
NATL INST OF STAND 4 TECH

lent

A 11 ID La
3u

of Standards

Computer Science

and Technology

/ V \

NBS

U8LICAT/0NS

•'•f«u o»
*

NBS Special Publication 500-95

Proceedings of the

Computer Performance

Evaluation Users Group

18th Meeting

"Improving Organizational

Productivity"

*QC w.j . i m

100

.U57

lio. 500-95

1932

c. 2

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities 2 — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Science

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering2 — Manufacturing

Engineering — Building Technology — Fire Research — Chemical Engineering2

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

' Headquarters and Laboratories at Gaithersburg, M D, unless otherwise noted;

mailing address Washington, DC 20234.
!Some divisions within the center are located at Boulder, CO 80303.

manorial oureau or oianaaras

Library, E-01 Admin. Bldg.

Computer Science
and Technology

OCT 2 5 1982

nb-i free Qrc-

u j 7

NBS Special Publication 500-95

Computer Performance

Evaluation Users Group (CPEUG)

1 8th Meeting

Washington, DC
October 25-28, 1982

Proceedings Editor

Carol B. Wilson

Conference Host

Naval Data Automatbn Command
Department of the Navy

Sponsored by

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, DC 20234

Proceedings of the

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued October 1982

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 82-600622

National Bureau of Standards Special Publication 500-95
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-95, 414 pages (Oct. 1982)

CODEN: XNBSAV

U S GOVERNMENT PRINTING OFFICE

WASHINGTON 1982

For sale by the Superintendent ot Documents. U S Government Printing Office. Washington. DC 20402

Price $11.00

(Add 25 percent for other than U S mailing)

2
Improving Organizational Productivity"

Foreword

CPEUG 82 directly confronts the principal pervasive challenge facing informa-
tion system management during the 1980 's: IMPROVING ORGANIZATIONAL PRODUCTIVITY
through improvements in the effectiveness, efficiency, and range of automated
information services. Productivity improvement in all corporate activities, of
necessity, will be the continuing goal of commercial and governmental management
for many years. For organizations whose success is closely tied to large volumes
of accurate and timely information, improving automated information services is
central to achieving improvements in productivity throughout the organization. The
Federal Government is one such information-intensive organization, and improved
automated information systems are critical to meeting the goal of providing vital
public services for fewer tax dollars.

To help improve total productivity throughout an organization, decisions
about information services and resources must be made within the context of their
impact on the total organization. Information system managers must continually
search for ways to help increase the productivity of users while simultaneously
improving the cost-effectiveness of their own information processing activities.
To be successful, information management must direct its attention primarily to

the long-term, strategic, high-payoff areas of information processing: personnel,
information data base, data communication network, and software. Information
managers must also ensure that their activities in these areas are totally inte-
grated with functional management plans and activities throughout the organization.

Since its founding in 1971 by the US Air Force, CPEUG has focused on the most
important areas of automated information system management. As the technology and
economics of information systems evolved, so did CPEUG. This year's conference
continues the historical emphasis on techniques for increasing the operational
efficiency of information systems, while increasing the coverage of other impor-
tant issues of the day - for example, data bases, local area networks, strategic
planning, software, office automation, and chargeback. CPEUG 82 offers a care-
fully balanced program that addresses the important topics needing attention dur-

ing the 1980 's. Welcome to CPEUG 82.

This conference and these proceedings are the results of the diligent work of

an excellent team of dedicated professionals on this year's conference committee.

To them all (their names appear later in this document) , I offer my sincerest
appreciation for a job well done. Ms. Sylvia Mabie and Ms. Donna Granahan have

earned special thanks for their continuing excellent administrative support.

Thomas F. Wyrick
CPEUG 82 Conference Chairperson
October 1982

iii

"Improving Organizational Productivity"

Preface

The theme of CPEUG 82, IMPROVING ORGANIZATIONAL PRODUCTIVITY, focuses
on the major business challenge of the 1980's. While severe budgetary
constraints persist, the objective of improving the effectiveness, effi-
ciency, and range of automated information services puts a heavy burden
on information managers and performance analysts. The CPEUG 82 program
reflects increased sophistication in all areas of systems performance,
including information management, hardware, software, communications,
and personnel.

The CPEUG 82 program has been designed to meet many needs with its

three track approach. The three tracks focus on the issues of performance
in the system life cycle, advances in traditional CPE areas, and learning
about CPE. In addition, on Tuesday, an experimental session from the
Computer Measurement Group (CMG) will be given. This year, several
sessions focus on specific types of systems, as well as on local area
network performance and remote terminal emulation design and development.
Also, the expansion of traditional areas of performance improvement will
help information managers evaluate new technologies and improve ADP
planning and life cycle processes. CPEUG continues to be a forum for
providing open discussion on areas relating to the Federal Government
ADP procurement process. Planned discussions focusing on design and
acquisition strategies bring to the forefront the issues of needs analysis
and procurement in a dynamic technological environment.

The CPEUG 82 program was the work of many people. Dr. Mani Chandy,
Vice Chairperson for academia; Terry Potter, Vice Chairperson for

industry; and Barry Wallack, Vice Chairperson for Government, were this
year's vital links to broaden program participation. The Conference
Committee, session chairpersons, authors, tutors, and referees all
deserve recognition for their time, patience, and participation. The
invaluable support of Joyce Stellar merits special thanks.

James Sprung
CPEUG 82 Chairperson
October 1982

iv

"Improving Organizational Productivity"

Abstract

These Proceedings record the papers that were presented at the

Eighteenth Meeting of the Computer Performance Evaluation Users Group
(CPEUG 82) held October 25-28, 1982, in Washington, DC. With the theme,
"Improving Organizational Productivity," CPEUG 82 reflects the critical
role of information services in the productivity and survival of today's
organization. To meet this challenge, the scope of CPE must be expanded
to address performance issues in all aspects of information systems
(hardware, software, facilities, communications, personnel, policies,
and procedures) throughout the system life cycle. The program was divided
into three parallel sessions and included technical papers on previously
unpublished works, case studies, tutorials, and panels. Technical papers
are presented in the Proceedings in their entirety.

Key words: benchmarking; capacity planning; chargeback systems;
computer performance management systems; queuing models; resource measure-
ment facilities; simulation; supercomputers; workload characterization.

The material contained herein is the viewpoint of the authors of

specific papers. Publication of their papers in this volume does not

necessarily constitute an endorsement by the Computer Performance

Evaluation Users Group (CPEUG) or the National Bureau of Standards. The

material has been published in an effort to disseminate information and

to promote the state-of-the-art of computer performance measurement,

simulation, and evaluation.

v

"Improving Organizational Productivity"

CPEUG Advisory Board

Carl R. Palmer, Chairman
U.S. General Accounting Office

Washington, DC

Allen L. Hankinson, Executive Secretary
National Bureau of Standards

Washington, DC

Dennis M. Gilbert
National Bureau of Standards

Washington, DC

James E. Weatherby
Federal Computer Performance Evaluation

and Simulation Center
Washington, DC

Thomas F. Wyrick
Federal Computer Performance Evaluation

and Simulation Center
Washington, DC

vi

'Improving Organizational Productivity"

Conference Committee

CONFERENCE CHAIRPERSON Thomas F. Wyrick
Federal Computer Performance Evaluation
& Simulation Center (FEDSIM)
(703) 274-7910

PROGRAM CHAIRPERSON James G. Sprung
The MITRE Corporation
(703) 827-6446

PROGRAM VICE-CHAIRPERSON FOR
FEDERAL GOVERNMENT

Barry Wallack
Defense Communications Agency/CCTC
(202) 695-0856

PROGRAM VICE-CHAIRPERSON FOR
INDUSTRY

Terry Potter
Digital Equipment Corporation
(617) 568-6061

PROGRAM VICE-CHAIRPERSON FOR
ACADEMIA

K. Mani Chandy
University of Texas
(512) 471-4353

PUBLICATION CHAIRPERSON Peter J. Calomeris
Westinghouse Electric Corporation
(301) 765-4644

PUBLICITY AND AWARDS CHAIRPERSON Dennis R. Shaw
U.S. General Accounting Office
(202) 275-6187

REGISTRATION CHAIRPERSON Alfred J. Perez

U.S. Air Force Data Systems Design Center
(205) 279-4051

PROCEEDINGS EDITOR Carol B. Wilson
Fiscal Associates, Inc.

(703) 642-1390

NATIONAL ARRANGEMENTS CHAIRPERSON Felicia Carpenter
Navy Supply Systems Command
(202) 697-9584

FINANCE CHAIRPERSON Barbara N. Anderson
FEDSIM
(703) 274-7910

VENDOR PROGRAM CHAIRPERSON L. Arnold Johnson
Federal Compiler Testing Center
General Services Administration
(703) 756-6153

LOCAL ARRANGEMENTS AND
PRE-REGISTRATION CHAIRPERSON

David E. Koranek
Naval Data Automation Command/51D

(201) 433-3499

vii

"Improving Organizational Productivity"

Barbara Anderson

George Baird

Bernard Domanski

Major Charles Gausche

Bill Hawe

L. Arnold Johnson

Referees

John C. Kelly

David Lindsay

Ken Moore

Tim Oliver

James G. Sprung

Kathy Rebibo

viii

"Improving Organizational Productivity"

TABLE OF CONTENTS

FOREWORD iii

PREFACE iv

ABSTRACT v

CPEUG ADVISORY BOARD vi

CONFERENCE COMMITTEE vii

CPEUG 82 REFEREES viii

TRACK A: LIFE CYCLE MANAGEMENT

STRATEGIC PLANNING FOR ADP : INFORMATION RESOURCES MANAGEMENT

SESSION OVERVIEW
J. Howard Bryant
U.S. Patent and Trademark Office 3

INFORMATION SYSTEMS MANAGEMENT
James J. Spinelli
VITRON Management Consulting, Inc 5

LONG-RANGE ADP PLANNING: A FEDERAL AGENCY
PLANNING MODEL

Paul E. Matthews
The MITRE Corporation 11

PRODUCTIVITY THROUGH INTEGRATED INFORMATION
RESOURCE MANAGEMENT

Malcolm Campbell
Missouri State Government 19

FINANCIAL MANAGEMENT CONSIDERATIONS

PRICING STRATEGIES IN PROCUREMENTS CONDUCTED UNDER
THE BASIC AGREEMENT

Thomas G. Morrison
MCAUTO Systems Group, Inc 27

SMALL COMPUTER POLICY AND STRATEGY

PANEL OVERVIEW
Dennis Gilbert
National Bureau of Standards 37

INFORMATION SYSTEMS NEEDS ANALYSIS

FULFILLING BUSINESS NEEDS WITH AN ON-LINE SYSTEM
David R. Vincent
Institute for Software Engineering 41

ix

SOFTWARE TESTING - A LOST ART

SESSION OVERVIEW

George Baird
Federal Software Testing Center 49

CONCEPTUAL PROPOSAL FOR A COBOL ANALYZER
SOFTWARE TOOL

L. Arnold Johnson & William R. Milligan
Federal Software Testing Center 51

CAPACITY MANAGEMENT - FROM CONCEPT TO IMPLEMENTATION

SESSION OVERVIEW
Major Charles Gausche
Pentagon AFDSC 63

DEVELOPMENT OF A STANDARD PERFORMANCE MANAGEMENT
STRATEGY FOR THE US NAVY

S.B. Olson
Navy Regional Data Automation Center, Pensacola 65

DEVELOPMENT OF A METHODOLOGY FOR THE ANALYSIS OF
SYSTEM PERFORMANCE INDICATORS

Paul Chandler
Wilson Hill Associates 75

COMPUTER SYSTEM DATA NEEDED FOR CAPACITY PLANNING
Dr. John T. Peterson
BGS Systems, Inc 61

A TOOL FOR EDP MANAGEMENT: OMB CIRCULAR A-123

SESSION OVERVIEW
Ted Gonter
General Accounting Office 87

DATA PROCESSING AND A-123
Sheila Brand
Department of Defense Computer Security Center 89

TRACK B: TECHNOLOGY AND APPLICATION ADVANCES

WWMCCS NETWORK PERFORMANCE ANALYSIS

PERFORM - WWMCCS INTERCOMPUTER NETWORK (WIN)
PERFORMANCE OPTIMIZATION RESEARCH MODEL

K. Chung, O.A. Mowafi & K.A. Sohraby
Computer Sciences Corporation 97

A SIMULATION STUDY OF A LOCAL AREA NETWORK
FOR A COMMAND AND CONTROL CENTER

Kathy K. Rebibo
The MITRE Corporation 107

WORKLOAD CHARACTERIZATION

WORKLOAD CHARACTERIZATION USING IMAGE ACCOUNTING
Rajendra K. Jain & Rollins Turner
Digital Equipment Corporation Ill

METHODOLOGY FOR CHARACTERIZING A SCIENTIFIC WORKLOAD
Ingrid Y. Bucher & Joanne L. Martin
Los Alamos National Laboratory 121

x

CASE HISTORY: BUSINESS DRIVER METHODOLOGY IN A
MANUFACTURING LOGISTICS APPLICATION

F. J. Machung
International Business Machines 127

MODELING TECHNIQUES

SESSION OVERVIEW
Kenneth C. Sevcik
University of Toronto 137

DESIGN OF A SOFTWARE TOOL FOR EVALUATION
OF COMPUTER AND COMMUNICATION SYSTEMS

Ashok K. Agrawala, Satish K. Tripathi
& Ashok K. Thareja
University of Maryland 139

A PERFORMANCE BOUND FOR MULT IPROGRAMMED VIRTUAL
MEMORY SYSTEMS

Rollins Turner
Digital Equipment Corporation 155

AN EFFICIENT CAPACITY ASSIGNMENT ALGORITHM FOR COMPUTER
COMMUNICATION NETWORKS WITH A TREE TOPOLOGY

Chaira Ziegler
Brooklyn College

Roberta Klibaner
The College of Staten Island 173

COMPONENTS OF SOFTWARE PACKAGES FOR THE SOLUTION
OF QUEUEING NETWORK MODELS

G. S. Graham, E.D. Lazowska & K.C. Sevcik
Quantitative System Performance 183

PERFORMANCE MONITORING TECHNIQUES

DESIGN OF EMBEDDED COMPUTER MONITORING SYSTEM
Albundio Alvarez
Naval Ocean Systems Center 191

PROGRAM INSTRUMENTATION TECHNIQUES
Raymond C. Houghton, Jr.

National Bureau of Standards 195

UNIX PERFORMANCE ANALYSIS

PERFORMANCE PREDICTION IN A UNIX ENVIRONMENT
Lawrence W. Dowdy, Lindsey E. Stephens
& Alfredo Perez-Davila
Vanderbilt University 205

UNIVAC PERFORMANCE ANALYSIS

SESSION OVERVIEW
John C. Kelly
Datametrics Systems Corporation 215

A STUDY OF DISK I/O ON A UNIVAC SYSTEM IN THE

SHUTTLE MISSION SIMULATOR COMPUTER COMPLEX
Ankur R. Hajare

The MITRE Corporation 217

xi

THE APPLICATION OF ANALYTIC AND SIMULATION MODELS
TO SIZE A LARGE COMPUTER SYSTEM

Richard W. Tibbs
Martin Marietta Corporation

John C. Kelly
Datametrics Systems Corporation 231

A UNIVAC WORKLOAD CHARACTERIZATION SYSTEM
Walter N. Bays & Dawn L. Voegeli
The MITRE Corporation 259

IBM PERFORMANCE ANALYSIS

SESSION OVERVIEW
Tim Oliver
National Institutes of Health 277

RMF EQUATIONS: OBTAINING JOB CLASS LEVEL
RESULTS FROM RMF

Bob Irwin
IKON 279

SERVICE LEVEL MANAGEMENT THROUGH WORKLOAD SCHEDULING
David G. Halbig
U.S. Senate Computer Center 297

EVENT DRIVEN MEASUREMENTS OF MVS THAT IMPROVE
CONFIGURATION TUNING AND MODELING

Glen F. Chatfield
Duquesne Systems, Inc 313

A NEW APPROACH TO VM PERFORMANCE ANALYSIS
Bill Tetzlaff & Thomas Beretvas
IBM, Research Division 321

A VM/SP PERFORMANCE MANAGEMENT INFORMATION SYSTEM
John Story
Texas Instruments Inc 331

PERFORMANCE OF LOCAL AREA NETWORKS

SESSION OVERVIEW
Bill Hawe
Digital Equipment Corporation 363

A COMMON FRAMEWORK FOR STUDYING THE PERFORMANCE
OF CHANNEL ACCESS PROTOCOLS

K.K. Ramakrishnan & Satish K. Tripathi
University of Maryland 365

PREDICTING ETHERNET CAPACITY - A CASE STUDY
Madhav Marathe & Bill Hawe
Digital Equipment Corporation 375

EVALUATING LOCAL NETWORK PERFORMANCE
Jonas Herskovitz
Hughes Aircraft Company 389

BENCHMARKING AND REMOTE TERMINAL EMULATION

SESSION OVERVIEW
Dr. Bernard Domanski
College of Staten Island
The College of Staten Island 399

xii

327X EMULATOR PACKAGE FOR SYSTEM RESPONSE
TIME EVALUATION

Mary Christ
International Business Machines 401

THE DESIGN AND APPLICATION OF A REMOTE TERMINAL
EMULATOR

Michael Proppe

Computer Sciences Corporation

Barry Wallack
Command and Control Technical Center 409

DESIGN OF AN EXTERNAL TEST DRIVER FOR PERFORMANCE
EVALUATION

Agu R. Ets & John H. McCabe
Analytics, Inc 415

TRACK C: UNDERSTANDING EXPERIENCES
Tutorial and Case Study Abstracts

TUTORIAL ON CHARGING SYSTEMS IN THE FEDERAL GOVERNMENT
Dean Halstead
FEDSIM/NA 425

REALLY IMPROVING SOFTWARE MANAGEMENT
Thomas B. Cross
Cross Information Company 427

APPLICATION OF SOFTWARE PERFORMANCE ENGINEERING
TECHNIQUES

Dr. Connie U. Smith

Duke University 433

TUTORIAL ON WORKLOAD FORECASTING
Helen Letmanyi
National Bureau of Standards 435

ANALYZING QUEUEING NETWORK MODELS OF COMPUTER SYSTEMS:
A TUTORIAL ON THE STATE OF THE ART

Edward D. Lazowska
University of Washington

Kenneth C. Sevcik
University of Toronto 437

CONTINGENCY PLANNING

Susan K. Reed
National Bureau of Standards 439

BENCHMARK CONSTRUCTION" AND VALIDATION USING
SYNTHETIC SOFTWARE

Bruce D. Grant
Systems Architects, Inc 443

xiii

u
"Improving Organizational Productivity"

Strategic Planning for ADP

SESSION OVERVIEW

STRATEGIC PLANNING FOR ADP:
INFORMATION RESOURCE MANAGEMENT

J . Howard Bryant

U.S. Patent and Trademark Office
Washington, D.C. 20231

This session focuses on the concept of information as a critical organiza-
tional resource and the methods of planning for and controlling it by the organi-
zation to gain organizational productivity. The session will be opened by a

discussion of the concept and the implications it has for information system
developers. This will be followed by the description of a model for information
resource strategic planning. A final paper will discuss techniques for control-
ling the operation of an integrated information resources management function
and gaining organizational productivity.

3

INFORMATION SYSTEMS MANAGEMENT

James J. Spinelli, Vice President

VITRON Management Consulting, Inc.

48 West 48th St. Suite 1501

New York, N.Y. 10036

A few years ago, John Diebold introduced his ideas on a concept he calls,

"Information Resource Management (IRM)." The major premise is that information is

a vital, valuable corporate resource. As Diebold himself states, "The organiza-
tions that will excel in the 1980s will be those that manage information as a

major resource." But, we must carry this concept a few steps further, that is,

information is the direct "product" of the total organizational business sys-
tem. Information is a function of the totality of all organizational resources.
IRM is the function that represents the business system encompassed by the or-

ganization's own existence that is used to produce and disseminate the informa-
tion resource.

Key words: Information Resource Management; Information Systems Management;
Concepts; Strategies; Methodologies; Techniques; Management-Tool.

1. Introduction

Information is a function of the totality of

all corporate resources. Within each organization
it is the function that represents the core of

all business enterprises.

We must look at information as the product
of a business enterprise that is at the core of a

hiererchy of systems. Information is a "product"
that needs a great deal of time spent on educat-
ing organizations as to how it is really a direct
function of the aggregate of all resources. In-

formation is the single most significant bond
that binds the organization together.

When we speak about a business enterprise,
we must realize that the enterprise is_ the in-

formation it possesses, interprets and communi-
cates. The effectiveness of management in busi-
ness is a direct function of the information
possessed, interpreted, and communicated by all
of the organization's managers.

There is a logical process that proceeds up-
ward: (a) The ebb and flow of information, its
production and dissemination, is a subsystem,
subordinate to the organization, which too is a

system; (b) The organization is a subsystem, sub-
ordinate to the industry to which it is part; (c)

The industry is a subsystem, subordinate to the

economic system of the country to which it serves
and responds, etc. Within this context, we may
now proceed to address the issue of "Information
Systems Management," as the totality of all re-

sources, integrated for purposes of formulating
and managing the strategic goals of the organiza-
tion.

2. Direction

Rapid technological changes are having a

dramatic impact on the way organizations conduct
business today. Combined with advances in tech-
nology aire increasing regulations, new and more
intense competition, and an unstable financial
climate.

These issues bear witness to a business en-
vironment that affords opportunities and challen-
ges to those who properly plan for the allocation
and utilization of all corporate resources.

Foremost among these resources are informa-
tion systems and computer technology. These re-
sources are claiming a great share of managerial
commitment and expertise.

Studies using the Fortune 1000 indicate that

senior management of these firms are essentially
dissatisfied with the general unresponsiveness of

their information systems to the ever-changing
business climate. There is much fragmentation as

well. The primary reason given is that the com-
puter has not been adequately integrated into the
core of the mainstream of business.

I contend that the reason for this, which
management has up to now refused to face, it that
management itself must bear the bulk of the re-

5

sponsibility because it does not have the proper
knowledge, concepts, understanding and methods
to administer, apply, monitor and coordinate the

necessary integration.

To achieve this integration, management has

to address key critical success factors that

support the attainment of organizational goals

and objectives. The dynamic role of information
systems and computer technology, effectively
applied, provides the firm with competitive pro-

ducts and/or services, as well as the information

required to manage effectively. Today, informa-

tion systems help us achieve goals that have been
heretofore previously unattainable.

This challenge can only be met with a strat-

egy — a corporate information-systems strategy
— that allows management to manage today and

plan for tomorrow. Management, in order to devel-

op a proper and adequate strategy that remains
attuned with products, services and markets, must
continually develop, examine and improve its in-

formation systems.

The way an organization manages its informa-

tion systems [resources] is a measure of its con-

cern for the quality of its products and services
and of its desire for both short- and long-term
satisfaction. Those institutions with a positive
philosophy and reputation for successful informa-
tion systems have a distinctively competitive ad-

vantage .

3. Services' New Environment and Outlook

Everyone who is connected with service in-

dustries, for example, banking, brokerage, in-

surance, and the like, knows of the profound
changes that are now altering the entire complex-
tion of service industries in this country. The
changes now underway are more basic and far-reach-
ing than anything which has happened in these in-

dustries since the Great Depression.

Today, the name of the game is "competition."
Barriers which have insulated service institu-
tions from competition from each other and from
other kinds of businesses are being whittled away.
Firms are exposed to more geographic competition,
competition from each other, competition from
other firms which are permitted to perform more
kinds of services, and competition from business-
es outside the traditional service industries.
Any firm which cannot succeed in meeting these
new kinds of competition and in protecting a
nitch of the market for itself, will not be able
to survive in the new competitive environment.

All this requires new approaches and more
cost-effective methods of operations. Organiza-
tions which succeed will be the ones which succ-
essfully rise to the challenge.

- Know what value it is adding to the cus-
tomer, what special economic role it is

playing, and what need(s) it is fulfill-
ing;

- Know what the critical elements of its
operations are, and what mix of people,
skills and resources give it a competitive
edge — know where it is strong and where
it is vulnerable;

- Most importantly, develop a concept of the
operations it performs — this is a coll-
ection of activities (strategies) based on
the assessment of customers, products,
services, economics of operation, the com-
petition, the organization itself, and the
changing environment in which it operates.

People are selling their ability to provide
service. One aspect of the complexity in deliver-
ing service is the maintenance of consistency of

purpose and quality assurances when the service
itself is constantly changing. Very few service
firms manage to do this well.

Service marketing is quickly adjusting to an
environment where the whole customer relationship
is up for grabs from several, somewhat converging
sources, and firms must go to the customer !

All of these issues can be addressed, but
only through a comprehensive, integrated informa-

tion systems management climate. With the proper
attitide, managers can shift their energies more
toward responsible contact with people — the

customers — and away from the more routine, cler-
ical activities.

For example, as financial services institu-
tions pay more for the funds they receive, they

must also earn more to be able to cover their
costs. The higher earnings must come from a com-
bination of (a) higher interest rates on loans
and other investments, (b) charges for services
performed for customers, and (c) reduced costs
resulting from increased productivity and effect-
iveness .

The American Management Association suggests
that this "...increased ef fectiveness . . . is a dir-
ect function of computer technology, properly
applied, coupled with an effective information
base that provides management with an uncompro-
mising profile of where the organization is,

where it wants to be, and where, in fact, it is

going "

No guru here! No crystal ball! Rather, a

comprehensive, integrated information systems
management approach for measuring, tracking and

controlling progress.

It is clear that service institutions, in-
This challenge directs an organization to: deed all businesses, are moving into a new era.

In this environment management is going to have
- Know which customers it serves, what ser- to be outstanding,
vices it sells them, and what returns it

makes from each business;

6

4. Information in the Practice of Management

The computer era of the 1960s and 1970s is

giving way to the information era of the 1980s.

The traditional emphasis on hardware and soft-

ware is shifting toward a focus on information

systems management. No longer are we concerned

with the "by-the-pound" approach of computer out-

put. Rather, the responsibility is changing to

that of control over resources.

In the past, the typical corporate EDP func-

tion was the manufacture of paperwork. Computers

processed the transactions of operating the or-

ganization. However, effective information sys-

tems require more advanced application of com-

puter-based technology. They require, for example,

interactive systems, database management systems,

high-level user-oriented "languages," computer-

based models, minicomputers [dedicated computers],

personal computers [microcomputers], and tele-

communications networking. These things are comp-

licated enough for the technologist. Imagine how

foreign these things are to the end user?! But,

even so, effective information systems require
greater user-management involvement than at any

other time in commercial computing history. The

challenge for all management is to define respon-

sibilities more broadly to include the full scope

of all facets of information systems.

Information systems management involves the

integration of diverse disciplines and technolo-

gies and information-handling resources. Effect-

ive information systems management is a desirable

goal because it leads to better support of the

business activities and information needs of the

organization. The critical interrelationships
among all managers may be the single most criti-

cal success factor regarding the effectiveness of

information resources in the business enterprise.

Strategies are needed to effect and increase

meaningful and continuing communication among all

managers

.

Information systems management supports or-

ganizations by allowing management to be con-
stantly aware of the changing environment. It is

adapted to the preparedness that permits accurate,
effective, two-way flow of communication necessary
for successful operations today. This will pro-
duce flexible management and organizational struc-
tures that permit responsible and successful re-

sponsiveness to change.

5. The Information-Technology Revolution

Technological innovation has begun to show
managers the difference between management tools
and management toys

.

Since the introduction of the first commer-
cial computer, some 32 years ago, computer usage
has not reached its potential . The communications
barrier between the technologist and the user-of-
technology, a barrier that has basically existed
since the advent of computing, has been a detri-
ment to the progress of business.

Having technology and using it are two diff-
erent things. While the concept of management
information systems (MIS) has been around for a

number of years, its real-life success stories
are rare, indeed. The most critical reason for

this is because of the gap between "data proc-
essors" and the people who use the systems.

However, herein also lies the fallacy : people
don't "use" information-processing systems, they
are a vital part of them! Yet, our so-called
"users" have little comprehension of this esoter-
ic technology. But, worse, data processors have
only a rudimentary understanding of the business-
es they are being paid to support and service. As

such, too many managers refuse to risk their only
product — the decision — in a game of what they

call, "computer chance."

Yet, there are organizations that do succeed.

Do they have better technology? No! Better tech-
nologists? Not necessarily. More adaptive manage-
ment? Probably. Better grasp of concepts and com-
munications? Absolutely!

But, success stories require more than simply
grasp of concepts and communications. They need a

coalition — a merging of all resources, products,
services and goals that compose any given enter-
prise. The user needs an understanding of what
computers can do; a willingness, even an eager-
ness, to use the computer; and the knowledge to

influence and make decisions -pertaining to the

information systems each is a part of. The tech-
nologist requires an in-depth understanding of

corporate goals; a current knowledge of informa-
tion-systems alternatives; an empathy with, and

not antipathy for, users and their problems; and

a willingness to shed any "empire-building"
attitudes that have thus far retarded the prog-
ress of information systems management. The dan-

ger is that if all else stays the same, the pro-
liferating growth of computer technology will on-

ly cause any gaps to become ever wider.

It is absolutely necessary for all managers
to manage in ways that are markedly different

from the techniques of today. All managers must

be involved in the process because each is a vital

part of it. All managers must determine needs, ex-

amine alternatives, undertake evaluations, and

make decisions — all because each manager is be-

ing reared in a data/information revolution. Most

are not yet ready for it.

6. The Changing Role of the

Information Systems Manager

There is a mission here. This mission invol-

ves management coming to terms with the fact that

computers affect an organization's bottom line.

As such, managers must unify their efforts and

adapt to the "revolution" in order to reap its in-

estimable benefits.

The new role and responsibilities of this

new "breed" of manager, the information-systems

manager, may be defined as follows:

7

1. Enable the organization to understand,
apply and control internal forces, and
properly utilize external forces, that
shape a firm's computing and business en-
vironments ;

2. Apply proven management principles, par-
ticularly strategic planning, to inform-
ation-systems functions;

3. Provide the organization with planning
and development concepts and tools that
effectively enable the firm to develop
and implement a corporate computing/busi-
ness strategy, and to provide a logical
framework in which it can understand new-
est usage trends in information systems
management and computer technology;

4. Provide the organization with a forum to

exchange ideas and discuss opportunities
with information systems specialists;

5. Comprehend the critical nature of infor-
mation systems functions to overall or-
ganizational success.

The business impact of the new role and re-
sponsibilities of the information systems manager
may be outlined as follows:

1. Tools and Technology : The management and
utilization of computer technology and
all other reasources; service levels,
productivity measurements and improve-
ments, and quality control; molding of

resources to fit divergent business op-
erations .

2 . Organization and Communications : Devel-
oping organizational approaches that con-
tribute to achieving goals; new organi-
zational approaches that facilitate
change

.

3. People : Broadening the experience base so

that change along with computers can be
accepted and implemented.

7. Implications of Information Systems Management

The basic implications here are that:

- Timely, relevant, accurate information,
effectively produced and disseminated, is

a vital, valuable corporate resource. As
such, it must be managed just like any
other corporate resource;

- In the aggregate, information systems rep-
resent the totality of the organization
itself, in that one vital corporate re-
source — information — is provided to
the other vital corporate resource —
people.

Despite the extraordinary progress made in
information management practices during the last

ten years, a dichotomy still exists between pro-
ducers of information services and the users of
information. Most of the literature and programs
in the field are concerned with technical details
and thus fail to make the connection between in-
formation resources and the overall goals of the
organization.

This gap must be bridged. The major goal, is

to deal with information systems management from
the general management perspective: to show users
and information specialists how to work effective-
ly together to achieve organizational objectives.

Today, we have both a problem and an oppor-
tunity. Simply stated, it is the need and the
desire on the part of management to mold informa-
tion systems with computer technology into the
core of the mainstream of business.

This represents an ever-widening divergence
between the user and the computer, between sys-
tems management and ever-changing business re-
quirements. .. . Over the years the user has viewed
the computer as an enigma, something too complex
to understand, never mind control. As such, the
user has removed himself from the necessary ef-
forts to fully integrate this information-pro-
cessing and information-disseminating machine in-
to the overall structure of his organization and
his operations.

But, just like the corporate treasurers and
comptrollers of the 1960s and 1970s, who became
more knowledgeable and sophisticated in money-
market techniques and investment vehicles, users
are demanding more and more from their investment
in their information machines. The proliferation
of relatively cheap hardware is forcing users to
come to terms with what has been, up to now, an
esoteric tool. But, desire alone is not nearly
enough.

We have a problem because over the last 32

years, since the first commercial computer was
introduced, users have:

- Abdicated responsibilities,

- Distrusted data processors and computers,

- Lacked concepts and knowledge of computer
utilization.

Users have been indifferent to the new con-
cepts and requirements, and support a "business-
as-usual" attitude. The computer has not yet
reached its potential, but users must be educated
to understand their role and responsibilities to

effectively communicate with information special-
ists, and to learn new concepts and methods so

that they may understand and apply new techniques
that go beyond the status quo, that go beyond the

norm.

We have an opportunity because MIS managers
are the agents for change, are the architects of

their organization's information capabilities. As

8

Richard Nolan states, "The migration from data

processing to information management in the 1980s

creates new roles for managers. Those who suc-

cessfully identify and manage these new roles

will rise in the organization."

There is, thusly, a requirement for a bal-

ance between the user's needs and objectives and

MIS's role and responsibility to service and

support those needs and objectives. These objec-

tives involve a proactive, not a reactive, role

in searching out opportunities to apply computer

technology, where and when appropriate, to the

solution of business problems.

We are all too familiar with the horror

stories... of systems that did not meet expecta-

tions, that took too long to develop, that cost

too much; of technicians who do not understand

the businesses they serve; of users who have no

understanding or appreciation of the complexi-

ties involved in meeting their information sys-

tems requirements.

Isn't it now time to put a stop to this non-

sense and chaos? Isn't it now time for all of

the promised cost-savings and labor-savings to

be finally realized? Isn't it now time for re-

sults to equal expectations? Isn't it now time

for integrated communication and cooperation —
that which is marshalled through a common under-

standing of the roles and responsibilities, con-

cepts, strategies and techniques to achieve
goals?

For years the computer has been little more

than a number-cruncher, residing in the back-
office. It is now, finally, coming out into the

front-office. Indeed, we are learning that com-

puters support organizing, staffing, controlling,

planning and decision-making; indeed, the com-

puter is truly a complete management tool!

The objective throughout is to achieve har-
mony — to illustrate that information systems

management represents the effective integration

and management of all corporate resources to

achieve a common purpose. Ultimately, this means
that we recognize our opportunities for change,

for creativity and innovation, in order to eff-

ectively address and resolve our business prob-
lems and achieve organizational unity and suc-

cess .

It is a long, arduous task. Education and

training may be the key.

8. Conclusions

Today, we hear much about the idea that
business is in the midst of an "information ex-

plosion." Managers need information so that they

may adequately perform their functions as a man-
ager as well as take reasonable and prudent busi-

ness risks.

Information is necessary to expand one's
awareness and understanding of a real or perceiv-

ed event or situation in order to achieve a spe-

cific objective — that is, information is nec-
essary to increase knowledge. The expansion of

knowledge is necessary to reduce both uncertainty
and risk in the management process. Effective in-

formation has a direct bearing on the level of

reasonableness and prudence of business risks.

Information and computer technology are

vital corporate resources. Organizations that can
effectively manage these resources and integrate
them into the core of the mainstream of business
have a substantial competitive edge and they will
be better equipped to achieve planned objectives.

The ability to develop insight into expecta-
tions and problems provides managers with the

knowledge of where problems lie, their nature and
severity, and feasible alternatives for their
resolution and ultimate elimination.

9

LONG-RANGE ADP PLANNING:

A FEDERAL AGENCY PLANNING MODEL

Paul E. Matthews

The MITRE Corporation
McLean, Virginia 22102

This paper describes a long-range ADP planning process developed for a large

Federal agency with assistance from the MITRE Corporation. The general
acceptance of long-range ADP planning took place in the 1960s, with the
introduction of planning, programming, and budgeting. Current planning issues
include implementing paperwork reduction under the Paperwork Act of 1980 and
strengthening internal controls to prevent fraud, waste, and abuse, under 0MB
Circular A-123. Because of the volume and complexity of laws, regulations, and
policies which impact ADP management, proper integration of Federal regulation
into the planning process is a continuing concern for agency ADP planners.

Topics which a Federal agency planning model must address are the functions
it performs, the types of organizations required to perform these functions, the
tools needed to develop an ADP plan and oversee its execution, and steps to

implement the new planning processes. This paper describes the process in terms
of: Planning organizations (top management involvement, organization of the
function, and integration with operations); planning functions (preparation,
execution, and maintenance); and steps to implement the planning model
(establishment of formal agency planning; organization of responsibilities and
relationships, implementation of a formal life cycle process, approval of

interim plans, implementation of planning support databases, and initial plan
execution)

.

Key words: Long-rnnj'-e planning; ADP planning; life cycle management; systems
planning and control; Federal ADP procurement.

1. Introduction

With the publication in 1960 of Hitch and

McKean's The Economics of Defense in the

Nuclear Age ,
long-range systems planning

became an accepted discipline. The

application of quantitative techniques to

management problems, as exemplified by

planning, programming and budgeting systems,

has advanced to routine use today in

performance monitoring, workload forecasting,

and optimization techniques in network

analysis. Planning and managing computer

systems require a similar formal analysis and

discipline.

Long-range ADP planning is an appropriate
function for the use of a structured

discipline incorporating both quantitative
and nonquantitat ive techniques. Areas
especially amenable to quantitative analyses
are the resources being managed in the ADP
plan: equipment, computer programs, data,

telecommunications, and facilities.

Nonquantitative factors which can be

addressed by means of a structured model
include manual procedures, conversion
strategies, and personnel retraining.

11

2. Current Issues in Planning

Based on The Brooks Act, Federal
regulation has caused government agencies to

develop computer systems which are
obsolescent in the planning stage, become
frozen in time, and today, represent
opportunities for technological improvement.
A current and continuing issue in ADP
planning is the pressing need for ADP
equipment and software replacement.

Changes in the Federal ADP regulatory
environment impact long-range ADP planning
requirements. The Paperwork Act of 1980
imposed a set of evolving requirements on the

planning process. The most recent major
impact occurred with the publication of 0MB
Circular A-123 in October 1981. These are
but two recent policy changes which exemplify
.the continuing need on the part of Federal
ADP managers to update the processes and

procedures for ADP planning.

This is a continuing need; both ADP plans

and ADP technology are continually changing.
The Federal regulatory environment changes so

frequently that the long-range ADP planning

process, itself, is a moving target.

3. Planning Functions

There are three major functions

associated with the planning process:

• Plan Preparation
« Plan Execution
• Plan Maintenance

Plan preparation consists of the development

of an agency-wide, long-range ADP plan. Plan

execution covers the interfaces of the

strategic planning process with the

day-to-day operational plans for individual
system developments and acquisitions. Plan

maintenance addresses the organizations

required for planning, the functions they

perform, and the support services required to

maintain the long-range ADP plan.

3.1 Plan Preparation

A key ingredient in the recommended
planning model is integration with the

Federal budget process. To increase the

.probability of success, the planning and
budgeting processes must be integrated into
an organic whole. This integration ensures

that when the plan has been developed, the

budget for plan implementation will be known,
since planning and budgeting take place
simultaneously.

Accordingly, a planning calendar
correlates the planning and budget cycles for
the agency. Major milestones in plan
development are the following:

• Developing the agency information
strategy

• Preparing long-range ADP plan
submission guidance

• Preparing agency component ADP
objectives

• Analyzing requirements and constraints

• Assigning priorities to ADP objectives

Development of an agency information

strategy is based on budget guidance
available from 0MB, policy guidance from

higher monitoring authorities (including 0MB,

the Congress, the General Accounting Office
and the General Services Administration)

,

strategic planning, and feedback from prior

planning activities. Produced by a

management advisory council, the agency
information strategy is the statement of

overall ADP goals, which guide agency
managers in determining ADP requirements.

When the overall ADP goals are defined,
the agency ADP planners issue long-range ADP

planning submission guidance as a formal

planning call which parallels the budget call.

In response to the submission guidance,

agency components then propose long-range ADP

objectives for inclusion in the plan.

Current systems, planned modifications and

anticipated developments must all be included
in the agency-wide long-range ADP plan. Once
an ADP objective has been prepared, its

resource requirements and constraints are
analyzed. Preliminary life cycle costs are
calculated, and alternative expenditure
requirements projected over the system life.

These are tied to the agency budget
submission.

Each ADP objective, therefore, becomes a

preliminary life cycle strategy (LCS) for a

specific system development or acquisition.

The LCS is the critical interface between
strategic planning and operational planning.
At the operational level, the LCS plans and
monitors the system project, from proposal to

operations and maintenance. The LCS
furnishes analytical background for resource
allocations and assignment of priority to the

ADP development or acquisition. The

long-range ADP plan for the agency contains
all approved LCSs, consolidated, reviewed,
and published by the agency ADP planners.
Figure 1, Planning/Budget Cycle, displays the

planning calendar and shows major tasks in
the plan preparation function, as well as the
appropriate decision level.

12

13

3.2 Plan Execution

The planning process must be organic to

system acquisition and development to ensure
implementation of ADP plans. As a separate

activity, the long-range ADP planning process
could not keep track of policy changes and

changing user needs; therefore, planning

mechanisms would have to be rebuilt from

planning effort to planning effort, with a

resulting loss of institutional planning

memory. Accordingly, the recommended
planning model requires that any change,

addition, or deletion of an approved ADP

system acquistion or development in the

long-range ADP plan be made by an update to

the appropriate LCS . This feature ties the

planning function directly to operational
management

.

Major tasks in the plan execution
function are preparing and/or reviewing the

LCS, management decision making, and

reviewing the long-range ADP plan on a

periodic schedule. Preparing or reviewing

the LCS ensures the effectiveness of the

long-range ADP plan. During plan execution,

any new or changed ADP requirements must be

specified whenever a new function is assigned
to the agency, a technological opportunity is

recognized, or a policy change is adopted
affecting workloads and/or capacity. Entry

of a new ADP system project into the plan
(even outside the annual planning call)

requires that an LCS be prepared and approved.

3.3 Plan Maintenance

Plan maintenance requires a planning
support organization with two primary
functions: user liaison and technical

support. The user liaison function provides
representation for agency component
organizations and consulting support to

them. From the perspective of the agency
long-range ADP plan, the user liaison
function expresses and/or reviews the mission
needs of agency components.

The technical support function provides

expertise in the following areas:

• Hardware
• Software
• Operations research

• Database and data administration
• Telecommunications

Figure 2, Automated Planning Support System,
displays the functions and databases
recommended to support long-range ADP
planning

.

The functional roles of * the planning

support organization include acquiring and
maintaining all information for effective
planning for the agency ADP management
program. Three major elements of plan

maintenance are: data collection and

retrieval, project management, and quality
assurance. The basis for these elements is a

set of six logical planning support databases
which provide baseline information. Each
database contains the information required to

support planning and the operations of each
requested system development/acquisition.
The databases serve as a library of

information addressing technical management
of the ADP program.

The databases are the following:

• Mission Needs Inventory (MNI) — This

database describes the agency mission,
mission need/program, ADP capability,

need assessment, and ADP objectives.

• Applications System Inventory
(ASI) — The ASI contains data
describing past, current, and
projected requirements of the various
agency applications systems. It also
collects and provides application
system cost data.

• Computing System Inventory
(CSI) — The CSI serves two purposes:
It collects and stores past, current
and planned ADP capabilities, and it

collects and stores ADP computing
system cost data.

• Project Management System (PMS) — The

PMS tracks the movement of the LCSs
through ADP processing. Thus, the

agency ADP planners can quickly
determine the status of any LCS. This
database is the active repository of
the agency long-range ADP plan.
(Figure 3, Project Management System
Information Contents, illustrates the

types of information maintained for
LCS tracking)

.

• Staff Skills Inventory (SSI) -- The

SSI describes capabilities of agency

ADP personnel, and it describes their
work schedules.

• Cost Performed Index (CPI) — The CPI
collects and stores ADP and
telecommunications cost and
performance data for ADP planning,
based on estimated life cycle costs
and performance characteristics.

These databases serve as the focal point
for all planning data for the agency ADP
program.. Installation and utilization of
these planning support databases also
provides a facility to respond to requests
for information from outside monitoring
authorities, including GSA, OMB, GAO and the
Congress. The role of the planning support
databases in formal project management and
oversight of the development/acquisition

14

Cost Performance
Index

MICRO or

MINI SYSTEM
with Word
Processing
Capability ASI •MM

CSI • SSI
•PMS

USER SYSTEM
ANALYST

• Long-Range Planning
• LCS Preparation

and Refinement

ADMINISTRATIVE

• Data Base
Maintenance

FIGURE 2

AUTOMATED PLANNING SUPPORT SYSTEM

15

(1) Initial Life Cycle Strategy

• Type of LCS and action (maintenance, enhancement, system
development)

• Initial priority within the principal agency component
• Brief description of the request or need
• Desired completion time and operational constraints
• Processing status

• Initial estimate of time to complete the action
• Initial quantitative estimates of total benefit of

completing the action if available
• Qualitative statement of benefit
• Planned or unplanned submittal

(2) Approved or Initiated LCS

• Current priority of this action among all pending agency
actions, all pending component actions and all pending
software maintenance actions

• Estimated start date (includng source and reason)

• Actual start date
• Estimated completion date
• Estimate of the number of staff days required to complete

action
• Actual number of staff days used
• Estimate of total cost to complete the action
• Actual total cost
• Type of request (software modification, software addition,

hardware addition, hardware upgrade)

• A-109 decision status
• Current work phases (i.e., phase identification — analysis

and design, development and implementation, or operation and
maintenance) , estimated start, projected completion date,

actual start/completion, approval dates and level, tasks
within phases, etc.

• For each task:

Estimated start date
- Actual start date
- Estimated completion date
- Actual completion date

Intermediate milestones
- Types of staff resources and level of effort required
- Estimate of total cost to complete the task
- Type and list of performer (s) (in-house, government

laboratory, not-for-profit, private, commercial, etc.)
Expected and actual type of procurement and contract
Contract officer

- Task manager
• Expected outlays subdivided into:

- Hardware/software purchases
Site construction and modification

- Government personnel costs
Contract Costs

• Actual outlays, as described for expected outlays

FIGURE 3

PROJECT MANAGEMENT SYSTEM INFORMATION CONTENTS

16

process is critical. Specifically, the PMS

provides a tracking facility of all current

ADP projects; completeness and consistency of

the LCS database records can be monitored to

provide a quality assurance mechanism over

the agency ADP plan.

4. Implementation _.

ADP Planning
of Long-Range

Since ADP resources exist to serve agency
program goals, ADP planning depends upon
formal agency-level programmatic planning.
This planning is necessary to ensure that the

agency long-range ADP plan consistently
serves user mission needs. Therefore, the

first steps to installing a long-range ADP

planning process are to establish formal
agency planning and define the relationships
between programmatic planning and ADP

planning

.

The implementation of a long-range ADP

planning process is a phased, building block,

approach. As a first step, an executive,
decisionmaking body is chartered to review
and approve major planning and policy
issues -- the management advisory council.
Subsequent steps in the implementation plan

are the following:

• Charter the planning functions

• Integrate system life cycle management

• Approve existing or interim plans

• Establish the planning support
databases

4.1 Charter the Planning
Functions

The specific functions to be assigned to
the planning group, the management advisory
council, and the agency user components must
be defined in terms of operational workflows,
areas of functional responsibility, and
decisionmaking authority. A top management
charter must be issued, designating these
planning organizations, delegating authority,
and starting the planning processes.

4.2 Integrate System Life
Cycle Management

A formal structured system life cycle
process is necessary to provide
predictability and measurable products to the
system building process; accordingly, one
which builds on the LCS and supports the
monitoring and oversight role must be
adopted. Integration of the life cycle
process requires that essential management
and technical personnel be trained in
planning and systems management techniques.

4.3 Approve Existing or
Interim Plans

Since implementation of a new long-range
ADP planning process is necessarily a phased
activity, requiring at least six months to a

year, current or existing plans can not
simply be discarded. Instead, management
commitment to the new planning effort
requires that existing plans be carefully but
quickly reexamined and approved, with any
necessary changes. The existance of an
agency ADP plan, although an interim one,
lends management support to the planning
activi ty

.

4.4 Establish the Planning
Support Database

This step consists of two tasks: (1) a

survey of major information holdings
throughout the agency which could affect the

long-range ADP plan, and (2) building the

requisite planning support databases.
Information about data of the kinds described
for the six databases must be inventoried and
cataloged

.

The most central tool of the recommended
process, the project management system,
should be initiated first, beginning as a

manual project notebook to record life cycle
strategies for each system
acquisition/development. The system can then
be phased in, as the database and associated
procedures are implemented. The staff skills
inventory should be built manually, based on
specific ADP-related training and
experience. It may be automated later, as

funds permit. The cost performance index can
be initially established by using
subscription services to technical
publications; bibliographic database
reference tools can then be added, as
resources permit, and the CPI can become an
ADP technology forecasting center.

5. Conclusion

Long-range ADP planning in the Federal
government is complicated by a myriad of
laws, regulations and policies, each of which
adds additional tasks. Most tasks are time
consuming, and many requirements are
conflicting in nature. A comprehensive and

formal "plan to plan" is therefore necessary
to give structure to the process and provide
a predictable outcome. This paper has

described major features of such a

comprehensive planning process. These are
the following:

• The planning model is based upon an
organizational building block — the
planning support group.

17

• The process employs a top management
group, the management advisory
council, specifically chartered to
function as a working

, decision-making
body, not a steering committee.

• The planning model is integrated with
the Federal budget process.

• The model drives an individual system
development project by means of a

specific plan, the life cycle strategy.

• The process is based on a set of

planning support databases which
provide technical information for
planning and ADP operations
management. These are: mission needs

inventory, application systems
inventory, computing systems
inventory, staff skills inventory,
cost performance index, and a project
management system.

A planning-driven life cycle management
process was developed to fit this ADP

planning process. The life cycle process
incorporated both traditional system
development and acquisition processes and the

tasks and activities required by Federal
policy. (It is cited in the references to

thi s paper)

.

The agency for which this planning model
was developed is currently preparing a

long-range ADP plan and expects to implement
key concepts of the planning model.
Implementing the planning model in other
agencies will provide experience to evaluate
its effectiveness. The future direction
MITRE plans for this comprehensive long-range
ADP planning model is to monitor its

implementation, with particular emphasis on
those areas where it may need to be tailored
to individual agency requirements.

6. General Services Administration, Federal
Property Management Regulations (41 CFR
101-35, 36, 37).

7. General Services Administration, Federal
Procurement Regulations (41 CFR 1-4. 11).

8. Head, Robert
Information

V.
,

Strategic Planning for
Systems, Wellesley,

Massachusetts

:

Inc., 1979.
Q.E.D. Information Sciences,

9. Heiker, Vincent E. , "The Black Art of
Systems Planning," Ken Orr & Associates,
Inc's Users' Conference Proceedings, 1981.

10. Hitch, Charles J. and Roland N. McKean,
The Economics of Defense in the Nuclear Age

,

Cambridge: Harvard University Press, 1960.

11. Lasdon, M., "Long-Range Planning —
Curse or Blessing?" Computer Decision

,

February 1981, p. 102.

12. Matthews, Paul, "A Planning-Driven
System Life Cycle Model," Computing and
Government: Interactions and Achievements,
Twenty-First Annual Technical Symposium

,

Gai thersburg
,

Maryland: National Bureau of

Standards, 1982.

13. Office of Management and Budget,
"Preparation and Submission of Budget
Estimates," Circular No. A-ll.

14. "The Federal ADP Procurement Maze,"
Government Executive, April 1977, pp. 49-55.

REFERENCES

1. Anthony, Robert N. ,
Planning and Control

Systems: A Framework for Analysis
,

Cambridge : Harvard University Press, 1965.

2. Biggs, Clarks L.
, Managing the Systems

Development Process
, Englewood Cliffs, New

Jersey: Prentice-Hall
,

Inc., 1980.

3. Canning, Richard G. , "Are We Doing
Things Right?," EDP Analyzer, V. 13, November
7, July 1975.

4. Dietrich, Fred, "Discussion of
Procurement Under A-109," presentation to The
Federal ADP Procurement Conference,
Washington, D.C.

,
February 4-6, 1980.

5. Fried, Louis, "Long-Range Planning for
DP Management," Data Processing Management

,

Auerbach Publishers, Inc., 1979.

18

PRODUCTIVITY THRU INTEGRATED

INFORMATION RESOURCE MANAGEMENT

Malcolm Campbell

State of Missouri
Division of EDP Coordination
P.O. Box 809, Capitol Bldg.
Jefferson City, MO 65102

Applications of technologies occur in the organization in fluid, ambiguous
environments with pressures, costs, and risks. A coherent approach for produc-
tivity is needed to apply to the mix of technological, organizational and economic
issues

.

Stratagic Information Resource Management involves addressing the situation
by integrating the components of information, people, technology and capital
within a volatile environment. The methods for working this out can be examined
by applying the approach to selected emphases that we notice in the conversations
of Data Processing people today.

The framework is as follows:

1. Tensions arise in the application of Data Processing to

the organization.

2. We apply resources and viewpoints to the tensions.

3. We can do this on the basis of expressed principles.

4. Organizational learning takes place.

5. There are new tensions.

6. When applied appropriately, the components of this cycle
contribute to productivity.

This presentation attempts to apply a rationale for the above process,

considering specific current concerns of computer-based applications.

Introduction

You possibly have observed situations in
which computer technology, when used to address
organizational tensions in one area, provokes
tensions in another. For example, relieving the

application backlog by increasing user involve-
ment may lead to a user documentation control
problem. Such tensions continue to emerge in new

places as technology changes.

Many of these tensions, at first, appear to

be isolated from each other in the organization.
The approach of this presentation is to suggest
tools for integrating the processes associated

with the tensions in pursuit of improved produc-
tivity in IRM for the organization.

The outline we will use will be "IRM
Elements" and we will apply the categories of
"Format For Each Element" to several parts of the

"IRM Elements".

The principles we shall use are defined in

the explanations of "Terminology"

.

The sections we have just referred to appear
on the following page, in this order:

1. IRM Elements
2. Format For Each Element
3. Terminology

19

1. IRM Elements 3. Terminology

1.1 Frontiers of Information Effectiveness

1.1.1 End User Systems Involvement
1.1.2 Management Structures as impacted by

changing technology
1.1.3 Question-driven EDP
1.1.4 The Information Center
1.1.5 Decision Support Systems

1.2 Control Structures for Cost/Performance
Realities

1.2.1 Methodologies and disciplines
1.2.2 Purposeful networking
1.2.3 Distributed Data Processing chaos

avoidance
1.2.4 Office Automation as EDP

1.2.5 Micros where useful

1.3 Defining Functional Data

1.3.1 Conceptual data base modelling
1.3.2 Organization-wide data structures
1.3.3 Data for events and for human action

1.4 Growing Demands

1.4.1 Trimming the application backlog
1.4.2 Information accessibility for upper

management

1.5 A Good Environmental Fit

1.5.1 Readiness as a stage in info-systems
evolution

1.6 Employee Roles

1.6.1 The organization chart
1.6.2 Job definitions
1.6.3 Employee integrity, humanization and

productivity

2 . Format For Each Element

2.1 Initiating Tensions

2.2 Occurrences in the Real World

2.3 Resulting Tensions

2.4 Goal-Oriented Constructs

2.4.1 Goals

2.4.2 Technology

2.4.3 People

2.4.4 Information

2.4.5 Capital

2.5 Integration

3.1 "Tension"

A condition in the organization that manage-
ment will not allow to continue as it is
without some attempt to modify its effects
so as to enhance organizational productivity

3.2 "Organizational Learning"

The changing in an organization that enables
it to move toward its goals under new con-
ditions and with new principles

3.3 "Dialectic"

The dynamics, in the organization, of
tensions being guided toward goal achieve-
ment, resulting in new tensions

3.4 "Integration"

Processes in the organization that work
toward

:

3.4.1 Relevance
3.4.2 Attachment of common categories
3.4.3 Incorporation of conflict
3.4.4 Holism - synthesis thru higher order

feed-back, the whole greater than
the sum of its parts

3.5 "Constructs"

The reference subsystems applied like models
to the dialectic process. These subsystems
come out of the organization culture (like

"participatory management") or out of tech-

nology developments (like "structured design
methodology") or out of applied behavioral
sciences (like "organization development" or
"transactional analysis".)

Constructs aren't always extant reference
subsystems; they may be perspectives and
images

3.6 "IRM"

Information Resource Management in its

commonly accepted sense, with following
emphasis

:

Strategies for utilizing information as
an organization resource and developing
information tools in a functional sense

3.7 A Major Theme of This Presentation

Productivity is achieved thru cycles of
organizational learning as integration
grows out of application of goal-oriented
constructs to the dialectic process

20

4 . End User System Involvement

4.1 Initiating Tensions

4.1.1 User is intimidated by the technical
literacy gap

4.1.2 User insists upon fruits of techno-

logy advances

4.2 Occurrences in the Real World

Hardware and software tools at prices
the end user can pay

4.3 Resulting Tensions

4.3.1 Difficulty in relating the new tools
to his priorities and the organization
context

4.3.2 Uncertainty as to the havoc that can
be played by uncontrolled automation

4.4 Goal-Oriented Constructs

4.4.1 Goals

Happy, involved users; answers for
training, turnover, control and
standardization

4.4.2 Technology

Application aids that are functionally
defined and documented

4.4.3 People

HRD that is functional; education
addresses information dynamics—not
specialized technology; conflict
management

4.4.4 Information - Conceptual data bases

4.4.5 Capital

Relate dollar expenditures to user's
payback, such as matrix organization,
zero-based budgeting, functional cost
allocation

4.5 Integration

4.5.1 Higher order intervention for appli-
cation development

4.5.2 Component sub-groups; heterogeneous
teams; walk thru's

5 . Management Structures as

Impacted by Changing Technology

5.1 Initiating Tensions

5.1.1 Problems of 1960-1975

Acceptance
Training
Conversion

Turnover

Documentation
Control

5.2 Occurrences in the Real World

5.2.1 Proliferation
5.2.2 Improved Cost/Performance
5.2.3 D.P. moving away from being a job-

oriented division
5.2.4 Permissiveness, self-advancement,

questioning
5.2.5 Data availability
5.2.6 Less demand for traditional middle

manager 1 s work

5.3 Resulting Tensions

Management responsibility for:

5.3.1 Data base modelling and administration
5.3.2 User involvement in application

development
5.3.3 The Information Center
5.3.4 Office automation
5.3.5 Employee motivation and direction

5.4 Goal-Oriented Constructs

5.4.1 Goals

- Productivity of the infrastructure
s ch ema

- Organizational learning
- Effective management according to

objectives

5.4.2 Technology

Information Center (an organization
structuring concept)

People structues having network and
relational components as dist. from
hierarchical (e.g. because of
electronic communication)

5.4.3 People

Consensus, participation, relevance,
currency, teams, task force

5.4.4 Information

IRM - what the manager is managing;
Conceptual data base supporting goal-
oriented management

5.4.5 Capital

Recognition of people costs as high-
cost areas

21

5.4.6 Integration

5.4.6.1 Root Decisions

- Information loci
- Communication, job

description
- Priorities

5.4.6.2 Conflict management

- Span of control
- Data authority
- Procurement

5.4.6.3 Common categories for data,
technology, people, capital

- modularity
- involvement
- extension
- definability

5.4.6.4 Relevance demonstration

- manage data for the sake
of people

- manage people for the
sake of data

- manage technology for the
sake of people

- manage people for the sake
of technology

6 . The Information Center

6.1 Initiating Tensions

6.1.1 Need for user involvement in system
development

6.1.2 New tools offered to the user spawned
needs for:

6.1.2.1
6.JL.2.2

6.1.2.3

6.1.

6.1,

6.1,

6.1.2.7

technical assistance
large central site overhead
controls, documentation,
standardi zation
continuity thru turnover
clarity of systems definition
system cohesion, validity,
credibility, efficiency,
effectiveness
all the problems of the 60 1 s

6.2.3 Large data base development for the
total organization

6.2.4 Application development disciplines

6.3 Resulting Tensions

6.3.1 Need to avoid redundancy of systems/
data; need for coordination of scat-
tered, independent projects; need to
maintain systems integration

6.3.2 Organizational retrofit; such as
relationship of the EDP managers to
the Information Center

6.3.3 User friendly tools are not friendly
enough

6.4 Goal-Oriented Constructs

6.4.1 Goals

User access, organizational inte-
gration, clear understanding of
responsibility, effective application
of resources

6.4.2 Technology

6.4.2.1 Access

- Data in residence, machine
can address it

- Language by which user can
address the data

- Application Development
avenues that are:

generalized, question-
driven and need-defined

- data becomes information
thru interpretive use of
DSS, graphics, office auto-
mation and user languages

6.4.3 People

EDP employees as enablers rather than
doers ("Information Center" is essen-
tially a people concept)

6.4.4 Information

Reservoir of raw data for access, seen
as a total information pool

6.2 Occurrences in the Real World

6.2.1 Centralization/decentralization
issues as a question of organizational
structure, knowledge distribution,
and application systems (no longer
primarily a hardware focus)

6.2.2 Expansion of system software and its
usage/maintenance requirements

6.4.5 Capital

6.4.5.1

6.4.5.2

6.4.5.3

Investment seen in user tools,
training; enabler training
Costs of actual 'development
will go way down
Cost of preparation and over-
head will go down

22

6.4.6 Integration 7.2.2 Decision theory

6.4.6.1 Holism thru higher order
feedback

- Decision to change the

character of the EDP
function

- Essence of information
services is found in what
happens

6.4.6.2 Conflict incorporation

- The disparities come out
of the closet

- Whether a user gets what
he pays for is an open
matter

- ownership of data is

confronted
- What is friendly is openly
questioned

6.4.6.3 Common categories

- Decentralized components
are still a part of the
total organization

- The EDP person may find
his place at the Center or
at the staff of a user

6.4.6.4 Relevance

- Organizational goals more

visible relative to

departmental goals

7 . Decision Support Systems

7.1 Initiating Tensions

7.1.1 Existing computer output vs. potential
computer output vs. management needs

7.1.2 Traditional computer output too

voluminous for the manager

7.1.3 Computer has a fantastic capacity
for correlating variables, forecasting,
and highlighting unusual conditions

7.1.4 Managers' needs;

7.2.2.1 How managers make decisions
7.2.2.2 Information/logic relation-

ships

7.2.3 Management science

7.2.3.1 Quantitative methods
7.2.3.1 Operations research

7.2.4 Management access to computerized
systems

7.2.5 Schemas for data base interface

7.3 Resulting Tensions

7.3.1 Need for adaptive determination of

what information is of interest and
what it means (its significance)

7.3.2 The essence of management decision-
making often mitigates against stan-

dardization, such as what is important
is not always the same or is not
predictable

7.3.3 The manager doesn't manage like a
systems analyst. Management use of

information is often ad hoc , non-
structured, self-generated

7.3.4 A manager who wants help does not want
to mechanize his prerogatives

7.3.5 There is a very loose use of the term
"Decision Support Systems", especially
by vendors

7.4 Goal-Oriented Constructs

7.4.1 Goals

Extraction of information which is

interesting to the manager

Making available what that information
signifies

7.4.2 Technology

Heuristic systems, responsive to dis-

covery and uniqueness (generalization
and accessing the data base)

- "What-if" options
- Deviation from standards

needing attention
- Condensation of transaction

conditions for quick evaluation

7.2 Occurrences in the Real World

7.2.1 Packaged "what if" modes (like

financial planning)

7.4.3 People

The manager's role as applying stra-
tegy and values, rather than hunting
for information, calculating, and
drawing statistical deductions

Scientific management as based on
substantive forecasts rather than
guesswork

23

Management objectives as organization
goals rather than game playing for
position

7.4.4 Information

System design reflecting meaningful-
ness in the mind of the decision-
maker

Use the computer as a differ-
ent kind of tool

Make the organization more
authentic, operating on justi-
fiable processes more than
upon whim, pressure and pre-
judice

Environment for unstructured meaning
built into the system by the data
base designer (in doing the model) 8.1

Extraction of meaning from data by
use of algorithms

7.4.5 Capital
8.2

Cost trade-off of computer system
against manager's time and the values
of good decisions to the organization

8.3
7.4.6 Integration

7. 4. 6. J. Relevance

8 . Conclusion

The EDP environment is fluid but it doesn't
have to be random. It is many-voiced but
does not have to be counter-productive. It
fosters conflict, but does not have to be
destructive

.

We find ourselves seeming to seek stability.
What we actually want is growth through
processing our areas of tension.

There are factors which threaten to be frag-
menting. What makes those factors integrating
is higher level intervention using globally
related constructs.

Organization questions like
"What do we do next to accom-
plish our mission?", "What
do we do next for growth?"

These questions become
related to system design and
also become related to

management practice

8.4 What makes for growth is goal-oriented coping
with tension.

8.5 EDP volatility will not go away. But, because
we have sound goals and possible plans, we
can address the volatility with tools that
make sense.

7.4.6.2 Common Categories

Management science and data
base administration share in

common project activity

Systems realism and management
pragmatism share in common
project activity

7.4.6.3 Conflict Incorporation

"What DSS is" gets discussed

The manager looks at his
prerogatives and what he does
best that the mechanized
system won't do

The manager looks at intuition
and accepts it

7.4.6.4 Holism thru Higher Order
Feed-back

Interventions to:

Change management roles

Develop new kinds of
systems

24

o
"Improving Organizational Productivity"

Financial Manageme
Considerations

25

PRICING STRATEGIES IN PROCUREMENTS
CONDUCTED UNDER THE BASIC AGREEMENT

Thomas G. Morrison

MCAUTO Systems Group, Inc.

2 Research Place
Rockville, Maryland 20850

ABSTRACT

The General Services Administration's Basic Agreement procurement program was

implemented for procuring large scale commercial remote computing services. The

intent was to provide a flexible pricing environment where major processing require-
ments could be satisfied with highly discounted customized pricing. In practice, the

pricing flexibility has resulted in non-productive vendor gamesmanship. Successful
vendors have learned to create pricing strategies which result in evaluated system
life costs being a fraction of the actually experienced system life costs. Tech-
niques are available which can create substantial disparities between the evaluated
system life costs and the actually anticipated system life costs. By carefully
evaluating workload projections and structuring a pricing scheme to fit the evalua-
tion deficiencies a vendor can exploit the deficiencies and dramatically reduce its

evaluated cost. Action must be taken by the government community to stop these
pricing practices. Mandating that vendors utilize standard commercial pricing prac-

tices would help in resolving the problem.

Key words: Basic Agreement Solicitations; Evaluation of System Life Costs; Tele-
processing Services Procurements; Unbalanced Pricing; Workload Forecasting.

I. Introduction

Basic Agreement procurements were introduced
by The General Services Administration (GSA) to
provide lower cost services for major processing
requirements. In practice, Basic Agreement pro-
curements have not resulted in lower costs but have
resulted in non-productive vendor gamesmanship.
The successful vendors have creatively priced their
proposals with low evaluated costs knowing the
actual costs will be substantially higher.

Credits, decreasing volume discounts, bundled
unit discounts, etc. have been successful schemes
for winning government business. The gaming
vendors have been obtaining multi-million dollar
contracts with very high profit margins. They have
taken some risk but the rewards have been substan-
tial.

GSA has recognized the problem and issued an
amendment to the Basic Agreement in September 1981,
which precluded the pricing schemes mentioned
above. (1) This is a first step but it is only a
beginning and does not solve the problem. Some

government users seem to feel the GSA amendment on
unbalanced pricing has eliminated the problem. It

has not.

The problem of unbalanced bidding is an escal-
ating one. The relatively simple means of gaming
utilized in past procurements have already given
way to more sophisticated unbalancing techniques.
Most vendors are painfully aware of these practices
and know to remain competitive they must find ways
to exploit the evaluation methods or simply drop
out of the market.

This paper will explore and expose techniques
which have been and/or could be utilized by vendors
in unbalancing proposals. The intent is to educate
and sensitize the government community to the prob-
lem. The Basic Agreement procurement environment
in its present status is intolerable and action
must be taken swiftly by the government community
to rectify the problem.

2. Exploiting the Evaluation Criteria

Pricing schemes which unbalance proposals

27

exploit particular characteristics of the current

evaluation methods. These characteristics
include

:

• average utilization - which often fails to

account for actual distribution
• workload projections - which are over or

underestimated
• inaccurate mix of forecast resource con-

sumption
• the cyclical nature of actual utilization
• the utilization of unevaluated resources

By identifying any of these deficiencies in any

element of the evaluated workload, a vendor can
exploit the evaluation criteria.

The situation becomes significantly more com-
plex as you consider all the levels within the

evaluated workload where these deficiencies may be
identified. I have identified several different
levels where pricing schemes can be introduced.

Each level will be discussed more fully but sum-
marized they are as follows:

I) Aggregate use patterns

II) Inaccurate evaluated use of processing,
storage, connect, etc.

Ill) Inaccurate evaluated weighting of bench-
marked programs.

IV) Inaccurate evaluated usage of machine
resources

.

V) Highly sensitive machine resource con-
sumption.

VI) Modification of the resource accumula-
tor.

VII) Dedicated or bulk units.

By combining the five exploitable charac-
teristics with the seven levels where evaluation
deficiencies can exist, you have 35 combinations
that must be accurately accounted for in the bench-
mark and the forecasted- workload. If covering 35

contingencies doesn't sound like a major problem,
remember within each level there are multiple ele-
ments. For example, Level II contains processing
charges, storage charges, communication charges,
printing charges, courier charges, etc. If you're
still not convinced there is a major problem in

preparing your forecasts, consider that the ele-
ments just listed will also have multiple elements.
Communications, for example, will probably include
three different speeds each priced separately and
probably be accessed through two or three different
networks each priced separately. Undoubtedly, this
appears to be a numbers game. This will become
even more evident as we review some specific tech-
niques .

3. Examples of Unbalancing Techniques at
Each of the Seven Levels

pricing it is necessary to review specific examples

in detail. As will be demonstrated in the follow-

ing examples, unbalancing each succeeding level

will become progressively more sophisticated, more
difficult to implement, and more difficult to

detect. As agencies restrict certain types of

pricing, proposed pricing schemes will move more
deeply into the pricing structures. This process

has already begun and is escalating the problem of

unbalanced pricing.

3.1 Level I: Aggregate Usage Patterns

The first level, aggregate usage patterns, has

already been discussed extensively .(2) By review-

ing invoices, vendors attempt to find unevaluated
anomalies. Similarly, vendors look for overall

patterns of project usage and growth potential;

This has been the level where some vendors have
been so successful with decreasing volume dis-

counts, conditional credits, etc. Although some of

these techniques are forbidden under Amendment No.

4 to the Basic Agreement, the impact of unevaluated

elements can still be dramatic.

Figure 1 shows the significance of improperly
evaluated discounts or credits, or of not evaluat-

ing a portion of the actual workload. The X axis is

the percent discount applied against standard list

prices. The lower Y axis is the discount level

actually achieved or the evaluated discount level.

The upper Y axis is the ratio of evaluated cost to

actual cost. The lines represent the percent of

DISCOUNT LEVEL

To understand the mechanisms of unbalanced Figure 1. The Impact of Improperly Evaluated Discounts

28

Che total cost which escapes the evaluated discount

at list price. In constructing the graphs, all

unevaluated processing was charged at list price.

The plotted example assumes a cost proposal

with a 55% discount for all evaluated processing.
Initially the 30% non-evaluated processing has not

been considered. The evaluated cost with these

assumptions is El. The actual revenue produced
will be substantialy higher at Rl. To adjust the

actual revenue to the desired revenue move down the

30% line to R2 and the new discount level. The new
evaluated cost will be E2 and the actual revenue
will equal the desired revenue. By making this

adjustment the evaluated cost will be approximately
45% lower than it was before the adjustment. The

ratio of evaluated cost to actual cost on the upper

curves will move from El approximately 72% to E2

approximately 45%.

By reviewing other combinations of discounts
it should be readily apparent that no segment of

the actual workload can be overlooked. As discount
levels increase the sensitivity to unevaluated
workload elements is increased.

3.2 Level II: Usage of Processing,
Communications Storage, etc.

The second level involves inaccurate fore-
casting by the government of resource utilization.
Inaccuracies at this level can provide a signifi-
cant opportunity for evaluated price reduction.
Suppose the evaluation is based on a mix of

resources like this:

The actual cost in this case will be 22%

higher than the evaluated cost.

3.3 Level III: Benchmarked Programs

The third level of opportunity involves in-

accurate weighting of benchmark runs. Again, I'll

use an example.

The following table shows the results of six
benchmark runs and the weighted and actually
anticipated usage patterns.

Benchmark

1

2

3

4

5

6

TOTAL

CRU

20

10

30

10

15

15

100

SEC

12

9

24

5

1.5

3

54.5

I/O Evaluated Actual

8 20% 20%

1 10% 15%

6 30% 40%
5 10% 10%

13.5 15% 10%

12 15% 5%

45.5

Runs 2 and 3 are underestimated and runs 5 and
6 are overestimated. By modifying the weighting of

the resources in a billing algorithm, vendors can
again appreciably reduce evaluated costs. The

following table shows the results.

CRU Equivalents
Algorithm Evaluated Actual % Increase

Evaluated

300,000
300,000
400,000

$ 1,000,000

Connect
Storage
Processing

But the actual is anticipated to look more
like this:

Actual

$ 100,000 Connect
500,000 Storage
400,000 Processing

$ 1,000,000

By applying a large discount to the over-
estimated usage and a small discount or no discount
to the underestimated usage, a vendor could reduce
its evaluated cost significantly.

The following Table shows the results of
applying a 75% discount to connect charges, no
discount to storage and a 25% discount to pro-
cessing.

Connect
Storage
Processing
TOTAL

Evaluated

$ 75,000
300,000
300,000

$ 675,000

Actual

$ 25,000
500,000
300,000

$ 825,000

1.0(SEC)+1.0(I/0)=CRU 100.0 100.0 0%
1.1(SEC)+.9(I/0)=CRU 100.9 102.9 2.0%
1.5(SEC)+.5(I/0)=CRU 104.5 114.5 9.6%
1.8(SEC)+.2(I/0)=CRU 107.2 123.2 14.9%
2.0(SEC)+ 0(I/0)=CRU 109.0 129.0 18.3%

The analysis is over-simplified, but the

results are significant particularly if you
consider the relatively small errors that were made
in forecasting. When some runs utilize surcharged
software, similar results could be accomplished by
modifying the surcharges.

3.4 Level IV: Machine Resources

The fourth level is similar to the third but
here the mix to be analyzed is the consumption of
machine resources, i.e., cycles, I/O, etc. Using
the same six benchmark runs, I've created the hypo-
thetical benchmark found in Table 1. Notice that
the proportion of CPU resources has increased
between the modified benchmark mix and the actual
mix. By carefully setting up benchmark runs,
vendors can slant the resources consumed toward a

particular resource. Modifying the algorithm
factors or multipliers can then reduce the evalu-
ated cost but maintain revenues in actual use. By

accounting for this increase in the alogrithm
(.2(CPU)+1. 8(1/0)= CRU) the evaluated CRU's would
be 45.8 while the actual CRU would be 92.8. This
change results in a reduction in the evaluated cost
of 50% for processing.

29

Table 1. Impact of Benchmark and Algorithm Modification

BENCHMARK

RUN

UNMODIFIED BENCHMARK MODIFIED BENCHMARK

ACTUAL WORKLOAD STD ALGORITHM

'

MODIFIED ALGORITHM 2 MODIFIED BENCHMARK MODIFIED ALGORITHM 2

RESOURCE MIX
CPU I/O CRU CPU I/O CRU RESOURCE MIX

CPU I/O CRU
CPU I/O CPU I/O

I 60% 40% 1 0 ao on 2.4 1 A A14.4 16.

o

90% 10% 3.6 3.6 7.2

2 90% 10% 9 1 10 1.8 1.8 3.6 99% 1% 2.0 0.2 2.2

3 80% 20% OA JLO A ft 1ft A
1 9.0 95% 5% 9.

1

A, / 0.4

A& 50% 50% 5 5 10 1.0 9.0 10.0 80% 20% 1.6 3.6 5.2

5 10% 90% 1.5 13.5 15 0.3 24.3 24.6 70% 30% 2.1 8.1 10.2

6 20% 80% 3 12 15 0.6 21.6 22.2 60% 40% 1.8 10.8 12.6

TOTAL 54.5 45.5 100 10.9 81.9 92.8 16.8 29.0 45.8

1 — STANDARD ALGORITHM CPU + I/O = CRU 2 — MODIFIED ALGORITHM (.2) CPU + (1.8) I/O = CRU

The extent to which vendors can modify the
benchmark runs will depend upon the particular pro-
posal. As with alternate, unbalanced cost pro-
posals, vendors make changes, notify the govern-
ment, and see which ones the government will
accept. If they reject a change, then they will
simply have to rerun the benchmark. In other
words, there is basically no risk.

In many cases, benchmark modification will not
even be necessary because benchmarks are by defini-
tion a subset of the actual processing. A vendor
simply needs to identify what resources a full-
scale run will consume and structure the algorithm
accordingly

.

3.5 Level V: Highly Sensitive Machine Resources

The fifth level involves highly sensitive
machine resource utilization. A vendor could
increase revenue without increasing the evaluated
cost by establishing a base level of consumption
for the benchmark and then accounting for high
level peaking in actual use. Increasing the
weighting of the sensitive resource in the
algorithm would understate CRU's in the benchmark.
The evaluation wouldn't account for the peaking
from the benchmark level which would occur in
operation. Similarly, a non-linear algorithm could
be constructed which would dramatically increase
processing costs for any variation from the bench-
mark.

3.6 Resource Accumulators

Even more dramatic are the results of making
modifications to the resource accumulator. The
resource accumulator is software that monitors the
actual computer resources used and reports them to
the billing algorithm.

Vendors have tremendous flexibility in the

manner in which resources are accumulated. For
example, a vendor might not report the first two
CPU seconds resulting in a lower cost for small
jobs but virtually no reduction for production type
runs. Graphically, the results of this modification
appear in Figure 2.

Point A is the cost for the benchmark on the

incumbent's system. Point B is the cost for a

normal production run. In establishing the multi-
pliers for the benchmark, the relationship between
Point A and Point B is utilized. The benchmarked
vendor reports a cost at Point C. By applying the

evaluation multipliers the vendor is evaluated at

Point D. However, the actual cost for the produc-
tion runs will not be Point D but approximately
four times higher at Point E.

JOB SIZE —»~

Figure 2. Modification of The Resource Accumulator

30

Other modifications could produce similar or

more pronounced results. For example, resource
accumulation could be minimized at only the bench-
mark level or a step function could be employed to

dramatically increase costs with a slight increase
in job size over the benchmark. The only limit on
gaming with the resource accumulator is a vendor's
creativity.

3.7 Dedicated Units

The acceptance of "Dedicated" or "Bulk"
resource units introduces a new area of potential
vendor abuse. Because, a "Dedicated" unit works
like a dedicated machine, you introduce a unit with
the characteristic of producing differing quan-
tities of CRD" s per dedicated unit. The difference
between a dedicated unit and a dedicated machine is

that the dedicated unit can be expanded instan-
taneously unlike the dedicated machine. This dif-
ference can be exploited for evaluation purposes.

Suppose the new unit is defined as being cap-
able of producing 100 CRU' s per minute. In one
hour you could generate up to 6000 CRD" s

,
provided

you processed exactly 100 CRU's per minute. On a
dedicated machine this is possible, with a

"Dedicated Unit" it is not. The reason is that
with the dedicated machine as you load the machine
you cannot exceed its capacity, so as your workload
peaks your turnaround time degrades. With a

"Dedicated Unit" as your workload peaks you trigger
additional units that increase your cost without
degrading your turnaround time.

To analyze the impact of these units, I con-
structed a model which randomly assigns usage
through the day with a morning and an afternoon
peak. In the table below, sessions of random
lengths between 15 and 45 minutes were assigned
CRU's based upon an average number of CRU's per
connect minute for the total workload. The model
evaluates the peak minute within each hour and
assigns sufficient "Dedicated Units" to cover for
that hour. The evaluated processing cost is based
on the number of dedicated units required to cover
the average workload.

The actual cost with this "Dedicated Unit"
will be nearly 7 times higher than the evaluated
cost

.

Another "Dedicated" approach might use memory
requirements instead of time as the constraining
element. This type of pricing would work in the

same manner as the time constrained "Dedicated
Unit" just described. Within a given block of

memory equal to one "Dedicated Unit" you could

generate different quantities of CRU's. If your
workload memory requirements expanded you would be

charged for more units instantaneously.

Similarly, communication ports, I/O, or other
elements of processing could be used as the con-

straining element. Structuring an evaluation which
would adequately account for and anticipate this

volatile characteristic of a "Dedicated Unit" would
be virtually impossible.

Clearly, not all dedicated units would work in

the manner described. However, even with a dedi-
cated unit a gaming vendor can gain a significant
advantage in its evaluated cost.

4. Some Further Refinements

Another factor to be considered in this kind

of analysis is the impact of changing overall work-
load projections. By creating a disparity between
the evaluated and actual costs a vendor has dra-
matically destabilized the workload projections.
This discrepancy can also be exploited for cumula-
tive effects.

Our Level II (inaccurate forecast) analysis
looked like this when we finished:

Connect
Storage
Processing
TOTAL

Evaluated

$ 75,000
300,000
300,000

$ 675,000

Actual

$ 25,000
500,000
300,000

$ 825,000

Connect Hours
100.517

CRU'

s

15650.4
Because of the work we did in Level IV (bench-

mark modification) a new analysis must be conducted

for Level II. The imbalance now is partly con-

Peak number structed and partly inaccurate forecasting.
DAY HOUR of users CRU Peak

1 14 198 Before Discount

2 15 167 Evaluated Actual

3 18 229

4 17 212 Connect $ 300,000 $ 100,000

5 13 154 Storage 300,000 500,000

6 14 159 Processing 200,000 400,000
7 24 208 TOTAL $ 800,000 $1,000,000
8 21 260

9 14 229
Applying the following discount schedule

:

EVALUATED COST EVALUATED UNIT PRICE
$2,610 $0.17 Connect -100%

ACTUAL COST ACTUAL UNIT PRICE Storage +20%

$18,160 $1.16 Processing +50%

31

After Discount

Connect
Storage
Processing

Evaluated

$ 0

360,000
300,000

$ 660,000

Actual

$ 0

600,000
600,000

$1,200,000

If in this case a vendor's target revenue was
$825,000, other costs could be reduced by

$375 ,000/year . However, a vendor can't reduce pro-
cessing and storage costs by that amount because
for every $1 reduction in evaluated cost, actual
revenue is reduced by $2. Let's suppose this case
has a 5-year system life cost with an estimated
conversion cost of $1,875,000. The vendor could
cover the cost of conversion with no increase in
evaluated cost.

The results of our analysis follows:

The 5-year evaluated system life cost would be

$1,950,000 while the actual 5-year cost would be

$6,000,000.

Having reviewed one case specifically, let's
turn to the general case. Figure 3 demonstrates
the significance of the preceding method. The

vertical axis is the evaluated cost. In all cases
the actual revenue will be $1,000,000. The plotted
lines represent the percent of the systems life

cost due to processing. This percentage is cal-
culated after applying the basic overall discount
levels anticipated, i.e., a 50% across-the-board
discount. The horizontal axis shows the benchmark
disparity. Because processing is underestimated I

have increased the price of processing by 100% —
returning it to list price. The plotted example
assumes that 60% of the system's life cost is due
to processing and the benchmark disparity is 50%.

A vendor's total evaluated cost then becomes
$400,000.

Straight
Discount

Creative
Discount + Algorithm

Application

5. Conclusion and Rec ndations

Evaluated=Ac tual Evaluated Actual

Year 1 $ 825,000 $ 660,000 $1,200,000
Year 2 825,000 660,000 1,200,000
Year 3 825,000 660,000 1,200,000
Year 4 825,000 660,000 1,200,000
Year 5 825,000 660,000 1,200,000

$4, 125,000 $3,300,000 $6,000,000
Conversion 1,875,000 0 0

$6,000,000 $3,300,000 $6,000,000

Applying the same technique to the results of
our benchmark with the modified resource accumu-
lator also demonstrates the significance of struc-
turing discounts to exploit workload inaccuracies.

Before Discount

Connect
Storage
Processing
TOTAL

Evaluated

$ 300,000
300,000
135,000

$ 635,000

Actual

$ 100,000

500,000
540,000

$1,140,000

Remember the target revenue was $825 ,000/year
with $1,875,000 for conversion.

Applying the following pricing modifications:

Connect
Processing

Connect
Storage
Processing
TOTAL

-80%
+ 100%

Evaluated

$ 60,000
60,000

270,000

$ 390,000

Actual

$ 20,000
100,000

1,080,000
$1,200,000

Creative pricing is a major problem for those
conducting procurements under the Basic Agreement.

(ACTUAL REVENUE) 0

10

20 30 40 50 60 70
PERCENT DISPARITY

80 90 100

Figure 3. The Impact of The Exploitation of
Benchmark Disparities

32

A perfect benchmark, workload projection and evalu- 2 Special Report on Unbalanced Pricing, General
ation method will result in evaluated cost equaling Services Administration, TSP Monthly Report ,

actual expenditures. However, the chances of con- Special, 1980.

ducting such a procurement is improbable, if not

impossible, in most cases. The difficulty in

accurately anticipating workloads coupled with the

highly formalized low bid system of procurements

under the Basic Agreement opens the way for vendor

gamesmanship

.

The problem of unbalanced bidding will not go

away without changes in the Basic Agreement pro-

curement process. These changes must be compre-
hensive in nature. Any attempt to control the

problem by trying to prevent specific types of

pricing after they appear in a proposal will fail.

The examples presented in this paper demonstrate
the breadth of possibilities. They are by no means
a complete list. Creativity and technological
change will continue to result in new techniques.

In general, the Basic Agreement procurement
process should be modified to prevent the exploi-

tation of weaknesses in the evaluation criteria of

specific proposals. Cost evaluation criteria and

workload projections simply cannot be written which

will consistently prevent the problem of unbalanced
bidding. The problem can be rectified only by

restricting the vendor's pricing flexibility.

Deficiencies in the evaluation method of a specific
proposal cannot be exploited without pricing flexi-
bility. Although errors will continue to be made
the consequence of those errors will be minimized
not maximized.

Requiring vendors to utilize commercial
pricing structures and practices would make
exploitation extremely difficult. Commercial
prices are directly associated with a substantial
base of existing business. Therefore, vendors
could not arbitrarily modify these prices to fit

deficiencies in a particular solicitation without
economic consequences. Vendors would remain free
to set prices but once set the vendor would be
committed. Discounts could be offered only if

applied uniformly across all processing services
for a particular proposal. The Multiple Award
Schedule Contract program (MASC) has successfully
utilized this approach. A review of past MASC
awards reveals the pricing problems associated with
Basic Agreement awards have been avoided.

Competitively, procured remote computing
services offer a highly desirable and cost effec-
tive means of providing computer resources to the
government community. With appropriate changes in
the Basic Agreement procurement process the problem
of unbalanced bidding can be resolved. Competitive
energy would then be re-channeled into more produc-
tive endeavors.

References

1 Amendment No. 4 of Solicitation No. GSC-CDPSS-
A-00002-N-9-20-79, General Services
Administration, September 16, 1981.

33

"Improving Organizational Productivity"

Small Computer Policy

and Strategy

35

PANEL OVERVIEW

SMALL COMPUTER POLICY AND STRATEGY

Dennis M. Gilbert

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, DC 20234

Over the past few years small computers have begun to proliferate
and are rapidly invading many aspects of our work, home, and plan envi-
ronments. Spurred on by advances in semiconductor and related technol-
ogies, computing power that was strictly the province of mainframes and
minis, is now, through the use of small computers, being brought closer
to the ultimate end users.

There is an excitement in the air I There is a sense we are at a

frontier that is changing very rapidly. New opportunities are being
created and the promises made for the new technology are very appealing;
new jobs, new environments, more productivity, less drudgery, more
creativity.

And yet, amid the swirl of activity, there is a growing awareness
on the part of Federal agencies (and others) that our tools for dealing
with the new technology are far from adequate - as is our ability to

fully comprehend what is happening or appreciate the implications. The
situation is creating new challenges in which we are being compelled to

reexamine some of our basic concepts about data processing. There is a

renewed need to better understand the relationship between management
and control and to appropriately distinguish becween them. There is a

corresponding need to distinguish between the distribution of resources
and the distribution of information and find new alternatives for achiev-

ing the appropriate degree of each.

Part of the new challenge for organizations is to develop policies
which promote effective use of the technology and increase productivity,
and which at the same time support environments which encourage inno-

vation and creativity rather than stifle them. Ironically, the technol-

ogy which is creating these challenges may also provide us with some of

the tools for dealing with them.

In this panel session we will examine a variety of issues related

to these new developments. Among the topics we will explore are the

following

:

• The policies and strategies organizations are adapting to

acquire and manage microcomputer systems.

• The information available to users of micros and workstations

and the vehicles available for exchanging information - infor-

mation utilities, bibliographic retrieval services, electronic

bulletin boards, electronic mail, and specialized mailing

lists.

37

• The tools, techniques, and applications available for using
microcomputers as powerful, independent workstations and as
pieces in a shared-information, shared-resource network.

• The appropriate distribution of mainframes, minis, and
micros in a mature information system,

• The approaches which increase or decrease an organization's
ability to respond and evolve in a rapidly changing environ-
ment .

• The de facto microcomputer standards which appear to be
emerging.

• Future directions for the use of micros in the work
environment

.

The format of the session will be a few brief presentations by
panel members to highlight the significant issues followed by audience
reactions and participation.

38

"Improving Organizational Productivity"

Information Systems Needs
Analysis

39

FULFILLING BUSINESS NEEDS WITH AN CN-LINE SYSTEM

David R. Vincent

Institute for Software Engineering
510 Oakmead Parkway

Sunnyvale, CA 94086

dice a long, long time ago a tribe of our
earliest ancestors subsisted on coconuts. At
first the coconuts were smashed against the

walls of the caves in which they lived, but as

this was too messy they advanced to using a

common large boulder in the center of the
community.

Vhen the first hominid member of this tribe
picked up a stone to smash open a coconut, it
wasn't because he wanted to invent a new tech-
nology, but rather because he was hungry and

wanted to get at the edible part of the fruit.
This new technological development had a great
impact on the tribe because it offered mobility
and freedom from always having to be near the

big boulder when feeding. For this reason, this
particular hominid became a very prominent mem-
ber of the tribe.

As time progressed, this hominid became the

specialist in smashing coconuts for the entire
society and consequently recruited a couple of

trainees thereby creating the CCE (Coconut
Cracking Elite) . Everybody was happy with the
CCE, and all were well fed and content until the
technology took its next logical step. Some of

the trainees found new ways to open coconuts
such as dropping them off a cliff, or even

better, using a sharpened rock to cleave the
coconut exactly into two pieces with no loss of
meat. This caused great consternation in the

CCE because the original developer of the MCCT
('"lobile Coconut Cracking Technique) preferred
his method over all others. This led to great
debates and disagreement at the CCE. The result
was that the CCE began to work on the problem of
deciding if a sharp breaking edge was better
than a dull one and which method resulted in the
least loss of coconut meat. During this pro-
longed debate, the actual cracking of coconuts
dropped drastically, even to the point that some
of the tribe were beginning to starve.

The tribe grew very angry and asked the tribal
chief to give them back the responsibility of
cracking the cocunuts themselves. Many of the
tribe had already started moving back to the big
boulder in anticipation of this approval from

the chief.

Sure enough, so much pressure was applied on the

chief that he disenfranchised the CCE and let
all tribal members crack their own coconuts.
The members of the CCE were so astounded at this
turn of events that they left the tribe having
come to the conclusion that this tribe was too
ignorant for technological progress and sought
out another tribe on which to ply their
expertise.

Why did the CCE fail? They simply lost sight of
the objective for their establishment in the
first place. Rather than working toward the

objective of supplying sufficient coconut meat
to the tribe, they were caught up on the tech-
nology of cracking coconuts which was not neces-
sarily related to meeting the needs of the
tribe.

And so it has been down the ages that technology
is discovered to meet the needs of a society or
an enterprise. And so, also, there is the phe-
nomena occurring again and again that as tech-
nology becomes more complex, groups are formed
to specialize in resolving real or perceived
problems. As these groups develop, they tend to
get more and more isolated and elitist, even to

the point where some of the perceived problems
and resultant solutions may have no impact on
the quality of life (and some cases can
seriously degrade the quality of life) . These
solutions have ranged from the wheel which
revolutionized transportation to the building of
pyramids to assist the "afterlife" of some
pharoah

.

41

Our society is raft with such examples, but the
one which concerns us here is that which exists

in the on-line data processing environment.
More specifically this paper will deal with IMS

in an MVS environment.

Like the first coconut cracker, the enterprise
with a computer purchased it for some very tangi-
ble and easily identifiable purposes such as

payroll, accounts, invoicing and the replacement

of repetitive clerical functions. Some
institutions purchased a computer to solve com-

plex equations, otherwise not manually possible.
At that time the entire DP staff consisted of a

system analyst and an operator who controlled
all the work going in the computer. Communica-
tion with users was simple and direct. Objec-

tives were easily set and achieved.

Then came on-line systems. Control of the
arrival rate of the work passed from the opera-
tor to the users. Users' perception of response

time changed from hours or days to seconds. The
technical staff immediately started to grow with

the difficult mission to optimize system perfor-
mance and to maximize resources available to do
on-line work. Today, many organizations'
unhappy users abound because of their insatiable
demands for more and better service. Many users
are demanding their own computer so that they
don' t have to depend on some remote group that
doesn't seem to understand their problems.

Such an environment need not exist. But to
prevent this situation, the IMS/MVS system
programmers, performance analysts and capacity
planners must work as a team solving the real

problem. That is, determining the needs of the
business for various service levels, and then
delivering them as needed. The methodological
flow for on-line capacity management may be
summarized in the following figure:

BUSINESS

ON LINE

NEEDS

LONG RANGE

INSTALLATION

PLAN

SERVICE

LEVEL

OBJECTIVES

IMS/MVS

INTERNAL

OBJECTIVES

SYSTEM

REQUIREMENTS

A representation of the level of technical
detail required for each of the phases of the
overall methodology, however, would be as
described in Figure 2 with the widest area of
the diamond requiring the most technical detail.

LEVEL OF TECHNICAL DETAIL

1 . Business On-line Needs

This is the most important element in the entire
process of fulfilling business needs. The tech-
nical people responsible for the performance of

the on-line system must identify their mission
as satisfying the business needs of their users.

For example, if these technicians are providing
service to a bank, then they are bankers. If
they are located in an insurance company, then
they are involved in the operations of the basic
insurance industry. They must learn to think
about the business much the same as the user
community.

Business needs for on-line services can usually
be readily identified by following the flow of
information through a business. Another tech-
nique is to develop and prioritize a list of the
Critical Sucess Factors of the basic industry
that the enterprise serves as well as that of
the organization itself.

For example in the insurance industry there are
two basic transactions flows which are critical
to the sucess of the business:

4 2

1. The issuance of policies and subsequent
renewals, additions, and changes.

2. Claims against policies and the resultant

procesing and investigation.

There are many more types of work flow, but for

the purposes of illustration, I will choose the

claims processing department. The technical

staff can get a good idea of the flow and rhythm

of work to be done by talking to the management
of the claims department. This is not always as
straightforward as it may seem. There was a

case where a claims department was demanding
faster response time. The current level was
about 5 seconds, so the IMS department obliged

with a response time of about 2 seconds. The
manager of the claims department noticed after a
period of time that the amount paid out per
claim was going up. It was hypothesized by the

claims manager and the IMS technical staff that
the new 2 second response time, while allowing
more claims to be processed, resulted in less
scrutiny of the items being claimed. They
agreed to raise the response time back to 5

seconds and, sure enough, the costs claim
dropped. This case points out the need for
constant dialogue between the technical staff

and the users to provide the right kind of
service.

2. Service Level Objectives

A service level objective is the result of a

service level agreement negotiated with the
end-users. If they are not negotiated, they are
probably de facto , i.e., agreements based on
what the users consider normal response time to

be. Here again, the technical staff must take
an initiative to obtain a real agreement from

two groups of people:

1. Applications programmers

2. End-users

The applications programmers must design their
programs for performance. Design and transac-
tion standards should be strictly enforced here
to obtain the possibility that a transaction
will be designed that can, under normal condi-
tions, offer the right kind of service to the

end-user. Many IMS groups use the concept of
the Standard Work Unit as described in Bill

Inmon's work done at Amdahl. For example, such
standards may enforce a transaction class that
cannot exceed 25 D/I calls not to exceed 2 I/O's
per DL/I call. Other classes may permit more,
but would be clearly designed to run in separate
message processing regions with substantially
degraded service.

Examples of end-user service level agreements
may be described as:

• Accounts Receivable: 10 transactions per

second maximum <3
second response time,

90% of the time.

• Accounts Payable: 5 transactions per
second maximum _<8

second response time,

90% of the time (note

receivables have
greater business
priority)

.

• Payroll/Addemp: 2 transactions per
second maximum <12
second response time,

90% of the time.

• Payroll/Chgemp: 8 transactions per
second maximum <1

second response time,

95% of the time.

These agreements are very important and become
the basis for any future discussions with the
end-users. The results of service level achieve-
ment should be reported to top management on a

regular basis. By consistant service level
achievement, the technical staff builds credi-
bility and avoids many of the negative aspects
of interacting with end-users.

3. IMS /MVS Internal Objectives

Having achieved the task of establishing design
standards for IMS transactions (ala standard
work units) and service level agreements with
the end-users, the next step is to translate
these into IMS/MVS internal performance param-
eters. These are comprised of key indicators
and their related guidelines. An example is:

INDICATORS GUIDELINES

Average Number of DB <0.6 per DL/I call
I/O's

Average DB I/O Service <60 msec per I/O
Time

Maximum I/O x***[*

These internal objectives must be set for both
IMS and MVS because they interact to such a
great extent that a change on one side will
probably effect the other side. For example,

paging can bring an IMS system flow to a trickle
and this can be caused by either MVS or IMS
system changes. Internal objectives should

include indicators and guidelines for each of
the MVS areas affecting IMS including:

• CPU

• Storage including working net size (Storage

isolation or fencing)

43

• I/O (possibly using isolated devices and/or
strings for IMS) as well as indicators and
guidelines for each IMS area including:

• OS Communications

• IMS Gommunicaitons

• Input queue (size is important as it is a

tradeoff with paging)

• Scheduling (one of the greatest payback
areas)

• Applications (the greatest deterrent to good
performance)

• Synch point

• Output queue

Appendix A lists some software products avail-

able to monitor the above MVS and IMS indicators
to ensure service level achievement. In addi-
tion to the software monitor, line delay time
may be obtained by line monitoring to calculate
actual end-user perceived response time.

4. System Requirements

IMS is a CPU-bound system. If there isn't

enough CPU available during critical IMS hours,
service will be degraded. The second most criti-
cal item is I/O. If channel unitilizations are
high in the IMS or MVS I/O applications or sys-
tem, service will be degraded. And finally, if
IMS doesn't have enough storage, paging (and

maybe MVS swapping) will go up and response will
be degraded.

In defining system requirements, the technical
staff must measure the resource requirements to
process IMS workloads at key periods. Ihey must
also ensure that IMS work is given priority in
systems where it must coexist with batch or TSO
workloads. Many IMS installations have
dedicated systems to ensure adequate system
resources for IMS.

5 . Capacity Planning

At this step in the methodology, service level
agreements should have been made and hopefully
are currently being met. But how long with this
situation last? Capacity Planning involves
three phases:

1. Workload assessment

2. System assessment

3. Management presentation

Assessing the workload means monitoring the

actual work coming from end-users as well as
anticipating their future needs. Che way of
doing this is to talk to them regarding their
expectations of projected activity. This can be
verified by also talking to the corporate
planning group that sets the scenario for the
annual budgeting exercise. The accuracy of any
future service level achievement depends mostly
on the correctness of forecasting the amount of
work that can be done. For this reason, it is

important to monitor the actual versus planned
work being done by end-user to ascertain whether
service levels have been degraded by unplanned
volume or mix of workload from the end-user or
from system deficiencies.

Once current and projected workloads have been
worked out, the current system must be assessed
to determine when it will be exhausted and why.
Exhaust point analysis for CPU, Storage and I/O
will determine short term equipment needs to
maintain service levels.

The second part of system assessment is longer
range and deals with alternative hardware and
software solutions. This will be covered
further in the long-range installation plan.
The last phase of capacity planning is manage-
ment presentation. This must be done in
language that management outside data processing
can understand i.e.,

• What is being processed (claims, policies,
etc .) .

• Service level requirements (agreed with
end-users)

.

• DP costs to meet those service levels.

The key to success in this phase is to quantify
in financial terms the cost to the organization
(user impact cost) of the added investment and
the cost if that investment is not made. The
end-user and the finance department outside data
processing can usually provide the necessary
supoport to the technical staff if the problem
is properly presented i.e. in terms they can
understand

.

6. Long-range Installation Plan

Once the capacity planning process has been
completed, further analysis is needed including:

• future anticipated technology

• contingency plans for disaster and recovery

• future corporate plans for expansion

• economic and personnel projections and
expectations

• office of the future

44

The long-range installation plan is dynamic and
changes each time significant new data is known.

In order to be known, the technical staff must
be in contact with the highest levels of corpo-
rate strategic planning. They must also be

aware of the contingency plans which also may be
dynamic as critical new applications are added.

Changes in technology and level of staff will

also be dynamic as IBM and other vendors con-
tinually unveil their wares with ever increasing

power and function.

In summary, people who chose the technical DP
arena as a career were looking for a challange.
But in the past that challenge has been mostly
internal and isolated from extended interaction

outside the data center. The new challenge
facing DP technicians with the advent of on-line
systems is to not only retain their technical
expertise, but to be willing and able to ply
this expertise to meet the goals of the
organization.

Footnotes

[1] A Primer on Critical Success Factors, , John
F. Rockart, Christine V. Bullen, Center for

Information Systems Research, Sloan School
of Management, Massachussetts Institute of
Technology, Cambridge, Mass. (June 1981)

[2] Capacity Management Forum , Institute for

Software Engineering , Educational Services
Division.

[3] Design Review Methodology for a Data Base
Environment , W.H. Inmon and L.J. Friedman,

Amdahl Corporation, Prentice-Hall,
Englewood Cliffs, N.J. 07632

[4] "Performanance Standards for Capacity
Planning", David R. Vincent, Computerworid
Extra , (September 1981)

APPENDIX A

Software Monitoring Tools

ON-LINE MONITORS

RMF II (IBM)

IMSRTM (IBM)

CONTROL/IMS REALTIME (Boole & Babbage)

CMF REALTIME (Boole & Babbase)

RESOLVE (Boole & Babbage)

CMEGAMON (Candle Corporation)

OFFLINE MONITORS

RMF I (IBM)

IMS PROFILE (IBM)

IMS VSAP (IBM)

DFS PIRPO (IBM)

DFS ERA 40 (IBM)

DFS ERA 50 (IBM)

DASDSS (IBM)

GTF PARS (IBM)

IMS PARS (IBM)

IMS ASAP II (IBM)

IMS HRS (IBM)

DFSUTR (IBM)

DFSILTAO (IBM)

DFSISTXO (IBM)

CONTROL/IMS (Boole & Babbage)

CMF (Boole & Babbage)

TSA/PPE (Boole & Babbage)

MANAGE: IMS (Capex)

Source: IMS Systems Management Workshop,

Institute for Software Engineering.

45

CPSUG82
"Improving Organizational Productivity"

Software Design, Development
and Testing

47

SESSION OVERVIEW

SOFTWARE TESTING - A LOST ART

George N. Baird

Federal Software Testing Center
Falls Church, VA 22041

The majority of the personnel resources involved in ADP are tied up in the
maintenance of software - approximately 80%. This is due to the quality of
existing software in the Government. Much of todays critical software was
designed years ago for an environment that no longer exists. Most maintenance
could be better described as survival.

The ability to test software adequately can help to solve this dilemma. If
today's older software had been produced in such a way that it had been more
completely tested, today's maintenance would be much easier. For example there
is generally inadequate test data available to verify that any given program is
working properly. How, then, can we be sure a program that has undergone
maintenance is working correctly?

Even today, with our better ways to design software, a good programmer will
feel he/she has completely tested a program when in reality as little as 25-30%
of the code has been executed. We must upgrade the way in which we apply the
testing of software. The cost of finding bugs greatly increases during the life
cycle of software. A bug found in the design stage may cost $1 to correct, the
same bug could cost $2 to correct during unit testing, $15 to correct during
integration testing. Once the program is in production, that same bug could
cost thousands of dollars to isolate and correct.

Therefore an emphasis on the more complete testing of software and the
analysis of the source code as part of the quality control process can place the
Government in a position of not having to spend the majority of its resources to
merely keep existing systems going.

49

CONCEPTUAL PROPOSAL FOR A COBOL
ANALYZER SOFTWARE TOOL

L. Arnold Johnson

William R. Milligan

Federal Software Testing Center
General Services Administration
Two Skyline Place, Suite 1100
5203 Leesburg Pike
Falls Church, Va. 22041

The COBOL languare, and automated software testing tools, have been studied in

order to design a host independent Automated Verification System for COBOL. The
proposed functions and conceptual design of the system are summarized in this

paper. To provide a perspective for the capabilities of the proposed system,

this paper contains a critique of the COBOL language, a description of methods

of software testing, and a characterization of errors in COBOL.

1. Introduction

Throughout history mankind has advanced in

technology as well as other areas primarily

through the utilization of tools. This

comparison holds true today. We are constantly
searching for new tools to assist us in our

highly technically oriented society. Our use

of computers grows exponentially each year.

The two major components of computer systems,

hardware and software, are not growing at the

same rate. The term "State of the Art" in

computer hardware is rapidly changing with new

equipment having expanded capabilities

appearing on a daily basis. Hardware is an

engineering oriented field that is quantitative
and easily measured. Software, on the other

hand, is more of an art and is measured
qualitatively. Standard units of qualitative
measurement are not always available making
performance evaluation rather difficult. The

languages used to program computer systems were
developed in some cases 20 or more years ago.

Languages have been upgraded with the new
features but nothing like the evolution of

hardware. Therefore, growth in productivity
using computer languages must rely on

additional aids or tools to assist programmers.
A COBOL Analyzer is such an aid. Its purpose

is to employ standard tested and proven
criteria in the evaluation of a COBOL program.

The results of this evaluation will act as

feedback to the programmer directing him/her to

areas of the program which require modification
which in turn can reduce execution time as well

as identify changes which could benefit the

program

.

The problem of inefficient COBOL programs

exists both in government and industry and has

been identified for some time. The COBOL

Analyzer as presented in this report will not

solve all of the problems currently existing in

COBOL Code but it will check structure, scan

text for errors, analyze variable utilization,

compile run time statistics, identify calling

program sequences, check unused code and

evaluate many other software functions

currently not being checked.

Much of this report is taken directly from the

'COBOL Automated Verification System' study

phase document developed for the Department of

the Air Force by General Research Corporation

of Santa Barbara, California. We found this

document an excellent starting point for this

report. Special appreciation is given to Mr.

Lawrence M. Lombardo of Griffiss Air Force

Base, Rome, New York for supplying us with much

of the information which allowed this report to

be produced

.

51

1.1 Background

During the 1950' s as manufacturers entered the

computer business, each one developed its own
computer programming language for its own
machine. Program portability was non-existent
and it became increasingly difficult for pro-
grammers to be versatile on the rapidly
expanding hardware and software universe. The
Federal Government, the largest user of
computers, became concerned about the need for
a "common" programming language for business
applications of data processing.

In 1959 the original specifications for the
COBOL language were drawn up by a group of
computer users and manufacturers. The first
documentation was distributed in April 1960.

The early 1960's brought several revisions to

COBOL, each one making the language less
"common" to different computers in use at that
t ime

.

Again, the manufacturers assembled and
developed a new, "standard" COBOL called
American National Standard COBOL (ANS COBOL).
The new language gained widespread acceptance
in the U.S. business sector and throughout the
world. The further development and definition
of COBOL is the function of the CODASYL
(Conference on Data System Laguage) COBOL
Programming Language Committee.

The standard of the language in the U.S. (an
extensive subset of the full CODASYL COBOL
definition) is the American National Standard
COBOL, X3. 23-1974, as approved by the American
National Standards Institute (ANSI). This has
replaced the previous ANS COBOL X3. 23. 1968.

ANS COBOL-1968 was the first effort by the
CODASYL-ANSI group to define COBOL as a

programming language to be a standard
throughout the world on all those computer
systems which chose to conform to its
guidel ines

.

After a few years of working with these
guidelines, the group found that the main
skeleton of the language was homogeneous among
most of the participating computer users.
However, due to lack of specificity in some
guidelines and the differences in the hardware
and design of the computer systems, some
sections of the language were markedly
different from one machine to another.
Gathering all this information, the CODASYL
group assembled again and produced a new set of
more specific guidelines and released ANS
COBOL-1974.

The ANS-74 version of COBOL was created to (1

)

delete sections that hindered efficient coding
or standardization, (2) add sections to enhance
COBOL's capabilities, and (3) resolve
differences or ambiguities created by the
different compiler manufacturers' versions of
the language. The third item was accomplished

by being more specific in the working of those
sections of the Standard, and by requiring the
compiler manufacturers to adhere more closely
to the specifications.

A great improvement over ANS COBOL-1968 had
been realized. As the computer manufacturers
finished their versions of COBOL according to

ANS COBOL-1974 specifications, and the

different versions were compared, it was found
that there were far fewer differences this
time, although they were not identical because
of the inherent differences mentioned above.
Each manufacturer respected the guidelines and
any serious deviations were noted as extensions
to the ANS.

1.2 COBOL Dialect Differences

A truly portable COBOL Analyzer must be capable
of recognizing not only the two standards, 1968

and 1974, but also the dialects of different
computers. Design and operational differences
exist between computers, and although each
satisfactorily compiles a program which meets
the requirements set by the Standards
committee, it will not compile a program which
uses another manufacturer's enhancements to the
standard. Users at each installation make use
of these enhancements.

COBOL was created to solve the special data
processing problems of the business world. The
language was not designed to solve complex
mathmatical or scientific problems or to

facilitate number-crunching computer analysis,
but rather to expedite the handling of everyday
business affairs with great speed and accuracy.
COBOL was created to process accounting,
payroll, inventory, tax, and data base
maintenance programs in a manner which allowed
efficient use of large data files of

information. Most business programmers are not
highly-trained scientists, so the syntax or
working of the language was designed to be as

similar to everyday English as possible.
Importance was placed not so much on features
such as mathematical functions and speed of

calculations as on efficient input and output

of large files stored on magnetic tape or disk.

The Office of Software Development (OSD) within

the General Services Administration (GSA) has

as its primary task the reduction of costs

spent on software in the Government. With
COBOL being the most used computer programming
language, it is vital that OSD provide both
tools and support to ensure cost effective
utilization throughout the government. The
COBOL Analyzer as explained in this document
will provide common criteria with which to

evaluate COBOL programs before, during and

after program execution. This will alleviate
some of the immediate software problems

connected with using COBOL and begin to allow
uniformity among system specifications existing
at various government agency offices.

52

2. COBOL Analyzer

The software industry today has developed many
tools to assist in the design and development
of application software. Almost every
programming language can be found to have a

software tool which can check coding
methodology and textual utilization against
pre-established criteria. The product
resulting from these tools is supposed to be

software which is superior to that which was
initially developed. This concept is not new
or unique and similar tools proliferate among
the many vendors.

The COBOL Analyzer as described in this
document will be used to validate COBOL source
code against rather stringent standards and

criteria. Errors will be identified, program
structures will be evaluated, and software will
be analyzed before, during, and after program
execution. The following sections will go into

greater detail pertaining to the structure and

components of an analyzer. The one significant
difference about this tool that distinguishes
it from its predecessors will be its

transportability. The goal is to obtain a

COBOL Analyzer which will operate in a similar
manner on any system supporting an ANS-74 COBOL
Compiler. Given the opportunity of analyzing
software written for a variety of systems and
applications using common criteria, industry
and government system managers will be in a

much stronger position to evaluate software
development and performance by utilizing a

vendor and application independent methodology.
The COBOL Analyzer as presented here is an

attempt to define such a tool. The model and

description are not meant to support every
possible feature and variation of existing
analyzers but rather a limited, well defined
subset which can be applied to software running
on any machine.

3. Functional Description

The section will attempt to identify and define
the functional components and individual
elements of a COBOL software Analyzer with an

initial review of software quality techniques.

Usually COBOL software is tested only according
to its developer's intuitions, if it is tested
at all. Since the reliability of software is

at least partially dependent upon the

thoroughness of its testing, increased testing
therefore contributes to increased reliability.
Simple computer programs can be comprehensively
tested without difficulty. When computer
software becomes complex, usually by length of
program or number of paths possible so that
human intuition is inadequate to deal with its
subtleties, the testing activity must be based
on a systematic and rigorous methodology. Most
COBOL software systems are lengthy or complex,
so that the advantages of an automated
verification system become pronounced and

desirable

.

The computer science community has recognized
the problems concerning software correctness
and has been developing systematic approaches
to increase the reliability of software and

simultaneously reduce the overall cost of

producing it.

"Synthesis" techniques generally try to

increase software quality by keeping software
problems from happening in the first place.
For example:

Structured programming disciplines
reduce the complexity of software and

thereby enhance its quality and

reliability by constraining the

control structures of the programming
language used.

Chief programmer teams assign a

talented person entire responsibility
for all aspects of a software system,

including its ultimate effectiveness
and reliability.

Software design methodologies such as

"top down" or "bottom up" systematize
the production of software and thereby
improve the quality of the programs.

The alternative, to deal with software which
has already been developed (or is in the final

stages of development), involves two primary
"analysis" approaches:

Program proof demonstrates the

correctness of programs by treating
them as if they were mathematical
theorems. An automated theorem prover
is often used to assist in the

construction of proofs.

Automated Verification Systems (AVS)
increase the practical reliability of

software by increasing the level of
"testedness" achieved.

Although advances are being made, program
proving through logical or mathematical
theorems is impractical today for programs of

any size. Further, there is still discussion
as to whether this mode of testing is "more
correct" than other methods.

An Automated Verification System, however, is

a valuable tool. The role of the AVS is to

assure that software testing meets some

criterion of completeness. Comprehensive
exercise of a software system does not
guarantee that it is error-free, but- practical
experience indicates that thorough exercise
will locate a very high proportion of errors.
Hence, testing with an AVS as an approximation
to full program verification, along with proper
system design, is a practical and valuable
methodology

.

5 3

A COBOL Analyzer is an example of an AVS. We

shall use these terms interchangeably
throughout the remainder of this document.

The common concept uniting this study is that
software verification is a combination of

separate techniques that, when applied
together, form a good base methodology for
testing. These techniques are (1) systematic
design methodologies, (2) documentation, (3)

static testing, and (4) dynamic testing and

performance measurements.

3.1 Systematic Design Methodologies

It is imperative that software design be

efficient, logical, and correct. Bad design
increases programming time, programming errors,
execution time, and maintenance frustrations.
The technique of structured, modular design has
been shown by working experience to be of great
value in reducing these problems.

If a system has been designed and implemented
in a structured fashion (top-down, bottom-up)
using structured constructs and dividing
program tasks into modules, the design, coding,
and testing can be done in small steps.

Further, enhancements or changes to the system
can be done with ease and efficiency.

Most COBOL programs will need to be changed as

the needs of the user change. It is therefore
valuable to design a program so that it can be
modified or maintained. Good planning and
structure early in the design phase plays a

large role in this. An automated verification
system should encourage the use of structured
programming and increase the value of the

program written in modular form.

3.2 Documentation

Because maintenance of COBOL software has
become such a large concern, there is a need
for good comprehensive documentation.
Personnel turnover, constant modification of
programs, and high cost of programming time
make it imperative that documentation of the
system, from design through maintenance, be
up-to-date and complete. Examples of automated
documentation include cross-reference listings,
program management systems, and printed reports
such as those produced by DAS[1] and DCD II [2],
or by an Automated Verification System such as

FAVS for FORTRAN and JAVS for JOVIAL.

3.3 Static Program Analysis

One class of methods for software quality
enhancement can be categorized as "static
analysis." These methods scan the source text
of a program for errors in syntax and semantics
which can be detected without running the
program on a computer. They provide
consistency checking and documentation about
the definition, reference, and communication of
data within the program. They identify

programming constructs which may be legal but
risky, and they provide global, organized
information about the identifiers used in the
program. Static analysis expands upon the sort
of diagnosis performed by a a typical compiler.
In general, static analyzers are most useful in
debugging.

3.4 Dynamic Program Analysis

Two basic types of dynamic program analysis are
analysis of statement-level behavior and
analysis of execution coverage. Both are
well-known, general-purpose testing aids.

3.4.1 Statement-Level Analysis

In statement-level analysis, all program
statements are instrumented in order to obtain
detailed information concerning the program's
internal behavior. This technique produces
information that is more detailed and more
closely related to the source program
information than such earlier techniques as
hardware monitoring, software monitoring
("snapshots"), and simulation techniques.
Typically, a statement-level preprocessor
automatically augments each source program
statement with a "software probe" — added
statements or the invocation of a subroutine
which takes measurements while the program is

running. These measurements usually include
the values of selected program variables and
the number and types of branches taken.

When the program terminates, summary reports
are printed which show the ranges of the
program's intermediate variable values, which
branches were taken and with what frequency,
and which statements in the program were not
executed

.

3.4.2 Execution Coverage Analysis

This technique gathers information on the
run-time sequencing of a program and the flow
of control among the programs that make up a
programming system. This sequencing
information can be represented at various
levels of detail. At the lowest level it may
be a trace of the statements executed by a

program when run with a particular testcase, or
the sequence of branches executed by the
program. At a higher level, the actual program
flows traversed by the program may be collected
or, at a still higher level, the dynamic
calling sequence of procedures and subroutines
in a programming system may be monitored.

The technique for implementing execution
coverage analysis is the same as that for
statement-level analysis; that is, placing
software probes in the programs at the level at

which monitoring information is to be gathered.
The added statements are simply invocations of
run-time auditing procedures which record which
procedure and which control sequence or
statement is being executed at the time of

54

monitoring. A post-processor can then
reproduce the dynamic flow of control through
a single program or a group of programs at

whatever level is desired. This information is

useful in determining which control flows and

procedures were exercised by which test cases

as a guide to what testing remains to be done.

4. Existing Methods and Procedures

For the most part, software verification is

still a manual process. Tools and techniques
exist, but this area of software engineering is

in its infancy. Most of the tools and
methodologies have severe restrictions or
require highly-skilled persons to make their
application successful.

4.1 Requirements

Requirements state what a computer system
should do from the user's viewpoint. Manual
systems exist which aid system decomposition
via graphical techniques (SADT from SofTech and
AXES from Higher Order Software) and which
label requirements so the labels can be
inserted in the design and code (THREADS from
Computer Sciences Corporation) for tracing
requirements to the code.

4.2 Specifications

At least two languages and tools exist for

stating detailed specifications (Requirements
Specification Language - RSL - from TRW and

SPECIAL from SRI). Both provide a rigorous
means of stating specifications which can be

used to detect inconsistencies. Both are
expensive to use and are best utilized on small
programs only.

4.3 HIPO (Hierarchy plus Input-Process-Output)
charts are a manual means of stating software
specifications in the context of program
structure

.

4.4 Design

There are many design methodologies based upon
decomposition, structure, data relationships,
and top-down and bottom-up development. There
are also systems and languages such as Process
Design System (PDS from System Development
Corporation) and Process Design Language (PDL)

.

PDL is a control-structure keyword recognizer.

4.5 Functional and Performance Testing

Manual functional, and performance testing are
assisted by deriving data from HIPO charts,
using simulations, obtaining execution-time
intermediate-value printout, and running stress
or boundary tests. Boundary, or special value
testing, is a strategy which exercises a

program using certain values important to the
control flow of the program. Predicates of
logical expressions, and values which activate
one or more conditions in a complex logical

expression, are good candidates for special
value testing. Stress testing requires that
the tester manually identify areas in the
program which are critical to its function.
These areas are then subjected to intensive
testing using special values and other methods.

Functional testing treats functional components
of a program as separate programs, with their
own input, output, and processing requirements.
Assertions can be used to determine if the
requirements for each of these functions are
being met. Using assertions, the

execution-time behavior of these functions can
be checked for:

Inconsistencies between the specified
and actual contents of variables.

Time required to execute a function.

Contents of passed parameters upon
entering and leaving a function.

Changes in a function's behavior when
the input values are systematically
changed (as in the case of General
Research's Adaptive Tester).

4.5.1 Structure-based Testing

This testing concept has been very
popular for providing a measure of
testing completeness, test data
generation, error location, and

finding structural anomalies. There
are a number of automated tools which
perform branch testing (RXVP, JAVS,

FAVS, SQLAB, and TAP from GRC, NODAL
from TRW, PET from McDonnel Douglas,

Test Coverage Analyzer from Boeing) or

execute user-specified sequences of

statements (SADAT from
Kernforschungszentrum Karlsruhe GmbH).

Algorithms are being developed to

circumvent the impossible goal of
testing all control paths in a

program. Some of these techniques are

(1) identifying strongly-connected
components of a directed graph
(Tarjan, Ramamoorthy) , (2)

partitioning the program graph into
subschemes which are single-entry/

single-exit structures (Sullivan), (3)

identifying strongly-connected sub-

graphs which are

single-entry/mul tiple-exit , cal led

intervals (Hecht and Ullraan). and (4)

partitioning the program graph in

terms of its interaction level, called
level-i paths (Miller). Manual
structure-based testing can be
assisted by deriving decision tables
(Goodenough and Gerhart) and choosing
input data accordingly.

Structural anomalies such as dead

55

code, potential infinite loops, and
infeasible paths can be determined by
some current AVS tools (ATDG from TRW,
SADAT, JAVS).

4.5.2 Consistency Checking

The most common techniques used to

determine the consistency of variables
and interfaces are:

Adding assertions that define expected
use (SQLAB from GRC, ACES from UC

Berkeley)

.

Employing static analysis (AMPIC from
Log icon, DAVE from University of
Colorado, FACES from UC Berkley, RXVP,
FAVS, and SQLAB from GRC.

Using data flow analysis to find

uninitialized variables and interface
inconsistencies (DAVE, RXVP, SQLAB).

4.6 Test Data Generation

A great deal of research energy has been
expended on developing test data generators.
So far, these systems (such as ATTEST at the

University of Massachusetts) are still research
tools and have had to back off from original
goals. Other tools such as test harnesses or
the Adaptive Tester require input boundaries
and invariances between variables to be
spec i f ied

.

For manual test data generation, Howden
suggests that input data be chosen to reflect
special values for the program. Ostrand and
Weyuker suggest deriving data in two phases
based upon likely errors for the particular
program's function and likely errors for the
control structures used in the program.

4.7 Formal Verification

Automated formal verification systems (EFFIGY
from IBM, PROGRAM VERIFIER from USC/ISI, SID
from the University of Texas at Austin, SQLAB
from GRC, SELECT from SRI) take user-supplied
assertions (called verification conditions)
usually at each branch, and symbolically
execute them. The systems attempt to prove
each verification condition as it is

symbolically executed. The process involves
simplification of inequalities and, in the case
of interactive provers, the input of occasional
rules to aid simplification. Formal
verification is still reserved for small
programs. Most of the implemented systems are
based on LISP.

4.8 Program Modification

Tools which utilize a database system and save
interface descriptions or other such
system-wide information can be helpful to
support program modification and maintenance

activities. Valuable information for these

activities are module interaction reports,
detection of global changes, and local updates.
Some of the tools that provide this assistance
are the Boeing Support Software, SID, JAVS,

FAVS, and SQLAB.

4.9 Documentation

Automatically-generated reports which provide
information about program structure, calling
hierarchy, local and global symbol usage, and
input and output statement location are very
useful during program development, testing, and
maintenance. Most AVS tools provide some or
all of these reporting capabilities.

4.10 Software Tools

COBOL is the most popular computer language in
use today. There are many tools available to

the COBOL programmer and analyst. Certain
tools not applicable to COBOL are nevertheless
useful in providing new techniques to consider.

There are a number of text-editors
such as MENTEXT, University of
Maryland's editor for the Univac 1100

series, and DEC SOS. Some of the
editors are powerful, others have
fullscreen editing capabilities and

program reformatting features.

Object-code optimizers such as CAPEX's
OPTIMIZER are useful tools which
reduce core requirements, eliminate
unused code, reformat the compiler
listing, and permit faster execution
time on IBM S/370 systems.

Tools which assist in testing and

debugging (CAPEX Analyzer/Detector,
FAVS, RXVP80, QUALIFIER) are available
for certain computer systems.

Additional tools are

generators (PRO/TEST,
instrumentation packages
FAVS, JAVS, PET),
cros-reference and
packages (DAS, DCDII).

test data
DATAMACS)

,

(QUALIFIER,
and data

documentat ion

Many of these tools perform worthwhile
functions and serve a selected market well.
However, on researching the tools, the

following disadvantages presented themselves:

Most are oriented to IBM-compatible
hardware, and some are operating
system dependent.

Some require modification of the
software for system 'fit'.

Few of the tools actually support and
encourage structured programming.

There are many vendors, each offering

56

a tool for a specific function. Tool
command languages differ; obtaining a

comprehensive tool requires procuring
many packages, and learning many
operating languages and methods of
utilization.

Program debugging still requires
extensive use of core dumps.

Most of the software tools which
incorporate static analysis and

instrumentation testing have been
developed for Fortran or another
scientific language, usually at

research facilities (PACE at TRW, PET
at McDonnell Douglas, FAVS and JAVS at

General Research) . There are very few
COBOL static analysis or

instrumentation tools.

Many of the non-COBOL tools seem to have
originated as research projects and, as a

result, perform general program analyses which
often include building a database and a program
graph. This broad base of information allows
these tools (with some overhead expense) to be

extended in capability.

Tools created to assist COBOL programmers are
generally smaller software packages which
address areas other than program verification.
There are tools to automatically create the
COBOL statements which are continually used in

the COBOL program. This alleviates the tedious
task of typing in the wordy areas of a program,
which are usually the same in every COBOL
program in that data processing department.
When the code has been created, there are tools
to automatically reformat the printed source
code. The COBOL program, with the selections
and paragraphs aligned and indented, is easier
to read. There are tools to create flowchart
pictures of the program logic, and tools to

create cross-reference listings of data
elements

.

Exhibit 1

SOUBCE TUT
ANALYSIS,
STRUCTURAL

Branch sequences
and test history
ire reported.

STATIC
ANALYSIS
data aw
ANALYSIS

One or aore compilable units of Cobol
source code fs Input for processing
end iMi/iii.

CAVS generates a directed graph of the
control structure. A11 s/ntw, semantics,
and structural Information Is stored on
a database. Additional or changed source code
causes an existing database to be updated.

Possible errors. warnings, and dangerous
programing practices are reported.

PROOUX AMALTS1S
US1STUCC

Reports for program
docuaentatlon, debugging.

Maintenance, testing and
retestlng ere produced.

Sofartre probes ire automatical 1 jr Inserted
for dynamic analysis of execution coverage,
counts tracing, and ttatng.

Program execution produces

file for anal/sis by CAVS.

Execution coverage, counts, traces,
and execution timing are reported
by let tease and by a set of testcases.

neve a specified percentage of
branches been executed by
cumulative testing?

COBOL has been the language of business. The
emphasis has been placed upon speed and
efficiency of programming. Tools were
developed to assist the programmer in the task
of completing programs in a short time with the

least amount of difficulty. Just recently, the
need for quality assurance tools for COBOL
programs has been recognized, and software
verification tools to analyze COBOL code are

beginning to be developed.

The recognition of this need throughout the

government has provided the Catalyst for the

development of a COBOL Analyzer. The Office of
Software Development within GSA has been tasked
with the responsibility of developing tools and
instituting procedures which will provide a

much higher level of quality assurance to

minimize development and maintenance costs
thereby providing a greater return on software
investment

.

A COBOL Analyzer can include many functions
which if comprised in their entirety could

overly expand as well as degrade performance of

the proposed product. Other functions and

options fall into the category of vendor

dependent and therefore cannot be included in

a functional design. The following description
is a distillation of the COBOL Automated
Validation System as proposed by General
Research Corporation. Only those components
which appear to be vendor independent will be
presented

.

