.

an Arbitrary Schedule for the
Illustrative Example

3. FORMULATION OF THE PROBLEM

The algorithm is similar to a branch and bound
approach used in scheduling theory (e.g., see
Baker [1]), but the nature of the problem, as

explained shortly, suggests a search enumera-
tion used in integer programming (e.g., see

Salkin [2]) .* As in any enumeration algorithm.

*A search enumeration, as opposed to a branch
and bound enumeration, was used because of the

following

:

1) A branch and bound scheme tends to create
many dangling nodes. That is, those that

have not yet been considered for branching
purposes. This may cause computer stor-
age difficulties; whereas, a search enu-
meration deals with only one node at a

time, at the cost of more bookkeeping, and
does not require the storage of a set of

dangling nodes (see, Salkin [2]).
Saving computer storage, was especially
important to us because the system is

being implemented on a small computer
(64K bytes of main core)

.

2) A clever bookkeeping scheme, based on
the fact that a forward step corresponds
to locating a die in a position with an
earliest calendar opening, improves the
performance of a search enumeration and
uses a very minimal amount of storage.

3) A search enumeration always gives a

current best feasible schedule and
usually produces a near optimal sched-
ule very quickly (see, Salkin [2]).

145

the process involves branching and bounding,
and can be plctorially represented by a tree
consisting of nodes and branches. The nodes
correspond to subproblems and the branches
link subproblems which differ by a single
additional job fixed in a die position. We
now discuss the procedure in context of an
enumeration tree.

Let p'^, the initial node in the tree (see
Figure 2) , denote the problem containing n

,0
jobs. The problem P can be partitioned

1 1 1

P by as-
n

into n subproblems, Pj, ^2'-

signing jobs to the first opening (i.e.,

subsequent to forward steps) . By "first
opening" we mean the die position which has
the earliest calendar opening . In case of

ties, we can use any consistent rule such
1

as the smallest index. Thus, Pj is the ori-
ginal problem with job 1 fixed at the ear-

1

liest opening; P2 is the original problem

with job 2 fixed at the earliest opening
etc. In the Illustrative Example, the ear-
liest opening is day 1 at positions 1 and

1

5. Pi is then the original problem with job
1 assigned at position 1. (We are using the
smallest index rule in case of ties.) Next,

each of the subproblems can be further par-
1

titioned as in Figure 2. For instance, P2
2 2

can be partitioned into P2i» ^2 3'

2

P2n. For

example, in P2i> jobs 2 and 1 are assigned
at the first two earliest openings in this

order. In general, at level k, each sub-
problem contains k jobs already scheduled
(or fixed in a die position). Each sub-
problem can be further partitioned into "at

most" (n-k) subproblems, which form part of

the level (k+1) subproblems. The reason
why we say "at most" is because of the tech-
nological constraints mentioned earlier,
which may limit the production of some parts
at certain die positions. For example,

2

problem P21 does not exist in the Illustrative
Example as job 2, which is a front runner,
cannot be placed in die position 5 which is

a rear die position. This type of implicit
enumeration may also be the result of the die
length constraint.

We go down the tree until a schedule is

completed and a solution is found. Then a

backward step (a return to the previous sub-
problem) is taken and a regular search pro-
cedure starts. The detail of a search
enumeration can be found in Salkin [2]. A
part of a search tree for the Illustrative
Example is given in the next section (Figure

3).

Level 0

Level 1

Level 2

FIGURE 2. The General Enumeration Tree

4. THE ALGORITHM

Notation We denote the set S as a partial se-
quence of jobs from among the n jobs origi-
nally in the problem. For example, S =

(2,4,3,1), means that job 2 is scheduled at

the earliest opening, and job 4 at the 2^^"^

earliest opening, job 3 at the 3^*^ earliest
opening, and job 1 at the 4^^ earliest opening.
Also, S7 = (2,4,3,1)7 means S = (2,4,3,1,7),
or that job 7 is scheduled at the 5*^^ ear-
liest opening.

Algorithm Listing

Step 1 (Initialization)

Set Z*, the current smallest number of set-

ups to an arbitrarily large value. Set k=0.

The problem is P° and S is null. Go to Step 2.

Step 2

Find the (k+l)^*^ earliest opening die posi-
tion. In case of ties, select the smallest
index. Go to Step 3.

Step 3 (Forward Step)

At the (k+l)st earliest opening die position,
try to schedule any one, say order i, of

"untested" orders (i.e., exclude orders al-

ready tested or scheduled) which satisfy the ,

die position (i.e., front/center/ rear)
and die length constraints. J

k+1
This defines problem P^^ .

(A) If there is no such order, go to Step 4

(Backward Step) . Count the total num-
ber of setups thus far, denoted as Z.

(B) If Z >_ Z*, mark the order as "tested"
(at the current earliest opening die
position), and repeat the Forward Step

with another "untested" order.

(C) If Z < Z* and the schedule is completed,
set Z*=Z (improved schedule found)

.

Set k=k+l and S=Si. Go to Step ^- (Back-

ward Step)

.

146

FIGURE 3. Part of the Search Enumeration Tree for the Illustrative Example

147

(D) If Z < Z* and the schedule is not yet
completed (Forward Step) , set k=k+l
and S=Si. Go to Step 2.

In any case, an order is never scheduled if

its production duration exceeds the time the
particular molding machine is expected to

remain operable. (This is determined from
a different model, not discussed in this ar-
ticle.)

Step 4 (Backward Step)

Back up to the last scheduled order, and mark
the order scheduled at the die position being
opened as "tested." In other words, if

S=S'i (i.e., the last scheduled order is

order i) , remove order i from the current
schedule and return to problem PgT'''' Set

k=k-l, and go to Step 5.

Step 5 (Termination Test)

If k < 0, stop; Z* is the minimum number of

setups. Otherwise, count the number of set-
ups, Z, for the current schedule (i.e., S').

If Z _> Z*, go to Step 4 and take another
Backward Step. If Z < Z* (more precisely,
if Z = Z*-l), go to Step 3.

5. AN ILLUSTRATIVE EXAMPLE

We now describe how the algorithm works
using the Illustrative Example, and assume
that initially an arbitrary schedule as shown
in Figure 1 is given. This schedule is equi-
valent to P^^, where S = (1,2,3,4,5,6,7,8,9,
10,11), with six (6) additional setups.

(Note that setups due to the previous schedule
are not counted.) Therefore, Z*=6, and the
steps below follow. The tree corresponding
to part of the computation is in Figure 3.

Step 4 (Backward Step)

Remove order 11 from the current schedule.
Mark order 11 scheduled at the 11^^ earliest
opening die position (i.e., die position 7

at day 4) as "tested." Set k=ll-l-10.

Step 5 (Termination Test)

k -j; 0 and Z=6=Z*=6. Therefore, go to Step

4 and take one more Backward Step.

Step 4 (Backward Step)

Remove order 10 from the current schedule.
Mark order 10 scheduled at the lO^h earliest
opening die position (i.e., die position 4

at day 4) as "tested." Set k=10-l=9.

Step 5 (Termination Test)

k -j: 0 and Z=6=Z*=6.

Step 4 (Backward Step)

Remove order 9 from the current schedule.
Mark order 9 scheduled at the gth earliest
opening die position (i.e., position 2 at

day 4) as "tested." Set k=9-l=8.

Step 5 (Termination Test)

k): 0 and Z=5?^Z*=6.

Step 3(D) (Forward Step)

Schedule order 10 at the 9*-^ earliest opening
die position. Z=5 < Z*=6, and k=8+l=9, and
S = (1,2,3,. ..,8,10).

Step 2

The (k+l)^"^ = 10*^^ earliest opening die posi-
tion is die position 4 at day 4.

Step 3(D) (Forward Step)

Schedule order 11 at the 10'^^ earliest opening
position. Z=5 < Z*=6, and k=9+l=10, and
S = (1,2, 3,. ..,8, 10, 11).

Step 2

The 11th earliest opening die position is

die position 7 at day 4.

Step 3(B) (Forward Step)

Order 9, front runner, cannot be scheduled
at the rear, and there is no other alterna-
tive.

Step 4 (Backward Step)

Remove order 11 from the current schedule.
Mark order 11 scheduled at the 10^^ earliest
opening as "tested." Set k=10-l=9 and
S = (1,2,3,. ..,8,10).

Step 5 (Termination Test)

k •(: 0 and Z=5=Z*-1.

Step 3 (B) (Forward Step)

Order 9 scheduled at the IQth earliest opening
will make Z=6=Z*, and there is no other
"untested" order at this opening.

Step 4 (Backward Step)

Remove order 10 from the current schedule.
Mark order 10 scheduled at the 9th earliest
opening as "tested." Set k=9-l=8 and

S = (1,2,3,...,8).

Step 5 (Termination Test)

k -j: 0 and Z=5=Z*-1.

Then similar steps repeat by scheduling order
11 at the earliest opening without pro-
ducing a better schedule, and evenutally the

enumeration reverts to level 8, level 7,

etc. A part of the enumeration tree corres-
ponding to the above description is given in

Figure 3. After we check all alternatives
at the l^t opening die position, we have
the optimal solution, which is shown in

Figure 4. Notice that Z*=3.

Die Position
Front B£ar

148

6. COMPUTATIONAL EXPERIENCE

The algorithm has been coded in FORTRAN

and is being implemented on a small IBM

computer with 64K bytes of main core.

A few smaller problems have thus far been

tested successfully.

Additional computational behavior corre-
sponding to the Illustrative Example (Section

5) is in Table 1. Running times relate to

test runs on a UNIVAC 1108 computer.

TABLE 1

Computational Performance for Example 1

Time to reach level Current smallest

Level k k first time after number of setups

a Backward Step (se-

conds/Univac 1108)

11 0.000 6

10 0.001 6

9 0.005 6

8 0.011 6

7 0.015 6

6 0.030 5

5 0.034 5

4 0.060 5

3 0. 147 4

2 1.290 4

1 1.509 3*

0 (Opti- 5.984 3

mality)
*The optimal solution with 3 setups is ob-
tained after 1.404 seconds

The algorithm can easily be extended to the

multiple plant and multiple molding machine case.

The actual case study involves many molding
machines located at several plants. Each
molding machine corresponds to a particular
mold type and to a particular material* and so

the algorithm may be applied directly to all

molding machines with the same mold/material
type. The multiple plants normally add
certain technological, logistical, and/or
quality control constraints. The resulting
plant specification(s) naturally contributes
to the algorithm's efficiency.

In order to apply this approach, a planning hori-
zon has to be introduced, where the idea is to
schedule the machines during a given planning hor-
izon. An order is scheduled only when it can
start during the planning horizon. With this ap-
proach, the algorithm, during forward steps, sche-
dules the complete planning horizon of the first
machine, and then goes to the second machine, and
so on. The backward step, works in an exactly op-
posite way. If this approach is adopted, then we
are minimizing the number of setups which result
from schedules that fill up the planning horizon.
Therefore, it is possible that certain orders can-
not be scheduled (or, more precisely, cannot be
started) during the planning horizon in the opti-
mal schedule (e.g., see Figure 6). At this time,
the program uses the latter approach.

It should also be mentioned that the algorithm
currently does not allow for "a hole" in a sche-
dule. In other words, in a specific cavity of a

molding machine, two subsequent orders must be
scheduled in such a way that when the first one is

finished, the other has to be started immediately
subsequent to a set up. It is conceivable that by
allowing a gap in a schedule (in practice, a cavi-
ty is blocked in this case) the number of setups
can be reduced. Computations with a sample pro-
blem is below. In this example, we have 2 mach-
ines at two diffement locations, A and B. Due to

certain logistical and other constraints not men-
tioned, it turns out that some orders must be pro-
duced at a specific plant, and thus we have a

plant specification. Also, the two machines, de-
noted by X and Y have slightly different capabili-
ties, and some orders must be processed by a par-
ticular machine (machine specification). If no
specification is made, any order can be processed
by any machine. Machine X is located at Plant A,

and Machine Y at Plant B. Initial conditions of
the machine schedule and an initial arbitrary
schedule is given in Figure 5. The optimal sche-
dule for the Example, found by the search enumera-
tion, is shown in Figure 6. Notice that orders
6 and 8 are not scheduled during the current plan-
ning horizon.

EXAMPLE
(2 plants, 2 machines, 14 orders)

There are two different approaches when
extending the algorithm to the multiple
machine and multiple plant case. One approach
lays out all machines in parallel and ap-
plies the algorithm directly. If we consider
a two machine problem, each machine with
eight cavities, the approach reduces to

considering a one machine problem with six-
teen cavities. Of course, the way to count
the number of setups has to be modified,
because a setup in one machine is independent
of a setup in the other. On the other hand,
a second approach to the multiple machine
problem is to lay out all machines in series.

*The material specification is suggested in
a previous model which is not discussed in

this article. The final material specifica-
tion is given by management

.

Produc-
Order tion Plant Machine Die Po- Die
No. Days Spec

.

Spec. sition Length

1 6 A X Front 3.0

2 6 A X Rear 2.5

3 3 Rear 2.4

4 1 Front 3.0
5 6 X Front 3.0
6 2 A Front 2.8
7 2 Rear 2.6

8 4 B Front 3.3
9 19 B Front 3.0

10 10 Rear 2.3

11 2 Rear 3.0
12 4 Rear 2.9

13 7 Rear 2.8
14 5 Front 3.5

149

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

/

btachlne X (Plane A)

Dies

12 3^56 7

1*

3.3^
1^

3.0

5*

* Front runners

v.

''/

2.8

//

2

/A
2.8

//

7

- -

10

!i //

Machine Y {Plant B)

Dies

1 2 3 A 5 6 7 8

3.6

'A

8*

11*

3.4 9*

i2.9.

7 / ^' / 1
5 Q -3 A '

11

13

3.0

12

2.5

K2.'8

FIGURE 5. Initial Conditions (shaded area) and an Arbitrary Schedule for the Example

<3

<|] period.

The end of the
scheduling

Machine X (Plant A)

Dies

1 2 3 4 5 6 7 8

<]

<3

(Orders 6 and 8 not scheduled)

FIGURE 6. Optimal Schedule for the Example

Machine Y (Plant B)

Dies

1 2 3 4 5 6 7

/ A
3.6
//

14*

13

9*

12

1.5

2.8

11. The end of the
scheduling
period

<3

150

The model is being tested for problems with 5

plants and about 30 molding machines. Fortunate-
ly, as there are several material types and mold
types, it can be subdivided into smaller problems.

Even though the current model assumes determinis-
tic production days, in reality, some orders have
a range of production days such as either 7 or 8

days. This allows more flexibility in the sche-

duling phase, and may further reduce the number
of setups. The model has been expanded to in-

corporate variable production days. (This is

examined at each step in the enumeration and thus
the schedules may not be optimal in a global
sense .

)

In general, algorithm trys at most nl combina-
tions, where n is the number of orders. However,
in computations, implicit enumeration substanti-
ally reduced the number of combinations that must
be examined. Judging from the fact that a fairly
good schedule is often obtained early in the enu-
merative process and also that a substantial
amount of computations is usually spent to show
that the current best solution is, in fact, op-
timal, heuristics which will curtail the compu-
tations are now being considered. For example,
we can restart the algorithm by changing the
earlier part of the schedule drastically when
the computational progress slows, and eventually
terminate all computations.

7. CONCLUSION

The problem- of finding an optimal schedule which
minimizes the number of setups in a plastic
molding operation is formulated and solved by
search enumeration. Even though the size of the
problems tested so far are relatively small (at

most 15 orders), the original problem combined
with all technological, logistical, and other

constraints yields several smaller problems.
Each of these with a clever heuristic rule,

that generates a good, if not optimal, schedule
within a reasonable amount of computer time,

should be solved quickly using the algorithm.
It is currently in an extensive testing stage
for use as a subroutine in a production sche-
duling and inventory control computer system.

REFERENCES

[1] Baker, K.R. , Introduction to Sequencing and

Scheduling , John Wiley, New York, 1974.

[2] Salkin, H.M. , Integer Programming , Addison-
Wesley, Reading, Mass., 1975.

AN IMS-GAMMA 3

DATABASE EDITOR

E. B. Brunner
Gulf Oil Corporation

INTRODUCTION

As personnel from all levels of today's

industries are becoming more involved with the

"man -computer dialogue", we see the phenomenon
occurring that more non-computer trained people

are utilizing its facilities. For many years now,

the shift has been away from having highly

trained computer people provide the services to

execute a program. Increasingly, the developed

program is turned over to the user to allow data

tabulation and execution to be done by him. This,

in turn, has caused a need for an easy method for

the user to do this data tabulation and program
exe cution

.

One feature that can help to accomplish
this is the use of a datbase. A database being

defined as "a collection of interrelated data stored

together with controlled redundancy to serve one

or more applications in an optimal fashion; the

data are stored so that they are independent of

programs which use the data; a common and con-

trolled approach is used in adding new data and

modifying and retrieving existing data within the

data base. "*

Utilizing this concept with its "common and
controlled approach to add and modify data" we
can devise programs by which a user can tabulate

data and execute his program easily.

Furthermore, this man-machine interface

should fulfill the following objectives:

1. Meet the needs of the user.

2. Under standability of results.

3. Reliability of execution.

4. Ease of use.

5. Timely results.

EVOLUTION OF A PROJECT

Early in 1973, a request was made by the

Gulf Oil Trading Company for an analytical tool

(i. e. , L. P. model) that would determine the

relative value of crude oils for different refinery
situations. The model was developed in card deck
form using the matrix generator - report writer
product of Bonner & Moore Software Systems,

GAMMA 3. The model preformed very
satisfactorily and gave clearly understood results.,

The familiar complaint then came from the cus-
tomer that the mechanics of tabulating the infor-

mation on keypunch forms, waiting for and
checking the keypunching and then submitting the

deck was too time consuming and prohibited them
from obtaining the needed results within a half-

day or less. What could we do about this? The
solution to the problem seemed to be some form
of interactive setup to eliminate the need for the

card deck. This requirement turned out to be two-

fold, a method or program to create and maintain

an input database and then a way of submitting a

job stream. For their purposes we had met
items numbered 1, 2 and 3 of our objectives list;

but as yet, had not addressed items 4 and 5.

Being that IBM's Information Management
System (IMS) was already resident at Gulf and

provided the needed database capabilities via a

Cathode Ray Tube or batch program, and that the

project sponsor's analysts were familiar with

using the CRT for financial work, it was decided
to use IMS to meet these requirements.

THE DATABASE EDITOR

The database and its programs were to

handle data in either the table or list format
utilized in GAMMA 3, and in our design each table

and list was to be a database record. Figure 1 is

an example of a GAMMA 3 table and list in card
image form. The table in database record
structure would appear as in Figure 2.

Further, since it was projected that many
models would probably use this database, a two-
character prefix was defined to be used as a means
of distinguishing unique sets of tables and lists.

Each table/list name would be prefixed by these

two characters to reserve it for a particular user.

Additionally, password security was to be made
available for each user-chosen prefix. The IMS
non -conversational program to manipulate these

records was written PL] and called GAMED.

^Martin, James, "Principles of Data-base
Management, " Prentice Hall Inc.

152

Presently, it is running on an IBM 370/158 under

VS and is accessible through a 3270 CRT or

equivalent.

As displayed on the next two figures (3 and

4), GAMED provides capabilities to display and

edit database tables and lists. For display pur-

poses the user can show:

1. A table with its text and /or data.

2. A list or list with text.

3. A table or list row names.
4. Table column names.
5. A tabulation of tables and lists

in a database set.

For editing the user can:

1 . Modify

A. Table/list text

B. Table data

C. Row/column maximum counts

2. Add

A. Complete tables /lists

B. Table rows and/or columns
C. List rows

3. Delete

A. Complete tables/lists

B. Table rows and/or columns
C. List rows
D. Entire database set

4. Duplicate

A. Individual tables /lists

B. Entire database set

5. Replace Row and Column Names

Since the structure of a table/list seems to

have the two distinct parts of text and data, displays
are made with the table/list text formatted on a

screen in a separate manner from table data.

(Figures 5 and 6.)

Upon initialization of the transaction GAMED,
the user obtains the display in Figure 7. As
explained in the directions, the user's two-
character prefix is to be placed within the

parentheses, the table/list name that is to be acted
upon replaces the word NAME, the field with the

word TEXT specifies the current format in use,
the three letter designator following the character
string 'FUNC:' is the function field (SEE), the

space between the words SEE and PAGE is the

options fields, and the PAGE clause on the right

has indicators for multiple page messages.
If we use the prefix (EB), table name

SAMPLE, function SEE (Figure 8) and depress the

ENTER key, the resultant display will look like

Figures 9 and 10. Note that this is a database

display of the GAMMA 3 table listed previously

and Figure 9 is the text portion and Figure 10 is

the data.

If we would like to modify some data entry

on Figure 10, the function is changed to MOD, and
we move the cursor down to the value to be

modified and change it. In this case, it is the

value at the intersection of row R2 and column C3
(Figure 11). Then depress the ENTER key and

receive the response in Figure 12.

Once GAMED was completed, there still

remained the problem of having the GAMMA 3

model generator access these database tables and

lists. This was accomplished by two additional

programs, called GAMLOAD and GAMUNLD.
GAMLOAD will take a specially formatted file of

tables and lists created by GAMMA and load them
onto the database under a specified prefix,

whereas GAMUNLD will unload all or selected

tables of one or more prefixes and create this

specially formatted file to be readily useable by
GAMMA. In addition, another utility program
exists to list and/or punch this file in card image
form.

After these programs were completed, the

first part of the original two-fold user problem
was solved; now programs existed to maintain the

input database and make it available to the model.
This eliminated any need for data cards since the

analyst running the model could enter the data via

the CRT.
While the effort to produce GAMED was

taking place, a second IMS program called

JOBEDIT was developed. Its purpose was to

maintain and edit a database containing jobstream
card images. The database, called JOBFILE,
was separated into members designated by an

eight-character name. As an added feature, any
of these members that began with a job carci

could be submitted as a job stream with a RUN
command, (Example, Figure 13.) This, of

course, satisfied our second user requirement.
The customer was then provided with a

member on JOBFILE that contained a job stream
to execute the model. After the data tables and
lists were updated for the current problem, the

user would RUN his job stream and get results

within the desired time frame of a half-day or less.

We now have 17 production L, P. models
and three non-L. P, model applications being run

in this manner by users at various geographical
locations throughout the country. This type of

operation has been so successful that we now
receive requests from our user companies that

stipulate that their models must be developed to be
run from an IMS terminal.

Finally, I would like to list some other IMS
capabilities that we have added to our operations.

As part of a run, the user can optionally:

1, Receive reports at a CRT and have
these available for recall.

153

2. Receive reports as hard copy at a

local printer.

3. Load onto the database, tables/

lists created during execution.

Figure 14 shows a diagram of the overall

operation from the interaction of GAMED to the un-

load optimize and reload cycle, thereby given what
we feel is a complete and unified system.

154

r'l S< 3 '5

M'6 kT-i

OJ 3 Si 3
o . . .

C"*] ii'i CO

11

O S S' S)

H
r'i

il Jh Z>- I»-

li: ii:

li: Cl
s r X X

®
H Ii ii: o li' o o o
11 i— 1—

1

^—

1

X 'i I 1 1 i_i : 1

V- ii! li: r 1 LU r 'i UJ UJ LlI

UJ
a. I m >T •A

LU ili _l X L«'l ol
_J ill -J ii: ii; 2;
U. UJ "i- i 1 Ixl

-J Lil X z
LLi _i Cl li: _J ii: li: X

r'i ill ill

• .-I

* Ct: ii: ii:

UJ
_J !-

X
'. I

155

oo

CD

1\

CD

CD

CD

0)

u

_j>=3:

OS

156

•J !
't"i

; 1

1

in
'J 1

UJ
•Cm,

:'T'

> 1*1
•J 1

"~i—J •J 1
j

H- t—

{

UJ
1 ! 1*1

-' 1

;V 1 "k"
1 XI

XJ 1 1*1J 1

—_J T.-
Ti
-JLl 1x1
iT'X. fT

UJ
T'X.

-J 1 J 1 'J !
j

—

1 X.
• 1 f -

1*1
i fi'J 1 X.

i 1

1

uu ~(
i 1

1

i*! '-' 1

•J 1
*"f' Lu Tk" iT xj 1

1

Xi i"fc*

*

X.
t ^ 1 1 -1 LU Ti I

T I
.—1

1-J a. -J T X. X. Xi
jTi i 1 l£j rn i/i Hi ij'j ^—

J

f 'l

iT* r-4 i il
-«L.

iT ' I i I T -T T'X.
uj t 1 I '"l—J ^ f—J

iT uJt 1 1
ft
t-L-

U Z LLj c-.j Cj >:-.i ZI' -H LU

iij

iJJ -J uJ
U.

ill

D

•H i H

bc
•i-i

Lii

UJ

LU
If!

LU
U'l

'X
lD
|X

x

I/I

i/l

i/i

l/l

LU i—

1

1—

1

_l

i—

I

_j 1 Cj
_! _l
f—

i

X ClL X
UJ _i

X LU iu X !/i

Q_ _l Cj UJ LU LU
_1 _J _1

=r '>i l/l Oj ilu i£i

t—

1

X X X
_i i— 1

—

r—

X
ili Cj LU

CO

a;

u

157

s

o
h

H

in

Ml

158

i

B

O

Q

vD

U

••-I

159

+
il +

II

iJj
=—

1

LL
LU

X
LU PRI J

UJ
Ci _J

_J in iXl

X
iilj uJ

l—i
LL

in _x. X
X

I'l 1

1

Ll
X uU lU

lU _i

X •n LU X Ll ill

X i/l X
—i u_ Ti ^f X
-7- ~i 1—

iii L'"l _l
lU _J

uj X _J u_

in Z
uJ uU L.1 uJ UJ
LU 111 X UL

Li-1 X
X O-

-J
i UJ

ill u: X
uli uJ X
Z X LU X _i
!

—

>—) di Xi X
uJ _x. Ll X ^
ill ii; LU LU LU
lf\ CH jJ il! 1 UJ

LL X UJ _J
;_l 1—1 'S\ iX _1 X
z 1 LO I
_1 ill _l

LL •1. Ll !—

1

1/1 Ll
'A OJ i_i p

CL i/i LU
X Zy- :_l uJ X
LU JJ 3' Li-i

^- i—

4

"1- X l-H l—i 0
JJ X _J LL

_J 2;
a. _i l—i X in

~l Li-| iS\ l—i

Ll ill" UJ
iXl _j i

—

LU LU i/t U. Uij _J
I 1—

1

X 1

I _j lU _J f— X
iL X Ll
Ol

CH
lU

LU
d

0)

.1-1

H
HRT

Ll h-

UJ LU
rH i—

i

Ll
uJ

0 X
z z

UJ J
•ID ilL uU LU .

X . -J -•

HL
in ill

3 X =Ii

~i i— •- • LU
-~l _l Z
l—i X _i in X X
!— 0 X z
u_ u. Ll

ill
•

0 UJ
I uJ uJ

i- 1- Iii _J
X — -I uJ X LL Xl
!— X in iii X
!—

I

. X XI * I i—

UJ
Ui
5/1

u
~l

Ll

-LU

LU

X
i/l

Xi
LU

lU
z

lU X
X uj UJ
Z LU UJ

=/i m
UJ ^ ^
Xi X uJ
X X uJ

i_i Lti LUM lU iIQ

Ll X
in

i 1 i_i Z
UJ o
X Ll
m ^ I—

X
Z O

UJ Ô
uJ X
Z _J
X Z i
Z D ^/i

LL ^
LU Cj
U LU
X Xi iii

_l Z UJ
X X i-
UJ X Z
iii O LU

X o
Cj X

X Ll
LU '

i— l' 'i

OJ
Z X
-1 m
tii

in
uJ

m ^
LU X
z o
X -1

X *-< _l
UJ Z -J
f—
z m u_
UJ LU
Z X
X o

. Z u-
X
!- LU X
X -J ^
Cj C£i X
X Cj

LU
LU Cj

_1 z
!- _J X
m X
Z u. X
O UJ

UJ

Z O O i/l -J.

_l
l~l

f I • •

\ !—

Z I/i

i~I l—i

X -I

X • • /I
z m
X UJ
O _j f-
u. iXi -J
X D
!- X
X
LU
C

CO

h

W)
•<-i

UJ
z UJ

z
X

160

LU

X
Hi

uJ

X
LU

UJ
_J
lL

a:

UJ

it!

!l

11

'2

z: !i

i—

I

r-
0.
i—

i

... i±i

LU iii _J it:

t— Li Cu O

x
z:

5

t)jO

LJJ

LU

LL

X
x

Li!

-J

UJ

Sii
!ii 'Si

u
CiJ ID CO

S
S .'Si Q
Si Si S>
S" !S S

H C-.J i -l O -H CJ i'l

ii; LL li; !i;

161

••••I

r--|

C-.J

St S>
Q :5 2'
Q 'S' =il

c-j mi CO

i—

UJ

Us
ill

2i Q Si
2'

S Si Si
Si Si

H rJr p..

H C-.J
!---|

ii." ill Ct

i

V

LU
_J

l/i

ili

LU

LU

z
CM cc

Lt CL

2: f-j

u z

I—

I

162

S< s
r'l 'X' f-- CO

\ 1

i/l

LlI 3 Tl

i-H (—

i

(-4

hi i 1LL. IX. t t LL.

Ll! llJ iif \ I i

UL li! it.

in'm* I
A i't

.-

Ll! Ll! LU LU

'X ,T~

iVi
•IT' 'ID i_n

1

il ID •ID ID
u. ilL U- Q-

LlJ V 1
Ti

il
ti II IiIS II

LU Ll! UJ uJ
3

jjjMM '•1
ir ir 1*1

: Tl* i

1 'JL*

immi T"-L

1

(St LO
Si
M

IT
it

f fi *j 'J 'J J
- li i l*t

\ CiV 1 Ml
11
II U"l

V t 1 -3 fi ir

<Si in ii: tl II ll il

11 VI vn r-l

' VI l/l

-X.
5" 1-i'. 1 1

!*l V 1 -jl- LtmS immji—

1

vl
""^

: Ti
11

ll
11

It
If

il
CI

i 1

1

fflV 1

.
I—1 f—J f i 1

1

iTiuu HH !|11 iTi

11
^-

^—

}

il i—

1

SO
I X X

u: li-
~1

ill i_j r
'1

1

^- H
UJ !'

1 i—

I

il =r X UJ
Lli Ul Cti Ii: Ii

1—

i

X CL 1—

1

i'
) r 'i i/l

£L T. LU H 1/1 i/l 'J'l UJ
U] > _i

I/i l/i
!";

UJ
£i

CO

163

SOFTWARE TOOLS FOR COMBINING LINEAR PROGRAMMING
WITH ECONOMETRIC MODELS*

Michael J. Harrison

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE
National Bureau of Economic Research, Inc.

575 Technology Square
Cambridge, Massachusetts 02139

Abstract

Mathematical programming is tncreasingly being

combined with other mathematical modeling techni-
ques. A combination which has proved particularly
fruitful in the field of energy modeling is that of

an econometric model and a linear program. Some

practical experience has shown that although such

combined models give rise to unexpectedly few

mathematical difficulties during solution, the com-

puter software which is currently available is very
inconvenient for implementing these models. This

paper analyses the sources of these difficulties,
and describes some new software tools which are

being developed to aid in the construction of com-

bined modeling systems.

1. Introduction - The State of the Union

Recently, mathematical models which have as

major components both an econometric part and a

linear programming (LP) part have come into vogue.
Hogan [1] has described how such a model was con-

structed and solved at the Federal Energy Adminis-
tration for the Project Independence Evaluation
System. Jorgenson [2] has proposed a combination
of the Brookhaven Energy LP model and the DRI

interindustry econometric model. Shapiro [3]
describes these and similar models, and discusses
mathematical approaches to their solution. Cur-
rently such solution methods require iteration
between the econometric model and the LP; the

econometric model provides supply and demand data,
and the LP returns an optimal distribution of
commodities to meet the demand and the associated
shadow prices. The process terminates when an

equilibrium set of prices is attained. This paper
addresses the question of what software tools
are needed by a person who wishes to develop and
implement an algorithm of this nature with the
minimum computer programming effort.

It will be useful at the outset to distin-
guish between two separate but connected aspects
of the problem of combining LP and econometrics on
the computer. One aspect is that of data base
management; that is, the marshalling of the

*This report has not undergone the review accorded
official NBER publications; in particular, it has

not yet been submitted for approval by the Board
of Directors.

original raw data into a form suitable for computa-
tion, and the production of meaningful output. The
other is that of system integration; that is, the

provision of mechanisms to control the execution of

the processes, and to facilitate transfer of data

across boundaries between systems. This paper is

principally concerned with system integration; data
base management, LP model generation, and report
writing form the principal themes of companion
papers [5], and so these topics will not be treated
in detail here.

Let us first examine the problems that confront
a modeler who tries to use existing software.
Hogan [4] has described the difficulties that arose
during the implementation of the PIES model [1].

Despite there being no rigorous theoretical founda-
tion to the algorithm, its convergence was found to

be unexpectedly rapid (6 to 10 iterations being

required). Hogan was fortunate in that the inte-.
grating portion of the model could be readily coded

in FORTRAN, and that APEX, the LP optimizer he used,

has the most convenient interface with FORTRAN of

any commercially available large-scale LP code. He

has stated [4] that the major difficulty in the

project was that of matrix generation, but it would
probably be more accurate to say that the real

problems were in data base management, as will be

clear from a full account of the project [6]. Never-

theless, although the combination of the two models
did not constitute the greatest difficulty in the

project, it is clear that the integration process

was by no means simple and straightforward.

The paucity of published results on the success-

ful combination of modeling techniques tends to

corroborate the view that implementation of such

combined models is difficult in practice. Apart

from Hogan 's work, we are forced to draw on our own

experience at NBER for illustration of the diffi-

culties which are encountered. The major stumbling

block is that the econometric system and the LP

system, having grown up separately, do not have an

easy way to exchange data; furthermore, each has its

own execution control mechanisms and neither will

allow itself to be subservient to the other. As an

example, consider a pilot implementation of the

least absolute residuals algorithm for regression,

in which the data were set up and manipulated in

TROLL [7] and the minimization performed using the

SESAME LP system [8]. In view of the experimental
nature of the project, it was decided to use an

existing LP system rather than to code one from

1^

165

scratch, even though there are modified versions of

the simplex algorithm known which will solve this
particular problem more efficiently than a standard
simplex code. Since TROLL and SESAME must each
reside in a different virtual machine (because TROLL
contains its own virtual machine supervisor), the
only means for passing data between them was as

spooled card-image files. In addition, the user had

to control the whole process manually from the con-
sole because there was no way to pass control
between the two virtual machines. This latter
difficulty could have been overcome, at the cost of
considerable system programming effort, by arrang-
ing that each virtual machine could suspend itself
and activate the other at appropriate times. In

the end, this project was abandoned because the
effort involved seemed too great for the expected
benefits. TROLL and SESAME were both designed to

be flexible systems for experimental rather than
production use, and the problem of combining their
facilities was not expected to be so difficult.

Lest it be thought that NBER's systems are the

only offenders, consider the way IBM approached a

similar problem, that of combining APL with MPSX [9],
Again, data are communicated by means of card-image
files. So is program control information -- the
APL program constructs a card file of MPSX control

language commands and passes this file to the MPSX
compiler. This mechanism is both clumsy and

inefficient, but is necessary because MPSX accepts
input of control information only in the specific
form of card images.

The APL/MPSX combination, though achieved by a

roundabout means and with no little programming
effort, was successful enough to warrant publication.
Naturally, failed attempts to adapt an existing LP

system to a new environment do not reach the litera-
ture, but the author is aware from personal con-

tacts with people in the modeling world that many
such attempts have been envisioned. Because of the

obvious difficulties which would ensue, few such

attempts proceed beyond the speculative stage.

We may conclude, then, that the state of the

union is not good.

2. Limitations of Current Software

Let us summarize the main points arising from

the general overview given in Section 1. The areas

in which current software exhibits deficiences are

as follows:

(a) Data base management and genera-
tion of LP models from raw data

(b) Control of LP procedures by other
programs

(c) Transfer of data between LP proce-
dures and other programs

Category (a) is treated in companion papers [5] and

will not be discussed here. Categories (b) and (c)

overlap slightly (for example, control information
might be regarded as data passed to the LP program),
but they are essentially separate.

A major drawback of current large-scale LP-

solving programs (with the partial exception of

APEX) is that they cannot be invoked from another

program written in a standard language such as

FORTRAN or PL/I by a subroutine call or similar
mechanism. APEX allows its constituent routines to
be called from a FORTRAN program once the general
APEX environment has been established. Other LP

systems can be invoked only by means of a special
,

language peculiar to each system. One reason for
this may be that most operating systems do not pro-'
vide a suitable dynamic loading capability; LP codes
are now so voluminous that they are too big to
include in a load module with other programs of

comparable size. However, the main reason appears
to be that LP programs are deemed to require such a

specialized environment for efficient operation
that only the LP system itself can be entrusted
with creating this environment, and that therefore
the LP system must be in overall control of the
whole process. Some progress seems to have been
made in modifying commercial large-scale LP systems
to provide a more convenient interface for the
experimental user; IBM claims that MPSX/370 has the;
required flexibility [10]. However, it is clear
that the only way to achieve a really clean control
interface is to design the LP code with that require
ment in mind at the outset, rather than to try to
adapt an existing code. This may entail the sacri-
fice of some raw computational efficiency in the
interests of greater flexibility of application.

Transfer of problem specification data into LP

systems is still essentially at the BCD stage.

Beale has championed a "card image" data interface
|

on the grounds that such a medium provides the maxi-j

mum standardization and flexibility [11]. Whilst i

it is true that such an interface is desirable to

facilitate transfer of data between computers of

different manufacturers, card images are a poor

means of passing data between programs running on

the same machine. However, Beale's philosophy has

prevailed thus far, and many current matrix genera-
tor programs, such as GAMMA [12] and MaGen [13],
produce as their output a specification of the LP

problem in a card image format, usually that of

MPS/360 which has become a sort of informal standardi
j

Such a mode of operation does have the advantage
j

that a single matrix generator can produce output
;

which is suitable for input to a variety of differ- i

j

ent LP systems, but the intermediate data form was '

,^

originally designed for human readability and does

not lend itself readily to manipulation by the com-
;

puter. Indeed, some of the complexity and ineffi-

ciency of matrix generators can be attributed to

exactly this cause.

Some matrix generators, notably DATAFORM [14]

and DATAMAT [8], produce a specification of the

problem directly on a special file, referred to

variously as the "problem file" or "models file". -

This allows the LP to dispense with its INPUT or

CONVERT routine which it would normally use to con-

vert the card deck into an internal representation.
This representation also facilitates a direct revi-

;

sion of the model, which would otherwise have to be ji

°

performed by altering the matrix generator program,*|.

or its data, or both, and executing the matrix II'
generator again. The data on the problem file a reIII
however, accessible to the user only via special Ift'

routines which themselves depend on the environmenBIl
set up by the LP program. fll

166

In a similar way, output of solution informa-
tion from typical LP systems is at the BCD level.

In order to be read by another program, such data
has to be stored on a file in a format which is

compatible with the other program, and unit records
of 80 characters or so are a common choice. Some

LP systems allow the option of filing the solution
data in some internal form on a "results file" and

provide system routines by which the user may
access the data. This is neater, but has the draw-

back that these routines cannot be used outside
of the control scope of the LP program.

Current LP programs fail to distinguish
sharply enough between two sorts of data about the
LP model -- that pertaining to the structure of the

model (its size and the pattern of non-zero ele-

ments), and the actual values of the coefficients.
As explained in Section 1, algorithms for solving
combined models typically use the results of one

LP run to revise the input data for the next. In

such revision, only the coefficients are changed
and not the structure of the model. Hence, it is

advantageous to keep these data entities separate,

and to make the coefficient values easily accessible
to the caller of the LP code. Some modern LP codes

have made partial provision for this in the shape

of "indirect" coefficients -- that is, coefficients
whose values are initially specified as character-
string names which are later bound to numerical
values. However, the mechanisms provided for alter-
ing the values associated with particular names
have not been especially convenient.

In all of the foregoing, it is clear that the

greatest hindrance to combining a modern large-
scale LP system witn an econometric system of com-

parable complexity is the insistence of the LP

system on setting up its own environment and con-

trol mechanisms. In particular, operations on the

LP data base are usually only possible within the

environment set up by the LP or matrix generator.

The external interface of a typical modern large

scale LP system has been designed to be convenient

for a human; such an interface is not well adapted
for use by a computer program. DATAFORM osten-
sibly has the capability of solving non-linear prob-

lems by an iterative algorithm involving dynamic

revision and solution of successive linear pro-

grams. However, MPS III must remain in overall

control of the process, and although it is possible

to invoke from DATAFORM subroutines written In, for

example, FORTRAN, it would not be possible to invoke
another computer system , such as a simulator.

3. New Methodology

[;
Interactive Computing

We make the assumption, in considering new
approaches to dealing with the problems outlined
above, that computers will be used increasingly in

an interactive mode rather than in a batch mode,
especially during the development phase of a pro-
gramming project. Although interactive operation
has little effect, in principle, on the computer

I
systems required for successfully combining LP with

!' other models, it greatly affects the flavor of our
i approach. It is assumed here thcit the reader has

\

had some exposure to interactive computing, and
appreciates both the advantages it affords the user

and the difficulties it entails for the system
designer.

NBER Support Systems

The Computer Research Center of NBER has

implemented and is extending a set of system
facilities designed, among other things, to aid
the developer of new modeling systems. The evolu-
tion of the philosophy behind these systems ha

^

been explained previously [15]. The Applications
Control System (ACOS) provides a shared hierarchical
file system, a supervisor, an input/output manager
for I/O not connected with the file system, and the
Applications Control Language (ACOL). ACOL is a

language for writing programs which interpret com-
mands entered from a terminal according to a

programmer-defined syntax, and for controlling the
execution of program modules in response to such
commands. For more detailed information on ACOS
and ACOL the appropriate manuals [16] should be

consul ted

.

ACOS supports, as a subsystem, DASEL, which
provides both a language for specifying mathematical
models and a language in which to implement algo-
rithms [17]. The modeling language, like that in

TROLL [7] allows equations to be entered symbol-
ically, but it goes beyond TROLL in offering
facilities for symbolic manipulation, such as

differentiation, DASEL has a library procedure
which will solve small LP problems, and also allows
more powerful LP programs to be called by means of

its interlanguage communication feature. ACOS also
supports XMP, a flexible subsystem which solves
large-scale LP models.

Analysis of the Model Combination Problem

In what follows, we restrict our attention to

one particular combination of models -- that
required to solve the equilibrium problem [1,3],

This will make the discussion clearer and more
concrete, and the principles developed will be

applicable to almost any combination of modeling
techniques. The steps in the solution of the
equilibrium problem are:

1, Define the econometric model (EM).

2, Define the LP model

,

3, Specify an initial solution of prices
for the EM.

4, DO while convergence criterion not met:

a) Compute demands from EM.

b) Pass demands to LP,

c) Solve LP to compute optimal
all ocation

d) Retrieve shadow prices from LP.

e) Test for convergence; if not
converged, compute revised prices

END DO

5, Display results.

It is readily apparent that we require the EM pro-
gram, or some program hierarchically superior to

both the EM program and the LP program, to be in

control of the overall execution of this algorithm.
The LP program acts as a subroutine, albeit an

intricate one with complex input and output. Let

167

us now consider each of the above steps in turn to

see how they can be implemented with the right soft-
ware.

Definition of the EM

We assume that the econometric modeling lan-

guage system has a means of allowirr the model to

be specified by means of symbolic equations.

Definition of the LP

Small LP models can be defined in terms of con-
straint expressions and an objective with only
minor extensions to the EM modeling language. One
needs to be able to attach labels to constraints,
so that the objective may be identified and so that

constraints may be referred to subsequently, and

the language must permit the operators "<=" and
">=" in addition to "=". Of course, the LP program
must be able to accept the model in such a form,
rather than in a BCD representation; however, this

requirement is easily met, since all the processing
to do with parsing the equations is already present
in the EM system. Both the DASEL library procedure
and XMP can accept an LP model in this form.

Formulation of a large LP constraint by con-
straint would be impossibly cumbersome. We have,
therefore, developed a language called XML which
allows an LP to be specified as constraints indexed
over sets, and which incorporates the Z operator
[5]. An LP model may be expressed in XMP in essen-
tially the same way as it would in purely mathe-
matical terms, with some concessions to the short-
comings of computer typography. XML allows coeffi-
cient values to be specified symbolically; the
actual numerical values may be stored in a data
structure (an n-dimensional array) in the user's
file system, and a binding process associates the

XML symbolic name with the file name of the data

structure. This is somewhat analogous to the use

of indirect coefficients in some current LP sys-

tems, but it is more flexible, as will become
clear in the subsequent discussion of model revi-

sion.

Specification of an initial solution

The precise details of this will depend on

the EM system, but any good system will make con-

struction of a vector of values a simple process.

Main Interative Loop

If the language of the EM system allows the

LP program to be invoked by subroutine call or

similar mechanism, and if it also has constructs
for testing, branching, and looping, this itera-

tive loop can be controlled by the EM system. Both

TROLl and DASEL provide the appropriate constructs,
but only DASEL has LP as a callable function.

We can assume that steps 4a and 4c are
achieved simply by invoking the respective pro-
grams, and that the EM system provides the facili-
ties for computing the revised priced in step 4e.

The passing of data in steps 4b and 4d is the
real crux of the problem. It is easily solved if

the LP is small enough to be expressible in the EM

language; for example, if DASEL were used, the dat,

could be passed simply as DASEL variables. Speci-
fically, the demands are DASEL variables to the EM'
program, which assigns values to them, although
they act as constants to the LP program, for which
they are coefficients in the right-hand-side (or
bound values). The LP returns the shadow prices
(iT-vector) as an explicit vector which is also a

DASEL variable, and therefore the EM program can
retrieve values from it. The difficulty with this
approach is that it requires the user to keep track
of the elements in these vectors by numerical inde>
values; this is satisfactory for a small LP model,
but impractical for a large one.

If one attempts to extend this approach to
larger LP models, other problems arise than keepinc
track of variables by index number. Even with a

computer which provides virtual storage, the avail-
able "core" storage may be exceeded, because the
code and data for both the EM and the LP exist
simultaneously. Further, the LP program constructs
its working data from the modeling-language descrip
tion of the LP from scratch each time; for a small
LP this is a reasonable approach, but it would
clearly be grossly inefficient to generate a large
LP problem each time from an XML specification when
the only clianges concern a few right-hand-side
values. Finally, when retrieving solution values
we wish to refer to rows and variables in terms of
the XML model specification, and use this as a

selection mechanism, because the full primal and
dual solution to a large LP would occupy unneces-
sarily a good deal of memory if it were expressed
as unpacked vectors.

Efficient Revision of LP Models

In order to solve the problem of lack of space
we require a supervisory program which passes con-
trol alternately to the EM program and the LP pro-

gram. In this way, much of the data areas and
executable code may by overlaid. ACOL provides jus

such a capability.

Unfortunately, if we remove control from the
EM program and demand an efficient mechanism for
making small revisions to the LP model, we encountei

a problem with the scope of the data. This arises

as follows. To solve an XML model, the user sup-
plies the data (as n-dimensional arrays), specifies
a binding of XML identifiers to the data, and
invokes XMP with the name of the XML model as an

argument. At this level of operation, data entitie!;

such as "right-hand-side" which are internal to the

LP system are not accessible, and so values in them

cannot be changed. It would be possible to allow
access to these internal data if either they were

preserved in core between calls to the LP code
(ACOL permits this), or if the data were saved on

the file system, but both these approaches are open

to objection.

The good solution to the problem lies in takinc,

advantage of the hierarchical structure of XMP,

which was designed to facilitate just such use.

The top-level procedure XLPSOLVE consists of calls .

to the second-level procedures GETPROB (which con- '

verts the problem from XML form to internal form)

and SOLVE (which performs simplex iterations).

Internal data are accessible at this level, and so

168

lall revisions to the right-hand-side values, for

(ample, are easy; system routines are provided for

lis, in order to maintain modularity in the Parnas

18] sense. The particular right-hand-side ele-

?nts being changed may be referred to by the name

the corresponding constraint expression, so that

le user need not be concerned with numerical
idices. The conventions governing the use of

imes are explained in the section "Retrieval of

?sults". We can then rewrite Step 2 of the algo-
ithm on page 3 as

:

2. a. Define the LP in XML.

b. Invoke GETPROB to convert to internal
form.

id Step 4c as:

c. Invoke SOLVE.

)serve that GETPROB and SOLVE can be invoked
idependently of XLPSOLVE, something which is not

)ssible with current commercial LP systems. It is

)ssible in XMP because data entities are passed as

guments, and therefore no routine is required tc

it up a special environment in which these proce-
ires operate.

itrieval of LP Results

The particular problem we are considering
jquires only the retrieval of a few shadow prices.
I general, one may assume that the solution values
)St often requested will be primal and dual

ilues, and that tableau values will be required
ich less frequently; hence, XMP makes primal and

lal values especially accessible. The internal
irm of the final basis is also made accessible
I that it can be saved and used to initiate a

iture execution of SOLVE.

As with revision of a model, the scope of

ita presents a problem with retrieval of results,

iwever, we can overcome the problem by using a

lecial feature of ACOL. When simplex iterations
ive finished, SOLVE makes a recursive call to

;0L (recursive because ACOL invoked SOLVE in the

I the first place). SOLVE is still active and

lerefore all its internal data are preserved. In

isponse to the recursive call, the ACOL inter-
~eter starts to read from whatever environment
ivoked SOLVE. In this particular case, SOLVE
IS invoked from an ACOL program, and so more of
lis program is read. The statements that are
sad are requests to SOLVE for solution informa-
on which are implemented by the ACOL program;

; calls entry points in the SOLVE program which
iturn solution values. The solution values are
len passed via ACOL to the EM program. There
i an explicit ACOL request to unwind the recur-
on and leave the SOLVE environment.

When retrieving solution information, the user
ist be able to refer to the constraints and vari-
)les of the LP model by meaningful names. With
inventional matrix generator systems this is

inceptually easy, since all these systems require
lat the user specify these names precisely in the
irm of 6- or 8-character concatenations. Normally,
lese names will have been generated in some
igular fashion which allows selection of the

desired solution information to be achieved by a

masked-name matching technique. However, XML has

no concept of names of this type; its names refer
to whole classes of constraints and variables, with
individual members of a class corresponding to

particular values of elements of indexing sets.

The style of naming adopted by XML is very
convenient for selecting classes of elements of the
model. In the particular case with which we are
concerned, suppose the set of demand constraints is

named DEMAND and is indexed over regions of the
country and over type of energy; these index sets
might be "NE"

,

"MA" , . . .

,

"NW" (for New England,
Middle Atlantic ,North West) and
"EL","NG,...,"RO" (for electricity,

natural gas , . . . ,residual oil), respectively. Then
the whole class of constraints is referred to by

the name DEMAND; cross-sections would be denoted
by, for example, DEMAND("NE"

,) or DEMAND(,

"NG")

;

and a single constraint by a name such as

DEMAND("NW","EL"). The ACOL request to retrieve
the shadow prices for the demands might be some-
thing like:

PI ("DEMANDS", "PRICES")

where PI is the request. The quotes denote that
each argument is a literal character string; PRICES
is the name of a DASEL variable in which the values
of the shadow prices will be returned. The values
are returned in the same order as the members of
the corresponding index sets, and are then available
to the EM program for further computation.

Reporting of Final Results

Since the LP program is essentially a sub-

routine in the whole process, the EM program has

the primary responsibility for reporting the final

results. Both TROLL and DASEL have extensive
facilities for manipulating data and displaying data

in both tabular form and as plots. It is apparent,
however, that the result retrieval operations dis-
cussed above form a partial set of primitives for

the construction of an LP report writing sys-

tem.

4. Summary and Conclusions

Although the discussion in Section 3 is largely
centered around a particular model combination, the

principles expounded admit of ready generalization,
and the software described is capable of dealing
with many other possible combinations in a straight-
forward manner. The main points to notice are as

fol lows

:

(a) ACOS provides a uniform file system,
thus eliminating one common source of
incompatibility, and a dynamic loader.

(b) ACOL allows one to write code (in PL/I,
FORTRAN or whatever) which may be invoked
either from the terminal or from another
program without the code having to dis-
tinguish between the two. Thus the

algorithmic modules of a system such

as XMP and their associated ACOL driver
programs are readily incorporated into

systems. Also, ACOL allows error

169

conditions to be treated in a uniform
manner and at the appropriate level.

(c) DASEL provides a suitable language in

which to specify econometric models, and
algorithmic procedures for operations
such as regression and simulation. It

also has facilities for maintaining a

data base, manipulating data, and dis-
playing data.

(d) XML is a convenient language for speci-
fying large-scale LP models, and XMP is

a subroutine capable of solving such

model s

.

Our view is that extremely flexible applications
software results if carefully structured libraries
of procedures are available to be connected together
as a user desires under the general environment of

a suitably tailored operating system.

5. Acknowledgements

The author is indebted to Bob Fourer, Roy

Marsten, and Bill Northup for helpful discussions;
to Bill Hogan and John Pearson for documentation on

the Project Independence studies; and to Ed Kuh for

explaining what an econometric model is.

6. References

[1] W.W. Hogan, "Project Independence Evaluation
System Integrating Model", Office of Quantita-
tive Methods, Federal Energy Administration,
1974.

[2] D. Jorgenson, "An Integrated Reference Energy
System and Interindustry Model for the U.S.

Economy", pp. 211-221 in Notes on a Workshop

on Energy Systems Modeling, Technical Report

S0L75-6, Systems Optimization Laboratory,
Stanford University, 1975.

[3] J.F. Shapiro, "Steepest Edge Decomposition
Methods for Mathematical Programn.ing/Economic

Equilibrium Planning Models", Working Paper
OR 046-76, Operations Research Center, Massa-
chusetts Institute of Technology, 1976.

[4] W.W. Hogan, "Large Models can be More Difficult

to Generate than to Solve", Discussion Paper
prepared for Computer Science and Model Build-

ing Conference, Vail, Colorado, 1975; "Matrix
Generation, Report Writing, and the Scale of

Future Applications", working paper, Fall

Meeting ORSA/TIMS, Miami, FL, November 1976.

[5] R.H. Fourer, "XML -- A Modeling Language for

Mathematical Programming." Preliminary
Report. NBER Computer Research Center,

December 1975.

[9] R.S. Goncharsky, A. Rauch, and W.W. White,
"Large Scale Mathematical Programming in an

APL Environment", IBM Philadelphia Saientifia
Center Teohnical Report 320-3027, 1973.

[10] "MPSX/370 Design Objectives", IBM Corporation,
1974.

[11] E.M.L. Beale, "Matrix Generators and Output
Analyzers", Proceedings of the Princeton
Symposium on Mathematical Prograrminq , ed.

H.W. Kuhn, Princeton Univers'ty Press, 1970,

p. 25.

[12] GAMMA 3 User Manual , Bonner & Moore Associates
Inc. , Houston, TX, 1973.

[13] MaGen/PDS User Manual, Haverly Systems, Inc.,
Denville, NJ , 1973.

[14] DATAFORM User Manual, Management Science
Systems, Rockville, MD, 1970.

[15] M. Eisner and R.W. Hill, "Topologically Speak-
ing, Time-Sharing Systems in Time Spiral; or,

How a TROLL Got DASELed", Proceedings of
Computer Science and Statistics: 8th Annual
Symposium on the Interface, Health Sciences
Computing Facility, University of California,
Los Angeles, 1975, p. 27.

[16] ACQS Overview, publication D0082; ACOL Refer-
ence Manual, publication D008S, NBER Computer
Research Center, 1975.

[17] DASEL User's Guide, publication D0084,WZ^'i(

Computer Research Center, 1975.

[18] D.L. Parnas, "On the Criteria To Be Used in

Decomposing Systems into Modules", Comm. ACM,

15 (1972), 1053.

[6] Project Independence Report, Federal Energy
Administration, Washington, D.C., GPO No.

4118-00029, November 1974.

[7] TROLL: An Introduction and Demonstration,
NBER Computer Research Center, 1975, and

references therein.

[8] SESAME: Design and Capabilities Overview,
NBER Computer Research Center, 1974, and

references therein.

170

Data Base Management Techniques for Mathematical Programming

E.H. Bonczek, C.W. Holsapple, A.B. Whinston
Purdue University

Supported in part by OWRT Grant # 6538-62-I3IO

ABSTRACT

This paper describes the fundamental
concepts of data base management and
proceeds to suggest the utility of
these concepts for the data handling
aspects of mathematical programming.
A general network-based data manage-
ment system is used to Illustrate
data structure definition, data ma-
nipulation and non-procedural query
capabilities with respect to math
programming. The emphasis is upon
flexibility and convenience for both
the implementors and users of mathe-
matical programming algorithms.

Implementation of mathematical programming
algorithms entails the storage and manip\ilat ion

of large volumes of data. Our principal objective
is to suggest ways in which both the implementors
and users of mathematical programming may benefit
from developments in the growing field of data
base management. For implementors, data base
management can provide powerful data storage
mechanisms and facile data manipulation capabil-
ities. The storage mechanisms are powerful with
respect to their capacities to handle complex data
relationships and both numeric and non-numeric
data within a single data structure. The data
manipulation capabilities allow access to the
data without concern for overlaying or management
of auxiliary storage devices. For users, data
base management can provide enhanced data main-
tenance facilities including data editing and
problem formulation.

[

We commence with a review of important
I data base terminology and concepts. These axe
utilized to illustrate specific ways in which
various issues of mathematical programming may
be treated with data base management techniques.
So, the emphasis is on data handling rather than
mathematical or computational details. Naturally,
the development of an algorithm will exploit the
the available data structure and data handling
capabilities. As will be noted shortly there are
several varieties of data bases; the network vari-
ety, which is the most flexible and general, will
be used for illustrative purposes. A langxiage is

presented which allows full manipulative capabili-
ties, with respect to data organized according to
network structures. This language is completely
independent of the types of data that are stored

and it may be used within the confines of such
commonplace languages as FORTRAN, ALGOL, or COBOL.
An example is provided demonstrating how this data
manipulation language can be used to accomplish
the pivot operation. Finally, a high-level, Eng-
lish-like, non-procedural query language is de-
scribed. The query language is independent of the

data structure and automatically interfaces appli-
cation routines with desired data.

DATA BASE CONCEPTS
A data base has two major attributes: its

logical structure and a collection of data values
which are stored according to that structure. The

logical structure (also called the schema) is ef-
fectively a blueprint describing what types of data
values may be included in the data base and how
each of these types is related to the other types.

The schema serves as the basis for all data mani-
pulation; addition, deletion, retrieval, or modi-
fication of a data value is accomplished by refe-
rences to its corresponding type in the logical
structure

.

Every data base structure can be described in
terms of three basic features: data item types,
record types, and sets. A particular schema is

composed of data item types which are related to
one another by record types and by sets. So data
item types are considered to be the most fundamen-
tal "building blocks" of a logical structure. Each
data item type is identified by a unique name and
indicates a distinct type of data. For instance
each of the data item types VARIABLE-ID, VARIABLE-
DESCRIPTION, CONSTRAINT-ID, CONSTRAINT-DESCRIPTION,
COEFFICIENT-VALUE, and COEFFICIENT-SOURCE indicates
a distinct type of data which we may want to in-
clude in a data base. Each data item type repre-
sents many occurrences of data values of that type
within the data base. It is important to under-
stand that a data item type is a component of the

schema, whereas a data value is an actual instance
of data of some type . For example , the data item
type VARIABLE-ID may represent the data value oc-
currences 'XI' through 'XlOO'.

A logical structure is formed by relating the
various data item types with each other. There are
two varieties of relationship: aggregation and
association. A record type is a named aggregate
of data item types. For example, the record type
VARIABLE may be composed of the data item types
VARIABLE-ID and VARIABLE-DESCRIPTION. Figure la
gives a pictorial representation of this, where the
record type is shown as a rectangle labeled VARIA-

171

BLE and enclosing the names of its data item types.

Just as a record type is an aggregate of data item

types, an occurrence of a record type is an aggre-

gate of data value occarrences (i.e., one data value

occurrence for each of the data item types which
constitute the record type). A sample occurrence

of the record tj-pe VAEIABLE is 'XI' and 'AMOUNT OF

RESOURCE 5 TO BE USED.

'

VAEIABLI:

VABIABLE-ID

VARIABLE-
DESCHIPTIOB

VARIABLE

VAEIABLE-ID

VASIABLE-
DESCFIPTION

COEFFICIENT
\

HAS

COEfTICIEHT-VAUIE

COEFFI CIENT -SOURCE

CURREKCY

b.

Figure 1. Example of Structural Components

of a Data Base

The second kind of relationship allows
record types (and therefore item types) to be
associated with each other by means of a set rela-
tion. This notion of a set was popularized by the
CODASYL Data Base Task Group (DBTG) Report of 1971
[1]. The DBTG notion of a set must not be con-
fused with the concept of a mathematical set; there
is no direct relation between the two. A set is
described in terms of an owner record type and a
member record type such that there is a one-to-
raany relationship between each occurrence of the
owner type and occurrences of the member record
type. But although there may be many (or one or
zero) member occurrences associated with each
owner occurrence , for a given set a particular
member occurrence may be associated with no more
than one occurrence of the owner record type.
Consider the record types COEFFICIENT and VAEI-
ABLE shown in Figure lb, where the former is an
aggregation of such data item types as COEFFI-
CIENT-VALUE and COEFFICIENT-SOURCE. The two
reocrd types are related via the set named HAS.
This set is denoted by an arrow pointing from its
owner record type (VARIABLE) to its member record
type (COEFFICIENT). Recalling the definition of a
set , we observe that each occurrence of VARIABLE
may have many occurrences of COEFFICIENT associated
with it, but a given occurrence of COEFFICIENT may
be associated with no more than one occurrence of
VARIABLE. Thus the set HAS properly describes the
relation between variables and coefficients in the

context of linear programming. If we reverse the

direction of the arrow in Figure lb, then the stru
ture no longer supports the relation between coeff

'

cients and variables which is inherent in lin-
ear programming. Thus an important issue in data
base management is the design of a schema that cor

rectly reflects the relationships among item types
Not only does a set provide information about

relationships among occiorrences of its owner and
member record types, but it also permits the mem-
ber occurrences associated with each owner occur-
rence to be logically ordered (for purposes of
storage and access) according to some criterion.
For example

,
given an owner occurrence of the set

HAS, its member occurrences may be ordered in an
ascending fashion according to the values of thein
respective COEFFICIENT-VALUE occurrences.

Figure 2 displays an example of record occur-
rences organized according to the schema of Figure:

lb. Three expressions are shown having five vari-,

ables and a total of twelve coefficients. In the

diagram beneath the expressions, circles denote
record occurrences of the type shown in the right

,

margin. The arrows show which member occurrences
'

are owned by each owner occurrence via the set in-^

dicated in the right margin. For purposes of dia-i

grammatic clarity, record occurrence details are
not shown; e.g. no data values of VARIABLE-DESCRIF.
TION are included in occurrences of the VARIABLE
record type. Also notice that no zero coefficient
are stored. The diagram clearly displays the idea
of a set. Each owner record type may be associate
with many member record occurrences, but no member
occurrence is associated with more than one owner
occurrence

.

Expression

El = 100X1 + 50X2 + 30X3 - 70X14 - 30X5

K2 o - 10X2 + 13x3 - ICXU - 90x5

E3 » 12X1 + 3Xlt + 10x5

KKC
SET Tlffi

COE!

Figure 2. An Occurrence Level Exairple

Based on the SchciLa of Figure lb.

It is readily apparent that the structiire of

Figures lb and 2 does not distinguish between co-

efficients of one expression and those of another.

In a subsequent section, we deomonstrate a manner

172

in which this shortcoming can be remedied.

A TAXONOMY OF DATA BASE STRUCTURES
Utilizing the concepts and terminology intro-

duced in the preceding section, we can illustrate .•

the varieties of data base structures which can .

exist. The most elementary data structure is com-

posed of a single record type . This is analogous
to a FORTRAN array. A slightly more complex circum-
stance occurs when data values are organized into a
number of disjoint (i.e., no set relationships) re-

cord types; this corresponds somewhat to a group of
FORTRAN arrays. Figure 3a shows a linear structure;

this means that each record type is the owner of at

nost one set and is the member of no more than one

set. Figure lb is an example of a linear structure.
\ data base may be composed of several disjoint lin-

ear structures. A more flexible structure, the
tree, is depicted in Figure 3^. Observe that in

this type of structure a record type may be the

Dwner of more than one set, but it can be the mem-
ber of at most one. Thus there is a xinique path
oetween amy two record types. Figure 3c shows a
network data structure. This is the most general
Df all data structures that are describable in

terms of the three features: data item type, re-
cord type and set . That is , the record type , lin-
2ar structure and tree are all special cases of a
network

.

of a path contains no reference to direction. The
direction of arcs (sets) within a path offers no
impediment to the traversal of record types. Fig-
ure 1+a presents a special type of path which may
exist in a network structure. The path between
VARIABLE and EXERESSION consists of the two sets

m.S and CONTAINS, related through the record type
COEFFICIENT. A path of this sort is used to indi-
cate a many-to-many relationship between variables
and expressions. That is, a variable participates
in many expressions and an expression contains many
variables. But each occurrence of COEFFICIENT is

'owned' by one occurrence of VARIABLE (via the set

has) and by one occurrence of EXPRESSION (via the
set contains). It, therefore, relates a variable
and an expression without violating the definition
of a set. This is exemplified in Figure kh, using
the expressions of Figure 2.

VEII)

VRDE

COEFFICIENT

Earn
EXDE

VALU
C030
CURB

—

>

—

>

—>

RECORD
TYPE

Figure 3- Varieties of Data Strucutre

Since a record type in a network may be the
Eember of many sets and also the owner of many sets,
nultiple paths may exist between two record types,
rhe term path indicates a sequence of sets which
ire related via record types, such that any two re-
cord types on the path are related by a unique sub-
sequence of the path's sets(i.e., the path contains
10 loops). It must be emphasized that although a
path is composed of directed arcs, the definition

COEFFICIEWr

Figure h. Example of a Many-to-Mar^ Relationship

LANGUAGE FOR DATA BASE DEFINITION
We preface this section with a few words of

caution. It cannot be asserted too strongly that
the diagrams in Figures 1 through k are not flow
charts or PERT diagrams; they can in no way be con-
sidered to represent algorithms. As aljready stated,

the diagrams with rectangles depict logical struc-
tures according to which data may be organized and
a diagram with circles gives specific examples of
data values which have been organized on the basis
of some schema. The diagrams of logical structures
provide a simple mechanism for representing and com-

municating about a data base. However, they are by
no means simplistic, but rather quite powerful.
This power arises from the capacity of a logiceil

structure to support the storage and access of data
values, in such a way that a data base user need

173

not be explictly concerned with the complicating

factors of physical storage and access. For in-

stance, the pairticular data base management system

that is examined in this paper is implemented in

terms of doubly liiU^ied lists vihich are stored on

a direct access device. The physical storage and

retrieval of data for this system requires extensive

pointer manipulation and the buffering of blocks of

data from the direct access device. However, the

typical data base user is concerned with none of
this; physical manipulations are automatically ac-
complished by submitting requests in terms of the

logical structure.
The logical structure of a data base is formal-

ly defined via a Data Description Language (DDL).

We illustrate this by using the DDL of a particular
data management system: the Generalized Planning
System(GPLAN) developed at Purdue University. The

DDL for the data structure of Figxire ka. is shown
in Figure 5. In this version of DDL all identifiers
ajre restricted to four characters in length. As
the figure indicates, the DDL is non-procedural.
Each record type is followed by the item types which
compose it. Each item type is defined in terms of
its name, its type (e.g. integer, character, real)
and its size. The size of a character item type is

given by its number of characters; other size spec-

ifications are in terms of computer words. The DDL
description of a schema serves as input to a DDL
Analyzer which produces schema tables. These ta-
bles are subsequently used by the Data Manipulation
Language (DML) for creating and accessing record
occurrences.

type

RECORD

irm

ITEM

RKCCM

ITEM

RECORD

ITEM

ITEM

SET

(WHER

SET

CWMEE

MEMBER

VAR

VRID

VRDE

KXPR

EXDE

COEF

coso

CURB

VAU)

HAS

VAB

COEF

CON

EX PR

COEF

INTEG

CHAR

IliTEC

CHAR

CHAR

CHAR

SEAL

1

20

1

20

16

U

1

VARIABLE-ID

VARIABLE- DESCRIPTION

EXPRESSION-ID

EXPRESSION-DESCRIPTION

COEFFICIENT-SOURCE

CURRENCY

VALUE

allow the data base user to perform the following
types of functions: l) open and close the data
base; 2) create and delete record occurrences; 3)
set currency indicators; k) add and remove record
occurrences from sets; 5) store and retrieve data !

from record occurrences; and 6) search through set(|

for particular record occurrences. In the GPLAN
implementation each DML command is a call to a
FORTRAN subroutine. Thus the DML can be considerec

as an extension to the FORTRAN language. This ex-

tended FORTRAN provides for all varieties of data
structures and furnishes powerful data handling
capacities.

In order to demonstrate DML commands and how
they may be used, a detailed discussion is providec|

of a FORTRAN subroutine which executes a pivot op-'j

eratlon. This subroutine assumes that a matrix hafi

been stored in a data base whose logical structure

is shown in Figure 6a. Figure 6b gives the DDL of 'i

this structure . We must point out that no storage

is allocated for any zero valued coefficient befor«|

during or after the pivot operation. Figure 7 dis^,

plays the pivot subroutine with input arguments for

the variable leaving the basis (BVAR) and the vari-i

able entering the basis (NBVAR).

SB ^

RECORD RASE

ITEM NAME CHAR I4

RECORD KONB

ITEM KAMN CHAR 1*

RECORD COEF

ITEM VAX. REAL 1

SE3 SB SORTED HAMB

OWNES SYST

MEMBER BASE

SETT SH SORTED NAMN

OWNER SIST

MEMBER NONB

SErr ROW

OWNER BASE

MEMBER COEF

SET COL

OTHER NONB

MEMBER COEF

SET SC

OWNER SYST

MEMBER COEF

b.

NAME OF BASIC VARIABLE

NAME OF NON-BASIC VASl!

COEFFICIEOT VALUE

Figure 6. Schema and DDL Used by

Al«arlthjn of H(Cure 7.

Figure 5« Example of Schema Specified

In Terms of DDL

DATA MANIPULATION LANGUAGE
The GPLAN Data Manipulation Language [2], [3]

consists of approximately seventy commands which

Hollerith arguments of DML commands refer to

data item types, record types or sets that are de-

fined in the schema; all other arguments are FOR-

TRAN variables. The FMSK command (Find Member basf

on Sort Key) locates the member of the set SB whosf

sort key (the data item type NAMB) has the value

given in the FORTRAN variable BVAR. Each record

occurrence in the data base is identified by its

own unique data base key. GKM (Get Key from Membe:

174

gets the key of the member of the set SB (i.e., the

member which has Just been located by FMSK) and
places that value in the FORTRAN variable KEYB.

Next, SFM (Set Field based on Member) sets the val-

ue of NAME in the member occurrence of SB to the

value of the FORTRAN variable NBVAR. In these

three commands, we have removed BVAR from the set

of basic variables, and we have entered NBVAR into

the basis. Similarly the next three commands re-

move NBVAR from the set of non-basic variables and
replaces it with BVAR; KEYB now contains the key
of the formerly basic variable and KEYN is the key

of the formerly non-basic variable.
Now we find and update the pivot element. The

command SOM (Set Owner of one set based on the Mem-
ber of another set) sets the owner of the set ROW,
based on the current member of the set SB. Recall
that the current member of the set SB is the form-
erly basic variable. As a result of the SOM, the

current member of ROW is an occiurrence of the record
type CQSF. The next two commands are used to deter-
mine if this coefficient was a member of the COL
(column) owned by the formerly non-basic variable.
SMM sets the member occurrence of COL based on the
current member of ROW. Since a set is a strictly
one -to-many relationship, having a member of COL
immediately gives us its unique owner. GKO gets
the key of this owner and returns it in the varia-
ble KEYC. We check KEYC against KEYN to find if we
have located the coefficient which was the member
of the COL owned by the previously non-basic vari-
able. If this is not the case, then we call FNM
(Find Next Member) which locates the next occ\ir-

rence of coefficient that was in the ROW of the
formerly basic variable. If there is no next member
then an error has occurred. If a next coefficient
of the formerly basic row is found, then as before,
we determine with which column that coefficient is

associated. Upon finding the pivot element, we up-

date it appropriately and retrieve its key (i.e.,

the address of its location in the data base).

In order to update coefficients in the pivot
column, we first set the owner of COL based on
KEYN by using the SOK command. Usage of the other
commands appearing in this procedure has already
been illustrated with the exception of DRM (De-

lete Record based on Member). As can be seen
from the code, if the updated value (y) of a co-
efficient is zero then DRM is used. This command
deletes the current member of COL (i.e., the oc-
currence of COEF whose updated value would have
been zero).

Upon _,udating an element in the pivot column
we proceed to update each coefficient in the col-

umn element's row. The commands for this are much
the same as those given above. There are two new
points here. FFM finds the first member of a spe-
cified set; if FNM returns a negative value in the
lERR variable then there are no more members in the
set being considered. As the code indicates, for
each non-zero coefficient in the pivot row, we up-
date the corresponding coefficient in the pivot col-
umn element's row. Now if there is no such corre-
sponding coefficient, (i.e., the coefficient was
zero) then one must be created and given the proper
value. The command CR creates a record occurrence
of the type specified in its first argument. So
statement 60 allocates storage for a record occ\ir-

rence of the type COEF; KEYNB is returned from CE
containing the unique data base key for the created
record occurrence. The next command, SFR (Set

Field of Record), inserts the value of X*Y into
the VAL field (i.e., data item type) of the just
created record occurrence of COEF. Finally this
record occurrence must be associated with the pro-
per row and column through the sets ROW and COL.

This is accomplished by AMS (Add Member to Set).
For instance , the final AMS shown adds the record
occurrence of COEF to the appropriate owner occur-
rence of the set COL.

If there is no need to create an occurrence of

COEF, then the existing tableau element is updated
in a straightforward manner. If the updated value
is zero then the record occurrence of COEF is dele-
ted; the space which it has occupied is returned to
a pool of available space for future uses of the CR
command. Finally after coefficients of the row
associated with each pivot column element (except
for the pivot element itself) are updated, the pi-
vot row coefficients are properly adjusted.

The purpose of the foregoing exajnple is to be

be suggestive of the nature and capacities of a
DML. A comprehensive description of the GPLAN DML,
including physical implementation and operation, is

given in [2]. Observe that the DML obviates any
need for overlays or paging with respect to data
storage . In the preceding example there was no

need to use an array. In addition the programmer
is not required to have explicit knowledge of any
physical pointers. In the pivot example, the pro-
grammer never sees a physical pointer; all data
manipulation is dealt with on a logical level using
-the logical structure of the schema. Each DML com-

SUBROUTINE PIVOT (EWAR.NBVAK)

INTEGER BVAR

MTA EPSLON/l.E-8/

TAKE BVAB OOT OF BASIS, REPUCE WITH NEVAR
:OEF

.

CALL mSK (2HSB, BVAR, lERR)

CALL GKM {?XB, KEYB, lERR

)

CALL SFM (UhNAMB, 2HSB, KBVAB, lERH)

CALL FMSK (2H3;, NEVAR, lERR)

CALL GKM {2K;N, KEYN, lERR)

CALL Sm (I4HNAMN, 2HSN, BVAB, lERB

)

FIND Airo UPDATE PIVOT ELEf-ENT

CALL SOM (3HR0K, 2HSB, lERB

)

10 CALL SUM (3HC0L, 3HRCW
,
lERE)

CALL CKO (3HC0L, KEYC, lERE)

IF (KEYC. B5. KEYN) GO TO 20

CALL FNM (3HE0W, lERR)

IF (lERR) 999,10,999

20 CALL am (3HVAL, 3HR0W, PIV, lERR)

CALL sm (3HVAL, 3HR0W, l./PIV, lERR)

CALL GKM (3HR0W, KEYP, IEBK)

ITERATE THRU, UPDATE PIVOT COLUMN, DIVIDE EACH COEFFICIENT W PIVDT COLUMN BY PIVOT ELEMENT

CALL SOK (3HC0L, KEYN, lERB)

30 CALL GKM (3HC0L, KEYC, lERR

)

IF (KEYC.ES KEYP) GO TO 105

CALL cm (3WAL, 3HC0L, Y, lERR)

Y > -Y/nv

IF (AES(Y) .OT.EPEliDN) CO ID 35

CALL DRM (3HC0L, lERH)

Y = 0.0

GO TO 30

35 CALL SFM (3HVAL, 3HC0L, Y, lERR)

DETERMINE KEY OF TttlS COLUMN ELEMENT'S ROW (CER)

36 CALL SMM C3HB0W, 3HC0L, lESB)

CALL GKO (311RCH, KEYB, lERR)

Figure 7. Pivot vlth HO,

175

NOW, ITERATE THRU THE PIVOT BOH

CALL SOK OlOlOH, KEYB, lEIW)

"40 CALL SUM (3I!C0L, 3HH0H, lERR)

CALL CKM (JliCOL, KEVrR, lEKI

)

IF (KEYIH, Bi. KJrifP) GO TO 95

CALL cm (31IVAL, 3HC0L, X, lERB)

DOES CER HAVE AN ENTRY IN THIS COLUMN

CALL FfM (3nC0L, lERR)

50 CALL SMM (3IIHOW, liHCOL, lERR)

CALL GKO (3HR0'.I, KEY, lERB)

IF (KirY.EQ. KBYR) CO TO 70

CALL FNW (3HCOL, lERR)

IF (lERR) 60, 50, 999

NO CORRiSPOTOINC; ENTRY - CREATE ONE

60 CALL CR (llHCOEF, KEYDB, lERR)

CALL SFB (3HVAL, llHCOEF, X'Y, lERR)

CALL AMS (2HSC, ItHCOEF, lERR

)

CALL SOK (3HR0W, KEYR, lEHR)

CALL AMS (3HRCW, UHCOEF, IERB)

CALL AMS (3HC0L, llHCOEF, lERR)

GO TO 90

UPDATE TABLEAU ELEMENT

70 CALL GfM (3IIVAL, 3HC0L, W, lERR)

W = W X<Y

IF (ARS (W). LT. EPSLON) GO TO OO

CALL SFM (3ir.'AL, 3HC0L, W, lERR)

00 TO 90

DELCTE ZERO OCCURRENCE

80 CALL DRM (31ICOL, lERR)

GO ON TO NEXT ELtKEiri' IN PIVOT ROW

90 CALL SMK (311R0vr, KEYPH, lERR)

95 CALL FNM (3HR0W, lERR)

IK (lERR) 100, llO, 999

FIND NEXT VALUE IN PIVOl' COLUMi

100 CALL SMK (3KC0L, KEYC, lERR)

105 CALL niM (3HC0L, lERR)

106 IF (lEPvB) no, 30, 999

nNALLY, UIDATE PIVOT ROW ITSELF

110 CALL SOK (3HR0W, KEYB, lERR

)

120 CALL GKM (3HRCW, KEYC, lERR)

IF (KEYC. EQ. KEYP) GO TO 130

CALL GFM (3HVAL, 3HR0W, X, IERB)

CALL SfX (3HVAL, 3HR0W, X/PIV, lERR)

130 CALL niK (3HB0W, lERR

)

IF (lERR) II4O, 120, 999

B!RORS

999 CAU EER (lERR, 3, 0)

CALL ABORT

lllO RETURN

Flcure V. (continuation) .

mand is a statement in terms of the logical struc-
ture and it automatically executes the cumbersome
physical details implied in that statement.

PRACTICAL CONSIDERATION
It is not suggested that the foregoing subrou-

tine be used in a practical sense. Since the tone
of this paper is basically tutorial, we have chosen
the familiar pivot operation as a vehicle for con-
veying the fundamental ideas and methods of data
structuring and data manipulation. The example
serves to illustrate all of the DML commands which

are typically used in process of data base manage-
ment. A major difficulty with the simplex method
is that an originally sparse matrix is usually al-
tered such that this sparseness vanishes. We there-
by lose the benefits a data base management system
can provide in terms of storing and manipulating
sparse matricies.

p^om a practical standpoint the revised sim-
plex method furnishes certain well-known computa-
tional advantages [7]. The initial problem descrip-
tion is not subject to modification; rather than
explicitly pivoting, we successively update the in-
verse of each new basis. The current bacis at any
step may be computed by taking the product of ele-
mentary matricies, were each elementary matrix is

the identity except for one column. Thus a data
structure capable of supporting the revised simplex
method must be able to store both the original prob-
lem matrix and the non-trivial columns of elemen-
tary matricies which compose the product form of
the basis inverse.

The structure of Figure h suffices for the

original problem. Recall tb-at no storage is allo-
cated for zero valued coefficients, so substantial
storage savings are reaJ-ized as problems tend
toward sparseness. There is also a savings in pro-
cessing; if a coefficient is not stored then it can-
not be considered for processing. These savings
result regardless of whether there exists a special
pattern of sparseness (e.g. band matricies) or whe-
ther there is no discernable pattern. That is, the
savings depend only upon the percentage of zero ele-

ments and not upon their arrangement.
There are several ways to store columns of the

elementary matricies. In situations where it is

undesirable or not possible to store these in core,

a data structure similar to that of Figure 8 could

be used. As the structure indicates, an occurrence

of PROBLEM has many occurrences of EXPRESSION, of

VARIABLE, and of INVERSE associated with it. The

former two describe the initial matrix, which is

not subject to change. At the beginning there are
no occurrences of INVERSE; however one occurrence

is created and added to the set ERODUCT"at each
iteration of the revised simplex algorithm. In

the DDL the data item type COLUMN-VALUE is defined
to be a vector. So a DML reference to an occur-

rence of this item will involve an entire vector of

column values. For instance the command GFM
(1+HCOLV, UHPROD, DATA, IERR) will fill the array
DATA with the data vector of values from COLV for

the current member of the set PROD. The position

of a given column in its elementary matrix is

stored as the value of COLUMN-NO. Finally we must

be able to access the columns in the order in which

tteir respective elementary matricies were generated.

Since we can declare (in the DDL) an ordering for

the members of a set, we specify PRODUCT to be or-

dered on a FIFO basis (First-In-First-Out). Thus

access to occurrences of INVERSE for a particular
occurrence of PROBLEM is based upon the order in

which those occurrences were originally added to

the PRODUCT set. It should be clear that the DML
commands used for implementation of the revised
simplex method in a data base context are the same

j

as those presented in the pivot example (except

for DRM, which is not needed for the revised sim-

plex method)

.

We realize of course that the revised simplex]

and the product form are well-known, and that num-

erous specialized data packing schemes have been

176

developed for treating spaxse matrlcies. What is

interesting is the independent development of data
handling mechanisms which are, in a sense, general
packing schemes. The term 'general' refers to the

ability of a single data base management system

(e.g., GPLAN) to support data (numeric and non-num-
eric) storage and analysis for a broad variety ap-

plication areas. Past and present projects involv-

ing the GPLAN data management system include the

areas of water quality control and planning, fore-

stry, health care, material requirements planning,
PERT management, and socio-economic research. Each
area requires data structures that embody that
area's relevant chsiracteristics . Typically, each
area also requires that several types of analysis
be performable. In the water quality area for in-

stance, analyses of the following types have been
found to be useful: simulations, linear program-
ming, non-linear programming, and various statisti-
cal analyses [8]. Programs to perform any of these
may be implemented with the DML.

ECTKESSIOK \\/

I'KOniTT (FRQD)

cnm-TPTTOT

IWVEBSE
COLUI-IN-nO

(COLN)
COLUMN -VALUE
(COLV)

Figure 8. possible Data Structure for the Revised Simplex

Method with Product form of the Basic Inverse.

We have indicated in the foregoing discussion
aow data base management techniques may be used by
programmers in LP development, in such a way that
2fficiencies of special data packing schemes are
realized. Similarly this same data manipulation
Language may be used to accomplish any other pro-
jrajranable analysis. Thus data base management
sools allow a single data base , containing both
lumeric and non-numeric data, to support requests
3f various users for a variety of analyses and re-
ports. An LP package is insufficient for this sort
5f task, although it may be quite efficient in what
.t does do. On the other hand, an installation
/hich possesses a data management system, can devise
.ts own LP routines without regard to special pack-
.ng schemes and buffering procedures for interface
<ith auxiliary memory. These are handled automa-
tically by the data management system, and its gen-
:ral packing scheme provides substantial savings in
;he event of sparseness. Another important feature
)f the data base management system is its capacity
;o support a query system that allows non-program-
aers to utilize a data base and analytic routines.

QUERY LANGUAGE
Whereas GPLAN/DML requires that a user write

programs in a host language with the utilization
of pertinent DML commands, the GPLAN Query System
does not require one to be a programmer in order to
utilize the data base for purposes of display or

execution of large application routines. The user
needs merely to specify what is to be done; there
is no statement of the procedures to be followed in

order to accomplish the task. Examples of very sim-
ple commands are

LIST COEFFICIENT. SOURCE FOR VARIABLE. ID = 'XI' and
CONSTRAINT. ID = 'R3

'

LIST VARIABLE. ID AND CONSTRAINT . ID FOR COEFFICIENT.
SOURCE = 'TEST 1'

Upon receipt of such commands, the query system
analyzes the request, sets up the necessary DML com-

mands, executes those commands and supplies the re-
quested data values. The systeLi is designed such
that it permits the selective (or unconditional)
retrieval of any data configuration. Moreover, it

permits execution of application routines using any
desired (and germane) data from the data base. The
fundamental query syntax is

<COMMAND> <RETRmAL CLAUSE> <CONDITIONAL CLAUSE>

The command indicates which application routine is

to be executed; in the queries above, LIST indicates
that a report generator is to be executed. In the
retrieval clause the user specifies what data are
to be used for execution; this retrieval is depen-
dent on conditions specified in the conditional
clause

.

A user of the query language is allowed to pre-
sent arbitrarily complex retrieval clauses. Not

only may this clause contain the names of data items

to be retrieved, but arithnatic operations (using
literals or data items) and both single and multi-
variate functions may also be introduced. The con-
ditional clause is composed of a Boolean expression
which may contain data item names, literals, arith-
metic operators, relational operators, logical op-
erators, single-variable functions and multivariate
functions. The query language also permits the
use of noise words, synonyms and various other cos-

metic features for the convenience of the user.
A conceptual overview of the standard GPLAN

system is portrayed in Figure 9. The library of
application routines is composed of two sections:

standard routines and special routines. The stand-
ard library of applications consists of routines
to generate reports and plots and to perform linear
regressions, statistical analyses, and data modifi-
cation. The library of special applications may
include such routines as special report generators,
linear and non-linear optimization programs. The
issue of interfacing such optimization routines
with a network data base is discussed in {_h^. One

method of interface has been demonstrated in the
pivot example.

DATA HANDLING FOR MATHEMATICAL PROGRAMMING
In this section we examine the implications of

data base management techniques for those who im-

plement mathematical prograjmning algorithms and for
those who make use of such implementations. In
so doing, we utilize the distinctive GPLAN features

177

USER

I

(interactive or batch
mode)

Query System

(gpian/qs)

Application 1

Application 2

Application N

Figure 9. OPUU) SyEtem

of the network data base structure , .the language
for non-programmer interface with a data base (DML)
and the query language that allows non-programmers
to effectively use a data base and pertinent appli-
cation routines. Not only does the GPLAN Frame-
work allow for the obvious, i.e., the solution of
linear and non-linear optimization problems; it also
addresses the following considerations, which may
perhaps be more subtle , but are certainly of prac-
tical significance [5].

1. The resolution of erroneous formulations.
2. Treatment of coefficients which are them-

selves functions.

3. Situations wherein matrices contain com-
mon data.

k. Storage of sparse matrices.
5. Utilization of data to produce timely,

non-routine reports other than the report
furnished by a general mathematical pro-
gramming routine.

6. Ability of a data base to support other
varieties of application routines (e.g.,
simulations, regressions, etc.) in addi-
tion to mathematical programming.

The modus operandi for effective accomoda-
tion of each of these attributes may be found in
[U"]. Only a very brief treatment can be given here.
With respect to the first point, when erroneous co-
efficients or improper formulation is suspected the
ready availability of information with regard to co-
efficient sources and currency is important. This
has obvious implications for the way in which data
is organized and retrieved. In this connection the
query system provides a convenient tool for data
editing.

Concerning the second attribute, it is not un-
common that coefficients are the results of fvmc-
tions that have been evaluated on the basis of some
other data. There may even be alternate functional

forms (or alternate data sets for evaluating a func
tion) which suggests the need for a facile method
of interfacing desired functions with the math pro-
gramming routines which depend upon them. Indeed
a lineajr programming routine may be viewed as a
function that requires (recurring) evaluation in
order to execute a non-linear programming routine
[6], One technique for handling this situation in-
volves an elimination of the distinction between
data and function, with respect to data base con-
struction; i.e. , functions aje treated as data and
included in the data base structure

.

OBJITTIVE -FUNC TION

PROBUM-ID OBJ-FUN-ID
^ mn

/ \

VARIABLE-ID
VARIABLE-

DESCRIPTIOl

CONSTRAINT
CONGTRAINT-H
CONSTRAINT-
DESCRHTIOB

hSLATLCli

COEFFICIEl.'T

COEFFICIENT-
VALUE

"^COEFl'IC lENT-
SOURCE

OBJICTIVE-FUNCnON
jaLQiLI£TENT_
0-F-COEFH-
CDJiT VALUE
0-F<OEFFI-
CIET.'T SOURCE

Figure 10. Extended Logical Data Structure

Attribute number three is important for cases
where there is interest in several matrices, which
ajre not entirely distinct with respect to con-
straints and variables. For e>cample, we may be in-
vestigating a problem which has multiple plausible
formulations, some pairs of which share constraintsi

(and therefore variable^. Care must be taken to
assure that updates to constraints in one matrix
are reflected in other matrices which share these
constraints; this is not a trivial matter where
large volumes of data are involved. Data struc-
ture that can support this situation is given in

Figure 10. This structure allows us to store a
constraint only once, and at the same time indicate]

that it is to be included in an arbitrary number
or matrices. This avoidance of redundancy averts
the potential for inconsistencies. A detailed
description of this structure at the occurrence
level may be found [U], Figure 11 displays verba-
tim examples of the kinds of queries which could
be submitted, if the data structure is as shown in

Figure 10. The first three queries show how que-
ries may be phrased to locate and rectify errors ir|

the data. The next two queries demonstrate ways ir

178

.ch are LP problems may be formulated for execu-

in. The final query asks for basic statistics on

\ coefficient values of variable U97 in matrix ?•

r CONSTRAINT. ID, COEmCIENT.VAME AND COEFFICIIUT. SOURCE TOR VARIABI^.ID = ISW,

fflCIENT. VALUE < 1.0 OR COQTICIEIJT.VALUE > 9-327, AMD MATRIX. ID = h

KS COKFFICIBtT.VALUE TO 8.27 WEN VARIABLE. ID = 13l*7, CONSTRAINT. ID = 39,

HATRDC-ID = "l

SGE COEFTICIENT. VALUE TO LOG (COEFFICIENT. VALUE)*!. lU IF VARIABLE.ID = 58

MATRIX. ID = 21

IP IDR MATRIX. ID = 17 AND OBJ-FUN-ID = 5

it FOR PROBLEM. ID = 38

r COKFFICIENT.VALUE FOR VARIABLE.ID = '197 AMD MATRIX. ID = 7

Figure 11. Sample Queries

Many real-world applications entail the utili-
;ion of sparse matrices. In the effort to avoid
(ring zeros, many schemes have been devised for

;king (ajid unpacking) non-zero coefficients 'into

rays. As already shown in the pivot example, the

,AN concept allows all matrices (sparse or other-

j;e) to be accomodated by a single simple logical
'ucture, which realizes substantial storage sav-

;s if a matrix happens to be sparse. Only non-

•o coefficients need to be stored; and storage

ice is neither used nor even allocated for zero
ifficients

.

Presumably managerial decisions are not based
i.ey upon the output of mathematical programming
iitines. The fifth consideration indicates the
jid for a facility to generate other reports
i)m a data base and frequently these are non-stan-
|*d in terms of the types and configurations of
!;a that are retrieved. The GPLAN query system
i.ows the selective retrieval of any configrjration

data as a result of typing an English-like,
i-procedural query at a computer terminal. This
riates the necessity of writing a program every
le a new tjrpe of report is needed. This con-

st can be extended to include not only retrieval,
; also the execution of large application rou
les that are not of the mathematical programming
•iety. Furthermore, such executions can be accom-
Lshed through the query language. The result is

situation wherein a network data base can support
3road spectrum of analyses for both programmers
1 non-programming users.

TCLUSION
The major intent has been to introduce fUnda-

ital concepts from the realm of data base manage

-

it and to suggest their potential for contribution
the solution of mathematical programming problems.
Ls contribution is considered with respect to both
; implementors and users of mathematical program-
ig algorithms. GPLAN, a generalized data base man-
jment and query system, was described. It is

sential to observe that there is invariably a
ideoff between specialized and general systems.
; former are generally more efficient due to their
nited flexibility; the latter axe typically not
efficient due to their great flexibility. Both
efficiency and inflexibility have costs. GPLAN
Dvides a single mechanism which may be used to
sat the spectrum of special cases and to support
mriety of applications and users working with
2 same data base. As an exercise, this general
stem could be tailored to meet only special

needs, in circumstances where flexibility is unim-
portajit and efficiency is paramount.

HistoricaJJLy , the trend has been for each math
programming implementor to, in effect, devise data
management routines. We submit that advances (both
past and future) in the data base management field
can provide valuable concepts, techniques and tools
for the data handling aspects of mathematical pro-
gramming.

REFERENCES

1. CODASYL: Data Base Task Group Report, ACM,
April, 1971.

2. Haseman, W.D. and Whinston, A.B., Introduction
to Data Management , Richard D. Irwin, Homewood,

IL, 1977.

3. Bonczek, R.H., Holsapple, C.W., and Whinston,

A.B., "Extensions and Corrections for the
CODASYL Approach to Data Base Management," In-

ternational Journal of Information Systems
(forthcoming) , 1976

.

k. Bonczek, R.H., Holsapple, C.W., and Whinston,

A.B., "Mathematical Programming Within the

Context of a Generalized Data Base Management
System," Krannert Institute Paper No. 578,
Purdue University, November 1976.

5. White, W.W. , "A Status Report on Computing Al-
gorithms for Mathematical Programming," ACM

Computing Surveys ,
September 1973.

6. Graves, G., Pingry, D. and Whinston, A.,
"Water Quality Control: Non-linear Programming
Algorithm," Revue Francaise d'Automatique, In-

formatique et Recherche Operationnelle , Oct., 1972

7. Dantzig, G.B., Linear Programming and Extensions ,

Princeton University Press, I968.

8. Holsapple, C.W., and Whinston, A.B., "A Deci-
sion Support System for Area-Wide Water Quality
Planning," Socio-Economic Planning Sciences ,

forthcoming.

179

COVERGENCE OF THE DIAGONALIZED
METHOD OF MULTIPLIERS

R. H. Byrd
DEPARTMENT OF MATHEMATICAL SCIENCES

The Johns Hopkins University

Abstract . Recently, modifications of the method
of multipliers have been proposed which do not
require exact minimization in the intermediate

unconstrained problem. It can be shown that any
Lagrange multiplier updating scheme which yields
quadratic convergence with exact minimization
retains this rate if only two steps of a Newton
iteration are taken. It can also be shown that a

quasi-Newton iteration in conjunction with the

multiplier update proposed by Tapia yields a

superlinearly convergent algorithm. If the
penalty constant is allower to increase to

infinity at a certain rate, simpler multiplier
update formulas will exhibit good convergence
rates

.

Recently there has been much research in

solution of constrained optimization problems by
the method of multipliers. This method was
first proposed by Hestenes [1] and by Powell [2]

independently in 1969. It involves solving the

problem

minimize f(x)

such that g(x) = 0

n 1 n m
where f : R ->- R and g: r ^ R by suc-
cessively minimizing the augmented Lagrangian

L(x,X,c)=f(x) +\'^g (x) +hcg{x) '^g (x)

in X. If X* is the solution of problem (1)

then there exists a unique A*€ R* such that
V L(x,*,A*,c) =0, where V we mean the
X X

gradient taken with respect to the variable x.

We will assume throughout that m < n, that
Vg(x*) is of full rank and that V^L(x*,A*,c)
is invertible. It can be shown. Buys [3] that
there exists a constant c° such that for
c > c , X* is an unconstrained local minimum
of L(x*,A*,c) and for X in a neighborhood
of X*, L(x,A,c) has a local minimum in x.

The method of multipliers precedes as

follows

:

Step Choose an initial approximation
A to A*, and an initial c .

Step 2: Choose x^^ tg be the minimizer
of L(x, A , c)

,

(1)

Step 3: Let
k+1 ^, k ,k k,

P (x , A ,c)

,k+l k k k+1
A = U{x , A ,c)

Step 4: Return to step 3 with k = k+1.

The function U may be referred to as a multi-
plier update formula. The function P is some-
times chosen simply so that c'^ is large enough

that a minimizer of L exists, while for other
schemes c'^ tends to infinity near the solution.

A number of multiplier update formulas have
been proposed. We consider the following:

U^p(x,A,c) = A+cg(x) (2)

U„(x,A,c) = A+[Vg(x)'^V^^L{x,A,c)Vg(x)] ^g(x)

(3)

U„(x,A,c) = -[Vg(x)'^Vg(x)]"'''Vg(x)'^Vf (x) (4)

U^(x,A,c) = [Vg(x) VL(x,A,c)'-'"Vg(x)]~-^

[g(x) - Vg(x)'^V^^L(x,A,c)~"'-Vf (x)] -cg(k)

(5)

one originally proposed ta

Rupp [4] , and Bertsekas
Formula (2) is th

Hestenes and by Powell
[5] have shown that for c*^ sufficiently large
the Hestenes-Powell update gives arbitrarily
good linear convergence. Formula (3) was propose
by Buys [3] who showed that, if x'^ is considere
as a function of A, (3) is equivalent to one
Newton iteration on the problem g(x(A)) = 0,

and this gives quadratic convergence. Formula
(4) is just the projection of Vf onto the
linear span of Vg^ (x) , . . . , Vg^^^ (x) . Its use has
been proposed by Haarhoff and Buys [6] , Miele
et at [7] , and Fletcher [8] . Formula (5) was
originally proposed by Tapia [9] as a consequence
of a general theory for solving constrained
problems

.

,cNFinding x which minimizes L(x,A
exactly is of course impossible and even finding
a good approximation may be very costly. It is

natural to consider algorithms involving simple
approximatations to the minimizer.

m

Bertsekas [5] considers an implementation

I

180

with the Hestenes-Powell update where the minimi-
zation is carried out until || V l|| is less than
some tolerance, and shows that for the tolerance
correctly chosen one may obtain convergence as

good as in the case of exact minimization although

nothing may be said about how difficult that
tolerance is to achieve for large penalty
constants

.

Another strategy is to take a small number of

iterations of a minimization algorithm, a strategy

referred to by Tapia as a diagonalized multiplier
method [9] . Such a strategy has also been pro-
posed by Haarhoff and Buys [7] and implemented
by Miele et at [6]

.

We consider first the case of algorithms
implemented with bounded penalty constants i .e

.

c'^ < c for all k. If a multiplier update
formula such as that of Buys is used one needs
second order information about the functions
involved so it is reasonable to consider methods
in the unconstrained minimization phase which
generate and use the second derivative or an

approximation to it.

k+1
We will refer to an algorithm where the point

X is determined by j steps of some iterative
algorithm as a j step diagonalization

.

Based on different considerations Tapia
[9,10,11] proposed an algorithm which is equiva-
lent to a one-step diagonalization using Newton's
method. That is, the point x"^ is determined by

,c)1 V L(x ,X ,c)—' VV

and A is chosen according to Tapia' s update:

X'^ = U(x'^~"'",X,c'^) where X = U (x'^"^) . Tapia
shows this method has the followSng convergence
properties (11)

.

Proposition 1 . If the one-step diagonalized
method of multipliers is implemented with T^pia's
update and Newton's method, the sequence {x }

is uniformly quadratically convergent to the

solution x*.

update behaves under diagonalization. If we
consider the question of quadratic convergence in
the space of both variables , x and X we get the
following result.

Proposition 2 . Consider the method of multiplier
implemented with a given multiplier update formul
and with bounded penalty constants. Uniform
quadratic convergence in (x,X) occurs with
exact minimization if and only if it occurs with
a two-step diagonalization using Newton's method.

Proof . See [12].

Since both the Tapia update and the Buys
update give quadratic convergence for exact
minimization, it follows then that one may get
the same convergence for a two-step diagonali-
zation with Newton's method, and for such update
it seems nothing is contributed to convergence
rate by further iterations.

Since using Newton's method required
knowledge of the second derivatives of the
finctions involved and requires a large number
of function evaluations at each step it would be
advantageous if a quasi-Newton method could be
used in place of Newton's method in the deter-
mination of x'^. If this were done with one of
the quadratically convergent updates such as that
of Tapia or Buys it would be necessary to use an

approximation to V^L(x,X,c) in the multiplier
update formula. Consider then the following
iteration

:

,k+l

k+1

k+1

'k+l

=
1_

Vg(x'^)Bj^-^Vg(x'^)J ''LgCx'^)

- Vglx'^j^B^Vf (x'^)] -c^gix")

k -1„
,
k k+1 k,x-B VL(x,X ,c)

k x

„^ k+1 k „ ^
, k+1 k+1 k^Vx -x,VL(x ,X ,c)

^ X

X k

^, k+1 ,k+l k,
P(x ,X ,c)

(6)

This result is obtained by noting that
Tapia' s algorithm is essentially equivalent to

using Newton's method on the problem
V L(x,X,c) = 0, g(x) = 0.
x

By uniform quadratic convergence of an

algorithm we mean there exist constants
M, V > 0 such that if || x° - x*|| < v, then

,k+l _ V* II <: M II
^'^ _ X* li

M for all k.

The notion of uniform quadratic convergence
is slightly stronger than Q-quadratic convergence,
but almost all iterations which are Q-quadrat-
ically convergent are uniformly quadratically
convergent Using the projection formula for X

allows us to get uniform quadratic conver-
gence. If we let X

quadratic convergence of {x }

.

x'^ ' j^we only get R-

Since both the Buys multiplier update
formula and the Tapia formula give quadratic
convergence when x'^ is obtained by exact
minimization it is natural to ask how the Buys

The function V(s,y,B) is the Hessian update
function for some quasi Newton method. The
analysis of such an algorithm is somewhat
different for each possible Hessian update
function but Tapia has proved the following
result for standard quasi-Newton methods [11]

.

Proposition 3 . Consider the method of multi-
pliers implemented as in (6) with bounded penalty
constants and with the function V being any one
of the Broyden, Davidon-Fletcher-Powell , Broyden-
Fletcher-Goldfarb-Shanno or Powell Symmetric
Broyden, Hessian update functions. The sequence
of points {x'^,X'^) will then be locally and
superlinearly convergent to (x*,X*)

.

This result shows that the algorithm
ourlined in (6) is a relatively efficient
strategy. It is possible that there would be
some advantage in taking morej^than one quasi-
Newton step in determining x , however by this
result the convergence rate would still be
superlinear

.

181

It seems likely that if a quasi-Newton
method were used with the Buys update in some
diagonalized scheme that superlinear convergence
would result. However, it has not been possible
to prove this yet. It is interesting to note
that according to the above result, the matrix
Bj. works well as an approximation to the Hessian
in the multiplier update formula even though it
is known that Bj^ does not converge to the
Hessian in general.

Up to this point we have been concerned
with algorithms where the penalty constant is
bounded throughout the iteration. However,
it is well known that in some cases the rate of
convergence is improved as the penalty constant
goes to infinity. As mentioned prefiously
Bertsekas [5] shows arbitrarily first linear
convergence for exact and approximate mimimization
in these cases. Miele et al [6] have done
numerical experiments involving the use of the
projection update (equation 5) in various diag-
onalized schemes using Newton's methods and
quasi-Newton methods . By increasing the penalty
constant at the appropriate rate they get con-
vergence which appears R- superlinear

.

In addition to the projection update we
consider multiplier update formulas U(x,X,c) with
the property

U(x*,A*,c) = 0.

We will refer to such formulas as local multiplier
approximation formulas. Both the projection
update and the Tapia update fall into this class.
Note that it is essential that such a formula
have the property U(x*,X*,c) = A*.

In the case of exact minimization, as the
penalty constant c goes to infinity the
various updates mentioned tend to merge to-
gether and all give good convergence. In the
case of local approximation formulas, the author
shows in^[l3]^ that if c'^ is chosen to be

yil g(x
) II

" where y > o and 0 < a < 1 the
iteration is locally convergent with Q-order
1 + a.

However if such a scheme for choosing
penalty constants is used in a one-step
diagonalization with Newton's method, con-
vergence becomes slower when a is close to
one. If a = 1 the method is very slow and
may not converge at all . The problem is that
when the penalty constant increases too fast
the Newton iteration becomes unstable. This slow
convergence occurs even if the normally qua-
dratically convergent Tapia update is used.

These difficulties may be avoided in a
way leading to efficient algorithms in two
ways. If a two step diagonalization is used one
gets again the same convergence rate as with
exact minimization. At best with a = 1 the
method is quadratically convergent. Alternatively
a one step diagonalization may be used with
a = h in this case the order of convergence is 1^.
This can be shown to be the optimum value of a
for a one step diagonalization [13]

.

The above development seems to indicate tha<

a one or two step diagonalization is as effective

as exact minimization in ensuring fast con-

vergence . Alternatively if one is using a

scheme demanding a certain degree of exactness
in the minimizer these results give some

indication of how much effort is required to

achieve this exactness.

BIBLIOGRAPHY

1. Hestenes, M.R., "Multiplier and gradient
me thods ,

" Journal of Optimization Theory anc

Applications , Vol 4, pp. 303-320, 1969.

2. Powell, M.J.D., "A method for nonlinear
constraints in minimization problems," in

Optimization , Edited by R. Fletcher, Academi
Press, London, England, 1969.

3. Buys, J.D., "Dual algorithms for constrained
optimization," Ph.D. thesis, Rijksuni-
versiteit te Leiden, the Netherlands, 1972.

4. Rupp, R.D., "On the combination of the multi

plier method of Hestenes and Powell with
Newton's method," Journal of Optimization
Theory and Applications , Vol. 15, pp. 167-

187, 1975.

5. Bertsekas, D.P., "Combined primal dual and

penalty methods for constrained minimi-
zation," SIAM Journal on Control , Vol. 13,

pp. 521-543, 1975.

6. Miele, A., Moseley, P.E., Levy, A.V., and

Coggins , G.M., "On the method of multi-
pliers for mathematical programming
problems," Journal of Optimization Theory

and Applications , Vol. 10, pp. 1-33, 1972.

7. Haarhoff, P.D., and Buys, J.D., "A new me the

for the optimization of a nonlinear functior,

subject to nonlinear constraints, " Computinc

Journal , Vol. 13, pp. 178-184, 1970.

8. Fletcher, R. , "An ideal penalty function

for constrained optimization," Journal of

the Institute of Mathematics and its

Applications , Vol. 15, pp. 319-342, 1975

.

9. Tapia, R.A., "Newton's method for optimi-

zation problems with equality constraints," ,

SIAM Journal on Numerical Analysis , Vol. 11,!

pp. 874-886, 1974.

10. Tapia, R.A., "Newton's method for problems

with equality constraints," SIAM Journal on

Numerical Analysis , Vol. 11, pp. 174-196,

19 74.

11. Tapia, R.A., "Diagonalized Multiplier method

and Quasi-Newton methods for constrained
optimization," Department of Mathematical
Sciences Technical Report, Rice University,

Houston, Texas, June 1975, to appear in

Journal of Optimization Theory and Appli -

cations

.

182

12. Byrd, R.H. "Local Convergence of the Diag-
onalized Method of Multipliers." Submitted
to Journal of Optimization Theory and
Applications .

13. Byrd, R. H., "Local Convergence of the Diag-
onalized Method of Multipliers," Ph.D.
thesis. Rice University, Houston, Texas,
1976.

183

DIRECT APPROACHES FOR THE MINIMAX PROBLEM

A.R. Conn
Department of Combinatorics and Optimization

University of Waterloo

Introduction .

Consider a system of m real, twice contin-

uously dif ferentiable , and in general, nonlinear,

functions

f.(x), i e [M],

where [M] = {l,2,3...,m} is an index set. Let

(1)M (x) = Max f.(x),
^ ie[M]

T
X = [x ,x , . .

.
,x] .

i z n

The problem under consideration is to locate a

point Xq such that

M^(Xq) < M^(x) : P

for all points x, at least in a neighbourhood of

The objective function M^ (x) has discont-

inuous first partial derivatives at points where
two or more of the functions f_j^(x) are equal to

the maximum. This is true even if the f.(x)
1

have continuous first partial derivatives.
As an illustration, figure 1 shows the

contours for M^(x) for a purely linear case, viz.

Exampl e 1 .

f^ = - lOx^ - 2.5x2

'2 - - 20x„

lOx^ + 20x2 AO.

The points of discontinuity are indicated in
figure 1 by dotted lines.

We first note that because of the discontin-
uities in the derivative the well-known gradient
type methods cannot be used directly to minimize
Mj(x)

.

Secondly, we note that an equivalent formul-
ation of the problem P^ is (see for example [17])

Minimize z

,5such that, z - f^(x) > 0, i e [M]

where z is a new independent variable.

But in general, P* is just a "standard" non-

linear programming problem in n+1 variables, and

can be solved accordingly. In fact, this is

exactly the approach taken by [16].

Thirdly we note, (as is easy to show, on

applying the well-known Kuhn-Tucker conditions to

P*) that a minimax optimum at x^ can be character-

ized (see, for example [17]) by

Figure 1 Contours of M^(x) for Example 1.

i£E(x ,0)

(Vf.(x^)
8f(V
3x,

'

0,

3x
^

and

where

ieE(xQ,0)
u. = 1.

u. > 0, 1 £ E(Xq, 0),

E(x,e) = {ie[M]|M^(x) - f^(x) <e}.

(23;

(2b;

(2c|

(2d)

(i.e., E(x,£) is the index set of those functions
that are within e of M^ (x) at x)

.

We shall now formulate informally an approach
to the minimax problem based on three properties
cited above.

Suppose we are at x

that f^(x) , i = 1, . .

.

Furthermore, suppose

take on the maximum

184

k
unction value M (x). As in most optimization

^
pproaches our aim is to determine a direction, d ,

ay, such that M^, at x , decreases in this

.irection. It then remains to determine how far

,o step in the chosen direction and the iteration

s defined. It is clear that since the f ,

^ 1,. ,q are less than M^(x), locally at

east, we are only concerned with those functions

i = l,...,q. We shall term these functions

;iie active functions. ^~

Let us suppose we find a direction d such

:hat f^, say, decreases. If it should happen that

.n addition, f^,...,f^ decrease, then we have a

However, suppose that

increases. Then, as

will in fact increase. Thus what

lescent direction for .

ilthough f^ decreases,

f
Ls obvious, M

je must do is decrease all the active functions

simultaneously

.

If we now recall the non-linear programming

[ormulation of the problem, we observe that active

runctions correspond to active constraints and

that f^ increasing, for example, while z is

decreasing, amounts to violating a constraint

(assuming f was an active function at the start
2

3f the iteration and z = M^(x)). Thus a

sufficient condition that we have a suitable

lescent direction for is equivalent to

insuring that no active constraints are violated.

[That this is not a necessary condition we will

jee shortly] . This situation is a familiar

occurrence in the context of mathematical

Drogramming (see, for example [18] and [15]) and

iDne approach to resolving the difficulty is via

Drojections. [See [8] for further references and

ietails] . ,

An elementary exposition on projection

.latrices now follows: Suppose we have the

:ollowing basis for e'^:

j

Uhere
q q+i

b^a. = 0 Vi,j.
1 3

;"onsider the following nxn matrix

P = I
T -IT

N(N N) N ,
(3)

,jhere N = [a . . .a] , (i . e. , N is an n=<q matrix

if rank q) and I*^ is the nxn identity matrix.

Pa. = 0, Pb. = b. Vi,j
2 J 1 1

.'urthermore , P = P and we note that

It is easily seen that

;iny vector in E
space spanned by

into Q ,

Now suppose we take P

|>^(z ,x)a

.

1

i?here

i)^(z,x) = z

where Q

wi th

i = 1,...,

f .(x)
1

P takes

denotes the

ind is as defined in equation (15) below,
1

[i.e., (j) . > 0 are the inequality constraints of

P*] . We note that a., and thus P, is independent

of z. Furthermore, let us define d £ \R^^^ by

where

d = - Pe,

[1,0,. ..,0] e £ IK
n+1

(5)

(6)

Now, in the case where the f . are linear, we

have, by Taylor's theorem

[z+Ad ,x+Ad
1

where d

But, by construction

(z,x) + Ad"*" - A[d I'^Vf .(x),(7)

[d"^:d], d"^,A € R^,

d"*" - [d]^Vf . (x) = d'^^

A > 0.

0 i = 1,

Thus

fi^[z+Ad , x+Ad]

More generally, for

f o". concave f .

:z,x] i = l,...,q. (8)

= l,...,q, we have that,

[z+Ad , x+Ad] > (t>.(z,x) i = 1, (9)

That is, in the case where the active functions are

linear or concave, if the search direction is given

by (5), no active constraints in the equivalent non-

linear programming formulation are violated.
T 2

Furthermore, since e d = -
|

|

Pe
|

|

< 0, if Pe 0

[which we may assume, for the present], d is a

descent direction for z. Thus our objective is

realized, i.e., we are reducing .

Referring to figure 1, let us suppose we are

at the point x*^ where f^ (x) = f.,(x) = M^(x). Thewhere ^-^^.^z

corresponding descent direction for
f

M^, d

indicated on the figure. We see that it is an
ideal choice. In particular, we see that, locally
at least, the indices of the active functions do

not change. This result, of course, is an

immediate consequence of equation (8).

In practice, not all the f.'s i = l,...,q

need to be put into the projection and, in

particular, it is possible to ensure that Pe ?^ 0

and thus find a descent direction that does not
violate those constraints not in the projection,
unless optimality has already been achieved. That
this is so is a consequence of the equations (2a),

(2b), (2c) and (2d). [A point corresponding to

such a situation is indicated by y on figure 2

below. That Pe = 0 in this case is easy to see
since f^(y) = f^Cy) = f^(y). We can, in fact.fjCy)

remove Vcfi^ from N in this case to obtain

descent]

.

We have noted above that ensuring no active
constraints are violated in the corresponding non-
linear programming problem is a sufficient
condition for a suitable descent direction for .

As we will now indicate, it is not a necessary
condition. Furthermore, in such a case ,our solution
to the problem of finding a descent direction to M
via the projection matrix P is still suitable.

Suppose our active functions are f and

f

2'

185

Example 2.
^ 4

f^(x) = +

f2(x) = + (2-X2)^

f^(x) = 2 exp (-x^ + x^)

.

Figure 2 . Contours of M (x) for Example 2.

both convex functions. That is q = 2,

Mj(x) = f^(x) = f^Cx) .

Choose d as in (5). The corresponding

result to (9) is

({>_.[z+Xd"*", x+Ad~] < (|)^(z,x) i = 1,2 (10)

[since ()>
. is now concave].

However, by construction
T +

e d < 0, i.e. d < 0

and

i.e.,

and

i.e. ,

dVd).(z,x)=0 1 = 1,2,
1

d"^ - [d]^Vf_^(x) = 0

d"^ - [d'l^Vf^Cx) = 0,

[d I'^Vf^Cx) = [d]^Vf^(x) = d"^ < 0, (11)

or, in other words, locally at least, both f^ and

f^ have decreased, i.e., d is a descent

direction for .

Remark . This in itself indicates that the approach
we take here is more general than just solving the

problem P*.

Furthermore, we remark at this stage that,

since a major part of our algorithm depends upon
determining P, we can make use of the numerical
results available for determining orthogonal
projections

.

Having determined the search direction we noi

that minima along a line for a function such as

Mj(x) are likely to occur at those points at whic

the changes in the first derivative are discontin-
uous [for example, in the linear case this is

guaranteed]. Thus, as an initial estimate, the

linear search approximates a subset of these
points of discontinuity. [Specifically that subset
which corresponds to the points of discontinuity
given by f.(x) = f.(x) (where j is one of the

J k
active functions at x) over all

k.

correspond!!

to inactive functions at x] . If the approxima-
tion so determined gives a point where the actual
value of is sufficiently lower, then it is

accepted - the line search is completed - other-
wise a more usual (and more sophisticated) line
search is required

.

2 . The algorithmsof Bartels, Charalambous and

Conn [3] , [5]

.

The basic ideas behind these two algorithms
were those given in section 1 above. As originall;

presented, the first reference considered only
linear functions [actually, piecewise linear since

Mj(x) Max
i

a .x
1

and the second reference

concerned itself with only non-linear functions f
]

- i.e., no attempt was made to improve the

efficiency by making use of any linearities
present amongst the f^.

We will attempt to combine the results of botl

algorithms in one algorithm for the problem P. Ii

addition, differences over the originals will be

indicated, as well as relating the results to the

work of others in the f ield ,in a later section.
Thus we will use the formulation P* to

determine the search direction, but will then apply
a related direction direc tly to the function M^(x).

In the algorithm, each iteration consists of
one, or sometimes two, directions. The first, the
one that is always present, is termed the
horizontal direction. It tries to maintain
constant, the index set of near active functions.
Two or more functions are considered near active
if they are equal to the present maximum up to a

specified tolerance. In addition, it is required
that the horizontal direction be such as to

decrease . This corresponds to the direction d

in section 1. The second, the vertical direction,
amounts to attempting to satisfy the near active
functions exactly by means of linearization. This
is done by determining the least squares solution
of, in general, an underdetermined system of
linear equations. As such this step is closely
related, algebraically, to that of determining P

and once again is a well-worn path in the field of
numerical analysis. The necessity for the vertical
direction is given in [5] and details for the
computation of both directions are set out below.
We note that, in the limit these two directions are
orthogonal, hence the terminology.

A linear search follows that incorporates
several simple features of the algorithm and
numerical results to date indicate that the
resulting algorithm is very efficient.

186

'

2.1 Notation and Orthogonal Decompositions .

When we want to find the direction of search
k k

at a point x we set z = z^^ = M^(x). By doing

so, a near active function in the minimax problem

corresponds to a near active constraint in the non-

linear programming problem, viz.

E(x'',e) = {i£[M] Im^Cx*^) - fCx'^)' <e}

= {ie[M] - tA^) ' < e}

(12)

We note that E(x ,e) can be considered dependent
k k

only on x since z, = M^(x). Let
' k f

E(x'',e) = NE(x'',e) uLE(x'^,e), (13)

where LE(x ,e) is the index set for the near-

active linear constraints.

1^ k
I(x ,£) = [M]\E(x ,e).

(z,x)

V(j)^ (z,x)

(z,x)

(14)

f|.(z,x)
_J 1

^

3z 3x, 3x

= [1, - Vf.(x)]\

We note that V(()^(z,x) is independent of z.

e = [1,0, ,0] (= Vz),

(15)

(16)

(17)

If the n by k matrix A has independent columns

it can be factored into the form

A = Q R = [Q,:Q2]
0 0

(18)

where Q = [Q-|^*Q2-I an n by n orthogonal matrix

and R is k by k, right triangular, and non-

singular. Q denotes the first k columns of Q.

Let ^(A) denote the null space of A, i.e.,

^{t^) = U\k\= 0}. (19)

-» T
The projector on C^{k) is given by the matrix

(20)
T

Q2Q2-

Further, suppose h lies in the span of A, i.e.,

k

h=Aw=yw.a., (21)\^,Vi'
1=1

;where A = [a^a^. .a^^] , then w is given by

w = R'-^Q^h. (22)

' T
-Write w = [w^.-.w^^] . In the context of this

paper, and in the light of the introduction, we are
considering the columns of A to be a subset of

the V(l).(z,x)'s where i e E(x,e).
Thus the direction of (5) is given by

(23)

As we shall shortly see, we will actually
build up Q by adding columns to A one at a time.

Furthermore, in order to eliminate unnecessary
re-evaluation at subsequent iterations, those
columns that correspond to linear functions f . (x)

will be added in first.

At this point let us accept the following
convention: if, in a particular context, there
will be no ambiguity, we may denote functional
expressions dependent upon x and sometimes e

more simply by abandoning one, or often both, of

its arguments. Thus LE(x,e), NE(x,e), q(x,£),
E(x,e), etc., will sometimes be denoted by LE(x)

,

NE(x) , q(x) , E(x), etc., or sometimes as simply as

LE, NE, q or E, etc.

2.2 The Algorithm

Step 0 : Set Label
0

0, k = 0, vs = 0, x = x", the

and a value of e, and cpstop.
T is used in the linear

starting point,
Set T ; Note

max max
search algorithm. It denotes an upper bound on the

admissible stepsize. (Note that Label is used to

indicate whether a vertical direction should be

taken (Label = 6) or not (otherwise) . Similarly
vs indicates whether the vertical step was
successful (vs = 1) or not (vs = 0)).

k k
Step 1 : Set z^ = M^(x). At the point x

determine the active functions within the specified
k

tolerance
k

In other words, determine LE(x ,e).

If k 0, go toE(x'^,£),NE(x ,e) and hence
Step 3.

Step 2 : Determine the projection matrix initially.
(This step involves inner iterations).

Step 2a : Set j = 0,

Q = I,

A =
(f.,

J
0

q

[The n+1 xn+1 unit matrix]

(the empty set)

Jq and Kq are index sets for those linear and

non-linear functions, respectively, that are in
the projection.

Step 2b : If LE(x ,e) = i) go to step 2d .

Otherwise let [Recall that is the

matrix made up of the last (n+l-k) columns of

and j = {the i that maximizes

q'^V(() . (z,x^) |i e LE(x'^,e) - J„ }

Q]

0

If q'^V(t>j (z,x^)

q|| I

|v*,(z,x'')|
I

0 go to step 2c, otherwise go

to step 2d.

Step 2c : Add a column to A and update Q and

accordingly. Writing A = [A:a] where

a = V(t).(z,x) we have

6 .-v.

187

where v.
T

Q^a, V,
T

Q2a.
'1 -^l"'

'2

Now we may take a product of Givens transformations,

G to transform v. into a vector having zero in
V I

all the components save the first, where G^ is of

the form

Y 0

a -y

where y and - y

on the main diagonal
occupy position v and v+1

Then

= [Q .. \+l 1[G

= Q R v; = Q R

^t_
0

Set

k+1 •
•

•

R v^

^2

(v^= [llv^l 2,0,..

A = A,

Q = Q,

R = R,

LE = LE\{ j }

.

T
,0]').

If the cardinality of reaches n+1, go to

Step 9 below. Otherwise go to step 2b.

Step 2d : Store and in and

respectively. _^

Store R in R.

[In the cases where LE(x ,£> is originally empty

the storage of Q
1

and

Step 2e : If NE(x ,£)

Otherwise set

j = {i that maximizes

is unnecessary]

(}) go to step 4.

T k
q V(fi_j^(z,x)

|q|| ||V4.(z,xS||

i e NE(x ,e) - k^}

.

Otherwise, add
T k

If q V(ti.(z,x) < 0 go to step 4.

k"'
V<().(z,x) to A and update Q and R as out-

lined in step 2c above.

Set = u {j},

NE = NE\{j}.

If the cardinality of J

step 9, otherwise
0 ^'^O

T
^2^2^

reaches n+1 go to

and return to the start of step 2e.

Step 3 : Determine the projection matrix (this

step involves inner iterations)

.

Step 3a :

[Recall that Q is that part of the decomposition
that corresponds to just those linear functions
f . (x) included in the projection during the

previous iteration. If storage restrictions make
it necessary Q may be discarded and recomputed].

T k
Let q = Q2Q2^- L^^''

• =) " " *' ^°

step 3d. Otherwise, choose j e LE(x ,e) - J ,

k
add V(!).(z,x) to A and update Q and R as

above. [Step 2c]

.

Set -^0 " -^0 ^ ^j^'

LE = LE\{j}

q = Q2Q2e-

If q ?^ 0 go to step 3b.

Step 3c : Drop columns from A and update Q and

R accordingly. Suppose

A = [a^,a2,...,a._^,a.^^,...,aj,

i.e., A is A with the j th column deleted. The
resulting factorization is of the form

where H is right Hessenberg and is obtained from
R by deleting is j th column. The subdiagonal
elements in H, which extend from the new jth
(previous (j+l)th) column of R to the last
column can be removed by applying an appropriate

Thus wesequence of Givens transformations,

may write

Q[G.

R

0

q = 0 implies that
columns of A, i.e..

e lies in the span of the

Since A = qFr"

Aw = e.

the vector w is given by

-1 T
w = R Q e,

T
set y = Q^e and solve

Rw = y.

If w > 0, stop, X is optimal. Otherwise, choose

j such that w. <0. [Typically one chooses j

such that w, is most negative]. and drops the

corresponding a^ from A, updating the Q and

as outlined above.

R

Set

Step 3d

0

LE

Jo\{j},

LE + {j}

As for step 2d above.

R = R.

Step 3e : As for step 3d above. [Except that the

last statement is replaced by "return to the

start of step 3e"]

.

188

Step 4 : Set d = - q.

Let A= {i^ ... iJ denote JqUK^.

Step 5 : Check if optimum is reached .

If
I

|d
I I

< estop and Label 6 or if e

stop.

< epstop

,

Iterations J

.

k k
Set z, = M (x). Determine E(x ,e). (Note

k
that X is the point obtained from the

horizontal step) .

Step 8a : Set 0-^ =
5-,^. ^^2

" ^2' ^ = ^•

Step 6 : Linear Search

The linear search_is done directly on the min-

imax function. Let d be the direction d of

step 4 with the first component deleted (remember

that the first component of d (d"*") corresponds

to the z and d corresponds to x e r"^) . Then

d has the property that it will try to decrease
^

the subset of the active functions at the point x
,

f. (x), f. (x) , f. (x), (i.e., those we put
^1 ^2

into the projection) by the same amount. (Thus

decreasing M (x) , since , by construction, the

remaining active functions at the point x will

locally decrease along d , as this is the basis

on which the projection matrix was determined). Thus

at the point x we move downhill along the valley

defined by the minimax functions f. (x),f. , ,

1^
i2(x),

...,f. (x) . Note that if we consider only one
^

j

function in P, say the function f. (x) , then
^1

d = - Vf. (x) , which is the steepest descent
^1

direction for the function f. (x)

.

\ .

Determine t > 0 such that

k -
Max f^(x + Td) , i £ [M]

is minimized. Call this x, igp)-

For details of how this is done and whether
exact minimization is required, see the sub-

algorithm "The Linear Search Algorithm" below. Put

X -<- x + T d .

opt

Step 7 : Decision as to whether to do the vertical
step or not. The vertical direction amounts to

attempting to make the near active functions
exactly equal, and by doing so an effort is made to

get exactly on the line of the discontinuous
derivatives, which is very desirable when we are
close to the solution. We expect that we will be

close to the solution either when the active
functions remain the same at each iteration or if we

are trying to consider more than n functions in

the projection. [Actually, even if we are not near
the solution, should either of these two phenomena
occur we might need to "reach the valley floor" in
order to move away from the current situation]

.

Algorithmically , if the number of active functions
have not changed in three consecutive iterations,
K„ 0, and

|
|d|

|

< .1, or if Label = 6 (see step

9; go to step 8. Otherwise, set

k+1

k+1

and go to step 1.

Step 8b : As for step 2e above [except that the

last statement is replaced by "return to the

start of step 8b" and "go to step 4" is replaced by

"go to step 8c"]

.

Step 8c : v(x ,e)

where <t'
= (<fi.

Put X = X + V
temp

^
= X + V

Q^R

. 7.

(with 1st component missing)

If

set vs

Max f
.
(x) < Max f . (x) ,

±eM ^ ie[M]
"

k+1
X , k * k+1,
temp

Label = 0 and go to step 1. Otherwise set vs = 0,

k+1
k+1

and go to step 1.

k T k - k +
(Note that f ^ (x) + Vf^ (x)v = M^(x) + v +

where |e |'<e, 11=1, 2, ...,j, and v"*" is the

first component of v(x ,e). Therefore the

linearized active minimax functions at will be
k

within e at the point x = x + v)

.

temp

Step 9 : Trying to put (n+1) constraints in the

pro j ection, i.e..

n+l.

|Jq 'J
I

= n+l means one of two possibilities,

either a) we have reached the neighbourhood of the

optimum, or b) we have constraints considered
active that actually are not. This situation is

handled in two ways. Firstly, by ensuring that we

take a vertical step and secondly, by reducing e.

Algorithmically, set label = 6, put e = e/10 and go

to step 8.

The Linear Search Algorithm

Step 0 : If vertical step was successful (i.e., if

vs = 1), go to step 4.

Step 1 : Estimate any new function to become active.

We consider all inactive constraints d) . and
3

estimate, in turn, the stepsize to make each (ji^

zero. Hence we calculate

<t'.(z^^.x)

-i T k
J

V(f>^:(z, X)d

T . j e I(x , e). (24)

Step 8 : The Vertical Step [involves inner

189

In other words, if (p. was linear we calculate t

k
so that d) ((z, ,x) + T.d) = 0 and in general we

J J k k
linearize the <t>'s. Let f (x) = M (x) for someml
m, f.(x) an inactive function at the point x

and T as calculated by 24. Then we want the
j

linear approximation of the functions f and f

k
about the point x to be intersected at the

k
point X + T d . By construction q is

J k
orthogonal to y(z - f (x)) at the point x ,° m
i.e. ,

Vf (x'')'^d" = d"^. (25)
m

Also, by construction of t.

f .(x*") + T.[l, - Vf .(x^)^]
J J J

By using the fact that = M^(x) we have

k,T,-
f.(x) + T.Vf.(x) d = z + T d

From 25

f (xS + T.Vf (xS^d'
ra J ni

= M^(x) + T^d

= f (x^) + T .d"^
m J

= f (x*^) + T.d"^
m J

(26)

(27)

Comparing (26) and (27) we can see that we have

the desired result.

Step 2: Omitting unlikely values of , estimate

the optimum, t , by linearizing the minimax

function about x . For j e I(x ,e) do the

following. If T. <0 or x

.

>t neglect it as
"

j J max

inadmissible. Otherwise calculate

t .
= f

. (xS + x.Vf .(x^)^d", i e [M]

where

Put

Vf . (x)
1

T^.(x),
3x . 1

1

f .(x)
dX . 1

1 =

Now, determine

ie[M]

such that

F = Min P.

j £ I(x ,t;)\{j|x_. <0 or x > xmax} ,

Put
opt

Step 3: Determine if x is acceptable.— opt

Calculate the true minimax value at

d~.
Ak k
X = X + X

opt

If this new value is an improvement over the old

k Ak
value, set x = x . Otherwise go to step 4.

Step 4 : Use cubic line search on the maximum of

the functions taking x as an upper bound, to

k
obtain the new x , if x is available from

' opt
step 3 [i.e., if vs =0].

2.3 Some remarks on the algorithm

i) As is noted in [4] the QR decomposition and

its update when a column is added or deleted from
A, arises with such frequency that a wealth of

techniques have been developed to handle the
situation. The method set out here corresponds to

that in [11] . It is used presently solely because
it is the simplest to explain. For alternative
methods, more details, and references, see [4].

ii) In practise we do not use an exact cubic

linear search but merely ask for sufficient
improvement in the minimax value.

iii) If in step 7 of the main algorithm we decided
to do the vertical step and it was successful, we
dispense with the estimation of x as above and

opt

merely do the cubic search . The motivation for this

is as follows. The estimates for x. are based on
1

the surmise that some new function will become
active whereas the vertical step is based on the

assumption that this will not be the case.

iv) In the above algorithm we have assumed that

the columns given by V(t)^(x,E), i e LE(x,e) are

linearly independent. The situation in which the

columns are dependent corresponds precisely to

degeneracy in linear programming. As was done in

[4], we will regard degeneracy as a condition
which can be cleared up through the use of

negligible perturbations of the data, and we shall

ignore the linearly-dependent case.

v) Under some fairly natural assumptions the

above algorithm can be proved to be convergent.
The proofs are somewhat lengthy and are given
elsewhere [5] . In the case of solely linear
functions, finite convergence can be proved.
[See [4]].

2.4 Relationship of the above with other
algorithms

i) The algorithm differs from that given in [5]

in that it is a stable implementation. Furthermore,
whenever possible, advantage is taken of any linear
functions that might be active. This is done by

preferentially entering the linear functions into
the projection and storing that part of the

decomposition (QR) that corresponds to the linear
functions alone. Thus, instead of recomputing the
entire decomposition at each iteration, the linear
part can be updated.

ii) As was remarked above, in the purely linear
case, the algorithm 2.2 does not, quite, reduce to

the algorithm of [4]. This is because in that
algorithm M^(x) = Max|f^(x)[and, in addition,

i

the linear search differs from that above. Thus
the corresponding P* is

Min z

subject to

> 0, £ [M] (28)

190

It is apparent that the above problem is equivalent

to
Min z

subject to,

- f .(x) > 0,^

+ f .(x) > 0,j^
i e [M] P*'

with corresponding

Min Max {f
. (x) , - f

.
(x)} P'

X ie[M]

If one formulates the problem this way, eliminates

the vertical step on account of it being super-

fluous in the purely linear case, then, excepting

the linear search, one has, essentially, the

algorithm of [3]. For completeness I point out

that they use fast Givens without square roots in

their decomposition of A instead of the QR

given above. (The elements of fast Givens are

given in [13]) .

There are three linear searches mentioned in

[3]. Besides the complexity introduced by the

absolute modulus function, none of the methods

correspond exactly to that given in algorithm 2.2,

(henceforth referred to as LSA(2.2)). For

simplicity we will describe equivalent forms for

the original problem P.

Linear Search Algorithm A . (LSA(A)).

As for LSA(2.2) but determine I such that

is the smallest positive , j e I(x ,e),

[i.e., locate the first break-point reached in the

direction d of^^the piecewise linear function

M^ on leaving x]

.

Linear Search Algorithm B . (LSA(B)

Step 1 : As for step 1 of LSA(2.2).

Step 2: Put t as the smallest positive t.,

k
j e I(x ,e) .

Step 3 : [Determine_whether M^ is still decreasing

in the direction d].

- k
If d Vf^ix)> 0, terminate the linear search

algorithms with t = t„.
" opt ?,

Otherwise it is necessary to make the

following redefinitions

k k -
X -<- X + T d

k k -
z -<- M^ (x + Tj^d)

and return to step 1.

Linear Search Algorithm C . LSA(C)

This algorithm was a mixture of LSA(A) and (B)

.

Specifically it used LSA(A) until such time as

q = 0 in step 3b of algorithm 2.2, above. Then in

step 6 it used LSA(B) . In subsequent iterations

one returned to LSA(A) for step 6 until q = 0

again in step 3b, and so on.

Schematically we have the following
situation for the linear search.

Figure 3

.

a corresponds to t from LSA(A)
opt

Y

" LSA(2.2)

" LSA(B)

Using LSA(A) , with the exception of, possibly,

the first n+1 iterations, each of the points

X were vertices for the (linear programming)
problem P*' (or at least satisfied a maximal
number of active constraints in case the problem
was rank deficient) . It is for this reason that

they preferred strategy LSA(A) . However, in the

case where the f.(x)'s are non-linear,
1

essentially, as is usual in non-linear programming,
one is looking only for a sufficient decrease in

the objective function, M^(x). Strategy LSA(B) is

undesirable in that it requires too much
additional computation.

iii) The algorithm of [10] corresponds exactly to

the algorithm above using LSA(A) (except that

Cline is restricted to Haar -condition problems)

starting at a vertex to the (linear programming)
problem P' . In addition to being able to handle
non-Haar problems, the treatment given above is

more flexible. In particular the addition of

constraints can be handled in a natural way that is

particularly simple in the case of linearly
constrained problems.

iv) Perhaps the best known algorithm for handling
problems of type (28) in the 1 inear case is that of

Barrodale and Phillips [2]. They, in fact, add an
additional linear constraint, viz.

z > 0

to P* ' and then solve the dual linear program.
The structure of the problem enables them to

condense the resulting tableau by supressing all
but m of the columns. There is some suggestion
that in practice the dual form, at least for
linear problems, is the best approach to the £

oo

problem. However, to the best of the present
author's knowledge, there is, as yet, no well-
documented evidence to support this assertion. In
particular, let us formulate the algorithm of
Barrodale and Phillips in terms of the primal. The
algorithm consists of three stages. More
specifically, suppose the problem under
consideration is

f n -I

Mini lb -Ax I I
= Max lb. - ya..x.||

^ L " l<i<m ^ j=l J J

and the rank of A is k.

In stage 1 one chooses the residual of maximum
absolute value and essentially, uses the steepest

191

descent direction to bring its value to zero. One

then updates the residual values choosing that

which is now maximal in absolute value and

bringing it down to zero, whilst still holding

those residuals that are already at zero at zero.

One then iterates until k residuals are at zero.

This is readily accomplished by means

analogous to those above for algorithm 2.2. For

example, suppose

b.
1

n

I a

j=l

X

.

ij J

0 = 1,2,

and a . X

.

rj J

Define P

is maximal

.

as in (3) with N =
%1

if

where a. = [a_ ... , .

The required descent direction is given by

d = Pg where g = a^ sign(e^) . (sign (e^) = 1

e > 0, and -1 if e < 0 and 0 otherwise),
r r

Since in stage 1, typically one increases the

number of residuals with value zero by 1, the

orthogonal decompositions, plus corresponding up-

dates, are applicable here. Stage 1 is

terminated when k residuals have the value zero.

Stage 2 consists of increasing all the k

residuals (in absolute value) simulateously , until

k+1 residuals have the same absolute value.

Stage 2 involves only one iteration.

Stage 3 is equivalent to the well-known
exchange algorithm for linear minimax approximation
(see for example [14]).

Again Stages 2 and 3 can be accomplished with

linear algebra analogous to that of algorithm 2.2.

The above is only a very brief outline of the

algorithm of Barrodale and Phillips. The details
of the condensed simplex implementation are given
in [1].

In the light of the above comments one is able
to see that the "dual" formulation of Barrodale and

Phillips can be realized in a stable way by a dir-
ect formulation as for algorithm 2.2. It then seems

natural to ask the question that if the dual approach
to the minimax problem is superior to the direct
approach, when is a dual approach indirect? Further-
more, Barrodale and Phillips claim that the main
feature of their algorithm is that it enters stage
3 with a value close to optimal. However, if one

compares how one arrives at stage 3, in terms of

the primal problem, to the analogous situation in

algorithm 2.2 [i.e., when one reaches a vertex (or

point where q = 0, more generally)] the apparent
superiority of the "indirect" or "dual" methods
appears surprising

.

v) Much of the ideas of [17] are in fact
equivalent to that of the horizontal direction of

algorithm 2.2. However, the vertical direction is

dispensed with at the cost of having to reduce the
tolerance to which functions are considered active,
to zero. This makes ultimate convergence difficult
(cf. [7] and [9] for a similar result). Further-
more the numerical aspects of the Zangwill
algorithm are not considered by him. In partic-
ular, no linear search suitable for minimizing
M^(x) is given. Finally, Zangwill introduced

separate cases dependent on whether a certain
matrix is of full, or almost full, ranks. Such a

differentiation of cases is numerically
undesirable and does not occur in algorithm 2.2.

2.5 Some additional remarks and conclusions .

As is noted above, and in [4] for the linear
case, the addition of constraints to problem P

can be handled in a natural way. This is an
immediate consequence of the fact that algorithm
2.2 is based on projections.

One might also remark that since the
projections in algorithm 2.2 are orthogonal, at
least in terms of the non-linear programming
problem P* , the iterations consist of steepest-
descent-like iterations in certain subspaces. It

might be suggested that one might be able to

determine Newton or Quasi-Newton type iterations by
using non-orthogonal type projections (see for
example [15] and [12] for parallels in non-linear
programming). However, since the objective
function (z) in P* is linear, the straightforward
non-orthogonal projection will not do the job.
However, consider the case of just one function
f^(x), say, active. Algorithm 2.2 gives - Vf^(x)

for d - i.e., steepest descent. However, for

general non-linear f the corresponding Newton

direction - G^^(x)f(x) is well defined [where G.
f J

denotes the Hessian of f; here assumed invertible]
In other words, a second-order type generalization
is not obvious, even assuming it is desirable.

The above is meant to be a summary of one
(direct) approach to minimax problems via
projections. Some attempt has been made to relate
the approach to other algorithms designed for the
same problem. It is also hoped that the results
reported here indicate that there is still work to

be done in the area with suggestions as to some
avenues of future research.

Numerical results are not reported here.
Suffice it to say that numerical results have been
carried out in the context of applications, general
non-linear and linear problems. They are reported
in detail in references [5], [3] and[6].

Acknowledgements .

Much of what appears in this paper is based on
earlier work carried out with two colleagues,
R. Bartels and C. Charalambous . In addition,
R. Bartels impressed on me the importance of
numerical linear algebra in the context of

mathematical programming and C. Charalambous
introduced me to the minimax problem. To both I am
grateful

.

This research was supported in part by grant
number A8639 from the National Research Council of
the Canadian Government.

References

[1] I. Barrodale and C. Phillips, "An Improved
Algorithm for Discrete Chebyshev Linear
Approximations", Proc . 4th Manitoba Conf. on
Numerical Mathematics, University of Manitoba
Winnipeg, Canada, 1974, pp. 177-190.

[2] I. Barrodale and C. Phillips, "Algorithm 495:
Solution of an Overdetermined System of

Linear Equations in the Chebyshev Norm", ACM
Transactions on Mathematical Software, Vol. 1,

No. 3, September 1975, pp. 264-270.

192

[3] R.H. Bartels A.R. Conn and C. Charalambous

,

"Minimization Techniques for Piecewise
Dif ferentiable Functions: The SL Solution to

00

an Overdetermined Linear System", Research
Report CORR 76/30, September 1976.

[4] R.H. Bartels, A.R. Conn and J.W. Sinclair,
"Minimization Techniques for piecewise
dif ferentiable functions - the solution

to an over-determined linear system", SIAM J.

Num. Anal, (to appear)

[5] C. Charalambous and A.R. Conn, "An efficient
method to solve the minimax problem directly".
Dept. Combinatorics and Optimization, Univ.
Waterloo, Ont. Canada. Rep. CORR 74/19.

[6] C. Charalambous and A.R. Conn, "Optimization
of Microwave Networks", IEEE Trans. Micro-
wave Theory Tech. (1975), 834-838.

[7] A.R. Conn, "Constrained optimization using
nondifferentiable penalty function", SIAM J.

Num. Anal. vol. 10, pp. 760-784, 1973.

[8] A.R. Conn, "Projection Matrices - a

A fundamental concept in optimization" in

Proceedings of the 7th Annual Conference on
Modelling and Simulation, Pittsburgh,
April 26-27, 1976.

[9] A.R. Conn and T. Pietr zykowski , "A Penalty
Function Method converging directly to a

Constrained Optimum" , SIAM J. Num. Anal.
Vol. 14 ,No. 2 (1977)

.

[10] A.K. Cline, "A Descent Method for the
Uniform Solution to Overdetermined Systems
of Linear Equations", SIAM J. on Num. Anal.

Vol. 13, No. 3, June 1976, pp. 293-309.

[11] P.E. Gill, G.H. Golub, W. Murray and
M.A. Saunders, "Methods for Modifying
Matrix Factorizations", Mathematics of

Computation, Vol. 28, No. 126, April 1974,

pp. 505-535.

[12] D. Goldfarb and L. Lapidus, "Conjugate
gradient methods for non-linear programming
problems with linear constraints", I and E.G.
Fundamentals, 7 (1968), pp. 142-151.

[13] R.J. Hanson and C.L. Lawson, "Solving least
squares problems", Prentice-Hall, Englewood
Cliffs, N.J. 1974.

[14] M.J. D. Powell, "The minimax solution of
linear equations subject to bounds on the
variables", AERE Harwell, Oxfordshire, England.
Rep. CSSII, December 1974.

[15] J.B. Rosen, "The gradient projection method
for non-linear programming. Part I: Linear
constraints", J. Soc . Indust. Appl . Math. 8

(1960), pp. 181-217.

[16] A.D. Waren, L.S. Lasdon and D.F. Suchman,
"Optimization in engineering design", Proc

.

IEEE, vol. 55, pp. 1885-1897, Nov. 1967.

[17] W.I. Zangwill, "An algorithm for the
Chebyshev Problem - with an application to
Concave Programming", Manag. Sci. Vol. 14

#1 (1967) , 58-78.

[18] G. Zoutendijk, "Methods of Feasible
Directions", Elsevier Publ . Co. Amsterdam,
1960.

193

NUMERICAL ASPECTS OF TRAJECTORY ALGORITHMS FOR NONLINEARLY CONSTRAINED OPTIMIZATION

Walter Murray
National Physical Laboratory, Teddington, England

Margaret H. Wright
Stanford University

Abstract

This paper discusses two algorithms for non-

linearly constrained optimization. These algo-

rithms -- the penalty and barrier trajectory algo-

rithms -- are based on an examination of the tra-

jectories of approach to the solution that charac-

terize the quadratic penalty function and the

logarithmic barrier function, respectively. Al-

though closely related in principle, the two algo-

rithms display important differences in their

implementation as well as in the properties of the

generated iterates. The discussion will emphasize

the numerical aspects of implementation of the

trajectory algorithms, with particular attention

to the choice of reliable methods for carrying

out the required computations.

1 . Introduction

The problem to be considered in this paper

is the following:

PI: minimize F(x) , x G e"

subject to c^(x)^0^ i = l,2,...,m,

where F(x) and {c^(x)} are prescribed non-

linear functions. The function F(x) is usually

termed the "objective function" and the set

{c^(x)} is the set of "constraint functions". It

will be assumed for simplicity that F and {c.}

are twice continuously differentiable, although

the methods to be discussed will cope with occa-

sional discontinuities.

The solution of PI will be denoted by x*.

In all problems to be considered, the first- and

second-order Kuhn-Tucker conditions are assumed to

be satisfied at x*, so that there exists a vector

X* of non-negative Lagrange multipliers, corre-

sponding to the active constraints at x*, satisfy-

ing

g(x*) - A(x*)A* = 0 (1)

where g(") is the gradient of F, and the columns

of A(-) are the gradients of the constraints

active at x*.

It is customary to state problem PI with two

kinds of constraints — equality constraints (of

the form c
.
(x) =0), as well as the inequalities

3

given above in PI. This distinction will not be

made during the present discussion, in order to

avoid the introduction of additional notation. The

treatment of inequality constraints is typically

more complicated than that of equality constraints,

and the algorithms to be discussed can deal in an

obvious way with equality constraints.

Because the problem PI can not, in general,

be solved explicitly, a popular approach during

the past decade has been to transform PI into a

sequence of unconstrained minimization problems.

The most common such transformation has been

effected by the use of penalty and barrier function

methods, which are discussed at length in, for

example, Fiacco and McCormick (1968) and Ryan

(197A). This paper will not review these methods,

but their properties are critical in the deriva-

tion of the algorithms to be discussed.

The quadratic penalty function corresponding

to the problem PI is defined by

P(x,p) E F(x) +^ I (c. (x))^ , (2a)
^ iEi

^

194

where I is a subset of the indices {l,2,...,m}

(usually, the set of constraints whose values are

less than a small positive number) , and p is a

positive scalar termed the "penalty parameter".

The quadratic penalty function may also be written

as

:

P(x,r) = F(x) + ^ r~^ ^ (c. (x))^ , (2b)
^ iGl

where r = 1/p. Let x*(r) denote an unconstrained

minimum of P(x,r).

The logarithmic barrier function corresponding

to the problem PI is given by:

m
B(x,r) = F(x) - r I (^n(c (x)) , (3)

1=1

where r is a positive scalar termed the "barrier

parameter". The logarithmic barrier function is

defined only at points that strictly satisfy all

of the problem constraints. Let x*(r) denote
B

an unconstrained minimum of B(x,r).

Under certain mild conditions, there exists

r > 0 such that for r < r, x*(r) and x*(r)
r B

are continuous functions of r, and:

lim x*(r) = X* ;

r ^ 0

lim x*(r) = X* .

r - 0
^

Although penalty and barrier function methods

display several good features, they suffer from

certain theoretical and numerical defects -- in

particular, both require the solution of a

theoretically infinite sequence of unconstrained

problems. Furthermore, in practice each suc-

cessive unconstrained sub-problem is more dif-

ficult to solve, because the Hessian matrices of

the penalty and barrier functions become increas-

ingly ill-conditioned as r approaches zero, and

are singular in the limit (see Murray, 1969a)

.

The continuous lines of minima in e'^

defined by x*(r) and x*(r) are termed the

"penalty trajectory" and "barrier trajectory" of

approach to x*, respectively. The analysis of

these trajectories, and a detailed description of

the trajectory algorithms, have been given else-

where (Murray, 1969a, b; Wright, 1976; Murray and

Wright, 1976b); for the purposes of the present

discussion, only a brief description of the

underlying motivation will be stated.

The trajectory algorithms are based on using

the properties of the trajectories to generate a

sequence of iterates that lie in a neighborhood

of the appropriate trajectory, in order to mimic

the approach to x* of the iterates from a penalty

or barrier function method. Because it is possible

to characterize a step toward the penalty or barrier

trajectory without assuming that the current iterate

is in a close neighborhood of x*, the derivation

of the trajectory methods does not display a

stringent dependence on properties that hold only

in such a neighborhood. Moreover, it is not neces-

sary for any of the iterates to lie exactly on the

trajectory (as in a penalty or barrier function

method)

.

At each iteration of a trajectory method, the

search direction is computed as a step toward some

point on the desired trajectory. The particular

point to be aimed for depends on the current value

of the penalty or barrier parameter. The solution

x* is also on the trajectories, and the target

point will ultimately become arbitrarily close to

X* as the algorithms converge. The penalty or

barrier parameter may be adjusted at each iteration

of the trajectory methods; however, the choice of

the parameter value is not critical, since a step

to a neighborhood of a point on the trajectory

corresponding to r is also in the neighborhood

of a point corresponding to (l+e)r, where e is

small. The numerical procedure for determining

the search direction in both algorithms is well-

posed, and the approach to the limit of the penalty

or barrier parameter does not cause any ill-condi-

tioning.

This paper will emphasize some numerical

aspects of implementation of the trajectory methods,

with particular attention to the choice of reliable

procedures for carrying out the required computa-

tions. The emphasis on the details of implementa-

tion is deliberate; even within an algorithm that

has been designed from the outset to be robust,

additional safeguards are necessary to protect

against failure or illogical results when the under-

lying assumptions are not satisfied.

195

2 . Description of Trajectory Algorithms

Only certain key aspects of implementation of

the trajectory methods have been selected for dis-

cussion in Section 3. Accordingly, the descrip-

tions given here of the penalty and barrier trajec-

tory algorithms are slightly abbreviated, and do

not contain all the computational details. A

complete description of both algorithms is given

in Murray and Wright (1976b).

2.1. Penalty Trajectory Algorithm

2.1.1. Properties of the search direction

For the penalty trajectory algorithm, at

each iteration the search direction, p, is

(ideally) constructed as the solution of the follow-

ing quadratic program:

QPl:
1 T „ _^ T

min ^ p Sp + p g

for the quadratic penalty function; the step to

be taken along the search direction is then chosen

to achieve an acceptable decrease in the penalty

function.

2.1.2. Calculation of the search direction

At the beginning of the k-th iteration of the

penalty trajectory algorithm, the following vectors^

and matrices are assumed to be available:

,(k)

,(k)

subject to A -c - - A

P

an approximation to x*

;

the vector of values of {c.(x))
(k)

evaluated at x ;

the gradient vector of F(x)

(k)
evaluated at x ;

the matrix whose columns are the

gradients of {c.(x)} evaluated
(k)

^

at x'

an approximation to the Hessian

matrix of the Lagrangian function
(k)

at x .

where c denotes the vector of constraints cur-

rently considered "active"; A is a matrix whose

columns are the gradients of the active constraints;

A is an estimate of the Lagrange multiplier vector;

p is the current value of the penalty parameter;

g is the gradient of F; and S is a matrix that

approximates the Hessian of the Lagrangian function.

Let Y be a matrix whose columns form an

orthogonal basis for the range of the columns of A,

and let Z be a matrix whose columns form an

orthogonal basis for the corresponding null space,

i.e. ,

A Z = 0

The procedures followed during the k-th

iteration to compute the next iterate are:

(1) An "active set" of constraints is deter-

mined, containing <^ n elements (see Section 3.1

for a discussion of the case where the active set

contains more than n elements) . The vector of

active constraint values will be denoted by c,

and the matrix whose columns are the gradients of

those constraints will be denoted by A.

(2) Factorize A such that

QA
T

Q Q

Z Z = I .

If A has full column rank (£ n) , and if
T

the matrix Z SZ is positive definite, then the

solution of QPl, p*, can be uniquely expressed as

the sum of two orthogonal components:

where R is an upper triangular matrix. Define

the matrices Y and Z by partitioning Q as:

Q =

,T n

P* = Yp„ + Zp .

For sufficiently large p, the search direction p*

so constructed will always be a descent direction

(3) Determine an estimate. A, of the Lagrange

multiplier vector. If A has full solumn rank,
(k) 2

A is the least-squares solution of minlAA-g Il2»

and is given by the solution of the triangular

196

system:
N

llp^ll and llp^ll
R R

(6)

RA

If A is rank-deficient, the vector A will be

taken as the minimum-length least-squares solution;

it is obtained by extending the factorization of

Step (2) to:

QAV = (4)

where R is a non-singular upper triangular

matrix and V is an orthogonal matrix (see

Peters and Wilkinson, 1970, for further details).

(4) Determine an appropriate value of the

penalty parameter, p (Murray and Wright, 1976b).

(5) Compute the vector p , as follows. If

A has full rank, p is obtained by solving the
R

linear system:

for M a reasonably large positive number (say,

1,000) .

(a) If the test (6) is satisfied (as it

almost always is in practice) , compute p^ by

solving

:

thtT „ _ 7T.„(k)
_^ „(k) ^ ,

then form the search direction as:

P = Yp^ + Zp^

(b) If the test (6) is not satisfied, the

two orthogonal portions of the search direction

are not well-scaled, and the following re-scaling

procedure is used to adjust for the imbalance.

If
N

Mill
R

define a scaling factor

A p = A YPj^ = R
V-n

= -c 1a
P

(5)

In this way, the direction Yp satisfies the

linear equality constraints of QPl. If A is

rank-deficient, p is a least-squares solution
R

of (5) ,
computed using the complete orthogonal

factorization (4) ; the linear constraints of QPl

will then not be exactly satisfied.

(6) Determine the modified Cholesky factor-

T (k)
ization of the matrix Z S Z. With this pro-

T (k)
cedure, the matrix Z S Z is augmented (if

necessary) by a positive diagonal matrix, E,

T (k)
chosen to make (Z S Z + E) strictly (numer-

T
ically) positive definite. Let LDL be the

computed factorization, so that:

T T fk')
LDL = Z ^Z + E ,

T (k)
where E is identically zero if Z S Z is

sufficiently positive definite (Gill and Murray,

1972a)

.

(7) Determine the vector p^ by solving

and let

LDL^ P^ = -Z^ g^'^)

P = ^Pr + ^1 '

otherwise, define a scaling factor as

Test whether:

and let

P = B2 Yp^ + Zi^ .

(8) Determine a step length, a, that generates

an acceptable reduction in the penalty function

P(x, p), using a safeguarded cubic or parabolic

step length algorithm (e.g., the procedure de-

scribed in Gill and Murray, 1974). Special care

must be exercised in the step length algorithm to

avoid difficulties if P(x, p) is unbounded

below along the given search direction (see

Section 3.5.1)

.

^ (k+1) (k)
,

(9) Set X to X + ap, and return

to Step (1)

.

197

2.2. Barrier Trajectory Algorithm

2.2.1. Properties of the search direction

The search direction of the barrier trajectory

algorithm is (ideally) constructed as the solution

of the following quadratic program:

IT T
QP2: min ^ p Sp + p g

subject to A p = d ,

where d. = -c . + r/X.: c denotes the vector of111
constraints currently considered "active"; A is

a matrix whose columns are the gradients of the

active constraints; A is an estimate of the

Lagrange multipliers corresponding to the active

constraints; r is the current value of the barrier

parameter; g is the gradient of F; and S is

an approximation to the Hessian of the Lagrangian

function

.

It is essential to achieve a reduction in the

barrier function B(x,r) at each iteration,

because the barrier function serves as a conven-

ient "merit function" for measuring progress toward

X*. The derivation of the barrier trajectory algo-

rithm indicates that the search direction given by

the solution of QP2 may not always be a descent

direction for B(x,r). Therefore, the null-space

component of the search direction may alternatively

be computed to minimize a quadratic approximation

to the Lagrangian function, independent of the

component in the range of the columns of A. This

alternative formulation of the search direction is

necessary because of the quite different roles of

the penalty and barrier parameters as the solution

is approached.

2.2.2. Calculation of the search direction

At the beginning of the k-th iteration of the

barrier trajectory algorithm, the same vectors

and matrices are available as for the penalty tra-

jectory algorithm. The iterates generated by the

barrier trajectory algorithm necessarily lie in

the strict interior of the feasible region; this

algorithm is intended for use on problems where

some or all of the problem functions may be ill-

defined or undefined outside the feasible region.

The computational procedures followed during

the k-th iteration are:

(1) Determine the set of "active" constraint.

denoted by c (see Section 3.2); form the matrix
(k)

A, whose columns are the columns of A corre-

sponding to the active set. By construction, A ;

has <^ n columns.

(2) Factorize A such that

QA =

Q Q = I ,

as before.

(3) Determine the Lagrange multiplier esti-

mate A by solving:

so that A is the least-squares solution of

minllAA-g^^^ II 2 ; a similar procedure to that given

for the penalty trajectory algorithm is followed

if A is rank-deficient. If one or more compon-

ents of A are negative, the constraint corre-

sponding to the most negative is deleted from the

active set; the modified A is then factorized,

and the new A vector calculated for the re-

defined active set. Since the new A is simply

the previous A with one column deleted, the new

factorization can be obtained by a simple updating

scheme (Gill, Golub ,
Murray, and Saunders, 1974).

(4) Determine the barrier parameter, r

(Murray and Wright, 1976b).

(5) Determine the vector d according to

the following rules. Define s = Hell + II z''"g
^''^^

II
,

and set £ = y r/s, where 7 > 1 (say, 2). Let

r be the barrier parameter from the previous

iteration; then:
r

if A. > e, set d. = -c. + ^;— ;
1 1 1 A

,

1

if A. < -e, set d. = -(1 - —) c;
1 — 1 r 1

otherwise

,

(6) Compute the vector p , which is the

solution of the linear system:

T T
A Yp^=RPj,

198

In this way, p satisfies the desired linear
R

equality constraints of QP2 for those problem

constraints for which is sufficiently positive;

an alternative relationship is satisfied for each

"active" constraint that has an insufficiently

positive multiplier estimate. Again, the rank-

deficient case is treated as for the penalty tra-

jectory algorithm.

(7) Compute the modified Cholesky factoriza-
T (k)

tion of Z S Z (as in the penalty trajectory

algorithm) ; the factorization will be denoted by

T
LDL .

(8) Determine p^^ by solving:

LDL^ P^ = -Z^ g^^)

Test whether:

llp^ll < Mllpj^ll and llp^ll < Mllp^ll
, (7)

R N

for M a reasonably large positive number.

(a) If the test (7) is satisfied, obtain

Pjj by solving

LDL^ p^ = -Z^Cg^''^ + S^^^ Ypj^)
,

and define the trial search direction as:

P = Yp^ + Zp^

If p is not a descent direction for B(x,r),

re-define p as:

Yp + Zp

This latter definition is guaranteed to yield

a descent direction for B(x,r).

(b) If the test (7) is not satisfied, then

adjust the scaling, as in the penalty trajectory

algorithm.

(9) Determine a step length, a, that

accomplishes a suitable reduction in B(x,r),

using special procedures designed for one-dimen-

sional minimization with respect to the logarithmic

barrier function (see Section 3.5.2). During the

search procedure, record whether violation of any

constraint currently considered "inactive" restricts

the step length; if so, this constraint will be

added to the active set at the next iteration.
(k+1) (k)

(11) Set X to X + ap, and return

to Step (1) .

3 . Some Considerations of Numerical Analysis in

Implementation of the Trajectory Algorithms

In this section, we consider some selected

aspects of implementation of the trajectory methods,

from the viewpoints of numerical analysis and

algorithm definition. It will be stressed through-

out this discussion that an implementation could

not achieve practical success if the definition of

the algorithm depended critically on properties

that hold only in a close neighborhood of x* ; the

algorithm should produce sensible results, even

when such conditions are not satisfied at the

current point.

3.1. Selection of the Active Set for the Penalty

Trajectory Algorithm

The "active set" of constraints is defined

at each iteration of the penalty trajectory algo-

rithm as the set of constraints whose values are

less than a specified small positive number. With

this definition, the active set is equivalent to

the "violated set", and can easily be determined.

Such a strategy is reasonable because the penalty

trajectory algorithm is based on properties of the

quadratic penalty function, and for a sufficiently

large value of p , the set of constraints violated

at x*(p) is identical to the set of constraints

active at x* (Fiacco and McCormick, 1968). After

the first few iterations, the active set typically

remains fixed for the rest of the computation.

It was noted in the definition of the algo-

rithm that a special procedure is used when more

than n constraints are violated at the beginning

of an iteration. If more than n constraints are

violated, and A has full rank, the search direc-

tion, p, is chosen to attempt to minimize

llc(x+p)'l , by computing p as the solution of
^ ' T 2

minllc + A pll . The search direction in this case

is calculated as follows;
:t

(1) Factorize A

R

QA

in the form

T
Q Q = I

199

where R is upper triangular and non-singular.

(2) Solve Rp = -Y c , where the columns of

Y are given by the first n rows of Q.

The computational procedure is very similar

to the calculation of the Lagrange multiplier

estimates, and relies on orthogonal transformations

to reduce A to upper triangular form.

Normally, the condition that more than n

constraints are violated occurs because the current

point is a poor estimate of the solution, and

does not hold at the next iterate. However, it is

conceivable that this condition could exist even

at X*, so that possibly every iteration might be

special. In this case, the Hessian matrix of the

penalty function is not ill-conditioned as the

penalty parameter approaches its limit. This

special procedure has the same effect as choosing

p = in the usual definition of the algorithm,

and hence is equivalent to the Gauss-Newton method.

3.2. Selection of the Active Set for the Barrier

Trajectory Algorithm

The criteria for selecting the active set in

the barrier trajectory algorithm are not so

straightforward as in the penalty trajectory algo-

rithm. Because the barrier trajectory algorithm

is a feasible-point method, all problem constraints

are satisfied at every iteration, and the subset

of active constraints must be determined by analysis

of the behavior of the constraints as the computa-

tion proceeds.

The procedure for determining the initial

active set is described in Murray and Wright

(1976b) , and has been satisfactory on the examples

tested. The active set tends to be altered only

during the early iterations, because of the possibil-

ity of misleading local indications that certain con-

straints are active. The following rules are used

to modify the active set at each iteration:

(1) The constraint corresponding to the most

negative Lagrange multiplier estimate (if one

exists) is deleted, and the remaining multipliers

are modified accordingly.

(2) If any constraint considered active

appears to be bounded away from zero as the solu-

tion is approached, it is deleted from the active

set. This decision is highly dependent on scaling;

further discussion is given in Murray and Wright

(1976b) .

(3) If the step-length algorithm was re-

stricted because a supposedly inactive constraint

was violated, this constraint is added to the

active set at the beginning of the next iteration,

and will not be deleted during that iteration,

regardless of the sign of its multiplier estimate.

(4) If the number of active constraints

exceeds n following the addition of (3), the con-

straint with the largest value of c^(x) is

deleted from the active set (a further scaling-

dependent decision)

.

3.3. Use of Orthogonal Factorizations

A factorization involving reduction of A to

triangular form by application of orthogonal

transformations is used in several steps of the

trajectory algorithms. Such a factorization is

convenient and reliable for computation, and has

many advantages over alternative procedures. For

example, in some algorithms for solving PI, the

matrix A A is formed and used to solve linear

systems; the poor numerical properties of this

strategy are well-known (see Peters and Wilkinson,

1970), especially the possible squaring of the con-

dition number that may result from the formation
"T"

of A A. Furthermore, if the matrix A does not

'T"
have full rank, A A is singular, and some steps

of the algorithm may then be undefined.

Computation of the complete orthogonal fac-

torization of A means that steps of the trajectorj;

algorithm can be defined (with relatively little

extra work) even if A is rank-deficient (see

Sections 3.3.1 and 3.3.2). Although only the

singular value decomposition can fully reveal the

closeness of the columns of A to linear dependence

the complete orthogonal factorization provides ade-

1

quate information in many applications (see Golub,

Klema, and Stewart, 1976), since the conditioning

of the triangular matrix R serves to indicate

the "conditioning" of A.

3.3.1. Calculation of a Lagrange multiplier

estimate

The Lagrange multiplier estimate at each

iteration of the trajectory algorithms is computed
" 2

as a least-squares solution of min llAA-gil^; this

first-order estimate is acceptable, since the

200

local rate of convergence of the trajectory methods

is not restricted to the rate of convergence of

the multipliers (see Wright, 1976). The orthogonal

factorization of A can be used to calculate a

minimum-length least-squares solution, even when A

does not have full column rank; this alternative

is not possible with techniques that involve forming

A A.

When reducing A to upper triangular form,

column interchanges are carried out so that the

reduced column of largest magnitude is selected

as the next column to be reduced; the matrix is

considered to be numerically rank-deficient if

the norms of all unreduced columns are less than

a prescribed tolerance. In this way, all diagonal

elements of R are bounded below by the specified

tolerance. Although the ill-conditioning of R

does not necessarily reveal itself by the presence

of a diagonal element that is very small relative

to the largest diagonal element, prevention of a

too-small diagonal element is sufficient in many

cases to control serious ill-conditioning of R.

3.3.2. Calculation of the search direction

The search direction in both trajectory

algorithms is computed in two orthogonal components

— one in the range of the columns of A, the other

in the corresponding null space. This definition

results from the characterization that the search

direction must satisfy a set of linear equality

constraints of the form:

a'^P = b , (8)

where b is some vector depending on the algorithm.

If A has full rank, these equality constraints

uniquely determine the component of p in the

range of the columns of A, which is calculated

as follows.

The orthogonal matrix Q that reduces A

to upper triangular form is explicitly formed,

by multiplying out the orthogonal transformations

used in the reduction. Once Q is available, its

rows, appropriately partitioned, provide the re-

quired orthogonal bases for the range and null

space of the columns of A.

In the full rank case, it is straightforward

to compute the component of p in the range of A.

Since p = Yp + Zp the equality constraints (8)
K N

imply

:

pjp = A^CYpj^ + Zp^) = A^ Ypj^ = R%j^ = b ,

which gives p as the solution of a non-singular

triangular system.

If A is rank-deficient, the component
p^^

may be obtained as the least-squares solution of
~ T 2

min llA p - bV , again using the complete orthogonal

factorization of A.

In either case, the calculation of p is
R

completely straightforward.

3.4. Approximation of the Hessian of the Lagrangian

Function

Alternative techniques for approximating the

Hessian of the Lagrangian function under various

circumstances will not be discussed in any detail

(see Murray and Wright, 1976b, for such a discus-

sion) , but we shall consider one key property of

the Hessian approximation.

The assumed second-order Kuhn-Tucker conditions
T

imply that the matrix Z WZ must be positive

definite at x*, where Z is defined in terms of

A(x*) , and W is the Hessian of the Lagrangian

function; however, W itself need not be positive

definite, or even non-singular, at x* or in any

neighborhood of x*.

Certain approaches to solving PI impose

additional conditions on related matrices — for

example, methods involving augmented Lagrangian

functions (see Powell, 1969; Fletcher, 1974)

require that the penalty parameter be large enough

so that the Hessian of the augmented function is

positive definite. In both trajectory algorithms,
T

however, only the projected Hessian, Z SZ, must be

positive definite at every iteration, in order for

the solutions of the quadratic programs QPl and

QP2 to be bounded. The vector p^^ is the solution

of a linear system:

z'^'sz p^ = z'^d , (9)

for some vector d, and should be the step to the

minimum of a quadratic function related to the

Lagrangian function.

201

Accordingly, the matrix used to calculate
p^^

is always maintained as numerically positive defi-

T
nite. When Z SZ is updated by a quasi-Newton

technique, positive definiteness is maintained by

updating the Cholesky factorization of the pro-

jected matrix, as in revised quasi-Newton methods

for unconstrained minimization (Gill and Murray,

T
1972b). When Z SZ is obtained from exact, or

finite-difference approximations to, second deriv-

atives, the modified Cholesky factorization of

T
Z SZ is computed in order to solve the system (9)

.

In all cases, the matrix used to solve (9) for p^
T

is represented as LDL , where L is unit lower

traingular, and D is a diagonal matrix with all

elements strictly positive. Such a procedure

assures that the portion of the search direction

in the null space of the columns of A is always

well-defined, and bounded.

3.5. Step-Length Algorithms

3.5.1. Detection and correction of unbounded

decrease of penalty function

Even when the problem PI has a bounded solu-

tion, the corresponding penalty function or aug-

mented Lagrangian function may be unbounded below,

for arbitrarily large values of the penalty param-

eter (Powell, 1972). Accordingly, when executing

a one-dimensional minimization with respect to a

penalty function or augmented Lagrangian function,

care must be exercised to avoid the possibility

of taking an excessively large step.

In particular, the safeguarded cubic or

quadratic step-length algorithms (Gill and Murray,

1974) used in the penalty trajectory algorithm

require specification of an upper bound on the

step length. In the current implementation of

the penalty trajectory algorithm, the upper

bound is set to correspond to a step of "reason-

able" size, rather than an extremely large value.

In some cases, the upper bound may impose an

unnecessary limit on the stepsize; however, in

general such a restriction will cause no serious

loss of efficiency for the overall computation,

since the next iteration usually corrects the

possible poor scaling of the search direction.

This conservative strategy is considered to be

justified by the extreme difficulties that result

if an enormous step is taken because the penalty

function is unbounded below: either the next

iterate is completely unreasonable, or a large

number of evaluations of the problem functions are

required before the unboundedness is detected.

In the penalty trajectory algorithm, it is

considered that the penalty function may be unbound-

ed along the given direction if the step taken is

the specified upper bound. Almost always, the

indicated unboundedness can be eliminated simply

by increasing the penalty parameter.

3.5.2. Special techniques for the barrier

trajectory algorithm

At each iteration of the barrier trajectory

algorithm, a step-length algorithm is executed with

respect to the logarithmic barrier function, which

thus serves as a "merit function"- Several authors

(Fletcher and McCann, 1969; Lasdon, et al., 1973)

have noted the deficiencies of standard step-length

algorithms, which are usually based on approximation

by low-order polynomials, when applied to the log-

arithmic barrier function. Therefore, the step-

length algorithm of the barrier trajectory method

makes use of special techniques that exploit the

known properties of the logarithmic barrier function

to allow more efficient estimation of an appropriate

step length; these techniques are based on simple

approximating functions that contain a logarithmic

singularity. Only a small amount of additional

calculation is required to fit the special approx-

imating functions, and their use leads to a signif-

icant increase in efficiency of the one-dimensional

minimization, compared to standard procedures

(Murray and Wright, 1976a).

4 . Conclusions

The penalty and barrier trajectory algorithms

are based on the mathematical properties of the

approach to x* of the successive iterates generated

by the quadratic penalty function and logarithmic

barrier function, respectively. In theory, these

algorithms have several desirable properties — for

example, their derivation does not depend on condi-

tions that hold only in a close neighborhood of x*,

and their rate of convergence in the limit is arbi-

trarily close to that of linearly constrained

Lagrangian algorithms (described in Robinson, 1972;

Rosen and Kreuser, 1972). In practice, the current

202

Lmplementatlons of the trajectory algorithms have

aeen successful on many problems, deliberately

including examples for which the ideal assumptions

are violated. The results thus far indicate that

these algorithms compare favorably with similarly

:areful implementations of other algorithms to

solve PI (see Wright, 1976, for some typical

lumerical results)

.

The overall aim of this paper has been to

Illustrate some of the considerations of numerical

analysis that enter the choice of computational

procedures for selected aspects of the trajectory

algorithms. Numerical analysis may not play a

significant role in the process of verifying that

:he expected behavior of an algorithm under ideal

;onditions is displayed numerically. However,

Lt is an elementary fact of numerical analysis

:hat theoretically equivalent mathematical pro-

:edures do not yield equivalent, or even close,

lumerical results, and it is an elementary fact

jf life that hoped-for conditions are not always

satisfied. Considerations of numerical analysis

should, therefore, be applied to every aspect of

:he definition and implementation of optimization

algorithms in general.

Acknowledgement

We thank Michael Saunders for his many helpful

:omments

.

Research of this paper was partially supported

jy the Office of Naval Research under Contract

TO0014-75-C-0865; the Energy Research and Develop-

nent Administration E(04-3)-326 PA //18; and the

National Science Foundation Grant DCR75-04544.

at Stanford University.

References

?iacco, A.V. and McCormick, G.P. (1968). Non-
linear Programming: Sequential Unconstrained
Minimization Techniques , John Wiley and Sons,

New York.

Fletcher, R. (1974). "Methods Related to Lagrangian
Functions," in Numerical Methods for Con-

strained Optimization (P.E. Gill and W. Murray,
eds.), pp. 219-240, Academic Press, London
and New York.

Fletcher, R. and McCann, A. P. (1969). "Accelera-
tion Techniques for Nonlinear Programming,"
in Optimization (R. Fletcher, ed.), pp. 203-

213, Academic Press, London and New York.

Gill, P.E., Golub, G.H., Murray, W. , and Saunders,
M.A. (1974). Methods for Modifying Matrix
Factorizations, Mathematics of Computation

,

vol. 28, pp. 505-535.

Gill, P.E. and Murray, W. (1972a). Two Methods
for the Solution of Linearly Constrained and
Unconstrained Optimization Problems, Report
NAC-25, National Physical Laboratory.

Gill, P.E. and Murray, W. (1972b). Quasi-Newton
Methods for Unconstrained Optimization,
Journal Inst. Math. Appl. , vol. 9, pp. 91-108.

Gill, P.E. and Murray, W. (1974). Safeguarded
Steplength Algorithms for Optimization using
Descent Methods, Report NAC-37, National
Physical Laboratory.

Golub, G.H., Klema, V., and Stewart, G.W. (1976).
Rank Degeneracy and Least Squares Problems,
Report CS-76-559, Stanford University.

Lasdon, L.S., Fox, R.L., and Ratner, M.W. (1973).

An Efficient One-Dimensional Search Procedure
for Barrier Functions, Mathematical Program-
ming , vol. 4, pp. 279-295.

Murray, W. (1969a). Constrained Optimization,
Report MA79, National Physical Laboratory.

Murray, W. (1969b). "An Algorithm for Constrained
Minimization," in Optimization (R. Fletcher,

ed.), pp. 247-258, Academic Press, London and

New York.

Murray, W. and Wright, M.H. (1976a). Efficient
Linear Search Algorithms for the Logarithmic
Barrier Function, Report SOL 76-18, Systems

Optimization Laboratory, Stanford University.

Murray, W. and Wright, M.H. (1976b). Trajectory
Algorithms for Nonlinearly Constrained
Optimization, in preparation.

Peters, G. and Wilkinson, J.H. (1970). The Least-
Squares Problem and Pseudo-Inverses ,

Computer
Journal , vol. 13, pp. 309-316.

Powell, M.J.D. (1969). "A Method for Nonlinear
Constraints in Minimization Problems," in

Optimization (R. Fletcher, ed.), pp. 283-298,

Academic Press, London and New York.

Powell, M.J.D. (1972). "Problems Related to

Unconstrained Optimization," in Numerical
Methods for Unconstrained Optimization (W.