A COBOL Analyzer should provide or support
software evaluation in two clearly defined
modes; (1) static and (2) dyamic. Both of
these areas have been previously discussed.
Drawing from what has been covered, a summary
of each area would be as follows:

57

Static Analysis

1. Source Text Scanning

a. Syntax
b. Semantics

2. Consistency Checking & Documentation

a. Definition of Data
b. Reference of Data
c. Communication of Data

3. Identification of Programming Constructs

a. Acceptable/Nonacceptable
b. Global Identifier Analysis

Dynamic Analysis

1 . Statement Level Behavior

a. Statement Instrumentation
b. Actual Program Experience (Run Time)
c. Insertion of Statement Probes
d. Addition of Sub-Routines
e. Selection of Representative Variables
f. Generation of Summary Reports Showing

(1) Intermediate Variable Values
(2) Branching Activity/Frequency
(3) Unexecuted Code

2. Execution Coverage Analysis

b. Control Flow Identification
c. Dynamic Calling Sequences

(1) Procedures
(2) Sub-Routines

Analyzer illustrated in Exhibit 1. Any of the
Static Analysis, Documentation, and Testing
Analysis Functions, or Instrumentation, could
be chosen by the programmer. Errors revealed
by AVS could be corrected at each step of the
process. This would continue until the
software is ready for production testing. The

user retains control of the amount of testing
coverage to be performed, choosing from a

selection of AVS functions. Exhibit 1

illustrates the usual sequence of events to be
followed in using AVS.

Generally, static analyses are performed first.

Reports can be generated showing the results of

those functions. Once errors have been
eliminated and the user is satisfied, the

program can undergo dynamic testing analysis.
Software probes could be automatically inserted
for dynamic analysis of execution coverage, for
tracing execution sequences, for counting
execution of segments, and for timing execution
of segments. Program execution could produce
a data collection trace file for analysis by

AVS, and listings could be generated displaying
the information gathered.

Once the needs of the user have been determined
and the capabilities of the software package
identified, the most important task is to

create a design of the system. The design must
demonstrate that the tool (1) will operate
correctly and satisfy the user's requirements,
(2) is written in language which is familiar
and portable, (3) will execute with economic
efficiency and within reasonable execution
times, and (4) by its design, is easy to modify
to keep up with change and is adaptable for

enhancement

.

d. Passed parameter identification

The important point to remember in reviewing
this material is that the Analyzer should be
portable between systems. Any feature which
detracts from this portability should be
removed from the functional description and
model as presented in section 4.

The Office of Software Development is

responsible for testing compilers for adherence
to FIPS Standards throughout the government.
The COBOL Analyzer will help enforce FIPS 21-1,
Federal Standard (COBOL 74).

5. Proposed Model

A COBOL Analyzer as described in this document
should include six major kinds of software
development tools: (1) static analysis, (2)
instrumentation, (3) testing analysis, (4)
coverage assistance, (5) documentation and (6)
reformatting. User interface could be through
both batch and interactive terminals.

A coded program is submitted to the COBOL

58

AVS ' s primary input is a collection of COBOL
source text, which is recognized, parsed, and
stored on the data base (composed of

multilinked table structures). In this sense,
it can perform some of the functions of a

compiler, but for the most part its purpose and
operation are different. Unlike a compiler,
the AVS stores the source code in various
representations (such as blank-delimited text
form, statement token strings, and graphical
representations). Attributes of the program
(individual statements, parameters, symbols,
etc.), should be saved in the data base and

reconstructed in modified forms such as with
testing coverage probes. The stored attributes
should be examined on a program-by-program
basis or across program boundaries in order to

evaluate the semantic consistency of the code
or to generate summary and documentation
information about the program.

The AVS data base comprises the collection of
program data in a set of tables. The system
should be designed to handle large programs
consisting of many subroutines, with the

potential for run-to-run retention of data
tables on auxiliary storage. The large data
base should be maintained in random access
files called libraries, with each library
holding a collection of tables. In core the

working storage should consist of allocated
blocks of storage which contain active module
data tables. Data transfers between the

libraries and the working storage area, and
between the working storage and analysis
program, should be controlled by a Library
Manager

.

5.1 Table Structures

The tables that contain module information have
a generalized structure. Access to table
information should be made through a section of
the library manager called the access
interface

.

5 . 2 Token

The functions of AVS require manipulation of
the COBOL source text and in many cases involve
accessing specific elements of text such as
variable names, keywords, operators, etc.
Therefore AVS should store text on its data
base by breaking the text into its smallest
meaningful elements (tokens).

5 . 3 Command

The AVS program should be divided into a group
of functional segments. Similar or sequential
activities can be combined in a segment and the
acivities and options can be controlled by a

set of segment commands. The first word of
each command could signify which segment
receives the command. Each segment could
contain a command recognition routine which
processes each command sent to the segment to

determine which options and activities are

being requested.

5.4 Storage

The Nucleus or data base would make up the

core-resident root of the system although to

minimize storage requirements, some nucleus
routines should be loaded from secondary
storage when needed. Each of the function
segments would reside in secondary storage
until called and loaded by the storage
controller.

5.5 Functional Segments

The following is a brief description of each
functional segment:

5.5.1 Command Decoding and Control

Process user input commands, output interactive
response, and successively return each command
to the overlay contoller.

5.5.2 Initialization and Wrapup

Upon run initialization, open files, initiate
execution of the storage manager, and set

various global data; upon run termination,
close files and (for batch mode) produce report

index

.

5.5.3 COBOL Source Text Analysis

Read COBOL 68/74 source and perform lexical
scan, token recognition, symbol classification,
and structural pointer construction.

5.5.4 Structural Analysis

Build program graph, store branches, and

compute single-entry/single-exit reduction
history used in data flow analysis.

5.5.5 Supplementary Table Building

Build tables needed for module dependence
reporting and cross references.

5.5.6 Program Analysis Reporting

Produce selected reports at user command.

5.5.7 Instrumentation

Insert probes at program unit entries, exits,

branches (depending upon type of

instrumentation selected); define new testcase

or end of all testcases.

5.5.8 Structural Testing Analysis

Analyze run-time execution trace file, produce
coverage and trace reports, and update test
history table.

5.5.9 Execution Timing Analysis

59

Analyze run-time execution trace and produce

timing report.

5.5.10 Print Services

Print the contents of specified database

tables

.

In order to create a COBOL AVS which is

portable, the AVS should be written in a subset

of ANSI-COBOL 1974 which is compilable on any

system supporting an ANSI-74 COBOL Compiler.

Some software changes may be required to fully

adapt the AVS to the host system. A goal of

this project is to minimize these changes while

ensuring the reliability and transparency of

AVS between unique host systems.

6 . Summary

The paper was an attempt to identify, describe

and explain the functional components,

characteristics and proposed operation of a

COBOL Automated Validation System (AVS).

Although many products currently exist on the

market for COBOL management tools, they are

usually targeted for unique mainframes and for

the most part contain dissimilar evaluation
criteria. AVS on the other hand is the result

of analysis of many packages. The most

important and universal characteristics of each

package were identified and subsequently used

in the compilation of the AVS functional

descr ipt ion

.

BIBLIOGRAPHY

Alberts, D., "The Economics of Software Quality Assurance", Proceedings

of COMPSAC 77, Computer Software and Applications Conference , November

1*77, p. 222.

Andrews, D. M. , Benson, J. P., Advanced Software Quality Assurance,

Software Quality Laboratory User's Manual , General Research Corporation,

CR-4-770, May 1978.

Benson, J. P., et . al.. Software Verification: A State-of-the-Art

Report , GRC, CR-1-638, March 1978.

Boyer, R. S. , Elspas, B. . Levitt, K. N., Select—A System for Testing

and Debugging Programs by Symbolic Execution," Submitted to the 1975

International Conference on Reliable Software
,
April 1975.

Brooks, N. B. , Gannon, C. , JAVS , Jovial Automated Verification System ,

Vol. 3, General Research Corporation, CR-1-722, December 1976.

Brooks, N. B., Gannon, C., JAVS Jovial Automated Verification System,

Vol. 2 , General Research Corporation, CR-1-722/1, June 1978.

Brown, J. R., Llpnow, M. , "Testing for Software Reliability, Proceedings

of COMPSAC 77 Computer Software and Applications Conference , November

1977, p. 21.

Clarke, L. A., "A System to Generate Test Data and Symbolically Execute

Programs" IEEE Transactions on Software Engineering, Vol. SE-2, No. 3,

September 1976.

Fischer, K. F. , "Software Quality Assurance Tools: Recent Experience

and Future Requirements," Software Quality and Assurance Workshop, San

Diego, November 1978.

Gerhart, S., Yelowltz, L. , "Observations of Fallibility In Applications

of Modern Programming Methodologies", Proceedings of COMPSAC 77 Computer

Software and Applications Conference , November 1977, p. 86.

Glass, R. L. , Real Time Software Debugging and Testing: Introduction

and Summary . The Boeing Company, September 1979.

Holden, M. T., "Semi-Automatic Documentation of B-l Avionics Flight

Software Global Data," Naecon 1978 Record.

Howden, W. E. "Effectiveness of Software Validation Methods," Infotecn:

Software Testing , Vol. 2, 1979.

Howden, W. E. , "Reliability of the Path Analysis Testing Strategy",

Proceedings of COMPSAC 77 Computer Software and Applications Conference,

November 1977, p. 99.

Howden, W. E. , "An Evaluation of the Effectiveness of Symbolic Testing,"

S oftware - Practice and Experience , Vol. 8, 1978.

Howden, U. E. , "Theoretical and Empirical Studies of Program Testing,"

IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July 1978.

King, J., "Symbolic Execution and Program Testing", Proceedings of

COMPSAC 77 Computer Software and Applications Conference , November 1977,

p. 191.

Miller, E. F. , Jr., Methodology for Comprehensive Software Testing,

General Research Corporation, CR-1-465, February 1975.

Miller, E. F. , Jr., Paige, M. , Bendon, J., Wisehart, W. , "Structural

Techniques of Program Validation", Proceedings of COMPSAC 77 Computer

Software Applications Conference , November 1977, p. 179.

Miller, E. F., Jr., "Toward Automated Software Testing: Problems and

Payoffs", Proceedings of COMPSAC 77 Computer Software and Applications

Conference , November 1977, p. 16.

Moriconi, M. S. , A System for Incrementally Designing and Verifying

Programs , Vol. 1, USC/Information Sciences Institute, November 1977.

Ramamoorthy, C. V., Ho, S.F., "Testing Large Software with Automated

Software Evaluation System", Proceedings of COMPSAC 77 Computer Software

and Applications Conference , November 1977, p. 121.

Stuck!, L. G., et al, Software Automated Verification System Study,

McDonnell Douglas Astronautics Company, January 1974.

"SURVAYOR, The Set-Use of Routine Variables Analysis Program," TRW

Brochure , 1975.

60

"Improving Organizational Productivity"

Computer Performance
Management

61

SESSION OVERVIEW

CAPACITY MANAGEMENT — FROM CONCEPT TO IMPLEMENTATION

Major Charles Gausche

Pentagon AFDSC
Washington, D.C. 20330

The session's objective is to develop a coherent view of how to plan, monitor
and execute a capacity management effort. It takes a top-down view of the process
The first paper, Development of a Standard Performance Management Strategy for the

U.S. Navy, provides an account of the Navy's experience in developing an organiza-
tion whose sole purpose is capacity management, growing a staff to perform the

required functions and defining the methodologies required to meet organizational
objectives

.

The second paper, Development of a Methodology for the Analysis of System
Performance Indicators, expands on the methodologies required to analyze, correct
and report capacity management related variables. It provides a logical, phased
approach for developing a total capacity management system. The major phases of

the approach are to analyze performance data, develop a data storage /retrieval
architecture and then develop techniques for evaluation and forecasting.

The third paper, Computer Data Needed for Capacity Planning, provides nuts
and bolts advice on what kind of data is needed for capacity planning and predic-
tion and where to find it. Best/1, BGS System's commercial analytic modeling
package, is used to demonstrate how to use the collected data in a structured way.

63

DEVELOPMENT OF A STANDARD
PERFORMANCE MANAGEMENT STRATEGY

FOR THE U.S. NAVY

S. B. Olson

Navy Regional Data Automation Center, Pensacola
Technical Support Department

Planning and Analysis Division, (Code 312)
Naval Air Station, Pensacola, FL 32508

The purpose of this paper is to inform the audience of the efforts of NARDAC
Pensacola in building a Performance Management program for the U. S. Navy.

The major point of emphasis will be the location of the Performance Manage-
ment staff as a management staff function and the goal of providing management
planning information rather than being a solely technical group engaged in trouble
shooting. Also stressed will be the need for skilled people to gain experience
with an operating system/hardware suite in various settings to be able to cor-
rectly interpret data in the extremely complex environment in which a large scale
computer system operates.

The Naval Data Automation Command was formed in the mid-1 970' s to improve the
efficiency of Navy non-tactical ADP through centralized management and standard-
ized procedures.

Central to this goal was the establishment of Technical Support Departments
within the seven Navy Regional Data Automation Centers. These departments are to

provide technical support not only to the co-located Data Processing Installation,
but to provide support in specific areas initially to all NAVDAC activities, and
ultimately to Navy-wide ADP activities. The Navy Regional Data Automation Center,
Pensacola, has as one of its assigned technical management areas, Computer Per-
formance Evaluation and Configuration Management.

The paper will describe the organization briefly, and outline the steps taken
to develop the expertise necessary to provide both tools and consulting services
to Navy Customers.

Key words: Capacity management; computer performance evaluation; Navy non-tactical
data processing; performance management strategy

1 . Background

The Naval Data Automation Command was
formed in the mid 1970's as a result of studies
of the Navy's non-tactical Automated Data
Processing. The term non-tactical refers to the
business-type data processing functions of the
Navy such as inventories, payroll, accounting,
etc., as opposed to tactical, i.e., weapons sys-
tems related, functions.

The reports of these investigations were

critical. Central to the criticism was a common
theme; the many Navy ADP installations around

the United States and the world operated practi-
cally as separate entities, usually under direc-
tion of a local commander, and shared little if
any common procedures, hardware, software, or
management philosophy.

This situation was perceived as wasteful in

that opportunities for shared efforts and bene-
fit of common resources were not realized. In

particular, it was realized that in many cases,

65

very similar tasks were being accomplished at
several activities in different ways with
development and support costs being duplicated.

It was determined that a single Naval Data
Automation Command having cognizance over all

non-tactical ADP and able to promulgate techni-
cal standards throughout the Navy would provide
the vehicle for economies of standardization and
shared benefits.

As an initial implementation of this con-
cept, several large Navy Data Processing Centers
located throughout the country were designated
Navy Regional Data Automation Centers, or in

Navy jargon, NARDAC's. Because of their loca-
tions, these sites were in ideal positions to

provide services to Navy activities throughout
the United States.

A major competitive procurement was under
way to replace the suite of hardware used in

these Data Centers, and all of the centers would
be starting fresh with new, and more important-
ly, common hardware and software. This provided
an ideal stage from which to launch the proposed
Naval Data Automation Command.

It is common in any data processing facility
to have a group or department which provides
technical systems support to the operating
departments. Termed Internal Systems, Systems
Programming, or Technical Support, this group is

typically responsible for the care and feeding
of Operating Systems and Communications Systems
Software, and the associated system generations,
troubleshooting, etc., which are a normal part
of doing business. The specialists in these
departments are frequently looked to for expert
advice to management on technical matters, for
analysis of problems, and for inputs into manag-
ment plans.

When several sites share common suites of
hardware, this becomes an area of potential
saving through the sharing of the talents of
persons whose skills and experience are very
difficult to obtain.

2. NARDAC, Pensacola

Located on the historic Naval Air Station,
Pensacola, Florida, Birthplace of Naval Avia-
tion, the Navy Regional Data Automation Center,
Pensacola provides Automated Data Processing
services to many activities and commands within
its geographic area. Its Data Processing In-
stallation Department operates three large-scale
Univac U— 1 100 systems servicing a variety of
workloads, as well as a Burroughs B-4700 and a

Burroughs B-M800.

As with other Regional Data Automation
Centers, NARDAC, Pensacola includes in its or-
ganization a Technical Support Department.

These Technical Support Departments at each

of the NARDAC's serve two major functions.
First, they provide technical support and exper-
tise to the local Data Processing Installation,
and, second, they provide support to all Naval
Data Automation Command , and ultimately to

multiple activities throughout the Navy, in

select technical management areas. Included in
the technical responsibilities assigned to

Navy Regional Data Automation Center, Pensacola,
are Computer and Teleprocessing Measurement and
Evaluation, and Automated Data Processing Equip-
ment Configuration Management. These technical
management responsibilities are frequently
referred to within the NARDAC's as 'lead assign-
ments' .

Under the tasking of this 'lead assign-
ment', then, NARDAC, Pensacola has responsibil-
ity to provide tools, methods, and procedures
for Computer Performance Evaluation/Capacity
Management, as well as responsibility to provide
training and consultation services to Navy
activities as required.

In early 1981, a team was formed at NARDAC
Pensacola to aggressively attack lead technical
management responsibility of providing Computer
Performance Evaluation and Capacity Planning
services to Navy activities.

The first fact to come to light was that
research indicated that effective Performance
Management functions were simply not being
accomplished within the Navy data processing
activities. In fact, evidence suggested that
throughout industry as well, there was relative-
ly little well -organized and systematic Perform-
ance Evaluation or Capacity Planning being done.

One of the reasons perceived as hampering
good Performance and Capacity Management was the
general lack of a stand-alone specialized group
whose primary responsibility was the performance
management effort. Typically, when studies were
made or data collected , the effort was usually
assigned, perhaps by default, to a person or

group that had as a primary responsibility, sup-
port of day-to-day production at the data proc-

essing center.

Because of this, the task frequently took
on a lowered priority to the daily crises until

,

usually as a result of user complaints, the per-

formance or capacity of the system itself became
a crisis. This would temporarily elevate the

performance management effort to a sufficient
priority to get some results. Lacking in this
situation was a sustained evaluation effort, the
failure to develop a comprehensive overall plan,

and the failure to accumulate data over a long
period of time for a trend analysis.

In light of these historic problems, the
Navy placed the Performance Management function
in the Planning and Analysis Division of the

Technical Support Department. In this way, we

see a group whose primary responsibility is

66

Performance/Capacity support to the activity,
and in the case of Pensacola, the development
of an overall program for the Navy, without
the pressures of daily production problems.

In this manner, the emphasis on longer
range management goals, and the participation in

organization planning is assured. The perfor-
ance people are not required to respond to the

usual firefighting nor the imperatives of pro-
duction schedules.

When the Computer Performance Evaluation
group was initially formed it found itself in a

position similar to that of organizations in

like circumstances. That is, lack of skills,

training, and experience on the installed suite
of hardware and software, as well as a lack of
performance evaluation skills in general. A
factor that further complicated this lack of
experience was that the hardware/ software suite

that was the object of our first efforts was the
Univac U-1100. There was, and is, relatively
little in the way of tools, skills, and training
available for U-1100 systems. Team members were
scheduled to attend classroom training in U-1100
operating systems and available software moni-
toring systems as a way of getting started

.

What lay ahead was the task of taking
people with a variety of backgrounds and exper-
ience levels and equipping them in a wide range
of knowledge areas including operations, soft-
ware development, diagnoses and troubleshooting,
and management analysis. In addition to these
technical skills, the performance management
team members would require good technical
writing and oral presentation skills, and the

ability to present statistical information
effectively with charts and graphs in order to

be able to communicate with and prepare reports
for management. Added to the personal develop-
ment requirements facing us, were the require-
ments to develop the necessary tools, methods
and procedures to get the job done.

3. Development

In addition to receiving classroom train-
ing, the CPE personnel needed to gain some
actual experience as quickly as possible. To

this end , the Federal Computer Performance Eval-
uation and Simulation Center was contacted.
This activity, known as FEDSIM, provides Per-
formance Evaluation and Simulation services on a

contract basis to all Federal activities. The
intent of our contract with FEDSIM was to give
the Pensacola CPE team actual experience in the
conduct of an evaluation of a computer system.
The performance evaluation was to be conducted
largely by Navy personnel, with close supervi-
sion and guidance from the FEDSIM analysts.

In early 1981, the first detailed analysis
of the computers installed at Pensacola was con-
ducted with FEDSIM 's help. The strategy was
successful. Having seen the entire process from

initial planning through execution, we had a

good feel for the structure and methodology
needed to conduct a complete evaluation.

At the outset, one fact became obvious to
even the neophyte performance analysts: that
when using software tools to gather system per-
formance and workload information, it is ex-
tremely easy to become buried in mountains of
numbers! Various methods are available to
accumulate and reduce the large volumes of data
produced, and any performance management
strategy must include tools to accomplish this
task.

For U-1100 computer systems, there are two
major sources of performance workload data. A

software monitor which is an integral part of
OS-1100 called the Software Instrumentation
Package, or SIP, is an event-driven vehicle for
gathering key internal performance data ele-
ments. Workload data are gathered from the OS-
1100 system log files. Program products are
available from the vendor to manipulate these
files. The first area attacked was the SIP
software monitor data.

Two approaches can be taken in the gather-
ing and analysis of the software monitor data.
In one, the monitor can be 'turned on' or acti-
vated for a long period of time, and a single
report for that period produced. This has the
disadvantage of effectively averaging the inher-
ent variations in the many data elements over
time. Significant peaks and lows will not be
seen. The opposite approach is to collect many
very short data periods, or 'snapshots'. This
gives the advantage of revealing the range of
variation in the data elements, and when done
over a long period of time, say a month, gives
very good statistical confidence that we are

seeing the complete picture. The bad side of
this option is that over an extended period of
time we will see literally hundreds of data sets
or cases accumulated. The second approach is

clearly the most desirable from the standpoint
of the validity of the results. The problem
then; provide tools to manage the numbers.

An initial attempt consisted of modifying
the vendor-supplied report generation programs
to collect key data elements in a Mass Storage
file. A simple statistical package was then

used to produce meaningful data reduction.

While workable, the technique has a serious
flaw. Any modification of vendor software is

not only difficult to accomplish, but brings
with it the requirement to be forever alert to

changes in the vendor software and to verify in

each case that the system still performs as

intended

.

A more acceptable technique is to allow the
report programs to operate as intended , and ex-
tract the desired elements from report files.
This is a popular technique on the U-1100, and

6 7

is one that is utilized by the NASA computer
complex at Slidell, LA through a package called
SCAR, for SIP Collection Analysis and Reporting.
A copy of this package was obtained from NASA,

and modified to suit our needs. Pertinent data
elements are collected in a Mass Storage (disk)

file, and reports are produced by a general
purpose statistical package. The Navy version
of the package is called SPAR for SIP/PAR Analy-
sis and Reporting.

Data elements are extracted as desired from
the file by the statistical package, statistical
calculations performed, and reports formulated
in accordance with parameters supplied by the
analyst. This provides a very flexible and easy
to use reporting tool, allowing ad hoc reports,
or changes to existing reports, to be provided
quickly and without programming effort.

There are several parameter driven, general
purpose statistical report software packages
available for a variety of hardware/ so ftware
suites. Of those available on the U-1100, the

Statistical Package for the Social Sciences
(SPSS) seemed to offer the most in terms of
flexibility, ease of use, and report presenta-
tion. SPSS has been selected as the report gen-
eration package for the current NAVDAC perform-
ance management statistical package.

After modifications and documentation were
completed , the data collection portion of the
NAVDAC version of the SPAR package was sent to

all of the Regional Data Automation Centers.

A project is currently underway to develop
a package to produce a similar capability for

U-1100 workload data using elements produced by
the vendor supplied Log Analyzer.

In addition, as the next phase of our Navy-
wide role and in order to broaden support of
all multiple Navy Automated Data Processing
facilities, software tools are being developed
to produce similar reports on the Burroughs
hardware/ software suites in use by the Navy.

4. Present Status

At NARDAC Pensacola there are currently
several performance analysts who are gaining
confidence daily in the analysis of U-1100 sys-
tems performance. With three large systems
installed on-site and a tasking from management
to provide reports on a continuous basis, exper-
ience on a variety of computer/workload environ-
ments is readily at hand. Part of our responsi-
bility under the technical management assign-
ment, and inherent in our overall strategy, is

providing assistance and consultation to Navy
activities in performance analysis studies with
participation from local personnel , and to pro-
vide consultation and training to local site
personnel in performance management analysis.

The software tools that are now available

to collect and reduce the Operating System Soft-
ware Monitor data gathered by the Software
Instrumentation Package and initially reduced
by the Performance Analysis Routines provide a

picture very quickly of the general health and

capacity of our computer systems.

The collection and reporting of workload
data, an essential part of a complete Capacity
Management effort, is the next area to receive
attention. At present, workload information
identifying work types, major accounts, and
transaction volumes, is manipulated in a

largely manual manner, using software
tools, and utilizing data extracted from system
log files by vendor supplied Log Analysis pro-
grams. Efforts are currently under way to

develop an automated workload data collection
system to parallel the SPAR system package cur-
rently in use for Software Monitor data.

5 . Future

It is questionable whether the point can
ever be reached where we can say that the effort
has been completed. It is a multi-faceted
effort, and events and requirements are always
changing.

Within immediate sight is the first major
goal. Milestones reached at this point include
only part of the components of a Performance/
Capacity Management Program.

Four major components comprise the program,
and one is a further development require-
ment for NARDAC Pensacola. For effective
capacity management we must have the ability to
measure and evaluate current system performance,
characterize current workload, obtain realistic
projections of future workload, and finally com-
bine all these data in simulation or model of
future workload and proposed configurations to

evaluate capacity requirements.

Although the third item in the list, the
prediction of future workload, is the cus-
tomer's responsibility, it is incumbent upon the

performance management function to provide accu-
rate and useable data to the customer on his
current workloads. This provides the essential
baseline from which to develop the needed pro-
jections. The development of useable tools and
procedures for modeling future workload/configu-
ration combinations is the next new area to be
addressed

.

6. Management Strategy

The key point in the management strategy
implementing a performance management program is

the location of the function in an area whose
primary responsibility is the support of Per-
formance/Capacity Management. The purpose of
the effort is to provide management information,
not just troubleshooting or system tuning. As

mentioned in the discussion of the organization,

68

this helps insulate the performance personnel
from the firefighting and the day-to-day crisis
situation that usually exists in the production
support area.

It is becoming increasingly evident that in

order to measure and plan for computer capacity,
the performance of the system in relation to

stated performance levels must be considered.
The true capacity of a system is the amount of
workload the system can handle while meeting the
required performance objectives. While the com-

puter may be able to process additional work-
load , if the performance falls below agreed upon

levels, we would have to say that it is oper-
ating beyond its capacity. An important part
then, of the overall management strategy must be
the formulation of Level of Performance agree-
ments between the data processing service
activity and its customers.

Data processing activities have been reluc-
tant in the past to address firm performance
requirements. There is some sense in the

feeling that if no set standard exists, we can
never be held accountable for not meeting it.

On the other hand, we can also never demonstrate
that the service being provided is in fact, as
agreed upon. Without clear goals, and data
reflecting whether or not those goals are being
met, management is in a weak position to sup-
port budget issues for additional resources, or
to justify increased charges for cost-reimburs-
able customers to cover the costs of additional
resources.

In support of overall Navy objectives, we

are now able to provide methodology, tools and

procedures, as well as training and consulting
services to other activities.

One of the ' lessons learned 1

, if one can

use that rather trite phrase, is that the

development of expertise in the study and analy-
sis of computer systems and their capacity and
performance is a very time-consuming process.
It sounds cliche to say that large scale com-
puter systems are very complex and the environ-
ments and workloads that they exist with are
highly variable, but it is certainly quite true.
Even with some formal training, the need for

extensive experience with a hardware/software
suite is essential, preferably under varied con-
ditions. A frequent comment is that each new
set of data gathered and analyzed is more likely
to raise new questions than it is to provide
complete answers. The age-old questions about
what is a good number and what is a bad number
are highly influenced by the system configura-
tion and its workload makeup. A performance
measure that indicates a healthy system on one
machine may indicate serious problems on
another. Only through experience with a hard-
ware/software suite and its workload can
realistic capacity decisions be made.

In summary, our plan has been to assign
people to the task full-time, to develop the
methodology, tools and procedures for Com-
puter Performance/Capacity Management, and to
allow the time to gain experience necessary to

perform effectively.

69

Appendix A

This appendix contains some samples of SPAR output reports.
Each case represents the average value of the variable shown for
a five minute period. The periods were measured once an hour
twenty-four hours a day Monday thru Friday in these examples.
A total of 279 observations was taken.

Figure 1 is a frequency distribution of average number of
batch runs in memory during each five minute observation.

Figure 2 displays the same information on a histogram.

Figures 3 § 4 are scattergrams showing the relationship be-
tween two variables in each diagram. The numerics indicate the
plotting of 2 or more occurences at the same point. Figure 3

shows the relationship between virtual memory swap rate and
total number of runs open. Figure 4 shows average number of
demand terminal runs open plotted against time of day.

Scattergrams are particularly useful for illustrating the
relationship between two variables. They provide good intuitive
understanding, even for people with little technical background.

70

sit lata collection period for june 8? page 22

27/26/62 file - psip$dte - created 07/26/82

iatchcor avg eatce in core
relative adjusted cumulative

absolute i

category label CODE
ABSCLUTF

FREQUENCY
FRFOUFNCY
(PERCENT)

FRFOUFNCY
(PERCENT)

AD I FRIO
(PERCENT)

1 1 .4 .4 .4

2 4 1 .4 1.4 1.8

3 9 3.2 3.? 5.0

4 83 29.7 29. 7 34.8

5 73 26.2 25.2 60.9

6 79 28.3 28.3 89.2

7 23 6.2 8.2 97. 5

8 5 1.8 1.8 99.3

9 2 .7 .7 100.0

TOTAL 279 100.0 100.0

Figure 1

71

SIP DATA COLLECTION PERIOD FOR JUNE 82

(27/26/62 FILE - PSIP$DTE - CREATED £7/26/62

PAGE 23

EATCHC OR AVG BATCH IN CORE
CODE

I
.

1 ** (1)

2 *** (4)

4 #>;c#>;:>;sXtKc##s;<£>!«:fc##>i«5r>!«5r: 5!<#s;:*^
(83)

;c j;s sje & i\i >'f >;c j;< s;« s'.t& s',: $ s;c >;< $ j;: # %# sjt 5;: $ j;t >;c# >;< s;c >;« y.c # >;< >;« >;<£ $ >;c
^ 79)

5)

I

0 20
FREQUENCY

.1

40
. . I ,

60
. .1

60
. .1

100

MEAN 5.111

VALIL CASES 279

MINIMUM 1.000

MISS IN " CASES 0

MAXIMUM 9.000

Figure 2

72

• +
+

lO
cv

w

•

I

ICD m

\
|

IS

Dm
o s
to *o

!

ZD CNJ

„
» to

1

I

—3 • +
«U . rs_

o

£

lTi

in •

C\I

Q

CO \i)

% *

y

QD if>\ ,

H
Si

PS W «C iT)

o 6- ct: •

(«. ft. C^-Q •<

oo Z COo
cc
w t-» Si
OL,

WOiO
z P= ft» •

o CJ —

'

6h
o W
KM
>-) Q O • +
-J -uv

O ft. CO •~« <
tO PC ts

«. ft, o
EH PS to
< MQ fe-«W -
o> -J •<

o
«/> MH CO

Figure 3

73

>-• 1 cs
««; l s>
« + * *

* * *
mh I * -r< -> CM

CO\ O <i) 1m i

x in cm
CM »

CO • + # ?J
CVi

•v.
£: cm I

i-i CM
1 fj

t-i
1 CM CM * 5>

* * «
« CM '

S)

* CM *
CM * CM

1 CM * -*

in 1 *• *
pi . + CM « -

O U) 1 * W
E-i 1

CM
* * *

* CM 5)

*

* * CM *

CM *
CM CM
*

* *

*

cm CO Pi [>
cu CM\ Ow
z: «<:

a
•-3

:i *e
p. siwom

o Pi •

p. <e ^
pi i-

PI M
o :2 p)o
cc

w E-i -'

«« :* Si
Pi O IT)

K Pi .

o C-> r-l

o MM
MM b-i P< +
P] a o • +
P) -i/v

O o- 1:o M «c IS
c/> « IS

«i Pi o
IH us SI
«= in
n
Oh PI <5

1-1 ;j
1/3

* *

* ts
* IS

* +
* 1 CO
CM CM 1

* 1

* 1

*
* "m 1

in l ea
•ifr 1 Si

* * ft +
•» 1 10

CM tO 1

« CM 1

CM 1

CM* +
* * CM 1

* « 1

CM 1 S>
CM CM 1 S)

+

Figure 4

74

DEVELOPMENT OF A METHODOLOGY FOR THE
ANALYSIS OF SYSTEM PERFORMANCE INDICATORS

Paul Chandler, CDP

Wilson Hill Associates
1025 Vermont Ave, N.W. #900
Washington, D.C. 20005

Many organizations are faced with the performance management of old or over-
utilized computing resources. Often there is no performance improvement plan which
addresses the efficient usage of these resources. The development of a performance
improvement plan has value to the organization in that a solidly based plan can be
developed which seeks to quantify the computer performance. This paper presents a
method by which this plan can be developed.

1 . Introduction

Many organizations operate and maintain
vintage data processing equipment without a

full appreciation of the processing potential
of that equipment. Additionally, funds may be

lacking for the upgrade of present equipment or
the purchase of new hardware. How then can
such an organization better manage its comput-
ing resources?

Additionally, all too often commercial
packages are bought without a complete under-
standing of the actual requirements of the
organization beforehand. The subject of this
paper presents not an answer or itemization of
relevant factors, but presents instead, a

generalized method by which relevant system
performance indicators can be identified.
Also, this paper describes a way for the organ-
ization to anticipate its planning process
through the use of these indicators by a care-
ful consideration of the use that will be made
of these indicators.

In a worst case situation let us presume
an operational environment in which we find
both 360/40 's and 50' s under DOS and 370/ 145 's

under OS. These systems produce unlike
accounting data streams of GRASP and SMF data,
respectively. How then can operations manage-
ment assimilate and analyze the magnitude of
this performance data from the installation
necessary to monitor and improve performance of
both the installation and selected application
program? This paper will present a method by

which an in-depth analysis of the accounting
data and a statistical analysis of that data
can be performed.

Specifically, this paper describes a

methodology by which the user can:

• Plan for and control the application
of ADP resources to workloads in

order to improve systems perfor-
mance, and

• Report to users and upper management
in a manner that facilitates under-
standing of the progress made in per-
formance management.

2. Background

Computer performance evaluation (CPE) in

the simplest terms is the measurement of how
well the software is using the hardware for a

given job mix. The measurements can be taken

directly by hardware monitors attached to the
physical configuration, or by software moni-
tors resident within the operating system
itself. In any case, the information gathered
is evaluated by a highly skilled analyst who
makes recommendations that will improve
performance or effect greater operating
economies. A CPE can reduce long-range costs,
attain better job billing, and provide manage-
ment with more meaningful information con-
cerning data processing performance.

75

For the purpose of this project, software-
monitor -generated data will be utilized. The
data provided is event driven and is SMF depen-
dent upon the completion of a job step or issu-
ance of a system command. These conditions
include the beginning or ending of a job step
and contain such detailed information as job

I/Os, job tape I/Os, CPU seconds, block size,
core usage, etc. This breakdown provides a

better idea of where resources are being used
and allows an analysis of computer performance
to determine if resources are being used in an
efficient manner.

Performance data provided by a software
monitor in this project will consist of SMF
data generated from OS systems and GRASP data
generated from DOS systems. Although both con-
tain similar types of data, the record formats
and detailed data content are quite different.
The ability of this data to indicate perfor-
mance levels stems from the overall view of the
job and its continuous operation. These data
can be summarized to provide a "snapshot" of
the system at any point in time, and compared
to a baseline performance profile to obtain a

quick gross measurement of how the system is

performing. This technique can be extended
from a collection of programs to a detailed
analysis of any individual program so that a

detailed picture of resource utilization by
individual application systems can be seen.

Job accounting data normally will be used
in two ways. First, general data may be col-
lected over a representative period of time.

The definition of a representative period is

often very difficult; however, a representa-
tive period should cover one data processing
cycle, which is the period of time that in-
cludes at least one occurrence of all major
events of interest (such as in a given applica-
tion program. Second, based on the general
analysis, more specific data can be collected
for in-depth analysis. This collection of data
is reduced to provide an overall set of system
and application program indicators, some
scalar and some vector, which are analyzed.

Performance data must be used in conjunc-
tion with other factors related to job frequ-
ency. For instance, if during a given time
period a job appears to utilize a high propor-
tion of computing resources, it would be imper-
ative to know the frequency of execution of
this job; if the job is run only once per year,
it may not be worth pursuing, and would be mis-
leading in the management of the data center in
any case.

The overriding consideration when per-
forming a CPE study must be the overall benefit
to the organization. If the goal is to cut
expenses by optimizing the use of current
resources, the study will provide the facts
needed to do it. If the goal is to increase job
throughput regardless of the money involved in

buying additional equipment or staff, the study
will provide the facts. Generally, a CPE study
will show that changes are required in one or
all of the following areas: equipment, proce-
dures , or programs

.

Equipment . Configuration changes usually
involve adding or deleting peripherals,
memory, or I/O channels. Other changes will
take the form of upgrading existing gear, such
as more memory or CPU. Another form of equip-
ment change involves the reconfiguration of
existing equipment. The study may show that

some disk drives are underutilized while others
are nearly at capacity. Thus it would be
desirable to have as many channels as possible
access the heavily utilized drives. It is

assumed that the operations center plans no
massive upgrades, but rather seeks to "fine
tune" its existing systems. Therefore, al-
though new disk drives might be a considera-
tion, new CPU's certainly would not be.

Procedures . The interaction of resources
and programs is prescribed in the data center
operating procedures. The way jobs are sched-
uled, combined with systems rules for resolving
contention for resources among those jobs

already running, can sometimes affect through-
put as much as a shortage of resources

.

Another scheduling improvement would be the
redefinition of job classes to assure an equit-
able distribution of resources according to

actual requirements. Resource allocation
priorities are often described by a CPE study
such that significant increases in throughput
can be achieved by manipulating the priorities
assigned to various program requests for
resources. Dynamic load balancing of I/O de-
vices can also be accomplished by running a

system overhead program such as GRASP or other
product

.

Programs . Another approach to poor device
utilization is to change the way that individ-
ual application programs use the devices,
rather than changing the way the devices are
configured. Specific information of value to a

programmer in terms of his own programs is

record blocking information and file media
analysis. Blocking can have tremendous impact
on a program's running time. The number of

files that can be concurrently read or searched
is often dependent on file location. Addition-
ally the division of a single file into many
smaller pieces, called "fragmentation," can be

spotted through a detailed CPE study as well.

The process of CPE requires an interaction
between the data analyst performing the study
and the data center operations management. Top
managers must set up procedures to monitor and
track progress in implementing the recommenda-
tions it accepts after they are made the CPE
team. This tracking system must be regular,
automatic and publicized to help assure that

the CPE project yields its anticipated bene-

7 6

fits. Other user involvement includes the in-

put from senior systems analysts who provide
preliminary software organization information,
such as the location of system files. They may
also be called upon to assist in implementing
software monitors or triggering additional
data gathering. These "hidden" personnel con-
siderations are critical to the success of the

CPE project.

3- Overview of Method

Development of a methodology for active
computer performance control requires a care-

ful consideration of the data available, as well
as the development of a sound methodology for
data analysis. It should be noted that no
methodology will generate hard benefits
directly. Benefits are realized through the
effective use of the information developed from
this analysis, and this effectiveness depends
on the skills and motivation of individual
operations managers. More specifically,
direct benefits will be derived in expanded
capabilities related to:

• Ability to measure actual perfor-
mance versus goals and established
targets

• Diagnostic analysis of problem
areas; and

• "Threshold" profile reporting to

develop sensitivity to selected
areas of performance control.

First, utilization of computer perform-
ance data will provide the ability to measure
actual performance, and to establish perfor-
mance goals and objectives against which actual
operations may be measured. At the present
time, only broad performance measures are
available from incompatible data formats (SMF
versus GRASP), thus restricting analysis and
development of performance profiles. In re-
sponse to "are we doing better?" operations
management personnel must respond in many in-
stances with either "I think so" or "I don't
know." The ability to measure actual perfor-
mance will thus have direct results in a quan-
titative and meaningful manner. Additionally,
having this ability to measure installation and
application performance will allow the manager
to take a more active role in computer center
operations management.

Second, performance information is needed
for diagnostic analysis of data center problems
and operations. For example, an analysis of
CPU utilization versus job priority can reveal
that high priority CPU-bound jobs are blocking
access for lower priority IO-bound jobs to com-
puter peripherals, thus ineffectively utiliz-
ing computing resources. At the present time,
the manager may not be able to conduct this

type of analysis despite the availability of
performance data due to the volume, complexity
and diverse record types of data reported.

Third, comprehensive tracking and compar-
ison of performance data is needed for overall
management control of computing resources . In
the longer run, significant efficiencies and
economies will be obtained by anticipating
workload demands and planning to meet these
demands with a rationally developed operations
management program. Currently HQ management
control is exercised on an exception basis and
no single source of comprehensive data is

readily available for planning analysis or
other purposes. It is necessary to accurately
characterize each operations center according
to its unique set of operating constraints in
order to increase utilization and throughput of
application programs.

In summary, the manager seeks expanded
analysis of performance data. This analysis
should serve to maximize the productivity of
operations centers in the near-term future,
applications programs in a longer horizon, and

can be achieved within the scope of the study.

4. Project Methodology

The project methodology presented in this
section presents an outline of the work tasks
which should be accomplished. The plan is

divided into three major phases:

1 . Analysis of Performance Data

2. Development of Data Storage/Retriev-
al Architecture

3. Development of Evaluation/Forecast-
ing Technique.

Phase 1 . Analysis of Performance Data

The purpose of this phase is to review and
select a subset of the performance data avail-
able from processing installations and appli-
cation systems in order to develop workload
profiles. Both the range and variety of data
generated at the installation will be reviewed
and considered. This will occur in three
primary steps.

Step 1.1 Review Available Performance Data

In order to effectively introduce ex-

panded performance measurement/data management
on a production basis, a full understanding of

existing work activities must be obtained. The
primary source of this information is obtained
through a detailed review of job accounting
data provided from SMF and GRASP programs
currently in place. This manual review
requires the guidance of center personnel to
identify major record types and field descrip-

77

tions and to identify the volume and frequency
of such data produced. The range and variation
of performance data values must be identified.
During this step, a review of application pro-
gram JCL and documentation is also made to
identify major application system characteris-
tics. Additionally, the manager must come to a

fuller understanding of the processing con-
figuration used by the operations center.

Step 1.2 Develop Preliminary Workload Profiles

This second step uses the data identified
in Step 1 . 1 and seeks to characterize the
operating environment through the preliminary
construction of workload profiles. These pro-
files must consider and interrelate key perfor-
mance data by which the operations center and
application programs can be characterized on a

gross level . These profiles are intended to

provide an overview to the manager of the
primary performance characteristics of the
systems reviewed.

Step 1.3 Select a Set of Relevant Performance
Indicators

This step presents the actual recommenda-
tions of the project team for a subset of per-
formance data which will be used to char-
acterize and describe both the operations
center and application programs covered by the
scope of this study. From the range of job
accounting data reviewed, and the trial con-
struction of representative sample profiles,
specific key performance indicators can be

identified, and primary derived performance
indicators can be specified. Additional per-
formance indicators may also be identified as
being of secondary importance. Some data
currently generated from the job accounting
systems will be excluded at this point from
further analysis.

Phase 2. Development of Data Storage/Retrieval
Architecture

The primary purpose of this phase is to
provide programming specifications by which
the independent and unrelated data sources of
SMF and GRASP job accounting data can be con-
solidated into a single data base, and specifi-
cations for a variable report generating pro-
gram. This phase is divided into three steps.

Step 2.1 Identify System Characteristics

This step reviews and identifies a set of
system characteristics which define the over-
all structure of the program specifications
developed. Specifically, a set of programming
considerations is defined which may include
such factors as: table driven program, modular
design, user friendly, inverted file struc-
tures, variable report format, single standard
data base record. These are considered to be
important program design considerations, and

upper level management should be asked to con-

cur.

Step 2.2 Produce File Design

Specific input record formats are defined
and a single output record is formulated. The
logical data base design is outlined and file
interrelationships defined. Additionally
during this step, a master reporting format is

designed to present a user selected set of per-
formance data together with standard identifi-
cation data. Several basic report formats can

be considered.

Step 2.3 Develop Program Specifications

During this step the operational flow
sequencing of the data storage and retrieval
requirements are developed and defined. The
physical data base design is completed. Using
structured coding techniques, and in accord-
ance with established documentation require-
ments, program specifications are developed
for the processing and storage and job account-
ing data, and for the selective retrieval and
report generation of data from the data base.

Phase 3- Development of Evaluation/Forecast-
ing Technique

The final phase of this project consists
of a technique by which standardized perfor-
mance data can be utilized for the tuning,
evaluation and forecasting of major workload
characteristics for an individual operation
center over time, and for multiple centers with
each other. Additionally, a method of profile
characterization is developed which allows
application programs to be described and

evaluated against "standard" profiles for
comparison over time to detect major operating
errors or trends, and between application
systems to identify and locate inefficient
utilization of resources at a particular opera-
tions center, aberrant implementation, or

isolation of problems due to unexpected and
unusual data conditions. The methodology
should contain a description of statistical
techniques by which the performance indicator
analyzed can be evaluated and data center
operational management effected. This project
phase is divided into four steps.

Step 3-1 Develop Performance Technique

The development of a performance tech-
nique is broken into the three primary areas of:

workload profile, profile standards, variance
analysis. Each step will be described in
detail below.

Define Workload Profiles . From the pre-
liminary workload profiles developed in Step
1.2, a final selection of relevant performance
indicators and indicator interrelationships is

made. Presentation techniques which are most

78

applicable to the operations environment and
management control and review are identified
and presented to management for concurrence.
Some illustrative types of presentation tech-
niques which can be considered include:

• Kiviat diagrams: a series of

interelated performance indicators
is presented on an eight axis graph
such that a "star" pattern is formed.
For each set of interrelated indica-
tors, standard profile patterns can

be derived. This method allows
several indicators to be monitored
simultaneously

.

• Point and Plot Diagrams: for an

identified performance indicator,
the indicator is point plotted
against a constant variable (such as
time) such that a trend can be

identified. This presentation is

easily amenable to statistical
analysis and extrapolation.

• Bar Graph: in this method a series
of "steps" is presented for a

selected variable. This technique
is useful for broadly characterizing
an operating system for a specific
indicator, or for illustrating
relative comparison over equal
periods of time. Frequency distri-
butions can be easily displayed in

this way.

• Vector Derivatives: a series of

performance indicators is combined
to form a single number which repre-
sents the composite performance for
a given application system.
Weighted values for each of several
components indicators can be

generated, and a utility function
computed which combines the indica-
tors into a single number. The
method is applicable in instances
where several cost factors of a job
are combined into a single user
charge

.

Establish Profile Standards . The role of
CPE assumes that there exists a desired target
or goal in the management of computing
resources. One of the purposes of this step is

to provide for the definition of management
generated target areas against which actually
measured indicators can be compared. This
target generation is an interactive process in
which the data center manager continually
reviews and updates his target goals based on
the performance of the data center. For
instance, if a monitored performance indicator
shows that only 30? of the CPU is being
utilized, the data center manager might select
a target utilization rate of 50$. As this rate
is achieved, the target utilization rate might

be later modified. The setting of the target
goals involves not only a review of the current
operating environment as characterized by the

performance indicator reviewed, but must
reflect the judgment and experience of the data
center manager as well. This step does not
actually produce target values, but provides
the place for them to be used.

Describe Variance Analysis . This step is

the description of the method by which measured
performance profiles are compared against the
management-provided standards and a variance
profile generated. A variance profile is used
here to indicate the simple difference, either
positive or negative, between the measured and
standard values. The method provides for the
comparison of an operations center profile with
itself, the comparison an operations center
against another center profile, and similiar
intercomparisons of application system pro-
files against themselves and one another.

Step 3-2 Develop Statistical Technique

This step should provide a discussion of
descriptive statistical techniques which can

be used to interpret the performance indicators
measured. This discussion should provide a

groundwork for establishing indicator means,
computing standard deviations, and determining
confidence intervals for management provided
limits. This will provide management the

ability to produce production control guide-
lines containing upper and lower limits between
which each operations center or relevant appli-
cation system should operate for maximum effic-
iency. Additionally, the statistical ground-
work should be described by which selected
performance indicators can be forecasted using
simple linear regression methods.

Step 3.3 Develop Indicator Forecasting and
Evaluation Techniques

Using the statistical methods developed
in the previous step, illustrative forecasting
scenarios are described in which management can
participate in the future planning and utiliza-
tion of computing resources in a positive,
active way. This will prepare the way for the

development of contingency operations and

resource utilization.

First, the major management information
presented, for each of the major performance
indicators and profiles developed in Step 1.3,

is characterized and interpreted. That is, for
each indicator a description of the use of that
indicator in performance management is pro-
vided; for each profile, a description of the
major profile types that can be expected is

provided, together with rules of thumb for
management interpretation. Additionally, for
each indicator and profile, one or more "red
flag" conditions can be identified which may
require immediate management action.

79

Second, for each major performance indi-
cator, a method should be developed which will
allow these indicators to be forecasted over a

defined period of time. These factors should
consider seasonal trends, harmonic components,
and factor interdependencies to the extent
appropriate. Several forecasting methods may
be considered including linear regression,
moving averages and exponential smoothing. For
each of the methods presented, limitations of
the method should be explained.

Step Define Assumptions and Limitations

Computer performance indicators cover
only a portion of the factors within the realm
of management control. Equipment operation,
data management policies, resource planning,
resource control, and job scheduling can all be

identified indirectly by a review of perfor-
mance indicators, but may not be addressed
directly. This step includes the identifica-
tion those areas of management control to which
the highest degree of success in controlling
the utilization of computing resources might be

expected to be achieved.

Additionally, CPE limitations include the

fact that operating system overhead may be
excluded from consideration, since the job
accounting facility is typically resident as
part of the operating system itself. There is

also a machine configuration difference
between DOS and OS operating systems which can
not be reconciled. Finally, certain statisti-
cal assumptions may be identified, such as an
abnormal distribution of data, and so on.

• Determination of relevant informa-
tion to be reported to uppei" level
management , and

• Identification of responsible opera-
tions management and user manage-
ment, to whom regular reporting is to

be made.

The methodology presented in this paper,

then, is but the first of several steps in a

successful CPE effort. It may be mentioned
that a largely unspoken benefit of any method
such as this is the development of a realistic
estimate of the actual resources needed to
conduct, and implement, a CPE study.

The author is grateful to both Christine
S. Wenk and Thomas A. Mink for their inspira-
tion and guidance during the course of this
study.

Bibliography

Merrill, H. W. Merrill's Guide to Computer
Performance Evaluation , SAS Institute, Inc.

Cary, NC 1980.

GRASP User's Guide
,

SDI, Inc, San Mateo, CA

1978.

OS SMF , GC28-6712-7, IBM Corp., Armonk, NY

1973.

4. Discussion

For the purposes of the methodology
developed, it is important to consider the
extent to which management is able to control
and influence a change in user behavior as well
as data center operations. Although outside
the scope of this study, a consideration of
relevant factors of user behavior which may
serve to limit the effectiveness of management
control of resource utilization and implemen-
tation of resource control strategies should be
made.

It should be further emphasized that a

study using the methodologies described is but
the first of several steps in a successful
implementation of an operations center audit.
Later steps must include:

• Establishment of operating standards

• Application of established standards
to actual operations center perfor-
mance

• Use of the evaluation and forecast-
ing method derived

80

COMPUTER SYSTEM DATA NEEDED
FOR CAPACITY PLANNING

Dr. John T. Peterson

BGS Systems, Inc.

One University Office Park
Waltham, MA 021 54

The data needed for capacity planning comprises a short list, and can be col-
lected with standard software monitors from the systems of the major main-frame
vendors and their PCM's. However, most articles on capacity planning do not dis-
cuss the data needed in any detail, and many of those that do, do so only for a

single vendor, such as IBM. Since the data is the same for any vendor, this paper
discusses the data in generic terms, with examples from several vendors. The pa-
per also explains some shortcomings of vendor-supplied software monitors.

Key words: Analytic modeling; capacity planning; computer performance; modeling,
models, software monitors.

1 . Introduction

Capacity Planning consists of two main ac-
tivities: Workload Forecasting and Performance
Prediction. The capacity planner must also un-
derstand, and make some use of, related aspects
such as chargeback systems, configuration tun-
ing, performance reporting systems, etc.. These
aspects are too wide a subject for this paper,
and have been well documented already. This pa-
per will concentrate on Performance Prediction
in particular. The Workload Forecasting part of
Capacity Planning requires two types of data:
data from the computer system, which is the same
as that required for Performance Prediction; and
data on user activities, which varies from agen-
cy to agency and does not concern us here.

Performance Prediction includes three
steps

:

1. Predicting the performance of future
workloads on various future configura-
tions

;

2. Evaluating alternative configurations
based on costs and the performance
predictions; and

3» Developing a plan for configuration
changes and application changes based
on the results of the first two steps.

Steps two and three involve tradeoffs bet-
ween costs, management priorities, and risks.
The data needed for these steps varies greatly
from agency to agency and from situation to si-
tuation; its gathering and use are relatively
straightforward - if management makes up its

mind. Step one is the most difficult of the

three, and usually involves highly technical in-

formation and insight. The data required for
this step is the main subject of this presenta-
tion.

There are three main methods of predicting
the performance of future -workloads on future
configurations: benchmarks, simulations, and
analytic models. Simulations and analytic mo-
dels usually require the same types of informa-
tion, with simulations typically requiring more
detail. Benchmarks are a sleeper: they appear
to require little information. You just select
a few "typical" jobs, put them together and you
have a benchmark. However, certain practical
considerations may cause randomly selected "typ-
ical" jobs to be an atypical benchmark - one

that does not properly represent your workload.
The only way to insure that the benchmark is

"typical", or representative, is to collect data
similar to that required for modeling, run the
benchmark, and adjust the benchmark until it re-
produces the collected data. So benchmarks ac-
tually require much of the same data that ana-
lytic and simulation models require. Because
the data requirements are similar, and because
more and more people are using analytic models
to predict performance, this paper will concen-
trate on the data required for analytic models.
Most simulations will require more detailed
data; most benchmarks will require less detailed
data.

2. Data Required for Performance Prediction

81

Before we talk about individual data items,
there are two observations to be made about the
context of data collection. All three methods
of performance prediction assume a particular
time of day, or "typical" period, has been se-

lected. The benchmark or model is to represent
the workload at that time. In addition, most
computer systems process several workloads at

once: batch, on-line program development, data-
base inquiry, and CAD/CAM are examples of typi-
cal workloads that might be active on the same
system at the same time. The capacity planner
will determine which workloads must receive se-

parate attention based on which workloads are

similar in resource usage, or will grow at a si-

milar rate, and which workloads are treated
alike by the computer system.

2. 1 CPU Utilization

The capacity planner must know the total
CPU utilization (or total CPU seconds used, or

percent CPU idle) during the period selected.
This total must include not only billable time,

but also any overhead that kept the CPU busy.

This measure is easily collected from most types

of medium and large scale computers by software
or hardware monitors.

The capacity planner must also know how
much of the CPU utilization is used by each
workload. For most systems, software monitors
or accounting packages report billable CPU time
by workload. But he must also know how much ov-
erhead was due to each workload, because some
workloads cause far more overhead than others.
Both hardware and software monitors are rarely
able to report usage by workload. However,
there are usually ways to make accurate esti-
mates. Certain software monitors for UNIVAC,
Burroughs and Honeywell systems divide overhead
into parts that can be easily divided among
workloads: I/Os and dispatching overhead by num-
ber of swaps, memory allocation overhead by num-
ber of allocations needed per workload, etc..
IBM's RMF monitor does not subdivide overhead,
so methods there have ranged from simple rules
of thumb ("capture ratios") to sophisticated use
of RMF and SMF data with known path lengths.
The latter approach is the one used in the Cap-
ture/MVS model generator.''

2.2 I/O Utilization

The capacity planner must know the total
utilization (number of seconds, percent idle) of
each disk device and tape channel during the
measured period. This can be measured by hard-
ware or software monitors and is usually no
problem. Some software monitors, particularly
for smaller machines, may report only disk

Capture/MVS User's Guide, Release 2.0, BGS
Systems, Inc., Waltham, MA

channel busy. This is not sufficient, because
it is not divided out by device and because the
channel is busy for only a small part of the

time that its devices are busy.

As with CPU time, the capacity planner must
also know how much of the disk device time is

due to each workload. This is one of the harder
measures to obtain for smaller machines.
Trace-driven software monitors record this (GMF
for Honeywell, GTF for IBM, I/O trace for
UNIVAC, and DMS Trace for Burroughs). It can
also be estimated in various other ways, for ex-
ample, based on your knowledge of which files
reside on each device or file. Models of IBM
machines usually make use of SMF accounting data
for this purpose.

2.3 Level of Concurrency

The capacity planner must know how many
jobs/transactions of each workload could be ac-
tive at once. The higher the concurrency is,

the less idle time there will be. The limit on

the number of active jobs/ transactions may de-

pend on how many could fit into memory at once,

or on a parameter set by the systems programmers
or operators. (Examples of the latter are
MAXOPN as a limit on active batch jobs for
UNIVAC, and domain targets for IBM MVS systems.)
Memory usage is nearly always reported in enough
detail to be used for these purposes, either by
software monitors, or accounting data, or both.
The values of the system parameters involved can
be obtained from systems programmers. Knowing
which parameters are important is information
that comes from systems programmers, the operat-
ing system vendor, the modeling package vendor,
or from other sites that have been active in mo-
deling or tuning.

2.4 Transaction Rates

The above information will usually suffice
to produce utilizations and relative through-
puts. (An example of a relative throughput re-

sult is, "An upgrade to a multiprocessor will
result in a 30% improvement in batch work com-
pleted.") In order to predict response times
and absolute throughput, the capacity planner
must know the number of transactions or jobs
from each workload that were completed during
the interval. This information is easy to ob-
tain; it is usually contained in accounting data
or log tapes. It is also contained in some
software monitors. This information will be

used with the utilizations to calculate the CPU
and I/O times per job or transaction.

2.5 Validation

Once the model is built, the capacity plan-
ner will want to validate it to make sure that
when given today's workloads and configurations,
the model predicts the response times and

throughputs actually observed during

8 2

measurement. This step insures that arithmetic
and/ or measurement errors have not occured. In

order to do this, the capacity planner needs
measured response times/elapsed times/through-
puts for comparison. These are usually measured
by standard software monitors or contained in
log tapes. Examples are: IBM TSO response,
measured by RME; and UNIVAC TIP response, con-
tained in the TIP log records. Occasionally the
measurements are biased by a particular defini-
tion of response. This is the case with UNIVAC
Demand terminals, where the response time mea-
sure used by SIP is defined in such a way that
it typically reports average response times half
that experienced by terminal users. (Work is
going on in that area to find better ways to

measure response.) In this case, validation can
be done to the extent that the model produces
"reasonable" response times for that workload
(based on user experience and the biased res-
ponse measurements) and produces accurate res-
ponse times and throughputs for the other work-
loads. More accurate response measures can be
made by special software or hardware monitors,
and alternative ways to calculate response can
be used (such as using Voluntary Delay Time to
calculate Demand response times).

2.6 Optional Data

In addition to the necessary data discussed
above, the following data is sometimes needed
depending on the computer system and workload
forecasts

:

a. CPU Priorities. Usually, some workloads
have a higher priority for CPU usage than
others. A workload' s priority may be set by
a system parameter (as in MVS), assumed by
the operating system (as in UNIVAC ' s EXEC),
or regulated by the operating system in res-
ponse to various system parameters and mea-
surements. Typical examples of the latter
give higher priority to workloads that use
little CPU time compared to I/O time. In-
formation on CPU priorities is like that on
concurrency parameters (obtainable from the
systems programmers in most cases). Depend-
ing on your workloads, CPU priority may or
may not affect your system's performance.

b. Channel Utilizations. If disk channel uti-
lizations are expected to change greatly,
(such that they would exceed 30% busy), in-
creased accuracy may be obtained by includ-
ing disk channel utilizations and number of
I/O's per channel in the data collected. In
most systems, the effects of heavily loaded
channels are included already in the utili-
zations of the disk devices. However, if
the channel utilizations will be signifi-
cantly different in the future, the built-in
effects will be off somewhat, and these may
affect system performance significantly. In
this case, one would model the channels

also. The channel utilizations and numbers
of I/O's are reported by most software moni-
tors.

c. Number of Terminals. The capacity planner
may want to include the number of terminals
in the data collected if the number of ter-
minals is small or if the workload forecasts
are couched in terms of changes in the num-
ber of terminals. This number is easily ob-
tained from software monitors or accounting
data. Along with the number of terminals,
one must specify the average "think time",

the time the system spent waiting for the

user to input the next command. While most
monitors do not record think time explicit-
ly, it can be calculated easily from other
data already collected, such as the number
of completed transactions and the number of
terminals

.

3- Uses for that Data

Figure 1 shows a sample analytic model
created for use in BEST/1, BGS System's commer-
cial analytic modeling package. The CPU and
device utilizations and numbers of completed
transactions were used to derive the "service
times" listed in the matrix at the bottom of the
figure (in milliseconds per transaction). The
levels of concurrency were input as the average
(attained) multiprogramming level and the maxi-
mum multiprogramming level. These levels can
also be input as distributions. Arrival rates,
where needed, were calculated from numbers of
completed transactions (500 completed transac-
tions in a half hour measurement period = 1000
transactions per hour arrival rate). CPU prior-
ities and numbers of terminals have been speci-
fied for some workloads in this model. Channel
utilizations could also be included.

An analytic modeling package like BEST/1
can calculate the response times and throughputs
for this workload and configuration. This model
can then be used to evaluate the effects of many
different kinds of changes: CPU upgrades, disk

device upgrades, memory upgrades, various tuning
alternatives, workload additions or deletions,
file residence changes, shared disk interference
from other systems, workload changes of various
types, etc.. With the addition of channel utili-
zation data, channel, controller, and string re-

configurations can be evaluated. In each case,
one or more of the inputs is changed to reflect
the faster CPU, larger memory, etc.. Then, the
new utilization, response times, and throughputs
are calculated from the modified model. BEST/

1

calculation time is short enough to allow many
different alternatives to be evaluated in a

short terminal session. Simulations can evalu-
ate all the same alternatives, but the CPU time
required per alternative would usually limit the
number of alternatives that could be considered
to a small, pre-selected set. Benchmarks could

83

WORKLOAD 1 DESCRIPTORS

LABEL BATCH PROCESSING
BP WORKLOAD TYPE

1,00 PRIORITY LEVEL
3.80 ATTAINED HPL

WORKLOAD 2- DESCRIPTORS— -

LABEL DATA BASE TRANS

TP WORKLOAD TYPE

3200.00 ARRIVAL RATE (TRANS/HR)
3.00 PRIORITY LEVEL

4.00 MAXIMUM HPL
1 DOMAIN ID

WORKLOAD 3— - DESCRIPTORS

LABEL TIME SHARING USERS
TS WORKLOAD TYPE

30 NUMBER OF TERMINALS

25.00 THINK TIME (SECS)

2.00 PRIORITY LEVEL

6.00 MAXIMUM MPL

WORKLOAD 4— -DESCRIPTORS

LABEL DATA BASE UPDATE
TP WORKLOAD TYPE

800.00 ARRIVAL RATE (TRANS/HR)
3.00 PRIORITY LEVEL
4.00 MAXIMUM MPL
1 DOMAIN ID

SERVER UKL 1 UKL 2 UKL 3 UKL 4

1 CPU 13000.0 150.0 320.0 425.0
2 DISK - PAGE PACK 1 1099.0 75.0 52.0 115.0
3 DISK - PAGE PACK 2 1940.0 125.0 175.0 235.0
4 TAPE 395.0 0.0 0.0 0.0
5 TAPE 496.0 0.0 0.0 0,0
6 DISK - BATCH 343.4 0.0 0.0 0,0
7 DISK - BATCH 92.3 0.0 0.0 0.0
8 DISK - SYSTEM SPOOL 2800.7 7.3 43.3 7.8
9 DISK - SPOOL 8189.0 0.0 0.0 0.0

10 DISK - SPOOL 7723.6 0.0 0.0 0,0
11 DISK - SCRATCH 1514.7 12.2 25.7 146.9
12 DISK - SCRATCH 1418.3 11.5 26.4 131.9
13 DISK - SWAP 1834.2 60.5 60.5 211,6
14 DISK - PAGE PACK 3 1936.0 63.8 63.8 223.3
15 DISK - USER PACK 669,4 9,4 124.8 46.8
16 DISK - USER PACK 588.8 8.2 0.0 46.6

17 DISK - USER PACK 967.0 11.2 0.0 92.4
18 DISK - USER PACK ' ?68.5 11.8 0.0 98.7

(TOTAL SERVICE TIME) 45975.9 546.4 936.4 1781.0

Figure 1. Sample BEST/1 Model

evaluate some of the above alternatives (i.e.,

only the ones involving hardware that already
exists) , but the requirement for large amounts
of dedicated computer time would similarly limit
the number of alternatives.

4. Conclusion

We have reviewed briefly the data a capaci-
ty planner typically requires from a computer
system. This data is reported by software moni-
tors and accounting files for the large main-
frames of the major vendors (IBM, UNIVAC, Honey-
well, Burroughs) and also for some of the

smaller systems. The discussion in this article
should enable capacity planners to make a

first-cut determination if they have the system
data necessary for capacity planning. Hopeful-
ly, as this list and the others are published,
the vendors will take notice and plug the re-

maining holes in the data collected.

"Improving Organizational Productivity"

A Tool for EDP Management:
OMB Circular A— 123

85

SESSION OVERVIEW

A TOOL FOR EDP MANAGEMENT:
OMB CIRCULAR A-123

Theodore F. Gonter

U.S. General Accounting Office
Washington, D.C. 20548

The Budget and Accounting Procedures Act of 1950 placed the responsibility
for establishing and maintaining adequate systems of accounting and internal
control upon the head of each executive agency. The incorporation of adequate
internal controls in management systems goes a long way towards preventing
fraud, waste, and abuse, while improving the efficiency and effectiveness of

government functions and programs. Yet, in the past decade a seemingly unending
disclosure of fraud, waste, and abuse in government has surfaced a crisis of

confidence in government programs and agencies.

The Office of Management and Budget Circular A-123, Internal Control Systems,
is a step to resolving this crisis. The circular prescribes policies and stan-
dards to be followed by executive departments and agencies in establishing and
maintaining internal controls in their program and administrative activities.
The circular defines internal controls as the plan of organization and all of the

methods and measures adopted within an agency to safeguard its resources, assure

the accuracy and reliability of its information, assure adherence to applicable
laws, regulations, and policies, and promote operational economy and efficiency.
The Congress is going even further in an attempt to resolve the crisis by pre-
paring legislation which will require on-going evaluations and reports on the

adequacy of the systems of internal accounting and administrative control of each
executive agency. The legislation, when passed, will be known as the Federal
Managers' Accountability Act of 1982. The law will provide the permanence,
priority, and continuity which the circular cannot provide.

The theme of internal control will be sounded many times over the next few

years. When an agency head reports that there are adequate controls in an organ-

ization, he/she will be attesting to the adequacy of controls over the computer

based systems which support most of the functions or programs for which he/she

is responsible. In turn, an EDP manager must be aware of the internal controls

at his/her disposal which will help assure the accuracy and reliability of the

computer based systems, and the economy and efficiency of the environment in

which those systems are developed and operated.

If an EDP manager is effectively managing, he/she will already have a good

system of internal controls in place. However, if he/she is not managing effec-

tively, the Federal Managers' Accountability Act and A-123 will provide the

impetus for developing that system of internal controls and the basis for

developing an efficient, effective, and sound operation.

87

DATA PROCESSING AND A- 123

Sheila Brand

Department of Defense
Computer Security Center

In preparing for this talk I was struck by
the straightforward but negative rationale given
for promulgating A-123 in the Background section
of the circular. I quote:

Despite these statuatory require-
ments, there continue to be numerous
instances of fraud, waste, and abuse of

Government programs. These problems fre-
quently result from weaknesses in internal
controls or from breakdown in compliance
with internal controls.

This background paragraph reflects concern that
existing laws, in this case the Budget and

Accounting Procedures Act of 1950 and the Anti-
deficiency Act, were not effective in detering
fraud, waste and abuse in government programs.

But government programs is a large target.
More specific to this session - DATA PROCESSING
- there have been numerous cries of concern in

the past over the lack of effective controls in

DP systems. In July 1978,0MB issued Circular
A-71 Transmittal Number 1: "Security of Federal
Automated Information Systems," which directed
the establishment and institutionalization of

security programs for protecting computerized
portions of agency missions.

The Paperwork Reduction Act of 1980 also
talks to controls over computerized systems and

the establishment of standards and guidelines
for implementing computer or system security
protections for information collected or
maintained by agencies.

In April of 1982, GAO issued a report:
"Federal Information Systems Remain Highly
Vulnerable to Fraudulent Wasteful, Abusive, and

Illegal Practices," which blasts everyone out
of the water for lack of guidance and control
over computerized portions of Agency missions.
This report says that 0MB is not doing enough to

lead in the area of computer security and that
the agencies are not implementing security
programs to protect DP resources.

With this growing list of legislation and
regulation, and GAO's concern over the lack of
controls IS IT POSSIBLE that the government is

WORRIED ABOUT THE POSSIBILITY OF BEING RIPPED-OFF
BY COMPUTER MANIPULATIONS?

What I seem to hear is: "DO SOMETHING, DO
SOMETHING," from GAO, 0MB, and Congress. "I
DON'T KNOW WHAT TO DO," from the agencies.

The truth is no one knows the extent of

fraud and abuse in computer systems. Our systems
are not designed or managed to detect computer
crime, nor are they, by and large, designed to
prevent it. In spite of these hurdles there is

a PCIE 1project underway, led by the IG of HHS to

do a government-wide survey to analyze the nature
of computer crime in government programs . The
objective is to address the agency comment: Is

there a computer crime problem and if so what is

its nature? Before leaving HHS I was manager of

the project and can tell you. There is computer
crime. All you have to do is go out and look for
it. One agency alone told us of over 60 cases
that were uncovered by a proactive, highly trained
team of criminal investigator/computer specialists.

But I am digressing from the purpose of this
session.

A discussion of computer crime is relevant
to A-123 in that it will provide the agency man-
ager a more focused rationale and strategy for

implementing provisions of A-123 in terms of

computerized systems. When GAO does its next
review of the effectiveness of security programs
perhaps the picture will have changed and improved.

As I mentioned earlier, the DP systems of

today are not designed to deter or detect fraud.

Or in terms of A-123, one could say that many DP
systems today lack strong internal controls.

President's Council on Integrity and Effi-
ciency composed of all Executive Department In-
spectors General and chaired by the Deputy
Director of 0MB.

89

The remainder of my remarks today will
touch on the process by which DP application
systems of the future should be designed if they
are to be more responsive to assuring the same

level of internal control that one expects in

the manual or non-automated world.

In the time remaining I will touch on: the

concepts of internal control versus computer
security. Do they refer to the same or differ-
ent things? I will then go on to discuss con-

trol objectives and why they are so valuable in

the scheme of building a controlled system. I

will then discuss management of the system
throughout the system life cycle to assure a

controlled environment for development of a con-
trolled product. (I call this cradle-to-grave
attention.) Transaction Flow analysis is a good
method for analyzing the points of vulnerability
in a computer system without getting overwhelmed
by the complexity of the problem. And finally I

will describe an audit that looks at all aspects
of a system at all stages of the system life
cycle. (I call this the Rotund Audit.)

Coming from the DP side of the house, I

"grew up" with the term Computer Security. I

did not understand the term Internal Control.

That was an auditor's term and somehow had a

different connotation. When I started reading
audit reports and working in the IG's office the

two terms began to converge in my minds eye.

Today I think of them as meaning the same thing
when talking about control in a computer system.

I refer to table one to show how closely related
the terms internal control and computer security
are. If one recognized that the resources to be

safeguarded merely refer to information that is

maintained, manipulated or generated through use

of a computer system and that assuring adherence
to laws and regs translated pretty directly into

Table 1. CONTROLS vs

Internal Controls refer to:

• Safeguarding resources

• Assuring accuracy and reliability

of information

• Assuring adherence to laws, regs,

and policies

• Promoting operational economy

being able to run that part of the agency mission
on time, accurately, and without fear of compro-
mise in the form of malicious alteration or
destruction - one is talking about computer
security

.

Computer security has been a concern of a

different "crowd" for many years - I must explain
that I consider the crowd concerned with A-123 to
be mainly financial in perspective with a generous
sprinkling of budget and general management ex-
pertise. The crowd of computer security has
traditionally been composed of computer analysts,
system analysts, and some physical security types
who have wandered into the computer sphere. And
I must tell you ladies and gentlemen that the
computer security crowd has not been very success-
ful in getting top management to listen to their
concerns. A-71, according to the April GAO report,
has been a flop - and from my own personal obser-
vations so have most computer security initiatives.
I think the problem is that we the computer types

,

have used the wrong sales pitch - it was too
technical, it didn't show a bottom line profit,
management has never taken it very seriously.

So when A-123 came along (I call it the
Foreign Corrupt Practices Act in Government
Clothing) I for one was overjoyed. Because maybe
through a slightly different sales pitch the same
goals sought by the computer systems professional
will be achieved by the accountants, managers and
budget people.

In addition to hearing auditors talk about
internal controls another new term to me was
CONTROL OBJECTIVES.

They are neat little items because they can
do so much to foster a strategy for control.

COMPUTER SECURITY

Computer Security refers to
measures taken to:

• Protect against threats

• Control to ensure accuracy and

reliability

• Manage to ensure ADP availability

All assets and resources which are

• Maintained, manipulated or

generated through use of a

computer system.

90

They set the stage so to speak by giving a

lofty set of statements in rather general terms
of management policy with respect to control and
as a system takes shape, control objectives are
broken down into more specific objectives for

each part of the system - and finally in the

operational system one finds the implementation
of the control objectives translated into proce-
dures, hardware, software and physical controls.

Control Objectives can also be used by the

auditors to audit against - Does the organization
comply with managements policy intent?

Figure 1 shows A-123's Control Objectives.

I can translate the first one into a computer
version by saying data and other information
manipulated by the system must be safeguarded
from unauthorized access or manipulation - by
using read and write protect features offered

by the operating system.

The second one can be translated to mean
that only persons whose authorization are known
to the computer system can execute certain
transactions in that system.

The second-to-last objective is very inter-
esting from a DP point of view - How does one

program the computer to assure adherence to laws

and regs? This can develop into a very complex
translation. The SSI system is a case in point
which went through many growing pains (trans-

lated into an extremely high payment error rate)

before this control objective was achieved in

the software system.

• To provide management with assurance that:

- Resources are safeguarded from unauthorized
use or disposition;

- Transactions are executed in accordance
with authorizations;

- Records and reports are reliable;

- Laws, regulations, and policies are adhered

to;

- Resources are effectively and efficiently
managed

.

Figure 1. A-123 Control Objectives

Using control objectives can only be effec-
tive if, as was mentioned earlier, they are
applied throughout the system - at all stages of

the system life cycle. If policy isn't trans-
lated into operating reality what good is it?

In terms of a computer system, the life

cycle begins during the design or initiation
phase, moves into the development phase, and

reaches maturity during the operational phase.

Planning for control can be very expensive
if not incorporated into the initial design of

the system. So it is highly recommended that you
don't think of security as an add-on. Right at

the beginning ask control oriented questions or

bring in the Auditors and Security experts to

help you formulate the right question.

In addition to control objectives, one should
be concerned as to whether or not source data
collected will be accurate and complete enough to

be processed by the computer system. In other
words can you translate the law into a computer
program and use the input data which will be

available to carry out the intended mission.

Will personal accountability through auto-
mated means be possible - and will there be

sufficient separation of duties to FORCE
COLLUSION !

In other words, during the design phase of

the system you must determine whether or not a

computerized implementation of the mission can be
controlled - or will you have to change the way
you do business?

Of course all of the answers to these ques-
tions must be balanced by results of the vulner-
ability assessment done in a primitive way to

sketch out initial "feelings" about threat
variety, risks to be endured, 'etc.

During the development phase you will have a

crisper picture of data types and, therefore, an

assessment of its sensitivity and criticality to

agency mission can be made. This is necessary
for an accurate determination of the proper level

of control in terms of data protection, back-ups
and recovery requirements, edit and validity
checks, etc.

Controls may appear to be a nuisance to the

end user. If they are perceived as such people
will try to get around them - like pasting the

password on the terminal.

Human engineering refers to the set of tech-

niques for making the machine /human user inter-

face friendly. This is especially important in

the area of controls where user acceptance is

critical to success.

Design reviews and user involvement are

often neglected with disastrous consequences.

In order to assure accurate translation of func-

tional requirement - and this includes control

objectives - the system should undergo a number
of different levels of review before putting a

single line of code to paper. The first line of

review should include a dialogue between the

initial system designers who may start by trans-

lating a law into an agency mission, and the

functional specification developers - than the

next level of review should be between the func-
tional specification developers and the computer
system design spec developers - than between them
and the programmers. At each stage of granularity

91

the system specs should be examined to assure
accurate and complete translation of requirements.
In this manner the area of control objectives and
their translation to specific details will not
be lost in the shuffle or mis-represented. Com-
panies that use this approach, such as IBM, have
found an enormous savings over the life cycle
development costs.

Change control refers to assuring that
changes to operational system do not take place
"on-the-fly" as it were. This can have disas-
trous effects on the operation. During the
early days of the SSI program programmers were
allowed to come in at any and every emergency or

even during non-emergencies and put "fixes" into
the operational system, sometimes by patching in
changes at the computer console. There was no
audit trail and no documentation and at times it

was quite difficult to tell what version of the

various modules were running. The end result
was that after a while there was no "institu-
tional" memory and when problems occurred no one
knew how to fix them. Not to mention the possi-
bilities for inserting fraudulent code into a

system, or inserting code to circumvent control
software. The possibilities are endless! Change
control is a must.

Has consideration been given to establishing
an independent control group to review
applications and source documents for
authorization of transactions?

At the close of business are source docu-
ments stored in a locked cabinet when not
in use to prevent unauthorized modification
or use of the data prior to input to the
system?

Are only specified persons authorized and
capable of initiating a transaction?

For large volume input-jobs are batching
techniques and counts used to control the
dispositions and flow of applications to

insure that none get lost or processed more
than once and that none can be added through
unauthorized means?

Questions that should be asked about trans-
action entry include the following:

How effective are procedures and software
for assuring accurate source data input,
comprehensive source data validation and
edits?

Test and validation do not refer to the same
process. Testing refers to the debugging and

system tests conducted by the programming staff.

It is usually piece meal and does not put the

system through its paces in a live setting.
Validation refers to testing by the end user to

assure the system performs according to specifi-
cations. This would include testing the control
features to see how they operate in all kinds of

settings

.

The operational phase begins once the system
has been accepted by its intended users and they
become dependent on it to fulfill their mission
and responsibilities.

For analytical purposes control objectives
of this phase can be broken down by transaction
flow, i.e. in terms of: transaction initiation,
transaction entry, transaction transmission,
computer processing, and file integrity.

Questions that should be asked about trans-
action initiation include the following:

Are there written procedures and manuals for

instructing user on data collection?

Do manuals provide complete instructions on
how to fill out forms, prepare input, regu-
late document flow, identify and correct
errors?

Do application forms contain sequence num-
bers for tight control over use and
disposition?

Are manual checks on source documents per-
formed for accuracy, signature authorization,
completeness?

How effective are software and procedures
for assuring that error-handling allows for
error detection, correction, and timely
resubmittal?

Is there a reconciliation performed daily
to assure that all operations have been
processed and nothing lost or added?

The area of access control would include
some of these questions:

Are the data entry terminals which are used
for updating the data base physically secure?

Are terminals in open work areas restricted
via software to query traffic only?

Does the organization employ lists of

authorized users?

Are the lists updated with change of

personnel?

Are passwords or key/card systems employed?

Are they changed frequently?

Is each authorized terminal user restricted

to a predetermined set of transactions?

Are these restrictions implemented in soft-
ware through manual procedures?

Is an automatic software terminal lock used

to prevent unauthorized access to the device?

(a) after a predetermined number of unsuc-
cessful attempts at input or (b) at close of

business?

92

Does top management periodically review the
different levels of transaction authoriza-
tion and change them when needs arise?

In designing controls over transaction
transmission these questions should be asked:

Do terminals have built-in (hardwired)
identification devices to be checked by the

host to assure that only authorized termi-
nals can transmit applications for
entitlement?

Does the system automatically log all
messages?

Does the log contain a time and date stamp
for each message?

Is a record count kept automatically of all
messages?

Can the system log be used for restarting
the system in emergency?

Is the network dedicated to this application?

Have contingency plans been developed so

that if an input device is down messages can
be rerouted to an alternate terminal?

Have software routines been developed to

assure that messages do not get lost in

transmission?

Have restart procedures been developed to

assure that data can be identified and re-
transmitted if effected by a system problem,
crash or line problems?

Are parity checks performed to assure com-

plete message transmission?

Questions concerning computer processing
should include

:

Is data validation and editing performed as

early as possible in the data flow to in-

sure that the application rejects any in-

correct transaction before its entry into
the system?

Is data validation and editing performed for

all input data fields even though an error
may be detected in an earlier field of the

same transaction?

Are the following checked for validity on

all input transactions : individual and

supervisor authorization or approval codes,

characters, fields, combination or approval
codes, characters, fields, combination of

fields, transactions, calculations, missing
data, extraneous data, amounts, units, com-
position, logic decisions, limit or reason-

ableness checks, signs, record matches,
record mismatches, sequence, balancing of

quantitative data, crossfooting of

quantitative data?

Are special routines used which automati-
cally validate and edit input transaction
dates against a table of cutoff dates?

Are all persons prevented from overriding or
bypassing data validation and editing
problems?

If not, are the following true:

—Override capability is restricted to
supervisors in only a limited number of

acceptable circumstances?

—Every system override is automatically
logged by the application so that these
actions can be analyzed for appropriateness
and correctness?

Are batch totals and record counts used by
the application to validate the completeness
of data input?

Do documented procedures exist that explain
the process of identifying, correcting, and
reprocessing data rejected by the
application?

Are error messages displayed with clearly
understood corrective actions for each type
of error?

Are error messages produced for each trans-
action which contains data that does not
meet edit requirements?

Are error messages produced for each data
field which does not meet edit requirements?

Are all data that do not meet edit require-
ments rejected from further processing by

the application?

Does the user department control data re-
jected by the application by using: turn-
around transmittal documents, batching tech-
niques, record counts, predetermined control
totals or logging techniques?

Is all data rejected by the application
automatically written on an automated sus-
pense file and does it include: codes
indicating error type, date and time the

transaction was entered, and identity of the

user who originated the transaction?

Are record counts automatically created by
suspense file processing to control these
rejected transactions?

Are predetermined control totals automati-
cally created by suspense file processing
to control these rejected transactions?

Is data from the automated suspense file
used by management to analyze

:

—Levels of transaction errors?

93

—Status of uncorrected transactions?

Are these analyses used by management to

make sure that corrective action is taken
when uncorrec transactions remain on the
suspense file too long?

Are progressively higher levels of manage-
ment reported to as these conditions worsen?

Are debit- and credit-type entries (as

opposed to delete- or erase-type commands)
used to correct rejected transactions?

Is the application designed so that it can-

not accept a delete- or an erase-type
command?

Do valid correction transactions purge the

automated suspense file of corresponding
rejected transactions?

Are invalid correction transactions added to

the automated suspense file, along with the

corresponding rejected transactions?

Are procedures for processing corrected
transactions the same as those for process-
ing original transactions with the addition
of supervisory review and approval before
reentry?

Does ultimate responsibility for the com-
pleteness and accuracy of all application
processing remain with the user?

Questions concerning file integrity would
include the following:

Are application programs prevented from
accepting data from- the computer console?

Are computer-generated control totals (run-

to-run totals) automatically reconciled
between jobs to assure completeness of

processing?

Where computer files are used by the appli-
cation as input, are there controls to

verify that the proper version of the file

is used?

Do all programs require and check internal
file header labels before processing?

Can operators circumvent file checking
rout ine?

Are internal trailer labels containing con-
trol totals, such as record counts, gener-
ated and used by the application to check
that all records have been processed and no

"extra records" have been processed?

Are all files maintained in a secure area?

Is a backup of the latest version also main-
tained and is it also in a secure area?

Is the backup maintained in a separate
facility so that in an emergency, if the
primary was destroyed the backup would not
also be destroyed?

Are all development runs executed against a

test data base or are the live files used?

In the area of personal accountability the
following should be addressed:

Are audit trails maintained by the software
on all transactions against each record in a

file?

Does this trail include dates , changes

,

authorizing individual, and location of

authorizer?

How long is this trail maintained?

Are audit trails kept of all override actions
which allow processing though error or other
exception indicator would ordinarily not
allow processing of that record to continue?

Do audit trails of overrides identify the

input clerk and authorizer of the override?

Do programs exist that can analyze audit
trail data so that the reviewer can obtain
useful and useable information without man-
ually going through mountains of paper
printouts?

94

cpEu^sa
"Improving Organizational Productivity"

I
WWMCCS Network Performance

i Analysis

95

PERFORM - WWMCCS INTERCOMPUTER NETWORK (WIN)
PERFORMANCE OPTIMIZATION RESEARCH MODEL

K. Chung*
0. A. Mowafi
K. A. Sohraby

Computer Sciences Corporation
Systems Division

6565 Arlington Boulevard
Falls Church, VA 22046

A hybrid modeling tool comprising both analytical and simulation models
is described in this paper* The model, PERFORM, has been designed for WWMCCS
Intercomputer Network (WIN) to be used in support of performance evaluation,
capacity planning, and both software and hardware architectural studies for
the host computers and the WIN subnetwork. Included in the discussion are
details of the host and subnetwork models composing the PERFORM tool, software
implementation, and future directions.

Key words: Analytical; capacity planning; central server; disk; main memory
contention; modeling; packet switch; performance evaluation; simulation;
trunk; WIN

1. Introduction

The WIN is a packet switched network
designed to support the major WWMCCS communi-
cations functions, and to provide computer
support to the National Command Agencies, to
unified and specified commands, and to other
DoD components.

The Director of the Defense Communica-
tions Agency (DCA) is tasked to secure network
configuration management so as to provide plann-
ing, engineering and other technical support for
WIN data transmission requirements, and to rec-
ommend policies, standards, and procedures for
the WIN operation. To do so effectively, DCA
must have a means to assess the network's per-
formance, means based on both current and pro-
jected workloads and configurations. PERFORM,
the WIN performance model described in this
paper, is intended to provide DCA with this
means

.

PERFORM is a hybrid tool composed of
analytical and simulation models - and is to be
used essentially by WIN network managers and
staff to analyze the efficiency and effective-
ness of both the host and the network configu-

*Currently with Bell Laboratories at
Murray Hill, NJ, previously with Computer
Sciences Corporation.

rations under a variety of workloads and archi-
tectural conditions. The submodels support
capacity planning, performance evaluation, hard-
ware/software selection studies and improvement
studies for the WIN subnetwork and host systems.

This paper is organized as follows:
Section 2 presents a brief description of the
model's features and the purpose of the model's
development. Its organization and the host/
subnetwork models supporting PERFORM are given
in Section 3. In Section 4, host and subnetwork

analytical and simulation models are detailed.
Software implementation of the model is dis-
cussed briefly in Section 5. Section 6 out-
lines current efforts to improve the model, and
concludes the paper.

2. Model Purpose and Main Features

PERFORM, [1, 2] is a software package
built to model the operation of the WIN packet
switched network and its attached host compu-
ters. PERFORM was necessitated by growth both
in the WIN applications volume and in system
utilization by its subscribers. As a sophisti-
cated modeling tool, PERFORM can predict WIN
performance and provide system planners, mana-
gers, and engineers with the required informa-
tion to identify system bottlenecks, thus en-
abling early precautions of the required modifi-
cations to the system configuration or capacity,

97

PERFORM is intended for use by moderately
sophisticated users having some knowledge of the
host computer's hardware and software struc-
tures, of WIN packet switches, of network proto-
cols implemented on it, and some knowledge of
the general communications network operation.

This model is designed to be executable
on the Honeywell 6000 series at the DCA-Reston,
Virginia; at the Pentagon through an interac-
tive terminal; and other sites equipped with
similar computer facilities. Written entirely
in FORTRAN, the program is portable, with mini-
mal modifications, to other computers .

PERFORM can be executed in real-time or

batch mode at the user's option. Various modu-
les constituting PERFORM' s operational capa-
bility are analytical. The host memory conten-
tions model is based on a pseudo-real-time simu-
lator specifically designed to represent the
WWMCCS host computer's operation.

3. Model Organization

The overall design of PERFORM is based
on a hierarchical, modular structure. Its

modules are mostly analytical with some minor
exceptions incorporating simulations.

The model consists of five major sub-
systems, each fulfilling special functions and
consisting of modules which are programmed with
one or more program subroutines. The five major
subsystems are:

1. User Interface
2. Workload Model
3. Host Modeling
4. Subnet Modeling
5. Report Generator.

The User Interface Program serves as the
primary interface between the user and PERFORM.
This program queries the user through a prompt/
response session during which the user specifies
the hardware configurations, workload character-
izations, and model run options. The user is
asked high-level questions. Most of the techni-
cal details and functional characteristics of
host/subnetwork operation are incorporated in
the model internally.

The Workload Model portion of PERFORM
generates specific workload data for input to
the various performance models to be used. The
host system and subnetwork workload, as defined
by the user, is translated into the basic units
of system resources required for its execution.
This translation accounts for system resources
that are required directly for user program exe-
cution, and indirectly for overhead resources.
(Overhead resources are those consumed by the
operating system and other system software in
execution of the user program.) The basic units
of system resources and a traffic matrix indi-
cating the subnetwork traffic volume to be
modeled are output for use of subsequent compo-
nent models .

The Host Modeling Subsystem models the
performance of interconnected WWMCCS host compu-
ters and of local communications, including
front-end processors. This subsystem is com-
posed of several models which analyze the host
components such as CPUs, IOMs

, disks, main memo-
ries, front-end processors, and terminals. An
executive program sequentially calls a setup
routine and the various host models for each
host configuration which has been specified.
The Host Modeling Subsystem includes the follow-
ing host models:

1. CPU Model
2. IOM Model
3. Disk Model
4. Central Server Model
5. Regional Communications Model
6. Front-End Processor Model
7. Main Memory Contention Model.

Details of the host models are discussed
in Paragraph 4.1.

The Subnetwork Modeling Subsystem

provides estimates of subnetwork activity
performance. This subsystem consists of the

following models which deal with various
aspects of the backbone:

1. Throughput Model

2. Packet Switch Model
3. Network Performance Model
4. Buffer Model
5. Trunk Performance Model

6. Misdelivery Model.

Details and modeling methodology are
provided in Paragraph 4.2.

The Report Generator is responsible for

producing for the user formatted reports of per-
formance metrics, and for workloads and configu-
rations chosen for model runs. The programs in
the Report Generator access the files created by

other subsystems and output the several types of

reports as selected by the user. The report
categories include model run definition, config-
uration definition, workload characterization,
host performance, and subnetwork performance.

4. Modeling Methodology

4. 1 Host Models

The host models interact with one

another as shown in Figure 4-1. The models are

executed sequentially on the basis of both user

inputs and output from the Workload Model. The

arrows indicate that in most cases the output

from one model is used as input to the subse-

quent models. Descriptions of each of the host

models follow.

4.1.1 CPU Model

This model produces CPU service times of

the various types of workloads for later use by

the Central Server Model. Service times are

98

1

*
'

REGIONAL
1

_r=»i

FRONT END

CPU MODEL IOM MODEL DISK MODEL COMMUNICA- PROCESSOR
TIONS MODEL MODEL

'IAIN MEMORY
"ONTENTION

MODEL

Figure 4-1. Host Model Interactions

derived by dividing the empirical, raw execu-

tion rates for single and multiple CPU proces-

sors into the machine-level language instruc-
tions counts.

The number of instructions executed by

the host computer for subnetwork messages is

calculated from the subnetwork-related message

traffic and the average number of instructions

required to process one message. The effec-

tive CPU execution rate available for non-sub-
network activities is then estimated by sub-

tracting the expected CPU utilization due to

subnetwork message processing.

4.1.2 IOM Model

The Input/Output Multiplexor (IOM)

processing time for a transfer of one data
block (320 words) is computed by dividing of

the number of bytes in one block by the IOM

processing rate given in the units of bytes per

second. For contention effects, an M/M/l queue
is assumed at the IOM. The expected IOM utili-

zation is obtained from the estimate of the data

traffic through the IOM and the processing ser-

vice rate. The response time through the IOM

is calculated from the standard M/M/l formula.

4.1.3 Disk Model

Based on user input configurations,

workloads and branching probabilities (which

may be input by the user), this model calcu-
lates the disk service time for each disk and

the possible contention effects at the channel
and disk controllers (MPCs).

The contention for disk services is

addressed in the following Central Server Model
from the results of the Disk Model and other
models

.

The disk service time is computed by

summing the disk seek time, rotational latency
and data transfer time. Furthermore, the time
an I/O request waits for an open channel or a

controller due to the RPS feature - is repre-
sented by P/(l-P), where P is the probability
an I/O request shall have to wait an extra disk
rotation because the channel or MPC that it

must use is busy. Because P is the probability
of both the union of the channel and the MPC

being busy, the fraction of time each is busy

must be calculated on the basis of the expected
data traffic and the connectivity of the disk
strings to channels.

4.1.4 Central Server Model

This model analyzes the contention among

activities resident in the main memory to ac-

quire CPU and disk resources. In order to

represent different classes of jobs, the popu-
lation maximum for each class, a multichain
closed queueing network of single servers is

formed as indicated in Figure 4-2.

Each server represents the CPU or a disk

unit; the service time represents the mean ser-
vice time at the CPU or disk for each type of

job for each CPU burst service. The branching
probabilities from the CPU to each device come

from the Disk Model, depending on the disk file

p lacement.

The queue discipline at the CPU is

assumed to be processor-shared (PS), while the

disk queues are first-in-first-out (FIFO). For

CPU dispatches, no priorities are assumed for

different classes. Furthermore, for a fast

execution of the model, the different classes

of jobs are bunched together to form only those

batch and interactive types which are suitably

weighted upon initial estimates of throughputs

for the corresponding classes of jobs.

CPUs

DISKS

k . _ j OtT
Figure 4-2. Central Server Model

99

The model calculates both the queue
lengths at each device and the throughput for

jobs in each job class - for each possible
combination of job class population (0 through
class maximum) and for all mixes.

The queueing problem is solved by a

variation of the Reiser and Lavenberg Mean
Value Algorithm [3].

For each combination of chain popula-
tions, the Lavenber g-Reise r Algorithm calcula-
tes throughputs by class, as well as queue
lengths at each device and the CPU. The analy-
sis exploits a relation between mean waiting
time and the mean queue size of a system with
one less customer.

4.1.5 Regional Communications Model

This model estimates the performance
metrics related to the communications between
remote terminals and host computers. The com-
munications involving subnetwork nodes (IMPs)

are analyzed within the Subnetwork Modeling
Subsystem described in Paragraph 4.2.

The regional communications analysis is

concerned mainly with the processing of jobs
input from a remote terminal by the modems,, the

front-end processor (Datanet 355), and the CPU.

Response time is defined here as the time be-
tween sending the job and the receipt of the
first response back at the terminal. This def-
inition excludes both user think and keying
time at a terminal.

The model is based on a multichain
:losed queueing network. Each unique routing
path of a job entered into a terminal corres-
ponds to a closed path which includes terminals,
modems, the FNP, and the CPU. The queueing
network for this model consists of both single
server queues with first-come- first-served
(FCFS) discipline at the FNPs and the CPU, and
Infinite Server (IS) queues, for the terminals
and modems. Service times at single server
queues are assumed to be distributed exponen-
tially. Service times at the infinite servers
have a general distribution.

Because the computational problems
associated with a general queueing network
model of many chains are severe, an approximate
technique for the solution of a multichain que-
ueing network had to be developed. The solution
algorithm is a heuristic, derived in the style
of mean value analysis of Reiser and Lavenberg.
The heuristic used is derived after making two
approximations [4, 5] . The first assumption is
that the mean queue length of chain k jobs at
queue j with 1 jobs in chain i is nearly
equal to the mean queue length with jobs
in chain i. The second approximation is that
an arrival from chain i at queue j finds
N ij(N j

-1)/N i other jobs from chain i,
where N^j denotes the average number of chain
i jobs at queue j. The iterative scheme

converges to a satisfactory solution within
several iterations.

In the current implementation, the model
handles up to 100 terminals per host.

4.1.6 Front-End Processor Model

The purpose of this model is to provide
performance estimates for the Front-End
Processor (DN355) activities, including traffic
through terminals connected to the FNP and sub-
network-related traffic. The model accounts
for data traffic through the FNP in both direc-
tions; from the host to the packet switch and
terminals; and from the packet switch and ter-
minals to the host.

The average execution time of a stored
FNP program is calculated from both the FNP
cycle time and the average number of FNP cycles
per instruction. The average processing time
for servicing one character of the traffic to
or from a terminal is estimated from the average
number of instructions required to service one
character for each terminal type. The trans-
mission time per character is computed from the
terminal line speed and the number of bits per
character.

The average service time delay for a

transaction from a terminal and from the FNP
utilization requirements is obtained by means
of Little's formula.

If a packet switch is connected to the
FNP, the overhead involved with the switch
protocol (GPLA or HDLC) is estimated as

follows: An interpolation from an empirical
linear function is made for each protocol which
relates the service time for one subnetwork-
related message with the average number of
packets per message.

The total utilization for the FNP is

obtained from the sum of FNP utilizations for

terminal traffic and subnetwork traffic.
Assuming an M/M/l queue, the model calculates
relevant response times, access times, and
queue length.

4.1.7 Main Memory Contention Model

This model is concerned with the oper-

ating system (GCOS) storage management for

batch and interactive jobs. It simulates the

effects of contention between jobs for acquir-
ing the main memory before execution by the

processors

.

Main memory must be allocated for an

activity to be executed by the CPU. When there
is more than one activity running concurrently,
there may be contention for main memory depend-
ing on the available memory and the space
required by the activities.

100

The queue discipline for the main memory

involves job priorities, urgencies, and time

quantum. Time quantum or time "slice" is the

maximum CPU time an activity may use before
task switching by the CPU.

For modeling purposes, an execution
class is defined as a set of jobs with iden-
tical job type (batch or interactive), priori-
ty, and time quantum. Furthermore, jobs be-
longing to an execution class are clustered to
have statistically common characteristics, such
as work demand per transaction, working set

sizes, CPU to I/O Workload ratios, and long wait
times for interactive jobs (which includes oper-
ator think and keying time). The average values

for an execution class are obtained by taking
the means, weighted on the basis of the relative
throughputs (estimated initially) over the jobs

clustered in the same execution class.

For an activity to be processed at the

host, it must be admitted into the multi-
programming set to acquire the necessary memory.
If there is a waiting activity with a priority
higher or equal to that of the activity reaching
time quantum, then an activity which reaches
time quantum while in the MPS will be taken out
of the MPS and put to the end of the waiting
queue for the priority assigned. If no quali-
fied activity is waiting, the activity will
refresh its time quantum.

The queue discipline at the host is

head-of-line (HOL) with priority. When an
activity exits from the MPS due to completion
of the job or time quantum end, the activity
with the highest priority which has been wait-
ing for the longest time is admitted into the
MPS, provided MPL rules are satisfied. This
portion simulates the effects of urgencies,
which change dynamically over time in GCOS

.

Thus the queueing network model, which
is based on Markovian processes for the main
memory contention, has as many closed chains as

the number of execution classes (so indicated
in Figure 4-3). In the chain representing the
interactive jobs, the delay times for IS queues
are operator think and keying time plus the

duration of communication delays for terminals.
In the batch chain, the delay time is zero.

The state-dependent processing rates of

the activities in the MPS are derived by obtain-
ing the numbers of populations of interactive
and batch jobs and determining the throughput
for the corresponding chain populations of the
Central Server Model.

Swapping rates depend on many factors:

working set sizes of the jobs, total memory
size, and the storage management algorithm for

identifying the segments to swap out. The

swapping effect is accounted for by incorpora-
ting the empirical curves (which correlate the

swapping rates to the sum of active program
working set sizes over the memory capacity).
When inadequate memory is available thrashing

MAIN
MEMORY

BATCH JOBS

INTERACTIVE JOBS

(LONG_UELAYS)

Figure 4-3. Main Memory Contention Model
Queueing Network Structure

occurs, a phenomenon of excessive disk opera-
tions which are unproductive for the needs of

system users. If there are swappings due to the
overcommittment of memory, then processing rates
are degraded by a state-dependent factor which
takes into account additional disk operations.
The degrading factor, due to thrashing, is esti-
mated parametrically as shown in the following
steps

.

For each host state, an overcommittment
ratio is computed as the allocated size of each
storage pool divided by the total working set
size of combined programs running in the corres-
ponding pool. For a given overcommittment
ratio, an experiment must be conducted to find
the actual number of disk operations required.
The processing degrading factor is thus derived
by constructing the ratio of the required disk
operations without thrashing over the actual
disk operations.

The model is based on discrete, event-
driven simulations. The style of the FORTRAN
simulation is similar to an example for M/M/l
queue simulation [6],

However, due to the nature of the

storage management scheme, the multichain
closed queueing network with priorities and to
state-dependent service rates, the Main Memory
Contention Model is significantly more complex
than M/M/l.

After reading proper input parameters,
the program initializes simulation variables.

All activities are assumed to start from
the long wait state (outside of main memory),
except batch jobs. The results are insensitive
to the initial state chosen due to both the sto-
chastic nature and 1 ength of simulations.

101

4.2 Subnetwork Models

Functions of the following subnetwork
models are detailed in this paragraph:

1. Throughput
2. Packet Switch
3. Misdelivery
4. Trunk Performance
5. Network Performance
6. Buffer.

The functional interface of these models

in the PERFORM package are shown in Figure 4-4.

As shown in the figure, subnet IMP connectivity,
user traffic between different source-destina-
tion IMPs , network routing information and pro-
tocol structure, IMP processor configuration and

its capacity, and trunk capacities, are inputs

to the subnet models. Some of these inputs are

obtained from the user, others from the host
models .

A subnetwork Executive module functions
as the control routine for all subnetwork
models. It activates each model in the proper
sequence through a series of subroutine calls.

Each model returns a status word to the Execu-
tive, indicating either successful completion
or that an I/O processing error has occurred.
In the event of an error, the Executive will
abort further model execution and alert the
user by printing an error message to the
terminal.

Events can occur for a number of rea-
sons. An activity completion, end of time quan-
tum, swapping, and the arrival of a new activity
are the events to be simulated. Sometimes an
event causes other events to take place simula-
taneously. For example, the arrival of a high
priority interactive job at the main core im-
plies departure of the same job from the long
wait queue, and may also imply departure of a
low priority job from the main memory.

The expected time of the next event of
each type is computed from the random number
generation and the subsequent choice of a value
for a random variable satisfying exponential
distribution. After comparison of the predicted
time of events through a simple bubble-sorting
algorithm, the earliest time is determined.

Each time an event occurs, the system
queueing rate is revised and up-to-date sta-
tistics are collected. One important part of
simulation is updating the CPU processing and
swapping rates each time the queueing state
changes

.

After a period of simulation, sufficient
statistics are collected and the program term-
inates; this occurs when the total number of
state changes reaches a prescribed value, set
currently at 20,000.

Finally, predicted performance metrics
are computed from the accumulated simulation
s tatistics

.

CONFIGURATION CAPACITY

A L

PROTOCOL QUEUE
DISCIPLINE

TYPE (r

FREQUENCY

NODE
DELAY

NETWORK
ANALYSIS

PROTOCOL

CHARACTERISTICS

PROTOCOLS

» PROB UNDETECTED
» PROB LOSS
— PROB

1
f

PROTOCOLS QUEUE
DISCIPLINE

- UNK UTILIZATION

- LINK DELAY

MEMORY
ANALYSIS

BUFFER
* UTILIZATION

PROB OF

OVERFLOW

Figure 4-4. Functional Interface of Subnetwork models

Each subnetwork model is invoked by a

standard FORTRAN subroutine call. Then, a

system routine call is made which enables the
subnetwork Executive to load the appropriate
link overlay and to return to the next sequen-
tial statement. The order in which each model
is called is very significant since the output
of one model may be used as input to one or more
of the other models. If an erroneous status is

returned from any of the models, an appropriate
error message is written to the terminal, both
input and output files are closed, and all sub-
network activities are aborted.

4.2.1 Throughput Model

The Throughput model is part of the
PERFORM Subnetwork Modeling Subsystem, respon-
sible for calculating data and control packet
throughputs. This model performs throughput
calculations for both the packet switch nodes
(IMPs) and the trunk that interconnect the IMPs
- for a given network configuration and a set
of WIN network traffic information. Traffic
information is obtained from these transac-
tions. Network protocol structure, routing,
and various control packets affect network
throughput values also. These structures are
input by the model user.

The results of the throughput model are
written to the Output File and used by the
Packet Switch (IMP) Model, the Trunk Perfor-
mance Model, the Buffer Model, the Network
Performance Model and the report generator.

4.2.2 Packet Switch Model

The Packet Switch Model is a functional
module that computes both packet processing
delays and processor and channel utilizations
at a given packet switch (IMP). Packet through-
put and system description data of the IMP are
inputs from the Subnetwork Output File and Input
File, respectively. The computation of packet
processing delays is performed in two phases.
Phase I calculation uses a queueing model which
portrays the task priority structure and the

preemptive-resume dispatching system. Results

102

from this calculation include all the process-
ing delays of each packet in different tasks,
such as input, output and routing delays in the

node processors. The effect of additional que-

ueing on priority packets in the routing task is

then analyzed in phase II calculation, using a

queueing model which portrays the packet pri-
ority structure and the non-preemptive dispatch-
ing discipline. After the two-phase calcula-
tion, the processing delay for a particular
packet type is computed from the task processing
delays and then adjusted by the additional que-
ueing effect corresponding to the packet
priority

.

This model also computes the processor
and channel utilizations of the packet switch.
The processor utilization is derived from the
processor capacity of a Honeywell H716 packet
switch (in instruction execution rate), and the
total packet processing load (the sum of in-
structions executed for nodal traffic). The
channel utilizations are computed for a Direct
Memory Acces (DMA) channel and a Direct Multi-
plexor Channel Access (DMC) channel of the
packet switch node. Host traffic and network
traffic enter or exit by way of the DMC channel
and the DMA channel, respectively; and the chan-
nel utilizations are derived from the channel
capacity that is the total data transfer rate,
and the total data transferred through the
particular channel. The mean and variance of
packet processing delays and associated process
or and channel utilizations are written to the
Subnetwork Output File. Figure 4-5 is the
block diagram of the packet switch model.

4.2.3 Misdelivery Model

The Misdelivery Model determines four
major statistical measurements in the subnet-
work model. They are:

1. Probability of Misdelivery - the probability
that a destination IMP address in a packet orig-
inated from a source IMP and destined for a des-
tination IMP is altered during transmission, and
and that the errors are not detected by the
error detection mechanism at the receiver side.
The occurrence of the errors in the address
field can cause the address digits to map to
another IMP's address and the packet to be
delivered to an incorrect destination.

2. Probability of Loss - the probability of an
IMP not finding a match for the received address
binary sequence on its address table .

3. Packet Error Probability - the probability
of errors in a packet being detected by the
cyclic redundancy check mechanism on a random
error channel.

4. Probability of Retransmission - the percen-
tage of traffic that is retransmission.

The most tractable mathematical model
for characterizing the error channels is a
Renewal Model (other models are Markov Process-

< flUILO UP INTERNAL TAJLES
GENERATE WORKLOAD

i ACCUMULATE PHI DELAY

PHASE II

OUEUEINQ
CALCULATION

• COMPUTE TASK
PRIORITY OuEuEl
(PREEMPTIVE/
RESUME]

» COMPUTE
PACKET
PRIORITY Out Ufa
|NON PREEMTIVEI

• OUTPUT NODE
UTILIZATION
AND PACKET
tHLAY

> PROCESSOR
UTILIZATION

> CONTROL PKT

Figure 4-5. Block Diagram of Packet Switch Model

es). The simplest renewal channel is the binary
symmetric channel. In a binary symmetric chan-
nel, errors on received codewords (packets)
occur independently of each other. This type
of error is applicable to random error channels.

When a zero is sent in a binary symmetric
channel with bit error probability P, it is

usually received as a zero. But occasionally,
in a point-to-point communication, a zero will
be received as a one or a one as a zero. When
a packet is transmitted from a source IMP to a

destination IMP, the binary digits may bounce
back and forth from zero to one or one to zero
if error occurs on the digit over different
hops. The misdelivery model determines the

probability that a received digit is in error
after traversing N-hops through an N-cascaded
binary channel.

4.2.4 Trunk Performance Model

The Subnetwork Trunk Model computes
queueing delays (transmission delay + waiting
delay) and utilizations of transmission trunks
modeled in the Subnetwork by PERFORM. It ob-
tains network information such as connectivity,
line speeds or packet size from the Subnetwork
Input File, and traffic information such as

throughput, retransmission rate, which are
computed by other models, from the Subnetwork
Output File. It uses an M/G/l priority (non-
preemptive, f irs t-come-f irs t-serve) queueing
model [7] to model the BSC link protocol.

4.2.5 Network Performance Model

The Network Model of the PERFORM Sub-
network Modeling Subsystem computes total back-
bone delays and their distribution. Using the

average and variance of packet delays generated
by the Packet Switch and Trunk Models, this

model calculates the following performance
parameters

:

1. Average and variance of end-to-end packet

delays for each type and priority of data and
control packets

103

2. Average and variance of end-to-end packet

delay for each type over all priority groups of

data and control packets

3. Average and variance of end-to-end packet

delay integrated for each priority group over

all types of data and control packets

4. Average and variance of total network delay
for each packet type

5. Average and variance of total network delay.

Outputs from this model are written to

the PERFORM Subnetwork Output File for genera-
ting appropriate reports. They are also used
by the PERCENTILE subroutine for calculating
backbone delay distribution.

The Gamma function is suitable for the

backbone delay distribution of most operational
networks. Using the Gamma assumption, the
PERCENTILE subroutine calculates the 20th, 50th,

and 90th percentiles of the distribution for all

source-destination IMP pairs, as well as the
total backbone delay for the data packets [8].

Lists of the output from the PERCENTILE subrou-
tine are given below:

1. Percentiles for end-to-end network delay

for each type and priority

2. Percentiles for end-to-end network delay

for each type over all priorities

3. Percentiles for end-to-end network delay

for each priority over all types

4. Percentiles for end-to-end network delay

for each packet type (regardless of the

source-destination IMP)

5. Percentiles for the total network delay.

Output reports, in addition to the

average and variance of each delay component,
also provide the three percentiles. The per-

centile subroutine reads the Subnetwork Output
File for the average and variance delays.

4.2.6 Buffer Model

The Subnetwork Buffer Model analyzes the
stor e-and-forward buffer pool for each packet
switch modeled in PERFORM. It obtains certain
parameters from the Subnetwork Input File and
traffic data from the Subnetwork Output File.
The model assumes the buffer pool in each packet
switch to be totally and dynamically shared by
all the trunk input and output functions. (How-
ever, reassembly buffers are not analyzed by
this model.) It computes the probability of
buffer overflow for a given buffer pool size
and the'required buffer pool size for a given
required probability of overflow. The mathe-
matical model used is the M/M/C queueing model.

4.3 Integrated Models (Host and Subnetwork)

The User Interface Program queries the

user for the type of model run. The user may
choose to model the host only, the subnetwork
only, or both the host and subnetwork.

Most aspects of the integrated models
are imbedded in host and subnetwork modeling
subsystems along with the code which is

applicable to separate host or subnetwork
models

.

In the User Interface Program, the user
is asked to identify the FNPs through which
subnetwork-related messages are transmitted.
The user must also provide the connectivity of
the FNPs to network switches and the access
line protocol (HDLC or GPLA). Message traffic
rates between hosts are prompted for in the

integrated run, while data packet traffic be-
tween nodes are input for modeling subnetwork
only. All other prompts are the same as those

for separate host or subnetwork runs.

A part of the Workload Model converts

message traffic into data packet traffic on the

basis of average message size. Also, the

required data packet traffic between different
nodes over the subnet is estimated from the

host node connectivity and message traffic.
Beyond this, the Subnetwork Modeling Subsystem
execution is insensitive to the type of model
runs

.

For integrated model run reports, end-
to-end delays are output after summing the
access times of messages to the nodes and the
data packet delivery times between appropriate
nodes. In PERFORM modeling, there are several
ways in which subnetwork-related activities im-
pact the host activity performance and vice
versa

.

In the CPU model, the CPU service times
for processing subnetwork data traffic will
decrease the effective CPU processing rate for
the host activities.

The regional data traffic to and from
terminals attached to the FNP and subnetwork
data traffic compete for FNP services. This
type of contention is analyzed in the FNP Model.

Also, as coded in the Main Memory Conten-
tion Model, the NCP (or equivalent of it) occu-
pies a portion of the main memory of the host
so that the net storage space available to the
host activities is reduced. This may increase
swapping rate and result in performance deteri-
oration of host activities.

Subnet reports for an integrated run
include end-to-end subnet delays between
source-destination IMPs , trunk utilization
figures, throughput figures, store-and-f orward
buffer requirements and buffer overflow proba-
bilities for various WIN IMPs, as well as mis-
delivery and packet error delivery statistics.

104

5. Software Implementation

PERFORM is programmed to be executable

on the Honeywell 6000 series in either the

real-time or batch mode. The entire program,

including simulations, is written in FORTRAN

and thus will be portable, with minimal modi-

fications, to other computers.

The entire code consists of approxi-

mately 10,000 FORTRAN executable lines and

requires over 200K bytes to be contained in the

system at one time. In order to minimize these

demands and enable the entire model to run in

time-sharing, the model is divided into several

overlays, enabling the entire model to be run

within 32K bytes of core.

PERFORM is composed of five major sub-

systems and a controlling model driver, as

shown in Figure 5-1. During the program run,

the overlay mechanism is controlled by the

PERFORM Driver at the top level, as determined

by the user. The Driver calls modeling sub-

systems, which in turn call the modules of the

component models.

Both input and output variable data are

passed through different modules through COMMON

statements and data files. Data files are

extensively used for communication between the

major PERFORM subsystems. Additionally, data
files are used to store equipment character-
istics data for model input and to store typical

user responses, host workloads, subnetwork
traffic and configurations. The use of these

data files will facilitate user interaction with

PERFORM and permit flexibility in model use.

Workload Definition Files are used to

store workload data relating to a predefined or

typical host or subnetwork workload.

By referencing these files during the

interactive portion of PERFORM, the user has a

simplified means of defining host and subnet-

work workloads. Public Response Files are used

also to simplify the interactive session by al-

lowing the user to reference previous responses

and to make appropriate modifications.

As a result of model execution, a User
Response File, Workload File, Host Output File,
and Subnetwork Output File are generated. The

output files are used for generation of reports.

The User Interface Program is designed
for personnel having technical management and

planning responsibilities. The user is expected
to have some experience with computer and net-
work performance evaluation to interpret the
model's performance results. However, the user
is not required to have detailed knowledge of
the operating system, hardware characteristics,
queueing theory, or modeling techniques. The
parameters which influence performance but are
not provided by the user are internally coded.
Error messages are displayed when appropriate,

Figure 5-1. PERFORM Hierarchy

to indicate inconsistent responses, followed by
requests for the correct data.

In an attempt to limit the model memory
requirements and also to keep the total model
run-time within reasonable bounds, the maximum
sizes and complexities of the modeled system
configurations have to be restricted.

The current version can handle up to 20

host computers, 16 workload clusters per host,
and 20 subnetwork nodes.

Up to 10 hosts - with moderate device
configurations and workloads - and 10 switching
nodes can be modeled within the CPU execution
time of roughly 5 minutes on the Honeywell 6080.

6. Summary and Conclusions

PERFORM, a hybrid modeling tool composed
of both analytical and simulation models, is

described herein. It enables network designers,
managers and planners to analyze both the effi-
ciency and effectiveness of the WIN network,
host configurations and network performance as
WIN evolves.

Currently CSC is tasked by the DCA to
validate the PERFORM model in terms of real-
world performance data which is being generated
by the GMF and other WIN monitoring tools avail-
able at the DCA.

Acknowledgement s

The mathematical analyses presented here
were developed under DCA contract
DCA-#100-78-C-3098. The views in this paper
are those of the authors and should not be
interpreted as necessarily representing the
views or official policies, expressed or
implied of the Defense Communications Agency.

The Authors would like to acknowledge
the- contributions of their colleagues K. Chan,
S. Hick, C. Omidyar and E. Yang to the develop-
ment of PERFORM.

105

References

[1] Chung, K.
, Mowafi, 0. A., Sohraby, K. A.,

Performance Modeling of WWMCCS Intercompu
ter Network, Proceedings of the IEEE
Military Conference, Boston, 17-20 October
1982.

[2] WWMCCS Intercomputer Performance Research
Mode_l, Software Documentation Letter
Report. Prepared by the Computer Sciences
Corporation under Contract
DCA-#100-78-C-3098, 30 November 1981.

[3] M. Reiser and S. Lavenberg, Me an- Value
Analysis of Closed Multichain Queuing
Networks, Jrl. of the ACM, Vol 27, No 2,

1981, pp 313-322.

[4] Y. Bard, Some Extensions to Multiclass
Queueing Network Analysis , to be published.

[5] G. Stroebel, private communications.

[6] C. McMillan and R. Gonzalez, Chapter 12,

Systems Analysis, A Computer Approach to

Decision Models , Richard D. Irwin, Inc.

,

1968.

[7] Saaty T. L. , Elements of Queueing Theory
with Applications , McGraw-Hill Book, 1961.

[8] Martin, J.
, Systems Analysis for Data

Transmission
, Prentice-Hall, 1972.

106

A SIMULATION STUDY OF A LOCAL AREA NETWORK

FOR A COMMAND AND CONTROL CENTER

Kathy K. Rebibo

The MITRE Corporation
McLean, Virginia 22102

A proposed architecture for integrating ADP resources at a military
command and control center is a local area network. A computer simulation
model was developed to study the throughput and performance characteristics of

a local area network under various site configurations and workloads.

Keywords: Computer performance modeling; computer simulation; local area
network

A possible future architecture for a

military command and control center is a local
area network. The local area network would
connect the various data processing devices
within each site. It could also contain a

"gateway" to a long-haul network which would
connect individual sites together.

To support system specification, an eval-

uation tool is needed to study the throughput

and performance characteristics of a local area
network at a site. MITRE chose discrete-event
simulation modeling as one of the tools to

study the network performance under various
site configurations and workloads. The model,
called WISSIM, measures the utilization of the

network, response time to the user, and trans-
fer rates of bulk data.

Experiments using the model were designed

to determine the sensitivity and limits of the

network by varying the workload on the net-

work. Specific questions that were addressed

in the analysis are:

• What is the maximum throughput of a single

network interface unit (NIU)?

• What is the network channel (cable bus)

utilization under various workloads?

• What is the NIU processor utilization under

various workloads?

• What is the increase in response time as a

function of network congestion?

• What is the file transfer time under

various workloads?

107

"Improving Organizational Productivity"

Workload Characterization

!

109

WORKLOAD CHARACTERIZATION USING IMAGE ACCOUNTING

Rajendra K. Jain

Digital Equipment Corporation

77 Reed Road (HL2-3/C09)
Hudson, MA 01749

Rollins Turner

Digital Equipment Corporation
1925 Andover Street (TW/D16)

Tewksbury, MA 01876

Most operating systems record system resource usage during a user session for

accounting and billing. The user session consists of running many programs;
however, the information is usually not broken down for individual programs.
Image accounting consists of recording the usage information as each program image
is activated or run. The data recorded by this facility tells us the relative
importance of various programs, in terms of CPU usage, paging demands, I/O

operations, and people's time. It also provides information on workload
characteristics, such as the average number of characters written to a terminal
with one output operation. Analysis of this data can provide useful insights on
the potential for improvements in system level performance resulting from various
possible optimizations. This paper describes techniques that can be used to

exploit this information. The methodology is illustrated by actual examples of
image accounting data collected from VAX/VMS installations at six universities.

Key Words: Computer accounting; Representative Workload; System monitoring;
Workload characterization; Workload measurement;

1. Introduction

One of the major issues in most performance
evaluation studies is selection of the workload
[1,2]1. It is important to use a workload for

measurements or predictions that is
representative of actual system workload. Often,
however, there is no solid information on the
characteristics of the actual workloads. It

turns out that much of this desired information
can be obtained by recording resource usage.
Most computer systems record resource usage for

accounting and billing. The accounting logs
provide a record of the resources used, such as
CPU time, connect time, and I/O operations for

each user session. This information can be used
to construct a representative user session[3L
However, if the accounting information were
recorded for each program that a user runs, we
could get some more useful statistics about

'Figures in brackets indicate the literature
references at the end of this paper.

workloads. Following is only a sample list of
questions from system developers, performance
analysts, marketing personnel, and system
managers that can be answered using this data:

1. Which programs are most frequently used?

2. Which programs use most of the CPU time?
People's time? Disk time?

3. What are the characteristics of the workload?
What is the average CPU time? ... Number of
disk I/O operations?

M. Which programs offer the best opportunities
for system level impact on CPU utilization?
... on People's time?

;*
5. How uniform is the workload' among separate

installations?

In order to provide such information as a

basis for performance studies at Digital, an

effort was undertaken to collect workload

111

operating system. Direct I/O is usually, but not
always, disk I/O. The major use of buffered I/O
is communication with user terminals. For both
classes of I/O separate totals are maintained for
input and output. For each type of transfer, the
system keeps track of the number of I/O

operations and the number of bytes transferred.
The values of these eight counters are included
in each image accounting record.

Paging information includes the number of
read operations and the total number of pages
read. The number of read operations is smaller
than the number of pages read because VMS
normally reads in several contiguous pages
whenever a page read is necessary. The image
accounting record also includes the number of
page faults. This is normally a much larger
number than the number of page read operations,
because the required page is often found in one
of the page caches maintained by VMS. These
caches hold physical memory pages that have been
removed from the page maps for the programs to
which they belong but have not yet been allocated
to other programs. When a fault occurs for such
a page, the page is simply remapped to the
program and no disk read is required. Table 1

summarizes the data items recorded by the VAX/VMS
image accounting utility.

In designing a facility such as the one
described here, one inevitably faces tradeoffs
between cost and precision. Some of the
tradeoffs in deciding what data items to record
are as follows. If disk storage is constrained,
program identification may consist of program
name only; disk device name, directory and
version numbers may be omitted. Instead of
recording both start time and end time only the
difference may be recorded. This will, however,
not allow the analysis of activities that
happened during a certain time period, say prime
time. For I/O operations, the device utilization
generally depends more on the number of I/Os than

Table 1: Data Recorded by VAX/VMS Image
Accounting Utility

Name of the image file, device and directory
Program start time: date and time of the day
Program End time: date and time of the day
CPU time used by the program

Number of direct writes
Total direct write bytes
Number of direct reads
Total direct read bytes

Number of Buffered writes
Total buffered write bytes
Number of buffered reads
Total buffered read bytes

Number of Page read I/Os to the paging device
Number of Pages read from the paging device
Number of page faults

information from several VAX/VMS installations
running their normal workloads. A facility known
as "image accounting" was developed for VAX/VMS.
The word "image" refers to program images, the
executable form of programs in the VAX/VMS
system. The image accounting facility provides
information about each program execution during
an interval over which it is enabled.

This paper discusses the issues of designing
an image accounting facility, analyzing the data,
and interpreting it. The methodology is general
and is illustrated with our actual experience. I

Some interesting observations about workloads in
educational environments are also presented in

the paper.

2. Design of An Image Accounting Utility

While designing an image accounting utility
there is considerable flexibility in terms of
what data should be collected about each program.
If more data is collected, more information can

be obtained about the workload. However, more
data also means more monitoring overhead and more
use of disk storage. This section provides some
guidelines to help make this tradeoff. First,
the VAX/VMS image accounting utility is
described; then the possible tradeoffs are
pointed out.

The VAX/VMS image accounting utility can be
easily enabled and disabled by the system
manager. This helps keep the monitoring overhead
under control. During the interval in which the
utility is enabled, it records information about
each program execution. The VMS operating system
maintains resource usage information for each
process. Image accounting writes a record into
the system accounting file giving the current
values of various counters and timers whenever a

program begins execution and again when it

terminates. By comparison of records for
initiation and termination of a program we can

;

determine resource usage and elapsed time for the .

program execution. s

I

The data provided by the image accounting a

facility can be divided into three categories:

|

1. Identification and timing

2. Program I/O

3. Paging

Each record includes complete identification
of the file from which the program image was <\

obtained and the identification of the process in s I

which the program was executed. Timing :,

information includes the CPU time charged to the i

process and the actual clock time.

Program 1/0 information includes totals for

the two classes of I/O that VMS provides, direct
and buffered. In direct I/O the transfer takes ,

place between the device and memory belonging to .

the program. In buffered I/O, the actual ;

transfer is to or from a buffer supplied by the i

112

on the size; the size may therefore be omitted.
Distinction between input and output may or may
not be necessary depending upon the symmetry of
the device. However, as we point out later,
inputs and outputs have generally different
frequency and sizes. In some environments, the
paging is global and the paging mechanism reads
and writes pages belonging to several programs
together. In such cases, paging done by an
individual program may not be distinguishable and
can not be recorded in the image record. For
example, in VAX/VMS the page writes are done from
global page caches only. The paging information
on individual programs therefore consists of page
read operations only. Like other I/O, number of
paging operations is more important than the
size. The user identification may not be
recorded; however, recording it permits
reconstruction of the sequence of programs run by
a specific user or in a specific session. Also,
the number of users simultaneously active on the
system can be calculated from this.

3. Limitations of Image Accounting

There are a number of limitations to the
data available through an image accounting
facility. Some of these are specific to VAX/VMS
image accounting and others are more general.

In VAX/VMS image accounting, the data is
logged after the program completes. Many
programs, particularly some device control
programs, run indefinitely. Therefore, no data
is logged for those programs. A periodic
recording, say every 15 minutes, of resources
consumed by such programs could alleviate this
problem. Alternatively, the counters could be
logged at the beginning and the end of the period
during which image accounting is enabled.

The second known problem is that only the
resources charged to a process are recorded.
Some resources, for example, CPU time during
interrupts, may not be charged to the responsible
process. Thus, various programs may have taken
slightly more or less CPU time than that
indicated here. Similarly, I/O operations done
by the device control programs (ACPs) on behalf
of a user are not charged to the user.

The third problem is that VMS does not
distinguish I/O operations by physical devices.
It only distinguishes if the I/O is direct or
buffered. This makes the physical device related
analysis difficult. For example, size of an
average terminal read can not be accurately
determined, because even though the buffered I/Os
are predominantly terminal I/Os, they also
include I/Os to mail boxes, networks, magtapes,
line printers, and card readers. Fortunately,
for many commonly used programs it is possible to
tell which device was being used.

The fourth problem with image accounting in
general is that many data items depend upon
system wide conditions along with the program
behavior. For example, the elapsed time and the
paging behavior of a program varies with the

system load. Finally, the image accounting does

not log any system level information such as

queue lengths or device utilizations. The

elapsed time includes service as well as queueing
time at various resources, along with the user
think times in many cases. It is not possible to

separate the effect of queueing (system level

phenomenon) from service times (program's
demands). Many programs, including most editors,
frequently wait for user input throughout
execution. Again, there is no measure of the
amount of time spent waiting for user inputs, and
no way to distinguish between this delay and
queueing delay.

4. Analysis and Organization of the Data

The first step in analyzing the image
accounting data for workload characterization is

to merge together all records for the same
program. Unimportant programs can be either
dropped off, or combined together as one group.
For example, we concentrated solely on the

programs taken from the system area. All user
area programs were merged as one group. Defining
program groups (e.g., a group of all editors,
another group or all language translators) helps
in studying the common characteristics of these
groups. The groups do not have to be mutually
exclusive. For example, in our analysis we

defined six different groups:

COMPILERS : All language translators including
assemblers.

EDITORS : All text editors.
DIGITAL : All programs supplied by DEC.
SYSTEM : All programs taken from the system

directory

.

USER : All programs taken from the user
directories.