Murray, ed.), pp. 29-55, Academic Press,

London and New York.

Robinson, S.M. (1972). A Quadratically Convergent
Algorithm for General Nonlinear Programming
Problems, Mathematical Programming , vol. 3,

pp. 145-156.

Rosen, J.B. and Kreuser , J. (1972), "A Gradient
Projection Algorithm for Nonlinear Constraints,"
in Numerical Methods for Non-linear Optimiza-
tion (F.A. Lootsma, ed.), pp. 297-300, Aca-
demic Press, London and New York.

203

Ryan, D.M. (1974). "Penalty and Barrier Func-

tions," in Numerical Methods for Constrained
Optimization (P.E. Gill and W. Murray, eds.),

pp. 175-190, Academic Press, London and New
York.

Wright, M.H. (1976). Numerical Methods for Non-
linearly Constrained Optimization, Report 193,
Stanford Linear Accelerator Center, Stanford,
California

.

204

OPTIMIZATION ALGORITHMS DERIVED
FROM NONQUADRATIC MODELS

by

J.S.KOWALIK
Department of Computer Science

and Mathematics
Washington State University
Pullman, VJashington 99163

Abstract

The problem considered is the calcula-
tion of the least value of a general dif-
ferentiable function of several variables

.

A brief review of two types of minimiza-
tion methods based on nonquadratic models
is offered. The first involves solving
systems of linear equations in every it-
eration. The second is derived from a

generalization of the standard conjugate
gradient methods.

I . Introduction

The problem to be discussed is the
computation of the unconstrained minimum
value of a general dif ferentiable multi-
variable function f (x) . Most of the cur-
rently available algorithms use as a fun-
damental model the quadratic function

(1)

where Q is a positive definite matrix and
^ is the location of the minimum solution
of (1) . It is of interest to investigate
more general models which may better re-
flect the local behavior of general con-
tinuous functions. It would be, for in-
stance, desirable to develop methods that
can successfully handle cases where the
Hessian matrices are positive semi-defi-
nite at the solution or elsewhere.

An interesting departure from model
(1) can be accomplished if we assume that

f (X) = F(q(x)) (2)

where F is a dif ferentiable , strictly in-
creasing function of a single variable
q>0. The gradient of f (x) is

g(x) = F'Q(x-x) (3)

where

dg
(4)

and since F'>0 the minimum of f (x) takes
place at x=x. Furthermore, f (x) can be
minimized in at most n steps if we use:

(a) a set of search directions mu-
tually conjugate with regard to
Q, i.e. ,dQ,dj^, . . . ,d^_^

satisfying

d^Qdj = 0,i 7^ j , and,

(b) the optimal steps X. satisfying
the equations

Si+1 x.+A .d.
~i i~i (5)

T
d!g.^, = 0 (6)

for i = 0,1,2,3, ,n-l

This property of F{q(x)) becomes obvious
if we make the observation that the non-
linear function F{q(x)) leaves the iso-
contour curves of q(x) unchanged, alter-
ing only the function values on these
curves

.

Thus, the function f(x) = F(q(x)) can
be minimized in a finite number of steps
if we generate Q-conjugate search direc-
tions in the process of minimizing f{x).
Obviously, a standard conjugate-gradient
algorithm such as Fletcher-Reeves' or Da-
vidon-Powell-Fletcher ' s will not be fi-
nite (unless F(q) = q) since the gradi-
ent vectors of F(q(x)) are multiples of
the gradients of q(x) and this would al-
ter the search directions generated by a
standard conjugate gradient algorithm.
However, a relatively simple modification
of these algorithms will provide this
property

.

A pioneering work in this direction has
been done by Fried [1971] who has con-
structed a modified Fletcher-Reeves meth-
od for minimizing f (x) of the form

ir

(7)

where f is a constant value.
Function (7) satisfies the relationship

f(x) = |^(x-x)^g(x) (8)

and has also been studied as an optimiza-
tion model by Jacobson-Oksman [1972] and
Kowalik-Ramakrishnan [1976] . They have

205

used equation (8) as a basis for an opti-
mization method which does not produce
conjugate directions but is finite for
(7). This method is briefly described in
Section 2. A similar class of functions
has been also studied by Davison and Wong
[1974] . Section 3 shows a derivation of
modified conjugate gradient methods mini-
mizing f (x) = F(q(x)) and a detailed a-
nalysis of f (x) = -^qP . Section 4 contains
numerical results and Section 5 is a con-
clusion .

2. A method based on the homogeneous mo-
del

We can rewrite (8) in the form

1 AT A
f(x) = ^(x-x) g(x)+f

where y = 2 for function (1)

.

If we define

a = (x ,Y,f)

f = Yf

= (g(x)'^,f (x) ,-1)

V
T

X g(x)

(9)

(10)

(11)

(12)

(13)

one row from Y-_i and inserting the new
row y (x .) computed at x-^. The vector w.j_

is also modified by one component. The
method requires solving systems of equa-
tions which differ by one row. Solutions
to such systems can be obtained inexpen-
sively and accurately by using different
factorization methods (Kowalik-Ramakr ish-
nan [1976] and Kowalik-Kumar [1976]).

3. A modified conjugate-gradient method.

In the method of conjugate gradients
of Fletcher and Reeves [1974] the search
direction is calculated as a sum of two
vectors

,

and

^i = -Si+^iSi-i'i^i (17)

(18)

The scalar multiplier B- can be deter-
mined from the conjugacy condition

dty. ,
= 0 (19)

where

^i-1 = Si-2i-i = Q(?Si-JSi-i) (20)

Equations (19) and (20) give

then equation (9) can be restated as:

V (14)
T

y St

If we compute X and v at n+2 distinct
points (n is the size of the vector) we
get a system of linear equations

T
, gi^i-l

d . T y . ,

and from (17)

(21)

Ya = w (15)

where

Y =

T
^2

n+2

n+2

and if Y is nonsingular we can solve (15)
for which contains the solution to the
minimization problem min f (x)

.

55
~

Clearly, it is possible to get an al-
gorithm minimizing functions satisfying
(8) in n+2 steps. For general functions
an iterative procedure can be constructed
where a sequence of approximation^
X , . ^ . , x^ , . . . is generated such x^->-x

wnefe x* is a local minimum. In this pro-
cedure, equation (15) becomes iterative
Y^St- = ^- and Y^ is obtained by removing

T

, gi^i-l
^i = -Hi If

Si-l^i-l
'i-1

(22)

Equation (22) is still suitable in the
case when f (x) = F(q(x)) except that we
have to redefine ^^'^ seen
from (22) that if we define X^.^^ as

^i-1 = Si/^l-Si-i/^1-1 (23)

then the search directions generated by
(22) will be collinear for any F(q(x)).
In other words, if (23) is used in equa-
tion (22), then d^ , d d d^_^
are scaled conjugate gradient directions
produced by the standard Fletcher-Reeves
method for F(q(x)) = q(x).

Now

^
^ gi^Pigi-gi-l^

' ^I-i(Pi9i-§i-i'

(24)

where

206

f:
1

Equation (24) can also be written as:

II I
1
2

(25)

ISi-1
Pi (26)

g . X . T -g . X

.

T
A . , g d . , 0 (35)

and from (31) and (33)

or

i-l

^i-lgl-lgi-l^^Pfj-l
2pf^ (36)

The modified formulas (24) and (26) to
compute can be useful if we know how
to compute P^. Clearly p.^ depends on the
choice of F(q). Since available numerical
results suggest that the function
pq(x)P may be a good model for uncon-
strained optimization we will assume now
that

T
X .

T
d . ^ g .

^

= t
^-1:^1-^-1 +1 (37)2f

i-l

Introducing an abbreviated notation for
the coefficients of (37) we get

f (x) = F(q(x)) p>o

The gradient of f(x^) is

= F|Q(x^-x)

(27)

(28)

and

F! = q = (pf,)P^

(Pf^)
1-t

where

Furthermore

t = 1

P

(29)

(30)

i-l
F!
1 ^i-l

t-1

(31)

and we assume that t is an unknown value
that has to be determined at each step of
the iterative process. From (28) we have

n-1 Si-l^^i-S'
F '. T

gi (Xi_i-x)

T T A

-2i-i^
T

Si^Si-i
Ta

-Si^

and

n-1
f:
X

since

T T
gi-l^i-gi-lgi-l+^P^i-l

gi5i-rglsi+2pf

.

Ta T „ ^g^x = giX,-2pf.

(32)

(33)

(34)

a. = tb.+l
1 1

(38)

Equation (38) (first time obtained by
Fried [1971]) is solved for a nontrivial
unique root t^ which in turn is used to
calculate Pi from equation (31).

As indicated by Goldfarb [1972] the
Quasi-Newton methods can also be modified
to minimize f (x) = F(q(x)) in a finite
number of steps. The effect of nonline-
arly scaling the objective function on
the Quasi-Newton methods has been also
investigated by Spedicato [1976] .

Computational results

The extended Fletcher-Reeves method
(EFR) using formulas (26) and (31) , where
t is calculated by solving (38), has been
tested on several standard functions and
compared with the classical Fletcher-
Reeves method (FR) . An identical one-
dimensional search routine has been used
in both methods. The programs have been
written in FORTRAN and computations per-
formed in double precision on IBM/360.

The following problems have been tried.
Test problem 1 (Quartic with singular
Hessian)

f (x) = (x^+10x2) ^+5 (X3-X^)
^+ (X2-2X3) ^+10 (x-^-x^)

^

The starting point is (3,-1,0,1) and the
function ' has a minimum of zero at
(0,0,0,0)

.

Test Problem 2 (homogeneous quartic)

f(x) = [!5x''^Qx+b'^x+0.25]
^

Q =

'4.5 7 3.5 3' -0. 5~

7 14 9 8 - 1

3.5 9 8.5 5 -1.5

3 8 5 7j 0

But The starting point is (4,4,4,4) and the

207

function has a minimum of zero at
(.5, -.5, .5,0)

.

Test problem 3 (Rosenbrock ' s function)

f{x) = 100(x^-X2)^+(l-x^)^

The starting point is (-1.2,1) and the
function has a minimum of zero at (1,1).

Test problem 4 (a Hilbert quadratic
form)

f (x) = ^x'^Hx ^, k=2, 3

where

h.. = ^—h—-, i , j = l , 2 , . . . , 5
ij i+j-i 'J '

I I

The starting point is (-3 , -3 , . . .
, -3) . The

solution is at (0,0,...,0).
Test problem 5 (4-dimensional Rosen-

brock's function)

f(x) = 100 (x^-X2) ^+(l-x^) ^+90 (x^-x^)

^

+(1-X3)^+10.1[(x^-l)^+{x^-l)^]

+ 19.8 (X2-I) (x^-1)

The function has a minimum of zero at
(1,1,1,1). Table I shows the experimental
results for test Problem I which is a
quartic function whose Hessian is singu-
lar (has two zero eigenvalues) at the
solution xT= (0 , 0 , C) , 0) . It looks as in
such cases f (x) = pqP is a better optimi-
zation model. This may be due to the fact
that f (x) = IqP has a singular Hessian at
the solution for p>l.

As expected, the EFR method converges
after approximately n steps for the test
problems 2 and 4 (Table III, rows 3 to
6) . It should be pointed out that in or-
der to achieve convergence for these
functions in approximately n steps, the
EFR method had to be implemented with an
accurate one-dimensional search. More in-
teresting are tests involving general
functions, such as ROSENBROCK and 4-DI-
MENSIONAL ROSENBROCK. In these tests we
have also implemented the EFR method with
an accurate one-dimensional search. Our
objective has been to find if EFR could
generate better search directions; that
is, converge in fewer iterations with
the optimal step size strategy.

Tables III and IV, and row 3 of Table
II show sample runs. We have had, how-
ever, a couple of cases where EFR has
been only marginally better or slightly
outperformed by the FR method.

In most test cases the value of p

.

idiffered significantly from 1 in the ini-
tial stage of optimization and approached
1 in the final phase of convergence. For
example, the run shown in Table III p.
varied from 138 to .572 between the se-
cond and the twelfth iteration and was
quite close to 1 afterwards. This was not
the case with Problem 1 where even at the

very end of the convergence process p

.

assumed values as large as 15.

Conclusion

The preliminary results presented in'
this paper suggest that the EFR method

;

based on the model f (x)=^ (x)P,p>0 may,
deal better with functions whose Hessian

:

is singular at some points along the op-
timization path or at the solution.

There is no strong indication that MFR
based on this model can perform signifi-
cantly better that FR when optimizing gen-
eral nonlinear continuously differenti-
able functions.

Another open problem is the influence
of the one-dimensional search accuracy on
the performance of the EFR method.

And the final comment. It would be in-
teresting to design other methods based
on the model f{x)=F(q) where F'(q)>0 for
q>0 and see of they offer any advantage
over f (x) =q

.

TABLE I

Iteration
Number

FR EFR

0 .2150 X 10^ .2150 X 10^

10 .4793 X 10~^
. 1403 X lO-""-

20 .1715 X 10"^ .9883 X 10"^

30 .1882 X lO"^ .5172 X 10--'-°

50 .7786 X lO"^

Quartic with singular Hessian

TABLE II

Test
Function

FR EFR Solution
Accuracy

Homogeneous
Quartic

29*, 203** 5*, 43** 10-11

Rosenbrock 46*, 100** 38*, 86** 10-^

Hilbert
k=2

20* 4* 10-11

Hilbert
k=3

25* 4* 10-1^

f{x) = q:L 64* 7* 10-^

f(x) = q;L 52* 6* .69476

*Number of iterations

**Number of function and gradient
evaluations

***q is a quadratic function defined in
problem 2

208

TABLE III

Iteration
Number

FR EFR

0 . 19192*10^ . 19192*10^

12 . 1482*10° .7080*10"^

20 .
3491*10"^

.
44196*10"^

25 .
1009*10"^

.
1509*10"^

30 .
7474*10"''

.
9292*10~"'""'"

1-DIMENSIONAL ROSENBROCK

<J
= (-3,-1,-3,-1)

TABLE IV

Iteration
Number

FR EFR

o . 4166*10^ . 4166*10^

20 .
8421*10-'- .7821*10°

60 . 1624*10° .
5787*10"''"

80 .2568*10""'" .33923*10"^

4-DIMENSIONAL ROSENBROCK

= (-1.2,1,1.2,1)

tions. Journal of Mathematical Analy-
sis and Applications, ol.38, 1972.

7. Kowalik,J.S. and S.P. Kumar, Fast Gi-
vens Transformations Applied to the
Homogeneous Method, IFIP Congress 77,
submitted

.

8. Kowalik,J.S. and Ramakr ishnan , K . G . , A
Numerically Stable Optimization Meth-
od Based on a Homogeneous Function,
Mathematical Programming , Vol .11,1976.

Acknowledgement

The author would like to thank Mrs.
Swarn Kumar and Mr. Emmanuel Kamgnia for
their help in running numerical experi-
ments .

References

1. Davison, E.J. and P. Wong, A Robust
Conjugate-gradient algorithm which mi-
nimizes L-functions, Control Systems
Report No. 7313 , University of Toronto,
Dept. of Engineering, Toronto, 1974.

2. Fletcher, R. , and CM. Reeves , Function
Minimization by Conjugate Gradients,
Comput. J, Vol.7, 1964.

3. Fried, I., N-step Conjugate Gradient
Minimization Scheme for Nonquadratic
Functions, AIAA Journal, Vol.9, No. 11,
1971.

4. Goldfarb,D., Variable Metric and Con-
jugate Direction Methods in Uncon-
strained Optimization: Recent Develop-
ments, ACM Proceedings, 1972.

5. Spedicato,E. , A Variable-Metric Method
for Function Minimization Derived from
Invariancy to Nonlinear Scaling, JournaL
of Optimization Theory and Applica-
tions, Vol.20, No. 3, Nov. 1976.

6. Jacobson,D.H. and Oksman,W.,An Algo-
rithm that Minimizes Homogeneous Func-
tion of N Variables in N+2 Iterations
and Rapidly Minimizes General Func-

209

ALGORITHMS FOR A CLASS OF "CONVEX"
NONLINEAR INTEGER PROGRAMS*

R. R. Meyer and M. L. Smith

Mathematics Research Center and Computer Sciences Department,

University of Wisconsin-Madison

Abstract

Algorithms are given for the efficient solu-

tion of the class of nonlinear integer programs with

separable convex objectives and totally unimodular

constraints. Because of the special structure of

this problem class, the integrality constraints on

the variables can be easily handled. In fact, the

integrality constraints actually make the problem

"easier" than its continuous version, for in the

case that bounds are available on the problem vari-

ables, the first of the proposed algorithms yields

the optimal solution by the solution of a single
,

easily-generated linear program. For the cases in

which bounds are not available for the variables or

the sum of the variable ranges is very large, other

algorithms are discussed that yield the solution

after a finite number of linear programs and require

less storage than the first algorithm.

1. Introduction

(1.1)

Consider the nonlinear integer program

n

i=l ' '
min
X

s. t. Ax = b, X > 0, X integer

(Xp . . . ,x^) , each f. iIS convex on awhere x

closed interval B, c [0,+co) and A is totally

When modified in the obvious fashion, the algo-

rithm to be described below can be used to solve

more general problems in which (1) the constraints

Ax = b are replaced by a system of equations and
inequalities with a totally unimodular constraint

matrix, and (2) integer upper and lower bounds on
individual variables are added. Alternatively,

such constraints can be converted into the form

(1.1) through the addition of integer slack variables,

and the resulting coefficient matrix will be totally

unimodular.

Supported in part by the National Science Founda-
tion under Contract No. DCR74-20584 and in part

by the United States Army under Contract No.
DAAG29-75-C-0024.

unimodular mX n matrix. The intervals B^, which
are assumed to be given, are assumed to cover the

feasible set of (1.1) in the sense that n = {x|Ax =

b, x>0,x integer } C {x| x^e Bj^; i=l, . . . , n }. (No dif-

ferentiability or continuity properties are needed or

assumed for the f-, but convexity of f^ on Bj^ im-
plies continuity on the interior of B^^.)

Problems of the class (1.1) arise in logistic

and personnel assignment applications, and have
been the subject of a number of studies [1], [4], [6]„

[7], [8] that deal with the special case in which
n

Ax = b consists of the single constraint T x, = K
1^=1

^

(see also [5] for an algorithm for this special case).

Dantzig [3, p. 498] considers the case in which the

constraints Ax - b correspond to supply-demand
constraints in a bi-partite network.

The problem class (1.1) has the remarkable
property (shown in [5]) LlTdt Lhe'integrality constraints

actually make the problem easier to solve than its

corresponding continuous version.

Specifically, it was shown in [5], that if

there exist known non-negative integers ^j^jU^ such
that Bj^ = for i = 1, . . . ,n (i. e. , there exist

known bounds for the feasible set of (1.1)), then

(1.1) may be solved by solving the single linear pro-

gram constructed by (1) replacing each f^ by an ap-
propriate piecewise linear "approximation" and (2)

deleting the integrality constraints. It was also

shown in [5] that, if the intervals Bj^ are infinite

(or if the sum of the ranges of the is very large),

an algorithm based on the solution of a finite number
of similarly constructed linear programs is guaran- :

teed to yield the optimal solution within a finite num
ber of iterations, under the assumption that the given

problem of class (1.1) has an optimal solution. In

this report we consider in more depth the question

of the trade-offs between number of LP's solved,

storage required, and number of function evaluations

for four specific algorithms of the general types de-

scribed previously. A numerical example is discus-,

sed in Section 4.

210

2. Basic Algorithms

In order to describe in a compact manner

algorithms for the problem (1.1) we will introduce

some notation to represent certain piecewise-linear

approximations to (1. 1). Letting (i=l, . . . , n) be

finite sets of non-negative integers, we define a

linear programming approximation to (1.1) as the

problem P(Rp...,R^) given by:

V Vmm ^
x,X i=l j, R,

f.(j)>^. .

1 1, J

s. t. Ax = b, X > 0

(2.1)

j€ R,

^ ^. .
= 1 (i-l,. ,n)

V i,jk . > 0
1,3

-

The problem P(Rp. • • ?
R^) can be thought of as a

separable programming approximation to (1.1) in

which the integrality constraints are deleted and

the breakpoint-sets are given by the sets R,

(i=l, . . . , n) . The significance of this LP approxi-

mation, as shown in [5], is that (1) an extreme point

of (2 . 1) will have x • integer-valued for i = 1 , . . . , n

,

and (2) if x*(i=l, . . . ,
n) is part of an optimal solu-

tion (x*,*) of (2.1) and the breakpoint-sets

have the property that (for i=l, . . . ,n)

(2.2) [{x*-l,x'\x*+l} n B.l C R,
,

then an optimal solution to (1.1) is obtained by set-

ting X. = x^" (i=l, . . . , n). (It should be noted that

it is essential to employ a "separable programming

approximation" to (1.1), since other piecewise-

linear approximations that agree with f^ at the

integer points in B^(i=l, . . . ,n) may not have the

required extreme point integrality property - see

[5].)

We will now consider three algorithms for

(1.1) corresponding to three different procedures for

constructing the R..

Algorithm 1 (Single LP, maximal R-)

This algorithm is applicable only if there

are known bounds ^ jjU. (which will, without loss

of generality, be assumed to be non-negative inte-

gers) such that B. = [f^u.], i.e. if x is feasible

for (1. 1), then ^^ix^fu^ for i=l,...,n. It

has the advantage that it yields a solution to (1.1)

via the solution of a single easily-constructed

linear program. Specifically, let each Rj^ con-

sist of the integers in the interval [^^jU.], and

solve the LP (2.1), then note that the optimality

condition (2. 2) is satisfied by x''' if (x*,y*) is

an optimal extreme point of the LP (if (2.1) is in-

feasible, then so is (1.1)).

Algorithm 1 provides a very efficient, one-

step approach to the solution of (1. 1) as long as the

problem P{[l^,Uy],...,[li^,u^]), which will have

n

2n + y,(u.-l.) variables and m + 2n constraints,

does not exceed the capacity of the available linear

programming algorithm. In this regard, it should be

noted that many commerical LP "packages" have
separable programming and/or generalized upper

bound capabilities that take advantage of the special

structure of (2.1). It is also possible to modify the

data handling in the simplex algorithm so that a dis-

tinct column is not needed for each \ since, for

a given i , the columns corresponding to the \

can differ only in two entries. Furthermore, if the

constraints Ax = b can be given a network interpre-

tation, efficient algorithms for network optimization

can be applied rather than the ordinary simplex algo-

rithm (see, for example, [2]).

However, if known bounds fj^^Uj^ are not

available or if the attempted implementation of Algo-

rithm 1 would lead to storage problems, then alterna-

tive approaches are possible because the optimality

conditions (2. 2) do not require a "full grid" of points.

The next two algorithms take advantage of this fact.

To get starting "grids" for the next two algorithms,

two cases should be considered: (1) if bounds i^,^^

are known, then the initial breakpoint-sets r(.o)
'

needed for the algorithms can be taken as any inte-

ger sets containing at least f ^ and u-, and (2) if

finite bounds are not available for all variables, let

x be an extreme point of {x|Ax=b,x> 0} (such an

X may be determined by the simplex method, and it

will be integer), and set R^*^^ to ,Xi,u^}, where
i . and (i=l,

.

n) are estimates (which need not

be rigorous) for lower and upper bounds on an opti-

mal solution of (1. 1). (If a good guess is available

for the optimal solution of (1.1), the corresponding

breakpoints should also be included in the r(P).)

In both cases, the initial LP considered will be
feasible if and only if (1. 1) is feasible, so we
will assume in the algorithms below that feasi-

bility has been established.

Algorithm 2 (Multiple LP's, intermediate R^'s)

At the kth iteration (k=0.1, 2,
(k)

we as-

sume that a feasible solution x to (1.1) has been
(k) (k)

obtained by solving the problem P(R^ , . . . ,
R^).

If the optimality conditions (2. 2) are satisfied by
* (k) (k) (k)

x = X and R. = R. , then terminate with x
1 1

'

as optimal solution of (1.1). Otherwise obtain new

breakpoint-sets R^.'^"'"^' by adding to each R*.'^) the

points of [{x*'^'-l,x^'^',x"^'+l]} n B.]\r'^', (these

are the points "missing" from the optimality condi-

tions) and let the (k+l)st iterate x^'^"'"-^' be the value
,(k+l)

1

(k)

of X in an optimal extreme point of P(R
^(k+1)^

,
(k+1)

R^
)
(x will be integer).

We also assume that the algorithm tests x'

for optimality in P(r''^^^^, . . . ,

R^'^"'"'''')
and terminates

(k)
"

by declaring x optimal for (1.1) if this test is

satisfied.

211

(k) (k)
(Since (x ,\) would normally be used

as a starting basic feasible solution for P(r''^"'"'^',

(k+1)
. . . ,), this is a natural assumption.)

Algorithm 3 (Multiple LP's, minimal R.'s)

Proceed as in Algorithm 2, except that if

x**^^ and the R^*^' do not satisfy the optimality

conditions of (2. 2), then the breakpoint-sets r'.'^''"^'

for the next iteration are taken to be the sets

{x*^'-l,x*^',x''^'+l} n B. (i=l,. . . ,n). n
^ I 11 ' 1

Algorithms 2 and 3, which represent oppo-

site ends of the column-generation spectrum, will

converge to an optimal solution of (1.1) in a finite

number of iterations, provided that (1. 1) actually

has an optimal solution. This result follows from

a finiteness theorem [5] for integer programs with

separable convex objective functions. These algo-

rithms also in general avoid the problem generation

and storage problems that may occur in some cases

in Algorithm 1. In certain instances, however, dif-

ficulties with storage limitations and/or speed of

convergence might also arise with Algorithms 2 and

3, and some additional computational refinements

are described in the following section.

3. Some Computationally Useful Modifications

Although the algorithms of the previous sec-

tion are guaranteed to display either one-step or

finite convergence under rather weak hypotheses,

theoretical finite convergence of course does not

necessarily imply that an optimal solution will be

obtained within the time or storage available to

solve the problem.

If Algorithm 1 can be employed without ex-

ceeding the capacity of the available LP or net-

work code, then time and storage will not be prob-
n

lems unless T (u,- f .) turns out very large. On.^11
the other hand, Algorithm 2, starts out with rela-

tively small breakpoint-sets, but there is no con-
trol on the size of these sets, and thus no guar-
antee that problem size limits might not be ex-
ceeded.

Although Algorithm 3 employs the minimal
breakpoint-sets needed to establish optimality,

one would not expect it to be very efficient, since
the value of a variable can change by at most one
unit at each iteration, and since much of the com-
puted information on values of the may be dis

-

carded at each iteration. In addition, slow con-
vergence might also occur in Algorithm 2 in the case
that lower and upper bounds are not known and at

least one of the estimates f^jU. is consistently
violated by the iterates, since Algorithm 2 allows
only a single unit change beyond the estimated
bounds at each iteration.

Algorithm 4, to be described below (see
also Figure 1) avoids these potential problems,
and also makes use of the possibility of

a lower bound on the optimal solution of (1.1). To
set up the linear program for determining a lower
bound, let x'"^^ denote the optimal solution of the
most recent LP solved, and let Rl be a set such

(k) ^ (k)
that, for each i , either x e Rl or x -1 e R' ,

1 1 i i

and such that j e R| implies (j+1) e B- (while any
set of breakpoints with these properties will be suit-

able for lower bound generation, larger R| will

yield larger LP's and, in general, better lower
bounds).

A lower bound on the optimal value of (1.1)

may then be obtained by solving the following LP,

since the objective function of the LP is no greater

than the objective function of (1.1) on the feasible

set Q:

min
n
V

y.

x,y,6 i=l

s, t. Ax = b, X > 0

(3.1) y. > f.(j) + 5, .(f,(j+l)-f,(j))1-1 i,J 1 1

X.
1

= j + 5.

(j € R^, i = 1,. . . ,n) .

(Of course, the lower bound generated by solving

(3.1) may turn out to be , in which case it would
not be useful. In many cases, however, additional

information such as non -negativity can be included
in the lower-bounding LP in order to prevent un-
boundedness. For example, if the functions fi(x.)

are known to be non-negative for non-negative
(in many applications the f^ are exponentials or

posynomials), then the additional constraints yi>0.
when added to the constraints of (3.1) will prevent

unboundedness of the objective function.) Since

Algorithms 2 and 3 (and Algorithm 4 below) generate

feasible solutions to (1.1), it is possible to use a

lower bound on the optimal value of (1.1) in a termi-

nation criterion if one sets an optimality tolerance

on the gap between the lower bound and the value o

the best feasible solution. (In general, the feasibl

solution with the best objective value will be the

last iterate, but an exception to this might occur if

an optimal solution (x, y, 6_) to (3.1) had the prop-

erty that X was integer. In general, a solution of

(3.1) will not have this integrality property, but if it

does, then x will be a feasible solution of (1.1),

and may have an objective function value better than

that of the last iterate, in which case this iterate

should^be replaced by x . Note that if x is intege;

and

I

Yj
f.(x) coincides with the optimal value of

(3.1), then x solves (1.1). See Figure 1 forthede|
tails of how these possibilities may be taken into

account.

)

212

/ Initialize the r!°'

set k = 0

Yes
"^1. 1) infeasible ^

No

(k) (k) (k)
Compute an optimal extreme point (x ,X) of P

and set z to the optimal value of P

optimal for (1. 1)

No

Revise
bound
estimates

Yes

Special

update

for R<^'

Mo

Increase
k by 1

for R*

Yes/^(k-1)
~ X optimal for

(I-i) 9

(k)
H X E -optimal for]

(1-1) y

Figure 1. Flowchart for Algorithm 4

213

The statement of Algorithm 4 assumes that

the following parameters have been supplied: (a) a

bound on the total number of j variables that

will be allowed in any LP , (b) incre-

ments a^jP^ to be used for revising lower and up-

per bound estimates (these are not used if rigorous

lower and upper bounds are known), (c) an optimal-

ity tolerance e and a parameter establishing the

frequency of the lower bound computations (this

could be based on clock time or number of itera-

tions).

Algorithm 4 (Multiple LP's, bounded stor-

age, optimality tolerance)

Proceed as in Algorithm 3, except that:

(k)
(a) when the update of the would violate

the bound on the number of \. ;
, remove from the

breakpoint sets Rj prior to the update,

all indices other than those corresponding

to the current values of the upper and lower

bound estimates;

(b) when an iterate violates the current value

{ ! of the lower bound estimate, f I is up-

dated to max{0, f 1
- }, and when an iter-

ate violates the current value u[of the

upper bound estimate, u! is updated to

u! + p. ;

^

1 1

(c) a lower bound is periodically computed by

solving a problem of the form (3.1), and the

algorithm is terminated if the objective func-

tion value of the best feasible solution ob-

tained thus far lies within e of the lower

bound (if the t^*^ proble^m of the form (3. 1)

has an optimal value z > -«>
^ the con-

n
J.

-

straint
J) y. > z. may be added to the

i=l
^

(t+l)st problem of the form (3.1) in order to

guarantee monotonicity of the lower bounds;

note that the dual simplex algorithm may be

used with the optimal solution from the t^'^

problem serving as the initial solution of

the dual of the (t+l)st problem).

For notational convenience in the flowchart

n

for Algorithm 4, Yj ^j^'^^' denoted by f(x) and

P(rJ^',. . . ,r[^^') is denoted by P^^'.

4. Numerical Example

In this section we present a numerical ex-

ample to illustrate the algorithmic ideas introduced

in the previous sections.

The problem dealt with has the form

15 X.

min V w.(l-q.)
^

i=l ^
^

10 15

(4.1) s.t. l^,-^,,
1=1 1=6

0 < X < u, X integer

5le

where the data and optimal solution, x are given
in Table 1. Using the "complete grid" approach of

Algorithm 1, the resulting LP has 17 equations and
262 variables, and the use of a small, locally-

written LP package yielded the optimal solution x
of Table 1.

By contrast, a column -generation procedure
of the type described in Algorithm 2 started with hO

variables^and terminated with an optimal solution

(x'' of Table 1) in 7 interations, the final LP solved
having 131 variables.

i w.
1

^1 u.
1

x*
1

1 9. 2 0. 31 16 12

2 1 . 0 0. 45 16 4

3 7. 6 0. 23 19 14

4 0.6 0. 09 10 2

5 8. 8 0. 15 10 10

ô 4 . c. 0.21 1

1

1 1

7 3. 2 0. 15 17 12

8 3.4 0. 01 20 0

9 8. 8 0. 79 16 3

10 6. 6 0. 41 15 7

11 1. 2 0.7 1 17 3

12 4. 6 0. 77 12 4

13 0. 8 0. 79 13 2

14 3.0 0. 21 20 13

15 1. 2 0. 07 20 12

75, b^ = 67, optimal value = 7.7 586

Table 1. Data for Numerical Example

References

1. L. B. Boza, "The Interactive Flow Simulator: A
System for Studying Personnel Flows," paper

presented at the ORSA/TIMS Joint National

Meeting, San Juan, Puerto Rico, October 1974.

2. A. Charnes, Fred Glover, David Karney, D.

Klingman, Joel Stutz, "Past, Present and Future

of Large Scale Transshipment Computer Codes
and Applications," Research Report CS 131,

Center for Cybernetic Studies, The University

of Texas, Austin, October 1974.

3. George B. Dantzig, Linear Programming and

Extensions , Princeton University Press,

Princeton, 19 63.

4. O. Gross, "Class of Discrete Type Minimiza-
tion Problems," RM-1644, Rand Corp. , Santa

Monica, 1956.

In addition to and u., R, included the

greatest integer in (f.+u.)/2.

214

5. R. R. Meyer, "A Class of Nonlinear Integer

Programs Solvable by a Single Linear Program,"

Computer Sciences Technical Report #267,
University of Wisconsin-Madison, February

1976.

6. Thomas L. Saaty, Optimization in Integers and
Related Extremal Problems , McGraw-Hill, New
York, 197 0

7. R. E. Schwartz and C. L. Dym, "An Integer

Maximization Problem," Opns. Res. 19 (1971),

548-550.

8. Iram J. Weinstein and Oliver S. Yu, Comment
on an lateger Maximization Problem," Opns

.

Res. 21 (1973), 648-650.

215

EXTREME POINT RANKING ALGORITHMS:
A COMPUTATIONAL SURVEY

Patrick G. McKeown
The University of Georgia

ABSTRACT

Since it has been long known that the optimal so-

lution to the minimization of a concave objective
function over a convex set will occur at an ex-

treme point of the convex set, one method of solv-
ing this type of problem is to rank these extreme
points. In the case where the objective function
in nonlinear and the constraint set is linear,
there have been numerous articles , more conceptual
than computational, on the application of an ex-
treme point ranking algorithm as a solution proce-
dure. In this paper, we will review the useful-
ness of this general type of procedure to various
problems by attempting to combine the available
computational literature with computational re-

sults of the author that have not been previously
presented.

I. Introduction

This paper will be concerned with problems of the
following general type:

min f (x)

s.t. xeS (P)

where S = {x | Ax=b , x>_0} ,

and f (x) is concave. A is assumed to be
mxn, bismxl, and x is n x 1.

It was shown by Hirsch and Hoffman [12] that an
optimal solution to P would occur at an extreme
point or vertex of S. Hence, to find an optimal
solution to P it is "only" necessary to search the
vertices of P until an optimal solution is found
and proved. If f (x) is linear, i.e.,

n
f{x) = I C.x.

j=l '
^

then the well-known simplex method is a very effi-
cient procedure for carrying out this search. How-
ever, if f (x) is nonlinear, say, quadratic or in-
teger, there does not exist a simplex type of al-
gorithm. It is the nonlinear case that we shall
be concerned with here.

Since no "direct" optimization techniques exist
for the case where t (x) is nonlinear, we shall
look at two approaches to searching the extreme
points of S. First, one might wish to use a lin-
ear under approximation of f{x), say L(x), such
that L(x)£f(x) xeS. In this case, to show that x*
is an optimal solution to P, we need only rank the
vertices of S until the vertex x° is found such

that L (x°)>_f (x*) . At this point, all vertices
that could possibly be optimal have been ranked.
This is proved by Cabot and Francix [3]

.

The second case applies to the case where f (x) is

a sum of a linear and a nonlinear portion, i.e.,
n

f (x) = Z C.x. , + g(x)

j = l ^ ^

where g{x) >^ 0 for x >^ 0

In this situation, one may seek to find a lower
bound on g(x) , say G. Then we may use the linear
portion of f (x) plus the lower bound as an under
approximation of f (x) . Obviously, for x >_ 0,

f(x) >^ C x + G. Hence, if x* is optimal for P,

then we need only rank the vertices of S until a

point x° is found such that c'^x° + G >^ f (x*) . This
proves that x* is optimal. The best example of
this is the fixed charge problem.

In order to rank the extreme points of S, we need
to use in both cases above a result also first
proved by Murty [20] as Theorem 1 below:

Theorem 1: If E^, E , E^ are the first K ver-
tices of a linear under approximation problem
which are ranked in nondecreasing order according
to their objective value, then vertex E^_^^ must be

adjacent to one of E , E E .12 K

Simply put, this says that vertex 2 will be adja-
cent to the optimal solution to the linear under
approximation and vertex 3 will be adjacent to ver-

tex 1 or vertex 2. This, then, gives us a proce-
dure for ranking the vertices if all adjacent ver-
tices can be found. It is this "if" that quite
possibly has accounted for the few number of com-
putational papers relative to the number of con-
ceptual works. This comes about due to the possi-"

bility of degeneracy in S. If S is degenerate,
then there may exist multiple bases for the same
vertex. This implies that all such bases must be '

available before one can be sure that all adjacent
vertices have been found. Finding all such bases
for finding and "scanning" all adjacent vertices
can be quite cumbersome. As we shall see later, aj,

recent application of Chernikova's work [5] has
been shown to be a way around the problem of de-

generacy. This will be discussed in more detail
when the fixed charge problem is explored.

The literature has been found to refer to basicallji .

four types of problems:
(i) fixed charge problems.

216

(ii) traveling salesman,
(iii) quadratic assignment, and

(iv) concave quadratic programming problems.

'e shall briefly discuss the conceptual background
•f each problem and then present and discuss the

vailable computational applications of the ex-

reme point ranking procedure to each problem,
here appropriate, we will present previously un-

ublished work of the author on the problem at

and. Finally, we will attempt to draw conclu-
ions about the efficiency of this type of proce-
ure

.

11. The Fixed Charge Problem

[

jne of the first types of problems recognized as

jeing of the form specified as P previously is the

inear fixed charge problem. This problem is for-

ulated as P^ below:

Min c X + f y

S.t. xeS (P.

Cl if X. > 0

j if = 0

n this case, f and y are nxl and all other dimen-

ions are as heiore. The f values are the fixed
r "set-up" costs while the c values are the con-
inuous costs. Hirsch and Dantzig [10, 11] first
ormulated and recognized that an optimal so-

ution of Pp would occur at an extreme point of s

f the f's are non-negative.

special subset of the fixed charge problem is

he fixed charge transportation problem (FCTP)

here the A matrix takes on the form of the Hitch-
ock Transportation Problem constraint set, i.e.,

M
j = 1,...,N

and

I X. .

i=l

N

I X. .

j=l
M
I s. =

i = 1, ,M

N
I d.

i=l j=l
ere, M = number of supply points and N = number
f demand points. Balinski [2] showed that a

inear under approximation of the objective
unction of the FCTP could be found by first
sttinq u, .

= Min {s., d.} and then setting
1

ID „ „ 1 3M
I (C.

i=l j=l
11

f . ./u. .)
11 11 11

jlthough Hirsch and Dantzig had formulated the
-xed charge problem and Balinski had found ap-
roximate solutions earlier, Murty [20] first
iggested the use of extreme point ranking algo-
ithm for solving this class of problems. He
[lowed that if a lower bound on the sum of fixed
larges could be found, say F , then the optimal
3lution to Pp, (x*,y*), could be found by ranking
le vertices of the corresponding continuous prob-
2m (all f .

= 0) until a point x is found such
lat C X +-'Fq =^ C x* + f y. The values of {x*,y*)
ay be found by checking each extr;^me po^nt to de-
annine whether a lower value of C x + f y existed.

When the point x is found, the solution (x*,y*)

is optimal. Murty did not discuss any computa-
tional results and left several unresolved prob-
lems with the solution procedure.

The first unresolved problem was to find F^^. Murty
suggested that the m smallest fixed charges be
summed. This may be easily seen to be inadequate
for problems with greater-than constraints or for
degenerate problems. This method also does not
attempt to find a lower bound that is feasible.

Secondly, Murty did not discuss an adequate method
of handling degeneracy in finding adjacent extreme
points other than determining all bases and apply-
ing the simplex method to each one in turn.

Although Murty did not present computational re-
sults of using his extreme point ranking method, he

did hypothesize that it would probably be more ef-

ficient in those cases where the continuous por-
T T

tion (C x) dominated the fixed portion (f y) . This
was later shown by McKeown in his dissertation [16]

and in a later article [17] . He effected an imple-
mentation of Murty 's procedure by resolving the

two problems mentioned earlier. He showed that a

lower bound on the fixed charges, F^, could be

found by solving by linear programming the set-

covering problem P below.
p

n

Min F,
0

S.t.

T. f .y .

i=l ' '

n
I 6. .y. >

j=l 3

-

> 0,
(Po)

where 6

and

_ fl if a. . > 0

ij
" Jo if a^^ < 0

g .
= 1 (except for the FCTP where 6 .

values greater than 1 were use3
to account for the number of cells
in a row necessary to possibly
achieve feasibility)

.

This method was found to yield better (larger) val-

ues of f^ than that originally suggested by Murty
while also handling the problems with greater-than
constraints and degeneracy mentioned earlier.

To handle the problem caused by degeneracy of S in

finding adjacent vertices, a modification of work
by Chernikova [5] was used to determine adjacent
vertices of a degenerate vertex [25]

.

Computational experience with this implementation
of Murty 's suggestion bore out the original con-

jecture that ease of solution would largely be a

function of the relative size of the fixed and con-

tinuous portions of the objective function. Two
types of problems were tested. First, a group of

general linear fixed charge problems generated by
Steinberg [26] were run using a FORTRAN code on an

IBM 360/175. These were 5x10 problems with equal-
to constraints which were randomly generated such
that 0 <^ C. <_ 20 and 0 <_ d . £ 999. Five of these
problems w3re tested and solved regardless of re-
lative costs.

In the second case, a set of nine fixed charge
transportation problems originally generated by
Gray [9] were tested. In this case, these problems

217

ranged from M=3 and N=4 to M=6 and N=8. Three of

these problems had a relatively large continuous
portion while the remaining six were fixed charge

dominant. In the former case, the procedure was

quite efficient regardless of problem size while

in the latter case, the algorithm proved to be in-

efficient in that none of the six could be solved
due to storage overruns.

In the later article [17] , McKeown expanded the

computational experience by using more variations
of Steinberg's problems, i.e., 10x20 's and prob-
lems with greater-than constraints. In these
problems, results were encouraging as long as the
relative cost sizes were favorable. For the prob-
lems with equal-to constraints, the fixed costs
dominated due to M structural variables always
being basic. However, in the problems with
greater-than constraints, the reverse was true and

the results showed that extreme point ranking was
much more efficient for this latter class of prob-
lems. He also tested for the effect of degeneracy
on FCTP's by comparing degenerate versions of
originally non-degenerate problems. The results
appeared to show that degeneracy is not a problem
as long as the relative costs are favorable.

In summary, Murty's extreme point ranking proce-
dure does appear to be efficient in those cases
where the fixed cost portion is small compared to

the continuous portion.

Two articles have appeared that use cutting plane
variations of Murty's procedure. Cabot [4] sug-
gested the use of Tui [29] cuts. The original Tui
algorithm involved determining a local minimum,
say x, over s. Then a hyperplane is passed
through the convex polytope in such a way that all
extreme points of s with value greater than the
local minimum, x, are excluded. These are com-
bined with the linear under approximation for fix-
ed charge transportation problems,

N N

L (x) = Z I (C. . + f . ./u. .)

^ j=l i=l ^3

He used two problems generated by Gray for his
testing. Both problems had M=4 and N=6. Problem
1 was continuous cost dominant while Problem 2 was
fixed cost dominant. Before using the Tui cuts,

Cabot attempted to solve both problems via extreme
point ranking using L (x) . As would be expected,
he quite easily solved Problem 1 but was unable to
prove optimality for Problem 2 after ranking over
400 extreme points. He then used a combined Tui
Cut - extreme point ranking procedure to solve
both problems with equal efficiency. This insen-
sitivity to relative costs became more apparent
when he devised 30 test problems by randomly gene-
rating new objective functions for Problems 1 and
2 where the ratio of fixed costs to continuous
cost ranged from 5 to 200. For these problems
his procedure appeared to be equally efficienct
regardless of the ratio of fixed to continuous
costs in that he solved 23 of the 30 test problems.
He handled degeneracy by using a pertubation
scheme, which while resolving degeneracy, intro-
duced numerous additional extreme points.

In another paper, Taha [28] combined extreme point
ranking with "Glover [8] cuts" to solve general
linear fixed charge problems. He defines a Glover

Cut to be one which separates a given extreme point
from the convex polytope. He used as a linear
under approximation the continuous portion of ob-
jective function, i.e.,

n

L (X)
g

I C .X.

and used these Glover Cuts to reduce the number of
extreme points to be ranked. In addition, he used
a technique suggested by Balas [1] of dropping con-
straints associated with the degenerate basic vari-
able to redefine the polytope. It appears that
this was done to insure that the Glover Cut was de-
fined rather than to find adjacent extreme points.
This procedure also tended to generate additional
extreme points to be considered. Taha solved ran-
domly generated problems of size as large as 15x20
with 0 < C . < 800 and 0 < F . < 100 in an average of— 3 — ~ 1

~
47 seconds on an IBM 360/50. As may be noted,
these problems appear to be continuous cost domi-
nated. This conjecture seems to be borne out by
the second set of test problems where for 0 <^ F . <_

300, we find that the solution times have gone ip
by a factor of four. Since these problems were
randomly generated, it is highly unlikely that any
were degenerate so we do not know the possible
effect of degeneracy on the solution procedure.

One point that Taha makes is that the use of a lin-
ear under approximation for general problems simi-
lar to that suggested by Balinski [2], i.e.,

n

x

.

L (x)
g

I (c. + F./u.;

j=i ^ 3 3

where u . > x . V
,

,

3 ~ 3 3

is made difficult by the need to solve a family of
linear programming problems to find the u 's.

m

Recently, the author investigated further the use

of L^(x) as a linear under approximation for rankinc
extreme points for the fixed charge transportation
problem as suggested by Cabot [4] . In this work,

he used a ranking procedure specifically developed
for transportation polytopes [19] . The nine prob-
lems developed by Gray [9] were used as bench marks
for comparison with other procedures. In Table 1

below, we show the results from this computational
testing. In this we have shown, for each problem
the size (MxN) , the relative sizes of the fixed andj

continuous portions of optimality (F*/C*) , the num-
ber of extreme points ranked to prove optimality,
the solution time on the UNIVAC 1110, the solution
time for Kennington's [13] branch-and-bound proce-
dure on the CDC Cyber 70, and Gray's original times
on the Burroughs 5500.

As we can see , only on problems 1 , 3 , and 8 are oui

times competitive with those of Kennington or Gray.,

These problems are the ones with large continuous
portions, and this is to be expected. This proce-
dure does seem to be better than the original rank-;

ing algorithm suggested by Murty in that at least

we were able to solve all of the problems, while
McKeown could only solve 1, 3, and 8 using Murty's
algorithm [20]

.

Table 2 below compares extreme point ranking re-

sults using the original Murty algorithm and the

Balinski Approximation. Both of these were run by

the author using the previously discussed ranking
procedure and are for the same nine problems in

218

TABLE 1

COMPUTATIONAL RESULTS USING BALINSKI ' S APPROXIMATION
TO SOLVE FCTP '

S

Problem
Size
(MxN) F*/C*

Number
Ranked

1110
Time

5500
Time

Cyber
72 Time

3x4
4x6
4x6
4x8
5x7
5x7
5x7

5x7
6x8

59/270
95/108
52/1947

108/164
117/126
173/143

1472/166
59/2230

120/194

3

732

2

756

154'

* **

2

0.09
53. 36

0.15
124.0

18.70

.20

7.

32.

26.

171.

263.8
149.9
97.0

3262.8
1510.1

.08

1. 35

.08

10

93

0.99
48

11

14.52

(All time in seconds)
*** - procedure aborted due to storage overflow

TABLE 2

COMPARISON OF MURTY ' S APPROACH TO
BALINSKI ' S APPROXIMATION

Number of Extreme Points Ranked
Gray Size

Problem MxN Murty Balinski

1 3x4 29 3

2 4x6 *** 732

3 4x6 2 2

4 4x8 *** 756
5 5x7 *** ***

6 5x7 *** 154

7 5x7 * ** ***

8 5x7 9 2

9 6x8 *** ***

*** - stopage overflow

In this we note that the Balinski Approximation is

quite a bit more efficient than the Murty approach
both in number of points ranked for those problems
that were solved, as well as for number of prob-
lems actually solved.

III. Concave Quadratic Programming Problems

If we define

T
C X X Dfg(x)

s.t. xeS
then we may say that the optimal solution to P

will occur at an extreme point of S under any one
-of the following conditions as enumerated by Cabot
and Francis [3]

:

1. The matrix D is negative definite or
negative semidefinite

.

2. Problem P is a quadratic programming
formulation of a problem occurring in

bimatrix games.
3. Problem P is a quadratic assignment

problem.
These were not meant to be inclusive of all con-
ditions under which the optimal solution of P

occurred at an extreme point, but rather, were ex-

amples of such conditions. We will consider con-

dition 3 in a subsequent section, and there does
not seem to have been any computational experience
in solving bimatrix games via extreme point rank-
ing. As a result of this, we will restrict our
attention to problems fitting condition 1, i.e.,

D negative semi-definite or negative definite.

For this case, Cabot and Francis show that if we

solve the family of linear problems, P"' , below for
u

each column of D, d. , then the minimum value of

the objective function, u,, can be used to deter-
mine a linear under approximation, L(x).

T i
Min u. = d.x (P-^)

3 3 u

S.t. x S

Now, using u., we write P as the linear under
approximation problem as

:

n

Min L(x) = I (C. + u.) X.

j=l 3 ^ ^

S.t. xeS.

A major drawback in using this approach is the

necessity of computing the u. values. One special
case where this is not a profilem is the quadratic
transportation problem P as formulated below:

M N

Min

S.t.

E Z

i=l j=l
M
I

(C, .X.
.

ID ID

i=l
N
I X

j = l

ID

2
d. .X .)
ID ID

j=l, N

ID
i=l, . ,M

x^_^ >^ 0 for all i,j

and d. , < 0.
ID -

This problem was formulated as a way of modeling
the marginally decreasing cost characteristics of

the private motor freight industry [24] . As Cabot
and Francis note, u = d [min(B.,A.)] and we may
easily formulate thl'^ob j eB?ive function for (P^

for the quadratic transportation problem.
QL

219

It should be noted that in the case of where one is

attempting to model the decreasing marginal cost

characteristics over various routes by use of P
QT'

it would be expected that the quadratic portion
will be small relative to the continuous gortion.

In fact, we would expect that C.x. + d. .x. . would

be positive non-decreasing over'' tile entlre-'range

of values of x.., orC. >_ |2d..u..| for each i
,

j

We would also eJpect tMt the effectiveness of

(P) for solving the problem by extreme point
ra8feing would increase as C . . increases relative
to d , . U . . ,

ID ID

ID

To test this, we used two sets of five randomly
generated quadratic transportation problems rang-

ing in size from 3x4 to 5x7. In each case we used

the Chernikova algorithm as modified by McKeown
and Rubin [19] to handle degenerate problems. The
continuous cost ranges are shown below:

Case I

:

Case II:

2\i .
.d. .

< c. . < 5000
ID ID ID -

2\i. .d. .
+ 500 < c. . < 9999

ID ID ID
-

In all problem sets, the quadratic costs were be-

tween 0 and 10. In problem 5, these costs were
between 0 and 20. The results of this testing are
shown in Table 3.

From these results, we note some differences in

run time as we move from Case I problems to Case
II. This is felt to be due to the increasing dom-
inance of continuous costs over quadratic costs in

the latter case. We also note an increase in both
parameters as we move to large problems for Case
I. This is to be expected due to increasing prob-
lem size. This does not happen in Case II since
very few solutions need be ranked in this case.

Problem Set 5 is the same as Problem Set 2 except
that the range of quadratic costs has been in-

creased. Here we note a great increase in solu-
tion parameter values in Set 5 over Set 2 for Case
I . This is due to the decrease in dominance of

continuous costs over quadratic costs.

TABLE 3

SOLUTION TIMES AND NUMBER OF EXTREME POINTS
RANKED FOR VARIOUS CONTINUOUS COST RANGES

Problem Size
d. .

ID Case I Case I

Set (MxN) Range Time Time

1 3x4 0-10 .09 .08
2 4x6 0-10 .34 .31
3 4x8 0-10 .86 .84

4 5x7 0-10 1.78 .85
5 4x6 0-20 1.13 .41

In terms of results, these problems tend to be
much more promising than any of the others dis-
cussed in this paper. If further research demon-
strates that, for problems of the nature discussed
by Oi and Hurter, the costs are indeed marginally
decreasing with dominant continuous costs, then
this ranking procedure may be useful for solving
such transportation problems.

IV. The Quadratic Assignment Problem

One area of mathematical programming where it also

has long been known that the solution would occur
at an extreme point is that of variations of the
assignment problem. One such variation, the well
known traveling salesman problem will be discussed
in a later section. Here we will discuss the as-
signment problem where there are interactions be-
tween the assignments [7] . This is commonly re-
ferred to as the quadratic assignment problem and
may be formulated as P

Min

S.t.

n n

I I C

i=l j=l
n

E X

i=l
n

I X

K=l

AQ

X
. .

ID ID

below:
n n n n
Z Z Z I K

j1 D

ik

ik

= 1,.

i=l,

< n

,

iDpq^'ij^pq

X., > 0,
ik —

where K. . is the cost of an assignment of i to ji

and p to q?

That the solution of P would occur at an extreme
point of the constraint set was first noted by
Gilmore [7] . A linear under approximation to P

was suggested by Lawler [14] and may be formulated
as follows :^ .denote for each i, j, a minor of
K. . as K and denote the value of the solu-

the (n-l)x(n-l) assignment problem corre
sponding to each minor as Z . We also define a

cost f,.=Z'''-' +C... The solution to the as

signmeni problem for''"ihe matrix F = {f^^}
lower bound on the solution to P

we may use F, the assignment proBIem with cost cO'

efficients {f . .}, as a linear under approximation
to P for extreme point ranking purposes. This
is an analogous procedure to that discussed for

finding a linear approximation to quadratic pro-
gramming problems with concave objective function
discussed earlier [3]

.

As"'a result.

In some problems, we may define

K. . = t. d.
iP DPiDPq

This is true in the Koopmans-Beckman single com-

modity problem.

An extreme point ranking procedure for solving
this and other non-convex quadratic minimization
problems was suggested by Cabot and Francis [3]

using the linear under approximation F. This pro-
cedure is essentially that discussed earlier for
this type of linear under approximation in that
extreme points of S are ranked until a value x^ is

found such that L^(5{q) ^ f(x*) where x* is the op'

timal solution.

Using this approach to the quadratic assignment
problem, Fluharty [6] wrote a master's thesis on

the problem. In that work, he tested various prob
lems generated by previous researchers who had
worked on the quadratic assignment problem. Usinc

a procedure suggested by Murty [21] for determinii

adjacent extreme points for assignment problems,
he tested problems for 4 <^ n <^ 12 with mixed re-

sults. Only in those cases where the continuous
values, i.e., {C . . } , were large as compared to th<

quadratic values"'"^as he consistently assured of

not having to enumerate all n! extreme points to

reach a solution. For a problem with n = 12

,

±

lit;

ilci

tpti

IV.

k

loin

ilt

iion

ii

•ir.

220

< C. . _< 99, and 0 _< t . ,d. £ 10, the procedure
verraA available core s¥orafe. However, when the

ax C. . was increased to 999, the problem was
olved"'"iy ranking only 100 extreme points. In

able 4, we see the results of Fluharty' s worlc.

TABLE 4

SUMMARY OF FLUHARTY S RESULTS

C . . t. ,d.
SolutionID ip iq

rob 1em Size (N) Range Range Ranked

1 4 (0,0) (0,20) 20

2 5 (0,0) (0,5) 11

3 5 (1,5) (0,5) 37

4 6 (0,0) (0,10) 720

5 6 (0,9) (0,10) 202

6 6 (0,99) (0,10) 10

7 7 (0,99) (0,9) 135

8 7 (0,0) (0,10) 5040

9 7 (0,99) (0,10) 170

10 7 (0,9) (0,10) 1848
11 7 (0,0) (0,99) 3201
12 7 (0,99) (0,99) 3212

13 8 (0,0) (0,10) * * *

14 8 (0,9) (0,10) * * *

15 8 (0,99) (0,10) -121

15 10 (0,99) (0,9)

17 10 (0,999) (0,9) 188
18 12 (0,0) (0,10) ***

19 12 (0,99) (0,10) * * *

20 12 (0,999) (0,10) 100

*** -storage overflow-

nee again the importance of relative size of lin-
ar vs. nonlinear portions of the objective func-
ion becomes evident for the use of extreme point
rocedures

.

Traveling Salesman Problem

!ith all the work on using extreme point ranking
ilgorithms to solve various problems with linear
.'onstraints , it might be surprising to find that
'ery little work has been done on the traveling
ialesman problem. It can be easily seen that the
iptimal traveling salesman tour can be found by
"anking the solutions to the assignment problem
intil the tour is found. However, our research
las shown that only some very early work by Murty
ind Karel [23] has been documented. However,
.hey opted to move onto their branch and bound al-
j'orithm [15] instead of continuing work on extreme
joint ranking methods

.

in this early paper, a method for ranking the as-
signments was presented together with a procedure
.o avoid generating adjacent assignments that con-
tained subtours. Using this procedure, a ten city
andomly generated problem was solved "...by hand,

iind the time taken was about half an hour." Also,
I 20 city symmetric problem was solved. This
'...involved the solving of 10 different assign-
lent problems of sizes ranging from 16 to 20. On
Jie Burroughs 220 computer,..., this took about 10
iiinutes in all." [20] As mentioned earlier, this
Vork, though not published, resulted in a branch
md bound algorithm. Also, the method for ranking
:he assignments presented in this paper was later

published [21]

.

One other bit of unpublished work in this area
came to light from Sweeney and Williams [27] . It

was stated by them that for a problem on the order
of 40 cities, approximately 5000 assignments were
ranked without a tour being found.

One further comment on the traveling salesman
problem concerns another paper by Murty [22] on

the tours of the traveling salesman problem. In

that paper, he proves that all solutions that are
tours can be found by determining the vertices ad-
jacent to the diagonal assignment solution, i.e.,

X.. = 1, i = 1, N. However , due to the large
number assignments adjacent to any other assign-
ment, unless some efficient procedure can be
found for generating these tours in a non-increas-
ing costwise manner, this does not appear promis-
ing .

VI . Conclusions and Directions for Future Research

From our look at the use of extreme point ranking
procedures to solve problems with concave objec-
tive functions and linear constraint sets, it

would seem safe to say that the efficiency of this
procedure is extremely dependent upon the objec-
tive function. In those problems where the objec-
tive function was approximately linear, the proce-
dure could be expected to be very efficient. How-
ever, as the non-linearity of the objective func-
tion increases, the efficiency of the procedure
decreases markedly.

Several areas of future research into the use of

this procedure present themselves. One would be

to combine the use of the Tui cut with methods for

efficiently determining adjacent vertices in the
presence of degeneracy. Another possibly fertile
area of research would be to look more closely at

the general linear fixed charge problem with
greater-than constraints. Finally, research might
be profitable in implementing Cabot and Francis

'

approach to more general concave quadratic pro-
gramming problems.

REFERENCES

[1] Balas , E., "Intersection Cuts - A New Type of

Cutting Plant for Integer Programming," Ope-
rations Research 19, 19-39 (1971).

[2] Balinski, M. L. , "Fixed Cost Transportation
Problems," Naval Research Logistics Quarterly ,

8, No. 2 , 41-54 (1961)

.

[3] Cabot, A. V. and R. L. Francis, "Solving Cer-
tain Nonconvex Quadratic Minimization Prob-
lems by Ranking the Extreme Points ,

" Opera-
tions Research 18, 82-86 (1970).

[4] Cabot, A. v., "Variations on a Cutting Plane
Method for Solving Concave Minimization Prob-
lems with Linear Constraints ,

" Naval Research
Logistics Quarterly , 21, No. 2, (1974).

[5] Chernikova, N. V., "Algorithm for Finding a

General Formula for the Non-negative Solu-
tions of a System of Linear Inequalities,"
U. S.S^.R. Computational Mathematics and Mathe-

221

matical Physics .

[6] Fluharty, R. , "Solving Quadratic Assignment
Problems by Ranking the Assignments," Unpub-
lished Master's Thesis, Ohio State University,

1970.

[7] Gilmore, P. C. , "OptLtial and Suboptimal Algo-
rithms for the Quadratic Assignment Problem,"
SIAM Journal 10, 305-313 (1962).

[8] Glover, F. , "Convexity Cuts and Cut Search,"
Operations Research , 21, 123-134 (1973).

[9] Gray, P., "Exact Solution of the Fixed Charge
Transportation Problem," Operations Research ,

19, No. 6, 1529-1537 (1971).

[10] Hirsch, W. M. and Dantzig, G. B. , "The Fixed
Charge Problem," Rand Corporation Memo P.

648, The Rand Corporation, Santa Monica,
California (1954)

.

[11] Hirsch, W. M. and Dantzig, G. B. , "The Fixed
Charge Problem," Naval Research Logistics
Quarterly , 15, No. 3, 413-424 (1968).

[12] Hirsch, W. M. and Hoffman, A. J. , "Extreme
Varieties, Concave Functions, and The Fixed
Charge Problem," Communications on Pure and
Applied Mathematics , 14, No. 3, 355-370

(1961)

.

[13] Kennington, J. , "The Fixed Charge Transporta-
tion Problem: A Computational Study with a

Branch-and-Bound Code," Technical Report CP

73033, Southern Methodist University, 1975.

[14] Lawler, E. L. , "The Quadratic Assignment
Problem," Management Science 9, 586-599
(1963)

.

[15] Little, J. D. C, K. G. Murty, D. W. Svjaeney,

and C. Karel, "An Algorithm for the Traveling
Salesman Problem," Operations Research 11,
972-989 (1963).

[16] McKeown, P. G. , "An Extreme Point Ranking
Algorithm for Solving the Linear Fixed Charge
Problem," Ph.D. Dissertation, University of
North Carolina (1973)

.

[17] McKeown, P. G. , "A Vertex Ranking Procedure
for Solving the Linear Fixed Charge Problem,"
Operations Research , 23, No. 6, 1183-1191,
(1975)

.

[18] McKeown, P. G. , "The Quadratic Transportation
Problem," (submitted to Review of Transporta-
tion and Logistics)

.

[19] McKeown, P. G. and D. S. Rvibin, "Adjacent
Vertices on Transportation Polytopes," Naval
Research Logistics Quarterly , 22, No. 2, 365-
374 (1975)

.

[20] Murty, K. , "Solving the Fixed Charge Problem
by Ranking the Extreme Points," Operations
Research , 16, 268-279 (1968).

[21] Murty, K. , "An Algorithm for Ranking All As-

signments in Order to Increasing Costs," Ope-

rations Research , 16, 682-687 (1968).

[22] Murty, K. , "On the Tours of the Traveling
Salesman," SIAM Journal on Control , 7, 122-

131 (1969)

.

[23] Murty, K. and C. Karel, "The Traveling Sales-
man Problem: Solution by Method of Ranking
Assignments," Case Institute of Technology,
1961.

[24] Oi, W. Y. and A. P. Hurter, Jr., Economics of
Private Truck Transportation , Wm. C. Brown
Company, Dubuque, Iowa, 1965.

[25] Rubin, D. S., "Neighboring Vertices on Convex
Polyhedral Sets," University of North Carolina
(1972) .

[26] Steinberg, D. I., "The Fixed Charge Problem,"
Naval Research Logistics Quarterly , 17, 217-

235 (1970)

.

[27] Sweeney, D. W. and T. William, private
communication. May, 1976.

[28] Taha, H. A., "Concave Minimization Over a

Convex Polyhedron ,
" Naval Research Logistics '

Quarterly , 20, No. 3, 533-547 (1973).
s

[29] Tui, H. , "Concave Programming Under Linear '

Constraints," Soviet Mathematics , 5, 1437- i

1440 (1964) .
s

U

!<

e;

CI

J'

tr

le

il

51:

ii

til

iSi

i.

b
tiai

BJs

Sf.'

'
iiso

liiii

' til

iii
i

ii
i

iiriK

hi

k«

Si li

5sti:

"'ta.

222

A NEW ALTERNATING BASIS ALGORITHM FOR SEMI-ASSIGNMENT NETWORKS

by

Richard Barr, Assistant Professor, Southern Methodist University

Fred Glover, Professor, University of Colorado

Darwin Klingman, Professor, University of Texas
BEB 608

Austin, TX 78712

ABSTRACT

During the early 1970's, highly efficient
special purpose computer codes were developed for

solving capacitated transshipment problems based
on primal extreme point algorithms. Computational
comparisons of these codes with the best non-
extreme point codes designed for the same class of

problems indicated that the primal extreme point-
based codes were substantially superior both in

terms of computer time and memory requirements on

all types of network problems. More recently,
specialized non-extreme point codes have been
developed for uncapacitated bipartite problems

—

notably assignment and semi-assignment problems.
Comparisons of these problem specific non-extreme
point codes with the earlier general purpose
extreme point codes casts doubt on the earlier
computational conclusions. Consequently, the

purposes of this paper are to develop a new ex-

treme point algorithm which is specifically
designed to take advantage of bipartite, boolean
flows, and degeneracy aspects of assignment and
semi-assignment problems and, further, to conduct
an unbiased comparison of the alternative algo-
rithmic approaches for solving assignment and semi-
issignment problems.

L. INTRODUCTION

The semi-assignment problem is a bipartite
letwork problem whose supply constraints are the
same as those of an assignment problem and whose
iemand constraints are the same as those of a

ransportation problem, or vice versa. In the
nidst of the dramatic advances [1,2,5,11,14] in

letwork solution technology since 1969, this
.mportant member of the network family called the
emi-assignment problem has received scant atten-
;ion. Falling midway between the classical assign-
ment problem and the classical transportation in
ts generality, it was bypassed alike by those
rho studied the ultra-specialized assignment
structures and those who studied the more general
)ipartite transportation structures.

The neglect of the semi-assignment problem
s especially ironic in view of the fact that it

ccupies one of the singularly important niches in

he network hierarchy. The "assignment half"
raptures the ubiquitous multiple choice structures
f capital budgeting and planning problems and the
ipecial ordered set constraints of mixed integer

and combinatorial programming. The "transporta-
tion half" captures arbitrary upper and lower
bounds on disjoint sums of variables, and there-
fore can provide valid relaxations for any mixed
integer program with imbedded multiple choice and
special ordered set structures. Still more di-
rectly, the semi-assignment structure appears in

large scale scheduling and planning problems from
real world settings. For example, applications of
manpower planning (assigning personnel to jobs)

,

scheduling (assigning aircraft to routes, trucks
to routes, freight to transports, etc.), project
planning (assigning project components or sub-
assemblies to tasks over time) , and a variety of
other practical problems in planning logistics
contain embedded semi-assignment problems.

Consequently, the purposes of this paper are
to develop a new extreme point algorithm (called
the alternating basis (AB) algorithm) which is

specifically designed to take advantage of bi-
partite, boolean flow, and degeneracy aspects of

assignment and semi-assignment problems and, fur-
ther, to conduct a comparison of the alternative
algorithmic approaches using codes designed for
solving these problems.

Computational testing has shown that approxi-
mately 90 percent of the pivots within special
purpose primal simplex-based algorithms [2,11,13]
are degenerate for assignment and semi-assignment
problems with more than 1000 nodes. The primal
extreme point algorithm presented in the paper for
solving semi-assignment problems which both cir-
cumvents and exploits degeneracy can be viewed as

an extension of the algorithm presented in [4] and

a specialization of the algorithm presented in [8]

.

One of the principal features of this algorithm is

a strong form of convergence that limits the num-
ber of degenerate steps in a far more powerful
way than achieved by "lexicographic improvement,"
as for example, in customary LP perturbation
schemes

.

Each basis examined by this algorithm is

restricted to have a certain topology. We show
that if a semi-assignment problem has an optimal
solution, then an optimal solution can be found
by considering only bases of this type. The major
mathematical differences between the AB algorithm
and the simplex method are (1) the rules of the
algorithm automatically (without search) assure
that all bases have the special topological struc-
ture, and bypasses all other bases normally given
consideration by the simplex method; (2) the algo-
rithm is finitely convergent without reliance upon

223

"external" techniques (such as lexicography or

perturbation); and (3) in certain cases non-

degenerate basis exchanges may be recognized prior

to finding the representation of an incoming arc.

For these reasons, this algorithm has several com-

putational advantages over the highly efficient
special purpose simplex-based codes recently devel-

oped for solving network problems.

The AB algorithm also has unique computer
implementation properties. Specifically, the data
required to represent its bases are substantially
less than that required for general simplex bases;

thus, the computer memory required to store the

basis data is less than that of special purpose
simplex-based algorithms. The computational re-

sults in section 6 dramatically demonstrate the

power and efficiency of the AB algorithm over

other algorithms for solving assignment and semi-

assignment problems.

2. BACKGROUND MATERIAL

An m X n semi-assignment problem may be de-

fined as:

Minimize E

(i, j)eA

subject to:

Z

je{j :
(i, j)£A}

E

i£{i: (i, j)£A}

13 13

13
b_., i£l = {1,2,, ,m}

13

X. .

13

= 1, jeJ = {1,2, ..
.
,n}

> 0, (i,j)£A

where I is called the set of origin nodes, J is

called the set of destination nodes, A is the set

of admissible arcs, and Cij is the cost of ship-

ping a unit from origin node i to destination
node j

.

The dual of the semi-assignment problem may
be stated as:

Maximize Z

i£l

subject to:

R. +
1

R.b.
1 1

+ K.

3 ^ij'
(i, j)£A

where R. and K. are called the node potentials of

the origin and'^ destination nodes, respectively.
An understanding of the results of this paper

relies on a familiarity with graphical interpreta-
tions of the semi-assignment problem and how the

primal simplex method may be applied to this pro-
blem. While these ideas are relatively direct,
they, unfortunately, are not succinctly itemized
in any references and will be summarized in this

section for completeness.
The semi-assignment problem may be repre-

sented as a bipartite graph consisting of a set of

origin nodes with supplies b^^ and a set of destina-
tion nodes with unit demands. Directed arcs from
origin nodes to destination nodes accommodate the

transmission of flow and incur a cost if flow

exists. The objective is to determine a set of

arc flows which satisfies the supply and demand
requirements at minimum total cost.

The bases of the simplex method for solving
an m X n semi-assignment problem correspond to

spanning trees with m + n - 1 arcs. Exactly n of

the basic arcs have an associated basic flow value

of one and the other m - 1 arcs have a basic flow
value of zero. Therefore each basic solution is

highly degenerate (i.e., contains a large number
of zero flows) . This often causes the simplex
method to examine several alternative bases for

the same extreme point before moving to an adja-
cent extreme point.

In the graphical representation approach, the

bases of the simplex method for semi-assignment
problems are normally kept as rooted trees

[5 , 7 , 12 , 14,19]. Conceptually , the root node may be

thought of as the highest node in the tree with
all of the other nodes hanging below it on direct-
ed paths leading downward from the root. Those
nodes in the unique path from any given node i to

the root are called the ancestors of node i, and
the immediate ancestor of node i is called its

predecessor .

Figure 1 illustrates a rooted basis tree, the.

predecessors of the nodes, and the basic flow
values, for a 3 x 6 semi-assignment problem.
Notationally , Oi denotes the ith origin node and
Dj denotes the j th destination node. The number
beside each link (arc) in the basis tree indicates
the flow on this arc imparted by the basic solu-

tion. Predecessors of nodes are identified in the
PREDECESSOR array. For example, as seen from this

array, the predecessor of origin node 2 is destina^

tion node 1. The root of the tree is node 01 and
has no predecessor.

NODE PREDECESSOR

01 None

02 01

03 D3

01 01

D2 01

D3 01

D4 02

D5 03

06 03

Figure 1—Rooted Basis Tree

224

It is important to note the direction of the links

in Figure 1 correspond to the orientation induced

by the predecessor ordering and do not necessarily
correspond to the direction of the basis arcs in

the semi-assignment problem. However, the direc-

tion of the basic arcs are known from the bi-

partite property of the semi-assignment problem;

i.e., all problem arcs lead from origin nodes to

destination nodes.
In subsequent sections the term 0-D link and

D-0 link will be used to refer to links in a

rooted basis tree that are directed from an origin
node to a destination node and vice versa, accord-
ling to the orientation imparted to the basic arcs
iby the predecessor indexing. For example, in

'Figure 1, 02-D4 is an 0-D link while Dl-02 is a

D-0 link. Additionally, basic arcs with a flow of

one or zero will be referred to as 1-links and

0-links, respectively.
The fundamental pivot step of the simplex

method will now be briefly reviewed in the graphi-

cal setting. Assume that a feasible starting
basis has been determined and is represented as a

rooted tree. To evaluate the nonbasic arcs to

determine whether any of them "price out" profit-

ably, and therefore are candidates to enter the

basis, it is necessary to determine values for the

dual variables R±, iel, and Kj , j£J, which satisfy
complementary slackness; i.e., which yield

Rj^ + Kj = Cij for each basic arc.

There is a unique dual variable associated
with each node in the basis tree. For this reason
the dual variables—or their values—are often
referred to as node potentials. Because of redun-

dancy in the defining equations of the semi-
assignment problem (and in network problems gen-

erally) , one node potential may be specified
arbitrarily. The root node is customarily select-

ed for this purpose and assigned a potential of

zero, whereupon the potentials of the other nodes
are immediately determined in a cascading fashion
by moving down the tree and identifying the value

for each node from its predecessor using the

equation + Kj = c-j^j . Highly efficient labeling

procedures for traversing the tree to initialize

and update these node potential values are des-
cribed in [5,12,14]

.

A feasible basic solution is optimal when all

nonbasic arcs satisfy the dual feasibility condi-
tion R-j^ + Kj < c-j^j . If the solution is not opti-
cal, then an arc whose dual constraint is violated
(i.e., for which R^^ + Kj > c^a) is selected to

snter the basis. The arc to leave the basis is

determined by: (1) finding the unique path in

the basis tree, called the basis equivalent path,
tfhich connects the two nodes of the entering arc,

and (2) isolating a blocking arc in this path
jhose flow goes to zero ahead of (or at least as

soon as) any others as a result of increasing the

:low on the entering arc. In the basis equiva-
lent path, all arcs an even number of links away

- ;rom the entering arc are called even arcs, and
ill arcs an odd number of links away are called
odd arcs. An increase in the flow of the incoming
irc causes a corresponding increase in the flow
3f all even arcs and a corresponding decrease in

:he flow of all odd arcs. Thus, if an odd arc
ilready has a 0 flow, then such an arc qualifies
is a blocking arc and the incoming arc cannot be

assigned a positive flow.

To illustrate, assume that the starting basis

is the one given in Figure 1 and the entering arc
is (03, D4). The basis equivalent path for (03, D4)

is D4-02-D1-01-D3-03. (Note that this path can be

easily determined by tracing the chain of prede-
cessors of 03 and D4 to their point of intersec-
tion [5,10,12].) As flow is increased on the

entering arc, the flow on the odd arc (01, Dl) must
be decreased. Since its flow is already zero,

(01, Dl) qualifies as a blocking arc so that when
arc (03, D4) is brought into the basis, arc (01, Dl)

must be dropped. (There are no other blocking
arcs in this case.) In addition, the pivot (or

basis exchange) is degenerate since no flow change
occurs

.

Once the entering and leaving arcs are known,
the basis exchange is completed simply by updating
the flow values on the basis equivalent path and
determining new node potentials for the new basis
tree

.

Only a subset of the node potentials change
during a pivot and these can be updated rather
than determined from scratch. This fact will play
a crucial role in proving convergence of the algo-
rithm to be developed.

To update the node potentials, assume that

the nonbasic arc (p,q) is to enter into the basis
and the basic arc (r,s) is to leave the basis. If

arc (r,s) is deleted from the basis (before adding
arc (p,q)), two subtrees are formed, each con-
taining one of the two nodes of the incoming arc

(p,q). Let K denote the subtree which does not
contain the root node of the full basis. The node
potentials for the new basis may be obtained [12]

by updating only those potentials of the nodes in

K, as follows. If p is in K, subtract
6 = Rp + Kq - Cpq > 0 from the potential of each
origin node in K and add 5 to the potential of

each destination node in K. Otherwise, q is in K

and -6 is used in the above operations.

3. ALTERNATING PATH BASIS DEFINITION AND
PROPERTIES

The new alternating basis (AB) algorithm for

semi-assignment problems developed in this section
is similar to the primal simplex method as des-
cribed above. Its major mathematical distinction
is that it does not consider all feasible bases
to be candidates for progressing to an optimal
basis. That is, the simplex method allows a

feasible spanning tree of any structure whatsoever
to be included in the set of those that are

eligible for consideration as "improving bases"
along the path to optimality. However, it will be

shown that if a semi-assignment problem has an

optimal solution then it also has an optimal
solution with a unique basis tree structure,
dubbed the alternating path (AP) structure.
Furthermore, it will be shown that it is possible
to restrict attention at each step to bases with
this structure. In particular, the AB algorithm
is a procedure designed to exploit the properties
of the AP basis structure in a manner that sub-

stantially reduces the impact of degeneracy, the

number of arithmetic operations, and the data
storage locations required to solve the semi-
assignment problem.

Definition : A rooted basis tree for a semi-

assignment problem is an alternating path (AP)

225

basis if: Let r be a destination node such that

1. The root node is an origin node.
2. All 1-links are 0-D links.

3. All 0-links are D-0 links.

An example of an AP basis is shown in Figure 2.

The "alternating path" designation is applied
because every path from a node to any ancestor
node in the tree, or vice versa, is an alternating
path of 1-links and 0-links. Our attention will
chiefly focus on paths from nodes to their ances-
tors (as would be traced along a succession of

predecessors) . A path that begins at an origin
node and ends at an ancestor destination node
will be called "0-AP" because it begins and ends
with a 0-link. Similarily, a path that begins at

a destination node and ends at an ancestor origin
node will be called "1-AP" because it begins and
ends with a 1-link.

jeJ - J'

Figure 2—An AP basis for a 3 x 6 semi-
assignment problem.

Remark 1 : The 1-links of any feasible semi-
assignment solution can be augmented by 0-links
to create an AP basis (e.g., by adding 0-links
from destination nodes to origin nodes in any
fashion so that every origin node except the root
node has exactly one entering 0-link.) Note if

the arcs corresponding to the added 0-links do not
exist in the particular semi-assignment problem
then a large (big M) cost is assigned such links.

Remark 2 : There are many semi-assignment bases
for a given feasible solution that are not AP
bases. (For example, any basis that has more than
one 0-link incident to an origin node is not an
AP basis regardless of the origin node chosen as
the root. Figure 1 is an example of such a basis.)

Remark 3 : An artificially feasible AP basis may
always be constructed for an m x n semi-assignment
problem by assuming that arcs exist from each ori-
gin node to all destination nodes where the non-
admissible (artificial) arcs have a "big M" cost,
the procedure is as follows.

Initially set J' = 0, B = 0, and i = 1. Go
to step 1.

Set B = {(i,r)}UB, x^^ = 1, J' = J'U{r}
and = b-j^ - 1.

2. If bi ^ 0 go to step 1. Otherwise, go ti

step 3.

3. If i ^ m, set i = i + 1 and go to step 1

Otherwise set i = 2, J' =0 and go to

step A.

4. Let r be a destination node such that
Cj^j- = min c^j and (i,r)^B

jeJ - J'

Set J' = J'U {j : (i,j)eB}, B = {(i,r)}UBi
and Xi 0

5. If i ?^ m, set i = i + 1 and go to step 4
Otherwise go to step 6.

6. Using B, create a spanning tree rooted
at node 1. The resulting spanning tree
will be an AP basis.

Proof :

The remark follows by construction.

Definition : Relative to any AP basis, a nonbasic
arc is called a downward arc if it connects a

destination node to an ancestor origin node, an

upward arc if it connects an origin node to an

ancestor destination node. An arc that connects
an origin node and a destination node that do not

have either of these ancestral relationships is

called a cross arc. (Note that these are the on,

three possibilities for a nonbasic arc in a bi-

partite network.)
The next two remarks point out some importai

properties that can be exploited when applying
the simplex method to an AP basis.

Remark 4 : When the simplex method is applied to

an AP basis, a pivot is nondegenerate if and onl;

if the entering nonbasic arc is a downward arc.

Proof

:

The remark relies on the fact that a non-
|

degenerate pivot causes the flows on the bo^is
equivalent path to decrease and increase in^
strictly alternating fashion to the odd and even
links. The "if" part of the remark then follows
by observing that a downward arc is 1-AP. The
"only if" part of the remark follows from two

observations, first that an upward arc is 0-AP,

and second that a cross arc has a 0-link above
the origin node incident to the entering arc (an

this arc is contained in the basis equivalent
path adjacent to one of the nodes of the enterii-:

arc) .

Remark 5 : When the simplex method is applied to

an AP basis, the pivot can be carried out to giv

a new AP basis for any entering nonbasic arc

simply by dropping the unique link in the basis
equivalent path attached to the origin node of

the entering arc.

Proof :

The remark follows by observing that an AP

basis results if a rooted tree is constructed
with its root node equal to the root node of the

old AP basis.

Ollj

ctai

I

hi

Proo

talii,

iiSOi

tfJiii

pttr

titer

iEitr,

Si
ei

;ie
01

Etate

C

226

Alternating Basis (AB) Algorithm Theorem

:

On the basis of the preceding remarks, the

rules of the AB algorithm can be stated in an
extremely simple fashion.

1. Select any feasible AP -basis for the
semi-assignment problem (e.g., using
Remark 3)

.

2. Successively apply the simplex pivot
step keeping the root node fixed and
picking the link to leave according to

Remark 5

.

By means of these rules, the foregoing ob-

I

servations imply that the AB algorithm will pro-
' ceed through a sequence of AP bases, bypassing all

, other basis structures. Further, these remarks
show that a "next" AP basis is always accessible
to a given AP basis, so that the method will not
be compelled to stop prematurely without being
able to carry out a pivot before the optimality
(dual feasibility) criteria are satisfied. The
issue to be resolved then, is whether the method
may progress through a closed circle of AP bases
without breaking out, and thus fail to converge.
It will be shown that this cannot happen, and
that, in fact, the AB algorithm is finitely con-
verging without any reliance upon "external"
techniques such as perturbation, as in the
ordinary simplex method. Moreover it will be
shown that the form of convergence of the AB
algorithm has a particularly strong character,
in which origin node potentials and destination
node potentials each change in a uniform direc-
tion throughout any sequence of degenerate pivots.

These results do not require any restric-
tions on the choice of the incoming variable.
For example, it is not necessary to cull through
pivot possibilities in an attempt to find de-
generate pivot candidates. The following lemma
and theorem validate these statements.

Lemma : A basis exchange with the AB algorithm
gives rise to a new AP basis in which the new
node potentials satisfy the following properties:

a) For a nondegenerate pivot : The changed
origin node potentials strictly increase and the
changed destination node potentials strictly
decrease

.

b) For a degenerate pivot : The changed
origin node potentials strictly decrease and the
changed destination node potentials strictly
increase

.

Proo f:

As already discussed, the node potential
values that change may be restricted to those
associated with the subtree K. By this pro-
cedure, if subtree K contains the origin node
of the entering arc then all the origin node
potentials in K are decreased and all destina-
'tion node potentials in K are increased. The
reverse is true if the destination node of the
entering arc is in subtree K. The lemma then
follows from Remarks 4 and 5, which imply that
subtree K always contains the destination node of
the entering arc for a nondegenerate pivot and
the origin node of the entering arc for a degen-
erate pivot.

Our main result may be stated as follows:

The AB algorithm will obtain an optimal solu-
tion (or determine that the problem is infeasible)
in a finite number of pivots, regardless of which
dual infeasible arc is chosen to be the entering
arc, and without any reliance on perturbation or
lexicographic order ings.

Proof :

It is sufficient to show that the number of

degenerate pivots that occur between any two non-
degenerate pivots must be finite. This follows
from the second half of the lemma. Note that the
node potential assigned to the root node never
changes when the node potentials in subtree K are
updated. Thus given the constant node potential
for the root, the other node potentials are

uniquely determined for each successive basis
(regardless of the procedure by which they are
generated) , and the uniform decrease of origin
node potentials and the uniform increase of des-
tination node potentials (for the potentials that
change) implies that no basis can ever repeat
during an uninterrupted sequence of degenerate
pivots. This completes the proof.

4. COMPUTATIONAL CONSIDERATIONS

Some of the unique computational features of

the AB method include:
a) It explicitly bypasses all "non-AP" basis

solutions without requiring any imbedded search
procedure or computational tests.

b) It allows degenerate pivots to be recog-
nized and performed without computing the repre-
sentation of the entering arc. This can be accom-
plished by using the "cardinality function" of

Srinivasan and Thompson [19] which indicates the

number of nodes in the subtree of the basis tree
below a given node. In particular, following the
labeling ideas recently proposed in [5] , upward
arcs and some cross arcs can be detected simply by

comparing the cardinality function values of the

nodes associated with the entering arc. That is,

denote the cardinality function by f and the

entering arc by (p,q). If f(p) < f(q) then arc

(p,q) is either an upward arc or a cross arc. In

either case the pivot is degenerate and no flow
updating is required. Remark 5, furthermore,
directly specifies the link to leave the basis.
Thus a degenerate pivot simply involves checking
the cardinality function, inserting and deleting
the appropriate links, and updating the node
potential values.

c) Similar streamlining can be achieved for

all other pivots. Specifically, if f(q) < f(p)

then the appropriate step is to find the first
node z on the path from q to the root node such
that f(z) > f(p). If z 7^ p then arc (p,q) is a

cross arc and thus the pivot may be executed as

before. If z = p then the arc (p,q) is a downward
arc and the pivot is nondegenerate. Note that it

is only in the case of a nondegenerate pivot that

the entire basis equivalent path of the entering
arc is traversed. Thus it is only in this case
that the complete representation of the entering
arc is computed. This is, of course, substantially
different than for standard network methods.

Steps b and c above can also be accomplished
by using the "distance function" proposed by

227

Srinivasan and Thompson [19] which indicates the

number of links in the basis tree between a given
node and the root node. In particular, the dis-

tance function may be used in place of the

cardinality function by reversing all the above
inequalities

.

d) Flow values on the basis links never have

to be checked to determine the type of pivot. In

fact, the structural property of an AP basis,
whereby all 1-links are 0-D links, makes it un-

necessary to store or update any flow values.
e) All of the above computational features

may be further enhanced by observing that it is

not necessary to store and update a "full" basis
tree. That is, while the predecessors are re-
quired for each node, the cardinality function
values and the "thread" pointers (commonly used
to traverse basis subtrees [5,7,14] for node
potential updates) need be kept for only the

origin nodes. Using this observation, the AB
algorithm's basis data storage requirements are
roughly half that of the most efficient imple-
mentation involving specializations of the simplex
method. Moreover, the compression may be used
to greatly reduce the number of nodes traversed
at each iteration when updating the potentials.
By maintaining node potentials for only the ori-
gins and saving the unit costs for the arcs
represented by the destinations and their prede-
cessors, all data necessary for the pricing opera-
tion is available. The destination node potential
Kj may be computed as needed using the comple-
mentary slackness relationship Kj = c-j^j - R-j^

.

This partial update of the node potentials was
originally proposed and tested by Harris [15] for
the simplex method as applied to rectangular
transportation problems. (This approach has also
been tested more recently for transshipment net-
works by Bradley, Brown, and Graves [7], who have
confirmed Harris's findings of its practical
merit.) Harris's proposal, however, differs from
the above in that the thread pointer and potential
update operation is eliminated for those destina-
tion nodes of the basis tree which have no
descendents. Consequently , Harris's subtrees are
twice as large as in our proposal and therefore
involve twice the updating effort. In the AB
algorithm, maintenance of only the thread pointers
and node potentials associated with the origins
does not degrade the efficiency of other parts
of the algorithm. This is due to the unique
structural properties of the AP basis.

5. DEVELOPMENT OF THE AB COMPUTER CODE
BY SUBROUTINE

The computer code was written in FORTRAN IV,

is an incore code, and was initially tested using
the run compiler on a CDC 6600 with a maximum
memory of 130,000 words. In this code, a semi-

assignment problem with M origins, N destinations,
and A arcs (without exploiting the word size of

the machine) requires AM + 2N + 2A + 5000 words.

It would be possible by exploiting the fact that

the costs, node numbers and node potentials are

integer-valued, to store more than one per word
and in this manner reduce these storage require-
ments. However, our purpose was to develop a

228

code whose capabilities did not depend on the

unique characteristics of a particular computer
(e.g., word size, etc.). The obvious advantage of

this approach is the ease with which it enables
the code to be tested on different machines.
Further, we used a "manilla" FORTRAN IV so that

recoding to fit differing machine conventions
would be minimized. Within these constraints, we

tried to minimize our storage requirements, at the

same time making sure the code could solve the

"thoroughly general" semi-assignment problem.

The code uses the predecessor [10], thread [14],

and distance [19] functions to maintain and update

the basis data.

A variety of start procedures could be used

to find a starting AB basis. However, due to

severe time pressure, we only implemented the

start procedure of Remark 3.

An important factor influencing computational
efficiency is the basis change criterion. The
relevant tradeoffs for the basis change criterion
involve time consumed in searching for a new arc
to enter the basis and the number of pivots re-

quired to find an optimal solution (time per
pivot versus total number of pivots) . Computa-
tional testing [2,7,11,13,18,19] has shown that

the correct pivot criterion can reduce solution
time by as much as a factor of three. Unfor-
tunately, we did not have time to test alternative
pivot criteria. The code simply uses the row
most negative rule, which was found to be the best,

in the studies [13,19] for small problems. This
criterion scans the arcs of each origin until it

encounters the first origin containing a dual
infeasibility and then selects the arc of this
origin which violates dual feasibility by the

largest amount to enter the basis.
The program consists of a main program and

three subroutines. The total time spent in each

subroutine was recorded by calling a Real Time
Clock (accurate to a hundredth of a second) upon
entering and leaving that subroutine. A count
was also made of the number of nondegenerate and
degenerate pivots performed. In the following
section, we discuss total solution time (exclusive

of input and output), the start time, the number
of nondegenerate and degenerate pivots, the total
pivot time, and the average pivot time (total

pivot time divided by the number of pivots) . This

code will henceforth be referred to as SA-AB code,

for semi-assignment AB algorithm code.

6. COMPUTATIONAL COMPARISON AND CODE
REQUIREMENTS

6 . 1 Computational Comparison of Several Codes

Originally we planned to compare the best

version of the SA-AB code (i.e., the code result-

ing after testing alternative start and pivot

rules) with other codes which are based on other

algorithms. Unfortunately, we did not have time

to test alternative start and pivot procedures.

Thus, the following code comparison is a worst

case comparison. That is, it is comparing a

computationally unimproved version of the SA-AB

code with the best version of other codes.

The codes which we obtained for comparison

include Bennington [6], BSRL , General Motors,

SHARE, and SUPERK [3]. All of these codes are

i

variants of the out-of-kilter method except for

Bennington [6]. In addition, the special purpose

primal simplex codes ARC-II [5], PNET-I [11], and

SUPERT-2 [2] were available for testing. Further,

the special purpose dual simplex DNET [11] was

available for testing.

The BSRL code was developed by T. Bray and

C. Witzgall at the Boeing Scientific Research

Laboratories, and the General Motors (GM) code was

developed by Rand Corp. and is distributed by the

SHARE user group.

All of these codes are in-core codes, i.e.,

the program and all of the problem data simul-

taneously reside in fast-access memory. They are

all coded in FORTRAN and none of them (including

the special purpose primal and dual simplex codes)

have been tuned (optimized) for a particular com-

piler. It is important to note that all the codes

except for SUPERT-2 and SA-AB codes are designed

to solve capacitated transshipment problems and

are not specifically designed to exploit the

special structure of semi-assigment problems.

Further, SUPERT-2 is designed to solve any uncapaci-

tated transportation problem. All of the problems

were solved on the CDC 6600 at the University of

Texas Computation Center using the RUN compiler.

The computer jobs were executed during periods

when the machine load was approximately the same,

and all solution times are exclusive of input and

output; i.e., the total time spent solving the

problem was recorded by calling a Real Time Clock

upon starting to solve the problem and again when

the solution was obtained.

In addition to these codes, the article by

Hatch [15] compares a primal-dual code PD-AAL

developed by Decision Systems Associates (DSA)

against PNET-I on five assignment problems gen-

erated by NETGEN [17]. Since the DSA code is

proprietary, we could not obtain a copy of it for

comparison. However, with their published times

on a CDC-660Q, we felt that some comparison could

be made if we ran the same problems on a CDC-6600.

Thus, in order to compare our results with the

results of [15], we solved the same five assign-

ment problems. These results are contained in

Table I. When comparing these results, it is

important to note that we are not sure that the

code PD-AAL is an all FORTRAN code and it is our

understanding that the code is fully optimized

to exploit the special hardware features of the

CDC-6600. This type of specialization could

easily increase the performance of all the other

codes by a factor of 2 or 3.

A noteworthy feature of the computational

results is that SA-AB, PD-AAL, SUPERT-2, and

ARC-II are in this order superior to the other
codes. Based on the sum of the solution times,

SA-AB is roughly fifteen percent faster than its

closest competitor and is roughly fifty percent

faster than its next closest competitor. Fur-

ther, the computational results indicate that the

AB algorithm reduces the number of pivots by 25%

over the simplex algorithm. Additionally, the

results indicate that the AB algorithm not only
reduces the number of degenerate pivots but also

reduces the number of nondegenerate pivots per-
formed on the denser problems. Moreover, the

reduction in the nondegenerate pivots (that is,

the number of extreme points visited) versus the

simplex algorithm increases as the number of arcs

increases

.

These results lead us to believe that the AB

algorithm may be the fastest algorithm for solving
assignment problems.

Further, these results indicate that this

first implementation of the AB algorithm is

1 1/2 times as fast as the fastest uncapacitated
primal simplex transportation code SUPERT-2.
Historically, it has always been possible to

improve the solution speed of the first implementa-
tion of an algorithm by a factor of 2 or 3. Thus,

coupling this with the fact that the start and

pivot rules of SA-AB have not been computationally
investigated, it appears that the AB algorithm
is probably twice as fast as other algorithms for

solving assignment problems. This result is

extremely important since it completely contra-
dicts the older folklore that primal-dual and
out-of-kilter algorithms are the fastest and the

more recent folklore that special purpose primal
simplex based codes are the fastest.

Looking at the out-of-kilter and dual simplex
codes' solution times, it is interesting to note
that these solution times are much slower than the

other codes; further, their times are much more
dependent on the number of arcs (holding all

other parameters of the problem constant) than
the other codes. Another important result which
can be gleaned from Table I is that the dual
simplex method is not competitive with any of the

other algorithms.

After comparing all of the codes on the

assignment problems, we choose from available codes
the three fastest ones (note that the proprietary
PD-AAL code was not available) to compare on semi-
assignment problems. In distinction to the assign-
ment test problems, the specification of the semi-
assignment test problems vary greatly in both the

number of nodes and arcs. As shown in Table II,

the eleven test problems vary in size from 50

origins and 500 destinations to 400 origins and
4000 destinations. The number of arcs varies
from 2000 arcs to 20,000 arcs. The cost range
of the test problems is 1-1000.

The solution times in Table II again indicate
that the AB algorithm is substantially superior
to the simplex algorithm. The SA-AB times strictly
dominate the times of the other codes. Comparing
the sum of the total solution times, the SA-AB
code is 2.55 times faster than one of the fastest
simplex transportation codes, SUPERT-2. This is

a rather startling result since some people have
indicated that they believe that the speed of the

simplex based codes are approaching the computa-
tional limits of these problems.

Another noteworthy feature of the computa-
tional results is that the SA-AB code is decidely
superior on the largest test problems. Consider
the last two test problems which each have 400
origins and 4000 destinations. On these problems,
the SA-AB is a full three times faster than the

SUPERT-2 code.
Based on the results of this testing, the

fact that the SA-AB code is the first implementa-
tion of the AB algorithm, and the fact that the

SA-AB code has not been computationally refined
(i.e., alternative start and pivot rules were
not examined) , we believe that the AB algorithm
is currently the fastest algorithm for solving
both assignment and semi-assignment problems.
This result is extremely encouraging since we have
recently extended the concepts of this algorithm

229

TABLE I

TOTAL SOLUTION TIMES ON 200 X 200 ASSIGNMENT PROBLEMS
(IN SECONDS) ON A CDC 6600 WITH A COST RANGE OF 1-100

No. of ARCS 1500 2250 3000 3750 4500
1

Sum of Times

ARC II 1
J.

9Z /, 7 z
r -J

3 13 11.67

BENN X7 44 20 31 24 92 27 40 ~
BSRL 30 39 22 08 20 02 23 XI 21 08 116.68

DNET 19 87 26 58 27 98 30 15 31 57 136.15

GM 35 67 28 43 31 39 18 62 23 48 137. 59

PD-AAL 1 63 1 14 1 89 1 29 1 80 7.75

PNET-I 2 31 3 71 3 47 3 44 4 79 17 . 72

SA-AB 97 1. 12 1. 48 1. 61 1. 68 6.86

SHARE 19 93 21 17 25 81 24 95 27 05 118.91

SUPERK 6 44 6 47 7 25 6 95 7 56 34.67

SUPERT-2 1 1. 57 1 98 2 17 2 53 9.51

TABLE II

TOTAL SOLUTION TIMES ON SEMI-ASSIGNMENT PROBLEMS
(IN SECONDS) ON A CDC 6600 WITH A COST RANGE OF 1-1000

No. of Vodes m x n No. of Arcs ARC- II SA--AB SUPERT-2

50 X 500 2,000 2.37 1 14 2 85

50 X 500 5,000 3.53 2 29 3 51

50 X 500 10,000 6.56 4 00 5 53

50 X 1000 4,000 4.27 2 75 6 15

50 X 1000 10,000 9.34 5 64 11 64

50 X 1000 20,000 DNR 8 17 17 02

100 X 1000 4,000 5.59 3 20 6 22

100 X 1000 10,000 10.25 5 62 10 99

100 X 1000 16,000 15.40 8 16 14 27

400 X 4000 10,000 DNR 21 47 61 13

400 X 4000 16,000 DNR 27 81 91 27

SUM OF TOTAL TIMES 90 25 230 58

DNR—Did not run as a result of memory limitations.

230

TABLE III

CODE SPECIFICATIONS

Developer Name Type Number of Arrays

1. Barr SUPERT-
2. Barr, Glover, ARC-II

Klingman
3. Barr, Glover, SA-AB

Klingman
4. Barr, Glover, SUPERK

Klingman
5. Bennington BENN
6. Bray and Witzgall BSRL
7 . Clasen SHARE
8. Decision System PD-AAL

Associates
9. Glover, Karney, DNET

Klingman
10. Glover, Karney, PNET-I

Klingman, Stutz
11. General Motors GM

Primal Simplex Transportation
Primal Simplex Network

AB Algorithm

Out-of-kilter

Non-simplex
Out-of-kilter
Out-of-kilter
Primal-Dual

Dual Simplex network

Primal Simplex network

Out-of-kilter

5 (M + N) + 2A

7 (M + N) + 2A

4M + 2N + 2A

4 (M + N) + 9A

6 (M + N) + llA
6 (M + N) + 8A

6 (M + N) + 7A

Not available

7 (M + N) + 2A

6 (M + N) + 2A

3 (M + N) + 5A

M—Origin Length
N—Destination Length
A—Arc Length

to arbitrary capacitated transportation, trans-
shipment, and generalized transshipment problems.

6 . 2 Memory Requirements of the Codes

Table III indicates the number of origin,
destination, and arc length arrays required in

each of the codes testing for solving assignment
and semi-assignment problems except for the

PD-AAL code. The storage requirements of this
code were not available. It should be noted that

memory requirements of all of the codes tested
were quite close (within 1500 words) excluding
the array requirements. Thus, the important
factor in comparing the codes is the number of
origin, destination, and arc length arrays.

Looking at Table III and keeping in mind
that any meaningful problem has to have more
arcs than nodes, it is clear that the AB, primal
simplex, and dual simplex codes have a distinct
advantage (in terms of memory requirements) over
all of the other codes. Further, this advantage
greatly increases as the number of arcs increase.
For example, consider a problem which has 10

times as many arcs as nodes. ARC-II, DNET, PNET-I,
SUPERT-2, or SA-AB require only about one-half
the memory that the best (in terms of memory
requirements) of the other codes. This enables
the AB and simplex based codes to solve much
larger problems than other codes. Further, it

is important to note that the AB based code, SA-AB,
requires the least amount of memory. Thus, it

appears that the AB algorithm is superior to other
algorithms both in terms of solution speed and
computer storage requirements.

ACKNOWLEDGEMENTS

This research was partly supported by

Project NR047-146, ONR Contract N00014-76-C-0383
with Decision Analysis and Research Institute and
by Project NR047-021, ONR Contracts N00014-75-C-
0616 and N00014-75-C-0569 with the Center for

Cybernetic Studies, The University of Texas. The

authors wish to acknowledge the cooperation of the
staff of The University of Texas Computation Center,
The University of Texas Business School Computation
Center, and Southern Methodist University Computa-
tion Center.

The authors also wish to acknowledge the
indispensable assistance of Dr. John Hultz and
Mr. David Karney, systems analyst for Analysis,
Research, and Computation, Inc., in the solution
testing phase of this study.

REFERENCES

1. Analysis, Research, and Computation, Inc.,

"Development and Computational Testing on

Large Scale Primal Simplex Network Codes,"
ARC Technical Research Report, P.O. Box

4067, Austin, TX 78765 (1974).

2. R. S. Barr, "Streamlining Primal Simplex
Transportation Codes," Research Report to

appear. Center for Cybernetic Studies,
University of Texas, Austin, Texas.

3. R. S. Barr, F. Glover, and D. Klingman, "An

Improved Version of the Out-of-Kilter
Method and a Comparative Study of Computer
Codes," Mathematical Programming, 7, 1,
60-87 (1974).

4. R. S. Barr, F. Glover, and D. Klingman, "The
Alternating Basis Algorithm for Assignment
Problems," Research Report CCS 263, Center

231

for Cybernetic Studies, University of

Texas at Austin, Austin, TX 78712 (1976).

5. R. S. Barr, F. Glover, and D. Klingman, "En-

hancements to Spanning Tree Labeling
Procedures for Network Optimization,"
Research Report CCS 262, Center for

Cybernetic Studies, University of Texas
at Austin, Austin, TX 78712 (1976).

5. G. E. Bennington, "An Efficient Minimal Cost

Flow Algorithm," Management Science, 19,

9, 1021-1051 (1973).

7. G. Bradley, G. Brown, G. Graves, "Tailoring
Primal Network Codes to Classes of

Problems with Common Structure," ORSA/

TIMS Conference, Las Vegas (1975).

8. W. H. Cunningham, "A Network Simplex Method,"
Technical Report No. 207, Department of

Mathematical Sciences, John Hopkins
University (1974).

9. M. Florian and M. Klein, "An Experimental
Evaluation of Some Methods of Solving the

Assignment Problem," Technical Report
No. 41, Operations Research Group,
Columbia University, New York (1969).

10. F. Glover, and D. Klingman, "Locating Stepping-
Stone Paths in Distribution Problems
Via the Predecessor Index Method,"
Transportation Science, 4, 220-226 (1970).

11. F. Glover, D. Karney, and D. Klingman, "Imple-
mentation and Computational Study on

Start Procedures and Basis Change Criteria
for a Primal Network Code," Networks, 4,

3, 191-212 (1974).

12. F. Glover, D. Karney, and D. Klingman, "Aug-

mented Predecessor Index Method for

Locating Stepping-Stone Paths and Assign-
ing Dual Prices in Distribution Problems,"
Transportation Science, 6, 1, 171-181

(1972) .

13. F. Glover, D. Karney, D. Klingman, and A.

Napier, "A Computational Study on Start

Procedures, Basis Change Criteria, and
Solution Algorithms for Transportation
Problems," Management Science, 20, 5,

793-819 (1974).

14. F. Glover, D. Klingman, and J. Stutz, "Aug-
mented Threaded Index Method for Network
Optimization," INFOR, 12, 3, 293-298
(1974)

.

15. R. S. Hatch, "Bench Marks Comparing Transporta-
tion Codes based on Primal Simplex and
Primal-Dual Algorithms," Operations
Research, 23, 6, 1167-1171 (1975).

16. B. Harris, "A Code for the Transportation
Problem of Linear Programming, JACM, 23,

1, 155-157 (1976).

17. D. Klingman, A. Napier, and J. Stutz, "NETGEN-A
Program for Generating Large Scale (Un)

Capacitated Assignment, Transportation,
and Minimum Cost Flow Network Problems,"
Management Science, 20, 5, 814-822 (1974).

18. J. Mulvey, "Column Weighting Factors and Other
Enhancements to the Augmented Threaded
Index Method for Network Optimization,"

Joint ORSA/TIMS Conference, San Juan,
Puerto Rico (1974)

.

19. V. Srinivasan and G. L. Thompson, "Accelers
Algorithms for Labeling and Relabelinjj

of Trees with Application for Distribt
tion Problems," JACM, 19, 4, 712-726
(1972). i

232

RECENT DEVELOPMENTS IN VEHICLE ROUTING

Bruce L. Golden
Operations Research Center

M. I .T.

Cambridge, MA 02139

Abstract

The vehicle routing problem has been regarded
as a thorny mathematical programming problem for
quite some time. However, only recently has this
practical problem received widespread attention in

the literature and research efforts in this area

j

continue. Largely this stems from the emergence of

algorithmic efficiency as a major concern in Oper-
ations Research. In addition, the new respecta-
bility of heuristic approaches in response to the
large number of intractable NP-complete problems
has attracted many researchers. In this paper, we
survey some of the recent developments in vehicle
routing. We focus on broad issues such as, for
example, computational experiments with various
algorithms. For vehicle routing problems, the
nimber of feasible solutions is a key factor in
algorithmic performance. We demonstrate an ap-
proach for calculating this number. Finally, var-
iations dealing with arc routing and extensions
concerned with scheduling are introduced.

Introduction

j.The Vehicle Routing Problem (VRP) seems first to
I have been mentioned by Garvin et al . [14] in
1957 and by Dantzig and Ramser [11] in 1959.

However, only recently has this problem received
widespread attention in the literature and
research efforts in this area continue. Largely
this stems from the emergence of algorithmic
implementation as a major concern in Operations
Research. In addition, the new respectability
of heuristic approaches in response to the large
mamber of intractable NP-complete problems such
as the knapsack problem and the Traveling Sales-
man Problem has attracted many researchers . In

this paper, we survey some of the historical
developments in the vehicle routing literature.
.The intention is not to be encyclopedic; the sur-
veys by Bodin [5], Christofides [7], Golden [17],

•and Turner et al. [38] discuss many details
which we will not cover here. Rather, we hope
to focus on broad issues and recent developments
and provide an overview of vehicle routing. In

I
addition, we count feasible solutions to the VRP

I and touch upon several new directions in vehicle
I routing research.
I

Vehicle Routing Problems, sometimes referred to as
truck-dispatching problems, are almost always en-

countered by complex organizations, and reliable

procedures for dealing with them are needed. Re-

cently, higher vehicle costs due to increased oil
prices and rising truck drivers' salaries have mo-
tivated management to study these issues more care-
fully.

There may be several hundred demand points in and

around a city. The Vehicle Routing Problem is to

obtain a set of delivery routes from a central de-
pot to the various demand points each of which has
known requirements, which minimizes the total
distance covered by the entire fleet. Vehicles
have capacities and maximum route time constraints.
In addition, the fleet of vehicles may be hetero-
geneous with respect to these characteristics. It

should be noted that there are a number of goals
involved which include minimizing the number of
vehicles required in the fleet, minimizing travel
time or travel distance by vehicles, and generally,
providing efficient service to the customers as

quickly and cost-effectively as possible. The

specific objective function we consider explicitly
(minimize travel distance) is both reasonable and
tractable. All vehicles depart from the central
depot, make a tour of a subset of the demand nodes,

and return to the central depot.

Examples of Vehicle Routing Problems include muni-
cipal waste collection studied by Beltrami and

Bodin [3] , fuel oil delivery studied by Garvin et

al. [14] , newspaper distribution studied by Golden,
Magnanti, and Nguyen [19] , and routing of school
buses studied by Newton and Thomas [26] . It should
be clear that all of these vehicle routing problems
are more or less the same. Operationally the

examples may seem different, but theoretically
they can be thought of as equivalent.

Proposed techniques for solving problems of this

sort have fallen into two classes—those which
solve the problem optimally by branch and bound
techniques (Christofides and Eilon [8] , Eilon et

al . [12] , and Pierce [30]), and those which solve
the problem heuristically (such as Christofides
and Eilon [9] , Clarke and Wright [10] , Dantzig and

Ramser [11] , Gaskell [15] , Gillett and Miller [16]

,

Golden, Magnanti, and Nguyen [19], Holmes and
Parker [20] , Russell [34] , Tillman and Cochran
[37] , Tyagi [39] , and Yellow [41]) . In a loose

sense, heuristic algorithms represent sets of rules

which produce good solutions to given combinator-
ial programming problems, but not necessarily the

best possible (optimal) solutions. Since

233

algorithms which are guaranteed to achieve optimal-

ity are viable only for very small problems, most

authors prefer to concentrate on the study of

heuristic algorithms.

VRP Formulation

Garvin et al. [14] , who treated an application in

the oil industry, introduced a mixed integer

programming heterogeneous fleet problem formula-

tion of the VRP. This formulation has on the

order of n^ constraints where n is the number of

nodes

.

Alternatively, when the fleet is homogeneous, the

VPtP may be expressed as the following large-scale
linear-integer program.

m
Minimize Z c^x

.

Subject to Z 6. .X. = 1, i 1,.

where A if ith

N tour j

otherwi

y 1 if tour j i

\o otherwise

customer is on

s chosen

the length of tour j

number of nodes

total number of feasible
tours .

This set partitioning formulation was first given

by Balinski and Quandt [2] in 1964. The objective
function minimized total distance traveled. Clearly
such a formulation is most valuable for very small
Vehicle Routing Problems due to the large number of

variables (feasible tours) . This formulation may
be useful as a conceptual tool, whereas the formula-
tion given by Garvin et al. is more explicit and
might be better suited for integer programming
techniques. In the worst case

k=l ^ k=l
^

For example with n = 25, there may be more than 33

million feasible tours. Balinski and Quandt report
success in solving VRP's using a cutting plane algo-

rithm with problems for which n < 15 and m < 300.

The set partitioning problem belongs to the NP-com-
plete problem class along with the VRP. A problem
is NP-complete if it can be shown to be equivalent
to the Traveling Salesman Problem (TSP) in the
following sense. If one can be solved optimally
by a polynomial algorithm, then both can be solved
by polynomial algorithms. A polynomial algorithm
is one in which running time is proportional to a

polynomial function of the input. It seems

likely, however, that all NP-complete problems are

intractable and any optimal algorithm must be of at

least exponential time complexity.

We present below a complete linear-integer program-
ming VRP formulation with structure more closely
related to the fundamental TSP formulation. This
formulation was introduced by Golden, Magnanti, and

Nguyen [19]

.

We point out that in the otherwise excellent survey

by Turner et al. [38], an incorrect integer program-

ming formulation is given. Unfortunately, their
formulation fails to prevent the formation of sub-

tours. We will refer to the following formulation
as the VRP formulation:

Minimize

subject to

where

n n N^7 ,

E Z Z dijx^j
i=l j=i k=l

NVn

Z

i=l k=l
Z xl;^. = 1 (j = 2,...,n)

ID

n NV
Z Z x .

= 1 (i

j=l k=l

2,...,n)

(1)

(2)

(3)

Z x^^ - Z :

j = li=l
ip PI

= 0 (k = 1, . . . ,NV,-

p = 1 n) (4)

^ Qi ^iJl Pk = 1' ,NV) (5)

i=l j = l

" k " k
Z t Z x.

.

i=l ^j=l

n

+ Z
; k k
^ ^ij^i - ^k

i=l j=l ^3

(k 1, . . . ,NV)

Z xV-. < 1 (k = 1, . . . ,NV)

j = 2
^

Z X^^ < 1 (k = 1, . . . ,NV)

i=2
^

NV
+ n Z x"^. < n-1

k=l

(for 2 <_i 7^ j < n for some real

numbers y^^)

x'^ = 0 or 1 (for all i,j,k),
ij

n = number of nodes

NV = number of vehicles
P]^ = capacity of vehicle k

T)^ = maximum time allowed for route of

vehicle k

(6)

(7)

(8)

(9)

(10)

demand at node i (Q 0)

t^ = time required for vehicle k to

deliver or collect at node i (t-|^=0)

t'^.= travel time for vehicle k from
'^ node i to node j (t^^^ = <^

)

234

distance from node i to node j

1 if arc {i,j) is traversed by
_. vehicle k

ij [0 otherwise.

Node 1 represents the central depot. Equation (1)

states that total distance is to be minimized.
Equations (2) and (3) ensure that each demand node
is served by one vehicle and only one vehicle.
Route continuity is represented by equations (4)

,

i.e. , if a vehicle enters a demand node, it must
exit from that node. Equations (5) are the vehi-

cle capacity constraints; similarly, equations (6)

are the total elapsed route time constraints. For
instance, a newspaper delivery truck may be re-

stricted from spending more than one hour on a

tour in order that the maximum time interval from
press to street be made as short as possible.
Equations (7) and (8) make certain that vehicle
availability is not exceeded. Equations (9) are
the subtour-breaking constraints.

Since (1) and (4) imply (3), and (4) and (7) imply

(8) , the equations (3) and (8) are redundant and

can be excluded from the model; in any case, the
linear-integer program is awesome in size. Typi-
cal problems involve hundreds of demand points.

Historical Survey

Dantzig and Ramser [11] were the first researchers
to obtain a method for solving the VRP approxi-
mately. In 1964 Clarke and Wright [10] extended
the Dantzig and Ramser model to consider routing
for a fleet of vehicles of varying capacities.
The oew procedure borrowed the concept of node
aggregation from the earlier method and it seemed
to yield better results. Undoubtedly, the Clarke-
Wright "savings" method is the most widely used
and cited vehicle routing algorithm. It in-

volves first evaluating all potential savings
Sj^ = d-j^^ + d-j^j - d^j from linking two nodes i

and j , and then joining those nodes with the high-
est feasible savings at each iteration. Initially,
each node is served individually from the central
depot. This heuristic has been analyzed and modi-
fied extensively; Gaskell [15] in 1967 experiment-
ed with another savings function TT^^j = d^^ + d-|^j -

2dj^j with limited success. In the above savings
functions, d^j denotes the distance between nodes
i and j

.

Tyagi [39] in 1958 presented a method which groups
demand points in the following very straightfor-
ward fashion. Starting with node 2 (node 1 is the
central depot) we find its nearest neighbor, say
node k, subject to the vehicle capacity restric-
tions (we assume here that all vehicle capacities
are the same) . We next find the nearest neighbor
to node k, say node j, subject to the capacity
restrictions and continue until adding a nearest
neighbor would result in a tour exceeding the max-
imum vehicle capacity. Rules of thumb are speci-
fied to minimize the frequency with which a group
will consist of only one delivery point, especial-
ly, in the case where the delivery is small or
the distance from the central depot to this point
is more than half the distance from the farthest
point to the central depot. Having grouped the
delivery points into m tours, the vehicle dis-
patching problem reduces to m TSP's, one for each

tour. Computational aspects of this algorithm are
discussed in Golden, Magnanti, and Nguyen [19].

In 1969, Christofides and Eilon [8] and Pierce [30]

presented algorithms for finding optimal solutions
to small VRP ' s . Christofides and Eilon present a

branch and bound strategy similar to the well-
known Little et al. [24] approach for TSP's.
Pierce discusses direct-search, combinatorial pro-
gramming algorithms for a host of truck-dispatch-
ing problems. Delivery deadlines, earliest deliv-
ery time constraints , carrier capacity constraints
optional deliveries, and generalized objective
functions are developed in detail in his ambitious
paper

.

Yellow [41], in dealing with Euclidean networks,
eliminates the need to initially compute the half-
matrix of savings values by applying a simple geo-
metrical search technique based on the polar coor-
dinates of the demand points. In this 1970 paper,
he modifies the savings method to produce a sequen
tial Clarke-Wright method where we proceed as in

Tyagi 's algorithm except that maximum savings
rather than minimum distance is our criterion.
That is, if we have just linked node i to the sub-
tour, we next find the largest feasible savings
between node i and a nearby node j , not yet in

the subtour.

The excellent book Distribution Management , pub-
lished in 1971, studies TSP's and VRP's in great
detail [12] . Eilon et al. include an "r-optimal"
procedure for the VRP which borrows much from
Lin's TSP approach [22]. Their procedure begins
with a feasible solution and tests perturbations
of r arcs at a time to obtain r-optimality . For

example, if r = 2 they examine each pair of arcs

to see if it can be replaced by another pair such
that feasibility is preserved and total distance
is decreased. Lin's approach has been extended by

Lin and Kernighan [23] in 1973. It should be
noted that many of the book's computational argu-
ments are already out of date.

Krolak et al. [21] in 1972 suggested a man-machine
interactive approach which has been successful on

some larger problems but seems to require an ex-

cessive amount of man-machine time. In 1974,

Gillett and Miller [15] proposed a "sweep" algo-
rithm for Euclidean networks which ranks and links

demand points by their polar coordinate angle.

Newton and Thomas have recently investigated the

VRP in connection with school bus routing, dealing
with a multi-school system [26] . Their approach
for each school has been to obtain a near-minimum
single trip solution to the relaxed TSP, and then
partition the resulting tour into subtours satis-
fying the VRP constraints [25]

.

In Beltrami and Bodin's very comprehensive 1974

paper [3] , a variety of problems concerning muni-
cipal waste collection are explored. For example,
they consider the potential benefit of allowing
more than one vehicle to visit a site on the same

day, each of which services part of the demand at

the site. In addition, some pathological features

of the Clarke-Wright heuristics are pointed out.

In 1975, the emphasis in vehicle routing was on

the development of codes to solve large-scale

235

VRP's. Orloff, who had previously formulated the

General Routing Problem (GRP) , extended his model

to handle a fleet of vehicles. The GRP concerns

finding a minimum cost cycle which traverses every

arc and every node in subsets R and Q of the arcs

and nodes respectively. We will discuss node

routing and arc routing later in this paper. For

now we remark that the GRP formalizes this dichot-

omy and, at the same time, defines a continuum
between these two extremes . Node routing

problems tend to be much more difficult to solve

than arc routing problems. Recently, Orloff and

Caprera [29] have exploited this observation in

a heuristic algorithm (of the Lin-Kernighan
variety) for solving large GRP's. The strategy
is to convert required nodes to required arcs

whenever possible. In other words, requiring
certain major roads in a transportation network
to be traversed in a tour limits the degrees of

freedom in an algorithm and reduces running times.

Large VRP's may be exploited similarly.

In 1974, Russell [33] presented a modified
version of the Gillett and Miller algorithm.
More recently, Russell [34] has presented a

VRP heuristic algorithm for the special case

where the number of tours is pre-specified. Also
various sequencing and due-date constraints are
considered. The algorithm is an extension of

the Lin-Kernighan heuristic [23] , and has

solved a 159 node problem in under 9 minutes
on an IBM 370/168. Robbins et al. [32] , also
in 1975, have assembled a tour construction-tour
improvement code which looks quite promising.
Initially, a tour is constructed using the
Clarke-Wright approach. Next, this tour is

improved by Lin's 2-opt procedure [22]. In five
of the seven cases cited, the improvement is less
than 1%; the largest improvement is 3.2%. A

150 node VRP was solved in about 37 seconds.
This techniques has been applied by Vu and Turner
[40] to a rural refuse collection problem. The

code presented by Golden, Magnanti, and Nguyen
[19] performs from one to two orders of magnitude
faster than these recently developed codes
although it may not be as accurate.

In their paper, the authors emphasize data
structures and list processing and present a new
implementation of the Clarke-Wright algorithm
which is motivated by (i) optimality considera-
tions, (ii) storage considerations, and (iii)

sorting considerations and program running time.
The Clarke-Wright algorithm is modified in the
following three ways

:

(1) by using a route shape parameter y to
define a modified savings
Sj^j = d-[^^

"^l
~

^"^i j ^^'^ finding
the best route-* structure obtained as

the parameter is varied;
(2) by considering savings only between

nodes that are "close" to each other;
(3) by storing savings s. . in a heap

structure to reduce comparison
operations and ease access.

This modified algorithm has been applied to a

Newspaper distribution problem containing
nearly 600 drop points. The problem was solved
in less that 20 seconds of execution time on an
IBM 370/168.

Holmes and Parker [20], in 1976, have suggested
another improvement to the Clarke-Wright algo-
rithm. The modification entails a progression from
one feasible solution to a next, until we find a
local minimum with the following property. If we
prohibit any one edge in the current solution from
appearing in the next solution (by setting its

savings value to zero) , and reapply the Clarke-
Wright algorithm, we cannot improve upon the total
distance. In terms of accuracy, this concept of
local minimum seems to yield nice results. Com-
putationally, however, this approach is relatively
slow.

Vehicle routing algorithms have recently "come of
age" in the sense that they are now capable of
solving some large-scale real-world problems. As

indicated in this survey , the development has been
a slow process. We can categorize the chronologi-
cal stages of growth as follows:

1) early formulations;
2) early algorithms for hand computations;
3) exact algorithms for small problems;
4) more efficient, computerized algorithms with

an emphasis on implementation for moderate
size problems;

5) second generation codes, much faster— for

large problems;
6) real-world applications.

There are, of course, many important variants of

the VRP, some of which we will mention, for which
no satisfactory solution techniques yet exist.

We remark in closing this section that many of the

papers mentioned are no more than variations and
combinations of the "savings" method, the "sweep"

method, the "nearest-neighbor" method, and the

"r-opt" method.

Counting and the VRP

For hard integer programming problems such as the

VRP where enumerative techniques are the primary
tool for solving even the smallest problems
exactly, the number of feasible solutions is a key

factor in algorithmic performance. Generally it is

impossible to explicitly enumerate and evaluate all

the feasible solutions for all but the smallest
problems. In this section, we discuss partitions
and counting feasible solutions to the VRP.

In order to get an idea of the number of feasible
solutions to the VRP, consider a situation where m
vehicles are available to serve n demand points.

Each vehicle can make no more than k stops due to

capacity constraints. The number of feasible
solutions gives an indication of the complexity of

these difficult combinatorial programming problems.

We demonstrate an approach for calculating this

number based on a simple recursion formula.

As background, we briefly introduce some notions

about partition theory. The theory of partitions

is an area of number theory which deals with the

representation of integers as sums of other inte-

gers .

Definition 1: A partition of a non-negative inte-

ger n is a representation of n as a sum of positive
integers, called either summands or parts of the

partition. The order of the summands is irrelevant.

236

The partitions of 5 are 5, 4+1, 3+2, 3+1+1,
2+2+1, 2+1+1+1, and 1+1+1+1+1.
Thus, there are seven partitions of 5. We remark

that 0 has one partition, the empty partition, and

that the empty partition has no parts. An excel-

lent source on elementary partition theory is

Andrews [1]

.

Theorem 1: Let P)^(m,n) denote the number of par-

titions of n into exactly m parts, each of which

does not exceed k. Then

Pj^ (m,n) rPj^_.j^ {m,n) +Pj^ (m-1 ,n-k) for k>l,l<m£n

1 for k^l,m=n=0

0 otherwise

.

Proof: The partitions of n into m parts with no

part exceeding k can be divided according to

whether or not k is a summand. If it is not,

then there are P^-i (m,n) partitions. If it is a

summand, then the remaining sum is n-k, and we

divide into m-1 parts not exceeding k, so

Pj^(m-l,n-k) describes the appropriate number of

such partitions. These events are obviously
mutually exclusive and collectively exhaustive,

and the recursion is obtained. Boundary condi-

tions are as indicated.

when n = 10, there are 3.6 x 10 tours; when n = 50,
3.04 X 10^4 tours; when n = 100, 9.3 x lO^^V tours.

We can see how combinatorially explosive TSP ' s can
be. From Theorem 2 we learn that for a problem
with n demand nodes the VRP has many more feasible
solutions. Suppose we have a situation with 6 de-
mand nodes, 4 vehicles, and a capacity of 4 units.
There are a total of 6! = 720 TSP tours. The
eleven partitions of 6 are shown below:

6

5+1
4 + 2

4+1 + 1

3+3
3 + 2 + 1

3 + 1 + 1 + 1

2 + 2+2
2 + 2 + 1 + 1

2+1+1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1.

4 4

Since (i)^(4,6) = 6! E P^(Sl,6) and E P^ (?,,6) = 7 the
Z=l 1=1

number of feasible solutions to the VRP is 7! = 5040.

In general, we can determine <t)j^(m,n) easily after
first computing P^^d ,n) for £ = l,2,...,m via
Theorem 1.

Definition 2_: Let ())]^(m,n) be the number of fea-

sible solutions to the VRP with m vehicles, n

demand points, and a delivery capacity of k demand

points for each vehicle. We assume vehicles are

indistinguishable

.

Definition 3: Let S}-(m,n) be the set of all sets

s =
{p-,^ ,P2 ' • • • 'Pm^ such that

pj^ + P2 ... + Pm =

and 0 <_ p. _< k.
m

Theorem, 2: (|)j.(m,n) = n! E P]^(£,n)

S,= l

Proof: (t)^(m,n) = E (p p ? . . p ' Pi 'P2 ' " " "Pn

'

seS]^(m,n) 12 m

since we must first distribute the n demand points

among the m vehicles (we need not use all the

vehicles) and then we must order the points for

each vehicle. The value of pj^ is the number of

demand points assigned to vehicle i. So,

t))^{m,n) =

S£Sk(m,n) ^p-^lPs! . • -Pj^'

(P^!P2! 1)

n! • {the number of partitions of
the integer n into at most m
parts that have no part ex-

ceeding k}

m
n! E P

£=1 ^

(£,n)

.

The Traveling Salesman Problem is a special case

of the VRP with m = 1 and k = n. (|)j^(l,n) is

given by (()n(l,n) = n!Pn(l,n) = nl For example,

The Capacitated Chinese Postman Problem

The problem of finding an optimal route for a single
vehicle over a network is a common and, as we have
seen, very difficult combinatorial problem. Rout-
ing problems can be classified as node routing
problems, arc routing problems, or general routing
problems. Bodin [5] provides a convenient taxonomy
for these problems. The problem of visiting all

nodes in a network in the minimal amount of time
(node routing) is the classical TSP. The problem
of covering all arcs of a network while minimizing
the total distance traveled (arc routing) is the
Chinese Postman Problem (CPP) . The General Rout-
ing Problem (GRP) on network G = G(N;A) (N is the
set of all nodes, A the set of all arcs) is a gen-
eralization which includes the TSP and the CPP as

special cases. Here we seek the minimum cost cycle
which visits every node in subset

(J £ N and covers
every arc in subset R c_ A. This paper is primarily
concerned with node routing problems. Orloff intro-

duces the GRP and later extends it to handle more
realistic problem situations [27] , [28] , [29]

.

Applications of arc routing problems include rout-
ing of street sweepers, snow plows, household re-

fuse collection vehicles, postmen, the spraying of

roads with salt-grit to prevent ice formation, the
inspection of electric power lines, gas, or oil
pipelines for faults, etc. Since in many vehicle
routing situations customers are so numerous that
identifying them individually becomes cumbersome,

we can consider the CPP to be the continuous
counterpart to the discrete TSP. Here an arc
replaces a number of customers.

In the CPP we assume that all arcs are undirected.
Strieker [36] and Christofides [5] consider an

extension which we will call "the Capacitated
Chinese Postman Problem" (CCPP) , which reflects
real-life situations more directly. We are given

237

arc demands Q = [qij] which must be satisfied by

vehicles of capacity W. A number of cycles must
be formed which traverse every arc, satisfy de-

mands, and yield minimum distance. This is an arc

routing version of the VRP. Strieker and Christo-
fides have suggested heuristic procedures for ob-

taining reasonable solutions to this problem. How-

ever, an optimal solution appears to be very dif-

ficult to obtain for all but the most trivial
problems. We give an integer programming formula-
tion for the CCPP below which indicates the inher-
ent complexity of this problem,

n n NP

Minimize I I I CijX^j
i=l j=i p=i

(11)

subject to Z - E x^, = 0 for i=l,...,n
ik

k=l ki

Minimize y c-x.U '

'

subject to t

Z a . .X . > 1 for all i

j=l '
-

Xje{0,l} for all j

where Cj = the distance associated with tour j

_fl if feasible tour j is used
j lO otherwise

p=l,...NP (12)

fl if arc i is covered in feasible

I*

tour j

[o_ otherwise

the number of feasible tours.

NP
Z (x^ + X..) > 1 for all (i,j)eA

p=l (13)

NP
Z

p=l
r)

=
31

for all (i,j)£A

(14)

x^.. > for all (i,j)£A and

p = 1 , . . . , NP (15)

Z Z S,^ q- . < W for p=l, NP (16)

i=l j=l

x? . > 0 and integer
1]

-

where NP = the number of available postmen

(17)

(18)

As with the VRP, the number of feasible tours can
be enormous. The CCPP seems to belong to the same
problem class as the TSP and the VRP. Any optimal
algorithm for its solution will most likely be ex-
ponential.

Christofides [6] presents a heuristic algorithm
which appears to be efficient and effective. Com-
putational results are presented for graphs with
up to 50 nodes and 125 arcs. Running times are
less than 30 seconds and the percent deviation from
a lower bound on the solution is less than nine in

all cases. Details of the algorithm are clarified

and an example is worked through in Christofides
[6].

We stress the fact that the CPP and CCPP are the

arc routing counterparts to the TSP and VRP . A
primary conclusion is that the CCPP is, indeed, a

practical problem which deserves much more research
attention.

Vehicle Scheduling

the number of times arc {i,j) is

traversed by postman p

P fl i

ij 1p o

f postman p services arc (i,j)

otherwise

q£j= the demand on arc (i,j)

W = the vehicle capacity.

The objective function (11) seeks to minimize dis-
tance traveled. Equations (12) ensure route
continuity. By (13) , every arc is covered at
least once. Equations (14) state that each arc
is serviced exactly one time. Equations (15)

guarantee that arc (i,j) can be serviced by post-
man p only if he covers arc (i,j). Every demand
is satisfied, by equations (16) . For the small
example provided by Christofides [5] with 12 nodes,
22 arcs, and 5 postmen, the above formulation re-
quires 329 constraints and 440 integer variables.

Earlier in this paper, we mentioned that Balinski
and Quandt formulated the VRP as a set partition-
ing problem. Similarly, we can view the CCPP as
the following set covering problem:

We note that any logistics system must be composed
of both routing and scheduling components. Al-
though the focus of this paper is on the routing
aspect (the time dimension has so far been ignored),

we now develop a framework for attacking the two

problems simultaneously. The problems have been
treated sequentially in Golden [18] in terms of the

well-known cutting stock problem.

An alternate, and as yet unexplored, means of con-

necting the routing and scheduling components is

through what Simpson [35] refers to as a schedule
map. Whereas a route map considers a spatial, geo-
graphical network, the schedule map includes a time
dimension as well. Simpson reports on models for

public transportation systems, such as airline sys-

tems, for which this distinction is valuable. In

the figures below this distinction is illustrated.

Figure la : Route map

238

© © © ®

Figure lb: Schedule map

In the schedule map, each node represents a geo-
graphical location and a specific time. We dis-
cretize the time axis by dividing the basic unit
(perhaps a workday) into a number of smaller units
or periods. We can imagine, in the schedule map
above, an eight-hour workday broken into hour
units. The time points correspond to 9:30, 10:30,
11:30, 4:30. The distances on the route map
stand for travel times in terms of these hour
units. For example, the travel time from A to B
is approximately one hour, from B to C takes ap-
proximately two hours, and so on. The number of
time points for each location (in this case, eight)
is chosen such that the travel times are appropri-
ate. Note that in the schedule map presented, we
have split location A into two locations A' and
A" in order to make the network more readable.

Once we have constructed a schedule map for the
VRP we can proceed to route and schedule simul-
taneously by applying a sequential Clarke-Wright
algorithm. Savings may be defined in terms of
travel times between nodes, or in terms of travel
distances. When a node i has just been included
in a tour, we erase all other nodes which cor-
respond to the same location but different time,
and then find another feasible node j (not yet
in a tour) which yields the best savings s^

.

By feasible, we mean that capacity constraints
are not violated. Routes begin from the origin
at various time points in conformity with the
vehicle availability limitations.

This model leads us to a Generalized Vehicle
Routing Problem (GVRP) . In the GVRP we are
interested in routing vehicles over the collec-
tions S]_,...Sj^ of nodes from a given origin. Each
node has a specific demand. We require that at
least one node in each collection be serviced
and we seek to minimize total distance traveled.
The schedule map is one special case of the GVRP.
This general problem has applications in many other
routing situations where, for instance, there are
a number of control offices or warehouses in each
small area of a much larger region which must be
serviced.

The difficulty with a schedule map is evident.

Namely, the number of nodes and arcs to consider
grows very rapidly once the time dimension is

depicted. In any case, the model itself is helpful
for understanding the complex relationship between
the routing and scheduling components of a logis-
tics system.

Conclusion

In this paper we have provided a concise overview
of vehicle routing. The enormous number of fea-
sible solutions to these integer programming pro-
blems becomes a factor in algorithmic performance.
We demonstrate how one might determine this number.

Two new directions in vehicle routing research have
been proposed: the first is an arc routing problem
intimately related to the VRP--the Capacited
Chinese Postman Problem; the second is a framework
for envisioning the interaction between routing and
scheduling via the schedule map—The Generalized
Vehicle Routing Problem. There are, of course,
other important new research areas in vehicle rout-

ing such as the evaluation of heuristic algorithms
which we have not discussed here.

In brief, the indication is that some of the sug-
gested procedures can be used as effective deci-
sion-making tools for large-scale Vehicle Routing
Problems encountered in many practical situations
in both the public and private sectors.

References

1. G. Andrews, Number Theory , W.B. Saunders Com-
pany, Philadelphia (1971).

2. M. Balinski and R. Quandt , "On an Integer Pro-
gram for a Delivery Problem," Opers . Res . , 12

(2) , 300-304 (1964)

.

3. E. Beltrami and L. Bodin, "Networks and Vehicle
Routing for Municipal Waste Collection,"
Networks , 4(1) , 65-94 (1974)

.

4. B. Bennett and D. Gazis , "School Bus Routing by
Computer," Trans . Res . , 6_ (4), 317-324 (1972).

5. L. Bodin, "A Taxonomic Structure for Vehicle
Routing and Scheduling Problems," Comput . and
Urban Soc . , 1, 11-29 (1975).

6. N. Christofides , "The Optimum Traversal of a

Graph," OMEGA , 1^ (6), 719-732 (1973).

7. N. Christof ides , "The Vehicle Routing Problem,"
presented at the NATO Conference on Combina-
torial Optimization, Paris (July 1974)

.

8. N. Christof ides and S. Eilon, "An Algorithm for

the Vehicle Dispatching Problem," Opnl . Res

.

Q. , 20, 309 (1969) .

9. N. Christofides and S. Eilon, "Algorithms for

Large Scale TSP's," Opnl. Res. Q . , 23 , 511

(1972)

.

10. G. Clarke and J. Wright, "Scheduling of Vehicles
from a Central Depot to a Number of Delivery
Points," Opers . Res

.

, 12 (4), 568-581 (1964).

11. G. Dantzig and J. Ramser, "The Truck Dispatch-
ing Problem," Man. Sci. , 6, 81-91 (1959).

12. S. Eilon, C. Watson-Gandy , and N. Christo-
fides, Distribution Management , Griffin,

London (1971)

.

13. N. Gartner, B. Golden, and R. Wong, "Modeling

and Optimization for Transportation Systems
Planning and Operations," Proc. of the Intern.

Symp. on Large Engineering Systems , Winnipeg,

Canada (Aug. 1976).

239

14. W. Garvin, H. Crandell, J. John, and R.

Spellman, "Applications of Linear Programming
in the Oil Industry," Man. Sci , 3 (4), 407-

430 (1957).

15. T. Gaskell, "Bases for Vehicle Fleet Schedul-
ing," Opnl. Res. Q. , 18_, 281 (1967).

16. B. Gillett and L. Miller, "A Heuristic Algo-
rithm for the Vehicle Dispatch Problem,"
Opers . Res

.

, 22, 340 (1974).

17. B. Golden, "Vehicle Routing Problems: Formu-
lations and Heuristic Solution Techniques,"
M.I.T. Operations Research Center Technical
Report No. 113 (August 1975).

18. B. Golden, "Large-Scale Vehicle Routing and
Related Combinatorial Problems," Ph.D.

Dissertation, Operations Research Center,
M.I.T. (1976).

19. B. Golden, T. Magnanti, and H. Nguyen, "Im-

plementing Vehicle Routing Algorithms,"
M.I.T. Operations Research Center Technical
Report No. 115 (September 1975).

20. R. Holmes and R. Parker, "A Vehicle Scheduling
Procedure Based Upon Savings and a Solution
Perturbation Scheme," Opnl. Res. Q. , 27 (1),

83-92 (1976)

.

21. P. Krolak, W. Felts, and T. Nelson, "A Man-
Machine Approach Toward Solving the General-
ized Truck Dispatching Problem," Trans . Sci

.

,

6 (2) , 149 (1972)

.

22. S. Lin, "Computer Solutions of the TSP," Bell
System Tech. J. , 44 , 2245 (1965).

23. S. Lin and B. Kernighan, "An Effective
Heuristic Algorithm for the Traveling Sales-
man Problem," Opers . Res. , 21 , 498-516 (1973).

24. J. Little, K. Murty, D. Sweeney, and C. Karel,
"An Algorithm for the Traveling Salesman
Problem," Opers. Res. , 11 (5), 972-989 (1963)

(1963)

.

25. R. Newton and W. Thomas, "Design of School
Bus Routes by Computer," Socio-Econ. Plan-
ning Sciences , 75-85 (1969).

26. R. Newton and W. Thomas, "Bus Routing in a

Multi-School System," Computers and Opera-
tions Res . , 1 {2] , 213-222 (1974)

.

27. C. Orloff, "A Fundamental Problem in Vehicle
Routing," Networks , 4 (1), 35-64 (1974).

28. C. Orloff, "Routing a Fleet of M Vehicles to/
from a Central Facility," Networks , 4_,

147-162 (1974).

29. C. Orloff and D. Caprera, "Reduction and Solu-
tion of Large Scale Vehicle Routing Problems,"
Princeton University, Transportation Program,
Technical Report 75/TR-7 (July 1975).

30. J. Pierce, "Direct Search Algorithms for
Truck-Dispatching Problems, Part I," Trans .

Res. , 2, 1-42 (1969)

.

31. J. Robbins , "A Program for Solution of Large
Scale Vehicle Routing Problems," Master's
Thesis, Dept. of Industrial Engineering and
Management, Oklahoma State University (1976)

.

32. J. Robbins, J. Shamblin, W. Turner, and D.

Byrd, "Development of and Computational Ex-
perience with a Combination Tour Construction-
Tour Improvement Algorithm for Vehicle Rout-
ing Problems," presented at ORSA/TIMS
Meeting, Las Vegas, Nevada (Nov. 1975).

33. R. Russell, "Efficient Truck Routing for
Industrial Refuse Collection," presented
at the ORSA/TIMS Meeting, San Juan, Puerto
Rico (Oct. 1974).

34. R. Russell, "An Effective Heuristic for the
M-Tour Traveling Salesman Problem with Some
Side Conditions," presented at the ORSA/TIMS
Meeting, Las Vagas , Nevada (Nov. 1975).

35. R. Simpson, "Scheduling and Routing Models for
Airline Systems," M.I.T. Flight Transporta-
tion Laboratory Report FTL-R68-3 (Dec. 1969)

.

36. R. Strieker, "Pubic Sector Vehicle Routing:
The Chinese Postman Problem," Master's
Thesis at M.I.T., Department of Electrical
Engineering (1970)

.

37. F. Tillman and H. Cochran, "A Heuristic Ap-
proach for Solving the Delivery Problem,"
J. Industrial Eng . , 19, 354 (1968).

38. W. Turner, P. Ghare, and L. Fourds , "Trans-
portation Routing Problem—A Survey," AIIE
Transactions , 6_ (4) , 288-301 (1974) .

39. M. Tyagi, "A Practical Method for the Truck
Dispatching Problem," J. Opers. Res. Soc

.

Japan , 10, 76-92 (1958).

40. V. Vu and W. Turner, "Systems Design for

Rural Refuse Collection," AIIE Transactions
8(1), 84-95 (1976)

.

41. P. Yellow, "A Computational Modification to

the Savings Method of Vehicle Scheduling,"
Opnl. Res. Q . , 21_, 281 (1970) .

Note
Bruce Golden is now at the University of

Maryland, College Park, Maryland.

240

Balaslan-Based Enumeration

Procedures : A Study in

Computational Efficiency

James H. Patterson
Purdue University

Abstract

Since the introduction of the additive algorithm
by Egon Balas in 1965 [1], numerous investigators
have added refinements and improvements to the

basic procedure to improve the convergence proper-
ties of the algorithm. These embellishments have
included procedures for changing the search origin,
altering the criteria for augmenting variables,
etc., and have included the use of composite con-
straints for fathoming partial solutions early in

the augmentation phase of the algorithm. In this
paper, we will present computational experience
with many of these refinements for the binary as

well as the bounded integer problem.

Introduction

A zero-one integer linear programming problem can
be written in the form:

minimize: cx (1)
subject to: b + Ax s 0

X. e [0,1}

c. s 0
J

where c and x are n- tuples, b is an m- tuple, and A
is an m X n matrix. Form (1) is termed the stand-
ard form. Any zero-one programming problem can
be written in form (1) by a suitable definition of
variables and manipulation of constraints.

A bounded integer linear programming problem can
be written in the form

minimize : cx (2)
subject to: b + Ax 2 0

0 s X 5 d

x^ integer

c. ar 0
J

where d is an n-tuple, and the other variables
are as defined in (1) above. Suitable trans-
formations of variables and constraints can
convert (if necessary) any bounded integer linear
programming problem into form (2).

Procedures effective in solving (1) can be used
in solving (2) through a binary expansion of the
integer variables. Similarly, (1) is a special
case of (2) in which d.=l, j=l,2, n. There

exists widespread interest in obtaining solutions

to (1) and (2) because of the wide variety of prob-
lems which can be formulated as zero-one and
bounded integer programming problems (see, for

example, [91, [211, [22], [26]).

In this paper, we will evaluate several extensions
to the basic Balasian algorithm for solving four

classes of integer programming problems. These
classes include capital budgeting problems of the

Lorie-Savage variety [21], single-constraint allo-
cation problems from Trauth and Woolsey [27],
fixed-charge or bounded integer programming prob-
lems from Haldi [14], and "IBM test" problems
also from Haldi and from Trauth and Woolsey. We
will not concern ourselves in this paper with
branch and bound procedures of the Land and Doig
variety for solving the integer programming proD-
lem, as these methods represent fundamentally
different approaches. Computational results repor-
ted do, however, present the opportunity for com-

parisons between approaches (depth first search
vs. best first search).

Many investigators who have suggested refinements
to the Balasian enumeration algorithm have also
made available FORTRAN computer programs for tes-

ting their refinements [12], [15], [18], [24],
[29]. An empirical investigation of each of these
improvements remains to be completed. •' In the

next section, the computer programs and modifica-
tions examined are briefly described. Each pro-
gram examined is basically an enumeration algorithm
of the Balasian type with certain improvements
and modifications to eliminate large portions of

the search. Section III discusses the computa-
tional experience observed in solving categories
of problems with the available techniques. Sec-

tion IV summarizes the results of the investiga-
tion and discusses future improvements to enumera-
tion algorithms which appear promising.

Computer Codes and Msdifications Examined

In this section, each of the computer codes
(techniques) investigated is briefly described.
Each of the codes implements an enumerative search
procedure which is a basic Balasian algorithm
with modifications designed to exclude portions of

the search (implicit enumeration). Each of the

codes is redimensioned (upward) from their ori-
ginal versions to fit into 280 K bytes of core.

Each code is written entirely in the FORTRAN

241

language and is an "in-core" program. Distin-
guishing features or characteristics of each of
the four codes examined are summarized in Table 1.

The strategy choices made by the user concern
the frequency with which a surrogate constraint
Ls computed and the maximum number of surrogate

Code

CharAcceristlcs

Language

Computer
(IBM)

Mode of Arrays

Maximum Problem
Size, m X

(280 K bytea)

Imbedded L.P.

Present

Particular
Variation
Examined

'fsble 1

Computer Codes and Modifications Examined

FORTRAN V
(or IV)

370/168

FORTRAN V

(or IV)
FORTRAN V
(or IV)

ENUMBERS

FORTRAN V
(or IV)

370/168

Integer

140 X 140

Revised Simplex
(with Explicit

Inverse)

1) Imbedded L.P.
called every
time,

2) One surrogate
constraint
carried

3) L.P. start used.

200 X 200

1) Branching was
determined after
preferred varia-
bles were selec-
ted.

2) Full cancella-
tion test was
used.

3) Starting solu-
tion always
empty.

370/168

Real (with some
double precision)

IXial Simplex

1) Branching was
determined after
preferred varia-
bles were selec
ted.

L.P. applied
after cancella-
tion test.
L.P, (roundup)
determined ini-
tial origin

4) One restart
used at first
solution.

370/168

Integer

200 X 200

FORTRAN V
(or IV)

370/168

140 X 140

2)

3)

1) More than one
variable could
enter the basis
in an iteration.

2) Starting solu-
tion was provi-
ded by variable-
values which
satisfied the
sum of all
constraints.

Revised Simplex

1) Bound redefinition
employed.

2) L.P called at
every iteration.

3) Starting solution
always empty.

4) Both Minlmua Branch
and Baias' Augmeo-
tation rules inves
tigaced

Obviously, there

RIP30C (Geoffrion and Nelson [12])

The code of Geoffrion and Nelson employs a basic
Balasian algorithm and an imbedded L.P. to pro-
vide an initial partial solution and to compute
a strongest" surrogate constraint (as defined
by Geoffrion [9]). The major advantage of the
particular surrogate constraint introduced by
Geoffrion and incorporated into RIP30C is that
the dual of the required linear program coin-
cides exactly with the continuous version of
the zero-one problem in the free variables.
Hence, if in computing the composite constraint
the partial solution is not fathomed, and if
the dual variables are integers (0 or 1) an
optimal completion of the partial solution hasbeen found and backtracking can begin in the
next iteration. In the computational exper-
ience quoted by Geoffrion, it is stated that
the use of the imbedded L.P. greatly reducedsolution times in virtually every case." This
IS opposed to the use of the algorithm without
the advantage of the imbedded L. P.

The program is written in general form and makesno advantage of special problem structures. Ateach Iteration a simple test for binary infeasi-bility and for conditional binary infeasibility
is performed, with each constraint being consi-dered individually.

constraints carried. The L.P. routine used employ,
the revised simplex method with explicit inverse
by Clasen [4].

The only difficulty encountered in using this
code concerned the value of ZKBAR input (0). The
program looks only for feasible solutions with
value at least ZKBAR + .99999 less than the best
feasible solution. However, on the IBM 370/168
computer, the code originally did not find the
optimal solution on many problems, but terminated
at a solution which was always 1 greater than the
optimal solution (all c^'s being integer). This

difficulty was easily remedied by setting ZKBAR
equal to -0.5 on the input card. This difficulty
is felt to be machine dependent.

Two versions of RIP30C were investigated: one in
which the variables were input in the order given
in the problem (RIP30C), and the other in which
the variables were initially sorted in increasing
order of c (SORTED RIP30C) . This latter refine-
ment has b^en found effective elsewhere, and is
easily implemented by the user with no modifica-
tions to the existing code required.

242

DZIPl (Lemke and Spielberg [181)

The code of Lemke and Spielberg employs a direct
search technique developed by the authors. On each
forward step, one variable is elevated to one; on

each backward step one variable is "cancelled"
back to 0. Since the algorithm begins with all

variables at level 0, the algorithm terminates (in

a formal sense) when all variables have been "can-

celled" back to level 0.

At each partial solution, the algorithm resolves
the 0-1 subproblem in the currently free variables.

A backward step is taken whenever it can be estab-
lished that any permissible forward step leads to

an unremovable infeasibility or to a feasible
solution not better than the best solution thus

far obtained (ceiling criteria). On forward steps,

a "preferred set"of the k free variables is con-

structed by using special types of Gomory cuts

and a process termed complete reduction. The pre-
ferred variable yielding the maximal Balas value
is then elevated to 1. When the subproblem in

(k-1) free variables is resolved, the last variable
to be elevated to 1 (LIFO procedure) is cancelled
to level 0, and the subproblem in the remaining
(k-1) free variables is again resolved. The
authors state that the procedure of considering
a subset of the free variables, the preferred set,

reduces substantially the computing time required
and the number of points to be considered.

The code uses all integer arithmetic which has a

very distinct advantage: half-word integers can
be used for the arrays, resulting in a larger
problem residing in core or primary memory.

The program performs a change of variables (if

necessary) from "problem" to "program" variables
in which 0 <, c. <. c.,,. This, as well as other

1 i+l
elaborations to the basic algorithm, has the

effect of significantly reducing computation time.
The authors state that the code often finds the
optimal, or at best a feasible solution rapidly,
with a major portion of the computing time being
expended in the "clean-up" phase, where the opti-
mality of the solution is verified.

DZLP (Salkin and Spielberg [241)

The code of Salkin and Spielberg employs a direct
search technique which is an elaboration of Balas'
additive algorithm. In addition, the code pro-
vides for the initial origin to be generated by an
imbedded L. P. -roundup start, and also provides for
the search to be restarted at improved zero-one
solutions. While restarting the search neces-
sarily introduces enumeration redundancy, the
authors state that "the length of the search is

inversely proportional to the closeness of the
origin to the minimal solution" and the redun-
dancy introduced by restarting may be more than
compensated for computationally by the reduction
in time expended in verifying the optimality of
the solution. Computational results reported
empirically verifies this contention [23]. The
code also contains infeasibility, cancellation,
and ceiling criteria similar to that of DZIPl.

The code uses real arithmetic, and, in addition,
contains some double precision arrays and varia-
bles. The program in the form received required

a few minor programming changes to run on the IBM

370/168 computer. Along with a few "carriage
control" and other format statement changes, the

major change involved correcting the program from
returning a "no feasible solution" termination
when the first call to the imbedded dual-simplex
routine yielded the optimal solution to the zero--

one integer problem. Apart from these minor prob-
lems, no additional difficulties were encountered
in using the program in its original form.

HOLCOMB (Holcomb [151)

The program written by Holcomb at Union Carbide

is a variant of the Balasian algorithm with
several heuristic tests available for influencing
the search strategy. These heuristic tests re-

place existing tests in the algorithm and allow
the user to select a procedure for conducting the

search. Heuristic options available include pro-
visions for initializing the program with a start-
ing solution which satisfies a "worst" constraint
or which satisfies a surrogate constraint which
is the sum of all constraints. Other options
available include a provision for entering more
than one variable into the basis in an iteration
and for raising to 1 the first eligible variable
rather than conducting a time-consuming test to

determine the next entering variable. Two pro-
gram strategies are available which are used when-
ever variations are present in the magnitude of the

ratio c./a. . or whenever some constraint coeffi-
J iJ

cients a. . are such that c. • a. . > 0.
ij J 3-J

Best results were obtained using this code to solve
the included problems by allowing for more than one
variable to enter the basis in an iteration and

by providing the program with a starting solution
which satisfied the sum of all constraints.

The majority of the arithmetic calculations per-
formed by the code are performed in the fixed-
point mode.

ENUMBER8 (Trotter [291)

The ENUMBER8 computer program was developed by
Trotter and Shetty [28] to solve the bounded
variable integer programming problem using impli-

cit enumeration techniques. Their approach repre-
sents an extension to Geoffrion's [91 algorithm
for the pure integer problem, employing simple
fathoming tests based on optimality and feasibility
considerations, and employing surrogate constraints
similar to those defined by Geoffrion. The authors
also employ techniques to tighten the bounds on

free variables using the L.P. based procedure
contained in the algorithm, the effects of which
are to simultaneously fathom several partial
solutions at a time.

As a user option, the augmentation phase of the

algorithm (explicit enumeration) may be guided by

two mutually exclusive criteria, (1) The maximum
BALAS value is used to select that variable x.

J

to elevate to d^ or its current upper bound. (2)

The variable x. which minimizes d. for all free
J J

variables is fixed at its lowest permissible value.

243

The authors state that "utilization of the bound
redefinition capability appears to offer a general
improvement in the performance of the algorithm
regardless of the augmentation rule used, although
in comparing the computational experience obtained

by varying the augmentation rule, the results are

less well-defined.

Several difficulties were encountered in using
the ENU>IBER8 computer code on the IBM computer.
These difficulties arose, for the most part,
because of 0-subscripting in the arrays, with
concomitant problems with several of the indices
in DO- loops (being out of range). Several
changes thus had to be made in the program, and
it is indeed possible that changes made in order
to run the program on the IBM computer may have
affected the logic originally intended by the

authors. Unfortunately, time did not permit us

to flow-chart this procedure to examine fully the

implications of all changes made to their pro-
cedure. We have since used E^^JMBER8 on a CDC6500
and a UNIVAC 1110 computer, and have not experi-
enced the difficulty we encountered on the IBM
370.

ENUMBER8 is used in these experiments to assess
the efficacy of Trotter and Shetty ' s approach for

solving the pure binary problem (d.=l, all j),
and for comparing their direct approach for
treating general integer variables with a binary
procedure using a binary expansion to represent
the integer variables.

All codes were compiled into object decks using
the FORTRAN H compiler with optimization feature
(OPT = 2) in order to obtain the lowest execu-
tion times possible. The timing subroutine for
each code returns relative CPU time in milli-
seconds using the "T-timer" macro available on
the supervisory system.

Computational Experience

Capital Budgeting Problems

The capital budgeting problems given in Table 2

were orginally solved by Petersen [21] in his
investigation of variants to the basic Balasian
algorithm, some of which were suggested in an
earlier paper by Glover. The problems vary in
size from six variables and ten constraints to
fifty variables and five constraints.

The lowest overall execution time on these seven
problems was achieved by SORTED RIP30C, followed
by RIP30C and then by DZLP. Both DZIPl and
HOLCOMB began experiencing difficulty in solving
these types of problems in the 25-30 variable
range and above. Apparently, the addition of
the L.P. start and the adaptive origin concept to
the ideas originally developed by Lemke and Spiel-
berg possesses great merit in solving these types
of problems as is shown in the computation results
for DZIPl and DZLP in Table 2. (DZIPl and
HOLCOMB were unable to solve the seventh and
largest capital budgeting problem within the time
limit specified.) Sorting of problem variables
was also of some importance in reducing execution

time for RIP30C. Unfortunately, employing
ENUMBERB with all d. -values set equal to 1 did not
result in low execution times for this group of
problems, especially as the number of variables
in a problem increased. This corroborates the
experience reported by Trotter and Shetty [28] in

solving pure binaryproblems with their procedure.

Single-Constraint Allocation Problems

Nine allocation problems were formulated by

Trauth and Woolsey to investigate the sensitivity
of integer programming algorithms to minor changes
in the problem matrix. Each of the problems con-
sists of ten variables. The problems differ from
one another only in the value of b, the right
hand side. All codes were able to solve these
problems in less than 0.10 seconds per problem,
hence the results are not presented in tabular
form.

IBM Test Problems
i

The IBM test problems are a pot-pourri of integer
programming problems which (except for problem #3)

feature matrices of O's and I's. Trauth and
Woolsey selected these problems for examination
because of "the wide disparity of solution times
between various approaches and because of the

multiplicity of optimum integer solutions." DZIPl
and HOLCOMB experienced difficulty in solving this

class of problems when the number of variables
increased to 30. The ENUMBERS programming code
recorded its best results when the minimum branch
rule was used for variable augmentation (these
integer problems were treated directly by ENUMBERB).
Overall best results were recorded by the "unsorted
version" of RIP30C and by DZLP, as indicated in

Table 3. J

IBM problems 4 and 5 differ from each other only I
in the b-vector (b5 b^)

,
yet each of the codes I

examined experienced much more difficulty in
"

solving problem 5 than in solving problem 4. While
the difference in solution times cannot be explained i

by the computational results reported, one can con- f
jecture that constraint severity (as determined by 1

m n a . . J

(E (E ~t^)) /™ these structured problems has 1
i=lj=l ^ I

as pronounced an effect on solution times as do
™

the number of variables and/or the number of con-
straints. The results reported in Table 3 are
similar to those reported by Trauth and Woolsey

,

[27, p. 491, Table V], except that each of the

codes showed less susceptibility to the large !

number of constraints in problem 9 than did the
;

integer programming techniques they examined.

Fixed-Charge Integer Programming Problems

The fixed-charge Integer programming problems of |j

Haldi were formulated as zero-one integer program-
ming problems by a binary expansion of the bounded
integer variables using the binary procedures

j
examined, and were treated directly with the

"

ENUMBERB program. Each of these problems features
special constraints which force certain variables
to assume nonzero values If other variables take

on nonzero values. Despite the small size of these

244

Table 2

Solution Times for Petersen's

Capital Budgeting Problems

Problem Number of Number of Solution
**

Time

Number 0-1 Variables Constraints SORTED ENUMBER8 ENUMBERS
RIP30C RXP30C n7 TP! DZLP HOLCOMB BALAS MBR

1 6 10 0.050 0.040 0.077 0.040 0.054 0.054 0.060

2 10 10 0.073 0.077 0.090 0.103 0.067 0.157 0.164

3 15 10 0.174 0.110 0.340 0.130 0.123 0.490 0.507

4 20 10 0.223 0.137 1.727 0.323 0.537 1.457 1.494

5 28 10 0.383 0.257 26.030 1.770 8.407 5.084 5.354

6 39 5 1.706 0.947 46.984 2.337 35.343 10.430 11.464

7 50 5 3.587 2.780
*

150 15.917
*

150 29.167 31.360

Number of Problems in Which
Summary Optimal Solution

and Verified
Was Found 7 7 6 7 6 7 7

Measures

**
Average Solution Time
for Problems Solved

.885 .621 12.541 2.946 7.422 6.691 7.200

Indicates optimal solution was not found wlthinallotted time of 150 seconds

IBM 370/168 CPU time, in seconds

Indicates all c^'s have been multiplied by 10 in this version of the problem In order to have all Cj-values in

integer form(to make a valid comparison between computer codes)

.

problems (in terms of the number of original inte-
ger variables and number of constraints)

, they are
quite often difficult to solve using known
approaches. Solution times for each of the fixed-
charge problems using each of the programming
codes investigated are shown in Table 4.

The lowest mean execution time on this series of
problems was recorded by DZLP, followed by
ENUMBERS using the minimum branch augmentation
rule, then by SORTED RIP30C, RIP30C, HOLCOMB,
DZIPl, and ENUMBERS using BALAS ' rule for aug-
mentation. The pure binary programming pro-
cedures not employing any form of linear pro-
gramming to fathom partial solutions generally
showed a larger increase in computation times
as the number of variables in a problem in-
creased, than did their LP-based counterparts.
Also, the ENUMBERS program with the BALAS aug-
mentation rule was not generally very effective
in solving these problems.

It is interesting to compare the results in Table
4 with the integer programming results of Trauth
and Woolsey [27, p. 490, Table III] on this
series of problems. Problems 1-4 and 7-8 are
quite similar, differing primarily in the value
of the b-vector and the value of the "fixed-
charge." While the codes RIP30C, DZIPl and,

HOLCOMB each record similar computation times for
problems within each of these two groups and a

marked difference in computing times between the
two groups, all were able to solve the problems
in a reasonable amount of time. Of the five
integer programming techniques examined by Trauth
and Woolsey, only one was able to solve all of

these problems within the number of iterations
allowed. Considering the difference in operating
speeds of the computers used, it would appear that
problems 1-4 were solved in less time by integer
programming. However, all binary programming
codes were able to solve each of the fixed-charge
problems, and each showed far less variability
in solution time between the two groups of prob-
lems, 1-4 and 7-8.

In order to compare the direct approach of
Trotter and Shetty with a binary expansion of
the integer variables and a pure zero-one approach,
the fixed charges and the right hand sides for the
problems listed in Table 4 were multiplied by 10

and then by 100. For the binary procedures, this
resulted in a maximum problem size of 71 variables;
for the integer approach, this simply resulted in

increasing the bounds on the variables, d..

Summairy results on these larger problems Ire
presented in Table 5. Due to the superiority of
the minimum branch rule in the ENUMBERS program

245

Table 3

Solution Times for lEM

Test Problems of Haldl

Problem Number of Number of Solution Time**
NuTTiber LiULlo LI-d-LLII-s SORTED ENUMBER3 ENUMBER8

RIP30C R1P30C DZIPl DZLP HOLCOMB BALAS MBR

1 21 7 0.294 0.466 0.304 0.186 0.407 0.320 0.226

2 21 7 0.280 0.373 0.594 0.213 0.353 0.647 0.420

3 20 3 0.064 0.106 0.697 0.056 0.090 0.784 0.603

4 30 15 2.947 4.150 36.170 0.213 102.437 2.384 0.903

5 30 15 11.286 12.154 150 14.283 150* 27.440 10.133

fHHe
9 15 50 3.890 4.052 1.604 4.223 1.127 28.830 11.656

Number of Problems in Which
Summary Optimal Solution Was Found 6 6 5 6 5 6 6

and Verified

Measures

**
Average Solution Time
for Problems Solved

3.127 3.550 7.874 3.196 20.883 10.068 3.990

Indicates optimal solution was not found within time limit of 150 seconds

^IBM 370/168 CPU time, in seconds.

If one solves the version of this problem as reported by Haldi and by Trauth and Woolsey, the optimal
solution is Z=8. If, however, a^ = 1 and a^^

10
~ ^^^^ solution reported by Haldl and by

Trauth and Woolsey (Z = 9) is correct.

in solving the original version of these problems,
this was the only alternative investigated for

these larger problems.

Again DZLP recorded the lowest execution times
for both problem sizes, and in general, those pro-
cedures not using any form of linear programming

began to experience significant difficulty in

solving these types of problems when the number
of variables in the problem increased beyond 30.

It is also interesting that the use of a binary
expansion for the integer variables when used with
a procedure employing linear programming to

fathom partial solutions generally resulted in

as low if not lower execution times for this

group of problems than did a direct treatment of

the integer variables. The differences in recor-
ded execution times are, of course, a function
of both differences in computer programming
decisions as well as a difference in algorithmic
approaches developed.

Summary Observations

The computational experience described in the pre-
vious section reveals the efficacy of certain
improvements to the basic Balasian algorithm as

implemented by computer programs supplied by the

authors of these improvements. Any evaluation of

these modifications is necessarily confounded with
the programming decisions made to implement each

improvement, as well as with the programming deci-

sions made regarding the coding of the basic

algorithm. Nevertheless, the data does indicate

that certain improvements do indeed accelerate

convergence on certain categories of problems.

The data further provides direction for the user

of these techniques for solving certain zero-one

and integer programming problems by existing, non-

proprietary computer programs,^ and provides a

yardstick for assessing the relative worth of

proprietary programs based upon their cost. Addi-

tionally, the data suggests certain avenues which

might be explored in developing future improve-

ments to known enumeration approaches, some of

which have already appeared in the open literature.

Improvements to Existing Techniques

With the exception of perhaps the allocation prob-

lems, it appears that any reduction in computation

time which could be achieved through the use of

integer arithmetic is more than offset by the use

of real arrays used in conjunction with an L.P.

routine to accelerate convergence. This is evi-

denced by the lower overall computation times

recorded by SORTED RIP30C, RIP30C and DZLP. It

would appear, therefore, that any improvement made

in the method of solving the imbedded linear pro-

gram would have the effect of significantly reduc-

ing solution times. Geoffrion and Marsten Til]

discuss an improved RIP30C^ which incorporates

246

Table 4

Solution Times for Fixed Charge Problems of Haldl

Problem Number of Number of Solution
*

Time
Number 0-1 Variables Constraints

RIP30C
SORTED
RIP30C DZIPl DZLP HOLCOMB

ENUMBER8
BALAS

ENUMBER8
MBR

1 11 4 0.110 0.103 0.090 0.063 0.067 0.070 0.044

2 12 4 0.110 0.137 0.207 0.053 0.053 0.167 0.080

3 14 4 0.150 0.197 0.344 0.100 0.057 0.267 0.114

4 12 4 0.107 0.100 0.166 0.053 0.053 0.314 0.140

7 22 4 0.760 0.440 0.894 0.360 0.510 7.560 0.407

8 23 4 1.173 0.820 1.340 0.340 0.890 8.421 0.527

9 15 6 0.140 0.130 1.454 0.126 0.060 0.907 0.564

10 30 10 1.310 1.783 4.537 0.647 4.970 10.360 0.814

Summary
Number of Problems In Which
Optimal Solution Was Found
and Verified

8 8 8 8 8 8 8

Measures

*
Average Solution Time
for Problems Solved

0.483 0.464 1.129 0.218 0.833 3.508 0.336

*IBM 370/168 CPU time, in seconds

Table 5

*
Mean Solution Times for Larger

Haldi Fixed Charge Problems

Modification
to Original
Problem

*
Mean Solution Time

RIP30C
SORTED
RIP30C DZIPl DZLP HOLCOMB

ENUMBER8
MBR

b . and F .

.

multiplied
by 10

1.320 1.374 6.611 0.840 7.445 1.099

b . and F .

.

multiplied
by 100

6.328 2.836 35.018 2.775
**

10.24 5.366

IBM 370/168 CPU time, in seconds
**

Optimal solution found and verified in only 5 of 8 problems

247

(among other changes) a dual linear programming
subroutine with column generation which is purpor-

tedly more efficient than the explicit inverse-

revised simplex method available in the current

version of RIP30C^. Given the current state-of-

the-art in enumeration programming, it seems safe

to conclude that any improved program will neces-
sarily incorporate some type of an imbedded L.P.

routine, although the choice of the actual L.P.

routine is more open to question. It is worth
mentioning in this connection that the problem
which led to the discovery that DZLP may on

occasion return a "no feasible solution" when the

first call to the L.P. returns the optimal zero-

one solution was solved in substantially less time

by RIP30C with the Clasen L.P. routine than by

DZLP.

In general, solution times were lower for the pro-
grams which use a starting solution determined by

solving the continuous version of the zero-one
problem by linear programming and then rounding
this solution. Subsequent testing with both RIP-

30c and DZLP on the Petersen capital budgeting
problems using a null starting vector and a round-

ed L.P. solution revealed the general efficacy of

initializing the implicit enumeration algorithm
with other than a vector of zeroes. This would
tend to substantiate Salkin's [23] contention
that a good initial solution can significantly
reduce the length of the search and would further
suggest that other initializing schemes be

examined. Byrne and Prall [3] have reported suc-

cess in this area, and the use of a heuristic
starting procedure such as the "effective gra-
dient" procedure of Senju and Toyoda [25] also
investigated by Wyman [31] shows promise both for
initializing the implicit enumeration algorithm
and for providing a good initial bound on the

objective function value for capital budgeting
type problems.

Although less convincing than the general efficacy
of employing LP-based routines, the data for the
problems examined tend to indicate that the use of

a binary expansion for the integer variables may
be as effective as treating the integer variables
directly, as least within the context of impli-
cit enumeration. Naturally, the differences in
results reported is confounded with differences in

programming decisions made to implement each of
the algorithms described.

Special Problem Structures

Integer and binary programming problems with
"special structures" are currently being solved
in a modest amount of computation time for prob-
lems involving a few hundred variables. Thangavelu
and Shetty [26], for example, have developed a

special purpose enumeration procedure for solving
a binary formulation of the assembly line balancing
problem, and quote impressive results. Their pro-
cedure has been generalized to the project and job-
shop sequencing problem by Patterson and Roth [20],
and again good results have been reported. Thus,
it is possible that special purpose procedures
will, in the future, replace general purpose
algorithms on special types of problems as more
knoweldge is gained in solving these special
structure problems.

Predicting the Time Required for Problem Solution

One of the more important formulations (by appli-
cation)of binary programming is the capital
budgeting problem. Although these types of prob-
lems do possess a fairly predictable structure
(dense matrices, positive a..'s, etc.) it is not

ij

a structure which is easily exploited. Interest
thus centers on whether solution times can be

predicted as a function of variables other than n,

the number of variables in a problem. The experi-
ence gained in solving the IBM problems of Section
III suggests tkat constraint severity as measured
by the "amount of slack present in a constraint"
can influence the time required for problem solu-
tion .

Nine sets of ten capital budgeting problems were
computer generated. Each set contained 50,100
or 175 variables and 20 constraints (this would
correspond to a planning horizon of 5 years of

4 quarters each, or 20 years of one year each,
etc.) Coefficients for the problems were generated
randomly such that problems within a set had
similar A matrices, but between sets differed in

the variability in c. and b. values. The problem
generator is more fully described in Ference [6].
An attempt was then made to solve the generated
problems with the sorted version of RIP30C.
These results are summarized in Table 6. In

general, those problems possessing the higher
variability in b. values (for similar A-matrices)
were solved in significantly less computation
time than those with less variability. Subsequent
experiments with capital budgeting problems with
11-75 variables indicated the most significant

variable in predicting solution time over the

range of problem sizes examined was a variance
measure of constraint severity given by

(S ((Z !ii_) - X SEV)) ; m
i=l j=l b.

where X SEV =

m n

(E (E lil)) ^ n>

i=l j=l b.

The R-squared values in the regression models
developed were on the order of 0.88, indicating
it is possible to identify classes of and charac-
teristics of problems which are likely amenable

to solution with implicit enumeration techniques.

Conclusion
Pure binary and integer programming problems were
input to five different computer codes, each of

which incorporates various modifications and

improvements to the basic Balasian algorithm.

The overall conclusion is that the surrogate con-

straint concept developed by Geoffrion and pro-

grammed into RIP30C and the dynamic origin con-

cept of Salkin and Spielberg are the most effec-
tive of the improvements examined,^ although other

improvements were often effective on some problems.

The effects of determining good initializing
solutions were discussed, and suggestions for

incorporating other improvements into zero-
one integer programming routines were made. The
results reported tend to show that certain

248

Table 6

Mean Solution Times Required to Solve Randomly Generated Capital Budgeting Problems

Number of Variables 50 100 175

Variability In

c . - values
J

Low High Low High High

Variability In

b. - values
1

Low High Low High Low High Low High High

*
Mean Solution Time
Ten Problems

37.36 2.146 36.49 1.689 150 22.78 156''' 9.947 38.89

IBM/^70 /168 CPU time, in seconds

Indicates no problems were solved within time limit .>f 150 seconds per problem.

types of pure-integer programming problems

may be amenable to solution by zero-one integer
programming.

Acknowledgments

The author would like to acknowledge the computer
programming assistance provided by Joseph J.

Albracht, Dean A. Ference, and Walter D. Huber in

the preparation of this paper. The anonymous
referee provided several suggestions useful in

revising the manuscript, as well as the following
detailed comments:

1. The special types of cuts employed in the
Lemke- Spielberg code (DZIPl), although termed
Gomory cuts by the authors, are not the same as
those traditionally referenced in the literature
as Gomory Cuts, and used in solving the general
IP problem (cutting planes)

.

2. The original use of the generalized origin
technique is due to Spielberg, "Plant Location
with Generalized Search Origin," Management Science ,

Vol. 16, No. 3, (November 1969), pp. 165-178

One final comment made by the anonymous referee
was that the paper "probably is not up-to-date in
the sense that all promising new approaches are
included." The intent of the investigation was to

evaluate various "depth-first-search" approaches
for solving the binary and the bounded integer
programming problems using computer software
(FORTRAN programs) supplied by the originator of
the algorithm evaluated. Within the restrictions
of the techniques evaluated and the general
availability of software for implementing these
techniques, the paper '^robably"is fairly up-to-
dat^ although certain other search strategies may
offer more promise in obtaining solutions rapidly.
Hopefully, the computational experience reported
herein can be used as a yardstick for assessing
the"promising new approaches"for solving
binary and bounded integer programming problems.

Footnotes

1. Investigations of the efficacy of various
mathematical programming algorithms for other than

the binary programming problem have recently
appeared in the open literature. A computational
investigation of the "pure- integer " programming
problem, for example, is reported by Trauth and

Woolsey [27]. Zionts has recently performed

some empirical tests of the criss-cross method

of linear programming [32]. And Braitsch compares

four quadratic programming algorithms in a 1972

paper [2].

2. Each of the programs examined herein is

available through SHARE or RAND Corporation
at a very modest (usually mailing) cost.

3. The improved RIP30C was not available for

testing.

4. Geoffrion (in a private communication) reportec

solving capital budgeting problems involving more
than two-hundred variables with the improved
RIP30C.

5. Each of the computer codes examined requires
that certain input parameters be set to influence

the direction of the search and the search strategy
employed. Hence any conclusions made regarding
the efficacy of the various approaches should be

made in light of the version actually examined.
Extreme care was exercised in determining the

strategy to be followed; author's recommendations
were usually adopted. However, it is possible
that a given approach could record lower solution
times on a given class of problems using a variant
of the solution strategy examined.

Bibliography

1. Balas, E., "An Additive Algorithm for Solving
Linear Programs with Zero-One Variables," Opera -

tions Research , Vol. 13, No. 4 (July-August, 1965),

pp. 517-546.

2. Braitsch, J, R. , Jr., "A Computer Comparison
of Four Quadratic Programming Algorithms,"
Management Science , Vol. 18, No. 11 (July 1972),

pp. 632-643.

249

3. Byrne, J. L. and J. G, Prall, "Initializing
Geoffrion's Implicit Enumeration Algorithm for the

Zero-One Linear Programming Problem," The Computer
Journal . Vol 12, No, 4 (November 1969), pp. 381-

384.

4. Clasen, R. J., Using Linear Programming as a

Simplex Subroutine , The RAND Corporation, P-3267,
November 1965.

5. Fleischmann, B., "Computational Experience
with the Algorithm of Balas," Operations Research ,

Vol. 15, No. 1 (January-February 1967), pp. 153-

155.

6. Pference, Dean A, "An Analysis of Significant
Factors Used In Predicting Solution Times for

Capital Budgeting Problems," Unpublished M.B.A.
Professional Paper, The Pennsylvania State Uni-
versity, August, 1976.

7. Garfinkel, R. S., and G. L. Nemhauser, Integer
Programming , New York: John Wiley & Sons, 1972.

8. Geoffrion, A. M., "Integer Programming by

Implicit Enumeration and Balas' Method," S lAM
Review , Vol. 9, No. 2 (April 1967), pp. 178-190.

9. "An Improved Implicit Enumeration Approach
for Integer Programming," Operations Research ,

Vol. 17, No. 3 (May-June 1969). p. 137-151.

10. "Elements of Large Scale Mathematical
Programming," Management Science , Vol. 16, No. 11

(July 1970), pp. 652-691.

11. and R. E. Marsten, "Integer Programming:
A Framework and State-of-the-Art Survey,"
Management Science, Vol. 18, No. 9 (May 1972),

pp. 465-491.

12. and A. B. Nelson, "User's Instructions
for 0-1 Integer Linear Programming Code KIP30C."
Memorandum RM-5657-PR (May 1968), the RAND
Corporation

.