TOTAVG : All programs, both system as well as

user written.

While merging, averages, variances,
histograms, or other statistics such as median
and percentiles may be calculated separately for
each program or program group. We calculated
only averages and coefficients of variation.

For each program, many different data items
can be calculated. For example, the items that
we calculated for each program are shown in

table 2. These consists of 4 types of derived
statistics on resource consumption: Per

activation, Percentage of total resource consumed
by all programs, per second resource consumption
rate, and per CPU second resource consumption.
The significance of these data items is described
in the next section.

We found it useful to organ
in two forms of tables: data
tables. The data tables prese

about a particular data item,

activation, for all programs and
The programs were listed in or

resource consumption. This so

identifying important programs,

on the other hand, presented all

ize the same data
tables and image

nted information
say CPU time per
program groups.

der of decreasing
rting helped in

An image table,
data items about

113

a particular program in a single table. The
image tables are of interest to developers and
designers of individual programs, whereas, the
system managers find data tables more useful.

5. Interpretation of the Data

Each data item provides useful information
about the program and its users. Different
people interpret the same data item in different
ways. In this section, we explain how some of

Table 2: List of Data Items Derived from the
Image Accounting Log

Number of activations
% of total activations

CPU time per image activation
% of total CPU time
Percent CPU rate

Elapsed time per image activation
% of total elapsed time

Number of direct writes per image activation
Direct write size in bytes
Number of direct reads per image activation
Direct read size in bytes
Number of direct I/Os
Direct I/O size in bytes
% of total direct I/Os
% of total direct I/O bytes
Direct I/Os per second
Direct I/O bytes per second
Direct I/Os per CPU second
Direct I/O bytes per CPU second

Number of buffered writes per image activation
Buffered write size in bytes
Number of buffered reads per image activation
Buffered read size in bytes
Number of buffered I/Os per image activation
Buffered I/O size in bytes
% of total buffered I/Os
% of total buffered I/O bytes
Buffered I/Os per second
Buffered I/O bytes per second
Buffered I/Os per CPU second
Buffered I/O bytes per CPU second

Number of page reads per image activation
Pages read per image activation
Page read size in pages
% of total page reads
% of total pages read
page reads per second
Pages read per second
page reads per CPU second
Pages read per CPU second

Page faults per image activation
% of total page faults
Probability of page read per fault
Page faults per second
Page faults per CPU second

the derived data items can be used by developers,

product managers, system managers, and others.

The discussion is organized around the four

categories of data items: per activation,
percentage of total, per second, and per CPU

second

.

Per activation data is the average resource
consumption per activation of the program. This
information is useful for performance analysts in

modeling program behavior, and in constructing
synthetic workloads.

By "Percentage of Total" resource
consumption we mean the resource consumed by all
activations of a particular program expressed as
a percentage of the total resource consumed by
all activations of all programs. For example, if
the percentage of total direct I/Os for program A

is 10%, it indicates that 10% of all direct I/Os

on the system can be attributed to program A. To

developers and product managers, percentage of
total data items show the opportunity that
different programs offer for reducing consumption
of that resource. If the programs are sorted in

the order of decreasing "% of total" consumption
of a particular resource, the programs on the top
of the list will have a high impact and the
programs on the bottom of the list will have
little impact. Thus, if we find that the
program A, consumes only 0.01 percent of the
total CPU, it may not be worthwhile to devote
manpower to optimize this program for better CPU
efficiency. Since elapsed time is also people
time, programs with high percentage of total
elapsed time may provide high potential for

improvements in worker productivity.

The "% of total" data items are also of
interest to performance analysts. Analysts
interested in analyzing a particular resource,
say disk, should include in their workload
programs consuming high percentage of that
resource. For example, an analyst interested in

studying a remote disk server should choose
programs observed to consume a high percentage of
disk I/Os. Programs consuming only say 0.01% of
disk I/Os even though performing poorly on a

system with remote disk server will have little
impact on the total system performance.
Similarly, programs with high percentage of total
CPU time should be used to analyze the impact of
new CPUs, programs with high percentage of total
buffered I/Os should be used to analyze the

impact of new terminal devices, remote terminal
front ends, and network links connecting the

terminals. Programs with high percentage of
total faults should be used to study new virtual
memory schemes.

Per second resource consumption rates are
obtained by dividing the resource consumption by
the elapsed time. These rates indicate the

intensity of resource usage by the various
programs. They can be used to calculate
approximately the number of users that can be
supported without making the resource a

bottleneck. A higher number of users will
increase the response time beyond the observed

114

value. For example, direct I/O operations per

second and direct I/O bytes per second determine
the disk utilization or network link utilization
in systems with remote disk servers. System
planners can use this information to determine
the number and types of the disks required.
Analysts and customers can use it to find out the
programs that cause disks to become bottleneck.
Similarly, high CPU rate (CPU time per second)

indicates highly compute bound programs. A small
number of highly compute bound programs may
saturate the CPU. Buffered I/Os per second, and
Buffered I/O bytes per second indicate
utilization of terminals, remote terminal front
ends, and network links to these front ends.

Per CPU second resource consumption is

obtained by dividing the resource consumption by
the CPU time consumed. Per CPU second
consumption is less variable than per second

consumption. This is because the elapsed time
depends heavily on the system load which varies
widely over time. Each CPU second represents the

execution of a certain number of instructions.
Per CPU second data, therefore, gives an idea of
resource demand per instruction of the program.
For example, page faults per CPU second give the
number of instructions per page fault.
Similarly, page read operations per CPU second
indicate the number of instructions between
successive page read operations. Performance
analysts can use this data to compare their
synthetic workloads with those measured on the

system.

Per CPU second resource consumption also
represents the ratio of the resource demand to
CPU demand. Programs with higher per CPU second
resource consumptions tend to impose higher
demand on the particular resource than the CPU

and tend to make the resource as the bottleneck.
For these programs, therefore, the maximum number
of simultaneous users is determined by the
capacity of the corresponding resource. For

example, the programs with high direct I/O per
CPU second are generally disk bound; the maximum
number of simultaneous users of such programs on
a system is determined by the throughput of the
disk.

The probability of page read on a page fault
is obtained by dividing the number of page read
operations by the number of page faults. Page
read operations consume more CPU time than page
faults satisfied in the memory. Therefore, the
programs with low probability are in a sense
better than those with high probability.
However, this probability also depends upon the
number of users sharing the program image and the
elapsed time of the program. As the number of
users sharing the image goes up, the probability
of needing a read goes down.

Finally, a word about the number and amount
of I/Os. Depending upon the I/O device, number
of I/O operations or the total bytes transferred
may be more meaningful. For disk devices in
which seeks take much longer than data transfer,
which is the case with practically all disk

devices, the disk time depends heavily on the

number of I/Os and is not influenced by the size

of the I/O. Similarly, for remote disk servers
using a message oriented protocol, such as
DECnet, the number of packets on the link, as
well as the CPU time consumed in the

communication depends heavily on the number of
I/Os rather than the size. In both these cases,
direct I/Os per activation, direct I/Os per
second, and direct I/Os per CPU second would
provide more meaningful information than direct
I/O bytes per activation, direct I/Os bytes per
second, and direct I/O bytes per CPU second
respectively. On the other hand, for some mass
storage devices, set-up (seek and rotational
latency) time is less than the transfer time, and
for remote disk servers with stream oriented
protocols, such as BSP, the link time depends
upon the number of bytes transferred. In such
cases, the number of bytes transferred provides
more meaningful information than the number of
I/Os. Similar arguments hold for buffered I/Os
and paging operations.

6. Commonly Asked Questions and Their Answers

There are two ways to organize a doctor's
prescription manual. One would be to list the
diseases for each medicine. This is what we have
done so far by describing how we can analyze the
data and what information can we obtain from each
data item. However, another alternative,
probably a more useful one, is to list
prescriptions for each disease. That is, given a

performance question, which data items from the
image accounting should be looked at? This
section therefore restates the information
described in the previous section in a different
manner. Given below are some of the commonly
asked questions that can be answered by the image
accounting. These are sample questions, one can
make and answer other similar questions by
appropriate substitutions for items enclosed in

angle brackets <>.

Q: Which programs are using most of the people
time?

or,

Which programs should the programmers be
trained to use more efficiently?

or.

Which programs provide the highest opportunity
for better human interface?

A: The programs with high "% of total elapsed
time" provide the best opportunity for
training as well as better human interface.
For example, in our data we found that at
universities one-third of people's active time
was being spent in editing. The universities
may be able to improve productivity by
training their users in efficient use of the
editors.

Q: Which programs are good candidates for code
optimization?

or,

115

Which programs should be included in a

workload to be used in analyzing a new CPU's

performance?
or,

Which programs are using most of the CPU time?

A: The programs with high "% of total CPU time"
will have the highest impact on CPU usage.
For developers, these programs offer
opportunity for code optimization, For

analysts, these programs provide the programs
to be included in their workloads for CPU

analysis. In our data, the programs on with
high "% of total CPU time" were mostly
compilers and editors.

Q: Which programs offer the highest opportunities
for code restructuring to minimize the page

faults?
or,

Which programs should be used to analyze a new

paging device?
or,

Which programs are keeping the paging device
busy?

A: The programs with high "% of total page
faults", "% of total page read operations",
and "% of total pages read" provide
opportunity for the highest impact on page
read operations. These programs do not
necessarily have a poor paging behavior.
However, even a small improvement in their

paging behavior will have significant impact
on the system.

Q: Which programs have a poor locality of
reference?

A: The programs with high "Page faults per CPU
second" have a poor locality of reference.
These programs might benefit from code
restructuring. However, given a set of
limited resources, more benefit at the system
level would be obtained by restructuring
programs with high "% of total Page faults".

Q: How many <Program A> jobs can run

simultaneously on one <CPU> without undue
performance degradation?

A: The CPU rate (CPU time per second) as observed
on a system with desired performance can be
used to calculate the number of simultaneous
users, provided the program is compute bound.
For non-compute bound programs, the device
with the highest utilization determines the
number of supportable users.

Q: Which programs are <disk>-bound?
or,

Which programs' performance is highly
dependent on the <disk> characteristics?

A: The programs with high "DIRECT I/Os per CPU

second" generally impose more load on the disk
than on the CPU. These programs are disk
bound and their performance depends critically
on the performance of the disk.

Q: What is the ratio of <disk> reads to writes?
or,

What is the average size of a <terminal> read?
or,

What is the average number of <disk requests
per second s>?

A: The data for average of all programs combined
(TOTAVG) provides this information. In our

data we found that the ratio of disk reads to

writes was 3:1. The average size of a

buffered read was 4. 18 bytes.

Q: What is the average think time in <Program A>?

A: Although think time may not be exactly
obtained from Image Accounting, we may get
some idea of it from the mean time between
terminal reads (reciprocal of terminal reads
per second) . The think time should be
generally less than the time between terminal
reads.

Q: Which programs should be used to analyze a new
<terminal concentrator^
or, to analyze a new protocol for remote

terminal communications?
or, to analyze a new remote terminal
communication link?
or, to analyze a new terminal controller?

or,

Which programs offer the highest opportunity
for terminal I/O optimization?

A: All these questions refer to the devices that
impact buffered I/Os . Therefore, the programs
high on the "% of total buffered I/Os" or "%

of total buffered I/O bytes" provide good
candidates for these studies.

For devices using a message oriented
protocols (such as DECnet) , the number of
packets on the network link and the CPU time
consumed in the communication depends heavily
on the number of I/Os rather than the size.

In such as case, programs with high "% of
total buffered I/Os" will have the highest
impact on the device or communication link
usage. For developers these programs offer
opportunity for buffered I/Os optimization.

For devices using stream oriented
protocol (such as BSP), the communication link
time will depend on the total bytes
transferred. In such a case, programs with
high "% of total buffered I/O bytes" will have
the highest impact on the communication link
and the CPU consumption.

116

Q: What would be the <network link> utilization

or <terminal concentrator^ utilization when

<n> users are simultaneously running
<Progr am A>?

or,

How many <Program A> users can be supported
with a <terminal concentrator?

A: For terminal I/O bound programs (i.e.,

programs with high terminal I/Os per second,
or high terminal I/O bytes per second) the

terminal or link utilization can be determined
given the rate and the device's speed or

bandwidth. The reciprocal of the device
utilization gives an approximate idea of the
number of users supportable before the device
would become the bottleneck.

Q: Which aspect of <Program A> offers the highest
opportunity for optimization to impact the
system performance.

A: The resources used by the program A as a

percentage of total resources used by all
programs should be compared for different
resources. At the system level, the resources
with high percentage will be impacted highly
by program A.

Q: Is remote terminal emulator script of a given
educational workload representative?

A: Compare the resource consumption rates, e.g.,

direct I/Os per CPU second, buffered I/Os per
CPU second, etc. for the script with those
for overall average for all programs (TOTAVG).

If they are not far off, one can claim that
the script is close to that observed in the
field.

person-months of active usage time. The total

usage time was more than 8 person-months because

the time between successive image activations is

not included in the total.

1. In a university environment, vendor supplied
programs are used very extensively. DIGITAL
supplied programs accounted for more than 50%
of all resources consumed at these sites. As

shown in figure 1, 83 out of every 100

programs run were DIGITAL supplied programs,

like L0GIN0UT, DELETE, TYPE, etc. Fifty four

percent of the total CPU time used was spent
on DIGITAL supplied programs. Fifty seven
percent of time users spent in running
programs was spent on DIGITAL programs.
Again, the time between images is not
included

.

This clearly shows the power that the

vendors have in influencing overall system
performance in these environments. For

example, a 10% reduction in vendor software's
CPU consumption will show up as at least 5%
improvement in total system CPU consumption.

2. A large portion of the system resources was

used on compilers. The percentage of
resources consumed by all compilers (including
MACRO translators) is shown in figure 2. As

shown there, although COMPILERS constitute
only 6% of all activations, they consume a

large portion of system resources. They
account for about one-fourth of the CPU

consumption, one-third of all page faults, and
about one-fifth of all page reads.

The ratio of linker and task builder

activations to compiler activations was 1:2.

What workload characteristics should
in a <simulation> model?

be used DIGITAL

A: It depends upon the purpose of the model. If

the model is to analyze a particular new
device, say a new terminal concentrator, the
programs that use a high percentage of that
resource should be included in the workload.
However, if two different systems are being
compared and a system level workload is
needed, the overall average data (TOTAVG)
provides the resource demands to be used.

7. Some Observed Workload Characteristics

In this section, we present a summary of
some of the interesting observations from our
data. The data was collected from VAX/VMS
systems at six different universities. There was
a variety of types of installations:
instructional, research, and administrative.
Several installations had substantial use in more
than one category. Some also had a significant
batch load. The complete database consists of a

total of 285,673 image activations which add up

to 175 hours of CPU time, and about 8

ACTIVATIONS
CPU TIME
ELAPSED TIME

OIB WRITES
IB W. KB
OIB BEADS
OIB RO KB
OIB I/OS
OIB I/O KB

BUF WBITES
BUF H. BYTES
BUF BEADS
BUF RO BYTES
BUF I/OS
BUF I/O BYTE

PASE BEADS
PAGES BEAD
PAGE FAULTS

T T T
0 20 40 80 SO

PERCENTAGE OF TOTAL

Figure 1. Percent of Resources Consumed by
Vendor Supplied Programs.

100

117

That is, programs were linked, on the average

after two compilations. This is remarkably

low considering that the students might just

be learning the language syntax.

About one-third of user time was spent on
editors. The percentage of resources spent on

EDITORS is shown in figure 3. This clearly
shows the importance of editing. At all

installations, a substantial portion of the

users' time and system resources were devoted
to editing. At installations making use of

ACTIVATIONS
CPU TIME
ELAPSES TIME

DIR WHITES
IP. H. KB
DIP READS
IP RD KB
DIR I/OS
DIR I/O KB

BUF WRITES
BUF W. BYTES
BUF READS
BUF RO BYTES
BUF I/OS
BUF I/O BYTE

PAGE READS
PAGES REAO
PAGE FAULTS

COMPILERS

20 40 60 80

PERCENTAGE OF TOTAL

100

full screen editors, the resource usage was

considerably greater than at those using line

oriented editors. Since there appears to be

strong trend toward more extensive use of full
screen editors, it seems safe to assume that
editing will continue to be a major workload
ingredient, and probably even increase in

importance. The educational institutions
should, therefore, give good training to the
students in using the editors. This will have
significant impact on user productivity.

4. LOGINOUT is the most commonly executed program
image. Roughly 18% of all activations are
LOGINOUTs. Of these about one-third are due
to batch jobs because SUBMIT (the utility to
submit a batch job) constituted about 3% of
all activations and since each SUBMIT results
in two LOGINOUTs. Not all LOGINOUTs are
successful, the counts include both successful
and unsuccessful activations.

There are many reasons for frequent
loginouts in the educational environments.
Shortage of terminals requires users to
logout. In many industrial environments every
user has his own terminal; however, the
terminals are dynamically connected to the
system via a switch. In such environments,
system managers often encourage users to
logout and allow other users to use the
limited number of lines coming out of the
system. Even if the terminals are directly
connected, logging out is encouraged to keep a

heavily loaded system below the maximum login
capacity.

Figure 2. Percent of Resources Consumed by
Language Translators

EDITORS

ACTIVATIONS
CPU TIME
ELAPSED TIME

0IR WRITES
DIR W. KB
0IR READS
DIR RD KB
DIR I/0S
DIR 1/0 KB

BUF WRITES
BUF W. BYTES
BUF READS
BUF R0 BYTES
BUF I/0S
BUF 1/0 BYTE

PAGE READS
PAGES REAO
PAGE FAULTS

30 40 SO 60

PERCENTAGE OF TOTAL

100

Figure 3. Percent of Resources Consumed by

Editors

The second highest in terms of
activations is DELETE (file deletion utility)
constituting about 10% of all activations.
Shortage of disk space and purging of the old
versions of files seem to be the reasons.

Other commonly activated programs and the
percentage of their activations are as
follows

:

TYPE
DIRECTORY
SET
SOS
SUBMIT
EDT

LINK

9% (To type a file on the terminal)

9%
6% (To set process parameters)
5% (Line oriented text editor)

3% (To submit batch jobs)

3% (Screen oriented text editor)

3% (Linker)

5. The data confirmed the common belief of disk
writes to disk reads having a ratio of 1:3.

The different I/O ratios are as follows:

For direct I/O:

// of writes
Size of writes
Total write bytes

of reads
Size of reads
Total read bytes

1:3

1:2.5

1:7.5

118

And, for buffered I/O:

f of writes : # of reads :: 2:1

Size of writes : Size of reads :: 4: 1

Total write bytes : Total read bytes :: 8:1

variation greater than 1. This gives the

impression that a program's fault rate

depends little on the system and can be

considered intrinsic to the program.

Although, for other environments, the
ratios may be different, the following
inequalities should generally hold:

V of disk writes < if of disk reads
Size of disk writes < Size of disk reads
I of terminal reads < i\ of terminal writes
Size of term, reads < Size of term, writes

The argument is as follows. Disk reads
are done automatically by the computer. Disk
writes, on the other hand, require either
creation of new information or modification of
the old information. A human intervention is

generally required. We humans read more and
write less (be it a book, or a memo, or a data
file). The creation of new information is,

therefore, slow and always in smaller
quantities than use of the old information.
This reasoning, which we call "the law of slow
creation" explains why disk reads would be
generally more frequent than disk writes and
why disk reads would be larger in size than
disk writes.

In case of terminal reads and writes, a

similar argument follows, although in reverse
direction. Terminal writes are done
automatically by the computer. Terminal
reads, on the other hand, require human
intervention. Thus, by the law of slow
creation, terminal reads would be slower and
smaller in size than terminal writes.

In VAX/VMS, 96.5% of the page faults are
satisfied from the global page caches (free
page list and modified page list), only 3.5%
require a disk read. Other observations in
this regard are:

o Among the programs analyzed in detail LINK
(linker) has the highest probability of
finding the page in the global page caches.

o Compilers, although causing more page
faults than the average, also have a better
chance of finding the page in the page
caches.

o The inter-site variation in number of page
faults as well as page read operations was
surprisingly low. The number of page
faults depends upon so many system
parameters (e.g., size of physical memory,
working set size, free page and modified
page list size), program parameters (e.g.,
program size, locality), and user load
(number of users sharing the image, number
of users on the system), that one would
normally expect large variations. However,
among the 45 programs analyzed in detail
only two had inter-site coefficient of

7. Average session lengths of
interactive programs are:

some of the

BASIC 7 minutes
SYSGEN 5 minutes (To change Sys . Parameters)
SOS 5 minutes (Text Editor)
EDT 4 minutes (Text Editor)
TECO 4 minutes (Text Editor)
CREATE 2 minutes (File Creation Utility)
DISPLAY 2 minutes (System Monitoring Utility)

8. Based on 285,673 program activations, the
profile of an average program in an

educational environment is as shown in

table 3.

This data can be used by analysts in

modeling educational environments. Also, the
resource consumption rates, (per second, as
well as per CPU second) can be used to see the
closeness of a synthetic workload (e.g., a

remote terminal emulator script) to the
measured data. The average and coefficient of
variations can be used together to get an
approximate distribution of the resource
demands at a particular site.

The coefficients of variation in table 3

are high because data from several sites has
been combined together. For individual sites
the coefficients of variation are only about
half as high. The high coefficients of
variation indicate that the resource demand
characteristics of programs differ widely and,
therefore, synthesis of an "average

Table 3: Characteristics of an Average Program

Data Average
CPU time (VAX-1 1/780) 2.

Elapsed time 73.
Number of direct writes 8.

Direct write bytes 10.

Size of direct writes 1.

Number of direct reads 22.

Direct read bytes 49.

Size of direct reads 2.

Number of buffered writes 52.

Buffered write bytes 978.

Size of buffered writes 18.

Number of buffered reads 38.

Buffered read bytes 161.

Size of buffered reads 4.

Number of page read I/Os 5.

Number of pages read 34.

Size of page reads 6.

Number of page faults 214.

Coe
Var

f. of
iation

19 seco
90 seco
20

21 Kilo
25 Kilo
64

70 Kilo
20 Kilo
84

04 byte

51 byte
52

08 byte

18 byte

33
86
54 pages/ read
06

nds

nds

bytes
bytes

bytes
bytes

s

s

!S

!S

40.23

8.59
53.59
82.41

25.65
21.01

1 1.80

9.98

101.02

39.74

9.56

10.23

26.51

119

representative program" may be difficult.
However, the coefficients are much smaller
when programs of a given category only, say

compilers, or editors, are considered.

The profiles of an average compiler
activation and an average editor activation
are as shown in tables 4 and 5 respectively.
These profiles are based on 15961 activations
of compilers and 23579 activations of editors.

From these tables we see that in

educational environments, there are on the

Table 4: Characteristics of an Average
Compiler Activation

average, 14 direct I/Os per CPU second and 27

direct kilo bytes per CPU second. COMPILERS

do 2 to 4 times more computation than an

average program before issuing a direct I/O.

EDITORS do almost the same number of direct

I/Os per CPU second as an average program.

However, they transfer only one half as many
direct I/Os bytes per CPU second as the

average.

For buffered I/Os, the overall average in

an educational environment is 42 buffered I/Os

per CPU second, and 520 buffered bytes per CPU

second. COMPILERS do only one- fifth as many
buffered I/Os per instruction as an average
program. EDITORS do four times as many
buffered I/Os per instruction as an average
program.

Coef. of
Data
CPU time (VAX-1 1/780)
Elapsed time
Number of direct writes
Direct write bytes
Size of direct writes
Number of direct reads
Direct read bytes
Size of direct reads
Number of buffered writes
Buffered write bytes
Size of buffered writes
Number of buffered reads
Buffered read bytes
Size of buffered reads
Number of page read I/Os
Number of pages read
Size of page reads
Number of page faults

Average Variation
4.81 seconds 3.09

111.03 seconds 3.47
12. 17 5.52
11.63 Kilo-bytes 3.32
0.96 kilo-bytes

21. 13 5.61

35. 18 Kilo-bytes 3.96
1.67 kilo-bytes

28.94 25.96
637.62 bytes 5.62
22.03 bytes
14.40 1.51

101.64 bytes 2. 18

7.06 bytes

17.79 4.44
184.75 4.20
10.38 pages/ read

021.95 3.16

Table 5: Characteristics of an Average
Editing Session

Coef. of
Data
CPU time (VAX-1 1/780)
Elapsed time
Number of direct writes
Direct write bytes
Size of direct writes
Number of direct reads
Direct read bytes
Size of direct reads
Number of buffered writes
Buffered write bytes
Size of buffered writes
Number of buffered reads
Buffered read bytes
Size of buffered reads
Number of page read l/0s
Number of pages read
Size of page reads
Number of page faults

Average Variation
2.57 seconds 3.54

265. 45 seconds 2.34
19.74 4.33
13.46 Kilo-bytes 3.87
0.68 kilo-bytes

37.77 3.73
36.93 Kilo-bytes 3.16
0.98 kilo-bytes

199.06 4.30
314.95 bytes 3.04
16.65 bytes

202.41 4.02
351 . 98 bytes 2.62

1.74 bytes
4.49 1.75

20. 18 2. 17

4.49 pages/ read
138.55 1 .28

8. CONCLUSION

Image accounting provides useful information

about workload characteristics. There are many
tradeoffs that can be made in designing a image
accounting utility. The paper described the

design of a VAX/VMS image accounting utility.

The use and interpretation of the data was
discussed. Many interesting characteristics of

workloads in educational environments were

presented based on actual observations at six

different university sites.

The initial image accounting package was

developed by Steve Forgey. The project that
collected the data used in this study was carried

out by Ted Pollack. Peter Sheh wrote many of the
analysis programs. Burton Leathers is currently
maintaining the data and the programs. All of

the above people were very helpful in this work.

References

[1] Agrawala, A. K. , Mohr , J. M., Bryant, R. M.,

An Approach to the Workload Characterization
Problem, Computer

,

June 1976, pp. 18-32.

[2] Prichard, E. L. , and Kolence, K. W.,

Workload Types and Capacity Management Data

Requirements, 3rd Int. Conf . Comput

.

Capacity Management, Chicago, IL, April

1981, pp. 25-31.

[3 3 Sreenivasan, K. , and Kleinman, A. J., On the

Construction of a Representative Synthetic

Workload, Comm. of the ACM, March 1974,

pp. 127-133.

120

METHODOLOGY FOR CHARACTERIZING A SCIENTIFIC WORKLOAD

Ingrid Y. Bucher and Joanne L. Martin

Computer Research and Applications Group
Los Alamos National Laboratory

Los Alamos, NM 87545

In the Los Alamos environment of large-scale scientific computing
there is always a need for the fastest and largest machine on the market,
whether scalar, vector, or parallel processor. Therefore, a determination
must be made of the particular architecture most suitable for executing our
diverse workload. This determination relies on both an accurate
characterization of the current workload and a realistic assessment of
future research requirements in computing. Studies are in progress to

characterize the present and projected workloads of the major computer
users within our facility. This paper describes our general approach to

this characterization, which has three stages: (1) identification of major
resource consumers among approximately 3000 scientific users; (2)

qualitative analysis of the consumer workload to assess the nature and
relative importance of current and projected codes, as well as the

significance of such peripheral features as I/O and graphics capabilities;
and (3) quantitative analysis of the primary codes to determine specific
characteristics, such as ratio of vector to scalar operations, average
vector length, number of floating point operations, and number of fetches
from and stores to noncontiguous memory locations. The results of these
analyses will permit a determination of the relative importance to our
users of such machine characteristics as scalar, vector, and parallel
processing speeds and capabilities before the next major procurement
effort.

Key words: Amdahl's Law; benchmarking; computing environment; large-scale
scientific computing; parallel processing; scientific workload; vector
processing

.

1 . Introduction

The cost effectiveness of computer modeling
experiments as opposed to conducting actual
experiments generates a constant demand for
increased computing power at the Los Alamos
National Laboratory. It is therefore necessary
for the Laboratory to be aware of the latest
developments in computer architecture and their
applicability to its user requirements.
Understanding the relationship between new
architectures and the applications of Los Alamos
scientists relies on the realistic
characterization of the Laboratory's computer
workload

.

Currently, major codes are run on vector
processors. It appears likely that the next big
machine acquired will be some type of parallel

processor with several CPUs. Because a
determination of the most suitable computer for
the Laboratory will rely heavily on benchmark
performance, it is crucial that the benchmark
tests are representative of the workload that
will be executing on the new machine. Thus, our
workload characterization has the ultimate goal
of allowing us to design a benchmark set that
will model Laboratory computing needs. This set
will consist of typical codes or code sections
rather than synthetic benchmarks. For the
complex architectures to be tested, the
sequencing of instructions is as important as the
correct instruction mix.

Our approach to the characterization of our
workload may be divided into three stages:

(1) identification of major resource con-
sumers

,

121

(2) qualitative analysis of the consumer
workload, and

(3) quantitative analysis of primary codes.
Although each of these stages involves
information that is dynamic with respect to time,
analysis of the combined results will permit us
to determine the relative importance of various
machine characteristics. Hence, we will have a

framework for designing and weighting an
appropriate benchmark set.

2. Environment

Currently, the computers in the Integrated
Computing Network at Los Alamos National
Laboratory support the computing needs of

approximately 3000 users in an environment that
is dominated by large-scale scientific
computation. We define large-scale scientific
computations as those problems that saturate all
resources of any available computer [1]. The
dominant physical problems at the Laboratory
include radiation transport and diffusion
processes, hydrodynamics, and the motion of

charged particles in electromagnetic fields. The
numerical methods employed in the solution of

these problems include finite difference methods
to solve partial differential equations,
particle-in-cell (PIC) techniques, and Monte
Carlo methods. Most of these calculations
require a machine that provides 64-bit accuracy.
Further, Fortran is used almost exclusively in

the major Los Alamos codes.

Another important feature of the Los Alamos
computing environment is the requirement that
most programs be executable in not more than
eight hours when consuming all resources of a

machine. In the batch system this allows for
overnight turnaround, which is acceptable to most
users. However, if the codes were to require
more computer time, the resulting delay in

turnaround would have serious implications on

user productivity. Currently, jobs are being
tailored to sizes that will meet this criterion,
sometimes at the expense of accuracy.

Because the majority of the large-scale
scientific computation is done on the four Cray-

Is within the network, their batch workload is

the focus of this study. A computing system
associated with this type of workload may be
characterized by

• hardware that is very fast in performing float

ing point operations,
• large memory capacities (several million

64-bit words)

,

• large mass storage facilities,
• interactive graphics, and
• state-of-the-art technology [1].

The Cray-1 has hardware that is capable of

performing up to 160 million floating point
operations per second (MFLOPS) . Further, the

memory capacities on these machines range from

one million to four million words. Large mass

storage facilities and interactive graphics are

available through the network. Finally, the

Cray-1 is a vector processor; that is, it has

hardwired instructions that operate on n-tuples
of numbers.

Thus, Los Alamos has a large-scale
scientific workload and a corresponding computing
system. In fact, starting at the birth of
electronic computation shortly after World War
II, Los Alamos has operated one of the world's
largest computing facilities and continues to be
at the forefront of scientific computing [2]

.

Nevertheless, the nature of the computations
currently being performed, as well as the goals
for future computing capabilities, indicate the
need for larger and faster machines. Here,
"faster" refers to the entire computer system and

not just to the CPU. The I/O requirements of the
codes at the Laboratory are such that if the CPU
were to gain speed without a corresponding gain
in the speed of I/O operations, many CPU bound
codes would become I/O bound.

The continual need for newer and faster
machines implies the need for the regular
monitoring of Laboratory computing workload in

order to assess advances in computer architecture
as they relate to this workload.

3. MIMD Architecture

Recent advances in technology indicate that

the next major computer procurement might involve

some type of MIMD architecture. According to

Flynn's taxonomy, MIMD implies multiple-
instruction and multiple-data streams, where an

instruction stream is the sequence of

instructions performed by the machine and a data

stream is the sequence of data manipulated by the

instruction stream [3]. In particular, in MIMD
architectures, several central processors operate
in parallel in an asynchronous manner; that is,

they may execute different instruction streams
and typically share access to a common memory.

The performance of such machines could be modeled
by the consideration of three processing speeds:

sequential, synchronous parallel, and asyn-

chronous parallel.

• Sequential speed characterizes the rate at
which a machine can process code that must
be processed in a sequential form, either
for reasons of logic or because it is too
costly to vectorize or parallelize it.

• Synchronous speed characterizes the rate at

which a machine can process code that lends
itself to either vectorization or
synchronous parallel processing with small
granularity. Vector processing permits a

single operation to be performed on many
elements of a vector in a pipelined fashion.
Synchronous parallel processing is the
processing of codes in which single
instructions are allowed to operate
simultaneously on multiple data.

• Asynchronous parallel speed characterizes
the rate at which a machine can process code
that is not suited to either vectorization
or synchronous parallel processing but that
can be parallel processed asynchronously in

122

large chunks. That is, sections of the code

can be processed independently from one

another with respect to time, allowing

multiple instructions to execute
simultaneously on multiple data streams.

Examples of this category are Monte Carlo

and PIC calculations.

These three factors should be considered

when judging the applicability of a parallel

processor. The determination of how these

factors should be weighted relies heavily on

understanding the degree to which Laboratory

workload can be divided into the three

categories .

4. Amdahl's Law and Its Extension

A major principle in large-scale scientific

computing is Amdahl's Law [4]. It states that

when a computer has two distinct modes of

operation, one high-speed and one low-speed, the

overall operation is dominated by the low-speed

mode unless the fraction of work processed in the

low-speed mode can be virtually eliminated. By

extension, this remains true in computers with

three modes of operation.

This principle increases the criticality of

understanding the extent to which major
Laboratory codes fit into the three categories of
processing speeds. For example, even a machine
that has infinitely fast synchronous and
asynchronous parallel speeds, but slow sequential
speed, would be ineffective on a workload
dominated by sequential code.

The effective speed of a computer with all
three processing speeds may be characterized in

the following fashion. Let f(seq) be the
fraction of the workload that can be processed in
sequential mode only, f(syn) the fraction that
can be either vectorized or processed by
synchronous parallelism, and f(asyn) the fraction
that can be processed by asynchronous
parallelism; then the time required to run this
workload is proportional to

f (seq) + f (syn) + f (asyn) 1

t
" S(seq) S(syn) S(asyn) S(eff)

where S(seq), S(syn), and S(asyn) represent
sequential, synchronous, and asynchronous speeds,
respectively, and S(eff) is the workload-
dependent effective speed of the machine.

5. Methods for Characterization of Workload

Our approach to characterizing the workload
at Los Alamos has had three stages.

In the first stage we used accounting
records to identify the major resource consumers.
For the identification we defined several base
parameters and considered these parameters over a

16-month study period. In particular, we defined
major users as those individuals who consistently
used in excess of $2000 of Cray time per month in

blocks of usage that exceeded three system
resource units, where a system resource unit
represents the basic unit of charge for computer
use, including CPU, I/O, memory, and system
times. This allowed us to determine the groups
within the Laboratory on which to focus our
attention and guided us to our second stage.

In the second stage we met with project
leaders, in the groups which we had identified,
to gain a qualitative understanding of broad code
characteristics, general composition of current
workload, the importance of peripheral features,
and directions and goals for the future. We also
obtained access to the major codes so that we
could conduct some measurement tests on them.

In the third stage, we examined the codes to

make quantitative assessments of the present
workload. In particular, we measured CPU time,
the number of floating point operations, current
MFLOPS rates, percentage of vectorization , and
average vector length. These measurements were
accomplished by taking advantage of a Cray
compiler option that compiles each floating point
operation as a return jump to an externally
supplied subroutine. The external subroutines we
then used executed the arithmetic that otherwise
would have been generated by the compiler, and
then counted the floating point operations,
sorting them by type of arithmetic operation and
by whether they were vector or scalar functions.
Intrinsic functions were counted separately by
modifying existing library functions to include
counters, and scale factors were applied to these
because they are iterative. SIN and COS were
each associated with 20 floating point
operations, whereas EXP, ALOG, and SQRT were
counted as taking 16 floating point operations
each

.

Of particular significance to the
characterization of workload for future machines
are the measurements of percentage of

vectorization and average vector length.
Recalling Amdahl's Law, we re-emphasize that a

new machine with a vector unit that is

considerably faster than that in current machines
but with a scalar unit demonstrating little or no
improvement will be ineffective in terms of total
speed-up unless the codes can be vectorized at a

very high percentage. Similarly, the average

vector length is significant in that some

machines will attain maximal speeds only on

extremely long vectors. Thus, unless our codes
have vectors that are long enough to take
advantage of this type of architecture, it would
not be the architecture most suitable for the

Laboratory workload.

It should be pointed out that floating point
operations, the traditional measure for the

workload of supercomputers, constitute only part
of the total work. Among others, branch and
subroutine linkage instructions can influence

performance significantly. In addition, the
sequencing of instructions is of great
importance

.

123

6. Results

We obtained qualitative results in the second
stage of our study and quantitative results in
the third stage. These are summarized in this
section.

6 . 1 Qualitative

Through discussions with the group and
project leaders identified from accounting
records, we were able to choose five large codes
on which to focus our attention. The first three
of these codes (Codes A-C) consume approximately
50% of the Laboratory's computer resources. The
other two codes (Codes D and E) are PIC codes in
which considerable effort at vectorization and
optimization has been invested.

Codes A-C are extremely large. Typically,
they have in excess of 100000 lines of Fortran,
are overlaid codes with 10 to 30 overlays, and
employ dynamic memory allocation techniques
because of their enormous memory requirements.
These features imply that a very large and very
fast memory will be needed in future machines
because memory access might be replacing CPU time
as a major bottleneck. Further, there is a need
for the ability to do rapid fetches and stores to
memory for noncontiguous vectors. It is

estimated that this type of scatter-gather
operation consumes as much as 30% of code run
time on these large codes. Having a hardwired
scatter-gather operation would therefore be a

tremendous advantage.

Codes D and E are smaller codes. In
particular, each has approximately 30000 lines of
Fortran. This smaller size is one of the factors
that makes concentrated attempts at optimization
and vectorization reasonable. Code E has a

further advantage in that 90% of its CPU time is

spent in a very small fraction of the total code.
Thus, attention can be focused on those Sii.all

segments with maximal benefits. Finally,
although Code D is primarily written in Fortran,
it does make use of Cray Assembly Language (CAL)
subroutines to gain speed-up wherever possible.
Code E has been extensively optimized and major
portions have been written in CAL.

Dimensionality of the codes is another
factor that influences the need for larger and
faster machines. The transition from scalar to
vector processing machines, with corresponding
increase in memory capabilities, yielded
sufficient speed-up to allow designers to work
with two-dimensional rather than one-dimensional
codes. By a one-dimensional code we mean a code
that has one independent variable, as is the case
with a geometry that demonstrates spherical
symmetry. A two-dimensional code employs two
independent variables as, for example, in the
case of cylindrical symmetry. It is estimated
that a speed-up factor of 10-100 in overall
processing ability is required for the
consideration of three-dimensional problems to be
practical

.

This change in emphasis from one- to two-

dimensional codes is reflected in the codes we

measured. Code A is an old one-dimensional code

that previously ran on the CDC 7600 and has been
converted to run on the Cray. Because it would

require enormous effort to restructure and

rewrite this code, little emphasis has been
placed on its vectorization. Codes B and C are

both two-dimensional codes that have been
designed with vector architecture in mind and

should reflect this consideration in the degree

to which they vectorize.

It is significant that the decision was made

not to invest the man-hours in vectorizing Code

A, but rather to accept the level of

vectorization automatically obtainable through

the optimizing compiler. Similarly, it can be

assumed that the same decision will be made

regarding the conversion of current codes to a

new architecture. Thus, there should be some

automatic optimization that will allow for

speed-up of existing codes in their current form.

Finally, we note that there is a

relationship between workload and architecture

that allows each to influence the other. In

particular, Monte Carlo calculations cannot be

vectorized effectively and are therefore

extremely time-consuming and costly. Hence, they

are not the method of choice in code design and

comprise only about 5% of the current workload.

If the next machine is a parallel processor, it

is possible that the fraction of Monte Carlo runs

would be increased because this architecture is

considered amenable to Monte Carlo calculations,

6.2 Quantitative

We measured the number of floating point

operations, current CPU times, percentage of

vectorization, average vector length, and current

MFLOP rates on Codes A through E. Codes A-C were

each run for different problem setups in an

effort to assess code performance on a variety of

typical problems. Because different setups

require access to different portions of the code,

it is hoped that the results obtained through the

combination of problems are representative of

total code use.

With Code A, one input problem used only the

hydrodynamics portion of the code, whereas the

second problem included both hydrodynamics and

neutronics transport cycles. In a third input

problem, which also used both hydrodynamics and

neutronics, we adjusted parameters to demonstrate

the relationship between average vector length

and MFLOP rate.

With Code B, the first input problem is

mainly a hydrodynamics problem, and the second

problem accesses the Monte Carlo portions of the

code also. Finally, the first input problem used

with Code C is a one-dimensional problem and the

second is a two-dimensional problem. The results

are summarized in the following table. Note that

the average vector length has a maximum of 64

124

MEASURED CHARACTERISTICS OF CODES A-E

Millions of

Floating CPU Time
Point (in

Code Operations (seconds)

Code A

Problem 1 219.6 69.6
Problem 2 137.9 38.4
Problem 3a 5.5 1.9

Problem 3b 9.4 2.8
Problem 3c 16.9 4.5

Code B

Problem 1 4432.8 232.6
Problem 2 8595.6 4314.5

Code C

Problem 1 4215.2 902.2
Problem 2 1121.9 225.3

Code D 136.3 69.8

Code E 2427.1 85.5

Average Percent- Percent-
Vector age age

MFLOPS Length Vector Scalar

3 2 59 1 8 98 2

3 6 11 26 5 73 5

2 9 8 29 1 70 9

3 4 13 28 7 71 3

3 8 21 28 4 71 6

L9 1 32 98 6 1 4

2 0 31 10 7 89 3

4 7 26 36 3 63 7

5 0 53 49 0 51 0

2 0 20 77 7 22 3

18 4 63 69 5 30 5

because all measurements were made on the Cray.

That is, when handling vectors with lengths that
exceed 64, the Cray divides the total length into

units of 64 plus a remainder and then processes
each separately.

7. Summary

So far, we have learned several important
lessons from this workload characterization.
They are summarized as follows:

• This method of measuring codes and discussing
code development with the designers can produce
valuable information about Laboratory workload
and will aid us greatly in modifying and

extending our benchmark set. This will permit
us to be assured of realistic test procedures
for new architectures, relative to the needs at

Los Alamos during the next decade. We will be
able to evaluate computers with new
capabilities reaching beyond those of the
present generation. Special emphasis should be

put on these capabilities.

• Other code characteristics are significant and

should be measured as this study continues; for

example, the number of noncontiguous memory
accesses, the amount of I/O and memory used
relative to the amount of CPU time, the ratio
of memory accesses to the number of floating
point operations, and the percentage of time
spent in library routines.

• Getting actual codes to run at advertised
levels of machine performance requires an

enormous investment of time, effort, and

funding. Therefore, in general, benchmarks

should not be tight, highly optimized programs
that demonstrate only the peak performance of

the machine under test. Overall, actual codes
are not highly optimized even after
considerable effort has gone into their
optimization

.

• This effort at workload characterization can be

beneficial to code developers as well as to us

as we modify and prepare our benchmark set.

That is, as we obtain measurements on the
codes, we are able to feed that information
back to the designers who, in turn, are able to
modify their codes to obtain better
performance. For example, on the Cray-1
vectors of length 64 produce optimal results
and short vectors (less than length 5) yield
lowest performance statistics. If the designer
is able to see measurements that indicate that
performance is suffering as a result of a small
average vector length, then in some cases it is

possible to modify loop counts in a manner that
will increase the average vector length, thus
producing higher MFLOP rates.

We would like to thank a number of people
for their cooperation in running the codes we
measured. In particular, we are grateful to Tony
Warnock, John Romero, Art Dana, Bruce Wienke,
Molly Mahaffey, Jim Painter, and Dave Forslund
for all their help. We also want to thank
Timothy Rudy of the Lawrence Livermore National
Laboratory for many of the subroutines used in

this study.

125

References

[1] B. L. Buzbee, "Large-Scale Scientific Compu-
tation at the Los Alamos Scientific
Laboratory," Los Alamos National Laboratory
report LA-7258-MS (June 1978).

[2] Los Alamos National Laboratory, "Institution-
al Plan, Long-Range Projections FY 1982-FY
1987," Los Alamos National Laboratory report
LALP-82-10 (January 1982).

[3] M. Flynn, "Some Computer Organizations and
Their Effectiveness," IEEE Trans, on Comput-
ers, C-21 No. 9, September 1972, pp. 948-960.

[4] J. Worlton, "A Philosophy of Supercomputers,"
Los Alamos National Laboratory report
LA-8849-MS (June 1981)

.

126

CASE HISTORY: BUSINESS DRIVER METHODOLOGY IN A MANUFACTURING

LOGISTICS APPLICATION

F. J. Machung

Department 943

Building 001-1

Poughkeepsie , NY

The business driver or key volume indicator methodology offers a means of

forecasting data processing computer workload as a function of user planning
indicators. This paper is a case history of one model developed in the manu-
facturing logistics area. The author assumes that the reader is familiar with
the fundamental notions of correlation and linear regression.

1. System Environment

IBM Poughkeepsie Manufacturing mission

covers a range of products from individual com-

ponents all the way to large systems such as 3033

and 3081. The data processing services support

the Manufacturing activities of product build,

assembly, test and release. The data processing,

services are grouped into three principal

clusters of workload.

The cluster boundaries were intially es-

tablished due to varying response and availability

objectives. The Interactive support cluster

supports the development and production of pro-

gram development and end user developed inter-

active data base systems. The Manufacturing

control cluster supports the process related

functions for direct manufacturing assembly,

build and test. The Administrative cluster sup-

ports the materials logistic, personnel and

administrative functions for three sites:

Kingston, Poughkeepsie and Brooklyn.

The Administrative cluster is composed of

(2) 3033 and (1) 168 processors in a loosely

coupled, JES-3 controlled environment. A 155

Telecommunication Support Processor System (TSPS)

routes all terminal traffic from Kingston,

Brooklyn and Poughkeepsie to the common Manu-

facturing Information System (CMIS) , the

principal materials logistics applications. The

CMIS applications are distributed across the

three processors. In addition, the Development

and Production Records System, a large IMS ser-

vice offering new product manufacturing logistics

applications and miscellaneous personnel appli-

cations, reside on a single IMS processor.

Teleprocessing networks exist between the three
clusters as well as to distributed satellite
nodes

.

In exces of 400 terminals are distributed
across the CMIS and IMS services. The daily
average transaction volumes for CMIS and IMS ser-
vices exceed 250,000.

The on-line data bases, which are dispersed
over 40 spindles, represent approximately 35% of
3330-11 spindles in the cluster.

Six major on-line and five major batch
functional services committed by Service Level
Agreements comprise most of the activity within
the cluster. Generally, the minimum availability
agreements are 95% for individual service com-
ponents and 92% for interconnected service
components

.

2. Applications Environment

The applications within the Administrative
Cluster support two major categories of activity:

1. Materials Logistics

2. Administration/Personnel

The materials logistics functions start

with order receipt from IBM's Administrative
Application Systems (AAS) and Consolidated Cus-

tomer Order Processing (CCOP) systems. The

orders are processed and disseminated through
the Common Manufacturing Information System

(CMIS) . CMIS is concerned with the materials re-

quired to produce the product, support the

planning, ordering and stocking or parts and sub-

127

assemblies, and controlling their distribution
to the Manufacturing floor. Basically CMIS
begins with the introduction of product schedules
and ends with the shipment of product from the
plant. The primary subsystems within materials
logistics are:

The following steps outline the procedure
used to generate computer workload forecasts:

1. Identify application sets.

2. Classify workload within application.

1. Development and Production Records System
(DPRS) which is the basic engineering and
manufacturing records system. The records
system supports product structure definition,
process description, records progression and
related engineering manufacturing services
of a product to be procured or manufactured.

2. Operations Planning (OPS) which explodes the
total product schedule into part and assembly
orders

.

3. Procurement (PROC) which provides vendor in-

formation to both purchasing and accounts
payable

.

4. Manufacturing Activity Release and Control
(MARC) which handles the release and control
of internal production orders, the deter-
mination of components required for these
orders, and the allocation of available com-

ponents.

5. Final Assembly Logistics Control (FALC) which
supports the final assembly of products to

customer order, providing customized
assembly parts lists and instructions for

each machine.

6. Warehousing (Whse) which controls the move-

ment of parts, materials and supplies from

receipt to disbursement or shipped. It

maintains an inventory of parts in stock, in

transit or assigned to vendors.

7. Purchase and billing which is a set of sys-
tems to control Accounts Payable to vendors,

the purchase of components and traffic and

transportation billing to customers.

Administrative/Personnel Systems perform
the accounting, measuring, costing and personnel
functions necessary to control plant operations.

The key volume indicator approach described
in this paper focuses on a subset of the material

logistics applications.

3. Survey users and applications development.

4. Collect available historical data on
potential user drivers.

5. Utilize regression analysis programs to de-
termine potential indicator validity.

6. Determine which applications are interrelated
to determine if macro modeling is possible.

7. Secure user forecasts and track monthly
values

.

Identify Application Sets

Utilizing the billing/utilization system
individual computer jobs are categorized into

application sets. Various resource and identi-
fying parameters are collected for the reporting
period. The task control block and system con-
trol block CPU seconds are the two key parameters
used to describe the workload.

Classify Workload Within Application Groups

The classification of workload within ap-

plication groups enables the capacity planner to

describe the workload as a function of shift,

e.g. prime, second, third or weekend as well as

user functional relationships. This step

enables the planner to describe those sets which
are the more significant consumers of resources.

Survey Users and Applications Development

The critical element in the driver method
required that the capacity planner survey the

owner-user of the applications. The components
of this survey are the following:

a. Briefly describe the application functions.

b. Itemize all key inputs and outputs.

c. Determine which of the primitive application

functions can serve as drivers of workload.

Determine whether the indicator is predict-

able in terms of user functional workload.

Determine if the indicator is readily track-

able in terms of forecasts and actuals,
source to torecast m known natural terms. The
operating premise is to utilize the highest level
and the most accurate planning drivers to fore-
cast this DP workload. This method enables the
capacity planner to minimize the number of
drivers and generate a macro view of the workload.
Figure 1 reflects the potential basic key volume
indicators for the Manufacturing site.

3. Methodology

The objective of the business driver ap-
proach is to provide a gross predictor of DP
computer workload enabling the user of the DP re-

128

Orders
Subproducts
Machines
Misc.
Equipment
Specs

Raw
Materials
• Receipts
• Demands
• Disburses
• Jobs

Mfg.

Cycles
• Start to

Build
• Test
• Ship

End
Product

• Subproducts
• Machines
• Misc

.

Equipment
Specs

.

• Features
• Frames

Finance

Basic
Records

• Part Nos.

• Changes
• Releases

Figure 1. Key Volume Indicators Macro View
(Potential Drivers)

f. Determine whether the prime inidcator is more
readily trackable in terms of some more
readily available derivatives.

The underlying purpose of the survey is to
determine the availablility of "natural" user
drivers and ensure an appropriate mechanism can
be installed to ensure tracking. In those cases
where drivers are not readily identifiable, pro-
grams may be required to extract the data from
the application system. Figure 2 describes
functional flow for one application group and its
associated potential drivers.

Regression

Once a sufficient data base of potential
drivers and resource parameters are amassed, the

search for predictable relationships begin. The
regression programs provide for seeking "good
mathematical fits" and coincidentally offer vali-
dation of the results. Our regression analysis
is conducted on a local APL Interactive Service.

Macro Modeling

After several iterations of regression,
some overall indicators may be apparent which
provide for summarization of lower model groups.
This will minimize the number of drivers which
must be reported and tracked without comprising
the prediction capability of the DP workload.
Figure 3 depicts a classification schematic for
one macro model.

User Forecast

Once the appropriate mathematical relation-
ships of drivers to CPU resource are identified
then a procedure is established to ensure timely
forecasts. In addition feedback of actuals is

required. The feedback process reports the
actual driver variances as well as the CPU re-
source consumed by model group.

Follow-on Activities

On a minimum of a semi-annual basis new
total forecasts are collected for the site op-
erating plan. In addition, selected sensitivity
analyses will be done to determine the adequacy
of service levels and the possible performance
characteristics of the workload. At present
the performance prediction of service factors is

not a direct part of the driver process. During
these operating plan cycles, the user projected
workload is converted into total system workload
for all application sets running within the

cluster. Based on derived or empirical capacity
statements versus the projected workload, the

required CPU resource is determined (Figure 4

highlights the overall capacity planning process)
while Figure 5 highlights the tracking system.

Collect User Drivers

This part of the process requires the col-
lection and classification of the drivers into
an appropriate data base. This will enable
future manipulation with the DP utilization data.

129

CUSTOMER ORDERS

IBM
AAS

IBM
CCOP

Final
Assembly
Logistics
Control

Front
End

Quantities

Customer
Orders
Being
Built

Mfg.
Demands

Manufacturing

Finished Product

Parts
Planning

Orders Inter
Plant

Order
Recommendations

Manufacturing
Activity-

Release
Control

Build
Procurement

Disburse Purchase
Orders

Warehouse
Operations

SHIPMENTS

Figure 2. Applications Overview with General Drivers

Macro Model: All Logistics

Model Groups: On-Line Support Basic Support
Logistics Logistics-A Logistics Logistics-

15

30

Application
Sets: 5 34 10

(Acronyms)

Jobs/Day: 28 101 157

Approximate %

Total Workload: 6 7 25 2

Note: The acronym designation is a standard established in the
billing/utilization system
(e.g. MEAS001) is the job number andMEAS is the pro j ect/workscope)

Figure 3. Classification Schematic

130

Product Ship Schedule
• Transform Products

Into Frames

Process Assumptions:
• Statistical Analysis

Prior Usage CPU
Time Related to

Product Trends
• Historical on Line

Volumes Related to

Product Trends
• New Assumptions
• Sensitivity Analysis

Response and
Availability

• Corporate Inputs or
Models

Algorithmic Modelling
• Compute Task Control

Block Hours
• Validate Formulae

Service Level and Response
Requirements

Calculate
Capacity

Discount

System Response and
Utilitzation Profile
(System Map)

Workload Capacity Statement

Figure 4. Capacity Workload Forecasting Example

131

User Forecast
Source: Schedule &

Comparison
Report

Contents: Product
Forecast
By Model

Actual CPU Time
Source: Monthly

Acronym
Report

Contents: TCM Time
EXCPS
SRB Time

User Actuals
Source: Monthly

Schedule &

Comparison
Report

Contents: Actual
Products
Shipped

Monthly
Source: Materials

Distribution
Center
Report

Contents: Total
Frames
Shipped

Algorithm Transformation

Model Forecast Data Base
Contents: Total Frames

CPU Time

Summarize/Normalize
Individual Applications
Into Model Groups

Summarize Model Groups
Into Macro Model

• Compare Forecasts to

Actuals
• Recalculate Estimated
CPU Based on Actual
Shipped

2
Reconcile

1. The regression approach requires a suf-
ficiently large data base to offer sensitivity

2. Many plausible relationships can be readily
established but they may be invalid because:

a. The data contains little variation.

b. The historical driver may not be fore-
castable or it would be costly to

establish a forecasting machanism.

c. More definitive drivers have been es-
tablished which provide more accurate
historical fits but are unable to be
utilized for forecasting purposes since
the schedules are not provided at these
lower levels.

3. Some of the indicators utilized may be tech-
nology dependent which require:

a. A careful understanding of the historical
data before future predictions are pos-
sible, or

b. A transformation - approximation mech-
anism for the future product.

4. The horizon of predictability is sometimes
limited resulting in the typical "planners
droop"

.

5. The regression method is not intended to

provide detailed understanding of the ap-
plication jobstream characteristics. It

offers a collective view of workload.

The key volume indicator or business driver
approach offers a quick, flexible and realistic
method of forecasting DP workload. The key ele-
ments required to sustain this method are:

1. A classification schematic or standard of the

utilization data offering easy manipulation
for the required regression analyses.

Figure 5. Tracking System Overview
Data bases containing the utilization data
and drivers.

The Model

The algorithm which predicts the workload
for the "all logistics" macro mdoel is derived
from the monthly product ship schedule. The pro-
duct ship schedule is tranformed into "frames"
by machine type. The frames shipped is sum-
marized across th total product line. Figure 6

depicts various formulae and corresponding "data
fits" of estimate to actuals.

3. A corresponding tracking system.

The key volume indicator method offers the

following advantages

:

1. User Deterministic

:

The user of the data
processing service is required to estimate
the business parameters which are even-
tually reflected in the capacity require-
ments and operating service level
agreements

.

Operating Experiences

After approximately two years in accumu-
lating data and validating the model results, the
following experiences are offered:

Synthetic Approach: The method offers the
ability to mathematically relate general
drivers to overall data processing workload,

132

Figure 6. All Logistics

3. Heuristic

:

The driver approach provides
for easy data manipulation and analysis once
categorization, classification and col-
lection structures are established and
maintained

.

4. Usable

:

The method offers a practical and
non-labor intensive means of describing
workload adaptable to a changing business
environment

.

5. Educational

:

The method requires that the
data processing operations function and the

users to understand the general business
drivers and their relationship to data pro-
cessing workload.

The disadvantages of the key volume indi-
cator method are:

1. Generalization

:

The method is not intended
to be used for a detailed analysis of indi-
vidual jobstream or on-line performance
analyses. To understand the functional
operating characteristics of each application
and jobstream, detailed models are required.

2. System Control Product Sensitive: The data
base of utilization requires adjustments for

operating system releases, new application
functions or application software changes.

Due to some of the aforementioned operating
experiences, Mid Hudson Vallev Manufacturing
Computer Center utilizes three approaches in

estimating workload. These three approaches are:

1. The business driver or key volume indicator
method

.

2. Trendline method where little variation
exists in the data or a historical trend is

evident and satisfactorily projects workload.

3. Specific detailed application models done in

conjunction with Corporate groups where com-

mon application development is undertaken
and the jobstream or response characteristics
must be individually assessed.

However, the business driver approach
offers the DP Site the capability to understand
the true relationship of the user driven work-

load and its translation into computer workload.
It is readily adaptable to a changing business
environment

.

References

Sarna, David E.Y., Forecasting Computer Resource
Utilization Using Key Volume Indicators , Price
Waterhouse & Company, New York, New York;
National Computer Conference 1979.

133

I

"Improving Organizational Productivity"

deling Technique

135

SESSION OVERVIEW

MODELING TECHNIQUES

K.C. Sevcik

University of Toronto
Toronto, Canada M5S1A1

Computer system modeling has come to be recognized as an effective technique
for understanding and predicting computer system performance. Models based on
only a few dozen parameters are capable of capturing the essential system aspects
that most influence performance. Solution of these models can be based either on

mathematical analysis or on simulation.

The purpose of this session will be to familiarize the attendees with some

recent studies in which modeling techniques have been developed and investigated.
Also, one paper will provide an overview of the components now available in

typical software packages for analysis of models of computer systems.

137

!

Design of A Software Tool For Evaluation

of Computer and Communication Systems

Ashok K. Agrawala
Satish K. Tripathi
Ashok K. Thareja

System Design and Analysis Group
Department of Computer Science

University of Maryland

The Systems Design and Analysis group at the University of Maryland is in the
process of designing and implementing a software package aimed at providing the
necessary tools for the performance studies of Computer and Communication Systems.
Implemented in a user friendly environment, this package will provide the analyst
easy access to the state-of-the-art performance modeling techniques including
analytic, simulation, hybrid and approximation techniques. The design concepts
of the package are presented in this paper.

Key words: Queuing Models; simulation; approximation techniques; systems performance;
software package.

L. Introduction

As the complexity of computer systems is

increasing, it is becoming more and more impor-
tant that adequate tools be available to analyze
and evaluate their performance. Queueing network

models have been found to be very robust models
for computer systems. The state-of-the-art tools
incorporating queueing network models suffer from

one of the several inadequacies: the solution
techniques used may be outdated, software is spe-

cialized to some specific application, the

software provides a poor user interface and is
very difficult to be used by somebody other than
the designers and implementors , the tool imple-
ments some specific solution techniques, or the

tool is in a private domain.

The Systems Design and Analysis Group at the

University of Maryland has undertaken a project
to design and implement a comprehensive software
package. The goal is to implement a tool that

incorporates the whole range of queueing network
modeling techniques, i.e., analytic, simulation,

hybrid and approximation, under a common friendly

user interface and is modularly expandable. The

tool is to serve the needs of the users with
varying degrees of knowledge of the performance
evaluation techniques. This paper summarizes
important design aspects of this package.

Sections 2, 3 and H provide a quick glance
at the user and application environment assumed
for package, the possible applications and some
related design goals. These sections should be
very helpful in assessing the applicability of
the package to an application. Section 5 defines
the class of systems to be analyzed and the
modeling primitives used in the implementation of
the package. This section is essential in under-
standing of the design details of the package.

An example of a realistic system is intro-
duced in Section 5, where it is used for demon-
strating the set of assumptions required to
describe a system in terms of the modeling primi-
tives of the package. The same example has been
carried through the other sections of the paper
to illustrate different aspects of the package.
The example should be useful in understanding the
way a realistic modeling problem may be formu-
lated and analyzed using the package.

A model definition language, MDL, has been
defined to communicate the model definitions
across various cross-sections of the information
flow path. A brief introduction to MDL is
presented in Section 5. Sections 6, 7, and 8

describe the design details of the main modules
implementing the package. Only the main concepts
have been described in this paper.

139

2. Operational Environment for the Package

2 . 1 User Environment

Two basic skill levels have been assumed for

the users of the package:

1) Performance Analysts : Users, who are familiar

with the primitives used in implementation of the

package to define queueing network models and are

versed with the analytic techniques are assumed

to possess skill level of a Performance Analyst.

Such users would be able to interact with the

package through an interface where they have an

access to the full capabilities of the package,

in terms of the range of systems that may be

modeled and the type of analysis that may be per-

formed. An intermediate level knowledge of queue-
ing theory and familiarity with the implementa-
tional details of package would enhance the

skills of a Performance Analyst.

2) Application Analysts : Not all users interested
in solving problems of systems design, configura-
tion planning, systems management or systems
evaluations can be expected to possess the skills
of a Performance Analyst. The users who are
involved in systems with specific applications or

in a specific aspect of the design, analysis, or

management can be considered Application Analysts
for our purpose. An application analyst will
interact with the package through an application
oriented interface that tailors the package to

the requirements of the specific application.
Thus a user with minimal knowledge of the inner
workings of the package and queueing theory
techniques should be able to use the package sys-

tem for solving a specific problem.

An application analyst's view of the package
would be more of a problem solver than that of a

queueing network models analyzer. An application
analyst would be able to interact with the pack-
age in terms of the terminologies of the applica-
tion. The package would be able to retrieve
predefined models or create models from
predefined schema on -the type of the system or

application to be analyzed. The user then sup-
plies information to define the parameters of the

models and to carry out the other phases of the
analysis.

2.2 Configuration Planning Using the Package

Consider the problem of planning the confi-
guration of a computer system. Typically, the
workload to be handled, the choice of components
available, performance and cost constraints are
known. Thus, the problem of planning involves
selection of the different components; determin-
ing component capacities; identifying intercon-
nection topology of the components and scheduling
disciplines so that the resulting system can han-
dle the given workload under specified perfor-
mance and cost constraints. To keep the example
simple, we will ignore factors such as cost,
reliability, etc. So that, the main problem is

to select a combination of choices with which the
system offers the best performance.

An approach to solving the problem without
using the package is to write a benchmark for the
given workload and to run it on different confi-
gurations until we find one that offers the per-
formance. This method, however, is expensive. The
problem can be solved relatively easily and inex-
pensively using the package as follows.

The user begins by describing a base line
configuration. If a user is interacting with the

package through an interface tailored for this
application, describing a base line configuration
will involve describing different devices, their
capacities, their interconnections, the schedul-
ing disciplines and the performance measures of

interest. The variable factors for which alter-
nate choices exist will be described next. The
interface will set up a queueing network model
for the base line configuration. Relative to this
base line configuration, the user describes the

alternate choices. The package interface then
initiates the execution of the solution and
report generation phases successively to solve
the model and provide comparative performance
figures.

The user may choose to bypass the applica-
tion oriented interface and work with the package
at a performance analysts' level. If the
application oriented interface has been imple-
mented and the user just needs the standard
application schematic, there should not be any
reason for a user to do this. But we consider
this possibility here to provide the performance
analysts' view of the package. Working at this
level, the user sets up the queueing network
model for the base line configuration using MDL.
The user creates a model definition file and
using a text file editor available on the host
system describes the queueing network model in
term of MDL constructs. Alternatively, the user
may retrieve the model from the model Archives if
such a model has already been developed.

After building the model definition file,
the user logs on to the package. The user iden-
tifies the performance quantities of interest
such as throughput, response time, etc. The
alternate choice with respect to the base line
configuration are given more explicitly as the
range values representing the capacities of indi-
vidual components, and interconnections. The
user may select a particular solution technique
or leave this decision up to the package. In the
latter case, the Monitor in the package deter-
mines the most appropriate solution technique
based on the input model. The results obtained by
solving the model are saved in an output data
structure. The user may choose to sample the

results as the solution of the model proceeds.
The user may decide to prematurely terminate the
execution after studying the sample results.

Next, the user interacts with the Monitor to

specify a set of performance quantities (which
may be a subset of those provided by the solution
phase), and the formats for tabulation of these
results. Reports in the form of tables or plots

140

of comparative performance measures for the
alternate choices may thus be obtained.

After examining the performance reports, the
user may choose to experiment with various types
of components, different numbers of components,
alternate interconnection topologies, or alter-
nate scheduling disciplines. Experimentation may
either involve changing the model in the model
definition file or merely providing new values
for some model variables. In the latter case, the
user interacts with the Monitor to provide new
values for the variables. To change the model
the system text file editor is to be used to
appropriately modify the model definition file.
In either case, the process of solution and
report generation will have to be repeated. A

typical configuration planning phase will involve
several iterations of this type.

3. Design Goals

In the process of any design a set of
choices have to made. In order that the end pro-
duct be similar to the expectations, the choices
should be made based upon criteria that are con-
sistent with the design goals. In this section,
we outline the major design goals for the pack-
age.

1) Modularity of system design : The total pack-
age should be decomposable into a set of well
defined modules. Modules should interact with
each other only through data structures and a
module need not know the internal operation of
other modules. A module should correspond to
some logical function of the package. This is
required to facilitate independent design and
implementation of the various modules.

2) Flexibility and Generality of the Model
Definition : Much emphasis is to be placed upon
the generality of the package in the classes of
problems that can be solved and flexibility in
extending its applications. More specifically, it
is intended that
a) a parameterized definition of a wide class of

systems of interest should be possible,
b) the class of systems to be analyzed should be

defined independent of the solution tech-
niques to be used,

c) a model be built independent of the technique
to be used for solving the model

d) it should be possible to carry out small
modeling exercises efficiently and quickly,
while providing facilities to handle more
complex modeling problems.

e) the model definition be adaptable to be
solved by different solution methods:
* exact solution techniques for analytic

queueing network models,
* approximate solution techniques for ana-

lytic queueing network model3,
* simulation techniques for generalized
models,

* hybrid solution techniques, (e.g.,

simulation and analytic methods) used in
solving subsystems of the same model, and

* solution techniques based upon hierarchical
decomposition.

3) Ease of Use : It should be possible to use the
package at one of the two levels: Application
Analyst, and Performance Analyst. (See section 2.

for more details on assumed user skill levels.)
At either of the two skill levels, a user should
be able to learn to use the package in a sys-
tematic manner. The package should provide basic
guidance for the use of the package to a naive
user to develop and solve relatively simple
models. For the more experienced users, it should
provide a quick reference to the complete set of
capabilities of the package.

4. Functional Overview

From the view point of the package, a typi-
cal modeling analysis involves the following log-
ical functions:

I. Information Extraction : Obtaining and
assembling the information to define a) a

base-line model for the system of interest,
b) the performance measures of interest for
which the model is to be evaluated, c) the
variables and their values in the succes-
sive models to be solved, and d) miscel-
laneous information such as the precision
of the results, format of the output
reports, etc. The information may be
extracted from several sources: a) directly
from the user in interactive sessions, b)

from the model archives in terms of some
pre-defined models, and c) as set of
assumptions pertinent to the application.

II. Model Solution : There are several solution
techniques for queueing network models:
convolution techniques for exact solutions,
mean value analysis, simulation, hybrid
solution techniques, different approxima-
tion technique, and the solution techniques
based upon decomposition and aggregation.
The suitability of a solution technique for
a given model may depend upon several fac-
tors: the assumptions and details included
in the model itself, the required precision
of the results, the time and cost
constraints, the number of different models
to be solved for the analysis, etc. More-
over, at times it may be desirable to solve
a model using more than one solution tech-
nique to validate the model and/or the
appropriateness of a solution method.

III. Communication of the Results : The results
obtained by the solution of a model or a

series of models may be used in several
different ways. The output of the analysis
may be sampled, as the analysis is being
performed, to affect the course of the
current execution in particular and the
whole modeling study in general. A summary
of the results in terms of tabulation and

141

plots or simple listing of the performance
statistics can be used to study the
behavior of the model. The performance
statistics of a model may be used as input
parameters for another model, especially
when analyzing a system using decomposition
and aggregation techniques. And finally,
the detailed output traces may be useful in

carrying out a follow up analysis for
further validating and characterizing the
model

.

In the following section, we describe the
way these logical functions are mapped on to dif-
ferent modules implementing the package.

4.1 Overview of the Design

The architecture of the package is shown in

Figure 1 . There are three main structures for
communication between the user and the package
and between the different modules of the package.
The subunits for the definition of a model are
defined in terms of the Model Definition Language
(MDL). A model is internally represented in terms
of the Internal Data Structure (IDS). The
results of the solution are represented in terms
of the Output Data Structures (ODS).

To define the model all the information is
collected in the MDL primitives. There are
several ways in which the information required to
define a model may be provided by a user. An
application analyst may define the model in terms
of a predefined schema for generating the class
of models pertinent to the given application. A

user may simply opt to retrieve a pre-defined
model in the repository of model Archives. A

performance analyst well versed with MDL primi-
tives may define the model directly in those
primitives. And finally, a user not so well
versed with the MDL primitives or with the schema
of an application may interact with the package
in the Tutored Mode to define the model.

The functions for the user interface and
coordination of different activities are imple-
mented by the Monitor. The Monitor has been
further structured into different submodules to
implement these functions. These modules are
shown in Figure 2.

The MDL Parser transforms the MDL primitives
into the IDS to be used for the solution. A

consequence of the MDL parsing is the verifica-
tion of the consistency and completeness of the
defined model.

Before the model can be presented to the
solution modules for execution, yet another task
has to be completed. There may be variables whose
values are not bound to their names at this
stage. Such a feature is provided to facilitate
solution of the same model with different values
of the parameters. The variable names may just be
bound to the new values without reparsing the MDL
definition. An explicit module called Binder car-
ries out the binding process.

The solution techniques are implemented by
the solution modules. That is, each of the solu-
tion methods such as convolution, mean value
analysis, simulation and each of the approxima-
tion techniques are implemented by a separate
module. The hybrid and decomposition-aggregation
techniques are implemented by a module that sys-
tematically invokes the other solution tech-
niques .

Most of the utility programs to interpret
the formats, queries, sampling directives, and
other output related functions are implemented in
the report generator module.

In summary, the package may be structured
into several modules and submodules each
corresponding to a logical function. The Monitor
provide an interface to the user and coordinates
the flow of control as the package is executed
for a modeling analysis.

5. The Classes of Models to be Solved

We would like to be as general as possible
in defining the types of systems that the pack-
age may be used to model and analyze. The type
of systems that we envisage the package to be

used to evaluate, design and improve upon may be
represented by generalized queueing network
models.

Queueing network models are a general class
of models which make use of simplifying assump-
tions to represent a complex system with a rela-
tively small number of parameters. A queueing
network model may be defined by:

1 . Resources

2. A Population of jobs making requests for
the resources, and

3- Rules which govern how the jobs proceed
through the network.

A resource is viewed as a waiting room
(queue), a set of servers, and a scheduling dis-
cipline describing the order in which the jobs in
the queue are to receive service. Examples of
system components generally representable by
model resources include processors, memory, I/O
channels, etc. Software systems entities such as
file managers, data-base managers and I/O
handlers may also be represented as resources in
queueing network models.

Requests are described in terms of the aver-
age number of times a job requires a resource and
the work demand placed upon that resource per
request.

The rules which govern how the jobs proceed
through the network represent the flow of jobs
through the system. For example, a job upon com-
pletion of CPU service might require I/O activity
seventy percent of the time and leave the system,
(i.e., complete) thirty percent of the time. A

job moves according to the routing rules through
the network making requests at the resources. If

142

upon arrival at a resource, a job finds all
servers busy, it waits in the queue until a

server becomes free. The next job to be pro-
cessed at the resource is then selected in accor-
dance with the queueing discipline at that
resource

.

In the following, we describe the charac-

teristics of the models and the systems to pro-

vide a feel for the kinds of systems that can be

modeled with the primitives available in the

package. We use the queueing network terminology
for such description.

The package may be used to model two broad
classes of systems, open systems and closed sys-

tems. These two classes of systems are modeled
by open and closed queueing networks, respec-
tively. Within each of these broad classes, a

system may have different characteristics for the

jobs and the way these are handled by the system,
different features for the resources and a

variety of classes of routing rules. Multiple
class systems with/without class changes are han-

dled by the package.

The queueing network models may be con-

veniently categorized into several classes based
upon the solution techniques which offer least

expensive and fastest analysis.

1 . Product Form Networks : These types of net-

works lend themselves to solution using

exact analytic techniques such as convolu-
tion algorithms and mean value analysis.

2. Non-Product Form Networks : Other analytic
and non-analytic techniques are available
for the models that do not satisfy all the

assumptions required for the product form
networks. Among these techniques are
several Approximation techniques, Simula-
tion, Hybrid techniques.

The package provides fairly general versions
of all the techniques described above.

There exist several features in systems

which are either hard to describe or are hard to

analyze without sophisticated techniques. The

generality of a performance analysis tool often
depends upon which of such situations can be han-
dled. In the following we describe some such
features that can be modelled and analyzed using

the package.

1 . Blocking of Resources : This pertains to the

situations in which a server may be blocked
because the queue of some other server is

filled to capacity. To allow a resource to

block another resource often precludes the

use of product form solution techniques.
2. Holding of Multiple Resources : The package

includes the primitives to describe and
analyze models which allow a job to hold
multiple resources. An example of such
models arises while modeling disk subsys-
tems with unequal number of channels and
devices. Again, such models are solvable
with non-product form solution techniques
only.

3. Scheduling Disciplines : Jobs may be

scheduled for processing at a resource
using one of several scheduling discip-
lines. A Variety of scheduling strategies
may be represented in the models.

4. Service Requirements of Jobs : The class of
systems that may be modeled are also
reflected in the generality with which the
service requirements of a resource may be
specified. At one extreme, the service
requirements of a resource may only be

specified using some pre-defined distribu-
tions, whose parameters may not depend upon
any system characteristics. At the other
extreme, arbitrary distributions with
parameter values depending upon the system
state may be included. In the package,
resource requirements of a resource may be
defined using both pre-defined as well as
user defined distributions. The parameters
of such distribution do not have to be
fixed, but may depend upon the queue
lengths at that resource or the state of
the system.

5. Routing Rules : The rules that govern the
manner in which jobs proceed through the
queueing network may be based on several
factors. The standard means of specifying
job flow through the system is by specify-
ing the probability for a job to select
each of the potential destinations, after
leaving the present resource (i.e., Proba-
bilistic Routing). In addition to the pro-
babilistic routing, the package provides a

generalized schematic to define arbitrary
deterministic and probabilistic routing
rules. Using this schema, routing rules may
be specified in which the decision as to
which destination a job selects after leav-
ing the present resource may depend upon
such factors as the state of the system,
and the attributes of the job.

To allow for the representation of such a

large variety of models, we need a rich set of
model definition primitives. We present in the
next section a set of primitives that provides
such an ability and forms the basis of the model
definition language of the package.

5.1 Model Definition Subunits

Resources and the jobs are the fundamental
entities of a queueing network model and it is no
surprise that most of the primitives required are
for describing these two entities. Resources are
often categorized into two classes: Active (i.e.,
the resources at which a job spends non-zero
time, once it has acquired the resource) and Pas-
sive (i.e., the resources which a job has to
merely acquire and it does not need any service
from such resource). There are two types of fac-
tors which dictate how job behaves at a resource:
those associated with the resource and the others
that depend upon the attributes of the job. (Of

143

course, sometimes such a division is only super-
ficial.) The factors which depend upon the job
attributes are conveniently described by grouping
jobs into classes and chains and then associat-
ing the attributes with the class or chains of
jobs. Subunit set gates may be used to define
dynamic changes of the attributes of a job.

The primitives for describing the flow of
jobs through the system also constitute signifi-
cant part of the model description. The defini-
tion of a job's flow through the system involves
defining creation of the job, its routing from
resource to resource, and its exit from the sys-
tem. The subunits source, fission, and split
gates are used for creating jobs, sink and fusion
gates for describing the exiting of the jobs from
the system, and the routing primitives are used
to define the path a job would take as it travels
.from resource to resource.

There are some other miscellaneous primi-
tives also. Initial state describes the state of
the system as the system is started, for example,

while simulating the system.

5.2 An Example System and Its Model

In this section we consider an example sys-
tem to be modelled and analyzed using the pack-
age. We first describe the system and then subse-
quently its model in terms of the primitives and
the subunits provided in the package. •

The architecture of the system is shown in
Figure 3. The relevant characteristics of the
operating system are as follows.

There are two classes of users, "batch" and
interactive ("demand"). A batch job may be in
any of the following states:

1. Initiation. In this state the job is set
up to be ready for execution if the needed
resources are available.

2. Queued for memory: this state may be artif-
icially separated from job the initiation
state. Once a batch job acquires memory it
is not swapped out.

Holding memory while queued for CPU usage,

Holding memory while using the CPU,

Holding memory while queued for I/O (a
small amount of CPU interaction is con-
sidered negligible in the I/O transac-
tions)

,

Holding memory while using an I/O resource,
and

Batch job termination. In this state the
resources that the job is holding are
retrieved and its existence in the system
in terms of job control block and other
information is destroyed.

A demand job may step through the following
states:

3.

4.

5.

6.

7.

1. Receiving terminal input: In this the job
does not tie up any of the major system
resources. The duration of time lor which
the job stays in this state is determined
by user's behavior.

2. Queued for memory: When demand jobs are
waiting for user input they may be swapped
out of memory, so upon receiving user
input, the job may have to wait for its
memory reallocation.

The other states are same as the states 3 to

7 for a batch job.

The job scheduler in the operating system
functions as follows. Whenever permitted by the
available work load a constant number of batch
and interactive jobs are maintained in the active
state. Alternatively, it may be assumed that
whenever an interactive or a batch job completes,
a similar job is introduced into the set of
active jobs.

The quantitative values for the workload for
each job are obtained using the performance moni-
tors available with the operating system. Exam-
ples of such quantitative measures include aver-
age CPU and I/O burst time (i.e., service times),

the number of times an average job visits each of
the resource (i.e., visit ratios), the number of
jobs that are on an average in the active set

(i.e., degree of multiprogramming or DMP), etc.

A queueing network model for this system is

shown in Figure 4. The model imitates the flow of
jobs of the real system. All of the important
resources are reflected in the model. The CPU,

the Terminals, and the I/O devices are each
represented by a FCFS queues. The finite memory
is represented by a Passive resource called
memory.

The jobs are distinguished as batch and

interactive, with respect to their resource
demands and the path of flow. The interactive
jobs alternate between the service at the termi-

nal and the rest of the system. While a batch job
when once enters leaves the system only after the

service is complete.

Upon entering the system a job requests
memory allocation at the allocate gate. The

amount of memory required by a job is

represented by the number of memory tokens
requested, which is defined by the token demand
distribution. After obtaining the memory, the job

receives service from the CPU and an I/O device.

The branching probabilities d_p1, d_p2, d_p3
represent the probability that a demand job would

select 101, 102 and 103 for I/O service, follow-
ing a service at the CPU. b_p1, b_p2, and b_p3
represent the corresponding values for a batch

job.

As a job completes service at the I/O, it

releases the memory at the mem-release gate. An

interactive job, at this time, returns to the

terminal for an amount of time defined by the

think time distribution. A batch job, however,

leaves the system. It is assumed that the operat-

ing system maintains a fixed number of batch jobs

144

acfcive at all times. This is reflected in the
models by the reset gate, which introduces a
batch job into the network as soon as one exits.

Here, we leave the example at this stage. In
the following sections, as we describe other
aspects of the package, we shall use this example
as an illustration.

6. Model Definition Language

In the last section, we described the subun-
its of a queueing network model. To describe a
model to the package, such as the one given in
the illustration of Section 5.3, a generalized
Model Definition Language (MDL) has been
developed. Here, we present an overview of the
language and an illustration of its use. The
Model Definition Language (MDL) is like a pro-
cedure oriented high level language.

A model definition is organized into seven
sections, as follows:

1) File identification section
2) Preamble section
3) Job description section
4) Subsystem specification section
5) Resource description section
6) Job flow description section
7) Initial system state specification sec-
tion

Here we illustrate the MDL constructs by an
example. We may point out that there are several
features of the MDL that are not included in the
example.

Consider the model developed in Section 5.3.
In MDL constructs, the model is described in Fig-
ure 5.

7. The Monitor

The monitor is the main control module in
the package. There are two types of activities
for which the monitor is responsible: providing a
friendly interface to the user and coordinating
the actions of different modules of the package.
In the following we describe each of these
activities.

7.1 User Interface

In order that both the advanced and novice
users can use the package effectively, two types
of interfaces are provided by the package: Com-
mand Mode and Tutored Input Mode. A user (whether
performance analyst or an application analyst)
who is well versed with the primitives and the
options available can directly define and execute
the models efficiently using the Command Mode. A
relatively novice user can be led through the
structures and the options of the package with
the Tutored Input Mode and can effectively use
the package without having to acquire a detail
knowledge of the inner-working.

The interaction with the package through
Command Mode is implemented by defining several
set of commands for various phases of the

analysis. The commands may be divided into
several categories:

1 • For Model Definition : The purpose of the

model definition commands is to provide
information regarding the model definition.
A model may be defined in several ways: by
giving the name of file with MDL defini-
tion, accessing a definition from the
Archives, collating multiple definitions,
or may be generated internally from some
predefined schema. Commands are provided to
cover each of these definition methods.

2. Input /Examine Variable Values : The values
for the variables may be input in several
different ways. A set of values may be

assigned to the variables for each execu-
tion of the model. Alternatively, a set of
values may be assigned for each variable
and the package be directed to execute the
model by using different sets of values for
each of the variables. Commands are
defined to examine the values of the vari-
ables and of other parameters of the model.

3« Output and Results : There are four types of
actions that may carried out upon the

results obtained through execution of the
model. The results may be sampled as
computation proceeds. Secondly, when the
execution of a model is complete a summary
of the results may be obtained in terms of
listings, tabulations and plots. A set of
performance measures may be identified for
which the information is to be stored for a

follow up analysis using the data base and
the associated query system. And finally,
the package may be informed that the output
of the current execution may be used as an
input for another model. The commands are
defined to specify the performance measures
and their formats for each of these
categories

.

4. Model Archiving : Commands are provided to
save the model so that it may be retrieved
at a later moment.

The Tutored Mode has been planned to circum-
vent the need for a user to know the format of
these commands. A menu driven implementation of
this mode has been proposed. The information is

organized in a tree structure. The information at

each node of the tree is defined at several lev-

els of details. This allows for a balance in

user interaction to achieve clarity without over-
abundant prose. For traversing the tree, the

user is presented with a series of questions,
most of which have a selection of numbered
answers.

There are a number of desirable features to

be added to this basic question-answer dialogue.
The user should have the capability to view the
partially defined model, make changes, reverse
previous decisions, or ask for further explana-
tion on a query. The flexibility of machine
interaction through a human engineered interface
is the ambitious goal in the design of this mode

145

of user interface.

7.2 Example of Interaction With the Monitor

In section 6 we described the MDL represen-
tation of an example model to be solved. After

completing the model definition in MDL, a user

will typically proceed to execute the solution
phase of the model. At this time the user starts

interaction with the package. In the following,

we identify at a functional level the interaction
of the user with the package and the activities

of the Monitor.

1 . At entry the user is asked to make a series
of choices for the package to determine the
skill level of the user, the mode of opera-
tion, i.e., Tutored Mode or Command Mode,
the user terminal type, and the degree of
detail for the prompts. A default set of
options are invoked, if user wished to
bypass this stage.

2. The information is extracted from the user
that will lead to a complete definition of
the model in MDL. The user may simply give
the name of a model file or may invoke the
model Archives Management to retrieve a
predefined model. The details of the
interactions with the Archives Management
are described in section 8.

3. The user is asked to select a suitable
method for the model solution As a default,
the Monitor may select the suitable solu-
tion technique. In this case, the simula-
tion will be an appropriate technique.

4. At this stage, upon user's request the mon-
itor invokes the Input phase submodule to
parse the model. The Parser produces a
data structure of the model, i.e., IDS. If
there are any inconsistencies in the model
definition the user is informed and the
process is aborted if the inconsistencies
are fatal.

5. At this stage the package requests the
values for the unbounded variables. In the
example at hand, the user specifies the
values for variables "batchno", demandno",
"d_cycle" and "b_cycle". The user may in
addition review the model and the values of
the parameters.

6. The user at this time provides the informa-
tion about the performance statistics to
sample, to be summarized at the end of the
execution, to abstract to link this model
to some other model, and for possible
interest in the follow up analysis.

7. The Solution phase module of the Monitor
invokes the Binder to bind the model param-
eter values for all occurrences of the
relevant variables in the model. The con-
trol is then passed to the appropriate
solution module. This module solves the
model, writing its output to the Output
Data Structure (ODS) and signaling comple-

tion to the monitor.

8. The solution submodules may run into some
contingencies or may need to communicate
with the user to display the sample
results. In either case, the control is
systematically passed to the Monitor which
coordinates the appropriate activity.

9. After the execution is complete the user
may choose to do one of several things:
save the model and suspend the execution
for now, execute the model with different
values for the parameters, or carry on a
follow up data analysis using the query
system.

8. Archives Management

The Archives Management implements the basic
facility to store and retrieve the predefined
models. The models are stored in the form of
MDL. The archived models may be the models for
complete systems or merely the components of a

system that may be collated to create a complete
model

.

The MDL files may be archived in one of the fol-
lowing ways:

1. A user types up a model in a file, using
the system editor, and want the package to

maintain the model so that he or some other
users may be able to use this model.

2. The user suspends the editing session for

defining a model to resume it later. The
partially defined model may be saved in the

Archives.

3. Using an application schema the package
created the model. The user may also
archive such a model.

4. During the model execution the variables in

the model may have been assigned some
values that are different than the ones
provided as the initial values in the MDL
definition. An option is provided where
the model definition may be archived with
the set of values current to the execution.

Several pieces of information is stored

along with the model definitions at the archiving
time. This may include:

1 . Status indicating whether the model has
been executed at least once,

2. A symbol table giving the number, type, and
name of all of the model parameters. This

is provided especially if the model is

archived with the option mentioned in 4)

above.

3. Version control information. This informa-

tion is needed for addressing and protec-

tion of the elements archived. At present

146

only a modest protection system is pro-
posed, since the extent of the protection
will significantly depend upon the protec-
tion facilities available in the host sys-
tem. The retrieval of the model is possible
using more than one keys. For this pur-
pose, an Archives index is maintained with
the name of the system modelled, name of
the author, the version number, and an
additional optional key.

9. Concluding Remarks

We have presented the design level details
of the package under development. As noted
above, the goal is to create a flexible and
expandable environment for system performance
studies. New techniques and methodologies, as
they are reported would be easy to incorporate in
the package.

147

User

LEGEND:

Data Flow

Control Flow

Figure 1

Simplified System Block Diagram

< Input Data Structure
(IDS) >i

i

—
Solut ion
Modules

(Output Data Structure
(ODS) >

Report
Generator

148

\

Monitor

Application
Schema
Phase

Archives
Facility

Input

Phase

Solution Phase

Consistency
& Complete-
ness check

Solut ion

Specifi-
cation

Report
Generator
Control

Input Data Structure
(IDS)

LEGEND:

Data Flow

Control Flow

Figure 2

Detailed System Block Diagram

Solution
Module

1

Solution Modules

Solution
Module

2

Solution
Module

N

Output Data Structure
(ODS)

Report Generator

149

Modeling Primitives

terminal 1

terminal 2

terminal N

System
Bus

i/o unit 1

disk

i/o unit 2

printer

i/o unit 3

drum

memory

Figure 3

Architecture of the Example System

150

v<- .< < < reset < < < < <

I i

{ batch job initiation and termination }

V<-

batch
jobs

terminals
demand

{ represents all demand terminals } jobs

The memory tokens are allocated at "mem-alloc",
are held by the jobs as long as they stay in system,
are stripped from jobs at "mem-rel", returned to the
memory token pool, and are available for reallocation

/ \
/ \ o

/mem_ \
/ alloc \

/ \
V

memory

{ restriction on memory capacity: a maximum
of "memcapac ity " memory units may be allocated
to jobs. }

\ mem_ /
\ rel /
\ /
\ /
\ /

d_pl , b_pl
iol •>V

cpu

~ d_p2

,

> > + > >_.

V b p2

V
> >.

d p3, b p3

io2

io3

demand jobs cycle through cpu-io loop
'd_cycle' times; batch jobs cycle through
cpu-io loop *h cycle" times }

+> >

V d_termprob "

,

b_termprob

d_cycleprob V,
V b cycleprob V

V

V
-<

Figure 4

Queueing Network Model of the Example System

151

Figure 5

MODEL OurMod el

VERSION 4.1

VARIABLES
{ The number of memory subunits available

for jobs is: }

memcapacity : INTEGER := 64 ;

{ The probabilities of "demand" users branching
from cpu to iol and io2 respectively are: }

d_pl , d_p2 : REAL := 0.34 33 ;

{ The probabilities of "batch" users branching
from cpu to iol and io2 respectively are: }

b_pl, b_p2 : REAL := 0.3573 ;

{ The number of times "batch" and "demand" users
execute a cpu-io cycle is }

b_cycle, d_cycle : REAL ;

{ The number of users of class "batch" is }

batchno : INTEGER ;

{ The number of users of class "demand" is }

demand no : INTEGER

RELATIONS
{
"b_outprob", "b_cycleprob", "d_outprob",
and "d_cycleprob" are branching probabilities
which depend upon the variables "b_cycle" and
"d_cycle". }

b_outprob : REAL := 1/ b_cycle ;

d_outprob : REAL := 1/ d_cycle ;

b_cycleprob : REAL := 1- b_outprob ;

d_cycleprob : REAL := 1- d_outprob ;

Model Definition Language

{ The probabilities of branching for "demand"
and "batch" users from cpu to io3 : }

b_p3 : REAL : =» 1 - b_pl - b_p2

;

d p3 : REAL : - 1 - d pi - d_p2

;

(Specification of number of jobs of class
"batch" and "demand" }

CLASS batch : batchno ;

demand : demand no

ACTIVE terminals

QUEUE FCFS
RATES DEPENDENT demand EXPONENTIAL (#

)

UPTO demand no
FIRST 0.5
DELTA 0.5

ACTIVE restart
{ This resource is for batch job accounting : to

indicate overhead for a job of class "batch"
entering and leaving the network. }

152

Figure 5 (cont
.

)

QUEUE FCFS
RATES DEPENDENT batch EXPONENTIAL (#)

UPTO batchno
FIRST 0.1
DELTA 0.1

ACTIVE cpu

QUEUE PS
RATES INDEPENDENT

batch EXPONENTIAL (10) ,

demand EXPONENTIAL (8)

ACTIVE iol

QUEUE FCFS
RATES INDEPENDENT

batch EXPONENTIAL (5) ,

demand EXPONENTIAL (3)

ACTIVE io2

QUEUE FCFS
RATES INDEPENDENT

batch EXPONENTIAL (3) ,

demand EXPONENTIAL (8)

ACTIVE io3

Model Definition Language

QUEUE FCFS
RATES INDEPENDENT

batch, demand EXPONENTIAL (4)

,

PASSIVE memory
ALLOCATE mem_alloc
RELEASE mem_rel
QUEUE FCFS
TOKENS memcapacity

{ The token demand distribution represents
the integer number of memory subunits in
each job's working set }

TOKENDEMAND
batch EXPONENTIAL (10) ,

demand EXPONENTIAL (6)

153

Figure 5 (cont.

)

ROUTING

CLASS demand

terminals ->

mem_alloc ->
cpu ->
(d_pl, d_p2, d_p3 : iol , io2, io3)

->
(d_cycleprob, d_outprob : cpu, mem_rel)

mem_rel -> terminals;

CLASS batch

restart ->

mem_alloc ->

cpu ->

(b_pl, b_p2, b_p3 : iol, io2, io3) ->
(b_cycleprob, b_outprob : cpu, mem_rel)

mem_rel -> reset;

EOM {End Of Model }

154

A PERFORMANCE BOUND
FOR MULTIPROGRAMMED VIRTUAL MEMORY SYSTEMS

Rollins Turner

Digital Equipment Corporation
Distributed Systems Performance Evaluation

Tewksbury, MA 01876

Optimal Memory Allocation and Scheduling of two programs running

in a manory constrained environment is investigated. A simple

mathematical model, representing the system as a controlled Markov
process, is defined. The problem of jointly optimal memory
allocation and scheduling is solved for this model using a technique
from stochastic control theory. Several improvements in computation
time are shown, and a technique for ensuring convergence of the

iterative solution algorithm is developed. Numerical examples are

given, showing several possibly counterintuitive results.

1. Introduction

The performance of a

multiprogrammed virtual memory
computer system depends on numerous
decisions made by its operating
system. We can group many of these
decisions into two major categories:
program scheduling and memory
management. Scheduling means deciding
which program to run at any given

time. Memory management involves two
kinds of decisions: deciding how much
memory to allocate to each active
program at any time, and deciding
which of a program's pages to hold in

its allocated space. The designers of
a virtual memory operating system face
the problem of determining how the
operating system will make these
decisions. In this paper a simple and

abstract version of that problem is

formulated in terms that permit
mathematical treatment, and solved by
a technique from stochastic control
theory. The resulting control policy
is not claimed to be of practical
value for application in actual
systems. However it provides a bound
for the performance of a broad class
of control policies. It could
therefore be of use as a benchmark

against which the performance of
practical control algorithms can be

compared or in a proof of optimal ity
of another, more practical, algorithm.

In addition, the relatively simple
system model used in these solutions
permits certain insights that might be
obscured by the complexity of a more
realistic model.

1 . 1 Overview

We attack the problem of running
two programs as quickly as possible in

a limited amount of memory. In doing
this, we must decide how much of the
memory to allocate to each program,
which program to run any time, and
when to do page reads. Section 2 of
the paper provides definitions and
background information, and then it

gives a mathematical formulation of
the problem. The system is
represented as a controlled Markov
process , and the problem is defined as

determining an optimal control , or
parameter value, for the process. The
cost function to be minimized is the
expected time to reach a terminal
state, which represents completion of
the two programs.

155

Section 3 describes a solution to

the problem defined in Section 2,

using a basic technique of stochastic
control theory known as "iteration in

policy space." With this technique an
initial approximation is made for the
expected time until completion from
each system state. On the basis of
the approximate finish times, the best
control decision at each state is

determined

.

Using these decisions, new
approximations are determined for the
minimal expected finish times. This
cycle is repeated until it converges
to a fixed set of decisions and
expected finish times, which are
guaranteed to be optimal . Section 3

describes this solution technique in
detail, including practical
considerations of computation time and
determining when convergence has
occurred. Also, Section 3 provides an

intuitively meaningful interpretation
for the intermediate results of the
iteration. It makes use of this
interpretation to develop a technique
for determining successively better
upper and lower bounds for the minimal
finish times at each state.

Section 4 provides several
numerical examples, each intended to
illustrate a particular point. We
might hope to find some simple rules
by which optimal decisions can be
determined without having to go
through the extensive calculations
described in SEction 3. No such rules
have been found at this time. The
examples in Section 4 refute several
seemingly reasonable principles that
might be thought to lead to such
rules.

Section 5 gives a summary and
conclusions.

1.2 Relation to Prior Work

The memory management problem has
been studied extensively over the past
ten years. (See [COFF771 , [FERR78]

,

and [SPIR77], and bibliographies
therein.) Scheduling has also been
studied extensively, both in reference
to computer systems and in a more
general context. (See [COFF73],
[COFF76], and KLEI76], and references
therein.) However, the treatment of
scheduling and memory management as a

joint optimzation problem is not well
developed. This paper deals with the
joint optimization problem, within the

framework of stochastic control
theory.

Application of control theory to
analysis of computer systems is not a

new idea. Ashany [ASHA72] formulated
several problems of computer
performance analysis within a state
space framework, and used control
theory techniques to solve them.
Wilkes [WILK73] used a control theory
setting for a discussion of memory
management policies, including general
descriptions of several existing
systems. Lew [LEW76] formulated the
page replacement problem as a
multistage decision process, solvable
by dynamic programming. Arnold
[ARN075] developed a memory management
algorithm using a Wiener filter
predictor. Raj Jain [JAIN78]
developed a more general predictor
based on an ARIMA (Autoregress ive
Integrated Moving Average) model of
the program's memory reference
behavior and the forecasting methods
of Box and Jenkins [BOXJ76].

This paper differs from the
previous work that applied stochastic
control theory to memory management,
and from most prior work in memory
management, by considering the issues
of memory management and scheduling as
a single problem with a system level
cost function. All of the above
mentioned papers that treat memory
management mathematically optimize
cost functions defined for individual
programs, such as page fault rates.
We shall not be concerned with the
performance of individual programs or
with page replacement algorithms. We
assume that some page replacement
algorithm has been chosen and that the
resulting page fault rates are known
for each program running in each
possible amount of memory. We assume
that these fault rates are
statistically stationary, and that
increasing a program's memory
allocation does not increase its fault
rate. Within that framework, we
concentrate on how to divide the
memory among the programs, and which
program to run when both are ready.

2. Problem Formulation

In this section we define a

simpler and somewhat more abstract
mathematical problem based on the very
complex and ill-defined actual problem
of designing an optimal scheduling and
memory management policy for an

156

operating system. Our goal is to

capture the essence of the real
problem in a tractable mathematical
form. We begin with a model of
program behavior, described in Section
2.1. Section 2.2 then defines the

system within which the programs are

to be executed. Section 2.3 describes
a representation of the overall system
as a controlled Markov process, which
is the context for our optimization
problem. Section 2.4 gives the
problem statement.

2.1 The Program Behavior Model

We represent the execution of a

program as a continuous time, finite
space, stochastic process. When a

program is running, it produces page
faults (references to pages not in

memory) at random intervals, with the
average fault rate depending on the
program's memory allocation. If the
program occupies N pages of memory,
its execution time between page faults
is exponentially distributed, with an
average rate of mu(N) faults per
second. We assume that mu is a

nonincreasing function of N. We also
assume that the total execution time
for a program is exponentially
distributed, with mean completion rate
nu. All probabilities are assumed to

be time independent.

Notation : We use Greek letters
for parameters of stochastic
processes, which have arbitrary
values, but which will be known when
any specific instance of the problem
is to be solved. In this draft, the
English names of the Greek letters
will be spelled out, as in the above
paragraph. When it is necessary to
distinguish between parameters of
separate processes, numeric indices
will be used, either within
parentheses or as a suffix to the
letter name. Thus mu(1,N1) denotes
the fault rate of program 1 running
with N1 pages in memory. The symbol
mu1 will be used for the same purpose
when the amount of memory is
understood

.

2.2 System Description

We shall be concerned with a

multiprogramming system in which two
programs are to be executed. This
section describes the rules according
to which we assume that system
operates

.

Whenever a reference is made to a

page that is not in memory, the page
must be read in before the program can
continue. A page cannot be read in
except as a result of such an event,
which is called a page fault. The
time required to read in a page is an

exponentially distributed random
variable with known mean (1 /lambda),
and is independently and identically
distributed for all pages and both
programs. Only one read may be in

progress at anv t .me, and once started
the read must go to completion. Page
reads may be o 'erlapped with execution
for the other program so long as the
other program is executable. Only one
program may be executing at any time.

At various times in the operation
of the system just described,
decisions must be made. An actual
system will incorporate a set of rules
by which these decisions are made in

response to various system events.
There are three types of decisions
that must be made:

1. Which program to run at any time.

2. When to read in a required page.

3. Which page to displace with a page
being read in.

We shall limit our concern with
page replacement to deciding from
which program to remove a page when a

replacement is necessary. An

unspecified page replacement algorithm
makes the decision of which particular
page to remove from that program. The
page fault function, mu(N), for each
program reflects the page replacement
algorithm as well as the program's
behavior

.

As we have defined the system,
decisions are only required at certain
discrete points in time. Decisions
are required when the following events
occur

:

1 . A page fault.

2. Completion of a read.

3. Termination of a program.

157

2.3 Representation as a Controlled

Markov Process

The system just described can be

represented by a controlled Markov

process [KUSH71] • A controlled Markov

is identical to an ordinary Markov

process except that the state

transition probabilities can depend on

a parameter, which is called the

control . For any particular choice of

the parameter value, the state

transition probabilities are fixed

values, and the resulting process is

an ordinary markov process. Thus we

can think of a controlled Markov

process as a family of ordinary Markov

processes with a common state space.

By specifying the parameter value, or

control, we select one member of the

family. For the problem of interest

here, we need only consider controls

with a finite number of values (i.e.

finite set of Markov processes), and

processes for which the transition
probabilities corresponding to any

particular control are fixed over

time. The Markov process

corresponding to any particular
control will be a discrete space

continuous time process, within a

finite number of states. For each

state, the probability distribution

function for the time until a state

transition will be known, although it

may depend on the control as well as

the state.

In an optimization problem we

always have a cost function . In the

case at hand, the cost function is the

expected time to reach the terminal

state. The optimization problem
consists of determining a control

(i.e. a specific member of the family

of Markov processes) for which the

cost function is minimal . In the

originally described problem we were

concerned with making decisions.
Specifically, we had to make decisions

about how much memory to allocate to

each program and which one to run. We

think of these decisions as

controlling the system. However, in

fact, they do not determine precisely

how the system will behave in the

future, but only the probabilities for

how it will behave. Hence a complete

set of decision rules is a control in

exactly the same sense as the word is

used in "controlled Markov process."

When the system is represented as

a controlled Markov process, each
possible set of decision rules
corresponds to a particular control

.

Or, in other words, each possible set

of decision rules maps into a set of
state transition probabilities
governing a specific Markov process.
An optimal control for the controlled
Markov process can be interpreted
within the original system as a set of
decision rules for which the expected
completion time is minimal.

We emphasize that the system we
have described is stochastic, and that
the completion time is a random
variable. If the system were actually
implemented as described and many
experiments carried out with a

particular set of decision rules, the
observed completion times would vary
from run to run . The observed
completion times for an optimal
control would not always be less than
those for a non-optimal control.
However the average , over many
independent runs, of the finish times
for an optimal control would with high
probability be smaller than the
average for a non-optimal control . In

a stochastic system, that is the best
you can do.

The state space of a Markov
process representing the system we
have described can be defined in terms
of two components for each program.

We call these components the program's
execution state and its memory state.

The execution state has four
values: Ready, Read Wait, Read in

Progress, and Done. In state
transition diagrams these will be
abbreviated R, RW, RIP, and D. In the
Ready state the program is executable;
otherwise it is not. Read Wait means
that a page fault has occurred but a

read has not been started. Read in

Progress means that a page required by
the program before execution can
continue is being read. Done means
that the program has reached
completion. A program's memory state
tells how many pages of that program
are in memory, or how many page frames

it occupies.

The system state consists of the
states of the two programs. For
example system state (R, 3, RIP, 2) means
that program 1 is executable and
occupies three page frames, while
program 2 has a read in progress and

158

occupies two page frames (including

the page being used for the read.)

Not all combinations of program states

are possible. For example, it is

impossible for both programs to be in

the Read in Progress state at the sane

time. Considering only the execution

states of each program, the following

states and transitions are possible:

Figure 2.3-1

The complete system state space

consists of an entire family of states

corresponding to each of the circles

above — one state for each possible

allocation of memory to the two
programs. It is helpful to visualize

state diagrams such as that in Figure

2.3-1 printed on a number of sheets of
plexiglass and stacked up. For a

fixed memory allocation, the arrows

stay on the same sheet. When the

memory allocations change, an arrow

representing the state transition has

to go up or down to another sheet.

Memory allocations can change
only at the beginning of a read. If

there is unallocated memory when a

read is started, one of those page

frames will be used. If all page
frames are in use, a page must be

released from one of the programs to

provide space for the page being read.

Thus when a read is started for a

program, that program's memory
allocation may increase by one or may
remain the same. The other program's
memory allocation may decrease by one
or remain the same. These are the
only possible one step changes in
memory state.

In general, a control alternative
for a given state has three
components

:

1. Which program to run.

2. Whether to start a read upon the
next transition.

3. Where to get the page frame for the
read, if a read is to be done.

In most states one or more of the
three components will not be
applicable. The first applies only in

(R,R) states. Otherwise there is no
choice; if one program is ready it

should always be run, The second
component applies for (R,R) and
(RW,RIP) states. The third component
applies only when all memory is in use
and each program has a nonzero
allocation

.

It is sometimes confusing as to
whether "a control" applies to the
entire Markov process or to a single
state. Strictly speaking a control
specifies the state transition
probabilities for each state, and
therefore applies to the process as a

whole. However, since a control
specifies the transition probabilities
for every state, it is meaningful to
talk about "a control" for a

particular state. Within the context
of a discussion of a single state and
its successors, a control corresponds
to a set of transition probabilities
for that state.

A definition of the controlled
Markov process representing our system
is given as an appendix. For each
state, there is a set of one or more
control alternatives. For each
control alternative, the state
transition probabilities are given,
along with the identification of the
event causing each possible
transition. The expected time until
the transition is also given for each
state under each control.

Now that we have defined a

representation of the system within a

mathematical framework, we are able to
restate the original problem in more
precise terms. That is done in the
following paragraph.

159

2.4 Problem Statement

Given the parameters describing
each program's fault rate for each
amount of memory (the mu's), each
program's completion rate (the nu's),
the page read rate (lambda), and the
number of page frames available (N),

determine for each system state the
program to execute, whether to start a

read on the state transition, and
which program to take a page from to
make room for the page to be read
(each as applicable), so as to
minimize the expected overall
completion time for the two programs.

3. Solution by Policy Iteration

In this section we describe the
solution of the problem just defined
by a standard technique of stochastic
control theory. Section 3-1 explains

the general technique, known as
"iteration in policy space." Section

3.2 describes some improvements that
can be made to the general technique
based on the structure of the
particular problem that we are
solving. Section 3.3 describes the
set of equations that we have to
solve, and gives specific examples of
several of them. Section 3.4
discusses the problem of convergence.
Section 3.4 gives an intuitively
meaningful interpretation of the
intermediate results of the iteration.
This interpretation is used in order
to develop a technique for homing in

on the solution values from above and

below simultaneously. This technique
solves the problem of determining when
convergence has occurred.

3.1 Iteration in Policy Space

We can in principle determine an

optimal control for any controlled
Markov process using a standard
technique of stochastic control theory
known as "iteration in policy space"
[KUSH71]. For each control, we can
write an equation for the expected
finish time at each system state.

(3.1-D <-

FINc(S)= TRTIMc(S) + ^,Pc(S,S')»FINc(S')

where FINc(S) = Expected finish time
from state S under control C,

TRTIMc(s) = Expected time until state
transition in State S under control C,

Pc(S,S') = Probability that state S'

follows state S under control C,

and the summation is over all states
that can possibly follow state S.

This equation simply says that
under any given control the expected
finish time from any state is the
expected time until the next state
transition plus the expected time from
that transition until completion. The
second expectation is the sum of the
expected times until completion for

all possible success states weighted
by the probabilities that they will be
the successor under the control being
used. There will be one such equation
for each system state, with an equal
number of unknowns. This system of
linear equations can be solved to
determine the expected finish time for

every state under the given control.
By solving the set of equations for

each control we could determine an

optimal control.

In fact, it is not necessary to
solve the set of equations separately
for each control . The expected finish
time equations are normally a large,

sparse set of equations. Sets of
equations of this form are most easily
solved by an iterative technique such
as the Guass-Seidel iteration. The
determination of the optimal control
can be combined with the solution of
its expected finish times in a single
iterative process. We start with an

initial guess at the finish time for

each state. On each iteration, we
compute a new approximation of the
optimal expected finish time for each
state according to the equation:

(3.1-2)

FIN (S)=MIN (TRTIMEc (S)+ £Pc (S , S ') *FIN (S »)

)

C S'

where FIN(S) = current approximation
to optimal expected finish time from

state S,

the MIN is taken over all control
alternatives aplicable to state S,

and the summation is over all states that
can possibly follow state S.

It can be shown that this process
will converge and that the resulting
solution values are the expected
finish times for an optimal control.
[KUSH71, P108]. The optimal decision
for each state is also determined by
this process. The optimal control
alternative for each state is the one
resulting in the minimum value in the

MIN operation for that state.

160

3.2 Computation Time Improvement

The above solution technique can

be applied to any controlled Markov
process. The particular problem that

we are solving has some properties
that allow us to reduce substantially
the amount of computation. For any
controls worth considering the total
amount of memory in use never
decreases until a program finishes.
(A control that unnecessarily throws
away useful pages is clearly not
optimal.) We know therefore that
states in which all pages are in use
have as successors other such states
plus states in which one program is

finished . As will be shown in the
following section, we can easily
compute the expected time to
completion for all states in which one
program is finished. Hence these
values may be assumed to be known
before starting the iteration. In the
iteration, we can solve for the
expected finish times for just those
states in which all memory is in use.

The values for states in which not all
memory is in use, and both programs
are still running, need not be
considered since the system will never
re-enter those states. This reduces
the number of states over which we
iterate from a multiple of N squared
to a multiple of N, where N is the
number of pages of memory available.

For states with not all memory in

use, the minimum expected finish time
and optimal control can be determined
by dynamic programming [HCWA60], When
a fault occurs in any of these states
and we start a read for the required
page, it is always better to allocate
an additional page to the program for
the page being read in than to use a

page that is already in use. The only
decisions that must be made in these
states are the scheduling decisions.
All states in which not all memory is

in use can be arranged into a list
with the property that all possible
successor states for any given state
preceed that state in the list. We go
down the list computing the minimum
expected finish time for each state in
turn. The expected finish time for
each state with each possible control
can be computed one and for all when
we reach that state, because we then
know the exact value of the minimum
expected finish time for all successor
states. We can then determine an
optimal control and minimum expected

finish time for that state by means of

a few comparisons. Working back from
the set of states with all memory in

use to the initial state, we determine
the minimum expected finish time from
a "cold start" and the set of optimal
controls for all states.

3.3- Optimal Control Equations

In this section we show several
examples of the equations that are
used in the solution technique just
discussed. The complete set of
equations includes one or more
equations for each system state. For
each system state there will be one
equation for each control applicable
to that state. The equation will
have the form shown in equation
(3-1-1), and will use values of
TRTIMc(S) and Pc(S) given for that
current state and control in the
appendix

.

In each state, under any given
control, the expected time until the
next state transition is the
reciprocal of the sum of the rates for
the processes that are active in that
state under that control . This is a

result of the fact that all processes
involved in this problem are Poisson
processes, and the fact that merging
any number of Poisson processes yields
another Poisson process with an event
rate equal to the sum of the rates
of the component processes [ALLE781.
For example in state (R,N 1 , RIP,N2)
there is only one applicable control.
Under that control

,
program 1 has a

fault rate of mu(1,N1) and a

completion rate of nu(1). At the same
time, there is a page read in progress
with completion rate lambda. The
overall event rate is the sum mu(1,N1)
+ nu(1) + lambda, and the expected
time until a state transition is

(3.3-D
r/1

mu(1,N1) + nu(1) + lambda

The probability that a particular type
of event will be the first to occur is

its rate divided by the total rate.

l&l

Thus we have

mu(1,N1)
P[Exit due to a fault] =

mu(1,N1) + nu(1) + lambda
(3.3-2)

nu(1)

P[Exit due to pgm completion] =

mu(1,N1) + nu(1) + lambda
(3.3-3)

lambda
P[Exit due to read completion] =

mu(1,N1) + nu(1) + lambda
(3.3-4)

For this state, there are no decisions to make. The next state
is uniquely determined for each possible event leading to a

state transition. The equation for expected finish time is

1

FIN(R,N1,RIP,N2) = *

mu(1,N1) + nu(1) + lambda
(3.3-5)

[1 + mu(1,N1)*FIN(RW,N1,RIP,N2) +

nu(1)*FIN(D,0,RIP,N2) +

lambda*FIN(R,N1,R,N2)]

In other states the successor state depends on a control. There
is an equation of the above form for each possible control , and
the acutal expected finish time is the minimum of these values.

For example, from state (RW,N1,RIP,N2) we have the choice of
starting a read for program 1 or not doing so upon completion of
the read for program 2. If we do start a read, we have the
choice of taking a page from program 2 or using a page already
allocated to program 1 (assuming all pages are in use.) In this
case there is only one process in progress, the page read. Thus
the event leading to the state transition is known in advance;
it will be a read completion. The expected time until a state
transition is the expected read time. The equation for expected
finish time from this state is

FIN(RW,N1,RIP,N2) =

(3.3-6)

lambda

MIN
FIN(RIP,N1,R,N2),
FIN(RIP,N1+1 ,R,N2-1),

FIN(RW,N1,R,N2)

162

In general the next state depends on both the control and a random event.

The expected finish time is the minimum of several values, each of which is a

weighted sum reflecting the state transition probabilities under a particular

control. For example, in state (R,N1,R,N2) with all memory allocated and each

program having a nonzero allocation, we have three choices to make:

1. Which program to run. (1 or 2)

2. Whether to start a read when a fault occurs. (Read, Wait)

3. Which program to take a page from if a read is started. (1 or 2)

The state transition probabilities under the various controls are

the following:

Control Event Next State Probability

Run IRead!

IWait 1

Page
From

1 Read 1 Fault
Finish

(RIP,N1,R,N2)
(D,0,R,N2)

mu(1,N1)/(mu(1,N1)
nu(1) /(mu(1,N1)

+
+
nu(O)
nu(1))

1 Read 2 Fault
Finish

(RIP,N1+1 ,R,N2-1)

(D,0,R,N2)

mu(1,N1)/(mu(1,N1)
nu(1) /(mu(1,N1)

+
+

nu(1))
nu(O)

1 Wait Fault
Finish

(RW,N1,R,N2)
(D,0,R,N2)

mu(1,N1)/(mu(1,N1)
nu(1) /(mu(1,NO

+
+
nu(O)
nu(O)

2 Read 1 Fault
Finish

(R,N1-1 ,RIP,N2+1

)

(R,N1,D,0)

mu(2,N2)/(mu(2,N2)
nu(2) /(mu(2,N2)

+
+

nu(2))
nu(2))

2 Read 2 Fault
Finish

(R,N1,RIP,N2)
(R,N1,D,0)

mu(2,N2)/(mu(2,N2)
nu(2) /(mu(2,N2)

+
+

nu(2))
nu(2))

2 Wait Fault
Finish

(R,N1,RW,N2)
(R,N1,D,0)

mu(2,N2)/(mu(2,N2)
nu(2) /(mu(2,N2)

+
+

nu(2))
nu(2))

Table 3-3-1

The optimal control equation is

(3.3-7) FIN(R,N1,R,N2) = MIN of:

» (1 + mu(1,N1)*FIN(RIP,N1,R,N2) + nu(0*FIN(D, 0, R,N2)

)

mu(1,NO + nu(0

» (1 + mud,N1)*FIN(RIP,N1+1 ,R,N2-0 + nu(1)*FIN(D, 0, R, N2)

)

mu(1,N1) + nu(0

* (1 + mu(1,NO*FIN(RW,N1,R,N2) + nu(1)*FIN(D, 0, R, N2)

)

mud,NO + nu(0

* (1 + mu(2,N2)*FIN(R,N1-1,RIP,N2+0 +nu(2)*FIN(R, N1 ,D, 0)

)

mu(2,N2) + nu(2)

163

1

* (1 + mu(2,N2)*FIN(R,N1,RIP,N2) + nu(2)*FIN(R, N1 ,D, 0)

)

mu(2,N2) + nu(2)

1

* (1 + mu(2,N2)*FIN(R,N1,RW,N2) + nu(2)*FIN(R,N1,D,0))

mu(2,N2) + nu(2)

Given an approximation for all of

the expected finish times, we compute

an improved approximation from

equations of the form shown above.

When the iteration has converged, so

that the values computed by these
equations equal the assumed values
used as inputs, each minimization
determines the optimal control for the

corresponding state.

3.4. Convergence Considerations

The theorem from stochastic
control theory [KUSH71 ,p108]
guarantees that iteration in policy

space will converge, regardless of the

initial approximation, but it does not

say anything about how fast it will

converge or how to know when you

have arrived. In fact, the

convergence can be arbitrarily slow.

Furthermore, if you test for

convergence by comparing the maximum
change in expected finish time over

all states to some small nonzero
threshold, cases can always be found

in which the convergence test is met

and the current approximations are

arbitrarily far from the true solution
values. Hence it is important to have

seme degree of understanding of the

particular problem being solved in

order to have any confidence in the

results.

It is possible to choose the
initial approximations in such a

way that the successive approximations
have a meaningful interpretation
within the context of the original
problem

.

Suppose we choose a control
policy for which we can determine
the expected finish time from every

state as a closed form expression.

One such example is the following:

Given a memory allocation
(N1,N2), select the program with the

smaller fault rate to run first.
Throw out all pages belonging to the

other program, and let the selected
program run, with no overlap, until it

completes. Give the running program

an additional page on each fault
until it occupies all of memory. Upon
completion of the first program, let
the other program run to completion,
starting with no pages in memory and
giving it an additional page on each
fault until it occupies all of memory.

Now this may not be a

particularly good policy, but it does
have the virtue that we can compute
the expected finish time exactly for

every state. It is also a policy that
can be implemented for all possible
amounts of memory and all possible
sets of program parameters. We shall
take the expected finish times under
this policy as our initial
approximation for each state, and
refer to this policy as the "default
policy" as it will be the policy that
we fall back on after a planned
multistep optimal policy.

On each iteration we compute the
best control decision and the
corresponding expected finish time,
assuming the expected finish
time for each possible successor state
is the value that we were given as an
input. For the initial approximation
just described, the results of the
first iteration will be the acutal
exact values for the expected finish
time if we made the (stochastically)
best decision on the first state
transition and then followed the
default policy from that time on.

The results of the second iteration
will be the actual expected values if
we made optimal decisions for the
first two state transitions and
then followed the default policy. And
so forth. The results of the Kth
iteration will be the actual expected
values for finish times given that we
make K optimal decisions and then
follow the default policy. We can
now see intuitively that the iteration
has to converge when (and only when) K

becomes large enough that the
probability of going through K state
transitions before both programs
finish is very small.

164

Having seen how the convergence
of the iteration can reflect actual
results of K-step optimal decisions,
we shall now apply that result in a

technique to determine when
convergence within a given threshold
has occurred. This will be done by
determining separate initial
approximations for which the
successive approximations are
guaranteed to converge to the
actual values from above and from
below. When the values obtained from
the two different initial
approximations are all within the
specified value of each other, we can
stop the iteration.

If we guessed the optimal
expected finish times and used them as

our starting values, the results of
the Kth iteration would be exactly the
same values. The expected finish
times for the case in which we follow
an optimal policy for K steps, given
that we switch to a specific
nonoptimal policy after K steps, can
only be greater than the expected
finish times for the case in which
we follow an optimal policy until
completion. Hence if we start with
the exact values for the default
policy, the values produced on each
iteration will be greater than the
actual solution values. They will,
of course, eventually come arbitrarily
close to the solution values. In a

similar vein, if we switched to a

ficticious "better than optimal"
policy after K steps, following the
optimal policy given that fact for the
first K steps, the resulting values
could only be better than the solution
values. Thus if we start with initial
approximations all known to be smaller
than the optimal expected finish
times, the iteration will converge to
the solution from below. We
therefore have a technique for
computing a sequence of upper and
lower bounds for the solution values.
Each sequence is guarenteed to
converge to the solution. If we
desire the solution within a certain
tolerance, we can be sure of reaching
it by continuing the iteration until
the upper and lower bounds for each
value are within that distance of each
other

.

4. Examples and Observations

This section gives several
examples of solutions for optimal
control for specific parameter values.
Each example was choosen to illustrate

a particular point, and the results
were computed using the solution
technique described in Section 3.

4.1. Example 1

In some cases it is better not to
start a read needed for one program
even though the other program is
runnable. Thus taking all possible
overlap is not always an optimal
policy. The following example is one
such case.

Program 1

Memory Fault Rate

Program 2

Memory Fault Rate

100

100

0

Expected
Exectuion
Time = 10

1

2

3

Expected
Execution
Time = 1

100

100

100

There are five pages of memory
available for the programs. The
expected read time is 50 milliseconds.

The minimum expected finish time for

these two programs running in five
pages is 12.852 seconds. The optimal
control calls for reading in the three
pages for Program 1 as quickly as

possible, and deferring the first read
for Program 2 until after these three
pages are in memory. Once Program 1's

pages are in memory, the optimal
control runs Program 2 whenever it

is runnable, and runs Program 1 during
the page reads for Program 2.

Note that once Program 1
1 s

three pages are in memory, it will
never fault. Thus all of Program 2's
reads will be fully overlapped
(unless it finishes prior to Program
1.) Reading a page for Program 2 at

any earlier time will not improve
anything; it will be an additional
read that is almost completely
nonoverlapped , and we will still have

to do the same essentially
nonoverlapped reads for Program 1

.

The minimum expected finish time under

a policy that starts a read as soon

as possible is 12.881 seconds, or 29
milliseconds more than the
unrestricted optimum.

4.2. Example 2

In the preceeding example we saw
the benefit of running the program

165

that is likely to fault when both are

runnable, and overlapping its page
reads with execution of the other
program. One might conjecture that it

is always best the run the program

with the higher fault rate when both

are runnable. The next example shows

that this is not the case.

Program 1

Memory Fault Rate

Program 2

Memory Fault Rate

100

100

Expected
Exectuion
Time = 1

Expected
Execution
Time = 100

100

10

There are four pages of memory
available for the programs. The
expected read time is 50 milliseconds.

The minimum expected finish time

for these two programs running in four

pages is 152.247 seconds. The optimal

control calls for running Program 2,

the one with the lower fault rate,

when both programs have their pages

in memory and both are runnable. The

reason for this is the difference in

expected execution times. Because
Program 2 will run for so much longer

than Program I, it will have far more

page faults before finishing than
Program 2 will, even though Program

2's fault rate is higher. By running
Program 2 when both are runnable we

are able to overlap more faults than

if we ran Program 1 when both are

runnable

.

4.3. Example 3

forIf there is enough memory
each program individually to run

with a zero fault rate, but not enough
for both to run with zero fault rates,

then for sufficiently large
expected execution times it is always

better to run the programs one at a

The reason for this is that the

(number of nonoverlapped
of getting all of a program's
into memory is fixed, and

independent of run time. The cost of

a steady state nonzero fault rate for

both programs increases linearly with

the expected time until the first
completion. Thus there has to be

a value of the expected run times such

that the overlap policy is inferior to

a single thread policy. The
following example illustrates this

point.

time,
cost
reads)

pages

Program 1

Memory Fault Rate

Program 2

Memory Fault Rate

100

5

5

0

Expected
Exectuion
Time = 0.

1

1

2

3

4

Expected
Execution
Time = 0.1

100

5

5

0

There are four pages of memory
available for the programs. The
expected read time is 50 milliseconds.

For this example the minimum expected
run time is 0.324 seconds. The
optimal allocation of memory is to
give two pages to each program, and
the optimal control will force the
system into this configuration unless
one of the programs finishes before it

is reached. Note that even though we
get a high degree of overlap with this
division, there is a nonzero
probability of getting into a state in

which the processor is idle.

If we increase the expected run

time for each program to 10 seconds,
the optimal division of memory is to
give all four pages to one of the
programs. In this case, the programs
will be running long enough that it is

better to give up the potential
overlap in order to reduce the fault
rate. The optimal control still
attempts to overlap reads with
execution during the startup
transient. However, once one of the
programs has two pages in memory, the
best policy is to let it take over
all of memory.

5. Conclusions

Optimal control of a virtual
memory operating system is a

complex problem. We have looked at
the actual problem and derived a much
simpler related problem that is

mathematically tractable. We have
used that problem as a vehicle for
exploring solution techniques and
gaining a better understanding of
the problem space. A standard
technique of stochastic control
theory, known as interation in
policy space, was found to provide a

solution to the problem of
allocating memory and scheduling the
processor in this simplified
system model . Several improvements
were made to the basic technique,

166

taking advantage of the special
properties of this particular
problem to improve the computation
time and to guarantee convergence
within specified limits. The
solution techniques may be

extensible to more realistic
problems, but that remains to be

seen. The mathematical framework, in

which we represent the multiprogrammed
virtual memory system as a controlled
Markov process, seems to be a useful

way of looking at the problem.

References

[ALLE78] A.O. Allen, Probability,
Statistics, and Queueing Theory, With
Computer Science Applications

,

Academic Press, New York 1975"!

[ARN075] CR. Arnold, "A control
theoretic approach to memory
management," Proc. of Ninth Asilmor
Conf. on Circuits, Systems and
Computers , Pacific Grove, CA, Nov.

1975.

[ASHA72] R. Ashany, "Application of
control theory techniques to
performance analysis of computer
systems," Proc. of Sixth Asilmor
Conf. on Circuits, Systems, and
Ccrnpijters

,
Pacific Grove, CA,

Nov. 1972, pp. 90-101.

[BOXJ76] G.E.P. Box and G.M. Jenkins,
Time Series Analysis Forecasting and
Control ," Holden-Day, San Francisco,
1976.

[COFF73] E.G. Coffman Jr. and P.J.

Denning, Operating System Theory
,

Prentice-Hall, Englewood Cliffs, NJ

1973-

[COFF76] E.G. Coffman Jr., Editor,
Computer and Job Shop Scheduling
Theory , John Wiley and Sons, 1976.

[FERR78] D. Ferrari, Computer Systems
Performance Evaluation

,
Prentice-Hall,

Englewood Cliffs, NJ, 1978.

[H0WA60] R.A. Howard, Dynamic
Programming and Markov Processes

,

The M.I.T. Press, Cambridge, MA,
1960.

[JAIN78] R.K. Jain, Control-Theoretic
Formulation of Operating Systems
Resource Management Problems , Harvard
PhD Thesis, May 1978. Also published
in "Outstanding Dissertations in
Computer Science Series," Garland
Publishing, New York, 1979.

[KLEI75] L. Kleinrock, Queueing
Systems, Volume 2: Computer
Applications

,
Wiley-Interscience

,

T97oT

[KUSH71] H. Kushner, Introduction to

Stochastic Control
,

Holt, Rinehart,

and Winston, New York, 1971.

[LEW76] A. Lew, "Optimal control of
demand-paging systems," Information
Sciences , Vol. 10, Nr

.

—
% (1976)

PP. 319-330.

[SPIR771 J.R. Spirn, Program Behavior:
Models and Measurement , Elsevier
North-Holland, New York, 1977.

[WILK731 M.V. Wilkes, "The dynamics
of paging," Computer Journal , Vol.

16, Nr. 1, (Feb"! 1973) pp. 4-9.

167

to

C
o

> -H
O J-3

^ »H
t. C
CD »H
2: c«

0)

"D T3
0)

1—
1 S_

r—1 O
O C,.,

S_

4-> OO
C •

O CM
O
X

CD bo CD

X 3 CO

-P O ZD
i.