13. Glover, F., "A Multiphase-Dual Algorithm for

the Zero-One Integer Programming Problem," Opera -

tions Research , Vol. 13, No. 9 (November 1965),

pp. 879-919.

14. Haldi, J., "25 Integer Programming Test Prob-

lems," Working Paper No. 43, Graduate School of

Business, Stanford University, December 1964.

15. Holcomb, B. D., "Zero-One Integer Programming
with Heuristics," An IBM contributed program
(360D-15.2.011), 1968.

16. Huber, W. D. , "Computational Experience with
Zero-One Programs for Multi-Project Scheduling,"
Unpublished M.B.A. Professional Paper, The Penn-
sylvania State University, August, 1971.

17. Lemke, C. E. and K. Spielberg, "Direct Search
Algorithms for Zero-One and Mixed- Integer Program-
ming," Operations Research . Vol. 15, No. 5 (Septem-
ber-October 1967), pp. 892-914.

18. and "DZIPl, Direct Search Zero-
One Integer Programming 1," An IBM contributed

program (360-D-15.2.001) (corrected) 1968.

19. Patterson, J. H. and W. D. Huber, "A Horizon-

Varying, Zero-One Approach to Project Scheduling,"

Management Science . Vol, 20, No. 6, (February

1974), pp. 990-998,

20. Patterson, J, H, and G. W. Roth, "Project

Scheduling under Multiple Resource Constraints:

A Zero-One Programming Approach," AIIE Transactions .

Vol.8, No. 3, (December 1976),

21. Peterson, C, ., "Computational Experience

with Variants of the Balas Algorithm Applied to

the Selection of R & D Projects," Management

Science , Vol. 13, No, 9 (May 1967), pp, 736-745,

22. Pritsker, A, A. B. , L, J. Watters, and P. M.

Wolfe, "Multi-Project Scheduling with Limited

Resources: A Zero-One Programming Approach,"

Management Science , Vol. 16, No. 1 (September 1969).

pp. 93-109.

23. Salkin, H. M. , "On the Merit of the Genera-

lized Origin and Restarts in Implicit Enumeration,"

Operations Research , Vol. 18, No. 3 (May-June

1970), pp. 549-555.

24. and K. Spielberg, "DZLP, Adaptive

Binary Programming," IBM contributed program (360L-

15.0.001), June 1969.

25. Senju, S. and Y. Toyoda, "An Approach to

Linear Programming with 0-1 Variables," Managemen t

Science , Vol. 15, No. 4 (December 1968), pp. 196-

207.

26. Thangavelu, S. R. and C. M. Shetty, "Assembly

Line Balancing by 0-1 Integer Programming,

AIIE Transactions , Vol. 3, No. 1 (March 1971),

pp. 64-69),

27. Trauth, C. A., Jr. and R. E, Woolsey, "Inte-

ger Linear Programming: A Study in Computational

Efficiency." Management Science, Vol 15, No. 9

(May 1969), pp. 481-493.

28. Trotter, L. E,, Jr. and C, M. Shetty,
"An Algorithm for the Bounded Variable Integer
Programming Problem, " JACM, Vol, 21, No. 3

(July 1974), pp, 505-513.

29. Trotter, L. E., Jr. "User's Instructions
for the Integer Programming Code ENUMBER8,"
Mathematics Research Center, University of
Wisconsin, - Madison: Technical Summary Report
#1347 (December 1973).

30. Wagner, H. M. , "An Integer Linear Programming
Model for Machine Scheduling," Naval Research
Logistics Quarterly , Vol. 6, No. 2 (June 1959),
pp. 131-140.

31. Wyman, F. P., "Binary Programming: A Deci-
sion Rule for Selecting Optimal vs. Heuristic
Techniques," The Computer Journal , Vol. 16,
No. 2 (May 1973), pp. 135-140,

32. Zionts, S., "Some Empirical Tests of the
Criss-Cross Method," Management Science, Vol. 19,
No. 4 (December 1972), pp. 406-410.

250

A STUDY OF THE EFFECT OF LP PARAMETERS ON ALOGRITHM PERFORMANCE

Christine H. Layman
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803

Richard P. O'Neill
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803

Abs tract

This paper presents the results of an
experiment to determine the relationship
between parameters which can be used to describe
linear programs and standard measures that can
be used to describe the performance of the
simplex algorithm. The test problems are gener-
ated by LPGENR, a fortran subroutine that gener-
ates linear programs, and solved by MPS/360.
Problems vary in size from 50 rows and 100
columns to 150 rows, 300 columns and 50 upper
bounds with varying densities and solution
characteristics. Correlations and least squares
fits are calculated to determine the relation
between parameters and performance measures

.

Several unusual relationships are reported.

1. Introduction

Several experimental studies in linear
programming have appeared in the literature
(see [11, [2], [5], [6]), but much of the experi-
mental work is unpublished and is transmitted
as folklore. For example, it is often stated
that the number of iterations is between one and
three times the number of rows. This study was
initiated to examine the relationship between
several parameters including some often quoted
ones and some performance measures of the simplex
alogrithm. At the same time the performance of
LPGENR (see [31) could be examined.

2. Software

LPGENR (see [3] and [8]) is a fortran sub-
routine system which generates LP problems with
prespecified characteristics and a known optimal
solution using a pseudo-random number generator.
Options allow the parameters to be passed or
generated with a specified range. Further,
output may be obtained in several forms includ-
ing MPS card image format. A brief description
of the algorithm for generating the problems is
given in appendix one.

The generated problems were solved using
IBM's MPS/360 with no default changes on the
LSU IBM 360/65 under the OS/MVT operating system.
This later proved to be a problem since the
XCLOCKSW switch was on. This switch causes an

INVERT demand to be controlled by the wall clock.
Since the operating system is mul t iprogrammed

,

reinversion was performed more frequently than
desired, sometimes only three iterations apart
and in a manner not completely predictable. About
16 problems were rerun and are presented in the

appendix

.

The statistical analysis was performed by
the Statistical Analysis System (SAS) (see [7]).

3. Experiment

The parameters chosen for study were: the

number of rows varying from 50 to 150, the number
of columns varying from 100 to 300, the matrix
density varying from about .40 to .04, the number
of upper bounds varying from 0 to half the number
of rows. Further, various problem types were
included that defined the characteristics of the

optimal solution.

The optimal solution characteristics for

this study can be divided into three classes:
the type of optimal solution, the size of the

reduced costs at optimality, and the number of

variables at their upper bound. There were three
optimal solution types: degenerate, unique with
all basic variables greater than zero, and alter-
native. For degenerate solutions the number of
basic variables at zero was set to be twenty-five
percent of the number of rows. For alternative
optimal solutions the number of nonbasic columns

with reduced costs of zero was set to be ten

percent of the number of rows. The magnitude of

the reduced costs of nonbasic columns at optimal-
ity are specified by multiplying the objective
coefficient which would produce a zero reduced
cost by the factor, 1-r, where r is a uniform
random variable over the interval 0 to either 0.1,

0.5 or 1.0. The number of variables at bound in

the optimal solution was set to be half the

number of upper bounds.

All other input parameters for LPGENR were
held constant. Each problem was a maximization
with all equality rows. The nonzero entries in

the constraint matrix were uniformly distributed
between -2 and 10; the optimal nonzero primal and

dual solution values from which the cost row and

righthand side are generated were uniformly
distributed between 0 and 20; all values were
rounded to the nearest integer.

251

The performance measures recorded for each

test problem were the number of phase one itera-

tions, the CPU time of the execution step and

the percent by which the generated optimal value

deviated from the calculated optimal value. The

CPU time includes a modest amount of time for

setting up the problem.

It was hypothesized that problems in which

nonbasic variables at optimality had large

reduced costs would solve faster since the

optimal columns might be easier for the algorithm
to choose. Also, problems with alternative
optimal solutions would be easier to find since

the algorithm need only find one from many. It

is obvious that the density has an effect on the

number of computations, but little has been said

concerning its effect on the number of iterations

4. Results

to the fit, had a coefficient of 1.3 and the
density had a large negative coefficient.

Wtien phasd one iterations is the dependent
variable, the three variables contributing most
to the fit are, in order, the number of rows,
the number of columns, and the density. The
number of rows is more important in explaining
phase one iterations since the criteria is simply
to find a feasible solution. Again the density
produces a negative influence.

When phase two iterations is the dependent
variable, the three variables contributing most
to the fit are, in order, the number of columns,
the density and the number of upper bounds.
Surprisingly the number of rows has a negative
coefficient, but contributes very little to the
fit indicating that its effect is virtually
negligible. The major part of the explanation
is due to the number of columns and the density
which again shows up negative.

A total of 239 problems were solved and the

results are listed in appendix two. In 29 cases,

tolerance checks made after reinversion caused

the algorithm to terminate. In all but three
cases, these can be recognized by a nonzero
value in the last column of the table. In five

cases (two of the five are replications) indicated

by a •'- in the table, the solution was in fact

optimal but in each case the sum of infeasibil-
ities was zero and several degenerate pivots were
taken before the problem was declared infeasible
after the tolerance check. Some problems, that

were rerun after tolerance checks declared them
infeasible, continued passed the point where they
were previously terminated after reinversion and

subsequently, the optimal solution was found and

declared as such indicating that in a sense the

problem is self-correcting.

Least squares fits and correlation coeffi-
cients were calculated for the 50 and 100 row
problems that reached the optimal solution. The
problems with 150 constraints were not included
in these calculations since only three reached
optimality and the others encountered numerical
problems. The correlation coefficients are listed
in table one. Least squares fits were calculated
with phase I iterations, phase II iterations,
total iterations and CPU time as dependent
variables. The calculations are presented for
CPU time but not discussed because of the wall
clock reinversion demand. All fits were forced
to have a zero intercept. The results are
presented in tables two, three, four and five.

The values in each row are the least squares
coefficient of the independent variable and

the standard error of the coefficient. The last
three variables are the coefficients for the
degenerate, unique and alternative optimal
solutions which were created as dummy variables.

When total iterations is the dependent
variable, the three variables contributing most
to the fit are, in order, the number of columns,
the number of rows and the density. The coeffi-
cient of the number of rows is 2.09 which is
consistent with folklore. The number of columns,
the independent variable which contributed most

Although the dummy variables that represent
the types of optimal solution are not among the
variables contributing most to the fits, it is

interesting to note some general trends. When
comparing the three solution types it is per-
haps easiest to consider the differences between
the coefficients. In each fit using iterations
the difference between the coefficients for
degenerate and either unique or alternative
solutions indicates that degenerate solutions
require more iterations than either unique or
alternative optimal solutions.

5. Discussion of the Results

The most surprising results concern the
reduced cost perturbation and the density. The
different reduced perturbations produced virtu-
ally no effect on any of the performance measures
in any of the statistical calculations. Another
surprising result is the negligible effect of
the number of rows on phase two iterations.

Although the density had a positive
influence on CPU time, it produced a negative
effect on the iteration measures. That is,

lower density problems required more iterations
than problems with higher density. A problem
with lower density could result in more degener-
ate pivots. The increased iterations when
problems have degenerate optimal solutions could
also be the result of a greater amount of degen-
erate pivots on the way to the optimum. Both
of these speculations support the folklore that
degenerate problems often require more itera-
tions .

To our knowledge this is the first study
that has attempted to consider the joint effect
of a number of parameters. A question not
answered by this study is how generated problems
compare to real world problems. One conclusion
that can be made is that the generator can be
specified to create problems that confuse the
algorithm. For example, the problems that were
declared infeasible when they were optimal.

252

Correlation Coeff icieats

Phase I Phase II Total CPU

iterations iterations iterations t Ime

number of rows .49 -.31 .13 .42

number of columns .34 .85 .66 .39
number of upper bounds .13 .04 .10 .12

density -.38 -.20 -.33 .01

reduced cost perturbation .02 -.01 .00 .00

table one

Dependent variable: phase one iterations

2
R = .93

independent variable coeff. std. err.
number of rows 2.31 0.16
number of columns 0.55 0.04
number of upper bounds -0.14 0.20
density -190 31.5
reduced cost perturbation 2.13 8.82
degenerate optimum -24.8 18.8
unique optimum -50.7 18.4
alternative optimum -43.1 18.7

table two

Dependent variable: phase two iterations

2
R = .91

independent variable coeff. std. err.

number of rows -0.22 0.12

number of columns 0.74 0.03

number of upper bounds 0.32 0.14

dens ity -106 22.8
reduced cost perturbation -2.90 6.37

degenerate optimum 2.74 13.6
unique optimum -20.9 13.3

alternative optimum -20.5 13.5

table three

Dependent variable: total iterations Dependent variable: CPU time

2
R = .93 r2 = . 84

independent variable coeff. std. err. independent variable coeff

.

std. err

number of rows 2.09 0.26 number of rows 2.27 0.18

number of columns 1.30 0.07 number of columns 0.60 0.05

number of upper bounds 0.18 0.31 number of upper bounds 0.005 0.21

density -296 49.8 density 106 34.2

reduced cost perturbation -0.76 13.9 reduced cost perturbation -1.89 9.57

degenerate optimum -22.1 29.8 degenerate optimum -160 20.4
unique optimum -71.6 29.2 unique optimum -177 20.0

alternative optimum -63.6 29.6 alternative optimum -159 20.2

table four table five

253

References

1. Dickson, J. C. and F. P. Frederick. "A

Decision Rule for Improved Efficiency in

Solving Linear Programming Problems with
the Simplex Algorithm," Communications of
the ACM, Sept., 1960, p. 509.

2. Kuhn, H. W. and R. E. Quandt. "An Experi-
mental Study of the Simplex Method," Proc .

of the Symposia in Appl ied Mathematics ,

American Mathematical Society, 1963.

3. Michaels, W. M. and R. P. O'Neill. "A

Mathematical Program Generator," presented
at the ORSA/TIMS Netting, Chicago, 111.,

April 30, 1975.

4. "Mathematical Programming System/360 Version
2," IBM Corporation. White Plains, N.Y.,

GH20-0476-2, 1968.

5. Ross, G. T., D. Klingman and A. Napier. "A

Computational Study of the Effects of
Problem Dimensions on Solution Times for
Transportation Problems," Journal of ACM ,

vol. 22, July, 1975, p. 413.

6. Wolfe, P. and L. Cutler. "Experiments in

Linear Programming," Recent Advances in
Mathematical Programming , eds . Graves and
Wolfe, McGraw Hill, N.Y. , N.Y.

, 1963, p.
177-201

.

7. Service, Joloyne. "A User's Guide to the
Statistical Analysis System," Dept. of
Statistics, North Carolina State Univ.,
Raleigh, North Carolina, 1972.

8. Michaels, W. M. and R. P. O'Neill. "User's
Guide for LPGENR," Dept. of Computer Science,
LSU, Baton Rouge, LA, April, 1975.

Appendix One

LPGENR Algorithm for

Generating Linear Programs

Given the following linear program

cx

Ax = b

0 < X < d

A is m by n

LPGENR generates c, A, b and d as follows:
step 1: Generate x" > 0, an optimal solution

and (u'', v") > 0, an optimal set of
multipliers. A degenerate optimal
solution will have more than n-m
variables in x at 0; a unique optimal
solution will have exactly m variables
greater than zero; an optimal solution
with alternative optima will have more
than m variables greater than zero.

Step 2: for j = 1 to n

if V* >0, d. = x*
J J J

if V* =0, dj = X* (1 * URV[0, .5])

step 3: for i = 1 to m and j = 1 to n

if URV[0, 1]< density, a. .
= URV[-2,10]

otherwise, a. .
= 0

step 4: for i = 1 to m
b. = A x"-'

1 1

step 5: for j = 1 to n

if x*> 0, c. = u"A. + V*
J J J J

if X* = 0, c. = (u*A. + vt) (l+URVr0,tl)

where + is determined by the sign of
u*A . + v* and t is the reduced cost

J

perturbation.

Note: URV[e,f]is a uniform pseudo random number
between e and f.

254

Appendix Two

NUMdEf7 OF ROWS NUMBER OF COLUMNS NI.KBER OF UPPER BOUNDS

100

HEDUCEC CPT . I TERAT IONS CPU
COST SOLN. TIME

NS ITY PERTURB. TYPE PHASE 1 PHASE 2 TOTAL (SEC)

O.ca 0.1 1 107 54 161 27.9
0.08 0 .5 1 107 54 161 28.4
o.ca 1 .0 1 102 38 1 40 25.9
0 . oa 0.1 0 143 75 218 36.8
0.03 0 .5 0 143 68 2 1 1 36. 8

0 . CS 1 .0 0 14 3 78 22 1 38.3
O.ca 0.1 2 100 24 124 24. 9

0 .08 0 .5 2 100 24 124 23.6
o.ca t .c 2 100 25 125 25.3
0.17 0.1 1 1 12 4C 152 40.8
0.17 0.5 1 1 1 2 40 152 39.7
C. 17 1 .0 1 1 12 40 152 39. 1

C . 17 0.1 0 149 55 2C4 50.2
0.17 0 .5 0 149 c c; 204 48.6
0.17 1 .0 0 149 63 2 12 49. 3
0.17 0.1 2 1 13 57 1 70 43.5
C . 17 0 .5 2 113 57 1 70 45. 1

0.17 1 .0 2 113 57 1 70 44.1
0.33 0 . 1 1 95 5C 145 56.6
0 . 33 C .5 1 95 50 145 55.5
0 . 33 1 .0 1 95 50 145 53. 1

0 . 33 0 . 1 0 120 36 156 56. 0

0.33 0 .5 0 120 36 156 58.5
0 . 33 1 .c c 120 35 155 55. 5

0. 33 0.1 2 1 1 1 28 139 49.3
0.33 0 .5 2 1 1 1 28 139 49. 1

0.33 1 .0 2 1 1 1 28 139 50.6

PERCENT
DEVIATION
FROM OPTIMUM

0.0
0.0
C .C
0.0
0.0
0 . 0
0.0
c.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
CO
0.0
0.0
0.0
0.0
0.0
0.0
0.0

NUMBER OF BOWS NUMBER OF COLUMNS NUMBER OF UPPER BOUNDS

5C 100 25

REDUCED
COST

OPT .

SOLN,
ITERATIONS CPU

TIME
PERCENT

DEVI AT ION
DENS ITY PERTURB. TYPE PHASE 1 PHASE 2 TOTAL (SEC) FROM OPT

0.08 0.1 1 126 27 153 25.5 0.0
0 .08 0 .5 1 1 26 36 162 27. 0 0.0
0.08 1 .0 1 126 32 158 26. 1 0.0
0.08 0.1 0 103 34 137 26. 1 0.0
0.C8 0 «s 0 103 2C 123 23.4 0.0
0 .08 1 .0 0 103 24 127 24.9 0.0
0.08 0.1 2 113 33 146 28.6 0.0
0.08 0 .5 2 113 32 145 27.6 0.0
0 .08 1 .0 2 113 32 145 30.4 0.0
0.17 0.1 1 107 43 150 43.0 0.0
0 . 17 0.5 1 107 47 154 43.6 0.0
0.17 1 .0 1 107 44 151 43.5 0.0
0.17 0.1 0 135 72 207 59.5 0.0
0 . 17 0.5 0 135 72 207 57.4 0.0
0.17 1 .0 0 135 80 215 52.4 0.0
0.17 0.1 2 125 23 148 49.3 0.0
0 . 17 0.5 2 125 32 157 49.9 0.0
0.17 1 .0 2 125 30 155 44.6 0.0
0.33 0.1 1 1 1 1 38 149 55.2 0.0
0.33 0 .5 1 1 1 1 33 144 58.7 0.0
0.33 1 .0 1 111 32 143 64.2 0.0
0.33 0.1 0 1 16 51 167 60.6 CO
0.33 0 .5 0 116 48 164 61.1 0.0
0. 33 1 .0 0 1 16 53 169 61.6 0.0
0.33 0.1 2 117 56 173 67,6 CO
0.33 0 .5 2 117 66 185 63.2 CO
0.33 1 .0 2 1 17 67 184 70.4 0.0

255

NUMBER OF RCWS NUMBf^R OF COLUMNS NLMBER OF UPPER BOUNDS

SO 200 0

HtOUCEC CPT . I TEHAT IONS CPU PERCENT
CQ5T SOLN. Tl ME DEVI AT I CN

DENS ITY PERTURe. TYPE PHASE I PHASK 2 TOTAL (SEC) FROM OPTIMUM

C .08 0 . I I 182 1 2C 302 74.2 0.0
0 . 08 0.5 I 182 1 2C 3C2 69. 9 0.0
0 .C8 1 .0 1 182 12C 3C2 74.0 o.c
C. 1 7 0 . I 1 164 77 24 1 8C.4 0.0
0.17 0 .5 1 164 72 236 79.2 0.0
0.17 1 .0 1 164 77 241 eo. 6 0.0
0 . 3J 0 . 1 1 127 1 C5 232 119.1 o.c
r .33 0 .5 1 127 1 15 242 119.2 0.0
0 . 33 1 .0 1 127 105 232 113.8 0.0
0. 08 0 . 1 0 150 144 294 61.7 0.0
0 . C8) .5 0 150 I 45 295 63. 3 0 .0
C . 08 1 .0 0 150 1 17 26 7 59. C 0.0
0.17 0.1 0 190 1C2 292 92.7 0.0
0.17 0 .5 0 190 ICO 290 93.6 0.0
0. 17 1 .0 0 190 102 292 92.6 0.0
0 . 34 0.1 0 1 1

1

1 1 1 222 1 C8. 7 0.0
C .34 .5 0 i 1

1

1 05 216 106.1 0.0
0. 34 1 .0 0 111 96 2C9 1 C7. C 0.0
C . 08 0 . 1 2 170 ee 258 54.8 CO
C .08 0 .5 2 162 105 267 57.3 0.0
0.08 1 .0 2 170 ee 258 55. 8 0.0
0.17 0.1 2 140 ice 246 85.7 0.0
C . 17 0.5 2 140 110 25C 84.6 o.c
0.17 1 .c 2 140 109 249 92.2 0.0
0.33 0 . 1 2 1 to 99 2C9 115.6 0.0
0 . 33 0.5 2 110 99 2C9 116.3 0.0
0 . 33 t .0 2 110 99 2C9 1G7.2 0.0

NUMBER OF ROWS NUMBER OF COLUMNS NUMBER OF UPPER BOUNDS

50 200 25

REDUCED CPT . I TERATIONS CPU PERCENT
COST SOLN. T I ME DEVI AT I CN

DENS ITY PERTURE

.

TYPE PHASE 1 PHASE 2 TOTAL (SEC) FROM OPTIMUM

C .08 T . 1 lie 1 C4 214 47.4 0.0
0.08 0 .5 1 10 125 235 54. 7 0.0
0 .08 1 .0 110 145 255 57.6 0.0
0.17 0.1 219 92 311 99.8 0.0
0.17 0.5 219 104 323 104.6 0.0
0.17 1 .0 2 19 107 326 99. 6 0.0
0 . 33 0 . 1 151 14C 291 138.7 0.0
0. 33 0.5 151 144 295 144.9 0.0
0.33 I .0 151 118 269 1 36.2 0.0
0.08 0 . 1 0 164 172 336 64.2 0.0
0.08 0 .5 0 164 202 366 67. 1 0.0
0.08 1 .0 0 165 15C 315 65. 3 0.0
0.17 0.1 0 159 107 266 89.4 0.0
0.17 0 .5 0 159 1 le 277 91.4 0.0
0.17 I .0 0 159 129 268 85. 1 0.0
0. 34 0.1 0 142 146 288 140.8 0.0
0 . 34 0.5 0 142 I 32 274 1 38.0 0.0
0.34 1 .0 0 142 144 286 134.0 0.0
0 . 08 0.1 2 158 122 280 59.6 0.0
0.03 0.5 2 158 1 19 277 57.4 0.0
0 .C8 1 .0 2 158 123 281 59.3 0.0
0.17 3 . 1 2 139 67 226 76.4 0.0
0.17 0 .5 2 139 90 229 71.9 0.0
0.17 1.0 2 139 144 78.5 0.0
0 . 33 0.1 2 148 1 24 272 1 32.3 0.0
0 .33 0 .5 2 148 104 252 126.2 0.0
0 . 33 1 .0 2 148 104 252 124. 1 0.0

256

NUMflEH OF KCWS NUMBER OF COLUMNS NUMBER OF UPPER BOUNDS

SO 300 C

REDUCED CPT . I TERAT ICNS CPU PERCENT
COST SQLN. T I ME OE V I AT r CN

DENS ITY PERTURB

.

TYPE PHASE 1 PHASE 2 TOTAL (SEC) FROM OPTIMUM

0 . 08 G . 1 1 156 1 6 1 3 1 7 62.

2

0 . 0
0.08 0 .5 1 156 1 42 298 77.5 0.0
c.oa 1 .0 1 156 1 3<; 295 76. 1 0.0
: . 17 0 . 1 1 179 1 3C 3C9 116.4 O.fl
0.17 0 .5 1 179 1 3C 3C9 115.4 0 . 0
0.17 1 .0 1 179 1 3C 309 118.7 CO
C . 33 0.1 1 176 1 34 3 IC 161.4 o.r
C . 33 ? .5 1 176 I 18 294 151.6 C . 0
0 .33 1 .0 1 176 12C 296 1 44 . G 0.0
0.08 0 . 1 0 239 2 19 458 1 CO.

6

0.0
0 .C8 0.5 0 240 22C 460 98.3 C .0
0 . 08 1 .0 0 244 243 487 113.8 CO
0.17 1 .

1

0 237 209 446 152. 3 0 . 0
0.17 0.5 0 237 257 494 171.2 CO
C . 17 1 .c 0 237 2ce 443 I 54.6 CO
0 . 33 0 . 1 n 169 16 1 33C 1 76. I 0.0
0.33 0 .5 0 169 139 3CB 162.9 0 . 0
0.33 1 .0 0 169 133 3C2 164.9 0.0
0.08 '5.1 2 181 165 346 87.9 CO
o.ca 0 .5 2 181 169 35C 86.5 CO
0.08 1 .0 2 181 20C 36 1 9 1.7 0.0
0 . 17 0 . 1 2 179 132 311 1 1 J . 6 0 . c
0.17 0 .5 2 179 1 1 3 292 10 5.6 CO
0.17 1 .0 2 179 1 13 292 103.7 CO
0.33 0 . I 2 113 144 257 146.6 0.0
0.33 0.5 2 1 13 144 257 140.9 0.0
0 . 33 I .0 2 1 1 3 1 36 25 1 14C.C CO

NUMBER OF ROWS NUMEER OF COLUMNS NLMBER OF UPPER BCUNDS

50 300 25

REDUCED CPT . I TERAT IONS CPU PERCENT
COST SOLN. T I ME DEVI AT ICN

DENS ITY PERTURF. TYPE PHASE 1 PHASE 2 TOTAL (SEC) FRCM OPTIMUM

0.C8 0 . 1 193 205 398 101.9 0.0
0.08 3.5 193 225 4 I 8 101 .6 0.0
0.08 1.0 193 1 79 372 91.6 CO
0.17 0.1 159 1 85 344 133.1 CO
0.17 0 .5 159 1 75 334 1 26. 7 Co
0.17 t .0 159 1 79 338 131.8 0.0
0.33 0.1 162 153 315 166.7 0.0
0.33 0 .5 162 1 56 318 170.9 0 .0
0 . 33 1 .0 162 1 43 305 162.2 0.0
0.08 0.1 0 212 225 437 1 04 .4 0.0
0 .08 0 .5 0 212 166 378 66.6 0.0
0.08 1 .0 0 212 157 369 97.2 0.0
0.17 0.1 0 20 1 193 394 137.1 CO
0.17 0 .5 0 201 1 58 359 117.8 0.0
0.17 1 .0 0 201 16C 36 1 125.7 0.0
0 . 34 0 . 1 0 157 167 324 169.2 CO
0.34 0 .5 0 157 156 3 13 17J.5 O.C
0 . 34 1 .0 0 157 167 324 1 77. 1 0.0
0.08 0 . 1 2 201 1 5 1 352 83.4 0 . 0
0.08 0.5 2 201 150 351 81.8 0 .0
0 .08 1 .0 2 201 161 362 87. 1 CO
0.17 0.1 2 194 1 15 309 116.9 CO
0.17 3.5 2 194 133 327 117.4 0.0
0.17 1.0 2 194 127 321 109.

0

0.0
0.33 0.1 2 120 1 57 277 151.4 0.0
0.33 0.5 2 120 142 262 151.3 0.0
0.33 t .0 2 120 144 264 153.0 0.0

257

NUVUER OF fiCwS NUMBER OF COLUMNS NLMBtH OF UPPER BOUNDS

1 0 u 100 c

REDUCED CPT . ITERAT IONS CPU PERCENT
COST SOLN. T I ME DE V I AT I CN

DENS ITY PERTURB

.

TYPE PHASE 1 PHASE 2 TOTAL (SEC > FRCM OPTIMUM

0 . C8 0.1 I 165 0 1 65 5"^. 3 0.0
0.06 0.5 I 165 C 165 65. 1 C . 0
0.08 1 .C 1 165 0 165 64.6 0.0
0.17 C . 1 1 180 0 180 93.3 0.0
C . 17 0 .5 I 180 0 180 94 . 9 0.0
0.17 1 .0 1 180 0 160 93.5 CO
0 . 33 0.1 I 187 c 167 112.7 0.0
0 . 33 C .5 187 0 1 67 143.5 0.0
0 .33 1 .0 187 0 167 148.1 0.0
0 . 08 ') . 1 0 1 65 8 173 59.6 0.0
0.03 0 .5 0 166 1 3 179 P 1 . 9 CO
0.08 1 .0 0 165 7 1 72 59.6 0.0
0.17 0.1 0 186 e 192 103.5 0.0
0.17 0 .5 0 1 66 7 193 120. 1 0.0
0.17 1 .0 0 186 7 193 I C5. 4 0.0
C.33 0.1 0 176 C 176 139.9 0.0 -K

0 . 33 0.5 0 175 0 175 129.5 0.0 yi

0.33 0.5 0 176 (3 176 140.4 0.0 -V-

0 .33 1 .C 0 175 C 175 1 28. 6 co *
0.33 1 .C 0 176 0 176 136.2 CO * --

0 . 08 0.1 2 lai 5 166 55.5 1 .80
0.08 0,1 2 164 C 164 59.7 0 . 0
0.C8 0 .5 2 164 0 164 60.8 CO
0.C8 1 .0 2 164 0 164 59.4 CO
0. 17 0.1 2 179 0 1 7y 112.6 0.0
0.17 0.5 2 179 c 179 92.8 0 .0
0.17 1 .0 2 179 0 179 117.1 U . 0
0. 33 0.1 2 163 0 16 3 142.9 0.0
0 .33 0 .5 2 163 0 163 146. 8 0.0
0 .33 1 .c 2 163 0 163 1 46 . 8 0.0

NUMBER GF ROWS NUMBER OF COLUMNS NUMBER OF UPPER BOUNDS

100 100 50

REDUCED CPT . ITERATIONS CPU PERCENT
COST SOLN. T I ME DEVIATION

DENS ITY PERTURB. TYPE PHASE 1 PHASE 2 TO TAL (SEC) FRCM OPTIMUM

0.08 0.1 147 e 155 60.3 CO
0.08 C .5 147 9 156 58. 7 CO
0.08 1 .C 147 13 160 65.7 CO
0.17 0 . 1 176 2 1 197 114.0 CO
0.17 0.5 1 77 7 164 96 . 9 0. G
C . 17 1 .c 177 182 IOC. 8 CO
0.33 0.1 1 76 7 183 1 36.2 CO
C.33 0.5 177 3 16C 118.0 CO
0.33 1 .0 1 76 9 185 166. I CO
0 . 08 0 . 1 C 149 3 152 59. 1 CO
0.08 0 . 1 C 147 e 155 58.6 CO +
0 . 08 C .5 0 147 14 161 56.6 0 . 0
0 . 08 1 .0 0 147 7 154 52. 3 CO
0 . 17 0 . 1 0 162 9 171 92.6 CO
C . 17 0 .5 c 162 13 175 1 07. 7 CO
0.17 1.0 0 162 12 174 90.2 CO
0.33 0 . 1 0 163 8 171 125.2 CO
0.33 0 .5 0 163 12 1 75 125.1 0.0
0.33 1 .0 0 163 9 1 72 119.2 0.0

NUMBER OF BOWS NUMBER OF COLUMNS NUMBER OF UPPER BOUNDS

100 200 0

REDUCED CPT . I TERAT IONS CPU PERCENT
DENS ITY

COST SOLN. T I ME DEVI AT I ON
PERTURB

.

TYPE PHASE 1 PHASE 2 TOTAL (SEC) FRCM OPT I MUM

0.04 0.1 0 436 142 578 225.4 CO
0.04 1.0 0 436 130 566 2 17.7 CO
0.08 0.1 0 468 156 624 468. 3 0.0
0.08 1 .0 0 468 1 76 646 471.7 CO
0 .04 0.1 2 36 1 64 425 165.8 0.05
0.04 1 .0 2 361 27 368 152.2 1 .85
0.04 1 .c 2 36 1 65 426 1 62. 1 0.48
0 .08 3 . 1 2 397 7C 467 363. 1 0.08
0.08 0 . 1 2 397 9 1 468 382. 1 CO -»-
0.08 1 .0 2 397 65 482 377.4 CC

258

NUKBtH OF ROWS NUMBER OF COLtMNS NLMBER OF UPPER BOUNDS

10 0 200 50

REDUCED OPT . ITERATIONb CPU PERCENT
COST S OL N . 1 1 Mt DcvIATIUN

n P K. Q T T VU C r\ o i 1 T OPD Tl 1 (3 P . T V D F PHASE 1 Dl-i A ere p Tn T A 1 i \\ V. t

0.04 0.1 0 385 204 569 223.5 0.0
0.04 0 . 1 0 385 9 394 145.8 0.52 >r
0 . 04 t .0 0 385 182 567 225. 8 0.0
0.08 0.1 0 42 I I 43 564 403.4 0.0
0.C8 1 .c 0 421 63 484 349.7 1 .02
0 .08 1 .0 0 42 1 4 1 462 323. 5 1 .60 -t-

0.04 0 . 1 2 285 71 356 154.6 0.09
0.04 0.1 2 285 I 29 414 176.0 0.0 -h
0.04 t .c 2 285 133 418 169.5 0.0
0 .08 3.1 2 382 150 532 376. 6 0.0
0.08 1 .c 2 382 86 468 331 .6 0.93
0 . 08 1.0 2 382 181 563 420.0 0.0 -»-

NUMBER OF ROWS NUMBER OF COLUMNS NUMBER OF UPPER BOUNDS

100 300 C

REDUCED OPT . I TERAT IONS CPU PERCENT
COST SOLN. T IME DEVIATION

DENS ITY PERTURE. TYPE PHASE 1 PHASE 2 TOTAL (SEC) FROM OPTIMUM

0 . 04 0 . 1 0 572 423 995 402. 1 0.0
0.04 1 .C 0 606 171 777 340.3 2 .90
0.04 1 .0 0 573 25C 823 342.5 1.4 1 -t-

0.C4 0.1 2 473 105 578 292. 2 0.73
0.04 0.1 2 473 108 58 1 294.0 0.70 -H
0 . G4 1 .0 2 473 248 721 305.5 0.9

NUMBER OF ROWS NUMBER OF COLUMNS NUMBER OF UPPER BOUNDS

100 300 50

REDUCED OPT . ITERAT IONS CPU PERCENT
COST SOLN . TI ME DEVIATION

DENS ITY PERTURB. TYPE PHASE 1 PHASE 2 TOTAL (SECJ FROM OPTIMUM

0. 34 0.1 0 579 1 53 732 288.2 0.20
0.04 0.1 0 579 ee 667 270.5 0.32 +-
0. 04 1 .0 0 579 4 1

= 994 356.9 0.0
0 .C4 0.1 2 376 295 671 308.2 0.0
0.04 1 .0 2 376 228 604 262. 8 0.0

259

NUMBER OF fiOWS NUMEER OF COLUMNS NLMBER CF UPPFR BOUNDS

ISC 300 0

WEOUCEO OPT . I TERAT IONS CPU PERCENT
COST SOLN. T I ME DEVIATION

DENS ITV PEt* TORE . TYPE PHASE 1 PHASE 2 TOTAL (SEC) FROM OPTIMUM

0 . 04 C . 1 0 1663 32 1695 1259.2 0.0
0.04 1 .0 0 1774 60 1634 1322.9 0.0
0 . C4 } . 1 0 927 3 I 9se 869.2 0.53
0.C4 u . 1 c 954 e 962 887.7 0.52 +
0.04 1 .0 0 947 66 1015 927.9 3.74
0 .04 1 .c 0 979 13 992 925.2 6.8 1 _v-

NUMBER OF ROWS NUMEER OF COLUMNS NUMBER OF UPPER BOUNDS

15 300 50

REDUCED OPT.
COST SOLN.

DENSITY PERTURB. TYPE

I TERAT IONS

PHASE 1 PHASE 2 TOTAL

CPU PERCENT
T I ME DEVIATION
(SEC) FROM OPTIMUM

0.04
0.04
C.C4
0 . 04
0.04

0.1
1 .0
O.l
0 . 1

1 .c

0
0
0
0
0

1430
I 393
787
787
787

66
e

196
1 05
91

1518
1399
965
892
878

1587.7
1455.

7

1 187.4
1054.6
1 006.

7

0.05
1 .05
0.07
0 . 0
1 .79

for the optimal solution type

0 indicates degenerate
1 indicates unique
2 indicates alternative

260

SENSITIVITY ANALYSIS FOR PARAIIETRIC NOMLINEAR
PROGRAriIII>fG USING PENALTY flETHODS

Robert L. Ajrmacost

U.S. Coast Guard Headquarters

Anthony V. Fiacco
Department of Operations Research

The George Washington LYiiversity

Abstract

Recently, it has been shown that a class of
penalty function algorithms can readily be adapt-
ed to generate sensitivity analysis information
for a large class of parametric nonlinear pro-
granming problems. In particular, estimates of
the partial derivatives (with respect to the prob-
lem parameters) of the ccmponents of a solution
vector and the optimal value function have been
successfully calculated for a number of nontrivial
exanples. The approach has been inplemented using
the well-known Sequential Unconstrained tlinimiza-
tion Technique (SUTTT) ccmputer program. This
paper briefly summarizes these results, presents
additions to the ccmputer program that include
a screening device for eliminating calculations
associated with less irrportant parameters, and
illustrates the kind of information that can be
generated by applying the technique to a well-
known inventory model.

i. Introduction

Initial numerical results resulting fran the
implatientation of a penalty function technique
for obtaining sensitivity information in parame-
tric nonlinear prograiraning were given by Armacost
and Fiacco (1974) . The work is based on the
theory developed by Fiacco and Mccormick (1968)

and extended by Fiacco (1973) . This paper reports
on refinements and extensions of the conputation-
al procedures inplemented by Armacost and Inlander
(1973) and Armacost (1976) , using the SUTTT-

Version 4 corputer code v/ith the logarithmic-
quadratic loss penalty function to estimate the
partial derivatives of the solution point and the
objective function optimal value, the derivatives
here being taken with respect to the specified
problem parameters.

Fiacco (1973) developed the necessary general
formulas for the partial derivatives of the "opti-
mal value function," the catponents of a local
solution point and its associated optimal Lagrange
multipliers, for a large class of parametric non-
linear prograitming problems cotposed of twice dif-
ferentiable functions. He also obtained approxi-
mation fonnulas in terms of the well-known
logarithmic-quadratic penalty function. Recently,
Armacost and Fiacco (1975) particularized and
sirtplified these formulas for various problem
structures and developed formulas for the first

and second derivatives of the optimal value func-
tion of the given problem. Additionally, Armacost
and Fiacco (1976) have applied the general theory
to easily prove the well-known result that, when
the parameters are the right-hand side corponents
of the constraints, the optimal Lagrange multi-
pliers give the gradient of the optimal value
function (with respect to the parameters) . Further,
it was shown that the first derivatives of the
Lagrange multipliers give the corrponents of the
Hessian of the optimal value function, and explic-
it formulas were developed for the Hessian in
terms of the problem functions.

In their first report on computational exper-
ience, Armacost and Fiacco (1974) concentrated
primarily on presenting coitputational experience
associated with the calculation of the first der-
ivatives of a local solution point. The practical
irtplementability of the approach was demonstrated.

In a subsequent paper, Armacost (1976) re-
ported on additional conputational experience,
focusing on the calculation of the derivatives of
the optimal value function and the Lagrange multi-
pliers, also irrplementing a potentially valuable
refinement that allows for computerized screening
for "key" parameters. This paper may be regarded
as a continuation and artplification of the Arma-
cost paper.

For problems involving a large number of
parameters, a very large number of partial deri-
vatives may be calculated if one proceeds indis-
criminately. This is not only time-consuming,
but may also be quite burdensome to a user who
must evaluate the overall significance of the
results. One measure of the latter is the effect
of a perturbation on the solution value. It is
quite possible and often observed in practice
that the optimal objective function value is much
more sensitive to a few of the many parameters
present. With this in mind, the method developed
by Armacost and Fiacco (1975) to estimte the
first order sensitivity of the optinral value func-
tion was incorporated in the coitputer program to
provide an option for preliminary screening of ftie

parameters to eliminate further calculations in-
volving perturbations of parameters having "little"
effect on the optimal value function. (A user
can easily introduce his own criteria of signifi-
cance in this determination.) Using the formulas
developed by Fiacco (1973) , a second option is

included which permits the calculation of the
sensitivity estimates for the Lagrange multipliers.

261

In Section 3, a sensitivity analysis is con-

ducted for a multi-item inventory model developed
by Schrady and Choe (1971) for the U.S. ttevy. Ihe
example analyzed is the same small one treated by
Schrady and Choe, though readily extended to a

large-scale model. The results illustrate the po-
tential value of a detailed automated sensitivity
analysis in practical situations, and hopefully
dramatize the numerous rich interpretations and
insights that can be derived from this informa-
tion, as well as indicating the caution that must
be taken in naking valid inferences.

The recently obtained basic theoretical re-
sults validating the conputational algorithm are
summarized rather completely in the next section
so that the paper might be self-contained.

2. Supporting Theory

Ihe parametric mathematical prograirming prob-
lems considered here are of the form

minimize f(x, e)

X E

subject to g^(x,e) >_ 0 , i=l, ,m , P(e)

hj(x,e) = 0 , j=l,...,p ,

where x is the usual vector of variables and e

is a k-component vector of numbers called "param-
eters." It is desired ultimately to develop a
carplete characterization of a solution x(e) of
Problem P{e) as a function of e . In our cur-
rent work, we have concentrated on certain re-
cently oonputationally tractable measures of
change in a solution as e is perturbed from a

specified value. (Without loss of generality, we
assume that the specified value is e = 0 .)

Vlhen certain assunptions are satisfied,
Fiacco (1973) and Armacost and Fiacco (1975) have
characterized the "first order sensitivity" of a
"Kuhn-Tucker Triple" and the first and second
order sensitivity of the optimal value function
of Problem P(£). (These quantities are defined
as the theory is presented.) Additionally, they
have developed formulas for efficiently estimating
this sensitivity when the logarithmic-quadratic
loss penalty function algorithm is used to solve
Problem P

(

e) . The main theoretical results are
sunmarized here.

The Lagrangian for Problem P(£) is defined as

L(x,u,w,e) = f (x,e) - u.g. (x,e)

i=l ^ ^

P
+ I w.h. (x,e) ,

j=l 3 3

where u^ , i=l,...,m and Wj , j=l,...,p are

"Lagrange multipliers" associated with the inequal-
ity and equality constraints, respectively. Any

vector (x,u,w) satisfying the usual (first order)
Kuhn-Tucker conditions (Fiacco and McCormick, 1968)

of Problem P(e) is called a Kuhn-Tucker triple.

The following four assunptions are sufficient
to establish the desired results and are assumed
to hold throughout the paper:

Al — The functions defining Problem P(£) are
tvdce continuously differentiable in
(x,e) in a neighborhood of (x*,0) .

A2 — The second order sufficient conditions for
a local minimum of Problem P(0) hold at
x* with associated Lagrange multipliers
u* and w* .

A3 — The gradients 7^g^(x*,0) (i.e.,

(ag^ (x* , 0) /3x^ , . . . , 3g^ (X* , 0) /3x^) ,

the superscript T denoting transportatior
for all i such that qi(x*,0) = 0 , and
V h.(x*,0) , j=l,...,p are linearly inde-
X]

pendent.

A4 — Strict conplementar\/ slackness holds at
(x*,0) (i.e., ut" > 0 for all i such that

g^(x*,0) = 0) .

Theorem 1 : (Local characterization of a Kuhn-
Tucker Triple (Fiacco, 1973) of Problem P

(

e).) If
assunptions Al, A2, A3 and A4 hold -vfor Problem
P(£) at (x*,0) , then

(a) X* is a local isolated minimizing point of
Problem P(0) and the associated Lagrange
multipliers u* and w* are unique;

(b) for e in a neighborhood of 0 , there
exists a unique, once continuously differ-
entiable vector function

T
y(E) = (x(e) ,u(e) ,w(e)) satisfying the
second order sufficient conditions for a
local minimum of Problem P(£) such that

T
y(0) = (x*,u*,w*) = y* and hence, x(£)

is a locally unique, local minimum of Prob-

lem P(e) with associated unique Lagrange
multipliers u(e) and w(e) ; and

(c) for £ near 0 , the set of binding inequal
ities is unchanged, strict conplementary
slackness holds for u^ (£) for i such

that g^(x(£),£) = 0 , and the binding con-

straint gradients are linearly independent
at x(e) .

Ihis result provides a characterization of a

local solution of Problem P(e) and its associated
optir.ial Lagrange multipliers near e = 0 . It

generalizes a theorem first presented by Fiacco
and McCormick (1968, Theorem 6) and is closely
related to a generalization of the same theorem
provided independently by Eobinson (1974) . It

shows that the Kuhn-Tucker triple y(£) is unique
and well behaved, under the given conditions.
Since y(E) is once differentiable, the partial
derivatives of the conponents of y(E) are well
defined. Ihis fact and Assimption Al also mean
that the functions defining Problem P(£) are once
continuously differentiable functions of e along

the "solution trajectory" x(e) near e = 0 ,

and the Lagrangian is a once continuously differ-
entiable function of e along the "Kuhn-Tucker
point trajectory.

"

We are thus motivated to determine a means to
calculate the various partial derivatives, since
this yields a first order estimate of the locally

262

optinal Kuhn-Tucker triple and the problem func-
tions near e = 0 .

Denote by Vx(e) e (3x.(e)/3£.) , i=l,...,n,

j=l, ,k , the n X k. matrix of partial deriva-
tives of x(£) with respect to e , and define
V u(e) and V w(e) in a similar fashion. Vie

then define V^y{e) e (V^x(e) ,V^u(e) ,V^w(£) l"^ , an

(n+mfp) X k matrix.

Vlhen yie) is available, ^^yie) can be cal-

culated by noting that Conclusion (b) of the
theorem implies the satisfaction of the Kuhn-
Tucker conditions for P (£) at y (£) near
£ = 0 , i.e.

,

V^L[x(e) ,u(e) ,w(e) ,e] =0
,

u^{£)g^[x(£) ,£] = 0 , i=l,...,m , (1)

hj[x(£),£] = 0 , j=l,...,p .

Since the Jacobian M{e) of this system with
respect to (x,u,w) (i.e. , the matrix obtained
by differentiating the left side of (1) with res-
pect to the conponents of (x,u,w)) is non-
singular under the given assurrptions , the total
derivative of the system with respect to £ is
well defined and must equal zero, this yields

M(e) v^y(£) N(e)

where N(e) is the negative of the Jacobian of
the Kuhn-Tucker system with respect to £ , and
hence _-,

V^y(e) = M(e) TJ(e) .

The class of algorithms based on twice con-
tinuously differentiable penalty functions can be
used without additional assunptions and without
requiring y (e) to provide an estirtate of
V_^y(e) . Furthermore, most of the information

required to make the estimate is already avail-
able in the typical inplementations of these
algorithms. Here, we use the logarithmic-
quadratic penalty function for Problem PCe)
(Fiacco and ffcCormick, 1968) defined as

j=l,...,p) and such that

x(0,r) ^ x(0,0) = x* ;

(2) lim r I In g. [x(0,r)] = 0 ;

r->0 i=l
^

(3) lim (l/2r) l h [x(0,r) ,0] = 0 ; and
j=l ^

(4) lim VJ[x(0,r) ,0,r] = f{x*,0) .

r^O

The following theorem extends these results for
Problem P(£) , v*iere e is allowed to vary in a
neighborhood of 0 , and provides a basis for
approximating the sensitivity information associ-

ated with Problem P(e). The notation V^'J denotes

the matrix of second partial derivatives of W
with respect to x .

Theorem 2 : (Relationship of solutions of
Problan P(e) and minima of W(x,E,r) , (Fiacco

1973) . If Assunptions Al - A4 hold, then in a
neighborhood about (E,r) = (0,0) there exists a
unique once continuously differentiable vector

T
function y(£,r) = [x(£ ,r) ,u(E,r) ,w(£ ,r)] satis-
fying

V^L(x,u,w, e) = 0 ,

u^g^(x,£) = r i=l,...,m ,

h_. (x,e) = w^r , j=l, . . . ,p ,

with y(0,0) = (x*,u*,w*) and such that, for any
(E,r) near (0,0) and r > 0 , x(E,r) is a
locally unique unconstrained local minimizing point
of W(x,E,r) , g.[x(E,r),E] > 0 , i=l,...,m , and
2

V W[x(E,r) ,E,r] is positive definite.

Corollary 2.1 : (Convergence of estimates using
W(x,£,r) , (Fiacco, 1973).) If Assunptions Al, A2,
A3 and A4 hold for Problem P(e) , then for any e

near 0 ,

W(x,E,r) = f (x,e) - r I In g. (x,e)

+ (l/2r)
P
Z

j=l

i=l

hJ(x,E) (2)

Under the given assunptions, the following
facts are known for Problem P(0) from penalty
function theory (Fiacco and McCormick, 1968,
Theorems 10 and 17)

:

(1) For r > 0 and small, there exists a
imique once continuously differentiable
vector function x(0,r) such that x(0,r)
is a locally unique minimizing point of

W(x,0,r) in R^(0) = {x: g^(x,0)

> 0 , i=l,., ,m , and h^ (x,0) = 0

(a) lim y(E,r) = y(E,0) = y(£) , the Kuhn-
r-^+

Tucker triple characterized in Theoran 1;

and

(b) lim V y(E,r) = V y(E,0) = V y(£) ,

r-0+ ' = ^

This result motivates use of y^y(£,r) to

estimate V^y(E) , when e is near 0 and r

is near 0 , once y(E,r) is available. Theorem 2

provides the basis for an efficient calculation of
V^y(£,r) . Since, at a local solution point

x(E,r) of W(x,E,r) , it follows that

V^W[x(E,r) ,E,r] = 0 , (3)

we can differentiate (3) with respect to e to
obtain

263

v5'J[x(e,r) ,e,r] V x(e,r)

+ V (V W[x(e,r) ,E,r]) = 0
e X (4)

By Iheoran 2, V W is positive definite for
^ 2

(e,r) near (0,0) and r > 0 , so V^W has an
2

inverse and V^x(e,r) = -V^V7[x(e,r) ,e,r]~l .

V^^W[x(e,r) ,e,r] .

Also, since

u^(e,r) = r/g^(x(e,r) , e) , i=l, . . . ,m ,

and

Wj{e,r) = {x(e,r) ,e)/r , j=l,...,p ,

(5)

(6)

for {e,r) near (0,0) and r > 0 , these equa-
tions can be differentiated with respect to e

to obtain

V^u^(e,r) = -(r/g^) [V^g^(x(e,r) ,e)

V^x(e,r) + 8g^(x(e,r) ,e)/3e] , (7)

V w (e,r) - (l/r) [V h (x(£,r) ,e) •

t J X J

V x(e,r) + 3h. (x(£,r) ,e)/9e] . (8)

Solving (4) and calculating (7) and (8) then
yields the conponents of V^y(E,r) , which can be

used to estimate V y(e) for (e,r) near
(0,0).

The next results extend this theory to an
analysis of the optimal value function of Problem
P(e) along the Kuhn-Tucker point trajectory

[x(e) ,u(e) ,w{e) .

The optimal value function is defined as:

f*(e) = f [x(e) ,e] , (9)

and the "optimal value Lagrangian" is defined as:

L*{e) = L[x(e) ,u(£) ,w(e) ,£] . (10)

Theorem 3 : (First and second order changes in
the optimal value function, Armacost and Fiacco
(1975).) If assuirptions Al - A4 hold for Prob-
lem P(e), then for e near 0 , f*(E) is a
twice continuously differentiable function of £ ,

and

(a) f*(E) = L*(e) ;

(b) V^f*(E) = V^L(x,u,w,£)

(x,u,w) = {x(£) ,u(£) ,w(e)
:

= V f (x,e) - I u. V g. (x,£)

i=l
^

f'li

i

II

iict

+ I w.V h. {x,e)

j=l

(x,u,w)=(x(e) ,U(£) ,w(£)) ;

(C) V^f*(e) =V (V L(x(e) ,U(£) ,w(e) ,£)'^) .

E EE

The logarithndc-quadratic loss penalty functio

(2) can also be used to provide estimates of the
first and second order sensitivity of the optimal
value function. Let the optimal value penalty fun
tion be defines as ?7*(£,r) = W(x(£,r) , E,r) .

Theorem 4: (First and second order sensitivit

of \"J*(E,r) and estimates for f*(E) , Armacost
and Fiacco (1975) .) If Assunptions Al - A4 hold
for Problem P(e) , then for (£,r) near (0,0) ani

r > 0 , W*(E,r) is a twice continuously differen-
tiable function of e and

till

tt

(a) lim W*{E,r) = L*(e) = f*(E) ;

r-0+

(b) V W*(£,r) = VWVX + VW=V L(x,u,w,e)
e X £ E e

(x,u,w) = (x(E,r) ,u(E,r) ,w(E,r))

(c) lijti V V7*(£,r)

r-0+
"

= V^L(x(e) ,u(e) ,w(e) ,£)

= V f*(£) ;
e

as

iEt

it

B

Jly

in'

Stl

(11)

(d) T"r*(£,r) = V^(V^L(x(E,r) ,u(£,r) ,w(e,r) ,e)

(e) lim V^'7*(E,r) = V^f*(£)

Btl

Oil

ai

r->0
+ e

This result provides a justification for
2

estimating f*(E) ,
V^f*(E) and V^f*(E) by

W*(E,r) , V^W*(E,r) and v^'7*{E,r), respectively,

vAien r is positive and small enough.

Since Corollary 2.1 and continuity irtply that

lim f(x(E,r),e) = f*(e) , another estimate of the

optimal value function (9) is provided by

f (E,r) = f(x(E,r),£) when r > 0 and small.

Direct application of the chain rule for differen-

tiation then yields, for x = x(E,r) ,

V f^(£,r) = V f{x,E)V x(E,r) + V f(x,£). (I

Under the given assuirptions, continuity also assure

that V f# (E,r) ^ V f*(£) as r -* O"*" . Thus both

264

l_f'(e,r) and V^W*{e,r) are estimates of

_f*(e) for r sufficiently small.

It should be noted that these estimates are
jnctionally related since

V W*(e,r) = V f**(e,r)
e e

m
- I u. (V g. V x(e,r) + V g.

)

P
+ I w. (V h.v x(e,r) + V h.)

^=1 1 X 3 e e :

I X = x(e,r)
*

#,

ran this expression, it is clear that V^f" (e,r)

3 the better estimte of V^f*(e) , the remaining

arms in V W*(e,r) sirply constituting "noise"

nat is eliminated as r ^ 0 . However, by using
ne expression for V^W*(e,r) given by (11),

^W*(e,r) can be evaluated without necessitating

16 calculation of V^x(e,r) , which is required

3 conpute (12) . Ihus, the cruder but coitputation-
lly much cheaper estimate of f* (e) given by
quation (11) has now been introduced as an option
Q the conputer program as a preliminary screening
evice to identify crucial paraneters. Restric-
ion of subsequent calculations to these parame-
ers, and other calculations such as the sharper
stimate of Vf*(£) given by (12) are provided as
dditional options.

In summary, the basis for the estimation pro-
adure utilized here for a specific problem, say
roblem P(e), is the minimization of the penalty
lonction W(x,e,r) given by (2). This yields a
oint x(e,r) v»4iich may be viev^ed as an estirrate
Ea (local) solution x(e) of Problem P (e) . The
stimate f(x(e,r),s) of f*(e) is imnediately
/ailable when x(e,r) has been determined. The
Jsociated optimal Lagrange nultipliers u(e) and
(e) are estimated by using the relationships
Lven in (5) and (6) , respectively.

If desired, all of the first partial deriva-
.ves of y(e,r) = (x(£,r) ,u(e,r) ,w(£,r)T „ith
spect to E , an estimate of S/^y{c) . nay be
)tained by first solving (4) and then applying
') and (8). If the full matrix V x(E,r) is

£

ilculated, then V^f*(£) is estimated by (12).

iwever, if it is desired to eliminate calcula-
ons involving parameters having less effect on
cal changes of f*(E) , the screening device
scribed above is used. This entails initial es-
mation of V^f*(£) by (11). Conponents of e

)rresponding to the respective ccnponents of
f*(E) that are deemed inconsequential, may then

,! deleted and would not enter into any subsequent
ilculations . In particular, it is enphasized that
:*,u*,w*) , f*(E) and V^f*(E) may be estimated

/ y(e,r) f(x(e,r),e) and (lib), respectively,

without calculating any components of V^y(e,r) ,

once x(E,r) is known.

3. Exaitple: A Large-scale Multi-item
Inventory Model

Traditionally, inventory models have been formu-
lated to minimize some function of the ordering,
holding and shortage (or backorder) costs subject
to various constraints. Schrady and Choe (1971)

have formulated an inventory model which appears to
have much greater relevance for an inventory system
in a noncommercial environment, such as institution-
al or military. The costs used in the traditional
models may be quite artificial and the real objec-
tive of the system is often maximization of a mea-
sure of readiness or service, here assumed to be
equivalent to minimization of stockouts. In addi-
tion, the stock points of such supply systems are
inevitably constrained by investment and reorder
workload limitations.

Schrady and Choe's multi-item inventory system
assumes these constraints along with the specific
objective of minimizing the total time-weighted
shortages. The decision variables are taken to be
the "reorder quantities" and the "reorder points,"
respectively, how much to order and when to order
each item in the inventory. A three-item exanrple

problem was solved by Schrady and Choe (1971) using
the SUMT conputer code (Mylander, et al . , 1971).
Subsequently, McCormick (1972) showed how the spe-
cial structure of this inventory model can be used
to facilitate the use of the SUhW code to solve
very large inventory problems. He also extended
the model to include constraints on storage volume
and the probability of depletion of critical items.

The model and example presented here are the

original ones due to Schrady and Choe. The penalty
function technique described in the preceding sec-
tion was used to solve the example and calculate
the partial derivatives of various quantities of
interest, with respect to each parameter involved
in defining the model. (The analysis can be applied
to the extended model without difficulty.)

Detailed development of the model is beyond the

scope of this paper. The interested reader is re-
ferred to the Schrady-Choe and IlcCormick papers.
Here, we give a summary treatment of the various
conditions and relationships upon which the model
is based. Vie then tabulate the results obtained
in solving the resulting nonlinear programming prob-
lem and applying the sensitivity analysis method-
ology. A number of observations and interpreta-
tions are offered to illustrate the many uses to
vdiich the sensitivity information might be applied.

It is assumed that the amount of each item in
inventory is always known, that all demand which
occurs v\4ien the on-hand stock is zero is back-
ordered, and that the demand which occurs during
the time between the placement of an order and its
receipt by the stock point (i.e., the "lead time
demand") is normally distributed with known mean

u. and variance a? .

1 1

For the ith item, let

= item unit cost (in dollars)

,

A .
= mean demand per unit time (in units)

,

265

= reorder point,

= reorder quantity,

(J)
(x) = the Normal (0,1) density function,

<I>(z) = /2<(>(x)dx = the Normal (0,1) ccxplementary
c lative dj.stribution function.

In addition, let K^^ be the investment limit

in' dollars, Y.^ the number of orders per unit of

time that constitutes reorder workload limit, and
N the total number of items in the inventory.

It can be shown that the expected time-weighted
shortage of item i at any point in time is given by

^i'Qi'^i^ =1; t^i^^i^ - ei(Qi+r.)]

vSiere

6.(r.) =|[a2+ (r.-u.)^]

(r.-u.| a. fr.-p.i

The expected on-hand inventory of item i is given
by + Q^/2 - + B^(Q^,r^) and the expected

number of orders placed per unit time for item i
is X./Q. .

1 1

Using the above expressions and assunptions,
Schrady and Choe (1971) indicate that meaningful
ajproxiirations of the given quantities are ob-
tained even v*ien the second term is dropped frcm
the expression for the expected shortages, and
v*ien the last term is dropped from the expression
for expected on-hand inventory. The given assunp-
tions and siiiplifications then lead readily to the
following nonlinear programming problem (vdiich
Schrady and Choe (1971) proved convex)

,

minimize Z(Q,r)
Q,r

N
Z

i=l
3. (r.)/Q.
1 11

subject to

N
g^(Q,r) = - c^(r^-K3^/2-vi^) > 0 ,

N (SO

g2(Q,r) = - ^^/^^ > 0 •

with r^ unrestricted in sign, ^ 0 ,

N , Q= (Q^
Q^)T

,

^^,T
^

and g^ and g^ representing the investment and

workload constraints, respectively.

The pr(±)lem data for the Schrady-Choe three-
item exanple and the initial starting point for the
SU^'^^ program are shewn in Table 1. As indicated in
the table, the lead-time demands and standard devia-
tions, the item unit costs and nean demands, and the
investment and workload limits are all treated as
parameters in conducting the sensitivity analysis.

Table 2 gives the conputer solution and Table-

the final estimate of the first partial derivativ
of the optimal value function Z* with respect tf

the problem parameters. Relative to the criteria
used in the conputer program, the Table 3 results;
indicate that the optimal value function is sensi-

tive to paraneters K_ and
^2 ' 1 ' 2 ' 2 ' 3

c^ . Many inferences are possible. For example,;

the fact that the solution is particularly sensi-
tive to the values of the standard deviations of

'

the lead time demand of items 2 and 3 might indi-
cate that, since these parameters were obtained bi

sampling, additional sanpling of these lead time
demands may very well be warranted to reduce the
associated standard deviations.

Table 3 also suggests that the optimal solutiil

value is very sensitive to all of the item costs.,!

If the structure of Problem (SC) is examined, thii

result may at first appear contradictory since th

c^ appear only in the investment constraint and

the optimal value function, according to Table 3,

is apparently not very sensitive to the investmen
limit K]_ . The problem is one of precise inter-
pretation. The partial derivatives measure rate
change. But inspection of the investment constra
g-|^(Q,r) at (0*,r*) reveals that the change in

item cost c^ by any amount Ac^ has the same
||

effect on the constraint as a change in the inves

ment limit K, of -(r* + Q*/2 - u.)Ac. . Since
1 11 11

the quantity in parentheses may be verified frcm
Tables 1 and 2 to be much greater than 1 for al

i , it follows that the effect of changing any c

by any increment 6 will be much greater on the
constraint (and hence, on the optimal value Z*

since the constraint is binding) than the effect
changing by the same amount 6 . This inpli

for each i and, ir

fact, it can be shown here that 3Z*/9c.

that |3Z*/3c^| > |3Z*/3Kj^

= -(r| + Q|/2 - u^)3Z*/3K-|^ / so that the relatior

ships indicated are indeed precisely verified.

The above observations might also suggest the

sane care must be taken in interpreting the resu]

Changes in the parameter associated with the larc

est (in absolute value) partial derivative will
give the greatest local change in the optimal vaJ

of the objective function, compared to a change c

the same magnitude in any other parameter taken i

individually. This follows because either the
objective function and/or some of the constrainti

(as above) are nost significantly affected by thj

parameter change at the current solution . Generr

rules have not been given for selection of optinv

changes in the parameters, i.e., for determining
the optimal magnitude and combination of such
changes. It is well beyond the scope of this paj,

to pursue this "nacro-analysis" determination,
though it should be noted that the greatest locaJ]

rate of decrease in the optimal value function i)

along the direction of the negative of the gradif

of this function in parameter space (i.e., along

the vector conposed of the negative of the conpo-,

nents of the partial derivatives with respect to

the various parameters) . A user would nonethelei

have to determine the feasibility of this direct'

of change and, if feasible, the optimal nove aloi

I

266

Table 1

INVENTORY PROBLEM DATA

ITEM i
^UAN 1 -L i X

1 2 3

p
1

1

100 200 300

A
a . 100 100 200

R 1

1 10 20
i

M 1,000 1,500 2,000

E
i

T
^1 $8,000

E

R 15 re-orders/unit tine

S

V ol 600 270 300

A
R 0

r

.

200 260 400
1

(MEAN OF LEAD-TIME DEMAND)

(S.D. OF LEAD-TIME DEflAND)

(ITEM UNIT COST - DOLLARS)

(MEAN DEMANDAJNIT TIME)

(INVESTMENT LIMIT)

(RE-ORDER WORKLOAD LBIIT)

(AfDUNT ORDERED)

(RE-ORDER LEVEL)

Table 2

SOLUTION AND LAGRANGE MULTIPLIERS

Table 3

OPTIMAL VPJUE FUNCTION DERIVATIVES

QUANTITY
ITEM i

1 2 3

V

A

*
533 246 285

R
*

r

.

1
253 277 437

L
*

.0552

M *

"2 .6230

V
A
L

*
Z 12.987

U
E

PARTIALS
ITEM i

1 2 3

-.0000 -.0003 -.0008

3Z*/3o-
' 1

.0119 .0897^ .1729^

2.1713^ 1.0345^ 1.4452^

3Z*/3A

.

1
.0012 .0025 .0022

-.0052

-.6230^

^Deemed "significant" by criterion,
|a^Z*|/Z* > .001 for a unit change in the

given parameter, where A^Z* is the esti-

mated first order change in Z* . This cri-
terion was selected arbitrarily for illustra-
tive purposes. Criteria appropriate to the
particular application can be selected by a
user.

267

this vector, taking into account other factors such

as the relative "cost-effectiveness" of any sched-

ule of changes in any irodel parameter.

Referring back to Table 2, we note that the

Lagrange multiplier u* is much greater than u*

Recalling the "sensitivity" interpretation of

Lagrange multipliers, ^ich holds under the pre-

sent conditions, it follcws that u* = -3Z*/3K-|^

and u* = -azVSK^ . This conclusion is consis-

tent with the result obtained in Table 3, and it

means that the workload constraint g2 is by far

the more effective in detemnining the minimum

number of expected time-weighted shortages at the

current value of the paraiteters, e.g., a small

increase in K2 will have a greater effect on
reducing Z* than a small increase in .

Nonetheless, a user must again simultaneously con-

sider the corrparative costs involved in making
finite changes, in conjunction with their ex-

pected effects, to arrive at an optimal narginal

inprovement based on this first order infornation.

The sensitivity information is valuable, but re-

quires some care in exploiting.

Table 4 gives the estimates of the first deri-
vatives of the optimal reorder quantities Qi and

reorder points r^ with respect to each of tht
problem parameters. This is extreraely detailed in-
formation which gives an indication of how the com-
ponents of the solution vector itself '"dll change
as the various parameters change. In particular,
this information can be used to obtain a first ord-
er estimate of the solution vector of a problem in-
volving different parameter \^lues, having obtained
a solution for a given set of parameters.

The partial derivatives of the Lagrange multi-
pliers with respect to the parameters are given in
j^le' 5."-Again, ~tires'e~can"be"used to obtain first
order estimates of the Lagrange multipliers of a

problem with different parameter values. In par-
ticular, the relative effecte of the constraints
on th.e optimal value of problans involving differ-
ent parameter values can be estimated. Further-
more, it can be shown that the partial derivatives
of the multipliers with respect to and

yield the second partial derivatives of the op-
timal value function witli respect to the param-
eters and K2 , under the present condi-
tions. Thus, the kind of information given in
Table 5 can be used to provide a second order
estiiTBte of the optimal value function 7^ For
different values of these parameters.

To illustrate and test the application of the
type of information provided here, the first par-
tial derivatives with respect to c-^ of the opti-

mal value function Z* , the solution conponents
and r^ , and the Lagrange multipliers u^

and U2 , were used to give a first order

(Taylor's Series) estimate of the corresponding
solution values associated with the problem where
the given value of c-^ was increased by one dol-

lar. These estimates were coirpared with the re-
spective values of the solution obtained by actu-
ally solving the perturbed problem. The results
are sumnarized in Table 6. Though the perturba-

tion is large (the parameter being increased by
100% of its current value) , the estimates are seei

to be extremely accurate with the exception of thi

estimated reorder quantity . Many uses could

be made of the estimated solution; e.g., should i-.

be desirable to solve the perturbed problem accur-

ately, it would be ccmputationally extrenely advai

tageous to use the estimated solution as a startii

point

.

The conplete exploitation of this sensitivity'
analysis information now available will depend
largely on user interest and ingenuity.

Table 4

SOLUTION POINT SENSITIVITY

PARTIALS
ITEM i

1 0z

30 /3K - 47.3187 - 18.7610 - 14.906!

3r^/3K2 5.2265 6.1961 9.967.

3Q^/3Cj_ -208.8688 15.3140 14.375:

3r^/3c^ - 31.7918 - 10.3425 - 20.002:

3Qj_/3a2 .8469 .2271 . 108:

3r^/3a2 .1273 1.0337 _ .491

3Q^/3C2 8.1908 - 4.9719 3.852

3r./3a_
1 2

- 2.6783 - 7.2676 - 7.108

30^/3 - 1.2374 .4033 .584

3r^/3o2 .2611 .3839 .044

30^/30^ .1670 .4442 .425

3r./3c_
1 3

- 2.3072 - 3.1702 - 12.152

Table ,5

L.n. SENSITIVITY

OP.Tir-lAL L.M. DERIVATIVES

PARnAI£
COSISTPAINT i

1: INVESTMENT 2 : TORKLOAD

3u.*/3K„
1 2

-.0002 -.1382
1

3u.*/3c,
1 1

.0006 .1635

3u^*/3cr2 .0000 .0006 i

1

3u^*/3C2 .0002 .0489 1

3u. V3a-,
1 3

.0000 .0020
J

3u^*/3C2 .0003 .0323 1

268

Table 6

FIRST ORDER ESTItlATES FOR A UNIT
INCREASE OF PARAT-ETER C]^

QUANTITY

F(e-^)

ESTDIATE
A/^fTTTATACiuALr 6 AtSo .

ERROR

Z*(e"^) 15.159 14.996 1.08

324 412 21.36

) 221 229 3.49

261 257 1.56

267 268 .37

n 1
F^)

^ ' 297 . 67

All 420 .71

1 Inu^(e) .0058 .0057 1.75

U2(e) .7865 .7671 1.94

F{e°) + (£-'--eO)Tv F(eO
e

)

F(e°) + (1) 3F(e°)/3c^

Fiacco, Anthony V. (1973) . Sensitivity analysis for

nonlinear prograinming using penalty methods.
Technical Paper Serial T-275. Institute for

Management Science and Engineering, The George
Washington University, Washington, D.C.

, and McCormick, Garth P. (1968) . Nonlinear
Programming: Sequential Unconstrained Minimiza-
tion Techniques . New York: Wiley.

McCormick, Garth P. (1972) . Computational aspects
of nonlinear programming solutions to large scale
inventory problems. Technical Memorandum Serial
ITl-63488. Program in Logistics, The George
Washington University, Washington, D.C.

Mylander, VJ. Charles, Holmes, Raymond L. and
McCormick, Garth P. (1971). A gmde to SUMT-
Version 4 : The computer program implementing the
sequential unconstrained minimization technique
for nonlinear programming. RAC-P-63, Research
Analysis Corporation, McLean, Virginia.

Robinson, S. M. (1974) . Perturbed Kuhn-Tucker
points and rates of convergence for a class of
nonlinear programming algorithms . tethematical
Programming . 7:1-16.

Schrady, D. A. and Choe, U. C. (1971) . Models for
multi-item continuous review inventory policies
subject to constraints. Naval Research Logistics
Quarterly . 18:541-563.

REFERENCES

iotacost, Robert L. (1976) . Computational exper-
ience with optimal value function and Lagrange
multiplier sensitivity in NLP. Technical Paper
Serial T-335. Program in Logistics, The George
Washington University, Washington, D.C.

, and Fiacco, Anthony V. (1974) . Conpu-
tational experience in sensitivity analysis for

nonlinear programming. Mathematical Program-
ming . 6:301-326.

, and (1975) . Second-order para-
metric sensitivity analysis in NLP and estijnates

by penalty function methods. Technical Paper
^ Serial T-324. Institute for Management Science
and Engineering, The George Washington Univer-
sity, Washington, D.C.

, and (1976) . NLP sensitivity for
R. H.S. perturbations: A brief survey and re-
cent second-order extensions. Technical Paper
Serial T-334. Institute for Management Science

;
and Engineering, The George Washington Univer-

«;
sity, Washington, D.C.

, and f-fylander, W. Charles (1973). A guide
to a SUITT-Version 4 conputer subroutine for im-
pleitenting sensitivity analysis in nonlinear
programming. Technical Paper Serial T-287.

Program in Logistics, The George Washington
University, VJashington, D.C.

269

1.

The Generalized Inverse in Nonlinear Programming —
Equivalence of the Kuhn-Tucker, Rosen and

Generalized .Simplex Algorithm Necessary Conditions*

L. Duane Pyle
University of Houston

tat

ira

Introduction

The eauivalence of the Kuhn-Tucker
and the Rosen Gradient Projection condi-
tions for optimality was established by
Manaasarian [4] / who considered the
following nonlinear programming problem
formulation:

Maximize f(x)

(1.1)

where H(x) =

and (x)

,

h^ (x)

m

> e, xeE

, h (x) and f (x) are
m

concave, dif ferentiable

.

(9 IS a vector of zeros.)

Except for minor changes in
notation, the follov/ing, alternative,
nonlinear programming problem formu-
lation is discussed by Luenberger [3]

Minimize f (x)

where

(1.2)

H{x) =

h^(x)

h^(x)

G(x) =

5s+l(^)

5s+t^^)

> e, xeE

and h^(x), ... , (x)
, gg+i (^)" • • ' ^g+t'

and f{x) are dif ferentiable

.

If X is a point satisfying the
constraints

(1.3) H(x) = G(x) >

where

(1.4)

g^ (x) = 0 for j £

g . (x) > 0 for j E

J

3 ^

and J-[^J2 ^ {s+l' s+t}

then the constraints h^(x). , h^(x) ,

:or

and gj (x) for jeJ-^, are said to be activ

at X ; the constraints g. (x) for jeJ, ar

said to be inactive at x. A point, x,

satisfying (1.3) is said to be a regular
point for the constraints (1.3) if the ^,

gradients of the constraints active at x
are linearly independent.

The Kuhn-Tucker Conditions [2] are
satisfied at the point x for the nonline
programming problem (1.2) if there exist

vectors w'"*"^ and w'^' such that

(1.5)
Vf(x) + [Vh^(x)

+ [Vg^^^(x)

, Vh^(x)] w

vg3^^(x)] .

(1)

,(2).

where (w*^', G(x)) = 0, w^^^ < 6 and

Vv (x)

3v
(x)

3xi

3v
3x

u ^
(x)

Theorem 1.1;

Luenberger [3] proves the following
(necessary condition)

:

Let X be a relative minimu
point for the problem (1.2
and suppose ^ is a regular
point for the constraints i

(1.3), then the Kuhn-Tucke.
conditions (1.5) are satis
fied at x.

270

1

Let

6C7(X) = [Vh fx), ... Vh^(x), Vg.

... , Vg . (x)] be the n by (s+p)

p
iiatrix whose columns consist of the
radients tothe constraints which are
ctive at x; that is, Jj = ijj, j2'---'jpJ-

'he Rosen Gradient Projec tion Conditions
10], [11] are satisfied at the ooint x for
he nonlinear programming problem (1.2) if

[I - a (X) a(x)] Vf (X) =

1.7) and

[{al"(x))^ vf{x)]j > 0 for all j e ,

where cC is the generalized inverse of

a [4]

.

2 . Equivalence of the Kuhn-Tuc]<:er Condi -

tions and the Rosen Gradient Projec-

tion Conditions

Suppose (1.7) holds at some point x

which is regular for the constraints (1.3).

Then

(2.01) [I - a'^(x) a(x)] Vf(i) =

[I - 6^ (x) (C(!"(x)
)T] Vf (x) = 6

implies

(2.02) Vf(i) + ix) [- (Ct (x)'^Vf (x)] = e

(2.03)

Define w (1) (2

)

w as follows

,(2)

= -(a '

where w'"^' has s elements and w'^' has

p elements. Then from

The expressions analogous to (1.7)
ormulated by Rosen, Mangasarian, and
ruenberger may be obtained by making use
f the relation

1.8) fa.^(x)T= mx) {x)]~^ au)
s, for example, in

1.9) I - ct{x)aj.k) = I -(a^(K) (dCx))'^

= I -of (x) [a(x)a (X)]"^a(x)

.

Relation (1.8) provided the basis for
he computational approach originally pro-
osed by Rosen [10]^, who, gave a procedure
or "updating" [^X(x) (x)]

~1
. Alternatives

proposed by Gill and Murray [1] and Pvle
' 7] , [8] , 19] , employ an orthonormal
oasis for the null space of (X in obtaining
I representation for I - (X^C^. Motivation
:or the developments given in [9] was
srovided by the results of numerical
ixperiments, involving randomly generated
-inear programming problems, interpreted
.n the context of the geometry of the
simplex algorithm. This interpretation
las led to the extension and refinement
>f the results given in [7] and [8 1 as
•eported in [9] .

In this paper two results are pre-
ented. The first, provided for complete-
ess, is an application of Mangasa rian '

s

pproach, demonstrating the equivalence
f the Kuhn-Tuclcer and the Rosen Gradient
rejection Conditions as formulated for
'he problem (1.2). The second result
stablishes the equivalence of the
osen Gradient Projection Conditions
1.7) and certain conditions which result
rom a natural extension of a generaliza-
ion of the simplex algorithm [9] to the
onlinear programming problem.

(2.04)
[(a;:(x)

)'^- Vf (x)] . > 0 for all jeJi
- (2)

it follows that w ' < e. Now define

(2.05) w (2)

,(2)

(2)

where w^"^' has t elements. (Note: G(x)

in (1.2) is composed of t functions)

w'^' < e implies w'^' < 6, and from (2.02)

and ('2*. 03) and the form^of w(2) it follows
that

(2.06) Vf (x) + a^(x)

(1)

(2)

Vf (x) + [Cf (x) ,?F(x)]

w

,(i)-r

(2)

where (x) is a matrix of the gradients

Vg
.
(x) for jeJ2' corresponding to inactive

constraints at x. (2.06), together with

(2. 07) (w*^^ , G(x)

)

(2)
where w <

G(x)) = 0

I, is (1.5)

Now, suppose (1.5) holds at some

point X which is regular for the con-

straints (1.3). For simplicity, we
adopt the notation

(2.08)
1

= s + 1, jp = s + p

where Jj = (jif ••• t ip-^-

Letting w^"""^ and w*^^ denote the vectors
which satisfy (1.5), the relations

and(2-09) ^(2) ^ g(^) ,

(W'2) ^ Q(x)) = 0,

taken together, imply that

271

(2.10) ;(2)
"s+p+1

thus

,(2)

,(2)

(2)

where w
From (1.5)

and w has p elements.

(2. 11) vf (x) + [vhj (x) Vhg(x)] w-^

- (2)
+ [Vq^^^{x)...vg^^p(x)]w^

or

(2.12) Vf (x) + CL (x)

(1)

(2)

Since x is a regular point for the
raints (1.3), CI (x) has full columnconstraints

rank, thus

'2-13) (a^(x))+ = [a(x)a^(x)]"ia(x) =

((X+(x))T
therefore

,

^'•^'^ (a"(x))^ .fih +

or, since w^^^ <

w

,(1)

(2)

(2.15) [(a+(x))^ Vf(x)]j > 0 for all jeJi.

Solving (2.14) for
-

(2

)

and

substituting in (2.12), obtain

Vf (x) - Q^ix) idih)'^ Vf (i)

(2.16)
, „ .

= [I - a (x)a.(x)] Vf (x) = e.

(2.15) and (2.16) are the Rosen Gradient
Projection Conditions (1.7), formulated
for the nonlinear programming problem (1.2).

3 . Equivalence of the Rosen Gradient
Projection Conditions and the Gener -

alized Simplex Algorithm Conditions

Consider the following nonlinear
programming problem formulation:

where

H(x)

(3.01)

G(x)

Minimize f (x)

hi (x)

h^(x)

V(x)

X

V(x) =

V ^ (x)
s+r

xzE

and hj (x) , ... , h^ (x) , v (x) , ... ,

V , (x) and f (x) are dif ferentiable

.

s+r
(Note that any problem of the form (1.2)
may be reformulated in the form (3.01).)

It is understood that V(x), if not
empty, consists of all the "coef f iciented"
inequality constraints; that is, v^ (x) ^ x^

for (j = 1, 2, ... , n).

Suppose X is a regular point for
(3.01) and, for notational simplicity,
that the active constraints, Vj (x) from

the set V (x) = V, (X)

(x)
consist of the

constraints v^(x) for (i = + 1 , . . . , m) ,

and that the active constraints from the
set I X = X ^ 6 are the constraints

(u*^^, x) = 0 for (j = m+k+1, ... , n) ,

where (k = 0, 1, ... , (n - m)) , and I is
the n by n identity matrix composed of

r (1) (2) (n) ,

unit vectors iu , u , . . . , u }

.

(Note: The special case k = n - m, j =

n+1, n corresponds to the situation where
X j > 0 for j = 1, 2, ... , n.)

Define

(3.02) A^(x) = [Vh,{x)...vh (x)Vv.^, (x) . . .
" S ' s+1

^^m ^ ^ n by m matrix whose columns con-

sist of the qradients to the "coef f icient-
ed" constraints which are active at Xj ,

(3.03) c (x) = Vf (x).

(3.04) b(x) [A(x)]x,

and then denote the columns of A(x) as
follows

:

P^(x)](3.05) A(x) = [Pi (x) .

Consider the following linear program-
ming problem approximation of (3.01) at x:

Minimize (x, c(x))

(3.06) where
[A(x)]x = b(x)

X > e

.

The developments given in [9] for the
linear programming problem may be applied
to (3.06):

In summary, letting

(3.07) B(x) = [P, (x) . .

.

] , X a regu-.. P„(x)
m y^

lar point for (3.01) implies B(x) is non-
singular. Forming

272

(3.08) [B(x)]' A(x) = [I P^^-^M . P^i^)]

(n+ilobtain an orthonormal basis, {l^ (x) }

for (i = 1, 2, ... , k) , for the subspace
in E^^ which is spanned by the linearly
independent coluinns of the following
matrix

:

(3.09) F(x) =
R(x)
I

0

where R(x) = - [P
, ^ (x) . . .P (x)] is m by

m+1 m+K

k, I is k by k and 0 is [n- (m+k)] by k.

The Rosen Gradient Projection Condi-
tions (1.7), formulated for problem (3.01)
in accordance with the notational conven-
tions assumed above, involve the matrices

(3.10) a(x) =

where Xj'^ =
[

a(x)

. u
(m+k+1)

and 1-0. {x)a(x)

(n) ,
* * « c o

Now, Cl(x) F (x) = O^by construction
and the k columns of (x) form a basis for
the null space of Qix) , thus

k (m+i) (m+l)
(3.11) I-Ct(x)ft(x) = V n (i) n (X)

1+1
The developments given in [9] are thus seen
to provide an alternative method for ob-
taining the orthogonal projection matrix

[I - a"^(x) (Xix)] .

The equivalence of the Rosen Gradient
Projection Condition,

[
(-O" (x)) ^Vf (x)] . > 0

and the analogous construction obtained
using the generalization of the simplex
algorithm given in [9] , follows from
theorem 3.1.

Theorem 3.1; Let

• (3.12) = (a (x)i3.(x)c(x) ,

B-l(

wiiere

and

j = 1, 2,

k = 1, 2,

m

(n

(3.13) Cj= (Ct (x)a(x)c (x) ,

m+l)

-P .

61
.

where j = m + k, ... , n

k=l, 2, ... , (n-m)
and the "j"th element in the vector

-P
j

1 i

is unity.

Then

k
(3.14) c . = [ict (X))'^ c (x)

for j = 1 , 2 , ... , m
k=:l, 2, ... , (n-m + 1)

and
k

(3.15) Cj = [(a^(x))^ c(x)]
^j^^^

for j = m + k,

k = 1, 2,

, n

, (n-m)

Proof: Upon substituting ^"^(x) { (ji (x)

for Cl+ (x)(X{x) in (3.12) and (3.13)
respectively

,

obtain

(3.16) c.= iO^ [x) (Ot (x))'^c (x) ,

B ^ (x)u
^

"a -'(x)u'
= ((^(x)) c(x),a(^)

= (i.Otix))^cU) , fu*^'])
=

[(.a (x))^ c(x)]

j

where j = 1 , 2 , ... , m

k=l, 2, ... , (n-m-l) ,

which is (3.14); and

{3.17)Cj = (a'^(x) (0t(x))'^c(x)

= ((a^(i))^c(x)
, a (X)

-P .

D

= (iCt (x))'^ c (x) , u

= [(Ol{x))'^ c(x)] .

(j)

j-k+1

where j = m + k, ... , n

k = 1 , 2 , ... , (n-m) ,

which is (3.15).

273

Remarks

:

and

(i) The vectors

_ /^

-Pj (x) -B

61 .

:

1

62 .

:

1

both involve B (x) , and this permits com-

values by a RevisedDutation of the —
c

Simplex Algorithm approach, as described
in^ [9]. Also, see [5] where the matrix
F(x) is used directly in implementing the
method of reduced gradients.

(ii) In [9] the vectors {n } for
(i=l, ... , k) were obtained sequentially
by an application of the Gram-Schmidt
orthogonalization procedure. From (3.12)
and (3.13), it follows that the individual

vectors, n ' , are not required in realiz-
inq the Rosen Conditions, thus any other
-nethod (e.g. [1]) for generating the
orthogonal projection havinq a range equal
to the column space of F (x) could be
utilized

.

(iii) Note that in (3.12) and (3.16), u^^'
denotes an. m by 1 unit vector, whereas in
(3.17) u -' denotes an n by 1 unit' vector.

[8] Pyle, L.D., A Simplex Algorithm-
Gradient Projection Method for Non-

linear Programming , CSD TR 55,
Purdue University, Dept. of Comp. Sc.

,

(1971) .

[9] Pyle, L.D., The Generalized Inverse in
Linear Programming - A Generalization
of the Simplex Algorithm , Proceedings
IX International Symposium on Mathema-
tical Programming, North Holland
(to appear)

.

[10] Rosen, J.B., The Gradient Projection
Method in Nonlinear Programming, Part
I, Linear Constraints , J. SIAM, Vol. 8

(1960) .

[11] Rosen, J.B., The Gradient Projection
Method in Nonlinear Programming ,

Part II, Nonlinear Constraints ,

J. SIAM, Vol. 9 (1961)

.

*This research supported by
National Science Foundation Grant
DCR74-17282

4 . Bibliography

[1] Gill, P.E., and W. Murray, eds. Numeri-
cal Methods for Constrained Optirniza-

tion. Academic Press (1974)

.

[2] Kuhn, H.W., and Tucker, A.W. , Non-
linear Programming , Proceedings of the
Second Berkeley Symposium on Mathema-
tical Statistics and Probability,
University of Calif. Press (1951)'.-

[3] Luenberger, D.G. , Introduction to
Linear and Nonlinear Programming ,

Addison-Wesley (1973).

[4] Mangasarian, O.L., Equivalence in Non-
linear Programming , Naval Research
Logistics Quarterly, Vol. 10, #4
(Dec. 1963).

[5] Murtagh, B.A., and M.A. Saunders,
Nonlinear Programming for Large,
Sparse Systems , Tech. Rpt. SOL 75-15,
Systems Optimization Laboratory,
Stanford University (August 1976)

.