Cm x c
O -P

c «—

0 •

H C\J Q
J-5 c:cH C CD

c 0 2:
x •H *H
rH Ct-t 4_> f 1

Q CL) O
z CD S;
UJ 00
CL 'O 1

1

Oh cd cd

1—1 cd
-

•rH 00
CO <-

] 1

CD • •rH

TJ -P 3
X

CD CD CO

-P CD

0) -P
> 0) COH X -P
bO-P 00

to C
CD -rH

i—l

XI -0
CD CD

-P X)
•H CO

bO i- 1—

1

c 0 0
•rH tO XI
3 CU E
0 -0 >>
1—

1

co

i—l tO

0 to 0)

C*H 0) X
O -p

CP 0
x s- C4-1

[-1 Q. 0

II 1 I 1 II

II C\J 1 I 1 II

II 2 1 | + 1 II

II 1 I C\J 1 II

II CC 1 C\J I 2 1 C\J II

II 1 2 I „ 1 2 II

CD II C\J 1 C\J 1 a. 0 1 0 II

4-> -P II + 2 1 as 2 1 t—

1

II

X CD II ce 0 1 (X a II

CD -P II ce 1 ce 1 II

2 00 II 2 II

Oh 0 1 0 1 2 2 1 2 2 II

I—l 3: II

(X a 1 05 0 1 ce ce 1 CC cc II

II

>>
p

XI
CD

X
O
i-

-P
C
CD

>

4-> C
c o

•p
CD -H

e to

•H C
H CD

i-

•O H
CD

P CD

O -P
CD CD

D. -p
x 00

x:
to

3
CO

«- 3 I

2 C I

I

x;
to

3
co

T3 -P II X) 1 -p 1 T3 1 -p II

CO *H II CD 1 -rH 1 CD 1 -H II

1—
1 CD CD II CD 1 CD 1 CD 1 CD IIOK3 11 CC 1 CC

;
3 II

t- 11 II

P 11 II

C II II

0 II II

c_> II II

c 11 II

3 II CM CM II

CC II

CM

II

II

II

II

II

•P II 2 II

C CD II II

CD -P II CC II

S— CO II II

i_ -p II II

Zi 00 11 2 II

0 11

CC
II

II

II

I CM I CM

ID 13
I C I C
I I

I + — I +
I CM I

I CM
I 2
I CM

3 I CM
C t 2

CM

3
CD

x:
to

c
•1-1

I CM
I w
I 3
I C
I

I +

I CM
I 2
I -
I CM
I ^-
I 3
1 e

I CM

CM

I CM
I v-r

I 3
I C
I

I +
CM I

CM I CMw I 2
3 I -

E I CM
I —
I 3
I E

3
co

I CM
I ^
I 3
I C
I

I +
I

I —
I CM
I 2
I -
I CM
I w
I 3
I E

CM

I -
I CM

x:
to

c
•H

168

C\J

2
CM

Qu 2 CM
n 2
cc Q_

1—

1

CC
CC

o
13
CC a CC

CM

CL
(—1

CC

CM

II II

II II

II II

+ II II

CM o 1 O II II

2 II II

Q 1 o II II

Qu II II

l-H T 1 , II O II

CC + 1 + o II II

II a II

1

—

2 1 2 Q II II

II II

PL, i a. O II 2 II

J$ 1—

1

i i—

i

II II

CC CC 1 CC Q II cc II

II II

II II

II II

II II

II II

II II

II II

1 '—

N

1 i
,—

.

II II

1 CM 1 CM i I
«— 1 r— II II

1 ^ 1 w i I
1 ' 1 II II

1 3 1 3 1 ^13 1 3 II II

CM 1 E ^n 1 C 1 *- 1 C 1 C II II

1 CM 1 I C 1 , II II

1 + | + 1 - 1 + . , 1 + II II

CM 1 3 1 Z2 II , II

1 •—

-

C 1 1 , | ^ C 1 II II

3 1 CM 1 CM 1 3 1
«— ,

—

II II

s 1 2 1 2 1 E 1 2 1 2 II II

1 - 1 - II II

1 CM 1 CM 1 1 r— I , II II

1

—

1 w 1 1 ' | II II

1 3 1 3 1 1 3 1 3 II II

1 E 1 E 1 1 E 1 E II II

II II

II II

II II

II II

II II

II II

II II

II c II

W 1 1 4-> w II o II

rH •H 1 1 rH •H II a II

C 1 1 3 c II II

CO •iH 1 1 CO H II o II

b 1 1 u. Ul, II i—

i

II

II II

II II

II II

II II

II II

II II

II II

i
^-^

1 1 1 1 1 II II

1 CM 1 CM 1 1 1 1 1 , II II

1 N—

'

1 v-/ 1 | | I
,. , II II

1 3 1 3 1 1 1 3 1 3 II II

1 C 1 C 1 1 1 C 1 C II II

1 1 II 1 (0 II

1 + 1 + 1 + 1 + II 1 "D II

1 II 1 £> II

II <— 1 E II

1 CM 1 CM 1 1 1 *

—

i ^

—

II 1 (0 II

1 2 1 2 1 I | 2 1 2 II I >—

i

II

1 - 1 - 1 II II

1 CM 1 CM 1 1 | , j , II II

1 w 1 1 1 1 1 •>—

•

II II

1 3 1 3 1 1 1 3 1 3 II II

1 E 1 E I 1 1 E 1 E II II

II II

II II

II II

II II

II II

II II

II II

o i -o II I II

CO i co II II

<D 1 <L) II 1 II

CC 1 CC II l II

II II

II II

II II

II II

II II

II II

1
, II I II

II II

II II

II II

CM II o II

II II

1 o II Q II

CC II II

1 Q II t— II

T—
1

* II 2 II

2 |
«— II II

1 2 II Ou II

II h-

1

II

1 CC II CC II

II II

!!

1 CO 1 co I co

M 1 "O 1 "D 1 "O
ii 1 X! 1 X3 1 n

1
* 1 E 1 E 1 E
M 1 co i co 1 co

1 rH 1 rH I r-

1

!! 1

i ii 1 + 1 + I +
in 1

n —

.

1 ^
1 1-

in 2 1 ^ co

1 3 1 3 x> 1 3
n 1 c 1 C £) 1 C
i"

1 3 E
< ii 3 1 + C 1 + co 1 +
ii E 1

ii 1 ^ 1 ' >

n 1 t-
" 1 2 1 2 1 2

1
-

mi
i n 1

^
I"

1 3 1 3 1 3
i ii 1 E 1 E 1 E

3
CO

OT

C
•rH

a>

c
o
a

CD

c
oa

0)

c
oa

co

x>

E
co

co

"D
£1

E
co

I co

I TJ
I £)
" E
I CO

I rH

CO

<D

CC
co

3

CM

Du
I—

I

CC

CM
2
Du
l-H

CC

169

1

1
*

—

1

1

1

1
^

—

1 i 1 I +
1 CM 1 1 CM
1 1 1 2

1 C\J 1 1 1

1 2 1 CC 1 CM 1 Oh
1

"
1 -

1 2 1 H
CD 1 OS C\J 1 r- CM 1

•> CM 1 CC o
4-> P i — 2 1 + 2 1 CC 2 1

X CD 1
*

—

1 •> - 1 Q
CD P 1 2 CC 1 2 CC 1

*

—

DC 1 1

2 00 2
1 CU O 1 a, O 1 O 1 2 2
1 l—l t—i

1 OS Q 1 CC Q 1

!

CC a i

|

CC CC

1 1
^

I

1

1

1 ^ 1 I

1

1

1 ^ 1 1 —

s

1

1

1
'—^ 1 1 —

^

1 ^
1 1 <

—

1
<— 1 I

<-
1 i- 1 1 T— 1

<— 1 1 CM 1 CM
1 1 1 1 I w 1 1 1 ^* 1 '

—

' 1 1 w 1

>> 1 1 3 1 3 1 1 3 1 3 1 1 3 1 3 1 1 3 1 3
-P 1 I C 1 C 1 ^ 1 C 1 C 1 ^> 1 E 1 C 1 ^ 1 C 1 C
•H 1 <— 1 1 1 r-

| 1 1 «— 1 1 1 CM i 1

i—

1

" 2 1 + 1 + 1 C 1 + —

N

1 + 1 2 1 + 1 + 1 2 1 + 1 +
•H 1 - 1 1 1 1 1 1 •> 1 «— 1 1 1 CM 1

X3
CD 1 —/ I

«— 3 1 r- 1 w 1 I— 3 1 <—
1 —' 1

«"" 3 1 *— 1 — 1 CM 3 1 CM
-Q 1 3 1 2 c i 2 I 3 1 2 c 1 2 1 3 1 2 C 1 2 1 3 1 2 C 1 2
O i E 1 I I E 1 - 1 - 1 E 1 - 1 » 1 E 1 - 1 •*

i- 1 r- 1 i- 1 1 CM 1 CM
Oh 1 w 1 w 1 1 ^—' 1 1 w

1 1 3 1 3 1 1 3 1 3 1 1 3 1 Zi 1 1 3 1 3
I 1 E 1 E 1

!

1 E 1 E 1

!

1 E 1 E 1

!

1 B 1 E

CD

1

1

S2 1

1

1

jC l

1

1

SZ 1

CO P l P to 1 -P to 1 P CO 1 -P to

:d c i i—i •H 1 rH •H 1 rH •H 1 r—

1

•iH

CD 1 3 C 1 ^3 C 1
—

3

C 1 ^3 rj

c > 1 CD •rH 1 CD •H 1 CD H 1 CD •rH

•H UJ 1 U. U-, 1 Uh U, 1 Uh 1 U, u.

>>
1 1 1

s_ 1 1 1

o 1 1 1

E 1 1 1

CD 1 . 1 1

ST 1 1 1

I—

1

1 1 1

i—l •rH 1 1 <— 1 1 1 1 ^ 1 1

rH P c 1 1 1 1 t— 1 1 <— 1 1 CM
< c o 1 1 ^-^ 1 1

s—

^

1 1 ^—

'

1 1 w
ZD -rH 1 1 3 1 1 3 1 1 D 1 1 3
p 1 1 C 1 1 c 1 1 C 1 1 C

P CD "H 1 8 1 1 1 1 1 1

•H E to 1 1 + 1 1 + 1 1 + 1 1 +
3 •r-t C 1 1 1 «— 1 1 T— 1 1 r- 1

H CD 1 1 <—

'

1 1 1 1 1 1 ^"N

CO t- 1 1
<—

1 1 1 1
«~

1 1 CM
0 •O H 1 1 2 1 1 2 1 1 2 1 1 2
P CD 1 1 1 •* 1 1 •»

1 1 •» 1 1 •»

CD P CD 1 1 T— 1 1 r- 1 1
<—

1 1 CM
4-> O P 1 1 1 1 1 — 1 1 —

'

1 1 w
CD CO 1 1 3 1 3 1 D 1 3
O. P I 1 1 E 1 E

j

1 E
I

1 E
X 00 1

UJ 1

j j j

CD E I

|

1

|

|

1

1

bO O 1 i i

—

| CM | 1 1
*

—

CD S_ I | 9 1

Q_ U-, 1 1 1 1

rH 1 1 1 1

O P 1 1 x> 1 -o 1 P 1

L (0 'rl 1 1 CD 1 CD 1 H 1 CD

P 0 CD 1 1 0 | 0 1 CD 1 0
c ct ^ i 1 CC 1 CC 1 1 CC
O 1 1 1

C_> 1

C 1

i 13 1 CM
CC 1

!

1 CM
p 1 1 2
C CD 1 1 >

0 P 1 1 CC
l_ CD 1 1

•*

t- P 1

3 00 1 1 2
U 1

1 CC

170

1 1 CM 2 1

C\J 1 1 2 1 C\J 1

CM CM i 2 I CC I CM
2 1 Cu 2 CM 2

Q. O 1 O 1 1 1—

1

2 1 CC |

1—

1

1 CC Cu + 1 CC
CC O 1 CC Q 1 1—

1

CC
CC 1 2 1 2 1

1 2 22 2 1 2 2 1 o 2 1 Ou 1 a, i

• 3: 1 1—
1 1 i—i I

cc CC 1 CC CC 1 1 CC a CC 1 CC 1 CC 1 CC

I

CM

1 rH 1 i—

1

1 I—

1

1 CM 1 C\J 1 1 CM 1 CM
1 —'

1 + 1 + 1 +
1 3 1 3 1 1 3 1 3

^—

V

i e 1 C 1 1 C 1 C
CM CM 1 2 ca

2 i + 1 + 1 2
1 + 1 + 73

CM CM 1 3 1 3 XI 1 3
CM i CM 1 c 3 1 C E 1 C

1 CM 3 1 CM 1 CM 3 1 CM I 3 C CO

1 2 C 1 2 1 3 1 2 C 1 2 I E 1 + 1 + r—

1

1 +
E E

1 CM 1 CM 1 CM 1 C\J 1

'—

*

1 3 1 3 1 3 1 3 1 2 1 2 1 2
1 E 1 E 1 1 E 1 E

1 3 1 3 1 3
1 E 1 E 1 E

to

X
B
CO

03

-o
X
E

CO

•o
X
E
CO

3
ca

x

c
•iH

3
(0

OT
•rH

c
•rH

3
co

x
to

c
•rH

CD

C
O
o

CD

C
Oa

0)

c
o
Q

CD

C
Oa

i

I CM
I ^
I 3
I C
I

I +
I

I

I CM
I 2
I cm"
I —
I 3
I E

CM

CM

CO

"O
X)
E
CO

I CO

i -a
I X)
i E
I co

I co

I -o
I X
I E
I co

CO

CD

CC

CM

CM

co

3

CM

.p
c
o
o

CM
2
Q_
H
CC

a
CO

0
CC

CM
2

n
CC

CM

CO

CD

CC

171

1
*

—

1

II + 1

!'! CM 1

ii 2 1

ii - O 1 CM O
li a. - 1 2 »
H H a i - Q

CC Oh
CD II ,_ i 1—

1

,—
4-3 4-> II + i CC +
x ro ii 1

<L> -P II 2 1 2
2 00 II 2 2

0- 1 Ou
1—1 I rs I—

1

OS CC 1 CC CC

1
-"""-^

1 ^ 1
**

—

s 1 s 1 ^>
1 OJ 1 CM 1 1 CM I eg 1

«- 1 «-
>> 1

'
1 I 1 1 w 1 1 v-' 1 w

4-3 1 3 1 3 1 1 3 1 3 1 1 3 1 3
•rH II CM 1 C 1 C 1 CM 1 C 1 C 1 1 C 1 C
rH II 2 1 2 1 1 1 2 1 1

•H 1 + CM 1 + 1 1 + CM 1 + 1 1 + s—

s

1 +
XI II CM 1 CM ! 1 1

CD 1 ^"N 3 1 \ v ' 1 3 1 1 ' 1 ^ 1 0-N

£l II 3 1 CM C 1 CM 1 3 1 CM C 1 CM 1 1 3 1 r- 3
O ii e 1 2 1 2 1 E 1 2 1 2 1 l E 1 2 C 1 2
t_ 1 - 1 - 1 - 1 1 - 1 «
a- 1 CM 1 CM 1 1 CM 1 CM 1 1 T- 1 I-

1
s—

'

1 w 1 ^ 1 1 — 1 w
1 3 1 3 1 1 3 1 3 1 1 3 1 3
1 E 1 £ 1 1 E 1 E l 1 E 1 E

-p
c
CD

>
3
CD

co

c
•1-1

3
CD

to

c
•H

•H II II

-PC II 1 *-N 1 1 — II

CO II 1 CM 1 1 CM II I
>w II

35 rH II 1 1 II 1 3 II

-P II 1 3 1 1 3 II 1 c II

CD -H II 1 C 1 1 C II

E 10 II 1 1 1 II 1 + II I co

•H C II 1 + 1 1 + II i -o
H CD II 1 1 1 II <- 1 X>

S- II 1 <- 1 ^ II 1 E
•OH II 1 <M 1 1 C\J II 1 2 II I co

CD II 1 2 1 1 2 II 1 H
-P CD II 1 - 1 1 - II

O -P M 1 CM 1 1 CM II

CD CO II 1 v_. 1 1 w II 1 3 II

Q. j_> II 1 3 1 1 3 II 1 E II

X 00 II 1 E 1 E II

UJ II II

II

II

II

CD E " II

HOO II 1 CM II

co i. ii II

Oh Ll- II II

II

O T3 -P II •o i -o II -o II 1

CO -H II co I co ii co II 1

-P CD CO II CD 1 CD II CD II 1

C CC S I" CC 1 CC II CC II 1

O II II

C_> II II

C M II

3 II CM CM II

0= II II 1

II

II

II o
CM II

-P II 2 II o II o
C CD II II

CD -P II CC ii a II

CD II II 2
S_ -P II II

3 00 II 2 II 2 II Ou
C_> II II 1—

1

II CC II CC
0= II

o
a

M
cc

o
Q
o
a

3
CD

O
a

2
CC

ll CD

II C
to II o
•H II a
c II

•rH II o
ti- II i—

i

co

0
-P
O
2

W
CD -

>> 3 CD 4J >.
t_ r-H rH CD i-

CD jd s: o
CD > CO 4-3 E
E rH CD

£ •H -o E
>> co CD O
ro rH > 0<h

3 CD 4-3 O
>> O CO

.Q •H >> i. rH
-P t- CD rH

"O S_ O "O CD

CD CD E C
c a CD 3 CO

•rH E
CO i. cd s:
4-> o Cw £5
X> O E
o •o co

to 4-3 rH S-

0 p C 3 bO
.Q c 3 O O

3 o s: u
c o E co a
CD E CD

CD 4-3 CD

CD H C
co >.£ O <

CD i_ 4-3 C\J

rH O • C 2
p E O CD CD

CO CD -p -p x: •a
1 1 E CD 3 c

rH 4-3 CD

CD •o CD CO t-
r; •H 3 O
.p rH CTTD 'h 2

CD CD *H
> rH CO <4-l

•H c CO CD CD o
•rH •rH > 4->

C CD CO

CD CD 4-3 CD

O 2 CO
r; 3 4-> rH
CO •o Ih O tl CD

o •rH C -H >
l_ r—

1

o • a CO CO CD

C C CD -H > CO

2 rH rH C o
to o rH D,^. .H £
cd x: •H E «~ 4->

4-> to 3 CO 1 C
CD X CM -rH S-
4-3 CD to CD 2 O
CO i. c » W Cm

CD o S-K C
•H O CD

i- -P 4-> t- 4-3 rH
O CD •H + rH XI
<~ X c rr 3 •H

•H • 2 CO CO

to Cw CM - CD co

C CD CD 2 a- i. o
O CO •o 1—

I

Q.
•H O i~ cc to

4-> x C O w rH 4-3

•rH 4-> •H o o
c CD <- CD S- c
•rH E 4-> 2 4-3 4-3

Cw O i. CO C CD

CD i- CD Cw 4-> O s~

O t„ C_> O CO O CD

CM

172

An Efficient Capacity Assignment Algorithm for Computer
Communication Networks with a Tree Topology

Roberta Klibaner
The College of Staten Island

Dept. of Computer Science
715 Ocean Terrace

Staten Island, N. Y. 10301

Chaim Ziegler
Brooklyn College

Dept. of Computer & Info. Science
Bedford Ave. & Ave. H
Brooklyn, N.Y. 11210

An efficient capacity assignnent algorithM for a centralized
coiiputer c oMMun ica t i on network having a binary tree topology is
designed. The queueing Model used consists of Poisson inputs,
constant nodal service tines, and fixed length packets. Using More
exact and realistic analysis Methods for the actual queueing tiMe
and/or systen tine that a packet experiences at each Merger node, we
have been able to design a More efficient capacity assignMent
algorithM. The results using this algorithn are coMpared with an
existing algorithM to show the iMproveMent that would occur in the
design of a centralized coMputer c OMMun ica t i on network.

1. INTRODUCTION:

The effectiveness of a computer
communication network can be measured by
cost—performance parameters. More
specifically, we are concerned with the
cost of the various links used in the
network, and performance, as measured by
the mean queueing time or mean system
time experienced by users.

Capacity assignment algorithms seek to
efficiently assign capacities to the
various links in a network while
minimizing both delay and cost. We have
developed a capacity assignment algorithm
for a fixed length, packet switched,
centralized, computer communication

This work was partially supported by the
National Science Foundation under grant
ECS-8 105963 and by PSC-CUNY Research
Award 13655.

network having a binary, tree-like
topology, as shown in Figure 1.

Fixed length packets are permitted to
enter the network from external sources
at all nodes, except node 1, the central
CPU. Nodes 4-7, of Figure 1, are the
leaves of this network, and are known as
external nodes. Nodes 2 and 3, have
multiple input links and are an example
of merger nodes.

A finite set of line capacities, each
with a fixed cost per unit link distance,
is available from which the user may
choose. External input into the network
is assumed to be Poisson in nature.
Every packet at node i, when node i is
assigned capacity k, requires and
receives a constant service time of slk
(sec. /packet) , i =2, 3, . . N.

An algorithm was developed to produce
a cost /performance table and graph which

173

would aid in the actual selection of
capacities to be used in the development
and implementation of a centralized
computer communication network. For a
given cost we have determined the unique
capacity assignment to be made in order
to minimise the maximum delay over the
entire network. Equi valently, for a
given maximum acceptable delay, we can
determine the minimum cost network.

Specific examples are then used to
compare this algorithm with results
produced by an existing algorithm. In

all cases our results are shown to be
tighter approximations to the actual
queueing time and system time, resulting
in improved design.

2. NETWORK MODEL:

The network model employed in the
development of our algorithm is that of a
centralized computer network represented
by a binary tree-like topology, as in
Figure 1. This structure can be thought
of as a series of processors (the nodes),
and feeder lines (the links). External
input to the system may enter at any
point, but not at the central processor,
the CPU.

The nodes are numbered sequentially
from 1 to N, where N is the number of
nodes in the network. Node 1, the root,
is the CPU. Packets (customers) are
permitted to enter the network at an
external node or a merger node. A packet
is processed at its entry node and then
recursively transmitted to its father
(the node next closest to the CPU) until
it reaches the CPU where it is subsumed.
The network which we modeled can be
complete, as in Figure 1, (every node has
a left and right son) or unbalanced (some
nodes have missing sons), as in Figure 2.

Fixed length packets, of length 1 //j

(bits/packet), enter the network
randomly. The arrival process into node
i is assumed to be Poi sson with a mean
arrival rate of A, (packets/sec), > :l >0.
A finite number of capacities (C

} ,

j=l,2,...k), each with a fixed cost per
unit link distance are available for
selection on each link of the network. A
given link may be assigned any of these
discrete capacities, if this assignment
leads to an optimal capacity assignment
for the entire network.

With fixed length packets, we assume
that all packets entering a given node,
when that node is currently assigned
capacity C,, would require the same
amount of service to be processed. Thus,
a packet at node i requires and receives
a constant service time of s ;t j

(sec . /packet) given by

Si j = 1/pCj (1)

i=2,3,...N; j=l,2,...k

The distance between nodes, D ± , is the
link distance between node i and its
father. Thus, link cost is a function of
the capacity selected for a given link
and the length of that link, and can be
expressed as

Cost (of Link i) =COST(of selecting
capacity j) * Dj (A)

The queue at each node is assumed to
have infinite storage available. In
addition, a first-come, first-served
(FCFS) queueing discipline exists at each
node.

The capacity assignment problem which
we have addressed seeks to minimize the
maximum delay from anywhere in the
network to the CPU while keeping cost at
a minimum. We have developed an
algorithm for producing a network
delay/cost array which shows the maximum
system or queueing delay associated with
a given cost. The delay/cost array which
is produced indicates what capacity must
be selected for each link to produce this
network design.

3. AN EXISTING ALGORITHM:

The algorithm first outlined by Frank,
Frisch, Chou, and Van SlykeC13 enabled
one to select link capacities for a
specified tree structure which minimized
the delay while selecting only cost
effective capacity assignments. In this
algorithm, an initial DELAY/COST
characteristic table is developed for
each node i in the network, i=2,3,...N.
COST is determined by equation (2).
DELAY is the total mean system time,
T.

f"
, experienced by a packet at node i.

A delay-cost array is created from the
combination of these two lists.

From these initial delay-cost arrays,
a series of parallel and serial merges
starting at the external entry nodes are
undertaken. Each merge produces a new
delay—cost array which can be considered
an equivalent link replacing the arrays
of the merged nodes. Equivalent link
arrays and the initial arrays are
continuously merged until a final,
network delay-cost array is produced.

The application of this algorithm to a
centralized, computer communication
network has been studied by Schwartz C4]
who applied the algorithm to
exponentially distributed packets of mean

174

length 1 /u (bits/packet), -following a

Poisson arrival process. Hence, the
service time at each node was also
exponential The independence
assumption, introduced by Kleinrock C23
was used in the analysis of the network;
each node was treated as an independent
M/M/l queueing system.

We have expanded the application of
this algorithm to a centralized network
servicing -fixed length packets with
constant service time at each node.
Thus, -for -fixed length packets, the mean
system time at node i, T'4

'
, arising -from

the selection of capacity C
} can be

determined from

where

= j Si j) / [2 (

1

~p ± j) D + s±J (3)

Pi j = Asij = utilization of node i (4)

andAi = arrival rate into node i from
all sources.

To insure maximum flexibility to a
user, we have introduced a capacity
assignment process based either on mean
system time/cost or mean queueing
time/cost considerations.., We note that

t* Ithe mean queueing time, W , , at node i,
arising from the selection of capacity
Cj , is gi ven by

w (p1J s1J)/C2(l-Oi J)3 (5)

Ziegler and Schilling E5,63 and others,
that at merger nodes, this yields at best
a loose upper bound to the actual delays
within the system.

We have removed the independence
assumption at merger nodes and will now
outline our new recursive algorithm and
the analysis involved in its development.

Capacity Assignment Algorithm (Recursive)

1. Traverse the left subtree in postorder
2. Calculate delay at leaf
3. Traverse the right subtree in

postorder
4. Calculate delay at leaf
5. Visit the root (if not central CPU)

a. Perform parallel merge as outlined
in 111

b. Calculate delay at root
c. Perform serial merge as outlined in

CI 3

5'. Visit the root (central CPU)
a. Perform final parallel merge

Note the major difference between this
algorithm and the Frank and Frisch
algorithm involves the calculation of the
delay at the root. We cannot calculate
the delay at the root until the left and
right subtrees have been assigned
capacities that we employ in the
computation of the delay. The Frank and
Frisch algorithm computes all the
delay/cost arrays prior to the parallel
and serial merges.

Using (3) or (5), as appropriate, one
can then apply the Frank, et. al

.

algorithm, treating each node as an
independent M/D/l queueing system, to
produce the set of possible network
designs (a detailed M/M/l example can be
found in Schwartz C4D).

The problem with this algorithm, we
believe, lies in use of the independence
assumption. In the next section we will
remove the independence assumption in an
attempt to get a more realistic picture
of the actual delay experienced by a
packet

.

4. THE NEW ALGORITHM:

Traffic into external nodes, nodes
8-15, only arrives from external sources,
thus, these nodes, the leaves of the
tree, are indeed independent M/D/l
queueing systems and formulas (3) and (5)

apply.

The merger nodes, nodes 2—7, do not
conform to this analysis because of the
non-Poisson nature of their input
traffic. Input at a merger node is the
output of previous nodes and may also
include traffic from external sources.
We will now analyze the subnetwork
consisting of nodes 4, 8, and 9. We must
decompose this subnetwork into the
following subcases:

The existing algorithm, as we have
applied it to the 15-node network of
Figure 3, visualizes each node as an
independent M/D/l queueing system. The
arrival process into merger nodes is
assumed to be Poisson in nature, by
virtue of the independence assumption
developed by Kleinrock C2D. Implicit in
this assumption is the assumption that
the capacity assigned to one link in no
way affects the actual delay over other
links. It has been shown, by Rubin C33,

Subcase l: s4 >se and s^ >Ss>

For the three node network described,
exact results have been derived in C5D.
At node 4, the steady state mean queueing
time, W f*"

, is given by

175

.("> P«454 /tesSe Xo
()

2 (1-p^) 2 (l-pso)

2 < 1-p.^.y)

(6)

^ p^t-^S^ peo5B Xo
= ()

2<l-p^> 2(l-pBe3) AA

p<v-*5^» X<v

2 < l-p<^> -A^
(9)

where

C4) is given by
mean

<7>

and, at node 4,
x
the steady state

system time, T

(i)
T = W - +

The delay at node 4, given by (6) or
(7) , arising from the removal of the
independence assumption is always less
than the steady state values given by (3)

or (5) when independence is assumed.

Subcase 2: s4f. 5 mi n (So , s<v)

If no external traffic enters at node
4, the work in C6D yields exact results.
The^ steady state mean queueing time,
W is given by

et)
W — (ps ^ps>4) / (Xa + A<v

)

(8)

and the steady state mean system time,
T is once again given by (7).

If external traffic is permitted to
enter at the merger node, node 4, these
results are no longer applicable and the
approximation technique introduced in
Subcase 3 must be employed.

Subcase 3: s^^Si for at least one
of i, i=8,9

val ue

In this region exact results have not
yet been obtained. We employ an
approximation technique developed in C73.
We approximate the effect of the service
time of the slower feeder node(s) on the
merger node by setting its service time
equal to the service time of the merger
node; i.e., by replacing each s± >s^ by
s4 , i=8,9. This lower bounds the delay
at the entry node, thus upper bounding
the delay at the merger node. The upper
bound that this approximation yields is
tighter than the upper bound obtained
using the independence assumption.

For example, if s^>se, and s^<Sc?, we
set 5<y = s..*. ^jThe steady state mean
queueing time, W , is given by

This analysis also applies to the
subnetworks rooted at nodes 5, 6 and 7.
Traveling up the tree, we now consider
the subnetworks rooted at 2 and 3.

We will now analyze the subnetwork
rooted at nodej^st network consisting of

, 8, 9, /O) and 11. At this
utilize a simplifying
We assume that the

rooted at nodes 4 and 5 can

nodes 2, 4,
point we
assumption,
subnetworks
be viewed as an equivalent network
consisting of a single node with Poisson
input having a mean arrival rate A±
(packets/sec), i=4,5 and constant service
time <5 ± j , i=4,5; j = l , 2, 3, . . . K. This
assumption yields, for all cases, at
worst a lower bound on the delay that a
fixed length packet would experience
traversing the network through that node,
and at best exact results. As an example
consider the following a

Case 1 : s2 >&< ''Sts , s^ >s 5^>S

The approximation technique yields a
steady state mean queueing time, \ti

(A
,, at

node given by

P^ -3- S.q

(—

)

2<l-pu.+) JVjz

2(l-pB!s> JLa
(10)

176

while the actual queue! ng time at node 2
would be

(*) P2=5= P4«5,
W .

= £(

2(l-p32) 2 (l-p4 a)

()) ()

2(l-pQe) VL^ 2 (l-p<w> VU4 VU,

P=55= Pio, io5io Aio
f

()

2(l-p=s) 2(1-/3x0. io) 7L-S

()) () +/ J

2(l-p2=) 2(l-p4 ^) JLS

()

2(l-ps;3) -/-„,

(11)

Note, for this case our approximation
yields an exact result.

Case 2: 5z=«ax<52f 54 J sB,S8,s9 ,5 10,5 ll),
s4f.5 min(sB ,5,), ss <.5 min(s 10 ,s, t)

Our approximation yields (10), while
the actual queueing time at node 2 is

~ ()

2(l-p2=) Xe+ Xs> -A--,

p i o . =pu,a _A.« • =y vu= vpiiSi Xi

io+Xh ^= ^2(l-p 14)^
P225z Pes ^p.^ ^ pio,opii

> =

2(l-p==) vt _A =

'/ pi.s, Xi

2(1^ ±) -/t =

(12)

where it is easily shown that (12) must
always be less than (10). Our
approximation i s an upper bound to the
actual delay.

Thus, by viewing the subnetworks that
feed a merger node as an equivalent
network consisting of a single node we
have been able to reduce the multi-node
subnetworks at a merger node to a 3 node
equivalent network as seen in Figure 4,
These three node networks can then be
analyzed as previously described, in all
cases yielding, at worst, an upper bound
to the delay at a merger node.

At the root, the central CPU, a final
parallel merge of the left and right
subnetworks is performed yielding the
capacity assignments available for this
network.

5. NUMERICAL EXAMPLES:

The algorithm just described has been
coded in PL/ I and run on the CUNY/UCC
Computer System, New York City.

The numerical results in this section
refer to the design of Example 1, a
15—node network shown in Figure 3;
Example 2, a 10-node network shown in
Figure 5; and Example 3, a 15—node
network shown in Figure 6. Fixed length
packets of length 120 bits/packet were
used as a parameter in all network
designs. Link distances and external
input rates are indicated within the
f i gures.

Table 1 is a list of the available
link capacities and monthly charges
assumed for the networks of Figures 3 and
6. For Figure 3, Table 2 is the optimal
system time/cost array produced by the
new algorithm and Table 3 is the system
time/cost array produced using the old
algorithm. A graph comparing the results
is shown in Table 4.

The available link capacity table
assigns to each capacity a number, for
example, 450 bps has been assigned the
number 1, etc. A line in the del ay/cost
array may be interpreted as follows: the
system time (or queueing time) is the
amount of delay that must be tolerated
for the given cost. The numbers which
appear under the various links indicate
what capacity number has been selected at
each link to produce the delay/cost entry
shown. The graph plots the delay vs.
the cost produced by the two algorithms.

Note that of the 53 possible capacity
assignments produced by our algorithm,
only 12 are identical to those produced
by the old algorithm. We show, with the
set of capacities given, for a given
cost, it is possible to design a network
that i s at least 107. faster than any
network designed by the old algorithm.
When the slowest capacity is selected for
each link, there is a dramatic difference
in system time.

Table 5 is the available link
capacities and monthly charges assumed
for the unbalanced network of Figure 5.
Tables 6, 7, and S are the outputs
produced by our program for this network.

177

Once again, note the different design
choices produced by the two algorithms
and improved designs that the new
procedure yields. For example, a $301
monthly tariff using the new algorithm,
will produce a network design that is 15%
more efficient.

For users who are designing a system
based upon queueing time, Tables 9, 10,
and 1 1 are the output produced by our
program for the network in Figure 6.
Note, for all network designs based upon
queueing time our algorithm will produce
a system that is at Jeast SOZi aster for a
given cost. In addition, note the cost
savings for a given value of queueing
time (e.g. , 0.097)

.

6. CONCLUSION:

In this paper, we have introduced a
new algorithm for use in the capacity
assignment problem for centralized
computer networks. We found the new
algorithm to be of definite value as it
consistently produced more efficient
network designs than previous methods.
It should be viewed as a practical
instrument for the selection of
capacities in a centralized computer
communications network.

We recognize that in only limited
cases are the results produced using this
algorithm exact . Nevertheless, in all
instances we produce upper bound results.
We are presently working on tightening
these bounds through an improvement of
the delay calculation at point 5b of the
new algorithm. The procedure will
involve removal of the simplifying
assumption mentioned above. The results
of this effort will be presented at a
future time.

references:

CI] H. Frank, I.T. Frisch, R. Van
Slyke, and W.S. Chou, "Optimal Design of
Centralized Computer Networks," Networks
1, No. 1, pp. 43-57, John Wiley ?< Sons,
New York, 1971.

C 2 D L. Kleinrock, Communication Nets,
McGraw Hill, New York, 1964, Dover, New
York, 1972.

C33 I. Rubin, "Tandem Queues with
Constant Channel Service Times and Sroup
Arrivals," UCLA Tech. Rep.
UCLA-ENG-7417, March 1974.

C43 M. Schwartz, Computer Communication
Network Desi gn and Anal ysi s ,

Prentice-Hall Englewood Cliffs, New
Jersey, 1977.

[53 C. Ziegler and D.L. Schilling,
"Delay Decomposition at a Single Server
Queue with Constant Service Time and
Multiple Inputs," IEEE Trans. Commun .

,

Vol. COM-26, pp. 290-295, Feb. 1978.

[63 C. Ziegler and D.L. Schilling,
"Waiting Time at Fast Merger Nbdes,

"

Conference Record of ICC '80, pp.
23.2-1-23.2-6, June 1980.

C73 C. Ziegler, Analytic Methods for
Delay Analysis at Packet-Switched Merger
and Separation Nodes , Ph~. D.

Dissertation, C.U.N.Y., 1978.

ACKNOWLEDGEMENTS

:

The authors wish to acknowledge the
assistance of Mr. Joseph Arfin and Miss
Amalia Kletzky in the preparation of this
paper

.

178

O the CPU

?igur« 1

Network having a Binary Tree Topology
with Input at External Nodes Only

A
s
=Xs + V\i

Figure 4
Three Node Equivalent Network

Produced by Simplifying Assumption

179

CAPACITY (

1

2

3

4

CHOICE SISTHI

POSSIBLE LINK CAPACITIES

CAPAcmten) cosi/nOHm/niLE

450 1.40

MO 2.70

750 3.08

100 3.33

Table 1

SERVICE TIKE /CAPACITY

0.2666000

0.2000000

0.1600000

0.1332999

1 TIBEc««.J

• 0.449044 1554.40

2 0.439364 1523.00

3 0.459924 1495.60

4 0.4634/2 1466.20

3 0.444882 1422.10

6 0.472892 1416.10

7 0.473102 1380.70

8 0.473312 1374.70

1 0.473724 1339.30

10 0.476940 1333.30

11 0.477148 1297.90

12 0.488081 1253.80

13 0.300334 1224.40

14 0.501049 1195.00

13 0.504288 1165.60

14 0.312186 1130.20

17 0.329013 1115.50

18 0.541331 1106.60

19 0.341761 1031.60

20 0.342226 1058.00

21 0.542706 1033.00

22 0.545111 1009.40

23 0.343426 984.40

24 0.552452 955.00

23 0.554429 949.00

26 0.569050 919.60

27 0.570109 890.20

28 0.572664 860.80

29 0.554654 831.40

30 0.595874 821.80

31 0.598073 807.10

32 0.610047 798.20

33 0.611286 774.50

34 0.613489 751.00

33 0.634142 721.60

54 0.639251 706.90

37 0.468559 692.20

38 0.478868 680.90

3? 0.680241 654.90

to 0.681912 643.60

1 0.687364 634.00

42 0.708487 619.30

43 0.711982 605.30

44 0.736837 589.90

45 0.750919 578.10

44 0.769255 563.40

47 0.812678 534.50

48 0.823167 541.50

49 0.845096 526.80

30 0.902048 515.00

31 1.078546 500.80

32 1.135498 489.00

53 1.315050 476.00

SYSTHW WE/COS
HEM

COST/MW CAPACITY SELEC

2 3

thu

each lini

7 9 10 II 12 13 14 13

SYSTEM-IIIIE/COS CHARACTERISTIC TABLE

OLD (L60RITHJI

CHOICE SYSTEM COST/MM CAPACITY SELEC [ED AT EACH LINK

1 TIKEfMc) 2 3 4 i 6 7 8 9 10 11 12

1 0.302219 1383.40 4 4 3 4 4 3 3 4 4 2

2 0.304472 13S4.00 4 4 3 3 4 3 3 4 4 2

3 0.503455 1324.60 4 4 3 3 3 3 3 4 4 2

4 0.312798 1318.60 4 4 4 3 3 2 3 4 4 2

3 0.313007 1283.20 4 4 4 3 3 2 2 4 4 2

6 0.318057 1239.10 4 4 4 3 3 2 2 3 4 2

7 0.534351 1224.40 4 3 4 3 3 2 2 3 4 2

8 0.540369 1195.00 4 3 3 3 3 2 2 3 4 2

9, 0.341256 1150.90 4 3 3 3 3 2 2 3 3 2

10 0.545453 1117.00 4 4 3 4 3 2 2 3 J

11 0.546218 1107.40 4 4 3 14 4 2 2 3 3

12 0.546602 1068.40 4 4 3 4 4 2 2 3 3

13 0.565361 1033.00 4 4 3 1 4 4 2 2 2 J

14 0.373189 1003.60 4 4 3 3 4 2 2 2 3

13 0.574515 974.20 4 4 3 13 3 2 2 2 3

14 0.581008 964.60 4 4 4 3 3 1 2 2 3

17 0.581384 925.60 4 4 4 13 3 112 3

18 0.603411 910.90 4 3 4 3 3 112 3

19 0.407404 875.50 4 3 4 1 3 3 I 1 2 2

20 0.608946 346.10 4 3 3 3 3 112 2

21 0.615118 837.20 4 4 3 12 3 112 2

22 0.414779 813.60 4 4 3 2 2 112 2

23 0.445875 793.90 4 3 3 12 2 112 2

24 0.649051 759.90 4 3 3 2 2 1112
25 0.650549 • 736.30 4 3 2 12 2 1112
24 0.685974 723.00 4 4 2 112 1112
27 0.688392 699.00 4 4 2 I 1 1 1 1 I 2

28 0.699120 669.60 4 4 2 1111112
29 0.717488 654.90 4 3 2 1111112
30 0.720670 628.90 4 3 1 [111112
31 0.749747 619.30 4 3 I I 1 1 I 1 1 1

32 0.762030 607.50 4 2 1 l I 1 1 I 1 1

33 0.774833 602.40 3 2 1 I 1 1 1 1 1 2

34 0.795667 593.50 4 2 1 ! 1 1 1 1 1 2

35 0.799816 578.10 4 2 1 3 111111
34 0.838940 565.10 4 1 I 1111111
37 0.853978 550.40 3 1 1 3 111111
38 0.894362 541.50 4 1 1 ! 1 1 1 1 1 1

39 0.930525 526.80

40 1.060058 515.00

41 1.242197 500.80

42 1.351730 489.00

43 1.740369 '76.00

307931

482104

,456278

430451

,404625

378798

.352972

.327146

.301319

,275493

.249664

,223840

198013

172187

,144360

120534

,094707

,068881

,043055

,017228

.991402

,965575

.939749

,913922

862269

,836143

,810616

784790

738963

733137

707310

,681484

,655657

629830

604004

578177

552351

326524

500693

,474871

449045

•V.

>

II

HI
III

•HI

II II

III

Table 3

mil
mini

II 1

1

I ••••III

IIMlt/ I II

II • I I II I

Table 2

476.00 691.68

•-NEK ALEORITHH

I-OLO ALBORITHH

/-C0M0K POIHT

1123.04 1338.72 1554.40

Table k

180

STSTEH-TIKE/COSt CHARACTERISTIC TABLE

POSSIBLE LIW CAPACITIES

cmcm i uftcirtf*) ccsi/naHWnia

1 430 1.40

2 MO 1.70

3 730 1.99

4 NO 2.00

CHOICE SYSIEII

SESV1CE HUE /CAMC1TT

0.2666OO0

0.2000000

0. 1600000

0.1J32991

Table 5

STSTEfl-TIKE/COST CHASACTEPISTIC TABLE

choice STsra COST/mi|

HE* ALSCS

CAPACITY SELECTED A

4 TISmO 2 3 1 3

0.432302 377.20 4 4 4 0

2 0.457204 374.80 4 4 1 0

J 0.470823 366.40 1 4 « 0

1 0.472711 361.00 4 4 1 0

3 1.417144 358.60 4 4 4 0

1 0.31204? 333.00 4 4 1 0

7 0.323221 333.80 4 3 4 0

1 0.538724 331.40 4 4 1 0

1 0.338199 331.40 4 4 4 0

10 0.341010 330.40 4 4 (0

11 1.366154 328.00 4 4 4 0

12 0.371389 323.60 4 4 ! 0

1J 0.513432 324.40 4 3 3 0

14 0.518088 323.20 3 3 : o

13 0.104134 320.90 3 4 3 0

li 0.434214 311.60 3 3 1 0

17 0.441021 317.90 4 3 4 0

U 0.671407 315.40 4 3 I 0

11 0.473112 310.60 4 4 3 0

2t 0.619107 .301.40 3 4 ! 0

21 1.702543 309.20 3 3 3 0

22 0.724110 305.80 4 3 I 0

23 0.743633 304.00 4 2 2 0

24 0.750810 302.90 3 2 2 0

23 1.710810 301.00 2 2 2 0

24 1.112674 218. CO 2 1 ! 0

27 1.266469 213.60 4 1 S 0

2t 1.213167 214.40 I 1 : o

n 1.311251 212.00 4 1 2 0

» 1.345150 210.80 3 1 2 0

ii 1.385150 291.00 2 1 2 0

$2 1.532710 286.00 4 1 1 0

33 1.571401 294.90 3 1 1 0

34 1.611401 283.00 2 1 1 0

13 LttMN 290.M 1 1 1 0

TM
EACH LINK

7 8

Table 6

9 10 II 12 13 14 15

COST/MN

OLD ALSCS

CAPACITY SELECTED A

thu

each link

1 TinECsec) 2 3 4 5 6 7 8 9 10 11 12 13 14 j3

1 0.330033 348.40 4 * 4 0 4 1 4 3 Q 0 I 1 0 Q

2 0.368172 346.00 4 4 4 0 ? 1 4 3 0 '
!

1 0

3 0.S7033I 340. 60 4 4 4 0 14 2 0 0 1 Q

4 0.316121 339. 40 4 3 4 0 3 14 2 0 0 1 1 0 g

3 0.609780 335.80 4 3 4 0 13 2 0
:

1 1 0 A

4 0.610494 333.40 4 4 4 0 I 1 3 2 0 1 0 A

7 0.638431 332.20 4 3 4 0 1 3 2 1 0 Q

9 0.638741 323. 20 4 3 4 0 ! 0 1 0 g

1 0.680435 318.40 4 4 4 0 0 A 1
1 0 A

10 0.701162 316.00 4 4 3 0
T 0 1 0 A

11 0. 709392 314.80 4 3 3 0 t

:
1 0 A.

12 0.738760 311.80 4 3 4 0 1 0 A

13 0.750742 310.00 4 2 4 0 1 0

14 0.801191 307.60 4 2 3 0
i o g

15 0.922547 304. 60 4 1 3 0

[

0 1 1 0 Q

11 0.863603 0 1 1 0 g

17 0.940229 301.00 4 I 2 0 0 0 1 1 0 0

11 1,002650 299.30 3 1 2 0 0 0 1 1 0 0

1? 1, 141498 29B.00 2 1 2 0 0 0 1 1 0 0

20 1.394241 295.40 4 I 3 0 0 0 1 1 0 0

21 1.433643 294.40 3 t 3 0 0 0 1 1 0 0

22 1.555289 292.00 4 1 2 0 0 0 1 1 0 0

23 1.597711 290.80 3 1 2 0 0 0 1 1 0 0

21 1.716758 289.00 2 1 2 0 0 0 1 1 0 0

23 2.280999 286.00 4 1 1 0 0 0 1 1 0 0

21 2.343421 234.80 3 1 1 0 0 0 1 1 0 0

27 2.482449 283.00 2 1 1 0 0 0 1 1 0 0

29 3.228179 280.00 1 1 1 0 0 (1 1 1 0 0

f

I-

£

Table 7

290.00 291.44

I-NE9 AL60RITHH

I-OLD ALGORITHM

/-cams* point

319.88 339.32 357.76

Table 8

3 2281 79 1

3. 172661

3.117143

3.061625

3.006106

2.950599

2.995070

2.939532

2.794034

2.728516

2.672997

2.617479

2.561961

2.506443

2.450973 X

2.315407

2.339889 I

2.284370

2.228852 I

2.173334

2.117916

2.062299

2.006780

1.151262

1.895743

1.840225

1.784707

1.721199 I

1.473671 •

1.618133 1

1.362634 * I

1.307116 1 I

1.451599 I

1.396090 I

1.340362 II

1.285044 II

1.221526 1

1.174007

1.119491 I

1.062971

1.007453

0.131933 I

0.996418 I

0.840900 I

0.785383 II 1

1

0.721863 It II

0.67434E III III

0.618930 HI I I

0.5633K 1 I" II II I

0.5077?: 1 1 lltl

0.4322T Ml II

Cost

181

SUEUE

CHOICE BUEVEINS COSI/M*

TMElw*)

0.034447 791 00

0.045710 787 AO

0.044125 778 50

0.048156 743 80

0.049004 719 70

0.051373 708 40

0.052315 707 90

0.052231 478 50

0.054253 444 30

0.05321? 449 60

0.058414 437 80

0.049223 424 80

0.079078 404 10

0.084544 589 40

0.087940 580 50

0.093448 545 80

0.107388 554 00

0.140109 550 <0

0.I43S03 541 50

0.148991 324 80

0.182931 515 00

22 0.200838 300 80

23 0.214778 489 00

24 0.273029 476 00

KS-TIIS/C05T CH

KEN

CAPACITY SEIECTI

ERIS'

THH

EACH

Table 9

1C TABLE

LINK

9 10 11 12 13 14 13

c

i
3
«l

3

e

OUaiElHo-TIHE/COST CHARAI

OLD AL60R

CHOICE 0UEVE1NS COST/UN CAPfll

1 TIISI>0 2 3 4 5

1 0.080404 743.80 3 4 1 2

2 0.038321 732.00 2 1 1 2

3 0.092742 707.90 2 1 2

4 0.097731 493.70 3 < 1 1

3 0.107333 664.30 3 1 1

6 0.109417 632.30 2 4 1 1

7 0.119090 444.50 2 1 1

8 0.124214 437.80 1 1

9 0.133901 417.10 2 I 1

10 0.138296 404.10 1 1

11 0.132344 589.40 S 1 1

12 0.166447 580.30 1 1

13 0.185109 S65.80 S 1 1

14 0.209444 545.10 1 1

13 0.227951 554.00 : i i

16 0.228107 550.40 S 1 1

17 0.241990 541.50 i i i

18 0.260452 326.30 ! 1 1

19 0.303494 315.00 J 1 1

20 0.340313 500.80 ! 1 1

21 0.403135 4e?.O0 Z 1 1

22 0.349478 476.00 1 1 1

HIST
THM

EAI

10 II 12 13 14 13

0.349678 I

0.339417

0.329137

0.318897

0.308437

0. 478377

0.488114

0.477854

0. 447574

0.437334

0.447075

0.434813

0.424535

0.414293

0.404033

0.393774 X

0.333314

0.373234

0.344994

0.334733

0.344473

0.334213

0.323953

0.313693

0.303432

0.273172

0.282912

0.272452 t

0.242391

0.232131

0.241971

0.231411

0.221350

0.211090 •

0.200330

0. 190570

0.180310

0.170047

0.139787

0.14732?

0.13726?

0. 127003

0.118743

0.108438

0.098229

0.087969

0.077707

0.067447

0.037137

0.046727

0.034464

1

1

474.00 -537.00

t-KEK ALGQSITW1

I-OLO AL60RITHH

/-COlMOit POINT

402.00 445.00 723.00

Table 11

Cosr

Table 10

182

Components Of Software Packages For

The Solution Of Queueing Network Models

G.S. Graham*
E.D. Lazowska*

K.C. Sevcik*

Quantitative System Performance

7215 30th Avenue N.W.

Seattle, Washington

U.S.A. 98117

We describe the various components that are present in most current software packages

for the analysis of queueing network models of computer systems. Each type of component

serves a specific function. We survey some of the alternative approaches that can be used in

implementing each component.

1. Introduction

In the past ten years, many organizations have come to use

queueing network models as essential elements of their system siz-

ing and capacity planning activities. They use, on a day-to-day

basis, software packages for analysing queueing network models.

Several such packages have been developed. Some are available

commercially, while others are used on an experimental or

research basis by a limited number of installations.

In this paper, we attempt to provide insight into the structure

of software packages for queueing network model analysis. We
shall enumerate the major components and their functions, and

describe some of the alternative approaches for implementing each

one.

Many software packages for queueing network model solution

can be viewed as having the structure shown in figure 1. There is

a sequence of software layers, each layer transforming its input

from the layer above into a form suitable for the layer below.

While the number and content of the layers may vary from pack-

age to package, the layered form is still present. We shall use this

structure to describe the major component types in the next sec-

tion. Section three describes various possible front end interfaces

to such packages, some for the general performance environment

and others tailored to specific application areas.

2. Basic Components of Queueing Network Analysis Packages

A queueing network analysis package has, at its core, a

software routine that evaluates queueing network models. But

there may be many layers of software between the user wanting to

solve a performance problem and this basic computational engine.

LEVEL 5

Specialized High-Level Front Ends

(Section 3)

LEVEL 4

Convenience Features

(Section 2.4)

LEVEL 3

User Interface

(Section 2.3)

LEVEL 2

Transformation Layer

(Section 2.2)

LEVEL 1

Core Evaluation
Algorithms

•University affiliations: G.S. Graham, Computer Systems Research

Group, University of Toronto, Toronto, Ontario. E.D. Lazowska,

Department of Computer Science, University of Washington, Seat-

tle, Washington. K.C. Sevcik, Computer Systems Research

Group, University of Toronto, Toronto, Ontario.

Figure 1. Basic components of a
queueing network analysis
package

.

183

Some layers are there for the convenience of the user, who may
not be dealing directly with the standard queueing network model

elements of classes, devices, and loadings; this is discussed in

more detail in section three. Some layers are there for the con-

venience of the package implementor, who may have to solve a

number of models to produce a single set of answers.

2.1 The Core Computational Algorithm

Situated at the lowest level in figure 1, the core routine that

comprises the computational engine may be based on exact algo-

rithms (such as mean value analysis [ReLa80] or a related tech-

nique, convolution [Buze73,SaCh81]) or on approximate algo-

rithms (as described by Bard [Bard79], Schweitzer [Schw79], and

Neuse and Chandy [NeCh81]). The selection of a particular algo-

rithm is based on storage requirements, execution time require-

ments, and error tolerances. Either type of core algorithm solves

only those networks that satisfy certain assumptions that cause

their state probability expression to be separable (or to have product

form). These assumptions involve restrictions on the scheduling

disciplines allowed and on the patterns in which jobs move from

one resource to another in the system. Intuitively, activities (e.g.,

rates of service) at one device cannot depend on conditions at

other devices. Also, scheduling cannot discriminate among jobs

on the basis of their service times.

The job of the core computational algorithm is simply stated.

Given a model that conforms to the assumptions leading to a

separable model, from the definitions of classes, devices, and load-

ings, the algorithm must produce such performance measures as

throughput, mean response time, device utilization, and mean dev-

ice queue lengths.

2.2 Approximation Transformations

Some of the models posed to a queueing network analysis

package may not be separable. It is the purpose of the software

layers above the computational engine to translate these models

into a form that is suitable for the basic core routine. Issues such

as memory constraints, priority scheduling, and advanced I/O

modeling lead to non-separable models, and thus are some of the

items treated by the approximation transformation layer (level 2 of

figure 1).

Memory constraints have an effect when the number of

ready-to-run jobs of a class is greater than the number of memory
partitions assigned to that class. A batch class operates with a

specified average multiprogramming level and as such the memory
constraint is automatically handled in a separable model.

Terminal-driven classes or open. classes do not have this property;

when either of these classes is memory constrained, a non-

separable model results. We illustrate how this can be handled

conveniently by treating a terminal-driven class. Suppose the

model has M terminals and a central subsystem multiprogramming

limit of N jobs (N<M). The transformation layer software can

call the core routine to solve the separable central subsystem

model for multiprogramming levels from 1 to N. The solution of

this model establishes the load-dependent service rates of a flow

equivalent composite server that would represent the throughput

of the central subsystem in a hierarchical model with M terminals.

Again, the transformation layer calls the core routine to solve this

separable model for mean response time and to determine the

average number of terminal requests seeking service. The assump-

tion that the load-dependent throughput rates of the central sub-

system are a good representation of the throughput of the central

'subsystem causes the final result to be an approximation to the

solution of the original model. With this approach, the user needs

only to request a solution to the memory constrained model; he is

generally oblivious to the fact that two separable models were

solved and an approximation made. This type of approach can be

generalized to permit the specification of constraints on popula-

tions of arbitrary combinations of workload classes (i.e., limits on

domain capacities) [LaZa82].

Priority scheduling is a dominant feature of CPU dispatching
in many current operating systems. To model such a feature, the
user typically identifies any device (s) scheduled by priority and
assigns priority values to the job classes. The resulting non-
separable model can be solved in a variety of ways, but a common
method is an iterative solution. The transformation layer solves a

sequence of models in which each priority class has a separate cpu
device. (This is known as the shadow cpu technique [Sevc77].)

Consider the case of two priority classes. By giving the lower
priority class its own cpu, we avoid the interference that would
otherwise be encountered by the high priority class at the cpu.

But, to represent the delays at the cpu suffered by the lower prior-

ity class, the service rate of the shadow cpu is reduced by an
amount related to the cpu utilization achieved by the high priority

class. This leads naturally to an iterative solution in which better

and better estimates of the cpu utilization of the high priority class

are obtained from solutions of the separable model containing both
the actual cpu and the shadow cpu. Again, the package user sim-
ply requests a solution of the model involving priority scheduling.

To obtain this, the transformation layer calls on the core computa-
tional algorithm to solve several separable models containing an
additional artificial device.

Finally, advanced I/O subsystem modeling is sometimes
important when details of multipathing and shared storage devices

need to be taken into account. In IBM I/O architectures, the delay

due to channel contention is not represented explicitly in most
queueing network models. The central subsystem devices modeled
are typically just the CPU and individual disk devices. To account
for channel contention, a software layer in the package needs to

know about which control units are attached to which channels,

which channels are on which logical channels, and which disks are

on which logical channels. This layer can then estimate the

amount of wasted time due to interference at the physical channel
(for example, in missed RPS reconnects). Because channels are

not usually represented explicitly as devices in queueing network
j

models, the wasted time of a job would be assigned to the disks in

the form of a service time expansion. Thus, the disk loading con-
sists of an intrinsic I/O resource demand plus a busy time due to

channel contention. This model, with loadings that may differ

from those submitted by the performance analyst, is a separable

model acceptable by the core routine. Sometimes iteration is

necessary between the software layers, but the core computational

algorithm need never treat channels or missed RPS re-connects.

The basic difficulty in modelling I/O subsystems is that jobs

must simultaneously hold and use several resources at once (i.e.,

disk, control unit, and channel). This simultaneous resource pos-

session cannot be reflected directly in a queueing network model,
j

but general approaches to obtaining iterative solutions by repeated

calls on the core computational algorithm have been developed I

[JaLa82].
I)

Another situation in which the transformation layer produces

a model solution by manipulation of the results of one or more
\

calls to the core algorithm is when some model parameter is
i

specified as a distribution rather than as a single value. Two exam-
ples are multiprogramming level of a class or priority assigned to a

class. The core algorithm is called upon to solve the basic model
for each possible value of the parameter specified by its distribu-

tion. The transformation layer then produces a weighted combina-

tion of these results as the final answer.

2.3 User Interface

Software packages for queueing network model solution allow
\

users to express their performance models conveniently. In addi-

tion to being designed in accordance with the usual human and
software engineering principles, the package front ends use the

normal language of the performance analyst. There are explicit

counterparts to the concepts of a system workload component, a

job, a device, and a resource demand. The user is allowed some
|

flexibility in determining what exactly constitutes a workload com-

184

ponent. In IBM's MVS operating system, either a performance

group or a performance period within a group may be used as the

basic workload component. The choice can be made according to

whether or not the performance measures on a performance group

basis are sufficiently specific to answer the questions being

addressed with the model.

Most packages deal with the concepts of classes, devices, and

loadings directly, although the syntax may vary (e.g., a BATCH
class in MAP has TYPE BP in BEST/1). The user interface layer,

situated on level 3 of figure 1, provides the input to the transfor-

mation layer. When advanced I/O modeling is done, for example,

the user interface language is used to describe channels, controll-

ers, and logical channels, and the transformation layer converts

this information into inflated device loadings, creating a separable

model to be solved by the core routine.

2.4 Convenience Features

Additional features, provided by the next software layer

(level 4 in figure 1), enhance the convenience of using the pack-

age by increasing the performance analyst's ability to work quickly

and efficiently. We shall discuss three examples.

The first involves providing a data base for storing models

and their results. Models that have been defined during an

interactive session with a package can be saved on auxiliary

storage. This is useful because a baseline model, once created and

validated, can be recalled many times for modification of individual

components. Model modification is a major activity in interacting

with a queueing network analysis package. It requires the ability to

work on several models and versions during a session, and this

requires the ability to save models. Similarly, output reports need

to be stored. This is useful in a parametric study in which the out-

put values from a series of output reports are plotted against an

independent variable that is being varied across the series of

models.

Model outputs can also serve as inputs to other models in

hierarchical model evaluation. Components of models can be iso-

lated, evaluated, and replaced by a flow equivalent composite

server in a higher level model. Both model inputs and outputs

need to be stored in such a case.

A second convenience feature permits the user to describe

service centers as specific commercial hardware devices. Most ser-

vice centers in a queueing network model correspond directly to a

hardware processor, either a CPU or a storage device. It is con-

venient for a user to be able to associate a hardware type with a

device name. For example, a device may have the name CPU and

the TYPE 3033 or V7 (the type in this case having a mnemonic
purpose). A software package may permit a user to change a

device's TYPE and thereby automatically modify all the loadings at

that device on the basis of relative speed factors stored inside the

package. For example, if the device SYS001 has TYPE 3350 in a

baseline model, changing its TYPE to 3380 alters all its loadings,

for all classes, by dividing them by the associated speed conversion

factor (approximately 1.6 in this case). The relative speed factors

do depend on the character of the particular workload, but for an

initial performance study, the standard stored factors are

suffiiciently accurate. This added level of convenience comes from

a software layer that allows specification of device TYPEs and pro-

vides device loadings to the core routine.

Thirdly, some packages permit a user to carry out an essen-

tially arbitrary sequence of model experiments. This is done

through a limited capability programming language. For example,

the user may want to perform a parametric study (say on the effect

of increasing the number of TSO terminals). It is certainly possi-

ble for him to interact with a package directly and issue solution

commands with a new number of terminals each time. However,

this is cumbersome and is not a good way for a performance

analyst to spend his time. Instead, he may write a driver routine

that, when interpreted, accomplishes what he wants automatically.

This driver routine may vary the number of TSO terminals from

20 to 30 in steps of 1, obtaining model solutions each time. The
command to a package might be VARY_TERM, which is just the

name of a file that contains other commands. The syntax for

VARY_TERM specific to the MAP solution package is:

CLASS TSO
SET NT 20

:LOOP PERFORMANCE
SET NT 1 +
IF LE NT 30 LOOP
RETURN

(The class context is TSO; the number of terminals is initialized to

20; a system-level PERFORMANCE report is generated; the

number of terminals is increased by one; if the number of termi-

nals is less than or equal to 30, go to the label LOOP; otherwise,

RETURN to the package.)

This example illustrates how a user can program iterations of

model solutions. It is usual that several closely-related versions of

a model need to be solved. A simple programming capability that

can be implemented in a layer of software can be of great benefit

in this situation.

3. High-Level Front Ends

The interactions between user and package that were dis-

cussed in the last section are typical of those involved in perfor-

mance validation and prediction problems. The issue is the perfor-

mance of an existing system subjected to new workloads and

configurations. The language accepted by the front end is thus the

language of capacity planning and tuning: new workloads and dev-

ices. Because the major work in using a package is performance

prediction, packages allow the user to modify easily classes, dev-

ices, and loadings.

Constructing a model initially can be a tedious process. After

system operation is understood sufficiently well and a model is out-

lined, measurement data must be gathered and reduced to yield

parameter values for input to a queueing network analysis package.

A side benefit of this process is that a deeper understanding of the

system can be gained. However, there are at least three disadvan-

tages to performing this routine manually. It takes an inordinate

amount of time to gather and reduce the data for any reasonable

system. Because of the large volume of data, the process is prone

to calculation errors. Finally, many of the actions are repetitive;

measurement data from many time periods may be used as model
input. There is a clear need to automate the process of parameter-

izing a model of an existing system.

The basis for such an automatic process is the existence of

archived time-stamped measurement data. Instead of using only

standard performance reports as the source of model inputs, a spe-

cial program can be used to identify events over a specified time

interval. The program can be directed to form classes from work-

load components in a particular way. For example, if all batch

workloads are to be treated as a single class, then the program can

aggregate all resource demands associated with these workloads.

In IBM's MVS operating system, a natural workload component is

the performance group. All CPU and storage devices that appear

in the archived records are normally treated as individual servers

in the generated queueing network model. Loadings are calculated

using standard parameter estimation procedures. Models
constructed from such an automatic procedure can be stored on

auxiliary storage, but are otherwise identical to models entered by

users interacting with a package. The user can direct the package

to read a file that contains the model; both model preparation time -

and input time are greatly reduced. The normal mode of model
modification can then be initiated.

The automatic construction of a model is one example of a

front end (level 5 of figure 1) for a package, designed for the per-

185

formance evaluation of an existing system. Other application areas

for which specialized front ends are useful are the performance

evaluation of a future computer system, of a data base system, and

of a communication network.

The performance evaluation of a future computer system

differs from the evaluation of an existing system in the lack of

actual measurement data. The system does not exist, so measure-

ments do not exist. But system design specifications, flowcharts,

and rough estimates of gross resource usage are usually available

soon after the beginning of the development project. The perfor-

mance evaluation effort can make use of this information during

system implementation. The front end interface should therefore

be based on a system designer's point of view.

Instruction execution rates for processors can be closely

estimated before they are operational, and software designers can

estimate mean cpu path lengths for each major activity of the

software under development. But even information at this high

level of detail can be used to establish loadings for a queueing net-

work model. For example, a CPU path length of a certain number

of instructions on a CPU of a certain instruction execution rate can

be transformed into a CPU loading that is input to a core computa-

tional routine. Similarly, specifications of the number of file reads

to each file, together with a projected assignment of files to storage

devices of specified speeds are sufficient to project storage device

loadings. From these, the core solution algorithm can then pro-

duce estimated average response time and other performance

measures that the system designer can use to guide the project

evolution.

Evaluation of either computer-communication networks or

data base systems can also be accomplished by placing suitable

high-level front ends on existing queueing network analysis pack-

ages. In the case of networks, the front end accepts system

descriptions in terms of such entities as terminal clusters, line

speeds, multiplexors, and concentrators. Also, various communi-

cation protocols can be specified as governing the interactions

between the terminals and the communications controller. With

this information specified, the delays incurred in the communica-

tions network can be incorporated into queueing network models

as service requirements at additional devices (e.g., the communica-

tions controller).

In the case of data base systems, a high-level front end can

permit the user to investigate data base design decisions as well as

computer system management decisions. The data base environ-

ment is specified in terms of the dominant transaction types and

the data base components to which they require access. This

information, together with file placement and buffer handling stra-

tegies, permits calculation of the expected number of device

accesses per transaction, and, knowing device characteristics, these

can be converted to loadings. (A more detailed description of this

kind of activity is given elsewhere [Sevc81].)

A particularly useful form of high-level front end for data

base performance modelling is one that is specialized to a specific

data base management system (such as S2000 or IMS). The

advantage of such specialization is that a great deal of system-

specific information can be incorporated into the front end. That

is, general strategies for scheduling, buffer management, and

record access would be known to the front end, and the user

would be required only to supply values for parameters used to

control the general strategies.

4. Choosing a Package

One decision faced by an organization interested in modeling

performance is the choice of a queueing network analysis package:

Should it be developed in-house, or should it be obtained from a

commercial vendor in the business of producing such packages?

Most of the arguments are in favor of a vendor-produced package.

Basic computational algorithms are widely known and published.

However, developing a complete software package locally is a

major software development project with all the associated prob-

lems.

A vendor-produced package can allow performance analysts

to concentrate on what they do best: capacity planning, tuning, and

performance evaluation. The package is a tool to be used as a per-

formance calculation component of a planning methodology, rather

than as an end goal itself. It is certainly desirable for an. analyst to

understand the fundamental ideas of how the analysis works (e.g.,

the general strategy of mean value analysis), but he need not

become involved with the details of the core algorithm implemen-

tation.

There are other advantages to using vendor-produced pack-

ages. Because they typically have a larger user base than an in-

house package, one can have more faith in their implementations.

In some cases, user groups exist to share information on using a

particular package effectively and on applying it in non-standard

situations. Some packages have matured to the point where they

have interfaces to standard statistical analysis reporting packages,

which may be used elsewhere in the organization. A vendor-

produced package is more likely to contain various application-

specific or system-specific front ends. For example, there may be

an IBM-compatible front end based on "channels" and "control

units", and a CDC front end based on "peripheral processors".

One of the difficulties of producing a queueing network

analysis package is maintaining it to keep up with the rapid techno-

logical advances in queueing network modeling. In 1971, the ini-

tial efficient computational algorithms were developed for single

class separable models. These were followed in 1975 by the multi-

ple class algorithms and in 1978 by the heuristic iterative algo-

rithms based on mean value analysis. Modeling strategies for

specific situations, such as advanced I/O modeling, have appeared

only in recent years. This brief historical summary shows that

rapid and extensive changes have taken place in the lower level

software layers of queueing network analysis packages in just over

ten years. The working performance analyst should not be

expected to track these developments and determine their

significance.

5. Conclusions

Software packages for queueing network model solution typi-

cally consist of several layers. An important design goal for such

packages is to permit each user to interact with the package at the

most convenient level for his particular problems, without needing

even to be aware of other layers. Nonetheless, by understanding

the general structure of such packages at the level of detail

presented in this paper, a performance analyst is in a better posi-

tion to understand the significance of answers obtained from such

packages and the feasibility of broadening a package to handle

additional computer system features.

References

Bard79 Y. Bard, Some extensions to multiclass queueing network

analysis, Fourth Int. Symp. on Modeling and Perf. Eval. of

Computer Systems, Vienna (February, 1979).

Buze73 J. P. Buzen, Computational algorithms for closed queueing

networks with exponential servers, Comm. ACM 16, 9

(September, 1973), 527-31.

JaLa82 P. A. Jacobson and E.D. Lazowska, Analyzing queueing

networks with simultaneous resource possession, Comm.
ACM 25, 2 (February 1982) 142-51.

LaZa82 E.D. Lazowska and J. Zahorjan, Multiple class memory
constrained queueing networks, Proc. ACM SIGMETRICS
Conf. on Meas. and Mod. of Computer Systems, Seattle

(August 1982).

186

NeCh81 D. Neuse and K.M. Chandy, SCAT: A Heuristic algo-

rithm for queueing network models of computer systems,

Perf. Eval. Rev. 10, 3 (Fall, 1981), 59-79.

SaCh80 C.H. Sauer and K.M. Chandy, Computer Systems Perfor-

mance Modeling, Prentice-Hall (1981).

ReLa80 M. Reiser and S.S. Lavenberg, Mean value analysis of

closed multichain queueing networks, J.ACM 27, 2 (April

1980), 313-22.

Schw79 P. Schweitzer, Approximate analysis of multiclass closed

networks of queues, Int. Conf. on Stoch. Control and

Optimization, Amsterdam (1979).

Sevc77 K.C. Sevcik, Priority scheduling disciplines in queueing

network models of computer systems, Proc. IFIP 77

(August, 1977), 565-70.

Sevc81 K.C. Sevcik, Data base system performance prediction

using an analytical model, Proc. 7th VLDB Conf., Cannes

(September 1981), 182-89.

187

"Improving Organizational Productivity"

Performance Monitoring
Techniques

189

DESIGN OF EMBEDDED COMPUTER MONITORING SYSTEM

Abundio Alvarez

Naval Ocean Systems Center

San Diego CA

The design and adaptation of an embedded monitoring system in a military processor has been

quite a challenge. Accurate definitions and analysis of monitoring requirements for the embedded
system has been one of the more difficult issues confronting the system performance analysts and

designers. Designing an embedded Computer Monitoring System for the standard Navy computer is

further compounded by the constraints on size and environmental protection.

1. Introduction

Computer systems currently being introduced in the

military community have one thing in common; they have

virtually no provisions by which performance measurements

can be taken using commercially available hardware monitors.

The Naval Ocean System Center therefore had to define and

develop a new monitoring system. This system was designed

to be a high impedence embedded monitoring system for the

purpose of providing passive monitoring of selected signals of

the Navy's AN/UYK-20 computer and for providing these

signal sources to the Monitor Interface Adaptor (MIA) com-

ponent of a large Data Extraction/Data Reduction Processor.

2. Design Objectives

The following design objectives were established as

requirements and constraints governing the design of the

Embedded Monitoring System (hereafter referred to as

monitor).

a. The monitor shall have no impact nor affect to

the normal operation of the AN/UYK-20 computer.

b. The monitor shall be housed within the frame

(with no external protrusions) of the AN/UYK-20 computer.

c. There shall be no physical modifications nor

structured changes made to the AN/UYK-20 computer to

accommodate the monitor.

d. The monitor shall be capable of providing a signal

output sufficient to drive 50 feet of twisted pair cable while

maintaining TTL compatible signal recognition characteristics.

e. The monitor shall provide for the passive mon-
itoring of 256 discrete signals from the AN/UYK-20 computer
plus 16 address lines and an address strobe line.

3. Design Approach

Receiver Selection

The low power Schottky Octal Buffer circuits that

were selected provided the required TTL output signal at the

highest input impedence (Z) of any currently available inte-

grated circuit. These integrated circuits were used as receive

circuits for the sensing of selected AN/UYK-20 computer data.

The high density packaging and tri-state output were another

reason for the selection of this particular integrated circuit

chip. The high input impedence of these integrated circuits

also allowed for the multiplexing of data outputs in a bus

arrangement.

3.1 Power Independence

The monitor was designed using an independent power
supply to provide the required voltage to the circuit boards.
The power supply is also configured with an in line filter to

eliminate external primary power source line noise. Implemen-
tation of a separate power supply for the monitor assures no
common mode noise injection into the AN/UYK-20 computer
circuits and imposes no current load to the AN/UYK-20 com-
puter internal power supplies.

3.2 Logical Organization

The monitor was designed to accommodate a total of

256 discrete data signals for transmission to the MIA. This is

in addition to the 1 6 address (address register) lines and the

address strobe line. The monitor is organized in a multiplex

fashion wherein there are 8 groups of 32 bits each which may
be selected for data acquisition. That is, the MIA is restricted

in selecting only one group of 32 bits of data for monitoring at

any one time. This constraint was imposed on the designer by

the number of connector pins available on the AN/UYK-20
DMA plug which is used as the I/O port to the MIA.

191

3.3 Physical Organization

Figures 1 through 3 depict the monitor and its inter-

connection with the CPU/IOC chassis of the AN/UYK-20 com-

puter.

Figure 3

The monitor is comprised of two general purpose IC boards

with ground and voltage planes on each board. There are 60
ICs mounted on the two boards. This population provides for

the full 256 discrete signal multiplexing capability, the address

data and for some additional AN/UYK-20 signals reconstitution.

Connection between the monitor, the AN/UYK-20 computer

and the MIA is provided via the nine, 50-pin connectors

mounted on top of the monitor. The first two connectors pro-

vide for communication between the monitor and the MIA.
The remaining seven connectors are available for signals acqui-

sition from the AN/UYK-20 computer. As can be seen from
Figure 3 only partial AN/UYK-20 signals acquisition has been

implemented.

Monitor connection to the AN/UYK-20 computer is

by means of hand wire wrapping to selected data points on the

backplane of the CPU/IOC chassis. Due to the critical nature

of the high repetition rate and pulse duration of the address

Register and address Strobe signals these points were wired

using twisted pair solid conductor 28ga. wire. All other data

points were acquired using single conductor 28ga. wire.

Primary power for the monitor was brought in to the

AN/UYK-20 chassis through the existing external Real Time
Clock (RTC) access port. The RTC connector was replaced

with an appropriate power connector. No chassis modifica-

tion was required. The I/O connection between the monitor

and MIA uses the existing AN/UYK-20 Direct Memory Access

(DMA) port. No AN/UYK-20 computer modifications were

allowed or required.

The prototype monitor is a wire wrap assemblage

between the various 14, 16 and 20 pin DIP ICs. The monitor is

attached to the frame of the AN/UYK-20 computer CPU/IOC
chassis by means of existing AN/UYK-20 mounting screws.

3.4 Signals Reconstruction

Approximately one-half of the signals that were selected

for data extraction from the AN/UYK-20 computer were not

available on the backplane of the computer in the composite
form that they were required. Therefore, the monitor design

provided for reconstitution of these signals through implemen-
tation of logical operations (i.e., "ANDs", and "ORs", latches,

decoders, etc.). Some of those signals which required reconsti-

tution were:

a. IDAs for channels 0—17

b. EFAs for channels 0 — 17

c. Jump and Link Register (42) instruction

d. Branch Satisfied condition

3.5 Data Transmission Techniques

The driver circuits used in the monitor for transmitting

the acquired data to the MIA are the same low power Schottky

Octal Buffers that were used as data receivers. The low output

impedence of this chip provided a high current drive capability

of single ended TTL level transmission lines. Tests were con-

ducted to determine the drive capability of the circuit using 60

feet of 26ga. twisted pair cable without any appreciable degra-

dation to the signal.

192

3.6 Selection of Data Points

The data points of the AN/UYK-20 computer selected

for monitoring and their associated bit positions were grouped
into multiplexer groups for transmission to the MIA. Some of

the discrete signals identified were selected rather arbitrarily

but many were believed to be able to provide important indic-

ators of computer performance. As can be seen, there is room
for many more data points to be wired to the AN/UYK-20
computer. At present only 83 of the possible 256 discrete

points were wired. Also wired are the 16 address Register

address bits and address Strobe independent of the 256 multi-

plexer bits.

4. Operational Validation

The monitor was bench tested prior to installation

within the AN/UYK-20 computer. Subsequent to this, the

monitor was tested on-line in conjunction with the AN/UYK-20
computer, the MIA and the MIA Test Fixture (Future Data
Microcomputer System). The monitor (Figure 4) was debugged
and final testing validated proper operational performance, as

verified by MIA test report outputs matched with AN/UYK-20
simulation test program results.

On-line testing of the monitor with the MIA system
was performed and documented.

The I/O signals selected for monitoring provide for

acquiring the four possible types of activities which are avai-

lable on each of the 16 I/O channels, i.e.,

a. Input data

b. Output data

c. External functions

d. External interrupts

Through these signals the MIA can:

a. Count number of words input

b. Count number of words output

c. Count number of external functions of any or all

channels

d. Count number of interrupts on any or all channels

e. Time all of the above events and determine percen-

tages of specific I/O activity

5. Future Direction

The PCOTES Hardware Monitoring System shown in

Figure 5 depicts the final objectives of the implementation of

the Embedded Monitoring System.

That portion outlined by the dotted line was completed and
tested. The Navy program responsible for the development of
the overall system was cancelled. This system was to have

included four DEC VAX 1 1/780 systems with approximately
thirty MIA units, along with ten MUX and HPM port processors

with a number of support devices working on a 50 Mh Hyper-
channel Bus.

NOSC has since developed the MIA into a dedicated

stand alone Hardware Monitoring System for the USQ-20
computer. The development of this unit cost the government

about 160K, or two man-years, for both hardware and soft-

ware. NOSC is now in the process of developing a new system

with enhanced capabilities for around 50K a copy.

MONITOR TEST FIXTURE (MTF)

r COMPUTER
UNDER
TEST

AN/UYK-20

EMBEDDED
MONITORING SYS

MONITOR INTERFACE
ADAPTER (MIA)

CRT
KEYBOARD

MIA Z80
INTERFACE MICRO-

FLOPPYPROCESSOR
DISK

PRINTER

Figure 4. NOSC Micro Monitor

193

AN/UYK-20
A

256
SENSORS

AN/UYK-20
B

256
SENSORS

1

AN/UYK-20
C >256

SENSORS

_J

1

MIA
C

AN/UYK-20
D

MIA

256 ^
SENSORS

V
MUX HPM

PORT

MASTER
CLOCK

VAX
BUS

NSG
A-410

Figure 5. PCOTES Hardware Monitoring System

194

PROGRAM INSTRUMENTATION TECHNIQUES

Raymond C. Houghton, Jr.

National Bureau of Standards
Institute for Computer Sciences and Technology

Washington, DC 20234

Many tools that perform dynamic analysis of computer
programs modify (or instrument) the programs by inserting probes.
Typical analyses that are performed by these tools include
coverage, tuning, timing, tracing, and assertion analysis. There
are four common instrumentation techniques for higher level
languages: global, local, trace, and buffered trace. These four
techniques are examined for performance differences on a
DECSYSTEM-10.

Key words: Coverage analysis; dynamic analysis; performance
monitoring; program analysis; program instrumentation;
software tools.

Introduction

Several dynamic analysis features
[Houg81] of software development tools
can be implemented by instrumentation
techniques. Table 1 lists these
features along with their definitions.

Assertion Checking - checking of
user-embedded statements that
assert relationships among
elements of a program.

Coverage Analysis - determining
and assessing measures
associated with program
structural elements to
determine the adequacy of a

test run.

Note: Certain commercially developed
products are identified in this paper in

order to provide a characterization of
their instrumentation features for
certain types of programs. In no case
does such identification imply
recommendation or endorsement by the
National Bureau of Standards, nor does
it imply that the product identified is
necessarily the best for the purpose.

Timing - reporting actual CPU,
wall-clock, or other times
associated with parts of a

program's execution.

Tracing - monitoring the
historical record of execution
of a program.

Tuning - determining what parts of
a program are being executed
the most.

Table 1. Dynamic Analysis Features

195

The most common feature that is
familiar to most programmers is tracing.
Tracing is provided as a feature by many
compilers. Compilers instrument
software by including breakpoints in a
user's program so that execution can be
interrupted to examine program behavior.
This type of instrumentation is added to
the object level of a program and
requires close cooperation with the
run-time system. Consequently, this
technique is very reliant on the
hardware characteristics of the host
system.

Tracing can also be implemented by
using a machine-independent
instrumentation technique where the
original program is transformed to an
instrumented program that is written at
the same level as the original program.
This type of instrumentation is
performed by a tool that is commonly
called a pre-processor . Figure 1 shows
the typical relationship with a

figure shows that the
produces a modified
subject program which

produces output which is
a tool called a

If tracing information
by the user, then the

compiler. The
pre-processor
version of the
when compiled
analyzed by
post-processor

.

is requested
post-processor sorts through the trace
data produced by the modified version of
the subject program, formats the
information, and presents it to the
user

.

Whereas tracing is a feature that
is used for debugging programs, coverage
analysis is a feature that is used for
testing them. Although there are many
testing techniques [Adri81] , a common
technique is to cover a certain

program statements,
paths [Mill77] . A

by many software tool
to obtain 85 per cent
in the software that
To determine measures

such as this, there are many coverage
analysis tools available. [Houg82]
lists 40 tools that measure coverage for
several programming languages including
FORTRAN, JOVIAL, COMPASS, COBOL, PL/1,
AND Pascal.

Instrumentation Techniques

percentage of
branches, or
guideline used
developers is
branch coverage
they develop.

Ther
instrumen
a subject
features
These are
trace

,

instrumen
technique
the featu
example

,

used to
" tracing

,

implement
"coverage
"tuning."

e are four common
tation techniques for modifying
program to collect data for
such as coverage analysis,

classified as trace, buffered
and global
instrumentation

be confused with
implement. For

trace instrumentation can be
implement the feature called
" but it can also be used to

"assertion checking,"
analysis," "timing," and

local

,

tation. These
s should not
res that they

/subjectV
(program)*

TOOL
PRE-

PROCESSOR \PR06RW
COMPILE/
EXECUTION

TOOL
POST-

PROCESSOR
^1 TOOL A
^1 OUTPUT

J

Figure 1. Block Diagram of a Dynamic Analysis Tool

196

2.1 Trace Instrumenation

Example 2 shows the trace
instrumented version of the program
shown in example 1. Tn example 2, a

FORTRAN program is instrumented so that
a subroutine called TZZ4QX is called
with trace data passed as a parameter.
The function performed by this
subroutine is to output the trace data.
After a completed execution of the
instrumented program, a file is
generated that is composed of trace data
produced by this subroutine. A
post-processor uses this file or a
number of these files to produce reports
that characterize the execution of the
subject program.

C PROGRAM THAT COMPUTES THE MEAN AND THE STANDARD DEVIATION OF

C A SEQUENCE OF NON-ZERO NUMBERS TERMINATED BY A NEGATIVE NUMBER.

c
PROGRAM COMPUTE

REAL X,MEAN, STDEV, SUM1,SUM2
INTEGER K

C
SUM1 - 0.0
SUM 2 » 0.0
K a 0

1 READ (5, 100) X

100 FORMAT(F10.3)
IF (X . LT . 0.0) GOTO 2

K K + 1

SUM1 - SUM1 + X

SUM2 - SUM2 + (X •* 2.0)
GOTO 1

2 MEAN - SUM1 / K

STDEV - SQST((S'.'M2 / K) - (MEAN *• 2.0))

WRITE(6,200) MEAN, STDEV
200 FORMAT (" THE MEAN IS '.F10.3,' THE STANDARD

• DEVIATION IS '.F10.3I
STOP
END

Example 1. An Uninstrumented Program

PROGRAM COMPUTE
REAL X,MEAN, STDEV, SUM1.SUM2
INTEGER K

CALL TZZ4QX(1)
sum = o.o
SL'M2 * 0.0
K = 0

1 CALL TZZ40X(2)
RnAn{5,ioo) x

100 FORMAT (F10. 3)
IF (X . LT .0.0) THEN
CALL T2Z4QX(3)
GOTO 2

ENDIF
CALL TZZ4QX(4)
K = K + 1

SUMl » SUM1 + X
SUM 2 • SUM 2 + (X •* 2.0)
GOTO 1

2 CALL T;Z40X(5)
m::an = sumi / k
STDEV » SQRT ((SUM2 / K) - (MEAN 2.0))
WRITE (6 , 200) MEAN, STDEV

200 FORMAT!' THE MEAN IS '.F10.3,' THE STANDARD
* DEVIATION IS '.F10.3)
CALL RZZ4QX
END
SUBROUTINE TZZ4QX(NSEG)
WPITE(13) NSEG
RETURN
END

Example 2. Trace Instrumentation

Trace instrumentation is the
simplest of all instrumentation
techniques because it requires a minimal
transformation of the subject program.
No storage or processing of trace data
is required by the instrumented program,
and all data is provided to the
post-processor for analysis. Since the
instrumented program does not have a
storage requirement, it is generally
assumed that the resulting instrumented
program is not as bulky as the other
three techniques. The impact of this
storage requirement is examined in
section 3.1.

2.2 Buffered Trace Instrumentation

This technique introduces storage
requirements in the instrumented
program. Rather than perform output at
each probe in a program, trace data is
stored in a buffer until it is filled.
The information is then output. Example
3 shows buffered trace instrumentation.
Buffered trace complicates
instrumentation because the
pre-pr ocessor must identify the

197

termination points in a program. This
is necessary so that the buffer can be
purged prior to the actual termination
of the instrumented program. The
advantage, however, is a reduction in
output processing overhead. Section 3.2
examines this reduction further.

the subject program. The impact of this
storage requirement for branch coverage
is examined further in section 3.1.
Like buffered trace instrumentation,
local instrumentation requires the
identification of termination points.

PROGRAM COMPUTE
PEAL X, MEAN, STDEV, SUMl, SUM2
INTEGER K

CALL TZZ4QX(1)

SL'Ml = 0.0
sum: - 0.0
K - 0

1 CALL TZZ4QX (2)

READ(5,100) X
100 FORMAT (FLO. 3)

IF (X.I.T. 0 . 0 > THEN
CALL TZZ4QX(3)

GOTO 2

e:iOIF

call tzz4qx(4)

K = ! t- 1

SUMl = SUMl + X

SUM 2 = SUM 2 + (X •* 2.0)
GOTO 1

2 CALL TZ2 4QX(5i

MEAN SUMl / K

STDEV = SORT ((SUM2 / K) - (MEAN «* 2.0))
WRITE (6 , 200) MEAN ,STDEV

200 FORMAT (" THE MEAN IS ',F10.3,' THE STANDARD
• DEVIATION IS *,F10.3)
CALL RZZ4QX
END
SUBROUTINE T7.Z4QX (NSEG)
DIMENSION ICIRCLf 100)

DATA I COUNT / 1 /
ICIRCL (ICOUNT) =NSEG
IF (ICOUNT.EQ. 100) THEN
WRITE(13) (ICIRCL(I) ,1 = 1,100)
ICOUNT=l
e:id if
RETURN
END

PROGRAM COMPUTE
PEAL X, MEAN, STDEV, SUMl,SUM2
INTEGER K

CALL TZZ4QX(1)
SUMl = 0.0
SUM2 = 0.0
K - 0

1 CALL TZ340X(2)
PEAD(5,100) X

100 FORMAT (F10. 3)

IF(X.LT.0.0)THEN
CALL TZZ4QX (3)
GOTO 2

ENDIF
CALL TZZ40X (4)
K - K + 1

SUM 1 « SUMl X
SUM 3 • SUM? (X 2.0)
GOTO 1

2 CALL TZZ*QX(5)

MEAN = SUM 1 / K

STDEV = SQRT ((SUM 2 / K) - (MEAN ** 2.0))
WRITE (6 , 200) MEAN, STDEV

200 FORMAT <" THE MEAN IS ',F10.3,' THE STANDARD
* DEVIATION IS ',F10.3>
CALL RZZ4QX
END
SUBROUTINE TZ74QX (NSEG)
COMMON / CZZ4QX / IZZ4QX(5)
INTEGER IZZ4QX
IZZ49X(NSEG) =IZZ4QX(NSEG)+1
RETURN
END

Example 3. Buffered Trace
Instrumentation

Example 4. Local Instrumentation

2.4 Global Instrumentation

2.3 Local Instrumentation

For certain types of dynamic
analysis such as coverage analysis,
tuning, and assertion checking, it is
possible to perform additional
processing of the trace data within the
instrumented program. This eliminates
the need to output trace data. Example
4 shows that in the monitoring routine a
counter is incremented each time the
routine is invoked. Each counter is
stored locally in the subroutine and may
represent the number of times a
statement, branch, or false assertion is

executed. Consequently, the monitoring
subroutine may have a storage
requirement equal to the number of
statements, branches, or assertions in

Unlike local instrumentation where
counters are stored locally in the
monitoring subroutine, global
instrumentation stores the counters
globally and does not require calls to a
monitoring subroutine. Consequently,
global instrumentation eliminates the
linkage overhead that is incurred by the
other instrumentation techniques during
the execution of the instrumented
program. Global instrumentaion , on the
other hand, is the most complicated of
the techniques. Besides the insertion
of probes in the instrumented program,
global data specifications (Block Common
in FORTRAN) must also be inserted
throughout the instrumented program.

198

PROGRAM COMPUTE
COMMON / CZZ4QX / IZZ4QX< 5

INTEGER IZZ4QX
SAVE /CZZ4QX/
REAL X .MEAN ,STDEV , SUM! , SUM

2

INTEGER K

1)

100

IZZ4QX<
sumi =0.0
SUM2 = 0.0
K » 0
IZ74QX(2)

READ(S,100) X
FORMAT (F10. 3)

IF (X.LT.O.O)THEN

IZZ4QX(

IZZ4QX(

3) - IZZ4QX

{

1)

3) +

IZZ4QX

(

4)

+ 1

X

(X 2.0)

I?Z4QX<
GOTO 2

ENDIF
IZZ4QX(
K = K

SUMI * SUMI
SUM2 - SUM2
GOTO 1

2 IZZ4QM 5) - IZZ4QX (

MEAN - SUMI / K

STDEV - SQRT1 (SUM2 / K)

WRITE (6, 200) MEAN, STDEV
200 FORMAT (

* THE MEAN IS '.P10.3,'
• DEVIATION IS ',710.3)
CALL RZZ4QX
END

5)

(MEAN •* 2.0))

THE STANDARD

to instrument the programs. Trace
instrumentation statistics were obtained
using the Automatic Testing Analyzer
(ATA) developed by Science Applications,
Inc. Global instrumentation and
buffered trace instrumentation* data
were obtained using the Node
Determination and Analysis Program
(NODAL) developed by TRW, Inc. Versions
of both of these tools have been
developed under contract to various
agencies within the Government. Local
instrumentation statistics were obtained
using the NBS analyzer [Lyon74]

.

Table 2 provides some of the
characteristics of the subject programs
that were examined. All programs and
tools were executed on a DECSYSTEM-10
under the TOPS-10 Operating System. The
subject programs were selected from
various experimental programs and
various software tools available on the
DECSYSTEM-10. Because of various
language and portability constraints,
data was not obtained for every subject
program using every instrumentation
technique

.

Example 5. Global Instrumentation

3. Performance of Instrumentation
Techniques

During the experimentation and
subsequent analysis, an attempt was made
to obtain generalized results. However,
it was found that each subject program
displayed such different execution

This section discusses the
performance of the four types of
instrumentation techniques for certain
subject programs. Three tools were used

* Buffered trace statistics were
obtained using a slightly modified
version of the instrumentation that is

provided by NODAL for tracing.

Subject
Program No,

3

2

4

7

8

6

11

No. of Per cent
Statements Comments

38

49
65

410
749

2290
9040

0%

0%
8%

32%
55%
40%
50%

No. of
Segments

14

27
32

170
177
792

1992

Internal
Data Storage

Very Large

Small
Small
Very Large
Very Large
Small
Large

Table 2. Characteristics of the Subject FORTRAN Programs

199

characteristics that statistically
significant results could not be
obtained for the generalizations.
Consequently, the sections that follow
discuss typical cases from the
experiments along with a brief
discussion of some of the worst case
results.

3.1 Storage Effects

Table 3 provides the storage
requirements for the instrumented and
uninstrumented subject programs.
Programs 6 and 2 show a larger
percentage increase in storage for the
instrumented programs because they have
smaller internal data storage than
programs 7 and 8 (see table 2) . The
first trend to notice is that the
storage requirements for local
instrumentation is consistently higher
than global instrumentation. This trend
makes sense because local
instrumentation performs a call to a
monitoring routine at each branch. Each
call along with its associated
parameters requires extra storage. The
next trend to notice is that for
programs 6 and 8, buffered trace takes
less storage than trace instrumentation.
Although this trend does not seem
logical, it can be explained by the
slightly different instrumentation
techniques used by NODAL and ATA. The
most important trend to notice is that
global instrumentation does not
necessarily require more storage than
trace instrumentation. This seems
counter-intuitive because, as it was
pointed out in section 2.1, trace

instrumentaton does not have a storage
requirement for the execution
statistics. This trend seems to be
based on a stand-off between the storage
required for subroutine calls versus the
storage required for counters.

3.2 Output Effects

Table 4 provides output statistics
for the instrumented and uninstrumented
subject programs. The important trend
to notice here is the large percentage
increase in output produced by trace
instrumentation. This trend is expected
since the monitoring routine outputs the
trace data each time it is called. Also
notice that buffered trace
instrumentation does reduce the amount
of output. The output from program 8

was cut by 75 per cent. Program 4 was
cut by 86 per cent. Since output from
local and global instrumentation is
relatively fixed, the effect on the
instrumented program will depend on the
uninstrumented output. Program 3 shows
the worst case that was found in the
data. This is a small program that
produces very little output and has a
relatively large run-time.

Pro- Buff
gram No Trace % Trace % Local % Global %

No. Inst. Inst. Incr. Inst. Incr. Inst. Incr. Inst. Incr.

6 20531 32253 57.09 31342 52.66 37116 80.78 27377 33.34
2 11016 14456 31.23 15737 42.86 13565 23.14
7 27766 31011 15.86 32247 20.48 31242 16.72
8 352125 355015 .82 354443 .66 356451 1.23 354420 .65

Table 3. Instrumentation Storage Effects

200

Pro- Buff
grain No Trace % Trace %
No. Inst

.

Inst. Incr

.

Inst. Incr

.

4 6 2468 41200 345 5650
8 123 19728 15939 4903 3886
7 49 360 635

11 417 8314 1893
3 1 6316 631500

Local %

7

130
60

17
6

22

500

Global %

10
126
59

504
8

67
2

20
21

700

Table 4. Instrumentation Output Effects

3.3 CPU Time Effects
4. Conclusion

Table 5 provides CPU time
statistics. Because CPU time is based
on several variables, including program
size, input/output, and run-time, it is
the most difficult to establish
consistent trends. However, Table 5
does show CPU time is less for each
technique as you examine the data from
left to right. The percentage of
reduction is highly variable, however.
For example, CPU time from local to
global instrumentation is reduced by 35
per cent for program 4, but only 8 per
cent for program 7. The worst case
results were again obtained by program
3. An interesting anomaly occurred with
program 8, where the global
instrumentation time was actually less
than the uninstr umented time. The
explanation for this behavior seems to
lie in a DECSYSTEM-10 timing quirk where
a better input/output and run-time
balance can improve CPU time.

In this paper, four types of
instrumentation techniques were defined
and examined using a small sample of
subject programs. Several trends were
observable from the data presented and
all of them, except possibly storage
effects, pointed to global
instrumentation as the most efficient
instrumentation technique. Although
this trend may be true in general, there
are several issues that should be
examined before one embraces global
instrumentation. The first, which was
mentioned in section 2.1, is simplicity.
Trace instrumentation is the easiest to
implement. The second is separate
instrumentation. For very large
programs it is desirable to instrument
only parts of a program. This is easily
accomplished with both instrumentation
techniques, however, global
instrumentation requires some extra
bookkeeping, that trace instrumentation

Pro- Buff
gr am No Trace % Trace % Local % Global %

No. Inst. Inst. Incr

.

Inst. Incr

.

Inst. Incr

.

Inst. Incr

.

6 14 53 279 28 100 20 43
7 11 47 327 13 18 12 9
4 63 391 520 103 63 100 59 65 3

2 3.7 19.89 438 4.46 21
3 .19 21.47 11210 .44 132
8 65 2806 4217 536 725 245 277 64 -2

Table 5. Instrumentation CPU Time Effects

201

does not require. The programming
environment also plays a key role. A
batch environment with sufficient
storage space and available idle time
can easily accomodate trace
instrumentation. However, an
interactive environment with tight
schedules and a requirement for quick
turnaround would probably prefer the use
of global instrumentation. Finally, the
language being instrumented is also an
issue. FORTRAN is considered a "flat"
language that has different execution
characteristics than more "contoured"
languages such as Pascal or ALGOL.
Global referencing in these languages
can have expensive run-time
implementations depending on efficiency
trade-offs made in the compiler.

[Lyon74] G. Lyon and R. b. Stillman,
"A FORTRAN Analyzer", NBS Technical
Note 849, October 1974.

[MU177] E. F. Miller, Jr., "Program
Testing: Art Meets Theory",
Computer, July 1977.

5 . References

[Adri81] W. R. Adrion, M. A.
Branstad, and J. C. Cherniavsky,
"Validation, Verification, and
Testing of Computer Software" , NBS
Special Publication 500-75, February
1981.

[Houg81] R. Houghton, "Features of
Software Development Tools", NBS
Special Publication 500-74, February
1981.

[Houg82] R. C. Houghton, Jr.,
"Software Development Tools" , NBS
Special Publication 500-88, March
1982.

202

"Improving Organizational Productivity"

UNIX Performance Analysis

203

PERFORMANCE PREDICTION IN A UNIX ENVIRONMENT

Lawrence W. Dowdy, Lindsey E. Stephens, and Alfredo Perez-Davila

Computer Science Department
Vanderbilt University

Nashville, Tennessee 37235

Computer system performance prediction addresses the question, "How and by how
much will a certain hardware or software change affect the performance of a given computer
system?" The difficulties in being able to accurately predict this performance stem from:

(a) not having measurement data on the needed parameters, and (b) not knowing how the

parameters change with respect to each other as the system changes.

This paper describes a technique to predict the performance of a system as the number
of users increases. This involves predicting the user response time and the user throughput,
as a function of the number of users. The thrashing point, where throughput and response

times severely deteriorate due to program swapping overhead, is also predicted.

The performance prediction technique is validated on a Perkin-Elmer 3220 running
UNIX. To handle the data measurement and parameter interdependency problems, a perfor-

mance monitor and a synthetic workload are constructed.

Key words: Performance prediction; queuing theory; UNIX; validation.

1. Motivation

In capacity planning, the system manager is faced

with the problem of determining when to perform a sys-

tem upgrade and by how much the system should be

upgraded. For budgetary reasons, the manager needs to

know this information well in advance of when the sys-

tem will be reconfigured. The manager's goal is to main-
tain a system at a desired performance level (e.g., a given

response time or throughput threshold) under increasing

workload demands. For these reasons, the manager needs
to be able to accurately predict the performance of the
current system as its workload increases in order to deter-

mine the point in time at which the performance is un-

acceptable and a system upgrade becomes necessary.

This performance prediction task is nontrivial. A
scenario for performing this task is as follows. First, an
abstract model of the system is constructed. The model
parameters (e.g., device loadings, device service rates) are

then obtained. The model is solved (e.g., analytically, via

simulation) to obtain performance metrics such as user

response times and throughputs. These metrics are then
validated against the measured performance metrics.

Once validated, the model parameters are altered to re-

flect the workload increase. The model is resolved and the

metrics obtained are used as the performance prediction

at the increased workload.

The most difficult steps in this scenario are the ob-

taining and the altering of the parameters. As a result,

relatively few performance prediction studies and tech-

niques have been reported [1, 4, 5, 6, 7, 10, 12, 13).

In this paper, a technique is given for obtaining

the predicted throughput versus workload curve and the

predicted response time versus workload curve. The pre-

sentation of the technique is facilitated by describing

an explicit example. The example environment and the

model are described in Section 2. The model parameter-

ization is described in Section 3. Section 4 presents the

prediction technique which is then validated in Section 5.

Conclusions are given in Section 6.

205

SYNBEN was run with the above assumptions with

five virtual terminals running. From IOUmon the follow-

ing base model parameters were observed.

DMP = 5

Hcpu —
of CPU transactions

CPU busy time
19.5 transactions /second

USD

Pud =

system file transactions

£ system disk busy time

54.0 transactions/second

2 user fHe transactions

user disk busy time
= 54.0 transactions/second

V-term
—

mean think time
— 0.06536 transactions/ second

= 19.5

Vcpu = 8. 3450

K>
USD = 54 -0

K>
»rm = 54.0

= 0.06536

Figure 2: Parameterized System Model

of CPU transactions
ycpu ~~ * • •—i

monitoring period

= 8.3450 transactions/second

Vcn = X) system fHe transactions

monitoring period

= 0.7194 transactions/second

3.4 Model Validation

The parameterized model was solved using mean
value analysis techniques [11]. The model reported a
throughput of 0.2751 responses per second. The observed
throughput was 0.2744 responses per second for an error

of less than 0.5%. This validated mode! formed the basis

for performance predictions at increased workloads.

_ £ user fHe transactions

monitoring period
= 7.3512 transactions/second

^terminal responses

monitoring period

= 0.2744 transactions/second

DMP = 5

Since the visit ratios (i.e., V's) are relative to each other,

we choose to normalize them relative to the monitoring
interval so that they correspond to the actual through-

puts. The parameterized system model is shown in Figure

2.

4. Predictions

Once a system model has been constructed, param-
eterized, and validated, performance prediction of the
"high-level" parameters (e.g., throughputs, response

times) reduces to the prediction of the "low-level" pa-

rameters (e.g., n's, V's, DMP). If the low level parame-
ters are accurately predicted, and the underlying queuing
theoretical assumptions (e.g., work conserving, product
form) are valid, then the predicted high-level performance
metrics will be accurate because of the provably correct

functional relationships between the high and low-level

parameters.

4.1 Methodology

A methodology for predicting the low-level param-
eters is stated and then particularized for the PE-3220
example.

1. Identify the control variable. This variable will

be directly affected as the system changes. If the

scheduling algorithm at the CPU is being changed,

Vcpu would be the control variable. If files were
being shifted from one device to another, the device

visit ratios would be the control variables.

206

2. Environment and Model

The example environment is a Perkin-Elmer 3220
with 960K bytes of primary memory, running version 7 of

UNIX. A central server queuing network model describing

the system is shown in Figure 1.

system disk (SD)

K>
user disk (UD)

cerminals (term)

Figure 1: System Model

Standard queuing theoretical assumptions are made
[3]. The CPU is a single processor modeled as a load

independent, processor-shared server. Each disk has its

own selector channel and each is modeled as a load inde-

pendent first-come-first-serve server. The file system is

configured so that all system file activity (e.g., swapping,
accounting, library calls) is routed to the system disk,

while all user related file activity is routed to the user

disk. The terminals are modeled as an infinite server.

3. Model Parameterization

The parameters needed to characterize the system
model are:

- the mean service rate for each server: Hcpu, Vsd,
PUD, Uterm,

- the relative visit counts for each server: VCpu, Vsd,
Vud, Vterm, and

- the degree of multiprogramming: DMP.
Each parameter is workload dependent. In order to run
controlled experiments for validation purposes, a con-
stant workload is needed.

3.1 Workload

To provide a constant workload, a synthetic bench-
mark, SYNBEN, is constructed. SYNBEN is a program
written in C which places a representative workload on
the system. Input parameters to SYNBEN include:

- the number of "virtual" terminals to be repre-

sented,

- the think time distribution for each terminal,

- the size of each terminal's program,

- the distribution for the CPU requirements for each

terminal's requests, and

- the distribution for the user disk requirements for

each terminal's requests.

The operation of SYNBEN is as follows. The parame-

ters are read from the user. The appropriate number of

virtual terminal jobs are created. Each virtual terminal

job uses a random amount of CPU time, based upon

the given CPU service time distribution. Each virtual

terminal job selects whether or not a user disk I/O is

to be performed, and, if so, selects a random number of

blocks to transfer. If the job does not choose to do I/O, it

returns to the virtual terminal for a random think time.

In this case, information consisting of the virtual terminal

number, a time stamp, and the think time is recorded,

and the virtual terminal job goes to sleep for its allotted

think time. The job then wakes up and continues as

before.

Synthetic workloads have been proposed previously

[2, 8]. They provide an alternative to traditional bench-
marks while being representative, easy to use, and flexible.

3.2 System Monitor

In order to obtain the necessary parameters (/i's,

V's, and DMP) for the system model, an instrumenta-

tion of UNIX monitor, IOUmon, is constructed. IOUmon
is written in C and has "hooks" within the UNIX operat-

ing system code. The parameters currently measured by
the IOUmon include:

- the busy times of the CPU and disks,

- the number of transactions (i.e., blocks) which
are transferred to each file system (e.g., swapping,
system overhead files, user files), and

- the distribution of the degree of multiprogram-
ming.

IOUmon 's tables and code are kept in primary memory
and consume less than 3K bytes. The overhead incurred

by running IOUmon is less than 0.5% CPU time.

3.3 Parameterized Model

To predict performance at various workload levels,

a specific benchmark is needed upon which to base the

predictions. Typical user behavior is used to obtain the

following SYNBEN parameters.

- Terminal think times come from a truncated nor-

mal distribution with a mean of 15.3 seconds [9].

- The mean program size is 64K bytes.

- The user (not system) CPU time required be-

tween successive physical I/Os is exponentially
distributed with a mean of 280ms.

- The number of user disk requests required per

terminal request is geometrically distributed with
a mean of 4 requests.

- Each user disk request requires an exponentially
distributed number of blocks to be transferred
with a mean of 7 blocks.

207

2. Identify those parameters which are independent

of the control variable. These variables will not

change when the control variable does. If another

CPU is being added, hcpu would be the control

variable, but the user disk requirement per visit

(1/Hud) would remain unchanged.

3. Identify those parameters which are directly or in-

directly dependent upon the control variable. It

must be realized that in actual systems, the param-

eters represented in queuing network models (e.g.,

fi's, V's, DMP) are not independent. However,

formulating the functional relationships between

these dependent variables and the control variable

is, in general, difficult. For example, if another
CPU is added, throughput at the CPU will be in-

creased, which may affect the degree of multipro-

gramming, which, in turn, affects the visit ratio to

the paging/swapping device [4]. To predict these

parametric interdependencies, experimentation and
the derivation of empirical formulae may be re-

quired.

4.2 Example Predictions

This methodology is applied to the PE-3220 ex-

ample. The goal is to predict user response time and
throughput as the workload increases.

1. Control variable. One measure of workload is the

average number of active terminals. In the system

model this number is the degree of multiprogram-
ming (i.e., DMP is the control variable).

2. Independent variables. The mean device speeds

{Pcpu, Msd, Pud, M<erm) are assumed to be invariant

with respect to the DMP. This is not to say that

the time a request spends at a device and its queue
is independent of the DMP, but that the average

amount of actual service required by a request from

a server is independent from the number of requests

circulating within the system. These mean device
speeds are assumed invariant at the values 19.5,

54.0, 54.0, and 0.06536, respectively. These values

come from the parameterized system model with
five active terminals (i.e., DMP = 5).

3. Dependent variables. As the number of active ter-

minals increases, so does swapping behavior. There-
fore, the relative visit counts, V's, are dependent
upon the control variable.

Vud is assumed to be related to Vterm as follows:

Vud = C x Vttrm for a constant C

This states that, regardless of the number of other
active terminals and regardless of the amount of

swapping, the number of visits to the user disk per

terminal request is invariant. C, found from the
parameterized system model, is 26.79.

Vcpu is assumed to be related to Vsd,Yud, and
Vterm as follows:

Vcpu = V$d + Vud + Vttrm
This is consistent with the central server model
assumption.

To find the relationship between the number of ac-

tive terminals and VSd we first find a relationship

between the number of active terminals and the
swapping rate. This is done empirically. Data
points were collected using a variety of program
sizes with differing numbers of active terminals. Re-
sults are illustrated in Figure 3.

[Note. A similar curve relating swapping to DMP
has previously been reported in [6].]

2- 2

Number of active terminals (DMP)

Figure 3: Swapping Rate as a Function of Program
Size and Number of Active Terminals

208

The files on the system disk include both the swap-

ping files and system overhead files. The access rate

to the system overhead files is assumed to be linear

with the number of active terminals. Combining

the system overhead rate and the swapping rate

for 64K jobs, the visit rate to the system disk is

predicted using the empirical formula:

VSD = max[0. 6378, 1.07 x DMP — 6.6]

It remains to find Vttrm .
However, we notice that

the units of VSD is transactions per second. This

is the estimated throughput for the system disk,

whereas VCpu,Vud, and Vttrm are relative to each

other. Therefore, an iteration technique is used.

An estimate is made for the value of VUrm (i.e.,

the terminal throughput). Using Vttrm, Vud and

Vcfu are calculated. The model is then solved

and if the throughput of the system disk does not

match Vsd, a new VUrm is used. Setting VUrm to

the terminal throughput of the previous iteration

is a good heuristic. Convergence of this iteration

technique is monotonic and occurs typically within

3 to 4 iterations.

5. Validation of the Prediction Methodology

Using the prediction methodology given in the pre-

vious section, throughput and response time predictions

were made when the active number of terminals were
varied between 1 and 20. Mean value analysis techniques

til]
were used in solving the queuing network models,

"or the validation, SYNBEN was run 7 times with 1, 5,

8, 10, 12, 15, and 20 terminals active. Throughputs and
response times were measured using IOUmon and the re-

corded data by SYNBEN. The results are shown in Table

1, Figure 4, and Figure 5.

Table 1: Predicted versus Actual Comparisons

observed predicted observed predicted

DMP response response error throughput throughput error

1 1.48 2.72 83.8% .0594 .0555 6.6%
5 2.40 2.84 18.3% .2744 .2756 0.4%
8 4.27 4.30 0.7% .4044 .4082 0.9%

10 6.54 6.83 4.4% .4511 .4519 0.2%
12 11.26 11.44 1.6% .4456 .4487 0.7%
15 28.41 25.23 7.7% .3283 .3612 10.0%
20 42.84 102.90 140.2% .3394 .1692 50.1%

Number of active terminals (DMP)

Figure 4: Predicted versus Actual Response Time

2 09

0.5

0.3

Predicted

10 15 20

Number of active terminals (DMP)

Figure 5: Predicted versus Actual Throughput

6. Conclusions

The comparison between the actual and predicted

performance measures shown in Table 1, Figure 4, and
Figure 5 is good. Larger errors are observed when the

number of active terminals is greater than 15. In these

cases, the predictions were overly pessimistic. UNIX has
tunable parameters which do not allow the system to
deteriorate too severely under heavy loads. These param-
eters include the minimum times which must pass before

a job can be swapped in and swapped out. These param-
eters were not included in the prediction models. As a
result, throughput actually flattens out under heavy load-

ing while the model predicts it to continue to deteriorate

(see Figure 5). Similarly, increased errors are observed in

the predicted response times under heavy loads.

The point at which throughput begins to deteriorate

is with 11 active terminals (i.e., DMP = 11). This is

the point above which the amount of swapping begins to

have a detrimental effect upon the throughput of terminal
responses. The model accurately predicts this point.

The presented technique and its validation dem-
onstrate the usefulness of performance prediction tech-

niques. However, caution must be exercised. The model-
ed system must be well understood by the modeler. This
includes understanding and validating parameter inter-

dependencies and empirical formulae. The need and use-
fulness of performance monitors and workload generators
is recognized. Similar studies in other environments are
needed to transform performance prediction from an art
into a science.

This research was supported in part by the University
Research Council of Vanderbilt University and by Nation-
al Science Foundation Grant no. MCS-8203594.

References

Bard, Y., The VM/370 Performance Predictor,

Computing Surveys 10, 3, September 1978, pp.

333-342.

Bashioum, D.L., Benchmarking Interactive Sys-

tems: Calibrating the Model, Performance Eval-

uation Review 9, 2, Summer 1980, pp. 35-41.

Computing Surveys, Special Issue: Queueing Net-
work Models of Computer System Performance

10, 3, September 1978.

Dowdy, L.W., Agrawala, A.K., Gordon, K.D.,

and Tripathi, S.K., Computer Performance Pre-

diction via Analytical Modeling -an Experiment,
Proc. of the Conf. on Simu., Meas., and Model-
ing of Computer Systems, August 1979, pp. 13-

18.

Dowdy, L.W., and Budd, R.M., File Placement
Using Predictive Queuing Models, (accepted to

appear). Presented at Applied Probability -

Computer Science, The Interface, Boca Raton,
Florida, January 1981.

Dowdy, L.W., and Breitenlohner, H.J., A Model
of Univac 1100/42 Swapping, Performance Eval-

uation Review 10, 3, September 1981, pp. 36-47.

Diethelm, M.A., An Empirical Evaluation of An-
alytic Models for Computer System Performance
Prediction, Computer Performance, North-Hol-

land, 1977, pp. 139-160.

Gordon, K.D., On the Construction of Repre-

sentative Test Workloads, Ph.D. Dissertation,

Dept. of Comp. Sci., Univ. of Maryland, Col-

lege Park, Maryland, 1981.

210

9. Kresin, H.S., Characterisation of Think and Re-
sponse Time, M.S. Thesis, Dept. of Comp. Sci.,

Univ. of Maryland, College Park, Maryland,
1980.

10. Lo, T.L., Computer Capacity Planning Using
Queueing Network Models, Performance Evalua-
tion Review 9, 2, Summer 1980, pp. 145-152.

11. Reiser, M. and Lavenberg, S.S., Mean Value Anal-
ysis of Closed Multichain Queueing Networks,
Journal of tbe ACM 27, 2, April 1980, pp. 313-

322.

12. Rose, C.A., A 'Calibration-Prediction' Technique
for Estimating Computer Performance, Proc.

NCC, 1977, pp. 813-818.

13. Seam, P.H., Modeling Considerations for Predict-

ing Performance of CICS/VS Systems, IBM Sys-

tem Journal 19, I, 1980, pp. 68-80.

211

"Improving Organizational Productivity"

UNIVAC Performance Analysis

213

SESSION OVERVIEW

UNIVAC PERFORMANCE ANALYSIS

John C. Kelly

Datametrics Systems Corporation
Fairfax, Virginia 22031

This session explores three aspects of performance evaluation as it applies
to UNIVAC 1100 computer systems. The first paper by Hajare looks in detail at the
I/O component of the system. Hajare has used a hardware monitor to measure I/O
activity across controllers and devices. This paper provides an excellent refer-
ence for anyone attempting to optimize the I/O load on a UNIVAC system. The
article also provides several interesting insights into the use of a hardware
monitor on UNIVAC computers.

The second article by Tibbs and Kelly looks at UNIVAC systems from a much
broader view. The authors applied analytic modeling using BEST/1 and simulation
modeling using SLAM to size and evaluate a replacement for a large UNIVAC instal-
lation. The paper presents numerous insights into the model building process and
points out some of the unique aspects of modeling UNIVAC 1100 computer systems.

The third paper by Bays and Voegeli describes how the statistical package
P-STAT was used to analyze workload data from the Master Log File. In conjunc-
tion with several driver programs, P-STAT was used to identify high resource pro-
grams and prepare frequency distributions for basic workload characterization.

Considering the lack of analysis programs in UNIVAC environment, most UNIVAC users

should find this approach very interesting.

215

A STUDY OF DISK I/O ON A UNIVAC SYSTEM
IN THE SHUTTLE MISSION SIMULATOR COMPUTER COMPLEX

Ankur R. Hajare

MITRE
Houston, Texas

77058

The Univac 1100/46 in the Shuttle Mission Simulator Computer Complex (SMSCC)
had two strings of disk drives with two disk controllers on each string. A
Tesdata MS-88D hardware monitor was used to obtain measures of disk usage and disk
controller usage. The data collected showed that, under Exec Level 36, the load
was balanced between the two controllers on a string. The 8450 fixed disk with
the swap file (which was not always the same disk) was used much more than any of

the others and it showed a daily variation similar to terminal usage. The I/O

activity at the 8450 disks was extremely unbalanced when an empty disk was intro-
duced into the system or when a large amount of space was freed on one disk. This
imbalance was caused by all temporary files and all newly cataloged files being

placed on the disk that was least full, and it resulted in very degraded terminal
response.

Key words: Disk 1/0; hardware monitoring; performance measurement; Shuttle
Mission Simulator; Univac.

1.0 INTRODUCTION

1.1 Background

The Shuttle Mission Simulator (SMS) located
in Building 5 of the National Aeronautics and

Space Administration (NASA) Johnson Space Center
(JSC) is used to train astronauts for Space
Shuttle missions. SMS consists of two simulator
bases supported by the Shuttle Mission Simulator
Computer Complex (SMSCC). At the time the data
for this study were collected the SMSCC contained
two large Univac mainframes (one U1100/46 and one

U1100/44) and several smaller computers that
operated in a dedicated, real -time environment.
The U1100/44, which has four Command Arithmetic
Units (CAUs) and two Input Output Access Units
(IOAUs), is used exclusively for real-time flight
simulation. The U1100/46, which has been recon-
figured, had six CAUs and three IOAUs. It was
used for simulation as well as for software de-
velopment and associated functions. This study
was restricted to the Univac 1100/46 until the
establishment of the Guidance and Navigation
Simulator (GNS) Computer Complex which has
another Univac 1100/44 that is now used for all

development work.

1.2 Scope of Work

MITRE's activity in the SMSCC includes
computer performance measurement and analysis*.
A Tesdata Model MS-88D hardware monitor is one of

the tools used in performing this task. Initial-
ly, the use of this hardware monitor consisted of

measuring CAU and 1/0 channel activity. There
had been no work in the past in measuring disk

1/0 activity. A study of disk 1/0 on the
U1100/46 was undertaken to provide insight into
some current or potential problems. The main
issues addressed in this study were load sharing
between disk controllers and load sharing between
di sks.

The study is still in progress, and this

paper reports the phase of the study through
December 1981. At that time the reconfiguration
of the SMSCC and the establishment of the GNS
resulted in a disruption of the 1/0 study until

the hardware monitoring equipment was
rei nstal 1 ed.

* This work was supported by NASA Johnson Space

Center under contract number F19628-82-C-0001
T1612J.

217

2.0 HARDWARE CONFIGURATION functioning.

The Univac disk configuration under study

consists of two strings of disk units. The

larger string contains four 8433 disk units and
six 8450 disk units. This string, which is

referred to as the "long string", has two 5046

disk controller units (CUs). The other string,
which is called the "short string", contains
eight 8433 disk units with two 5039 CUs. Figure
2- 1 illustrates these disk subsystems which were
part of the Univac 1100/46 (6x3) in the SMSCC

when the study was begun but are now a part of

the Univac 1100/44 (4x2) in the GNSCC. The
functional characteristics and modes of operation
of the above mentioned pieces of hardware are

described in this section. Additional informa-
tion on the Univac disks can be found in

references [6] through [10].

2.1 8433 Disk Unit

The 8433 disk unit is a random access,
moving-head disk unit featuring a removable and
interchangeable disk pack which consists of
twelve disks on one vertical shaft or spindle.
Nineteen surfaces are used for data recording,
and they are serviced by one moving actuator
mechanism which contains one read/write head for

each surface.

Rotational Position Sensing (RPS) is an
option provided on the 8433 disk unit for more
efficient use of a Control Unit (CU) and 1/0
channel. Without RPS, the CU would be inter-
rupted by the disk unit when the cylinder and
head addressing was complete. The CU would then
wait until the required sector is at the head.

But with RPS, the CU is not interrupted by the
disk unit until the specified sector is reached,
thereby reducing the time during which the CU is

busy.

At the time the disk subsystem is installed,
a hard-wired physical address is assigned to each
disk unit by a Sperry Univac customer engineer.
This address identifies the physical position the
disk unit occupies relative to the CU. The phys-
ical address consists of six bits and uses a

3-of-6 code that permits only 8 valid addresses.
When used with a CU that can control 16 disk
units, one more bit is added to the physical
address of the disk units.

However, the processor identifies a disk unit
by a logical address. The operator control
panel, on the disk unit, includes a removable
module select plug which establishes the logical
address for the unit. With the sixteen disk unit
feature added to the CU, the module select plugs
are number 0-F (hexadecimal). The module select
plugs are removable and interchangeable, thus
permitting a physical disk unit to assume differ-
ent logical addresses at different times. Be-
cause of this feature, a disk pack can be kept on
a specific logical unit even if a disk drive
fails. This is done by moving both the disk pack
and the module select plug to a drive that is

All 8433 disk units in the SMSCC are equipped
with the optional dual access feature which
allows the physical attachment of two CUs to an
8433 disk. This dual-access feature allows an
active 8433 disk to be interrogated by both CUs
as to status and availability. A priority
circuit in the drive provides a tie-breaking
function if two CUs attempt to select the same
drive at the same time.

Three modes of operation are possible using
the Mode Selection switch on the operator's panel

of the 8433 disk unit:

• access to CU #1 and CU #2 permitting
dynamic operation from both CUs,

t access to CU #1 only, and

• access to CU #2 only.

2.2 8450 Disk Unit

The 8450 Disk Unit is a fixed disk media,
random access storage device. Each disk unit has

a single head/disk assembly (HDA) that contains a

disk stack of eight disks. The HDA is a module
that is enclosed in a plastic and metal case. It

is not operator-removeable but can be removed and
replaced by a Sperry Univac customer engineer in

case of problems.

Fifteen disk surfaces are used for data re-
cording. They are serviced by a single accessor
mechanism with two movable read/write heads on

each of the 15 disk surfaces. These two heads
are designated as head A and head B. Each of the
15 surfaces has two distinct concentric data
areas, one accessed by head A and the other
accessed by head B.

The accessor mechanism can assume 560
positions, thus enabling each head to access 560
tracks. The set of 30 tracks that can be access-
ed in one position of the accessor mechanism is

referred to as one cylinder even though physi-
cally it consists of two cylinders. Each cyl-
inder thus contains 30 tracks numbered 0 through
29 with heads A accessing the even numbered
tracks and heads B accessing the odd numbered
tracks.

Like the 8433 disk units, 8450 disk units
have distinct logical and physical addresses.
However, on the 8450 disk units, both logical and
physical addresses are determined by jumper con-
nections inside the disk unit. Therefore, the
logical address of an 8450 disk unit cannot be

changed by an operator as on an 8433 disk unit.
Operator changeability of logical address is of

no use on an 8450 disk drive since the disk pack

cannot be moved by an operator to another drive.

All 8450 disk units in the SMSCC have the
dual access feature by means of which they can

communicate with either of two CUs. A disk unit

218

219

can only be selected by one of the two CUs at any

given time. A priority circuit in the disk unit

provides a tie-breaking function should two CUs

attempt to select the same disk unit at the same

time. Dual access 8450 disk units have a Mode

Selection Switch that permits three modes of

operation just as on dual access 8433 disk units.

RPS is a standard feature in 8450 disk units.

2.3 Control Units

The control unit (CU) or disk controller in a

disk subsystem controls all the functions for

direct access storage operations. In operation,

the CU accepts selection from one of the channels

to which it is connected, establishes connection

to the requested disk unit, decodes commands from

the channel, and controls the transfer of data to

or from the disk unit. The Univac 1100/46 in the

SMSCC has two kinds of CUs. The long string has

two 5046 CUs and the short string has two 5039

CUs.

A basic 5039 CU controls up to eight 8433

disks. The optional 16 Drive Expansion feature

allows control of up to eight additional 8433

disks. A 5039 CU cannot control 8450 disk

dri ves.

A basic 5046 CU can control up to sixteen

8450 disk units. Mutually exclusive options

permit a 5046 CU to control either an additional

sixteen 8450 disk units or sixteen 8433 disk

units. The two 5046 CUs in the SMSCC are config-

ured to control the four 8433 disk units on the

long string. Hence, they are limited to sixteen

8450 disk units plus sixteen 8433 disk units.

A 5046 CU has a dual 36-bit channel interface
which allows the CU to be connected to two sepa-

rate word I/O channels. However, the CU can only

communicate with one I/O channel at a time and

data transfers can only occur over one I/O
channel interface at a time. The two 5046 CUs in

the SMSCC were each connected to IOAU 0 and to

IOAU 2 but not to IOAU 1. Each of the two I/O

channel interfaces in the CU can be individually
disabled by means of the CHANNEL ENABLE switch on

the CU operator's panel and also from the System
Partitioning Unit (SPU) panel.

A 5039 CU by itself can only be connected to

one I/O channel. However, it can be interfaced
to additional channels via a Multi -Subsystem
Adapter (MSA) and a Shared Peripheral Interface
(SPI). Up to three SPIs may be added, thereby
providing as many as four access paths to a 5039

CU. As shown in Figure 2-1, the two 5039 CUs on

the short string are each connected to three I/O

channel s.

2.4 Other Hardware

The other hardware associated with the disk
subsystems consists of Multi -Subsystem Adapters
(MSAs), Shared Peripheral Interfaces (SPIs), I/O

channels and Input-Output Access Units (IOAUs).

An MSA is a programmable device that
interfaces byte oriented peripherals to the
36-bit word oriented processor complex of Univac
1100 Series computer systems. The 8433 disk

units and 5039 CUs are 8-bit byte oriented
devices. Hence, an MSA is required between 5039

CUs and I/O channels. Although each MSA is cap-
able of handling up to 8 CUs, each 5039 CU on the

short string has its own MSA to achieve better
performance. A basic MSA can be connected to
only one I/O channel; however, up to three more
channels can be accomodated by the inclusion of

an SPI for each additional channel. As shown in

Figure 2-1, each MSA on the SMS Univac 1100/46
(6x3) has two SPIs and is connected to three I/O

channel s.

The 8450 disk units and the 5046 CUs are
36-bit word oriented devices. Hence, they do not

require an MSA.

All I/O operations on the Univac 1100/46
(6x3) are performed by one of the three
Input-Output Access Units (IOAUs). The IOAU

provides control and data paths between main
storage and peripheral subsystems and operates
under the direct control of the CAUs. Each IOAU

interfaces with all of primary storage and all of

extended storage via one access path to each

Primary Storage Unit (PSU) and dual access paths

to each Extended Storage Unit (ESU).

An IOAU receives commands from the control

section of either of the two Command/Arithmetic
Units (CAUs) to which it is connected. When the

IOAU receives its instructions from the CAU's
control section, it performs the necessary data

transfers independent of control and does not

interfere with the execution of instructions in

the CAU, except possibly for memory contention.

Each IOAU can accomodate up to twenty-four
channels. However, the SMS Univac 1100/46 (6x3)

had sixteen channels on each of its three IOAUs.

All three IOAUs have one channel connected to

each of the two 5039 CUs. Two of the three, IOAU

0 and IOAU 2, had one channel connected to each

of the two 5046 CUs. IOAU 1 was not connected to

the 5046 CUs. Thus, ten channels were used for

disk I/O.

3.0 DISK SUBSYSTEM OPERATION

The Univac computer systems in the SMSCC run

under the Sperry Univac Series 1100 Executive
System (Exec). This vendor-supplied standard
operating system has been locally modified for

use in the SMSCC. Exec Level 33 was used during

the earlier phase of the disk I/O study. But on

26 June 1981 Exec Level 36 was put in operation
in the SMSCC. This section describes the operat-

ion of the disk subsystems under the Exec. This

description applies to both the levels mentioned
above. The local modifications to the Exec are

not in the I/O area.

220

3.1 Fixed and Removable Disk Packs

Before a disk pack is used under the Exec it

must be "prepped". A disk pack may be prepped as

"fixed" or "removable". Fixed packs are used by

the system as permanent online mass storage. The

set of fixed packs is treated as one pool of mass
storage. Removable packs are user assigned and

may be mounted and dismounted as required.

A file may be placed on a specific removable
pack by specifying a pack-id when it is created.
If a file is created without specifying a

pack-id, the Exec places it in the fixed disk
pool. The Exec decides which specific fixed pack
will contain the file, and it may even span a

pack boundary.

The six 8450 disk units in the SMSCC have
been prepped as fixed. All the 8433 disk units

are used for removable packs except for the one
which is used for the Exec pack.

3.2 Exec Pack

A system in which the Exec resides on a disk
subsystem is known as a disk-resident system
(DRS). The pack on which the Exec resides is

known as the system pack or the DRS boot pack.

The DRS boot pack must be specifically prepped as

a DRS pack. On the SMS/GNS Univac systems, which
are all DRSs, drive #0 (logical address) on the
short string is used for the system pack. DRS

packs are not compatible between 5046 and 5039
CUs. Hence the Exec pack cannot be put on any of

the 8433 disk drives in the long string. How-
ever, it can reside on any of the eight drives in

the short string since any of them can be assign-
ed logical address #0 by means of the module
select plug.

When there is a hardware problem with the

disk drive that has the system pack, it is moved
to another drive. The operators attempt to keep
one 8433 disk unit as a spare for the system pack
in order to reduce the impact of a hardware pro-
blem with the drive that has the Exec pack.

A disk pack, including the Exec pack can be
moved from one 8433 drive to another in the same
string without a keyin at the operator's console
and without a system re-boot provided it stays at

the same logical address. The process consists
of the following steps. First, the module select
plug is removed. Then, the drive is stopped and
the pack is removed. Next, the pack is mounted
on another drive which does not have a module
select plug at this time. This drive is started
and when it is up to speed the original module
select plug is inserted.

3.3 Fi le Organization

For files which are to be retained beyond run
termination, entries in a master file directory
(MFD), containing the identification and charac-
teristics of each file, are constructed and main-
tained by the system. The process of entering a

file in the MFD is called cataloging , and files

having entries in the MFD are called cataloged
files .

As part of the MFD, the Exec maintains tables
specifying the location of the various granules
of storage space allocated to a given file name.
This table allows a file to be non-contiguous and

also permits it to occupy space on more than one

pack.

3.4 Operating System Boot Loading

During an initial boot, the Executive
attempts to read a "label record" from each disk

unit in an "up" or "suspended" state. Those
units that contain packs prepped as fixed are

used as fixed mass storage. Once acquired and

initialized, these packs cannot be dismounted
without a reboot.

On an initial boot, SELECT JUMP switch 13

must be set. Switch 13 causes all on-line fixed
mass storage to be initialized. All files cata-
loged to fixed mass storage that have a tape
backup are then reloaded from tape. This process
takes about eight hours in the SMSCC and it re-

quires exclusive use of the system.

During a recovery boot, the Exec attempts to
acquire as many fixed drives as specified during
the system's generation from the mounted packs
prepped as fixed. The Exec attempts to obtain
fixed packs in the following order:

1) recover those fixed packs that were in

use prior to this recovery bootstrap,
and

2) initialize any other fixed packs that
are mounted.

3.5 Rollout and Rollback

Depending upon the amount of available mass
storage, the degree of use given to cataloging
files on mass storage, and the manner in which
files are assigned, the Exec may need to obtain
additional space on mass storage by rolling out
cataloged files to magnetic tape. This feature
is provided automatically by the Exec. The

points at which rollout is turned on and off are
system generation parameters.

Rollout occurs when a request for allocation
reduces the available mass storage below a

threshold specified at system generation. The
rollout routine utilizes a file's activity and
reference age as part of the criteria for file
rollout eligibility. If a current backup of a

file selected for rollout exists on a SECURE
tape, the file is not written to tape, it is just
registered in the MFD as unloaded.

A request to assign a rolled out file causes
the Exec to request mounting of the proper

221

magnetic tape (unless it is already mounted) and

to automatically return the file back to mass
storage using the SECURE processor.

Because of the rollout/rollback feature, a

file can move from one physical location to

another. This makes it difficult to track a

file's usage by means of a hardware monitor.

3.6 Parallelism and Path Selection

The Univac disk subsystems configuration in

the SMSCC contains more equipment than the
minimum necessary to access all the disk units.

This redundancy improves both system availability
and system throughput by permitting parallel
operations.

Every disk unit in the SMSCC has the
dual -access feature that allows it to be accessed
by two controllers. All disks can therefore be

accessed even when one of the controllers on each
string is not operational. With both CUs on a

string in operation, two disks within a string
can be accessed simultaneously.

Each 5039 CU can be accessed by all three
IOAUs and each 5046 CU can be accessed by two of

the three IOAUs. This means that single channel
failures do not hamper system availability al-

though they may degrade performance. Even a

complete failure of an I0AU does not prohibit
access to any of the disks, and the short string
can be accessed even with two IOAUs down. The
real-time flight simulation does not require the
long string. Hence, it can run with just one
I0AU in operation.

Because of the redundancy in the disk sub-

systems, each disk can be accessed via multiple
paths. Path selection is done entirely within
the Exec with no direct operator or programmer
control. Selecting a path consists of selecting
an I0AU and selecting a CU. This is equivalent
to selecting a channel, since each channel
specifies a unique path to a disk.

4.0 MEASUREMENT PROCEDURE

A Tesdata MS-88D hardware monitor was used to
study disk I/O. There are two general modes of
use of the SMSCC Tesdata system: on-going rou-
tine measurement and special studies. These two
modes of use have different operational charac-
teristics and are performed for different
reasons.

The routine measurement is carried out autom-
atically and does not require the presence of a

Tesdata operator. The monitored signals are au-
tomatically reduced to five minute sums or aver-
ages and stored in Performance Data Files (PDFs)
on the Tesdata disk.

Special studies, on the other hand, require
exclusive use of the Tesdata system. They are
performed in short blocks of time during which
routine monitoring is suspended under operator

control. Special studies also require removing
and re-connecting concentrator cables.

The measurements performed for the disk I/O

study were made a part of the routine measurement
in order to obtain data on an on-going basis.
Thus, data has been collected on an almost con-
tinuous basis since it was initiated. However,
gaps exist because of four reasons. First, power
outages and Tesdata system maintenance time re-

sult in gaps in the data collection. Second,
special studies necessitate bringing down the
routine measurement. Third, a lack of disk space
occasionally prevented the automatic generation
of new PDFs at the beginning of a month.
Finally, sensor tips have occasionally been
removed or placed at the wrong location, re-

sulting in invalid data.

The Tesdata MS-88D is limited to eight
"collectors", each of which can be used to
monitor sixteen signals. Since the disk I/O

study had to co-exist with other routine meas-
urements, initially only two collectors could be

used for measuring disk I/O. This meant a limit
of thirty-two signals. Another restriction was a

limit of two concentrators or a total of eighteen
sensor assemblies.

Finding the desired electrical signals for
measurement has been a major' problem throughout
the study. Tesdata provides a sensor point lib-

rary, but it does not adequately cover Univac
equipment. A second source of information for

sensor points was Tesdata users at other Univac
installations. However, these users did not have
exactly the same kind of equipment as in the
SMSCC. The third source of sensor point informa-
tion was Univac maintenance personnel. The
search for sensor points was a trial and error
process during which differences between the
documentation and the installed equipment were
di scovered.

On the 8450 disk units, the signals chosen
were "Mod Select A" and "Mod Select". "Mod

Select A" indicates that the drive has been

selected by controller A. "Mod Select" indicates
that the drive has been selected by one of the

two controllers. These signals were monitored
from March 1981 through September 1981.

An attempt was made to obtain similar
measurements on the 8433 disk units. However,
the physical placement of the probes inside the

cabinet caused hardware problems which resulted
in the probes being removed. Since measurements
were not being performed, the sensor assemblies
were removed when the equipment was moved in May
1981. But after Exec Level 36 was installed on

26 June 1981, the search for the causes of poor
terminal response time generated an interest in

Exec pack I/O activity. At that time a pair of
extra length probe tips was made so that a sensor
could be installed in a 8433 cabinet without
causing hardware problems. These probes were
installed on the 8433 disk unit on the short
string with physical address 2, which at the time

222

had logical address 0 and was used for the Exec

pack. The operators were then instructed not to

move the Exec pack to another drive unless
necessary. Hardware problems with the disk drive
made it necessary to move the Exec pack to an-

other drive on two occasions. The signals
monitored on this drive were "Mod Select A" and

"Mod Select B", which indicate that the drive has

been selected by the respective controller. Most

of the data obtained from this drive is for the

Exec pack, but some of it is for removable packs.

The routine measurement was reconfigured in

July, 1981, and this resulted in another collec-
tor being made available for the disk I/O study.

This collector was used to monitor the disk con-
trollers. An attempt was made to find signals at

the CUs that showed the address of the device
that was selected. However, it was found that
the CUs do not have an accessible register that
holds this data. The device address is only
accessible at a general purpose register which
the CU microprogram uses for various other
purposes as wel 1

.

The signal monitored on each of the two 5039

CUs was "Trap Selected A", which represents CU

busy. Another signal was monitored on one of the
5039 CUs for a few days. That signal was "Read
or Write Gate" which indicated that a read or a

write operation was in progress. Seven signals
were monitored on 5046 #2. Only four of those
seven signals were monitored on 5046 #1 because
of capacity limitations of the Tesdata system.

5.0 ANALYSIS OF HARDWARE MONITOR DATA

5.1 Load Sharing Between 5046 Controller Units

When the disk 1/0 study began, a major point
of interest was the load sharing between the two
controllers in each string. It was suspected
that the load was significantly unbalanced, i.e.,

the two controllers had an unequal amount of

acti vity.

Attempts to measure this at the 5046
controllers themselves were not successful.
Signals that represented "controller busy" could
not be monitored for reasons which included the
physical inaccessibility of the relevant signals.
The load balance between the 5046 controllers
was, therefore, measured at individual disks.
The signals monitored at the 8450 disk units were
"Mod Select" and "Mod Select A". "Mod Select" is

on whenever the disk is selected by either con-
troller. "Mod Select A" is on whenever the disk
is selected by controller A. Therefore, the disk
is selected by controller B when "Mod Select" is

on but "Mod Select A" is off. The total load at

each controller was not obtained with this method
since only the six 8450 disk units in the long
string were monitored. The four 8433 disk units
which are also in the long string were not moni-
tored because of the capacity limitations of the
hardware monitor.

The data showed a marked difference between

the period before 26 June 1981 and the period

after from 26 June 1981. On 26 June a new

operating system, Exec Level 36, was put in

operation on the U1100/46 (6x3). Prior to 26

June 1981 Exec Level 33 was used on that system.

With the old operating system there was a

significant unbalance in the load sharing between

the two controllers. The data for the period 12

March 1981 to 25 June 1981 showed that, on the

average, controller A had 31.91% of total act-
ivity to all 8450 disk units. The daily average
for all 8450 disks for that period varies between
26.15% and 49.55% of the activity coming from
controller A. The daily average for individual
disks shows a variation between 21.15% and 59.36%
for "% A". Some of this variation may be due to

one of the two controllers being turned off or

"downed" for brief periods for maintenance
purposes.

On a few occasions, one of the two 1/0
channels connected to the controller was disabled
because of hardware problems either with the I0AU

channel or with the channel interface in the con-

troller. This also contributed to an imbalance
between the two controllers. Both these situa-
tions, when they occur for brief periods, cannot
be detected in the data collected by the hardware
monitor. But such brief occurences, even if they
occurred predominantly on one of the two control-
lers, do not significantly affect averages
computed over a period of many days.

The new operating system was installed after
this imbalance was discovered but before a decis-
ion was made regarding a course of action. The

data collected after the installation of the new
operating system revealed a sharp deline in the
imbalance. The data subsequent to 25 June 1981

shows that, on the average, controller A had

47.37% of the total activity to all 8450 disk
units. The daily average for all 8450 disk units
under Level 36 varies between 46.47% and 50.49%
of the activity coming from controller A. The

daily average for individual disks varies between
43.35% and 53.58%.

Table 5-1 shows the difference in the load

sharing under the two operating systems. The

load unbalance under Level 36 is not considered
significant enough to warrant any further action.

5.2 Load Sharing Between 5039 Controller Units

A signal called "Trap Selected A" was moni-
tored on the two 5039 CUs for the purpose of

studying the load sharing between them. This
signal is on whenever the controller has selected
a disk unit. This signal was monitored for the

period from 3 August 1981 with gaps as explained
before. Hence, this measurement was only per-
formed under Level 36. The data indicate that,
on the average, controller A contributed to
48.87% of the total activity on the short string.

The daily average for percent A for the period of

observation varies between 43.81% and 53.97%.

223

Some of this variation can be attributed to one

of the two controllers being downed for brief
periods. The data thus show that the load on the
short string is balanced between the two
controllers under Level 36.

Table 5-1

Load Sharing Between 5046 Disk Controllers

"% A" Under "% A" Under
Exec Level 33 Exec Level 36

Average for the 31.91
period of

measurement

Maximum daily 49.55
average for all

8450 disks

Minimum daily 26.15
average for all

8450 disks

Maximum daily 59.36
average for an

individual 8450 disk

Minimum dai ly 21.15
average for an

individual 8450 disk

47.37

50.49

46.47

53.58

43.35

A measure of load balance between the two
5039 controllers was also obtained from the "Mod
Select A" and "Mod Select B" signals monitored at

one of the eight 8433 disk drives on the short
string. The 8433 drive that was monitored had
the Exec pack on it when the measurement began
but the Exec pack did not stay there throughout
the period of observation. The data obtained
from the 8433 disk drive also show a load balance
between the two 5039 controllers. They are in

close agreement with the data obtained by moni-
toring the two controllers themselves. It,
therefore, serves to verify the load balance
between the two 5039 controllers under Level 36.

5.3 Load Sharing Between 8450 Disks

All six 8450 disk units in the SMSCC have
been prepped as fixed. These six disks plus the
8433 Exec disk pack comprise the fixed disk pool.

The signals monitored at the 8450 disks were
"Mod Select" and "Mod Select A". "Mod Select" is

on when either of the two controllers has sel-
ected the disk. "Mod Select A" is on when con-
troller A has selected the disk. As explained in
earlier, a disk must be selected by a controller
before any operation can be performed. A disk

remains selected during a data transfer opera-

tion. In the case of a control command (e.g.,
head positioning), the disk is selected prior to
the command being issued. It is de-selected
after the command is issued. The disk, there-
fore, does not remain selected during the execu-
tion of the command (e.g., during head movement).
Since the time required for issuing a command is

small compared to the time spent in a data trans-
fer operation, "Mod Select" approximates the time
spent between the beginning and end of data tran-
sfers. However, a data transfer command to an

8450 disk unit contains a 16-bit field that spec-
ifies the transfer length in 36-bit words. Thus,
it is possible to transfer up to 65K words in a

single operation. Such a transfer can cross
track and cylinder boundaries. When this
happens, track addressing and head repositioning
is handled by the disk unit while "Mod Select" is

on. In such a case, "Mod Select" exceeds the
actual data transfer time. A disk is also busy
during head movement and rotational positioning
prior to the beginning of a data transfer. "Mod
Select", therefore, understates disk busy but it

is used here as a relative measure of disk busy
for studying load sharing between 8450 disks.

Data were collected from 12 March 1981
through 30 September 1981. Data for all disks
were not obtained for all days during this
period. There are long gaps in the data col-
lected because probes were removed when a disk
drive was malfunctioning and were not properly
replaced after repairs.

During the course of the study 5-minute
averages of disk usage were plotted using PMS-II.
These plots revealed that most of the time one of
the 8450 disks was used significantly more than
the other disks. This is illustrated in Figure
5-1 which contains data from 13:30 p.m. to 16:45
p.m. on 28 July 1981. The disk that was much
busier than the others was not always the same
one. Figure 5-1 shows that 8450 #6 is busier
than the others, but in Figure 5-2 another disk,
8450 #7, is busier than the others.

The 8450 disk that is much busier than the
others is the one with the swap file. This file
is used by the system to save images of jobs that
have been rolled out. The swap file is automati-
cally created by the system when it is booted.
Its placement is determined by an algorithm in-

ternal to the system and is based on the amount
of empty space on each disk. Hence, it may be

placed on different disks after each boot opera-
tion. It does not move after that until the
system is rebooted.

During the course of the measurements, one of

the 8450 disk units had hardware problems which
caused it to be removed from operation and then
put back into operation after a few weeks. This
caused imbalances in the 1/0 activity across the
six 8450 disks that were quite noticeable on the
Tesdata GDU. At that time MITRE was also inves-
tigating the poor terminal response time on the
U1100/46 and, thus, the data obtained from the

8450 disks were studied together with terminal

224

-w\Tt - —TtMe- -

F ROY. TO START EI."D

r:::DP ::::oc iiu.irt iiiim.i

0723 0723 1330 1135

0723 0723 1335 1340

TT77S- TJ 72l~TT«rn 3TT5'

0723 0729 1345-1350

0723 0723 1350 1355

072? 0723 1355 1400

0723 0723 1400.1405

0723 0720 1405 1410

072G 072S 1410 1415

"723 0723 1415 1420.

0720 0723 1420 1425

0723 0728 1425 1430

0723 0723 1430 1435

i'723 0723 1435 h44(r-

0722 0723 1440 1445

0723 0723 1445 1450

0723 0723 1450 1455

"723 0723 1455 150U

0723 0723 15KQ 1505

0723 0723 1505 1511)

0723 0723 1510 1515

0723 0723 1515 1520

072S 0723 1520 1525

1723 072G 1525 1530

0723 0723 I53U 4535

0728 0723 1535 1540

072'. 0723 1540 1545

0723 0723 1545 1550

0723 0723 1550 1555

072S 0723 1555 1*00

0723 0723 1600_1605

0723 0723 1605 1 ft I

O

I ******

0723 0723 1610 1615

0728 0723 1615 1620

0723 0723 1620 1625

.0-723 0723 1425-1630

0723 0723 1630 1635

0723 0728 1635 1640

0723 0728 1640 1645
_.*21Da.!:!13D .UHllil Miiill-

DESCRIPTION
8*56—»4-t10D-SEL
8450 #5 HOD SEL
3450 »» I IOS'SE L

8450 >7 MOD SEL
8 43&-f8 -MOD-SEL-
8450 #9 MOD SEL

SYMBOL— »

+

Figure 5-1. 8450 Disk I/O

225

DATS
FP<V! TO
•:;:do n::dd

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

061 1 061 I

0611 0611

0611 0611

061 1 061 I

0611 0611

0611 Oh 11

0611 0611

0611 0611

0611 0611

0611 061

1

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 0611

0611 061

1

0611 0611
MMOD MM DO

stat.t zr.z
!::!•:•: :inr:.i

nooo 0030

0030 0100

01O0 0130

0130 0200

0200 0230

0230 0300

0300 0330

0330 0400

0100 0430

0430 0500

0500 0330

0530 0600

0600 0630

0630 0700

0700 0730

0730 0000

0800 0830

0830 0900

0900 0930

0930 1000

1000 1030

1030 1 100

1100 113C

1130 1200

1200 1230

1230 1300

1300 1330

1330 1400

1400 1430

1430 1500

1500 1530

1530 1600

1600 1630

1630 1700

1700 1730

1730 1800

I800~1830

1830 1900

1900 1930

1930 2000

2000 2030

2030 2100

2100 2130

2130 2200

2200 2230

2230 2300

2300 2330

2330 2400
IIHM-1 HKMM

PERCENT
CO

DESCR1 PTIO.H
6450 MOD SEL
8450 ti MOO SEt
»»)-0-«6 H«|-«t-
8450 *7 MOO SEL
8450 #8 MOD SEL
8450 »9 MOD SEL

'jf

!

S#V f

Figure 5-2. 8450 Disk I/O

226

response time data obtained from a monitor as

described in [3]. The changes in terminal re-

sponse time resulting from hardware problems with

a fixed disk are described in [4].

Exec Level 36 places files on fixed disks on

the basis of empty space on each disk unit. When

a new file is created it is placed on the disk

unit with the most empty space. This is done
automatically within Exec and cannot be con-

trolled directly by users. When a fixed disk is

removed from service, all the files on it are

moved to the remaining pool of fixed disks with
file placement being done in the manner described
above. This results in a good balance in the
amount of empty space across disk units and it

does not adversely affect the balance of disk
activity.

However, when a disk is put back into service
after repairs, the balance is greatly affected.
Since the disk that has been just put in opera-
tion has the most empty space, all new files
(including all temporary files) are placed on it.

If the system is re-booted at this stage, the

swap file is also placed on the disk that has

just been put into operation. This results in an

inordinately large portion of the fixed disk I/O

going to that disk. Access to this disk becomes
a bottleneck in the system and terminal response
time shows a large increase. Observation of the
Tesdata Graphic Display Unit (GDU) under these
conditions has shown one 8450 disk being selected
as much as 90% of the time in a 5-second interval
while each of the other 8450 disks are selected
less than 5% of the time. Since data was re-

corded in PDFs as 5-minute averages, these short
peaks are not recorded but can only be observed
on the fly at the GDU.

A similar, though less pronounced, situation
occurs when a large amount of space on one 8450
disk unit is freed by deletion of files. This
has been caused in the past by users and the
cause of the resulting bad terminal response time
was only discovered after a casual observation of
the Tesdata GDU.

Figure 5-2 shows the variation in disk
activity on a typical weekday. On that day 8450
#7 was much busier than the other 8450 disks.
Access to this disk increases sharply around 8:00
a.m. and remains quite high until a sharp decline
around 4:00 p.m. There is a noticeable dip in

activity between 12 noon and 1:00 p.m. The
variation, therefore, corresponds to prime shift
working hours. The difference between 8450 #7
and the other 8450 disks can be attributed to the
swap file residing on that disk. Swap file act-
ivity is a function of demand users who work
during prime shift.

5.4 Exec Pack and Short String Activity

The signals monitored on the short string
were quite different from those monitored on the
long string. Hence, the performance measures
obtained also were different. On the short

string, the percentage of time each 5039 con-
troller was busy was recorded in the form of
five-minute averages beginning from 3 August
1981.

Data on Exec pack usage was obtained
intermittently from 21 August 1981. It could not
be obtained on a continual basis as explained
earlier. The plots obtained using PMS-II in-
dicated that a large fraction (as high as 90% of
a daily average) of the total activity on the
short string came from the Exec pack. This can
be seen in Figure 5-3, which is a plot of Exec
pack activity and 5039 controller activity on a

weekday. This figure shows that 1/0 on the short
string is much higher during prime shift than
during other periods. Also, the difference
between the two plots, which represents 1/0 to
the remaining seven 8433 disks on the short
string, is very small outside of prime shift.

The variation of Exec disk 1/0 activity
during a weekday is usually of the form shown in

Figure 5-3. It shows a sharp increase around
8:00 a.m. and a sharp drop around 4:00 p.m. with
a relatively high level in between except for a

dip at lunch time. The variation of 5039 con-
troller busy also shows this form. The two peaks
shown in Figure 5-3 (one between 2:00 p.m. and
2:30 p.m. and the other between 3:30 p.m. and
4:00 p.m.) are not typical and are not a daily
occurence. But peaks this high (and higher) have
been found on occasion and point to bursts of
activity on the removable disks on the short
string. The peaks in the figure show 70% busy
for a thirty-minute average. Since the plot
shows the sum of "controller busy" for both
controllers, each controller is only about 35%
busy (since the load is quite balanced).

The 1/0-activity on the short string is much
higher on weekdays than on weekends, which cor-
responds to higher usage of the computer system
as a whole on weekdays. The data collected also
shows that the percentage of short string 1/0
activity at the Exec disk is higher on weekdays
than on weekends.

An additional signal on 5039 #1 was monitored
from 8 September 1981 to 14 September 1981. This
was "Read or Write Gate" which was "on" during a

read or a write operation. It was found that the
average value of this signal for the period of
observation was 99.5% of the value for "Trap
Select A". Also, "Read or Write Gate" was never
found to exceed "Trap Select A". "Trap Select A"
is "on" during data transfers and while the con-
troller is issuing a command to a disk drive.
The measurement, therefore, showed that the time
spent in issuing commands to disk drives is small

compared to the data transfer time.

6.0 Conclusions

6.1 Load Sharing Between Disk Controllers

When the disk 1/0 study was begun it was
suspected that the load sharing between the two

227

Fxo:;

•';"(•"

TO

09O3

STAP.T

0000

r.r.o

0O30

0 9'.; 0935 0030 0100

r- « f ; 7 0903 0100 0130

0 '.»•.•!; 090 3 0 1 30 0200

0903 090U 0200 0230

0 9"" P905 0:30 0300

09oC 0903 0 300 0330

0903 nooa 0330 0400

r.oi O90C O400 0430

Boor. n9or. 0430 0300

i'9i :. 0903 0500 0530

01-,- 11901 0530 0600

"900 06 00. Of>30

oooS 0903 Oft 30 0700

fOfj" 091',; 0700 0730

0 9 : * 3 090a 0 7 3" or.00

j.t.,.o "909 OHOO 0A3t;

f:9f'. '9or. or.3u 0900

09''O 1.900 0930

o9!) i; 0930 1000

„„,, 3 090'. 1000 1030

o9p;; (I<tl)i| 1030 1 100

ri'iii,; 0902 1 1"" 1 I 30

0«;'i:; 0903 1 1 30 1200

>9
; .r; i.")oa libit 1230

i.9n3 1191.1 3 1230 1 100

o n o:i 09OS 1 3oO 1 330

.Villi 1)9'.". 133" 14C0

!.«:>:. o9'.r. lino 1430

OOil* "9"3 1:30 1 500

C'9i' J 090'. 1 500 1 530

n9'V. 090", 1530 1A00

"9ii3 1*00 1*30

o n >-.; 0903 lo30 17U0

r. n o 5 irtfiS 171IU 17 30

09i S 0903 17 30 1300

1900 1R30

-9.>- «Sr.9 mo 19 00

riiii.-. 0908 1900 193U

f^o,". o9', r. 1930 2000

01".", 09l'S :»>o'o 2030

^IM 0903 2030 2 100

»»l.'5 0«O3 2 100 2 130

090M Mll9 2 130 2200

0902 2 2"0 2230

on"." 0900 2 2 30 2300

09i il 09"5 23Uu 2330

liOOS O90(2330 2400
•:;:an ns?:~. nv.xt

Figure 5-3. Short String and Exec Disk I/O Activity

228

controllers on each string of disk drives was

unbalanced. This study revealed that this load

sharing is almost perfectly balanced and is

therefore not a source of problems nor a source

of performance degradation in the system. A

significant unbalance existed under Exec Level 33

but it virtually disappeared after the installa-

tion of Exec Level 36 on 26 June 1981.

6.2 Load Sharing Between 8450 Disks

The load sharing between the six 8450

disks was found to be unbalanced with one of the

six being much more active than the others. The

imbalance was more pronounced during prime shift

weekdays. This is due to the swap file residing

entirely on one disk. Swap file I/O activity

during prime shift constitutes a significant
portion of the total I/O to the six 8450 disks

and therefore creates a noticeable imbalance.

A method of alleviating this imbalance
consists of splitting the swap file into pieces

which reside on separate 8450 disks. The place-

ment of the swap file within the pool of fixed

disks is handled internally within Exec Level 36

and is not under direct operator control.
Splitting the swap file into pieces could not be

accomplished without modifying the Exec. One of

the other Univac installations that was contacted

during the course of the I/O study had done this

and thereby achieved an improvement in perfor-

mance. However, this modification was not made
in the SMSCC because Exec Level 37 was forth-

coming and it provides the ability to split the

swap file across specific devices by means of

system generation parameters. Also, modifica-
tions to the Exec are usually avoided.

The other problem is a severe imbalance when
an empty fixed disk is introduced into the system

or when a large amount of space is freed on one

of the 8450 fixed disks. This is due to the fact

that Exec Level 36 places new files on the fixed

disk that has the most empty space. File place-
ment on a specific 8450 fixed disk cannot be

accomplished by di rect operator or programmer
control. The Univac installation referred to

earlier had solved this problem, too, by modify-
ing the Exec. They had replaced the algorithm
within the Exec for determining the fixed disk on

which to place a new file by one that they wrote
themselves. The principle behind their file

placement algorithm was round-robin placement of

new files in the fixed disk pool. As expected,
it solved the problem of a severe imbalance in

1/0 activity.

The algorithm used by Exec Level 36 attempts
to balance the percentage of free space on all

the fixed disks with no regard to balancing the

1/0 activity across the fixed disk pool. The
round-robin file placement algorithm, on the
other hand, makes no attempt to correct any
imbalances in the percentage of free space on the

disks.

The implementation of this file placement
algorithm in the SMSCC was considered but
rejected because local modifications to the Exec

are difficult to implement, maintain and transfer
to new levels. Such modifications, therefore,
are not made unless necessary. Besides, Exec
Level 37 was forthcoming and it contains a file

placement algorithm that spreads new and
temporary files across the fixed disk pool.

6.3 Further Work

Data collected over a period of three months
indicated a load balance between the two 5046 CUs

on the long strings. Further monitoring of the

load sharing between the two CUs appeared un-

necessary. When the Tesdata routine measurement
was reconfigured on 1 October 1981, the probes
that had been used for monitoring "Mod Select A"

were set up to measure head motion. The measure-
ment of "Mod Select A" was continued on one 8450
disk in order to detect any significant changes
from the balanced situation.

Shortly thereafter, the reconfiguration of

the Univac systems in the SMS/GNS complex was
begun. In the ensuing move of equipment, most of
the probes used for the 1/0 study were removed.
They were not re-installed immediately because
the reconfiguration of the computer complex was

performed in phases extending over a period of

months.

The distribution of 1/0 activity across the

eight 8433 disks in the short string was not

surprising. Relatively low levels of activity on

the remainder of the short string were considered
desirable in order to avoid contention with the

Exec disk, which could possibly harm the realtime
flight simulation which is very time-critical.
Hence, it was decided not to investigate the
alternative of having fixed 8433 disks on the
short string for a better load balance between
the two strings of disk drives.

While the Exec disk was being monitored, the

GDU often displayed values of Exec disk usage
that exceeded 80% and occasionally even 90%. The

GDU displays the average over the previous five-

second interval whereas five-minute averages are

stored in the PDFs. Since the high values ob-

served at the GDU were short lived, such high
values were not found in the PDF.

Values of Exec disk usage exceeding 90% were

a cause of concern to NASA, and it was considered
desirable to record these in order to investigate
whether simulation crashes coincided with high

Exec disk usage. This was accomplished with the

use of Tesdata's Real-Time Exception (RTE)
Processor. The almost daily occurence of several

instances of Exec disk usage exceeding 90%
suggested a need for detailed monitoring of the

disk unit with the EXEC pack. Detailed
monitoring of all disks is not possible because
of the limited capacity of the Tesdata system;

however, one disk unit can be monitored in

detail. The EXEC pack was selected for detailed

229

monitoring because it is a read only pack and the

placement of files on it can be controlled.

A new Tesdata MS-88D has recently been
acquired for the Guidance and Navigation
Simulator (GNS) in Building 35. The routine

measurement procedure on this Tesdata system is

presently being set up whereas the routine
measurement on the Building 5 Tesdata system is

being completely modified in the I/O area. The

current plans include monitoring Exec disk
activity and 5039 disk controller busy on both

the Univac 1100/44 (4x2) systems in the SMSCC.

The same measurements will also be performed on

the GNS Univac 1100/44 (4x2). The six 8450 disks

and the two 5046 disk controllers are now on the

latter system in Building 35. Hence, the data

transfer and head motion measurements on the six

8450 disks will be performed with the new Tesdata

in Building 35. A detailed measurement of the

Exec disk in Building 35 is also planned.

LIST OF ABBREVIATIONS

CAU Command Arithmetic Unit

Ch Channel

CU Control Unit
DRS Disk Resident System
Exec Sperry Univac Series 1100 Executive

System
GDU Graphic Display Unit

GNS Guidance and Navigation Simulator
GNSCC Guidance and Navigation Simulator

Computer Complex
HDA Head/Disk Assembly
IBM International Business Machines
I/O Input/Output
IOAU Input/Output Access Unit
JSC Johnson Space Center
K Kilo
MAI Multiple Access Interface
MFD Master File Directory
MMA Multi-Module Access
MRS Measurement Recording Software
MSA Multi -Subsystem Adapter
NASA National Aeronautics and Space

Administration
PDF Performance Data File
PMS Performance Measurement Software
PSR Processor State Register
RPS Rotational Position Sensing
RTE Real-Time Exception
SMS Shuttle Mission Simulator
SMSCC Shuttle Mission Simulator Computer

Complex
SPI Shared Peripheral Interface
SPU System Partitioning Unit

REFERENCES

1. Hajare, A. R., An Interim Report on a Study
of Disk Usage in the SMSCC , WP-6241, The
MITRE Corporation, 1982.

2. Hajare, A. R., Use of a Hardware Monitor in

the Shuttle Mission Simulator Computer
Complex (SMSCC) , WP-6229, The MITRE
Corporation, 1981.

3. Gregor, P. J., Terminal Response Time in the
Shuttle Mission Simulator Computer Complex
(SMSCC) , MTR-4740, MITRE Corporation, 1981.

4. Dias, Lakshmi A., et al. , SMS/GNS FY 82
Computer System Plan, Volume 1: Review of
FY 81 , MTR-4747, MITRE Corporation, 1981.

5. General User Documentatio n (10 volumes),
Tesdata Systems Corporation, 1979.

6. Sperry Univac 1100/40 Systems - Hardware
System Description , UP-8216, Rev. 1,

Sperry-Uni vac Division, Sperry Rand
Corporation, 1977.

7. Sperry Univac 1100 Series Operating System -

System Description , UP-8225, Rev. 4,
Sperry-Uni vac Division, Sperry Rand
Corporation, 1979.

8. Sperry Univac Series 1100 Executive System
Level 36R2 Operator Reference , UP-7928.3,
Sperry-Uni vac Division, Sperry Rand
Corporation, 1979.

9. Sperry Univac 1100 Series 8450/5046 Disk
Subsystem Programmer Reference , UP-8618,
Sperry-Uni vac Division, Sperry Rand
Corporation, 1978.

10. Sperry Univac 1100 Series 8405, 8430,
8433/5039 Disc Subsystems Programmer
Reference , UP-8324, Rev. 1, Sperry-Uni vac

Division, Sperry Rand Corporation, 1978.

230

The Application of Analytic and Simulation Models
to Size a Large Computer System

Richard W. Tibbs

Martin Marietta Corporation
Denver Aerospace Division MS 8491

P.O. Box 179

Denver, Colorado 80201

John C. Kelly

Datametrics Systems Corporation
9940 Main St. Suite 201

Fairfax, Va. 22031

Martin Marietta Denver Aerospace, with the aid of Datametrics System Corpora-
tion, recently performed a comprehensive study of the performance and capacity of

a government computer system and several short and long range alternatives.
Performance measurement data were collected periodically from the current systems.
These data were reduced and analyzed using the Statistical Analysis System, SAS

,

and were used as input to the modeling packages BEST/1 and SLAM. Models in each
package were evaluated and predictions were used to propose one of several
alternative systems.

Keywords: Modeling; performance evaluation; simulation; Univac systems.

1 . Introduction

1.1. Overview

The systems under study in this report are a

Univac 1100/40 (3x1)* and two long range replace-
ment options, a Univac 1100/90 and an IBM 3081-

k. The 1100/40 (3x1) was upgraded an 1100/80
(3x3) as a short term performance solution during

the study. Several opportunities to measure the

performance of the 1100/43, and later the

1100/83, were used to obtain accurate performance
measurements of the system.

* The terminology for configurations used in

this report is: (nxm), meaning n processors
and m I/O units.

The system workload consists of a high
volume transaction processing environment with
critical Deadline Batch jobs imposing periodic

peak loading. The workload analysis was bsed on

three sources of data available within the Univac
Exec-8 operating system: Log Analysis (LA),

Software Instrumentation Package (SIP) and

I/0TRACE. Non-linear regression statistics were
used to forecast the growth of the critical Dead-

line Batch processing requirements.

Once the system workload was defined a base-

line model was created and validated using actual

performance measurement data. Sixteen alterna-
tive configurations were modeled to predict the

performance of the 1100/83 upgrade until replace-

ment by a long range alternative. Forecasts of

the long range alternatives were produced as

well, and results were presented graphically

231

using the SASGRAPH* capability of the Statistical
Analysis System (SAS)*.

1.2. Modeling Objectives

The project was conducted in two phases. The
first phase was involved proposal preparation and

consisted of preliminary BEST/1** models to

establish the adequacy of either the Univac
1100/90 or the IBM 3081-k as a satisfactory long
range alternative to the Univac 1100/80. The
second phase was more detailed and used a refined
BEST/1 model in parallel with a simulation model
written in SLAM*. Since the results from the

second phase supercede those from the first

phase, this paper focuses only on the more
detailed results.

During the second phase, a detailed
parametric analysis was performed. The sensi-

tivities of the system to the following parame-
ters were studied:

(1) Increased transaction arrival rate.

(2) Decreased transaction processing require-
ments.

(3) Increased data to be processed by critical
deadline batch.

(4) Decreased CPU processing required by dead-
line batch due to a redesign .

(5) Decreased 1/0 processing requirements by all
workloads due to newer and more efficient
data base management system releases.

2. Approach

2.1. Analytic vs. Simulation Modeling

The modeling approach was based heavily upon
performance data. In addition, the question of
whether to use analytic queuing theory or

discrete event methodology (simulation) was exam-
ined closely.

Current system utilization information was
available from the Univac performance monitors,
and initially the level of abstraction of BEST/1
seemed to be too high (not enough detail) to cap-
ture all of the effects of operating system pecu-
liarities and architectural differences between
target systems. On the other hand, a discrete
event simulation built in SLAM was felt to be to

cumbersome, although capable of lower levels of
abstraction (more detail). From experience with

* SAS and SASGRAPH are trademarks of SAS In-
stitute Inc.
** BEST/1 is a trademark of BGS Systems Inc.
*** SLAM is a trademark of Pritsker and As-
sociates Inc.

SLAM we also knew that execution time of model
runs would be slow due to the greater computa-
tional complexity of a simulation model and the
fact that SLAM was hosted on a VAX 11/780 whereas
BEST/1 was available on an IBM 308 1.

Finally, it was decided that both BEST/1 and
SLAM would be used and compared with each other
during the course of the project. A summary of
our reasoning is:

(1) We felt we needed the faster turnaround of
a tool like BEST/1 running on a large main-
frame in order to respond quickly to design
questions and the need for analysis, we felt
that initially, the greater detail of a SLAM
model was not necessary.

(2) Using two independent approaches would pro-
vide a high degree of confidence in the
model results.

(3) BEST/1 could be implemented easily to pro-
vide results in the early phases of the pro-
posal effort. As more detailed results were
needed later in the project, the S1AM model
would be available for use.

2.2. BEST/1

BEST/1 allows the following elements to be
modeled explicitly:

(1) Servers and queues:

CPUs,

.... Disk, drum and other devices,

.... Channels,

.... Memory (a passive server)

(2) Workloads:

.... Time sharing (TS),

.... Transaction processing (TP),

.... Batch processing (BP).

Time sharing (TS) workloads assume that the

arrival rate is a function of the service rate,

and the arrival pattern is described in terms of
operator think time. Tranaction processing (TP)

workloads assume that the arrival rate is

independent of the service rate, and the arrival
pattern is described in terms of the mean arrival
rate. Batch processing (BP) workloads assume that
a backlog always exists, and that the arrival
rate is equal to the service rate.

Two advanced features of BEST/1 that proved
beneficial were the ability to model:

(1) RPS disk activity;

232

(2) Priority levels; (1) Transaction processing;

.... We implemented 5 priority levels to

correspond to the Univac user types exec,

real time, tip, deadline, batch.

The following system attributes were modeled

implicitly by adjusting the model input data:

data base efficiency, memory fragmentation, pag-

ing, and cache disk operation. Additional infor-
mation on BEST/1 may be found in the BEST/1

manua 1 [1] .

2.3. SLAM

The Simulation Language for Alternative
Modeling (SLAM) is a general purpose simulation
language designed to model discrete event Monte

Carlo type simulations. SLAM also offers the

features of network modelling methods and con-

tinuous event capabilities in an integrated
framework. Detailed information on SLAM is

available in the SLAM users guide [2] .

To aid in validataion and to provide a base-

line for future enhancements the initial SLAM
model was developed at the same degree of detail
as a BEST/1 model. Once confidence at this level

was achieved, additional details could be intro-
duced. We defined a generalized processor model

(GPM) as a tool to model all of our processor
alternatives in SLAM.

The events chosen to be explicitly modeled
in the GPM using the discrete event capability of
SLAM, and which closely approximate the level

of detail of BEST/1 were:

(1) Arrival;

(2) Request memory;

(3) Request CPU;

(4) CPU quantum exceeded;

(5) Request I/O device;

(6) I/O complete;

(7) Processing complete;

(8) Swap out (priority preemption);

(9) Memory quantum exceeded;

The workload types available in the GPM,

following the terminology and assumptions of
BEST/1, were chosen as:

[1] BGS Systems Inc.
BEST/1 Users Guide, BGS Systems, 1979.

[2] Pritsker, A. A. B. and Pegden, C. D.

Introduction to Simulation and SLAM, Halsted
Press, N. Y. 1979.

(2) Batch processing;

The GPM was implmented in SLAM by the Cen-
tral Software Engineering Facility (CSEF) Model
Shop, an independent simulation group at Martin
Marietta Denver Aerospace.

3. Target Systems

3.1. Univac 1100/40 and 1100/80 Baseline Sys-
tems

The baseline systems from which extensive
performance measurements were taken, are shown in

figure 1 . During the course of the modeling
effort, an 1100/80 system was installed side by

side with the 1100/40, and eventually replaced
it. In addition to the increased CPU power,

differences between the 1100/40 and the 1100/80
included:

(1) Doubling the existing memory from 1.5 Mwords
to 3-0 Mwords.

(2) One more Amperif cache disk subsystem and a

total of 11 new model 8434 300 Mbyte disks
added to the cache subsystems.

(3) Two new 8433 disks added to the conventional
disk subsystems.

(4) Two more IOUs added to the system.

The addition of a new system (the 1100/80)
under the same loading as the original baseline
system (the 1100/40) offered a unique opportunity
to validate the BEST/1 models using two sets of
measurements.

A baseline model of the 1100/40 system was
built and validated. When performance data was

available from the 1100/80 system, the 1100/40

model was modified to reflect the 1100/80
hardware features (no significant software
changes were involved). This model predicted the
1100/80 performance within 10% of actual measure-
ments.

3.2. Univac 1100/90 and IBM 308 1-K Replacement
Systems

The long range replacement systems are

shown in figures 2 and 3. The figures show a

variable number of processors (or processor
pairs) because we modeled a range of multiproces-
sor configurations for each system, ranging from
one to three or four processors. The purpose of
this was to establish minimum configurations as

well as more generous ones capable of satisfying
response time requirements under projected load-

ing.

233

UNIVAC 1100/40 (3X1)

EXTENDED CORE

1000 KWOROS

PRIMARY CORE:

500 KWORDS

DISK DISK SSD CACHE

UNIVAC 1100/80 (3X3)

8433

(9)

8434
(10)

8434
(5)

DISK DISK SSD CACHE CACHE

Figure 1. Baseline Systems

234

UNIVAC 1100/SO

(N PROCESSORS)

12 MWORDS MAIN MEMORY

(N I/O UNITS)

(2 QUAD CTLRS)

CACHE CACHE

Figure 2. Univac 1100/90 Replacement

IBM 3081-K

CACHE CACHE CACHE CACHE

Figure 3. IBM 308 1-K Replacement

235

3.3. Modeling Workload Growth

3.3.1. Transaction Loading

An independent model of the operational
environment was used to predict future transac-
tion volumes. This model was based on staff

loading and operational scenarios and generated
estimates of future transaction volumes as out-

put. The Operations model is outside the scope of

this report, but its output was used as input to

our BEST/1 and SLAM processor models.

The Operations model predicted a worst-case
load of approximately 300 transactions per minute

for the short term time frame, and 400 transac-
tions per minute in the long term time frame.

3.3.2. Batch Loading

Two types of batch workload existed in the

Univac environment, Batch and Deadline Batch.

There was no response time requirement given for

Batch processing; however Deadline Batch did have
a response time requirement. We will concern our-

selves primarily with Deadline Batch loading,

discussed in the next section, and be content to

merely report the available processing capacity
for Batch workloads.

3.3.3. Deadline Batch Loading Analysis

Non-linear regression statistics were used
to fit a second order (quadratic) and a third
order (cubic) approximation to sets of CPU and

I/O resource utilization data collected on the

Deadline Batch programs. These approximations
were used to plot Deadline Batch CPU seconds and

I/O seconds as functions of the number of data

items to be processed.

We acquired our resource usage data from Log
Analysis output for individual Deadline Batch
runs. The amount of data items to be processed by

each Deadline Batch program is well known by the

time of day in our customers environment, and

could be correlated exactly with resource usage
statistics in the Log Analysis output. Each data

point consisted of three values, the number of

data items to be processed by the Deadline Batch
programs, the amount of CPU seconds used, and the

amount of I/O seconds used. The data is summar-

ized in figure 4-a and b, where the quadratic
regression curves appear just above the cubic

curves. A linear regression was also performed as

a reference. The linear approximation appears

as a solid line. Figure 4-a shows CPU sups (CPU

seconds) , while figure 4-b shows I/O sups (I/O

seconds) graphed as functions of the number of

data items processed.

The quadratic fit was chosen as the better

estimator because the cubic fit was found to pos-

sess a second derivative sign change near the

projected number of items to be processed. This

can be seen most clearly in figure 4-a, where the

cubic approximation to Deadline Batch CPU

requirements visibly begins to decline near the

required number of data items for the long term
time frame (1100 data items). With this anomaly,
the cubic approximation, although of higher
degree, estimated less resource utilization than
the quadratic case. We therefore chose the qua-
dratic fit as the more accurate, if perhaps more
pessimistic, estimator.

The purpose of this loading analysis was to

demonstrate the non-linearity of the Deadline
Batch resource usage. The non-linearity pointed
out the folly of assuming linearity in the
resource requirements of future Deadline Batch
loads, and motivated an investigation of the
efficiency of the computational methods used in
the Deadline Batch programs.

4. Performance Measurement and Input Data
Preparation

4.1. Schedule of SIP, LA, and I/OTRACE Data

The acquisition of performance measurement
data throughout the time span of the project fol-

lowed the schedule shown in table 1. The data

was collected in an inconsistent manner, as the
comments column indicates. This was a detrimental
factor because although there were ten collection
dates (enough for a reasonably sized sample
bucket), the same type of data was not available
on each date. Thus no time dependent statistics
such as trend analyses could be reliably gen-
erated. For a steady state measurement of instan-
taneous system characteristics, we were able to

use the September 28, 1 98 1 sample data, which
operational personnel identified as representa-
tive of a peak loading period.

Insofar as averaging the performance meas-
urements over a large period of time tends to

destroy the relationships between loading and
response times, the presence of data from many
sample points was only useful for examining dif-
ferent load mixes and for trend analysis. For

this reason we were content to rely on our most
complete sample point, the 28th of September
1981, for performance and model validation data
for the 1100/40 system.

The later sample dates in 1982 were all

measurements of the 1100/80 system, which was

installed late in 1 98 1 and became operational in

January 1 982 . Particularly, the data from the

5th of January 1982 (a complete set of LA, SIP,

and I/OTRACE measurements) was used to revalidate

the BEST/1 models. The results of the comparison
of 1100/80 model predictions and 1100/80 perfor-
mance measurement are discussed in a later sec-

tion.

236

SECONDS

DEADLINE BATCH CPU UTILIZATION
AS A FUNCTION OF DATA ITEMS

QUADRATIC AND CUBIC NON-LINEAR REGRESSION METHOD: GAUSS-NEWTON
LINEAR REGRESSION METHOD: ORDINARY LEAST-SQUARES

500 800 700 800 900 1000 1100 1200 1300

NUMBER OF DATA ITEMS TO BE PROCESSED

MARTIN MARIETTA - nut - 8/2/82

DEADLINE BATCH I/O UTILIZATION
AS A FUNCTION OF DATA ITEMS

QUADRATIC AND CUBIC NON-LINEAR REGRESSION METHOD: GAUSS-NEWTON
LINEAR REGRESSION METHOD: ORDINARY LEAST-SQUARES

SECONDS

I

l
" "

I
" "

I
" "

I I
"

I
i i

|
i . | |

i i i i . | |
,,,, , ,, i ,

|

200 300 400 500 800 700 800 900 1000 1100 1200 1300

NUMBER OF DATA ITEMS TO BE PROCESSED

MARTIN MARIETTA - rwt - 8/2/82

Figure 4. Deadline Batch Resource Utilization

237

Table 1. Measurement Data Schedule

date SIP LA I/OTRACE comments

16 Mar 81 14:30-15:00 some fields blank, no tape
12 May 81 13: 14-10 :57 one large report, no tape
21 Sep 81 01 :01 -23:00 00:00-23 :00 22:30-23:23 1/2 hr. SIP reports, I/OTRACE by file
28 Sep 81 01 :00--23:00 00:00-24 :00 09:15-09:50 same as above
17 Nov 81 00: 19-06 :45

16 Dec 81 07:00-07 :30 only 8 most used TIPs reported
05 Jan 82 00 :38 -03:44 00:20-02 : 11 00:38-03:44 I/OTRACE by runid
26 Jan 82 01 :52-23 :49 1/2 hr. LA reports
08 Feb 82 07 :00--16:00 1/2 hr. SIP reports
22 Feb 82 01 :00 -23:44 00:00-24 :00 08:15-11:43 1/2 hr. SIP reports, I/OTRACE by file

Table 2. Workload Characterization

workload characteristic performance measurement source comment

workload type -3P,TP,TS Exec priority levels

priority Exec priority levels

TIP (TP) exec PI$NIT frequency
Deadline (BP) run summary report n/a for BEST/1

arrival rate Batch (BP) sys idle activity report since no arrival
for BP loads.
Used for GPM.

TIP SIP memory util. report
MPL Deadline LA run summary report

Batch LA graph of runs active

TIP LA TIP response time dist. report
Response Time Deadline LA run summary report

Batch LA run summary report

TIP n/a
Throughput Deadline LA run summary report

Batch SIP sys idle activity report

CPU time SIP CAU report
(all workloads)

I/O time I/OTRACE+S/W

Table 4. Exec and Real Time Apportionment Results

CPU seconds per hour Total Arrivals/ CPU sec/
workl oad user class Exec R/T sec/hour hour arrival

TIP 6772.56 2689.08 96.48 9558.12 7442 1 .284

fraction of total .71 .28 .01

Deadline 150.40 185.68 0.00 336.08 .86 390.791
fraction of total .45 .55 .00

Batch 354.60 437.68 0.00 792.28 48.8 16.235
fraction of total .45 .55 .00

238

Table 1 contains entries showing the time
span over which SIP, LA, or I/OTRACE statistics
were collected, or contains blank entries where
no data for a given monitor was collected. The
times are expressed in military format. The com-
ments field indicates that in some instances the

data was not available on tape, making processing
sometimes tedious, if not impossible, since it

could only be done by hand. The inconsistency of

the data collection process shown here illus-
trates the need for data collection planning to

be done far in advance of a performance analysis
effort.

4.2. Data Reduction and Transformation Pro-
cedure

The objectives of the data reduction effort,
applied to the performance data, were to produce
a set of input parameters to populate BEST/1 and
SLAM/GPM models. As discussed earlier, the work-
loads, defined by priority classes for out models
were

:

(1) TIP

(2) Batch

(3) Deadline Batch

The real-time priority workload was very
small (less than 1$ of total CPU utilization) and

was factored into the TIP load since the primary
real time program in the Univac environment, CMS,

is invoked continually to handle TIP communica-
tions processing. The Exec priority levels
(Exec0,1,3) were apportioned among the TIP Batch
and Deadline Batch workloads by the relative pro-
portion of I/O SUPS accrued by each workload.
These methods of dealing with real time and Exec

loading were gleaned from two technical notes
from BGS Systems Inc. [3] , [4]

The basic assumption of this apportionment tech-
nique is that Exec CPU usage is dominated by I/O
interrupt processing for the rest of the user
types.

For each of the workloads the data necessary
to populate the BEST/1 and SLAM models is summar-
ized in table 2. The table shows for each per-
formance parameter or group of performance param-
eters which software monitor and what report was

used to derive the parameter. Noted in the per-
formance measurement source column are some

details concerning the derivation of the parame-
ter from the source.

Sources of the arrival rates for the work-
loads were among the most difficult to find. For
example, the number of times that the exec

[3] BGS Systems Inc.

Technical Note #10, BGS Systems, 1981.

[4] BGS Systems Inc.
Technical Note #15, BGS Systems, 1 98 1

,

routine PI$NIT is called is good gauge of TIP

arrival rate. This value is available in the SIP
Exec summary report, a table of all exec routines
and their frequency of invocation. The arrival
rates of Deadline Batch and Batch workloads,
although unnecessary for BEST/1, were required
for the SLAM/GPM. In the case of Deadline,- the

run summary report from LA was sufficient, but
for Batch a more direct tabulation appeared in

the SIP system idle activity report. This report
gives the number of runs opened and number of
runs in backlog, for the period of the report. We
had five 1/2 hour reports, and were able to cal-
culate the average growth of the backlog. This
number, subtracted from the average number of
runs opened gave us an accurate throughput figure
(see next section).

I/O time per device for each arrival in each
user class was extracted from I/OTRACE data using
special data reduction software. The normal
I/OTRACE processor, in the case of the 1100/40
system, does not sort the raw data according to
runid, which can be used to distinguish between
user classes, nor does the PAR processor in the
case of the 1100/80. Furthermore, because our
I/OTRACE data was collected for only a half hour,

no Deadline Batch runs were captured by coin-
cidence.

We resorted to an apportionment method to

determine the I/O seconds per device per Deadline
Batch run. We knew that I/OSUPS were an estimate
of 1/0 time devised for accounting purposes, and
that they were not reliable as absolute measures
of I/O seconds. The method by which I/OSUPS are
calculated does make them a reliable relative
measure, however, and we used the ratio of
I/OSUPS taken from the LA run summary reports and
applied this ratio multiplicatively to the Batch
1/0 seconds from I/OTRACE to produce Deadline
Batch I/O seconds.

4.2.1. Arrival Rate, CPU Utilization, and Batch
Throughput Calculations

In addition to the characteristics in the
previous section, for TIP, Batch and Deadline
Batch, table 3 shows the 1/0 SUP figures used to

apportion Exec CPU usage among these workloads.
I/O SUPS were derived form the Log Analyzer out-
put of 28 September 1981, while Exec CPU seconds
were derived from SIP collected on the same date.

The results of the Exec apportionment added

to the CPU utilization of TIP, Deadline Batch,
and Batch are shown in table 4 along with
arrivals per hour for each workload used to con-
vert CPU seconds per hour to CPU seconds per
arrival. All real time CPU utilization was
attributed to TIP. The sources of all figures,

with the exception of Deadline Batch and Batch
arrival rates were derived from SIP output on the

28th of September 1981. The Deadline arrival rate
was determined simply by tallying the deadline
runs over a period of time in the run summary
report. Batch arrival was determined from the

239

4.2.2. Memory Utilization Calculations

Table 3. Apportionment of Exec CPU

Usage among TIP, Batch, Deadline

work-
load

I/O
SUPS/hr.

fraction
of total

apportioned exec
CPU seconds

TIP 4206.57 .811 2689.08
Deadline 293.15 .056 185.68
Batch 687.51 .132 437.68

Total 3312.44

system idle activity report in SIP, as mentioned
earlier. The calculations performed to extract
Batch arrival rate and throughput are summarized
in table 5.

A report duration of 1/2 hour with an aver-
age size of 24.4 Batch arrivals implies 48.8

arrivals per hour of which 5 arrivals are back-
loged. This in turn implies a throughput of 43.8
per hour. The trend in the backlog grows slowly
during the peak period over which the SIP data

was collected, which is to be expected since TIP
programs at higher priority will always preempt
batch processing.

The memory use of the system is calculated
here in terms of the number of active transac-
tions (or jobs) occupying memory. This number is

called the Multiprogramming Limit (MPL) in BEST/1
terminology, and we adopted this terminology for
the SLAM/GPM as well. The TIP MPL calculations
are shown in table 6. BGS technical note 15 [4 I

gives a simple formula for calculation of the
MAX-MPL parameter for a TIP workload as (Average
Total Memory Used) /(Average Program Size) + 1.

This value, calculated from the figures in the
table, is approximately 13.

Memory use of Deadline Batch was implied
from the regular nature of this workload'

s

arrival (about one per hour) and the throughput
calculated from LA run sunmary information
(greater than one per hour). With this informa-
tion we determined that the attained multipro-
gramming limit (ATT -MPL in BEST/1 terminology)
was approximately one.

Batch processing memory use was obtained
from the Batch graph of runs active, a line
printer histogram in the LA output. This histo-
gram showed the fluctuations of the number of
Batch Jobs active over time, so values for the
attained multiprogramming distribution (ATT-MPD
in BEST/1 terminology) could be obtained. The
calculations for these values are shown in table
7.

The average of the ATT-MPD (the equivalent
of ATT -MPL) was used in the SLAM GPM since a dis-
tribution feature was not implemented. This
value, computed as the time-weighted sum of the
values in the table, is 1.92.

4.2.3. I/O Utilization Calculations

Table 5. Batch Arrival and Throughput

Report Total runs Avg runs Backlog
Number opened in backlog trend

1 33 11.9
+1.8

2 22 13.7
+ 10.2

3 36 24.9
-4.2

4 26 20.7

+3.7

5 5 24.4

averages 24.4 +2.5

The source of our I/O device service times

was the output of the I/OTRACE monitor, summar-
ized by a specially written program to extract
I/O utilization to each user type and the Exec.
The I/O configuration of the baseline 1100/40
system consisted of two conventional subsystems

Table 6. TIP Memory Utilization

Average Total Memory Average Resident
Used by TIP TIP Program

Programs (Kwords) Size (Kwords)

380.18 31.96

240

4.3. BEST/1 Input Array

Table 7. Batch Memory Utilization Distribution

Level of Batch Minutes Spent Fraction
runs active at that level of total

0 0 0

1 19.78 .39
2 15.20 .30

3 15.85 .31

.4 0 0

total 50.83 1 .0

of Univac model 8433 disks with a total of 14

disks operating on the date of measurement, Sep-
tember 28, 1981. An Amperif cache disk subsystem
with 4 Amperif 8434 drives and an Amperif Solid
State Drum (SSD) subsystem with 4 SSD units were
also present. Table 8 shows the average device
service time in milliseconds per arrival per dev-
ice for each workload across all subsystems.

The distribution of the disk activity within
each subsystem is shown in figure 5 and in figure
6 for TIP and Batch respectively. A distribution
for Deadline Batch was not available and simple
averages were used instead.

These distributions show the lack of balance
present in the disk usage; essentially a data
base design problem. By assigning values derived
according to these distributions to the device
service time array in BEST/1, the baseline model
captured the unbalanced nature of I/O use and its
associated effects on disk queuing and transac-
tion response times.

The BEST/1 input array is shown in figure 7,
representing the culmination of the results
presented in the preceding sections. The SLAM/GPM
was populated with essentially identical informa-
tion, but the format and length of the actual
SLAM data structure prohibits its presentation
here

.

5. Model Results

5.1. Validation of Baseline Models

Baseline model results compared very favor-
ably with baseline system measurements, instil-
ling a good level of confidence in our models
ability to accurately predict performance. Figure
8 shows a plot of the response time distribution
predicted by BEST/1 superimposed on a plot of the
observed response time extracted from Log
Analyzer output on the September 28 1981 sample
date.

The baseline models were tuned by comparison
with the response time distribution information
so that 95th percentile response time was approx-
imately matched.

5.2. Model Prediction Results

The results of the parametric analysis (see
introduction) performed upon the various models
is summarized in the following sub-sections. The
parameterization is illustrated in table 9 as a

matrix of percentages of change applied to the
Deadline Batch CPU time requirement, all I/O ser-
vice time requirements, and TIP CPU time require-
ments. The sensitivity of the system performance
to these three parameters was of highest interest
to design decisions being made at the time, and
therefore defined the extent of the parameteriza-
tion.

Table 8. I/O Device Service Time by User Type
Table 9. Parameterization Values

TIP Deadline Batch
Subsystem

(msecs / arrival / device)
Disk 1 12.32 3817.40 627 .28

Disk 2 4.31 3817.40 131 .58

Cache 31.82 56716.81 432 .85
SSD 18.53 0 310 .99

Value Percentage Reduction

TIP CPU 0.% -10.$ -20.%
seconds
Deadline 0.% -20.% -40.$
CPU

All I/O 0.% -45. % -90.%
seconds

241

TIP I/O DEVICE SERVICE TIME DISTRIBUTION

UNIVAC 1100/40 I/O SUBSYSTEM (09/28/81)

MILLISECONDS/ARRIVAL

40

35

30

F

20

15

18

21 21 zl 21
DISK-3/4 -0 -1 -2 -3-4-5-6 -7 SSD-17/18 -0 -1 -2 -3

DEV. TYPE-SUBSYSTEM-OEV. f

TIP I/O DEVICE SERVICE TIME DISTRIBUTION
UNIVAC 1100/40 I/O SUBSYSTEM (09/28/81)

40

MILLISECONDS/ARRIVAL

30

25

20

15

10

DISK-21/22-0 -1 -3-4-5-6 -7 CACHElO/11-0 -1 -2 -3

DEV. TYPE-SUBSYSTEM-OEV. #

Figure 5. TIP I/O Device Service Time Distribution

242

BATCH I/O DEV. SERVICE TIME DISTRIBUTION
UNIVAC 1100/40 I/O SUBSYSTEM (09/28/B1)

MILLISECONDS PER AflRIVAL

800

VALUE X10.0 750

700

VALUE XI.

0

600

550

'//// / / 500

450

400

350

300

250

200

150

100

50

0

//
V7

_ 77
_ / /

77
ff,

77
V7

V/ r / i

OISK-3/4 -0 -1 -3-4-5-6 -7 SSD-17/18 -0 -1

DEV. TYPE-SUBSYSTEM-OEV. #

-2 -3

BATCH I/O DEV. SERVICE TIME DISTRIBUTION
UNIVAC 1100/40 I/O SUBSYSTEM (09/28/81)

MILLISECONDS/AflRIVAL

800

VALUE X10.0 750

700

rYYYi -
VALUE XI.

0

600

550

V// 500

450

400

350

300

250

200

150

100

50

0

OISK-21/22-0 -1

T

A.

Z

3
-3-4-5-6 -7 CACHElO/il-0 -1

DEV. TYPE-SUBSYSTEM-OEV. #

Figure 6. Batch I/O Device Service Time Distribution

243

LCHANNEL 1 LABEL = 'DISK CHANNEL •

PC HAN = 2.0
CHTIME = 3.4
SERVER 28,29,49*50*51 LCH-ID = 1

STR-ID = 1

REVTIME = 4.0
DEVTIME = 6.5
SERVER 4»5»6»7»8»9»10»11 LCH-ID = 1

STR-ID = 2

REVTIME = 8.3
DEVTIME = 13.8
SERVER 12* 13* 14* 15* 16* 17* 18* 19 LCH-ID = 1

STR-ID = 3

REVTIME = 8.3
DEVTIME = 14.6
SERVER 20* 21*22*23*24* 25*26* 27 LCH-ID = 1

STR-ID = 4

REVTIME = 8.'

DEVTIME = 15.

LCHANNEL 2 LABEL = 'SSD CHANNEL

•

PCHAN = 2.00
CHTIME = 7.31
SERVER 2*3*41,42 LCH-ID = 2

STR-ID = 1

REVTIME = 0.

DEVTIME = 7.32

SERVER 1 SPEED = 3

WKLOAD 1 LABEL = ' CURRENT DEADLINE BATCH
TYPE = 8P
ARRIVAL = 1.0
ATT- MP L = 1.0
TIME

1 = 390791

= 'REAL CURRENT BATCH'WKLOAD 2 LABEL
TYPE = BP
ARRIVAL = 48.8
TIME

1 = 16235
2 = 272.1
3 = 753.09
41 = 202. <*6

42 = 16.32
4 = 98.690
5 = 152.56
6 = 12.550
7 = 000.00
3 = 39.680
9 = 000.00
10 = 189.67
11 = 4528.3
12 = 590.98
13 = 000.00
14 = 000.00
15 = 2.5500
16 = 448.28
17 = 000. 00
18 = 5.5300
19 = 5.3200
23 = 530.22
29 = 227.34
49 = 761. <t9

50 = 162.34
51 = 000.00
35 = 27.0
30 = 694.00
31 - 35.0

WKLOAD 3 LABEL = 'REAL CURRENT TIP
2 = 00000.0 TYPE = TP
3 = 00000.0 ARRIVAL = 7

41 = 00000.0 MAX- MPL = 1

42 = 00001.0 TIME
4 = 7634.80
5 = 7634.30 1 = 1284
6 = 7634.30 2 = 10.31
7 = 7634.80 3 =. 27.20
8 = 7634. 80 41 = 21.80
9 = 7634.30 42 = 14.82
10 = 7634.80 4 = 25.41
11 = 7634.80 5 = 10.24
12 = 7634.80 6 = 15.27
13 = 7634.80 7 = 03. 89
14 = 7634.80 8 = 09.66
15 = 7634.80 9 = 00.00
16 = 7634.80 10 = 08.38
17 = 7634.80 11 = 25.74
IS = 7634.80 12 = 03.24
19 = 7634.80 13 = 00.00
23 = 56716.0 14 = 05.36
29 = 56716.0 15 =: 02.21
49 = 56716.0 16 =• 12.69
50 = 56716.0 17 = 05.00
51 = 0000.0 18 = 05.31
35 = 223.0
30 = 5698.0
31 = 288.0

28
29
49
50
51
35
30
31

29.84
36.37
37.00
24.08
00.00
01.00
29.00
01.00

WKLOAD 1

WKLOAD 2

WKLOAD 3

WKLOAD 2

1 = 0.39
2 = 0.30
3 = 0.31

PDIST 2 =« 0.45
ODIST 5 == 0.55

PDIST 1 =: 0.45
PDIST 5 =* 0.55

PDIST 3 == 0.71
PDIST 4 == 0.01
PDIST 5 >= 0.28

ATT-MPD

Figure 7. Best/1 Input Array

244

SECONDS

BASELINE 1100/40 (3X1) RESPONSE TIME DISTRIBUTION
BEST/1 RESULTS VERSUS LOG ANALYZER

12.5-

10.0-

7.5-

5.0-

2.5-

0.0-

O

rTTTT"

75

rTTTr

9510 15 20 25 30 80 85 9035 40 45 50 55 80 85 70

CUMULATIVE PERCENT LESS THAN RESPONSE

LEGEND: SOURCE D D O BEST/1 O LOG-ANAL

MARTIN MARIETTA - not - 8/Z/8Z

SECONDS

BASELINE 1100/80 (3X3) RESPONSE TIME DISTRIBUTION
BEST/1 RESULTS VERSUS LOG ANALYZER

10-

ttttt,

15

"T1

45

rrTTT"

80

rrrrpi

70 75

rrrrpi

80

rrrrpi

85

rTTTTn

90 9510 20 25 30 35 40 50 55 85 100

CUMULATIVE PERCENT LESS THAN RESPONSE

LEGEND: SOURCE ODD BEST/1 O O O LOG-ANAL

MARTIN MARIETTA - rwt - 8/2/82

Figure 8. Baseline Model Results

245

5.2.1. Univac 1100/90 Performance

The curves shown in figure 9 a through c

show that the single processor 1100/90 is insuf-
ficient to satisfy the required response time of

three seconds for TIP transactions, even with a

20$ reduction in TIP CPU service time. Similarly

, two of the three required Deadline Batch loads,

shown in figure S-b and c, exceed the required
response time of 25 minutes. Performance is still

marginal at a reduction in Deadline Batch CPU

service time of 20%.

In this model TIP CPU service time was the

only parameter of high sensitivity, as could be
expected of a single processor system. Reductions
in I/O service times for all workloads did not

significantly affect performance characteristics.
The case run at 45? reduction in I/O service time
is shown here alone for brevity.

When a second processor was added, the per-
formance picture brightened considerably as shown
in figure 10. This set of results reflects no

reduction in Deadline Batch CPU time or in I/O
service time. The plot of response time for the

case of no reduction in TIP CPU time behaves well
at the transaction rate requirement point for all

loads.

Figure 11 shows a reduced case of 20% reduc-
tion in Deadline Batch CPU time and 45? reduction
in all I/O service times. The sensitivity to

these parameters is only noticeable in Deadline
Batch response time, but is not large. The sensi-
tivity to TIP CPU service time is much more evi-
dent in the case of TIP response time (figure

11a), where I/O service time sensitivity is low.

By contrast, the sensitivity of Deadline Batch to

I/O service time reductions is reasonably large

as can be seen by comparing figures 10-b and c

with figures 11-b and c.

These results established the two-processor
Univac 1100/90 (2x2) as a candidate configuration
for long term replacement of the baseline system.

5.2.2. IBM 3081 -K Performance

The IBM 308 1-k was chosen as an alternate
configuration to study. The results that follow
are for a two-processor system (2x1). The 308 1 is

packaged in processor pairs (dyadic processors),
and configurations with odd numbers of processors
are unrealizable. Therefore, the next largest
configuration is a four processor system, driving
costs past program constraints. Our study was
therefore limited to the two processor system.

Figure 12 shows our results for the IBM
308 1-K (2x1) with unreduced Deadline Batch CPU
time and unreduced 1/0 service times. The results
show a marginality in the TIP transaction
response time (figure 12-a) and in Deadline Batch
processing (figure 12-c).

Figure 13 show the results for the case of
405& reduction in Deadline Batch CPU service time
and 45? reduction in all I/O service times. TIP
transaction response time has been improved very
slightly, but is still marginal. The improvement
in Deadline Batch performance is the only marked
difference, as comparison of figures 12-c and
13-c will show.

The overall conclusion drawn here is that
the IBM 3081 -K (2x1) configuration is only margi-
nally adequate to satisfy project requirements,
even at substantial improvements in the effi-
ciency of DBMS direct 1/0, Deadline Batch CPU
service time and to a lesser extent TIP CPU ser-
vice time.

5.2.3. Univac 1100/80 Model Results

For the interim time period between the
present and the final installation of the
selected configuration (either alternative), the
performance of the 1100/80 (3x3) was studied. The
initial replacement to the baseline Univac
1100/40 (3x1) was an 1100/80 (3x3) three proces-
sor system with three IOUs. The results in fig-
ure 14 show the familiar trend for TIP transac-
tion response time - no sensitivity to I/O, great
sensitivity to CPU service time/capacity.

Figure 14-a shows TIP response time for the
case of 45$ reduction in 1/0 service time, while
figure 14-b shows the case for 90% reduction. In
each case only a 20? reduction in TIP CPU service
time can make the system marginally capable of
handling the required 300 transactions/minute at
peak loading. It is clear that the system will
become CPU bound at this point, as model output
shows a CPU utilization of greater than 90%.

The immediate solution to our short term
performance problem was to add another CPU to the
1100/80 configuration. Transforming the 1100/80
(3x3) into a (4x4) solved TIP transaction
response time problems, but did not remove the

marginality of Deadline Batch performance until a

20% reduction in Deadline Batch CPU service time
and a 45? reduction in I/O service time was made.
Figure 15 shows the unreduced cases and figure 16

shows those with reduced service times.

5.2.4. Offload Processor Results

As the preceding section indicates, the

addition of a fourth processor to the 1100/80

system did not completely solve the performance
problems. The notion of adding yet another pro-
cessor dedicated to Deadline Batch processing
alone, thus "offloading" it from the 1100/80

(4x4) was studied. Since four processors is a

maximum configuration for the 1100/80, the

offload processor would be interfaced by means of
a hyperchannel. Deadline Batch functions would be

performed and a mass data base update would be

transmitted to the 1100/80 (4x4) mainframe over
the hyperchannel.

246

UNIVAC 1100/90 (1X1)
I/O SYSTEM: 2*<QUM> CTLR, 18MBYTE CACHE. 16 DISKS)

LEGEND: REDUCED
PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

73 300 323 350 373 400 423 4SO

TRANSACTION ARRIVALS PER MINUTE

REDUCED » « « O • • *• iO

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

526 350

TB 300 323 330 373 400 423 4B0

TRANSACTION ARRIVALS PER MINUTE

REDUCED *— •

—

* O • ' * 1°

325 5S0 373 BOO

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS
DLB CPUTOa REDUCED ZOX BT REDESIGN

MARTIN MARIETTA - rwt - S/M/S2
I/O REDUCED 45% BYDBMS BUFFERS

Figure 9. Univac Single Processor Response Time

247

UNIVAC 1100/90 (2X2)
I/O SYSTEM: 2»(QUAD CTLR, 16MBYTE CACHE, 16 DISKS)

300 380 4SO AAO ABO ABO BOO BSO S40 BSO BBO BOO

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED O -9

—

O o- 10 A A A SO

eso B40

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

4SO 440 4SO 480 BOO BSO B40

TRANSACTION ARRIVALS PER MINUTE

REDUCED ¥--¥—¥ O Z Z Z lO

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

320 340 3SO 3B0 400 420 440 4B0 4BO BOO BSO B40

TRANSACTION ARRIVALS PER MINUTE

REDUCED 6—B—B O —0—9- lO

BBO BBO S40 BBO

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS
DLB CPUTIUE UNREDUCED

MARTIN MARIETTA - net - 8/2/82
I/O UNREDUCED

Figure 10. Univac Dual Processor Response Times

248

UNIVAC 1100/90 (2X2)
I/O SYSTEM: 2»(QUAD CTLR, 16MBYTE CACHE, 16 DISKS)

300 380 340 380 380 40O
I
" 1 " 1 1 "

!
1

BOO B20

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED •e—o 0- 10

seo oso eoo sso

•A a A 20

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

300 320 340 420 440 4SO 4SO BOO B20 B40

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REOUCED ¥—¥—¥• O Z Z Z 10

B40 SSO

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

30-
T
Y
P 2B-
B

R 20-i

O
L 19-
B

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED -it 20

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS
DLB CPUTOCE REDUCED ZOX BY REDESIGN

MARTIN MARIETTA - not - t/Z/tt
I/O REDUCED 45% BY DBMS BUFFERS

Figure 11. Univac Dual Processor Response Times (reduced cases)

249

IBM 3081 (2X1)
I/O SYSTEM: 4»(DUAL CTLR, 8MBYTE CACHE. B DISKS)

300 300 400 4BO

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED O -9—0 « 10

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

tMUTES

180-
T llO-
Y lOO-
P BO-
E 80-

70-
O 80-

BO-
40-

L ao-
b ao-~

io-
o-

i

seo
-r* -r

300 3B0 400 4SO

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED «••#••« O -»--—• 10

BOO BOO

C
UNUIB

ao-
T ,

Y
p aa-
E

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

D
L 1B-
B

T lO-
U
R
N B—
T
I
M O-
E

/

I • '

aao SOO 3B0 400 4B0

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED •—•-» o •«-*—»- lo

BBO BOO 8B0

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS MARTIN MARIETTA - rwi - */*/**
DIB CPUTIME UNREDUCED I/O UNREDUCED

Figure 12. IBM 308 1-K Dual Processor Response Times

250

IBM 3081 (2X1)
I/O SYSTEM: 4*(DUAL CUR, 8MBYTE CACHE, 8 DISKS)

B
X S-
I
L
e m -

T
p
A
N
8 2-

1-
C
T
I

o
N O-

100 lao
i i i

> 200 300 3B0 400 4SO

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED B—B—B O o * 10 AAA SO

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

B

lao-
T 110-
V 100-
P BO-
E 80-

70-
O 80-

B0J
D •40-
L 30-
a 20-

10-
O-

2B0 300 3S0 400 <4B0

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED O 10

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

«--— 20

9 300 3B0 4O0 A&0

TRANSACTION ARRIVALS PER MINUTE

REDUCED -•—•- O <-<--< lO 20

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS
DIB CPUma REDUCED 20X BY REDESIGN

MARTIN MARIETTA - rwt - 6/Z/8Z
I/O REDUCED 46% BY DBMS BUFFERS

Figure 13. IBM Dual Processor Response Times (reduced cases)

251

UNIVAC 1100/80 (3X3)
I/O SYSTEM: QUAD CTLR, 16MBYTE CACHE. 16 DISKS

ioo 120 l^o ibo lao aoo aao a*o aso aso 300 sao 3-40 aeo sao aoo aso

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED D O -«—9—*• 10 SO

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS MARTIN MARIETTA - rwt - 8/2/82
I/O UNREDUCED

UNIVAC 1100/80 (3X3)
I/O SYSTEM: QUAD CTLR, 1 ©MBYTE CACHE, 16 DISKS

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED D O »—9—9- 10

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS MARTIN MARIETTA - rwt - 8/2/82
I/O REDUCED 45% BY DBMS BUFFERS

Figure 14. Univac 1100/80 Response Times (reduced cases)

252

UNIVAC 1100/80 (4X4)
I/O SYSTEM: QUAD CTLR, 16MBYTE CACHE, 16 DISKS

150 170 180 210 230 200 270 280 310 330

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED B-B-B 0 -0—0 o io

350 370 380 410

A A A 20

PERCENT REDUCTION M TRANSACTION CPU TIC BY REDESIGN

UNUTES

35H
T
Y
P 30H
E

0 25-

L 20-
B

T 1

U
R
N 10H
T
I

M 5H
JTTT

150

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED V V ¥ 0 Z-H-Z 10 20

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS
DIB CPUTIMS UNREDUCED

MARTIN MARIETTA - rust - 8/X/82
I/O UNREDUCED

Figure 15. Univac 1100/80 Four Processor Response Times

253

SECONDS

UNIVAC 1100/80 (4X4)
I/O SYSTEM: QUAD CTLR, 16MBYTE CACHE, 16 DISKS

230 250 270 280 310 330

TRANSACTION ARRIVALS PER MINUTE

LEGEND: REDUCED 0 «—0 O 10 A A A 20

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PERCENT REDUCTION IN TRANSACTION CPU TIME BY REDESIGN

PARAMETERS MARTIN MARIETTA - not - 8/2/82

DLBCPUTIME REDUCED 20% BY REDESIGN I/O REDUCED 45% BY DBMS BUFFERS

Figure 16. Univac 1100/80 Four Processor Response Times (reduced cases)

254

IMU1D

UNIVAC 1100/80 (1X1)
I/O SYSTEM: 2»(QUAD CTLR, 1 6MBYTE CACHE, 1 6 DISKS)

30-

25-

M
I

N 20H

0
L 18-
B

T 10-
LI

H
N
T
I

M
g I 1 '

I ' I I I I ' ' '

600000 050000 800000 850000 700000 750000 800000 850000 800000

TYPE O DLB CPU TIME (MSEC)

MORE REDESIGN QT DLB MORE DATA ITKlfS

B

MINUTES

UNIVAC 1100/90 (1X1)
I/O SYSTEM: 1.(QUAD CTLR, 16UBYTE CACHE. 16 DISKS)

170000 laoooo 210000 230000 250000

TYPE O DLB CPU TIME (MSEC)

2SOOOO 310OO0

MORE REDESIGN OF DLB MOBJS DATA ITEMS

30-jj

1

ao-4-

N 20-3

"

L_ IB—

IBM 3081 (2X1)
I/O SYSTEM: 2»(DUA1_ CTLR. 8MBYTE CACHE, 8 DISKS)

T 10—
u
R
N B-
T
I
M O-

SSOOOO 240000 2BOOOO
<~r-r-> -f--r-*—t—» ~m-t -, T ' 't •' ' ' r" -i-t-f-t-*-!

2SOOOO 300000 320000 340OOO

2B MINUTE DUB CPU TIME (MSEC)

MORS REDESIGN OF DLB

PARAMETERS
ALL I/O UNREDUCED

360000 3BOOOO 400000

MORE DATA ITEMS **-.-»-.

MARTIN MARIETTA - rwt - 8/2/82

Figure 17. Offload Processor Response Times

255

Results of putting a single Deadline Batch
load on a single 1100/80, and a dual IBM 308 1-K,
offload processor were so encouraging that
increasing the amount of data processed by the

Deadline batch function became feasible. Figure

17 shows graphs of Deadline Batch response time
versus Deadline Batch CPU service time, a measure
of the number of items processed. Each of the
three candidate offload processors:

(1) Univac 1100/80 (1x1);

(2) Univac 1100/90 (1x1);

(3) IBM 3081-K (2x1)

are graphed in figures 17-a, b, and c respec-
tively.

The inclusion of the single processor
1100/90 was realistic since this single CPU con-
figuration was announced to be available within
the short term time frame, although the multiple
processor configurations would not be available
until our long term time frame.

Deadline Batch CPU time was selected as a

rough measure of the amount of data being pro-
cessed by the Deadline Batch jobs. The center
point on each graph represents the required
amount of data to be processed per job. The point

to the left represents a 25% reduction in this
amount, while the point to the right represents a

25% increase. Alternatively, these points can
also be interpreted as increased or decreased
efficiency of the Deadline Batch function.

6. Conclusions and Epilogue

The foregoing model results led us to con-
clude that the Univac 1100/90 (2x2) was the most

cost effective option available to satisfy pro-
gram requirements. To provide an alternate ven-
dor, the IBM 308 1-K (2x1) was proposed as a

second choice, with the caveat that performance
could be marginal without substantial increases
in code efficiency.

For the short term performance of the

1100/80 system, we concluded that an offload pro-
cessor was necessary unless requirements for the

Deadline Batch response time were relaxed. Our
efforts to measure 1100/80 performance are con-

tinuing in order to improve the accuracy and

level of detail of our short term predictions.

The choice of modeling and simulation tools

produced an interesting comparison between BEST/1

and SLAM, and furthermore, between analytic and

simulation methodologies. Our conclusions based

upon this experience are that both approaches and

tools are capable of providing adequate accuracy
and flexibility for the sizing and prediction of

computer system performance. Addressing the

questions of adequacy and accuracy of BEST/1 and

in particular queuing theory, our experience gen-
erally corroborates the widely publicized

expectation that queuing theory approximations
can provide as good or better accuracy as simula-
tion modeling with significant advantages in com-
putational efficiency and model turnaround.

The performance of the model tools BEST/1
and SLAM can be compared in this case study since
we built the GPM in SLAM at approximately the
same level of detail as BEST/1. While no detailed
record of computer resource usage by the tools
was kept, we observed a rough order of magnitude
in the CPU time required for equivalent runs in
BEST/1 and SLAM. It must be kept in mind, how-
ever, that BEST/1 was running on an IBM 308

1

whereas SLAM was running on a VAX 11/780. Assum-
ing that the IBM 308 1 is roughly five times as
fast as VAX 11/780, (a figure supported by MIPS
ratings of the two machines), BEST/1 exhibited a

2 : 1 speed advantage over SLAM.

The implementation of the GPM in SLAM took
approximately four man-months, slightly longer
than expected. The developement time required for
SLAM simulations was a primary factor in our
choice of BEST/1 as a tool for preliminary
models.

Finally, it must be stressed that an issue
of much greater importance than which methodology
to use is the proper interpretation and prepara-
tion of the model input data. Collecting the
necessary input data and putting it in a form
understandable to the models was a significant
undertaking. The software monitors available on

the Univac 1100 series and their corresponding
data reduction software were not designed with
modeling in mind. It has been said many times
that a model is only as good as its input and the
truth of this maxim has certainly been borne out
by our experience.

The staff of the Central Software Engineering
Facility (CSEF) Model Shop built the GPM in SLAM
according to our requirements. The project and
subcontractor personnel without whose support
this paper would not have been possible include,
but are not limited to: Scott Gilles, Jim Elliot
and the Martin Marietta Data Systems group, Ron
Jacobsen, Gary Sandler, for technical support;
Pam Clark and Kevin Goodrich for keeping me
awake; and Lyle McElhaney for single-handedly
debugging the UNIX (UNIX is a trademark of Bell
Laboratories) formatter macros which produced
this paper.

References

1 BGS Systems Inc.

,

BEST/1 Users Guide, BGS Systems, 1979.

2 Pritsker, A. A. B. and Pegden, C. D.,

Introduction to Simulation and SLAM, Halsted
Press, N. Y. 1979.

256

3 BGS Systems Inc.

,

Technical Note #10, BGS Systems, 1981.

4 BGS Systems Inc.

,

Technical Note #15, BGS Systems, 1981.

257

A UN I VAC WORKLOAD CHARACTERIZATION SYSTEM

Walter N. Bays
Dawn L. Voegel

i

MITRE
1812 Space Park Drive
Houston, TX 77058

Analytic modeling, simulation, and benchmarking are major tools for computer
performance evaluation. All require an accurate characterization of the system
workload. A statistical analysis package has proven useful for workload
characterization and other analyses of system accounting. This paper describes
the use of P-STAT for workload characterization on UNIVAC systems.

Key words: Capacity planning; job accounting; resource management; statistical
analysis; workload characterization

1. Introduction

The Workload Characterization System (WCS)

was developed for NASA's Johnson Space Center
(JSC) by MITRE. The Central Computing Facility
(CCF) provides a full range of computational
services to the engineering, scientific, flight
operations, and program management organizations
at JSC. The CCF is composed of two UNIVAC
1100/81 unit processors (1181-0, and 1181-5), one

1100/82 multiprocessor (1182-2), and one 1110
multiprocessor (1110-6).

The CCF processes a varied workload from a

large number of user groups. In most cases these
groups are responsible for development and
maintenance of their own application programs.
In this environment it is important to determine
which programs consume which resources, and to

estimate how resource consumption might change
with changing requirements of the various user
groups [5,6,7,8],

This paper describes the capabilities of

WCS, and some of its uses. Section 2 describes
the structure of WCS. Section 3 discusses the
use of WCS, specifically its use in selecting
candidate programs for application tuning.
Appendix A contains sample standard and ad hoc
reports. They appear for purposes of
illustration only and are not representative of
the CCF workload.

1.1 UNIVAC Accounting

A UNIVAC run (job) comprises the execution
of some number of programs interspersed with job

control statements. Runs are either batch or
demand (interactive). The UNIVAC 1100 operating
system (EXEC) collects extensive data on each run

and program, and on general EXEC actions, for use
in resource accounting, charge-back, error
analysis, et cetera [10]. Accounting is based on

the Standard Unit of Processing (SUP), which is a

measure of the serial processing time of a

program. That is, the SUP time of a program is

approximately the length of time that program
would require to complete processing if

computation and 1/0 were done serially with no

overlap and if no other programs were active in

the system [4],

Total SUPs are the sum of CPU SUPs, 1/0

SUPs, and CC/ER SUPs. CPU SUPs are the total CPU
processing time. The SUP charge for a single 1/0
operation is the number of words transferred
divided by the transfer rate of the 1/0 device
used plus the average rotational latency time of

the device. 1/0 SUPs are the sum over all 1/0

operations. CC/ER SUPs are an estimated time to
process control statements and executive
requests. CBSUPs, or core-block SUPs, are not a

component of total SUPs. Instead they are an
accumulation over time of the current memory size
of the program times the SUPs consumed. CBSUPs
divided by SUPs is the average memory size
expressed as the number of 512 word core-blocks.

259

WCS reads the UNIVAC accounting records.
Accounting records are generated on run
initiation, run termination, program initiation,
program termination, at time of file assigns and
frees, and at system recovery after crash. Many

other records are generated which are not used by

WCS. Two condensed files are generated by WCS

containing variables listed in Section 2.5.2.

2. WCS Structure

2.1 Overview

The purpose of WCS is to give insight into

the workload being executed on CCF computer
systems, and to produce a workload model suitable
for use in a benchmark or other type of system
model [1,3]. Other potential applications
include capacity planning, identification of
candidate programs for application tuning, and ad

hoc studies. For these purposes, a

representative sample of accounting data is

required. WCS could also be used for resource
accounting by defining additional reports.

WCS comprises a number of FORTRAN and P-STAT
routines for extraction of workload data and

analysis of that data (see Figure 1). P-STAT is

a proprietary program for data manipulation,
statistical analysis, and report generation [2].
It executes on a wide variety of computer
systems, including UNIVAC. WCS provides a set of
standard reports. It also provides the
capability to retrieve and process accounting
information on an ad hoc basis. This capability
is called Interactive Workload Query.

The WCS FORTRAN programs are CONDENSE,
PSORT, and PROGDETAIL. CONDENSE reads the
accounting file and creates two condensed
workload files: one for run records, and one for
program records. These workload files may be

efficiently sorted and merged with PSORT, an

interface to the UNIVAC sort package-. These
workload files are then loaded into P-STAT for

analysis and reporting.

2. 2 Standard Reports

The WCS reports are produced as required for

the purpose of generating a workload model, and

to document the current workload characteristics.
Six reports are currently defined in WCS. Each

report is generated by an ADD element (job
control language procedure) which may be used
directly, or may be combined and edited by the
user. The following Sections describe these
reports and their generation. Sample reports are

included in Appendix A.

2.2.1 Program Profile Report

The Program Profile Report, shown in Figure
A-l, lists by program name, the total, average,
and standard deviation of several important
program characteristics. It shows the relative
usage of system processors and major applica-
tions. The manner in which a program is used can

be tracked, for instance, to detect growth in

average memory size. Candidate programs for

application tuning can be selected based on

relative usage, and compared with known
characteristics from previous tuning tasks.

ACCOUNTING

> f

FORTRAN PROGRAMS

> i

Figure 1. WCS Overview

As explained in Section 2.4, a "name label"

file defines the significant programs to be
included in the Program Profile Report. All

other (miscellaneous) programs are reported
together. Each program listed in the name label

file has an entry in this report for batch mode
executions, and an entry for demand mode
executions. Each entry has a line for the total

of all program executions, a line for the average
of each execution, and a line for the standard
devi ation

.

2.2.2 Program Detail Report

The Program Detail Report, shown in Figure
A-2, lists the relative resource consumption of

every program executed. It is used to identify
new applications which use significant resources.
Each program is listed with its part of the total

number of executions, its part of the total SUPs,

and its part of the total CBSUPs. This listing
is repeated sorted by each of these four columns.

2.2.3 Workload Model Report

The Workload Model Report, shown in Figure
A-3, is used in conjunction with the Program
Profile Report to develop a model of the CCF

workload for benchmarking, and analytic or
simulation modeling. It shows the

260

characteristics of miscellaneous programs by

dividing them into a number of similar
categories.

This report divides miscellaneous batch
programs by size and the ratio of I/O SUPs to

total SUPs (IOPART). Programs from system runs

are listed separtately. There is a listing for

each size range 0-10K, 10-20K, 20-40K, and over

40K, and for each IOPART range 0-.2, .2-. 4,
.4-. 6, .6-. 8, and .8-1.0.

Miscellaneous demand programs are divided by

size and SUPs. Programs which have greater
voluntary delay time than elapsed time have
multiple parallel activities and are listed
separately. The same size ranges are listed for

demand as for batch programs. The SUP ranges in

seconds are 0-2, 2-4, 4-8, 8-16, and over 16.

2.2.4 Frequency Profile Report

The Frequency Profile Report, shown in

Figure A-4, gives frequency distributions of
size, SUPs, ratio of I/O SUPs to total SUPs, and

elapsed time according to categories of all

programs, batch programs, and demand programs.
Ten equal categories below the mean, and ten

equal categories above the mean are listed with

the number of programs, and the percent and the

cumulative percent of programs. The mean,
variance, and standard deviation are listed; but

the mean is unweighted (by SUPs).

2.2.5 Account Profile Report

The Account Profile Report, shown in Figure
A-5, gives the total and average of several
important workload measures by account (NASA
branch) and operations shift for batch and demand
programs. It shows the workload characteristics
Dy user groups, and the quality of service each

group is receiving.

2.2.6 Terminal Profile Report

The Terminal Profile Report, shown in Figure
A-6, gives the averages of several important
interactive job characteristics by terminal. It

shows the relative utilization of terminals, the
characteristics of the work run from each
terminal, and the response time received.

Certain errors are unavoidable in this
report. The number of transactions of a demand
run, the number of discrete user requests for

service, is not measured by the EXEC. "Cards
in", which is measured, is only an approximate
measure of the number of transactions. Voluntary
delay may be reported greater than elapsed time
for multiple activity programs. Since response
time is calculated as elapsed time minus
voluntary delay time, divided by cards in,
response time for runs with multiple activity
programs may be calculated as negative. These
runs are ignored in the terminal averages.

2.3 CCF Conventions

Some of the WCS variables are available
because of CCF standards. These variables are

mailbox number (BOX), project number (PROJ), and

badge number (BADGE). If the standards are not

adhered to by the user, the corresponding
variables are zero.

UNIVAC run IDs are up to six characters
long. In the CCF, the first three are usually a

mailbox number to aid in distribution of print
output. The last three characters are arbitrary.
The mailbox number implies the organization (NASA
or contractor) and the physical location of the

person submitting the run. The run IDs of a

number of special system runs, such as the ROLBAK
file management run and the TALONS tape labeling
system run, are recognized by WCS and given
specific four digit codes.

In the CCF, the four digit JSC project
numbers are used for UNIVAC user IDs. Special

system project names are given specific five
digit codes by WCS.

UNIVAC file qualifiers (logon directories)
are twelve characters. In the CCF a qualifier is

the NASA branch mail code, followed by a dash,

and the user's badge number.

2.4 Label Files

The major deficiency of P-STAT for WCS is

that it cannot directly handle character data.

This deficiency was overcome by using P-STAT'

s

capability to print character labels for given
numeric values in reports. P-STAT uses a label

file to define character values for particular
values for a variable. The label files are read

both by CONDENSE for encoding character values as

numeric values, and by P-STAT for decoding them.

For example, suppose the possible values of

the variable NAME are 0 through 61. These may be

printed as "MISC", "ABS", "ABSOL", etc. using the
"name label" file:

NAME

(0) MISC

(1) ABS

(2) ABSOL

(61) XAXIS

The "name label" file defines the applica-

tions which are reported separately. All other
programs are reported with the name MISC. One of

the most difficult decisions to make in workload
characterization is which programs are "signifi-
cant" applications requiring separate consider-
ation by name, and which may be considered
"miscellaneous". This decision is made using the

Program Detail Report based on the resources
consumed by the application, and is reflected in

the contents of the name label file.

261

For some uses of WCS, only system processors

and major applications will be listed separately.

For other uses of WCS, a separate listing may be

desired for each distinct program name. A label

file defining each program name may be generated

in conjunction with the Program Detail Report.

The condensed workload file contains both

the numeric encoding of the program name, and the

twelve character (ASCII) name itself. The

PROGDETAIL program uses the character name to

report on each distinct program executed. PSORT

can then be used to relabel the condensed file

according to the new label file.

2.5 Interactive Query

2.5.1 General

Interactive workload query is the execution

at a demand terminal of commands to retrieve

information from a workload file, perform
statistical analyses on it, and report the

results. It gives the analyst the capability to

conduct ad hoc investigation into the use and

behavior of the computer system. It is also used

to formulate and test theories on the workload,

to find problems with the system, and to develop

new WCS reports.

It is not possible to anticipate every
question that will be of interest and provide a

report to answer it. Indeed, the answer to one

question will likely suggest another, and the

analyst will proceed by "interacting" with WCS.

Some of the standard reports may be run first to

assist in the formulation of additional queries.

2.5.2 WCS Variables

The following variables are in both the

program and run records. All these variables are

real numbers, though some may take only integral

values. All times and SUP times are given in

seconds.

ACCT Code for account (NASA division)
encoded using the "account label" file.

BOX JSC mailbox number.

CAT Number of assigns and frees of

catalogued files. For runs this is the

number of job control language assigns
and frees. For programs this is the

number of assigns and frees from within
the program.

DATEO Date run or program started, in Julian
(YYDDD) notation.

DELAY Voluntary delay time, think time and

requested wait time.

ERR Execution error code. This value is

zero if there was no error.

ET Elapsed time of run or program.

KSEC Core K-seconds, the product of SIZE and

SUP.

RUNSEQ Run sequence number, used to link run

and program records together.

RUNTYP 1 = batch, 2 = interactive

SIZE Average memory size over the execution
of the run or program in 1000 words.

SUP Total SUPs (seconds).

TEMP Number of assigns and frees of

temporary files.

TIMEO Time run or program started in hours,
minutes, seconds (HHMMSS) notation.

TIME 1 Time run or program stopped in HHMMSS.

The following variables are in the run
records only.

BADGE JSC badge number of the person
executing the run.

BAKLOG The time a batch run spent in the

backlog before beginning execution.

CRD IN Number of cards (records) input to run.

DATE1 Date run ended (YYDDD).

DEVICE Code for the JSC terminal ID of an

interactive run.

ESTSUP User's estimated SUP time of the run.

NPROG Number of programs executed by the run.

PAGES Number of pages of output generated by

run.

PRI Priority of run.

PROJ JSC project number.

TRKSEC The product of the average number of

tracks of mass storage assigned to the
run as temporary files and as expansion
of catalogued files, times SUP.

The following variables are in the program
records only.

CCER CC/ER SUPs (seconds).

CPU CPU SUPs (seconds).

10 I/O SUPs (seconds).

I0PART The part of total SUPs due to I/O.

Calculated as IO/SUP.

262

NAME The code for the program name, encoded
using the "name label" file.

SHIFT Operations shift during which the
program started.

TMRT Time spent in real -time mode.

VER Code for the program version, encoded
using the "version label" file.

3. Use for Application Tuning

method of choosing tuning candidates is more
straightforward.

Reducing the SUP consumption of a program
makes those SUPs available for other programs.
SUPs are equated to a dollar value. A

program is worth tuning if the expected dollar
gain of SUPs saved is greater than the cost of

the analyst to tune it over the life cycle of the
application. This implies a program is only
worth tuning if it uses at least a certain
percent of the total machine SUPs.

The requirements for workload characteriza-
tion depend, of course, on the goal of the
characterization. Some typical goals are
analytic modeling, benchmarks, capacity planning,
and system performance evaluation. This Section
discusses a less common goal: the
characterization of the workload to aid in

choosing candidates for application software
tuni ng

.

3.1 General

Application software tuning is the process
of improving the efficiency of major
resource-consuming application programs [9],
Objectives of tuning are determined by those
resources. The most common objectives are to

reduce memory utilization, SUPs, and improve
quality of service. The following examples
demonstrate how to use WCS to choose tuning
candidates for those objectives.

The use of WCS is the first step in

identifying a candidate program to be tuned.
These candidates should be reviewed by an analyst
in order to estimate the viability of tuning the
programs. Tuning should only be undertaken when
a significant reduction in consumption of
resources or improvement in quality of service is

expected. After a number of candidates have been
identified with WCS, the analyst then proceeds,
through user contact, code inspection, and
experimentation, to choose one or more candidates
and evaluate the feasibility of tuning those
candidates

.

Other factors, which cannot be quantified,
should be considered along with the expected
benefits to decide if the program should be

tuned. Some of these factors are information
from the user regarding the application and its

use, quality of service the program receives, the
time of day the program is executed, the
organizational priority of the user group (if

applicable) and the type of run (demand or
batch)

.

3.2 SUP Utilization

SUPs are a measure of system utilization.
At the CCF, resource accounting is based on total
SUPs, so there is no differentiation between CPU,
I/O, and CC/ER SUPs. Therefore, the benefit of

reducing SUP utilization is quantifiable and the

3.2.1 Methods

The Program Detail Report lists all programs
in order of SUP utilization. Programs that have
already been tuned, system processors, and other
proprietary programs are eliminated from
consideration. The name ' @(a@@@@@(3@@(3(a

' is given
by the EXEC to any program not explicitly named
by the user. It should not be considered for
tuning because it represents many applications
and involves development work.

It is possible that different user groups
run entirely different programs with the same
name. Also, different "versions" of the same
program may have different names. These are
identified with Interactive Workload Query along
with user contacts.

The availability of the Program Profile
Report enables the list to be reduced based on

the number of times a program has executed, the
size of the program, and the service factor (see
Section 3.4) of the program for both demand and
batch runs.

Users of programs are identified using
Interactive Workload Query, and can be contacted
for detailed information on the program. Based
on this information, the code may then be
inspected.

3.2.2 Example

The Program Detail Report in Figure A-2
lists programs in order of decreasing SUP
utilization. Using the methods discussed above,
there are 28 potential SUP tuning candidates in

this example. The excerpted Program Profile in

Figure A-l supplies additional information on

potential candidates. The Interactive Workload
Query is then used to investigate these
candidates

.

Each potential candidate should be
investigated beginning with the program having
the greatest part of total SUPs. Potential
candidates are summarized by ACCT, BADGE, and BOX

to identify users of the programs. Some of these
candidates are shown in Figure A-7. Several
programs named CHAIN are observed. There is a

strong indication these programs are different
versions of the same program. Each version has
the same users (BADGE), same project number
(PROJ), and similar characteristics. Figure A-8

263

lists the resources used for all versions of

CHAIN. The assumption that CHAIN is a single
program should be verified when the user is

contacted.

3.3 Memory Size

Memory becomes a scarce resource as more
runs enter a. system, particularly if those runs

are large and require substantial processing
time. More swapping occurs and core wait times

increase as these runs compete for memory. The

result is more overhead and less efficient
systems performance.

If application tuning reduces the size of a

large program with high elapsed time and high

SUPs, an improvement in overall system
performance may be expected.

If resource accounting were done using
CBSUPs, they would determine the feasibility of

the tuning task. The CCF does not charge for

CBSUPs so the benefit of reducing CBSUPs is not

quantifiable and the method relies more on

judgement

.

3.3.1 Methods

The size at which a program is considered a

candidate for tuning is workload dependent. The

Frequency Profile can be used to aid the analyst
in determining this "cutoff size". In this
example, the largest 1% of programs executed are
considered

.

Of those programs being considered,
candidates should be chosen that, when executed,
run long enough to significantly affect the
system. SUPs and elapsed time are primarily
considered in this regard. Another measure of

interest may be the time of day that the program
was executed. For instance, if it usually
executed during prime shift it would have a

greater impact on the system than if it were
executed during non-prime shift.

By these methods one or more tuning
candidates are chosen. After a preliminary
analysis of these programs, similar to that done
for SUP utilization, one or more are picked to be

tuned, according to the available tuning
resources

.

Using tuning techniques such as those
described in [9], program size may be decreased.
For example, dynamic arrays may be used instead
of static arrays, allowing the program to grow
and shrink in size as needed.

3.3.2 Example

The Frequency Profile of program size in

Figure A-4 aids the analyst in picking the cutoff
size for the desired percentile. Frequency
profiles are also produced for SUP, IUPART, and
ET. For this example, the cutoff size chosen is

66K, to correspond to the top 1% of executions.

Eighty two program executions are above this size
for this example. Each potential candidate that
exceeds the cutoff size should be investigated.

The Program Detail Report in Figure A-2
lists programs in order of decreasing CBSUPs.
Using the feasibility criteria described above,
there are 18 potential memory tuning candidates
in this example.

3.4 Quality of Service

Quality of service is usually measured by

response time and turnaround time. Response time
of a transaction is "the elapsed time from the

last keystroke of an operator input at an

interactive remote device until the first
printable character of the resulting [system]
response appears at the user's device".
Turnaround time is "the time interval between the

initiation of a user workload demand and the

successful completion of that demand" [11]. From
UNIVAC accounting data it is possible to measure
the turnaround time of runs and of program
executions (elapsed time). The average response
time over a run can be estimated, but the
response time of a program execution cannot.

Another important quality of service measure
for a program execution is the service factor:

the ratio of elapsed time to SUPs. Theoretical-
ly, this number is the "stretch-out" factor of

the turnaround time to what the program would
have experienced on a "single string" machine.
For demand programs, the service factor may be

adjusted by subtracting voluntary delay from
elapsed time before dividing by SUPs.

Better turnaround time will enable the user

to use his time more efficiently. In particular,
with demand programs, the time spent waiting for

a response at a terminal should be minimized.
With prime shift batch programs the time spent
waiting for completion of a program should be

minimized.

The benefit for reducing turnaround time is

not quantifiable, but is reflected in user
satisfaction.

3.4.1 Methods

The Program Profile Report can be used to

identify programs with a high service factor. If

the voluntary delay associated with the program

is low then that program is a candidate for

further inspection. Other measures of interest

are the time of day the program is executed,

number of file assignments and frees, and number

of I/O accesses. Some possible reasons for high

service factor are large memory size, inefficient

segmentation or banking, file conflicts, and tape

mount delays. Development executions are not

considered as candidates because there is not yet

a final program to tune. It is important to pick

service goals when choosing candidates. For the

purpose of this presentation a service goal of an

264

average of 10 seconds for response time over a

run is used.

If the Terminal Profile report indicates

long response time for a given terminal,
considering average memory size, the programs
executed from that terminal may be examined.

This may result in identification of a candidate
program for application tuning to reduce response
time.

3.4.2 Example

Eight terminals receiving response time over
11) seconds, despite being small runs, were
identified in Figure A-6. Figure A-9 lists the

runs on these 8 terminals with the SUPs per

transaction calculated. Run 142 is identified as

a multi-activity run because of the negative

response time. Run 418 has an acceptable service
factor. Run 375 generates a high number of

pages. Runs 103, 107, and 219 meet the goal

response time. Run 238 is a large run. Figure
A-10 lists additional variables for these runs.

Runs 167, 219, and 370 are development work. All

other runs meet goal response times except runs

272 and 372 . Figure A-ll lists the programs
executed by runs 272 and 372. A file conflict
could exist.

This work was supported by NASA Johnson
Space Center under contract T-1612J.

References

[1] Bays, W., and Kincy, W. , Universal Skeleton
for Benchmarking Batch and Interactive
Workloads: UNISKEL BM , Proceedings of the

Computer Performance Evaluation Users Group
17th Meeting, November 1981.

[2] Buhler, S., and Buhler, R., P-STAT 78

User's Manual , P-STAT Inc., February 1981.

[3] Fiske, R., Kincy, W., and Brazile, R.,

EXEC-8 Performance Evaluation System ,

MITRE, MTR-4575 Revision 1, June 1975.

[4] Kelly, J., UNIVAC 1100 Performance ,

Datametrics Systems Corporation, 1980.

[5] Linde, S., and Preston, S., CPE's New
Panacea: The SAS-Based PMS

,
Proceedings of

the 7th Annual SAS Users Group Inter-
national Conference, February 1982.

[6] Morris, J., A Performance Management System
Using SAS , Proceedings of the Computer
Measurement Group X International
Conference, December 1979.

[7] Preston, S., and Erb, D., Implementation of

System and Resource Management Analysis of

IBM/MVS , The Fourth Annual International
Conference on Computer Capacity Management,
April 1982.

[8] Rainbolt, M., On the Generation of a Demand
and Batch Workload Model , MITRE , MTR-4561,
August 1973.

[9] Richards, F., and Williams, E., Appl ication
Software Tuning , USE Fall Conference,
October 1981.

[10] UNIVAC Operatings System Installation
Reference , UP-8486.

[11] Wyrick, T., and Self, C. Use of Remote
Terminal Emulation in Federal ADP System
Procurements , FEDSIM, Draft Working Paper
NA-018-025-GSA, March 1979.

265

APPENDIX A

FIGURE A-l

PROGRAM PROFILE REPORT

MITRE WORKLOAD CHARACTERIZATION SYSTEM / PROGRAM PROFILE PAGE 1,

SERVICE
NAME RUNT YP ROW Ml IMR F P SIZE IOPART FACTOR SUP CPU CC E R 1

0

£ T

a<a<3@ DEMAND TOTAL 48 -- -- 1535 .80 263 .45 143 . 94 1 128 . 4 1 8867.0
AVERAGE 22 .81 0 .73 5 . 77 32 .00 5 .49 3 .00 23 .51 184.7
SD E V g 63 o 27 1 1 \J 64 69 45 1 3 80 4 59 5

1

89 183 5

ASM BATCH TOTAL 4 -- 17 . 43 0 .93 13 .83 2 .67 491 .0
AVERAGE 27 . 33 0 . 15 28 . 18 4 . 36 0 . 23 3 . 46 0 .67 122.7
SD E V o 33 o 05 \j 57 1

9

3 1 O 1 . \J

ASM DEMAND TOTAL 2 4 . 23 0 .07 3 . 76 0 .41 67.0
-- AVERAGE -- 16 .90 0 . 10 15 .84 2 . 1 1 0 .03 1 .88 0 . 20 33 . 5
"" SDEV 0 .00 0 .06 12 .71 2 .08 0 .05 1 . 77 0 . 27 19. 1

ru/i T M 4 BATCH TOTAL 1

2

28 1

2

o 00 1

6

23 •J
) 88 66 0

AVERAGE 16 .98 0 .42 2 . 35 2 . 34 0 .oo 1 .35 0 .99 5.5
__ SDEV 0 . 20 0 .00 2 . 25 0 .01 0 .00 0 .00 0 .01 5 . 2

TOTAL 1 3 26 66 o 07 1 4 89 70 7 1 0
AVERAGE 16 . 20 0 . 44 2 .66 2 .05 0 .01 1 . 15 0 .90 5.5
SDEV 0 . 58 0 .21 3 .06 0 . 57 0 .01 0 . 50 0 . 10 4 . 1

BATCH TOTAL 1 2 -- 577 65 69 27 62 22 446 1

6

4812 0
AVERAGE 62 . 39 0 . 77 8 . 33 48 . 14 5 . 77 5 . 18 37 . 18 401 .0
SDEV 1 .08 0 . 1 1 1 1 . 49 32 . 92 3 . 97 3 . 47 26 .06 375 . 6

CHAIN2 DEMAND TOTAL 9 388 . 32 92 . 16 33 . 92 262 . 24 1 192.0
AVERAGE 60 . 76 0 . 68 3 .07 43 . 15 10 . 24 3 . 77 29 . 14 132.4
SDEV -- 2 . 15 0 . 18 0 .87 22 .88 10 . 30 1 . 94 17 . 84 87 . 6

CHAIN3 BATCH TOTAL 17 566 . 56 376 . 05 32 .51 158 .01 6 106 .0
AVERAGE 62 . 48 o . 28 10 . 78 33 . 33 22 . 12 1 .91 9 .29 359 . 2

-- SDEV -- 0 .03 0 .06 13 .91 16 . 57 12 . 76 0 .31 3 . 76 419.4

CHAIN3 DEMAND TOTAL 2 39 . 8 1 8 .85 8 . 22 22 . 74 65.0
AVERAGE 64 . 14 0 . 57 1 .63 19 .90 4 . 43 4 . 1 1 1 1 . 37 32 . 5

SDEV -- 0 .04 0 . 1 1 0 .05 5 . 32 0 .09 0 . 26 5 . 15 7.8

FURPUR BATCH TOTAL 513 -- 7909 12 25 82 3251 28 4632 .02 50355.0
AVERAGE 14 38 0 59 6 37 1 3 0 05 6 34 9 . 03 98 . 2
SDEV o 94 o 28 48 Jv 35 56 0 2 1 1 2 93 3 1 . 85 221.2

FURPUR DEMAND TOTAL 1505 15646 23 60 70 3956 29 1 1629 24 1 17308.0
AVERAGE 13 13 0 74 7 50 1

0

40 0 04 2 63 7 73 77.9
SDEV 0 76 0 30 95 48 33 29 0 1 7 5 42 3 1 44 144.1

HOPE BATCH TOTAL 5 1213 27 421 27 101 04 690 96 4690.0
AVERAGE 67 50 0 57 3 87 242 65 84 25 20 21 138 19 938 .0
SDEV 22 84 0 13 0 93 536 48 188 40 40 85 307 23 208 1 .

2

HOPE DEMAND TOTAL 6 16. 22 O. 00 1 1 . 66 4. 56 42 .O
AVERAGE 16 . 53 0. 28 2. 59 2 . 70 0. 00 1 . 94 0. 76 7.0
SDEV 0. 23 0. 00 2 . 10 0. 01 0. 00 0. 01 0. 01 5.7

MAP BATCH TOTAL 44 3020. 35 303 . 3 1 935. 64 1781 . 40 12562.0
AVERAGE 43 . 16 0. 59 4 . 16 68 . 64 6 . 89 21 . 26 40. 49 285.5
SDEV 10. 45 0. 09 2. 77 39 . 12 4 . 26 1 1 . 64 25. 19 281 . 1

MAP DEMAND TOTAL 16 1 4090. 56 365. 42 1408 . 01 2317 . 13 17974.0
AVERAGE 30. 86 0. 57 4 . 39 25. 4 1 2 . 27 8. 75 14 . 39 111.6
SDEV 6. 72 0. 12 17. 39 28 . 87 3. 16 6 . 99 19 . 98 108.8

SVDS2 DEMAND TOTAL 6 201 . 59 37. 98 35. 42 128 . 19 1542 .0

AVERAGE 64 . 92 0. 64 7. 65 33. 60 6 . 33 5. 90 21 . 37 257.0
SDEV 0. 50 0. 08 2. 90 1 1 . 65 4 . 24 2 . 55 5. 06 103.0

SVDS3 BATCH TOTAL 6 5 106 . 73 3865 . 60 284 . 17 956 . 95 75549.0
AVERAGE 112. 32 0. 19 14 . 79 851 . 12 644 . 27 47 . 36 159. 49 12591 .5

SDEV 5. 57 0. 28 39. 63 1 105. 00 1033 . 36 18 . 36 59 . 64 7209.8

266

FIGURE A-

2

PROGRAM DETAIL REPORT

MITRE WORKLOAD CHARACTERIZATION SYSTEM MITRE WORKLOAD CHARACTERIZATION SYSTEM

1181-0 24 JULY 1981 1181-0 24 JULY 1981

LISTED BY SUPS LISTED BY CBSUPS

NUMBER OF PROGRAMS 6389.
SUP SECONDS 1074 18.040
SUP SEC * K WORDS 4301904.3

PART OF PART OF PART OF
TOTAL TOTAL TOTAL

NAME NUMBER SUPS CBSUPS

NUMEER OF PROGRAMS 6389.
SUP SECONDS 107418.040
SUP SEC * K WORDS 4301904.3

PART OF PART OF PART OF
TOTAL TOTAL TOTAL

NAME NUMBER SUPS CBSUPS

FURPUR .3159 .2193 .0742
ED . 1537 .0762 .0181
MAP .032 1 .0662 .0597
SVDS1 .0019 .0580 . 1255
SVDS3 .0009 .0475 . 1333
OTT .0020 .0448 .0620
CCTXQT .0009 .0307 .031 1

FOR .1011 .0287 .0270
AMDP .0002 .0224 .0209
OOINPT .0055 .0196 .0332
SVOS .0005 .0187 .0333
ABS .0064 .0173 .0208
CHECK .0006 .0156 .0080
GRTLS .0008 .0154 .0196

.0075 .0143 .0081
SSFS . 0006 .0134 .0195
SAGE .0016 .0132 .0130
ELT .12 15 .0122 .0028
HOPE .0017 .01 14 .0191
TRWPLT-32 .0013 . 0094 .0139
SBMIN .0003 .0094 .0127
CHAIN2 .0033 .0090 .0139
SVDSIN .0008 . 0089 .0067
COPIBM .0005 0077 .0035
PLOT .0025 . 007 7 .0123
EDABS .0003 .0068 .0096
EMAP .0002 .0068 .0103
CHAIN4 .0027 .0063 .0094
SHAPER .0002 .0063 .0101
ACT007 0O02 .0062 .0080
PSTAT .0009 .0061 .0086
SECURE .0006 .0059 .0040
SVDS5 .0002 .0058 .0083
DAP . 0002 .0057 .0080
CHAIN3 .0030 .0056 . 0088
SVOS 14 .0002 .0056 .0102
TABDIS .0009 .0054 .0038
A -0OO3 .0054 .0020
EMAP2 .0002 .0047 .0078
B .0O02 .0046 .0038
TAPELABEL .0285 .004 1 .0005
PLOTTAB .0013 .0039 . 0023

SVDS3 .0009 .0475 . 1333

SVDS1 .0019 .0580 . 1255
FURPUR .3159 . 2 193 .0742
OTT .0020 .0448 .0620
MAP .0321 .0662 .0597

SVDS .0005 .0187 .0333
OOINPT .0055 .0196 .0332
CCTXQT .0009 .0307 .031 1

FOR . 101 1 .0287 .0270
AMDP .0002 .0224 .0209
ABS .0064 .0173 .0208
GRTLS .0008 .0'154 .0196
SSFS .0006 .0134 .0195
HOPE .0017 .0114 .0191

ED . 1537 .0762 .0181

TRWPLT-32 .0013 .009 4 .0139
CHAIN2 .0033 .0090 .0139
SAGE .0016 .0132 .0130
SBMIN .0003 .0094 .0127
PLOT .0025 .0077 .0123
EMAP .0002 .0068 .0103

SVDS 1

4

.0002 .0056 .0102
SHAPER .0002 .0063 .0101

EDABS .0003 .0068 .0096
CHAIN4 .0027 .0063 .0094

CHAIN3 .0030 . 0056 .0088
PSTAT .0009 .006 1 .0086
SVDS5 .0002 .0058 .0083
®®© <s> <a <®@ (a @>@@@ .0075 .0143 .008 1

DAP .0002 .O057 .0080
CHECK .0006 .0156 .0080
ACT007 .0002 .0062 .0080
EMAP2 .0002 .0047 .0078
SVDSIN .0008 .0089 .0067
LAND6D .0002 .0032 .0059

267

FIGURE A-

3

WORKLOAD MODEL REPORT

MISC. BATCH AFTER PROCESSING DUPLICATES

SIZE IOPART
NAME RANGE RANGE NUMBER SIZE SUP CPU CCER 10 ET DELAY

299ACS 172 22 5 5 7 0 7 1 1 3 9 38 2 13 2
. 790PR 10 5 6 98 8 4 8 93 4 0 6 10032 7 10744 0
PLTDMP 2 1 1 6 4 2 0 1 3 5 0 6 7346 0 7265 2

0 - 10 K 0 -
. 2 237 5 7 2 0 0 0 1 8 0 3 66 4 0 0

0 - 10 K .2 -
. 4 146 8 6 1 6 0 0 1 2 0 4 3 3 0 3

0 - 10 K .4 -
. 6 19 8 7 3 0 0 1 1 4 1 5 10 2 0 0

0 - 10 K .6 -
. 8 7 9 1 4 2 0 1 1 3 2 8 38 3 3 1

0 - 10 K .8 -
1 .0 58 6 7 4 7 0 0 0 5 4 2 33 6 0 1

10 - 20 K 0 -
. 2 431 15 7 9 4 0 3 7 9 1 2 40 3 0 0

10 - 20 K .2 -
. 4 275 15 8 14 6 3 8 7 2 3 5 57 7 0 0

10 - 20 K .4 - .6 103 16 0 12 2 2 9 2 8 6 5 44 4 0 0
10 - 20 K ".6 - .8 82 13 3 9 7 1 2 1 7 6 8 52 9 0 1

10 - 20 K . 8 -
1 .0 12 1 14 9 60 1 0 5 4 1 55 5 202 6 0 1

20 - 40 K 0 -
. 2 18 29 5 1 13 4 98 8 5 8 8 8 559 8 0

20 - 40 K . 2 -
. 4 2 1 36 3 8 3 2 5 3 4 2 4 92 4 0 0

20 - 40 K .4 - .6 294 33 6 9 5 2 1 2 5 4 9 149 6 0 0
20 - 40 K .6 - .8 53 29 4 29 7 3 7 6 2 19 8 1 15 1 0 0
20 - 40 K .8 -

1 .0 6 33 7 186 3 10 5 18 2 157 6 44 1 5 0 1

OVER 40 K 0 -
. 2 44 93 1 944 1 827 3 36 0 80 8 10484 9 0 3

OVER 40 K .2 - .4 54 67 8 1 18 5 64 2 2 1 1 33 2 2798 6 0 4
OVER 40 K .4 - .6 81 60 2 175 8 61 5 27 9 86 4 1 173 4 0 2
OVER 40 K .6 - .8 55 47 8 1 14 3 20 5 10 7 83 2 971 1 0 0
OVER 40 K .8 -

1 .0 1 1 45 9 668 6 14 4 40 3 613 9 824 7 0 1

MISC. DEMAND AFTER PROCESSING DUPLICATES

SIZE
NAME RANGE SUP RANGE NUMBER

MULT. ACTIVITY -- -- 31

o - 10 K 0 - 2 SEC 1047
0 - 10 K 2 4 SEC 457
0 - 10 K 4 8 SEC 306
o - 10 K 8 - 16 SEC 103
o - 10 K OVER 16 SEC 45
10 - 20 K o 2 SEC 1254
10 - 20 K 2 - 4 SEC 426
10 - 20 K 4 8 SEC 403
10 - 20 K 8 - 16 SEC 212
10 - 20 K OVER 16 SEC 233
20 - 40 K 0 - 2 SEC 262
20 - 40 K 2 - 4 SEC 386
20 - 40 K 4 8 SEC 2 15

20 - 40 K 8 - 16 SEC 151
20 - 40 K OVER 16 SEC 134
OVER 40 K 0 - 2 SEC 3

OVER 40 K 2 4 SEC 2 1

OVER 40 K 4 - 8 SEC 154
OVER 40 K 8 - 16 SEC 43
OVER 40 K OVER 16 SEC 102

SIZE SUP CPU CCER 10 ET DELAY

40 3 68 4 3 0 38 7 26 7 456 6 679 1

7 8 1 2 0 0 0 8 0 4 32 2 24 3
8 0 2 7 0 1 1 7 0 9 122 9 98 3
8 9 5 4 0 2 3 4 1 8 305 4 277 2
8 9 1 1 0 0 7 5 1 5 3 995 3 919 0
9 1 37 0 6 2 7 6 23 3 2919 4 2684 5

12 7 1 1 0 0 0 8 0 3 34 6 18 5
12 6 2 8 0 1 1 9 0 8 58 4 42 8
13 6 5 6 0 4 2 8 2 4 55 4 34 5
14 4 10 3 0 9 4 4 5 0 74 3 43 1

13 4 66 6 4 3 9 4 53 0 27 1 3 106 6
37 2 1 1 0 0- 0 7 0 4 6 9 2 6
35 9 3 0 0 3 1 1 1 6 19 0 4 4

35 4 5 5 0 8 1 7 3 1 19 3 3 6
27 5 1 1 0 1 3 4 1 5 6 27 0 1 8

30 0 87 5 10 2 29 7 47 6 238 2 19 0
57 6 1 9 0 0 0 0 1 8 56 3 34 9
56 5 3 0 0 1 0 7 2 1 29 7 20 8
63 8 5 7 0 5 1 4 3 8 32 6 1 1 7
61 2 10 3 2 0 3 1 5 1 109 3 54 1

55 6 190 1 65 3 28 6 96 3 867 9 272 5

268

FIGURE A-4

FREQUENCY PROFILE REPORT

MITRE WORKLOAD CHARACTER I ZAT I ON SYSTEM / FREQUENCY PROFILE

VARIABLE 2, SIZE

ALL BATCH DEMAND

LOW HIGH N PCT CUM N PCT CUM N PCT CUM

1 . 54 2 6 1 28 0 0 1 0 0 27 1 1

3 . 03 3 62 254 4 4 102 5 5 152 3 4
4 . 10 4 65 82 1 6 38 2 7 44 1 5
4 . 9 1 5 7 1 77 1 7 52 3 10 25 1 6
6 . 14 6 66 43 1 8 29 1 1 1 14 0 6
7 . 1 7 7 68 72 1 9 53 3 14 19 0 6
8 19 9 05 983 15 24 426 22 35 557 13 19
9 09 10 13 675 1 1 35 72 4 39 603 14 33
10 15 1 1 19 226 4 38 65 3 42 16 1 4 36
1 1 .23 12 28 133 2 40 47 2 45 86 2 38
12 29 13 36 1452 23 63 174 9 54 1278 29 67
13 36 14 37 4 18 7 70 160 8 62 258 6 73
14 45 15 4 1 241 4 73 159 8 70 82 2 75
15 72 16 53 81 1 75 55 3 72 26 1 76
16 73 17 64 57 1 75 26 1 74 31 1 76
17 87 33 57 431 7 82 72 4 77 359 8 84
33 99 49 7 1 856 13 96 287 14 92 569 13 97
50 07 65 54 198 3 99 1 17 6 98 8 1 2 99
66 38 80 92 67 1 100 32 2 99 35 1 100
87 15 94 21 8 0 100 5 0 100 3 0 100
102 95 106 06 5 0 100 5 0 100
118 55 118 55 1 0 100 1 0 100
260 10 260 10 1 o 100 1 0 100

MISSING DATA 1 0. O. O.
MISSING DATA 2 O. O. O.
MISSING DATA 3 0. 0. 0.
GOOD N 6389. 1978. 4411.

MEAN
VARIANCE
S.D.

17.6609
2 1 1 .7 307
14 . 5510

19.5675
301 . 1689
17.3542

16 . 8059
169 . 3220
13 .0124

MITRE WORKLOAD CHARACTERIZATION SYSTEM /

VARIABLE 3, SUP

ALL

FREQUENCY PROFILE

BATCH DEMAND

LOW HIGH N PCT CUM N PCT CUM N PCT CUM

0508 1 1674 1259 • 20 20 431 22 22 828 19 19

1

.

1686 2 2856 164 1 26 45 537 27 49 1 104 25 44
2. 2862 3 4014 828 13 58 225 1 1 60 603 14 57
3 4068 4 5176 430 7 65 107 5 66 323 7 65
4 5230 5 6328 359 6 71 89 4 70 270 6 7 1

5 6506 6 7380 299 5 75 89 4 75 210 5 76
6 7564 7 8662 152 2 78 19 1 76 133 3 79
7 8740 8 9756 139 2 80 32 2 77 107 2 8 1

9 0160 10 0998 93 1 81 25 79 68 2 83
10 1082 1 1 2036 80 1 83 1 1 79 69 2 84
1 1 2452 12 3336 78 1 84 14 80 64 1 86
12 3770 13 4552 7 1 1 85 14 81 57 1 87
13 4606 14 5434 49 1 86 18 8 1 3 1 1 88
14 6480 15 6886 27 0 86 13 82 14 0 88
15 6992 16 8 118 35 1 87 8 0 82 27 1 89
16 8310 209 4292 767 12 99 305 15 98 462 10 99

2 17 3740 393 3298 39 1 99 19 1 99 20 0 100
406 9988 557 4022 19 0 100 7 0 99 12 0 100
598 3640 761 8736 14 0 100 7 0 100 7 0 100
891 3162 954 0808 2 0 100 2 0 100
984 4178 984 4 178 1 0 lOO 1 0 100
1202 3346 1339 1040 2 0 100 2 0 100
1857 8888 1857 8888 1 0 100 1 0 100
1948 9998 2129 7 172 2 0 100 2 0 100
2405 41 18 2405 .4118 1 0 100 1 0 100
29 1 1 0068 291 1 0068 1 0 100 1 0 100

MISSING DATA 1

MISSING DATA 2

MISSING DATA 3

GOOD N

MEAN
VARIANCE
S.D.

O.
0.

0.
6389.

16. 8133
7476.4481

86.4665

0.

0.