[6] Penrose, R. , A Generalized Inverse for
Matrices , Proc. Cambridge Philos. Soc,
Vol. 51 (1955).

[7] Pyle, L.D., A Simplex Algorithm-
Gradient Projection Method for Non-
linear Programming (Abstract) ACM
Proceedings National Conference,
Chicago (1971).

274

1

TEACHING MATHEMATICAL PROGRAMMING
TO THE CONSUMER

Marshdll L. Fisher
Decision Sciences Department

The Wharton School
University of Pennsylvania

Most courses on mathmatical
programming are taught by producers
(i.e., researchers who are develooinq
mathematical programming technology) to
potential consumers of that technology.
The pedagogical approach that is most
natural for a producer may not be at all
natural for a potential consumer, a' fact
that explains, in part, why many
potential consumers fail to become
actual consumers. This paper ' is
concerned with the particular needs of
the consumer

.

I will provide a number of specific
suggestions for course content and
design. These suggestions are based
primarily on my experiences teaching a
fundamental course on mathematical
methods for decision making offered by
the Decision Sciences Department of the
Wharton School. This course, which
devotes 10 weeks to linear and integer
programming, is taken by about 200 of
the 600 students that enter the M.B.A.
program each year. The backgrounds of
the students vary widely. This year my
two sections had a total of 70 students
that included 12 math majors, 30
engineering and science majors, 18
management and economics majors and 10
majors in various non-technical areas
like English, Anthoropology , Philosophy
and Language. Most of these students'do
not currently plan to become
specialists in Mathematical Programming.
Many have not yet decided on a major,
but of those who have 31 plan to
specialize in Finance.

Those who preach mathematical
programming should also practice its
tenets. Certainly the viewpoint of
constrained optimization provides a
useful conceptual framework for the
problem addressed by this
paper—designing a course 'on
mathematical programming for a specified
purpose. I will use this framework
informally in developing my suggestions.
I will take as an objective 'that the

course should provide maximum benefit to
tne future careers of the students.
Benefits can range from changing the way
the students think about their work to
motivating and enabling' them to
formulate and solve mathematical
programming models of problems forced in
their careers. Constraints are imposed
on the activities we can perform to
optimize this objective by the limited
teaching time available, by the students
diverse and in some cases, limited
mathematical backgrounds, and by their
long term career plans that frequently
do not place primary importance on
technical expertise in mathematical
programming

.

I will now list seven
r ecommentations for 'the design of a
course that "solves" the "optimization
problem" I have just outlined. All
suggestions are admittedly subjective,
but I believe they follow logically from
the framework I have niven.

1. Methodolog ical topics should be
selected to maximize the ratio of theTF
short r un benefits to the ir cost

.

By 'short run benefits' I mean the
ability to operationally solve real
problems and by 'cost' I mean the
intellectual prerequisites and time
requirements to understand the topic.
This criteria leads to the selection of

topics like linear programming,
seperable programming, heuristics and
branch and bound methods for integer
programming models, and the special
algorithm for transportation problems.
It requires the exclusion of many
fascinating topics in nonlinear and
integer programming that (a) would
require too much time to teach or (b)

have too great a mathematical
prerequisite or (c) lie on the frontier
of research and thus have not 'yet
demonstrated their practical usefulness
or (d) have all of the above drawbacks.
I would list as borderline cases
Lagrangian relaxation and an informal

275

treatment of the analysis of heuristics
and algorithms for combinatorial
optimization problems.

Alqor ithms shoald be taaght
that conveys their logic" batway

techn ical i t le s

:

in a

avoid s

One good method for doing this is

to simply demonstrate the algorithm on a

small examole derived from a real
application. The students usually have
an intuition about the example that can
be used to explain the logic of the
algorithm. This excercise can be
followed with a verbal statement of the
algorithm for the general case.

A variation on this approach is to
present the students with an examole and
ask them to use their common sense to
develop a solution procedure.
Frequently the students will be able to
discover the essential features of an
algorithm themselves and at a minimum
this experience provides a good
perspective for understanding a more
formal presentation of the algorithm.
For example, when confronted with a

problem of shipping amounts of a product
from several supply points to several
dfcjmand points most students will auickly
devise a tableau format for recording
possible solutions and discover a

feasible solution using some varient of
the Northwest corner rule. With a

little coaching they will make improving
adjustments in this solution until an
optimal solution is obtained. It is
then only necessary to show them that
their adjustment procedure can be
systemized and to provide an optimal ity
test and proof.

3. Use
appl ication
mathematical

articles that
success stor ie

s

to
pr og r amm ing can be

r epor t

show how
used ;

The increased emphasis on the
publication of solid application work
has produced a wealth of articles that
are highly suitable "for classroom
discussion. Journals "like Inter faces
are ideal sources for articles of this
type. Recent examples of applications
articles in this journal include a

d iscussion" of inventory planning for a

mining company (Reddy[6]) and a

description of how to win an election
with linear programming (Southwick and
Z ionts [7]

) -an article that is sure to be
a hit in any year divisible by 4.

Hanagemen t Sc ience , Operations Research
and the Harvard
not to

Business Review are also
ar tidesbe overlooked for

suitable for this purpose. The paper by
Klingman, Randolph "and Fuller [4] is
highly recommended for a real-life
illustration of branch and bound methods
combined with transportation or network

flow models for a location analysis
problem. Geoffrion[2] gives " an
excellant management-oriented discussion
of integer programminq methods for
warehouse location.

4. Dse
skills.

case s to develop model ing

The ability to construct a model of
a complicated process is a skill best
acquired through practice. Case study
problems are an excellent way for
providing students with this practice if

the cases are appropriately selected.
The case should present a complicated,
messy, and apparently baffling decision
problem. At the same time, the problem
should have an underlying structure and
sufficient data should be included to
allow the student to discover and model
the structure and eventually arrive at a

satisfying resolution of the original
problem. The feeling of having "created
order out of apparent chaos that a

student experiences from analyzing such
a case is the single thing"most likely
to 'turn him on' to the use of
mathematical programming.

Errors "of two types should be
avoided in the selection of cases. Many
cases are too structured, really just
expanded formulation exercises. Others
that "have been designed for policy
discussion are too unstructured and
don't provide enough data for the
student to sink his teeth into. Good
sources for cases that strike a balance
between these extremes are books like
Berry and Whybark[l] and Von
Lanzenauer [8] . I have also had
considerable success with cases
developed from my own or another faculty
member's consulting experiences.

Students in the Wharton course
described earlier analyze cases in

teams. Each team is selected to have
some students with technical backgrounds
and some with non-technical backgrounds.
The results of each team analyses are
presented in a written report and an

oral report to the class. The Wharton
Communications Consultants, a service
group at Wharton, orovide expert
coaching and video taping equipment to

assist the teams in their oral
presentations

.

5. Prov ide computer codes so that case
analyses may be pur sued to completion

The computer codes should be easy
to use yet still solve reasonably large
problems. " Ideally they should be

available on an interactive computer.
We have had excellent success with the
package of programs described in Land
and Powell [5]. The package has an

276

simple input and output, provides
linear, integer, and parameter
programming capabilities and is provided
to the students interactively on a
DEC-10 computer.

6. Br ing in Outside ' Speaker s to
prov ide a feel for the 'real world .

'

Staff OR groups and ' consulting
organizations are frequently involved in
interesting applications of mathematical
programming and they are auite happy to
talk about them. Freauently these
organizations are also involved in
recruiting efforts on campus and view
speaking to classes as a desireable
supplement to these activities. They
can provide breadth, background
information, and a feel for the real
world that is unavailable from other
sources. Examples like that of one
company which routinely solves a 50,000
variable 10,000 constraint LP model of
its corporate activities have a dramatic
impact and provide additional evidence
that mathematical programming is not
only useful but used. Ideally,' the
particular speakers chosen should be
related to the applications articles and
cases used

.

7. " Emphasi ze the intuitions about
complex systems ' that mathemat ical
programming can r eveal

.

Complex systems " are usually
difficult to understand and an
unsystematic approach freauently leads
to intuitions that are 'incorrect.
Mathematical programming models and
algorithms can enhance ones intuition
about a conolex system if the 'model

solution is dissected 'a posteriori' to
determine why' a given answer was
obtained (see Geoffrion[3] for a
discussion and examples on this point).

There are at least two reasons why
a manager should develop good intuitions
about a system he manages. Firstly, if
he has the intuition to understand why a
particular model solution was obtained,
then he will 'have more faith in the
solution. Secondly, the actions
prescribed by the model solution may be
only a fraction of the required
decisions that relate to the system
being analyzed. Frequently, managers
must also make many related operating
decisions that were too numerous and
detailed to include explicitly in the
model. Moreover, even for decisions
which are included in the model, the
results must often be manually adjusted
to allow for intangible aspects of the
system that were not included. If
managers have used ' mathematical
programming methods to obtain a better
intuitive understanding of their system.

then they will do a better job of making
these additional decisions.

Students will appreciate this
phenomenon if they are lead to discover
the reasons for answers obtained in
cases and applications articles.
Appropriate examples are numerous. For
the transportation problem, the optimal
shadow prices can reveal the initially
surprising fact that shipping more
product will in some cases reduce
shipping costs. The linear programming
model described in Reddy[6] lead to the
discovery that customer orders should be
satisfied with relatively low grade
product even though this generated less
revenue per sale. ' This ' policy
completely' contradicted existing
folklore within the company, but was
found to be correct because of the
scarcity of high grade product.

My experience has ' been that
students are much more satisfied with
the idea that mathematical 'programming
methods can enhance their own intuition
and reasoning power than they are with a
viewpoint that portrays an algorithm
like the simplex method as a giant
wrench with which they can go around
tightening loose corporate nuts.

REFERENCES

1. W.L. Berry and D.C. Whybark,
Computer Augmented Cases in

Oper atTons and Log ist ics
Management , South-Wester

n

Publ ishing Co., 1972.

2. A.M. Geoffrion, ' "Better
Distribution Planning with
Computer Models," Harvard
Business Review, (July-August,
1576) .—

3. A.M. Geoffrion, "The Purpose of
Mathematical Programming is

Insight, Not Numbers," Working
Paper No. 249, Western
Management Science Institute,
UCLA, June, 1976.

4. D. Klingman, P.H. Randolph,
S.W. Fuller, "A Cotton inning
Problem," Oper at ions Research ,

ol.24. No . 4 , (July August,
1976) .

5. A. Land and S. Powell,
Fortran Codes for Mathematical
Progr amm ing , John Wiley and
Sons, 1973.

277

6. J.M. Reddy, "A ' Model to
Schedule Sales Optimdlly
Blended from Scarce Resources,"
Inter faces , Vol.6, No.l, Pt.2,
pp 97-107, (November 1975).

7. L. Southwick, Jr., and S.

Zionts, "Optimal Resource
Allocation in a Local Election
Campaign," Inter faces , Vol.6,
No.l, pp" 53-63 , (November
1975) .

8. C.H. von Lanzenauer, Cases in
Operations Research , Research
and Publ ication Division,
School of Business
Administration, The niversity
of Western Ontario, London,
Canada, 1975.

278

ON TEACHING LINEAR PROGRAMMING FUNDAIIENTALS

John M. Mulvey
Roy D. Shapiro

Harvard University
Graduate School of Business Administration

Abstract

This paper provides an overview of
the methods employed by the Harvard Busi-
ness School in teaching linear program-
ing. Specifically, we deal with the
pedagogical aspects of teaching linear
programming fundamentals to predominatly
nonmathematical MBA students. These stu-
dents will eventually become decision
makers in government and business, and
since many of their decisions will re-
quire the use of complex mathematical
models, it is crucial that these indivi-
duals thoroughly understand the funda-
mentals of the application of quantita-
tive tools. The cornerstones of our
pedagogy are presented: 1) the use of a
flexible interactive linear programming
system, 2) the active participation of
faculty and students in class discussion,
3) the simulation of semi-realistic
situations (cases) in which linear pro-
gramming has been employed, and 4) a

carefully prepared set of course mater-
ials. With these elements, we believe
that learning is enhanced and that the
students are well prepared to success-
fully use linear programming techniques.
A detailed description of the program
is provided.

Although quantitative techniques
have become an integral com.ponent of
most MBA curricula, there have been few
published papers which deal with the
pedagogical aspects of quantitative
courses. To be sure, there have been
numerous articles on general management
science education, for example, the
special issue of Management Science on
Educational Issues [2], Wagner's talk
on the ABC's of OR [6], and several
papers [1, 3, 5] which have described
the content of various MS/OR and related
curricula. By and large, however, these
do not address the specific issues of
pedagogy

.

Pedagogy is particularly relevant
today for several reasons. First of all,
the field of management science, includ-
ing linear programming, is entering a

maturation phase in which fundamental con-
cepts are being refined and polished. Ap-
plications are assuming an increasingly
important role. In addition, many of tom-
orrow's decision makers who will assume
positions in which they are able to make
use of analytical tools do not possess
mathematical background or inclination.
Thus, we might lose important opportuni-
ties for applying management science if we
do not, or cannot, teach non-quantitative
decision makers how to properly utilize
these analytical tools. See Healy [4].
If management science is to continue grow-
ing, we must develop reliable methods for
communicating its ideas and tenets.

The lack of a suitable pedagogical
framework is most noticable when discuss-
ing the teaching of analytical tools to
students who do not possess mathematical
background. This article attempts to fill
this void by addressing the specifics of
teaching linear programming fundamentals
to non-quantitative MBA students. Herein,
we use the pedagogical device of inter-
active exposition; a technique which is
repeatedly employed by the authors in the
classroom. Although this report does not
strictly follow the "case" format, it does
describe the way in which linear program-
ming is taught at the authors' institution,
i.e.. Harvard Business School (HBS)

.

The primary issue which is addressed
in this article is: how can linear pro-
gramming be taught so that it will be an
effective planning tool which will be 1)

understood and 2) used? The authors be-
lieve that an interactive teaching method
promotes substantially more usable and
longer lasting learning than the tradi-
tional lecture method, especially among
students who will become tomorrow's gene-
ral managers. Often, in a lecture-
oriented classroom, the norm requires that
the student be attentive and carefully
transcribe the instructor's words from
blackboard to notebook. In-class decision
making is rarely required. This is reser-
ved for take-home problem sets and
(usually only after hours of "cramming")
exams. Often the student forgets much of

279

the content of the course shortly after

the exam is over. In our experience,
this happens less frequently if the stu-
dent

- learns by analyzing actual or
near-replicas of business situa-
tions in which linear programming
has played a part,

- actively participates in class
discussions of the analysis, im-
plementation, and related mana-
gerial issues, and

- has easy access to an interactive,
on-line computer package used in
analyzing these situations.

Since the student is at all times person-
ally involved in the learning process,
his tendency is to integrate the concepts
discussed and thus to retain them.

The remainder of this article will
describe the linear programming segment
of the required quantitative methods
(Managerial Economics) course taught in

the first year of the MBA program at Har-
vard. Section 1 will give a short over-
view of the school's objectives, student
characteristics, and structure of the
first-year program. Section 2 will de-
tail the initial case used in this seg-
ment (the durable Sherman Motors case)
and the pedagogy involved in teaching the
day-long introduction to linear program-
ming. Section 3 will describe the next
four sessions in which the students are
gradually presented with more involved
and realistic situations. Since an im-
portant aspect of the learning experience
is the interactive linear prograruning
package that is employed, the capabili-
ties of this package will be described.
This report is largely descriptive in
nature so that the reader can fully
appreciate the unusual constraints which
arise at HBS and how the ensuing diffi-
culties are overcome.

1 . Overview: Philosophy and Structure

The Harvard Business School MBA pro-
gram gives men and women training for
line management positions. The intent is
to produce generalists, not specialists,
nor technical staff personnel, so that
neither mathematics nor theory is
stressed. For example, the simplex meth-
od per se is not taught. (Graphically,
the vertex-following concept is demon-
strated, but the details of the algorithm
or the theory are not discussed.) The
emphasis is instead on formulation of ap-
propriate models and the subsequent anal-
ysis of the economic and managerial
implications of the solution results.
The rationale for this is clear: our
belief is that general managers have no
need to know how to pivot, wheras, in
order to effectively use linear program-
ming, the interpretation of results is
essential. (In fact, we suggest that the

reader try to recall the last time at
which he needed to perform a pivot by
hand!

)

In the first year of the MBA program,
all students are enrolled in the same
courses. The approximately 800 incoming
students are divided into nine sections
each of which will remain together in the
same room for all their classes through-
out the first year. By the sixth week,
each section has started to develop the
tight-knit social fabric which so charac-
terizes the Harvard Business School first-
year section. This, even more than the
well-known case method, makes participa-
tory education possible. The student,
surrounded by peers whom, for the most
part, he trusts and respects, is willing
to go out on a limb, try new directions
and experiences. The class size, approx-
imately 85, insures that all points of
view will be represented and that most
important issues will emerge.

Students come from a wide range of
geographical areas with an even broader
variety of backgrounds and experiences.
This diversity also helps to keep class
discussion interesting. The majority of
the class enter with at least two years
of business experience. There is no math-
ematics prerequisite and, typically, pre-
vious training in mathematics ranges from
Ph.D's (few) to none-since-tenth-grade
(more frequent) . One might believe that
this situation might inevitably lead to
the poorly-trained few being lost or to
the highly-trained becoming bored, but
the attributes of the participatory
learning can prevent this. For example,
in the first or second week of the year,
one of the students with a higher degree
of technical expertise will inevitably
make a remark involving a complex or the-
oretical concept not understood by most.
He might then be asked to role-play: one
of the class's "poets" will be cast as
his "boss" and ask him to explain his com-
ment. Often he tries futilely. This
drives home the lesson that the ability
to explain one's technical methods to
those with less mathematical training is
as crucial in the business world as are
those methods themselves. As the year
progresses, the different learning roles
become more clear: the "poets" concen-
trate on content - new concepts and tech-
niques; the "engineers" refine and I

abstract and learn to communicate their
knowledge

.

The core quantitative methods course
consists of five segments taught over a
six-month period: decision analysis
(including the basics of probability)

,

forecasting (mainly multiple linear re-
gression) , simulation, competitive de-
cision making (elementary game-theoretic
concepts), and linear programming. The

280

next two sections will describe this
latter segment.

2 . Managerial Economics Day

The introductory sessions on linear
programming, euphemistically called Mana-
gerial Economics Day, take up an entire
day for the first-year MBA's, during
which interactive sessions are inter-
spersed with discussion sessions. Our
objectives are three-fold:

enough) and this allows the introduction
of the vertex-following concept.

1)

2)

3)

to introduce students to the
recognition of situations in
which linear programming might
be useful,

to indicate the basic structure
of a linear programming model,
and

to introduce students to the
interpretation of linear pro-
gramming solutions through an
interactive computer package.

The case used in this introductory
day is Sherman Motors*, an example adapt-
ed from Robert Dorfman's "Mathematical
or 'Linear' Programming: A Nonmathemati-
cal Approach," American Economic Review ,

December 1953. The example is a simple
resource allocation problem involving a
motor manufacturing firm with two truck
models, model 101 and 102, to be produced
using four kinds of capacity: metal
stamping, engine assembly, 101 assembly
and 102 assembly. Given the data in the
case, the linear programming model below
can be formulated.

maximize

subject to

metal stamping:

engine assembly

101-assembly

:

102-assembly

:

300 + 350 N2

N-j^ + 5/7 i 2500

+ 2 N2 < 3333

< 2250

N2 < 1500

N-j_, N2 > 0

where N^^ and N2 are , respectively, the

monthly production of 101 's and 102 's.

This simple model is depicted graphi-
cally in the case and students, with
no previous introduction, are assigned
the task of deciding what to do with it.

The example provides a good tran-
sition from situations involving uncer-
tanties but few complex constraints,
to those where the uncertainty is minor,
but the constraints are essential. The
simple formulation permits the easy dis-
cussion of basic concepts such as deci-
sion variables, objective function,
feasible set, and so on. Many students
analyze the graphical formulation by
suggesting some vertex comparing strategy
(in this example, enumeration is easy

At this po
cussion of the
ming and a more
the formulation
example, the st
the interactive
will be using a
for their first
brief descripti
needed here

.

int , after a general dis-
issues of linear program-
specific discussion on
of the Sherman Motors
udents are introduced to
computer package they

nd sent to the terminals
set of exercises. A

on of that program is

CLP*, conversational linear program-
ming, as it is called, operates by asking
a number of directed questions and allow-
ing the user to sequentially request a
series of options. It allows the user to
input a linear programming model, to edit
and file the specifications, and to re-
ceive output in several ways. The output
for the Sherman Motors example is given
in Exhibit I. Output section 1 gives the
optimal solution; section 2 the values of
the slack and surplus variables; section
3 the value of the dual variables or
shadow prices; section 4 the reduced
costs for non-basic variables, i.e., the
decrease in the objective which would
occur if the variable was introduced
into the basis at a unit level. Output
sections 5 and 6 give ranges on the ob-
jective function and right hand side
values for purposes of sensitivity anal-
ysis. Section 5 gives ranges on the
coefficients of the objective function
such that the optimal solution remains
unchanged as long as the coefficient
remains within that range. Similarly,
section 6 gives ranges on the right hand
side values within which the shadow
prices are constant.

The first set of computer exercises
is given in Exhibit II. Their purpose is
to introduce the students to the conver-
sational linear programming package - in-
put, edit, and optimize, and, more im-
portantly, to present, in an experiential
way, the concept of a shadow price. Thus,
in exercises 3 and 4 , the students are
asked to change the amount of the avail-
able engine capacity from 3333 to 3334,
then to 4333, then to 4433. The first
change causes an increase in the objec-
tive function equal to the shadow price
for that constraint, the second change
causes an increase of 1000 times the
shadow price, and the third change, which
takes the right hand side value outside
the range prescribed (see Exhibit I, out-
put section 6) and therefore requires a
basis change, causes an increase of less
than the 1100 times the shadow price

*This package was developed by Stephen
Bradley. For more information, see
"Using the Conversational Linear Program-
ming System," ICH #9-172-240

^Intercollegiate Clearing House #6-107-010

281

which the students expect. Most students
when examining the output, which has not
yet been interpreted for them , will

Exhibit I

Cl.V Ol'TPL'T FOR SHERV^V;; >':OTORS MODEL

TITLE! SriF.i^.'--; "(•'.' -'.i

Or-JVCTH-FF:

co>;iRi'.

CONSIRAIMTS:

STA/FIXG
E.-jni -OF

N 1 0 1

1 .';00

1 .000
.0000

N102

350.0

Ni oa

.71 ilO

2.000

RFLATinN CA}flCnY

LF
LE
LF
LF

PSOO.
3331.
2f>50.

1 ^00

.

I hOCEFP On rlFJ'^CT? F

•'AM>!l^c Cr -IIMIIIZF? fAX

CFTI-AL fnU'llON FOL'N'L.

Ol-'TFL'T OFTIO.vI? F

ALL ITF>:S MOT LlfTFE IN SFCTIOM? 1 - " HAVE THF UALl'F
ZEHO.
• rFCISION VAi'.lAHLFS

1. MOl 2037.51
2. N109 167.7*5

'2' £LAc;-<(+) A-;r.' simfn'st-) im comsthaints
3. +AS'P101 'I?.i90
U. A£>;B10S S52.255

• 3» SHAI/IW ICES FOl-- CONST rtAIN'TS

1. STA1F I.Mr: 19i.iOI
P. ESCIN)F 105. 5V9

• i« ;>FLI!CFr COSTS FOR FFCIFION VA?1APLVS

• r.A.-jr-FS 0.\' COFFFlrlFMTS OF CP.JJCTIVt CON'T.-'.I?

VAHIP.E>LF LnvFf-. BOl'NE Cl'rl'FMT 'jatj.'f ITF F:; POUNF
1. MlOl 17S.O0 300.00 iqO.PO

N lo: 2 I i . 30 3 50 ^00. 00

,if.^r.H ON VALUF5 OF v(I CHI -riA^J I - S ! C 5 CAtACITr
COMSTS.vT LOWE.- 30l:.\'r CLRnF.NT VALLr -..fFF.-. rOtWE

? 500 .0 2*- 3^^ •

3"33.0
1. STAMi-I^ir;

r'. fn'g:>jf

3. AS^PlOl
it. ASrL-10?

WlOi.O
?J50.3
2037 .5
A Z: 7 . 7 /J

22 50.

1 500

.

. 0
L'VrOI'NrEt
UNF'Ol ^l^Fr

Exhibit II

notice that the number listed under shadow
price for engine assembly capacity is the
same as the increase in the objective
function which they have just observed.

After the completion of this first
computer exercise, there is a return to
the classroom for a 45-minute class ses-
sion in which the instructor answers
questions and reinforces the shadow price
concept. The students then return to the
terminals for a second set of exercises
as shown in Exhibit III. It is more com-
plex than the first and requires reformu-
lation rather than simply revision of
coefficients. The first question intro-
duces a third product into the production
process. It is important to note that
this new truck is not produced in the re-
vised optimal solution. The students are
thus presented, again experientially
rather than directly, to the notions of
reduced cost and sensitivity on the
objective function coefficients. The
second question requires a complete refor-
mulation with the addition of two new
variables and a new constraint. It pro-
vides the framework for a concluding
discussion of the CLP output when the
students return for their third class
session. Exhibit IV gives a typical
schedule for this introductory linear pro-
gramming day.

The student's reactions to this
method are positive. Linear program-
ming is a topic which the MBA's at first

Exhibit III

SECO'D S"":' OF i'Xi'F.CISES

Note: For earh of these questions, start from
the basic assurpptions of the case. (Do
not carry over additional assunptions
from one n-jirJaered question to the next.)

1. Sherman Motors is considering introducino a
new economy truck, to be called >:odel 103.
The total netal sta.niping capacity would be
sufficient for 3, 000 Model "l03's -.ler month,
while the total engine assembly shop would
be enough for 2500 Model 103 's". The 103 's
could be assembled in the 101 assembly de-
partm.ent; each 103 would require only half
as much time as a 101. Each Model 103 wo^ild
give a contribution of 5225.

SHERIIAN MOTOa COJiPANY

For each of these questions,
the basic assumptions of the

Jtart ; rom
(Do

not carry over additional assumptions
from, one numbered question to the next.)

1. Find the best product mix for Sherman Motors
under the basic assumptions of the cise.

2. Find the best product nix if it is found
that the stamping department capacity if
3, 500 Model 102 's (as in t.he case) but only
2,000 Model lOl's.

3. Khat is the best product mix if engine as-
sembly capacity is raised to 3334? Khat is
an extra unit of engine assumbly capacity
worth?

4. Khat are 1,000 additional units of Model 101
equivalent engine assembly capacity worth?
What about 1,100 units?

a) Formulate the production decision with
the three trucks as a linear program-
ming problem and then solve the problem
with MBALP to verify that no Model 103 's
should be produced.

b) How much would it cost in terms of con-
tribution if, for some other reasons,
management insisted that at least one
Model 103 be made?

c) How high would the contribution on each
103 have to be before it became attrac-
tive to produce the new model?

The engine assembly line can be put on over-
time. Suppose that efficiencies don't change
and that 2000 units of overtime capacity are
available. If direct labor costs increase
by 50% on overtime and if the fixed overhead
on the line on overtime is $40,000, the var-
iable overhead remaining the same, would it
pay to go on overtime?

282

Exhibit IV

rYPICAL CLASS SCHEDULE FOR M.E. DAY

9 1 3- 10 30 First Class Session

10 45- 11 45 First Computer Session

11 4 5- 12 30 Second Cless Session

12 30- 2 00 Lunch and Preparation of
Exercise Set

2 00- 2 45 Second Computer Session

2 45- 3 30 Final Class Session

find difficult and this interactive ap-
proach gives them immediate feedback and
response. Rather than being thrown to
the computer with no class discussion un-
til, at earliest, the next day, they have
their problems cleared up immediately.
For the most part, they are willing to
give up the better part of a day for this
experience, and the increased level of
learning is noticable.

3 . Sessions Following M.E. Day

After Managerial Economics Day, a
sequence of four hour and twenty minute-
classes, spanning a two week period, are
conducted pn further aspects of linear
programming fundamentals. The primary
purpose of these classes are to reinforce
the concepts which were introduced during
Managerial Economics Day and to show how
linear programming can be implemented in
a variety of decision environments. The
pedagogical format is as follows. We
began the first of the four classes with
a set of exercises in which the students
are expected to successfully formulate
four smaller linear programs, run them
on CLP, and interpret the solution re-
sults. The students are then gradually
introduced to more difficult formula-
tions in the remaining three days. By
the final class, they have become famil-
iar with some of the basic issues involv-
ing model formulation and selection.
During these four sessions a number of
other issues arise, such as how to deal
with uncertainty and the mechanism for
pricing out the non-basic variables. The
highlights of these four class sessions
are described in the remainder of this
section.

The first session consists of simple
formulation exercises -- a machine shop
problem, a transportation network, an ad-
ditional marketing constraint on the Sher-
man Motors problem, and a simple bond
portfolio investment in which the shadow
prices are not particularly meaningful
because the constraints take the form of
ratios. A topic of note in the teaching
of these exercises is the manner in which
the student's participate in teaching as
well as learning. Since interaction is a

crucial aspect of the case method, the
instructor may start the discussion by
asking a non-quantitative student to show
how he or she solved the first exercise.
If there is little difficulty with this
aspect, another non-quantitative student
might be asked to qualitatively describe
the formulation. Eventually the conver-
sation gets around to discussion and de-
fining the various basic types of con-
straints that can occur in a linear
program

:

- product (quality mix)

,

- capactiy or resource limits, and
- supply-use constraints (flow).

If there had been a severe problem
with the initial formulation, the follow-
ing pedagogical device has proven useful.
The confused student is asked to concise-
ly and verbally describe any single
constraint while the instructor tran-
scribes the verbal description onto the
blackboard. At this point, the instructor
can either show how the sentence can be
easily parsed into an equation or ask for
volunteers to do likewise. In this manner
the poets are shown that almost anyone
can formulate mathematically a linear pro-
gram, provided a precise description of
each restriction is developed. We are
careful not to overwhelm the students
with mathematical sophistication at the
beginning, yet ensure that their logical
reasoning is sound and rigorous.

The next class session depicts a
simple capital investment decision prob-
lem, i.e., the Mitchell Enterprises case.*
Here the problem is to formulate a linear
programming model for investing in five
projects (A, B, C, D, E) over a four year
horizon with the objective of maximizing
the accumulated value of the portfolio.
An opportunity rate is not provided; how-
ever, a 6% short-term bank account is
available for any money which is not in-
vested in a given year. Exhibit V depicts
the cash flows per dollar invested for
each of these projects and years.

Exhibit V

CASH FLOW PER DOLLAR INVESTED

Project

:

A B C D E

Year 1975 -1.00 0 -1.00 -1.00 0

1976 + .30 -1.00 +1.10 0 0

1977 +1.00 + .30 0 0 -1 . 00

1978 0 +1.00 0 +1.75 +1.40

With this information, the students are
asked to formulate and evaluate a linear
programming model for this problem. In

*Intercollegiate Case Clearing House
#4-176-160

L
283

addition to the case, they are given in

advance a supplement containing the CLP
solution to this problem. In the class
discussion, the following important topics
are usually covered:

1) a review of model formulation,
2) a demonstration that the oppor-

tunity rates can be derived from
the optimal shadow prices, and

3) a proof that opportunity rates
are not necessarily constant for
each year.

In addition, a brief discussion of how to
deal with uncertainties via sensitivity
analysis takes place if time remains.
This case has been well received because
of its implications on traditional dis-
counting methods - a firm's hurdle rate
depends on the set of opportunities it
has available. In addition, it is not a

typical production scheduling situation —
which many synonymize with linear program-
ming models.

On the third day the Red Brand Can-
ners* case is used. This case involves
the production of canned tomatoes, tomato
juice, and tomato paste. Information
about fixed and variable costs, allocated
overhead expenses, marginal profit, and
so forth, is provided. The students are
again asked to formulate the linear pro-
gramming model and to defend their form-
ulation in class. This session is note-
worthy because the case forces students
to extract the relevant accounting fig-
ures and to use this information within
the model. It also vividly brings out
the limiting assumptions of linear pro-
gramming, i.e., constant returns to scale,
continuous variables, non-negativity and
so on. As far as pedagogy is concerned,
the class discussion can be constructed
to compare linear programming with "back
of the envelope-seat of the pants" ap-
proach. To accomplish this comparison,
there is an appealing, but incorrect,
formulation which can be proposed by the
instructor as the easiest way to solve
this scheduling problem. A "better" stu-
dent will counter by describing why the
intuitive approach is incorrect and
giving the correct formulation. Often,
other students are unprepared to chal-
lenge this alternative formulation and
the class anxiety rises until the logi-
cal fallacy is uncovered. The purpose
of this subterfuge is demonstrating to
the students that they must be prepared
to defend their formulation to their
superiors even though their superiors
may not understand mathematical models
or symbols. This important lesson is
difficult to accomplish outside the case
format.

Intercollegiate Case Clearing House
#4-174-102

.

In the final linear programming
class session, the Okanagan Lumber Com-
pany* case is presented. This case in-
volves the production of plywood paneling
from various types of lumber. The inter-
mediate steps in the plywood mill are
described in detail. The problem of
scheduling and allocating resources is
depicted as a linear program. Since the
model has approximately 50 constraints
and 75 variables, the tableau is provided
to the students. They are asked several
sensitivity analysis questions and there-
by develop an appreciation of the model.
By this time, the students see that they
can understand even a rather complex form-
ulation if given enough time to sift
through the details. Because of its com-
plexity, there are many ways to teach
this case. Perhaps the most important
lesson to be learned is that the modeling
process can uncover new avenues rather
than just showing how to travel old paths.
To demonstrate this idea, the instructor
can utilize the shadow prices in conjunc-
tion with prevailing market prices for
lumber to "invent" new product lines. In
essence the students learn how to price-
out non-basic variables - whenever a com-
bination of marginal profits minus
marginal costs is positive the product is
profitable and worth introducing, which
is equivalent to saying that the product's
reduced cost is positive and can thereby
enter the basis at a positive level. This
case concludes the linear programming seg-
ment of the Managerial Economics course.

As a final observation, we compared
the case approach with the usual lecture
method. One of the authors taught linear
programming to M.S. and Ph.D. students
from Harvard's Division of Engineering
and Applied Mathematics. This class fol-
lowed a more traditional lecture format
and the students generally had more exten-
sive mathematical training (linear alge-
bra, etc.) than MBA students. The same
case given to MBA's on their final exam
was given to these students as a part of
their final examination. It is interest-
ing to observe that the non-quantitative
MBA's examination results compare favor-
ably with the Ph.D. student's examination
results. The "poets" were especially
adept at putting the model in context with
respect to the total investment decision -

including how to deal with the underlying
uncertainties

.

4 . Conclusions

We have attempted to show in this
article how linear programming fundamen-
tals can be successfully taught to a
diverse audience of MBA students. A
parallel situation exists within an

*Intercollegiate Case Clearing House
#3-176-638.

284

executive management program at Harvard,
in which highly experience managers re-
turn to academia for a 13 week retraining
period. The linear programming aspects

i
of this program are almost identical to

! those described in Sections 2 and 3 of
this paper.

Although we feel that our peda-
gogical approach accomplished the goals
which have been set forth, several im-
portant questions remain. First, does
the successful application of sophisti-
cated mathematical models require an
appreciation by the decision maker of
the solution strategies in the model?
An airline pilot may not comprehend the
physical laws of aerodynamics, but he
can still fly. Nonetheless, a thorough
understanding of the airplane can be an
advantage to the pilot whenever something
goes wrong. Perhaps this is why auto-
mobile race drivers are intimately
familiar with the mecanical aspects of
their machines.

VJe suspect that the pertinent answer
to this question lies in the resolution
of the tradeoff between intention and
practicality. In other words, since
there is limited time for learning,
priorities must be established. The
chosen mix of applications and theory

I depends upon how one resolves these
issues

.

REFERENCES

1. Ashenhurst, R.L. (ed.), "A Report of
the ACM Curriculum Committee on
Computer Education for Manage-
ment , " Communications of the
ACM, 15^, 5, (May 1975) pp. 363-
398.

2. Churchman, C. West (ed.), "Educational
Issues in the Management Sciences
and Operations Research," Manage-
ment Science , 17 , 2, (October
1970) pp. B1-B53.

3. Dickson, G.W. and V.T. Dock, "Graduate
Professional Programs in Informal
tion Systems: A Survey," Inter-
faces , 6^, 1, (November 1975)
pp. 38-43.

4. Healy, D.F., "Education - the Critical
Link in Getting Managers to Use
Management Science," Interfaces ,

2, 3, (May 1972) .

5. "POM/ME Workshop," Intercollegiate
Case Clearinghouse, #9-676-135,
March 16-19, 1976.

6. Wagner, H.M. , "The ABC's of OR,"
Operations Research , 19 , 6

,

(October 1971), pp. 1259-1281.

As a second question, how do busi-
ness schools deal with field study, the
recent phenomenon which is occuring in
many law schools? Here teams of students
address real-world problems by going out
into government or business. Because
of the size of the MBA program at the
Harvard Business School, it would be
difficult to implement such a program;
however, this topic will need to be
further explored.

Thirdly, will the dramatic improv-
ments in mini-computers, telecommunica-
tions, and self-paced learning techniques
have a significant impact on how linear
programming is taught? One of our
associates has developed a cassette-based
system* for decision analysis, and simi-
lar ideas could be easily exploited in
linear programming. Several business
schools are already engaged in develop-
ing self-paced instructional materials.

*This system was developed by Howard
Raiffa. For more information, see
Analysis for Decision-Making , Encyclopedia
Britannica, 1974.

285

"Experiments with Computer Aided Self-Paced

Instruction for Mathematical Programming Education"

A. Ravindran
School of Industrial Engineering
Purdue University, West Lafayette

Indiana U7907

Arthur Sinensky

New York, New York 10000

Thomas Ho
Department of Computer Science
Purdue University, West Lafayette

Indiana U7907

ABSTRACT

In this paper the authors discuss their expe-
riences in converting a lecture-oriented mathemat-
ical programming course to the Self-Paced Instruc-
tional (PSi) format. This is an elective course
for students from all the departments (Engineering,
Science, and IVfenagement) . We will discuss the dif-
ferent strategies, including the development of
conversational computer programs, which were em-
ployed to implement the PSI concept in this course
so that its educational objectives are fully met.

We will also discuss our experiences with the PSI
system, its pros and cons, and the students' re-
sponse to self-paced learning.

Introduction

Undergraduate engineering curricula have
become much more flexible during the past half-
dozen or so years. Students are able to obtain
a measure of specialization in one or two areas
within a specified engineering discipline; for
example, in the School of Industrial Engineering
at Purdue the undergraduate students can special-
ize in Operations Research, Systems Engineering,
Human Factors, Management, and lyfenufacturing

Processes. I^bst of this flexibility has been
obtained by increasing the number of elective
courses allowed in the curriculum without in-
creasing the credit hours required for gradua-
tion.

The author has been teaching for the past sev-
en years a course on tfethematical Programming for
undergraduate and graduate students. This is an
elective course for all industrial engineering
students. In addition to students from other
branches of engineering, the course attracts stu-
dents from industrial management, agricultural
economics, mathematics, computer science, and
statistics. Because of this, the composition of
the class and the interests of the students vary
widely. The course is offered three times a year
and attracts 150-200 students.

The basic objective of this course is to in-

troduce the students to mathematical modeling (in

particular linear programming models) for solving
real-world problems. The major portion of the
course deals with solution techniques for these
models. From past experience in teaching this
course, it has been observed that the non-engineer-
ing students prefer to see more emphasis on linear
programming theory and computational methods. In

contrast, the engineering and business students
want more emphasis on case studies describing nu-

merous applications of linear programming. They
even express varied interests in the linear pro-
grariiiuitig toyics to be discussed in class. For in-

stance, the mathematics students want the inclusion

of advanced topics like game theory, and decomposi-

tion methods. The computer science students like

to see the computer implementation of linear pro- .

gramming algorithms. The civil engineers show
more interest in topics like network analysis,
transportation problems, and critical path methods.

This poses enormous problems in structuring and
teaching this course. In previous years, a middle-
of-the-road approach was taken, so that it would
hopefully satisfy most of the students' interests.

Use of Personalized Self-Paced Format ^

Traditionally all students enrolled in a spe-

cific course progress through the material defined
by the syllabus at a given rate. Concepts pre-

sented in a textbook are supplemented with regu-

larly scheduled lectures by the course instructor,
homework problems are turned in at the proper time,

lab experiments are performed during scheduled 1

hours, and hour tests are taken in class size 1

groups when the instructor schedules them. For-
tunately this is not a rut in which the innovative
teacher must remain. Through the years we have
seen the growth in use of concepts of indiviual-
ized, self-paced instruction and open laboratories
(see References [1], [2], [3], and [k]). The
American Society for Engineering Education has been

concerned with effective college teaching for a

286

number of years and usually devotes the March issue

of Engineering Education each year to articles con-

cerned with innovative methods of teaching in

engineering curricula. A recent survey by Moodie

[5] reports various innovative teaching methods

used in industrial engineering courses across the

country. However, we often find that the major dif-

ference between the self-paced version of a course

and its lecture counterpart is merely the self-

pacing; there is still a strict list of topics to

be covered. Variation within the listed course

content is only offered to the student through the

vehicle of writing a term paper on a special topic

of his interest, not included in the syllabus.

The author of this paper felt the need to

expand the amount of flexibility offered to a stu-

dent enrolled in the mathematical programming
course beyond that which is described in the pre-

ceding paragraphs. Because of the diversified
interests found among the students, it was felt

that a new Personalized Self-Paced Instructional

(PSi) system could best serve the students' needs.

The new PSI system developed by the primary author

[7] combines the traditional lectures, self-paced

and mastery learning to provide maximum flexibili-

ty. To obtain any degree of course topic flexi-

bility it is necessary to evaluate each course in

terms of its educational objectives. What is the

terminal behavior we desire of a student when he

completes this course? Then, in order to make
additional, optional material available to students
enrolled in this course, it is necessary to deter-

mine the minimum, necessary requirements from the

original course content. In this way specific
topics are made required content of this course.

After this is completed, the additional (optional)

material is made available to the student in the

form of elective modules.

Thus, in the new system, the subject matter

;
for this course is divided into some basic units,

and some optional units. Class lectures are given

for the basic units only. The students elect the

optional units they want to learn according to

their interests, and prepare for them on their own

time (off class hours). For this reason, one-

third of the scheduled class hours are cancelled

1
to provide time for independent study.

BASIC UNITS : The basic units are so chosen that
' they provide the students a minimal amount of

knowledge in the fundamentals of linear program-
I ming. These include:

Unit 1 - Formulation of Linear Programs : To
'] construct linear programming models of real world

I;
problems

.

V Unit 2 - The Simplex Method : To learn how

r. systems of linear equations are solved; to under-

1; stand the basic mathematical principles underlying
1' the simplex algorithm; to use the tableau form of

the simplex method to solve small problems; and to

use the computer code for solving large linear
programs.

Unit 3 - Duality Theory and its Applications :

Symmetric and asymmetric duals, economic interpre-
tation, duality theorems and applications, shadow
prices, and the dual simplex method.

Unit k - Sensitivity Analysis : Variation of
cost coefficients

, changing KHS constants, changing
constraint matrix, adding new constraints and para-
metric programming with respect to cost and RHS
vectors

.

OPTIONAL UNITS : The optional units are selected to
provide diversification, and meet the varied and
special interests of the students. For instance,

during the summers of '7'+, '75, and 'jG, when the

PSI system was tried for this course, the following
optional units were offered to the students:

Unit 5 - Project Networks and PERT/CPM

Unit 6 - Transportation and Assignment Prob-

lems

Unit 7 - Variants of the Simplex Method

Unit 8 - Nonlinear Optimization

Unit 9 - Bounded Variable Linear Program

Unit 10 - Bimatrix Games

Unit 11 - Integer Programming

In addition, an individual project is always
made available as an optional unit. For each of

the units (basic and optional) the students are
provided with study guides. Russell [8] calls

these "modular materials" and provides an excel-
lent guide to the design, selection, utilization,
and evaluation of these study guides. Basically,
the study guides contain the objectives of the unit,

topical outline, reading materials, and sample prob-
lems. Examinations on various units are given
throughout the semester. Though excellence is re-
quired to pass a unit, the students can repeat the
unit examinations any number of times without
penalty. For a minimal passing grade in the course,
the students have to complete all the basic units.
Assignment of higher grades is a function of the
number of optional units they pass.

Computer Aids in the PSI System

From the initial experience in teaching this
course in PSI format, it was found that consider-
able time was spent with the students, by both the
professor and the teaching assistants, in helping
them learn the optional units for which there were
no formal lectures. This increased the manpower
needs of this course. It was felt that this could
be reduced to a great extent by using the computer
as a teaching aid for self-paced learning. The
computer-aided teaching can help them learn the
various linear programming techniques and their
applications on their own time (on/off class
hours), and at their own pace.

With the help of a teaching grant from the

Purdue Parents' Association, interactive computer
programs have been developed in such a way that
they will illustrate and test the students ' under-
standing of the subject matter. The students solve
problems illustrating various linear programming
algorithms in a conversational mode by answering
a series of questions. The programs are designed
so that the computer does all the time consuming

287

arithmetic calculations, while the "thinking" is

done by the students. The student essentially di-

rects the computer to calculate whatever quanti-

ties are needed for solving the problem by a given

algorithm. Based on these, he/she instructs the

computer to proceed step by step in the required
manner to arrive at the optimal solution to the

problem. We have provided in the program a veri-

fication routine so that all the steps and in-

structions given by the students are checked by
the computer for correctness.

The arithmetic calculations in linear pro-

gramming techniques generally consume more than

90fc of the total time in solving a problem. Since

this time is eliminated by the computer, the stu-

dents are able to use their study time more ef-

fectively. They can solve a variety of problems

to test their understanding. A series of illus-

trative problems emphasizing various concepts and
practical difficulties encountered in solving
linear programs are also available to the students.

Thus a student gets a better and a more complete
exposure to the subject matter itself. At present
the interactive programs are used to reinforce

methodology and to interpret results. The unit
examinations do not utilize these interactive
programs

.

Description of the Interactive Computer Program

Conversational Features

The program is completely conversational. All
input and output is handled via remote terminals.

The system always directs the user to the next step
of the simplex algorithm by asking a question re-

lated to some aspect of the algorithm. At all
times, the user's response is checked for correct-
ness. If the user should respond incorrectly to

one of the system's queries, an immediate feed-
back will be sent to the user with an explanation
of why the response is incorrect and how to go
about finding the correct answer.

Error Detection for Inappropriate Student Responses

Each student response to a system question is

checked for correctness. If the student's answer
is correct, the next question is asked by the sys-
tem. However, if the response is not correct,
feedback explaining the error is given at the ter-
minal. In some cases, the same question is re-
asked and the student is given further opportunity
to respond correctly. In other instances, the
system supplies the correct answer and then pro-
ceeds to the next question.

Error checking is accomplished by having the
system solve the given linear program step-by-step
as the user solves the same problem. For instance,
before asking the user to supply the index of the
pivot row in the simplex algorithm, the system will
have determined that information. Then the user
will be asked to supply the same. After the user
enters the response, it is a simple matter to
check the response against the result already de-
termined by the system. If the user's response is

correct, the next question is printed on the ter-
minal. If the response is incorrect, a message to
that effect is printed with a brief explanation of

why the response is not correct.

For instance, on line A (pg. 5) of the enclosed

example in the Appendix, the student is asked, "IS

THE PROBLEM IN STAITOARD FORM?". In this case, the

problem is not in standard form. But the student

has responded, "YES". Thus, the feedback given is

"INCORRECT RESPONSE - THE PROBLEM IS NOT IN STAN-

DARD FORM, NOT ALL OF THE CONSTRAINTS ARE EQUALI-

TIES". Then the next question is generated.

User Assistance

In addition to the brief explanations provid
ed when the user gives an incorrect response,

another form of explanatory assistance is offered
by the system. At several points, the student is

asked to name the next step of the algorithm. The
possible responses and their meanings are:

RELPROFIT - print the relative profit
vector

RATIOS

PIVOT

calculate ratios of right-
hand sides divided by the

corresponding entry of the
pivot column

perform a pivot operation

In any instance where one of the above responses i;

the correct one, the user may type "HELP" if he is

uncertain of which choice is the correct one. Af-

ter "HELP" is typed, a message indicating which is

the correct choice and why it is correct will be

provided. A possible extension would be to allow

the user to ask for "HELP" at any point during the

execution of the program. This should be included

in the next version of the system.

An example of the use of this command is given
in line B (pg. 5) of the accompanying example. The

question asked is, "WHAT IS THE NEXT STEP?". In

this case, the correct response would be "RELPROF-

IT", since the user must look at the relative prof-

it vector. The user has typed "HELP" and thus re-

ceives an appropriate explanation.

Implementation Description

Programming Language Requirements

The system was programmed in FORTRAN- IV on

the CDC 6500. A language with better character
string handling facilities would have been a bettei

choice. However, the constraining factor was the

interactive field length restriction on the Purdue

system. Interactive jobs are limited to a maximum

field length of 21K. The oDject code generated by
FORTRAN was able to fit into this space and still

allow some room for extensions. On an IBM system
with time-sharing, APL would be a better choice.

Algorithmic Description

At present three mathematical programming
algorithms have been programmed in the interactive

system. These include a primal simplex and a dual

simplex algorithm to solve linear programs, and a

branch and bound algorithm for solving integer

linear programming problems. Each program's logic

i

288

is based on the description of that algorithm given
in the text by Phillips, Ravindran, and Solberg

[6]. Students are asked to input problems of their
own choosing. This allows for great flexibility
in the instructional problems chosen rather than
limiting the selection to just a few. The instruc-
tor may also suggest some problems which demon-
strate the basics of the algorithm. After master-
ing the basics, the students can experiment with
problems of their own choosing.

Concluding Remarks

The PSI system is currently being well re-
ceived by the students. The authors have evalu-

ated the courses by several measures: comparison
with test results in other years, student election
of more advanced courses in these areas, student
acceptance as indicated on written course cri-
tiques, etc. In all cases, the self-paced method
of instruction was judged in general to be superior
for this particular course. (See Table 1 for stu-
dent comments.) This is not to say that the usual
problems of some students falling behind schedule
did not exist, because they did. Effort is ex-
pended during the semester to help student motiva-
tion. Also, the PSI system consumes more faculty
time initially in the planning of the units, and
preparation of study guides and tests.

Considerable time is still being spent on an
individual basis with some students in helping them
learn the optional units for which there are no

formal lectures. To offset this the author has ob-
tained another research grant to support the prep-
aration of video cassette tapes for the optional
units. The School of Industrial Engineering has

recently acquired a TV monitor and a cassette
playback unit. These video tapes can be played
on these units by the students at their own time.

We hope to have these tapes prepared by the end of
the year for students' use.

Acknowledgements

The support for developing the interactive
computer programs came from an innovative teach-
ing grant awarded to Professor Ravindran from
the Purdue Parents' Association. Preparation of
the video cassette tapes for TV viewing will be

supported by a faculty grant awarded to Professor
Ravindran for Instructional Development and In-
novation.

References

[1] Block, J. H. ,
Mastery Learning , Holt, Rine-

hart, and Winston,

[2] Dell, H. F. , Individualizing Instruction ,

Science Research Associates, Palo Alto, Cali-
fornia, 1972.

[3] Esbensen, T., Working with Individualized In-

struction ,
Fearon, Palo Alto, California,

Keller, F. S., "Good Bye Teacher Journal
of Applied Behavior Analysis , No- 1, Spring
1955^:

[5] Moodie, C. L. ,
"Report on a Survey of Innova-

tive Teaching Methods Used in Industrial En-

gineering Education", Research Memorandum
No. 73-8, School of Industrial Engineering,
Purdue University, West Lafayette, Indiana,

July 1973-

[6] Phillips, D. T., A. Ravindran, and J. Solberg,

Operations Research: Principles & Practice
,

John Wiley & Sons, New York, 1976.

[7] Ravindran, A. and C. L. Moodie, "Increased
Course Flexibility Through Self-Paced In-

struction", Proceedings of the Frontiers in

Education Conference (ASEE), Atlanta, Georgia,
October 1975, (pp- ^00-U03).

[8] Russell, J. D. , Modular Instruction , Burgess
Publishing Co., Minneapolis, Minnesota, 197^-

APPENDIX

The solution to the following linear program
by the interactive simplex algorithm is shown as

an illustration:

lyfeximize z = lOx^ + 6x2 + Ux^

Subject to
•'^i ^2 + Xj s 100

lOx^ + Uxg + 5x^ s 600

2x^ + 2x2 + 6x^ < 300

x^, Xg, X s 0

289

LINEAE PROGRAMMING SELF-PACED INSTRUCTION

ENTER THE NUMBER OF CONSTRAINTS FOLLOWED BY

A BLANK FOLLOWED BY THE NUMBER OF VARIABLES

: 3 5

ENTER THE LINEAR PROGRAM

IS THE OBJECTIVE FUNCTION TO BE MINIMIZED OR

MAXIMIZED?

: MAX

ENTER THE C VECTOR

: 10 6 1+

ENTER THE A MATRIX, ROWWISE

: 1 1 1

: 10 U 5

: 2 2 6

ENTER THE B VECTOR

: 100 600 300

ENTER THE CONSTRAINT TYPES:
< FOR LESS THAN OR EQUAL TO,

> FOR GREATER THAN OR EQUAL TO,

= FOR EQUALITY CONSTRAINTS

: < < <

(A) IS THE PROBLEM IN STANDARD FORM?

: YES

INCORRECT RESPONSE -

THE PROBLEM IS NOT IN STANDARD FORM

NOT ALL OF THE CONSTRAINTS ARE EQUALITIES

CHECK THE CONSTRAINTS TO SEE IF THERE ARE ANY
NEGATIVE RIGHT-HAND SIDES. ALL SUCH CON-
STRAINTS NEED TO BE MULTIPLIED BY -1.

WHICH CONSTRAINTS NEED TO BE MULTIPLIED BY
-1?

TYPE 0 (zero) if none

: 0

for EACH CONSTRAINT, TYPE A + 1, -1, OR 0

DEPENDING ON WHETHER A SLACK VARIABLE IS

NEEDED, A SURPLUS VARIABLE IS WEEDED, OR
NEITHER ONE IS NEEDED

: 1 1 1

THE SLACK AND SURPLUS VARIABLES HAVE BEEN
INSERTED

ARE ARTIFICIAL VARIABLES NEEDED?

: YES

INCORRECT RESPONSE -

NO ARTIFICIAL VARIABLES ARE NEEDED BECAUSE
THERE EXISTS AN INITIAL FEASIBLE BASIS

THE CURRENT TABLEAU IS:

COST 10 6 1+ 0 0 0

XI X2 X3 Xk X5 X6 B

BASIS
J.k 1.00 1.00 1.00 1.00 .00 .00100.00
X5 10.00 k.oo 5.00 .00 1.00 .00600.00

X6 2.00 2.00 6.00 .00 .00 1.0 300.00

WHAT ARE THE VALUES OF THE BASIC VARIABLES
IN THE ORDER IN WHICH THEY APPEAR IN THE
TABLEAU

: 100 600 300

WHAT IS C(B), THE VECTOR OF COST COEFFICIENTS
OF THE BASIC VARIABLES IN CORRESPONDING ORDER?

: 0 0 0

THE VALUE OF THE OBJECTIVE FUNCTION = .00

(B) what IS THE NEXT STEP?
CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

: HELP

THE NEXT STEP OF THE SIMPLEX ALGORITHM IS TO
LOOK AT THE RELATIVE PROFIT VECTOR AND
DETERMINE WHETHER THE CURRENT BASIC FEASIBLE
SOLUTION IS OPTIMAL. DETERMINE THE PIVOT
COLUMN AND HENCE THE VARIABLE WHICH ENTERS
THE BASIS BY CHOOSING THE VARIABLE WITH THE

LARGEST RELATIVE PROFIT COEFFICIENT. IN
ORDER TO SEE THE RELATIVE PROFIT VECTOR, TYPE
RELPROFIT.

WHAT IS THE NEXT STEP?
CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

: RELPROFIT

THE RELATIVE PROFIT VECTOR IS:

10.00 6.00 h.OO .00 .00 .00

IS THE TABLEAU OPTIMAL?

: YES

INCORRECT RESPONSE -

FOR A MAXIMIZATION PROBLEM, THE TABLEAU IS

OPTIMAL WHEN ALL THE RELATIVE PROFIT COEF-
FICIENTS ARE NON-POSITIVE

SELECT THE PIVOT COLUMN

: 1

WHAT IS THE NEXT STEP?
CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

290

THE NEXT STEP OF THE SIMPLEX ALGOEITHM
IS TO DETER^O:NE THE PIVOT ROW AMD HENCE
THE VARIABLE WHICH LEAVES THE BASIS USE THE

MINIMUM RATIO RULE TO DETERMINE THE BASIC
VARIABLE TO IE AVE THE BASIS. TO CALCULATE
RATIOS TYPE RATIOS

: RATIOS

FOR EACH ROW, TYPE A 1 IF A RATIO NEEDS TO

BE CALCULATED OTHERWISE TYPE A 0

: 0 0 0

THE RESPONSE FOR ROW 1 IS INCORRECT

THE RESPONSE FOR ROW 2 IS INCORRECT

THE RESPONSE FOR ROW 3 IS INCORRECT

THE CORRECT RESPONSE IS: 111
THE RATIOS ARE
ROW NO. RATIO

1 100.00
2 60.00

3 150.00

CAN A PIVOT OPERATION BE PERFORMED?

: NO

INCORRECT RESPONSE -

A PIVOT OPERATION CAN BE PERFORMED SINCE AT
LEAST ONE RATIO HAS BEEN CALCULATED

SELECT THE PIVOT ROW

: 3

INCORRECT RESPONSE -

THE ROW WITH THE SMALLEST RATIO IS THE PIVOT
ROW

SELECT THE PIVOT ROW

2

WHAT IS THE NEXT STEP?
CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

HELP

NOW THAT THE PIVOT ELEMENT HAS BEEN
DETERMINED, A PIVOT OPERATION CAN BE
PERFORMED. TYPE PIVOT TO PERFORM THE
PIVOT OPERATION

WHAT IS THE NEXT STEP?
CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

: PIVOT

THE CURRENT TABLEAU IS:

COST 10 6 k 0 0 0

XI X2 X3 xk X5 x6 B

BASIS
Xh .00 .60 .50 1.00 -.10 .00 ho 00

XI 1.00 .1+0 .50 .00 .10 .00 60 00

X6 .00 1.20 5.00 .00 -.20 1.00 180 00

WHAT ARE THE VALUES OF THE BASIC VARIABLES
IN THE ORDER IN WHICH THEY APPEAR IN THE
TABLEAU

:
i+0 60 180

WHAT IS C(B), THE VECTOR OF COST COEFFICIENTS
OF THE BASIC VARIABLES IN CORRESPONDING ORDER?

: 0 10 0

THE VALUE OF THE OBJECTIVE FUNCTION = 6OO.OO

WHAT IS THE NEXT STEP?
CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

: RELPROFIT

THE RELATIVE PROFIT VECTOR IS:

.00 2.00 -1.00 .00 -1.00 .00

IS THE TABLEAU OPTIMAL?

: NO

SELECT THE PIVOT COLUMN

: 2

WHAT IS THE NEXT STEP?

CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

: RATIOS

FOR EACH ROW, TYPE A 1 IF A R^.TIO NEEDS TO BE
CALCULATED OTHERWISE TYPE A 0

: 1 1 1

THE RATIOS ARE
ROW NO. RATIO

1 66.67
2 150.00

3 150. 00

CAN A PIVOT OPERATION BE PERFORMED?

: YES

SELECT THE PIVOT ROW

: 1

WHAT IS THE NEXT STEP?
CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

291

PIVOT

THE CURRENT TABLEAU IS:

COST 10 6 k 0 0

XI X2 X3 XU X5 X6 B

BASIS
X2 00 1.00 .88 1.67 -.17 .0 66.67
XI 1. 00 .00 .17 -67 .17 •0 33-33
X6 00 .00 I4.OO -2.00 -.00 1.0 100.00

WHAT ARE THE VALUES OF THE BASIC VARIABLES
IN THE ORDER IN WHICH THEY APPEAR IN THE
TABLEAU

: 66.67 33.53 100.00

WHAT IS C(B), THE VECTOR OF COST COEFFICIENTS
OF THE BASIC VARIABLES IN CORRESPONDING ORDER?

: 6 10 0

THE VALUE OF THE OBJECTIVE FUNCTION = 753 -53

WHAT IS THE NEXT STEP?
CHOOSE FROM PIVOT, RATIOS, OR RELPROFIT
IF YOU DONT KNOW, TYPE HELP

: RELPROFIT

THE RELATIVE PROFIT VECTOR IS:

.00 .00 -2.67 -5-55 --67 .00

IS THE TABLEAU OPTIMAL?

: YES

DO YOU WANT TO BEGIN A NEW PROBLEM?

: NO
+++LOG

TOB L02i+ ll,l+U.5l. 10/07/75.
ESTIMATED SESSION COST $.17
PLEASE TURN OFF TERMINAL. TNX.

292

Table 1. Results of Student Survey

Summer 197*+ Summer 1975 Summer I976

No. of Students Enrolled U9

No. of Students Responded 39

Reaction to the PSI System
Yes No Neither Yes No Neither

|
Yes No Neitl-

a. Favorable initial response (semester beginning) ~f:u 1, PS 0 CO n
y d.

b. Favorable final response (semester end) 18 J n D n±

c. Helped me to achieve desired goals z
J j- JJ 1 0 30 8 1

d. Able to plan my studies better "I V-L 1 5 0 ^9 9 1

e. Helped me to get a better grade a0 7 7 P7 10 2

f

.

Would have preferred traditional format 5 18 0 1 32 3 6 30 3

g- Learned more under PSI 10 7 6 2U 5 7 2U 11

h. Worked harder under PSI 8 13 2 18 15 3 lt+ 21 it

i. Worked less under PSI 12 9 2 11 21 i+ lU 21+ 1

293

IMPORTANCE OF MODELLING
FOR INTERPRETATION OF

LINEAR PROGRAMMING PROBLEMS

Leonard W. Swanson
Northwestern University

Abstract

The construction of the mathematical model
for a linear programming problem requires extreme

care in order that it be effective. If one uses

as few variables as possible, he may find that it

is efficient in computation time but ineffective
for sensitivity analysis. This paper uses a re-

latively uncomplicated example to show the way in

which proper modelling enables one to extract im-

portant analyses not obtainable through a simpler
model. The approach has been successfully used
in teaching linear programming, particularly for

explaining the concept of duality. The same
methods can be highly effective in managerial
applications

.

Introduction

It is often thought that one is being very
efficient if he solves a Linear Programming Prob-
lem by using the fewest possible number of vari-
ables. If one is interested only in the solution

and not in any kind of sensitivity analysis, this
may be true, but if one is interested in the
effect of a variation of the parameters of the
problem, many more details may be required to en-

hance the analysis and interpretation.

Scheduling Problem

In order to consider the benefits of effi-
cient modelling, consider the production schedul-
ing problem shown in Figure 1 (no claim is made
for the originality of the example).

A plant makes two products, A and B, which
are routed through four processing centers 1, 2,

3, and 4 as shown by the solid lines in the en-

closed diagram. If there is spare capacity in

center 3, it is possible to route product A throu

3 (dotted line) instead of going through 2 twice,

but this is more expensive.

Given the information in Table 1 and Table 2

how should production be scheduled so as to maxi-
mize profit? (By production schedule is meant

PRODUCTION SCHEDULING

A =^

Center 1

Center 2

Center 3

Center 4 I

I

!

A
-' »--

' (alternate)

_ J

Figure 1

294

the specification of the following three amounts;

(1) The daily amount of raw material used
for A, regular route,

(2) The daily amount of raw material used
for A, optional route,

(3) The daily amount of raw material used
for B.

Assume that sufficient storage capacity is avail-

able at no additional cost.)

Table 1

Inputs

,

gals.

Running
cost

per hr.

Center

1 300 90 150
2(lst pass) 450 95 200

A - 4 250 85 180
2(2nd pass) 400 80 220

_3 350 75 250

~1
500 90 300

B - 3 480 85 250
4 400 80 240

Table 2

Raw
Material Sales price Maximum daily

cost per finished sales

,

gal. of
Product per gal. gal. finished product

A 5 20 1700
B 6 18 1500

Centers 1 and 4 run up to 16 hours a day;
centers 2 and 3 run up to 12 hours a day. A final
restriction is furnished by shipping facilities,
which limit the daily output of A and B to a total
of 2500 gallons.

Consider first the formulation of the prob-
lem in a form in which as few variables as pos-
sible are used. Therefore

Let X]^ = the number of gallons of input of
A, which is to follow the regular
processing route

X2 = the number of gallons of input of

A, which is to follow the alter-
nate processing route

x^ = the number of gallons of input of
B, which has only one route.

Figure 2 is a representation of the problem
incorporating these variables and also the infor-
mation from Tables 1 and 2.

On each path through a particular center,
there are two numbers; the left hand number is the
number of gallons per hour that can be processed
and the right hand number is the cost per hour for
processing.

Mathematical Statement of the Problem

Find x^, X2, ^ 0

Such that

Center
capacities

5xj^ + 5x2 -^^3 = 24,000

13.74075x]^ + 7.2x2 = ^3,200

34.884x2 + 31.5x3 - 201,600

6.84xj^ + 6,84x2 3.825x3 g 32,000

''l .J3OO $150
.9x,

400 $220

Center 2

450 $200

1300 $150

Center 1

500 $300

.9x2 i4fiQ.

.5814x,

,855xi

r

1.1250 $180

.855x,

,9x.

I

Center 3

350 $250

,765x.

250 $180

Center 4

400 $240

.72675ki

7726751c-

I

1

I

I

.612x '

.5450625X.

I

I

I

I

J

(alternate)

Figure 2

295

Sales
Limits

.5814x^ + .5450625x2 i 1700

.612x3 ^ 1500

. r.5814x, + .5450625x„ + .612x- i 2500
Capacity |_ 1 2 J

and such that

4.7162875x^ + 3.866543x2 + 3.48825x2

is a maximum.

Optimal Solution

In this form of the problem, one can get the

optimum solution for carrying out the production

schedule. The solution reveals that

1. 2923.98 gallons follow the regular route
A but none follow the alternate route.

2. 1307.19 gallons follow route B.

3. The profit is $18,399.59.

4. The actual output of either A or B is not

revealed directly although it can be ob-

tained by additional simple computation.

5. Through the dual solutions one sees that
the sales restriction on A is a limita-
tion on profit and that Dock Capacity is

also a limitation on profit. The per

unit gains made by relaxing these con-
straints are given by the dual solutions.

6. Nothing in the solution is directly re-

vealed concerning the effect of chang-

ing either the rates of gallon through-
put for each of the centers nor the

hourly costs of processing in each of

the centers.

7. A study of the effect of changing the co-

efficients of the objective function is

not very revealing since the coefficients
in this function are a conglomeration of

a number of incomes and costs.

This form of the model seems to be relatively .

neat and one might even pride himself in the brev-
ity of the format thinking that restricting the
problem to three variables and seven constraints
is a minor triumph.

It would appear that a manager interested in

producing the most effective schedule would require
a sensitivity analysis which would study the effects

of changes in processing rates and processing costs
for each of the centers. Accordingly, in what fol-

lows I develop a model of the same problem which
will enable the manager to learn a vast amount more
about the operation and which would enable him to

do a better job of effective management.

Alternate Statement of the Problem

As shown in Figure 3, X]^ and xg are used to

represent the raw material inputs for A and B res-

pectively. These variables are modified by re-

covery rates and new definitions are made so that
variables x^ to y.-^2 designate various inputs and

outputs in the processing stream. From Figure
it can be seen that a solution for x-7 gives the

final output of A, regular; a solution for xg gives'

the final output of A, alternate; and a solution
for X]^2 gives the final output of B. Furthermore,
the definition of these variables serve as con-

straints which involve the recovery rates. The de-

finition of variables X]^3 through X20 serve as con-

straints which define the hourly processing rates
of the centers. The recovery and hourly processing
definitions and corresponding constraints are given

below.

13 300

(a$150/hr

-hrs

18 500
-hrj;

(3$300/hr,

16 400

(a$220/hr.

-hrs

,

X2

'14- 450
hrs

,

@$200/hr.

^9= 4^^^"^^

(a$250/hr.

I

t (3$250/hr.
I

1_ _ _ _ _ o

11,

15 250

(a$180/hr.

hrs

.

^20 = 455

(?$240/hr.

A (regular)

J

A (alternate)

Figure 3

296

iI

Recovery definitions:

^2
=

^2 .90x^

X3 = .95x2 X3 - .95x2

\ = .SSx^ -4
- .85x3

^7
= .8OX5 -7

- .8OX5

^8
= .75x,

D -8 .75x,
6

.90Xg
""lo

.90Xg

^11= .85x^0 ^1-

^12" x^2 - •80-11

Center
Processing times:

13
= Xj^/300

14
= X2/45O

15
= X3/25O

16
= x^/400

17
= Xg/350

18
= Xg/500

19
= -10/^80

20
= x^j^/400

When written
as constraints ;

When written
as constraints :

300x^2 = 0

450x, , = 0
14

Recovery
Definitions

^10

^11

- 250xj^j = 0

- 400xj^g = 0

- 350x^7 = 0

- 500x, 0=0
io

480xj^g = 0

400x^0 = 0

We add the constraint which shows the balance
for A regular and A alternate route as

-5 + -6

If we then add the seven constraints of our
smaller model in terms of the above variables
we have a model with twenty-four constraints
and twenty variables. The problem Is then
stated as follows:

Hourly
Processing
Rates

Balance

Center
Capacities

Sales
Constraints

Dock
Capac ity

,90x.

.95x„

^10

^11

.85x3 = 0

.8OX2 = 0

.75x, = 0

.90xg = 0

•85x,o = 0

^12
- .BOx

11

-1 - 300x^^3 = 0

-2 450x^^ = 0

X3 - 250x^2 = 0

-5 - 400Xt,
15

= 0

-6
= 0

-9 500x^g = 0

-10 ^80x^g = 0

-u - 4OOX2Q - 0

4 5c
^3 + "18

-14 -16

-17 ^ -19

-15 -20

-7 + -8

^12

X-, + X„ + X

= 0

^ 16

g 12

^ 12

i 16

^ 1700

^ 1500

2500
12=

Find to X2Q 5 0

such that

Such that

-5x-|^ + 20x7 + 20xg - 6xg + 18x^2 " ^^Oxj^j - 200x^^

- 180x, . - 220x, , - 250x, - 300x, _ - 250x, „ - 240x^„
Lj Id 1/ 18 iy zO

is a MAXIMUM.

297

Scheduling Parameters , 90x,

The actual parameters for this problem in either

form are:

The dual solution corresponding to this constraint
is

1. Sales Limits on A and B

2. Dock Capacity

3. Hourly Capacities for centers 1, 2,

3 , and 4

.

4. Cost of Raw Material Input A and B

5. Income from Sales of A and B

6. Center 1

Rate of processing (Gals/hour)

Cost of processing ($/hour)
J

Same as above for B

7. Center 2

Rate of processing (Gals/hour) I j^j. ^

Cost of processing ($/hour)

Same as above

Center 3

for A

1st pass

for A
2nd pass

+ 6.11111

This is interpreted to mean that if the constraint
were written

- .90x^ = b^

the instantaneous rate of change in profit is

6.11111 for a unit increase in b^^.

Since the recovery rate is the coefficient of

XI, we are really trying to do a sensitivity study
involving a non-linearity but good approximations
can be made. Since

= .9x^ + b^

it can be seen that increasing h-^ makes it pos-

sible to get the same output x^ with less input x-j^

i.e. an increase in recovery rate; b^ is measured

in gallons and the rate of increase in profit is

in dollars per gallon.

If is increased one gallon, it will result

in X]^ being reduced by b-^/ .9 or 1.1111 b^^, provid-

ing X2 and the recovery rate remain fixed. This

can be seen since

for B

for A

Rate of processing (Gals/hour)

I

Cost of processing ($/hour) J

Same as above for A alternate
route

9. Center 4

Rate of processing (Gals/hour)

Cost of processing ($/hour)
J

Same as above for B

Advantages of the Second Model

When using the short form of the problem, we

are able to make a sensitivity study for items 1,

2, and 3 only. In the larger model, we are able
to analyze all items on the list [1].

Sensitivity on Recovery Rates

In order to see the advantages of the Second
Model, consider the effect of changing the re-

covery rate for material A going through center
1. The recovery rate for this process is ini-
tially 90%. It is rather obvious that increas-
ing the recovery rate will improve the profit if

nothing else is changed, but what are the effects
quantitatively?

Consider the definition equation

x^ = .90x^

and its corresponding constraint

x^ = .9(x^ - A) + = .9Xj

,9x^ - .9a + b^ = .9Xj

Change in Xj^ = A = ""g = 1.111 b^^

Therefore the savings will be approximately

1.1111 A = 1.1111 (5 + = 1.111(5.5) = 6.1111

where the $5 is the per unit savings in raw mate-

rial input and 150/300 is per unit savings in pro-

cessing costs, which checks with the dual solution

In order to translate this to a change of 1%

in the recovery rate, a good approximation for the

effects, for small values at least, is given by

changing b^^ by an amount equal to 17„ of x^^, since

.91x,

leads to having

, 9xj^ +

.Olx,

Using the constraint

x^ = .9x^ + b^

and allowing h-y to change by an amount equal to

.Olx]^ is not equivalent to using the constraint

,91x.

298

To illustrate:

Our solution for our
{

~ 2924.0

problem yields = 2631.6

l-Jhether we use a change in h-^ or a change in re-

covery rate of 90°A, we produce 2631.6 as the out-

put of center 1. A reduction of 1% in input of

29.240 substituted for h-^ yields,

2631.6 - .9x^ - 29.240 = 0

or - 2891.51

processed at 907= recovery rate.

If we use the constraint

then

- .9lx^ = 0

=2891.87

a difference of processing of .36 gallons @$6.11
or approximately $2.19.

Thus if we use changes in at 1% of xi and

use the dual value for the constraint, the expected
improvement in profit is

(.01) (2924) (6.1111) = 178.69

The new profit would then be

18,339.59 + 178.69 = 18,518.28

A solution of the problem at 917o recovery rate
yields a profit of

$18,516.32

The error is small but importantly the changes in

profit are in the right direction and the manager-
ial implications of a change in recovery rate are
of the correct orders of magnitude.

In a similar fashion all other recovery rate

changes can be assessed by using the dual solu-
tions. It is only necessary to change the input
to any center by 17„, then multiply by its corres-
ponding dual value to get an estimate of the

effect of a change of 17„ in absolute value of any
recovery rate.

If one wished to find a more exact effect of

the change of recovery rate, it must be done by
finding the effect of changing the proper coeffi-
cient in a constraint. For the example we have
studied above this amounts to changing a coeffi-
cient for the variable x^, which is a basic vari-
able. The model presents the necessary informa-
tion for this study, but it is much more detailed.

Sensitivity on Processing Costs

In order to study the effects of processing
rates, we examine the dual solutions correspond-
ing to constraints 9 through 15. For example,

if the rate of processing for center 1 were in-

creased from 300 to 301 gallons per hour, the dual
solution indicates an improvement of 50c in profit.

For any of the above cases it is necessary to

study the ranging of the right hand side to make
sure that there are no problems associated with
degeneracy

.

Another part of the analysis would assess the
effects of changing processing costs for each of

the centers. This can be done directly by a study
of the ranging of the objective function for vari-
ables

Xj^2 through x
20

The effects of changes in raw material costs
are given by looking at variables

x^ and Xg

and the effects of changes in selling price are

given by looking at variables

x^, Xg and x^^^-

It should be evident that the more detailed
model provides much more managerial information.

Effects on the Computer

The smaller model resulted in three variables
and seven constraints and for the Computer Program
used [2] at Northwestern University's Computer
Center required .01 seconds of computing time.

The larger model resulted in 44 variables and 24

constraints and required .1940 seconds of comput-
ing time.

The program used had capabilities of sensi-
tivity analysis. When use was made of Ranging
both the Right Hand Side and the Coefficients of

the Objective Function the total computing times

were .652 seconds and 2.673 seconds respectively.

Memory requirements were obviously greater
for the larger model but were no threat to the

solution of the problem.

The increase in both storage requirements and

computing times were not insignificant but it is

clear they do not impose difficulties which can
not be overcome. Should the modelling of a prob-
lem along the lines illustrated in this paper lead

to excessive demands on either memory or computing
time, the problem can be partitioned so as to re-

lieve the excessive demands without diminishing
the advantages discussed in the paper, although
more than one computer run might have to be made.

In this example satisfactory reductions can
be made by eliminating the definitions and con-

straints in terms of the remaining variables.
This reduces the problem to one of 28 variables
and 16 constraints and allows one to make the sen-

sitivity analysis on the recovery parameters.

One can by similar means eliminate other por-

tions of the problem and thus concentrate on one

or two sections at a time.

299

The summary computer output for each of the

problems discussed in the paper are given in the

Append ix.

Cone lus ions

The basic conclusion Chat can be reached is

that substantial gains can be made in facility for

interpretation by proper modelling of the problem.
These gains are made at a cost of increased memory

requirements for the computer and increased comput-

ing time.

Although consideration has been given to es-

tablishing rules for the way in which the problem
should be modelled for such efficiency, no com-

plete set has yet been established. It remains
somewhat of an art or perhaps a great amount of

foresight. In the examples used, an increase in

both the number of variables and the number of con-
straints led to these efficiencies in interpreta-
tion but such is not always the case. There are

other cases where the gains "are made by reducing
both the number of variables and number of con-

straints .

Complete computer outputs are not included
because of the space required. These are available
however

.

Appendix

Small Problem

Summary of Results

Oppor-
Var
No

Var

Name
Row
No Status Activity Level

tunity
Cost

1
''l

B 2923 9766082

2 ^2 NB .5516015

3 ^3 B 1307 1895425

4 Slack 1 B 5458 5483316

5 Slack 2 B 3022 3684211

6 Slack 3 B 160423 5294118

7 Slack 4 B 7000 0000000

8 Slack 5 NB 2.4060028

9 Slack 6 B 700 0000000

10 Slack 7 NB 5.6997549

Maximum Value of the

Objective Function = 18339.591933

Large Problem

Var

No

Var
Name

Row
No Status

Activity
Level

Opportunity
Cost

1 ^1 B 2923.9766082

2 X2 B 2631.5789474

3 X3 B 2500.0000000

4 ^4 -- B 2125.0000000 --

5 ^5 B 2125.0000000

6 ^6 -- B 0.0000000 __

7 ^1 B 1700.0000000

8 ^8 -- B 0.0000000 --

9 Xg B 1307. 1895425 --

10 ^10 B 1176.4705882

11 ^11 B 1000.0000000

12 ^12 B 800.0000000

13 ^13 B 9.7465887

14 ^^14 B 5.8479532

15 ^15
-- B 10.0000000 --

16 ^16 B 5.3125000

17 ^1 7
NB 265.6492411

18 ^18 B 2.6143791

19 ^19 B 2.4509804 1

20 ^20 B 2.5000000 1

21 Artif 1 NB 6.1111111
'

22 Artif 2 NB 6.9005848 J

23 Artif 3 NB 8.9653939
"

24 Artif 4 NB 11.8942423

25 Artif 5 NB 11.8942423

26 Artif 6 NB -- 7.3333333
\

27 Artif 7 NB 9.2401961
'

28 Artif 8 NB 12.3002451
1

29 Artif 9 NB .5000000
1

30 Artif 10 NB — ,4444444
'

31 Artif 11 NB .7200000 .

32 Artif 12 NB .5500000

33 Artif 13 NB _ _ -.0447121
;

34 Artif 14 NB _ _ .6000000
'

35 Artif 15 NB -- .5208333

36 Artif 16 NB .6000000

3 7 Artif 17 NB

38

39

40

Slack

SI ack

Slack

18

19

20

B

B

B

3 . 6390322

.8395468

9.5490196
1

41 Slack 21 B 3.5000000

42 Slack 22 NB

43 Slack 23 B 700.0000000

44 Slack 24

Maximum Value of

NB

Objective Function =

5.6997549

18339.591933

300

References

1. Hadley, Linear ProRrainminR , Addison-Wesley

,

1962.

2. Cohen, Stein, Multi Purpose Optimization System ,

Vogelback Computing Center, Northwestern Uni-

versity, 1975.

301

INTERACTIVE COMPUTER CODES FOR MATHEMATICAL PROGRAMMING EDUCATICN

Rc±iert P. Davis and James W. Chrissis
Department of Industrial Engineering and Operations Research

Virginia Polytechnic Institute and State University
Blacksburg, Virginia

ABSTRACT

This paper describes the role of interactive
corputer programs in mathematical programming
education. Three different categories of inter-
active programs are described and appropriate
environments are suggested in uhich each should
yield the greatest utility in allowing a student
to enhance his ccnputational experience with, and
conceptual understanding of, an algorithm. An
exanple execution for a program representative of
each of these categories is given for illustrative
purposes

.

INTRODUCTION

There are essentially three problem solving
nethods enployed in gaining caiputational experi-
ence with mathematical prograimdng algorithms:

(1) Manual ccnputation.

(2) Execution of existing "canned" programs
(e.g., batch-oriented routines).

(3) Execution of interactive codes for
existing algorithms (e.g. , data input ->

decision input solution output)

.

Either manual corputation or execution of existing
batch-oriented routines is the method most fre-
quently anployed.

Manual corputation is useful in providing
^plication experience to small problems, but
even in such cases can be quite time consuming.
In addition, it should be noted that minor
mathanatical errors may occur yielding erroneous
results even though the cotputational methodol-
ogy is correct. For this reason manual ccnpu-
tation frequently degenerates to mere number
manipulation with an abandonment of all attenpts
at conceptual interpretation. At the other end
of the spectrum, the execution of batch-oriented
routines can result in little or no understanding
of the structure of an algorithm being enplcyed to
cbtain a solution. Ihe method favored by the
authors is one of developing and ijirplementing

interactive codes for existing algorithms. This
approach is, admittedly, an atteitpt at reaching a
catpromse between manual methods and batch-
oriented routines. Interactive corputing can be
a very effective medium for reinforcing the

learning process in mathematical programming
education. Further, its irrplementation can
significantly reduce the time required for the
student to gain ccirputational experience with
existing algorithms.

DISCUSSION

Interactive corputer algorithms can be
separated into three broad categories:

(1) Initial data entry-
(2) Interrrediate interaction (limited

decision inputs)

.

(3) Intimate interaction in the algorithmic
process

.

Interactive programs requiring only initial input
data can be quite useful in a problem solving
environment \4iere time is a factor and the student
is already familiar with the algorithm's operation.
The major utility fron such programs lies in their
accessibility and capacity to provide results v*iich

can be used for interpretation of model charact-
eristics and relevance. However, such algorithms
are not useful in reinforcing the solution ireth-

odology they eirploy. One exanple of such an
algorithm is an interactive routine for solving
linear programming problems. With this algorithm,
the student enters the necessary prcblem data
(effectiveness coefficients, irput-output matrix
and requirements vector) and the program returns a
solution. The solution can then be used to exa-
mine model relevance or can provide a beginning
for conducting postcptimality analysis. Exanple
1 illustrates an execution sequence for such an

algorithm (2)

.

Algorithms which eirploy limited interaction
during the solution process are typically those
which require the student to enter: values for
decisions variables, request or abort sensitivity
analyses, or indicate v*iether cptimality has been
achieved. As an illustration of such algorithms,
Exanple 2 shows an execution sequence for a
dynamic programming algorithm. This algorithm is

for serial systems with linear returns function
and linear state transitions in a single
variable at each stage. Again, such algorithms
do not fully reinforce solution irethodology, but
they can si:pport an awareness of an algorithm's
decision process as well as illustrate inherent
characteristics of the irrxiels to which they apply.

Finally, there are those programs which
require an intimate interaction by the student in

302

the algorithm's process. With such routines the

student must provide the decision information
necessary for the algorithm to progress. In this

way, the algorithm's structure is emphasized and

a more cotplete awareness of its operation is

required. Further, an opportunity for reinforcing
a conceptual understanding and interpretation
of the algorithm are provided. To illustrate
such programs, Exanple 3 shows an execution
sequence for an interactive linear programming
algorithm which not only requires that initial
problem data be given, but further that eadi
pivoting step in the interactive process be
defined, and cptimality and feasibility be identi-
fied.

With such interactive programs the major
burden of mathematical manipulation is absorbed
by the code. The student is required to make
key decisions throughout the algorithm and is

provided time to examine the consequences of these
decisions. It should be noted that the student
is given an opportunity to observe the advantages
of machine conputation in algorithmic operation;
and further, interactive codes are easily
structured to allow the student to observe, in
the code itself, the caiputational building blocks
viiich conprise the algorithm he enploys.

Interactive programs of this last category
can be further extended to provide error detect-
ion mechanisms. These error detections take one
of two forms. First, there are those which
indicate an incorrect decision but do not identify
what should have been the correct response. The
other not only indicates an error but also pro-
vides the correct response (for exanple, in an
interactive LP code, a check could be made on
whether the minimum non-negative theta value was
selected in identifying the pivot row) . It is the

opinion of the authors that error checking
mechanisms of this latter category are inappropriate
since they eliminate an inportant aspect of the
learning experience—that of identifying and
correcting erroneous decisions made in applying a
solution methodology. In fact, we question the
use of any form of error detection since they do
not permit the student to observe the consequences
of an erroneous decision (with the LP exarrple

suggested above, a non-positive element in the
solution basis)

.

This last point brings us to an important
question vdiich comes to the mind of the instructor
who seeks to implement interactive ccnputing in
a teaching/learning activity—"What is the
appropriate level (category) of interaction for
the activity at hand?". For this, we have no
absolute response. In general, we can state
that the appropriate category of interaction is
a function of the student's familiarity with an
algorithm and the purpose of applying the program.
If the student is in the process of learning
the structure of an algorithm, the last of these
categories is the most appropriate. If he is
familiar with the methodology and seeks a quick
solution to a particular model to examine its
relevance or desires to initialize a solution to
conduct sensitivity analysis, then the first
category should suffice. It remains for a com-
prehensive investigation to provide definitive
guidance to the instructor in assisting him to
identify an appropriate code for his specific
activity. What must be recognized is that there

exists more than one level of interaction to
which such programs can be brought and that an
appropriate level for one activity may not be
appropriate for another.

CONCLUSICN

Interactive ccttputer codes can be enployed
with utility to instruction in mathematical
progranming education. These codes can be
divided into three basic categories with each
representing a different level (or intimacy) of
interaction. The appropriate category for a
particular teaching/learning activity is not
definitively established but is postulated to
be a function of the student's background and
the purpose for v^ich the algorithm is being
employed. As the purpose for applying the
algorithm tends to be one of reinforcing the
student's coirprehension of a solution methodology
and c»ncsptual interpretation, the intimacy of
interaction manifested in the code should increase.

REFERENCES

1. Davis, R. P. and L. D. Chapman, "An

Interactive UBASIC Code for Rosen's
Graident Projection Method" , CoED Trans-
actions , Vol, VII, No. 6, (1975).

2. Gillett, Billy E. , Introduction to Operations
Research: A Carputer-Oriented Algorithmic
J^prcach , McGraw-Hill, New York, (1976).

3. Levien, R. E. (ed.) , The Energing Technology,
McGraw-Hill, New York, (1972)

,

4. Wilde, D. J. and C. S. Beightler,
Foundations of Optimization , Prentice-
Hall, Englewood Cliffs, New Jersey, (1967).

303

EXAMPLE 1

EXAMPLE FROM SECTION 3.8

THE ORIGINAL COEFFICIENTS OF THE CONSTRAINTS

CODE 0 ==> <0R= CONSTRAINT
COOE 1 ==> >0R= CONSTRAINT
CODE 2 '^ = > ' CONSTRAINT

I COOE CONSTANT All.t) Alt, 2) All,}) All, 4) All, 5) All, 6) All, 7) Alt.BI

I 0 30.00 2.00 "i.oo
2 0 3.00 2.00
3 I 3.00 1.00 I. 00

THE COEFFICIENTS IN THE ORIGINAL OBJECTIVE FUNCTION TO BE MINIMIZED ARE:

-6.00 -'V.OO

BASIC SOLUTION

XBl 11=
XBI 21=
XBl 3)=

5) =

61 =

30.00
2^^.00
3.00

CURRENT VALUE OF THE OBJECTIVE FUNCTION IS -0.30000000E*0<.

BASIC SOLUTION

XBl I I

XBl 2)
XBl 31= XI l»

XI «) =

XI 5) =

24.00
15.00
3.00

CURRENT VALUE OF THE OBJECTIVE FUNCTION IS 0.18000000E*02

BASIC SOLUTION 3

XBl 1) = XI 'Vl= l-V.OO

XBl 2)= XI 31= 5.00
XBl 3)= XI 11= 8.00

CURRENT VALUE OF THE OBJECTIVE FUNCTION IS O.'iSOOOOOOE OZ

THE LAST BASIC FEASIBLE SOLUTION IS OPTIMAL
OPTIMAL VALUE OF THE ORIGINAL OBJECTIVE FUNCTION IS -*B.OO

304

EXAMPLE 2

TYPICAL STAGE DESCRIPTION:

Stage Decision
d(I)<s(I)> • K(I)*s(l)

0<-K(I X-1

Input State : : Output State
s(l) >: ' :— s(l-l)-A*s(I) + B*d(I)<s(I)> -->

Stage Returns
r(I)=C»s(l) + 0»d(l)<s(I)>

Cumulative Returns
f (I)t(1) + f (I -l)<s(i-l)>

If the problem Is to Maximize enter a "1" for L; otherwise, enter a "0" to Minimize.
L

J
Enter the state transformation parameters: A, B as requested.
A
^1
B

a.*

Enter the returns function parameters: C,D as requested,
C

Ji
D
_-. 2

Enter the number of stages(N), up to a maximum of 5.
N

h.

Stages to go: 1

Enter a value for K(1) which will maximize:
f(1)" 0 . 5000»s(n (-0.2000)*IC(l)»s(1)
K(l)
1

Stages to go: 2

Enter a value for K(2) which will maximize:
f(2)- 0.8500»s(2) (0.0000)*K(2)*s(2)
K(2)
a.

Stages to go: 3

Enter a value for K(3) which will maximize:
f(3)- 1.0950*s(3) (O.lUOOj'KC 3)«s(3)
K(3)
1

Stages to go: i»

Enter a value for K(I4) which will maximize:
f(U)- 1.36i45*s(U) (0.29l40)*IC(U)»s(l»)

K(i»)

i

DECISION SUMMARY

Stages to go Decision
1 0.00
2 0.00
3 1.00
It 1.00

TOTAL RETURN - 1.6S85 s(U)

305

EXAMPLE 2 (cont.)

Enter the value of s(ii) as requested.
s(U)

SYSTEM PERFORMANCE

K- 1

1.00 1.10

f O.JO

1.10

TOTAL RETURN 1.66

This terminates the procedure.

*• 111. XEQ "STOP".

306

EXAMPLE 3

DO YOU KNOW HOW TO USE THIS PROGRAM?
? N

THIS IS AN INTERACTIVE LINEAR PROGRAMMING ROUTINE
YOU MUST HAVE YOUR PROBLEM FORMULATED AS A MAXIMIZATION
PROBLEM.
THIS PROGRAM WILL ACCEPT >,< OR = CONSTRAINTS.
THE TYPE 01=' CONSTRAINT MUST BE INDICATED TO THE PROGRAM.

THE INDICATORS ARE: L FOR <= , G FOR >= , AND E FOR =.

ALL >= CONSTRAINTS ARE CONVERTED TO <= CONSTRAINTS.
ARE YOU READY TO USE THIS PROGRAM TO OBTAIN A SOLUTION?
? Y

ENTER THE NUMBER OF CONSTRAINTS FOLLOWED BY THE
NUMBER OF STRUCTURAL VARIABLES. SEPARATE THE NUMBERS
WITH A COMMA (,)

.

? 3,4
ENTER THE COEFFICIENTS OF THE OBJECTIVE FUNCTION

C(l) , ,C(N)

? 3,4,5,1

ENTER THE INDICATOR FOR THE TYPE OF CONSTRAINT,
L FOR <=, G FOR >= , E FOR =, ON ONE LINE

FOLLOWED BY THE LEFT-HAND SIDE CONSTRAINT COEFFICIENTS
ONE ROW AT A TIME:A(1,1), ... ,A(l,N), ONE PER LINE.
? L

? 2,1,3,1

? L

? 1,2,4.2

? L

? 3,2,1,1

ENTER THE VECTOR OF RIGHT-HAND SIDE COEFFICIENTS
B(l), ,B(M).
? 18,26,30

CURRENT BASIC SOLUTION:
ROW VARIABLE VALUE
1 5 18

2 6 26

3 7 30
OBJECTIVE FUNCTION = 0

IS THIS SOLUTION FEASIBLE?
? Y
NON-BASIC Z(J)-C(J)
VARIABLE VALUE
1 -3

2 -4

3 -5

4 -1

307

EXAMPLE 3 (cont.)

IS THE SOLUTION OPTIMAL ?

? N

ENTER THE NUMBER OF THE NON-BASIC VARIABLE
YOU WANT TO BRING INTO THE SOLUTION.
? 3

BASIC PIVOT R.H.S.

VARIABLE COLUMN VALUE
5 3 18

6 4 26

7 1 30

ENTER THE NUMBER OF THE BASIC VARIABLE
TO LEAVE THE SOLUTION.

? 5

Z(J)-C(J)
VALUE

. 333333
-2. 33333
1.66667

.666667

NON-BASIC
VARIABLE
1

2
'

5

4

IS THE SOLUTION OPTIMAL ?

? N

ENTER THE NUMBER OF THE NON-BASIC VARIABLE
YOU WANT TO BRING INTO THE SOLUTION.
? 2

BASIC PIVOT R.H.S.
VARIABLE COLUMN VALUE
3 .333333 6

6 .666667 2.00002
7 1.66667 24

ENTER THE NUMBER OF THE BASIC VARIABLE
TO LEAVE THE SOLUTION.
? 6

NON-BASIC Z(J)-C(J)
VARIABLE VALUE
1 -5.5

6 3.5

5 -3

4 2.99999
IS THE SOLUTION OPTIMAL ?

? N
ENTER THE NUMBER OF THE NON-BASIC VARIABLE
YOU WANT TO BRING INTO THE SOLUTION.
? 1

BASIC PIVOT R.H.S.
VARIABLE COLUMN VALUE
3 1.5 5

2 -2.5 2.99997
7 6.5 19

THETA
VALUE
6

6.5

30

THETA
VALUE
18.

3.00002
14.4

THETA
VALUE
3.33333

-1.19999
2.92308

308

EXAMPLE 3 (cont.)

ENTER THE NUMBER OF THE BASIC VARIABLE
TO LEAVE THE SOLUTION.
? 1

NON-BASIC Z(J)-C(J)
VARIABLE VALUE
7 .846154

6 1.38461
5 -.461538
4 2.15384

IS THE SOLUTION OPTIMAL ?

? N

ENTER THE NUMBER OF THE NON-BASIC VARIABLE
YOU WANT TO BRING INTO THE SOLUTION.
? 5

BASIC PIVOT R.H.S. THETA
VARIABLE COLUMN VALUE VALUE
3 .307692 .615385 2

2 -.846154 10.3077 -12.1818
1 .461538 2.92308 6.33333

ENTER THE NUMBER OF THE BASIC VARIABLE
TO LEAVE THE SOLUTION.
? 3

NON-BASIC Z(J)-C(J)
VARIABLE VALUE
7 .499999

6 1.5

3 1.5
4 2.5

IS THE SOLUTION OPTIMAL ?

? Y
FINAL SOLUTION VALUES AT TERMINATION
CURRENT BASIC SOLUTION:
ROW VARIABLE VALUE15 2

2 2 12

3 12.
OBJECTIVE FUNCTION = 54.

R; T=0.52/3.95 15:28:16

309

A PROBLEM SOLVING SYSTEM FOR NOSILINEAR LEAST SQUARES

by

Beverly A. Amoldy Kenneth M. Brown**
Applied Mathonatics Division Department of Coitputer Science
Argonne National Laboratory University of Minnesota
Argonne, Illinois 60439 Minneapolis, Minnesota 55455

I . INTRDDUCTICN

In this paper, we discuss a system for solving
unconstrained nonlinear least squares problems.
The problem is defined as follows:

M
2

min F = min I [f {x ,x , . .

.

,x
)

]

X X i=l
l -L ^ N

v^ere the f . are nonlinear functions of the param-
eters Xj ,X2, . - • ,Xxj. A special case of this problem,
of great practical iirportance, is the nonlinear
regression problem, ^^i^ere the represent the
residuals obtained by fitting a nonlinear model to
experimental data.

The motivation behind the development of tMs
systan is to provide the user with a broad range
of facilities which he can activate to ultimately
enable him to obtain a solution with a minimum
expenditure of canputer time and his own time. We
subscribe to and atterrpt to extend the philosophy
given by Aird [1]

.

The four major goals of this problem solving
system are:

(1) To give the user information about the
behavior of his function in a region vdiich he
specifies; that is, at a set of points uni-
formly distributed throughout the region, to
furnish the user with a sampling of F as well
as with certain gradient and Hessian infor-
mation — when this information is needed and
used anyway by other coiponents of the prob-
lem solving system. One of the disadvantages
of many existing optimization algorithms is
that when they do not converge, the user is
left with little, if any, information about
the behavior of F in his region of interest.

(2) To give the user assistance froti the system
in choosing good starting points . Many non-
linear models are so ccnplex that the
scientist has little advance knowledge of the
location of the optimum parameter values.
Even in cases vAiere the scientist has (from
physiccil, biological, etc., considerations) a

good estimate of the optimal parameters, say
to within one order of magnitude, F might hav)
a number of maxima, minima, and saddle-points'
close to the optimum of interest. (A saddle-'
point of F is a point where the gradient of Fi

is zero, but F is neither a maximum nor a
minimum.) The system provides the user with
the ability to specify an entire closed regio:

which he believes contains the minimum in-
stead of forcing him to specify a single
starting point. All too often a single

,

"rough" starting point can produce divergence
or even convergence to a local minimum far
from the minimum of interest. Once the bound,:

of the region have been furnished by the user
as input, the system automatically narrows in
on a smaller but highly premising region in
which good starting points exist. i

(3) To utilize a number of optimization methods s<'

as to solve those problems for vfcLch particu-
lar optimization methods fail to find a
satisfactory solution or perform poorly. For
example, v*iereas a Levenberg-fferguardt type
of method (viiich uses Jacobian matrix infor-
mation) might be well suited for a certain
scientific model throughout most of a particu-
lar region, a vastly different type of method,
say a sirtplex method which uses no partial
derivative information (only function values)

,

might be more appropriate for some parts of
that region.

(4) Tb systematically and autanatically find the
global minimum in the user's region of
interest. (By "global minimum" in this paper,

we mean the smallest of the local minima
values in the user's region of interest.)
This is accarplished in two ways. First, as

;

described above in (2) , starting guess candi-^

dates are successively narrowed down to ones
'

most likely to yield the global minimum.
Second, even after successful convergence to
a minimum from one or more of the starting
points, the user can pre-specify that addi-
tional promising starting points should be
pursued in the attenpt to find the global
minimum.

Vfork performed under the auspices of the U.S. Energy Research and Development Administration.
C

A portion of the work of this author was supported by the Office of Naval Research under
Gr^t N 00014-76-C-0329.

310

At present, the algorithm vdiich inplements

the basic philosophy of this system is at an exper-
imental level and should not be mistaken for the

final version, nor should the FORTRAN package vAiich

realizes this implsnentation be construed as final

code.

The paper is organized into six sections.

Sections II and III describe the general algorithm,

section IV discusses the current implementation of

the general algorithm, section V presents a test
problem with numerical results obtained from the

FORTRAN package for the current implenentation,

and section VI describes future research plans.
H h

ill. DISCUSSION OF THE ALGORITHM Figure 1

The structure of the system solver was modu-
iVitlarized into four basic tasks or phases:

(1) Pre-optimal analysis

(2) Starting point generation and selection

(3) Problem solution

(4) Post-optimal analysis
4

In order to implement the concept of modulari-
zation, a control program was constructed. This
program gives the user the ability to select one

* or more of the above phases with which to attack
his problon. Each phase can be accessed alone or

^^as part of a collection which includes other phases.
a

iji

I
III. DESCRIPTION OF THE PHASES

Phase 1 . The phase v\hich we call "pre-optimal

J.

-analysis" incorporates the ideas of (1) pre-
scaling of the problan, and (2) verification and
initialization of user-supplied routines, in par-

jj
ticular, the verification of user-furnished exact
analytic partial derivatives by means of finite-
difference techniques.

^ Phase 2 . The motivation behind phase two is derived
from the situation a user faces when attacking a
!problCT> about which he has very little information.

,]
He may not be able to choose a starting point
sufficiently close to the minimum. Perhaps at best
he can supply upper and lower bounds on a region
in which he suspects a minimum to exist. In order

, to handle situations such as this, a point-disper-
sion algorithm can be used to generate a specified

jj number of points v\hich are uniformly distributed
in a closed rectangular region that the user has
defined. Let the set S = {sj ,S2 , . . . ,Sj^ } denote

; tliese points. Now evaluate F on the set S and select
.- a subset, T = {tj ,t2 , . . . ,t^ } c S, with Ng Nj

,

which consists of the ordered points for viiich F
, nas ascending values; i.e.

F{t^) F(t2) <..._<

Fl
2

At this stage, tj appears to be our most premising
point for producing a minimum of F; however, as
Figure 1 (for a one-dimensional problem) shows, tj

might not lie in the valley containing the minimum
of interest.

All too many problem solving systems would use t^
as a starting point for an optimization procedure
which would then converge to x. Our approach
follows that of Aird [1], namely, from each of
the points tj,t2,,..,t^ , we use our best

(fastest) optimization algorithm for a small number
of iterations (we have used three for this number
with excellent success) , producing yet a third set
of points, P = {pi ,P2, . . . ,p^ }. Again, we evaluate

F on the set P and select a subset
R = {ri,r2,...,r }

c p, with N, < Nj, Vi^iich con-
N3

sists of points ordered so that Fir^) < F(r2) <...<
F(r^,) . The points in R can then be used succes-

sively as "final starting points". In practice,
the restricted set R has yielded excellent starting
points for use in phase three. In the figure above,
please note that any good gradient (descent) pro-
cedure would result in rj = x* being used as the
first (most prorasing) starting point in phase
three.

Phase 3 . The methodology of phase three concen-
trates on problem solution: convergence to a
minimum. Two major considerations have arisen in
the development of a general algorithm:

(1) What strategy can be used to blend
existing canplanentary optimization
techniques in such a way as to achieve
a balance between efficiency and robust-
ness? (By "efficiency" we mean minimiza-
tion of speed of execution and core stor-
age requirements. By "robustness" we
mean the ability of a method to converge
from a very wide distribution of start-
ing points for a variety of functions .

)

(2) What criteria are involved in discon-
tinuing the use of one method and
initiating the use of another?

Ideally, we would like to use one method that
is both efficient and robust. However, highly
efficient methods are seldom robust, and vice
versa. A local optimizer is classified as an
efficient method and is one which converges very
rapidly for starting points that are close to
(local to) the minimum. An example of a local
optimizer is the Gauss-Newton method applied to
finding the minimum of quadratic function (from

any starting point) . In contrast, a robust method

311

will usually converge to a solution from a wide
collection of starting points, although the con-
vergence rate is generally much slower than when
using a local optimizer. An example of a robust
method is a nonlinear simplex algorithm.

These considerations led to the development
of a hierarchical structure in vdiich the most effi-
cient method is at the top of the hierarchy while
less efficient but more robust methods follow, and
finally, the most robust method is at the bottom of
the hierarchy. The stracture we have adopted
utilizes an efficient method as the primary method
of problem solution. However, if the efficient
method fails to irake reasonable progress towards
the minimum, alternative methods which are less
efficient but more robust and which have corrpletely
different structural properties should be available.
For exairple, it makes little sense to switch back
and forth between local methods such as Gauss-
Newton, Levenberg-Marguardt , and Steepest Descent
if the Levenberg-Marquardt algorithm is not con-
verging properly, since the Levenberg-Marquardt
algorithm is already a coipranise between the other
two. Instead, one should try a method having a
canpletely different structure, perhaps, in this
case, a Quasi-Newton method or one of the better
heuristic search procedures.

In our implementation the local method is

used and reused first , and only vdien the local
method fails to make progress do we switch to a
more robust method.

Phase 4 . In phase four, which we call "post-
optimal analysis", it is verified whether or not
the solution obtained in phase three is indeed
the minimum, as opposed to, say, a saddle-point.

IV. CURRENT IMPLEMEJSrmTION

The current inplementation of the system
solver is described below with the aid of the
flow diagrams shown in Figures 2 through 5.

The control program (see Figure 2) directs
the flow of control of the system. This is
accomplished by two input parameters, INOPT and
OUTOPT, each of v\4iich takes on a value from one
to four. The value of INOPT specifies which
phase the user wants to access first, vsiiile the
value of OUTOPT defines the last phase he wants
to access. For example, if the user requested
execution of all four phases, INOPT would be set
to one, and OUTOPT would be set to four. However,
if he only wanted to generate starting points, both
INOPT and OUTOPT would be set to the value of two.
The control program also enables the user to
specify more than one starting point when attenpt-
ing to find the minimum. (These points will be
used on successive atteitpts by phase three.) The
ability to use more than one starting point has a
twofold advantage:

(1) It increases the possibility of converg-
ing to a global minimim fron at least
one starting point.

(2) If the user's problan is very ccnplex
and it is difficult to find even a

begin

PROGRAM
' input
IMDPT,OUTOPT/

input
parameters

y

for phase
2

stop

j

phase 2

input
^parameters
for phase

' J

phase 4

~r
stop

input
parameters/
for phase

y

3

stop

stc

get next
point

phase 3

no

no

I

input
' parameters/
for phase

,

phase 4

Figure 2

312

local rninimum, the possibility of con-

verging to a local minimum increases vdien

using wore than one starting point.

At present, phase one has not been implemented.

PHASE 2 begin

Generate N, points
and calculate their
F values

Sort points on
their F values

Choose N2 £ N
sorted points

Perform a limited
number of itera-
tions of local
method fran each
point

Sort points on F
values and discard
those too close
together

Save N <_ N of the
ranainlng points as
starting points

J
return

Figure 3

The construction of phase two (see Figure 3)

-S scsnev^iat more detailed than its description
jiven above in section III, but it parallels the
general algorithm. Nj , N2, and N3 are user-
jupplied parameters. The methods currently used
ji phase two are the Aird and Rice point-disper-
;ion algorithm [2], and Brown's derivative-free
odification of the Levenberg-Marcjuardt method [3].

The current itrpleraentation of phase three
see Figure 4) utilizes a local optimizer as the
arimary method for solution and an alternative
ethod, a nonlinear simplex algorithm. The local
ethod is used initially for a specified number of
-terations. When the method does not converge to
I minimum, the progress of the method, is evaluated.
:f the results indicate that it is performing well
aiDugh to continue, the flow of control returns to
he local optimizer. If the progress evaluation
ndicates that the method is performing poorly,
lie nonlinear simplex method is anployed. If this
lethod does not converge to a minimum in a specified
lumber of iterations, an evaluation of its

PHASE 3 begin

enter
local method

es
return

good ^^/^aluate^
progress

enter
sinplex method

good

es
^return

bad > return

Figure 4

performance is necessary. The flow of control re-
turns to the local optimizer if the results indi-

cate a significant degree of progress. However, if

the simplex method has performed unsatisfactorily,
the flow of. control returns to the control program
with an indication that a solution could not be
found. At this point, the next most promising
starting point candidate is used and phase three
is re-entered. Successful progress of both opti-
mizers is dependent upon a significant decrease in

the F value or in the norm of the gradient. The
local methDd""currently used is Brown's method [3].

The nonlinear simplex algorithm used is Parkinson's
modified version of Nelder and Mead's nonlinear
sirrplex algorithm [4,5].

Post-optimal analysis in phase four (see

Figure 5) is accomplished by examining points in a
neighborhood of the solution obtained in phase
three and then ccmparing the F values of these

points against the F value at the solution point.

V. A TEST PROBLEM AND I-IUMERICAL RESULTS

A FORTRAN program based upon the current im-
plementation of the problem solving system has
been run successfully on a collection of standard
test problems. (Those results will be documented
elsewhere.) For the purposes of this discussion,
we have constructed a new test problem whose
gecmetry would challenge the ability of the system
to find a global minimum.

313

PHASE 4 begin

Generate a point near

the solution. Calcu-

late the F value at

that point.

false
> convergence

return

Figure 5

The test problem is given by

minimize F(x,y) where

F 0001 * (f^^ + t^)

,

and

f-,^ = 200. - 175. * [exp{-(x - 17.))

+ exp(-(y - 17.)^)],

= 5. *
[(x - 12.)^ * (X - 23.)

2
* (X - 17.) + (y - 12.)

* (y - 23.) * (y - 17.)].

Note that F is symmetric in x and y.

A three-dimensional plot of F over the range
of interest is given in Figure 8. In order to

better exhibit the topography of F around the glo-
bal minim, a contour plot is shown in Figure 9.

The reason that F is challenging, especially
for local optimization methods, is that the region,
X = (11,24) and y = (11,24) , contains a number of
local minima and saddle-points, including a saddle-
point close to the global minima. Specifically,
the points given (approximately) by (12,12),

(12,23), (23,12), and (23,23) are all local minima
of F and at those points the value of F is 4.

Similarly, the points given (approximately) by
(12,17), (17,12), (17,23), and (23,17) are also
local minima of F; at each of these points F takes
on the value of .0625. The troublescme saddle-
point occurs at (17,17) where F assumes the value
of 2.25; this saddle-point is near the global
minima which are given (approximately) by

(17.61014224,16.110990468) and the symrtetrically

placed point, (16.110990468,17.61014224). At the
global minima F has the value of zero.

An observation to be noted is that even finer

contour plots than the one given in Figure 9

failed to expose the locations of the global mini:!

Graphical techniques have merit in showing the
overall general behavior of a function, but, as
this test function indicates, graphics cannot be
relied upon to solve optimization problans.

Experiment #1 . In order to obtain a measure
of the robustness of the system solver vs. the
robustness of the stand-alone methods of v\iiich it

is composed, we ran (a) the systan solver, (b) th(i

local optimizer (Brown's method [3]), and (c) the
sirrplex method [4,5] frcm first 10, then 20, and
finally 40 starting points uniformly distributed
in the region of interest, x = (1,31) and

y = (1,31) . The results are summarized in the
table given in Figure 6

.

///= soi. ve/^ OPTIMIZ£ R MB THOD

\ I. \\
\ \ \

\
10 /O O 2L 2.

ZO O /? 2. o

4o fo o 2>5 S

Figure 6

The word "success" in that table means that the
method converged to a local minimum (which in sok,

cases corresponded to a global minimum) , whereas
the word "failure" means that the method converge
to a saddle-point, diverged , or failed to converg(j,

in the maximum number of function evaluations or
|

maximum number of iterations that were allowed.

Experiment #2 . The purpose of this experima
was to see how many points (Nj) had to be uniform
scattered throughout the region in order for the
system solver to produce a global minimum as dis-
tinct fron a local minimum. As Figure 7 indicate;

O-f mri'vu/n

s 5 1

/o 5 1 y.

zo 5 1 o.

6 1 0.

Fig\:ire 7

314

3-D GRAPH OF THE TEST FUNCTION

X = (8,24), y = (8,24)

Figure 8

315

CONTOUR PLOT OF THE TEST FUNCTION

X= [10.8,17.8], y= [10.8,17.8]

CONTOUR INTERVAL =2.00 UNITS

Figure 9

316

as soon as 20 points (or more) are initially

scattered, the system solver converges to a global

Tonima. In order to illustrate this experiinent in

greater detail, let us consider the case in \fthich

Ml = 20, N2 = 5, and N3 = 1 in Figure 7 (see also

t±ie discussion of phase two in Section III of this

paper) . In phase two of this algorithm, an input

of Nj = 20, causes 20 points to be uniformly

scattered by the Aird-Rice algorithm [2] in the

region of interest v\hich is x = (1,31) and

y = (1,31) . Ihe location of these points is

shown in Figure 10. The numbering of the points

31 _

28 -

16 _

10

19 25 31

Figure 10

given in Figure 10 corresponds to the order in
,vdiich they were produced by the Aird-Rice Method
[2]. Phase two now evaluates F at each of these 20
points. Ihe input parameter value, N2 = 5 (see

Figure 9) now causes phase two to take the 5 points
(of the original 20) having the smallest F value
iand perform 3 iterations of the local method from
each of these 5 points. Once again, the F values
of the 5 resulting points are confuted. Finally,
the input, N3 = l, (see Figure 7) causes the selec-
tion of the one point which has thus far produced
the smallest F value to be used as THE starting
point for phase three. That point caused phase
three to converge to the global minimum which had
the value of zero. It is of interest that the
point (19,10) labeled "6" in Figure 10 had the
smallest F value of the original Nj = 20 scattered
points, but if that point had been used directly
as the starting point for phase three, the system
solver would have converged to the local minimum of
F at (12,12) with the corresponding F value of 4.
On the other hand, the point (19,16) labeled "3" in
Figure 10 only ranked third on the list of the 5
best points, based upon F values only; however,
when that point benefited from being run through
the 3 iterations of the local method, the resulting
point had the smallest F value and was used in
phase three, v*iich then produced the global minimum.

(17.61014224,16.110990468) with a corresponding F
value of zero.

In summary, the system solver displayed a high
success rate (see Figure 6) and, once enough points
were used in the initial scattering by phase two
(i.e., once was large enough) , the system solver
found a global minimum (see Figure 7)

.

VI. FUTURE RESEARCH AND PLANS FOR THE FIRST
DISTRIBUTED CODE

The long range plans for the problen solving
system include:

(1) The ability to solve nonlinear uncon-
strained optimization problems and non-
linear systems of equation problems in
addition to the current ability of solv-
ing nonlinear least squares problems.

(2) The ability to implement any of a number
of hierarchical structures in phase
three. Initially, we shall explore a
three-tiered structure in which the top

level (the level which is used and re-
used first) includes methods which re-
quire Hessian information. The second
level of methods utilize gradient infor-
mation and the bottom level methods
utilize only function values. Typically,
the methods at the top level are the
most efficient whereas the methods at the
bottom level are the most robust.

(3) The ability to plug in any local method
or robust method into the appropriate
boxes in phase three without the user
having to reprogram any of the rest of
the problem solving system. Similar
abilities apply to phases two and four.

(4) The development of a control language to
allow the user to make requests of the
system in sinnple meaningful canmand
statements

.

(5) The creation of a fully modularized
package

.

In order to achieve one goal of producing and
distributing useful code by the end of 1977, we
shall concentrate on a specific problem area, the
unconstrained minimization of a sum of squares of
nonlinear functions. We have adopted the follow-
ing inplementation strategy:

Phase 1 . As we plan to allow derivative or
derivative-free methods in phase three, we shall
implement code to, at the user's option, verify the
correctness of the partial derivatives which he
furnishes. Again, at the user's option, the sys-
tem will automatically provide default values for
the required input parameters. Finally, a scaling
strategy involving the diagonal of the inverse
Hessian matrix of F will be tested and implonented
if successful.

Phase 2 . This phase will rariain as it is
now, utilizing the Aird-Rice point-dispersion
algorithm [2] followed by three iterations of

317

Brawn's method [3].

Phase 3 . We shall adopt the three-tiered

hierarchy ,
using Brown's Levenberg-Marquardt type

of method [3] at the top of the hierarchy, the
method of descent (searching in the direction of

the negative of the gradient) at the second level

and again Parkinson's nonlinear simplex method

[4,5] at the bottom level. The flow of control
vAiich v« shall inplement in phase three is given
in Figure 11.

FUTURE
PHASE 3

begin

enter local
method

(Brown's [3])

good

es

enter descent
method

good

yes

enter simplex
method

(Parkinson's [4,5])

yes
^return

^^^^j-^cvaxuauc \ bad__v.V ^ ^Drogress^—-—^return

Note. The reason that Brcwn's method [3] andl

the method of descent transfer control to the
sirrplex method upon successful convergence is to
avoid the difficulties associated with saddle-
points. Our numerical experiments have indicated
that gradient and Levenberg-Marquardt type of
methods will readily converge to a saddle-point;
hcwever, a few iterations of the simplex method
are sufficient to move away from such a point.
Obviously, there will be sufficient tests made to
avoid infinite looping (upon successful convergence
in phase three.

Phase 4 . We shall cortpare an Aird-Rice [2]

scattering approach with a cyclic coordinate seard
in which the coordinate axes have been rotated to
correspond to information obtained from the statist

tics of the nonlinear regression fit. The best of'

these approaches will be used in phase four.

ACKNOWLEDGEMENT

The authors are most grateful to
Dr. J. L. Nazareth whose suggestions aided in the
development of the system solver.

REFERENCES

[1] Aird, T. J., "Ccnputer Solution of Global
Nonlinear Least Squares Problons," Ph.D.

Thesis, Purdue University (1973)

.

[2] Rice, J. R. and Aird, T. J., "Systonatic
Search in High Dimensional Sets," (to

appear)

.

[3] Brown, K. M. , "NLNREG: A FORTRAN Package for

Nonlinear Regression," (to appear).

[4] Parkinson, J. M. and Hutchinson, D. , "An
Investigation into the Efficiency? of
Variants of the Sinplex Method,"
Numerical Methods for Non-linear
Optimization , F. A. Lootsma, Ed.

,

Acadonic Press, New York, pp. 115-135
(1972) .

[5] Nelder, J. A. and Mead, R. , "A Siitplex

Method for Function Evaluation," Conputa
Journal, Vol. 7, pp. 308 (1965).

Figure 11

318

M ITERATIVELY REWEIGHTED LEAST SQUARES SYSTEM

Virginia Klema*

National Bureau of Economic Research, Inc.

Computer Research Center

575 Technology Square
Cambridge, Massachusetts 02139

Alistract

The purpose of this paper is to present a

description of a system of subroutines to compute
solutions of the iteratively reweighted least
squares problem where the weights themselves are

functions of the scaled residuals. Starting
points for the iterations are the ordinary least
squares solution, the overdetermined solution in

the norm, or starting points specified by the
user

,

Introduction

The iteratively reweighted least squares
algorithms are a part of robust regression where
"robustness" is used in the statistical sense of
relative insensitivity to moderate departures
from assumptions. The experimental system of

: subroutines that is used to compute the solution

to the iteratively reweighted least squares
problem is modular mathematical software written
as a collection of Fortran subroutines. The
subroutines are designed to operate efficiently
and reliably on computing machines of the major
manufacturers. The specific machines to which
,we refer are CDC 660O/76OO, Honeywell 6OOO,
IBM 360/370, PDF 10, and Univac IIO8.

I
The software for solving iteratively

I reweighted least squares problems represents
f interdisciplinary research in numerical analysis,
robust statistics and quality software and, as

such, represents the combined work of many
people. The basic design of the iteratively
reweighted least squares algorithm and the
computation of the default ''tuning constants''
for the various weight functions was done by
Paul Holland. The convergence criterion for
iteratively reweighted least squares was
devised by John Dennis. The start from
the overdetermined solution in the norm was
provided by Richard Bartels. The subroutines

\

for the software for the stem and leaf display
were done by David Hoaglin and Stan Wasserman.
The design of the interactive driver program was
based on the advice of David Hoaglin and Roy Welsch.
Technical and programming assitance was provided
'by David Coleman, Neil Kaden, and Sandra Moriarty.
Valuable discussions continue to be held with

*This work was supported in part by the National
Science Foundation under Grant No. MCS76-II989.

David Gay and Richard Hill.

The substantial contributions of Gene Golub have

been central to this work. His encouragement to us,

his constructive work on the numerical stability
of the algorithms, and his continuing exposition
that crosses the boundary of robust statistics and
numerical algebra constitute an essential resource.

Section 1

The method of least squares is versatile and
numerically stable when computationally stable
methods are used, i.e. [1,1+]. Nonetheless, least
squares does not give very much information about
outliers or leverage points if one looks simply at

the coefficients x of b = Ax + e. In the
notation b = Ax + e , b is an mxl vector of

observations, A is an mxn data or design matrix,

X is an nxl vector of parameters, e is an mxl

vector. We recognize that the usual statistical
notation is y = X3 + e where y is nxl, X is

nxp , B is pxl, and e is nxl. In the
iteratively reweighted least squares subroutines
the software for least squares model fitting
technology has been extended to provide more
information about the data and to provide a vehicle
for handling large residual problems.

The ordinary least squares problem is

where

r is the residuals, b-Ax , and s is a scale.

The weighted least squares problem is

m / r . (x)
\^

min Z W. I
1

which is solved by using ordinary least squares

1/2 1/2
with W A and W b. W is a diagonal matrix
of weights that aire functions of scaled residuals.

The iteratively reweighted least squares

problem assumes a start. Presently the L2 start
can be computed from MINFIT from EISPACK II

followed by MINSOL which determines the best
approximate rank of A and computes the least

319

squares solution. Alternatively the start can

be computed from the subroutines QBF, an orthogonal

decomposition based on Householder tranformations ,

followed by QBSOL which solves Ax = b from the

output of QRF. An L]_ start can be obtained from
the subroutines L^, by Richard Bartels, which
compute the overdetermined solution in the norm.

Given the starting solution, the scale is deter-
mined from subroutine SMAD to get the median

r

.

1

.671*1*9 ' ^i ^
°- The scaled residuals are

formed by subroutine SCIMAD. The weighting matrix
1/2

W is determined from any one of the eight sub-

routines that compute the weight functions. Thus,

given X^*^^ from or L-j^, the problem is iterated

to obtain X^^*'^'' = (A'^W^'^^A)'''W^^^b using MINFIT
or QR factorizations.

To test convergence, after the k^'^ iteration,
we compute

1/2

where
|

|

* |

| is the Euclidean norm.

Subroutine WGRADl computes the gradient and sub-

routine WGRAD2 computes a scale independent measure
of the gradient.

Section 2

The term "robustness" has a common thread of

meaning that carries through statistical robustness,
computational stability, and reliable software.
From the standpoint of reliable software, moderate
departures from assumptions means that the per-

formance of the software shall be unaffected (in

the sense that performance will not be degraded)
by the environment in which the software is run,

the compiler from which code is generated, or

the applications system in which the software is

imbedded. In particular, we program to avoid
abnormal system interruption or termination.
Cody [2] has given an excellent exposition of

reliable software and has provided more details
in his position paper for the workshop on robust
software. Computer Science and Statistics,
Ninth Annual Symposium on the Interface.

Throughout the work on iteratively reweighted
least squares heavy emphasis has been placed on

modular subroutines. For example the convergence
criterion can be changed, weight functions can be
added, and numerical equilibration (for columns
of the A matrix) can be invoked. Optionally the
"hat" matrix which is the projection matrix.

A(A^A)^ A^,

is obtained as UU rpf^oni singular value
decomposition or QQ from Householder trans-
formations. If desired, the stem-and-leaf display
of the residuals is provided. An interactive

driver program is used to print the singular value-
the L2 condition number, select one or more weight-
ing functions, display residuals, monitor conver-
gence, and optionally select the display of the
diagonal or the upper triangle of the "hat" matrix
and the histogram for the stem-and-leaf.

Our approach to programming design included
documentation for use, and flow of program control^
as comments in the program. We use a declaration
checker to be sure that all variables have been
declared. The Fortran verifier, PFORT, from Bell
Telephone Laboratories, was used to check the sub-
routines, and the Fortran converter, from IMSL,
was used to generate the Fortran code for non-IBM
machines

.

The explicit weight functions that we have
used are listed in the Appendix I, Table 1. The
subroutines , with the exception of those required
for the start, are listed in Table 2. Typical
convergence quantities for data from [3] are
listed in Table 3. Appendix II shows a sample
experimental program for one of the weight function

References

1. Businger, P. and Golub , G. H., "Linear Least
Squares Solutions by Householder Tranforma-
tions," in Linear Algebra , Wilkinson, J. H.,

and Reinsch, C, Springer-Verlag, 1971.

2. Cody, W. J, [197I*], "The Construction of

Numerical Subroutine Libraries," SIAM Review
16, 36-1+6.

3. Draper, N. R. and Smith, H., Applied Regression
Analysis , John Wiley & Sons, I966, p. 352.

It. Golub, G. H. , and Reinsch, C, "Singular Value
Decomposition and Least Squares Solutions,"
•in Linear Algebra , Wilkinson, J, H., and

Reinsch, C, Springer-Verlag, 1971.

Appendix I

Table 1

Examples of weight functions (where u = scaled
residual) and the default tuning constant for

each weight function.

ANDREWS w, (u) =< , .

^0

A = 1.339

BIWEIGHT w (u) =<

u < ttA

u > ttA

^0

B = I+.685

u < B

u > B

320

UCHY w^(u) =

c = 2.385

1+

F = l.ltOO

H

FT

u < H

u > H

H = 1.31+5

tanW

jGISTIC ^^(u) =

DLSCH

L = 1.205

iLWAB w^(u)

u < T

u > T

T = 2.795

wj,(u)

R = 2.985

X.0

321

NAME

DESCRIPTION

EQOl MODIFIED ROVJ-INF-EQUILIBRATION
EQ02 COLUMN (MAX. ELEMENT) EQUILIBRATION
EQ03 ROW (MAX. ELEMENT) EQUILIBRATION
EQ04 COLUMN (SQRT. SUM OF SQUARES) EQUILIBRATION
EQ05 ROW (SQRT. SUM OF SQUARES) EQUILIBRATION
EUNORM EUCLIDIAN (SQRT. SUM OF SQUARES) NORM
HMAT FORMS DIAGONAL OF H-MATRIX (U*U-TRANS)
HMATQR FORMS DIAGONAL OF H-MATRIX (Q*Q-TRANS)
ISORTl SHELL SORT (DECREASING) USING INDIRECTION
IS0RT2 SHELL SORT (INCREASING) USING INDIRECTION
MINFIT SINGULAR VALUE DECOMPOSITION A=U*SIGMA*V-TRANSP
MINSOL SOLVES AX=B GIVEN OUTPUT FROM MINFIT
QRF QR DECOMPOSITION, Q ORTHOGONAL TRANSFORMATIONS
QRSOL SOLVES AX=B USING QRF
RESIDE COMPUTES REDISUAL B-AX
SCLMAD SCALE RESIDUALS BY SCALING FACTOR
SLDSPY DOES STEM AND LEAF DISPLAY (CALLS OTHERS)
SILEAF DETERMINES STEMS AND LEAVES
SLPRNT PRINTS STEM AND LEAF DISPLAY
SLSCAL DETERMINES SCALE FACTOR AND UNIT FOR DISPLAY
SLSCRT SHELL SORT IN INCREASING ORDER
SMAD DETERMINES MAD SCALING FACTOR
WANDRW ANDREWS WEIGHTING FUNCTION
WBIWGT BIWEIGHT (BISQUARE) WEIGHTING FUNCTION
WCAUCH CAUCHY WEIGHTING FUNCTION
WELSCH WELSCH WEIGHTING FUNCTION
WFAIR FAIR WEIGHTING FUNCTION
WGRADl COMPUTES GRADIENT
WGRAD2 COMPUTES SCALE INDEPENDANT MEASURE OF GRADIENT
WHUBER HUBER WEIGHTING FUNCTION
WLOGIS LOGISTIC WEIGHTING FUNCTION
WTALWR TALWAR (ZERO-ONE) WEIGHTING FUNCTION

322

Table 3

The data from [3], suggested by Paul Holland
as test data is a 25 x 10 data matrix A with

il
1.0. The Lg condition number is

\ax _ -396 X 10'
The maximum diagonal

"min .789 x lo"'^

element of the H, "hat" matrix is .85- Based
on functions of the scaled residuals, the effect
of the weight functions is to down weight some of

the observations.

For the weight functions listed below the

maximum element in magnitude of the scale-free
measure of the gradient after iteration 1 and after
iteration 10 is as follows.

after iter 1 after iter 10

Andrews start

start

.383

.10i+

.21+1+ X 10
-It

.177 X 10

Biweight start

start

.383

.105

.21+5 X lO"'''

.181+ X 10~^

Huber start

start

.383

.89U X 10""^

Q

.609 X 10

.1+35 X 10"^

323

Appendix II

SDh'^ni IT I WF WH T wr,T (
M ,1 1 ,C,(1MS "1

. S(. W) R w 1 • n f 1 1

1

c H T
i»l M 1 (1 ? ' 1

T M T l: r p D M ,01 1^ ^\

R F 1 * H 1 1 (fM) . r.n w s r , i"i (M)
^ '

IaJ) () 1) A '
*

^ * ;|; 1 0 C A 1 \/ A D I A W | F S t Ul 1 1 f 1 (r «

TMTPrFD T
1 tM

I n P K
f H

'

w) n < 1 (

t

RFfil OFI Tl^i.tlFFrA.lll .P^ni' U ' 1 0 (7 1

* * * :;c F 1 1 M r, f I 1 I M ! I.I \n,i«n

R F A 1 * S D A R S u 1 ^ C 1 1
' Q i 1

R 1 w ini (in

P W 1
1 0 1 11'

c

R]

f W.in T3i'

1.) 1 0 1 A 1
>

c K Won 1 Si

.

r. H 1(1 1 6"

THi<; siiKRDiiTTNF PRnmiri-s rt-F SfxiARF wnnT<; of rwF wFT(;Hrs R l^l W 1 1 7 1
'

c nFTPRMT'\iFn HV THF IMPIIT VFCTfit' II OF P-^FVIDIKLY CnMPIITFn R 1.1 un Hii

SCfii.En RFSiniiAis ftNn tf'F biimF!(^ht (kisoharf) wFTr,Mr FiiKir.rT'V> . (1) H

r; K

r >::PflRAMF TFP nF'^^, R TP"i inw : R l^l '
1 n ?] 1 1

DM T M P 1
1 T

:

R 1 n /> ? (

1

R

M MUST RF SFT TD THF IVIIMHF(< flF F| F'JlFMTS IM fHF VFrTHRS '1 A M n H

r ^OW : m W n 0 ? S

1

p w) 0 ^ r 1

r 11 rriMTATMQ rut crAMriADni7t-f uPQiniiAi c >^Rnivi a udp\/Tiiiiq i ri FAR '

i»i M n 9 7)

~

FIT THAT ll/I) - RM) / l«iHCRF «(tl TMF I-f M W'ln? p, n

p •

r
' *

AMD ^ - <^/Rl A i^P^inilAl ^^^lT^lf^ PT^i^^Tn^l (f- C s r, (1 1 1 1 0 ia) 1 1 0^ M(l

r RF rwF niiTPiir tf thp fiirtram si irroi i r i ^lF siv'An), p, W 1 1 f1 ^ 1 (

r R

CONST IS '•'HF "TIINlMf^ r.riNS'i/'WT' FOR TMF WFTI^HT FIIMCTTHM R ' w nn "^3 f 1

r Ui (11) . (SFF APP| TCATK'IM AMD IISAf^P RF S TR ? C r I QMS) R w U) 3 4
r R ;

w 1 1 f "1 3 S (

^

R

c DM HUT PI 1 T : R [I.I 1)0371'

r; R w 0 n 3 « (

1

c B

c R 1
i.joo4on

c SOW CnMTATMS A \/Fr.T(lR IIF 'i F F SOIIAOF RODTS nF THF W F T f S R wri(i4i 1

1

r; DFTFRMTMFn RV THF Sf'AIFD RFSTi)IIAI, S A MO THP WFJ. nHTTxl, R wo 04 pTi

(; p 1 IMf T T DM , R w M n 4 3 1

1

r. R

c ***;;c*APPL IC ATIDM AMn nSAGF R F S T R T f. T T fl MS : R f wn04'^(|

C THF RRDT-WF I C.HTS ARF MFFOFIl Ff'K THF r,i 1 i>/l PI 1 T A r I n,M flF THF 8) won4fto

C TTFRATTVFLY RFWFlGHfFn IFA.t") SOIIARFS FSTJMATFS IISTMP, THF R W i>047i

c FORTRAM SI IRPni IT T MF S MTMFIT AMF' MIMSMI.. IM THIS C OM p 1 1 r A T I n J B 1
I.IO04R(i

c SOW(I) MIILTIOIIFS THF fflRR FS Ff'Mn T MG R 1 IW S OF THF X-MATPTX R U 004911
r AMO THF Y-VFC TflR . (1) Rl W>10S llfi

C R i.) '
' n 1 1

1

C THF LAPr,FR THF VALIIF OF CnM^T. THF Mn^F MPARLY A 1. 1. THF \/Aljl-- s R I W'los 2n

C OF W(tl) wn. 1. FOIIAL IIMKiY. R 1 wnos3(>

C HI i.jM0S4n

C IF r.DMST IS TAKFM Tn RF VFPY J-MAIL 11 IS POSSTkLF T(1 PPnOllCP A R] U|iiOS5('

324

F T i.P : R T wr,T FOR TP AM

\/FrTnR OF RnnT-wFirH"r<; am of which foiiai. op mfari.y foiiai. R I 1.1(10^60

r. 7FRn, AMn THIS WILL RF iisfi fs5^ a<; impmt rn phf wFiaHTpn L F A > r H I WO OS 7 0

c soiiARFS rnM PI
1 T AT T ^^l s . R I W H 0 ^ ^ 0

R I WiinS 90

c IF a TIIMTMG rriMSTAMT V/^IHF riF 4.^«S TS ii<;Fn. iimcifr thf R I WDOhCU^

c aS<;ilMPTTnM IIF r,fl|ISSTAM FRPnPS. thf RFSIIiriwr, FSTTMATflR H I wonf,.in

c WTU. HA\/F 9*^ PFRCFMT A <: YM P 1 n "i) C FFFTCTPMrV. B TwnOApn
r B I wo 06-30

c B IW n0640
c *****fli,r;nR I fHM mdtfs: Biwoo^sn
c THF IMPIIT PARAMFTFP. rriMST. IS CHFCKFfl TO AV/nil) IIMnFRFLOWS AMO B I W 0066 0

c nVFR FLOWS

,

RI W00(S70

c R I Wri06R 0

c «*-**RFFFRFMrFS

:

B I WOO ,S<3 0

c (1) RFArriM.A.F. AMfi Tl Ik FV:, J . W . (1 Q?'^) , T F C HMRM F TP T C S 16. Riwi'07nn
r 1 47-1^7. BIW0(*7 1'1

c B I wno7?n
C *H I s roRY :

* R I W : 10 7 3 n

C ROSFPArK REI FASF n.3 J 1 'M F \<^7h RIW(ip74i;

C T F (I PM) THFM B I MO 07 BO
cr IRM 3^^0/370 WFRSinM B I W(M1760

c « FI.SF IF (XEROX) THFM Biwn07 70
cc XFROX VFRSIOW R I W''i0 7«(!

Ct; FI.SF TF (IIMTVAr) THFM B I W007Q0
cc II M T \/ A r \/ F R S T M M B T wnnfifUi

C f Fl. SF TF (HIS) THFM B I wonR 1

n

cr. HOMFYWFLL VFPSIO^l R I W f > 0 R ? n

ct; Fl. SF IF (nFC) THFM B T wi)083n

cr. POP 10 V F R S T 0 M R T W fiOR4n

c« Fl. SF IF (r or) THFM Biwooq^o
cr COMTROI. OATA VFRSIOM' BIWOOR6 0

ELSF IF (RGH) THFM Blw;'inR7o

cr RDRROIIOHS VFPSIOM R IW OORPfi

F 1. S F , 1 C A R 0 H I Wi10R QO

cr s;:***::;****^'; MArHT^IF \/ F P S I 0 l\l * * ^ * * * * * * B TWnOQOO
c* IF (SIMOLF) 1 r.ARO, 1 rARO B I Wn09 I 0

cc SIMOLF PRFCTSIOM OFOK R IWnOQ^n
cc nOMRLF PRFCTSIOM OFOK 8Ii«)n0930

c R I WnnQ40
c I'IRITTFM RY MFIL KAOFN (MRFP / rOMPIITF^ RFSFARCH CFMTFR) B I wf>oq=;o

c JIIMF ?3, 197^, BIwnnQf,ri

c MOOT FIFO 4 MOVFMRFP 197S BY M. KAOFM B I W0n9 7 0

c MOniFTFO ?q OCTOBFR \9'ih RY fVV I 0 COIFMAM B I l»l 1 1 n q 8 O

c
'\ B 1 1,1 inqqo

c **.-::**C,FMFRflL : B I WOT 000

c Ol'lESTIOMS AMO COMMFMT<; SHOIIIO RF OIRFCTFO rn: Biwoioin
c SUPPORT STAFF MAMAOFR B lwnin2o
c CO^iPIITFR RFSFARCH 'CFMTFP FfiR FCOMn"IICS AMO MAMAGFMFMf s

:

I FNCF R I woio3fi

c WATTOMAL RIIRFAII OF" FCnMOMlC RFSFARCH , B I wo 104(1

c ^75 TFCHMOLOOY SOgAPF BIWOl^SO
c r A M p R T on F . ^1 A S S . r ?] ^ 9 . BTwni (1ft fl

c B I W n 1 n 7 0

c OFVFLOPMFMT OF THIS PROORAI" SI'PPORTFO IN PAPT RY BTWOliiPO

c MATTOMAL SCTFNrF FOHMOATTOM GP AM T 0J- 1. 1 "^4 X 3 AMO B I w 0 1 0 q 0

c MATIOMAL SCTFMCF FOIIMOATIOM f-(^AMT nrP7S-0P80;? B I W 0 1 1 0 0

325

C TO MATTnMflL HllRFfill OF FCHMfMlf, RFSFAWCH. IMC, hIWM]l](^

C ' HTW-Ul. ?0

C R T 1 ^fi

C :: h T W U 1 A(^

C ::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::::::::: :HTW'1 ISC

C RTwni] 711

C :::::::::: npi.TM i tmf larofst PnsirjVF FijiAfiMr, phimt mimrfr BIWOHRO
C* TF (TKMl) THFM , RTWril.lPO

CC T RM 360/370: OFITM = (1 6 , * * 63) * { 1 . - 16.*=:=-^) :::::::::.: RIWin_?on
Ct, FI.«;F if (IBM?) THFM HTWOIPIO
CC IBM 370/360: OFLTM = (16 . =: >: 63) =M 1 . - 1.6. ::::::::•:: HIwoi?2n
rt. FL<;c TF (VFROX) THFM RIW0 1?3f>

CC yERHX: OFLTM = (l 6. **<S3) * (1 . - 16.*--;--6) :::::::::: Biwoi?4o
C% FL<;F if (IINTWfiC) THFM BIWnl?50
CC iiiMlvaC: iiFLTM = (? . **l ?7) =M I . - :::::::::: HIW01760
r.% Fl^f TF (HIS) THFM BIW01?7(i
CC HOMFYMFLL: OFLIm = (? . ** 1 ? 7) * (1 . - ?.**-77) :::::::::: BTWUPRO

.r.f, FI.SF IF (HEC) THFM BIWii;>q(i

CC POP 10: IJFLIM = (? . **! ?7) =!M 1 . - ?.i=*-?7) :::::::::: BIwoi3()(i

C< FI_SF TF (CnC) THFM BIW0131(1
CC COMTROL i~)ATfi: OFLIM = (?.=:=; 1 0 **4 R - 1.) ::::::::-:: BIW0132n
CR FI.SF IF (BGH) THFM RIW0133(i
CC BllRRniiCHS : OFLIM = (« .) (R . 1 ^ - I.) :::::::::: Biw;)i340
Ct FLSF, 1 CARO BIW(n3Sn
CC *^=;:* ****** OATft STATFMFMT ********** 8TWr)1360

. C f n A T & n F L I M / S I M F P / B T W 1

1 1 3 7 fi

0ATAnFLTM/77FFFFFFFFFFFFFFF/ BTWi)13«n

C BIWf'13Q0
C :::::::::: iiffta IS Thf Smaiifst prisirivF floatimg point mmmhfr biwoi'+oo

C S.T. LifBta amo -offta r.n< i-OTh pf pfprfsfntfo. BTWOI^IO
C« if (IBM) THFM BIW01420
CC IBM 360/3 70: IIFFTA = lis .**-6S :::::::::: BIW0143 0

Cf, FI.SF IF (XEROX) THFM RII;Jf)144(i

CC XFROX: UFFTA = l^.*i,-(SS :::::::::: BIW0145(>
Ci FI.SF IF (IIMTUAC) PHFM BIW0146n
CC iiNIVAC: IIFFTA = ?.*=;-12<- :::::::::: BIwni47o
Cf FI.SF IF (HIS) THFM BIW014Bn
CC HOMFYWFLL: OFFTA = (?. }?R)*(?.**- 1 + ?.**-?7) :::::::::: Riwiil4Qn
Cl Fl, "sF IF (OEC) THEM B I wo 15 on

CC POP 10: IIFFTA = ?.*-:-12<- :::::::::: Riwrasio
Ct; FLSF IF (CDC) THFM BJWOlS^O
CC COMTROL OATA: IIFFTA = 2.*=;-Q7S :::::::::: BIW01530
Ct FI.SF IF (BGH) THFM BIW01S40
CC RIIRROOCHS: OFFTA = f-.**-si :::::::::: Biwois^o
Ct FI_SF, 1 CARO 811.101560

CC ********** nATA STATFMFMT ********** BlwnlS7('
C$ DATA IIFFTA /SFTA/ BTWHISRO

DATA IIFFTA / 7 00 1 noooonoooof Cf / BIWO15fl0
C BTwni<soo
C R I W O 1 f, 1 0

C *****RnnY OF PROGRAM: BIW!U620
IF (COMST .LF. l.Ono) PROn = ('FLTM =;< CONST BIW0163ri
IF (CONST .GT. l.ono) PROO = <IFFTA * CONST BIW01640

326

F T LF : R Twr,T CDRMFi.l. \/lv|/-i7n ^.A

nn ion T = i,i\i

1

1
1 = OA (1 1 (T))

TF (di .LF. r,nM<;T) r-n ti' ir

:::::::::: OA c«s (1 1 (I)) . fO.. COMSr ::::::::::
c;oui

(T) = n .nnn
an Td 1 no

in rnMTTMiiE
TF (cnwsr .0. r. i.ono) an tii ?o
TF (111 .LF. PROD) (-11 -^c

:::::::::: DIVT'^TriM wniiin fi\/F«Fi_rv,i ::::::::::
<;on (T) = o ,nno
cfi TO 1 o-i

?o rriMTIMiiF
TF (COMSr .IF. i.ono) r,ri iri ^o
IF (Ml .r,F. ppnn) r-n if' ?r

:::::::::: otx/T'^ium wniiin iiMnFRFi.nw ::::::::::
SOW (I) = 1 .ono
r,n Tn 1 no

^0 roNTTMiiE
:::::::::: FiiMf.TTnM caw hf r.nMpiirFii MORMfli.i.Y ;

III = ii(t) / cnM^ r

sow (T) = ((o.sno + HI) + r..sno)=^-{(i.sno - ni) -t-

1 on CHMT I MllF

0. son)

R FT I IR M

FMO
LAST r, ARO nF ^milAff-T

R T uo

1

hhr

R I W o 1 ^ 7 n

R I W(i 1 680
B I wo lis '^o

R I wo 1700
R TWO 17 Id
RTW(il720
8 I WO1730
RIWIi] 740
rtIW'il75n
RIWi'T 760
R I wo 17 70
RIWO 1780
H I WO 17<3n

RTWO] HOD
BIWOIR 10
RTW01R?0
H I W om 3 0

RIW01K40
R I W' > 1 8 S

O

RIW0 1«(S0

BIW01870
R TWOl ft«0

BiwnisQo
B jwoi^oo
B I wo 1^10
R IWO] qpo
8TW01'^30
H IWO lQ4n

327

An E xpe r i inen ta 1 Interactive SystP^ ^or Intepier Prop;rarnininp;

Monlque Guii^nard

VJharton School

University of Pennsylvania

Kurt Spiel her.?

IBfl Scientific Marketinir

Ahs t rac t

The paper describes an experimental
interactive system for the solution o^
integer programming [)roblems (primarily of
0-1 nature, but not exclusively so)

The system includes most techniques which
appear to offer hope of overcoming the
combinatorial difficulties of all integer
programming algorittims: in particular LP
with cuts, BB with propagation. State
enumeration. Interval reduction. Preferred
variable reduction. Exploitation of
Benders inequalities. Local search,
Heur istics, etc..

There is emphasis on interaction by the
analyst at the terminal. An example
illustrates the use of various tools. A

table summarizes results obtained by a

number of different approaches to a

problem of moderate difficulty.

1. Introduction

We describe an experimental
interactive system for 0-1 programming.
The programs are written in APL.
Various techniques have been or are
planned to be incorporated in this
system. They are intended to be called
by the user, independently from each
other (subject to restrictions which we
would 1 i l<e to make as little painful as
possible) , or sequentially, depending
on the results of the experimentation.

No single technique can be
expected to solve all types of integer
problems. But our preliminary
experimental results are encouraging
and suggest that a truly flexible
interactive system has potential for
aiding in the understanding and
solution of integer programs, beyond
what can be expected from a standard
preset program.

The paper is not intended to give
all algorithmic details. In section 2

an overview of techniques and features
is given, with references to expository
papers. For convenience, certain key
concepts are briefly summarized in an

apoend i x

.

What
a re certain
at the
informat Lon

counts here is that the
techniques for "lookin
problem, gleaning mo
from it in s impl e fo

(e.g, in terms of simple logic
relations among variables, simp
inequalities, stronger bounds, etc.)
i ud 1 c i ous act i on a

t

a. comou t'

term 1 na 1 . guided by the printout of tl

"current" state of the solutli
process. The user may find some he
from the example presented in sectli
3.

Can interactivity play a maji

role in solving difficult problems? I

increasingly believe that the answer
yes if the user of the system is we
versed in integer programming. Whethi
one shall be able eventually
construct useful interactive system f(

the non-specialist Is somewh;
difficult to predict now. We ai

optimistic, but much work remains to (

done

.

2 . Techn I ques of t he S vs tem

At present the following feature
and techniques have been incorporated

2 . 1 L inear Programming (LP

)

,

with possible addition
Gomory-Johnson cuts and due

reopt I ml za 1 1 on until either no ree

progress Is made any more (In tern
of changing objective function), c

until the number of reopt i mi za 1 1 or

or cuts reaches upner bounds impose
by the user. <l,2,3,it>

2 . 2 Branch and Bound Programming (BB) .

with propagat ion on nonbasi
(possibly prefe r red) variables,
single LP is solved at the curren
origin (or node) of the search tre

and pena 1 t I es are computed. A branc
on a nonbasic variable set at It

optimal LP value is calle
propagat i n;: . One will want t

propagate as long as the "al ternate

328

pena 1 ty is large, <5,5,7>,

Bende rs I nequa 1 i t i es ,

of
to

an
be

which are generated at the end
executed LP. They are intended
used either

after solution of a problem
within a BB or Enumeration
scheme (usually with some aid
from cuttin;^ planes), or
after guesses at partial

integer solutions have been
entered by the user in order to
get logical conditions which
might characterize the problem.
After a guess is entered, the

(i)

(i i)

rema i n i ng
resol ved
i nequa 1 i t y
final LP
fees i b 1 e or

1 i nea r program i s

and the Benders
is taken from the

tableau (whether
i n feas i b 1 e)

.

Note: it may not be
to use cuts in such

pe rmi ss i bl

e

an instance.

in general. Benders inequalities are
collected and reta i ned for
exploitation in terms of reduct i on
(see 2.I+, 2.5 below). In contrast,
Gomory- Johnson cuts (and we believe
other cuts of similar genesis as
well) are not well suited for
reduction (i.e., they lead to logical

of large degree). After
LP, they are therefore

i nequa 1 i t i es
use in an
usually discarded. <8,9>

,Jt_ Reduct ion Procedures ,

are invoked throughout to
(i) shrink bound intervals , and
(ii) to generate logical inequalities

The interval reduction procedure is
used iteratively, screening all
constraints so as to compute the
tightest possible bounds on
structural and slack variables. Great
care must be taken to avoid round-off
difficulties; i.e., one must use
appropriate scaling and tolerances
(as in LP), especially when Benders
inequalities are used for reduction.
<9,10,11,12,13>

|

Z . 5 Log i ca 1 I nequa 1 i t i es .

Given any inequality in (0,1) or
integer variables, one can derive
from it a set (possibly empty, but
not usually so) of m i n i ma 1 preferred
va r i abl e i nequa 1 i t i es (m. p . i

.
' s

)

. The
deg ree of the system ("size" of the
smallest inequalities; the degree of
an inequality i will be called Pl(i)
in the printouts) is a good measure
of the tightness of the problem. The
bound interval of one of the
preferred variables, at least, must
be shrunk by one unit.

These logical inequalities are among
the main tools for guiding both the
BB scheme and the enumeration (see
also "penalty improvement").
<9, 10, lit, 15>

As the referee points out, there
exist logical inequalities
("Boolean", "Canonical" inequalities;
e.g., see <16,17>) which are more
general than m.p.J.'s. They are
especially important in the complete
characterization of the underlying
problem. However, their overabundance
may present computational
difficulties. We believe we have good
reasons for preferring to work with
the more special properties of
m.p.i.'s (used computationally
a 1 ready in <9 >)

.

2 6 Enumeration .

is based on the additive a 1 gor i thm of
Balas <18>, modified in a number of
ways, with the search starting at the
origin y= (0, 0, . , . , 0) . Branches are
restricted to m i n i ma 1 orefe rred
va r i ab 1 e sets . The actual set to be
used is the un i on of those preferred
variables (in minimal preferred sets)
which have
propert ies :

1 St priority:
2 nd priority:
3 rd priority
va r I a bl es .

(a branch is

degree
to be

good contraction

double contraction
single contraction
(defaul t) : all free

"contracting" when the
of the system is guaranteed
decreased as a result.

Contraction can
the set of
i nequa lit i es)

.

chosen set.

be determined from
mi n I ma 1 p re fe r red
t h i n the finally

the actual branch
as tovariable is selected so as to lead to

minimal (maximal) overall
infeas i bi 1 i ty of the problem at the
next node in phase 1 (phase 2) of the
enumeration. <10>

In the above context, phase 1 is

meant to be the period during which
directed towards

feasible solutions,
is to dea 1 with the
optimality (possibly
tolerances) once a

solution has been

the search is
finding improved
whereas phase 2

es tabl i shment of
within certain
good integer
generated.

Note: These branching criteria can
be rendered inoperative when
the "local search" (see 2.10)
identifies an improving
d t rect i on

.

2 . 7 State Enumerat ion ,

differs from enumeration as follows.
At any node, a state is determined
(usually by rounding of an LP

329

solution). It is essentially a

particular value for the integer
vector y, say y, believed to be
close to feasible integer solutions.
In the zero-one case, the search
variables for an enumeration such as

that of 2.6, are then taken to be

y(j) If y(j) = 0 and 1 - y(j) if

y(j) = 1. (See <12> for the
generalization to the integer case
with small bound intervals).

I.e., the final enumeration is

carried out with transformed
variables y(j) set at 0 initially
and increased on forward steps of the
algorithm (as in <18>). In dvnamic
State Enumeration, we can envisage
that the search variables y(j) may
be redefined over the free variables
at each node, provided that
reasonably good information is

available for doing so.

I7e have found State Enumeration, with
strategies roughly as outlined in

2.6, 2.7 (there are many other
possibilities of sometimes highly
complex nature), highly effective in

finding good feasible integer
solutions fast, especially when
augmented by a simple "one- 1 evel

"

local search and by a "ce 1 1 I n;i tes t"

(see <2.8,2.9>). <3,i*,li*>

2^ nei 1 ini; Test

Host enumeration schemes have tests
Involving the objective function of
the initial tableau (often with
non-negative cost coefficients). In

state enumeration, the original
objective function becomes less
interesting and can be taken care of,
anyway, as a special Benders
inequality. Instead of the original
objective function, we have found It

useful to concentrate on the final
objective function row from the
optimal tableau of an initial LP
problem (with cuts added when deemed
desirable). The row is retained
(coefficients and all necessary
Information about the nature of the
nonbasic variables) and permits the
fixing of variables and/or shrinking
of bound intervals for the nonbasic
variables, among them original slack
variables as well as structural
variabl es

.

It should be noted that the shrinking
of slack bound intervals can be used
as Input to the various reduction
procedures and can lead to further
information about all the variables
t he re .

2 . 9 Bounds on Slacks ; Compress I on

Our linear programming system and all
related integer programming

procedures permit the imposition
upper and lower bounds on the slack-
Equality constraints, for exampT
are handled b, Impusitlon of ze
bounds above and below. The mini,,
Inequality reduction procedures wc
with Inequalities only, and
generate two such inequalities
input tu reduction whenever we kr
(or believe) that the upper bounds
the slacks are "true" (I.e., trL
restrictive) bounds.

Some of our sample problems are knc
to have two inequalities represent!
actually only one equall
constraint. The system therefore H

a "compress" function detecting sl
situations an^ (re)creating t

(original) equality constraints.

2.10 Loca 1 Search

Any BB or Enumeration algorithm n

benefit from a search around t

"current" point under consideratic
In the present system, the "depth"
the local search Is controlled by c

parameter (LEV, or %). The value
corresponds to no search (just one
the current, point considered), 1

value 1 corresponds to 1

alteration of all f "free" (r

fixed) variables by one unit at
time. In general, one enumerates 1

(f!)/(f-'X)! adjacent points. In vi

of the exponential Increase in 1

number of such points, only 1

values 1 and 2 and conceivably
appear to be reasonable for .

2.11 Heuristics for Feas ibl e Sol utions

Several heuristic methods have be

programmed which try to generj
feasible solutions to a system
linear Inequalities In 0-1 variable
One of them starts with a given (

vector and modifies the compone
which maximally decreases the sum
the I n feas I b i 1 I ties or the number
i n feas I b I 1 I ties . Such steps i

repeated as often as specified. C

way of using s uch , mod 1 f I ca t i ons is

have a complete "forward pass" o\

all the variables, followed by
complete "backward pass". I.e. i

variables are altered In a pass, i

sequence being determined by one
the criteria mentioned above, <19>,

Another heuristic concentrates on i

logical inequalities of small degi
and tries to generate a feasll
solution to the current system
minimal preferred inequalities, wh'

can then be used as a starting po
for the first heuristic, or for
local search, or as a state for i

state enumeration algorithm. <3,k,'.

330

. 12 Row Comb i nat ion

It has been known for a long while
that linear combinations of rows may
be more interesting^ than the rows
themselves, but there is little
insight into how the inequalities are
to be generated (possible exceptions
are references <20> and <21>).
Consistent with the main emphasis of
this paper, we have chosen to take
the deg ree of an inequality as its
basic measure of strength. Hence we
allow for "visual" combination of
(^) inequalities (e.g., so as to
have coefficients of opposite sign
combine to produce small results in

magnitude on the left and lar^re

negative right hand sides, if

possible), and we test the resultant
inequality by reduction.
Alternatively, we also have heuristic
algorithms of modest capability which
utilize minimal preferred
inequalities to give automatic row

combinations, with reduction used
again to check out the results and
terminate the process.

2.13 I mprovemen t of Pena 1 1 i es

Penalties can be improved by taking
into account logical conditions on
the integer variables, such as the
minimal preferred inequalities. If
some nonbasic variable must be
modified , it may be the case that at
least some of a set of other nonbasic
variables must also be altered to
achieve feasibility. This usually
leads to the accrual of an additional
penalty. One may utilize improved
penalties a priori in a preprocessing
of the penalty table for BB
programming, or dvnami ca 1 1

v

to store
nodes with increased alternate
penalties in BB with propagation.
<6, 7>

Aa Exampl e of a. Terminal Sess ion

1) 5TART1

BM1515 is a (16 by 16) tableau, of
the form

Co

-B

corresponding to the minimization of
z = Co + C . y, subject to:

A . y £ B

0 y 1, all y(j) integer

It represents a 15 variable problem
of moderate difficulty, with 15
constraints and a dense constraint
ma t r I X

#13).
(taken from <22>, problem

STARTl
ENTER M,N

15 15

ENTER TABLEAU, EXPANDED FORK

-•-S Ml 5 1 5

0 7 1 3 4 2 6 2 1 5 1 5 7 2 7

36 2 6 1 0 3 3 2 6 2 2 5 3 3 7 9

22 "5
5

"8
3 0 "l "3 "8 "9

3
~8 6 ~3 "8 ~6

3 5
~6 "5 ~3 "8 8 "9 "2 0 9 "l 7 9

~9 4
~1 ~9 "5 0 9 "l 8 ~3 9 9 3 0 "7

5 4 "9

10 8 "7
1+ 5 9 "1 7 1

~3
2 0 ~3 "5 9 7

12 7 5 2 0 6 6 7 6 ~7 "7 ~1 ~8 "3
9 1

1 "l 3 3 1 0 4 "l "6
0 8 0 1

"5 "4

2 ~1
2

"6 9 0 7 "9
9 6

~4
5 3 1

~3 "9

3
"6 ~7 "2 ~2 0 "6 ~6 7 "4 0 2 8 0 4

"2
0 0 0 0 0 0 0 0 0 "l "1 ~1 "l 1 1

1 4 "l 3 3
"4 5 5 7 8 "8 0 0 "1 ~2 4 5

~9
8 0 5 0 2 6 7 1

"1
1 4 "5 "7 "8 2

2 5
"2 ~7 ~8 6 ~2 "5 "9 "2 2 "8

1
"3

5 6 "8

3 7 9 ~7 ~5
1

~5 "5 4 9 3
~4 0 0 7 "7

32 7 1 ~3 0 6 ~3 7 8 1
~6 6 8 "3 8

331

2) Initial LP . Prep roces s i .

No variable can be fixed by
reduction in the initial
preprocessing. The continous LP
optimum is If*. 96 and 5 variables
out of 15 are fractional. A Benders
inequality is computed from the
optimal LP tableau and printed out.
(ZSTAR stands for the best objective

function value found, or for arJ
upper bound supplied by the user. We
use a larj^e value as the default).

One enters a "state" STl,
usin;^ a rounded LP solution with
rounding parameter p = .5 , (entries
L.keep y(j), entries 0..use
complemented variables 1 - y(j)) .

BENDERS INEQUALITY OF TYPE 1

(5.844 0 "6.122 6.741 3.03 0 0 ~1.121 0 0 0.7512 2.862 8.055
1 . 963 "0.7163) X y < "22 . 92 +ZSTAf!

ST1=^1 00111101111110

3) Guesses

One is prompted for guesses.
One enters indices and cor res pond i n.t;

values for a subset of the integer
variables (unspecified variables
being left unconstrained) and
resolves one resulting LP.

The final LP tableau yields a

Benders Inequality of type 1 if
feasible, of type 2 if infeasible.

The function GUESS works with the
last Benders inequality.

GUESS 0^ chooses the free variables
with nega t i ve coefficients and sets
them to 0. The guess is then likely
to be infeasible and a new
feasibility condition will be
generated (8.1. of type 2).

GUESS 1_ chooses the free variables
with positive coefficients, and one
sets these variables to 1. In this
case also one constrains the current
B.I. and tries to obtain tighter
feasibility conditions on a subset
of the variables.

Any given guess leads to thf

resolution of one linear program,
While the Benders inequality i;

retained for further processinj
(possibly after a check as t(

whether it is strong enough, i .e

has degree low enough). For largi
problems, the guesses will mos
likely be generated automatically
according to a scheme which the use
may have developed for a smalle
problem of similar structure.

Having some familiarity with .

given problem (and by that we do no
mean knowing its solution), one cai

usually think of a number of othe
promising guesses. E.g., one ma
want to set to one some variable(s
with large positive coeffient(s) o
at zero some variable(s) with largi

negative coefficients; or one make
guesses in consonance with one'
knowledge of any possible specia
structure

.

WANT TO GUESS AT SOLUTION?
YES
ENTER GUESS FOR Y, FIRST INDICES, THEN VALUES

GUESS 1

2 10 12

:

1

ACTUAL NUMBER OF ROWS FOR MAT :18
PROBLEM NOT FEASIBLE
DETERMINANT= 1.004E'6
BENDERS INEQUALITY OF TYPE 2

(36 "1.563 ~10.11 0 11.02 5.74 0 0 ~6.753 25.63 0 6.149 0 0 0)
X Y ^ 12.12

I

332

WANT TO GUESS AT SOLUTION?
YES
ENTER GUESS FOR Y, FIRST INDICES,

7

0

11.47 SEC
OBJECTIVE FUNCTION = 15.12
NO. OF PIVOT STEPS =29
DETERMINANT= 1.045E6
STRUCTURALS: 0.0112 6 0.7627 10 0

0 0 0 1

BENDERS INEQUALITY OF TYPE 1

(0 0 "9.671 8.708 2.266 0 "3.909
"6.51+8) X y s "32 +ZSTAR

THEN VALUES

0. 0871+ 0 1 0 . 381 3 0. 2613 0 . 1264

"0.6645 0 0 0 3.872 11.21 2.857

k) After all guesses have been entered,
and the correspondin;; LP's have been
solved, with a final Benders
Inequality always adjoined to the
tableau, PREPROC checks for interval

reduction and fixing of variables.
In this problem variables yl, y9 and
yl5 can be fixed at 0, 1 and 1 ,

respect i vel y.

N. VARS. FIXED 3

Ly2[l;] Slower bound000000001000001
LU2L2il (uf=ft.r boMM^s)011111111111111

t T t

5) The starting LP for the BB (or an
Enumeration) procedure is then
solved with these values
substituted, and the initial
objective function value is thus
raised to 15.7 .

Dual reopt i mi za t i on after the
generation and temporary addition of
Gomory- Johnson cuts finally brings
the initial BB objective function to
18.39 .

OBJECTIVE FUNCTION = 15.7
NO. OF PIVOT STEPS =25
DETERMINANT= 4.9 6 7i£'5

STRUCTURALS: 0 0.8451 1 0 0 0.1926 0.1758 0.3951 1 0.2186 0 0 0 0

1

BENDERS INEQUALITY OF TYPE 1

(7.362 0 "4.894 5.722 1.515 0 0 0 3.848 0 0 1.453 8.021 3.042
1.545) X y < "15.1 +ZSTAR
5 CUT(S) GENERATED

OBJECTIVE FUNCTION = 18.39
NO. OF PIVOT STEPS =87
BENDERS INEQUALITY OF TYPE 1

(10.25 0 "3.911 3.535 0.09996 0.06115 0 0 4.343 0 0 0 5.384
0. 004794 1 . 39) x Y <. "16.57 +ZSTAR
STRUCTURALS: 0 0.1975 10 0 0 0.6106 0.4917 1 0.1856 0.101 0.5849
0 0 1

333

6) M. starts. The system computes
penalties (added to the current
objective function value to give a

maximal 1 o\ve r bound on the final
objective function value).

In the normal BB mode, the
generated node (i.e., the current
bounds and z + penalty) is stored in

the node table, and the next node
would be brought in.

In the propagat i on mode one looks
for variables to be fixed at their
current value, with an al ternate
node stored in the table, and the
cur rent node being processed
further.

In this example a propagating
variable y(13) is identified and

the alternate (y(13)=l; often othe
conditions can be imposed from tht
minimal preferred inequalities) ti

stored with penalty S.'SBk.

The user is asked whether he accepts
the propagation. If the answer i;

yes, the propagation proceeds; i1

not, the user has the choice oi
proceeding in the norma 1 BB mode od
of trying to finish the currenli
problem (In core) by stat«
enumeration. In the present case we

accept the first propagation
(storing an alternate node witl
penalty 5.38it) and reject the secon<
possibility with alternate penalty
3.911 (the system, of course,
generates the penalties tr

descending order of magnitude).

PRP ,PEI1 ,CTn 13 5 . 3 84 0

ACCEPT ?

YES

OUT: CSTbi^e /VoT>e)

1 23 . 77 5 . 384 ~13 (Nor,e

C PRP=)i «-» PKopAGrATE. With vii^
C PEHs 5.394« lo \TH AL-reR.f«j ft te

PRP ,PEN ,CTR ~3 3.911 0

ACCEPT ?

NO
FOR ALTERNATE CALL STRAT, BP, NBP HERE

SAVE NOW, BEFORE ENUM.

7) Enumerat ion s ta rts (from the state
STl). Variable 13 Is at 0 (via
propagation), and yl, y9, yl3 have
been fixed globally. One branches on

y8=l, and a feasible solution Is
found Immediately (undoubtedly due
to the imposition of the state),
with obj function z=26.

Pi" 4442243231053434104222101021032105 (ro^ cl&5>vetS
K IS 1 C \oc«l s-eo-r-cU level)

Z 26
FEASIBLE SOLUTION 2 6

SOLUTION FOUND AT NODE 2 LEVEL 1 PHASE 1

OBJECTIVE FUNCTION 2 6

NEW ZSTAR =2 5

SOLUTION 011000111001001
INT. SOL. FEASIBLE , Z= 2 6

8) Enumeration is compi eted after examination of a total of 17 nodes.

V/BND= 1 INF. IN BOUNDRD Q IN (3ounj> kesoct/ow}
END OF ENUMERATION

.
OPTIMAL SOLUTION 011000111001001
OPT. OBJ. FUNCTION 2 6

334

9) Return to BB .

The stored alternate node Is brour^ht
back from the tree into high speed
storage. After imposition of the
bounds, the inequality system
(including Benders Inequalities)

with z £ z*£l= 26-1 = 25, is now
infeas ibl

e

. End of BB.

Term i nat i on of integer program.

Ill OF NODE 1

1 2 3 . 77 5.384 "l3 (HodE NUfMSB?. OBX F. VALue ?eN. .BfZ.'twfH)

RED ('RFEuctidh;
NOPV 0 Cn BF system).
pPLUS 2 0 15
ItlFEASIBLE-JWPV 0

Compu ta t i ona 1 Resul ts

There are a number of problems
which can be entirely resolved by the
use of one or the other technique. For
example, a (28,35) problem of the
tanker scheduling variety (see <9>)
yields an integer solution after
imposition of a total of 6

Gomory- Johnson cuts in 2

reopt imi za t ions

.

The same problem yields well to
state enumeration techniques (11 BB
nodes of the propagation type, i.e.
with only one true linear program
resolved, followed by betv^^een 9 and 33
enumeration nodes depending on the
initial state; at the end none of the
alternate BB nodes need to be processed
f urt he r)

.

On the other hand it requires a
large number of LP optimizations in a

straightforward BB optimization run
(between 40 and 109 linear programs
depending on strategy).

In the following table we describe
various approaches, to the (15 by 15)
problem used as example in the text. In

some respects it is rather difficult:
the gap between LP obj . function and
integer solution objective function is

large; the penalties are rather small ;

the response to Gomor y-Johnson cuts is

only moderate; the degree of the
initial system is 3. It behaves much
better when Benders Inequalities are
added, permitting the reduction of the
degree to 1 (fixing of three
va r i abl es) ; etc .

.

In the table we summarize a number
of runs using some or all of the

available tools. One does or does not
add Gomor y- Johnson cuts. One does or
does not enumerate at a selected
pending node of the BB tree. The state
for enumeration can be chosen
arbitrarily: we ran the program with
the state determined from the rounded
LP solution, with all fractional
variables less than or equal to .5

fixed at 0, and all variables larger
than .5 f i xed at 1

.

1/e entered some guesses at a

solution and appended the resulting
Benders inequalities to the original
tab 1 eau

.

Which of the results are
considered to be best wfll depend on
the relative computational efforts, and
therefore on the computer and on the
system used (APL in our case). In

general, we feel it most essential to
reduce the number of linear programs,
but even more fundamentally, to avoid
large trees (many BB nodes, large
enumeration levels), i.e. situations in
which the combinatorics overwhelms the
problem solver.

The interactive system appears to
give the insight and often the tools
for avoiding exponentially intractable
situations; i.e., even for more
difficult problems (e.g., the (37 by 7k
problem of <9>), which we did not run
to conclusion because of slow APL
response at the terminal, it was clear
that the search was "well-behaved", the
tree remafning a "low-level tree" ,

with steady progress being made .

335

Initial LP va 1 ue ai* . 96 1 14 . 9 (3 1 1+ , 9 G lU.OG II4. 95 lU. 06

Total n. of cuts 0 o' 0

1

1*7 i hi
reopt i mi za t i ons 0 0 0 7 7 7

Final va 1 ue of LP 1 1+ . G 6 14.96 lit. 05 16. G3
^

16.53 13.30

1 ilLc^rri \J\J L 1 lilUliI 2 5 7 n i ^ 0

Use H-B? no yes yes
T

yes yes yes
N. of nodes generated 13 2 2 2 2

11 2 2 2 2

Optimum found at node 12
..

Use enumeration? yes no yes yes yes yes
State for enumeration

from LP? yes yes yes yes
1? yes
0? j

N. of nodes 105 63 37 19 17
Optimum foiind at node 73 31 25 10 2

Use guesses? no no ! no
i

yes 1 yes yes
Type of guesses random!
N. of guesses 10 6 10
N. of Benders ineq. 12

'

13 12
N. of variables fixed 0

'

1 3

H. of LP solved 0 25 2

T
9

i 7 10

Table

Six Approaches to Solvinn: thn (15,15) Sf>:-iolp Prc.blen

5 . Append i X : Definition of Some Terms <10>

A 1 og i ca

1

inequality in bivalent
variables is meant to be an inequality
with 0, 1, -1 coefficients only.

A prefe rred
(abbrev iated
inequa 1 i ty of

variable inequality
p . i .) is ^a 1 og i ca

1

the form j^y(j) ^ 1 /

y(j) being either y(j) or 1 - y(j),

which expresses the condition that at
least one of the y(j), j « J, must be
one

.

The values y^(j) = 1 (i.e., either
y(j) = 0 or y(j) = 1, depending on the
nature of the ^(j)) are termed the
sugges ted or indicated values of the
preferred variables.

Given some procedure for generating a

set of preferred inequalities, we call
m i n i ma 1 (relative to the procedure)

minimal number ofthose p.I.'s with
non-zero coefficients.

The degree _d of a m.p.i. system
extension the degree of
inequality or system of
from which the m.p.i
derived) is the number
coefficients of one of
preferred inequalities.

i
(and by

the initial
i nequa 1 i 1 1 es
system was
of non-zero
the minimal

336

6 . Refe rences

<1>

<2>

<3>

<!»>

<5>

<6>

<7>

<8>

<9>

<10>

<11>

<12>

Johnson, "Some
Related to

Math. Prof^r.,
Math. Progr.,

de
de

Gomory, R.E., and E.L.
Continuous Functions
Corner Pol yhedra" , 1.
Vol. 3, itl, 1972 ; 2

Vol 3, #3, 1972
Guignard, II., "Inegalites Valides
Gomory-Johnson", Journees
Combinatoire de 1 'AFCET, Dec. 1971
Guignard, M., and K. Spielberg, "The
State Enumeration flethod for f'lixed

Zero-One Programming", IBM Phila.
Sci. C. Rep. 320-3000, Feb. 1971
Guignard, M., and K. Spielberg, "A
Realization of the State Enumeration
Procedure", IBM Pliila. Sci. C. Report
320-3025, June 1973
Land, A.M., and A.G. Doig, "An
Automatic Method for Solving Discrete
Programming Problems", Econometr ica.
Vol. 28, 1960
Spielberg, K., "A Minimal inequality
Branch-Bound Method", IBM Phila. Sci.
C. Report 32 0-3021*, June 1973
Guignard, M., "Preferred Shadow
Prices in 0-1 Programming", Res.
Report, Dept. of Stat S OR, Wharton
School, Univ. of PA, 1971+

J.F,
for

"Part i t ion ing
Sol V ing

Programmi ng
Mathemat i k.

Spielberg,
and Mixed-

ORSA, 1967
Preferred

for 0-1
la. Sci . C.

<13>

Bende rs,

Procedu res
i xed- Va r i abl es

Problems", Numerische
1962
Lemke, C.E., and K.

"Direct Search Zero-One
integer Programming", J.

Spielberg, K., "Minimal
Variable Reduction
Programming" , IBM Phi

Rep. 320-3013, 1972
Zionts, S., "Generalized Implicit
Enumeration using Bounds on Variables
for Solving Linear Programs with
Zero-One Variables", Naval Res.
Logistics Qtjarterly, 1972
Guignard, M., and K. Spielberg,
"Reduction Methods for State
Enumeration Integer Programming",
Workshop on Integer Programming, Bonn
1975 (to appear in Discrete
flathemat ics)

Guignard, M., and K. Spielberg,
"Zero-One Zero-One Programming and

Enumeration" ,

Pro<^ramming Vol .

flangasa r i an, R.R.
Robinson , Acad. Press,

<1'»> Guignard, M., and K

"Search Techniques w
Features for Certain
M i xed- I nteger Programming
Proceedings of the V

"Non 1 i nea r

2", ed: 0.

Meyer, S.I'l.

1975
Spielberg,

th Adaptive
Integer and

Probl ems",
th IFIPS

Conference, Edinburgh,
<15> Guignard, M.,

Add i t i one 1 1 es en
Bivalentes", Pub. Labo.

1958
"Contra intes

Va r i abl es
Ca 1 cu 1 , Univ.

of Lille, Report #20, 1970
<16> Hammer, P.L., "Boolean Procedures for

Bivalent Programming", Univ. of
iJaterloo, Dept. of Combinatorics and
Optimization Reports, CORR #73-1,
Oct. 1973 (with numerous references
to earlier related work going back to
the 60 s, some of

such as

<17> and
Cuts

authors
Granot

)

Ba 1 as , E

.

"Canon i ca

1

Hypercube", SIAf^

f'lathemat i cs. Vol .

(work dating back
University Report

t jointly v^/ith

Rudeanu and F.

R. Jeroslow,
of the Unit

Jou rna 1 of App 1 i ed
23 (1), July 1972
to Ca rneg i e f^el 1 on

#198 of 1969)
<18>

<19>

<20>

<21>

<22>

Balas, E., "An Additive Algorithm for
Solving LP with Zero-One Variables",
J. ORSA, Vol. 13, 1965
Guignard, M., "Methodes Heuristiques
de Resolution d'un Systeme
d'inegalites en Variables Entieres ou
Bivalentes", Pub. Labo. de Calcul,
Univ. of Lille, Report #32, 1972
Bradley, G., "Equivalent Integer
Programs and Canonical Problems",
Management Science, 1971
Hammer, P.L., Padberg, M.W., and U.N.
Peled, "Constraint Pairing in Integer
Programming", Univ. of Waterloo,
Dept. of Combinatorics and
Optimization Res. Reports, CORR
#73-7, Aug. 1973
Bouvier, B., and G. Messoumian,
"Programmes Lineaires en Variables
Bivalentes", Thesis, Faculte des
Sciences, Univ. of Grenoble, 1965

AN ACCELERATED TECHNIQUE FOR RIDGE FOLLOWING

USING CONJUGATE DIRECTIONS*

Edwin H. Neave
Queen's University, Kingston, Ontario

and

Timothy L. Shaftel
The University of Arizona, Tucson, Arizona and

Queen's University, Kingston, Ontario

ABSTRACT

In this paper we study an accelerated
version of Powell's conjugate direction
technique for solving unconstrained non-
linear problems. This technique employs a
method of taking large steps to enhance
movement along ridges. Not only does this
technique improve the speed of convergence
for nonquadratic problems, but it improves
the robustness of the procedure. An APL
code, useful for research because of its
interactive capabilities, is presented and
described in detail.

I INTRODUCTION

The topic of nonlinear unconstrained
problem solving is by no means new to the
OR/MS literature. Indeed, many of the
basic concepts of solving this type of
problem have been known for some time.
Beginning approximately in 1960 there has
been a proliferation of papers on uncon-
strained optimization techniques. Of
these, one of the best known and most
extensively tested is Powell's method of
conjugate directions. This paper studies
Powell's technique and offers a modifica-
tion that our experiments show improves
the rapidity of convergence to a solution
when the criterion function exhibits non-
linear ridges. It employs a code that
displays the robustness of the technique

*Queen ' s University, Kingston, Ontario
Working Paper No. 76-4, May 1976.

as well as effecting our particular means
of accelerating convergence. The former
is demonstrated by a discussion of the
effects on program operation of changing
various computational parameters. We also
demonstrate the usefulness of interactive
languages, APL in particular, for this
kind of research.