O.
1978.

25.6291
18588 . 9903

136.34 14

O.
0.

O.
441 1 .

12 . 8600
2445.9072

49.4561

269

FIGURE A-

5

ACCOUNT PROFILE REPORT

WORKLOAD CHARACTERIZATION SYSTEM / 1181-0 APRIL 82 / ACCOUNT PROFILE PAGE 1, FILE RESULT

SERVICE
SHIFT RUNT YP ROW NUMBER SIZE IOPART FACTOR SUP CPU CCER 10 ET

ACCT = FM1-

PRIME DEMAND TOTAL 57 459 82 9 24 280 05 170 52 5497 .O
AVERAGE 17 40 0 37 1 1 95 8 07 0 16 4 91 2 .99 96 . 4

NON . PRIME DEMAND TOTAL 102 1013 19 20 72 1 12 12 880 35 2541 .0
AVERAGE 13 4 1 0 87 2 51 9 93 0 20 1 10 8 63 24 .9

OVER . NIGHT DEMAND TOTAL 15 529 95 4 43 57 58 467 94 993 .0
AVERAGE 26 84 0 88 1 87 35 33 0 30 3 84 3 1 20 66 . 2

ACCT = FM2-

PRIME BATCH TOTAL 62 58 22 1 60 33 95 22 67 1754 .0
AVERAGE 12 15 O 39 30 13 0 94 0 03 0 55 O 37 28 .3

PRIME DEMAND TOTAL 222 3749 52 632 35 576 40 2540 77 38398 .0
AVERAGE 24 31 0 68 10 24 16 89 2 85 2 60 1 1 44 173 .0

NON .PRIME DEMAND TOTAL 70 1707 35 1 180 3 1 16 1 53 365 50 1 236 1 .0
AVERAGE 48 52 0 21 7 24 24 39 16 86 2 3 1 5 22 176 . 6

ACCT = FM4-

PRIME BATCH TOTAL 22 1 1 1032 82 6208 87 1779 6 1 3044 35 80295 .0
AVERAGE 58 90 0 28 7 28 49 92 28 09 8 05 13 78 363 . 3

PRIME DEMAND TOTAL 655 8053 09 152 1 82 2293 19 4238 08 104833 .O
AVERAGE 25 34 0 53 13 02 12 29 2 32 3 50 6 47 160 . 1

NON. PRIME DEMAND TOTAL 172 2430 69 395 94 556 76 1477 99 20989 .0
AVERAGE 27 47 0 6 1

" 8 63 14 13 2 30 3 24 8 59 122 .0
OVER . NIGHT BATCH TOTAL 1 16 6672 43 3705 67 1373 03 1593 73 4 1179 .0

AVERAGE 62 58 0 24 6 1 7 57 52 3 1 95 1 1 84 13 74 355 0
OVER. NIGHT DEMAND TOTAL 27 194 3 1 5 6 1 102 88 85 81 1760 .0

AVERAGE 26 80 0 44 9 06 7 20 0 2 1 3 8 1 3 18 65 .2

ACCT = FM5-

PRIME BATCH TOTAL 570 8764 60 1798 40 1955 03 501 1 17 1 14803 O
AVERAGE 37 35 0 57 13 10 15 38 3 16 3 43 8 79 201 4

PRIME DEMAND TOTAL 239 9208 94 2712 63 1039 55 5456 75 76740 0
AVERAGE 46 42 0 59 8 33 38 53 1 1 35 4 35 22 83 32 1 1

NON. PRIME BATCH TOTAL 56 2298 42 1253 98 333 1 7 7 1 1 28 18856 0
AVERAGE 7 1 91 0 31 8 20 41 04 22 39 5 95 12 70 336 7

NON. PRIME DEMAND TOTAL 14 50 60 2 65 32 9 1 15 05 1674 0
AVERAGE 16 94 0 30 33 08 3 61 0 19 2 35 1 07 1 19 6

OVER . NIGHT BATCH TOTAL 69 4023 1 7 2699 75 425 73 897 69 30395 0
AVERAGE 100 17 0 22 7 55 58 3 1 39 1 3 6 1 7 1 3 01 440 5

OVER. NIGHT DEMAND TOTAL 3 474 33 243 78 26 37 204 18 3445 0
AVERAGE 54 98 0 43 7 26 158 1 1 8 1 26 8 79 68 06 1 148 3

ACCT = FM8-

PRIME BATCH TOTAL 3 16 56 0 17 7 08 9 31 349 0
AVERAGE 17 33 0 56 21 08 5 52 0 06 2 36 3 10 1 16 3

PRIME DEMAND TOTAL 1 1 19 1 1546 22 964 33 2927 08 7654 82 137186 0
AVERAGE 23 99 0 66 1 1 88 10 32 0 86 2 62 6 84 122 6

NON. PRIME BATCH TOTAL 19 1388 49 437 54 130 05 820 90 618 1 0
AVERAGE 6 1 5 1 0 59 4 45 73 08 23 03 6 84 43 2 1 325 3

NON. PRIME DEMAND TOTAL 103 1436 78 95 17 31 1 79 1029 82 1 1230 0
AVERAGE 4 1 03 0 72 7 82 13 95 0 92 3 03 10 00 109 0

OVER. NIGHT BATCH TOTAL 186 3461 45 906 06 442 71 2112 68 1884 1 0
AVERAGE 46 50 0 6 1 5 44 18 6 1 4 87 2 38 1 1 36 101 3

OVER. NIGHT DEMAND TOTAL 8 34 39 1 38 16 47 16 54 169 0
AVERAGE 15 14 0 48 4 91 4 30 0 17 2 06 2 07 2 1 1

ACCT = OVHD

PRIME BATCH TOTAL 42 2994 71 365 56 1363 64 1265. 50 16178 O
AVERAGE 24 94 0 42 5 40 71 30 8 70 32 47 30 13 385 2

PRIME DEMAND TOTAL 87 697 36 7 1 55 301 98 323 . 83 45093 0
AVERAGE 16 88 0 46 64 66 8 02 0 82 3 47 3 . 72 518. 3

NON. PRIME BATCH TOTAL 6 4 16 1 4 3 65 24 76 387 . 73 808 . 0
AVERAGE 10 33 0 93 1 94 69 36 0 6 1 4 . 13 64 . 62 134 7

NON . PRIME DEMAND TOTAL 29 1 18 09 1 1 28 57 89 48. 92 2592 . O

270

FIGURE A-6

TERMINAL PROFILE REPORT

MITRE WORKLOAD CHARACTER I Z AT I ON SYSTEM / TERMINAL PROFILE
SORTED AFTER PROCESSING DUPLICATES

SUP THINK RESPONSE
DEVICE ET NUMBER SIZE MIN PAGES CRD I N TIME TIME

1 70 3406 1 25 23

.

, 7 29 . 5 396 3893 5 . 5 3 . 2
171 32363 1 5 24 . 8 58 . 7 1 762 1 3872 1 2 1 . 1

270 24026 9 23 . 4 72 . 8 1249 876 1 2 . 2 1 5 . 2
271 24 1 70 1

0

1 4

.

, 7 40

.

8 1282 1237 1 0

.

6 9 . 0
272 306 10 9 3 1 . 4 46 . 7 562 1982 8 . 6 6 . 8

273 28272 8 34 , 7 23 . 7 488 3122 5 . 8 3 . 3

670 4924 6 23

.

0 1 3 . 6 26 1 90 1 5 . 3 10 6
1 070 24774 1 2 20

.

, 1 37 , . 7 593 1 983 7 . 5 5 . 0
1071 28034 19 22 . 0 13. 8 4 10 1304 15. 6 5 . 9
2072 2091 3 10. 5 1 , . 1 57 62 13 . 8 19 . 9
2073 18605 4 22. 6 26 9 1 124 959 8. 7 10. 7

2770 29353 16 17 . 2 25 0 349 2016 9 5 5. 1

2771 26459 10 22 3 28. 2 206 1539 1 1 7 5. 5

10O25 2327 1 49. 5 0. 6 8 76 16 5 14 . 1

10026 30347 19 20 7 26 7 726 9865 2 1 1 . 0
10029 5771 3 24 0 7 4 33 317 9 2 9. 0
10030 1 1674 2 19 .4 1 1 .2 106 3884 1 8 1 . 2
10035 6 129 2 13. 4 2 1 8 61 448 2 4 1 1 . 3

10038 30192 19 13. 2 27 0 261 1890 10 7 5. 3

10039 13139 2 35. 9 10 .2 160 408 18. 8 13. 4

10061 7363 2 33 0 12 .0 30 305 14 . 2 9. 9
10063 2375 2 9 3 0 6 16 509 3 4 1 . . 2

10064 7055 3 14 2 2. 6 32 252 23 0 5. 0
10077 30402 15 21 6 29 3 598 4468 4. 4 2 4
10092 16806 4 32 4 18 .0 409 5448 1 8 1 . 3
10101 587 1 1 1 4 1 . 2 2 15 22 6 16. 6

10103 1229 2 7 .5 1 . 9 72 101 4 . 4 7 8

10105 19662 9 9 8 4 .9 87 1029 15 5 3.,6

101 12 26744 18 2 1 .0 28 . 8 278 12 19 14 0 8. 0
10120 3329 1 18 2 5 . 7 38 294 5 0 6 3

1012 1 14774 4 19 , 1 2 1 0 378 1465 6 4 3 . 7

10132 16977 4 15 .0 1 1 8 304 1389 8 0 4 . 3

10134 543 1 16 .5 0 . 4 2 24 15 3 7 3

10142 29446 6 15 . 4 23 . 8 157 1302 16 2 6. 4

20013 19866 7 40 .0 52 9 214 1754 4 3 7 0
20014 32342 21 49 .4 82 . 4 303 4445 3 . 3 4 0
20015 1380 1 18 .2 2 ,0 26 102 3 . 7 9 8

20016 33834 14 26 .5 60 .2 174 1 2553 7 2 6. . 1

20023 27875 5 43 .5 4 1 . 5 186 2243 4 . 8 7 .6

20024 20590 7 29 .9 15 . 1 14 1 1336 7 0 8 .4

20034 26165 14 31 .4 32 8 499 2538 6 3 4 0
20O40 30619 16 33 .7 37 . 7 440 4463 3 . 7 3 . 1

271

FIGURE A-

7

USERS OF SELECTED APPLICATIONS

ACCT BADGE BOX PROJ NUMBER SIZE SUP 10

ADJUSTED
SERVICE
FACTOR

FM8 1800650 333 8910 6 15 5 10 3 4 8 3 8
FM8 1800108 334 8910 6 16 9 14 0 5 9 3 0
FM8 1800483 332 8910 6 17 1 14 1 6 0 1 7

FM8 1800808 332 8910 7 16 6 16 3 6 9 2 0

- -NAME = CHAIN2-

FM8 1800650 333 89 10 2 57 3 106 2 4 1 8 2 3
FM8 1800483 332 8910 6 63 3 192 2 140 6 9 9
FM8 1800808 332 8910 7 62 0 282 1 220 4 3 3
FM8 1800108 334 8910 6 62 0 385 4 305 6 7 5

-NAME = CHAIN3-

FM8 1800650 333 8910 2 64 1 39 . 8 22 7 1 6
FM8 1800483 332 8910 9 62 5 230. 4 61 7 6 0
FM8 1800108 334 8910 8 62 5 336. 1 96 3 14 0

FM8
FM8

1800483
1800108

-NAME CHA IN4

332 8910
334 8910

-NAME = CHAIN5-

59.9
59. 9

285.0
393 . 4

104. 7

195. 1

5.2
6.4

FM8 1800483 332 8910 3 63 8 20. 1 13.1 5 4

FM8 1800108 334 8910 2 63 5 35 . 3 23. 1 7 3

FM8 1800650 333 8910 2 62 6 53. 1 21.2 2 5

FM8 1800650

- NAME = CHAIN6-

333 8910 80. 9 25.6 2 . 4

FIGURE A-

8

"CHAIN" APPLICATIONS

SUB. STATS. SUMS OF S. CHAIN

AVG AVG TOTAL TOTAL TOTAL TOTAL TOTAL NUMBER OF

SIZE IOPART SUP CPU CCER 10 ET EXECUTIONS

RUNTYP = BATCH

61.01 0.32 2234.36 1416.76 103.36 714.25 16956 35

RUNTYP = DEMAND

65.79 0.48 454.49 199.59 36.50 218.40 1298 9

272

FIGURE A-

9

RUNS ON DEVICES WITH LONG RESPONSE TIME

RESPO SUP
THINK NSE PER

DEVICE RUNSEO ET SIZE SUP PAGES CRD I N TIME TIME XACT

670 2 1016 26 . 8 515. 4 1 1 33 6 . 6 24 . 2 1 5

.

6
670 1 1 659 1 2 . 7 1 9 . 4 2 1 3 48 . 4 2

.

. 2 1 . 5
10101 29 587 1 1 . 4 72

,
7 2 1 5 22 6 1

6

.6 4 . 8
270 55 1254 1 7 , 1 678 . 7 95 95 2 7 10 5 7 . 1

270 8 1 1511 1 2 . 3 767 . 0 2 3 1 1 5 . 8 32 . 9 24 , 7
207 3 103 4 29 9 . 4 24 . 3 22 1

9

1 8 8 3 . . 8 1 . 3

1 0035 107 776 1 0

.

1 22 . 4 4 24 28 . 1 4 . 2 0 9
270 112 3258 22 . 6 919. 2 29 86 23

.

9 1 4 . 0 1

0

7

2073 142 1579 1 5 1 8 3 3 47 52 . 2 - 1 8 , 6 0

.

2

1 0025 1 49 2327 49 . 5 38 . 9 8 76 1 6

,

5 1 4 . 1 0

.

5
2072 1 67 569 1 9 . , 7 20 9 7 20 32 8 - 4 . 3 1 . 0
270 193 3146 8 . 6 8 1 5 1 1 181 9 7 7 , 7 0 5

670 208 1 504 22 . . 1 158 5 3 34 25

.

9 1 8 . 3 4 7

2073 219 3256 20 5 208 8 20 1 57 1 4 . 9 5 . 9 1 , . 3
270 222 1 668 1

2

2 4 36 4 3 38 1 4 . 5 29 . 4 1 1 . 5
10039 238 6238 49 3 349 6 24 141 27 . 7 16 .5 2 ,5

270 250 2949 20 8 412 . 3 64 167 7 8 9 . 9 2 5
2072 272 983 5. 8 31 4 34 30 22 8 9 .9 1 0
270 280 2884 9 6 91 6 12 16 1 12 . 7 5 .2 0 .6

270 292 687 6 . 6 16 2 2 23 20 . 1 9 .7 0 . 7

670 325 321 12 8 19 6 2 13 16 . 4 8 .3 1 .5

670 336 307 6 6 9 . 1 2 9 13 . 1 2 1 .0 1 .0

10039 370 6901 17 . 8 259 7 136 267 14 . 1 1 1 .8 1 .0

2072 372 539 7 .0 13 . 4 16 12 14 . 3 30 .6 1 . 1

2073 375 13341 23 2 1370 .3 1079 736 7 . 7 10 .4 1 ,9

270 386 6669 46 6 965 . 4 1031 94 18 . 7 52 .3 10 .3

10035 418 5353 13 .5 1286 . 4 57 424 0 9 1 1 .7 3 .0

670 480 1117 9 . 1 91 .3 6 88 9 . 7 3 .0 1 .0

FIGURE A-10

ADDITIONAL RUN VARIABLES

JSEO DEVICE ACCT PROJ BOX BADGE TIMEO TIME 1 NPROG ERR

103 2073 FD8 5816 120 1903084 93904 94613 3 0
107 10035 FM1 1490 1013 0 94634 95930 4 0
142 2073 FD8 2078 780 0 1006 1

1

103230 2 0
167 2072 OVHD 5164 800 2618149 105438 1 10407 3 0
219 207 3 FD8 2078 263 0 1 10108 1 15524 14 1

238 10039 FD8 58 15 740 2922186 1048 18 1232 16 20 0
272 2072 FD8 5816 269 1903284 130921 132544 4 0
370 10039 OVHD 5228 740 2914669 133557 153058 34 5

372 2072 FD8 58 16 269 1903284 152456 153355 1 0
375 2073 FD8 2078 263 0 1 15708 153929 166 7

4 18 10035 FM1 1490 236 0 150032 162945 128 0

FIGURE A-ll

PROGRAMS EXECUTED BY TWO SELECTED RUNS

SERVICE
TIMEO NAME SIZE SUP IOPART CAT TEMP FACTOR

RUNSEO 272

131053 FURPUR 12.8 3 . 38 0.45 2 O 5.70
131406 FURPUR 12.8 3.37 0. 46 2 O 7.15
13 1559 FURPUR 12.8 3.37 0. 46 2 0 4 . 35

131807 FURPUR 12.8 1 .95 0. 19 2 0 62.85

RUNSEO = 372

152552 FURPUR 12.8 6.65 0.32 6 O 48.57

273

"Improving Organizational Productivity"

IBM Performance Analysis

275

SESSION OVERVIEW

IBM PERFORMANCE ANALYSIS

Tim Oliver

National Institutes of Health
Bethesda, MD 20205

The IBM Performance Analysis session treats, with regard to both MVS and VM
systems, performance evaluation (measurement, analysis, and reporting) and en-
hancement (system reconfiguration, system modification, and workload scheduling).
Specifically the papers include:

• Formulas to convert MVS RMF data into jobclass-level measures suitable
for queueing models and performance analysis.

• The design of an MVS jobscheduler that assigns jobclass based upon
resource parameters in existing JCL.

• Locations of hooks into MVS to measure breakdowns of CPU and I/O times

more accurately than does RMF.

• An approach to finding VM bottlenecks by deriving breakdowns of response

time from user state samples.

• Case studies of structural modifications to VM designed to improve

performance

.

• A description of a system to accumulate, analyze, and report VM

performance measurements.

277

RMF EQUATIONS: Obtaining Job Class Level Results from RMF

Bob I rw i n

I KON
250 Highland Street

West Haven, CT 06516

RMF (Resource Management Facility, IBM's large system
software monitor) is an IBM software monitor program product
which runs at nearly every large scale IBM installation.
RMF is the de facto performance tool for performance ana-
lysis, problem determination, and capacity planning. Yet,
RMF is not adequate for analysis at the job class level, and
virtually impossible to use as a source of input for
mathematical modeling of the CPU. It is the purpose of this
paper to develop a set of RMF equations, which when applied
to RMF monitor measurement data, will obtain for the ana-
lyst, job class level results for machines which process
multiple job classes. The RMF equations represent a produc-
tivity aid to the analyst. These equations will amplify the
utility of RMF, extend the capabilities of RMF, and offer
the analyst more insight into system performance and beha-
vior.

Key words: Job class; software monitor; mathematical
modeling; application of basic queueing theory; IBM's RMF;
performance/modeling data acquisition.

1 . I ntroduct ion

This paper first presents equations
which obtain system level (TSO, CICS,
IMS, MVS, BATCH...) results. Next we
obtain fi(r)-that fraction of utiliza-
tion against device i by job class r.

We derive fi(r) in terms of queueing
primitives. Then there are three short
proofs which show that the utilization,
service time, and busy time for a job
class, are indeed obtainable from the
product of fi(r) and their corresponding
system level measurements. Given fi(r)
we may now obtain job class level

results. Next we obtain fi(r) in terms
of RMF fields. We also obtain a bound-
ing condition on which we base an
experiment to measure and validate the
job class level results obtained from
applying the RMF equation of fi(r). We
then use fi(r) to compute job class
level results from RMF workload activity
reports. Finally we derive from RMF
multiprogramming levels, response time,
total resident and active time, queue
length, and queueing time, all at the
job class level. We do this using fi(r)
and basic queueing relationships. All
results have examples of their use with-
in an RMF context, and all RMF equations

279

are tabularized for quick and easy
reference/use. The numerical results
are not presented in scientific nota-
tion, but instead, are shown as decimal
fraction expansions.

RMF (Resource Management Facility)
is an IBM program product which performs
performance monitoring of large scale
IBM mainframes. It is the principle IBM
performance product and runs at virtual-
ly every large scale installation.

1 . 1 Des i gn of Paper

The testing/execution phase of the
model requires a solution to a set of
problems which differ from the model
building task. These problems may be
divided into three phases; the first
phase is obtaining and validating the
required input parameters to the model;
the second phase is developing experi-
ments which test the validity of the
model; and the third phase is inter-
preting the model results in terms of
the physical system under study. In

particular, this paper focuses on the
first phase: obtaining and validating
model input.

The design of this paper is from
the top down. We start developing
non-job class specific relationships and
proceed downward to lower levels (job
class specific) of detail in our meas-

urement analysis. The format of the
results is presented as follows: first
a general equation, then the equation in
terms of RMF fields, and lastly, one or
more examples from RMF. The results are
collected in two tables for your use and
reference. All equations are given in

terms of RMF field notation, hence the
values may be directly introduced into
the equation from the RMF reports. We
first develop preliminary results on a

non-job class specific level. The
remainder of the paper concentrates on
developing results on a job class level.

1.2 The Modeling Process

Mathematical modeling is composed
of two phases, the model building phase
and the model execution phase. In this
paper we focus on the execution phase.
In the building phase we employ inter-
mediate, and when necessary, advanced
mathematical techniques. The resulting
model is a system of equation(s), gener-
ally differential equations, which
describe the time variant behavior of
some physical system, in this case a

physical computing machine. The solu-
tions to these differential equations
(functions) are the equations used in

basic and intermediate queueing theory.
Other, more advanced results, do not
admit exact solutions and thus approxi-
mation methods are employed. The model
characterizes the behavior of the physi-
cal system in terms of its salient
operational properties. In the instance
of the computing system, we select only
those properties which are characterized
by performance, as its salient opera-
tional propert i es

.

1 . 3 Deve lop ing I nput

There are two methods for develop-
ing input to mathematical models. One
is by data collection, the other is by
data derivation. Data collection is

slow, inflexible, and non extensible,
but accurate. Data derivation is fast,
flexible, and extensible but, for the
most part, not as accurate as data col-
lection. In data collection we
physically measure the required data.
In data derivation we construct rela-
tionships (equations) which obtain the
required data from gross level measure-
ments we already have.

Typically the model exits;
therefore, the data collection and
development of techniques for data col-
lection is both the most time intensive
and critical task in the modeling
effort. Job class level modeling data
is not often captured in software moni-
tors, and rarely in hardware monitors.
The result is that data reduction pro-
grams must be built (and maintained) to
capture this job class level data from
log records (RMF and SMF records).

What is data derivation? Data
derivation identifies the components of
existing gross level measurements, and
develops relationships between these
data and its components. These rela-
tionships are equations which define the
desired job class level data in terms of
the components of existing gross system
level measurement data. Once this is

done, these relationships may be used to
factor out the job class level data from
any software or hardware monitor
reports. In this case we use the IBM
RMF software monitor.

The accuracy of these relationships
and hence, the required modeling input,
depends on the logical consistency of
the relationships, and the integrity of

2 80

the data. If the equations are logical-
ly consistent and the data is incomplete
or inaccurate then the results will be
invalid. If the equations do not
reflect the relationships between the
existing data, then the desired results,
again, will be invalid. Validation of
accuracy depends on the experimental
ingenuity of the analyst. Accuracy is

important, however, it should not grow
into an issue unto itself. The useful-
ness or utility of the results is at
issue. Questions of accuracy are
relevant but they must not dominate a

study.

^.k First Order Approximation

The reader is cautioned that the
equations below represent a first order
approximation to the model input parame-
ters they represent. This is the result
of the inability of RMF to monitor, in
certain instances, the system measure-
ments which the equations represent.
The degree of approximation varies with
respect to different equations;
however, the instances where these
appprox i ma t i ons are significant will be
noted in the body of the paper.

Thus the use of these equations in

a modeling effort represent a first
order approximate modeling effort. If

this first order level is of value
(meets your needs) then the effort is

complete. At the next level, data
reduction programs must be built to mon-
itor and report multi class level
measurements which RMF, presently, does
not monitor. As stated above, this is a

time intensive effort, and should only
be performed after first order modeling
efforts prove unsatisfactory.

1 . 5 Notat ion

All queueing equations are given in

terms of operational analysis notation
(see "Definitions", Table 2. below) and
not the Greek notation of queueing theo-
ry. In operational analysis notation
the capital letter signifies the meas-
urement parameter, and the subscript "i"
signifies the device being measured. In

this paper "i" is always understood to

signify the CPU device. To introduce
the concept of job class, a parentheti-
cal subscript "(r)" , where r=job class,
is incorporated into this notation. See
Table 2. below. For example the nota-

tion Ui(r) is read: the utilization of
device i by job class r. An instance
being, Ucpu(TS03). The device and job
class subscripts are self defining,
except for the case where the device
subscript is "system", and the class
subscript is "all". "System" signifies
all devices, and "all" signifies all job
classes incorporated into a single job
class image. For example, consider:
MPLcpu(TSOl) and MPLsys(ALL).

There are times when the class
names "TSO" or "BATCH" are used. In

these instances the class names contain
their subclasses and their subclasses 1

associated measurements. The subclasses
of TSO may be TS01, TS02 and TS03. The
subclasses of BATCH may be BATCH1 and
BATCH2.

When the context is clear, the sub-
scripts "i", "r", or both, may be
understood to simplify notation, or, if

the result is general, the "i" and "r"
will be retained and will signify i=CPU,
r=any job class.

The RMF notation, with the assis-
tance of the "RMF Field Name-Table" (see
Table 1.) is self defining. The nota-
tion directly relates, for reference, to

the RMF field names in the RMF Workload
Activity Report printout. For your own
computations the string "RMF" may be
dropped from the paper's notation
without loss of uniqueness. In the
notation please note that the hyphen
between the string "RMF" and some field
name of the RMF report is one name: the
hyphen does not represent a subtraction
operation. Thus, "RMF- ET" is read, RMF
Ended Transactions, and not RMF minus
Ended Transactions. This should not
present a source of confusion. The RMF
notation also incorporates job class
and, when required for clarity, device
subscripts. Job classes correspond to
measurements from the RMF Performance
Group Reports, and the specific job
class named "ALL", corresponds to meas-
urements from the System Summary Report
For example consider: RMF-IOC(ALL) and
RMF- lOC(TSOl)

.

The notation for footnotes and
references is as follows: "|n|" denotes
a footnote, and "<n>" denotes a refer-
ence, where "n" is the reference or
footnote number.

2. RMF System Level Results

Initially our goal is to define, in
terms of RMF notation, the ten parame-

281

ters in Table 2. below, named
"Definitions". These performance param-'
eters do not differentiate between job
classes, subclasses or devices. All
results are in terms of the CPU for a
conglomerate single job class image. It

is assumed that all user defined RMF
service coefficients are greater than
zero. This effort is preliminary, it

sets the stage for deriving model input
parameters and output results at the job
class level. All numerical results may
be verified by using RMF report prin-
touts; see figures 1, 2, 3, 4, and 5 at
the end of this paper.

Table 1. RMF Field Names

1. AAR - Average Absorption Rate

2. ATSR - Average Transaction Service
Rate

3. 1 SPS - Interval Service Per Second

1*. ET Ended Transactions

5. IOC - I/O service units

6

.

1 NTVL- 1 nterval

7. CPU CPU service units

8. SRB - SRB service units

9. SDC - Service Definition Coefficient

10. UTI L - Utilization (1-WAIT STATE)

Tabl e 2 . Def i n i t ions

1. T - Measurement interval in

s econds

2. Bi (r) - Total Busy time of device i

3. Ci (r) - Number of Completions at
device i = number of job
service requests at device i

4. Co - Number of job Completions at
the system

5. Ui (r) - Utilization of device i

6. Si (r) - Mean Service time per
request at device i

7. Xi (r) - Mean Departure rate per
request (throughput) at
device i

8. Vi(r) - Number of Visits jobs make
to device i

9. So - Mean Service time per job

10. Xo - Mean Departure rate per job

Unless noted otherwise the sub-
script "i" in this paper is always
understood to mean the CPU device. In

terms of RMF fields these definitions
follow directly from basic queueing
equations as follows: 111

T = RMF-INTVL coverted to seconds.
= 3599 sec

Ui (ALL) = RMF-UTI

L

= (l.OO-(RMF-WAIT-STATE))
= B i (ALD/T
= 1.00-0.2009
= 0.7903

Bi (ALL) = Ui (ALL)*T
= RMF-UTI L * RM F - I NTVL
= (0.7903) (3599 sec)
= 2844.29 sec

Si (ALL) = Bi (ALL)/Ci (ALL)

(RMF-UTI L*RMF- I NTVL* RMF- I OC-SDC)

RMF- lOC(ALL)

= 2844.29 sec/842292 req
= 0.00337 sec/req

X i (ALL) = C i (ALD/T

RMF- lOC(ALL)

RMF- I OC-SDC* RMF- I NTVL

= 842292 req/3599 sec
= 234.035 req/sec

Ci(r) is defined below, "req" = requests

A request is a unit of service
demanded from some device by a job asso-
ciated with some class of jobs. A job

is a unit of work which makes one or
more requests in its journey through the
system.

|1| See reference <1> for a source of
these basic queueing equations. To val-
idate results see RMF reports at the end
of this paper.

282

2.1 What is Ci and how do we find it?

Ci is the sum of Cij for all
and Cij is the "number of times a job
requests sevice at device j immediately
after completing a service request at
dev i ce i

.
" <1>

Gra ph i cal 1 y,

I

SRC |

-

I

+ - | K=l | ->-+

I 5REQ
+ +

|

I I
+-|K=2|->-

>-
| i=CPU |->-0->-+

I I I I3REQ
+

I

2 Jobs V

0->- +

+ -
I K=3 I ->- +

2REQ

Cij = (5+3+2)REQ = 10REQ
for i = CPU, j = I/O device 1,2,3

In shorthand, for i = CPU,
j = 1/0 device 1,2,

3

K

Ci = /

J
=

// Cij = (5+3+ 2) req = 10 req.

From the figure we see that two
jobs made ten service requests at K I/O
devices after completing service at dev-
ice i=CPU. Hence, Ci may be interpreted
as the total number of requests of all
jobs made at device i. Suppose we now
divide Ci by the number of job comple-
tions. Job completions we denote as Co,
where the subscript "o" suggests work
which leaves the system and does not
cycle in the network.

Thus Ci/Co = 10req/2jobs = 5req/job

We call this ratio the visit ratio. It

denotes the average number of requests
(visits) a job makes at device i.

Hence Vi Cl/Co

Vi is a building block for service time,
Si, and response time, Ri.

We have described what Ci is but
how do we find it from RMF? By the
above network figure we see that, |2|

Ci = RMF-I0C(ALL)/RMF- I0C-SDC
Co = RMF- ET (ALL

)

<2>

and Vi (ALL) =
RMF- IOC (ALL) /RMF- I0C-SDC

RMF-ET(ALL)

RMF- I 0C (ALL

)

RMF- IOC-SDC*RMF-ET(ALL)

For example, taking Si (ALL) above, |3|

S i (ALL) = 2Skk. 29sec/ (4211460/5

)

= 2844.29sec/842292req
= 0.003376sec/req

And

V i (ALL) = 8i+2292req/9817job
= 85.80req/job

Hence, mean service time per j ob at the
CPU is

Vi (ALL)*S i (ALL) =

(85. 80 req/ job)* (0.0033 76sec/ req)

= 0.2897sec/job
But

So = Bi/Co

|2 I Here Rose, see <2>, defines
Ci(r)=l/0 OPi(r) for some job class r.

In words, Ci equals the number of I/O
.operations initiated by device i=CPU.
The method used in computing Ci(r) in

this paper parallels Rose's method.
Please note that the IOC does not
include paging or swapping I/O counts.
An IOC corresponds to one EXCP or JES
spool read/write, and does not include
EXCP's executed on behalf of the problem
program in the system key, viz.,
paging/swapping I/O. The interested
reader is directed to the section
"Selecting Service Definition Coeffi-
cients" in the IBM Initialization and
Tuning Guide. Therefore, this
measu rement and a 1 1 other measu rements
wh i ch depend on this va 1 ue are
aoorox imat ions

.

1 3 I
Since we are not concerned with job

classes in these computations, all
values are taken from the RMF System
Summary of the Workload Activity Report.
See figures at the end of this paper.

283

(RMF-UT I L*RMF- I NTVL)

RMF-ET(ALL)

= (0.7903*3599 sec)/9817job
= 0 .289731sec/ job

Here we have derived the same result
(correct to the ten thousand's place)
for So by the conventional queueing
equation (So = Bi/Co), and also, by the
use of the visit ratio V i which incorpo-
rates our construction of Ci. Hence, we
have shown a method for validating Ci
and Vi by comparing measurements which
depend on Ci and Vi with a known meas-
urement. The same procedure will be
used for Xo.

Lastly, the system throughput is

Xo = Co/T
= 9817job/3599sec
= 2 . 7 3j ob/ s ec

7. Xi (ALL) = Ci (ALD/T

RMF- lOC(ALL)

RMF- IOC-SDC*RMF- I NTVL

8. Xo = Co/T
RMF - ET(ALL

)

RMF- I NTVL

9. So = Bi(ALL)/Co

(RMF-UT I L*RMF- I NTVL)

RMF-ET(ALL)

10. Vi (ALL) = Ci (ALL)/Co

RMF- lOC(ALL)

RMF-ET(ALL)*RMF- I0C-SDC

Below we will show that the same results
for Xo may be derived with the use of
Vi = Ci/Co.

The user is again warned (see foot-
note |2| above) that the value for "C",
completion count, is approximate. Hence
all subsequent equations which depend on
C are also approximations.

We have now set the groundwork for
the next level of detail, the mu 1 t

i

class level. For the totality of job

classes at the CPU, all relevant model-
ing parameters can be derived in terms
of RMF fields. In summary we have the
following reference list which comprises
Table 3.

Table 3.
Summary Results

System Level Measurements

3. Job Class Level Results

We move our attention from the Sys-
tem Summary Report of RMF to the
Performance Group Period Report. Now
the objective is to derive, on a job
class basis, the CPU results which were
derived on a system basis. In addition,
we will derive other results which were
not derived at the system level. Again,
all results are for the CPU device only.
Several of these job class parameters
follow directly, others require a
transformation to a job class level by
an auxiliary value, denoted fi(r).
Furthermore, the following additional
parameters .at the job class level will
be derived: response time, queue
length, multiprogramming levels, and
total resident and active time.

1. T = RMF- I NTVL

2. C i (ALL) = RMF- I 0 C (ALL) / RMF- I0C-SDC

3. Co = RMF- ET (ALL)

it. Ui (ALL) = Bi (ALD/T
= (RMF-WAIT-STATE)-l.OO
= RMF-UT I

L

5. Bi (ALL) = U i (AL L) *T
= RMF-UT I L*RMF- I NTVL

6. S i (ALL) = B i (AL L) / C i (ALL)

RMF-UT I L *RMF- I NTVL*RMF- I0C-SDC

RMF- I0C(ALL

)

In the following notation it is

understood that i=CPU. The job class
formulas will be derived and examples
given. The following is a direct result
of the system level formulas. The
interested reader may validate these
results by figures 1, 2, 3, h, and 5 at
the end of this paper.

Ci (TS01)

Co(TSOl)

Vi (T0S1)

RMF- IOC(TS01)/RMF- I0C-SDC
316990req/5
63 398req

RMF-ET(TSOI)
8825job

Ci (r)/Co
7. 1839 req/job

284

Similarly for TS02, TS03, TSO-ALL

Vcpu(TS02)
Vcpu(TS03)
Vcpu(TSO-ALL)
Vcpu(ALL)
Vcpu (doma inl = batch)

118.U565 req/job
707.8656 req/job
23.0512 req/job
85.7980 req/job
2867.87 req/job

Two observations to be made
the increasing values in

expectations, and 2),
across job classes or
large variances which

uncharacteristic of
Vi(r=ALL). Continuing, we
throughput on the class level

here are 1),
Vi meets our

Vi (r) averages
subclasses have

render them

the mea n

1 ook at

Xi (TS01)

Xo(TSOl)

RMF- I0C(TS01)/SDC

RMF- I NTLV

(316990/ 5) / 3 599
17 . 61 req/sec

RMF-ET(TS01)/RMF- 1 NTLV
8825job/3599sec
2.U5job/sec

Equival entl y,

Xo(TSOl) = Xi (TS01)/ Vi (TS01)

17 . 61 req/ s ec

7.1839req/job

= 2.45 job/sec

Observe that,

Vi (r)=X i (r)/Xo(r) implies Vi(r)=Ci/Co,

hence Xo(r)=X i (r)/ Vi (r)

and Xi (r)=Xo(r)*Vi (r)

.

Note the importance of the parameter
Vi(r). The dimension of the result may
be obtained by treating the units as

algebraic quantites, thusly,

Xi(r) = Xo(r)*Vi(r)

= (job/sec) * (req/job)

= req/sec (job units cancel)

No matter how complicated the expression
is you may treat the units as algebraic
'quantities, simplify, and obtain their
dimension. I will carry units in most
cases for the reader's verification. If

you are not confident of the dimension
of a result then simplify the expression
to units only.

3.1 f i (r)

The
Bi (r)

fi(r) |lt

ut i 1 i za

t

class r"
Ui (r), S

We wish
which w
cal 1 th i

f i (r) .

pute B i (

found as

measu rements
requ i re the

I
. f i (r) is

ion aga i ns t

< 3 > . It is

i (r) are all

Ui (r), Si (r),
compu tat i on

that "fraction
device i by
shown below
functions of Bi

to find some coefficient of
ill transform Bi into Bi(r).
s transformational coeffic
When fi(r) is found we can

r) . U i (r) and S i (r) are
f unc t i ons of B i (r)

.

and
of
of

job
that
(r) .

Bi

We
i ent
corn-

then

In what follows we derive a rela-

tionship between fi(r) and device time.

We know

Bi (r) Bi

r = l

Multiplying by one

Bi/Bi // Bi (r) = Bi/Bi

r = l

B i (r) * B i = B i

Bi

r = l

f i (r)*B i = B i

r = l

f i (l)Bi + f i (2)Bi +

Bi(l) + Bi (2) + . .

But this is

Bi (r) = Bi

. . + f i (n)Bi = Bi

+ Bi (n) = Bi

r = l

Then

fi(r) = Bi (r)

Bi

1^1 The notation "fi(r)" comes from the,
paper by Rose cited earlier. Rose uses
a SAS data analysis program to compute
fi(r) from SMF log records.

285

If during some measurement interval a

device is busy for 10 seconds, and for
two of the 10 seconds class r jobs used
the device, then

f i (r) = Bi (r)/Bi = 2sec/10sec

= 1/5 = 0.20 OR 20%.

One interpretation of this result is:

The rth job class represents 20% utili-
zation of the ith device for that
measurement interval. Another interpre-
tation of this result is: The rth job
class represents 20% of the busy time of
the ith device. The author prefers the
second interpretation, the reader may
choose the one he feels most comfortable
with. Hence, fi(r) is that fraction of
the ith device busy time consumed by
class r jobs during some measurement
interval. fi(r) is intrinsically impor-
tant, moreover, it is essential in the
computation of U, S, and B on a job
class 1 evel

.

Using our definition of fi(r) we
now prove that the relationship just
derived for fi(r) will transform system
level measurements into job class level
measurements. The three short proofs
are as f ol 1 ows

.

Ui (r) = f i (r)*Ui
= (Bi (r)/Bi)(Bi/T)
= Bi (r)/T
= U i (r)

Si (r) = Bi (r)/Ci (r)
= (f i (r)*Ui*T)/Ci (r)
= (f i (r)*Bi)/Ci (r)
= Bi (r)/Ci (r)
= Si (r)

Bi(r) = fi(r)*Bi
= (Bi (r)/Bi) (Bi

)

- Bi (r)

Which is what we wish to show for U, S,

and B

.

Then, for example, suppose we have
computed f i =c pu (r=TS01)

.

Scou(TSOl)

= Bcpu(TS01)/Ccpu(TS01)
= (fcpu(TS01)*Ucpu*T)/Ccpu(TS01)
= (Ucpu(TS01)*T)/Ccpu(TS01)
= Bcpu(TS01)/Ccpu(TS01)
= Scpu(TSOl)

which is what we wish to find.

Hence the importance of fi(r).
Therefore, coefficient fi(r) transforms
system level measurements into job class
level measurements. This observation is

true for any software or hardware moni-
tor measurement data. Given the system
level measurements of RMF, the job class
level measurements can be obtained by
fi(r): that fraction of busy time of
device i consumed by job class r. We
will see computations using fi(r),
however, first we must derive fi(r) in

terms of RMF fields.

3.1.1 fi(r) in terms of RMF notation

This is a dual issue. First we
must develop a relationship between the
derivation of fi(r) and RMF field nota-
tion, and second, we must create an
experiment to verify the utility of the
RMF equation which represents fi(r).

There are several actions we can
take to increase our confidence in the
RMF formula which represents fi(r). We
can simply use the RMF formula to com-
pute job class performance measures and
validate them for their reasonableness.
We will do this, but there are other
actions we can take which are less qual-
itative, (not by much) and will serve to
further increase our confidence in the
utility of the RMF formula for fi(r).
First, fi(r) can be bounded between
known RMF measurement values, next the
sum of the fi(r) must equal one, and the
sum of the Bi(r) and Ui(r) should equal
the RMF software monitor data for the
same performance variables. These

results are collected into a verifica-
tion experiment and shown in Table k.
below. Let us take a closer look at
these verification checks.

We wish to bound fi(r) between a
high and a low, a maximum and a minimum.
The boundary values must be known (meas-
ured) quantites. Once we have developed
the boundary condition then we can
proceed to develop the relationship
between fi(r) and RMF field names, and
then execute a validation experiment.

In particular, we know that for
every job class = r, the Bi(r) for some
measurement interval must not exceed the
busy time for the system = Ui*T = Bi.
Bi then, is chosen as our maximum for
some measurement interval, and it is an
easily obtained quantity from RMF. We
also know that the TCB+SRB time for each
"r" job class, for some measurement
interval, must also not exceed the busy
time for the system. This is also a

286

known quantity which is easily obtained
from RMF. We take this to be our mini-
mum value. This minimum value
represents problem program time and a

component of TCB/SRB time. The remain-
ing component of TCB/SRB time which is

not captured is noted in the Performance
Notebook. The interested reader is

directed to the chapter, "Investigating
the Use of Processor Time" in the Per-
formance Notebook for the details.
Therefore, the computed value of
fi(r)*Bi for any job class will be, at

as the typical compu-
time for the same job
grou ps) ; and will

the actu-
bound on

its worst, as good
tation of TCB+SRB
class (performance
be, at its best, very close to
al value of Bi(r). fi(r) is

the low side
high side by
(C PU)

.

by TCB+SRB time, and on the
the busy time of the system

To give this notion precision we
state the bounding condition described
above.

I
RMF-CPU(r) RMF-SRB (r) I

|
+ |

I
RMF-CPU-SDC RMF-SRB-SDC

j

f i (r)

I
RMF- CPU (AL L) RMF-SRB (AL L) |

|

, +
|

I
RMF-CPU-SDC RMF-SRB-SDC

|

further simplification yields

+ +

((RMF-CPUC r)*RMF-SRB-SDC)
+

(RMF-SRB (r)*RMF-CPU-SDC)

)

((RMF- CPU (ALL)* RMF-SRB-SDC)
+

(RMF-SRB (AL L) *RMF- CPU-SDC)

)

f i (r)

For all r, i =CPU
+ 1 +

(TCB+SRB) i (r) <= (fi(r) * Bi) <= Bi

Therefore, for any job class,
(fi(r) * Bi) computes to a value which
is at its worse, as good as a direct RMF
computation of TCB+SRB time for that r

job class.

This restriction guarantees that each
component, fi(r) * Bi, for all r, be
bounded

.

The formulation of fi(r) in terms
of RMF fields follows thusly,

From the IBM Performance Notebook <k>

RMF-CPU(r)*SRM-POWER-FACTOR
TCB-T I M E (r)=

RMF-CPU-SDC

RMF-SRB(r)*SRM- POWER- FACTOR
SRB-T I M E(r)=

RMF-SRB-SDC

where SRM power factor equals seconds of
task execution time per service unit =

0.0078 sec/unit for an IBM 3033.

By the definition of fi(r) and simplify-
ing we have

This above formula is used in Table
k. below to compute Bi(r) and Ui(r),
and upon reflection is, as it should be,
Bi(r)/Bi, the definition of fi(r). The
SRM power factor drops out of the formu-
la. It is a pure time ratio that we are
interested in. The user is warned that
the formula for fi(r), and all equations
which incorporate it, are approximate.
RMF does not capture RCT time and the
time denoted as "other" in the Perfor-
mance Notebook. The reader is referred
to the IBM Performance Notebook and the
discussions of TCB time, in particular
the chapter of the Notebook named, "In-
vestigating the Uses of Processor Time".

If your installation does not have
RMF extensions you can not capture SRB
time. Therefore, drop all references to
SRB in the above equation. This, of
course, will result in an attendant loss
of accuracy. This loss may or may not
be important. The analysis must be car-
ried out and an evaluation made to
answer this question. If future RMF
monitors are able to capture greater
amounts of service time (TCB+SRB time)
then the above equation will compute to
a greater degree of accuracy.

Given the definition of fi(r) it is

clear that the sum of each fraction of
device busy time consumed by each job
class must equal unity. And if the sum
of the fi(r)'s is unity then the product

287

of the fi(r)'s with Bi and Ui will be
about equal to the actual values for Bi
and Ui directly obtained from RMF. The
verification table show these checks to
be as we expect them to be.

The results from the verification
experiment are given below in Table it.

Due to length (number of performance
groups and periods) the table is based
on job class = r = domain. Of particu-
lar note in Table 4 is fi(r) and its
associated measurements for TSO, BATCH
and CICS. In performing computations of
this nature it is necessary that the
event representing job class be non
overlapping in time, i.e., the intersec-
tion of all such job classes be null.
If this condition is not adhered to then
the summing process will duplicate time
occuring in the intersection of the two
events. The results of this overlap
would manifest itself in values for the
sum of the Bi(r)'s and Ui(r)'s which are
greater than the corresponding RMF
values, namely, Bi and Ui.

For all r = domain it was found that

(TCB+SRB) i (r) <= fi(r)*Bi <= Bi

meets the bounding condition.

And

51

f i (r) = 0.9999133 =1.0

r = l

And

51

f i (r)*B i = 2844.02sec

r=l = 2844.29 RMF 1

s B

And

Table 4 fi(r) Verification Experiment

I r = Doma i n
+ :

f i (r) 1 Bi(r)
|
(TCB + SRB) i (r) 1

Ui (r)

I
0=SYS 10. 04439 1126.25 1 85.89 10. 035081

I
1 = BATCH !0. 28356 I

806 . 53
I
548. 72 10. 22409

I
2=TS01,2 10. 25147 1 715.25 I

468 .58 10. 19873

I
3=TS0 10. 06334

I
180.16 1122.56 10. 05005

14 10. 036065 1102.58
I
69.79 10. 02 850

I

5-9 10 10 10 10

I
10=BATCH 10. 10224 1290.80 1197.85 10. 08080

1
11-19

1 0 1 0 10 10

120 10. 02269 1 64.52 1 43.91 10. 01793

121-29 10 10 10 10

| 3 0 = C 1 CS 10. 18610
I
529. 32 1360.21 10. 14707

131-39 10 10 10 10

I
40 10. 003853 I

10.96 1 7.45 10. 003045

I
41-50 10 1 o 10 10

1 51
+=========:

10. 0062053 I
17.64 1 12.01 10. 004904

I
Total

s

10. 9999133 I
2844.02

I
1916.97 10. 79020

• +

I

: +

I

+**+

288

51

f i (r)*Ui = 0.79023

r=l = 0.79030 RMF's Ui

The strongest condition which this

experiment meets is the bounding condi-
tion. If any one of the job classes did

not meet this condition the RFM formula
for fi(r) would be cast into doubt. The

other three conditions are accurate, but

not strong checks for the RMF formula of

fi(r). They do show, however, that each

of our chosen job classes (RMF domains)
are di sj o i nt se'.s .

3.2 Results

Now we may proceed in calculating
Bi, Si, and Ui at the class level, ie.,

B i (r

)

Si (D
U i (r)

mediated by fi(r) = Bi(r)/Bi.

Again, looking at r - class = TSO,
i = device = CPU, find Si(r), Bi(r), and
Ui (r) .

Si (TS03) = f i (r)*(Bi/Ci (r))

= (0. 0633U) (0.0U27it58sec/req)

= 0 .002707sec/req

Bi(TS03) = f i (r)*Bi

= (0 .06331*) (28t*i*.29sec)

= 180sec

Ui (TS03) = f i Cr)*Ui

= (0 . 06331*) (0 . 7903)

= .05 or 5%

Similar computations are made for other
job classes and job subclasses. Below
we give these results in terms of RMF
equations. The equations are not com-
plex but they are long, the reader is

refered to Table 5., "Summary Results
for Job Class Level Measurements" for
such RMF equations. The reader is

invited to compute other job class
results and check them against his intu-
ition. Table U . also represents a

number of job class results the reader

may validate. In the following results
we use the short form queueing equation
or, in some cases, the numerical result
only. For the same class = TS03, we now
compute service time per job or interac-
tion.

Si(TS03) = 0.002707sec/job
Vi(TS03) = 707. 8656req/job

Where TSO job= I nteract ion

and service per job for r=TS03 is

Vi (TS03) * S i (TS03) =

(708req/sec * 0 . 002 70 7sec/ req

)

= 1 . 9166sec/ job

If we knew the queueing time Qcpu(TS03)
for TS03 at the CPU we could compute the
response time at the CPU for TS03, for a

request, and for a job.

Ri (r) = Si (r)+Qi (r)

Qi(r) will be computed, but only after
Ri(r), the response time at device = i

for job class = r is derived and comput-
ed. RMF data yields Ri(r) with less
manipulations than Qi(r), thus we strive
to derive Ri(r) first. The field
RMF-ATT(TS03) has a value of one minute
and thirteen seconds. This is not the
response time at the CPU, this is the
response time at the system; the sum of
the response times at each device the
job visits in its journey through the
system. In shorthand, for r = TS03, we
have

K

RMF-ATT (r) = // Vi(r)*Ri(r).

i=l

It is of interest to compare the
service time per request for TS01:

Si(TSOl) = 0 . 12751*71*0 .01*1*8727 sec/req
= 0.005723 sec/req

with other job classes. If we do this
we find that the mean quantum of service
per request is similar notwithstanding
the job class. In the limiting condi-
tion, measurements suggest that Si(r)
converges for all r. Therefore, not-
withstanding the specific job
characteristics, jobs tend to demand a

similar quantum of service. This quan-
tum may be interpreted as the inter-l/0
request time <5> |5|. If this observa-
tion is true then in what way is it

helpful? The author suggests that this

289

condition may be used as another (more
accurate, and in terms of RMF data,
easier to obtain) means of computing
fi(r), and hence, job class level meas-
urements. Suppose that in the limit
Si(r)-->l, then we can use Ci to obtain
service time. That is, the product of
the completion count (Ci) of jobs at
some ith device, and the limiting quan-
tum of time (I) spent per completion at
that device, is the total service time
consumed by al 1 jobs at that device.
The limiting parameter is time, and we
let time approach the inter-l/0 time.
We may view the inter-l/0 time as the
execution time required to process the
mean number of instructions between I/O
events (interrupts).

Ci(r)*l is the total service time
consumed by al 1 r class jobs at the ith
device. Ci(ALL)*l is the total service
time consumed by all jobs at the ith
device. Then

Ci (r)*

I

Ci (ALL) * I

is Bi (r)/Bi (ALL) . But this is fi(r).

The derivation goes:

Suppose Lim Si(r) >l. Then

Ci (r)*l = Ci (r)*Si (r)
C i (ALL)* I

= Ci (ALL)*S i (ALL)
I

Si (r) = Bi (r)/Ci (r)
Si (ALL) = Bi (ALL)/Ci (ALL)

S imp 1 i f y i ng

Ci(r)*l Ci (r)*(Bi (r)/Ci (r))

and

1 3 1
Boyse and Warn describe service

quantum in terms of inter I/O request
time. This article is further refer-
enced in: Arnold 0. Allen's,
Probab i 1 i tv , Stat i st i cs , and Queue i ng
Theory W/ Computer Sc i ence AppI j cat ? ons ;

Kleinrock's, Queue ? ng Systems dual
volume I, II; Hisashi Kobayashi's
Mode 1 i ng and Ana 1 vs i s : An I nt roduct ion
to System Performance Eval uat ion
Methodol ogy : IBM Systems Programming
Series, and Ferrari's, Computer System
Performance Eva 1 uat i on

.

For those ana-
lysts who wish to see how the formulas
(not the theory) of queueing theory are
applied, and what results are obtain-
able, this article is a good place to
start. The system modeled at General
Motors by Boyse and Warn was a system
which ran only one job class; a uni-
class system. However, using the RMF
Equations we can still use this model,
we merely model each job class indepen-
dent! y.

Ci (ALL)* I Ci (ALL)* (B i (ALL)/ C i (ALL)

)

Bi (r)

Bi (ALL)

fi(r)

which is what we wish to show.

Then fi(r) simply reduces to the formula

Ci (r)
f i (r)

Ci (ALL)

RMF- I0C(r)/RMF-IOC-SDC

RMF- IOC (ALL) /RMF- I0C-SDC

RMF- I 0C (r)

RMF- lOC(ALL)

Please note that the above derivation
makes the assumption that Si(r) = (ap-
proximates) Si(ALL). This, of course,
is tantamount to saying that Lim
Si(r) >l, which is our leading assump-
tion. This is a significant
simplification of the first formula for
fi(r). The result is somewhat counter-
intuitive. It claims that fi(r) is the
ratio of I/O operations of the rth job
class and all job classes.

Initial analysis shows that this
method of computing fi(r) breaks the
bounding condition for some job classes,
and hence, can not be used. It is the
author's feeling that this value for
fi(r), viz., f i (r)=Ci (r)/Ci (ALL), offers
a more simple and better (less dependen-
cies) solution to fi(r) than the first
derivation of fi(r). The problem that
fi(r) has in passing the bounding condi-
tion may be in RMF 1

s inability to
capture I/O (paging, swapping) EXCP's
done in the system key. This unhappy
state of affairs does not, however, stop
us from using the formula
f i (r)=Ci (r)/Ci (ALL) for other
software/hardware monitor data.
Alternatively, for job classes with dis-
tinctly different resource demand
(workload) characteristics, and service
time quantums may have statistically
wide variances. This however, the
author feels, is not the case, and, In
fact, when viewed at a low enough level,

290

a 1 T jobs have statistically similar time
dependent resource demands. To further
investigate this is not within the
bounds of this paper. The decision was
made, because the second formulation of
fi(r) did not pass the bounding condi-
tion for some job classes, to not use it

in computing job class level measure-
ments .

k. Multiprogramming Level MPL(r) |6|

Suppose T = 100 sec, and for T
measurement interval, Wi = 750 seconds
of active and resident time accumulated
at device i by al 1 jobs in the system.
Then

750 sec/100 sec = 7.5 = MPL = Wi/T.

MPL may be derived from RMF as follows ?

RMF-ISPS =

TOTAL SERVICE ACCUMULATED IN INTERVAL

LENGTH OF MEASUREMENT INTERVAL

RMF- AAR =

TOTAL SERVICE ACCUMULATED IN INTERVAL

TOTAL RESIDENT + ACTIVE TIME

of all jobs, and

RMF-AAR/RMF- ISPS =

TOTAL RESIDENT + ACTIVE TIME OF ALL JOBS

LENGTH OF MEASUREMENT INTERVAL

But this equals Wi/T, hence

RMF -AAR
MPL =

RMF- I S PS

This can be verified directly. MPL for
the system should approximate the RMF-IN

|6| For this computation of MPL I use
Mr. Levy's RMF formula. For any model-
ing effort MPL is used as an input
parameter to the model. It is our
intent to derive MPL(r) from RMF fields
and use this as a building block for
capturing Ri(r) and Qi(r) from RMF. See
also <6>.

field. And the MPL for any non-swapable
task (performance group) should be equal
to one. Performing these computations,

MPL(ALL) = RMF-AAR(ALL)/RMF- I S PS (ALL)
= 21.838

and
RMF-IN = 20.9.

Further

MPL(CICS) = RMF-AAR(CICS)/RMF-ISPS(CI CS)
= 223/223
=1 as predicted.

Continuing. MPL(r), r = ISO, BATCH

MPL(TSO) = h.3
MPL (BATCH) = k.85

Similar MPL results are computable for
other performance groups.

5. Ri (r) Wi (r) Ni (r) QJ (r)

Lastly we consider Ri(r), Wi(r), Ni(r),
and Qi (r) where,

Ri(r) = Response time of. class r jobs
per request (not per job) at
device i.

Wi(r) = Total resident and active time
(known as job seconds)
accumulated by class r jobs at
devi ce i

.

Ni(r) = queue length of class r jobs at
dev i ce i

.

Qi(r) = queueing time of class r jobs at
dev i ce i

.

Elementary queueing theory tells us
Ri=Wi/Ci. If 10 job requests Ci accumu-
late 125 job seconds Wi at device t,

then the mean response time per request
is 125 sec/10 req = 12.5 sec/req = Wl/Ci
= Ri seconds per request.

We also have by MPL analysis,

Wi(r)/T = RMF-AAR(r)/RMF- ISPS(r)

TOT RES AND ACT TIME OF ALL JOBS(r)

LENGTH OF MEASUREMENT INTERVAL

impl i es

Wi(r) = (RMF-AAR(r)/RMF-ISPS(r)) * T ,

where T=RMF- I NTVL

291

Then

Ri (r) = Wi (r)/Ci (r)

= (RMF-AAR(r)/RMF- I SPS (r)) *RMF- I NTVL

Ci (r)

where

Ci = RMF- I 0 C (r) / RMF- IOC-SDC

Then

Ri (r) =

(RMF-AARC r)/RMF- I S PS (r))/RMF- I NTVL

RMF-IOC(r)/RMF-IOC-SDC

and s impl f y i ng

RMF-AARC r) * RMF- I OC-SDC* RMF- I NTVL
Ri (r)

RMF-ISPS(r)*RMF-IOC(r)

By Little's theorem

Ni = Wi/T and Ri - Wi/Ci

imp! i es

Wi = Ri * Ci (It is now clear that W
is total active plus
res ident time.

)

substituting in the equation for Ni

Ni = (Ri*Ci)/T
= Ri*Xi

The job class level result is

Ni (r) = Ri (r) * Xi (r)

Then in terms of RMF fields

Ni (r) =

I
RMF-AARC r) *RMF- IOC~SDC*RMF- I NTVL

j

| |

I
RMF- ISPSC r)*RMF- I0CC r)

|

+ +

I
RMF-IOC(r) I

I
RMF- IOC-SDC* RMF- INTLV

|

s impl i f y i ng

RMF-AARC r)

= MPL(r) (Which is what we
expect to happen.)

We have reached MPL(r) via two routes.
One, through Mr. Levy's formulation.
The other, we have reached independent-
ly, through queueing primitives. In
queueing terms MPL is the queue length
of in-core jobs waiting execution, this
we call the mean CPU queue length.

We also note that response time is

related to N by the relationship,

Ri(r) = Ni(r)/Xi(r) = MPL(r)/Xi(r)

hence the sensitivity of response time
to MPL loads.

Now lets apply these results to RMF
data. As in past computations, i=CPU
and TS0=TS01, TS02, and TS03.

W i (BATCH) = 2991 . 36 sec
Wi (TSO) = 7771.23 sec,

NOTE

Wi calculation must be done
for each performance group
period independently and the
results summed. Do not use
the RMF -ALL field of a perfor-
mance group.

Ri (TS03)
(192) (5) (3599)sec

(210) (332697) req

0.0^9452 sec/req

Vi (r) * Ri (r)
= (req/job) (sec/ req)
= sec/job (canceling units)
= R-esponse time per job

then

Vi (TS03) * Ri (TS03)
= (707.8656 req/job) (0.049452 sec/req)
= 35. 0054 sec/job

In words, the response time of TS03
at the CPU is 35.0054 seconds per job.
The remainder of the response time,
RMF-ATT(TS03) , is spent at other dev-
ices. This time at other devices has
two components, sevice time at the dev-
ice and queueing time at the device.
For TS03 this time is computable as a

d i f f erence,

Ni (r)
RMF-ISPS(r)

2 92

For r = TS03 and VR = Vcpu(r) * Rcpu(r)

K-l

Vi (r)*Ri (r) = VR + \) Vi (r) *R i (r)

i = l

K-l

i =1

Vi(r)*Ri(r) = // Vi(r)*Ri(r) - VR

i=l i=l

K-l

Vi(r)*Ri(r) = RMF-ATT(r) - VR

i=l

K-l

/ Vi(r)*Ri(r) = 77 sec - 3 5 sec

i =1 = 3 8 sec

.

TS03. Since the computations for R and
S for r = TS03 are available we will use
the form of the equation Qi(r)
Ri (r)-Si (r)

.

Then

Qi (r) 35. 005** sec/job - 1.9163 sec/job
33.0891 sec/job

Or using the RMF equation for Q above,
and multiplying by Vi(r) to obtain the
per job value, we have,

Qi (r) =

192*5*3599sec

210*332697

I
290041*0 . 1 + 359*10

|

I
4446063*0 . 1 + 6460*10

0.7903*5*3599sec
|

I

332697req
|

(332697/5) req

94jobs

In words, on the average a TS03 job
class job has a 73 sec. response time.
35 of the 73 seconds are spent waiting
for or executing on the CPU, and the
remaining 38 seconds are spent at other
devices in the system.

If we have service time and
response time then queueing time for
device i is also computable.

Ri(r) = Si (r)+QJ (r)

whence

Qi (r) = Ri (r)-Si (r)

In terms of RMF fields,

per request.

Qi(r) =

RMF-AAR(r)*RMF-IOC-SDC*RMF- I NTVL

RMF-ISPS(r)*RMF-IOC(r)

- (f i (r)*Ui*T)/Ci (r)

Multiplying the equation for Qi(r) by
Vi(r) results in the queueing time per
job. I leave the simplification in
terms of RMF fields to the reader;
fi(r), Si, and Vi(r) are all given above
in terms of RMF field names.

Let us look at an example of apply-
ing the equation for Q to RMF data. We
will still focus on job class = r

= (0.0567249 sec) -

(0.0640096*0.0427459) *

((332697 req/5)/94 job))

= 33.0686 sec/job

We first note that both methods
yield consistent results. This value
for Q has two interpretations. The

first interpretation claims that Q mere-
ly confirms our experience and
observations, namely, TS03 jobs wait a

lot. TSO jobs (interaction = job) which
fall in period three have enlongated
response time. And this is perfectly
predictable, indeed, the RMF driver

often specified to force
Therefore, the calcula-

Q comes as no surprise,
we may want to claim that

Nearl y al 1 the t ime of

parameters are
this condition,
t i on of a high
Al ternati vel y,
th i s augurs i 1

1

TS03 jobs are spent waiting to execute.
At this point the modeling study is

secondary. We should 1) verify Qi(r) by

computing it for other job classes with-
in TSO, and 2) if "D" checks out we
should immediately determine if this is

true for other RMF intervals. If this

is true we should find out why and cor-
rect the situation. The last step will

bring us back in the loop of performing
the modeling study. Many problem like
this, problems that go undetected and
manifest themselves as performance ser-
vice level problems, are dredged up
while performing a modeling study.

293

These festering performance problems can
be more to the issue than the modeling
study itself.

Similar results as above are
obtainable for disks, I/O paths, con-
trollers, drums, and core. <7> The
techniques differ in obtaining these
other results, and in most instances,
employ significantly more advanced
mathematical methods. Before the deci-
sion is made to invest the time and
people in building and maintaining data
reduction programs to capture these
results, the other alternative, a first
order approximate analytic approach,
should also be considered. As your
needs, requirements, and operating sys-
tem software changes, then so must the

set of data reduction programs change.

6. Summary and Concluding Remarks

The relevant model parameters for
modeling the CPU at the job class level
have been obtained from RMF. In achiev-
ing this goal we have developed several
intermediate results (Wi(r) and Qi(r)),
and also, the output equations, (Ri(r),
Ui(r), Xi(r)) by which the model is ver-
ified. All such equations, both primary
and intermediary, are given in terms of
RMF field names. A summary of these
results are given below in Table 5. As
in past formulas it is understood that i

= CPU, and not any device.

6.1 Remarks

Using relatively simple methods we
were able to quickly obtain, from RMF,
job class level input/output parameters
to CPU models of multi class machines.
Similar but less tractable methods yield
results for I/O paths, storage devices,
controllers, and first level store. In

this paper we concentrated on the CPU
and collecting only those CPU measure-
ments which are useful in mathematical
modeling and performance/capacity ana-
lysis. These same simple methods may be
applied to any data, from software or
hardware monitors, to collect similar
results. The results themselves will be
accurate in proportion to the integrity
of the data. The value of such work
lies as much in the insight into system
behavior as in the results themselves
perhaps more so in the insight.

The above tables of RMF equations
may be used by the analyst for perfor-
mance analysis, capacity planning, and
problem determination. For ease of use

the table equation's notation is keyed
to the appropriate RMF field names. The
user is warned that these formulas
require field testing to fully bound
their capabilities and restrictions.
The author invites comments from the
users of the RMF equations. The equa-
tions are not complex but they are long,
therefore, it is advised that they be
programmed for a card programmable cal-
culator (like the Texas Instruments
T I

- 5 9) or an office based micro/mini
computer

.

I would like to thank Bob Meister for
his patience and repeated editing of
this paper, and for the use of his DEC
computer- i nterfaced IBM Selectric
typewriter, which was used in conjunc-
tion with RUNOFF to generate this paper.

IBM and RMF are trademarks of
International Business Machines Corpora-
tion. DEC is a trademark of Digital

Equipment Corporation. RUNOFF is DEC's
text processing program.

References

<1> Buzen and Denning, The Operational
Analysis of Queueing Network Models, ACM
Comput i ng Su rvevs , Vol . 10 No. 3, Sep-
tember 1978 p. 23h -235.

<2> C. A. Rose, A measurement
Proceedure For Queueing Networks Of Com-
puting Systems, ACM Comput i ng Su rveys ,

Sept 78. For Ci in terms of I/O OPs see
this paper.

<3> Allan I. Levy, An Introduction to
Pratical Operational Analysis: An MVS
Perspective, CMG X I Proeed i ngs . Boston
1980, p. 208-214. Also from IBM sup-
pi i ed formu 1 as

.

<4> IBM OS/ VS2 MVS Performance Notebook ,

GC28-0886-0.

<5> Boyse and Warn, A Straightforward
Model for Computer Performance Predic-
tion, ACM Compu ting Su rvevs Vol . 7, No.
2 June 1975.

<6> I B i D. <5>

.

<7> Y. Bard, A Model of Shared DASD and
Mul t i path i ng. I BM Cambridge Scientific
Center, Commun i cat i ons of the
Assoc i at ions of Comput i ng Mach i nerv .

Vol. 23 No. 10, Oct 80. Also see,
same author, Task Queueing in Auxiliary
Storage Devices with Rotational Position
Sensing, I BM Camb r 1 dge Sc i ent i f i c Cente r

Report G32Q-2070 . MAR 7 5.

294

Table 5, Summary Results for Job Class Level Measurements

Bi (r)
fi(r) =

Bi

Ci (r)

Vi (r)

Si (r)

(RMF-CPUC r)*RMF-SRB-SDC) + (RMF-SRB(r) *RMF-CPU-SDC

)

(RMF-CPU (ALL)*RMF-SRB-SDC)+(RMF-SRB(ALL)*RMF-CPU-SDC)

RM F -
I 0 C (r

)

RMF- I0C-SDC

Co(r) = RMF-ET(r)

Ci (r)

Xi (r) =

Co

RMF- I 0 C (r)

RMF- IOC-SDC*RMF-ET(r)

Ci (r)

T

RMF- I0C(r)

RMF- IOC-SDC*RMF- I NTVL

f i (r)*Ui*T

Ci (r)

(RMF-CPU (r)*RMF-SRB-SDC)+(RMF-SRB(r)*RMF-CPU-SDC)

(RMF-CPUC ALL)* RMF -SRB-SDC)+(RMF-SRB (ALL) *RMF-CPU-SDC)

* (RMF-UT I L*RMF- I NTL V)

/ (RMF- I 0 C (r)/RMF- I0C-SDC)

7. Bi (r) = f i (r)*Bi

(RMF- CPU (r)*RMF-SRB-SDC)+(RMF-SRB(r)*RMF-CPU-SDC)

(RMF-CPU(ALL)*RMF-SRB-SDC)+(RMF-SRB(ALL)*RMF-CPU-SDC)

* (RMF-UTI L*RMF- I NTVL)

8. Ui (r) = f i (r)*Ui

295

(RMF- CPU (r)*RMF-SRB-SDC) + (RMF-SRB(r) *RMF- CPU-SDC

)

(RMF-CPU(ALL)*RMF-SRB-SDC)+(RMF-SRB(ALL)*RMF-CPU-SDC)

* RMF-UT I L

Wi (r)

9. MPL(r)
T

RMF-AAR (r

)

RMF-ISPS(r)

10. Ni(r) = MPL(r) = Xi(r)*Ri(r)

11. Wi (r) = Ni (r)*T

RMF-AAR(r)*RMF- I NTVL

12. Ri(r)

RMF- I S PS (r

)

Wi (r)

Ci (r)

RMF-AARC r)*RMF- I NTV L* RMF- I OC-SDC

RMF- I S PS (r)*RMF- I OC (r)

13. Qi (r) = Ri (r)-Si (r)

RMF-AAR (r)*RMF- I OC-SDC *RMF- I NTVL

RMF- ISPS(r)*RMF- I 0 C (r)

- ((f i (r)*Ui*T)/Ci (r))

NOTE

For X, S, R, and Q, the above equations compute
the "per request" values. To compute the "per
job" values we must form the product of these
equations with the visit ratio, V.

296

SERVICE LEVEL MANAGEMENT
THROUGH

WORKLOAD SCHEDULING

David G. Halbig

U.S. Senate Computer Center
Washington, D.C. 20510

The author describes techniques for managing batch workloads in
the IBM environment using controls other than the MVS System Resource
Manager (SRM) . Problems of DSNAME ENQUEUE conflict management, tape
and disk space over-allocation, and resource-sensitive job scheduling
are addressed. Results of implementing workload scheduling at the
author's installation are presented.

Keywords: MVS SRM; workload scheduling; batch; service levels;
resource-sensitive job scheduling; DSNAME ENQUEUE conflict
management; SMF exits.

1. Introduction

The purpose of this paper is to
describe the motivations for, and the
implementation of, a batch workload
service level management system. The
ability (and inability) of the MVS
System Resource Manager (SRM) to
manage batch workloads is discussed,
as is the list of requirements for a
batch workload manager. The implemen-
tation of an alternative to the SRM is
presented in 4 parts: interfaces,
scheduler methodology, user reaction,
and quantitative results.

2. MVS System Resource Manager

In the IBM MVS environment, the
System Resource Manager (SRM) is given
the responsibility of controlling ser-
vice levels (turnaround time, response
time) and system load (CPU busy, page-
in rate, etc.) /I/. In the case of
batch workloads, the SRM controls only
jobs which have already been
initiated. The primary function used
by the SRM to exercise control is
swapping, or removing a job
(physically or logically) from main
memory, thus denying access to certain
system resources (main memory, CPU

cycles) /2/. Other resources already
assigned to a swapped-out job,
however, are not released for use by
other work in the system.

Such resources include tape drives,
temporary (scratch) disk space, data
sets, and the initiator in which the
job is running. If these resources
are in short supply, or have been
over-committed by large individual
resource holders, swapping has the ef-
fect of delaying other work not yet
swapped out. Additionally, the swap
function against batch work requires
significant system resources, dic-
tating a minimum of batch swap ac-
tivity /3,4/. Finally, the SRM is a

reactive manager, taking action only
after a bottleneck or potential ser-
vice level problem has been detected.
Taken by itself, this characteristic
is not consequential, but if workloads
consisting of long as well as short
running jobs are considered, problems
arise. Specifically, if a long-
running job is is permitted to
initiate and only then is swapped out,
the initiator is unavailable to other
short-running jobs. Admittedly,
production workloads dictate some
long-running jobs must initiated
during prime shift, but the SRM has no

297

means to avoid their initiation in an-
ticipation of subsequent delays for
other batch work.

The SRM, then, has three short-
comings as a batch workload
manager

1)

2)

3)

The SRM scope of con-
trol excludes resources
whose overcommitment
has an adverse effect
on batch job throughput
(tape drives, DASD
scratch space, batch
initiators, data set
names). In the case of
each of these
resources, the SRM can
detect an overcommit-
ment and react to it
(detected wait swap)

,

but cannot explicitly
obtain the resource
from the resource hol-
der nor release other,
already-obtained

,

resources from the
resource requestor;

The SRM cannot an-
ticipate problems and
solve them through
avoidance (preventative
management) , but rather
waits for undesireable
conditions before
taking action (reactive
management)

;

The primary function of
control for the SRM is
swapping, which can ag-
gravate the problem the
SRM is attempting to
solve (e.g. I/O
contention)

.

1) The scope of control
for a workload manager
must be expanded to
competently handle tape
drive, temporary DASD
space, and DSNAME
ENQUEUE conflicts
problems

;

2) The workload manager
control function must
be preventative rather
than reactive, attempt-
ing more to avoid wor-
kload management pro-
blems rather than
reacting to them once
they occur;

3) The control function
must not itself be a
source of significant
overhead or service
level degradation.

Another design constraint ad-
dressed the lack of performance incen-
tives available to the user community.
Repeated investigations of specific
batch job (and total system) perform-
ance problems uncovered inappropriate
use of some system resource (e.g.
small blocking factors, small files on
tape rather than disk, testing with
too much data, gross overallocation of
temporary disk files, illegal
specification of the PERFORM= keyword,
repetative OPENs of a file during a
job, etc). In each case, no amount of
SYSTEM-level tuning would have had
much impact; the solution involved in-
stead the correction of an inappro-
priate user practice. Incentives were
missing which would gradually correct
the bad practices without requiring
constant vigilance of and negotiation
with the user community.

3. Workload Scheduling Requirements

The objectives of the SRM, namely
meeting of site-defined service levels
and optimization of system resources
under the service level definition,
are nonetheless valid. The problem in
the case of batch workload management
involves the methods used to meet the
objectives. The above shortcomings of
the SRM led to an investigation of
other methods to manage batch
workloads.

The first several design con-
straints were derivatives of the
SRM investigation, namely:

The final design constraint was
to avoid as much future maintenance as
possible. Thus, direct modification
of IBM routines was not an option.

3.1 Interfaces

The reactive nature of the SRM
implied it was gaining control too
late in the life cycle of a job. To
be effective in the batch environment
required the ability to PREVENT
initiation of work based on a set of
rules. JES job classes and initiator
job class strings were well-suited to
this function, but only if the job
classes could be explicitly associated
with the resources to be managed (i.e.

298

tape drives, disk space, etc.)* If

JES job classes were used, the in-
formation available to the workload
manager would be limited to only what
was known or could be discovered about
jobs on the JES input queue.

The MVS JES2 architecture, unlike its
predecessor MVT HASP, provides sig-
nificant information about jobs
awaiting execution. Under MVS JES2,
the Job Control Language (JCL) of a

batch job is (usually) expanded and
converted into Internal Text im-
mediately after being submitted to the
system. Internal Text, a parsed-
string language, is then written to

SPOOL to await the next phase of the
job, namely initiation. Most
importantly, the Internal Text con-
tains the expansion from JCL Procedure
Libraries, virtually guaranteeing the
completeness of necessary information
about the job. Finally, since
Internal Text is an integral part of

NJE, as well as MVS JES2,
architecture, the stability of any
function based on it is assured /5/.

The design constraint which required
no direct modifications to IBM code
necessarily forced any control func-
tion into SMF (System Management
Facility) exits. The exits are IBM-
authorized points of departure from
the MVS and JES environments /6/. The
exits used by the workload scheduler
include IEFUJV, IEFUJI, IEFUSI,
IEFU83, IEFUSO, IEFUTL, and IEFACTRT.
It is significant to note IBM's sen-
sitivity to changes in the SMF inter-
faces as shown by the remarkable
stability of these interfaces.

In fact, the workload scheduling func-
tions eventually implemented as SMF
exits required virtually no coding
changes from MVS 3.7 up to MVS/SP1 . 3

.

Because of the massive design changes
in Enqueue management with MVS/SP1 . 3

,

however, the workload scheduler did
require significant rework for the
MVS/SP1.3 environment.

3.2 Scheduler Methodology

The workload scheduler is based
on early and accurate knowledge of the
maximum resource^ a batch job will
use. JCL and its derivative, Internal
Text, contain significant information
on a batch job's estimated transit
time in an initiator, as well as the
potential impact the job will have on
other, already initiated, work.

Specifically, the TIME= keyword on the
job card defines the maximum amount of
CPU time the job may use, as the
REGION= and VIRT= keywords define the
maximum amount of memory the job
mayuse, and whether the memory is vir-
tual or real.

Similarly, individual DD statements
define the maximum concurrent number
of tape drives and amount of temporary
disk space a job will use. The
PERFORM= keyword defines the rules of
competition between the job and other
already-initiated jobs for CPU time,
memory, and I/O.

In all, some 12 characteristics of a

batch job's future behavior are
available from the JCL. These charac-
teristics comprise the "signature" of
the batch job. The scheduler ASSIGNS
a job class based on the signature
using a lookup table of resource
limits by class (see Figure 1) . The
JES initiator class strings are then
structured to meet two objectives:

1) Favor low-resource use
jobs oyer high-resource
use jobs by placement
of the class in the
initiator string;
furthermore, the
initiator strings are
modified automatically
or by the operator
several times during
the day to permit or
deny the initiation of
very high resource use
jobs.

2) Prevent overcommi tting
certain resources, ac-
complished by dis-
tribution of classes
among the initiators.
An example will clarify
this: assume there are
only two types of work
in the system: those
which required a

maximum of two tape
drives per step, and
those which required
none (non-setup)

.

Assume the non-setup
work was assigned to
class A and the other
work was assigned to
class B. If the
initiators were con-
structed as shown
below, it would not be
possible to initiate

299

I I

r-
CN

>i
(0

£

>

OS

(N
I

z
Ei

O
jJ

JJ

c
QJ

6

4J
4J

<

Cd

CO

M
£M
J
Ul
CO
<
J
u

Si MM

St si *. r**

si St st
CN a

si MM

sj st SI
si Si ^*

Si CN

Si fad

<s st — si
st re Si ^*
ro SJ St CN

m
Si S) MM*

00 st a CN
^* rH rH in i—

i

CN

si —» MM
00 Si in cn

pH t-H 1—

1

CN cH

Si »—* &(5

Si f**

up SI OS
V0 «•»». CN

si fad

Si si f""*—
Si si o\

vO cn ^
Si
SI Si r*-

st Si Si CT\

CN

SI in mm*

SI CN CN
^m; <W ^

Ul Bb
u) CN CN

* ^4

SI _ k/MM
Si Si SI

SI SI
V© m cn

S)
Si MM

si Si
«^ Si Wl

CN

Si
SI

<N

—

K

in Si
* CNw

SI
Si Si SI

Si Si Si *T
vo Si Si in cn

Si —

^

si Si CS 00
si St 1—

t

CS 9\
<N

s»s

Si cs *r
CM si fH in cn

— Hi
in Si in cn

si i-H CN rH

CS CN CN

CS CS

CN CN CS

CN 0\

9\
m cn er\

CN CN

CS CN CN

CS CN CN

CN CN CS

CN CN CS

CO «£

1 I I a \ 1

1 i 1
>• Z 1

cs
cs
in o

cs z -r a
cs
cs
in o CO OS

cs rH S£ z t SB

CS
cs
in o >i

cs rH z CO s rH
rH

cs (0

cs «fl o
cs o •H

cs z z X)
9>

cs JG
cs <c jJ
cs o \ c

cs z z 0)

u
cs (0

cs CO CO a
cs ea 00 £K

cs M. X s •o

cs
cs
in o W OS

cs rH t£ z CN S CD •

^
cs O
cs co O m
in o oeS rH CN

cs rH CMS z m x jQ —
1

cs ic n
cs Z rH
in o CS M

cs rH tC z CJ> £ CS
CS 09

cs m
CS Z - co

cs o in rH CN rH
cs 00 b£ z -o- £ rH U

CS n •

cs
in o •W OS < •

cs rH t»S z CN S
CO *-»

cs 09

cs CO o
in o 06 rH U

cs rH K z CN X U <1»

cs > c
cs z 0>iH
in o CS M • rH

cs rH « z vo £ V >
~- o

cs cs oo uz

in
CS rH M

CS
cs
in

cs -h as

CBCNCNCSCSCSrH^
cs
cs

cn cn cs cs cs oo be!

cs
ca ea

ii

£ VO C9 CO II

HH •

—

rH 00 Ed cf z
H Z \ \ Z * O II o

r-l cs ca r-t i-3 Q a Cb
3 £ in M ca r-l J < CO O CO OS EH «c On OS
Dj — CN vo a, 1 Cd < ' H < Cd OS \ Cd

u VO ffi rH a as os a > a CU 04 O E-t s as

o
z

o
z

o

o
z

o
z

z
CS M

t as
CN X

OS
CN X

z
CS M
vo £

Z
CS M
m £

I

o a
= O
< =

a
z

2 *
as *
< Eh

I Cd

z o
as as

H Eh

m cs
^ in
u HI
0 ro
rH
.a jj

1 c
m v
rH rH

(0
vu >
O -H

3
u cT
cy 0)

J3
S vw
3 O
C

u
<V OJ£ i3
u S

3
n c
a

a>

C jC

>
•»H CD

C5 (0

CO

XI
o

CO

c •

CD *D
sz a>

» -u
c

C -H

<o a
2
JJ CO

CD -H

JJ
4) 3
e a
-H JJ
JJ 3

O
01

jj o

CO 0)

«

a>

c jj
•H CO

tu (0

01 rH

0)

m «s

r C
*3 4)

c jr
3 J
o
u "3
(0 c
C HJ

u
3 C
Eh -rH

XI

En

JJ

•H
e

a)

u
Sn

3
0
W
0)

OS

a)
rH
3
T3
CU

X!
O
CO

X!
o

CD

U
3
CP
•H
Pn

300

more than three class B

jobs concurrently, and
thus not use more than
six tape drives concur-
rently (2X3).

II
12
13
14

A
AB
AB
AB

The concept for temporary disk
space and (roughly) real memory over-
commitment is similar.

It was noted earlier that the
scheduler ASSIGNS the job class; this
technique is a departure from similar
systems which validate the user's ex-
plicit specification of job class.
Several considerations forced this
design. First, as fine-tuning of the
workload progressed, the number of job
classes mushroomed (there are curren-
tly 19) . It was impractical to expect
the user community to remember
precisely what attributes were as-
sociated with what class. Instead, it

was found to be sufficient that users
understood the OBJECTIVES of the
scheduler, and that any tuning effort
on their part that could be reflected
in the JCL (lower CPU time, smaller
disk space requirements, lower concur-
rent tape drive use) would be rewarded
with better turnaround. Second, as
the machine room floor changed (number
of tape drives, temporary disk packs,
available CPU power, new applications)
the scheduler resource limit table un-
derwent dramatic change. The adminis-
trative difficulties of changing job
class specifications on user JCL would
have been immense.

Of all the characteristics of
future behavior predictable through
JCL, DSNAME enqueue conflicts could
neither be easily predicted or
prevented

.

Ultimately, the scheduler was
redesigned to permit the conflict
occur, but then intercept it and place
the job requesting the DSNAME (v ict im)

back on the input queue. Under the
current design, if the victim is a

batch job and the DSNAME holder
(conflictor) is also a batch job, the
victim job is held on the input queue
until the conflictor ends; the victim
job is then released.

If conflictor is a TSO session, an in-
formational message is sent to the TSO
user and the victim job is placed back
on the input queue; when the TSO ses-
sion ends (LOGOFF) , the victim job is

automatically released. If the victim
is a system task or TSO session at-
tempting to sign on, normal MVS han-
dling of enqueue conflicts takes
control

.

To review, the operation of the
scheduler has two components. First,
jobs are assigned into job classes
based on the jobs' resource
signatures. The JES initiator class
strings are then constructed to favor
jobs based on estimated resource use
and to prevent overcommitment of cer-
tain static resources (tape drives,
temporary disk space). Second, DSNAME
enqueue conflict management reduces
one of the major causes of cross-
initiator dependencies. The result is

a system which applies queueing theory
concepts (multi-server prioritized
queueing, reduced covariance among
servers) to batch workload
management

.

3.3 User Reaction

Because the scheduler has been
implemented at several installations,
it has been possible to uncover pat-
terns of user reaction. If the site
is already using some form of
resource-sensitive job scheduling, the
scheduler is well-received, since it
usually expands the scope of control
of the previous scheduling system. If,
however, the site has initiators
dedicated to groups within an or-
ganization (as our site had) , the
resistance can be fierce. The dif-
ficult task of describing the cost of
ignoring, or finding the wrong culprit
for, resource conflicts between users
is not to be underestimated. Some
techniques have been found to ease the
path, nonetheless. Full implemen-
tation of the scheduler is best
delayed until the workload is at a
seasonal ebb. When utilization levels
are low, practically any scheduling
scheme will work (even user-dedicated
initiators). Second, if members of
the community are mathematically
inclined, the performance differences
between a multi-server initiator
structure and multiple single-server
initiators can be explained /7/.
Third, installing the scheduler
without at first turning on the class
scheduling facility can be helpful.

301

The resource signature for the job is
displayed on the JES Job Log, along
with the job class which otherwise
would have been assigned (see Figure
2) . This method permits users to
modify their jobs in anticipation of
full implementation. This recommen-
dation emphasizes that major im-
provements in workloads are often the
result of dramatic changes in USER
(repeat USER) practices. Fourth,
classes explaining the objectives of
the scheduler and potential benefits
resulting from its implementation
reduces the chances for insurrection
at the working level.

dress the problems was lacking or was
available only by requesting special
reports from the performance group.
Missing was information useful in
tuning and readily available to the
users. As a result, the step ter-
mination statistics were greatly ex-
panded to provide most of this in-
formation (see Figure 3) . These
statistics, for example, allowed the
users to target high-use files with
poor blocking factors or option codes
or high open-close counts. Similarly,
temporary disk space allocations could
be compared with the amount of disk
space actually used.

The sharp reactions to the
scheduler normally occur well before
its actual implementation. The
counter-arguments noted above have
been useful only to dull the prospec-
tive loss of "personalized"
initiators. Of equal interest,
however, are the user reactions, both
immediately after full implementation,
and later, in a steady-state
envi ronment

.

Needless to say, if the site has no
prior experience with resource-
sensitive job scheduling, the first
two weeks under full implementation
are hectic. Users previously too
"busy" to attend scheduler workshops
or read the implementation newsletters
create considerable work for the per-
formance management group. The over-
whelming majority of requests involve
answering the question "How do I get
good turnaround?", and assisting in
(sometimes massive but always overdue)
changes to JCL and programs to qualify
for fast-turnaround job classes.
During the initial weeks a dramatic
change comes over the relationship
between the performance management
group and the user community: perform-
ance people (usually) needed no longer
to seek out tuning targets and engage
in onesy-twosy with recalcitrant
users. In the case of the author's
site, performance advice was sought
out readily AND IMPLEMENTED.
Progressively better- attended per-
formance workshops attested to the new
sensitivity to performance issues.

3.4 Quantitative Results

The scheduler was designed to im-
prove batch throughput by several
methods

:

1) Multi-server initiator
structure. Said
another way, each
initiator (server) is
set up to accept mul-
tiple classes. This
ditfers from the mul-
tiple single-server
initiator structure
associated with
"personalized"
initiators (single
class per initiator).
As utilization levels
increase (increased
levels of initiator
busy) , the turnaround
time differences
between the two struc-
tures widens markedly
/8/.

2) Reduced covariance or
dependencies between
initiated jobs. Said
another way, inter-
ference of one job with
another is minimized as
much as possible.
Preventing DSNAME en-
queue conflicts and
tape and disk space al-
location recovery from
blocking initiators
(servers) are examples
of this.

Shortly after
implementation, however,
deficiency appeared:

full
major

The users had incentive to address
long-standing performance problems,
but the information necessary to ad-

3) Prioritizing work on
the input queue based
on estimated initiator
transit time (service
time) . Jobs with low
estimated initiator
transit times are

302

J E S 2 JOB LOG

OG 30 30 JOB 233 IEF196I
06 30 30 JOB 233 IEF 1961
06 30 31 JOB 233

JOBNAME
CPDGHHOZ

06 31 27 JOB 233 IEF677I
06 31 27 JOB 233 SHASP373
06 31 27 JOB 233 IEF403I
06 31 30 JOB 233 "IEF233A
06 4 1 50 JOB 233 IEC502E
06 41 50 JOB 233 IEC501A
06 44 19 JOB 233 "IEAOOOA

IEAOOOI
07 02 37 JOB 233 IEF234E
07 02 37 JOB 233 IEF233A
07 02 37 JOB 233 "IEF233A
07 04 22 JOB 233 IECTMS9
07 04 24 JOB 233 IEC705I
07 08 51 JOB 233 IEC502E
07 08 51 JOB 233 "IEC501A
07 1 1 53 JOB 233 IEC502E
07 1 1 53 JOB 233 *IEC501A
07 12 14 JOB 233 "IEAOOOA

IEAOOOI
07 12 35 JOB 233 IECTMS9
07 1 2 37 JOB 233 I EC705I
07 15 25 JOB 233 IEF234E
07 15 30 JOB 233 IEF234E
07 15 30 JOB 233 IEF233A
07 18 19 JOB 233 IEC140I
07 18 19 JOB 233 IEC502E
07 18 19 JOB 233 *IEC501A
07 20 48 JOB 233 IEF234E
07 20 49 JOB 233 •IEF233A
07 24 54 JOB 233 IEC140I
07 24 55 JOB 233 IEC502E
07 24 55 JOB 233 •IEC501A
07 27 09 JOB 233 IEF234E
07 27 09 JOB 233 IEF471E

07 27 09 JOB 233 IEF404I
07 27 09 JOB 233 SHASP395

IEF237I 100 ALLOCATED TO SYS00003
IEF237I 1C2 ALLOCATED TO SY500004

LOAD NEW TAPE 750-CP-LT-P PRTY=00
* PG# CPU-TIME KCORE KLNES 6250 1600 1K-DASD 1K-VI0 TP DU UP.

L 2 1:00:00 640 10 2 0 0 0000
WARNING MESSAGE (S) FOR JOB CPDGHHOZ ISSUED
CPDGHHOZ STARTED - INIT 14 - CLASS L - SYS D168

CPDGHHOZ - STARTED - T I ME =06 . 3 1 . 27
M 381, EXMC61 , , CPDGHHOZ . STEP 1 , OZ . UGUIDE . TEXT
RK 381 ,EXMC61 . SL , CPDGHHOZ , STEP3 , EXMC6 1 F5179.R012
M 381 ,EXMC62,SL, 6250 BP I , CPDGHHOZ , STEP3 , EXMC6 1 . F5 1 79 . R0 1

2

381 . INT RE0.D3.O2OO, . , EXMC62 , CPDGHHOZ
381. , .

.40220O060O402DO000O80000008EEA03D7D1708F1F01O000.

,

R 381 , EXMC62, PVT. CPDGHHOZ, STEP4
M 382 , EXMC61 . .CPDGHHOZ , STEP4 , EXMC61 . F5179 . R012
M 381 .PRIVAT.SL. CPDGHHOZ, STEP4, SI . INFOMVS BACKUP . G0019V00
38 1 , 905338 , CPDGHHOZ , SYSUT2 , 99000 . S . BACKUP . GOO 19V00
TAPE ON 381 .905338, SL. 6250 BPI , CPDGHHOZ , STEP4 , SI . INFOMVS . BACKUP . G0019V00
RK 382.EXMC61 , SL , CPDGHHOZ , ST EP4 . EXMC6 1 .F5179.R012
M 382 , EXMC62 , SL , 6250 BP I . CPDGHHOZ . STEP4 , EXMC6 1 . F5 1 79 . R0 1

2

K 381 ,905338. SL, CPDGHHOZ, STEP4, SI . I NFOMVS . BACKUP . GO0 1 9V00
M 381 .PRIVAT.SL, 6250 BP I , CPDGHHOZ , STEP4 , SI . INFOMVS . BACKUP . G0019V00
381, INT REO,D3,0200, ,, .CPDGHHOZ
381 ., , , 4O200O060O402DOOO0O80O0OO08EEAO3D7D 1708303010000,

,

381 ,90751 1 .CPDGHHOZ , SYSUT2 , 99000 , S . BACKUP . GO0 1 9V00
TAPE ON 381 .90751 1 ,SL, 6250 BPI , CPDGHHOZ . STEP4 , SI . INFOMVS . BACKUP . G0019V00
K 381 ,90751 1 .PVT. CPDGHHOZ. STEP4
R 382, EXMC62.PVT, CPDGHHOZ, STEP5
M 383, EXMC61 , . CPDGHHOZ . STEP5 , OZ . C ICS . MESSAGE

S

TAPE , EXMC6 1 START OF DATA SET NOT ON VOLUME
RK 383, EXMC61 ,SL, CPDGHHOZ, STEP5
M 383, EXMC62.SL, 6250 BP I , CPDGHHOZ , STEP5 . OZ . C I CS . MESSAGES
R 383 , EXMC62 , PVT , CPDGHHOZ , STEP6
M 38B , EXMC61 , .CPDGHHOZ , STEP6.0Z . VT AM . MESSAGES
TAPE , EXMC6 1 START OF DATA SET NOT ON VOLUME
RK 38B.EXMC61 , SL , CPDGHHOZ, STEP6
M 38B , EXMC62 , SL ,6250 BP I , CPDGHHOZ , STEP6 , OZ . VTAM . MESSAGES
K 38B , EXMC62 , PVT , CPDGHHOZ
FOLLOWING VOLUMES NO LONGER NEEDED BY CPDGHHOZ
EXMC6 1

.

CPDGHHOZ - ENDED - T IME =07 . 27 . 09
CPDGHHOZ ENDED

Figure 2. Job Resource Signature

303

IEF237I JES2 ALLOCATED TO SYSPRINT
IEF237I 383 ALLOCATED TO TAPE
IEF237I 1C2 ALLOCATED TO OZVSAM
IEF237I 1C2 ALLOCATED TO SYS00010
IEF237I JES2 ALLOCATED TO SYSIN
IEC140I TAPE , EXMC61 START OF DATA SET NOT ON VOLUME
IEF142I CPDGHHOZ STEP5 - STEP WAS EXECUTED - COND CODE OOOO
IEF285I
IEF285I
IEF285I
IEF285I
IEF285I
IEF285I
IEF285I
IEF285I
IEF285I
IEF285I
IEF373I STEP /STEP5
IEF374I STEP /STEP5

* USED (V)
* LSQA+SWA (V)
* AVE W/S SIZE
* SWAP CNT

**UCB. DEVICE
* 123 3350
* JES/DUMMY

SYS 1 OZLIB
VOL SER NOS= SCCS 1 3 .

JES2 . J0BOO233 . S00109
OZ.CICS. MESSAGES
VOL SER NOS= EXMCG 1 , EXMC62

.

SI V6.BL GO ZS.CICS. MESSAGES. CLUSTER
VOL SER NOS= SCCP02.
USERCAT . VSCCP02
VOL SER NOS = SCCP02.
JES2 . .JOB00233 . S 10 102

/ START 82208.0715
/ STOP 82208.0720 CPU

AGE-INS RECLAIMS
3
3
0

N/A
CE EX

2 * 383 3400
N/A * 1C2 3350

KEPT

SYSOUT
KEPT

KEPT

KEPT

SYSIN

OMIN 06.56SEC SRB OMIN 00.15SEC VIRT 272K SYS 240K
i***

272K *
. . .PAGE-INS

240K * PRV 6
383K * CSA 18

1
* VIO 0

SWAP 28
EXCP'S* **UCB DEVICE

* TCB TIME 6.56 * TCB/ SRB 43.7:

1

* STEP NO 5 *

* SRB TIME . 15 * RES/TCB 48.3:

1

* STEP NAME STEP5 *

* RES TIME 5: 16.89 * ATV/RES 1.0:1 * COND CODE OOOO *

* ALLOC TIME 2 . 36 * PFM GRP 2 * PGM= BLGOZC *

* UNRC'D TIME . 52 * PRTY DISP(009) * S/U'S 17,472 *

* **UCB. DEVICE .

.

. .EXCP'S*** UCB .DEVICE EXCP S * * *UCB . DEVICEEXCP'S * *

115 * 1C2 3350
140 * JES/DUMMY

0
N/A

DDNAME
STEPL IB
TAPE

***************** ********************NON-VSAM (
126/006/000)**

DEVICE VOLSER OPNTYP OPNCNT DSORG OPTCD RECFM LRECL BLKSIZE BUFNO BLOCK-CNT EXTS TRKALC TRKUSD TRKRLS *

3350 SCCS 1 3 INPUT 1 PO U 0 19.069 0 2 1 30 N/A O *

3400 EXMC62 INPUT 1 PS VB 12996 13,000 0 115 N/A N/A N/A N/A
************ e * * * * * **********

DDNAME
OZVSAM
OZVSAM
OZVSAM
OZVSAM

IEF237I
IEF237I

IEF285I
IEF285I
IEF285I
IEF285I
IEF285I
I EF285I
IEF285I
IEF285I
IEF285I
IEF285I

CPNT STAT OPCT
k VSAM(126/006/000)* ***

LEVELS EXTENTS RECORDS DELETES INSERTS UPDATES
IDX CURR 10 10 0 0 0
IDX CHNG 1 2 0 4 0 0 0
DATA CURR 10 10 0 0 0
DATA CHNG 1 0 0 6,874 0 0 0

IEF236I ALLOC. FOR CPDGHHOZ STEP6
IEF237I 123 ALLOCATED TO STEPLIB
IEF237I JES2 ALLOCATED TO SYSPRINT
IEF237I 38B ALLOCATED TO TAPE

1C2 ALLOCATED TO OZVSAM
1C2 ALLOCATED TO SYS00012

IEF237I JES2 ALLOCATED TO SYSIN
IEC140I TAPE , E XMC6 1 START OF DATA SET NOT ON VOLUME
IEF142I CPDGHHOZ STEP6 - STEP WAS EXECUTED - COND CODE OOOO

SYS1. OZLIB KEPT
VOL SER NOS= SCCS 1 3

.

JES2 . J0BOO233 .
S001 10 SYSOUT

OZ.VTAM. MESSAGES KEPT
VOL SER NOS= EXMC6 1 , EXMC62

.

S I V6.BLG0ZS. VT AM. MESS AGES. CLUSTER KEPT
VOL SER NOS= SCCP02.
USERCAT . VSCCP02 KEPT
VOL SER NOS= SCCP02.
JES2 . JOB00233 . SI0103 SYSIN

IEF373I STEP /STEP6 / START 82208.0720
IEF374I STEP /STEP6 / STOP 82208.0727 CPU

GETS UNUS-CI SPLT-CI SPLT-CA BLKCNT
0 131,072 0 0 0
0 16,384 0 0 18
04745,600 0 0 0
01298,432 0 0 122

OMIN Q3.97SEC SRB OMIN 00.11SEC VIRT 272K SYS 240K
******************* ******************** **************************************

* USED (V)
* LSQA+SWA (V)
* AVE W/S SIZE
* SWAP CNT

272K
240K
328K

1

PAGE-INS RECLAIMS
PRV
CSA
VIO
SWAP

28
66
0

1 1

1 1

3
0

N/A

TCB TIME
SRB TIME
RES TIME
ALLOC TIME
UNRC'D TIME

3.97
. 1 1

19.04
1 . 28

. 77

TCB/SRB
RES/TCB
ATV/RES
PFM GRP
PRTY

36 .0: 1

95.4:

1

1 .0: 1

2
DISP(009)

STEP NO
STEP NAME
COND CODE
PGM=
S/U'S

6
STEP6
OOOO
BLGOZC
10,415

EXCP ' S***UCB . DEVICE

.

0 *
UCB DEVICE EXCP ' S***UCB .DEVICE EXCP '

S* **UCB .DEVICE
123 3350 2 * 38B 3400 74 * 2C2 3350
JES/DUMMY N/A * 2C2 3350 92 * JES/DUMMY N/A
**************.*.*********** ************ * ** *non- VSAM(1 26/006/000) * *

DDNAME DEVICE VOLSER OPNTYP OPNCNT DSORG OPTCD RECFM LRECL BLKSIZE
STEPLIB 3350 SCCS 1 3 INPUT 1 PO U 0 19,069
TAPE 3400 EXMC62 INPUT 1 PS VB 12996 13,000

,***. ********** ******** VSAM (126/006/000)*******
LEVELS EXTENTS RECORDS DELETES INSERTS UPDATES

0 10 0 0 0
2 0 3 0 0 0
0 10 0 0 0
0 0 4,013 0.0 0

,EXCP'S***UCB. DEVICE

.

BUFNO BLOCK-CNT EXTS TRKALC TRKUSD

0 2 1 30 N/A
0 74 N/A N/A N/A

****** i ************
DDNAME
OZVSAM
OZVSAM
OZVSAM
OZVSAM

I EF375I
IEF376I

CPNT STAT OPCT
IDX CURR 1

IDX CHNG 1

DATA CURR 1

DATA CHNG 1

JOB /CPDGHHOZ/ START 82208.0631
JOB /CPDGHHOZ/ STOP 82208.0727 CPU

GETS UNUS-CI SPLT-CI SPLT-CA

* * * * < *****************

0 131,072
0 12,288
04745 . 600
0 839,680

24MIN 56.33SEC SRB

OMIN 26 . 135EC

>*******

.*****-.

EXCP'S**

TRKRLS '

0 "

N/A '

BLKCNT ?

0 1

1 1
'*

O »

8 1

TCB TIME 24:56.33 * START TIME
SRB TIME 26 . 13 * END TIME
ACTV TIME 55:08.80 * ELP'SD TIME
************** *.* *********************

6:31:27.33 * JOB NAME CPDGHHOZ PROGRAMMER LOAD NEW TAPE U.S. SENATE
7:27:09.37 * RLS LEVL 03. 8E ACCT NO 750-CP-LT-P COMPUTER CENTER*

55:42.04 * SYSTEM D168 JOB LOG 06:30:29.01*07/27/82.208 - L -

**

Figure 3. Job Step Termination Statistics Display

304

favored over jobs with
higher estimated tran-
sit times by the
relative position of
the associated job
class on the initiator
strings

.

4) Promoting good
user practices which
result in lower
initiator transit
times. Examples of
this include reblocking
of files to reduce I/O
delays and program
changes to reduce CPU
consumpt ion

.

Attempts at reducing the depen-
dencies between initiated jobs
proved quite successful. As
shown in figures 4 and 5 below,
contention due to DSNAME enqueue
conflict was virtually
eliminated, and time spent in al-
location recovery was sharply
reduced (week 18 is when the
DSNAME conflict manager and
scheduler were introduced).

Aggregate turnaround time was im-
proved significantly during the
year following full
implementation, as figure 6 at-
tests (the scheduler was fully
implemented in May 1980) . No at-
tempt has been made to compute
the percentage improvement at-
tributable to each facit of the
scheduler (multi-server model,
reduced initiator service time
covariance, prioritized input
queue, improved user practices).

An unexpected side effect of im-
plementing the scheduler was the
improved consistency of tur-
naround time. As shown in
figures 7 through 10, the tur-
naround times for class A-type
work (low resource use) and class
D-type work (high resource use)
showed a lower dispersion after
scheduler implementation than
before. This characteristic had
a positive impact not only on the
queueing theory aspects of the
system (improved throughput), but
also made the rewards system for
users more predictable.

4. Conclusions

The scheduler system described
above asserts the efficacy of proper
controls over batch workloads. In the
MVS environment in particular, alter-
natives to vendor-provided control
systems may be particularly effective.
For those sites with major batch
workloads, the scheduler can provide
significant benefit.

References

/l/ "0S/VS2 MVS System Programming
Library: Initialization and Tuning
Guide", No. GC28-1029, IBM
Corporation, Data Processing Division,

White Plains, New York, page 5-1.

/2/ Ibid, page 5-4.

/3/ R. Schardt, "An MVS Tuning
Perspective", No. GG22-9023, IBM
Corporation, Washington Systems
Center, Gai thersburg , Maryland,
Appendix A.

/4/ T. Beretvas, "Performance Tuning
in MVS", IBM Systems Journal 17, No.
3, 290-313 (1978).

/5/ R. Simpson and G. Phillips,
"Network Job Entry Facility for
JES2",IBM Systems Journal 17, No. 3,
221-240 (1978).

/6/ "0S/VS2 MVS System Programming
Library: System Management
Facilities (SMF) " , No. GC28-1030, IBM
Corporation, Data Processing Division,
White Plains, New York, pages 4-1
through 4-42.

/I/ J. Martin, "Systems Analysis for
Data Transmission", Prentice-Hall,
Englewood Cliffs, N.J. (1972), pp 413-
480.

/8/ Ibid, pp 413-480.

305

* * 0>
* * * CM

00
* * CM

*
* CM

(£>

* * * CM

10
* CM

*
* CM

CO
* CM

CM
* CM

* ^_

* CM LU

J, 4- o
LU

* * * # CM
£

• GT>

*

* 00
* *

* + * * # * * r-
* * * * #

* * * * * * * * * * * to
* * * * * * * * * * * * *

* » # *
* *

* * * * ^
* * *

* * # * * * * * * * CO
* * # # * * * * * *

* * * * * * # * CM
* * * * * * # * * * * * * *

* * * * * * * # *
* • * * * * * * * * + *

* * * # * * * # o
* * * * * * * * * * * * *

* # * * * * * * * * * * en
* * * * * * * * * * # * *

* * * * * CO
* * * *

* * * * * * * * * * * * * r-
* * * # * * * * * * #

* * * * * * * * * * * * *- * to
* * * * * # * * # # * *

* * * * * + * * * * * If)

* * * * * + * * * *

* # * * * * * * * *
* * * * * * * * * * * * * *

* * * * * * i CO
* * * * * * * *

* * * * * * * * * * * # * * i CM
* • * * * * * * * + * * *

* * * *
* *

Q
0 <D

4J 0)

•H
<D 0
3 S3
Q

fa^ g
0) to

(U

2
0

S-t m
<D

CM
Q)

-p +J

01 o
0 <u

M
H

en 0
H u

c
0 D
X
u W
0 4J
•4-1 U
to •H
-H rH
-p 4-1

rl A
c 0
H O
<D <D

Cn 3
fO (1)

M 3
<D a1

c
w

tt)

u
3
cn
•H
En

306

* *

* * # *

* * * *
* * # *

+ *

* #

* #
+ *

* *

o
-p

cu

Q
X
<D

s
rJ

(1)

* #

*

* *

* *
* #

* * * #

* * # * * * * * # *

* # * # *

* # * *
*

* * * * # #
* # # *

0 3
CN Li.

s
01 in

+J

o

tn

u

O
K >i

J-l

M (U

O >
4-> O
iT! U
•rH <D

•P «
•rH

c c
H 0

•rH

Q> -P

(I) U
M 0
(U rH
> rH

* #

* *

****** * *

* *

0)

u

-H

* * * *

* * * *

< 8
3
U O
o —
-I
< 0>

8 8 8 8 8

307

P
G
O
2
>i

D LU

Z CO

i/i o
LU O *

T3
G

o
u
(0

g
H

E-i

XI
O
h>

,G
U
-P
(d

pq

uj CD
CO E
O LU -1 u

< LU

1- O
quo:
Z < cl

<3)

S-l

5
X
X
X X
X X
X X
X X X
X X X
X X X X
X X X X
X X X X X
X X X X X
X X X X X X
X X X X X X
X X X X X
X X X X X X
X X X X X X
X X X X X X

> X X X X X X
X X X X X X
X X X X X X

+ > X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

u

CPH

308

FREQUENCY

9000

8000

70CO

6 : :o

5000

40O0

30O0

2000

1000

STATISTICAL ANALYSIS
J0BCLASS=A

FREQUENCY BAR CHART

SYSTEM 7:31 TUESDAY. NOVEMBER 18. 1980 14

***** *****
***** *****
***** *****
***** *****
***** *****
***** *****
***** *****
***** *****
***** *****

1 2

***** < * * * *

6

TURNT I ME

Figure 7. Turnaround Time Distribution for Class A (Low Resource
Estimate) Work - Schedules (Reconstructed)

309

STATISTICAL ANALYSIS SYSTEM 7:31 TUESDAY , NOVEMBER 18. 1980
JOBCLASS=A

2

FREQUENCY BAR CHART

FREQUENCY

3 4

TURNT I ME

Figure 8. Turnaround Time Distribution for Class A Work
Implementation of Scheduler

- After

STATISTICAL ANALYSIS
JOBCLASS=D

SYSTEM 7:31 TUESDAY , NOVEMBER 18, 1980

FREQUENCY BAR CHART

FREQUENCY

25

20

15

10

TURNT I ME

Figure 9. Turnaround Time Distribution for Class D Work - After
Implementation of Scheduler

310

STATISTICAL ANALYSIS SYSTEM 7:31 TUESDAY , NOVEMBER 18, 1980
JOBCLASS*D

FREQUENCY BAR CHART

FREQUENCY

12 +

TURNT I ME

Figure 10. Turnaround Time Distribution for Class D (Hiqh Resource
Estimate) Work - Pre - Scheduler

311

EVENT DRIVEN MEASUREMENTS OF MVS
THAT IMPROVE CONFIGURATION TUNING

AND MODEL ING

Glen F. Chatf 1 e I

d

Duquesne Systems Inc.
622 - Two Allegheny Center

Pittsburgh, PA. 15212

1 . Ob j ect i ves

The objectives of this paper are
the following: 1) to review current
requirements for additional MVS perfor-
mance measurement data, 2) to Identify
those measurements that would signifi-
cantly simplify tuning and modeling
efforts, and 3) to describe new event
driven measurement techniques for ob-
taining this useful data.

2. INTRODUCTION

System tuning can be divided Into
three basic categories as follows:
hardware configuration tuning including
volume placement; data tuning which
consists of dataset placement, blocking
and file organization; and software
tuning which Involves such diverse func-
tions as setting SRM parameters, opti-
mizing BLDL lists and even modifying the
operating system as a last resort. The
essence of configuration tuning Is to

Improve the organization of hardware
components and volumes to acheive In-

stallation defined service objectives.
Rapid growth and the expanded use of

shared DASD have made this task Increas-
ingly difficult in recent years.

3. CPU MEASUREMENT PROBLEMS

The CPU is the single most critical
system resource, and as such. It Is

extremely Important to have accurate and
complete CPU measurement data. Unfor-
tunately, many analysts rely on SMF or

RMF for CPU measurement data without
fully realizing their Inherent Inaccur-
acies. The accuracy of SMF and RMF was
discussed In an article by J. C. Cooper
[8] which appeared In the 1980 JLBJ4 Sy_sz

terns Journa

I

, volume 19, number 1. In

that article, titled "A Capacity Planning
Methodology", Cooper stated, "SMF does
not record al I the CPU time expended on
behalf of a particular Job. Its purpose
is to be consistent rather than complete,
In order to satisfy requirements of
charge-back systems. In addition, the
portion of time captured by SMF varies
with the workload type and the specific
SMF implementation for the various SCPs."

Let's examine Cooper's statements
more closely. To begin with, it is clear
that SMF's Inaccuracies are the result of
Its design purpose and are not simply the
consequence of an oversight or an unfixed
bug. Incidentally, the same holds true
for RMF, since it uses SMF CPU data.
Cooper's last statement Is even more
disturbing. The fact that SMF/RMF's
accuracy Is different for each workload
makes its data very difficult to use.
Before an analyst can begin to use raw
SMF/RMF CPU data he must try to determine
the correct capture ratios that should be
applied to each measurement. Since the
accuracy varies, this process is not
simple like calibrating an instrument.
Typically the analyst needs to massage
the data with complicated numerical tech-
niques. His problem Is analogous to
engineers and scientists being forced to
use elastic measuring tapes, the result
of which would destroy those dlsipllnes
as we know them today.

A reasonable question at this point would
be, "Just how Inaccurate are SMF and
RMF?". If their error is only a few
percent, one could easily live with that
for most CPE work. Unfortunately, this
is not the case. Page 33 of Cooper's
article lists some typical capture ra-

313

tios. TSO trivial, for example, has a

capture ratio of only .36. TSO program
development is only slightly better at
reasons why TSO is so difficult to tune
and forcast is that the analyst can only
measure a fraction of its impact on the
systems. Moreover, this problem is not
unique to TSO either. The capture ratio
for batch testing is listed as only .60.

There are three major causes of
SMF/RMF's Inaccuracy. The first is that
SMF does not measure and al locate I/O
Interrupt CPU time to the task that
requested the I/O. This problem dis-
torts nearly all SMF/TCB CPU measur-
ments. SMF's second major omission is
that It does not account for Initiation/
termination CPU time. This time can be
quite significant for batch testing
which typically contains many short Jobs
and steps. SMF's third flaw is that It
does not specifically measure Auxiliary
Storage Manager CPU time. Consequently,
the CPU time required to support paging
and swapping can not be easily identi-
fied and allocated to particular work-
loads. In the final analysis as Cooper
stated, SMF/RMF CPU measurement was
designed for consistent job accounting
not for complete system measurement.

Another CPU measurement that Is
missing from SMF and RMF is the CPU
visit count. This parameter, which Is
required by many configuration modeling
tools, must be maintained separately for
each workload and, In reality should be
expressed as a function of CPU speed and
workload processing rate. Approximating
a workload's CPU visit count by equating
It to Its total EXCP count can be very
Inaccurate. In order for this approxi-
mation to be valid the following assump-
tions must be true: 1) the task must be
I/O bound, 2) It must not overlap I/O
requests, 3) It must not use QSAM, VSAM,
VIO or other access methods that satisfy
more than one EXCP request with a single
SIO, 4) its I/O to system data areas
such as VTOC's, catalogs, and directo-
ries must be negligible because these
l/O's are not counted by SMF, 5) It
must not wait a significant number of
times for Indirect I/O such as database
calls, SPOOL reads or writes, program
loads and paging, and 6) It must not
Issue many ENQs or wait on many timer
interrupts. Recognizing the signifi-
cance of the previous assumptions, It Is
clear that the analyst needs a better
measure.

4. CPU MEASUREMENT SOLUTIONS

The best solution to SMF and RMF CPU
measurement problems Is obtained with
event-driven measurement software. An
event-driven software monitor, such as
the QCM Performance Monitor, can accur-
ately measure 100$ of the CPU's activity
because it receives control each time
"ownership" of the CPU changes. At each
of these change events the monitor com-
putes the elapsed time (using the system
tlme-of-day clock) since the last event
and updates the appropriate workload
measurement control block (WMCB). The
ownership change events In MVS are TCB
and SRB dispatches, I/O Interrupts, ex-
ternal Interrupts, page faults, and non-
dispatcher exits from the I/O, external,
and program check interrupt handlers.
Control is passed to the monitor via
dynamically Inserted "hooks" at the re-
quired ownership change points. At these
points the monitor determines which work-
load class is acquiring ownership of the
CPU and saves a pointer to Its WMCB.
This pointer Is then used by the monitor
to locate the proper WMCB at the time of
the next ownership change event. One or
more special WMCBs can be used to accum-
ulate times which do not explicitly be-
long to any of the workload classes de-
fined by the user of the monitor. Exam-
ples of special workloads are the master
scheduler, external Interrupt processing,
started tasks such as JES and the auxili-
ary storage manager. Since every owner-
ship change event is intercepted by the
monitor, all CPU activity Is accurately
attributed to the proper WMCB. (No "cap-
ture ratios" [8] are required.)

To provide CPU visit count func-
tions, the monitor must intercept and
count WAITs. A workload's voluntary CPU
visit count is equal to Its WAIT count,
not Its EXCP, SIO or dispatch count. Its
WAIT count will be a function of the
speed of the CPU it executes on and the
rate at which the workload Is given CPU
service. With this in mind, a workload's
voluntary CPU visit rate, as a function
of Its CPU service rate, can be empiri-
cally determined from different observa-
tions measured by the monitor. The work-
load's Involuntary CPU visit rate will be
a function of Its page fault rate and the
rate at which it Is preempted from the
CPU by higher priority workloads, factors
that are functions of the mu 1 1 1 programmed
mix and not the workload Itself.

314

5. I/O MEASUREMENT DIFFICULTIES

Moving away from the CPU, data
paths are the next major components of
the configuration. IBM 370 systems have
three types of data paths, selector,
byte multiplexor and block multiplexor.
Because the the vast majority of con-
figuration tuning problems are with the
DASD I/O subsystem, discussions In this
paper will be limited to block multi-
plexor data paths (the phrase RPS data
path is synonymous). An RPS data path
consists of a block multiplexor channel,
a control unit and a head-of-str I ng
(called simply string for the remainder
of this paper). S. E. Fr I esenborgfj 2~\

gives two excellent examples of path
measurement problems In the IBM Techni -

cal Bui I eti n GG22-9217-00 titled "DASD
Path and Device Contention Considera-
tions".

1

1 CPU
1

1 CHAN 1 1 1 CHAN 2 1

1 20) 1 1

1 1 1

20} 1

1 1

1 1

1 1

1 1

1 1 1

1 CTRL 1 1 1

1

CTRL 2 1

1 3 91 1 1

1 1

1) 1

1

Figure 26. Foil 32 - MEASUREMENT DIFFICULTIES

"We are concerned with path busy,
not Channel busy. If an RMF report
showed a perfectly balanced situation of
20% utilization on each Channel, you may
start congratulating yourselves on a

great Job . .

.

When in reality the worst possible
kind of Imbalance may exist. The visual
represents two Channels connected to two
Control Units through a two-channel
switch arrangement. Path busy Is not
Channel busy. Don't assume It Is Just
because Channels are easy to measure."

The channel balancing algorithms
within MVS will automatically balance
the channels. However, by doing so, MVS
can easily hide significant I/O bottle-
necks because RMF does not measures the
usage of the other components of the
data path, namely the control unit and
the string. The previous example illus-
trates this problem very clearly.

1 1 CPU 1 1 1 CPU 2 1

1 1 1

1 CPU 3 1 1

1 1 CHAN 1 1 1 CHAN 1 I 1 CHAN 1 1 1

I I 35) 1

1

1 40) 1 1 20) 1 1

1 1 1

1 1

1

1 1 1

1 1

1

1 CTL 1

1

1

1 1 1

1 CTL 2 1 1

1 ?

1

1 1 ? 1 1

1 1 1

1

1

1 1

1 STR 1 1

1 1

1 ? 1

1 1

1 Figure 27. Foil 33 - MORE MEASUREMENT DIFFICULTIES. 1

Again quoting Frlesenborg, "Things can
get even worse.

One CPU's view of the world may look
pretty good while a total view of the
Installation Is a disaster. If the dia-
gram above represents three systems
sharing a single string, the measurement
reports from each of the systems would
show Channel busy percentages of 35, 40,
and 20. The 40 Is a bit above the 'uni-
versal goodness guideline' of 35$, but
that shouldn't be too bad...

Actually, CTL 1 Is at least 75*
busy. This would cause great concern in
most cases, but not this one. The reason
that 15% utilization should not concern
us Is because the String Head Is 95%
utilized, and the contention Is causing
each 1/0 to be elongated by 19 revolu-
tions. That Is about three tenths of a

second. In this example string head busy
Is the primary cause of application re-
sponsiveness problems."

6. EVENT-DRIVEN_l/0_MEASUREMENTS

It Is apparent from the previous
examples that the configuration tuner
needs additional DASD measurements. Here
too, an event-driven approach must be
taken to obtain these Important I/O mea-
surements. Sampling monitors are only
capable of measuring channel busy time
(via sampling with the Test Channel in-
struction) and total device busy time
(via sampling of the UCB busy bit).

The key hardware feature of the IBM
370 which can be used for detailed,
event-driven DASD measurement Is the
Program Controlled Interrupt (PCI). When
a channel fetches a Channel Command Word
(CCW) which has the PCI bit on. It causes
a PCI I/O interrupt while continuing to
execute the channel program In a com-

315

pletely normal way. When the PCI inter-
rupt is fielded by the monitor, it Indi-
cates that the previous DASD command has
finished and the current command is

beglning. The monitor then performs an
elapsed time computation to measure the
duration of the pervious DASD function.
For example, by turning the PCI bit on
in the CCW that follows the initial seek
CCW, seek time can be measured. Seek
time Is the elapsed time from the time
of the SIO (the monitor must also Inter-
cept SIOs) to the time of the PCI. Also
by placing another PCI on the first CCW
after a set sector CCW, normal latency
and RPS degradation times are measured.
The time from the first PCI to the se-
cond PCI is divided by the device's
rotation time. The Integral quotient is

the number of revolutions of RPS degra-
dation (which is easily converted back
to time) and the remainder is the normal
fraction of a revolution of path discon-
nected latency time.

Seek times, measured by the PCI method
described above, can be classified as
one of three types, namely, productive
seek time, seek degradation time, and
shared seek degradation time. The moni-
tor distinguishes among them by main-
taining the transaction identifier and
the cylinder number for the last I/O
operation to each disk spindle. When
the next I/O operation is performed, a

comparison Is made to determine if it Is

for the same transaction. If so, the
seek time Is accumulated as productive
seek time; otherwise It Is accumulated
as seek degradation time. In a shared
DASD environment an Initial test prior
to the above test is made to determine
if the next operation is to the same
cylinder as the last (a "zero cylinder
seek"). If so and if a non-zero seek
time Is actually measured, this time is

accumulated as shared seek degradation
time since the arm must have been
"stolen" by another system.

When format write CCWs are not present
in a channel program, path busy time is

measured as the elapsed time from the
second PCI to the terminating channel
end, device end interrupt. This portion
of the operation (namely, search and
daTa transfer) requires all the compon-
ents of the path. When format write
CCWs are present, a third PCI is re-
quired to measure path busy time. This
PCI Is placed on the first CCW after a

command chained sequence of format write
CCWs, and the elapsed time from the
second PCI to this third PCI is the
measured path busy time. The time from

the third PCI to the channel end, device
end interrupt Is erase time, which can be
maintained separately or included as part
of total productive device busy time.
(For certain DASD models, e.g., 3330
Models 1 and 2 and earlier DASDs, the
control unit and head of string - but not
the channel - are also busy during format
write time, so in this case it Is time
when only a portion of the path, namely
the channel, Is free). For selector
channel devices, such as tapes, total
device busy time is simply measured as
the elapsed time from SIO to device end
interrupt. Path busy time, for both the
channel and control unit, is the elapsed
time from SIO to channel end. No PCIs
are required.

7. AUXILIARY STORAGE MANAGER MEASUREMENT

Measurements of the auxiliary stor-
age manager (ASM) are maintained by the
monitor in a separate WMCB . For all
releases of MVS prior to SP 1.3, ASM I/O
is recognized at SIO time by its dis-
abled interrupt exit (DIE) address In the
I0SB. For SP 1.3, the ASM's I0S driver
ID is used. The monitor also accumulates
ASM CPU time in the CPU time entry of the
ASM's WMCB. This 1 1 me' cons i sts of the
time to process page faults Interrupts,
the time to process ASM I/O Interrupts,
and the time to execute ASM SRBs. In
order to be able to apportion the ASM
WMCB values among the various workload
classes. If desired, the monitor main-
tains a count for each workload class of
the number of page transfers as a result
of demand paging, swapping, and VIO
(these values are obtained from the OUSB
and OUXB). The ASM I/O and CPU times in
its WMCB may then be divided among the
classes according to the ratio of the
number of page transfers for each class
to the system wide total of page trans-
fers. Note that It is not possible to
directly assign an ASM I/O operation at
SIO time to a particular workload class
since a given ASM operation may Involve
the transfer of pages for multiple clas-
ses.

8. TUNING SUMMARY

Thus far, this paper has presented
event-driven techniques for the direct
measurement of critical MVS configuration
tuning data. The parameters chosen to be
measured were those that were felt to be
most helpful in simpllfing and Improving
the configuration tuning process. In
particular. It was shown that it was

316

possible to obtain the following Infor-
mation:

1. complete CPU measurement,
2. productive seek time,
3. seek degradation time,
4. shared seek degradation time,
5. RPS latency time,
6. RPS degradation time,
7. erase time, and
8. path busy time for channels,

control units and devices.

The remainder of the paper will
discuss measurement Issues related to
the application of queuelng network
models to configuation tuning.

9. MODEL ING BACKGROUND

The emergence over the last several
years of commercially available, "user-
friendly" queuelng network modeling
packages has greatly spurred interest
among performance analysts In the appli-
cation of modeling to configuration
tuning problems. These packages make it

possible for analysts who would not
previously have attempted modeling stud-
ies to now be able to do so.

The major effort in using such
packages Is normally in the preparation
of its Input data, the measurement of

output data for model validation pur-
poses, and the collection of additional
performance data to facilitate modifica-
tion analysis. This is not surprising
since, for the most part, modeling
theory and measurement methods have
evolved Independently. In particular,
measurement tools have rarely been de-
signed with the input and output re-
quirements of models taken into consid-
eration. When modeling IBM's MVS opera-
ting system, for example, few of the
measurements of RMF and SMF, IBM's major
monitors, can be used directly. The
analyst must estimate modeling para-
meters from RMF and SMF values following
methods such as described In CO and

a process which Is not only time
consuming but can Introduce Inaccuracies
Into modeling results. Also, in some
cases a meaningful estimation of para-
meters from known values may not be
possible and the analyst Is forced to
use simpler than desired models.

In general, the measurement pro-
blems associated with analytical model-
ing can be grouped into three general
categories. The first such category
consists of those problems related to
collecting measurement data for the

critical processing periods, frequently
called windowing. Because there Is no
specific modeling measurement tool avail-
able today, analysts are forced to use
data from other sources. As a result it
Is difficult, if not Impossible, to accu-
rately characterize these critical pro-
cessing periods.

The second major problem area has to
do with lack of readily available trans-
action counters and response time mea-
surements. With the exception of TSO,
there Is very little relevant transaction
data for online systems. To meet the
requirements for modeling each sub system
must provide this type of measurement
data

.

The last category Includes all of
the problems that result from Inapprop-
riate, inaccurate or incomplete workload
and server measurement. It Is this third
category of problems that can be solved
cleanly with the same event-driven
methods already described.

10. WORKLOAD AND SERVER MEASUREMENT
REQUIREMENTS

Measurement needs for using queueing
network models can be classified Into
three basic types:

1) Measurement of a system to obtain
Input values required by modeling algo-
r i thms

;

2) Measurement of a system to obtain
output values produced by modeling algo-
rithms (used to validate a model); and,

3) Measurement of a system to obtain
various values which do not correspond
directly to model Inputs or outputs but
rather are used to facilitate modifi-
cation analysis (I.e., the process of
preparing model inputs which represent a

hypothetical system and hence cannot
actually be measured).

Specific examples of each of these
types of values are given In the text
that f ol I ows

.

1 1 . Mode I I nputs

Major Input values required by typi-
cal modeling algorithms are C > 2, 3, 4,

5, 6, 7](not all values are required by
all a I gor I thms)

:

1) The number of workload classes, each
consisting of "transactions" (jobs or

317

steps, TSO transactions, IMS trans-
act Ions, etc .)

;

2) For each class - CPU time or the
number of CPU visits per trans-
action, and CPU mean service time
per visit; and

,

3) For each class and each 1/0 device -

I/O time or the number of successful
SIOs per transaction, and mean de-
vice service time per SIO Inclusive
of contention time.

12. Model Outputs

Major outputs produced by modeling
algorithms and required for model vali-
dation are [1, 2, 3, 4, 5, 6, 7]:

1) Transaction response time per class;

2) Throughput per class for closed
models (for open models this
va I ue, I nter preted as arrival rate,
Is a model Input); and,

3) Server utilizations by class.

13. Modification Analysis

Some DASD measurements useful In
the modification analysis process are:

1) Counts of bytes transferred per
transaction per class to each
dev I ce ; and,

2) All Individual components of device
busy time, e.g., normal latency, RPS
degradation, format write, search
and data transfer, and seek degrada-
tion caused by arm steal I ng by ano-
ther system or by competing trans-
actions In the same system.

These measurements are helpful, for
example, In performing modification
analyses which Involve moving datasets
from one disk to another, reblocklng
datasets, or moving disks from one
string to another.

14. EVENT-DRIVEN WORKLOAD MEASUREMENT

This section will highlight the
additional event-driven methods that are
particularly helpful to modeling. It
will also provide a more detailed des-
cription of how the WMCB is used.

15. Work I oad C I asses

Workloads may be classified In dif-
ferent ways in MVS, two examples being by
address space (or groups of address
spaces) or by performance group period.
From the standpoint of the measurement
tool, the major constraint in assigning
workload classes Is that for efficiency's
sake, the process of associating units of
CPU and I/O activity with their workload
classes must be straightforward. This is
true of address spaces, for example,
since the address space number corres-
ponding to a particular activity Is
usually quite easy to determine. Corres-
ponding to each workload class, the moni-
tor assigns a WMCB which contains the
measurement data for that workload.

16. Transaction Counters

The number of transactions encount-
ered during a measurement interval must
be counted In order to obtain the number
of CPU and I/O visits per transaction.
For batch workloads, the job Initiation
exit (IEFUJI) Increments a counter by one
In the appropriate WMCB each time It exe-
cutes. If desired, step Initiations can
be counted as well, using IEFUSI. For
other types of workloads (e.g., TSO and
IMS), hooks at transaction initiation
points in these systems are required
which update counters in the appropriate
WMCBs. (Alternatively for TSO and batch
jobs, the monitor can copy the trans-
action count maintained by MVS In the
OUXB control block to the appropriate
WMCB).

17. Additional Workload Measurements

The monitor's CPU and I/O timing
techniques were described earlier In the
tuning section. Many modeling tools,
however, require visit counts also. The
value which should be used for the total
number of CPU visits Is the number of
real waits Issued by the workload. This
value should be taken from the empirical
CPU visit function described previously.
I/O visit counts are simply the number of
successful SIOs which, strange as it may
seem, Is most easily obtained by counting
device end Interrupts [10]. This techni-
que Is simpler than counting executions
of the SIO and SIOF Instructions with
condition code zero since some SIOFs may
result In deferred condition code one
Interrupts (meaning the I/O operation did
not start) and hence should not be count-
ed. The monitor can also obtain the
number of bytes transferred by a channel

318

program by scanning the program and
accumulattng the byte count fields of

the CCWs In the program. This technique
Is described In detail In [11].