Powell's (1965) conjugate direction
method is chosen for several reasons.
Among other tests of Powell's method.
Box's (1966) paper indicates that it is
competitive with several other methods
on a variety of nonlinear problems.
Additional discussions of conjugate
gradients can be found in Fletcher and
Reeves (1964) , Powell (1965) and more
recently Zangwill (1969). Moreover,
Powell's technique is straightforward and
can be implemented rather easily without
requiring either large amounts of core
storage or extensive manipulation of
stored variables, so that it constitutes
a reasonable choice for solving large
scale problems. Another reason for the
selection of Powell's technique is that
it avoids the necessity of calculating
derivatives. Finally, the conjugate
direction technique has the property of
finite convergence for quadratic
functions; in this sense it is similar to
other techniques including those by
Fletcher and Powell (1963) and Fletcher
and Reeves (1964), although the latter

two cases make use of explicit calcula-
tions of the first derivative.

The outline of the paper is as
follows. In Section II we briefly dis-
cuss Powell's algorithm and the minor
modifications we made in setting up our
comparison standards. In Section III we
examine the ridge following problem and
our method of accelerating the conver-
gence of Powell ' s technique when these
ridges are nonlinear. The results of
tests on several example problems are
reported. In section IV we discuss some
problems caused by variation in certain
input parameters. Section V presents our
position regarding the usefulness of APL
for carrying out the type of investiga-
tion reported here. Finally Section VI
presents our conclusions. The APL list-
ing of the code that generated our
results is included in an Appendix.

II THE TECHNIQUE

In this section we present only
enough of Powell's method to be able to
identify the differences between Powell's
original code and the version we have
employed. The major difference, leading
to accelerated convergence in problems
with nonlinear ridges, is permitting
Powell's algorithm to commence a new
iteration at a point different from (and
usually worse in terms of function value)
the point at which the previous iteration
ended. This modification, which we call
a leap, is discussed fully in Section
III. In order to demonstrate the com-
parability of our results, it is
important to indicate the additional,
minor changes to Powell's technique that
we have found useful. Essentially, these
minor modifications are designed to
permit making certain choices of com-
putational parameters that we employed
in developing the accelerated conver-
gence procedure. Powell's basic code
may be expressed in the following steps.

i) For r = 1 to n calculate a minimum
along direction d^ beginning at the

resulting minimum of the last
direction searched. The initial
point is arbitrary while the start-
ing directions are the coordinate
directions of the domain of the
search. For any iteration let p^

be the first point and p the final
point

.

ii) If this is the first iteration, re-
compute the one dimensional minimiza-
tions using the initial set of
directions. Otherwise, calculate a

new direction from (p^ - p^) and

minimize the objective function in
this direction. The resulting point
is p for the next iteration.

iii) Of the r + 1 directions select one
to be removed by the criteria given
below and return to i)

.

Our modifications to Powell's method
involve the manner in which directions
are removed, choices of some computational
parameters, and convergence criteria.

Criteria for Removal of Directions .

Powell presents a scheme for determining
which direction should be removed, a
scheme that includes the maintenance of
the original directions. Our criteria
merely removes (from the set of r original
directions) that one which is most nearly
parallel to the new one (i.e., the
smallest angle between the two normalized
direction vectors).

Tolerance Parameters. We use the
term "tolerance parameters" to refer to
those parameters which the operator must
choose before running the program.
Powell's technique employs well defined
rules for modifying these parameters
during the operation of the code, but the
tolerance parameters themselves are rarely
specified in any discussion of the tests
of proposed codes (in Powell's work or
elsewhere) . We believe that in most
instances robustness of a particular
technique is an important feature of its
operation, since if particular parameters
must be determined before a given routine
will work satisfactorily it can imply a
great deal of testing on particular
functions before a good selection becomes
possible. In duplicating Powell's
technique we experienced difficulty in
determining the exact computational
parameters to employ, but partially over-
came the difficulty through using the
interactive properties of APL to obtain
comparisons with Powell ' s reported test
results on an iteration by iteration basis:

Five different parameters were
specified for the operation of our pro-
gram. In the listing of the program in the
Appendix the 3 - vector TOL is used to
specify the first three of these
parameters. These values are also used
by Powell and are termed m, q and e in
his paper. The last two parameters we
employ are unique to our code and are
called MPASS and MTEST respectively. All
five parameters are used during the
operation of the one-dimensional search
technique used in our procedure. A brief
description of these parameters follows:

TOL [1] is the upper bound on the
length of a step taken by the one
dimensional search technique. It is
invoked whenever a quadratic prediction
is further away from the points used for
the prediction than the value TOL [1]

permits

.

TOL [2] is the magnitude of the step

339

length along the direction being minimized.
This value is used to determine the
position of two additional points needed
for the first quadratic fit.

TOL [3] is the required accuracy to
which variables along this line must be
determined before the search for a minimum
will be terminated (unless other termina-
tion criteria are invoked) . In the
operation of our algorithm each of the
above parameters afJEects the search
dynamically in that they are employed in
conjunction with the direction vector
currently used. The end result is that
tighter bounds are implicitly invoked as
the movements of the variables become
smaller

.

MPASS is the maximum number of
function evaluations allowed during any
normal linear search. Our use of this
parameter resulted from the discovery that
the number of quadratic fits used to pre-
dict a particular minimum along a line was
a more useful parameter than TOL [3] . We
find that the number of iterations is much
easier to control directly rather than
with the use of TOL [3]. Moreover, by
determining the number of quadratic fits
we use for any iteration, the accuracy of
the search can be controlled in any event,
as we shall show.

MTEST is used in an attempt to improve
the robustness of the program. In the
program we allow for a reduction of TOL
[2] by a factor of ten whenever TOL [1] is
invoked or when a predicted minimum turns
out to be larger than any of the three
predicting points. The result is that
within a single linear search TOL [2] is
scaled down if unreasonable predictions
have been achieved. MTEST limits the
number of times this reduction can occur
for any one linear search.

STOPPING RULES . No specific routine
was written to stop our code, so that the
result is a termination by default when-
ever no new minimum is generated in any
conjugate direction. Stopping under
these conditions is a result of machine
accuracy. It would be an easy matter
either to invoke stopping under less
stringent criteria or to use Powell's
stopping rules. Because of the nature
of our research, however, we chose
merely to input a specified number of
iterations and include the capability of
restarting the program without loss of
previous information. This procedure
might also prove practically useful during
batch processing. Especially, the ability
to stop the operation and perform some
cost-benefit analysis before deciding
whether to continue the search might be
useful when the nonlinear program is
working as a subroutine to a more general
program.

Duplication of Powell's Results .

Table I displays the results of using
our version of Powell's code on the three
test problems reported in his paper. The
results of our code use TOL =10, .1,
.001; MPASS = 4 and MTEST = 1. The
similarity in number of evaluations is,
of course, not surprising, and is included
only to demonstrate the similarity in our
procedures as used so far. In the rest of
the paper comparison standards will be the
results obtained using this version of
Powell's code. These results will be
compared with those obtained from using
the leapsize modification we have devel-
oped to accelerate its convergence. The
nature of this modification is discussed
next

.

Ill AN ACCELERATION TECHNIQUE FOR THE
CONJUGATE DIRECTIONS SEARCH

A well known phenomenon in nonlinear
search is often referred to as ridge
following. In many problems the search
begins to follow a long narrow ridge (or
valley in the case of minimization) with
the result that the program runs for an
inordinate length of time while improving
the criterion values very slowly. The
possibility that changes occur so slowly
that the program terminates far from an
optimal (global or local) solution is also
present in these cases. While conjugate
directions work well in the case of linear
or near linear ridges, when the ridge
curves conjugate directions can tend to
zig-zag considerably, much as gradient
directions perform in the case of quad-
ratic functions. Figure I provides an
hypothetical example of a typical search
pattern in this case. The modification of
Powell ' s technique that we report herein
was predicated on the belief that it might
be useful to continue to move in the
general direction of the curvature of the
ridge for some distance past the exact
minimum along the search direction. We
conjectured that this procedure will lead
to a result somewhat like Figure lb, (and
thus improve convergence) whenever the
function is not too closely quadratic.
In these circumstances, the ridges become
nonlinear and would, we expected, slow
down convergence of the unmodified con-
jugate directions technique. These
conjectures were validated: Figure II
provides some actual results of a search
we conducted on the Rosenbrock problem.
The results of this and other searches
are discussed below; supporting data for
Figure II appear in Table II (Leapsize =

1 and 3) .

In our modification to Powell's code
we move in the general direction of the
ridge's curvature at the end of each
iteration. At this time a new conjugate
direction has been generated and we have
minimized in this direction. Our
modification proceeds by continuing along

340

NUMBER OF
PROBLEM PROGRAM ITERATION FUNCTION

EVALUATIONS
FUNCTION
VALUE

ROSENBROCK POWELL 12

13

142

151

6x10"^

7x10-1°

ROSENBROCK OURS 12 141 2x10

13 151 3x10"''

POWELL (1962) POWELL 8 126 3x10-"*

10 148
r

8x10

POWELL (196 2) OURS 8 136
_ c

4x10

10 163 2x10
^

POWELL (1964) POWELL 5 not reported 2.9731

(function of 3 variables

)

6 not reported 3.0000

POWELL (196U) OURS' 5 102 2.9998

(function of 3 variables

)

6 . 113 3 .0000

TABLE I: Comparison of Two Programs to
Demonstrate Similar Results.
All problems taken from Powell
(1964) .

'Our number of evaluations is adjusted to reflect the fact

that we made no use of the unit second derivative as Powell

does. This leads to one less evaluation along any direction

previously used

.

this direction some number of units
further than the distance we have just
moved. For instance, if in minimizing
along the new direction we had moved a
distance of one-half unit, at the end of
the iteration we take what we term a leap
to a new point in that direction (usually
with a worse function value) , The length
of the leap is called a leapsize and
indicates how many units we use as a
factor to multiply the current direction
vector to move between iterations.* The
effect of using this parameter is dynamic
in the sense that it depends on the size
of the direction vectors calculated in a
given iteration. Thus, as the search
gets closer to a minimum the size of
leap actually taken reduces to zero.

Table II reports the results of our
modification on Rosenbrock's (1960) two
dimensional problem:

2 2 2Minimize f(x^,X2) = 100 (x2-x^) + (l-x-j^) .

*
In our program, when the leapsize para-

meter is set to 1, the search technique
duplicates Powell's. If leapsize > 1,
each new iteration begins at a point
different from that chosen by Powell's
method

.

This function is of interest because it
has the type of nonlinear valley we have
been discussing. In Table II we compare
the results of using Powell's method with
the modifications resulting from taking
progressively larger leapsizes. It can be
seen that Powell's unmodified search
technique moves rather slowly along the
nonlinear valley of the Rosenbrock
function while as expected, the use of the
leap moves the search more rapidly along
the valley, thus in general effecting a

more rapid convergence to a minimum.

Tables III and IV display the effect
of leapsizes for a three and a four
variable problem respectively on which
test results are also reported by Powell
(1964) . The three dimensional problem is:

Maximize f = ^ + sin {l/2Trxyz} +
l+(x-y)^

exp {-(^ -2)2}

while the four dimensional problem is of
the form:

341

Minimum

Minimum

Stari Start

(a)

FIGURE I: Possible Improvement in Convergence
(a) Following the ridge; (b) Moving
away from the ridge.

Minimum

FIGURE II: Convergence of Powell's Technique and
its Modification to Solution of Rosenbrock
Test Problem. Path chosen by Powell
indicated by dots; modification by crosses.
Dashed line indicates continuation of movement
made by the modification.

342

O incNj(jDir)CNt£>cx)rHcOLOLOtooomi

^ "^cPLOtoooOLOcnojjorooOr-H

rM CO iH r—I rH I—I iH

en

ooo

r-^ (X) CX3 o
ID O O CNJ t-^

^ O O O O CD O
OOOCMCDODLOaDO
rHrr)j-Lnr~oocno

I I

CM oOLO(NrHrHrsiroLOLOtDr--cncnoo

W
NlM

J

g
H<

>

g
i-i

E-i W
Z J
El >

J

o

o

ISoM
H
<
J
>W

o
o

ooo

oo
CSI

to 00
00

S-' §° ^ ° S-^
<ft^ nJ- uii>- oN'-<in<=' (N^^

mrri(NJCxi>HrH M rH

^ CM O C3
o o ° o

CM u-1 ^ ,H

r^cNi vDCN co(X) oor^ oooo ^cn ot£> cmcd <y\ ^ mco o
l^r~- OCM OtO CMro v£)fT) LTlCM cr\CM COo OOlO Ocx5 o

CNi^ Oo Oo cMfv, -a-yj r^cn o^o °cn °

CO CO CO O (

CO '

OOo

CO
0^
-3-

CO
00

o cn

o in CJV o o CO vO 00 00 CM iH CO
1 1o CO .-1 <r 00 <r a\ CM tH o O o o

CM <t o o CO in CN ^ iH o O o rH rH
X X X

<r 'co CO CM iH CM CO CM
CM

O r-^ 00 (N oo CM CM f~- CM vO rH 00 O
O CO tN o CO CM 00 <N ON o rH ON o
O vD CO o O o o CM CO <r in 00 On ON ON o
r-l

1

.-1

o -(CM o 00 CM CM 00 o CO in ON vD On o
o CO in MD O 00 m CTN o
CM 00 CO O i-H CO ~3- oo 0^ C3N CTN o

ON
O

m c
0) 0
^q H

P
M

10

0) +J

1^ rH

M H-1

X
0 (1)

•H c
i-l

(0 1-1

> x:
II -p

si
-p H MH
H 0
W
H tn

c S c
0 H
•iH

+J c
u H
a II

3 0)

CO
(1)

*

S P
u
0 (U

rH p
O

c o u
0) o H
CO -a
0 c
a H

iH
MH to

o
Ul

c O (1)

o
H-)

p II c
0)

iH n
0 o rd

H Ch

C
H •H
H

to

0) P
rH C
43 H
nJ 0
Eh

K

343

LEAPSIZE = 1 LEAPSIZE " 2 LEAPSIZE - U

ITi-RATION
NUMBER OF
FUNC-i ION
EVALUATIONS

FUNCTION
VALUE

NUMBER OF
r UNCI i UN
EVALUATIONS

r UI\ Li iUN
VALUE

NUMBER OF
r UN CI lUJM

EVALUATION
r U N L i H
VALUE

1 40 2 .764 41 2.639 39 1 .994

2 59 2 .'8 5 9 58 2 .540 56 2.629

3 73 2 .888 74 2.681 73 2.728

88 2 .965 90 2 . 715 89 2.729

5 lOU 2 .983 109 2.976 109 2.825

6 120 3 . OCO 125 2 .999 128 2.995

7 141 3.000 143

158

2.999

3.000

TALBE III: Solution of Three Variable Problem with
various Leapsizes TOL - 10, .1, .0001

MPASS = 4

MTEST = 1

LEAPSIZE LEAPSIZE = 2

NUMBER OF
FUNCTION

ITERATION EVALUATIONS

NUMBER OF
FUNCTION FUNCTION
VALUE EVALUATIONS

FUNCTION
VALUE

2

4

6

8

10

54

91

129

168

203

. 2040

-.0075

.0018

4xl0~'

2xl0~'

55

92

133

172

209

. 1401

. 0021

.0018

6x10"'

5x10"'

LEAPSIZE LEAPSIZE

ITERATION
NUMBER OF
FUNCTION

EVALUATIONS
FUNCTION
VALUE

NUMBER OF
FUNCTION

EVALUATIONS
FUNCTION
VALUE

55

95

13 5

174

.1064

.0012

.0003

4x10"^

56

97

. 1141

9806 .

TABLE IV: Solution of Four Variable Problem
with Various Leapsizes
TOL = 10, .1, .0001
MPASS = 4

MTEST = 1

344

NUMBER OF
FUNCTION FUNCTION

ITERATION EVALUATIONS VALUE

-1- 1+5 153.384

2 69 82.772

3 93 32.300

4 117 15.084

5 141 8.190

6 164 .285

7 186 .005

8 206 .003

9 226 3x10"'

10 244 3xl0"~

TABLE V: Solution of Random Trigonometric Problem
Using Powell's Method

TOL = 10, .1, .0001
MPASS = 4

MTEST = 1

345

2 2Minimize f = (x^+lOx^) + 5(x^-x^)

+ ix^-2x^)^ + lO(x^-x^)^

Inspection of the tables shows that the
same leapsize is not necessarily the best
for every problem. In Table IV a leap-
size of eight moves the point so far from
the ridge that it cannot be attained
again. We would obviously wish to lower
leapsize whenever the final point in an
iteration (before the leap) is worse than
that of the previous iteration. This will,
of course, assure convergence if a local
minimum is also a global minimum.

Returning now to the three dimen-
sional results reported in Table III, we
see that leaps do not improve the rate of
convergence in this case. We interpret
this result as stemming from the fact
that this particular function approxi-
mates a quadratic in the region we are
searching. Supporting this belief is the
fact that the first complete set of con-
jugate directions is generated at
iteration five, whereupon the search
converges immediately to the optimum.

To justify our interpretation, we
show the case of quadratic convergence
more dramatically for a function which is
not obviously quadratic. To effect this
demonstration we use the bounded
trigonometric function presented by
Fletcher and Powell (1963). In this case
the function is:

n n
Minimize f = L { E (A. . sin x. +

i=l j=l 3

2
B . . cos x

.
) - E . }i: : J

where the A and B matrices are random
numbers between zero and 100 and the
solutions Xj are random variables between

-IT and TT. The values of Ej are then

determined so that each term will equal
zero at the optimum. The starting point
for each variable is randomized between
+ .Itt and - .Itt of the optimum solution.

Although the problem is seemingly
nonguadratic , it turns out to be
difficult to generate a random problem
which is not essentially quadratic.
Figure III shows the function sin x. +

J
cos Xj and the values of x^ for what we

found as a typically generated random 5
dimensional problem. (Results for this
problem are reported in Table V.) Note
that all these values fall in the linear
portion of the curve. Although the values
of A and B have some effect on the shape
of this curve the fact that there are five
such terms in each squared term leads us

to believe that the nonlinear effects can
be balanced against each other. The
resulting function is then approximately
the square of five linear terms - a
quadratic. We would expect that in a
conjugate search procedure the optimum
would be found as soon as a complete set
of conjugate directions were found. As can
be seen in Table V this is exactly the
case. At the end of the sixth iteration a
complete set of five conjugate directions
has been found and used - at this point
the procedure moves nearly instantaneously
to the optimum. No leaps are displayed
for this function since they are, of
course, not going to improve matters any.
We might conclude from this experience
that perhaps leaps should be ignored until
after the first set of conjugate direc-
tions has been developed. The study of
this problem is interesting particularly
in light of its considerable use as a test
function for nonlinear problems. The
results of these tests will tend to be
biased in favor of quadratically con-
verging methods.

For our final test in this series we
again used the trigonometric function just
discussed but this time choose parameters
so that the solution will be on the non-
linear portion of the curve as shown in
Figure III. Now the no leap method for
this problem took 435 evaluations to
achieve a locally optimal solution of
.6706, as compared to 226 evaluations to
achieve the global optimum in the near-
linear case. The use of leaps yields
dramatic improvement^Sv^in the operation of
the code. Table VI displays the results
of this investigation. Powell reports
solutions to two five dimensional problems
with as few as 106 evaluations - which
according to our estimates could only be
achieved if the function were perfectly
quadratic in the region of search. This
result emphasizes once more that in non-
quadratic cases leaps are useful while
in quadratic cases where the ridges are
linear they tend to be of little or
slightly negative value.

In the next section we explore the
effect of our leapsize procedure on some
more difficult exponential problems for
which the unmodified conjugate directions
technique has failed to locate an optimum.

IV EFFECT OF TOLERANCES ON
SEARCH PROCEDURE

No technique is impervious to the
selection of program parameters. Not only
can tolerance parameters affect the length
of time taken to converge, but they also
can determine whether a particular
technique will converge at all. In Table
II given earlier we presented the results
of our program on the Rosenbrock function.
Tolerance characteristics are fairly
robust for this problem. Leaps in this

346

LEAPSIZE = 1
(POWELL)

LEAPSIZE = 1.5 LEAPSIZE

NUMBER OF NUMBER OF NUMBER OF
FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION

ITERATION EVALUATIONS VALUE EVALUATIONS VALUE EVALUATIONS VALUE

1 17 . 154 44 17 .154 44 17 . 154

2 68 7 . 860 69 13.207 69 15 . 991

3 92 2 . 004 9^ 3.631 94 2.683

U 113 1. 967 118 2 .191 119 2 .459

5 134 1

.

967 14]. 1.325 143 2 .443

5 159 1. 953 165 .216 167 .463

7 182 1. 934 188 . 042 191 .065

8 206 1. 861 211 .001 215 .058

9 231 1

.

786 233
-4

3x10 238 .009

10 252 1. 739 2 53
-4

2x10 260 .001

11 275 1. 580 274*
-4

2x10 282
-4

2x10

12 298 1. 523 3 0 5'"' 7x10"^

13 321 1. 440

14 342 1. 406

15 369 943

15 396 695

17 416 671

18 435 671

19 45 0" 671

TABLE VI - Solution For Contrived Trigonometric Function
TOL = 10, .1, . 0001

"Stopped when no variable changed more than .0001 MPASS = 4

MTEST = 1

case also seem to be robust in that they
improve performance in all instances.

To study the importance of toler-
ances in more complex circumstances we
used a problem generated by Box (1966)

.

In Box's notation this problem is

Minimize f{a^, 3.^, a^) =

^ ,
I
-a,x -a„x,

, -X -10x,i2[a^ (e 1 - e 2) - (e - e)]

where the summation on x is from 0.1 to
1.0 in increments of 0.1. This problem
has infinitely many global and local
optima. We choose this problem since Box
reported that for six of nine starting
points Powell's method failed to converge
to any of the global optima. Table VII
and VIII shows the results for one of

these cases, with various parameters.
As did Box, we had difficulty getting
solutions for any of these problems
when no leap was used, although we did
find that certain tolerance combinations
achieved solutions better than that
reported by Box. We also found that in
many cases scrapping the conjugate
directions from time to time and re-
starting the search using coordinate
directions seemed to improve the rate of
convergence. This obviously implies that
coordinate directions are useful for this
problem. Use of leaps improved con-
vergence in all cases. In some cases
convergence to one of the global optima
occurred through the use of leaps. In
almost all cases using a leap led to an
improved value of the objective function.
To improve things further still, we
suspect that use of a dynamically

NUMBER OF

1

TOL
2 3i'<

MPASS
FUNCTION

LEAPSIZE EVALUATIONS

T7ATTIT7 r\Tr

FINAL SOLUTION

10 . 1 . 0001 3 -L (Powell) ^ 0 1 3x10"^

10 . 1 0001 3 2 118
-9

9x10

10 .1 . 0001 J- Crowell; 1 7 Q 3x10"^

10 .1 . 0001 4 2 140 5x10"^

10 .1 . 0001 5 -1-
(, rowe 1 i ; 7x10"^

10 .1 . 0001 5 2 153 4x10"^

10 .1 . 0001 6 1 (Powell) 187 3x10"'^

10 .1 . 0001 6 2 162 2x10"^

10 .01 . 0001 4 1 (Powell) 313 1x10"^

10 .01 .0001 4 2 191 8x10"

10 1 .0001 4 1
J

Found no ,min in any direction at the 1st iteration
> using this large a step.

10 . 1 .0001 4 2 j

1 = Upper bound on TABLE VII: Results From Three Dimensional (Box, 1966; Start 2)
step size Exponential MTEST = 1

2 = Step length for
]

first quadratic fit
in any. direction

^3 = Accuracy of linear
search

changing leapsize would be advisable. If
a leap produced a better solution along
some direction we should continue to leap
until a worse solution is found before
continuing on to the next iteration. When-
ever we performed this operation we
achieved convergence with Powell's code.

The state of affairs just reported
points out a problem with the one-
dimensional quadratic fit used both by
Powell and by ourselves. The surface
seems to be so flat along conjugate
directions that the linear search stops
far from the optimum along the line. Thus
it is difficult to say whether conjugate
directions with a different line search
routine would not work with this type of
problem. At any rate it is encouraging
to note that use of leaps not only
improves speed of convergence but has the
effect of creating a more robust search
procedure

.

V USEFULNESS OF INTERACTIVE COMPUTING
IN THE EXPERIMENTS

The line of research presented in this
paper would have been nearly impossible
to conduct without using a highly flexible
interactive code such as APL. In many
ways the study of optimization is typical
of highly complex search, evaluation and
decision making tasks, where a great deal
of information both useful and spurious is
available at some cost. Gathering and
presenting this information to the
decision maker may be at least as
difficult as understanding the theoretical
and analytical aspects of the problem.
The interactive facilities of APL helped
in numerous ways in organizing these tasks.
First, we found it easy to develop sub-
routines whose performance we could study
in detail prior to including them in our
main search routine. Both debugging and
operation of these routines could be
carried out on an almost instantaneous
basis because of the language's inter-
active capabilities and its ability to

348

NUMBER OF FUNCTION
EVALUATIONS TO ACCURACY VALUE OF

L 2

TOL
3 *

MPASS LEAPSIZE OF . 0001 FINAL SOLUTIONS

0 .1 . 0001 4 1 (Powell) 168 .147

.0 . 1 . 0001 4 2 235 .009

.1 . 0001 4 239 6x10"'^

lo .1 . 0001 4 16 195 2x10"'^

LO .05 .0001 4 1 (Powell) 147 .149

jLO .05 .0001 4 4 145 .149

10 .05 .0001 4 16 103 .009" then

diverged

10 .5 .0001 4 1 (Powell) 55 .022

10 . 5 .0001 4 2 71 .018

TABLE VIII:,1 = Upper bound on
step size

2 = Step length for
first quadratic fit
in any direction

^3 = Accuracy of linear
search

monitor in detail the functioning of these
subroutines. Second, as through exper-
ience we learned which numerical outputs
from a given routine were important to
monitor, the editing capabilities of APL
allowed us rapidly to suppress
inessential information. Third, when
an hypothesis regarding the operation of
some part of the search routine was
formulated, the language allowed us
instantaneously to test that hypothesis
under controlled experimental conditions
in which possibly compounding variables
could be held constant. Fourth, the
ease with which subroutines could be
programmed and operated independently
allowed us, in effect to develop and
utilize tools for conducting these
experiments, thus helping us to
ascertain certain problem characteristics
as our study proceeded. Finally, when
hypotheses were shown by controlled
experiments to be incorrect, the editing
and memory capabilities of the language
made it easy to backtrack and hence
recover successful approaches before
conducting new experiments.

VI CONCLUSIONS

In this paper we considered the per-
formance of Powell's conjugate direction
method, as originally developed and as
modified in the manner indicated. Very
few problems could be found which gave;
Powell's original technique difficulty in

Results From Three Dimensional (Box, 1966; Start 2)
Exponential MTEST = 1

finally converging to a solution. In
those cases, restarting the directions or
some other interactive parameter change
would always start the search moving
again - in this sense Powell's technique
never failed to converge. However when
we introduced the concept of leapsizes,
the modification demonstrated a beneficial
effect on speed of convergence and the
robustness of convergence for the
technique in particular for cases where
the functions exhibit nonlinear valleys.

It should be said that the concept of
leapsizes is not a new one. For instance,
Rosenbrock (1960) used this idea. His
usage of leaps, however, differed from
ours in two ways. First he used leaps
with a steepest descent method. Second,
he leaped only in an attempt to improve
the value of the objective function - not
to move away from the ridge itself as we
do. This is a very important distinction.

349

References

Box, H.J. (1966). A Comparison of several
methods. The Computer Journal , Vol.
9, p. 67.

Fletcher, R. (1965). Function minimiza-
tion without evaluating derivatives -

a review. The Computer Journal , Vol.
8, pp. 33-41.

Fletcher, R. and Powell, M.J.D. (1963).
Rapidly convergent descent methods
for minimization. The Computer
Journal , Vol. 6, pp. 163-168.

Fletcher, R. and Reeves, CM. (1964).
Function minimization by conjugate
gradients. The Computer Journal ,

Vol. 7, pp. 149-154.

Powell, M.J.D. (1962). An iterative
method for finding stationary value
of a function of several variables.
The Computer Journal , Vol. 5, p. 147

Powell, M.J.D. (1965). An efficient
method for finding the minimum of a
function of several variables
without derivatives. The Computer
Journal , Vol. 7, pp. 155-162.

Rosenbrock, H.H. (1960). An automatic
method for finding the greatest and
least value of a function. The
Computer Journal , Vol. 3, pp. 175-
184 .

Zangwill, W.I. (1969). Nonlinear
Programming: A Unified Approach ,

Prentice Hall, Inc., Englewood Cliff
New Jersey, Ch. 6.

APPENDIX: LISTING OF CODE

Tuir, IT. FMPinyn pouf.llt. cnujuoATF codfdtnatf ffapcv. y.TTn vaiuahlf lfapfizf,
A PAPAMFTFR DFr.TGNFP TO PFPfUT CIIANCTNC TlIF POIllT AT yPICU TllF IIFXT T'tfPATJOU
of thf r.FAPCU TFcntiToiiF nFCincr.. tpf dirfctton of thf lfap rr; tpat of tuf last
succFr.npiiL conjugatf coorpinatf ffapcu ik At; ttfrattop.
t'.AIN PROGRAM TP, OPFRATFD UFIHG ITFP ,INIT ,LEAPr,IZF !'ACR_ P07NT ,FNVALUF
GLOBAL PARAMFTFRP, FOR TUIG VP ARE I'PAPP (MAX FVALVATTONP PFP PAPP),
HTFPT (MAXPTPPPIZF RFPUCTION BFCAIPF OF NO TJWTCATPP yiNIf-'UM)
TOL-'-MAXPTFPPIZF , PTFPPIZF , ALLOWABLE TOLFRAPCE
COUNT (SET TO ZERO WHEN REGINNING RUN; GIVFP NUf'BFP OF FUNCTION VALUPP COMPUTED
ZM.IN GIVES MIN FNVALUE FOUPP TO DATE
XX GIVES DIRECTIONS EMPLOYED IN TUF CURRENT ITERATION (DELETED DIRECTIONS
MAY BE REPORTED, BUT ARE NOT CALLE DFOR IN THE ROUTINES AS PPOGPAMMED)

.

DATA IIVES HISTORY OF THE SEARCH

VMACRiUlV
V NTIM MACR INI iDIRE ;POIN xNI xPFDU ;ORT ;YY xDIM iDIMM

[1] (\INPUTS ARE NTIM MACR INIT POINT.
[2] fl TOL MUST ALWAYS BE DEFINED BEFORE RUNNING TPIS PPOGPAM
[3] <\XX AND DATA MATRICES MUST BE DEFINED IF NTIM[21^1
[4] DIMM->-pINI
[5] DIM-^DIMM-1
[61 A'J-<-0

[7] -/IQilx ,;/rj//[2] = l

rs] DATA-^d ,DTMM)pTNI
[91 XX*-(\DIM^o .'=\PIM
[101 DATA*-DATA ,\ XMNI SEEK XX
[in NI^O
[12 1 ADA:DATA^PATA , FlK , (

~1 ,DIM!n^DATA)PFFX((-DIM) ,Dir)fXX
[131 JK-^-l^oDATA
[lul DIRE-^DIM^ ,DATA[.JM; 1- DATA[JM- NTIM[.2l+DIM ; 1

[15 1 PA TAi-DA TA,[11, LMIN (, DA TA [JM ; 1) . DIRE
[161 POIN-^DIMt(NTIM\.?,']y^ ,

(~ 1 ,DIMM) ^DATA)-(NTI!'\ ll-l)x ,DATA'^ JM
[17 1 DATA-^DATA JAIPOIN ,EVAL>^POIN
[181 .V7'J/-*[21^1
[19 1 YY-^a-DIM) ,DIM)^XX
[201 ORTi-(yyHDiM, 1)p(+ /yrxyr)*o. 5) + . ^dire
[211 OPT*- \ OPT
[221 ORT->-{(ORT=[/ORT)y<\pORT)-0
[231 RFDU->-(l*oXX)ol
[2Ul REDin ((^PEDU)+ORT-DI!n-^0
[2S1 XX*-REDU^XX
[26] XX-^XX ,^1^DIRE
[271 NI-^NI+1
[28 1 ('7 ,DIMM)^DATA
[291 'ooo >; 'COUNT = COUNT;' ooo

'

[301 -*ny \NI>NTIM[.1'[
[311 -^AM

JSEEnmv
V RSS->-PFV SEEK XX ;IM;I ;SSMP

[11 IMi-l^oXX
[21 7-1
[31 RSS*-{ \ ,DIMM)oPFV_
[41 AAA'.SSMP^,I,MIN(. (

~
\ ,DIMM) ^ RSS) ,XX[I;!

[51 RSS-<-RSS .[AISSMP
[61 7-7+1
[71 -e22x i7>7/<

[81 -*AAA
[0] £2£:A\T/;->-l OiRSS

V

351

7 nnR*-LMIN X;A;P;C:D;7.A;Zn;7.C:7.D -.DEN ; ZZ ; 7, ; ZZZ; TT ;f't' x^ZZ \nTF.P rr xTEr? ,PIIO

II t^USEn A QIIADRATTC RECPEnr.Tnt! ON TI'PEE POIflTn TO PREDTCT A t'ltlTNUM

21 OijtiPiiTn ARE r>TEP\.^ cnnRpr'] and x\pniuf,FH value, and PTRECTTON']
31 f^r;TEP[Al=MAXETEPr7ZE ,nTEP[21=ETEPfrTZE,rTEP^2l = ALr,nirAPLE TOLERANCE
Ul STEP-<-TOL

5] PAnn*-!
Gl TEr^T-^Q

71 t1M--<ApX) -1)^2
nl ,hJ:A-0
9] IpO
101 JJ-t-O

III .'?*-.':rf:?r 21

121 ,r •.ZA-^X\ MM^l"]
:i3i ;5;?-t-;7U/i/:«)(/w+x)+Bx(
lU] *G^\ZB>ZA
15 1 r-H2x/7yj^pr2i

161 zc->-;7y/iL«)(/7//+;r)+rx(-AW)+x
171 R*-{{R ,A ,ZA) ,B ,ZB) ,C ,ZC
181 i:DEN*-(. (.P.-C)^ZA)^{{C-A)>^Zr.)-^(A-B)^ZC
191 /^<-(((/?*2)-r*2)xZ/l) + (((C*2)->l*2)xZB) + ((/l*2)-.'?*2)x.'^C

:2n] l)-'-(PxO. 5)tDF//
:2i] -»Wx,(|/))>.';7'/:pr 1]

;22l *KKKx\Q<nENi {A - B)^(B-r)yC-A
:
23 1 AfZZ-((W.^r/Tpr 31) , ((\D-B)<nTEP[3l) , (| <.''r.^?r 3]

241 -*Ly\i+/tlZZ)>0
:25l ?/l/7,'?*-p/l,9.'7+l

: 2 fi 1 X I P/5 .T.T ^//P/l ,'75

'271 N:Zn'>-EVALfi(MfHX)+P>^(-fM)^X
2R1 P*-R,D,Z1)
.2°i^ ZZ*-ZA ,ZB ,ZC ,ZP
301 7z;^-<-(r/.'^z) =

;311 -J-^TTx I (+/,':z;^) >i

321 r7'/?:->-Jx i4 = + /?;;^Z = 0 0 0 1

33 1 ZZZ<r~ZZ7.
:3itl ZZ*-ZZZ/ZZ
351 ^-^ZZZ/zl ,/?,C,/)

3B1 .^/i-c-zzrii

371 Z,'?-^ZZr2l

38 1 ^C-<-ZZ[3l

391 .1*Z[ll
401 B^^Z\2^
:hii r-HZ[3l

4 21 -/.'

:43l a •.C*--r^TEP\.2'\

: 4 4 1 zc-p v,i /: <} (+ X) + r X (-/.^a') t x

:45l R-^{{R ,A ,ZA) ,B ,ZB) ,C ,ZC
' *}'.

:47l KKK-.'TErT JNPICATEf^ NO MINI fUf-i ;FTEP[. 2l'>-r:TEP[2 10 '

;4 8l TEST-<-TE,'^T+\

ioi .':r/7pr 2 i-H.'TT'rPC 21? 10
i 1 1 >-,r,r,r

i2l /,:*/,;,

i3l 'VALUE ir ' ;((l /Z/l,Z,'?,ZO = Z/1,Z/?.ZC)/Z/1.ZH,ZC
54 1 LL:PHO-^{ \ IZA ,Z/?,Zr)=Z/ ,7?. ,ZC
55 1

561 '/r • ;(A^Af+/U(((p/fPxi3) = r/P/;nxi3)/yi,/?.r)x(-A70+Ar
;71 LLL\
ial RRR*-U'MiX)-¥(. ((P/Wx ,3) = r/P/'(7x I 3)//1 ..T.OxC -A'/MtX
5 9 1 RRRfRRR , ((PZ/P x , 3 1 = f /P/.'(7 x l 3) / Z/1 , Z/? , ZC
6 01 0

352

[ni] I : ' PPEPICTEP M7N LARGER THAN KtlOV!! VALUFH; nTFP[2'*-r;rEP[. 21 i 10 '

[62] TEnT*-TF.PT^\
[0:^1 '*Lx\TEr,T>.MTErT
[64 1 nTEP\ 2l*-r.TEP\ 7liX0
[051 *JJJ
[661 :/?-(- .<7J';-;P[llxx/5- /I

[67]
[68] -*IU1*\JI>1

[6 9] ?/15.T-^P/l.T.':+1.

[70]
[71] ntl-.'MAX I11CREMEHT HHEP TWICE -.MAXETEPriZE POUELED'
[72] .'TT/':?[l]i- ,'7r^'P[l]x 2

[73] JJJ:Pnn*-(.\./7.A,7,r.,ZC)^7.A,Zn,7.C

[74] RRR<-(t'M\X)-\-{ ((p;?Pxi3) = [/p;/0x i3) //I . H , C) x (- W/,/

)

[75] RRR-f-RRR ,(. (PHfl^^ \ 3)=[/PIlOx \ 3 >/Z>1 , Z^,;^(::

[7 6] RRR*- , RRR
[77] X*-RRR ,{-MM)^X
[78] ->c7J
[79] .TTT : ZZZ-f-C i4)xZZZ
[80] ZZZ-^([/ZZZ) = ZZZ
[8 1] -^rr/?,

V

VEK/lL[n]V
V P-KK^/. /;.r;ZZZ

[I] f^THIP FUnCTIOE COMP'UTEE VALUFE OF A TUREF^PJl'EtlEIONAL FXPOEFIITIAL^.

[2] zzz-<-o . ix I in
[3] P-!-(pX[1 ;])pO
[4] J-Hl

[5] .?[J]-H + /(((*-Xri;7]xZZZ)-*-X[2;I]xZZZ)-X[3;J]x(*-ZZZ)-*-10xZZZ)*2
[6] ->8x iZf/J//<P[7]

[7] ZMIN<-Rlll
[R] T-s-J+l

[9] COiniT<-COUtJT+l
[10] ->0x , J>pX[1 ;]

[II] ->5

V

piEXAypLE OF PEOCRAM OPEFATIOH

a nilNT , TOL , wp,i .'T.T , trrEr? , begin
0 10 0.1 0.0001 4 1 2.5 10 10 275.881

10 1 AM CP BEGin
TEST inUICA TEE, HO I'lUIt'UM ; ETEPl 2] +-rrPPr 2] M 0

PREPICTEP MIN LARGER THAN VJIOWN ^^ALUEE; ETEP[2l<-ETEP[21 rio
TEST INPICATEE I!0 Minnni^^ ;ETEP[21<-ETEP[2H10
2.15424382 16.44652126 0.6601690751 0.1639626634
2.15424382 16.44 6 5212 6 0.6601600751 0.1639626634

ooo COUNT = 22 ooo
PREPICTEP I'lN LARGER TUAN KNOm I'ALIIEE; ETFP\ 2l-^-nTFP\ 21 i 10
TEET INPICATEE NO f'lNIMUf iETFP[2']-<-ETEP[2

'] i 1 0

PREPICTEP ."IN LARGER THAN KNOWN VALVEE; ETEP\ 2l->-ETEP\ 71 -.10

2.105092584 16.30252126 0.6716643134 0.1582622029
2.10 5 09258 4 16.302 5 212 6 0.6 716 6 4313 4 0.15 82 6 22029

OOO COUNT - 3 3 OOO

353

SELECTION AND EVALUATION

Chairman: A.C. Williams, Mobil Oil Corp.

Panelists: J. Gregory Colahan, General Battery Corp.

J.R. Ellison, Mobil Oil Corp.

Milton M. Gutterman, Std. of Indiana

David Hirschfeld, Management Science Systems

Summary of panel discussion by A.C. Williams.

How does an organization select a
mathematical programming software system
for applications in a commercial environ-
ment? What are the relevant factors to be
considered, how can they be evaluated, and
how should they be weighted in arriving at
a conclusion. These are the questions ad-
dressed by the panel. On almost all mat-
ters, there seemed to be a consensus of
opinion, even though the panel members
came to the questions from a number of
different perspectives. This note is an
attempt to summarize that consensus.

As in so many other instances of
work-a-day system evaluations, there are
three aspects to be considered: (i) the
functional, (ii) the technical, and (iii)
the economics. These are listed in the
approximate order of importance.

Functional concerns, of course, begin
with asking whether the particular system
under consideration will meet job require-
ments, both now and in the foreseeable
future. This requires an evaluation not
only of the system being offered, but of
its future possible path of evolvement.
And to evaluate that requires that some
hard questions be asked about the vendor.
Will he remain in business? If he does,
will he maintain it and keep it up to date,
and is he likely to have it evolve in a
direction suitable to our needs?

It is important to realize that the
choice of a mathematical programming
system is likely to influence and perhaps
to influence greatly, the future develop-

ment of applications in the company. If
a code has a good GUB feature, large and
comprehensive distribution models can be
developed and used. A general purpose
MIP feature could allow development in
directions which would otherwise not be
possible. The same could be said of a
quadratic programming option, network flow
subroutines, special purpose MIP's, a
separable programming option, etc.

An important functional question to
be asked of a proposed system is how well
it can be integrated into the company'

s

operating procedures. Especially in in-
stances where results are needed on a
real time basis, as in some day to day
refinery operations, we need satisfactory
answers to these questions:
(i) . Does the system facilitate getting
data and maintaining it?
(ii) . Will it be easy to ask questions
and get answers (are the matrix generators
and the report writers satisfactory?).
(iii) , Will the system be reliable?

The question of reliability gets us
into the technical questions. Reliability
is the question of how bug-free is the
code, and how stable is the code, (sta-
bility here refers to the code's ability
to handle numerical difficulties arising
from almost singularities and from degen-
eracies) . It is generally conceded that
no code is bug-free or stable for all
problems, and that therefore applications
systems have to be designed to take those
facts into account. A preliminary reading
on the reliability of a system can often

354

be obtaining be asking around. The
vendor will often supply a list of satis-
fied customers. However, it should be
borne in mind that his list of all cust-
omers and his list of satisfied customers
may not be identical.

Many of the "old hands" keep a num-
ber of test problems, carefully safe-
guarded from any changes, to be brought
forth to exercise a proposed code.
Usually, there will be at least one test
problem that will upset the stability of
any code - the point being to see how
long it takes to bring it down, and how
gracefully it does down when it finally
surrender s

.

The test problems should, of course,
contain representative problems, typical
of those to be solved in production. Most
users are not surprised if their repertoire
of problems turn up some bugs in a code
being tested by them for the first time.
The real questions are: how does the
vendor respond. Does he give you a work-
around? Do new bugs continue to appear,
or does the first spate of bugs appear to
be all of them?

Bugs and instabilities will persist
in every code, and they will have to be
dealt with. An important technical prop-
erty to be looked for therefore, is flex-
ibility to adjust tolerances, conveniently
and easily; and to control the flow of the
solution, by e.g., adjusting inversion
frequency, level of multiple pricing and
other parameters.

While the local l.p. technical person
wants and needs such controls, in many
instances he wants to be able to shield
the users from worrying about them.
(Some would say the user shouldn't even
know about them, but this appears to be
an extreme view.) Therefore, the ease
with which the system control language
allows macros to be written and executed
is an important feature in most installa-
tions.

In many installations the ability to
do recursion would be an important prop-
erty to be looked for in a code. In this
case, it would be important to be able to
read solutions, to read the shadow prices,
to analyse them, and to revise the coeffi-
cients conveniently and easily in a higher
level language, such as Fortran or PL/1.

The economics is the matter of cost
effectiveness. Benchmark runs have to be
designed, run, and analysed. Some of the
benchmark test problems will be for the
purpose of exercising the code, i.e.,
testing it for bugs and for its stability.
In testing for cost effectiveness, however,
actual production conditions should be
simulated as nearly as possible. Actual
production models should be used, if
available. If most production runs are

made from an advanced starting basis,
with a few revised elements, then the code
should be tested under those conditions.
The performance of the code in solving a
problem starting from scratch is almost
irrelevant. If most production runs are
made during prime shift in a multi-
programmed environment, then the test of
the code should be done during prime
shift in a multiprogrammed environment.
Of course, results will vary from run to
run, so that several runs for each case
will generally have to be made to get an
average and a variance.

Computation associated with the
mathematical programming activities can
generally be broken down into (i) matrix
generation, (ii) "execution," and (iii)
report writing. The "execution" can
further be broken down into "primal" and
"other" (typically converting the input
data into the formats to be used by the
code, e.g. SET UP, CONVERT).

For at least one production shop it
was reported that the execution step
accounts for only about 60% of the total
CPU time charged to linear programming,
the other 4 0% being taken up by matrix
generation and report writing. And only
a total of 40% was spent in primal, i.e.,
the actual execution of the simplex
method calculations. There seemed to be
some agreement that these kind of pro-
portions were not atypical. The con-
clusion is, of course, that the matrix
generator and report writers cost per-
formance can be significant and important,
and should be included in the benchmark
tests.

What to do about tuning is a major
headache in benchmarking codes. The
amount of main memory assigned can have
a major effect on the performance of the
code, and, of course, an inverse effect
on the other work running in the computer.
It is generally recommended that a number
of different memory size assignments be
tested for the major application types,
and that, on the basis of that data, a
recommended size be arrived at by use of
the charge out system and/or negotiation
with the computer center.

How much tuning of the parameters of
the code itself should be done is a diffi-
cult question. Which parameters are con-
sidered most important are, of course,
initially best determined by consultation
with the vendor or with other users. If
the range of different problem types to
be solved is fairly narrow, it can pay to
spend considerable time and energy to get
good parameter settings, whereas if the
problem set is very variable and subject
to change, it may be that one should not
go much beyond using the default settings
suggested by the vendor.

Overall, the benchmark problem is

355

difficult because of the many variables
involved, and the fact that run results
are themselves variable. Unless great
care is taken in designing the tests, the
number of runs and the consequent amount
of computer resource used can get out of
hand. And, unless great care is taken in
interpreting and analysing the results,
wrong conclusions can be reached.

In summary, any organization with a
significant present or contemplated mathe-
matical programming work-load will find it
worthwhile to exercise a good deal of care
in the selection of a software system.
The issues discussed in this note are
probably the issues that the organization
needs resolved. But, more important than
any specific issue is to assign the eval-
uation task a reasonable priority and
budget, and to assign a good person to the
task.

Attached are tables which may be usee
as general guidelines to some of the
mathematical programming systems and
matrix generators/ report writers. The
tables are based on the best information
that was available at the time they were
prepared. New systems and new features
are continually being brought out, however
so that any potential user would have to
obtain the most up to date information.

MAGEN-PDS
NAME DATAFORM GAMMA OMNI MGRW other

TEMPO X

APEX III X

MPS CFMS

OPT. SYST. X

FMPS X X

MPSX X X X X

MPSX/370 X X X X

MPS III X X X

LP/System 3 X

356

ti J?

H W

O O

o

goo
ffl r-
H n n

O w
< (U

> O -H
H O
Z rH 0)

D .H W

3

C O
(1) o

r-(O
iH VO

g 01

>1 0)

0) -iH

C H
O (1)

W CO

o o
o r~ o
r-~ ,H

U U
0) oj o

U J3 XI o
Q >i >iO
U (J U

CO

£i
&>
3
O o o
>J o o

m m 03

w
H
D
Cn

§
u

X

+

X

X X X X

X X

+ X
+ X X

* *

X X

X

X X

X

X

X

X

X

X

X

X

Q)

c
•r-1

c
o

(0

X X X X

X X X X

X X X X

u

c

Hi
I

c
o

+J O
'^^ w

iH

o 10

z w gH Hi 5 1

H E-i c
(d

< -p

a. < w +J W
Eh 0) OJ S-l u

< U M r-H (U

Eh M .-1 Q
< D O 0) ^ w
Q fa Q 05

M

<w CM

D H o W
o S w W

o
Eh
Z
O

u
0)

N
H

u
Q>

-P N
-H

o
Q P

a,
< o
H a<
m o

a

* +

357

EXPERIENCES IN THE DEVELOPHENT OF A LARGE
SCALE LINEAR PROGRAntllNG SYSTEPI

Robert J • S joquist
Control Data Corporation
^B01 North Lexington Avenue
St- Pauli Minnesota SSllS

ABSTRACT

There has been increasing interest in software development techniques over the past few
years- Effective techniques for developing reliable-i maintainable and extendable
software significantly reduce total software costs- Several techniques have been
described in recent literature- The objective of this paper is to report experience with
some of these techniques in the development of APEX-III-i a large scale linear programming
system -

Several of the techniques are felt to contribute to a successful development- They
include a project staff organization similar to a "chief programmer team"-i documentation
and coding standards-i and open programming-

Techniques which did not appear directly applicable to the development were structured
programming and top-down programming-

Finallyi it is noted that a significant amount of effort is required to prepare accurate
estimates of development costs-

INTRODUCTION

Last year-i our company completed develop-
ment of a large scale linear programming
system-i APEX-III- Several recently
publicized mathematical programming and
software development techniques were con-
sidered and used in the development- Over
the past year-i we have had the opportunity
to evaluate the effectiveness of these
techniques -

A development of this kind requires two
distinct types of skillsn mathematical
programming skills and software develop-
ment skills- By mathematical programming
skillsn we mean those skills unique to a

linear programming system- They include
a knowledge of the type of problems to be
solved- An efficient design considers
model characteristics such as size-i
density and structure- Familiarity with
characteristics of current algorithms is
needed to properly match the algorithms
to the computer- Performance and
numerical stability of a code reflect the
programmer's understanding of the algor-
ithm •

Just as important as the mathematical
programming skillsn are the software
development skills- These are the skills

required for development of any large
programming system- They include a know-
ledge of the computer-i the operating
system-i the compilers and assemblers-
They include a familiarity with data
handling techniques and means for
efficient use of the hardware- These
skills also include a working knowledge
of techniques for producing reliable and
maintainable software products-

The purpose of this paper is to report
our experience with these software
development techniques-

THE DEVELOPMENT PROJECT

Ibi

The development
year period and

occurred over a foui

—

in two distinct phases-
The first was the development of an
in-core-i no frillsn linear programming
system- Five programmers completed
the development in less than one year
The code was refined over a two-year
period by one programmer working on
a casual basis-

The second development phase involved
adding several major features to the
system- These included an out-of-core
capability-i mixed integer and parametric

358

programmingT and a matrix reduction
facility- The product was required to

operate on three series of computers and

run under three different operating
systems- This development phase involved
as many as IS programmers over a 1-1/2

year period- The objective of each phase
was to produce a commercially profitable
software product-

THE DEVELOPriENT TECHNIQUES

Project staff organization was similar to
the "chief programmer team" described by
Baker and Flills -[1>- The chief programmer
team consists of a chief programmern a

backup programmer-i a project secretary-i
and a pool of programmers-

The chief programmer is generally the most
senior member of the development team- He
is a working member of the team with over-
all technical responsibility for the
project- On this projectn his duties
included system designn assigning tasks
to project membersn and co-ordinating
efforts of individual programmers- He
also participated in coding and testing
the system- In the first phase of
development -I he produced as much code as
any other project member- In the second
phase-i he produced far less code- More
time was spent on design and technical
administration of the project-

The backup programmer assists the chief
programmer and shares his duties- He is
familiar with the entire project and is
able to assume chief programmer responsi-
bility at any t ime

The project secretary maintains a master
library of the system and documentation
during development- The secretary
incorporates new and corrective code in
the systemn keeps a record of all changes
made-i and maintains listings of the system-
The project secretary described by Baker
and Hills also was responsibile for
making and keeping a record of all test
runs- In this development-i project
members took turns handling the secretar-
ial duties- Only the most significant
test runs were recorded during the
development

•

System subroutines were written in FORTRAN
and assembly language- Routines critical
to performance and those handling packed
data were written in assembly language

-

Remaining routines were written in FORTRAN-
Extensive use of FORTRAN eased the prob-
lems of executing under different
operating systems- Subroutines could be
coded and tested more quickly using
FORTRAN than using assembly language-
This left more time for writing perform-
ance critical routines-

Documentation standards were specified
and enforced- At the start of the pro-

jecti each member was given a loose leaf
notebook for internal documentation- The
notebook was added to as subroutines were
defined and designed and updated as
routines were modified- Internal documen-
tation consisted of subroutine descrip-
tions-i communication region ICR} cell
descriptions! and array/file formats-

Subroutine and CR cell descriptions were
maintained on the program library- This
documentation was extracted from the
library via computer program-i copied and
distributed to project members whenever
changes were made-

Subroutine documentation consisted of
comment cards within each routine- Lie

felt documentation was more likely to be
kept current when included in the routine-
Documentation was then updated at the same
time and in the same manner as the
executable code- Two levels of documenta-
tion were required for subroutines- The
first level describes what the routine
does and hou it is called- This level is
written when a necessary operation is
defined- The second level is a step by
step description of how the routine per-
forms its function- This documentation
is the result of subroutine design and
is equivalent to flow charts- Both levels
are written before the subroutine is coded-

CR cell definitions and documentation were
maintained as a data file on the system
library- Subroutine COHHON statements
were generated from this file by a com-
puter program- This program also produced
printed documentation of the CR cells-

A minimal set of coding standards were
established- The primary pupose of these
standards was to promote simple-, readable
code- The standards were intentionally
minimal so they were easily followed-
Standard FORTRAN calling sequences were
used for all subroutines- Subroutine
names begin with a (3 or a J if a function
subroutine- CR cells were named to
differentiate them from local variables
and to describe their use- The first
character of a CR cell name specifies
whether its contents is alphan integer-i
or real- The second character of the
name specifies its use- The name then
defines the cell to be a name-i switch-i
index-i counti parametern or tolerance-
Statement numbers in FORTRAN routines
are in ascending order- Each routine
was restricted to a single exit-

Structured programming! top-down pro-
grammingn and open programming were
considered for the second development
phase -

Structured programming ClnEi3> generally
does not allow GO TO statements- Rather-i
all decisions are programmed using IF-
THEN-ELSE and DO constructs- The purpose
is to provide easily readable code by

avoiding complicated branches of control-
The IF-THEN-ELSE constructs serve to
define all conditions under which a

section of code is executed-

One routine uas written using structured
programming to evaluate its usefulness for
this development- The routine performed a

complicated vector packing operation-

Structured programming rules were rigor-
ously applied for the investigation- The
technique did not produce the desired
results- Rather-i the structure had to be
forced upon the routine and detracted from
its clarity and performance- The technique
was not used in remaining development-
Howevern the idea was not entirely rejected'
Reasonable efforts were made to avoid
unnecessary backtracking and to allow
control to flow from top to bottom-
Sections of code which could be entered in
special ways were flagged with comment
car ds

-

Top-down programming -[ln3> is a technique
to organize the development into levels
of detail- The basic inputs-i outputs-i and
operation of the system are first defined-
Next a first level of detail of operation
is added to the system- The process is
repeated until all levels of detail are
defined- Each level can be designed-i
coded-i and tested independently of
succeeding levels- The technique was not
used in this development- Ue felt that
design of an efficient linear programming
system consists of several iterations
a top-down-i bottom-up sequence- Perform-
ance critical routines are dependent on
details of method and file and array
formats- These aspects need to be formu-
lated quite early in the design process-
To a degree-i these details determine the
form of higher level routines-

Open programming il-i2> is a technique which
was used in this development- Uith this
technique-i each programmer's design-i
documentation! and code is reviewed by
another project member- A thorough review
should result in improved readability of
documentation and code- The review should
also uncover errors that may be missed
during system testing- A thorough review
also requires a considerable amount of
effort- In this development! all documen-
tation and approximately half the code was
reviewed- Each programmer first had design
documentation reviewed by another program-
mer- After review and coding through a

clean compile-i code was similarly reviewed-
Additionally-i all design documentation was
reviewed by either the chief or backup
pr ogr ammer

-

Software verification is a difficult and
costly part of any development- It is
economically infeasible-i if not impossible
to find all errors in a software product-
Ne vertheless-i the software must work
correctly nearly all the time to be useful

and profitable. Nearly all software
development techniques described above
contribute to software reliability- Three
direct methods of verification were used
in this development-

The open programming review was the first
means of verification- Secondlyn several
utility routines were tested independently
of the system in a simulated environment-

This was an attempt at checking out all
paths through critical routines- Thirdly-i
the integrated system uas tested- Several
models were generated to test special
conditions- The bulk of the testing-i
howevern relied on real world linear
programming models for system checkout-

CONCLUSIONS

The project was completed on schedule!
costs were within 10'/. of budget and per-
formance and reliability standards were
met -

Documentation and coding standards were
considered critical to success of the
project- Without these standards-i it
would not have been possible to integrate
and debug the system on schedule-
Additionally-i documentation produced
during the first phase of development con-
siderably eased the second phase effort-
Several of the problems that were encoun-
tered were in areas where standards were
not closely followed-

Open programming appeared to be well
worthwhile- The review uncovered bugs and
resulted in improved documentation. Ue
feel the time spent on the review was more
than made up for in the test phase-
Initial debugging indicated reviewed code
had approximately 1/3 the errors of non-
reviewed code- The quality of review
could be improved if all done by the chief
or backup programmer- These two individ-
uals are most familiar uith the entire
system- However-i this places additional
time demands on two critical resources-

Project statistics confirmed the theory
that considerable effort is required to
produce accurate estimates- The project
allowed spending a portion of the
original budget before producing final
cost estimates- Table 1 compares the
accuracy of these estimates to the portionl
of work complete when estimates were made-i

Table 1

Errors in Estimation of Hajor Tasks

Task

A

B

C

D

Portion Complete
Before Estimate

IT/.

IE-/.

3-/.

17'/.

Error in
Estimate

under Etj/C

nil

under flO^C

over Ib^

360

The error in estimate for task A was caused
by a change of scope imposed upon the pro-
ject- The negligible error for task B

shows that costs can be controlledi given
a reasonable estimate- The error for Task
C resulted because insufficient time was
spent on the estimate- Task D was com-
pleted with less effort than estimated
because a simpler implementation was
devised

•

Finally! it should be mentioned that
individual programmers' attitudes are key
to the success of any development- Pro-
jects are completed on time by programmers
who are determined to finish on time-
duality products are turned out by
programmers who take pride in the quality
of their work- These programmers can make
effective use of new software development
techniques

•

REFERENCES

1- F. T- Baker and H- D- Mills-, "Chief
Programmer Teams"n DATAHATION i

December-i l'=i73

B- J. R. Donaldson! "Structural
Programming"-, DATAHATION i December-,

3- E- F- Miller and G- E- Lindamood-,
"Structured Programming: Top-Down
Approach"! DATAMATION ! December! n?3

361

MATH PROGRAMMING USERS VS THE COMPUTER CENTER
(A personal perspective as seen from a foxhole)

J. R. Ellison
Mobil Oil Corp.

The fact that there is a general and on-
going conflict between the users and
their computer center is generally, and
I believe correctly, taken for granted.
If you will accept this as a fact of life,
let's analyze why this conflict exists.

The first, and I believe foremost, reason
is that each views the other as the
proverbial "black box" and, since there
is little personal contact with or real
understanding of the other's problems or
motivations, conflicts arise.

One source of conflict is the difference
in objectives. The primary objective of
a computer center is often stated to be
to "maximize" throughput, efficiency, etc.
This can be measured as computer center
income (charges) vs budget prediction, as
how well job schedules are met, or as
wall clock hours or CPU hours per day the
center runs. Other popular measures are
how many jobs are run each day and "per-
cent CPU utilization"

.

The Math Programming user usually has as
a primary objective the provision of an
answer to a question asked by some level
of management pertaining to the economic
consequences of taking or not taking some
course of action. This question includes
defining the physical courses of action
which go with the economics. In pro-
viding the above answer, or answers, the
Math Programming user is seldom able to
schedule his work since questions are
addressed to him and "outside" data is
provided to him on a time table which he
cannot control and the answers are re-
quired by a predetermined date (prefer-
ably yesterday) which is not under his
control and is often not under the con-
trol of the person asking the question.
The resulting work load disrupts the com-
puter center schedules with a sudden on-
slaught of computer load as measured by
CPU time without a corresponding increase
in the number of jobs run.

The user's habit of preferably working
only days (prime shift) compounds the
problem since he wants to make and

correct errors on the same day so he can
submit more work that night or, better
yet, get more prime shift runs that day.
The Math Programming user is also "prob-
lem" oriented and looks on the computer
center as the provider of a tool required,
to solve "his" problem so that he can
provide an answer to a complex question.
He views the center as a cost and as an
obstacle to be overcome when it does not
meet his requirements. After all, com-
puter centers don't make money - only
answers make money.

Comparisons of the above statements show
areas of conflict between scheduled and
unscheduled work, specific vs broad objec:
tives , and differences in objectives and
measurement of effectiveness.

The computer center viewpoint can often b,

characterized as a responsibility for
maintaining a complex operating system an
hardware which must respond to the demand
of a wide variety of users, none of whom
understand the computer center's problems
or how a computer actually functions.
They also appear to believe that Math
Programming users are unreasonable people
who can shut down or stretch out job pro-
cessing for other users (especially
scheduled users) if they are allowed the
amount of CPU time they need. Unfortu-
nately, these viewpoints often have a
large element of truth in them. Stretch-
ing out of job processing causes schedulei
jobs to miss their schedule and has been
known to make accounting type users
extremely unhappy with the computer cents:
This is important to the computer center
because accounting types are much more
numerous, are very adept and well trains'
at writing complaining msmorandums , and
ths computer centers are often controlled
by accounting types. If you don't like
the above, just substitute technical type
or whoever has been causing you the most
trouble and it will be just as applicable

The Math Programmer's point of view is
that "we" have to obtain "optimal" answer;
to questions posed by management and thes«^j,

answers must be available by a given

362

deadline. Unfortunately, we must expend
that limited resource known as time to ob-
tain data necessary to understand and cor-
rectly model the problem as stated ; we
must spend additional time removing "bugs"
from the model and revising the model to
fit the actual question as opposed to what
,we thought the question was and, finally,
we must obtain sufficient time from the
computer center to allow us to meet our
answer deadline and thus stay out of trou-
ble. This last item is known as providing
"reasonable" turnaround and, since it is
at the end of the time chain, is the
source of much agony to all concerned.

The Math Programming use
the center how much comp
need, simply says he doe
knew how much time he ne
runs, he would know the
not need any. While the
in this, most computer c

predictable and well sch
he has just told them he

r, when asked by
uter time he will
sn ' t know. If he
eded and how many
answer and would
re is much truth
enters still like
eduled runs which
doesn't have.

:^ow, with the above problems and conflicts
3f interest, how can we learn to co-exist
rfith a computer center and get work accom-
plished without giving in to them. I be-
lieve that it is possible by defining your
general requirements in terms of the
following

:

(1) CPU time required for prime shift and
total shift.

(2) Job turnaround. Analyze what you are
asking for and be reasonable. Turn-
around isn't as simple as it sounds.

(3) Storage space requirements. Perma-
nent storage space is critical. Disk
space is almost always in short
supply, expensive, and highly desir-
able. Tape is plentiful, cheap, and
less desirable since it must be
mounted. System "scratch" space
(temporary space) is also limited
since it is usually disk. Remember
that tapes can be limited by the num-
ber of tape drives available. You
must be realistic with your space
demands if you expect turnaround since
multiprogramming means that there are
more users than just you demanding
space at any one time. Extreme re-
quirements can delay your jobs.
Memory requirements - memory can be
expensive and limiting. Be reasonable
and careful even if VS (Virtual
Systems) is around.

(5) Math Programming codes - you should
know more about which codes are best
for you than the computer center does,
but be prepared to prove your point of
view and to justify t'ne costs.

'Co define the above requirements in any-
bhing approaching a quantitative manner,
^ou need tools which will allow you to
iefine where you are and where you were ,

rleports based on the Systems Management
function (SMF) or its equivalent are the

(4

best that I have found. Don't rely on
opinions, feelings, "informed" opinions,
etc. They are unreliable, cannot be com-
pared, and are an excellent booby trap for
the unwary. Careful hand tabulation of
data from your runs is better than nothing
but very time consuming, especially if you
collect enough data to be really useful.

Now let's touch on some of my personal
biases and prejudices (I prefer to call
them measurements) which I swear by when
they agree with my point of view and at
when they disagree.
(1) User turnaround - time measured from

job in at the reader to finished job
output available to the user. The
user correctly loves this but be
careful. Printout priorities and
length of printout (lines and printer
speed) can influence this measure and,
since this isn't truly controlled by
the center, is not exactly a fair
measure of computer center perfor-
mance .

(2) Center turnaround - time measured
from job in at the reader to job
finished by the initiator and turned
over to the output queue. I consider
this a measure of the center's ability
to provide service. It includes time
in the input queue plus time in the
computer and thus measures items
"controlled" by the center and is a
measure of their ability to do work.

(3) Execution ratio - wall clock time
from initiator start to initiator
finished divided by problem program
CPU time. This is an indication of
the load on the CPU and can be used
as an indication of whether or not
you are getting your "fair" share of
the computer. It is also useful in
estimating how long your job will be
in the computer.

The above three measurements must be accu-
mulated, averaged over a reasonable time
span, and then plotted so that you can
see trends or changes from whatever
"normal" is or becomes.

Additional information which allows you
to see how your job load fits into the
computer center and its schedule are
helpful. Data on what percent of the
total CPU time, charges, or jobs you
represent can be useful especially if it
is significantly large. You should also
be aware of any special services the cen-
ter does, or doesn't, perform for you.

Once you have all of this information,
you should meet with computer center
management and try to obtain commitments -

and agreements on levels of service which
they will provide to you. This written
agreement will then provide a basis for
co-existence between you.

363

OPERATIONAL MANAGEMENT OF MATHEMATICAL
PROGRAMMING BASED PLANNING SYSTEMS

—

E. G. Kammerer
UNION CARBIDE

CHEMICALS AND PLASTICS DIVISION
Operations Planning Department

Chemicals and Plastics productions account for approximately 40 percent of Union
Carbide's sales resulting in the movement of 19 billion pounds at production annually.
This activity involves more than 6,000 products manufactured at approximately 15 plants
and moved through more than 100 bulk terminals and warehouses. We deal with more than
30,000 industrial customers utilizing six deepwater vessels, 150 inland barges, and more
than 8,000 tank cars, hopper cars, and van boxes.

My purpose in describing Union Carbide's production/distribution network is to
highlight the need for the use of mathematical optimization techniques in effective
planning. Obviously, it is a complex business, with highly intergrated product/location
characteristics in a changing business environment.

The planning system used to help manage our chemical operation generally consists
of three phases:

1. Gathering and processing data as input to the mathematical optimization
system.

2. The solution of a mathematical model to develop the optimal production and
distribution plan for the period.

3. Communication of the results of the planning model to the various functions
responsible for the operation.

(See attached flowchart of planning cycle.)

The successful management of a planning system depends on all three of these
phases. Any one without the other two is useless. I will discuss each of the phases
with particular attention to the needs of the mathematical model.

The first phase of the planning system, the gathering of data, can be broken in
two separate activities. The first is standard data or that information which does not
change very rapidly. Normally, a yearly review and update of this is sufficient. The
type of data included here is annually budgeted cost, capacities, production factors, etc

The other class
can change from day to
production limitations
type of input.

of input data consis
day. Transportation
and strategies, and

ts of the more current
cost and limitations,

the sales forecast are

operating data which
inventory strategies,
examples of this

This strategic information is the more difficult and the most critical of the
data need. It is gathered through direct interface with various operating groups. A
good understanding of their functions and objectives is necessary so that the input
can be interpreted. Normally, people in operations are not knowledgeable in the
functioning of mathematically based planning systems. Because of this, all meetings to
gather this input data must be handled with the idea of getting the understanding and
cooperation of these various other groups. It is my responsibility to interpret their
input and strategies and develop the proper model representation. This must be done
without putting unnecessary restrictions in the model which will prevent true
optimization

.

The second phase of this process is the solution of a mathematical model. The
particular model used by Union Carbide's Chemical and Olefin Division consists of a

364

linear program matrix containing approximately 12,000 variables and 3,000 equations.
Variables represent all raw materials, intermediates, and finished products. A number
of non-linear plant models are linked to this linear matrix. The resulting model is
solved using a recursive technique on an IBM System/370 Model 168, Mathematical Pro-
gramming System Extended (MPSX) is used to set up and solve the linear portion.
Depending on the number of iterations required to reach optimum, the computing time
required is normally less than two hours. It is important to note that this is a
batch type system. The problems involved with running a batch system are quite dif-
ferent than an on-line system.

In running this model, we interface with two separate functions. Computer
Operations has responsibility for hardware availability and priority. Systems Support
is responsible for supplying programming, system maintenance, or software support if
needed. Problems often develop in obtaining necessary priority due to the size of the
planning system and the keen competition for limited computer resources. Because of
this, it is desirable to place model runs on production status. That is, runs should
be planned in advance and the support commitment of Computer Operations obtained.

The demand on computer resources is cyclic. During particular times of the month
or quarter, the demand on the computer is particularly heavy. By planning your major
runs during low demand time or off-hours such as nights and weekends, it is possible to
improve your turnaround time.

Anyone involved in programming should be aware of the importance of program
efficiency. The CPU time required by a job affects what turnaround it will get. Jobs
that stay in the computer and slow down the network are not run during high demand time.
When running on virtual storage, as is the case in most large installations, the ef-
ficiency of the program, that is, the ration of CPU time to elapsed time, is extremely
important. The longer a job stays in the computer, the greater the chance of system
problems developing and the premature cancellation of the job. In addition, the
operating cost of running the system will be reduced. Various techniques can and
should be used to improve program efficiency when designing a batch type system that
will be operated regularly.

Another important consideration is to insure that any important instruction to
the operator, such as mounting tapes or writing over tapes, should be given as close to
the time the action is to be taken as possible. The manager of the planning activity
has little control over the terminal operators. In addition, the terminal operators
are involved in many activities at the same time. Therefore, it is necessary to mini-
mize the opportunity for misunderstandings that may result in premature termination
of a run. In large systems, this can be extremely costly in terms of cost and time.

At the present time, we are operating our system at a remote terminal. This
arrangement adds to the difficulties mentioned above. It is impossible to be as
familiar with changes in software and hardware as when operating directly from the
computer center. In the past, we were located at the computer center and a better
understanding and effective use of the computer was much easier.

When developing and programming a system such as the one I have described, that
is, one that will be run routinely in support of a planning or operating function, it
is very important to involve the system analyst when deciding such elements as the
number of variables, procedures for updating, maintenance, etc. It seems that time
and time again we are in a situation where we need to be able to analyze one more
variable than the program will allow and the limit on variables was purely an
arbitrary decision made by the designer. When deciding the limit of program capa-
bility, the operating analyst is in a better position to determine the need for more
or less flexibility.

A very important part of the planning system is the report writer. While the
system analyst may be able to interpret a L.P. matrix, the need to review the pre-
liminary results with other functions exist. This highlights the need for reports
that can be used to review the solution and identify needed corrections. These reports
must be readable by persons not familiar with computer output. The design of these
preliminary reports can have a great affect on the ease of review and the reasonableness
of the final plan.

The third and final stage of the total planning system is the communication of
the results. As I stated earlier, all elements are equally important. The best de-
signed program with the best input is useless if nothing is done with the results.

365

I am generalizing when I say this but it is my personal feeling that efforts to I
use direct computer output as the means of communicating the results to the various •
functional groups are not as effective as interpretation by an analyst. We do use com-
puter output when detail is needed for specific action. But I do not feel it can
interpret and communicate the results of such a complex planning system. A considerable
effort on the part of system analysts and other experienced people is needed to interpret
the results and explain all of these significant implications. A knowledge of the pro-
ducts and the distribution network is as important as computer experience.

^
Your reaction at this point may be that mathematical programming plays no part

in the last phase. This is not the case. The understanding and cooperation of the
programmer is essential to the system analyst when evaluating the L.P. solution. I

have found that the more significant elements of the solution are not straightforward.
Usually, some follow-up case studies or sensitivity analysis is needed. The mathematical
programmer plays an important role during these studies. His advice and understanding
of the program logic can save considerable time and result in a more meaningful plan.

I would like to restate my position on the final stage. It is my opinion that
direct output from the computer is not the best mode of communicating the optimal
solution. It is more important that the report writer capability support the efforts
of a systems analyst in interpreting the results.

Communication of the plan can take various forms depending on the audience and
nature of the activity itself. Normally, greater understanding is obtained through
graphs, tables, and diagrams. Prose should be used to elaborate the results. A clear I
statement of all assumptions and significant limits should be made. I

One of the most important points I would like to comm_unicate is the type of result]
generally looked for. I hope that an understanding of this will help the mathematical

j

programmer to do a better job in using program logic. The most important part of the
solution is the direction a business activity should take and not the exact numbers
contained in the solution. The business environment changes so rapidly that it is nearly
impossible to pin down exact values. A good understanding of the direction or strategy
that should be applied in critical areas such as production, inventory, distribution ,etc.

is essential. Programming efforts should be done with greater understanding of this fact

My objective during this presentation has been to give you more insight into the
problems and techniques of running a large mathematically programmed planning system. I

hope that this knowledge will help you or give you a better feel for some of the critical
elements in programs supporting large operating systems. I'm sure that a slightly dif-
ferent viewpoint would be presented if the system under discussion was an on-line
system. I do not have much experience with on-line systems and you should keep in mind
that all of my discussion is based on batch type systems.

I support your efforts in trying to create better understanding between system
designers and system operators. I'm sure that all of us will be able to do a better job
if we apply some of the experience gained through understanding the other person's
problems

.

366

PLANNING CYCLE

367

MANAGING A LARGE SCALE PRODUCTION AND DISTRIBUTION SCHEDULING SYSTEM

Kenneth Goldfisher

Nabisco, Inc.

The Biscuit Division of the Nabisco Corporation presently has 16 bakeries, each
capable of producing some, but not all, of approximately 750 different products. Ship-
ping branches perform the warehouse and distribution functions required after the bakery
has produced and packaged the products. They supply products to local sales branches,
of which there are approximately 225 located throughout the United States.

Estimates of sales by product, over a 12 week horizon, are made at each sales
branch. These are sent by telecommunication equipment to a central location where they
are converted into production requirements which are then allocated to individual pro-
duction facilities, i.e., ovens, incing machines and packing equipment. The resulting
production plan specifies the amount of each product to produce on each facility for each
sales branch during each of the four-week periods in the horizon. The production plan
minimizes the total variable cost of production and distribution while insuring its
production feasibility.

This paper concentrates on the operational aspects of the system, the use of the
computer and its relationship to the real world, both from the field unit and the
division management point of view.

368

NBS.114A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS Spec, Publ. 502

2. Gov't Accession
No.

3. Recipient's Accession No.

4. 1 1 1 L.C. AINU oUDl 11 LC

Computers and Mathematical Programming

5. Publication Date

February 1978

6* Performing Organization Code

7. AUTHOR(S)
William W. White, Editor

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Special Interest Group on Mathematical Programming
Association of Computing Machinery
1133 Avenue of Americas
New York, New York 10036

13. Type of Report & Period
Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number; 77-600065

16. ABSTRACT (A 200-word or less factual summary of most sigpificant information. If document includes a significant

bibliography or literature sufvey, mention it here.)

The Bicentennial Conference on Mathematical Programming, held in Gaithersburg
on November 29 - December 1, 1976, examined the relationship between mathemati-
cal programming and the computer. The more than 50 papers and panel discus-
sions exhibited this theme in terms of the design for, use of, implementation
of, and implications for mathematical programming software and computations.
Particular emphasis was placed on bringing out computer-oriented subject
matter not ordinarily presented in a mathematical progranmiing context. These
resiilting Proceedings document this Conference, which was Jointly sponsored
by SIGMAP of the ACM and by the Applied Mathematics Division of the Institute
for Basic Standards for NBS.

I

I .

-|17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

I
name; separated by semicolons) Algorithm evaluation/ Computer science; computer software;

databases; linear programming; management science; mathematical programming; mathe-
matical programming education; nonlinear programming; operations research; software
development

,

18. AVAILABILITY \^ Unlimited 19. SECURITY CLASS
(THIS REPORT)

21. NO. OF PAGES

1

' For Official Distribution. Do Not Release to NTIS
UNCL ASSIFIED

383

1
' Order From Sup. of Doc, U.S. Government Printing Office
Washington. D.C. 20402. SD Cat. No. C13 . ID- SO?

1 !
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

22. Price

$5.50

"

USCOMM-DC 29042-P74

There's
anew
look

/ A \. x-X^ f / • • • monthly
/ / magazine of the Nation-

/ Bureau of Standards.

r ^^^^ / Still featured are special ar-

^^^^^^^^ /̂ tides of general interest on
^^^^^^^^ / current topics such as consum-
_^\^s^y / er product safety and building^^^"^ / technology. In addition, new sec-

tions are designed to . . . PROVIDE
SCIENTISTS with illustrated discussions

of recent technical developments and
work in progress . . . INFORM INDUSTRIAL

MANAGERS of technology transfer activities in

Federal and private labs. . . DESCRIBE TO MAN-
UFACTURERS advances in the field of voluntary and

mandatory standards. The new DIMENSIONS/NBS also

carries complete listings of upcoming conferences to be
held at NBS and reports on all the latest NBS publications,

with information on how to order. Finally, each issue carries

a page of News Briefs, aimed at keeping scientist and consum-
er alike up to date on major developments at the Nation's physi-

cal sciences and measurement laboratory.

(please detach here)

SUBSCRIPTION ORDER FORM

Enter my Subscription To DIMENSIONS/NBS at $12.50. Add $3.15 for foreign mailing. No additional

postage is required for mailing within the United States or its possessions. Domestic remittances

should be made either by postal money order, express money order, or check. Foreign remittances

should be made either by international money order, draft on an American bank, or by UNESCO
coupons.

Send Subscription to:

O Remittance Enclosed

(Make checks payable

to Superintendent of

Documents)

n Charge to my Deposit

Account No.
NAME-FIRST, LAST

I I

COMPANY NAME OR ADDITIONAL ADDRESS LINE

I I I II II I I I II I

STREET ADDRESS

I I I I I I I M I I I I I I I

CITY STATE ZIP CODE

MAIL ORDER FORM TO:
Superintendent of Documents
Government Printing Office

Washington, D.C. 20402

PLEASE PRINT

WfetEHat

tiKMOk
typical plant can save about 20 percent of Its

jel—just by installing waste heat recovery equip-
lent. But with so much equipment on the market,

ow do you decide what's right for you?

In addition to case studies, the guidebook contains

information on:

ind the answers to your problems in the Waste
'eat Management Guidebook, a new handbook
cm the Commerce Department's National Bureau
f Standards and the Federal Energy Administra-
on.

he Waste Heat Management Guidebook is de-
igned to help you, the cost-conscious engineer or

lanager, learn how to capture and recycle heat
lat is normally lost to the environment during in-

ustrial and commercial processes.

he heart of the guidebook is 14 case studies of

ompanies that have recently installed waste heat

acovery systems and profited. One of these appli-

ations may be right for you, but even if it doesn't
t exactly, you'll find helpful approaches to solving
lany waste heat recovery problems.

sources and uses of waste heat

determining waste heat requirements
economics of waste heat recovery

commercial options in waste heat recovery
equipment
Instrumentation

engineering data for waste heat recovery

assistance for designing and installing waste
heat systems

To order your copy of the Waste Heat Management
Guidebook, send $2.75 per copy (check or money
order) to Superintendent of Documents, U.S. Gov-
ernment Printing Office, Washington, D.C. 20402.
A discount of 25 percent is given on orders of 100
copies or more mailed to one address.

The Waste Heat Management Guidebook Is part of

the EPIC industrial energy management program
aimed at helping industry and commerce adjust to

the increased cost and shortage of energy.

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards
FEDERAL ENERGY ADMINISTRATION/Energy Conservation and Environment

« U. S. GOVERNMENT PRINTING OFFICE : 1978 261-238/22

SINGLE
CRYSTAL
DATA

REVISED! UPDATED!

In 1954, the first edition of CRYS-
TAL DATA (Determinative Tables
and Systematic Tables) was pub-
lished as Memoir 60 of the Geo-
logical Society of America. In 1960,
the second edition of the Determina-
tive Tables was issued as Monograph
5 of the American Crystallographic

Association, and in 1967, the Sys-

tematic Tables were issued as Mono-
graph 6. These editions proved ex-

tremely valuable to crystallographers

throughout the world. Recognizing the

need for updated crystallographic in-

formation, the National Bureau of Stand-
ards Office of Standard Reference Data
has sponsored the issuance of a new
edition.

This, the THIRD EDITION, should be of

particular interest not only to crystal-
'

lographers but also to chemists, mineral-

ogists, physicists and individuals in

related fields of study. The current edition,

which comprises two volumes, Organic and
Inorganic, is a thoroughly revised and up-

dated work, containing over 25,000 entries.

The entries are listed, within each crystal sys-

tem, according to increasing values of a

determinative number: a/b ratio in trimetric

systems, c/a ratio in dimetric systems, and
cubic cell edge a, in the isometric system. In

addition, the following information is given:
INORGANIC VOLUME $50.00

ORGANIC VOLUME $30.00

axial ratio(s) and interaxial angles

not fixed by symmetry, cell dimen-
sions, space group or diffraction

aspect, number of formula units

per unit cell, crystal structure,

(whether determined), measured
density and x-ray calculated den-

sity. Also listed is the name of the

compound and synonym(s),
chemical formula, literature ref-

erence and transformation
matrix. When available, the crys-

tal structure type, crystal habit,

iCleavages, twinning, color, optical

properties, indices of refraction,

optical orientation, melting point

and transition point are also

listed.

THIS EDITION culminates years of

effort by J. D. H. Donnay, Johns
Hopkins University, Helen M. Ondik,
National Bureau of Standards, Sten

i Samson, California Institute

i Technology, Quintin Johnso
I Lawrence Radiation Laboratory
"Melvin H. Mueller, Argonne National

Laboratory, Gerard M. Wolten, Aero-

space Corporation, Mary E. Mrose,
U.S. Geological Survey, Olga Ken-
nard and David G. Watson, Cam-
bridge University, England and
Murray Vernon King, Massachu-
setts General Hospital.

sn ,

ofl

Plus shipping and handling

Shipments are made via insured parcel post. Additional charges for shipments by air or commercial carrier.

TERMS: Domestic—30 days Foreign—prepayment required. Address all orders to:

JOINT COMMinEE ON POWDER DIFFRACTION STANDARDS 1601 Park Lane, Swarthmore, Pennsylvania 19081

Please accept my order for CRYSTAL DATA, DETERMINATIVE TABLES, Third Edition, Donnay/Ondik.

Organic Volume

n Inorganic Volume

Ship to:

Signature

NBS TECHNICAL PUBLICATIONS

PERIODICALS

WRNAL OF RESEARCH—The Journal of Research

the National Bureau of Standards reports NBS research

|id development in those disciplines of the physical and
igineering sciences in which the Bureau is active. These

elude physics, chemistry, engineering, mathematics, and
limputer sciences. Papers cover a broad range of subjects,

iith major emphasis on measurement methodology, and
ie basic technology underlying standardization. Also in-

!uded from time to time are survey articles on topics closely

jlated to the Bureau's technical and scientific programs. As

I

special service to subscribers each issue contains complete

tations to all recent NBS publications in NBS and non-

BS media. Issued six times a year. Annual subscription:

IDmestic $17.00; foreign $21.25. Single copy, $3.00 domestic;

5.75 foreign.

' ote; The Journal was formerly published in two sections:

' action A "Physics and Chemistry" and Section B "Mathe-
latical Sciences."

|iIMENSIONS/NBS

,

jhis monthly magazine is published to inform scientists,

igineers, businessmen, industry, teachers, students, and

I

pnsumers of the latest advances in science and technology,

I'ith primary emphasis on the work at NBS. The magazine
highlights and reviews such issues as energy research, fire

rotection, building technology, metric conversion, pollution

j

batement, health and safety, and consumer product per-

3rmance. In addition, it reports the results of Bureau pro-

j

rams in measurement standards and techniques, properties

J

f matter and materials, engineering standards and services,

istrumentation, and automatic data processing.

I

Annual subscription: Domestic, $12.50; Foreign $15.65.

s NONPERIODICALS

J

I'lonographs—Major contributions to the technical liter-

(
iture on various subjects related to the Bureau's scientific

nd technical activities.

,

^landbooks—Recommended codes of engineering and indus-

I
;rial practice (including safety codes) developed in coopera-

ion with interested industries, professional organizations,

ind regulatory bodies.

pecial Publications—Include proceedings of conferences

ponsored by NBS, NBS annual reports, and other special

;)ublications appropriate to this grouping such as wall charts,

jocket cards, and bibliographies.

\pplied Mathematics Scries—Mathematical tables, man-
lals, and studies of special interest to physicists, engineers,

:hemists, biologists, mathematicians, computer programmers,
ind others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quanti-

ative data on the physical and chemical properties of

naterials, compiled from the world's literature and critically

"valuated. Developed under a world-wide program co-

ordinated by NBS. Program under authority of National
•jStandard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these

data is the Journal of Physical and Chemical Reference

Data (JPCRD) published quarterly for NBS by the Ameri-
can Chemical Society (ACS) and the American Institute of

Physics (AIP). Subscriptions, reprints, and supplements

available from ACS, 1155 Sixteenth St. N.W., Wash., D.C.
20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research

results, test methods, and performance criteria related to the

structural and environmental functions and the durability

and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in

themselves but restrictive in their treatment of a subject.

Analogous to monographs but not so comprehensive in

scope or definitive in treatment of the subject area. Often
serve as a vehicle for final reports of work performed at

NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10,

Title 15, of the Code of Federal Regulations. The purpose

of the standards is to establish nationally recognized require-

ments for products, and to provide all concerned interests

with a basis for common understanding of the characteristics

of the products. NBS administers this program as a supple-

ment to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based

on NBS research and experience, covering areas of interest

to the consumer. Easily understandable language and
illustrations provide useful background knowledge for shop-

ping in today's technological marketplace.

Order above NBS publications from: Superintendent of
Documents, Government Printing Office, Washington, D.C.
20402.

Order following NBS publications—NBSIR's and FIPS from
the National Technical Information Services, Springfield,

Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUB)—Publications in this series collectively consti-

tute the Federal Information Processing Standards Register.

Register serves as the official source of information in the

Federal Government regarding standards issued by NBS
pursuant to the Federal Property and Administrative Serv-

ices Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717
(38 FR 12315, dated May 11, 1973) and Part 6 of Title 15

CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-government).

In general, initial distribution is handled by the sponsor;

public distribution is by the National Technical Information
Services (Springfield, Va. 22161) in paper copy or microfiche

form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibli-

ographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service. A litera-

1
ture survey issued biweekly. Annual subscription: Domes-

!
tic, $25.00; Foreign, $30.00.

{Liquified Natural Gas. A literature survey issued quarterly.

Annual subscription: $20.00.

Superconducting Devices and Materials. A liteiature survey

issued quarterly. Annual subscription: $30.00. Send subscrip-

tion orders and remittances for the preceding bibliographic

services to National Bureau of Standards, Cryogenic Data

Center (275.02) Boulder, Colorado 80302.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-2 1 5

SPECIAL FOURTH-CLASS RATE
BOOK