In order to maintain al I of the
above measurements (seek times, RPS
degradation, path busy time, event
counts, bytes transferred, etc.) by
Individual device (I.e., I/O server) by
workload class, the monitor functions as
follows: At the time of an SIO (or
SIOF) the monitor receives control (via
a dynamically installed hook) and, by
examining MVS control blocks, determines
which workload class Is responsible for
the upcoming I/O operation. (For exam-
ple, the number of an address space
responsible for an I/O operation is

located in the I0SB which is pointed to
by register 2 at the time of an SIO).
The monitor then saves a pointer to the
WMCB for that workload class In a con-
trol block, called a device status block
(DSB), corresponding to the device to
which the SIO is being issued. At the
time of an I/O Interrupt (PCI or device
end) the monitor uses the Interrupting
device's address to locate the proper
DSB, which in turn points to the proper
WMCB. Each WMCB has an entry for each
device and the monitor accumulates Its
various measurements in the proper en-
try.

18. Model Outputs

In order to derive transaction
response times the monitor maintains the
total transaction active time for each
workload class. This value is available
In the OUXB for batch jobs and TSO and
Is copied to the WMCB. For subsystems
such as IMS, hooks at transaction ini-
tiation and termination points are re-
quired In order to measure It. Trans-
action active time divided by the number
of transactions gives transaction re-
sponse time In the main system, i.e.,
delays in a communications network or
spooling delays In printing a job's
output are not included. Consequently
these response times can only be vali-
dated against model outputs which also
Ignore these delays.

Throughput per class Is easily
computed since the total number of tran-
sactions per class and the length of a

measurement interval are available.
Throughput is only a model output for
closed system models. For open models,
this value, treated as arrival rate, Is

actually a model Input.

Since total device busy time at each
device can be obtained from the WMCBs,
device (i.e., server) utilizations by
class can be easily derived.

20 SUMMARY AND CONCLUSION

This article has presented methods per-
taining to MVS for the direct, efficient
measurement by a software monitor of
Important parameters required for effec-
tive configuration tuning and modeling.
Event-driven techniques for accurate and
complete CPU I/O measurement were des-
cribed. In particular, for RPS DASDs,
which are of critical importance In v I

r-

tually any performance study of MVS, it
was shown that the following measures can
be obtained for each workload class and
each DASD:

(1) Total number of successful SIOs;

(2) Total productive seek time;

(3) Total seek degradation time;

(4) Total shared seek degradation time;

(5) Total RPS degradation time;

(6) Total normal latency time;

(7) Total path busy time (i.e., search
and data transfer time);

(8) Total format write time; and

(9) Total number of bytes transferred.

In addition. It was shown for each work-
I oad class that the

(10) Total number of transactions
be maintained.

can

For model Ing studies, the analyst can
combine certain of these values to obtain
the necessary inputs for a particular
modeling tool. For example, mean service
time per transaction inclusive of conten-
tion time is the sum of Items (2) through
(8) divided by I tern (10), and mean ser-
vice time exclusive of contention time Is
the sum of Items (2), (6), (7), and (8)
divided by Item (10). Items which are
not used directly as Inputs are still of
value to the analyst because of their
importance in performing modification
analyses. For example, if the Impact of
a particular dataset rearrangement is to
be modeled, then items (6), (7), and (8)
are unchanged and the analyst need only
predict the changes in I terns (2) through
(5) .

319

It is important to note the dis-
tinction between the DASD measures above
and those possible with RMF and SMF.
RMF only measures system-wide (i.e.,
independent of workload class) total
device busy time (i.e., Inclusive of all
contention times). In general, these
total times can only be approximately
apportioned to workload classes by using
ratios of SMF EXCP counts for each class
at each device to the total number of
EXCPs for the device. This apportion-
ment can be quite Inaccurate since EXCP
counts do not reflect the true amount of
device usage [10H. Detailed values such
as RPS degradation times cannot even be
estimated accurately from RMF and SMF
data

.

Finally, the configuration tuning effort
can be significantly simplified by the
path busy and RPS degradation measure-
ments at the channel, control unit,
string and device levels.

8. Cooper, J.C., "A capacity planning
methodology", ±m Systems Journal 19,
1 (1 980) , pp. 32-33.

9. Levy, A., "Introduction to practical
operational analysis: An MVS perspec-
tive", CMG Proceedings, Boston, 1980.

10. Conner, W., "An analysis of I/O
operation counts in MVS", Procee d I ngs_ of
the ICCCM, Chicago, 1981.

11. Conner, W., "A more accurate software
technique for counting number of bytes
transferred", Proceedings o± ±te
Washington, D.C., 1979.

12. Frlesenborg, S. E., "DASD path and
device contention considerations",

I BM
lecJmicsl Bulletin, GG22-9217-00.

21 . REFERENCES

1. Rose, C.A., "A measurement procedure
for queuelng network models of com-
puter systems", £o.m puling Surveys
10, 3 (September 1980).

2. "An integrated approach to capacity
planning: A detailed product des-
cription of BEST/1 and CAPTURE/MVS",
BGS Systems, Waltham, MA.

3. Krzesinski, A. and Teunissen, P.,
"An introduction to system modelling
using the "Stochastic Network Analy-
sis Program", Report No. RW77-05,
Department of Computer Science, Uni-
versity of Ste I I enbrosch , South
Af r I ca, June 1 977 .

4. "CADS (Computer Analysis and Design
System): A brief description", In-
formation Research Associates,
Austin, TX.

5. "PAWS (Performance Analyst's Work-
bench System): Introduction and
technical summary", Information
Research Associates, Austin, TX

.

6. Bruell, S.C., and Balbo, G. , Compu-
tati onal algor I liims Ipx closed
queueln g networks, North Holland,
NY, 1980.

7. Bard, Y., "A model of shared DASD
and mu 1 1

i
path I ng", Commun I cat I ons

Q± ILe h£M, 23, 10 (October 1980).

320

A NEW APPROACH TO
VM PERFORMANCE ANALYSIS

William Tetzlaff

Research Division

Yorktown Heights, New York

Thomas Beretvas

Information System and Technology Group
Poughkeepsie, New York

In the past VM performance analysis centered around resource

utilization, and more specifically around CPU utilization. In

this paper the concept of state sampling is used to characterize

the system responses to interactive users. We will show how
to break the response time into its components and conse-

quently how to locate the limiting resource effecting response

time.

INTRODUCTION

In the past VM performance analysis cen-

tered around resource utilization, and more

specifically around CPU utilization. The

concept of state sampling in VM/370 was

introduced by Tetzlaff 1

in order to charac-

terize the time spent waiting for, and using

resources by all users. We extend this tech-

nique in order to characterize the system re-

sponses to interactive users. Doherty and

Kelisky 2 and Thadani 3 have demonstrated

the high value of fast response time to the

interactive terminal user.

In this paper we will show how to break the

response time into its components and conse-

quently how to locate the limiting resource

affecting response time and suggest ways
that it can then be improved.

The question that was normally asked in the

past: "how many users can be supported by

the next larger size CPU?". Sometimes an-

other question was asked "how many fast

disks are needed for the support of the

users?". These questions are still being

asked of course, but with the advent of faster

CPU's and larger disks the focus has

changed. There is an increasing emphasis on

fast response times.

The need arose to understand the reported

"response times". An analysis of the re-

sponse times had to break the response times

into its components, arising from CPU, I/O

and paging. Such analysis was not done be-

fore, and no existing program had been

equipped to provide this capability. In order

to provide this function, the VM Monitor

records were processed by an internally de-

veloped program, and the resulting reports

were used to obtain the response time com-

ponents. In the analysis special emphasis was

placed on the hitherto largely neglected pag-

ing component of the response time.

Analysis of the data revealed that often the

reported response times were not "true" re-

sponse times, they were only "Q-drop"

times. Some transactions really consist of

multiple Q-drops, and therefore the true re-

sponse time may be longer than the reported

Q-drop time. Analysis of the trace data re-

vealed ways to reduce the frequency of two

kinds of queue drops occuring.

321

The paper discusses the formulae used for

the evaluation of the response times compo-
nents, specifically, the supervisor and prob-

lem program CPU times, I/O and paging re-

sponse times and CPU wait times.

OVERVIEW OF VM/SP SCHEDULING.

In VM/SP the scheduler moves users be-

tween several scheduling categories. The
broadest distinction between users is be-

tween those "in a queue," "eligible to be

added to a queue," and those not in a queue.

The users that are in a queue constitute the

multiprogramming set. These users are in a

single ("run") list that is sorted by an inter-

nally assigned priority. The list is searched

by the dispatcher, which dispatches the high-

est priority user possible. If a user has work
to process, but there is insufficient main stor-

age, he is not placed in queue, he is given

"eligible" status, (i. e. eligible to be placed in

queue).

The users in a queue can be classified into

three categories. The system attempts to

place interactive users in queue 1 ("Ql"),

longer running transactions in queue 2

("Q2"), and very long running transactions

in queue 3 ("Q3"). The three queues are

not really separate, they represent different

status bits in the users' VMBLOK.

Ql.

Ql is intended for interactive users. A virtu-

al machine is placed in Ql, whenever an I/O
operation is completed on a Teleprocessing

Device. For most purposes this means the

console of a CMS user is placed in Ql.

The purpose of placing users in Ql, is to

identify the interactive users on the system,

in order to give them better service.

There is a side effect of this way of deter-

mining which virtual machines represent in-

teractive users. Certain service machines,

RSCS (VNET) or Passthrough do many I/O

operations to Teleprocessing Devices. If the

machine is not in Ql, it is immediately

placed there as a result of these operations,

even though it is not an "interactive user".

If a virtual machine completes its work and

goes into an idle state, it is removed from

Ql. This is referred to as a voluntary drop

from Ql. If the virtual machine has not

completed its work after a specific quantity

of CPU time has been consumed (known as

a time slice), then the machine is involuntari-

ly dropped from Ql. The user then becomes

eligible to be placed in Q2. If no other users

are waiting to be placed in Q2, then the user

will actually be placed in Q2, otherwise he
may languish in "eligible" state until his turn

comes. The time slice that is used to define

the limit of Ql is inversely proportional to

the processing power of the CPU that is run-

ning VM/SP.

Q2.

Q2 users are given repeated time slices in

Q2, with possible intervening times of being

eligible to enter into Q2. After eight time

slices in Q2 a machine may be placed in Q3.

Q3.

Virtual machines are placed in Q3 if the sys-

tem decides that the working set of the ma-
chine is so large that it would be more profit-

able to move the machine in and out of

queue less frequently. Q3 users stay in

queue for eight time slices, and then are

placed on the eligible list. They are then al-

lowed to stay in the eligible state proportion-

ately longer than Q2 users. Thus, the num-
ber of transitions in and out of queue is re-

duced by a factor of eight, without affecting

the long term service rate.

DATA COLLECTION AND REDUCTION.

All of the data that is used in our analysis of

VM/SP response time is available through

the VM/Monitor 4 which is a standard part

of the VM/SP system control program.

VM/Monitor collects system performance

and resource utilization data by means of

sampling and trace techniques, and writes the

data collected on tape or to a disk (spool)

file. Some of the captured events — terminal

input, for example — are caused by activities

of system users. Other events correspond to

the use of such resources as individual Direct

Access Storage Device (DASD) accesses.

Still other events, such as moving a user from

one scheduling queue to another, are caused

when scheduling decisions are made. Sam-

pling is initiated by the expiration of an in-

terval of time. The time-driven events cause

information about each individual user, also

about DASD and tape device utilization to

be written periodically.

VM/Monitor data are reduced by a local

data reduction program 1 written at York-

town for IBM internal use only.

THE YORKTOWN VM SYSTEM.

Unless otherwise noted, all of the examples

of data come from the Computing Center at

the IBM Thomas J. Watson Research Center,

Yorktown Heights, New York. The VM/370

322

systems are used interactively, primarily from

display terminals in offices, but also in ter-

minal rooms, and in some cases from home.

See Reference 2 for more information on the

computing environment at Yorktown. The
Yorktown VM systems contain many local

modifications. Some of these affect interac-

tive performance, others affect the collection

of data.

For the purpose of this study it was desired

to bring the number of Q-drops more in line

with the number of interactive transactions.

Consequently the system was modified to

match the Ql -drops of users with trivial

transactions. Service machines like RSCS
(VNET.CJN) and PVM (Passthrough VM)
were found to generate large numbers of

drops from Ql. A VM/SP feature that cir-

cumvents some of the queue drop processing

was generalized in order to fully eliminate as

many queue drops as possible. The new fea-

ture allows a particular userid(s) to be ex-

cluded from part of the queue drop process-

ing. The Yorktown system was modified so

that when one of these users goes into PSW
wait he is not immediately dropped from

queue. At the time that they would have

been dropped a .3 second timer interrupt is

set. If the user is still inactive at the end of

the .3 second interval he is dropped from

queue. These machines normally become
active before the time expires, and thus stay

in queue. These changes lowered the Ql
drop count, and increased the reported re-

sponse times, however the response time as

seen by the user remained the same.

TYPES OF RESPONSE TIMES.

The value of fast response time is now well

known, how to provide it to a user commu-
nity is less well known. We have developed

techniques for characterizing interactive re-

sponse time in order to find the limiting re-

sources, and this can lead to the enrichment

of the limiting resource, so that the system

limitation is removed.

There are three different ways to measure

and report VM response times. Because the

three different methods produce measures

that significantly differ in magnitude, it is

necessary to distinguish among them.

TERMINAL TRANSACTION RELATED
RESPONSE TIME.

If both scheduler trace data and a trace of

user inputs and system outputs is collected, it

is possible to measure the time from terminal

input to drop from Ql. This measure is the

one that is closest to the magnitude seen by

the user, because it includes data transmis-

sion time. The disadvantage of using this

definition of response time is the quantity of

data that must be written to the monitor and

processed later. Our analysis did not require

the delays associated with terminal interac-

tion.

RESOURCE MANAGER (Ql) RESPONSE
TIMES.

The Resource Manager provides the average

time spent by users waiting to get into Ql
and the average time in Ql. On most sys-

tems the time waiting in the eligible list is

zero, thus the Ql response time is the same

as time spent in Ql. Ql response data rep-

resent a mix of at least two very different

kinds of transactions. The truly interactive

transactions use only about ten percent of

the CPU time slice, and do few if any I/O
operations. The longer running transactions

that are started in Ql, but are later dropped

from Ql and placed in Q2, are very differ-

ent. Because they are removed when they

consume the time slice of CPU time, they all

use a full time slice of CPU time. In addi-

tion they usually do tens of I/O operations.

Analysis of all Ql transactions thus repre-

sents an averaging of two quite different

kinds of work.

TRIVIAL TRANSACTION (Ql VOLUN-
TARY DROP) RESPONSE TIMES.

Scheduler trace data allows response time

measurement for the transactions that com-

plete before the Ql time slice has been con-

sumed. Thus, the transactions that ultimate-

ly end up in Q2 are excluded from the re-

sponse time calculation. The primary goal of

this analysis is to understand how these

("trivial") transactions spend their time.

AVAILABLE REPORTS.

All of the data used in this analysis comes

from VM/Monitor. VM/Monitor allows se-

lective collection of data on a tape or as a

spool file (disk). This is done through key-

word selection of the classes of monitor data

to be collected. It is necessary to run the

monitor with the PERFORM and USER
classes specified in order to do basic Ql
analysis. In order to measure trivial respon-

ses, meaning those due to "Ql voluntary

drop", and estimate its primary components,

it is necessary to collect SCHEDULE class

data. Analysis of I/O devices requires DAS-
TAP class data.

323

STATE SAMPLES OF USERS.

At regular intervals, the VM/Monitor re-

cords state data about each user. By exam-

ining the data, it is possible to classify each

user into one of several run states that are

useful for analysis. The states are summa-

rized as follows:

IDLE --User keying

,

thinking, or absent

RUNNABLE—--User in storage and ready to use the CPU.

RUNNING --User using the CPU.

I/OWAIT —User waiting for completion of I /o.

PAGEWAIT----User waiting for the complet ion of a page-in

.

ELIGIBLE--—User waiting for his turn in storage

DEFERRED——User waiting for the system lock to become free

INST SIM—--Instruction Simulation, a form of CPU wait

.

PSW WAIT—--Service Mach ine waiting for slow spe sd TP I/O.

Analysis of state data helps locate bottle-

necks in the system, and allows analysts to

measure the effect of bottlenecks on the

users.

The state information makes it possible to

determine whether a particular Virtual Ma-
chine is actually using the CPU. The IDLE
state indicates that the system is waiting for

a response from the user by showing that a

user's virtual machine is idle. All the other

states represent active states of the virtual

machine.

The state information available through the

monitor is only sufficient to indicate that a

user cannot run again until an I/O activity

completes. Thus, it is not possible to distin-

guish between the state of waiting for the

physical device and that of using the device.

Similarly for paging, it is not possible to dis-

tinguish between the state of waiting for a

page read to be started and the state of hav-

ing a DASD device reading it into main
memory.

A user in the ELIGIBLE state has been tem-

porarily removed from the dispatchable set

because there is insufficient main storage for

all active users. For more information on

VM/370 states and the transitions among
states, the reader is referred to Reference 5.

Once all of the state data snapshots are

available, they can be used in a number of

ways by postprocessing them, as it is done at

Yorktown. One way to use the state data is

to count all the states; calculate percentages

of occurrences of each state, and tabulate

them. By aggregating the data for all users,

the relative time spent by all users or by an

average user in each state is observable. The

percentages of all states provide a picture of

how the logged-on time of the users is spent.

It is expected that most of the logged-on

time on a time-sharing system is spent in the

IDLE or user-response state. Even when a

user is working intensely at the terminal, the

user response time — which includes keying

time and thinking time — dominates the

elapsed time. The number of terminals,

placement of terminals, local habits and any

forced log-off procedures also influence the

idle time.

The system-wide summary of user states

gives insight into the relative importance of

I/O, CPU paging, and main storage. As the

state samples also contain an indication of

what queue a user is in, it is possible to char-

acterize the states of Ql, Q2 and Q3 users

separately. In the user-state summary in Ta-

ble 1, I/O wait is the dominant state of the

system for all queues.

324

Table 1 Summary of user states

REPORT SELECTION NAME: USER STATE SUMMARY BY TOD

USER COUNT COUNT COUNT COUNT
STATUS cm TV (TIT TcSTATUS STATUS STATUS STATUS
NAME NOT IN QUEUE QUEUE QUEUE

A QUEUE Qi Q2 Q3

?-IDLE 953 0 26 32
I/O WAIT 0 193 241 17

IDLE 17258 0 0 0

PSW WAIT 0 72 5 0

DEFER FUNC 0 3 3 1

PAGEWAIT 0 71 29 3

RUNNING 0 1

1

8 8

INST SIM 0 27 9 0

RUNNABLE 0 2 6 3

ELIGIBLE 0 0 0 0

DATE: 12/23/81 TIMES FROM:09.00 TO 10.00

Users whose states are summarized in Table

1 have never been in the ELIGIBLE state,

meaning that the scheduler considered that

there has always been enough main storage

to add them to the multiprogramming set

when they were ready to run. (This suggests

that the main storage in the CPU was suffi-

cient for the workload.) Notice that in queue

users-are never shown in an idle condition,

because they are removed from queue when

they become idle.

One of the problems with aggregating all

users is that different types of work may be

inappropriately reported together. A way to

deal with this situation is to group the data

by type of work. At Yorktown this is done
on the basis of User Identification

(USERID). There is a mapping between US-

ERID and a group name, which makes possi-

ble separate reports of state information for

interactive users, system functions, service

virtual machines, batch virtual machines, etc.

This may allow the identification of a service

problem for a particular class of work, when

there appears to be no overall service prob-

lem.

The state sample information can also be

used to estimate the actual time spent in each

state. In order to do so, multiply the fraction

of the samples in that state by the logged-on

time. The following formula gives elapsed-

time estimates:

SAMPLES IN STATE
ELAPSED TIME = x LOGGED ON TIME

TOTAL SAMPLES

Other resource data is also collected with the

state data. These data include CPU time

(virtual and system) page reads and VIO
counts. A special USERID named SYSTEM
is used to account for resources not assigna-

ble to a particular user. The most important

data for characterizing the interactive users is

the state sample data. The counts of each

state for Ql users shown in table 1 consti-

tute the Ql user profile. The profile may be

presented as percentages, a bar chart, or a

pie chart.

RESOURCE MANAGER DATA.

The resource manager keeps two sets of

data, one for Ql and the other for Q2
(which includes Q3), that contain response

and resource data. Resource data include

CPU time and VIO count, but no page read

count. CPU time attributed to the

"SYSTEM" userid is not counted in these

data. Response time data includes the time

waiting to get into a queue, the time in

queue, and a transaction count.

A particular advantage of the data is that

Ql, and Q2 resource consumption are sepa-

rated, providing an inexpensive way of

characterizing transactions. The resource

manager report shown in Table 2 provides

information on the response time, through-

put, page reads and CPU time used in Ql.

(Similar data can be obtained about Q2 re-

source use).

Table 2

Queue 1 Resource Manager Data

REPORT SELECTION NAME: SERVICE_BY_TOD

Ql Ql MEAN Ql RES

MIN DROP MEAN PAGE Ql PONSE

TIME RATE Ql CPU RDS ELIG (SEC)

09.01 12.2 0 028 5.531 0.000 0.508

10.00 13.0 0 027 5.927 0.000 0.485

1 1 .00 12.7 0 026 5.377 0.000 0.412

12.00 10.5 0 028 5.071 0.000 0.375

13.00 12.8 0 028 6.587 0.000 0.486

11.00 14.6 0 027 6.566 0.000 0.447

15.00 13.2 0 027 6.629 0.000 0.456

16.00 14.0 0 030 7.014 0.000 0.465

Mean 12.9 0 028 6. 137 0.000 0.456

RATES ARE PER SECOND

DATE: 12/23/81 TIMES FROM: 09 . 00 . 5 3 TO 16.59.53

325

SCHEDULER TRACE DATA Ql RESPONSE ANALYSIS.

Scheduler trace data can be collected in or-

der to obtain CPU, Paging and I/O activity.

Records are written each time a user is added

to or removed from the multiprogramming

set. These data can be divided between Ql
and Q2 and between voluntary and involun-

tary drops from queue. CPU time attributed

to the "SYSTEM" userid is not counted in

these data because the SYSTEM is never

added or dropped from queue. The primary

advantage of this class of data is the separa-

tion by queue, separation between involun-

tary and voluntary drops, and the existence

of an I/O count. The disadvantage of these

data is that they come in massive quantities,

they come at a high cost in terms of both

data collection and data reduction. It is nec-

essary to write and process at least three log-

ical records for each transaction run on the

system. For this reason it is customary to

run a scheduler trace only for short periods

of time. In the examples of data that are

shown in Table 3 the data was collected for

fifteen minutes during the 10:00 AM and

2:00 PM hours. Because the data for both

involuntary and voluntary drops are included

in the same line, these data become compara-

ble to the Resource Manager data by queue.

The comparable data in Table 2 does not

match the data in Table 3 because the time
periods differ (Table 2 page read is 5.9 vs.

6.6 in Table 3).

Table 3 Scheduler Data by Queue

RESOURCE_BY_QUEUE
DATE: 12/23/81

MEAN
DROPQ MEAN MEAN PAGE

HOUR QUEUE COUNT CPU VIOS READ

10 1 10237 0.030 4.6 6.6
10 2 3173 0. 168 40.9 6.6

14 1 1 1949 0.029 4.3 6.5
14 2 3168 0. 182 33.6 5.6

INVOLUNTARY AND VOLUNTARY ARE COMBINED
DATE: 12/23/81

TIMES FROM: 10.30.00 TO 10.45.00
FROM: 14. 30.00 TO 14.45.00

The data in table 4 shows the resources used

by truly trivial transactions (transactions that

complete in Ql). These data form the basis

for estimating the time components of trivial

transactions.

Table 4 Trivial Transaction Data by Hour

RESOURCE_BY_QUEUE
MEAN

DROPQ MEAN MEAN PAGE
HOUR QUEUE COUNT CPU VIOS READ

10 1 8704 0.019 1.9 4.9

14 1 10442 0.019 1.9 4.9

RESOURCE USE FOR QUEUE 1 VOLUNTARY ONLY
DATE: 12/23/81
TIMES FROM: 10.30.00 TO 10.45.00

AND FROM: 14.30.00 TO 14.45.00

The first step in the analysis is to look at Ql
response time. The process of breaking Ql
response time into its components is straight

forward. It was already seen, that a state

count profile can be produced for all users in

Ql during a specific period of time. This

profile represents an average Ql transaction.

From resource manager data the average
time in queue for all Ql transactions can be
found. The state count percentages are then

applied to the average response time to ob-

tain a transaction profile in seconds.

Table 5 shows a complete profile of Ql
transactions for a one hour period of time.

The data shown here was taken on a York-

town system two days before Christmas.

This shows a system under relatively low
load, where CPU and Paging contention are

at a minimum. Under these circumstances

the I/O done by the virtual machines is the

largest component of Ql response time. No-
tice, that in one hour of sampling of user

states users were found in Ql 377 times.

Care must be taken in order to have enough
sample points for the desired accuracy. The
number of samples may be increased by ei-

ther measuring a longer period of time or by
shortening the VM/Monitor recording inter-

val (default is one minute). In the example
shown the Running and Runnable states,

with only 5 samples each, are the least accu-

rate.

Table 5

Profile of an Average Ql Transaction

USER
STATUS COUNT
NAME STATUS Elapsed

QUEUE Time
Q1 Percent (sec)

I/O WAIT 171 45 4 .220
PAGEWAIT 72 19 1 .093
DEFER FUNC 8 2 1 .010
INST SIM 38 10 1 .049
RUNNABLE 5 1 3 .006
RUNNING 5 1 3 .006
PSW WAIT 78 20 7 .100

Total 377 100 0 .485

DATE: 12/23/81
TIMES FROM: 10.00.00 TO 11.00.00

In interpreting the data in Table 5 we must

realize that there are three major types of

transactions that are shown as a weighted

average. The first type is the Ql voluntary

drop, which is the true trivial transaction. A
Yorktown modification assured that only one

Q-drop was associated with a trivial transac-

tion in all cases. These transactions use an

above average number of page reads and a

below average number of I/O operations.

The next type are the Ql involuntary drop

transactions, that are then scheduled in Q2.

326

These transactions have above average I/O

and CPU use. Finally long running telepro-

cessing machines (PVM, VNET) spend much
of their time in Ql. A Yorktown modifica-

tion keeps them in queue during I/O to TP
devices if the delay is less than .300 seconds.

These machines are shown in a PSW wait

condition. The entire 20.7 percent in PSW
wait is attributable to these machines.

It is possible to validate the times spent for

paging, CPU and I/O by comparing the data

to some other system measures.

A scheduler trace during fifteen minutes of

the hour (Table 3) showed that Ql transac-

tions did an average of 4.6 I/O operations

per transaction. Table 5 shows that the av-

erage transaction waited for I/O to complete

0.220 seconds. Thus, dividing the I/O time

by the I/O count indicates that 0.048 sec-

onds were spent waiting for each I/O. A
way to calculate the I/O time from other

data is to divide the I/O state count for all

users by the total state count. This yields

the fraction of logged on time spent waiting

for I/O, which can be multiplied by the

measured logged on time to get the total I/O

wait time. This in turn is divided by the

measured I/O count to get the time per I/O.

On a system wide basis users were found to

wait .043 seconds per I/O.

A similar use of page wait state counts and

page read counts shows that the average user

wait time for a page read was 0.019 seconds.

Resource manager data showed 5.9 page

reads per Ql transaction (Table 2) and the

profile in Table 5 showed that they took

0.093 seconds. Thus the time per page read

would be .016 seconds.

The smallest, and least accurate part of the

calculated profile is the CPU time measure of

.006 seconds (Table 5), which compares with

the .027 measured by the resource manager

(Table 2).

With the exception of the CPU time measure

the data obtained from different sources do

not show great discrepancies, and they can

be accepted as reasonably "verified". The

state sampling method provides better accu-

racy for the larger, and more important,

components of response time.

possible to use the state sample data directly

because at the time the state sample is taken

it is not known whether the transaction will

ultimately complete voluntarily, or become a

Q2 transaction.

The basic technique is to use the state sam-

ple measures to find the average wait per

CPU second, I/O, page read and to apply

that factor to the known resource consump-

tion.

The CPU, VIO and page read consumptions

of the trivial transaction (from Table 4) are

entered in the resource use column of Table

6. The CPU time is a direct measurement so

it may be moved directly to the component

column. The state sample measures (Table

5) provide the ratio of runnable states

(meaning waiting for the CPU) and running

state counts. This ratio is multiplied by

measured CPU time to give CPU wait time.

The average time per I/O for all users of the

system is used as the coefficient for multipli-

cation by the I/O count. Similarly the sys-

tem wide page read time is multiplied by the

page read count to get the page time compo-

nent.

Table 6 Trivial Transaction Profile

Name Resource use Factor

CPU Time .019 1.0
Measured CPU

CPU wait .019 1.0

Time
Component

.019

Measured CPU Runnable/Running

I/O Time 1 .9

I/O count

Page Time 4.9

.043
I/O time

.019
Pagein count Pagein time

Subtotal

Def Func 1 . 9

I/O count

Inst Sim 1 .9

I/O count

.002
DF Per I/O

.019

1

.082

.093

.213

.004

.010 .01!

Inst Sim Per I/O

Total
Measured from scheduler trace

.236
,238

TRIVIAL RESPONSE ANALYSIS.

DATE: 12/2 3/81 TIMES FROM : 1 0 . 30 . 00 TO 10.45.00

The magnitude of trivial response time can

be measured primarily through the use of the

scheduler trace. It is also possible to find the

average CPU, I/O count and Page read

count for these transactions. The compo-

nents of the response time can then be esti-

mated based on the resource use. It is not

In Table 6 the subtotalled trivial components

fall slightly short of the measured total.

These components are the largest compo-

nents, and the ones with the most confi-

dence. The remaining time is accounted for

in deferred function and instruction simula-

tion states. These times are related to I/O

32 7

operations, so this analysis makes them pro-

portional to the I/O count. The deferred

function factor is developed by first dividing

the deferred function state count for all Ql

by the I/O wait count for all Ql (in this case

8 divided by 171). This shows the deferred

function time relative to I/O time. This

fraction is then multiplied by the mean I/O

time (0.043 seconds) to get the deferred

function factor (0.002 seconds per I/O).

Similarly the instruction simulation factor is

developed by dividing the instruction simula-

tion count by the I/O wait count and multi-

plying by the I/O time.

It is interesting to note that the profile of

trivial transactions is significantly different

from the profile of all Ql transactions. Most

of the difference is due to the fact that trivial

transactions use a very different resources

than a Ql transactions. Some of the differ-

ence is accounted for by the twelve percent

higher page reads per transaction observed

during the trivial transaction analysis. Table

7 lists side side by side the Ql and trivial

transaction profiles. Even on this lightly

loaded system paging is the largest compo-

nent of the trivial response profile. The I/O

time is relatively less important to trivial

transactions than Ql transactions, because

the number of I/O operations is lower.

The choice of the factor for pagein time

shows one of the choices that must be made

in this type of analysis. The 0.019 seconds

per page read was derived from all state sam-

ples of all users on the system. Alternative-

ly, the 0.016 seconds, derived from the anal-

ysis of Ql users, could have been used.

VM/SP does not treat Ql and Q2 page reads

differently so the page read time for all users

is presumed to be more accurate because it

reflects a larger number of state samples.

Table 7 Trivial Transaction Profile

USER Ql TRIVIAL Ql TRIVIAL
STATUS TIME TIME PCT PCT

(ms .

)

(ms .

)

I/O WAIT 220 82 45 34

PAGEWAIT 93 93 19 39

DEFER FUN 10 4 2 2

INST SIM 49 0 10 2

CPU TIME 6 19 1 8

CPU WAIT 6 19 1 8

PSW WAIT 100 0 21 9

TOTAL 485 236 100 99

Q1 data covers 10:00AM to 11:00AM
Trivial transaction data covers 10:30AM to 10:45AM

Table 8 shows mean response times across 5

minute intervals for trivial transactions. The

previous trivial response profile predicted a

mean response of 0.236 seconds which is

consistent with the 0.238 measured during

fifteen minutes of the hour. It also shows

the distribution of response times for the in-

terval. The important thing to notice here is

that mean response time is not really typical.

The median response time is about half of

the mean response time.

Table 8 Scheduler Trace Data

REPORT SELECTION NAME: TRIV_RESP_BY_TOD

TRAN MEAN PCT PCT PCT PCT PCT

MIN MAX PER TRIV RESP RESP RESP RESP RESP
TIME TIME SEC RESP

<=. 100 <=.250 <=.500 <=1 .0 >1 .0

10.30 10.35 7.331 0. 268 35 6 35.5 15. 2 8.0 5.6

10.35 1 0 . 40 9. 782 0.230 44 7 30.7 12. 6 7.3 4.7

10.40 10.45 10.253 0.215 44 2 33.4 1 1 . 9 6.5 3.9

14.15 14. 20 10.706 0. 195 54 2 23.9 10. 5 7.4 3.9

14.20 14.25 10.344 0.207 46 6 29.0 13. 3 7.5 3.5

14.25 14. 30 11.718 0.245 44 1 28.2 14. 4 8.4 4.9

Q1 VOLUNTARY DROPS FROM QUEUE (RESPONSE < 4 SECONDS)

328

THE USE OF THE TRIVIAL TRANSAC-
TION PROFILE.

A methodology was provided for obtaining

the component parts of the trivial transac-

tion. The transaction profile directly leads to

remedial measures to be taken if it is desired

to improve the transaction response time. It

goes almost without saying, that the easiest

way of improving the response time is by

attacking (if possible) its largest component.

In Table 6 the largest component is the pag-

ing component. Consequently, if better re-

sponse time is desired, then the paging re-

sponse time must be improved, by providing

(for example) more main storage, faster pag-

ing devices, or limiting the number of users

on the system. Similar conclusions can be

drawn about I/O or CPU components if they

represent the largest component of the re-

sponse time.

SUMMARY.

A methodology was shown for using state

samples of active tasks on a time shared sys-

tem to provide a profile of the time spent

using various resources. These data were

then used in conjunction with continuously

measured response time data to determine

the magnitude of the components in the pro-

file. Resource usage data was used in order

to calculate the components of the elapsed

time of trivial transactions. Finally the trivi-

al transaction profile so obtained could be

used to pinpoint the chief bottlenecks pre-

venting the system from obtaining better re-

sponse times.

ACKNOWLEDGMENTS

We want to thank Messrs. W. Buco, J. Gin-

dele, J. Greenberg, R. Miles, R. Newson and

D. Patterson who have also been contribut-

ing their ideas to the project leading to this

paper.

REFERENCES.

1. W. Tetzlaff, "State Sampling of Interac-

tive VM/370 Users," IBM Systems

Journal, 18, No. 1, (1979).

2. W. J. Doherty and R. P. Kelisky,

"Managing VM/CMS systems for

user effectiveness," IBM Systems

Journal, 18, No. 1, (1979).

3. A. J. Thadhani, "Interactive User Prod-

uctivity," IBM Systems Journal, 20,

No. 4, 407-423 (1981).

4. VM/3 70 System Programmer's Guide

Document GC20-1807, IBM Corpo-

ration, Data Processing Division,

White Plains, New York 10604.

5. Y. Bard, "Performance Analysis of Virtual

Memory Time-Sharing Systems,"

IBM Systems Journal, 14,no 1, 366-

384 (1975).

A VM/SP Performance Management Information System

John Story

Texas Instruments, Inc
P. 0. Box 405 M/S 3407
Lewi svi lie, TX 75067

The analysis and capacity management of any computer system requires data to be
collected on a periodic basis. This data can become voluminous and is very of-
ten difficult to present in any understandable manner. The purpose of this pa-
per is to present an outline of a Performance Management Information System,
and to show how it was implemented at Texas Instruments on an IBM VM/SP system
running mostly CMS users. This system gathers the data, analyzes the data, ar-
chives the data, produces reports and graphical displays of the data, on a

periodic basis.

Key words: Performance measurement; IBM VM/SP; VMAP; performance evaluation;
performance prediction; graphical presentation.

1.0 Introduction

The study and evaluation of computer system per-
formance requires a large amount of detailed da-
ta for analysis. This data is usually collected
by some sort of system monitor (hardware or

software, inherent in the operating system or

add-on) which yields large amounts of raw data
that must then be evaluated by calculating per-
formance variables from the raw data variables.
In some cases the software for this process is

provided by the monitor vendor. In every case
the amount of data can be staggering and re-

quires some systematic method of processing.

This paper describes a system developed at Texas
Instruments, Inc. to collect, analyze, report,
archive and graphically display the performance
data from a medium size installation. Parts of
the system are "off the shelf" items from the

vendor, and the rest were locally developed.

2.0 Motivation for the System

A Performance Management Information System
(PMIS) is necessary for efficient evaluation of

a computer system in order to

a. Standardize report format,

b. Standardize reporting methodology,

c. Standardize archive procedures, and

d. Insure continuity of data available.

The data collected by the PMIS is used for

a. Prediction of performance under pro-

jected workloads,

b. Tuning the existing system for optimal

performance, and

c. Tracking system performance to iden-

tify trouble spots.

The evaluation cycle which utilizes the data is

depicted in Figure 1. Data from the PMIS is in-

strumental in making the decisions involved in

a. Tuning,

b. Capacity planning,

c. Workload forecasting,

d. Modeling the system, and

e. Cost/Rate setting.

3.0 Operating Environment

Texas Instruments operates a number of computer

systems in support of Engineering and Software

Development. VM/SP PMIS operates on a VM (Vir-

tual Machine) system with most users running CMS

331

P M I S

MODEL WORKLOAD
CHAR.

-

i

i

TUNING
FUNCTION

CAPACITY
PLANNING

COST/RATE
SETTING

OPER-
ATIONS

Figure 1. Utilization of PMIS Data in the Evaluation Cycle

(Conversational Monitor System). The workload
consists primarily of software development and
Engineering development from individual termi-
nals scattered around the corporation. The
current hardware is an IBM model 4341 CPU with a

mixture of 3350 and 3370 disk drives. The con-
trol program of VM (CP) contains a monitor which
gathers data concerning system operation, and
IBM has a data reduction software package to an-
alyze the data (VMAP).

4.0 Design Criteria

During the design stages of PMIS, the following
items were considered

a. Utilize as much current software as
possible,

b. Allow full usage of current software
incorporated in the system,

c. Provide high quality graphical output
of data,

d. Provide for little or no manual inter-
vention in operation, and

e. Archive data for later retrieval.

The end product fulfilled almost all of these
design requirements. Both the CP Monitor and
VMAP were utilized, high quality graphical out-
put was produced, data was archived for later
retrieval, and most of the process is automatic.

5.0 Operation of the System

The daily operation of the system is automatic.
Data is collected continuously by the CP Monitor
and then, at the end of the day, the data re-
duction step automatically calculates the per-

formance variables, creates daily reports, and

adds to the trend files.

The class of data collected by the monitor and

the time of day that data is collected is auto-

matically set and modified at the appropriate
times

.

On a monthly basis, the daily averages are re-

trieved and converted to weekly averages for the

graphical output and plotted. The plots main-

tain a 6 month plotting scope, and the new data

for this month forces the old data to "roll off"

the graph, so that any plot covers the previous

24 weeks. The plots are formatted automatically
with the PLOT UTILITY PACKAGE (PUP) developed at

TI for output to the plotter. The data files

for input to PUP are automatically updated after

the weekly averages are calculated.

Also on a monthly basis, the data for the month

is transfered to tape for storage as historical

data. The basic output of the cycle is the dai-

ly reports and the monthly reports. The entire

system is diagrammed in Figure 2.

6.0 Description of the Data Base

The IBM product VMAP collects historical data

called ACUM TREND files. These files contain

values of certain variables that are measured by

the CP Monitor and calculated by VMAP. In addi-

tion to the variables included in the ACUM TREND

files, there are some other variables of inter-

est which are not included in the file. For

these other variables, PMIS maintains a separate

ACUM file from which to draw historical conclu-

sions. Some of these variables are

a. Prime and non_prime CPU utilization,

332

DATA
COLLECTION

(CONTINUOUS)

CP
MONITOR

MONDATA

DATA
REDUCTION

(DAILY)

PMIS

PLOTS

ACUM
TREND

REPORTS

1

PLOTTING AND
ARCHIVING

(MONTHLY)

f

ARCHIVE

PRODUCE
PLOTS

PLOTS

1

Figure 2. PMIS SUMMARY

b. Response time by time of day,

c. Channel utilization,

d. CPU utilization by user class,

e. 95th percentile of response time, and

f. 95th percentile of expansion factor.

7.0 Processing Techniques

The bulk of the data processing for PMIS is done
by the IBM program VMAP. This program creates
reports and history files that are used by PMIS
as output (reports) and input (reports and his-
tory files).

The daily ACUM file created by VMAP is used to
create a list of response times from which the
95th percentile of response for each hour of the
day is calculated along with the average re-
sponse for each hour of the day. This informa-
tion is averaged over the entire month to
produce the output shown in FIGURE 2 in section
10.0, "Sample Output of PMIS".

The 95th percentile and average expansion factor
for each hour of the day is collected and re-
ported in the same manner as response time, and
is shown in FIGURE 4 in section 10.0, "Sample
Output of PMIS".

The channel utilization is not collected in the
ACUM file, but is reported on the VMAP "0UTDASD"
report. The data presented is collected in an-
other historical file and averaged over each
week and reported at the end of the month as
shown in FIGURE 10 in section 10.0, "Sample Out-
put of PMIS".

The prime shift and non-prime shift CPU utiliza-
tion is calculated from the statistical reports
called "0UTSTAT". Sample output is shown in
FIGURE 5 in section 10.0, "Sample Output of
PMIS". The day is divided into prime and
non-prime time periods, and the VMAP program is
run against the data for each period separately
to provide prime and non-prime data.

The CPU utilization of user classes is provided
by reading the data on the VMAP report "0UTUSER"
and gathering the users into pre-deterimined

333

classes. Currently, the classes represent SYS-

TEM ids, BATCH processing, DOSVSE, RSCS,

VSEVTAM, PVM, one or two large CMS users, and

all other CMS users. These classes may be modi-

fied at any time. Sample output is shown in

FIGURE 7 in section 10.0, "Sample Output of

PMIS".

8.0 Descripton of Output

The daily reports for PMIS are identical to VMAP

reports. They may include any of the VMAP re-

ports, including the plots produced on the prin-

ter. The monthly reports are graphical in

nature and show the trend for the last six

months or the profile over the 24 hour day.

Sample output of both types is found in section

10.0, "Sample Output of PMIS"

.

9.0 Utilization of Data Reported

The data gathered has been used to classify us-

ers into groups in order to characterize the

workload. This has been used to simplify the

input into some analytic models which then pre-

dict the performance of new hardware configura-

tions that are under consideration.

The data has also been used to predict response

time under various workloads. A linear statis-

tical model was built which utilized the memory

size, number of users, and the average workset

size reported by PMIS to predict response time.

The results of the study are summarized in

Figure 3, which indicates a good match between

actual and predicted values of response time.

10.0 Sample Output of PMIS

The following pages contain some sample output

reports and plots from PMIS. The sample output

is in the following order:

OUTHDR VMAP Header Report

OUTPLOT VMAP Plots

User Activity

User Frequency Distribution

CPU Utilization

Paging

Storage Uti 1 ization

LOGGED

12
14
16
17

20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72

**#
^*
^***
***^**

****^
*****^**
*****^************
******^*
***** ^

********^
******* *^
*********^
**********^**
***********^(**
************^**
*************^
********* ^

************ ^
************* M
******************^
***************** ^
******************* ^
************** ^
******************* ^

j£

********************** ^

T
0.0 0.1 0.2
response time

T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3. Actual vs Predicted Response Time
Bars of * are the actual times

are the predicted times

334

Resource Availability Index

Expansion Factor Frequencies

Trivial Response Frequencies

OUTPERF VMAP System Performance Summary

OUTUTIL VMAP Resource Utilization Summa-
ry

OUTUSER VMAP User Resource Utilization
Summary

OUTCMND VMAP Partial Command Analysi s

FIGURE 1 LICC INTERACTIVE RESOPONSE TIMES

FIGURE 2 LICC RESPONSE TIME PROFILE

FIGURE 3 LICC EXPANSION FACTOR

FIGURE 4 LICC EXPANSION FACTOR PROFILE

FIGURE 5 LICC CPU UTILIZATION

FIGURE 6 LICC CPU UTILIZATION PROFILE

FIGURE 7 LICC CPU UTILIZATION BY CLASS

FIGURE 8 LICC USERID ANALYSIS

FIGURE 9 LICC PAGING RATE

FIGURE 10 LICC CHANNEL UTILIZATION

FIGURE 11 LICC USERS IN RESOURCE WAIT

335

* * * SUMMARY OF VMAP run************

MONITOR INPUT HEADER INFORMATION

CREATION DATE: 05/10/82, TIME: 08:00:14, CLASSES: 012 4 6

SUMMARY DATA

TI - LICC VM/370 MONITOR ANALYSIS

FIRST TIME SELECTED 08:00:14

LAST TIME SELECTED 18:00:00

TOTAL TIME ANALYSED 09:57:04

NUMBER OF SECONDS ANALYSED 35,824

NUMBER OF RECORDS ANALYSED 1080,149

NUMBER OF RECORDS BYPASSED 0

NUMBER OF SUSPENSION RECORDS 0

TOTAL NUMBER OF USERS 155

CPU MODEL - SERIAL NUMBER 4341 - 10085

USER STARTING MONITOR OPERATOR

SOFTWARE VERSION. LEVEL. PTF 01.01.0110

NUCLEUS SIZE 329,392

V=R AREA 0

DYNAMIC PAGING AREA 7,094,272

FREE STORAGE SIZE 819,536

INTERNAL TRACE TABLE 118,784

STORAGE TOTAL 8,361,984

MONTAPE VERSION/LEVEL 3.4

MONTAPE OPTIONS SPECIFIED
PAGTYP= 3370, NPAGDEV= 5, NPAGCYL= 95976

PERF UTIL PAGE SERV RESMGR MIGRATION RESP USER 10 SAVE RESTORE

MONITOR CLASSES ENABLED # RECORDS

00 PERFORM 1 1816

01 RESPONSE 1 169136

02 SCHEDULE 1 873090

04 USER 1 34304

05 INSTSIM 0 0

06 DASTAP 1 1802

07 SEEKS 0 0

08 SYSPROF 0 0

336

05/10/82 00:00: 00 DAILY PLOTS FOR LICC SYSTEM B

USER ACTIVITY

BASE VARIABLE - TOD TIME OF DAY

SYM CROSS-VAR SCALE ORG AVG MAX DESCRIPTION

L LOGGED
A ACTIVE

10.00
10.00

BASE
VALUE

07 00

0

1

07 30 1

08 00 1

08 30 1

09 00 1

09 30 1

10 00 1

10 30 1

11 00 1

11 30 1

12 00 1

12 30 1

13 00 1

13 30 1

14 00 1

14 30 1

15 00 1

15 30 1

16 00 1

16 30 1

17 00 1

17 30 1

TOTAL
0

A L

A
A
A
A
A

A
A
A
A

A
A
A

A

33.43 71.00 # OF USERS LOGGED ONTO SYSTEM
17.12 67.00 # USERS ACTIVE IN A SAMPLE INTERV

-3 4 5 6 7-

0 1-

A L
-2 3 4 5 6 7-

1ST X-VAR
#OBS CUM%

2ND X-VAR
#OBS CUM%

9 0

15 15

30 30
30 30
3(1 30

30 30

30 30
30

30 30

30 30

30 30

30 30

30 30

30 30

30 30

30 30

30 30

30 30

30 30

30 30

30 . 30

30 30

29 29

644 644

337

05/10/82 00:00 :00 DAILY PLOTS FOR LICC SYSTEM B

ACTIVE USER FREQUENCY DISTRIBUTION

BASE VARIABLE - ACTIVE # USERS ACTIVE IN A SAMPLE INTERVAL

SYM CROSS-VAR SCALE ORG AVG MAX DESCRIPTION

* FREQ 15.00 1439.00 105.01 FREQUENCY DISTRIBUTION OF BASE VA

BASE 1ST X-VAR 2ND X-VAR
VALUE 1 #OBS CUM% #OBS CUM%

0 1 2 3 4 5 6 7 8 9 0

6 1 * 1 30 4

8 1 10 4

10 1....* 1 15 6

12 1 * 1 15 9

14 1 * 1 15 11

16 1 1 0 11

18 1 * 1 30 15

20 1....* 1 15 18

22 1. .
.* 1 14 20

24 1 * 1 30 24

26 1....* 1 15 27

28 1 * 1 45 33

30 1. . .
.* 1 15 36

32 1 * 1 60 45

34 1 * 1 105 61

36 1 * 1 90 74

38 1 * 1 90 88
40 1 * 1 45 95

42 1 * 1 15 97

44 1 * 1 15 100
0 1 2 3 4 5 6 7 8 9 0

TOTAL 659

338

05/10/82 00:00:00 DAILY PLOTS FOR LICC SYSTEM B

CPU UTILIZATION

BASE VARIABLE - TOD TIME OF DAY

SYM CROSS-VAR SCALE ORG AVG MAX DESCRIPTION

* TOTCPU 10.00 53.54 100.00 CPU TOTAL PCT UTILIZATION

BASE 1ST X-VAR 2ND X-VAR
VALUE 1 #OBS CUM% #OBS CUM%

07:00 1 * 1 15

07:30 1 * 1 30
08:00 1 * 1 30
08:30 1 * 1 30
09:00 1 * 1 30
09:30 1 *l 30
10:00 1 *1 30
10:30 1 * 1 30
11:00 1 * 1 30
11:30 1 * 1 30
12:00 1 * 1 30

12:30 1 *1 30
13:00 1 *1 30
13:30 1 *1 30
14:00 1 * 30
14:30 1 *1 30
15:00 1 *1 30

15:30 1 *1 30

16:00 1 * 30
16:30 1 *1 30
17:00 1 *1 30
17:30 1 * 29

0 1 2 3 4 5 6 7 8 9 0

TOTAL 644

339

05/10/82 00:00:00 DAILY PLOTS FOR LICC SYSTEM B

PAGING

BASE VARIABLE - TOD TIME OF DAY

SYM CROSS-VAR SCALE ORG AVG MAX DESCRIPTION

* PAGERATE 10.00 7.13 53.80 PAGING RATE PER SECOND
+ MAXIMUM VALUE OF PAGERATE

BASE 1ST X-VAR 2ND X-VAR
VALUE 1 #0BS CUM% #OBS CUM%

0 1 2 3 4 5 6 7 8 g 0

07:00 * 1 15

07:30 * 1 30

08:00 * 1 30

08:30 1..* 1 30
09:00 1. . .

.* + 1 30
09:30 1 *+ 1 30
10:00 1 *+ 1 30

10:30 1 * 1 30

11:00 1 * 1 30

11:30 1 * 1 30

12:00 1. . .
.*+ 1 30

12:30 1 * + 1 30

13:00 1....*+ 1 30

13:30 1 * 1 30

14:00 1 *+ 1 30

14:30 1 * 1 30

15:00 1 *+ 1 30

15:30 1 *+ 1 30

16:00 1 * 1 30

16:30 1 * + 1 30

17:00 1 * + 1 30

17:30 1 * + 1 29
0 1 2 3 4 5 6 7 8 9 0

TOTAL 644

340

05/10/82 00:00 :00 DAILY PLOTS FOR LICC SYSTEM B

STORAGE UTILIZATION

BASE VARIABLE - TOD TIME OF DAY

SYM CROSS-VAR SCALE ORG AVG MAX DESCRIPTION

* STGUTIL 12.50 22.41 61.68 PCT MAIN STORAGE UTILIZATION
+ MAXIMUM VALUE OF STGUTIL

BASE 1ST X-VAR 2ND X-VAR
VALUE 1 #OBS CUM% #OBS CUM%

0 1 2 3 4 5 6 7 8 g g

07:00 1...* 1 997

07:30 1. .. .* 1 1514

08:00 1 *+ 1 2065
08:30 1 *+ 1 1182
09:00 1 *+ 1 1392

09:30 1 * 1 1223

10:00 1 *+ 1 970

10:30 1 * + 1 1127

11:00 1 * 1 1285

11:30 1 * + 1 821

12:00 1 * 1 761

12:30 1 * 1 803

13:00 1 * 1 887

13:30 1 * 1 1139

14:00 1 * 1 941

14:30 1 * 1 1070

15:00 1 * + 1 868

15:30 1 * 1 1055

16:00 1 * 1 805

16:30 1 *+ 1 931

17:00 1 * 1 1069

17:30 1 * 1 611
0 1 2 3 4 5 6 7 8 9 0

TOTAL 23525

341

05/10/82 00:00:00 DAILY PLOTS FOR LICC SYSTEM B

RESOURCE AVAILABILITY INDEX

BASE VARIABLE - TOD TIME OF DAY

SYM CROSS-VAR SCALE ORG AVG MAX DESCRIPTION

* RAI 0.10 0.80 1.00 RESOURCE AVAILABILITY INDEX

BASE 1ST X-VAR 2ND X-VAR
VALUE 1 #OBS CUM% #OBS CUM%

0 1 2 3 4 5 6 7 8 9 0

07:00 1 * 1 15

07:30 1 * 1 30

08:00 1 * 1 30

08:30 1 * 1 30

09:00 1 * 1 30
09:30 1 * 1 30

10:00 1 * 1 30

10:30 1 * 1 30

11:00 1 * 1 30

11:30 1 * 1 30

12:00 1 * 1 30

12:30 1 * 1 30

13:00 1 * 1 30

13:30 1 * 1 30

14:00 1 * 1 30

14:30 1 * 1 30

15:00 1 * 1 30

15:30 1 * 1 30

16:00 1 * 1 30

16:30 1 * 1 30

17:00 1 * 1 30

17:30 1 * 1 29
0 1 2 3 4 5 6 7 8 9 0

TOTAL 644

/

342

05/10/82 00:00:00 DAILY PLOTS FOR LICC SYSTEM B

EXPANSION FACTOR FREQUENCIES

BASE VARIABLE - EXPF EXPANSION FACTOR FOR MAJOR COMMANDS

SYM CROSS-VAR SCALE ORG AVG MAX DESCRIPTION

* FREQ 5470.00 1439.00 54669.93 FREQUENCY DISTRIBUTION OF BASE VA

BASE 1ST X-VAR 2ND X-VAR
VALUE 1 #OBS CUM% #OBS CUM%

0 1 2 3 4 5 5 7 8 g 0

0 1 * 1 37028 21

2 1 *1 54669 53

4 1 * 1 52399 83

6 1 * 1 7704 87

8 1 * 1 10879 94

10 1 * 1 9269 99

12 1 1 0 99

14 1 1 0 99

16 1 1 0 99

18 * 1 363 99

20 1 1 . 0 99

22 * 1 619 100
0 1 2 3 4 5 6 7 8 9 0

TOTAL 172933

343

05/10/82 00:00: 00 DAILY PLOTS FOR LICC SYSTEM B

TRIVIAL FREQUENCIES

BASE VARIABLE - TRIVRESP TRIVIAL (INTERACTIVE) RESPONSE TIME

SYM CROSS-VAR SCALE ORG AVG MAX DESCRIPTION

* FREQ 835.00 1439.00 8340.75 FREQUENCY DISTRIBUTION OF BASE VA

BASE 1ST X-VAR 2ND X-VAR

VALUE 1 #OBS CUM% #OBS CUM%
0 1 2 3——4 5 6 7 8 9 0

0.0 1 * 1 1682 6

0.1 1 * 1 6175 31

0.2 1 * 1 5077 52

0.3 1 *1 8340 86

0.4 1 * 1 3048 98

0.5 * 1 75 99

0.6 * 1 109 99

0.7 1 1 0 99

0.8 * 1 75 99

0.9 * 1 38 100
0 1 2 3 4——5 6 7 8 9 0

TOTAL 24622

344

A AO I p-JTPONO^O^ONOapOCMlAp-tAar^CMPONONOI'~'-P*-NOf^POiA'—OLAr--t— CM.rJ'CMa'JrJ"'— CM"— nOlApocOnOnOpoj-j-noOn
I UJ I OCC--C\L^CO'-nJvt-fOi-C\Jii>in©M'-N»-OOf,l^eO'y1^JJJt-\D^fOOlAOMmOL^JOOvOCO(\J'-^vo
I r— I

UJ < I <X5 00OO\L^vO^O(>OOOC\IOOOt^JO\0C\l^'-^Ororol~t\JOOOOJ-J-OOC\|f^h-O0Di-Oa'OinCvlC\JO(NJ
E -I I r- <- CM CM J i- C0-3-.3- ro J- r- i-ONCM lA CM r- 00— 31 CM •- a-

c o i

U < I

< UJ I

Z — O I

O O < I

C£ I

h I U I

< I > I

Nl V < I

L^cooD^nc^'oOJO^\OC^J^•'-cooc^OML'^\oo•-NlAN^o^-^0'-^oOflOC\lcOln(o^-^^^^rofoc^l^oco'0'-co\0
O\0~'-^C0t\j'-f\J'-O^>OC\Jr-mfOv0'-Mf-mOwO^fllA(\JJ'-r- POCO-pJOCOPOPOOOOOr^OONOCNCMr^Por-*

OCMlAJO— OOCMCMOO'-OOCMCMOOr-CMO<-'-000'-000000000[--CM'-OCMlAONOO'-CMOOp-
<- CM •- CM

= E < 1

0 —I I

Or-3 I

l E I

I 3 - I

i a. o ilOOt
I < I

I _l
I <
I 3 UJ I

I H- O I

I DC < I

I — CC I

I > UJ I

I I > I

V V < I

SrS i

e i

O I

CMOJCMNCat-CMr^00h-C0p-POOPOONlA«— POP-r~ONOCOr~-r~COOC\JlAr'~POO'— »— POzTr-NO'— J3"lAr-roOONLAOOOCM
'-O>0 00^0•-^OC^^O'-^ '-M00e0m'-^O0DJ3'^l-^0^^0'-^J'-O3^^0O3, 3'^^0O'-•^'O^0f0^0lr^0^4•lA

OONvO'O'-OONiriOO'-OOOlMOOSi-OOOOro^jnOOOOvOlMO
r— T— t— PO On CM PO CM rO

J3- CM r-

inOCMJCM03OO^>-O>-r~^OOCM^^r^00^jr~OMCM^^CMOOCMMCMOJ^OL^O^^O^^r^iJ^r^CMfO
001*NOOOO"-00000'-'-90L"lrOOOO»000000 00000»lrOONJONOOrOOr-

cocMi^r^r^ooo^roi-aiAoooaeop^ooONNOoocMjiAeojON^ON^r^oO'-oop-CMOoop^

(\iM«j\oeooonjJjj^L^eo^(\iN«nJ3Jinvo^i)0^ooo^minint^\OiOO\cn(>ooo^wc\jW'00

NOO'-NM'-OnOOOOOO'<lN'-OOO0OO-O-O^OOOONr-o>-C«r-^OOOOOOT-OOOv0

C>POPOr^aaoO'-CMlACM^CM'-POOOr^t-lAp-PO.-^ONJOlAON*-J>-CMOOON'-C\jr~Or^^POr^
— r-r- CM OnCM «- <- f-IOr- -3"

POOC>'-CMOONOa'-OOOOONOONOOOOOOOOCMlAOONOr-ONOOO'-lAO f--PONOPOOeOOOO\OCOOPOOiA

jt^NOaCNONOOONCMOOOOOOr^cOOr-OP^OONOCMJC^— OCOOOONaOror-ar--OCOOOr--OPOOCOOro
vOM'-O'-^ po tA rftJCft^ r- 00 i- Jh- lA po Mto On NO J3" r- CO CO -d" ON CO

CM CM POP— r- CO CM r- ON rt N r r-- »— po CM r- lA t- LA

UJ I Ju^^-^roNror\10^vOiAlAI^'-WC^l^WvOinjiOmin-Jr-^ir\Or~t-^NON«Nm^ac^
O I

< I

cc i

UJ I

> I

< I

^^O^r^jr^sOC^^JJ^OC\JJCyvO^W'-NOC\JO^ON\0^^lA^O^lAl^NaiC\^0^^0\OCONOOlA^
-=T NO P~- PO NO POO r- O J" NO P~ LA J PO PO r— J r- ON CM po PO PO CM LA r— a LA O ON r- r— J" *- NO <— po po no r—

J- i- OnnO I
s- NO PO a" <- *- »— r*- *— <\J lA r- PO p-\OlA O r- r— CM

Z t

O I

E l— I

X l

< I

t— ONCOONOLAPOPOCOC^^NOONLPNaiACMtAlACMNOLPNavOCO^^OCMONaONOPOr^r^JjOPOOPOP-

NONOOaOOC^r^NOOONr^jaNOlACMOCMC^NO^P— CMOC>ONONlA^ON^ONONPOCMlAPOaNOJ^OLAONOr~P^
poNor-a-ON--"- no no i- la cm no o la a-poNOi^-ajaocM^-pooPocMr-oa-ocrpoj r- la on no r- po r- r— cm

CM CM CM O CM J" OajJ CM »- 00 »— *- CM P"- a ON.TJ" J" NO r- i— O po J- p- po
jj- .— Jr- PO •— NO LA r- »- PO CM p- »- LA PO CM Jj- CM PO

lAOOOOOONPOCMPOCMOlANOOOr— r~t— OlAOONOOOCMOONiACMOCMOOOp-aOCMPOiAPOroOOOOOOONOOCM
OCMNO'-CO'-OONO'-aNONOOONONOONNONOONO^O^^JTCMCMNOOONO'-CMOvOaCMrO'-ONONONOONONONOPONOPO

UJ UJ UJ UJ o
O 1 UJ _l X O-J _i cc

Z 1 CO CO a: UJ O X O E < ON — CO _l < o UJ

< 1 00 E o < u. Z r- UJ I— o X O UJ o ON U. C£ (— X UJ > o o z r- Ld r-

E l uj x uj Q- > y- — < at h- 00 o 00 r— -EE Q. — * ^ ^ r- o —

i

—I UJ z O CJ C£ Q. o h- UJ 00 UJ < E
E I 05 s: Cu 00 u- t- 00 < UJ cc C£ Z r- -I O _l 00 Z Z 00 < o O O z cc * UJ CC < 3 z oo r£ Cu — Q. O o o
O 1 O 00 00 < e o O O 0. UJ UJ o cc X _l o O uj uj uj z a- uj o < < r- 0C DC =5 o z Z> o UJ UJ 3 < o < o > a- X UJ UJ

X XO 1 < < < CO CO o o o o o o o UJ UJ UJ u- O O x -)
1 1 1 1 e E E E O a. Q- c- O CfOC cc ce oc oo 0) h- I- r- O

345

A "5 U. |

UJ < Q_ |

£ Z x i

I—
UJ 1

CO 0£
UJ UJ O I

CO O z: i

z _l
o <
Q- >
to
UJ

> 1

QC a: i

V t- i

A a:
O 1

H— UJ UJ z i

(J 0_ |_

< 3
to UJ zZh — > 1

£X < £
cr: i

v f— i

A A —J f— i

1 I O
1 CO > < i

1 cc
1 UJ
CO CO A O I

3 3 h \ 1

|— —

K>S
to — O l

h- UJ < 1

o o o 0- |

Z <t Q£— ^
O 1

Z O CO 1— 1

3 UJ CO 1

rf |— Q£
1 y
1 o_ z 3 1

D_ |

V V V O 1

A O UJ O l

O — t— UJ 1

— > <! CO 1

V

A UJ > a i

| Q Q I

2 Q- <I
q_ —

1 f UJ

v \ 1

.
1

. — O i

uz- h- i

^ i

< O Z OZ 1

Q „
(rt <5"

i Jto u__

^ I 1

Z O - i

V 3 1

^ ^ 1 O 1

i h- - 1

3h> < 1

0_

O
1 h- 1— 1

1 O O 1

V 1— — 1

X 1

CO < Q 1

UJ > Z 1

en <(

A cr i

1

_j 7^ |

UJ
>u
-J h- UJ 1

o > 1

£X <
UJ
CO
3 O O 1

1 O LJ 1

V —1 O l

t— \Q fOOOt— r-

CMCMCMrOOOO!^-'— r—

OCMOONvOCMOCMvO

ooooooooo

OrOOONONO

r^vOC\JOroONrooOOOO"-C\l'-vOC\10r~-0'-OOeOOOOC\J^OvOOr--COCT\00

^roror^Jp vOr03- rjC\JC\JC\JJ-C\J(\|rOr-rororoJ-iAa'C>J'— 00 <»5 OS>* »- CM »- t- >-

opoooooooooooooooooodoooocoooooooooo

rO^OfMO'-OOr-O^OWOmOOIMO'-ONONOO'-ORJOOOOO

f> :T lA iTi OSvOMDJ- t— C\J LA CO 00 I- h- 00 r~~ lA CM VO f— f— rr) ro CM

nlA^J^oc^oDc^l(^ool»oDNOlnu^LO^o^cA^Ol^^l^^^ovOlA^•o^^^OJC^lJr^l3c^^-^l^l^J^03, ^o^
cooooococor^r-i-~oo oooooocooocoodojoococococooocooooo^oocooooooooooooooooocooocooooooooo

O(\l^lAJO^O03^nOO^lArO4r^AlA^^0OlAn^-rJJ^OM^-OM^lnr00J^O^^e0^^fU^(\Jl-^^J-

OOOi-^Wr-'-WOORlNriJN'-'-POr-OO'-O'-'-'-'-'-OWi-tVINr-CJN'-OWJ-CVJfJOOOO

oo

ojj^L^iAON^"-r^oo^for^voo>oovoir>i-oooof^t-oor^oaDjr^oooN'-inr~oooo^i^oo^OjroiA

N^OvONCOCOI>CAOOC^ChOOOO\C^^[^r^oDONCAO\^CACACAC>000'-OOOv(>^0\t>CD\OL^inm

oo

I
s- © ON O «— i- «- O O O •— CM r- »- r- i- O O h» O i— O r- O i- *- O <> CM CM CVI t- CM CM r- M3 >— «- «- i- CO 00 CO VO

O.-O^t-^^-i-^OOr-r-^t-i-^-i-r-O'-'-'-i-i-'-T-i-C'-i-r-r-i-^i-^O'-'-'-'-OOOO

r^ro^rOLA^lA^^OOODOOr^J^^in^Or^t^^^^MOOroOJCM^CM^^t^^CM^^CM

L^'-^Cft^von"(\iOOO'-l0^^^^3'-«lnooc.J(\l^l^oJ"l^Jl^\mrJ^AOo^•5!\lJ(Oo3ooc^r^l(^

c\jfOM^\Dffla\a\f^oOL^N\oovowvoiAL^^vo\or^\Oir\N<ci^\Di^N'-ooo ,-NvocoooL'>fOMfof\i

OiiNO^OLTiOinoooi^o^oinoLnc>oinoinOL'>oincAOL'\oif\OinoLnt>oinoLno^CiiM>C'-'OJOi-'OJOOO'-nJC'-njmO'-nJO'-nj^O'-nJO'-nJWOi-njO'-nJiIl
cc«so!tO(>cvcM>ooocoO'-'-'-'-^fJW!\iW"'»>roroMj J3•4l.'^mmmL'^^o^oo^a^^^^^00000000<->- — — .~<-.->-!-|->-!->-.-!-!-l-!-'-»-'-.-t-<-'->-«-'-!-l-»-»-'->-'-'-'-

346

CO bJ _1
O -1 >
lj 2 e. tr
co — s
% CO

<
z z > 1—
— x cr

-1 < <
O O i-

2 >
z cr— Id

ti- CO
CS LlJ <Z Q —

A r- _l
CO _l — <x><
- h- 2
O z cr h-
z —

o
_l LJ

_J
LJ Q-
X s
LJ < LJ
X CO oa <

0.

o u o
o o o
_i cr a

x z CO
z O LJ
o CO

LJ h- Z3
LC < a.

< V o

o > * H-
CO LJ
LJ O CO
tc. o > ^

< < 2
LJ
(— A
co 1 LJ C\J

>- 1 _J CO LJ
CO co a

LJ — CO
Li. x o
o LJ —

Z3 _l
> ctlj LJ
cr
< cr
z LJ
E -I
z> X Z CM
(A Q O cr

LJ >— co
X <
O C CO
co co

_i —
1 o cr
V

A A o
1 o \z —

Z
o — Ld

< o
r- 2 <
< v a.

N
_l Ld

_l

h- a
X

•3- X
a. A h—
o i cr

O i
—

O o >z z
00 Ld — Q.

o o z o
cr z

LJ LJ X
z a. cr

i i t—
t— i 1 o

V V h-

CM CO
00 cc a a\ LJ O LJ
o CO —J O

X

OOCCOOOCOOOOCNOOOOOOOOOOOOOOOOCOOOOOOOOOr^-OOOOtAOOO
O O O O O O O O ONOOOOCO-d"'— OOOOOOO^Ti— OOOOOOOCT*— OOOOOOOJOOOOOOOOv COOOCnOOOCO CNOOOCvOOCO GnCTOnOOnOOCO OnOCAOOONCACO

ir\or^cOL^jtojf^ooc\i^jL^c\jr^r-c\o^tA4'N'-c\j«c\jjiAiAj''-c\jco^DjLf\in'-coocyo\co^wnnnjjrjj ir>miriiAL^jj^j3, 3, j3-iAL'Mr\iAL'MAiiMninL'MJMA^Mnir\LA3'jn(\iwc\i

o ooo © o o o o o

CM »- <o to f f 00inoO fO3'3°-3°L'>\Lr\3'tocM3"3'3'3'Lf>\-3 \T\ 3'CM3"3p mvOr'~v000inCM3°vOvOincMCM^~*""

O^O^^^CNJroCMOOCMCM'-'-CMCMCMCNIO'-'-Or-'-'-'-OO'-'-'-'-'-MroCNJCM'-'-CM'-O'-OO

OOOOOi-Oi-r-OOi-'-'-'-OOi-OOOOOOOOOOOi-Oi-'-O'-i-OO'-CMi-'-OOOO

ooocoooooooooocooooooooooooooooooooooooooooooo

C\T-^C\JWMlAjrvjOOO^nC\JMMC\J'-C\JC\lfOJJcoro^f*iairOf^rOJ-OfOJ-fOOC\jr04'c<)t-i-r-i-

WC\JvO'-'-«)Jvof\JOOOaOI^C\ja*ONJOincocOC\It-OJCOMOiAG\'-rOfyllAjL'>fOO\Oy3JrtOfU
.S'fOCMfOincOrOfOCO I^O\0\OG^OCOinc\JCOJinOOfOfOMC\J\OL^O'-OM^MJ, ^r^\OCOroC\J'-(\JC\J

Cl 3- i- i- i- CM VO rr> — CM to r- CM r-

^oc^•-o^CJL'^I^oo^flOC^J^•3'mn^o•3''-^OlAOJct)C^c^l\OJ^~^omll^(\|l-^c^i(^c^lO^-lnn
COOif. .= CM CM O ON r-OO^OMJir\r^inrojCMO^OC>iAOON^'-OC>C>COr~0\ODCKCMlAr~-0\'-
CMfOCMCMCMCMCMCVH- CMCMCM^CMCMCMCMCMCMCMCMCMCMCMCM"-^CM^CMC\JCM^^>-^<-^^CMC\JCMCMfO

COOCOCOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOO
cooxcoooocoooooooooooooooooooooooooooooooooooo

ooccoxcooooocooooooooooooooooooooooooooooooooo
coxxcocooooooooooooooooooooooooooooooooooooooo

C'-'-'-CMCMCM'-'-OOCMCMCM' CMCMCMCMCMJ-CMCMCMCMt

occxxoxooooooooooooooooooooooooooooooooooooooo
ococooocoocooooooooooooooooooooooooooooooooooo

cooccocoocoooooooooooooooooooooooooooooooooooo

C\J^r^t\t\OOCOCOOOOO>0\^OC'-C\Jv0^r,-0'-^CACO'-\0'-\OvOt\ja-CtiA^'-OlA'-COfOfOronj04
r— r— i— r-~ o o *o o r— ro^L^r^f^r^\0^iA\or^r^^r^cor^oooor^cor^r^r^r^aDcor^cor^r^r^coco^ON

joo-=rcMcocMCMOooor-*cMf^-\o ,«oo^J- cMOcoiA'— cMO\^roj-3"oor-yDiAj"OOLnocM'^-r^-is--ooovo
CMCM»— CMfOfOroroCM r0fO3'CMCMCMtor03"tOCMCMt0C\J'— CM«— *— CM»— CMCMCMCM'-CMCM'-CMCMCM*— r- r-

iA\or--r-coc>oocoooovooor--r^-oor^-rs-ooooooooooooooooooooooooooo
CnQnOOONCnOOOn \OOOOOCAOOOONOOsOOOOOOOOOOOOOOOOOOOOOOOO

II 3- II

II CM II

II 00 II

li m ll

II fO II

II II

II II

II II

II vO II

II 3-
II

II II

II II

II II

II II

II O II

II II

II II

II II

II II

II II

II -3-
II

II II

II II

II

II

II

II

II O II

II II

II II

II II

II II

II © II

II II

II II

II II

II II

II CO II

II II

II II

II CM II

II •-
II

II I- II

II II

II II

II II

II II

II II

II VO II

II I- II

II CM II

II II

II II

II II

II II

II O II

II • II

II O II

II II

II II

II II

II O II

II • II

II O II

II II

II II

II II

II 0\ IIeoo^w^J^nJL^ooa)oeo^-^-m^^o^J^(^^-lf^o^c^3•3•^oo^oo(\l^o^n^o^lco^^o^o^'-c^
II

•

^cMC\j^jor-r-irvoocMin3-jL^vo3- ^JJJ'inin^cv>in\oj^in^ON03 n -3
II

II

^-^O^O^OC>C0OOC\J^O^*0MJl^r0C\J'-«0C)roc0OCAC>NNfOC\JrtrOrtinirNOV0r^0>JC\IO'-O
II II

II II

II 00 II

II • II

II I- II

II II

II II

II II

II CM II

II II

II II

II II

II II

II O II

II • II

II O II

II II

II II

II II

II O II

II II

II II

II II

II II

II II

II to II

ii r- ii

II II

II II

II II

II m II

II CM II

II II

II II

OiACM*0CM^03"<>tAOO^^CM3'^ir\C>^^C0CvJCMv0C*OCMOO^^C^ II lA II

tr> co& st irvifMTi if\in irwo'Ovo'O in 3- j- 3- j ininmmvovovovovDvovovovovovovovovovo ^\j to »o co cm ii m ii

II II

II II

II II

II II

II II

OL^CLnO^OiAOOOL^OiAOlAOiACvOinOlAOiAOlAC^OtTlOlAOLAOLAChOlAOlAOlAClAON II Oil3-mjC'-«JOOC'-"JOi-'OJiAO'-to40'-«^i^OT-roJO'-mjlAOi-mJO'-m3-m || iT\ II

COCCODCOONONOSOvOOOOOO^^^^^CMCMCMCMto II r— II

OOOOOOO©'-'-*-'-'- |- »- r- 1- I- »- r- t- f- »- »- I- T- T7 I- r- t- T- t- I- T- T- »- f- t- I- l?"-^ *- W 1 1
1- II

347

,— A —
<

1

l

I—
UJ i t— _J —
o 1 o o <
< CO o_ > 3r

J— A -a£

< O 0- O
|— h- < —

J

CO
Ld O

O 3 \
z Q Cd —

o
Li_ o

z > <
D < O 0-
Q£ _l z

o Ld — O
o 1 Qhh

1 — CO
\Q 1 1— <
CO 1 (J Z£ 3

1 CL. Q.

v V o
(O
Q A 1— 3}

1 Q_ O
o (/) < Cl. o
fj Ld
bJ _J i— 1— UJ

CO Q. <J> O >
Q_ < —

<
CO • CO
t O CO
v z o

1— to
CO Z Ld
o — z
Z C£ —

o < 0 I

CO
ID +

i O ^ Ld
>. X CO G_

1 <
< v Q J—

A O X
00 1 CO _J <f

t— U_ ^
21 O O
O _|

CO >- X
I— <

.'

Ld SQ
1 o o cc o
z Q_ CL >

1— V <
X>

to
| jj A pi lil

Q Z 1

—

<J
D
o .

(/) Ld O
Ld O X Q
rv <X. \— <t

Q.. i | |

Q£
Ld

V CC

CO
Ld CO X
o k— Ld <J

o ^ CO

CO

fr\

. . | Q
fT\

tjf\

(— > <£
CO i

t\J 1 A
1 |—

CO —
Q >

£"! o
_j

CO 2
| Q
1 f—

Ld
. > J 1

—

o 1 — DO
1 <

Ld Ow rf Q_

00\ Q
c

ce\ Ld
m CO
o

Ld
f- Z
< <
Q IT

OC\HO(\jnWOvO-JNt-COJO(OlA3, '-a>00\?-3, >OOOincO\03, vOMCOO>JS!\13, coro^miASiA
r^c>^r^oor^vo^co^oooococo^ooiAC7Ncooovoc\CNONOC>ooc>ON^<^cor^r^oooN»— ONCNfoCNONONONON

(\JlAOv0l^^0NO0^O^^O03v0infOI~-i-t\100v0lA0\C>v0C0e0ir\iri3-OlAJ-rOi— OvOflvO\00!~-MI~-
laco noi—nOvo i— oo i"» o On eo oo oo On r— <- o\ on oo on on co o\ on cn On co on r— oo on oo\ cnOnononon

ooo

OOTO!\J'-ftJOWNft|i-N100iAOtVJ«-JvOO'-'-OnMORJt\J'-OinroOWOftJfOOl(\l(\Ji-i-

ooooooooooooooooooooooocooooooooooooooooooooo

ow^ot^ jncvjiA(\i^'-n Ja5(^^o<^J(D(^J3, lr^a5^-o^r-•-m^OlAJ•^(^^^oc^foc^^0'-3, ^'-lA^o
ONONC>coo>c>coONC>h-c^oooNOOCN^-<^coL^c^c)Nu^jr^^CMNOiAiA\or^

^coJ•^ooDm^o^)m(\lJ3•No^^mt^^-^l»a5do«)0^to(\l^JJ•3(^^^)coo5oo•-eOL'^^-^-3o^
^3'^^cO'-l«)c^vOl-Oll^eoeooo<DO•-c^Jl^lC\l'-3•^(^J>^)(^JO'-m!\lOO j'-'-vo jr-vooviAmo\
COJiAmMmroOJM'-OJJCJ |T> CM lA M J >- JNJJOtMJrojL'l'-lAi-Jr- .3- CM lA ro lA ro LA

OOOOOlTlOOOriHOnrOOO'-rONOiO'-OJOOOOOOJiONJOOOOJOO'-r-O

0^0(J\lf^^-\^)OKl^eOOO^^O^I^»-llM^O'0(M3•nO(^OO^O^OWJ(^ICOO^O[\JJln-l1J)^eo^O
CM CM a «— romrOt\Jr-mr-C\J C\J L"ti-i-»-t-0\fOr- CM «— 00 CM CM ro r- i— i— f-

O CM r-

ooooooooooooooooooooocoooooooooooocooooooo

r- •- a <- o\"-ovmo\>-0'-'— ~(\Jooojr-rjovooc\i'-r--'-oO'-ooj-r~-eoocoiAt\j co o F-- cn on
CM CM LA PO i— t— t— •— CM »— *— »-OOfO Mi-fO i— f— i— f— i— r- t— f- en i—

c\jr^oocMr^oor^o^aoMrovo^JOooar-o>oc>^^^u>c\j^iAvor^Ln'-iA'-fovooDc\ioo
VO tA O ro CM \0 OO 00 OO O O l*» VO J tM OO I

s- r~ O r- S VO r- M 'O <- O ON C7MT) \0 J OJ (00 C\J CO P"-

£NJ C\J C\J I- 00 r- .- ^ r- r- i-

-[Mn«0«Ji-J'-J')'0'-NOOO(M"OONJ\Oi-(\J'-'-NL'\'-'-'-'-rjO«NOWm

^\lJ30C^^^'-^0'-J^l.'^'-J!0'-!^lAm^MJ^^rfO'-m^O'-nJ(\JlntMOlOJ'Ol^llA

ft|\OfJftJJvOftl05ia(\10Jt\lvOflOvOOO'OeOJvONJOJJ3, 03, NeOON<0>0-J-JCOCOO
^m^l<lOl-C^'-^OOrtJ^OIM^J!^0^1^J^^)L'^^!OCO^OCO^O«JMJ^J^^OL'^MOON^^!
fO000N*-C\ja00 00C00NaDs0Lnc00U0jaPO\0C\JOC\JOf^00Oir>*-C0vOLAC\J»— \OC\jrocO-3"vOr~OfO

rtL^(\JJ£\J^Jf\!^JJM»-l^^^N^\o•-cooc^^•Mf\JC^ ,o•-c^o^4'^OJ'-L'^o^l^^c^'Ou'^l^^

r-H^Nr-t-r-V^i-v- — i- r- ^^oj^>- — ^i- — ^ro^^CM-- — i- i- i- i- M i- ^ ^ i- i\| r-

f^T-C\]^r^vOaOJLACJCMaCOf^^r^T-vOf^^O^O^<^aar^sO^^^OOC\JJ>roC\Jro^

J- h- CM VC r- O ON vO r~ NO lT\ lA iPi m J CM m a- — J <M C\J m y- •- CM «- CM C\J i- r- r- •— •- r- r-

CNtM lA <-

rooor^for^r^t— cMar^ONNOoONOO*— \OnO!s~'-nOiaial'>. 1^-tfNoooNONNOON^ooocMPor-LrN'— r— cmia
r^fOt^lAOC>00C0C0r^'-00CMaCMOf^N0LAlArOr-00C0r^fOCMr^r^r^\OlALACM'-0NN0^fOCMCMO
LfNacMacM'-ooNoor^r^voNOiAirNL'NaaaaaaT^fOfT^cMCMCMCMCMCMCMCNj'— — — — r-

ON LA U"N r- r- t- r-

O O O O O O Q

O Z C£ CO £C c/5

Z Z CC — h- <E O LJ CJ O CO UJOU DO. OEZt0>O D£ < JO-O I Ld .— CMr-C0_l Cl
S LO X CC SI Q CO = < X Ld O > CO r- X 3 Z CO < -J C >- CM Ld U > O X coco
Ld > CJ Z < < 0£ CJ — O Q- < Q — > CJ CO O u. CC d j0 CC Z Ld _l ^ > — CC O CO CJ JO-^Q
cdcoi-r-ujo<i-cei-<dtzceuJOf-Li-cc:>-c£: — <to<ozE — cooaccrrvio—ii-ccr <ccz<0< — QCOO<C0<CCU<XC0C0<Ld'-^^0.XI-SS<><3DCUJLd<C0Ld<OOS:<O
HOi-I0.O»lhIllHOZI-O>»)C2Ol-rC.0OCl0Z-)i2TO0.T3:Li:OhLti>Z-

"-WMJiAvOr-OONO'-CMWjL

348

(D3S) 3WI.L 3SN0dS3d 3AI13Vd31NI

349

a Q. a
in tn CO
LU LU LU
cr a cr

X CO< >
(31 <

B o 7%

9*2 2*2 0*2 L'\ 9"T 2*t 0"t 8'0 9*0 E'O CT0

(33S) 3WI1 3SN0dS3H 3AI13Vd3J.NI

350

351

352

001 06 08 0L 09 09 Of OE OS 01 0

Ndiivzniin lNaouad

353

06 08 01 OB 09 Of OS 02 OP

(!N33b3d) NOIlVZIHin nd3 1V101

354

m

ee oe E2 st g o

NOIlVZIlIXn ndD lNaOtGd

355

356

357

358

a
LU aa CD COo <t h-

(—i (X CO
i

—

1— 1

—

CJ u o
Q. a_ a.

< 0

21 01 8 9*20
9NI1IVM lN30U3d

35 9

CPSJG82
"Improving Organizational Productivity"

Performance of Local Area
Networks

J61

SESSION OVERVIEW

PERFORMANCE OF LOCAL AREA NETWORKS

Bill Hawe

Digital Equipment Corporation
Hudson, MA 01749

This session investigates various aspects of Local Area Network performance
analysis. Included are discussions of an analytical framework for studying the
performance of shared channel access protocols. This is applied to CSMA, Slotted
Aloha and TDMA access methods. Additionally, a detailed simulation study of
Ethernet which incorporates a model of the layered architecture above Ethernet
is presented. This presents system performance metrics such as waiting time,
number of collisions, etc. as a function of the number of users sharing the
channel. Finally, results of hardware and software measurements of hosts, inter-
facing channels, adapters, etc. for a Hyperchannel connecting Digital Equipment
Corporation (DEC) and Control Data Corporation (CDC) machines are presented.
These compare the contributions of host protocol overhead, network adapter
processing and truck transfer rates to the system performance.

363

A Common Framework for Studying the
Performance of Channel Access Protocols

K.K. Ramakrishnan
and

Satish K. Tripathi

System Design and Analysis Group
Department of Computer Science

University of Maryland
College Park, MD 207^2.

Abstract

Channel Access Protocols for shared multiple access
channels have been widely studied. Performance studies have
treated these protocols in isolation using open system
models. For comparing various access protocols, we need to

arrive at a uniform framework for the access schemes,
operating under similar load conditions. We consider a
closed system with a fixed number of users utilizing the
channel. The channel is aggregated to a single load depen-
dent M/M/1/N server.

Within such a framework, the adaptability of the chan-
nel access protocol to changes in the offered load is stu-

died. The Relaxation Time of the channel is proposed as a

measure of the sensitivity of the channel to such changes.
Example access schemes are studied. In particular, Fixed
Time Division Multiple Access (FTDMA), Slotted Aloha, and
Carrier Sense Multiple Access (CSMA) schemes are compared.

Key words: Local area networks; channel access; protocols;
throughput; relaxation time; sensitivity; slotted aloha;

carrier sense multiple access; load dependent ; M/M/1/N
queue; transition matrix.

1. Introduction

Local Computer Networks have achieved

greater prominence and application in the recent

past due to advancing technology, the trend

towards smaller systems and the need to share not

only computer resources but data as well. The

medium of communication is typically a shared

channel, with access provided to the nodes in the

network in some fixed manner.

As observed by Shoch et al. [Shoc80], mes-

sage traffic generated in a typical local network

is bursty in nature. Several access schemes have

365

been synthesized to account for this burstiness

in traffic, and achieve an efficient utilization

of the channel [Lam80], [Metc76]. The underlying

protocols that appear in use include Fixed Time

Division Multiple Access (FTDMA), Slotted Aloha,

Reservation Aloha and Carrier Sense Multiple

Access (CSMA) schemes.

Considering the channel as an open system,

expressions for the throughput and delay in the

channel have been obtained for different access

schemes, [Klei73], [Lam80], [Buze79], [Fran80],

[Toba80], [Alme79]. Performance studies of

specific techniques have treated these access

protocols in isolation. Comparison of different
access schemes, therefore, has been difficult
[Powe8l]. To enable a comparison of these
schemes, a common framework to study them is

needed. We propose a framework in which these
access protocols may be studied, under similar
load conditions. As an example of using this
framework, we study such shared multiaccess chan-
nels for their performance, with regard to their
capability to adapt to transient changes in their
offered load. A measure of the sensitivity of
the channel to such changes is proposed.

In this framework, we attempt to reflect the
realistic situation of a fixed number of users
accessing the channel and determine the response
of the channel to the load offered by these
users, using models for the access protocols pro-
posed earlier, [Klei73l and [Lam80]. A closed
system is considered, with a fixed number of
terminals/customers permitted access to the chan-

nel . Note that the throughput of the channel and
the arrival rate from this set of users are
interdependent and also depend on the channel

access protocol that is used. We adopt an itera-
tive technique solving for the throughput-delay
characteristics of the access scheme and obtain
the corresponding arrival and throughput rates.

Given these arrival and throughput rates, we
approximate the channel behaviour by modeling it

as a single load dependent exponential server. In

this common framework, a comparison of the FTDMA,

Slotted Aloha and CSMA schemes is made.

Because of an increase in contention within

a shared multiaccess channel, or because of a

fixed access methodology being employed, perfor-
mance of the channel may degrade with additional

load. This degradation in performance and the

ability of the channel to adapt itself to such
changes in load is an important aspect to evalu-

ate. The channel's First Exit Time (FET) to a

'critical state' has been used as a measure of

the stability of the channel in the case of the

Slotted Aloha and CSMA access protocols

[Klei75b], and [Toba77]. Fayolle et al.

[Fayo77] study control policies and the stability

of slotted access channels. In our analysis, we

consider the "relaxation time" [Klei76] as a

measure of the sensitivity of the channel to

changes in the load on the channel.

The next section presents a methodology for

arriving at a common framework to study the

access protocols. In Section 3 we outline a

method of obtaining the relaxation time of such

an aggregated M/M/1/N server with load dependent

arrival and service rates. Section M outlines
the models used for the individual access proto-

cols and aggregation of the schemes. Section 5

presents experimental results.

tion is that each new user can have only one out-

standing message at a time. The load offered to

the channel , when the channel is treated as an

equivalent open system, also depends on the

response from the channel to these users.

Although open system models of channel access

protocols are adequate to study the throughput

and delay behavior of the channel in isolation,

they may not be useful for comparison between

different access protocols. They cannot reflect
the interdependency between the load on the chan-
nel and the response from the channel to that
load. Therefore we model the situation by a
closed system, with a fixed number of users M,
attempting to utilize the channel, as shown in
Figure 1

.

We consider the service offered by the chan-
nel as the time from the presentation of the
packet by a ready user, until its successful
transmission. This includes any queueing delays
and delays for retransmission that may be
required. We further assume that the channel may
be modeled by aggregating it to a single M/M/1/N
server. As the behavior of the protocol depends
substantially on the number of ready users of the
channel , we use load dependent arrival and ser-
vice rates for the aggregated server.

Let the 'think time' for each user be Z.

Ready users attempting to transmit queue at the
channel. When there are 'i' users queued at the
channel, the arrival rate generated by the users
to the channel is given by

L(i) = (M-i) / Z (2.1)

With this assumed value of the arrival rate
(refer to Figure 1) , we solve the throughput -

delay equations for the channel, given the
characteristics of the access scheme that is used
[Klei73], [Lam80], treating the channel as an
open system - For each access protocol, the

M users

external
arrival rate

L(i)

retransmissions

tr;

O
channel

successful
nsmission

2. A Common Framework for Channel Access Schemes

Existing models for channel access protocols

study the throughput and delay behavior of the

channel, treating it as an open queueing system
e.g., [Klei73], [Klei75c]. In actual systems
though, there are a fixed number of users permit-
ted to use the channel. The underlying assump-

Figure 1

.

throughput from the channel is thus given by

S(i) = i / D(i) (2.2)

366

where D(i) is the delay encountered at the chan-
nel .

The channel adapts to the load on the sys-
tem, and thus reaches a state which can be
characterized as a steady state. In steady
state, the throughput S(i) from the channel must
match the average arrival rate L(i) that was
assumed. We obtain a new estimate of the arrival
rate and iterate by successively solving for the
throughput and delay and getting a new L(i), till
the error between L(i) and S(i) is within limits.
Thus, by treating the channel as an open system,
we compute the throughput for a given arrival
rate to the channel. Determining the load depen-
dent service rate of the channel in such a sys-
tem, we can now use it in the closed system shown
in Figure 1 , where the load dependent arrival
rate is given by eq. (2.1). Section 4 elaborates
on the models of the access protocols used, when
the channel is treated as an open system.

The performance of the access protocol may
also depend on the time-out period used or the
acknowledgement delay encountered on the channel.

The throughput-delay equations incorporate this
factor, and a further level of iteration may be

necessitated to obtain estimates of the ack-

nowledgement interval. Briefly, the iterative
technique is:

while I S(i) - L(i) I > E
1
do

Compute L(i) = (M - i) / Z
;

Assume R ; (ack. interval)
Compute S^i) and D^i);

(•using the open system models*)

j = 1 ;

Repeat

j = J+1 5

Compute S.(i) and D.(i)
;

Update R oased on D^(i)
;

until I S.(i)-S. (i)
J KE

1
u;

S(i) = SAll ;

J

D(i) = D^(i)
;

Update LTi) based on S(i) - L(i);

end do;

When a new user is added to the system, this
has an impact on the service time of the channel
and the load dependent arrival rate is also
changed. For each value of N, we need to itera-
tively solve the throughput - delay equations of
the channel. By such an iterative technique, the
parameters of the uniform model of the channel
(for each of the corresponding access protocols),
aggregated as a single load dependent M/M/1/N
server are obtained.

For computing the throughput and delay
values for the channel, we use models proposed by
Kleinrock and Lam [Klei73] (for the Slotted Aloha
channel), and Lam [Lam80] (for the CSMA channel).
These values determine the parameters for the
load dependent M/M/1/N server used to represent
the channel. Thus, for the range of offered load
on the channel, the performance of the load
dependent server matches the proposed models.
The load dependency is necessary because the

channel performance varies with the number of

ready users of the channel. In this framework,

the performance of the different access protocols

may be studied, and a comparison of the schemes
made

.

3. Relaxation Time for the Aggregated Server

Within the framework presented in the previ-

ous section, we compare the performance of the
channel for changes in the offered load for dif-

ferent access protocols. Typically, as a result

of the access protocol that is used, the channel
adapts to the load offered by a given set of
users, and a steady state is achieved. Subse-

quently, when there is a change in the offered
load to the channel, for example with an increase
in the number of users attempting to utilize the

channel , the performance may degrade before a new
steady state is achieved. Within the same
environment, each access protocol responds dif-

ferently to such changes. The relaxation time is

used as a measure for comparison of the proto-
cols, using the uniform framework for modeling
the channel access protocols. The relaxation
time is a 'time constant' for a queueing system
to reach a new steady state, after a change

occurs in the offered load to the system
[Klei75a]. We present here, a technique of

obtaining the relaxation time for an M/M/1/N
server with load dependent arrival and service
rates.

For the M/M/1/N server, the relaxation time
of the channel is a measure of the dynamics of
the number in the system. In the exact case,
expressions for the number in the system would
involve an infinite sum of Bessel functions, even
for the simple M/M/1 case [Klei75a]. Stern
[Ster79] provides an approximation for the time
dependent number in the system of an M/M/1 queue
by truncating the queue at some finite but arbi-
trarily large length. A realistic assumption of a
finite buffer is thus made. We take a similar
approach in our case to limit the states of the
Markov chain to a finite length.

Briefly, the approach by Stern is as fol-
lows: Assuming Poisson arrivals at a rate of L
packets/sec, and exponential service times with a
mean of 1/U, the evolution of the probability
distribution p(t), is given by

where Q in the model proposed in [Ster79], is a
(k+1)*(k+1) matrix. Q is then transformed by a
change of variable, yielding a tridiagonal sym-
metric matrix A.

The eigenvalues E , of the matrix A, are
provided bv the exDlicit closed form solution of

V* "
UEit

(3-2)
p(t) = p

0
+2ji p

i
e

i=l

367

wher

P
i=

E and u[e"
1/2

P (0)

where u
i

is the i eigenvector of A. From the
above, it is shown that the "time constant" or
relaxation time r of the queue is given by

r=1 / (UE) (3.3)

where E
1

is the smallest non-zero eigenvalue of
the matrix A.

We use this method of obtaining the relaxa-
tion time for our load dependent M/M/1/K queue.

Both the service and arrival rates in our case,
however, are load dependent, and the matrix A can
no longer be symmetric. The Markovian state
diagram is shown in Figure 2.

We numerically solve for the eigenvalues of
A and obtain the smallest non-zero eigenvalue. If

E^ is this smallest eigenvalue, then the relaxa-
tion time is given by

1/CUE.,) (3.6)

given a mean service time of 1/U seconds.

We present in the next section specific
models used for the access schemes compared, and
arrive at the parameters for the aggregated
M/M/1/N server to enable computation of the

relaxation time.

Access Scheme Aggregation of Access Protocols

L(0) LCI) L(2) L(k-l)

0(1) 0(2)

Figure 2

0(3) ooo"

From the above, the rates of departure and
arrival are as follows, from each state:

dp
Q
(t)

dt

•L(0)p
Q
(t) + UtDp^t)

dp„(t) = L(n-1)p
n_ l

(t)-(L(n)+U(n))pv,(t)

dt

For n = k,

+U(n+1)p .(t) for 0<n< k
n+1

(3.4)

dpjt) = L(k-1)p
k_ l

(t) - U(k)p,,(t)

dt

Writing these down as a vector, we obtain

dP(t)
dt

P(t) A (3.5)

With the development of Section 2, we con-

sider the following access protocols for com-
parison:

(1) FTDMA
(2) Slotted Aloha

(3) CSMA
For each of these schemes, given a particular
arrival rate to the channel, we can obtain the

throughput and delay relationships by considering
the channel to be a single open system. The con-

siderations involved in each of the access
schemes are given below. The underlying model of
the channel for the Slotted Aloha and CSMA chan-

nels used have been shown to be good, in com-

parison to the actual performance of the proto-
cols in [Klei73], and [Lam80].

4.1 Fixed Time Division Multiple Access

With Fixed Time Division Multiple Access
(FTDMA), the channel access is divided into slots
of equal but fixed lengths. The slots are allo-
cated to users in a fixed, round robin fashion.
The channel delay involved is the sum of the syn-
chronization time of the user with the
corresponding slot and the transmission time
itself, which are both fixed.

Given a closed system of M users, and a nor-
malized packet transmission time T = 1 , the syn-
chronization delay DS is, on the average equal to
M * T/2. The synchronization delay does not
depend on the total number of users ready to
transmit, and thus is load independent. The
channel delay is

where A is the following matrix:

-L(0)

0(1)

o

L(0)

-(L(l)+0(1))

0(2)

0

0 . .

L(l)

•(L(2)+0(2))

0(3)

L(n-l)

(L(n)+0(n))

O(iw-l)

L(k-l)

-00c)

D = M * T/2 + T (4.1)

The arrival rate from the set of M users, with a
finite think time Z, between successive genera-
tions of packets is given by eq. (2.1). The
throughput of the channel is given by eq. (2.2),
i.e. S(i) = i/D. The aggregation of the communi-
cation channel as a single M/M/1/N server

368

accounts for the queueing delays as part of the

service of the channel. The load dependent ser-

vice rate for the aggregated server is given by

U(i) = S(i) (4.2)

We thus have the requisite parameters for the

model proposed in Figure 1

.

4.2 Slotted Aloha

Users utilize the slotted channel, with the

restriction that transmission can only begin at

the start of a slot, although it may be any arbi-

trary slot. Collisions occur when more than one

user attempts to transmit at the beginning of a

slot, thus requiring retransmission of collided

packets

.

The aggregation is performed using the
analysis of Kleinrock and Lam [Klei73]. The
effective throughput rate, S(i) is given by

S(i) = Gq
t

/ (q
fc

+ 1-q) (4.3)

where

G = the offered channel traffic, as a result of
external traffic as well as packets retransmitted
after collisions,

q = [e
_G/K

+ G/K e"
G

]

K
(4.4)

where q = 1 - P(newly generated packet collided)

(4.5)

and q
t

= 1 _ P(recollision of blocked packet)
K = number of slots over which the user attempts
to retransmit a collided packet, with a uniform
probability.

A further relationship, for stable operation
of the Slotted Aloha channel, is given by,

[Robea], [Robeb]

L(i) = G e"
G

(4.6)

By solving the non-linear eqs. (4.3)-(4.5),
we obtain the throughput S(i) for a given offered
load G, which in turn is obtained for each value
of L(i), by solving the condition for stability
(4.6). The final load dependent arrival rate
L(i) is given by eq. (2.1).

The delay at the channel, D(i) is

D(i)=R + (1-q)/(q
t
)*R + 1 + (K-D/2 (4.7)

where R = delay to ensure packet was successfully
received - i.e., the time for receiving an ack-
nowledgement. Here q and q^. depend on the value
of G and thus are load dependent.

The iterative solution of the throughput-
delay equations is performed, till the channel
throughput matches the arrival rate generated by

the fixed number o^ users. The value of R was
assumed to be 2 * D(i). As a result, a further
level of iteration was required as outlined in

Section 2.

Treating the service offered by the channel
as that from presentation of a packet by a ready
user till the successful transmission of that
packet, the service rate is given by

U(i) = i/D(i) , where
i = number of ready users,
D(i) = delay in the channel with i ready users.

4.3 Carrier Sense Multiple Access

The Carrier Sense Multiple Access protocol
has become the access scheme of choice in local
networks. Several existing local networks have
adopted this scheme or variations of it, such as
in the Ethernet [Metc76], the NBSNet [Carp80] and
FordNet [Biba79]. Further, the CSMA scheme and
variations, with carrier detection and abort pro-
tocols have been widely studied [Fran80],
[Bern80], [Lam80], [Span79] and Kleinrock and
Tobagi [Klei75c].

We adopt the model proposed by Lam [Lam80]
for the CSMA protocol with carrier detection
(CSMA-CD). The channel is considered to be slot-
ted in time, the slot size being 'a', the propa-
gation delay in the channel. The user senses the
channel for the presence of a transmission and
contends for its use only when the channel is

sensed to be idle. Collisions in the channel
cause users involved in the collision to abort
transmission immediately. The transmission pro-
bability in the next time slot is assumed to be

1/e, which yields good results [Lam80], A ready
user is considered to transmit in the next time
slot, following any successful transmission, with
probability 1

.

Consistent with the other models, we assume
that the service offered by the channel is from
presentation of a packet by a ready user till the

successful transmission over the medium. Thus,
delays resulting from retransmissions due to col-
lisions are also incorporated into the service
time.

Let s be the probability of successful transmis-
sion in the next time slot, given a collision has
occurred, (assumed = 1/e). We outline below the
results for the delay encountered in the channel
from [Lam80].

369

The mean message delay is

D(i) = x + T + T - (1 - pQ
)(2/L(i) + sT - 3T)

s 2
2(B*(L(i)s - (1 - Po

))

+ L(i) (x
2
+ 2x(T/s) + T

2
(l+2(l-s)/s

2
))

2(1 - L(i) (x + T/s))

where T = 2a, and x = b^+a,

and

where b^ = mean value of the packet length,

—2 2
x = b

2
+ 2b

1

a + a

where b^ = second moment of the packet
length distribution.

B (s) = P (s)e' where

P (s) is the Laplace transform of the probability
distribution function P(x) for the message
length, p., the probability of 'j' new arrivals
(ready users) in a time slot is given by

p. = (LT) j e"
LT

/ (j!),

j = 8,1,2....
where L = the arrival rate.

As outlined in Section 2, we iterate on the

packet delay D(i) and the arrival rate generated
by the fixed number M of users/terminals, which
have a mean think time of Z.

The service rate (load dependent) for the

CSMA channel is given by

U(i) = i / D(i)

5 . Experimental Results

The common parameters of interest for the
three access protocols are the normalized packet
transmission time, T=1, and the "think time", Z =

200*T. The load dependent arrival and service
rates L(i) and U(i) are obtained by the technique
outlined in Section 2 and 4, for the three
schemes, for different values of the number of
users attempting to utilize the channel. The
parameters of the closed system with the M/M/1/N
server for the channel match the values of L(i)
and U(i) obtained from the iterative technique.
For the FTDMA technique, a solution using the
iterative technique was not required as the
scheme is a fixed one, where the service offered
by the channel is not dependent on the number of
ready users, but only on the total number of
users of the channel. The parameters L(i) and
U(i) are thus directly available.

For the cases considered here, with arrivals
generated from a set of M users, FTDMA was seen
to have the lowest service rate while Slotted
Aloha had the highest. For example, with M = 15
users generating traffic, and with 5 ready users
with packets for transmission, FTDMA has a ser-
vice rate of 0.588235, CSMA has a U(5) of
0.791228, while Slotted Aloha has a rate of
2.654352. The corresponding arrival rates for
the set of 15 users, with i = 5 is 0.050. Tables
1,2 and 3 in Appendix 1 show the load dependent
arrival and service rates for the three access

protocols for M = 15. The iteration performed

was to obtain the correct throughputs, when M

users are present, and hence, the load dependent

service rates. On the other hand, the arrival

rates, are directly obtained according to eq.

(2.1), for the closed system models.

Given the models for each of the access pro-

tocols, we study their behavior with respect to

their adaptability to changes in load. The meas-

ure used is the relaxation time. Using the set

of load dependent arrival and service rates L(i)

and U(i) respectively, we obtain the relaxation

time for each of the channel access protocols, as

outlined in Section 3- Table 1 shows the relaxa-

tion time for each of the channel access proto-

cols, for varying number of users, M. For exam-

ple, for M equal to 15, the relaxation times for

the different access schemes are as follows:

Slotted Aloha = 0.462612

CSMA = 3.341915
FTDMA = 9.240624

Table 1 also provides the corresponding average

service rates for the different access protocols.

The number of ready users, results in the load

dependency factors for the arrival and service

rates L(i) and U(i), from which the relaxation

times were computed.

The relaxation time obtained represents the

adaptibility of the channel to changes in load.

For the given load conditions, FTDMA is seen to

be the poorest in its adaptability, having the

largest relaxation time. This reflects the fact

that the FTDMA protocol is a fixed methodology,
and as a result does not adapt to changes in the

load offered to the channel. Slotted Aloha on

the other hand is seen to adapt fastest to load

changes, having the smallest relaxation time. It

must be noted that the approximation used, to

obtain the correspondence between L and G, for

the Slotted Aloha channel limits the maximum
arrival rate to 1/e. A peak in the throughput-

offered traffic curve occurs at this value and
hence, higher arrival rates lead to instability
in the solut-ion of the non-linear equation.

Figure 3 shows the graph of the relaxation
time for the three access schemes studied, as the

number of users that utilize the channel is

varied. In the region of operation, for the load
factors considered here for the Slotted Aloha

access protocol, an increase in the throughput

results as the number of users is increased. The

relaxation time decreases with an increase in the

number of users of the channel. It is seen that

when an increase in the arrival rate (by an

increase in the number of users utilizing the

channel) results in an increase in the throughput

of the channel, the adaptability of the access
protocol to variation in the load is good. Thus,

in this case, we notice that the relaxation time

is lower. CSMA indicates a gradual increase in

the relaxation time, with increase in the number

of users, and appears to be in between the two

other protocols, for the range of load values
considered.

370

6. Conclusions REFERENCES

We have proposed a technique of obtaining in

a uniform framework, models for shared communica-

tion channels. By considering a closed system

with a fixed number of users utilizing the chan-

nel, and iteratively solving for the throughput -

delay equations of the channel with its associ-

ated access protocol, we obtain the parameters

for the model of the channel. We have used this

common framework for modeling the FTDMA, Slotted

Aloha and CSMA access schemes.

Given such a model of the channel , as a

M/M/1/N server, with the load dependent arrival

and service rates, a comparison of the different

protocols has been made. The performance of the

channel under transient conditions, and its

adaptability to changing load was of interest.
The relaxation time has been used as a perfor-
mance measure to compare the transient behavior
of these schemes.

For the given load conditions, FTDMA is seen
to have the maximum relaxation time. Thus, the
time the channel takes to reach a new steady
state is longer than for the random access tech-
niques studied. Given the load conditions, Slot-
ted Aloha has the smallest relaxation time, indi-
cating that it adapts to the change in load
fastest. In conclusion, we note that although
the load conditions considered here are not
exhaustive, the relaxation time can be used as a
parameter to characterize the transient behavior
of such multiaccess communication protocols, pro-
viding additional insight into the applicability
of particular access protocols.

Acknowledgements

Computing support for this research was pro-

vided by the Computer Science Center of the

University of Maryland. We also gratefully ack-

nowledge the suggestions of the members of the

System Design and Analysis Group of the Depart-

ment of Computer Science, of the University of

Maryland.

2 -x- 30 6 -y- 15-1

No. of users

Figure 3: Relaxation Times for Access Protocols

[Alme79]
Almes, G. T. and Lazowska, E. D., The
Behavior of Ethernet-Like Computer Communi-
cations Networks, Proceedings of 7th SOSP ,

Asilomar, pp. 66-81, December 1979.

[Bern80]
Bernard, G. , Non-Persistent CSMA - Abort
Protocol for the Access to the Channel of

Local Computer Networks, ERA N452 du CNRS,
University of Paris-SUD, November 1 980

.

[Biba79]
Biba, K. J. and Yeh, J. W., FordNet : A

Front-End Approach to Local Networks,

Proceedings of Local Area Communication Net-
work Symposium ,

Boston, May 1979.

[Buze79]
Buzen, J. P., Denning, P. J., Rubin, D. B.,

and Wright, L. S., Operational Analysis of

Markov Chains, Technical Report 79-1, BGS
Systems, January 1979.

[Carp80]
Carpenter, R. J. and Sokol, J., Serving
Users with a Local Area Network, Computer
Networks 4, 5, October/November 1980.

[Fayo77]

Fayolle, G., Gelenbe, E. , and Labetoulle,

J., Stability and Optimal Control of the

Packet Switching Broadcast Channel, Journal

of the Association for Computing Machinery
2jt, 3, pp. 375-386, July 1977.

[Fran80]
Franta, W. R. and Bilodeau, M. B. ,

Analysis
of a Prioritized CSMA Protocol Based on

Staggered Delays, Acta Informatica , 13,

1980.

[Klei73]
Kleinrock, L. and Lam, S. S., Packet Switch-
ing in a Slotted Satellite Channel: Perfor-
mance Evaluation, Proceedings of the NCC ,

Montvale, N.J., AFIPS Press, 1973.

[Klei75a]
Kleinrock, L. , Queueing Systems , Vol Is

Theory , John Wiley, New York, 1975.

[Klei75b]
Kleinrock, L. and Lam, S. S. , Packet Switch-
ing in a Multiaccess Broadcast Channel: Per-
formance Evaluation, IEEE Transactions on
Communications 23, 4, pp. 410-423, April
1975.

[Klei75c]
Kleinrock, L. and Tobagi, F. A., Packet
Switching in Radio Channels : Part I - Car-
rier Sense Multiple-Access Modes and Their
Throughput-Delay Characteristics, IEEE Tran-
sactions on Communications COM- 2 3 , 12,

December 1975.

371

[Klei76]
Kleinrock, L., Queueing Systems, Vol II ;

Computer Applications , John Wiley, New York,
1976.

[Lam80]
Lam, S. S., A Carrier Sense Multiple Access
Protocol for Local Networks, Computer Net-
works

, 4, April 1980.

[Metc76]

Metcalfe, R. M. and Boggs, D. R. , Ethernet:
Distributed Packet Switching for Local Com-
puter Networks, Communications of the ACM
19, 7, pp. 395-403, July 1976.

[Powe8l]

Powell, D. R., Performance Evaluation and
Comparison of Dependable Channel Access
Technologies for Locally-Distributed Comput-
ing Systems, Proceedings of The 2nd Interna-
tional Conference on Distributed Computing
Systems

, Paris, France, pp. 256-270, April
1981.

[Robea]

Roberts, L., Arpanet Satellite System Notes
8, NIC Document 11290,

[Robeb]

Roberts, L., Arpanet Satellite System Notes
9, NIC Document 11291,

[Shoc80]
Shoch, J. F. and Hupp, J. A., Measured Per-
formance of an Ethernet Local Network, Com-
munications of the ACM 23, Dec. 1980.

[Span79l
Spaniol, 0., Modeling of Local Computer Net-
works, Computer Networks 3, 5, November
1979.

[Ster79]
Stern, Thomas E., Approximations of Queue
Dynamics and their Application to Adaptive
Routing in Computer Communication Networks,
IEEE Transactions on Communications COM -

27, 9, September 1979.

[Toba77]
Tobagi, F. and Kleinrock, L., Packet switch-
ing in radio channels: Part IV - Stability
considerations and dynamic control in car-
rier sense multiple access, IEEE Transac-
tions on Communications COM - 25, 10, pp.
1103-1120, October 1977.

[Toba80]
Tobagi, F. A. and Hunt, V. B., Performance
Analysis of Carrier Sense Multiple Access
with Collision Detection, Computer Networks

4, 5, October/November 1980.

Appendix 1

Table 1: Fixed Time Division Multiple Access -

Load Dependent Rates.

Table 2: Slotted Aloha - Load Dependent Rates.

1 Arrival
Rate

Service
Rate

Delay

0 0 .075 0 .00 0. 00

1 0 .070 0 .482086 2. 074320

2 0 .065 0 .988693 2. 022873

3 0 .060 1 .514607 1. 980712

4 0 .055 2 .071170 1. 931275

5 0 .050 2 .654352 1. 883699

6 0 .045 3 .251973 1. 845034

7 0 .040 3 .887956 1. 800432

8 0 .035 4 .534892 1.764099

9 0 .030 5 .205057 1. 729088

10 0 .025 5 .922789 1. 688394

11 0 .020 6 .644872 1. 655412

12 0 .015 7 .391759 1. 623430

13 0 .010 8 .163238 1. 592505

14 0 .005 8 .997494 1. 555989

1 Arrival
Rate

Service
Rate

Delay

6 d.075" 0.66 6.60

1 0.070 0.117647 8.50

2 0.065 0.235294 8.50

3 0.060 0.352941 8.50

4 0.0b5 0.470588 8.50

5 0.050 0.588235 8.50

6 0.045 0.705882 8.50

7 0.040 0.823529 8.50

8 0.035 0.941176 8.50

9 0.030 1.058824 8.50

10 0.025 1.176471 8.50

11 0.02 1.294118 8.50

12 0.015 1.411765 8.50

13 0.01 1.529412 e.50

14 0.005 1.647059 8.50

372

Table 3: CSMA - Load Dependent Rates.

i Arrival Service Delay
Rate Rate

0 0 . 07 5 0 .00 0. 00

1 0 . 070 0 .49217 3 2. 031804

2 0. 065 0 .642290 3. 113856

3 0

.

060 0 .716507 4

.

186981

4 0 . 055 0 .761330 5. 253965

5 0. 050 0 .791228 6. 319294

6 0. 045 0 .812550 7 . 384164

7 0

.

040 0 .828506 8. 448943

8 0 . 035 0 .840897 9. 513656

9 0

.

030 0 .850797 10. 578315

10 0. 025 0 .858891 11. 642927

11 0. 020 0 .865630 12. 707 507

12 0. 015 0 .871330 13. 772053

13 0. 010 0 .876213 14. 836571

14 0. 005 0 .880443 15. 901079

PREDICTING ETHERNET CAPACITY - A CASE STUDY

Madhav Marathe
Bill Hawe

Digital Equipment Corporation
HL 2-3 /CO

9

77 Reed Road
Hudson, MA 01749

"How many users can I support if I install an Ethernet in my installation?"
This is a question asked by many installation managers these days. Their worry
is understandable because Ethernet bandwidth requirements of a typical user are
not widely known. In this paper we estimate these requirements for a specific
environment and a specific communications protocol. The environment chosen for
this study was the program development or the time-sharing environment in a large
University. The communications protocols assumed were similar to the existing
Decnet protocols. The methodology presented here can be applied to other
environments and protocols as well.

In order to calculate the Ethernet bandwidth requirements of a typical user
we used a two step approach. First, we measured how users are using an existing
timesharing system, and then we extrapolated this usage to a hypothetical Ethernet
based timesharing system. We assumed that users on an Ethernet based timesharing
system will issue the same commands as they do on present systems. This will be
true at least initially. We therefore used workload measurements we had performed
at several large Universities which do not currently have Ethernet based timeshar-
ing systems. On an Ethernet based system, commands issued at a terminal will cause

data and control packets to be transmitted over the Ethernet. Depending on the

configuration and the communication protocol used, some fraction of the characters

to and from the terminals , to and from the disks and to the printers will be

transmitted over the Ethernet. In order to make this distributed system work,

there will also be some protocol control packets. We combined the user data
packets and the protocol control packets together and calculated the total load

offered by each user. We then used a packet level simulation model of the Ether-

net to estimate the number of users at which the Ethernet will be saturated.

Our results indicate that several thousand users are required to saturate

the Ethernet. We therefore expect that in this environment, other components

such as the processors or disk servers will become bottlenecks before the

Ethernet bandwidth is exhausted.

Key words: Ethernet, Ethernet performance, Ethernet simulation, higher level

protocols, layered architecture, user level workloads, time-sharing, interactive

program development.

1. Introduction

Both marketplace "pull" and

technology "push" are the driving forces

presently causing local area networks to

become cost effective mechanisms for

interconnecting a broad variety of

devices within a moderate geographical
area [DIGI82 and appendix A], Ethernet
is becoming a major commercial local
network product and it is expected that
a number of installation managers are
considering installing an ether net in
their installations. One of the

375

questions many of these managers have is
whether the ethernet has enough
bandwidth to support the network traffic
in their environment. In this paper we

present a case study that we conducted
for a university environment. Similar
analysis can be carried out by
interested installation managers for
their specific installations.

Most installation managers are
interested in determining the capacity
of the ethernet in terms of the number
of active (i.e. logged in) users it can
support rather than in terms of the raw
bandwidth of so many bits per second.
In the traditional time-sharing
environment the term "support" implies
an acceptable level of response time at
the terminal. We would have liked to

use the same notion of "support" except
that predicting the terminal response
time in any environment is a very
complex problem due to the large number
of factors involved. We therefore
decided to estimate the practical upper

bound on the number of users when the

limiting resource is the ethernet. This

was done using a simulation model to

determine the number of users that will

saturate the ethernet i.e. that will

cause the idle time on the wire to

b ec om e zero.

2. Methodology

The most important characteristics
of ethernet traffic are the packet size
distribution and the packet interarrival
time distribution. These are the input
parameters to the packet level
simulation model used in this study.
Figure 1 displays the methodology used
to arrive at these parameters. To
simplify the analysis, all users were
considered identical to each other. It
was therefore necessary to determine the
packets generated by or on behalf of a

typical user every second. This can
then be multiplied by the number of
users to get the total packet load in
the installation. The packets required
by a user can be broken down into the
data packets the user needs transferee!
and the protocol packets needed to
acomplish this. These two can be
further subdivided in order to get down
to the parameters we can estimate. For
example, the data packets the user needs
transfered consist of characters to and
from the user's terminal, the disk
blocks to and from a file server, the
characters going to the printer and mail
messages going to other users on this
ethernet or other remote locations. The
protocol packets consist of
acknowledgements and other flow control
messages generated by various layers of
the network software.

Determining the packets generated
per second per user then boils down to

estimating these parameters for the
workload and protocols expected to be
present on the ethernet. Not knowing
exactly how such local networks will be

used in the future, we made an

assumption that, at least initially,
users will be executing the same
commands as before. This let us measure
an existing installation which did not
use an ethernet and from these
measurements estimate the amount of data
a user will need transfered when an

ethernet is installed. We also made an
assumption that the protocols used on
the ethernet will be similar to the
current Decnet protocols which were
designed for long-haul networks.
Obviously, Decent protocols for use over
ethernet are expected to more efficient
than the current protocols, so using
current protocols provided us with a

conservative estimate of the overhead
needed to acomplish the user's data
transfer needs.

3. Performance Metrics

As mentioned above, here we

concentrate on the performance at the
Ethernet level rather than at the
terminal response time level. The delay
through the Ethernet as a function of
the offered load is the most important
performance metric. The delay is often
small compared to the delays at moving
head disks and processors. The delay
through the Ethernet consists of the
waiting time to acquire the ether and
the actual transmission time of the
packet. The waiting time consists of
the time spent defering to ongoing
transmissions (see appendix A) and time
spent in collisions and backoffs. The

main parameter controlling the waiting
time is the ratio of the one way
propagation delay (ie : half the slot
time) to the average packet transmission
time. This is called "alpha". The
performance improves as this ratio is

made smaller [MARA 80] , [SHOC80]. This
is because packets are exposed to

collisions only during the first slot
time of their transmission. Once a

packet has been on the wire for that
length of time it should not experience
a collision (see Appendix A). Under
heavy load the throughtput will be
better if alpha is smaller [SH0C80].

The number of collisions a packet
experiences in attempts to transmit is

another interesting metric. Each
collision causes the backoff range to be
doubled. One would hope that, on the

average, a packet does not experience
many collisions. Measurements [SH0C80]
and simulations [MARA80] have shown that

376

Calculate Packets
Required

Per Second Per User
— Run Simulations

After Increasing
Number of Users

Combine I

k A
1

Determine Data
Packets Required

Per Second Per User

i

1 1 1

Is Idle Time
Equal To Zero ?

No

Yes STOP

A
I

Determine Corresponding
Protocol Packets

i i r
Terminal Disk Printer Mail
Characters Blocks Requests Messages

Logins File Dat* Print
Opens I rammer sequence

Measurements on Analysis of Protocols
Existing Systems

Figure 1. Analysis Methodology.

there are
systems.

few collisions in typical

One could devise other metrics
relating to the higher level protocols
such as number of packets transmitted
for each user message, etc. However,
here we examine worst case scenarios and
do not pursue that topic. It should be
noted that the higher layers often
dictate the performance of the network
and therefore they should be carefully
studied [MQUI 80 3 . They will produce
extra packets for each user packet
transmitted. These control packets
contend with the data packets for the
resources of the shared channel
(Ethernet). They also contend with
other applications for resources (CPU
cycles and memory) at the transmitter
and receiver. Here we only address the
issues relating to the shared channel.

4. Program Development Workload

4.1 Configuration Assumptions

This study deals with the behavior
of Ethernet in the interactive
time-sharing and program development
environments. There are many

installations which fall in this
category. Our analysis is based on the
measurements at one such
installation - a large University with a

number of large hosts presently
connected to each other by conventional
direct connections. We asked the
question: "What will the traffic on the
Ethernet at this University look like if

an Ethernet was installed today?". We

hypothesized that for the near future,
the university will still have the dumb
terminals (asynchronous, character mode)
that are being used today and that these
will be connected through terminal
concentrators to the Ethernet. Some
terminals will still have direct
connections to hosts since it is not
likely that existing hardware will be
thrown away. However, the users of
those terminals still will generate
Ethernet traffic in transfering files,
sending mail, etc. The hosts will
continue to have local secondary storage
which will be used for swapping, paging
and temporary workfiles. We assumed
some level of file transfers and mail
messages between hosts. Since we could
not extrapolate the current traffic of
this type into the superior sharing
environment of the Ethernet, we assumed

377

three somewhat arbitrary
traffic of this type. Figur
the configuration we
university to have after an
installed. The figure in
types of devices present on
Since in this study we ar
the number of users limited
Ethernet bandwidth, it is
enough hosts, terminals,
are added to the system to
number of users used in the

jti_g User Profile

levels for
e 2 displays
expect the
ethernet is
dicates the
the network,
e estimating

only by the
assumed that
disks, etc.
support the

simulations.

and
using

The
were

The workload can be specified by
descriptions of the activities of the
users. Users perform operations such as
file edits, links, compiles, executes,
etc. They also perform typical "house
keeping" operations such as directory
listings, file copies and deletes, etc.
They send and receive mail
communicate with other users
interactive message facilities,
characteristics of the users
measured during heavy usage periods for
several days at the University. I/O as
well as program image related data was
collected [JA1N82]. Table 1 summarizes
some of the major points of interest in
the user I/O characteristics. The table
contains the mean value of several
interesting statisitics. It is
important to note that many of these
statistics had bimodal and trimodal
distributions. This means that more
than the mean is required to fully
understand the data.

In deriving the total network
traffic generated by each user, the data
and control packets generated at each
protocol layer as a result of a user
transaction were totaled and used to
drive the Ethernet simulation. The
amount of disk traffic present on the
Ethernet will change with time as more
intelligent servers and workstations are
added to the system and as usage
patterns change due to those new
capabilities. We therefore have varied
the load due to disk traffic in the
simulation. Various amounts of the user
disk traffic were sent over the network.
Access rates of 0.00567, 0.0085 and
0.017 accesses/ second/ user were used.
These correspond to 3.3%, 5%, and 10% of
the accesses generated by each user to
the local disk in this environment.

5. Results

Figure 3 contains a histogram of
the Ethernet packet sizes generated by
the user interactions coupled with the
protocol model. The packet size
includes user data (if any), the
preamble, CRC and all other protocol
fields from all protocol levels. The
main contributor to the relatively large
number of small packets (64 to
100 bytes) is the higher level protocol
control packets. As mentioned
previously, we have assumed the worst
case for all protocol exchanges. This
means that there are no piggybacked
acknowledgements, etc. This imposes the

File
Server

Print
Server

Host Host
• • •

Kthernet

Terminal
Concentrator

• • •
Terminal

Concentrator

Figure 2. Local Area Network Components

378

PARAMETER VALUE

1) Avg. Session Duration

2) Avg. Input Size (Term -> Host)

3) Avg. Input Rate (Term -> Host)

4) Avg. Output Size (Host -> Term)

5) Avg. Output Rate (Host -> Term)

6) Avg. Printed Character Rate

7) Avg. Remote File Access Rate
(Assumed Light Usage, See Text)

8) Avg. File Access Size
(Directed Locally or Remotely)

1 307

10.7

0.16

26.5

0 . 3 1*

2.91

seconds

byte s

in put s/ sec

byte s

outputs/ sec

char s/ sec

0.00567 accesses/sec

3584 bytes/access

Table 1. "Per-User" Workload Summary

Figure 3. Packet Size Frequencies (Low Remote Disk Traffic)

c
0)

in

D
C
CD

Q.

T3
C
o
o
CD

cn

c
<u

Q.

in
4-)

CD

.y
o
(0

a

f=
200 400 600 800

Packet Size (Bytes)

379

heaviest load due to protocol control
traffic. Since these are generally
small packets, this distribution poses a

demanding load on the Ethernet and
should produce conservative results for
this user workload.

Figure 4 shows the Ethernet offered
load versus the number of users for this
workload. The Ethernet specifications
indicate that a maximum of 1024 taps may
be connected to an Ethernet. The
simulation conforms to that rule. Note
that several users can share a tap.
This is the case with terminal
concentrators and hosts that have local
terminals generating Ethernet traffic.
In the figures presented here, the
"number of users" corresponds to actual
users - not to physical transceiver taps
(of which there is a maximum of 1024).
Figure 5 shows the idle time on the
Ethernet going to zero at the overload
points. Note that this occurs for an
unusually large number of users.

Figure 6 shows the mean waiting
time versus the number of users.
Figure 7 shows the 90th percentile of
the waiting time. The waiting time is
defined as the time from when the packet
becomes ready for transmission until it

begins successful transmission. It

includes all time spent defering,
colliding and backing-off. As mentioned
previously, three levels of remote file
traffic were simulated. The "low level"
corresponds to an access rate of
0.00567 accesse s/ user/ second . The other
two are for one and a half and three
times the load due to that component.
The waiting time in figure 4 should be
compared to other waiting times
contributing to the response time at the
terminal. For example, waiting time at
a disk is about a seek time (40
milliseconds) and the waiting time for a

processor can be several tens of
milliseconds depending on the load.

Figure 8 shows the number of
attempts required to successfully aquire
the channel as a function of the number
of users. The number of attempts
includes all collisions as well as the
one successful attempt which aquires the
channel. Note that even at an overload
point with 2000 users, a given packet
experiences an average of only one
collision before a successful
transmission. Figure 9 shows the 90th
percentile of the number of attempts.

6. Conclusions

The results of the simulation
indicate that the Ethernet has
sufficient' bandwidth to serve large

numbers of users of the type
characterized by the time-sharing
workload. In practice, one generally
does not operate the system with the
steady state load near the system
limits. The finite rate at which the
hosts, disks, users, etc. can generate
and process information will prevent the
steady state loading from achieving this
level .

The waiting time experienced in
attempting to gain access to the channel
was shown to be small compared to other
sources of delay such as disks and
processors. The number of collisions
experienced by a packet attempting to
acquire the channel was also shown to be
quite low - even in the heavily loaded
regions .

In summary, we can say that the
Ethernet seems to be well qualified to
carry the type of traffic experienced in
the time-sharing environment. It has
the capacity to support large numbers of
users in this environment. Installation
managers are encouraged to carry out
similar analysis of their computing
env ironment

.

6. 1 Pi scussion

Here we have shown that the
Ethernet is capable of handling the
traffic generated in this time-sharing
environment. To build an effective
network, the operation of the higher
level protocols must be examined. The
delays encountered due to processing and
queueing can result in poor user
perceived performance if care is not
taken in their implementation. One
should also examine other environments
to see how similar or different they
might be and how this affects
performance. For example, the office
environment is very important.

7. Acknowledgements

We would like to thank our
colleagues in the Systems Performance
Analysis Group, especially Rollins
Turner, for obtaining the workload
measurements as well as their help in
analyzing the large amounts of data. We

also wish to thank them, and others in
Distributed Systems, for insights
regarding the modelling of Ethernets in
this environment. Finally, the people
in Systems Performance Analysis and
Distributed Systems Product Management
who reviewed this paper deserve special
thanks for their many useful comments
and suggestions.

380

Predicting Ethernet Capacity - A Case Study

Figure 4. Offered Load (%)

Number of Users

-B— High network disk transfers
0— Medium network disk transfers
-A— Low network disk transfers

381

Predicting Ethernet Capacity - A Case Study

Figure 5. Percent idle time on cable

100 —i

1 1
1

3000

Number of users

B— High network disk transfers
0— Medium network disk transfers
A— Low network disk transfers

382

Predicting Ethernet Capacity - A Case Study

Figure 6. Mean waiting time

10000

o
0)

co

o
c
o

0)

E

CD
C

C
(0

0)

2:

8000

6000

4000

2000

-e-

1000 2000 3000

Number of users

-B High network disk transfers
0— Medium network disk transfers
A— Low network disk transfers

383

Predicting Ethernet Capacity - A Case Study

Figure 7. 90 Percentile of waiting time

0 1000 2000 3000

Number of users

-B— High network disk transfers
0— Medium network disk transfers
A— Low network disk transfers

384

Predicting Ethernet Capacity - A Case Study

Figure 8. Mean number of attempts

Number of users

-B— High network disk transfers
0— Medium network disk transfers
A— Low network disk transfers

385

Predicting Ethernet Capacity - A Case Study

Figure 9. 90 Percentile of number of attempts

-B— High network disk transfers
©— Medium network disk transfers
A— Low network disk transfers

386

8. References

CC0TT60] Technologies For Local Area
Computer Networks, I. Cotton,
Computer Networks, Vol.4, No. 5,
Oct/Nov 1980, pgs. 197-208.

LMARA80] Design Analysis Of A Local Area
Network, M. Marathe, Comp.
Network Symp., Wash. D.C., Dec.
1980, pgs. 67-81.

[DA P 80] DECnet Data Access Protocol
Functional Specification,
Version 5.6.0, Digital
Equipment Corporation, October
1 980.

[M ETC 7 6] Ethernet

:

Switching
Networks

,

D. Boggs,
No. 7, July

Distributed Packet
For Local Computer

R. Metcalfe,
Comm. ACM, Vol.19,
1 976, pgs. 395-404.

[DEC N 80 J DECnet Transport Functional
Specification, Version 1.3.
Digital Equipment Corporation,
March 1980.

[DIGI80] The Ethernet - A Local Network,
Version 1.0, Digital, Intel,
Xerox, September 1980.

[DIGI62] Introduction To Local Area
Networks Digital Equipment
Corp. 1982. Order number
EB-2271 4-1 8

IMQUI80]

LF REE 80] Updated Bibliography On Local
Computer Networks, H. Freeman,
K. Thurber , ACM Comp. Comm.
Review, Vol.10, No. 3, July
1980, pgs. 10-18.

LJA1N82] Workload Characterization Using
Image Accounting, R. Jain,
R. Turner CPEUG 1982, Wash.
D. C. , October 1 982.

LNSP80]

[SESS80]

[SHOC 80]

Local Network
The Lessons
J. McQuillan,
Networks

,

Oct/Nov, 1980,

Technology And
Of History,

Computer
Vol.4, No. 5,
pgs. 235-238.

DECnet Network Services
Protocol Functional
Specification, Version 3.2.0,
Digital Equipment Corporation,
October 1980.

DECnet Session Control
Functional Specification,
Version 1.0.0, Digital
Equipment Corporation,
November 1980.

Measured
Ethernet
J. Shoch
Comm. ACM
Dec. 1980

Per formance
Local
and
Vol .23,

pgs. 711-721

Of An
Network

,

J . Hupp,
No . 12

,

[WECK80] DNA : The Digital Network
Architecture, S. Wecker,
IEEE Trans. Comm., CCM-28,
No. 4, April, 1980,
pgs. 51 0-526.

387

APPENDIX A

A. 1 Local Area Networks

Local Area Network interconnection
schemes such as the Ethernet provide the

the framework in which one can construct
systems which provide sharing of

resources in an effective manner. Two

aspects of local networks which help
achieve this goal are their speed and

the fully-connected nature of their
configurations.

To date, no one has come up with a

standard definition of local area

networks. However, most Local Area

Networks do exhibit some general
characteristics. Generally, they span

areas of up to a few square kilometers.
They are often contained completely in

one or a small number of buildings.
They usually have data rates in the

range of 1 to 10 megabits/second . One

group or organization almost always has

complete control over the operation of

the network. Since users are generally
from one organization, there is a strong
desire to access shared devices such as

print servers, file servers, gateways,
hosts, databases, etc. As a result,

full physical connectivity is desirable.
Because of the technology employed and

the restricted size of the network, one

observes lower bit error rates compared
to conventional long-haul networks.

Because of the Local Area Network's
speed it usually gets used for not only
the traditional network communication
but also for handling I/O traffic for

shared disks, printers, etc. The

personal computer workstations of the

future will introduce a new class of

traffic on the network. However, in the

near future, the traffic on the local

area network will consist of

ho st / term inal traffic, host to host file
transfers, mail, etc., specialized
device traffic (print servers, etc.) and

gateway traffic. We have made use of

this fact in modelling the workload on

these networks. More information on

Local Area Network technology and
architectures can be found in [COTT80]
or [F REE 80] .

A. 2 Ethernet

In this paper we are cone

a Local Area Network built
Ethernet [DIGI80], [M ETC 76]

.

uses a broadcast mechanism
cable) and a distributed
procedure to allow for shar

channel. The procedure i

Carrier Sense, Multiple Ac

Collision Detection (CSMA/CD)
the Ethernet can

erned with
using an
Ethernet
(coax ial

access
ing of the
s called
cess with

Nodes on
sense on-going

transmissions and defer theirs until the
channel is idle. They also have the
ability to monitor the channel while
transmitting to determine if any other
stations are also attempting to
transmit. Once an idle channel is
sensed a station may transmit. Because
of the propagation delay on the wire,
two or more stations may sense an idle
channel and attempt to transmit
simultaneously. This results in a

collision. In order that all stations
(including the one transmitting the
packet) can "hear" the collision it is
required that all packets be greater
than a certain minimum size. That size
is determined by a parameter called the
"slot time". The slot time is slightly
greater than the round trip propagation
delay. Any station involved in a

collision must stop sending the packet
and reschedule the transmission. The
algorithm used to determine when the
next attempt should be made is called
the truncated binary exponential backoff
algorithm. Basically, every time a

station is involved in a collision it
backs off (ie: waits) a random amount of
time whose mean is doubled every time it
experiences a collision. The backoff
time is reset after a successful
transmission. This algorithm has the
advantage of being fair to all nodes on
the Ether ne t . s i nc e the same algorithm is

executed by all. Ethernet performance
is fairly robust. It degrades slowly
and recovers well from momentary
overloads [MARA 80] , [SHOC80].

The day to day operational
performance of a 3 Mbps Ethernet is
reported in [SH0C80]. It is interesting
to note that the utilization of the
channel was quite low. Less than 0.03%
of the packets transmitted were involved
in collisions while 99% acquired the
channel with no latency.

One of the main reasons for
Ethernet's popularity is because it uses
a passive broadcast medium. This
results in very reliable operation.
Ethernet interfaces can be built using
VLSI technology and thus made fairly
inexpensive. Multi-vendor environments
can be implemented by adhering to
interface specifications at any of
several levels. For instance, one may
choose to provide compatibility at the
wire tap, the transceiver cable, the
port, higher level protocols, etc.
Because of the heterogeneous
enviornments in which Ethernets are used
one can expect to see a great variety of
traffic distributions. In this paper we
have studied the traffic generated in a

University environment and have
predicted the performance of the
Ethernet when used to satisfy the needs
of that enviornment.

388

EVALUATING LOCAL NETWORK PERFORMANCE

JONAS HERSKOVITZ

Hughes Aircraft Company
El Segundo, California

ABSTRACT

This paper examines the factors involved in evaluating the performance of
a local computer network. The configuration of the network consists of mul-
tiframe Digital Equipment Corporation (DEC) and Control Data Corporation (CDC)

host computers connected using Network System Corporation (NSC) HYPERchannel
Adapters . Software and hardware measurement experiments were implemented to de-
finitize the performance characteristics of major subsystem components in the
network system such as host computer, network adapter and interfacing channels.
Measurements compare the contributions of host protocol overhead with network
adapter processing and trunk transfer rates in defining network performance.

Key words: Local networking; computer network; performance evaluation;
measurement; network performance; mathematical modeling.

1. INTRODUCTION

To solve a particular distributed process-
ing requirement, Hughes Aircraft Company's Space
and Communications Group embarked upon the
development of an integrated system of hardware
and software products. JANET (Joint Applications
Network) comprises a major portion of this sys-
tem. The JANET software provides intercomputer
communications among a group of nonhomogeneous
mainframes in a local point-to-point data net-
work. Other elements of the system provide re-
mote timesharing access, file transfer and gen-
eral graphics display processing capabilities.

Utilizing the network concept in configur-
ing the system increased system flexibility and
processing power. At the same time, greater con-
figuration complexity compounded the difficulty
of evaluating overall system performance.
Although multimainframe system performance in a

network environment is of great concern, the im-

mediate problem centered about evaluating a JANET
local high speed network, with a goal of applying
these techniques during network development and

in the operational phase. To assist in monitor-
ing and maintaining the network in an operational
environment, JANET development included a network
monitoring system. 1

Although a number of studies have been un-

dertaken to study the performance characteristics
2 3

of networks of under 10 megabits per second,' com-

paratively little has been done to evaluate high
speed local networks, i.e., a network with data
transfer capabilities exceeding 50 megabits per
second.

4
This lack of high speed network perfor-

mance evaluations may be due to a number of fac-

tors, including cost considerations, time and ef-

fort involved, relative difficulty, inadequate
measurement tools and a lack of performance cri-

teria. All too often, performance measurements
lag behind system design and development. This

lag in performance evaluation methodology is par-
ticularly evident in high speed local area net-

works .

In the JANET development however, critical
time dependent applications, such as file
transfer and display support software, required

the full exploitation of the network adapter

3G9

capabilities. Therefore, in support of network
development, a parallel investigation was ini-
tiated to evaluate parameters affecting network
performance. As a result of this effort, methods
and measurement tools were devised which evaluat-
ed high speed network protocol timing at various
interface levels.5 Also, as a consequence of the
investigation, viable, methods and techniques
evolved for measuring and evaluating network per-
formance. Though the measurements cited in this
paper are oriented specifically toward JANET, the
approach is applicable in evaluating almost any-

local network.

2. JANET NETWORK ENVIRONMENT

The JANET network architecture grew out of
a requirement analysis and an industry survey
conducted in 1977. Major operational changes
mandated the network approach. The primary
change involved the conversion of large computer
applications to a standard Control Data NOS
operating system and the distribution of new
functions to minicomputers. Distributed process-
ing necessitated a reorientation of data sharing
between programs. Another major factor influenc-
ing the networking approach centered about the
elimination of specialized and obsolete graphics
hardware with its inherent programmed dependen-
cies. As an added benefit, off-loading display
processing to minicomputers relieved the large
mainframe for more efficient application oriented
processing.

JANET's configuration, illustrated in Fig-
ure 1, employs Network System Corporation (NSC)
HYPERchannel processor adapters in a local en-
vironment for communication support to transfer
large volumes of data at high rates of speed
between various host computers

.

Coaxial cables interconnect data trunks
between adapter devices, driving the trunk at a

specified data rate of up to 50 megabits per
second. Each NSC adapter contains a host depen-
dent I/O device interface, a common nucleus mi-
croprocessor with control and buffer memories,

bit o MESSAGE PROPER BIT F

CYBER 730
HOST

CYBER 74

HOST

NSC A110
ADAPTER
(2)

TRUNK 1

TRUNK 2
4 9

VAX 780
HOST

NSC A110
ADAPTER
(2)

NSC A410
ADAPTER

NSC A410 NSC A410 NSC A410 NSC A410
ADAPTER ADAPTER ADAPTER ADAPTER

PDP 11/70 PDP 11/70 PDP 1 1/70 PDP 11/70
HOST 0 HOST 1 HOST 2 HOST 3

BYTE 0

BYTE 8

BYTE 62

CONTROL

ACCESS CODE

ADAPTER
ADDRESS

TO HOST
SUB ADDRESS

ADAPTER FROM HOST
ADDRESS i SUB ADDRESS

NETWORK FUNCTIONS

USER DATA

ASSOCIATED (USER) DATA

Figure 2. Network Packet Structure

and trunk drivers which accommodate one

data trunk interfaces.

to four

Figure 1. Janet's Development and Test Configuration

Among communicating hosts, NSC adapters

provide a reservation protocol, where the receiv-

ing adapters are "reserved" for the entire dura-

tion of the communication. Between themselves,

adapters employ a prioritized "Carrier Sense Mul-

tiple Access" (CSMA) trunk protocol.6

Defined and formatted network messages

directed by the sending and receiving hosts pro-

vide the means for communication between inter-

facing processors. Network messages consist of

the "message proper" and optionally associated

(user) data as shown in Figure 2.

The message proper contains 64 bytes (8

bits/byte) of information part of which indicates

the source host, some fields control the message

destination and function, and there is limited

space for user defined data. Optional associated

(user) data of unlimited length follows the mes-

sage proper, though in a practical sense memory

buffer sizes in communicating hosts constrain the

length of data transmitted in a single transac-

tion.

Host specific processor adapters connect a

processor channel to data trunks which function

with other adapters to send and receive network

messages. NSC's model A410 adapters provide the

390

CDC MAINFRAMES

CYBER 730
OR
CYBER 74
HOST

PPU
INTERFACE

CHANNEL A110
ADAPTER

DEC MAINFRAMES

VAX 780
OR
PDP 11/70
HOST

UNIBUS DRII-B

DMA
INTERFACE

TRUNKS

DATA IN

DATA OUT

CONTROL

A410
ADAPTER

Figure 3. Local Network Configuration of CDC and DEC
Mainframe Processors

communication interfaces with DEC's UNIBUS on the
PDP 11/70 and VAX 780 computers; the NSC model
A110 adapter, counterpart to the A410, interfaces
with the CYBER PPU channel. Figure 3 indicates
the NSC adapter interfaces with the CDC and DEC
mainframes

.

The DRUB 1/0 attachment to the UNIBUS
serves as a general purpose direct memory access
(DMA) device, and operates directly to or from
mainframe memory, moving data between the UNIBUS
and the user A410 adapter device. In an analo-
gous manner, a dedicated peripheral processing
unit (PPU) in the CYBER system senses and con-
trols the movement of data on the channel to the
A110 adapter and to CYBER memory.

Each host mainframe contains network
software to support intermachine and intramachine
processing. JANET software is viewed as three
levels of network protocol handling routines
coexisting under each host's operating system, as

illustrated in Figure 4.

At the application level
terface Package (NIP), resides
field length or task parti
resident JANET Control Prog
all incoming and outgoing mes
connections, and routes raessa

nation host. NIP handles
between the user application
its local host. The Adapter

, the Network In-

in the application
tion. The core
ram (JCP) schedules
sages, multiplexes
ges to their desti-
the communication
and JCP residing in

Interface Program

(AIP) represents the I/O hardware driver for a
particular adapter type, which issues or receives
appropriate function code sequences, controlling
the movement of network messages and user data.

In addition to the network protocol han-
dling routines unique to each host's operating
system, the HYPERchannel adapters employ between
themselves, a trunk access protocol based. on a

Carrier Sense Multiple Access scheme with priori-
tized staggered delays.

In examining JANET
1

s network configuration,
we observe three primary hardware components in-
volved in network communication:

1) The network data trunks

2) The communicating interface units, NSC
Adapters

3) The processor 1/0 channel devices

Each of these components acts asynchronous-
ly within the network and displays its own per-
formance characteristic. The communicating in-

terface units, usually called adapters, occupy a

unique status. Positioned at the nodal points of

the network, adapters intercept and forward com-
munications and data transfers between proces-
sors. Its strategic system location and its in-

herent role as a communication device, put the

network adapter at the focal point for evaluating
network performance.

3. MEASUREMENT APPROACH

Even before integrating of JANET protocols,
network performance measurements were obtained by

using customized driver programs for communicat-
ing between tasks. Basically, the tasks in each
host echoed the transfer of specified data back
and forth a given number of times. The test
software timed the transfer sequence, using the

system clock as the reference. As network
software development progressed, application lev-

el test programs written in Fortran incorporated
Network Interface Protocol (NIP) requests such as

network reads and writes (NETRD and NETWT) to
evaluate task-to-task communication.

APPLICATIONS
SOFTWARE

^APPLICATIONS INTERFACE APPLICATIONS
SOFTWARE

i

1

1
i

NIP NIP
MESSAGES MESSAGES

' JCP HOST-TO-HOST 1

i

I

JCP ^_ PROTOCOL ^ JCP

<

1

i

JCP JCP
MESSAGES MESSAGES

t i

i

'

AIP
HOST A

AIP
hostb!

i k ADAPTER ADAPTER i

INTERFACE INTERFACE
r PROTOCOL NSC TRUNK PROTOCOL %

ADAPTER
PROTOCOL ADAPTER

Figure 4. Layered Janet Protocols

Software instrumentation of test driver
code to obtain application-to-application level

protocol timing, though elementary, proved quite
valuable. By varying the length of data
transferred in a controlled network environment
and measuring the elapsed duration, we deduced
both the software protocol overhead and the net-

work transfer rate. Inferences were made from an

analysis of the acquired test data that a linear
relationship exists for determining network
transfer time. The model assumed that network
delays were defined by a ratio of the data length
transferred and the bus transfer rate, plus in-

variant protocol overhead effects. Because test
data showed a high degree of linearity, a simple
mathematical model fit well and proved useful for

evaluating network performance.

391

Single stream point-to-point timing tests
fit the linear mathematical model equation:

Tn = (Ld /R b) + P
Q

where

Tn = is the network transfer time

= is the effective bus transfer rate

L
ri

= is the data length transferred

PQ
= is the protocol overhead time

As network complexity increased, this
mathematical model proved simplistic and did not
explain anomalous network behavior, particularly-
prevalent in a multitasked environment. Jn addi-
tion, expansion of network functions mandated
more precise and definitive measurements. Main-
taining the network and upgrading the system to
increase its efficiency required a greater under-
standing of network component behavior and more
detailed performance measurements.

To accomplish a more detailed comprehension
of network implementation we decided to employ
sophisticated hardware monitoring measurement
techniques in conjunction with software instru-
mentation .

Hardware monitoring techniques were select-
ed since they provide an exceptional passive
method of instrumenting and measuring network ac-
tivity. This measurement approach does not in-

troduce an artifact which would affect network
performance, but requires the installation of a

monitoring device capable of resolving high speed
signals. The Dynaprobe D7916 Hardware monitor
chosen has a pulse count resolution of between 20
and 40 nanoseconds and measures elapsed time
parameters to within 100 nanoseconds, all within
tolerances needed for measuring network perfor-
mance .

The D7916 hardware monitor illustrated in
Figure 5 contains 32 probes which detect and
decode input signals passing through externally
programmed logic circuitry. Occurrences, decod-
ing and logical combinations of these input
pulses, simultaneously feed 16 buffered output
counters or timers for recording on magnetic
tape. Data reduction software processes the cap-
tured information and provides convenient sta-
tistical and graphical reports for analysis and
evaluation.

Regardless of the measurement techniques
used in performance measurements, most serious
considerations center on the definition of infor-
mation required, determining the feasibility of

DEC DMA INTERFACE
(DR11-B)

DEVICE
STATUS
(3)

U ii ii

DYNAPROBE
HARDWARE MONITOR

DATA (16)

ADAPTER
BUSY

NSC NETWORK
ADAPTER (A410)

NETWORK
TRUNKS

DEVICE
REQUEST

NSC NETWORK
ADAPTER (ANY)

ADAPTER
BUSY

DEVICE
REQUEST

PLUGBOARD
LOGIC

COUNTERS/
REGISTERS

TN 1

/ DATA \—(output! '

Figure 5. Dynaprobe Hardware Monitoring and Measurement
Configuration

obtaining that information and finally under-
standing and applying the results in a positive
manner to effect ultimate system improvement.

4. NETWORK PERFORMANCE PARAMETERS

Earlier in this paper, a primary critierien
used for evaluating network performance was cit-
ed, namely message timing, which is defined as

the end-to-end timing delay or the elapsed time
from initiating message transfer until receipt
and acknowledgement. By assuming a linear net-
work model and measuring the transfer time for

messages of various lengths an estimate was made
of the network protocol overhead and the effec-
tive transfer rate. This performance measurement
approach, implemented by instrumenting software,
proved adequate in a dedicated environment where
conflicting activity does not introduce communi-
cation delays in the network and processing de-

lays at the nodes. However, during normal opera-
tions contention effects contribute heavily to
timing delays. In addition, in any measurement
process we want to avoid the introduction of a

software artifice which slows down network func-
tions. It is most desirable to have a measure-
ment technique which is transparent to the net-
work software yet measures system activity and
performance and retains its applicability during
the developmental and operational phase. As a

consequence of our efforts the use of hardware
monitoring techniques gave us an insight on how
to accomplish this most difficult performance
measurement task.

In examining alternative options, for
measuring network performance characteristics in

satisfaction of development and operational re-

quirements, we decided to combine elements of
software instrumentation with hardware monitoring
techniques

.

392

Selecting hardware monitoring for network
performance measurement was not an easy choice
since the use of this technique was never demon-
strated in evaluating performance of a high
speed, state-of-the-art network. Documentation
of signals that could be probed in the adapter
device was practically nonexistent. On the posi-
tive side, we had Dynaprobe monitoring equipment
and some prior measurement experience in its use
and there was a definite need for its applica-
tion.

Before implementing the hardware monitor
measurements, we researched a multitude of net-
work adapter and interfacing signals to ascertain
their suitability for measuring network activity.
Probing signals of interest, while driving the
network with predetermined instrumented software,
permitted validation and calibration of hardware
measurements

.

The objective of these experiments was to

select a list of measurable parameters indicative
of network performance. Some network performance
characteristics chosen for measurement are:

1) Program-to-program network transfer
time

2) Data transfer rates

3) Network software overhead

4) Effective data trunk transfer rates

5) Effective UNIBUS transfer rate

6) Contention delays

7) Network protocol timing measurements

8) Network bottlenecks

The resolution of these objectives makes

for an interesting discussion and the remainder
of this paper will deal with some network meas-

urements and their implication in evaluating net-

work performance.

5. NETWORK ADAPTER PERFORMANCE CHARACTERISTICS

Lying at the nodal points of the network,

NSC's adapters provide a convenient test bed for

interrogating communication between mainframe
processors. For that reason we initiated our

research by examining network documentation and

deriving a test point library. Table 1 shows a

partial list of defined signals and their physi-

cal system location.

Concurrent software and hardware measure-

ments of network components were performed even

before implementation of the full JANET protocol.

Its primary purpose was to evaluate component

hardware and to establish a baseline for evaluat-

ing firmware changes.

Table 1. NSC Adapter Test Point Library

SIGNAL TEST LOGIC
POINT BOARD

BUSY A04 AD3DS
RECEIVE DATA B01 AD3DS
TRANSMIT DATA A02 AD3DS
TRUNK FRAME* D05 AD3DS
TRUNK TRANSMITTING* E03 AD3DS
TRUNK LAST BYTE A05 AD2C
BYTE COUNTER CONTROL E04 AD2C
TRUNK FUNCTION DECODE ENABLE* F05 AD2C

|

REQUEST TO SEND* C06 AD6
CARRIER ON D01 AD6
DEVICE REQUEST A06 AD5CB
DEVICE WRITE C03 AD5CB

* SAME COUNT AS BUSY

In the measurement process, we evaluated
actual component performance as opposed to vendor
specification. An example of a series of
parametric measurements performed to evaluate NSC
adapter performance characteristics is shown in
Table 2. The table lists measured results ob-
tained from software and hardware monitoring ex-
periments using test drivers which echo data back
and forth between two PDP 11/70 host computers.

By integrating some understanding of the
network adapter's role in network communication
we judiciously chose and derived the network and
adapter performance characteristics shown in
Table 3.

Knowing the message length (64 bytes or 512
bits per message) and the amount of user data
transferred across the network for each test, we
combined trunk busy measurements to calculate the
message and user data transfer rates for the en-
tire spectrum of tests. We derived the trunk
transfer rate for user data by assuming that in a

dedicated environment message processing (i.e.,
trunk busy time) remains invariant and indepen-

Table 2. Parametric Measurements of Network Transfer Signals.

20 200 4000

SIGNAL MESSAGES BYTES BYTES BYTES
MEASUREMENT TYPE ONLY MESSAGE MESSAGE MESSAGE

BUSY COUNT 10,000 22,182 22,000 28,065

BUSY TIME* 0.0842 0.1672 0.2233 1.4808

RECEIVE DATA COUNT 2,000 4,182 4,000 6,000

RECEIVE DATA TIME* 0.0147 0.0225 0.0513 0.6637

TRUNK FRAME TIME* 0.0285 0.0532 0.0818 0.7021

TRUNK TRANSMIT TIME* 0.0418 0.0829 0.1111 0.7396

TRANSFER TIME* 0.0820 0.1623 0.2184 1.4745

FUNCTION
ENABLE
DEVICE REQUEST COUNT 64,357 84,387 266,924 4,081,123

DEVICE REQUEST TIME* 0.0220 0.0288 0.0907 1.3957

DEVICE WRITE COUNT 32,000 42,387 134,925 2,034,951

DEVICE WRITE TIME* 0.0110 0.0146 0.0459 0.7045

TEST DURATION, SEC 11 22 22 63

BYTES TRANSFERRED
EACH WAY 64,000 84,000 264,000 4,064,000

IN SECONDS

393

Table 3. Network Performance Characteristics. Table 4. Comparison of Network Performance Before and
After Adapter Trunk Retrofit.

TEST PARAMETER
MESSAGES
ONLY

20 DATA
BYTES/
PASS

200 DATA
BYTES/
PASS

4000 DATA
BYTES/
PASS

tcct ni IRATIOW ^FP
1 CO 1 UUnn 1 IUIM, OCu 1 1 22 22 63

KILOBYTES
TD A MCCCDDCn
TOTAL 128 168 528 8128

k"M nRVTF^/TFQT ^FCfx 1 LUO I 1 CO/ 1 COI OCL 1 1 .64 7.64 24.00 129.02

ADAPTER TRUNK
BUSY TIME, SEC 0.0842 0.1672 0.2233 1 .4808

KILOBYTES/SEC
TRUNK BUSY 1,520 1,004 2,365 5,488

MESSAGE AND DATA
TRANSFER, KBITS 1,024 1,344 4,224 65,024

MESSAGE AND DATA
TRANSFER RATE* 12.2 8.0 18.9 43.5

* MBPS

dent of the associated data block size. Test
results indicate that the message transfer rate
without associated data measures 12.2 megabits

per second. The "message proper" accompanied by
associated data incurs additional overhead, which
for small data transfers reduces the effective
trunk transfer rate even further. As the packet
size transferred increases, the effective
transfer rate also increases. For example, when
transferring 4000 byte data blocks the test meas-
urements show a trunk transfer rate of 43.5 mega-
bits per second, close to the specified 50 mega-
bit transfer rate.

Since NSC touts their HYPERchannel transfer
rate at 50 megabits per second, the difference
between the effective and theoretical transfer
rate measures the adapter processing delay or

overhead in driving the network trunk.

This network performance experiment not
only evaluated the effective network transfer

rate using NSC's HYPERchannel adapters, but also
identified and validated vital parameters that
measure network activity such as "trunk busy
time" and the extent of data received or sent
through the network adapter. Network monitoring
was also applied in evaluating the effects of mi-
crocode changes during a mandated adapter trunk
board retrofit program.

Table 4 compares network performance param-
eters obtained before and after adapter retrofit
using the identical network driver software and
measurement tests. Notice that the adapter re-
trofit program reduced trunk throughput by 3 to 6

megabits per second, and that percentagewise the
change was most significant when transferring
short data packets

.

The comparison of trunk transfer rates, be-
fore and after adapter retrofit, is shown graphi-
cally in Figure 6. In a semilog plot of trunk
transfer rate versus packet size we observed
lower trunk performance after retrofit and a

similarity in transfer behavior between the
curves. In both instances there is a marked drop
in trunk transfer rate when the message is accom-

TEST PARAMETER
MESSAGES
ONLY

MESSAGES
&

20 DATA
BYTES

MESSAGES
&

200 DATA
BYTES

MESSAGES
&

4000 DATA
BYTES

TEST DURATION
1000 PASSES 11 SEC 21 SEC 22 SEC 63 SEC

TOTAL BYTES
TRANSFERRED 1 £ o ,uuu K?Q 000 8 1 28 000

AUAr 1 fcn rnlUn 1 U
RETROFIT

BUSY COUNT 10 000 22,1 82 22 000 28 065

Rl IQV TIM FDUO I 1 1 (VI C n f1R49 ^FP U. I D / Z otb

1 HAINior tn HAI t o.U 1 8,9 43.5

ADAPTER AFTER
RETROFIT

BUSY COUNT 10,000 27,325 26,616 32,167

BUSY TIME 0.1081 SEC 0.2758 SEC 0.3294 SEC 1 .6249 SEC

TRANSFER RATE* 9.5 4.9 12.8 39.9

DELTA CHANGE* 2.7 3.1 6.1 3.6

PERCENT CHANGE -22 -39 -32 -8

* MEGABITS PER SEC

60

50

w 40

THERORETICAL TRANSFER RATE

60 100 200 400 1000 2000 4000 8000

MESSAGE AND DATA LENGTH (BYTES) TRANSFER

Figure 6. Effect of Adapter Retrofit on Trunk Transfer Rate

panied by a small amount of associated data. An
enhancement which allows embedded user data
within the message proper (see Figure 2) was jus-

tified on the basis of these measurements.

Though important in establishing a perfor-
mance baseline and valuable in evaluating NSC
Network Adapter and trunk throughput capabili-
ties, these preliminary measurements were only
preparatory to measuring network performance with
JANET's full protocol installed.

6. JANET PERFORMANCE EVALUATION

Evaluating JANET's unique software system,
with its layered protocol proceeded in parallel
with integration and test, using many of the
techniques evolved in evaluating network adapter

394

and trunk performance. As the understanding of
network behavior increased, the performance in-
vestigation broadened from rudimentary end-to-end
transfer timing and network adapter trunk
transfer capability to include the effects of
peripheral channel transfer rates.

Augmented measurements included network in-
terface devices such as the DRUB. The DRUB in-
terfaces with DEC's UNIBUS, acts as the DMA
(direct memory access) device, which controls and
shuttles data to and from the network adapter.

Some measurement experiments were designed
specifically for diagnostic purposes, such as

monitoring attention interrupts which signal
adapter interface processing. Other measurement
experiments combined NSC's network adapter load
parameters with signals obtained on the UNIBUS
backplane to evaluate potential system
bottlenecks and determine the relative activity
contributions to network loading emanating from
each host. Table 5 shows parametric measurements
resulting from a variation in data block size
transferred, using full network protocols.

Standard linear regression techniques were
applied using end-to-end timing measurements
shown in Table 5, to calculate the nominal proto-
col overhead,

P
Q

= .02 sec

Table 5. Full Network Protocol Performance Measurements

Transferring Data Between Two PDP 1 1/70s.

bLULK ol£t 1 n AIMor t nn t U , DT 1 to 1 98 1998 3996

MEASURED PARAMETERS

1) TEST TIME, SEC 39.30 42.08 50.07 • 57.75

2) END-TO-END TIME, SEC 0.020 0.021 0.025 0.029

3) ADAPTER TRUNK BUSY, SEC 0.484 0.544 1.124 1.846

41 UNIBUS BUSY, SEC 0.810 1.171 4.510 8.208

5) ADAPTER TRUNK BUSY, % 1.23 1.32 2.24 3.19

6) BUS BUSY, % 2.06 2.85 9.00 14.21

7) BUS/ADAPTER RATIO 1 .67 2.1 5 4.01 4.45

81 KILO BYTES TRANSFERRED 132 520 4,124 8,120

9) DATA TRANSFER TIME, SEC 1.78 10.77 18.45

10) DATA TRANSFER RATE,
KILO BYTES PER SEC

292 383 440

The UNIBUS transfer rate was obtained from

direct software and hardware measurements. For

example, in transferring 8.12 x 10 bytes of in-

formation between two PDP 11/70 processors the

UNIBUS was busy 8.2 seconds (see Table 5) for an

average transfer rate of 0.99 x 10
6 bytes per

second. However, the UNIBUS transfer rate is

sensitive to many contending mainframe processing
factors and varies considerably.

and effective bus transfer rate,

Rjj = 437 megabytes per second.

Inserting these values into the mathematical
model gives the network end-to-end network timing
delay

,

437
,02

in seconds as a function of length of data
transferred in kilobytes. A 0.996 correlation
coefficient indicates a good linear relationship
between the measurements and the mathematical
model. The least square calculated network
transfer rate of 437 megabytes per second also

compares favorably with the maximum data transfer

rate measurement of 440 megabytes per second con-

tained in Table 5.

Hardware measurements also resolved perfor-
mance concerns related to the following:

1) UNIBUS Transfer Rate vs Network
Transfer Rate

2) Relative component loading of the net-

work

3) Network trunk saturation levels

Other interesting aspects to the data
presented in Table 5 and graphically as a log

plot in Figure 7, give the relationship between
UNIBUS busy and adapter trunk busy to measure the

relative component loading of the network. The
loading factors applied in a multitasked environ-
ment suggest the components most likely to cause
constriction and the load level at which to ex-

pect contention or saturation. Note that UNIBUS
busy (loading) exceeds adapter trunk busy for the

entire transfer spectrum tested and the

UNIBUS/adapter ratio increases as the block size
increases indicating that under synchronous cir-

cumstances UNIBUS saturation occurs before any
significant trunk contention.

20

5 10

<
h-

P 5
UNIBUS BUSYX

.A

it
— -"""""adapter trunk

BUSY
I I

100 200 1000 2000

USER DATA BLOCK SIZE, 8-BIT BYTES
4000

Figure 7. Comparison of Unibus and Adapter Loading as a

Function of Block Size Transferred

395

After examining many component factors con-

tributing to network performance, one would still
want to know what measurements indicate the vi-
tality and health of an operational network.
Certainly, there is no single answer to this
question, but based on the research and evalua-
tions done during network development, I conclude
that performance parameters selected should have
these attributes:

1) Sensitive to network activity

2) Common to all hosts

3) Simple to monitor

Based on these considerations, operational
performance of a network system is best viewed
from the adapter host interface. Choosing net-
work performance parameters within the adapters
is not readily apparent but, after careful con-
sideration, two stand out among the rest. The
first parameter, "adapter busy", gives an immedi-
ate indication of the level of network activity
attributable to a host node. The second parame-
ter, "device request", counts data transferred,
producing the value network traffic per unit time

and, combined with the first parameter, "busy",

yields the network transfer rate.

To date, we have not performed any network
wide performance measurements combining more than
a single network adapter. However, I anticipate
that in the near future we will apply a combina-
tion of software and hardware measurement tech-

niques for monitoring multiple network adapters
to evaluate the operational performance of the

JANET system.

SUMMARY AND CONCLUSIONS

This paper has described the development of
a highly sophisticated JANET network system and

how methods and procedures were devised to meas-
ure and evaluate system and component perfor-
mance, in parallel with development. The discus-
sion traced the evolution of testing from strict-
ly software instrumentation to multifaceted
hardware measurement. Performance measurements
progressed from specially designed network driver
software to evaluating the fully configured JANET
system.

Installation of software and hardware moni-
toring techniques were delineated for measuring
total performance and evaluating primary network
components, such as NSC's network adapters, and
DEC's UNIBUS and DRUB device interface, to iden-

tify their relative performance capabilities and
to highlight conditions most likely to cause con-

tention and system bottlenecks.

The evaluation indicated correspondence
between test measurements and a linear mathemati-
cal model which defined network timing delay in

terms of protocol overhead, data length
transferred, and bus transfer rates. Direct,
hardware monitoring experiments measured actual
network adapter trunk transfer rates which, when
compared with vendor specification, determined
the scale of adapter firmware overhead as a func-
tion of user data size transferred.

Measurements established a network perfor-
mance baseline to evaluate the effects of the NSC
adapter retrofit program and provided justifica-
tion for software enhancements to improve system
performance

.

Recommendations were offered for monitoring
selected and significant system performance
parameters common to all operational nodes which
conveniently evaluate and control high speed net-
work performance.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the con-
tributions of Paul Valrie and Dave Schreima who
patiently devised, instrumented, and executed
test software to obtain a multitude of timing
measurements. Thanks also to Karen Stier and
Francine Schwartz for their assistance in col-

lecting and reducing the measurements into a dis-
tinguishable form for presentation.

REFERENCES

1) Murphy, J. L. , "Centralized Control and
Monitoring of a Distributed Local
Network", Proc. Sixth Conference on
Local Networks, Oct. 1981, pp. 93-99.

2) Shoch, J. R. and J. A. Hupp, "Measured
Performance of an Ethernet Local Area
Network", CACM, Vol. 23, No. 12, Dec.

1980.

3) Almes, Guy T. and Edward D. Lazowska,
"The Behavior of an Ethernet -like
Protocol", Proc. Seventh Sympos ium on
Operating System Principles , December

1979, pp. 66-81.

4) Franta, W. R. and J. R. Heath, "Perfor-
mance of HYPERchannel Networks:
Parameters, Measurements, Models and
Analysis", Technical Report 82-3,

Jan. 1982.

5) Herskovitz, J., "Network Protocol Tim-
ing", Proc. Sixth Conference on Local
Networks, Oct. 1981, pp. 73-81.

6) Christensen, G. E., and W. R. Franta,
"Design and Analysis of the Access*

Protocols for HYPERchannel Networks",
3rd U.S.A. -Japan Computer Conference

1981, pp. 86-93.

396

CPEU€gg
'Improving Organizational Productivity"

Benchmarking and Remote
Terminal Emulation

397

SESSION OVERVIEW

BENCHMARKING & REMOTE TERMINAL EMULATION

Dr. Bernard Domanski

The College of Staten Island
Staten Island, N.Y. 10301

Historically, remote terminal emulation has had broad application; bench-
marking, capacity management, and in procurement activities. Four new RTE and

RTE-related tools are presented, with particular attention paid to their respective
designs, uses, and advantages. Three of these are true minicomputer based RTE's,

while one is a load driver designed to exercise a large, teleprocessing database
management system. The key issue addressed is "human engineering"; that is, by

making tools easy to use, the accuracy of the results and the productivity of the

tools' users increase significantly.

399

327X EMULATOR PACKAGE FOR
SYSTEM RESPONSE TIME EVALUATION

Mary Christ

International Business Machines
Kingston, N . Y. 12401

The purpose of this paper is to introduce the 327X emulation
package as a unique, state-of-the-art performance evaluation tool.
The main objective of this package is to measure the system avail-
ability that a typical end user experiences. This monitoring tool
was developed to address the many problems encountered when at-
tempting to accurately measure, and in turn provide data that ade-
quately reflect actual user response time. The emulator package
focuses on this problem by using a Series/1 to simulate a remote
327X user. In simulation, the emulator issues commands and calcu-
lates the transaction turnaround time. With it's ability to
measure response in a controlled environment, utilizing sidestream
processing, this IBM internal use only response monitor provides an
optimal solution to the problems plaguing ' pre-emulator ' monitors.

Keywords: Accurate data; end user; host independent; monitor;
network; performance; remote; response time; Series/1; side-
streaming; simulated commands; 3 27X emulator.

1. Introduction

The 327X emulator package (327X
refers to any one of the 3270 series IBM
terminals) was originally developed to
address the problems of accurately mea-
suring online response times. As its
development progressed, it became quite
apparent that the tool not only met the
challenges of response time monitoring,
but it also provided additional measure-
ment capabilities. This paper describes
the overall objectives that the develop-
ers attempted to achieve while creating
the package. An actual case study will
be used in order to provide a clearer
and more conceptual understanding of the
necessary software and hardware require-
ments for this performance analyzer.
Also included are post-processing tech-
niques and several future considerations.

2. Overall Objectives of the Monitor

The main objective of the 327X emula
tor is to measure the system availability
that a typical user experiences. In gen-
eral, the performance data logged on most
systems is not indicative of actual user
response time. This monitoring package
uses a Series/1 to simulate a remote 327X
user. The Series/1 appears to the host a

a regular user issuing various commands.
The Series/1 calculates actual user re-
sponse time by measuring the length of
time it takes the host to respond to a

particular transaction (e.g. LISTC com-
mand.) The monitor also addresses other
problems that previous reporting tools
have been unable to resolve. One main
difficulty is that different users
groups on the same online system often
experience totally opposite views of
system response time. Generally, the
reason for this is because each
user group requires different re-
sources. Another point that

401

should be considered is that response
time is affected by the quality rather
than the quantity of the functions simul-
taneously occurring in the system. In
both instances the 327X emulator would be
a very helpful tool, since it functions
in a controlled measuring environment.
It is controlled in the sense that speci-
fic commands can be executed to reflect
the usage of the system by a particular
group. This ability to simulate actual
online sessions allows for the reenactment
of system resource usage, thereby produc-
ing meaningful performance data.

The monitoring package also uniquely
focuses on the trends towards systems
management. Typically, systems manage-
ment is approached with a mainstream
philosophy. That is, management is per-
formed on the host with tools such as:
Network Problem Determination Aid (NPDA)

,

Network Performance Analyzer (NPA) and
Network Communication Control Facility
(NCCF) . Now, however, the emulator
package allows for sidestreaming manage-
ment. Sidestreaming , which often com-
pliments host dependent tools, is an
improvement over mainstreaming for the
following reasons

:

It increases process control.

The 327X emulator (Series/1) is not
part of the failing host.

It is host release independent.

It is simplistic and inexpensive.

Note that a Series/1 seems to be the
most adaptable distributed processor
to meet the preceding requirements.

3. Functional Description

The 327X performance analyzer can be
used to monitor the response time for any
number of applications. (e.g. A certain
site has one monitor each for TSO, IMS,
and CICS.) Each monitor sends trans-
actions that are relative to its specific
application. The Series/1 accomplishes
this by using a script data set that con-
tains multiple pairs of lines. The first
line in each pair is the actual trans-
action to be sent. The second line is the
expected response image. The monitor
logs the actual response time, the trans-
action sent, and a rating of either GOOD,
MARGINAL, INADEQUATE, or NO RESPONSE (in
accordance with the preset level for a
particular transaction) , in a log data
set at the Series/1. It also prints the
current log information on an IBM 4974
printer for immediate access hardcopy
output. The log file provides a means
for detecting trends or changes in the

measurement data. The package also
provides the capability to format dif-
ferent IBM 4 97X terminals as operator
information consoles. These consoles
can display the current transaction
being sent, the response received, the
rating of the response time and a com-
parative analysis of previously defined
response thresholds. Also, the terminals
can act as early warning message centers
for the operators, by providing inform-
ation about slowdowns, bottlenecks and
shutdowns in the system. The emulator
software can easily be modified to allow
the monitor to be almost entirely auto-
matic . The monitor can be automated to
perform the following tasks

:

Logging on/off the host at any
specified time of day.

Logging back on the host after an
IPL.

Loading in all of the necessary
programs for the monitor into the
Series/1 memory.

Starting up the necessary lines and
programs for Series/1 host communi-
cation .

Switching between data sets to send
different transactions for distinct
user groups.

Perhaps the most significant aspect
the performance monitor is the fact that

the environment can be controlled. The
core of the package is the data set con-
taining the transactions to be sent and
the expected responses to be received.
A system center can arrange service level
agreements with its users, and then pro-
ceed to use the monitor to analyze the
agreements "for performance. A site can
be even more specific in its agreements,
by including EXACT transactions and
their projected (GOOD, MARGINAL,
INADEQUATE) response times.

Example #1

A group of TSO users agree on these
levels of response time for the ALLOCATE
command

:

GOOD < 2 sec.
MARGINAL > = 2 sec. & < 5 sec.
INADEQUATE > - 5 sec.

Example #2 (Actual Case)

At the case study site, the moni-
toring environment is controlled in a

rather unique manner. In addition to the

regular TSO commands that are issued and

recorded, CLISTS using a specific amount
of service units are executed to provide

40 2

greater control. The amount of service
units (su) to be used by a TRIVIAL,
MODERATE and/or COMPLEX command were
determined to be as follows:

TRIVAL < = 200 su
MODERATE > 2 00 su & < = 14 00 su
COMPLEX > 14 00 su

(Three clists are executed - one for
each level of complexity.)

(See figure 2 for a sample report of
clist transactions.)

The data collected can be processed
at the Series/1 or it can be sent back up
to the host via a Remote Job Entry line.
The Series/1 includes RJE capabilities
in the basic software package. The
actual methods for post-processing the
data depend upon the available resources
and the needs of a particular site.
For the purposes of this report, the
post-processing methods used at the case
study site will be examined.

The case study site configuration
serves as an excellent example of the
typical hardware requirements for a
monitor of this type. The site monitors
prime shift (0800-1700) TSO user
response time on a 3033 MVS system.
The Series/1 automatically logs itself
off of the host at 1700. At this time,
an operator switches the Series/1
from a bisynchronous line to an RJE line.
The data is then sent to a 3 032 host by
means of batch job submitted on the RJE
line. See Figure 1 for the sample
hardware configuration.

4. Database Usage for Problem Reporting

The collection of end user response
time data is of course the purpose of
this monitor. Specifications for storage
and retrieval of the data is site depen-
dent. The case study monitoring system
has a very effective post-processing and
database (update/storage/retrieval)
schema. An overview of the case study's
performance evaluation database
follows

.

The sample site submits a batch job
on a daily basis from the Series/1 to
the host via an RJE line. This job adds
the daily data into a weekly generation
data set. At the end of the week, a

job is run that incorporates the weekly
data into an online (Statistical Analysis
System) SAS database. [2] _ This data-
base can be queried both online and in
batch, with the use of easily written
SAS programs. One of the outstanding
points of this database is that it is
user friendly. Any analyst, manager

or user can request statistics about
specific transactions for any period
of time. SAS allows one to plot, graph
and list the information. Another
feature that the case study queriers
utilize is color graphic capabilities.
The site has several 'canned' SAS pro-
grams that perform superb color graphic
plotting and charting. (The querier
only has to specify transactions and
periods for the statistics.) (See figure
2 and figure 3 for generated report
samples .

)

5 . Summary

The 327X emulation package is an
incomparable measurement tool insofar as
representing actual user sessions. The
ramifications of this tool are quite
significant. It is possible to simulate
the exact transactions that a remote user
might execute in a typical session.
Until recently, the emulator software was
designed to handle only remote terminals
because bisync protocol was used. Now
however, a package for SDLC local term-
inal performance analysis is currently
being developed. Basically, the same
theories will be applied in the creation
of the software and hardware require-
ments. However, due to the nature of the
hardware involved with local terminals,
this performance analyzer will be more
difficult to implement. Problem deter-
mination can be simplified merely by
examining the data logged by the moni-
tor. For instance, one could determine
transactions that cause bottlenecks and
optimal response periods. Perhaps the
most important information that can be
gleaned from the data, is whether
service level agreements are being met.
The 327X emulator data can also be used
in conjunction with other performance
data such as SMF and RMF . In fact, a

performance database could be created that
incorporates all the data collected on a

system(s). This database could then pro-
vide a common, analytical basis for
retrieval and reporting of any perform-
ance data element. The case study site
uses the MVS Integrated Control System
by Morino and Associates for this pur-
pose. [3] Since every site has different
situations that would require this type of
monitor, it is difficult to project
usage. However, it seems reasonable
to assume that many large system
sites could benefit from this perform-
ance monitor. Actually, any site that
has multiple applications would find the
package beneficial. The future of this
type of measurement is promising - the
user wants statistics that reflect the
response time that he experiences!

403

References

This paper was based on software
development work done by Michael Lentz

.

The performance analyzer package has
been upgraded many times in order to
resolve inadequacies discovered by
various users. Also, this IBM internal
use only package has incorporated
several valuable suggestions as speci-
fied by other performance interested
parties. For these reasons, the
package can be considered to be a
'melting pot' of input and information
from numerous groups.

[1] Lentz, Michael. IBM Burlington
GTD.

[2] SAS Institute Inc. SAS User's
Guide , 1979.

[3] Morino Associates, Inc. MVS
Integrate Control System.
MICS User's Guide, 1979.

404

PROCESSES
DAILY DATA

MONITORED
SYSTEM

(L=up + 0&G=up) —> L

(L=up + 0&G=down) —> L
(L=down + 0&G=up) >0
(L=down + 0&G=down)->G

DATASET
ELIMINATOR

1x2
T-BAR

BISNYC
RJE

BISNYC=up
RJE=down

####################
SERIES/1
4955 Processor
####################

Figure 1. Emulator Hardware Configuration Using a Series/1

405

CHART OF RESPONSE TIME BY THE HOUR - PRIME SHIFT
FOR TRIVIAL - MODERATE - COMPLEX TRANSACTION
###
ACCEPTABLE RESPONSE TIME TRIV=2/MOD=5 / COMPLX=10

MARGINAL RESPONSE TIME TRIV=5/MOD=10/ COMPLX=2 0

TRIV=%SERIES1 1 MOD=%SERIESl 2 COMPLEX=% SERIES 3

###

ACTUAL TIME IN SECONDS

14
CCCCC CCCCC
CCCCC CCCCC

12 CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC

10 CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC CCCCC

8 CCCCC CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC CCCCC

6 CCCCC BBBBB CCCCC CCCCC CCCCC
CCCCC BBBBB CCCCC CCCCC CCCCC
CCCCC BBBBB CCCCC CCCCC CCCCC
CCCCC BBBBB BBBBB BBBBB BBBBB

4 CCCCC BBBBB BBBBB BBBBB BBBBB
BBBBB BBBBB BBBBB BBBBB BBBBB
BBBBB BBBBB BBBBB BBBBB BBBBB
BBBBB BBBBB BBBBB BBBBB BBBBB

2 BBBBB BBBBB BBBBB BBBBB BBBBB
BBBBB AAAAA AAAAA AAAAA AAAAA
AAAAA AAAAA AAAAA AAAAA AAAAA
AAAAA AAAAA AAAAA AAAAA AAAAA

8 9 10 11 12

HOUR OF THE DAY
MONDAY - MARCH 22, 1982

A = (%SERIES1 1) B = (%SERIES1 2) C = (%SERIESl 3)

TRIVIAL MODERATE COMPLEX
TRANSACTION TRANSACTION TRANSACTION

Figure 2. Sample Chart of Hourly Response Time Evaluation

406

BLOCK CHART OF ACTUAL RESPONSE TIME
RESPONSE TIME FOR SPECIFIED HOURS - PRIME SHIFT

TRIVIAL COMMAND EXECUTED > TIME

/

/

/
'

/7
//
//
//
// /

/
/ 1.6666666667

/ 7
/7
//
// • •

// /
'

7
// /7
// //

/ // / // /
/ // / // /

/ // / // /
/ // / / // /

/ / /
/ 3 .5 / 2 /

13 14 15

HOUR OF THE DAY
MONDAY - MARCH 22, 1982

Figure 3 . Sample Block Chart of Hourly Response Time Evaluation

407

THE DESIGN AND APPLICATION OF A
REMOTE TERMINAL EMULATOR

Michael Proppe

Computer Sciences Corporation
Systems Division

Falls Church, Virginia 22046

Barry Wallack

Command and Control Technical Center
The Pentagon

Washington, DC 20301

This paper discusses the design and application of a Remote Terminal
Emulator (RTE) developed by Computer Sciences Corporation (CSC) for the Command
and Control Technical Center (CCTC). This RTE will be used in the Worldwide
Military Command and Control (WWMCCS) community for testing network component
performance and new versions of software prior to release. The topics covered
include the functional capabilities of the RTE, the significance of these
capabilities in achieving design goals, and the use of the RTE as a performance
evaluation tool.

Key Words: Interactive System; Performance Evaluation; Remote Terminal
Emulation; Remote Terminal Emulator; System Under Test.

1. Introduction

The RTE discussed in this paper is an

interactive performance evaluation tool designed
for a variety of test environments. It has been
implemented in FORTRAN on a Data General Eclipse
S/140 minicomputer with 128KB of memory and 10

communication lines. The protocols supported

include full- and half-duplex asynchronous
teletype, the VIP synchronous protocol used with
Honeywell's visual information projection
stations, and the synchronous Remote Line
Printer (RLP) protocol that is used in the

WWMCCS environment. The VIP synchronous lines

operate in a multidrop mode, each line support-
ing a maximum of 32 devices. The same RTE

design is also being implemented by CSC on a

Honeywell Level VI system. Previous RTEs have

been implemented for the Navy on a Data General

MP200 microcomputer with 64KB of memory. These

RTEs support 15 asynchronous communication lines

or 2 BISYNC lines, and are packed in a suitcase

for field testing.

This paper discusses the types of environ-

ments in which remote terminal emulation is appli-

cable and functional capabilities included in the

RTE design to provide a flexible evaluation tool.

2. Background

In evaluating an interactive system, the

bulk of the work is defining exactly what is to

be tested and designing a scenario to reflect
the desired workload. The objectives of an
emulation test must be defined clearly to

interpret properly the resulting data. Whether
in the experimental or procurement environments,
tests usually fall into one of the following
categories: stress test and breakpoint analysis,
configuration performance tests, benchmark
performance tests, and functional and operational
performance tests.

Stress tests and breakpoint analyses
measure system response to heavy load conditions.
Configuration performance tests compare the

performance of one system configuration versus
alternate configurations. Benchmark performance
tests compare the performance of different
systems, usually with similar hardware config-
urations and scenarios, to determine whether one

is more suitable for a given application. The
functional and operational performance tests
determine whether the System Under Test (SUT)

can satisfactorily perform a set of functions
and operations, under expected load conditions,

409

in an evolving hardware or software environment.

Tuning systems, optimizing SUT software, and

testing new releases of software also fall into

this category.

RTEs have been in existence for some time

and have been designed to emulate these types of

tests. Although their usefulness to the

Automatic Data Processing (ADP) community has

been limited by their specialized nature and

their high development and production costs,

remote terminal emulation continues to evolve as

the most preferred method for tests that require

large volumes of terminal traffic. An RTE is a

driver that is external to the SUT. It connects

to the SUT through its communication device

interfaces, either locally or through a network.

The RTE then interacts with the SUT as if it

were a set of terminal devices or operators. As

an external driver, an RTE can alter the

workload placed on the SUT to measure perform-

ance and to approximate a given operating

environment. Remote terminal emulation provides

the advantage of a controlled, repeatable test

environment and the means to assess the perform-

ance of various systems and configurations.

This offers a powerful tool for evaluating
telecommunication applications because the user

can determine performance before investing in

additional equipment or systems programming, and

it eliminates the cost and inaccuracies of

terminal operators during live tests. Some past

emulators have been developed for a specific

SUT, limiting their use to tests with a particu-

lar vendor's system. Others require modifica-

tion of SUT software to send prompt characters

to the RTE each time a user request has been

processed or does not provide verification of

SUT responses (1). The RTE discussed here has

been developed to incorporate as many features

as possible into a small, cost-effective RTE

system.

3. The RTE Design

Our design goal was to produce a flexible
system that is easy to use and applicable to a

broad range of test types. Studies of past RTEs
and General Services Administration (GSA)

specifications (2) provided a baseline defini-
tion of the types of functions expected in an
emulation. Our approach was to perform as much
processing as possible either before or after
the emulation session to minimize the amount of
processing performed by the RTE task while
connected to the SUT. This effectively sepa-
rated the emulation session into three phases:
the pre-emulation phase, the emulation phase,
and the post-emulation phase. Figure 1 depicts
the relationship between these three phases.
During the pre-emulation phase, a SUT-independent
scenario is defined, the scenario is translated
into a SUT-specific dialog or script, the script
is prepared for RTE execution, and the RTE is

configured for the emulation session. In the
emulation phase, the RTE interacts with the SUT
in an online mode, using the information provided

PRE-EMULATION

EMULATION

SUT

(
CRT

)

~Z1 RTE

POST-EMULATION

FAIL

'ASS

TEST
EVALUATION

m /session/,
"*"7REPORTSr^

REPORT
GENERATION

Figure 1. Emulation Phases

in the user scripts, and records session data
and statistics. During the post-emulation
phase, a series of reports may be generated
using the information gathered by the RTE during
the emulation session. These reports provide
statistics on the emulation session and a

chronological log of events. This phased
approach uses offline utility programs on the
RTE system to perform the bulk of the processing
associated with preparing and reporting data
involved in an emulation. The following
paragraphs discuss how each phase is addressed
in the RTE design.

3.1 The Pre-emulation Phase

The cornerstone of an emulation session is

the user scenario. The scenario is defined in a

410

high-level description, usually an English-
language format, and describes the types of

actions and functions to be performed by the

RTE. It includes data on user think times,

transaction delivery distributions, maximum
response times, line protocols, and line

speeds. The system-independent scenario
transactions must be translated into the

SUT-specific stimuli and responses necessary to

achieve the desired result. (A stimulus is the

text to be sent to the SUT by the RTE , and a

response is the message originated by the SUT.

)

Communication protocol messages are not included.
These stimulus and response transactions are

then coded into a script that the RTE will use
during the emulation session. Since the

majority of the user's work involves designing
and coding scripts to be used by the RTE, it was

important that the method selected to code
scripts be flexible and easy to use. This

resulted in the specification of the Script

Development Language (SDL).

The SDL provides a high-level method for

defining what the RTE is to do during the

emulation session. Each transaction is described
in a set of script command lines. There is the

"S" command line to define the stimulus text to

be sent to the SUT, the "L" command line to

define how many characters are expected in the

response (protocol characters are not included),

and the "C" command line to define contingency

actions the RTE is to take in the event of

protocol errors or expected response mismatches.

The contingency actions allow the RTE to ignore

the error, resubmit the transaction up to "N"

times, where "N" is specified by the user, abort

testing over the line in error, or jump to

another portion of the script. Command lines

that are optional in defining a transaction

include a "T" command line to define the maximum

amount of time the RTE will wait for a SUT

response, a "W" command line to define the user

think time, which is the amount of time the RTE

will wait between the receipt of the response

for the current transaction and the transmission

of the next stimulus, and an "R" command line to

specify response text that will be compared with

the actual SUT response. SUT responses are

verified selectively by including the "R"

command line; without it, no response verifica-

tion takes place. To verify a SUT response, the

user specifies a maximum of 71 characters of the

response in the "R" command line, and the

position in the response where the character
string begins. During the emulation session,

the RTE looks for the specified text in the SUT

response and returns a "match" or "mismatch"
status on the verification. The user may select

a portion of the expected response— a key phrase

particular to that response--to be verified. If

this key phrase is found in the SUT response at

the location specified by the user, and if the

received character count matches the expected

count, the RTE considers the message validated.

There are also command lines to declare default

think and wait times to be used when none are

defined explicitly within a transaction. These

default values may be changed later in the
script by redefining them in subsequent default
declarations. Other features include comment
lines that may be inserted anywhere in the
script, octal and hexadecimal number representa-
tions (for special characters not found on a

standard keyboard), and the optional generation
of file name extensions. The file name exten-

sions allow the RTE to use the same script over
multiple lines, yet avoid contention when
multiple users try to access the same file on
the SUT. The RTE will automatically generate
the extension, in the range of "AA" to "ZZ",

which is associated with each emulated user and
append it to the file name prior to transmission.
As a result, each emulated user has a unique SUT
file and avoids access collisions. An example
of two transactions that logon and logoff a

system using basic script command lines would be
coded as follows:

S 0001 /LOGON: SYSTEM-8 2/

L 0032
R 0002 /SYSTEM READY/
C /ABORT/

S 0002 /LOGOFF/
L 0029
R 0004 /TIME IS:/
C 0003 /RESUBMIT/

In this example, text strings are enclosed
within the "/" delimiters. The numbers on the

"S" command lines represent stimulus sequence
numbers used to order the script. The expected

response length for the first transaction is 32

characters, and that of the second transaction
is 29 characters. Portions of the SUT response
are verified in each transaction, as noted in

the "R" command lines. In the first transaction,
the RTE will look for the text string "SYSTEM
READY" beginning at position 2 of the SUT
response. The second transaction verifies that

the text string "TIME IS:" is found in the SUT

response beginning at the fourth character
position. If an error occurs during the

emulation, the contingency actions coded in the

script are executed by the RTE. In this

example, if a protocol error or verification
error occurs on the first transaction, the RTE

aborts testing over the line in error. The

number in the "C" command line for the resubmit

specifies how many times the transaction will be

retried before shutting down the line in error.

Scripts are entered using the system

editor. The SDL-coded scripts are then assembled
using the Script Assembler utility. The Script
Assembler makes two passes through the user's

script. The first pass parses the script,

reports any syntax errors, and optionally

generates an assembly report detailing each

transaction. The second pass is specifically

designed to minimize the calculations required

by the RTE during real-time interaction with the

SUT, and the storage space for the script, by

compressing the script information and calculat-

ing the pointers and offsets used by the RTE in

411

accessing data within the database. The result

of the script assembly is a disk-resident data-
base file that is loaded by the RTE at runtime.

Once the scripts have been assembled, a

utility is used to configure the communication
lines. The configuration utility uses editor-
like commands to add or delete lines, change or
examine line characteristics, and list the
configuration. Abort and exit commands terminate
the configuration utility, and a help command
summarizes valid commands and entry rules. This
allows the user to specify which lines will be
active during the emulation, their protocol type
and line speeds, poll and select addresses if

necessary, and the script that will be executed
on each line. This information is then stored
in the database with the assembled script.

3.2 The Emulation Phase

The emulation phase constitutes the
real-time execution of the script by the RTE.
Upon startup, the RTE prompts the user for the
name of his database file and establishes
connections to the SUT over the designated
lines. Once connected, the emulation of users
begins without the need for operator interven-
tion. The RTE automatically reports error
conditions and progress information to the user
and maintains a condensed chronological log
detailing the events on all active lines. The
event information includes stimulus transmis-
sions, response reception and verification
status, response time data, script iteration
completions, errors, and executed contingency
actions. In addition, the user can query the
RTE for statistics and status information while
the RTE is executing, turn the logging feature
on or off, or halt the session.

The RTE software executes in a multitasked
environment with the main RTE task managing the
database, scheduling transactions, verifying
responses, and logging event data. This task is

not concerned with the protocol type being used
on a given line; auxiliary tasks are used to
support each type of protocol that is active
during the emulation. These communication tasks
manage the interface with the SUT, send the
stimulus text (characters sent by an emulated
device are transmitted with no intercharacter
delay time), and read in the SUT response, which
is then passed to the RTE task through a shared
memory area. Each communication task is
allocated a segment of this area to maintain its
Transaction State Table (TST) and communication
buffers. The TST contains the current state of

the executing transaction on each line. The
states include idle, sending data, waiting for a

response, data received, error condition, or

done executing the script. The RTE controls the

communication tasks by manipulating their TSTs
and providing data to be sent to the SUT.

A separate task provides the user interface
to the RTE. The interface task executes at a

low priority and accesses data structures used

by the RTE and communication tasks to report
execution statistics to the user. This allows
the user to examine the number of characters or
transactions processed, halt the session, turn
logging on or off, and display error and
iteration counts, line states, or the position
of each line within its script.

3.3 The Post-Emulation Phase

In the post-emulation phase, reports are
generated using the information gathered by the
RTE. The condensed log is expanded into a
formatted report using a log expansion utility.
The user may expand the entire log or select a
time window within the log. The log report
includes a line-by-line description of all
actions taken by the RTE during the emulation
session and their associated execution time.
The statistical data is processed and formatted
using a report generation utility. The statis-
tical reports provide data such as the average,
minimum, maximum, and standard deviation of
response times for each transaction. Addition-
ally, the reports include actual-versus-expected
response accuracy, character throughput rates,
error counts, and response time frequency
distributions.

3.4 Design Considerations

The RTE has been designed to be applicable
to a broad range of tests. Some of the features
implemented respond to general requirements of

an RTE, such as logging, response verification,
masking of fields within SUT responses, consis-
tent transaction delivery, test repeatability,
and a user interface to the RTE to verify
correct operation. Other features enhanced the
operation of the RTE: the file name extension
for scripts that can be executed over multiple
lines, iteration specifiers for scripts that may
be executed iteratively to achieve a steady-state
load on the SUT, the ability to specify null
responses or stimuli, automatic error limit
specifiers to shut down a line if a specified
error threshold is exceeded, and contingency
actions to allow the RTE to recover from error
conditions. Certain RTE features were included
for stress tests and breakpoint analysis
applications. In such types of tests, throughput
is the overriding concern. To deliver the

performance required during stress tests, the

RTE code and run-time database are entirely
memory-resident during execution. This elimi-
nates any unnecessary disk I/O due to program
swapping, overlay usage, and data retrieval.
Also, it limits the disk accesses to those for

the blocked writes to the log. The time-
consuming task of verifying every character in a

SUT response was reduced by supplying selective
response text verification and comparing the

received character count with the character
count specified by the user. The processing
required for the RTE to generate transaction
delivery distributions is offloaded by allowing
the user to specify the distribution using
transaction think time command lines within the

412

script. This also removes limitations on the
number and types of distributions that may be
designed into the script.

A larger design consideration in the RTE
was expandability. Although the current RTE

supports 10 communication lines, it was felt
that the capability must be present for easily
expanding both the number of lines and the
number of protocols that are supported. The
modular approach used in the RTE design facili-

tates such enhancements. Additional protocol
types may be added to the RTE system by includ-
ing the appropriate task to manage the communi-
cation interface and expanding the shared memory
area to include table and buffer space for the

added task. The number of lines supported may

be increased in much the same manner.

4. Conclusions

During its development, the RTE was tested

with a variety of SUTs to verify its operation
and ease of use with different systems. These

systems included Tandem 16, PDP 11/70, Datanet
355, VAX 11/780, Data General MP200, and Data

General Eclipse S/140. The test objectives were

to load the RTE, as opposed to loading the SUTs,

to verify that the implemented functions

operated correctly during testing. In this

manner, RTE tuning was performed based on the

service statistics gathered during the emulation

sessions. As a result of these tests, communi-

cation line service algorithms were adjusted to

offer quicker service to the active lines, and

portions of the RTE code were optimized to

provide more efficient execution. Inclusion of

the features necessary in a stress test environ-

ment has also enhanced RTE performance in the

other types of test environments.

The RTE developed by CSC has demonstrated

its ability to fullfill the objective of produc-

ing an emulator that is a cost-effective alter-

native to perform evaluations of interactive

systems under a variety of test conditions and

SUT types. It will be used within the WWMCCS
community under varying load conditions, for

performance testing of network components that
are involved in the WWMCCS Intercomputer Network
(WIN). RTEs will also be used to load the WIN
network and provide performance data.

Enhancements are planned to provide

additional communication support, system memory,
and user functions, and to increase the allow-
able size of user scripts. One enhancement will
allow the user to start or stop selected lines
through the user interface. Another will
provide an automatic script generator that can
connect the operator on the RTE system to the
SUT and generate RTE scripts based on the data
exchanged during the terminal session.

Although the features implemented in the
RTE are not all-inclusive of those available on
other RTEs, incorporation of additional features
is one of the continuing development goals.

ACKNOWLEDGMENTS

The authors would like to acknowledge the

support of Dr. David Karlgaard, Vice President

of CSC's Systems Architecture Activity and the

contributions of his colleagues. In particular,
Mr. Paul Rice and Mr. Charles Owlett of CSC; and

Mr. George Gero of CCTC had key contributions to

the development of the RTE.

REFERENCES

[1] Watkins, Shirley W. , and Abrams , Marshall
D.

, Computer Science and Technology:

Survey of Remote Terminal Emulators ,

National Bureau of Standards Special

Publication 500-4, April 1977.

[2] General Services Administration, Use and

Specification of Remote Terminal Emulation
in ADP System Acquisitions ,

Report FPR
1-4.11, GSA/ADTS, Washington, DC, August
1979.

413

DESIGN OF AN EXTERNAL TEST DRIVER FOR PERFORMANCE EVALUATION

Agu R. Ets

John H. McCabe

Analytics
7680 Old Springhouse Road

McLean, VA 22102

The procedure for benchmarking a teleprocessing-oriented ADP system is

expensive and complex. Current approaches, whether manual or computer-based, are
labor intensive and produce inconsistent data. An external test driver which can
emulate a number of remote devices promises to reduce costs and improve the
accuracy of teleprocessing benchmarking. Current test drivers are very specialized
and therefore limited in general application. Generalized external test drivers
can be cost-effective if their base of application is broad enough and if their
test input and output processes can reduce personnel requirements. This paper
presents a design for such a generalized external test driver. The design is

independent of target systems and incorporates many features which support the test
director. These features include scripting the test, defining test data, running
the test, and analyzing the resultant data. Technically, the design is based on

remote terminal emulation, with emphasis on simplified station characteristic
definition, transparency to the system under test, and driver efficiency. When
implemented, the design will provide externally-driven testing for a broad range

of applications such as benchmarking, configuration management, software upgrade
verification, stress testing, and system enhancement studies.

Keywords: External test driver; performance evaluation; remote terminal' emulation;
system design; teleprocessing systems; testing.

1. Introduction

Computer performance evaluation is critical

to the orderly development and growth of ADP

systems. Performance evaluation supports both

the management and technical staff during pre-

acquisition benchmarking, post-acquisition
quality assurance, and ongoing configuration
verification. Batch systems can be adequately
tested by duplicating production runs while
measuring various performance parameters. With

the advent of teleprocessing, the creation of a

creditable test load on the host system became a

problem of distribution, coordination, and

control of many resources.

1.1 Automated Techniques

The cumbersome nature of manual performance
evaluation methods led to the evolution of

automated techniques, which improved consistency
and accuracy in the measurement of performance
parameters. Furthermore, the results were

automatically recorded and could be analyzed and

evaluated as extensively as the user required.
Unfortunately, each automated approach was
oriented toward a unique set of testing
objectives — a specific host, a specific con-

figuration, specific peripherals, or specific
software. The high development cost of auto-
mated techniques restricted their application to

large systems, to large-scale procurements, or

to the manufacturers themselves.

1.2 Remote Terminal Emulation

In August 1979, GSA published FPR 1-4.11

[1]1, a handbook on the use of remote terminal
emulation in ADP system acquisitions. The hand-

book defined general capabilities for remote
terminal emulators (RTEs) that may be used by

procuring agencies to substantiate system

^Figures in brackets indicate the literature
references at the end of this paper.

415

performance prior to acquisition. GSA recog-

nized the cost-effectiveness of a generalized
RTE which could reduce acquisition costs while
providing greater assurances that the acquired
system will perform as expected.

1.3 Generalized External Test Driver

The basic premise of generalization necessi-

tates an external test driver which can interact
with the system under test (SUT) without
requiring modification of the SUT. The external

driver also can provide greater latitude in the

off-line support of script preparation and post-

test analysis. The relative merits of internal

and external test drivers were thoroughly
discussed by Shirey [2].

The resources of the external driver's inde-
pendent processor can be used to isolate the SUT

from the processes of stimulus preparation, test
computations, journal ing, and analysis. To test
teleprocessing systems, the external test driver
would emulate remote terminals with their
corresponding user activity.

The RTE concept has provided the basis for

the design of a generalized external driver.
This particular driver is called System for

Evaluation of Computers based on Universal
Remote Emulation (SECURE). SECURE is a compre-
hensive test driver and can be used in a range
of applications, but is especially effective in

testing teleprocessing systems. In order to

capitalize on its cost-effectiveness, a

generalized external test driver must have:

t Convenient setup procedures
• Minimal manpower and resource requirements
• Minimal unique tailoring requirements
t Consistency in data measurement

These features are the basis for the SECURE
design considerations and design approach.

2. Design Approach

The SECURE design approach began by listing
specific objectives which supported the features
stated in Section 1.3. The design and implemen-
tation implications of each objective were eval-
uated. The statement of the objectives was

refined to ensure that collectively these objec-
tives satisfied the growing interest in telepro-
cessing testing. Based on the objectives, a

specific list of requirements was compiled.
These requirements then defined the design
domain and served both to guide and constrain
the design effort.

2.1 Design Objectives

The design of SECURE had to satisfy the
following objectives:

• Ease of use

• Emulation of remote terminals
• Flexibility and expandability
• Real-time testing operation

• Automated data collection
• Comprehensive user support facilities

Ease of use is a primary objective whose
importance was stressed by Shirey [2]. The

SECURE must have user-oriented script prepara-
tion, user-friendly test execution and moni-
toring, and a general application of

non-technical dialogue. A corollary objective
is to minimize requirements for technical per-

sonnel (i.e., programmers) in the setup, execu-
tion, and post-test analysis.

Emulation of remote terminals is a key

objective. The SECURE design must allow the

characteristics of any type of terminal to be

easily incorporated into the driver, and must

allow the emulation to be accomplished with full

transparency to the SUT. The emulation must
accommodate user characteristics as well as the

terminal's technical characteristics. The eval-
uation of this objective led to closer study of

the emulation process. It was found that to

stimulate a SUT and impose a realistic load, the
SECURE should not exceed the rate of interaction
for a normal user/terminal combination. If

real-time concerns could be efficiently
addressed, variances in the emulation process
would not need to be weighted for processing
delays. Analysis showed that the emulation
variances consisted of both user and terminal
characteristics. Thus, the emulation design

objective became one of applying these charac-
teristics in a digital form that could be

interpreted as a time-delay element.

The SECURE must be flexible enough to drive

any of the commonly used teleprocessing systems.

It must be expandable to allow any number of

terminals and a sufficient number of terminal

types to be emulated. The number of emulated
terminals is what loads and stresses the

teleprocessing system. In order to produce
valid performance data, the loading must be

real. The design of SECURE allows modular
expansion to a maximum of 256 terminals, the

maximum stated in [1].

Only a real-time emulation can fully stress

a teleprocessing system. At real time, SECURE

must be transparent to the SUT. As real time is

approached, the use of compensatory processing
in emulation would be minimized. A corollary
objective is the ability to monitor the test in

real time and to throttle its execution. The

real-time processing objectives can be achieved

if I/Os can be kept ahead of emulation and SUT

demands.

With real-time testing, automated data

collection becomes a corollary objective. The

data recorded during real-time testing is jour-

naled for post-test analysis and evaluation.
With automated collection, sufficient data can

be recorded to support in-depth analysis of

system performance.

416

SECURE is a comprehensive system in which
the final objective is to provide a complete set
of user support capabilities including script
generation, test data preparation, and post-test
analyses. Since [1] was the basis for SECURE,
it will also serve as a standard for post-test
analysis. This standard establishes performance
measurement in terms of throughput, turnaround,
and response times, which are to be measured
with time stamps, computed, and entered at the
appropriate processing points. The reporting
defined in [1] was based on scenarios, func-
tions, and input/output pairs. In the SECURE
design, it was necessary to distill the descrip-
tion of these items, mesh them with the require-
ments of the generalized RTE, and define them in

terms most appropriate to script development.

2.2 Design Requirement

The design for SECURE must:

• Allow interactive development of test
scri pts

• Provide a scripting language that is easily
understood and used

• Permit a non-programmer to establish charac-
teristics of each user/terminal combination

• Emulate up to 256 terminals
• Be transparent to SUT

• Allow automatic data journal ing

• Permit interactive setup of analysis and

extraction functions
• Support FPR 1-4.11 report formats

3. System Design

A number of terms introduced in [1] were
defined and described in a generic sense and

were intuitively biased toward acquisition
benchmarking. The generalized nature of SECURE
necessitated a different biasing and the intro-
duction of selected new terms. For the sake of

design consistency, it was necessary to develop
the following definitions:

• TEST DATA — A collective term for the set

of request items to be processed during emu-

lation runs.

• ITEM — An emulation test element consisting
of an output to the SUT and an input from

the SUT (I/O pair). May also be referred to

as request item and response item.

t INSTRUCTION — A single script directive
defining a rudimentary action to be taken by

SECURE during the emulation process.

• SCENARIO — At a selected terminal, a single

user session from log-on through log-off.

• FUNCTION — A set of related instructions

that compromises a complete operation (e.g.,

log on, print file, move paragraph).
• PORT — At a single workstation, a com-

bination of terminal type and typical users

having definable characteristics.

Test data are the collection of stimuli that

will invoke processes in the SUT. The collec-

tion resides on a test data file (TDF)
along

with other data germain to test execution (e.g.,

special journal logs, console displays). The

TDF serves as nothing more than a reference
source for the script instructions which will

drive the test. Each TDF entry is termed an

item and can be referenced via its item iden-
tification code.

The script is developed and managed in a

functionally-oriented, user-friendly manner. It

is not actually classified as a script until it

is transitioned to an executable form. In this
form, the script consists of a series of

instructions which tell test subsystem modules
what actions are to be taken. Most instructions
will reference TDF items on which such actions
are to be performed. Scenario and function
essentially refer to various levels in the
hierarchical script development process. A

third (highest) level is classified as test
description, principally due to its role in

describing the overall scope of any given test.
All three are discussed in context in the
paragraphs that follow.

Port is a new term that is significant to

the design of SECURE. Its importance is derived
jointly from a definition of the emulation pro-

cess and a need to collectively address emula-
tion factors (e.g., users, terminals, devices).
The ability to define the characteristics of a

port, to employ those characteristics in the
execution of emulation algorithms, and to selec-
tively evaluate performance on a port basis is

the keystone in a generalized structure.

The application of SECURE to any given test

consists of three distinct steps: preparation,
execution, and analysis. Each step has a mode

of operation, a unique interactive dialogue, and

functional independence from the others. Based
on these attributes, SECURE is divided into

three subsystems:
t Script Development
• Test Execution
• Post-Test Analysis

The script development and post-test analy-
sis subsystems are off-line operations.
Together they interactively support the user
with tools and capabilities to design, describe,
and analyze a test. Test execution occurs in

real time and only requires user interaction

when it is necessary to augment the self-driven
test. Figure 1 depicts major elements of the
system organization. The design features and

functions of each subsystem are described below.

3.1 Script Development Subsystem

The script development subsystem supports
three functional areas required to set up tests:

1. Test data development and maintenance
2. Script preparation and maintenance
3. Port characteristics maintenance

These operations may be conducted in either an

interactive or batch mode, though the design

417

SECURE SUPERVISORY COMPONENTS

SCRIPT REAL-TIME Pfi^T.TFQT

DEVELOPMENT TESTING AM A 1 VQIQ

SCRIPT MANAGEMENT CONSOLE SUPPORT DATA EXTRACTION
TEST DATA MAINTE- PORT PROCESSING DATA REDUCTION
NANCE EMULATION PRO- REPORTING

PORT CHARACTERIS- CESSING
TICS MAINTENANCE JOURNALING

Table la. Sample Test Data File

TEST 01

Figure 1. SECURE System Organization

details address only the interactive mode for

its user-friendly attributes.

SECURE defines scripting as the combination
of interactively conducting operation 1 and then
invoking the semi-interactive processes of

operation 2. Operation 1 supports the develop-
ment of information that will be converted to an

executable form by operation 2. The SECURE
scripting concept is based on test items which
are formed when a fundamental set of items is

built into a test data file (TDF). Each item
consists of a character string recognizable by

the SUT and capable of invoking SUT processing.
Items are defined to maximize their applicabil-
ity to various functions. The degree to which
planning and anticipation are involved has a

direct bearing on the volume of test data that
must be generated.

The next step in the scripting process is

the definition of functions. These are interac-
tively entered into a single-function file, each
entry being individually maintainable. Each
function is identified and defined by the user.
This allows the user to employ a structure and

reference mechanism that is both familiar to him
and relevant to his particular test.

Tables la and lb depict hypothetical TDF and
function file segments, respectively. The TDF

consists of a list of test data items (TEST DATA
column) and their corresponding identifiers
(ITEM ID column). The user structures iden-

tifiers in a form that is manageable and easily
referenced. The function file entries are
referenced by function ID, whicii is also user-
structured. Each function identifies the TDF to
which it refers (TDF ID column) and bears a user-

defined title which aids the user in subsequent
references. The remaining function composition
is simply a list of operators and operands.

The samples have three functions and five

items. The "Olxx" series of item IDs has been

reserved for log-on items, while the 09xx series
is reserved for various log-offs. One must
assume that each item has been wrapped in

characters that are required by the SUT for
recognition and processing. Function LA will

cause two separate items to be sent to the SUT.

Once they have been processed by the SUT, Mary

ITEM ID TEST DATA

0100 Smith, Mary

0110 El ephant

0120 Doe, John

0130 PASSWD1

0990 Bye

Table lb. Sample Function File

FUNCTION ID TDF ID FUNCTION TITLE

LA

LB

LZ

TEST01
SEND 0100
SEND 0110

TEST01
SEND 0120
SEND 0130

TEST01
SEND 0990

Log on M. Smith

Log on J. Doe

Log off general

Smith will be logged on at a port designated by

an associated scenario. If the Smith port were
to include user processes, additional functions
would be developed. Eventually, Smith will be

logged off by the general log-off function, LZ.

The entire sequence is ordered by a scenario
(discussed below) addressing the Smith terminal
session.

NOTE: Every operator is the instruction
SEND, which means that the item (oper-
and) is going to the SUT for processing.
Other instructions (e.g., TYPE, LOG,

REPEAT, WAIT) use the same basic format.
The REPEAT operand is the number of

repetitions, and the WAIT operand is

the number of minutes the port remains
in a suspended state.

After defining functions, the user is ready

to assemble scenarios. The pattern is much the

same as with functions. Scenarios are iden-

tified and titled in a style and vernacular that

is suited to the user's line of thought. The

scenario itself consists of a list of the func-

tions comprising the session and of the iden-

tification of the port at which the scenario is

to be conducted. In the hypothetical examples,
the Smith scenario might appear as:

Scenario MS

Title Mary Smith

Port 22

Functions LA,LZ

418

Test description is the last scripting step

that requires the entry of data by the user. It

consists of a test title and a list of scenarios
in order of execution.

At some subsequent point, the user (test
director) verifies each file. He indicates to

the system his intent to have the actual test
execution script prepared. The system allocates
a token file for script retention. Preparation
proceeds from the top down, as shown in figure
2. In accordance with its scenario list, the

test description expands into a table of ports
and functions. The table then is processed
sequentially; each function is expanded into
instructions; and a token file entry is made for

each instruction. During test execution, the

token file and TDF are merged into an executable
script.

This operation is totally divorced from

scripting and may be performed at any point

preceding execution of the test. The operation
consists of interactively entering parameters to
a port characteristics file. At the outset of

test execution, the file is loaded into memory,
where the characteristics are accessed for emu-

lation processing.

3.2 Real-Time Testing Subsystem

The major processes of the test execution
subsystem are:

0 Port Processing
• Emulation Processing
• Journal i ng

• Console Support
Figure 3 shows the functional relationships
among these processes.

MPT DE /ELOPMEITT

TEST

DESCRIPTION

-o-

=2z
TOKEN

FILE

SCRIPT

PREPARATION

[JOURNAL
TAPE

SECURE SUPERVISORY COMPONENTS

CONSOLE
SUPPORT

JOURNALING

PORT
PROCESSING

EMULATION
PROCESSING

Figure 3. Testing Subsystem

TEST

DATA

FILE

TEST

DATA

FILE

TEST EXECUTION

Figure 2. Script Preparation Flow

Important features of the SECURE scripting

concept are that the only requirements are mini-

mal volumes of test data and the general ability

of the user to describe the entire test in a

friendly, relatable manner. Test data may be

referenced and employed repeatedly; functions

may play a variety of roles by simply altering

the TDF reference; scenarios may be applied to

numerous workstations by altering port IDs; and

scenarios may be executed repetitively through

multiple entries in the test description.

The third operation supported by this sub-

system is port characteristics maintenance.

Console support allows the test director to

initiate the test, monitor its progress,

throttle it, and suspend or terminate it. Port

processing marries the token file and TDF in

preparing processing packets for the SUT.

Emulation processing executes emulation

algorithms and controls interaction with the

SUt. Journaling records all transactions ini-

tiated by the script, responses returned from

the SUT, and supporting data necessary for eval-

uation. When a test is begun, a port status

table (the heart of the stimulation process) is

built, and port processing commences with port-

by-port initialization. The token file

(sequentially addressable within the port) is

read. A referenced item is pulled from the TDF,

and a script item is assembled (as described

above) in a corresponding port buffer. The item

remains in the port buffer until required by the

emulation processor to feed the SUT. Emulation
is stimulated by an empty emulation buffer and

the port status table. When stimulated, port

buffer contents are transferred to the emulation
port and corresponding port characteristics are

"pulled in" to feed the emulation process.

419

Characteristics include:

1. User key-in rate

2. User think time
3. Line speed of terminal in emulation (TIE)

4. Line speed of SUT terminal

5. Directional characteristics of TIE line
6. Type of characters in TIE communications
7. Port type

The emulation process is essentially a time

delay, and the emulation algorithm considers
only characteristics 1 through 4 and 7. All

emulation computations are related to item size,

and the result is a stamp for the time at which
the item is due out from the emulation buffer to

the SUT. Each emulation buffer contains a full

set of evaluation and identification data com-

parable to journal record format. Only the data
portion is sent to the SUT, but the entire
buffer remains intact. When the SUT responds,
its data overwrite the request in the same emu-

lation buffer. As each emulation buffer is

filled, its contents are transferred directly to

the journal with all analysis data attached. As

soon as journaling is completed, the emulation
buffer is completely overlayed with the next

item in the port buffer. Lengthy requests and

responses are processed as a series of packets,
with each packet identified relative to its

position within the series. Time stamps are
placed on all packets as logged, but only the

first and last in a series have significance.

The journaling process handles both direct
and indirect entries. The indirect entries are
response emulation buffers, in standard journal
format, which evolve from emulation processing.
Request buffers are essentially ignored because
they would contribute nothing to reporting
within the analysis subsystem. Direct entries
may be generated at the console (by the test
director), or they may result from a log

instruction imbedded in the script (token file).

Both forms of direct entries are supported by a

LOG module. Direct entries are supported for

the purpose of annotating the journal and

recording specific test milestones which the

test director regards as pertinent to post-test
analysis. Direct entries are made in a variable
format and include time stamps and identifying
data.

3.3 Post-Test Analysis Subsystem

The analysis subsystem supports review,

extraction, and reduction of data collected
during test execution. Subsystem processing is

oriented to the production of the three reports
specified in [1]:

• Scenario summary report
• Function summary report
• Interactive reponse-time summary report

SECURE has modified these reports to
shift their emphasis from procurement to

generalization and script organization. These
modifications are most noticeable in the report

headings and selection parameters. Furthermore,
the application of scenarios is such that they
are not logically related. Thus, scenario
group reporting is treated as a report-time
function in which the user identifies the
scenarios in each group. Function and response-
time (item) reports summarize all usage within
the test or specified test period. All three
reports default to the hierarchy of the script
organization so that an unspecified report for
an entire test/period would list items within
functions within scenarios.

The analysis subsystem also provides a unique
report which reflects the design approach of
SECURE. The Log Summary Report shown in figure
4 summarizes all test/period activity for a port

on a single page.

TEST: TEST START : TEST END: DATE: PAGE:

LOG SUMMARY REPORT

SUMMARY PERlOn START TIME: STOP TIME: DURATION:

PORT: _

SCENARIOS FUNCTIONS IllMS

THROUGHPUT
NUMBER IN PERIOD

NUMBER COMPLETED
.

PERCENT COMPLETED

COMPLETION RATE

TURNAROUND
AVERAGE

MINIMUM

MEDIAN

MAXIMUM

RESPONSE TIMES

Figure 4. Log Summary Report

All test characteristics are retained in a

directory, which is available for display at the

user's terminal upon request. The display lists

data that will aid the user in his report selec-
tion and in his definition of extraction parame-
ters.

4. Implementation Considerations

During the design of SECURE, several ways of

implementing the system were considered. One

implementation approach which showed promise is

based on a mini- and microcomputer hardware con-

figuration as depicted in figure 5. The central

component is a 256K-byte minicomputer which
completely supports the scripting and analysis
functions. During test execution, the minicom-
puter processes all software except the direct
SUT interface, which is under control of very
high-speed microprocessors.

420

MICRO-

PROCESSOR

INTERFACE

CONTROLLER

256Kb

MINI

MICRO-

PROCESSOR
|

I

INTERFACE
|

CONTROLLER

testing methods. Accordingly, the hardware
requirements have been scaled in a trade-off
with software. The scripting and analysis sub-
systems impose support demands well within the
capabilities of most high-order languages.

References

[1] GSA Handbook FPR 1-4.11, Use and
Specifications of Remote Terminal Emulation
in ADP System Acquisitions , August 1979.

"

[2] Shirey, Robert W. , "Quality Assurance
Tools," in Computer World , May 19, 1980, In

Depth/31-49.

Figure 5. Hardware Components of

SECURE Implementation

The entire design is modularly expandable in

16-port increments. One microprocessor is

required to support every two increments of port
expansion. Buffering, scheduling, and status
maintenance within the minicomputer are all

dynamically expandable in 16-port increments, as

dictated by the port characteristics file.

Buffering is a critical function in the
mini/micro architecture. Test execution at

near-real-time speed requires the efficient use
of buffers to pass data to and from the SUT. In

budgeting minicomputer memory, an initial
32-port limitation is imposed (on the assumption
that a definition of memory expansion require-
ments will be derived from the experience of an

initial implementation). Disk inputs from the
token and test data files are simplex buffered.
Journal outputs are blocked, and two screen buf-

fers are allocated for the console. The design
requires two buffers (port and emulation) for

each port, at 512 bytes each.

Most design software may be considered
static and independent of the system targeted for

implementation. Static software includes the

operating system, I/O handlers, SECURE super-

visory software, and most of the non-I/O-related
SECURE software. Test-specific software, which

is subject to SUT characteristics, includes line

handlers (to the SUT) and the terminal emula-

tors. Memory and processing impacts, resulting

from expansion beyond 32 ports, should be easily

accommodated through corresponding modular

expansi on.

The SECURE design is both hardware and

language independent. The intent has been to

achieve a single installation cost that provides

a cost-effective improvement over alternative

421

"Improving Organizational Productivity"

Abstracts:

Tutorials and
Case Studies

423

TUTORIAL ON CHARGING SYSTEMS IN THE
FEDERAL GOVERNMENT

Dean Halstead

FEDERAL COMPUTER PERFORMANCE EVALUATION
AND SIMULATION CENTER (FEDSIM)

Washington, D.C. 20330

On September 16, 1980 the Office of Management and Budget (OMB) issued its
Circular No. A-121 entitled "Cost Accounting, Cost Recovery, and Interagency
Sharing of Data Processing Facilities. This Circular requires Federal Agencies to
implement policies and procedures to (1) account for the full cost of operating
data processing (DP) facilities, (2) allocate and report all DP costs to users
according to the services received, (3) recover DP costs from external DP users,
(4) recover DP costs from internal users when deemed appropriate by the agency,
(5) share excess DP capacity with other agencies, and (6) evaluate interagency DP
sharing as a means of supporting major new DP applications. In order to satisfy
these requirements, Federal agencies will have to develop and implement a DP
charging system. Circular A-121 clearly reflects the desire of the Federal
Government to begin to manage its DP facilities in a more business-like manner.

By requiring most Government DP facilities to implement a DP charging system,
OMB has followed the lead established by many private industry organizations over
the last ten years. During this time, private industry took a closer look at the
role DP charging systems have in enabling senior management to better manage DP
facilities. Many senior officials determined that (1) managing the DP facility
should be no different than managing any other department in the organization and
(2) installing a DP charging system helps to manage the DP facility like other
departments. This point-of-view resulted in a dramatic increase in the number of
private industry organizations installing DP charging systems.

Clearly the time has come when all Federal DP managers need to take a closer
look at the managerial and technical issues involved in the development and
implementation of a DP charging system. The intent of this tutorial is to help
CPEUG attendees gain a better understanding of DP charging systems by providing

(1) an introduction to the major managerial and technical issues involved with DP
charging systems; (2) a detailed example of the most difficult part of developing
a DP charging system, the rate-setting process; and (3) some background
information on an upcoming National Bureau of Standards' Federal Information
Processing Standards guideline entitled "Guidelines for Developing and
Implementing a Charging System for DP Services."

Key words: Charging systems; chargeback systems; costing; pricing; DP accounting;

billing systems; cost accounting.

425

REALLY IMPROVING SOFTWARE MANAGEMENT

Thomas B ; Cross

Director - Cross Information Company
Boulder, Colorado

ABSTRACT

In the future new tele/conferencing tools will be used to
improve productivity in management information systems. One of
these tools called computer tele/conferencing may prove to be an
important system in the development and management of software.

There is considerable research to
support the evidence that software
development, user, and management
personnel do not generally work well
together, even when a team management
is used. This can be attributed partly
to the fact they have approached their
relationship almost entirely ignoring
the needs of the ultimate consumer -

the user.

Critical new tools are needed to

create both a productive and innovative
environment for software development
efforts. Integrating computer
conferencing as a primary vehicle in
enhancing these efforts will be pursued
in this article. With new electronic
information systems, the process of

systems development may improve
dramatically. Computer conferencing is
an exciting new tool for management
communications. It is a computer
software system which generally allows
for

:

• Electronic mail - person-
to-person communications

• Bulletin Board - access to
listed announcements

• Conferencing - many-to-many
communications with special areas for
electronic meetings. These areas are
accessed by people with approval of the
conference manager much like a normal
meeting. Discussions are held on
various topics, specific interests, and
work activities. Each user has private
files or scratchpads which are kept
online for ease of use. Notes or
comments can be sent either to other
conferees or to the discussion file.

According to Clifford Barney noted
expert in this field, "computer
teleconferencing is the ability to
conduct an ongoing meeting with
personnel in different geographic
locations. An electronic message
system is used to record communications
among meeting participants. Each
person involved in the meeting can
access, read, and respond to these
communications, regardless of whether
other participants are communicating
simultaneously or not. The system thus
provides a verbatim log of the meeting,
and the asynchronous method of
participation offers extraordinary
flexibility , especially if meeting
members travel frequently (always
there) or are in different time zones.
The technique has proven to be highly
effective for managing ongoing project
activities .

"

427

SYSTEMS DEVELOPMENT

Using computer conferencing can be
used to organize the systems or
software development process. However,
bringing a group of software
programmers together and designating
them a systems development team does
not necessarily make them a cohesive,
productive team. Even when a great
deal of care is taken in selecting team
members, the result is not an effective
team unless the members view
themselves, and are viewed by others,
as integral participants, each with a

significant function.

Some of the major development
projects demand a team approach and
quite often, all software development
requires some team effort. It may only
be the user, the programmer, and the
software manager. In most situations,
however, many users and programmers are
at work on a project which may
eventually impact many thousands of
employees throughout the company.

It is important to recognize that
all members of the systems development
team (programmers, users, and managers)
should each play a distinctive and
significant role. In addition, each
should be able to acquire some
additional status and influence by
working with the team. Thus,
participation as a team member can be
overwhelmingly positive and satisfying.

Experience indicates that in
practice it is difficult to achieve
this very ideal outcome. Understanding
the social structure of the team in
terms of individual roles, staus, and
power can help isolate and address some
of the problems that intefere with
attaining the goal.

The members of a systems
development team may have many external
requirements as well. They may have
other projects as well to track, normal
continuing duties and responsibilites
within that office. This splitting of
responsibilities can cause a member to
view him/herself as being only
peripherally committed to the team.

With computer conferencing, the
team can participate in a way far
easier than with any other system. CC
allows each person to participate "at
once." Everyone can 'have the floor'
at the same time, everyone from next
door to the other side of the world.

That is because, with CC systems, you
are 'always there'. CC systems have
the capacity to allow many people to be
working on the same conference or
discussion simultaneously which means a

potentially greater work output. In
addition, where it is difficult to
measure work output of 'information
workers,' CC provides a record and
filing system as well as a personal
notepad area for private, secure work
away from the conference. For the
first time, we can begin to really
track the progress of a project from
inception to completion allowing
software management, new staff, or
observers to participate at any point
along the way. Also, CC allows
conferees to always go back to the
beginning of the work and review
discussions all along the way.

In developing software it is
important to solicit input from others
in the department or company -- CC
allows many people who may not have
direct responsibility or job-related
activities to participate. Many people
have wide and diverse interests.
Engineers, for example, are sometimes
fascinated by and may have fresh ideas
about marketing. CC facilitates and
encourages input by others because the
system is designed to allow input and
comments from people as 'observers.'
These people can review the discussion
and may add their own comments.

The name of each person is included
when they develop a position or idea
and add it into the discussion in a CC
system. Each person, additionally, has
full opportunity to present positions,
raise issues, and even fillibuster
without being supressed by the group.
Correspondingly, shy or inhibited
persons can participate without being
worried by the meeting 'bullies' or by
the 'Hollywood syndrome' (theatre and
acting skills)

.

Notes can be sent from one person
to another, increasing involvement and
participation without dominating or
detracting from the foreward movement
of the conference. Personal
friendships can be developed between
colleagues over long distances without
the limitations of 'telephone-tag.'

Neither rain, nor sleet, nor
sickness, nor distance, nor time, will
restrict your participation in the
meeting. With CC, each person is
'always there' and everyone is 'always
on time' for the meeting. Travel and

428

other meetings are the typical causes
of delays in the scheduling of
meetings. Such conflicts can disrupt
for weeks the scheduling and the timely
impact of a meeting's purpose.

Most meetings sometimes must be
scheduled so far in advance that
interest in them, as well as their
ultimate impact, are lost. With CC,
the meeting is not dependent on any one
person's time schedule. A meeting
can go on for long or short periods of
time. This is controlled and
facilitated by the conference manager
who may, in fact, be located in
another city. Even when the manager is
down the hall, computer conferencing
keeps people in touch. Assignments can
be given, people can respond, argue, or
discuss work without having to
physically go to a meeting.

Most groups exist to perform
tasks. In meetings, the task involves
information gathering, discussion,
problem solving, and implementing
decisions, and evaluating the outcome
of the group's work. Many of these
functions require many other people to
help support the group, such as
secretaries, researchers, and writers.
In addition, much of the meeting
overhead is concentrated on the
organization rather than the task at
hand. CC systems provide an organized
structure which facilitates the major
activities such as, initiating,
information seeking, information
giving, opinion giving, elaborating,
coordinating, evaluating, and
energizing. In this way, the group can
'get down to business' rather than
spending expensive time on the agenda.

CC lets people concentrate on the
substance of issues, rather than the
disorganized form they inevitably
take. How many times have you
confronted the same problem over and
over? Multipled by those of close
working colleagues, and those of other
people in other departments, in other
divisions, and in other corporations,
ad infinitum , the result is that the
wheel is continually reinvented but the
problem isn't solved. The saying that
goes, "my problems are your problems,"
actually means that we spend most of
our time attacking the same problem,
but without making enough headway so

that, when it occurs again, we use the
same approach over again to solve it.

It is an important aspect of all
software project management to document
the work. How many times have you
gotten minutes from a meeting or really
know the status of a project? And,
if/when you do get the minutes, how
often do they actually convey what
really took place at the meeting? CC
provides a verbatim transcript. Each
person's comments are in their own
words, not just the meeting secretary's
notes. There is no "body language" to
interpret, no bullies to shy from, and
no confusion about what somebody really
meant. How many times have you sat in
a meeting and lost the drift of the
meeting, wondering what the person is
trying to say, as he or she jumps from
point to point? CC structures a

meeting in such a way that its purpose
and content are not lost.

In a system like MTX - MATRIX
system there is a meeting 'status'
indicator letting each person know
where the meeting is and what has
occurred. And, at any point in the
meeting, everything that has already
transpired can be reviewed. CC also
allows a participant to read the
speaker's remarks without having to
respond immediately. Consequently, it
is not so easy for someone to undermine
and 'sabotage' the speaker. A friendly
rather than confrontational atmosphere
is thus created. Notes can be made,
questions raised, and comments added
without distractions. This allows the
speaker to respond to the question when
he or she is prepared to and chooses to
respond

.

It is often said of committees and
meetings that 'the camel was a horse
designed by a committee.' And, surely,
everyone at some point has been
frustrated by 'Moscow delegates'
conference participants who cannot vote
without first going back and checking
with the boss. CC can provide for
assisting members in a way that is
rarely, if ever, found in a meeting,
i.e., private conferences.

Private notes and discussions can
occur during the computer conference
allowing participants to determine
interests and positions of other
people. They can 'test the waters'
with fellow workers before bringing the
issue to the group.

Consensus building is usually the
most difficult and the most challenging

429

goal of meetings. A true 'meeting of
the minds' and a real commitment to
putting decisions into action are far
easier to bring about through CC. This
is because CC allows members to work
privately, without formality and
scheduling requirements. Members can
pair-off to work on the various
sub-issues of the problem. In many
cases, the monetary savings aren't as
important as improvements in
productivity .

CC facilitates candid discussion
which, in turn, means that people pay
more attention. A higher quality of
discussion and thinking are the
results. Communication and morale are
improved because people talk with their
supervisors on an equal basis. And,
when workers come up with an idea, it
is attributed to them. The commitment
to 'making it work' is therefore
greater

.

PROGRAMMER TRAINING

One dynamic use of computer
conferencing is for training and career
development. Some of the specific
learning needs for computer software
personnel are:

• Programming - languages, operating
systems, applications
• Analytical techniques - probablity,
queuing theory
c Systems Analysis Methods - structure
and hierarchical data flow
• Systems Design Methods - standards,
logical structure, and integrity
• Computing Technology - hardware
configurations
• Storage Technology - file
management, data base management
• Communications Technology - error
detection, data communications
• Project Planning and Estimating
project teams, work scheduling

With CC systems, each of these concepts
as well as others can be placed online,
updated as necessary, and accessible by
all members of the organization at
their convenience - at home or at the
office. Since CC systems allow a

person to access the system at will at
their own convenience, a person can go
to class in their pajamas! There are
no actors or performing skills required
of the teach or student.

Using a CC approach, expensive
teaching time is reduced, employee time
away from work, travel time, and access
by other employees for career
development

.

Another area applicable for using a

CC system is in the documentation
area. Before we discuss the project CC
concept in detail, a review of
traditional documentation would be
useful for contrast.

DOCUMENTATION

Previous approaches documented the
work typically long after the software
system has been developed and
installed. With computer conferencing,
as the project analysts progress
through the development cycle, they
collect information, record it on
notes, and then produce documentation
at key project milestones to signify
completeness. With CC, all of that
work is now kept online. As the cost
for development and the number of
systems failures grows, management
demands greater assurance of success.
Thus, with increasing cost
accountability, there is real concern
over projected risks and whether the
intended objectives are attainable
within budget. This concern is
branding the traditional approach
unsatisfactory; a more systematic
method for development is required.

In the course of creating an
information system, analysts and
specialists accumulate a very large
quantity of data. When a team of
creative people is working toward
common objectives, the preparation and
maintenance of easily available,
well-organized, and up-to-date project
documentation is essential to success.
With a CC system, all work
documentation, meetings, and
conferences occur online, just as they
would in normal live meetings even
though they do not replace all live
reviews. However, with all the
information online, when live meetings
take place many of the problems have
been identified and the group can
concentrate its efforts rather than
reinventing the wheel.

For example, some of the
discussions would be:

System Operator Manual
User Manual
Installation Manual
Operating System Interfaces

Within each of the discussions, similar
outlines could be developed to present
online documentation development by
many sources, including daily review of
work effort by management.

430

CONCLUSION SAVING AND MANAGING TIME

Computer terminal conferencing is a

dynamic, easy to use concept for
managing the systems development
effort, programmer training, and
documentation. These are but a few
examples of using the 'computer manage
the computer effort' in ways that
simplify efforts, reduce costs, and
save time in an increasingly
competitive environment.

KEY ADVANTAGES OF COMPUTER
TELECONFERENCING
They are:

• Faster delivery of information
• Geographic and time independence
"Around the clock messages"
• Shortened messages and reading times
• Reduction in paperwork, pape
handling, and postage costs
• Reduction in office space used fo
files
• Allows time for 'thought' i

responding to important issues

ENHANCE COMMUNICATIONS

• Improved access to personnel
• Improved coordination of group
activities with rapid and timely
messaging to individuals and groups as
well as rapid paperless forwarding of
messages

Better . coordination of project
activities
• More effective use of resources
" You control the meeting time"

Ability to attend several meetings
at diverse locations in a single day -

" Being there without going there"
• Quicker solution of problems
• Increased reaction and anticipation
to problems - "Always there"
• Availability of diverse and distant
participants

SIMPLIFY ACTIVITIES

• Automatic records of messages
Efficient automated file searching

and retrieval
• Delivery impervious to weather,
holidays, and labor disputes
• Improvement in time management with
elimination of no-contact telephone
calls - "Telephone-tag"
• Elimination of unnecessary meetings
• Written records of all meetings
• Participation at user's convenience
"Always ontime"
• Portability and remote access to
f i les

LOWERING COSTS

• Reduced photocopying volume and
expense
• Reduced paperwork volume and mailing
expense
• Reduced labor and travel costs - "No
more waiting at the airport"
• Reduce real costs of telephone calls

431

APPLICATION OF SOFTWARE PERFORMANCE
ENGINEERING TECHNIQUES

Dr. Connie U. Smith

Duke University
Computer Science Department

Durham, N.C. 27706

The objective of this case study is to present the concept of performance
engineering, a software engineering discipline used in the development of large

scale software systems to ensure that they meet performance goals. The concept
of performance engineering is now well understood and analysis tools and techni
ques have been developed which facilitate the prediction of performance charac-
teristics of software designs before coding begins. Unfortunately, problems ar

typically encountered when the techniques are applied to large-scale software s

tems during their development.

The application of software performance engineering techniques to one such

system is described. Emphasis is on the nature of the problems encountered and

proposed solutions to them. Suggestions are made for future work in this area.

433

TUTORIAL ON WORKLOAD FORECASTING

Helen Letmanyi

Insti tute for Comput
National Bur
Washington

er Sciences and Technology
eau of Standards

, D.C. 20234

This tutorial will provide participants with a detailed overview of the

organizational approach to the workload forecasting process. The tutorial is

recommended for those who have an interest in forecasting workload requirements
via quantitative forecasting techniques.

A brief review of the ADP life-cycle will first be discussed to identify

the workload forecasting process as an integral part in the life-cycle management
of an ADP system. Next, the tutorial will discuss forecasting in general, and

some basic forecasting terminology necessary for the understanding of the remainder
of the tutorial. Then, a step-by-step approach to the workload forecasting process

will be identified. The importance of having definite objectives and goals prior

to performing a forecasting process will be discussed. Emphasis will be placed on

the importance of an organizational approach to forecasting by translating mission

requirements into processing requirements (through workload levels) either in terms

of ADP operation or resource usage requirements. Also, the analysis of the forecast

results will be discussed.

435

f

Analyzing Queueing Network Models Of

Computer Systems:

A Tutorial On The State Of The Art

Edward D. Lazowska

Department of Computer Science

University of Washington

Seattle, Washington

and

Kenneth C. Sevcik

Computer Systems Research Group
University of Toronto

Toronto, Canada

This tutorial describes recent advances in evaluating queueing network models -- obtain-

ing performance measures such as utilization, residence time, queue length, and throughput

from parameters such as workload intensities and loadings. These advances make it possible to

quickly evaluate models of large systems (hundreds of devices and dozens of workload com-
ponents) and to incorporate system characteristics such as memory constraints, priority schedul-

ing, and complex contemporary I/O subsystems.

A model is an abstraction of a system: an attempt to distill,

from the mass of details that is the system itself, exactly those

aspects that are essential to the system's behavior. Once a model

has been defined through this abstraction process, it can be

parameterized to reflect any of the alternatives under study and

then evaluated to determine its behavior under this alternative.

Using a model to investigate system behavior is less laborious and

more flexible than experimentation, because the model is an

abstraction that avoids unnecessary detail. It is more reliable than

intuition, because each particular approach to modelling provides a

framework for the definition, parameterization, and evaluation of

models. Of equal importance, using a model serves to enhance

both intuition and experimentation. Intuition is enhanced because

a model makes it possible to "pursue hunches" - to efficiently

investigate the behavior of a system under a wide range of alterna-

tives. Experimentation is enhanced because the framework pro-

vided by the particular approach to modelling being used gives gui-

dance as to what experiments are required in order to define and

parameterize the model.

Queueing network modelling is a specific approach to computer

system modelling in which the computer system is represented as a

network of queues which is evaluated analytically. A network of

queues is a collection of service centers, which represent system

resources, and customers, which represent users or transactions.

Analytic evaluation involves using packaged software to efficiently

solve a set of equations induced by the network of queues and its

parameters.

Queueing network models have become important tools in

the design and analysis of computer systems because, for many
applications, they achieve a favorable balance between accuracy

and efficiency. In terms of accuracy, a large body of experience

indicates that queueing network models can be expected to be
accurate to within 5 to 10 percent for utilizations and throughputs
and to within 25 to 50 percent for residence times. This level of

accuracy is consistent with the requirements of a wide variety of

design and analysis applications. Of equal importance, it is con-

sistent with the accuracy achievable in other aspects of the com-
puter system analysis process, such as workload characterization.

In terms of efficiency, queueing network models can be

denned, parameterized, and evaluated at relatively low cost.

Definition is eased by the direct correspondence between the attri-

butes of queueing network models and the attributes of computer

systems. Parameterization is eased by the relatively small number
of high level parameters that must be specified. Evaluation is

eased by the recent development of algorithms whose running

time is only a few seconds for models of realistic systems.

These efficient evaluation algorithms are the first subject of

this tutorial. We survey their evolution, and describe the way in

which they work. A spectrum of algorithms have been developed,

providing the possibility of trading off between cost and accuracy.

Some analysis techniques produce bounds on answers, indicating

ranges in which the values must lie. Others produce point esti-

mates of performance values. Some algorithms provide exact solu-

tions to the underlying equations derived from the computer sys-

tem; others produce approximate solutions by obtaining better and

better estimates through iteration.

The efficient evaluation algorithms described above are appli-

cable only to systems satisfying certain assumptions. Thus, in

order to retain this necessary efficiency, we must sacrifice some
generality in those system characteristics that can be directly

represented by our models. Characteristics that cannot be directly

represented typically arise in areas such as memory management
(memory constraints, swapping, paging), I/O subsystems (disks

with rotational position sensing, loosely coupled multiprocessors),

and CPUs (overhead, priority scheduling). We incorporate these

characteristics in our models indirectly, by transformation of the

basic parameters.

Significant progress has been made in recent years in the

range of system characteristics that can be efficiently represented in

this way. These techniques are the second subject of this tutorial.

We present a number of them, which are interesting in their own
right and which are illustrative of the general approaches that are

used.

437

CATEGORIES OF BACKUP STRATEGIES

Susan K. Reed

Institute for Computer Sciences and Technology
National Bureau of Standards
U.S. Department of Commerce

Washington, DC 20234

The basic strategies for backup operations during recovery from
disaster are described. A number of possible variations are included.
Some pointers are given in how to select strategies.

Key words: Backup operations; contingency planning; disaster recovery;
empty shell; reciprocal aid; recovery center; redundant facilities; shared
contingency facility.

1. Introduction

There are a number of possible strat-
egies which can provide partial relief in

the event of a computer center contingency.
A contingency is defined in this case as

any natural or man-made event which prevents
the processing of information by destroying
the facility or equipment, rendering the

facility unreachable, or depriving the

facility of utilities and supplies. How-
ever, there are several variations within
each strategy, and because there are so

many possibilities, each one must be eval-

uated. In addition, selecting one strat-

egy for each facility may not always be

sufficient. Different scenarios will re-

quire different remedies; for instance, loss

of air conditioning for a few days might
point to the need for service bureau back-

up while loss of a whole facility for a

month would more likely point to a recovery

center.

Especially among commercial facilities,

there is considerable disparity in services

offered under similar but different names.

Even in the friendly atmosphere of two

redundant facilities owned by the same

organization, it is easy to assume that the

other party is doing something that they are

unaware is a requirement . In the hectic

activity following a disaster, it is impos-

sible to foresee all misunderstandings. For

this reason, it is imperative to take noth-

ing for granted and to get all agreements
in writing. This is not to say that com-

mercial vendors of contingency services are

not reliable but only to suggest that there

are so many possible variations, different

meanings, and possibilities for misunder-

standing that every care should be taken to

assure that there are no surprises. It is a

good idea to have a prepared list of ques-
tions on hand for interviews.

It should be noted that none of these
solutions is ready and waiting for a disaster
to occur. All must be carefully researched,
evaluated, contracted for, planned, and
tested in advance of a disaster.

2. Commercial Solutions

2.1 Service Bureaus

The purpose of the service bureaus is

well known and their utility under contin-
gency circumstances is obvious. It is well
to find a bureau which will store source and
object code and data on their premises. All
of these must be kept updated and should be
tested as often as monthly. Testing can be

combined with regular runs. Service bureaus
are ideal backup solutions for jobs which
need to be run once in any given period, such
as payroll. The warning about making ar-
rangements in advance holds true here. Ser-
vice bureau time cannot be expected to be
available upon demand.

There is even a company which, for a

fee, will find available processing time that

is not being used by its owners. Arrange-
ments are made entirely through this third

party, rather than with hardware owners.

2.2 Empty Shells

These are large, unfurnished spaces
which can be leased to house computers and
related processing equipment. Usually they

439

are equipped with raised flooring, air condi-
tioning, telecommunication lines and electric
wiring are in place but not connected. Shells
are usually available from the same vendors who
supply recovery centers. In fact, there is

usually a planned progression from recovery
center to empty shell if the disaster is serious
enough to require offsite backup for more than
60 to 90 days. At a minimum, it takes about
three weeks to equip an empty shell.

2.3 Recovery Centers

These are fully equipped, furnished spaces
which include a computer and all hardware nor-
mally necessary. As a rule they also usually
have raised flooring, air conditioning, fire
protection and warning devices, telecommunica-
tions lines and physical security. The hardware
with which these centers are equipped has been
carefully chosen to meet the requirements of

a large number of organizations. Often if a

customer will not be able to operate without a

specific piece of equipment, it will be in-
stalled for exclusive use at the customer's ex-
pense .

Problems to be considered are hardware
compatibility, cost of moving personnel and
maintaining them away from home, site security,
number of others wanting to use facility fol-
lowing a disaster, willingness of personnel to

leave home during a disaster, availability for

testing.

A number of vendors offer both empty shell
and recovery center services in one location.
In such cases there is usually a limit on the
length of time a recovery center may be
occupied, e.g., 60 days, before the client is

required to equip the empty shell and continue
operations there. Some vendors also lease time
in their recovery centers for overload oper-
ations but customers for this service must va-
cate the premises immediately in case of a

disaster. These variations in available ser-
vices are mentioned to show that a wide range of

services is available, but that each vendor has
a different approach to the disaster and contin-
gency planning problems.

processing functions not sufficient critical and
that manual processing will be temporarily satis-
factory.

If it is the case that manual processing,
or whatever was used prior to obtaining a comput-
er, will suffice for a limited period of time,
then it will be necessary to prepare a contin-
gency plan for such processing, assigning per-
sonnel to tasks, providing all necessary equip-
ment and supplies, describing the system in
detail, including flow diagrams.

3.2 Reciprocal Agreements (Mutual Aid)

These are formal, written, signed agreements
between one or more parties , each of which has a
computer facility with excess time available.
The facilities must be completely compatible and
must maintain this compatibility throughout the
period of the agreement. This probably works
best between similar organizations with common
business interests, e.g., two banks. It is

extremely difficult to maintain compatibility
between systems because the smallest change in
either facility can effect it. The time require-
ments of a company can also change very rapidly,
reducing excess time.

3.3 Membership in Shared Contingency Facility

These are essentially the same as recovery
centers, but they are typically formed by a

group of similar businesses which use identical
hardware, e.g., inssurance agencies, for their
own exclusive use. Management is selected by
and is at the behest of the member organizations.
Even though these facilities are not commercially
available, the fees are nearly comparable to

those of commercial recovery sites. Ample time
for testing is allowed. Usually the facilities
may be used for overload except in the event
of a disaster.

As more and more recovery centers become
available, there are fewer and fewer shared
facilities. It appears that the task of managing
such a facility and arriving at agreements with
all the members is an impossible task better
left to an impartial management.

Most contingency centers have resident
staffs of experts who will help customers with
risk analysis, planning, documentation,
installation, etc., or they will do the entire
task for them.

3. Non-commercial Solutions

3.1 No Hardware Backup (Reversion to

pre-computer processing)

It may be that an organization determines
that no hardware backup is necessary. If so,

this decision should be based on a risk analysis
and should be carefully documented. It should
not be considered a reason for not needing a

contingency plan. It may be that the data

3.4 Geographically separate locations
(Redundant Facilities)

This is probably the best solution to

disaster planning if the installation of two
complete computer facilities is financially
feasible. If a government agency has the rare
opportunity to design its facilities from
scratch, it can probably financially justify the

need for sufficient redundant hardware to support
backup operations. If each geographically sep-
arated part of the facility is large enough to

carry the critical load (determined by risk
analysis) , there will be little disruption of

operations due to disaster. While it is not
necessary for both locations to have identical
hardware, each must have enough to support the

critical workload.

440

The separate parts of the facility must be

located geographically far enough apart that they

will not simultaneously be affected by the same

natural hazards or electrical outages.

I

BENCHMARK CONSTRUCTION AND
VALIDATION USING SYNTHETIC SOFTWARE

(A TUTORIAL OUTLINE)

Bruce D. Grant

Systems Architects, Inc,

Denver, Colorado 80228

This tutorial examines the use of synthetic software in the development
of acquisition benchmarks. As such, characteristics of synthetics and the

methodology employed to use them effectively are explored. When properly
utilized synthetics offer significant advantages over application software
in many cases. They are relatively simple to select, modify, and tune to

particular benchmark categories and requirements yielding significant savings
in time and resources. Acceptance of synthetics has been relatively slow due

to problems related to successful mapping of the synthetic to the characteristics
of existing and planned workloads and a susceptibility to the effects of
optimization. While still worthy of note, these problems may be significantly
reduced through proper technique during the developmental process.

1. Introduction

The process of competitively acquiring a

computer involves many complex steps requiring
a significant amount of preparation. Benchmark
development is undoubtedly one of the most time

and resource consumptive portions of any pro-

curement .

The benchmark is clearly a highly critical

step in the acquisition process. Properly con-

structed, a benchmark provides a fair test of

the features and performance capabilities of

vendors' equipment against the procuring organi-
zation's future workload. Improperly constructed
benchmarks have often provided information of

negative value in that inappropriate equipment

appeared most suitable and was procured based on

benchmark results.

The two major potential problem areas in

the benchmark development process are the fore-

casting of future workloads and the representa-
tion of those workloads by a set of benchmark
problems. This tutorial examines the second of

these through the use of synthetic programs and

support routines.

2. Problems in Achieving Representativeness
Using Application Software

The following figure 'Test of Benchmark

Representativeness', borrowed from Dr. Dennis

Conti supports the concept of an ideal

linear relationship between 'actual' workload
(including forecasts) and the benchmark workload.

WORKLOAD
BENCHMARK

CONSTRUCTION
BENCHMARK

SYSTEM SYSTEM,

PERFORMANCE VARIABLES eft,. V
Response Time
Turnaround Time
Transaction Rates
Processing Charges

Figure 1. Test of Benchmark Representativeness

Other valuable performance criteria include

elapsed time and various resource oriented per-

formance measures. These may include CPU time,

total I/O per test, channel or device I/O,

swapping and paging activity, memory utilization
measures (maps, etc.), and system overhead
statistics. When synthetic software is under
consideration, other pertinent performance data

443

may include instruction mix information for the
particular benchmark category to aid in tailoring
the synthetic.

Application software often poses many
obstacles to representative and manageable bench-
mark development. Many benchmark categories
simply cannot be effectively represented by
application software. The functions to be

represented may not exist on the present computer
or the associated application software may be
biased in favor of (or entirely dependent upon)

the incumbent vendor's machine. Another problem
arises when the software and/or data contains
information subject to security and privacy
restrictions. While not an insurmountable
obstacle, its' correction may be very time
consuming.

In yet other cases, the category could be
represented by application software, but it may
be too cumbersome or resource consumptive to do

so. The application software may require
significant familiarization or modification time
by either developer or vendor. In cases of long

system lives, application software may prove too
inflexible for the changing requirements of the

particular category (e.g., an increasing amount

of query versus update in a DBMS scenario). The
benchmark problem may require incredibly large

data or transaction files which may change for
each potential augmentation point, suggesting
synthetic data generators. Within an RTE bench-
mark, all of these problems may be magnified by
the number of terminals and iterations involved.

The key problem of the representativeness
and suitability of application software must
ultimately be examined from two perspectives:
1) Does the selected software adequately test

the specific category's functions and workload
over the system life?; and 2) Will the selected
software do (1) in an unbiased and economical
(i.e., time, labor, materials) manner?

Many benchmarks are developed with one or
both of these conditions unsatisfied. Figure 2

illustrates the development process from step
7 of FIPS 75 to benchmark completion.

3. Synthetic Benchmark Programs
and Support Routines

Synthetic software, including synthetic
benchmark programs, data generators, and valida-
tion routines, avoid the previously described
limitations when properly designed or selected
and tested for the particular benchmark category.
As per Fleming and Rucks \J~\ , a good synthetic
possesses the following qualities: "(1) it

consists solely of the constructs of a generally
used standard high level language (e.g., ANSI
FORTRAN or ANSI COBOL); (2) it exercises a

typical set of programming langauge functions;
(3) it provides a set of user controllable
parameters for synthesis of an application work-
load into a synthetic workload; and (4) it

produces repeatable, predictable, and verifiable

results .

"

The advantages of such software are obvious:
high transportability, ease of mapping to pro-
cessing features (assuming adequate variety of
functions with the synthetics), ease of tuning
to resource requirements, and an associated
reduction in costs for the entire benchmark
development effort and, in many cases, the LTD
itself.

Synthetics have been criticized primarily
for not effectively representing the instruction
mix of the specific benchmark category. Nearly
any program could be 'tuned' to consume identical
amounts of CPU, I/O, or memory per unit time as

the category under examination. The type,

number, frequency, and order of instruction's
is another matter, however. 'Resource oriented'
synthetics are to be distinguished from
'functionally oriented' synthetics. The former
merely mapped workloads at detailed system
resource levels without adequate consideration

for the order and complexity of functions

(including instruction mixes) involved.

Work performed by Fleming and Rucks QJ ,

the U.S. Department of Agriculture, the National
Bureau of Standards, and Systems Architects, Inc.

has attempted to address this problem. FORTRAN,
COBOL, and DBMS synthetics were examined by the

author with respect to the four qualities
described above, with particular emphasis placed
on instruction mix flexibility. Subsequent
'tests' of the representativeness of these
programs have been performed by using program
analyzers, which record instruction mix informa-
tion, and the more traditional accounting logs

and software monitors. When a synthetic passed
a 'suitability test' and closely approximated the

expected or 'real' workload by means of tradi-

tional performance measures and instruction mix

analysis, it was judged to be successful in

representing the designated category. Figure 3

illustrates the testing and tuning process of a

typical benchmark development effort employing
synthetics

.

Synthetic support routines, primarily data

and transaction generators, also can yield

significant savings during development of a

benchmark. Parameterized software which
generates a large number of unique records in a

rapid, controlled manner offers great flexibility
when creating and tuning a particular benchmark

problem. Additionally, by means of modification

of 'seed' values, greater control is maintained

over 'live' data when the benchmark is run.

(Unique 'seeds' may be provided when the LTD is

run.) Storage requirements are minimized for

transmittal purposes and the vendor may use the

routines for sizing purposes prior to the LTD.

While not synthetics per se, the following

software can be of great assistance in testing,

validation, and tuning synthetic software.

It is often extremely helpful to create

444

Workload
Information
(Through

Step 6-FIPS 75)

Scale Benchmark
Categories

(FIPS 75-Step 7)

Represent Categories
With Benchmark
Problems (Batch

and On-Line)

(FIPS 75-Step 8)

Program Analyzers,

Software Monitors,

Accounting Logs, etc

(Detailed
Resource

Tnformat ion)

Select Application
Code or Synthetics

(or Both)

(Perform Suit-

ability Test)

Modify
Application
Programs

z
Modify
Synthetic
Programs

Create Support

Routines, Data Files

Documentation, etc.

5

Create/Modify
Synthetic Support

Routines

,

Documentation, etc,

z
Integrate and

Test Benchmark
Problems

Tuning
(Perform Repre-

sentativeness Test)

FIPS 75-Step 9

Still Not

Representat ive?

Completed
Benchmark

Figure 2. Benchmark Development

445

RTE Benchmarks

Integrate and

Test Benchmark
Problems

Non-RTF. Benchmarks

Pro g ramma b 1 e Front
End, RTE, or

Second System
Available?

1 Driver'
Software Necessary

for Testing?

Set Up
' External

'

Emulator to

Test Scenarios

Develop/Modify
* Internal

'

Emulator

Create/Modi fy

•Driver*

Rout i no

Perform Individual

Problem Testing

Per form
Indivi dual

Test Lng

Perforin

Integrated
Testing

Software Monitors,
Hardware Monitors,
Accounting Logs,

Program Analyzers, etc

Begin Tuning
to Workload
Requirements

Able to Tune to
Pre-Established

Confidence Levels of
Representat iveness

Test?

Go to

'Select/Modify'
(Figure 2)

Benchmark to be

Run on Second
System?

Test Renchmark
on Second

System

BENCHMARK COMPLETED
(After Final
Documentation

Prepared)

Maj or

Prob lems?

Figure 3. Testing and Tuning the Benchmark

446

parameterized report generation routines for
validation purposes. By developing report soft-

ware which retrieves every 'nth' record of an

output file, control is maintained and output
requirements can be significantly reduced.

Perhaps more importantly, internal emulators
fulfill an important need for an RTE benchmark
where an external RTE-type device is not avail-
able. A driver program, preset for type and
think time delays, with an internal monitoring
or checkpoint capability, is of great assistance.
Such a program can provide response, turnaround,
and transaction rate information. System soft-
ware and programming are often required to

effectively balance the load, however. The

primary limitation of an internal emulator is in

the inability to factor in the corresponding
communications overhead and factor out the

effects of the emulator itself.

4. Benchmark Development Steps
Using Synthetic Software

The following steps describe techniques and
questions to be resolved in the construction of

benchmarks using synthetic software. These
steps commence with FIPS PUB 75 Step 8.

STEP A: PERFORM SUITABILITY TEST

For Each Benchmark Category:

• Of Existing Cor Suggested) Application
Codes

:

a) Does it map to that category's func-

tions over the entire system life?

b) Is it biased towards the incumbent?

c) If privacy or security considerations,
is the effort required to 'sanitize'
prohibitive?

d) Would interface or familiarization
requirements on the vendor's part be
excessive?

• Of Synthetics:

a) Are functionally oriented synthetics
available which map to the category?
If not previously developed and avail-

able, can they be expeditiously and
economically developed? Does the

synthetic functionally resemble the

category's requirements in terms of:

--Language (COBOL, FORTRAN, etc.)

--Processing mode and type (e.g.,

interactive, ISAM update)

--Range of capabilities (see 'c' below)

b) Is a detailed breakdown of each
category's functions (including
instruction mix analysis) available

or readily obtainable? If not, what

is the degree of difficulty involved

in developing (b)

?

c) What percent of the category's
functions (including language

instructions) can be expressed with
the synthetic? (Should be > 90%)

d) Is the modification required to

achieve (c) prohibitive?

STEP B: SELECT OR CREATE REPRESENTATIVE PROGRAMS

Based upon each benchmark's requirements,
the weight or importance of each item in Step A

will vary. The procuring organization should
evaluate the 'Suitability Test' results in

conjunction with guidance provided by FIPS 42-1

and FIPS 75.

STEP C: MODIFY PROGRAMS AND CREATE SUPPORT
ROUTINES (IF REQUIRED)

• For Each Program:

a) Modify to achieve maximum functional
representation

.

--Processing requirements
--Instruction mix

• For Each Benchmark Category:

a) Assess trade-offs of using 'live' data

versus synthetically generated data or

transactions

.

--Are data storage and transmittal
requirements excessive?

--Would synthetic generators simplify
the benchmark effort for both parties
(as opposed to the use of existing
'live' data)?

--Does 'live' data pose security or
privacy problems? Is ' sanitization

'

difficult?
--Is data or transaction generation
software readily available? If not,
what level of effort is required to

develop it?

b) Would parameterized validation routines
simplify the evaluation process?
--Primarily for benchmarks with large

data requirements.
--Is the development effort justified?

STEP D: INTEGRATE AND TEST BENCHMARK PROBLEMS

• For Each RTE Benchmark:

a) Is an RTE or external driver system

available?
--If YES, does benchmark (and procure-
ment) justify its use (perhaps for

extended period) as testing tool?

--If YES, are resources available
(primarily manpower and communica-
tions capability) to make it

feasible?
--If YES, and it is the development

systems' front end, can it be

programmed to effectively function

as an external emulator?
--If NO, is an internal emulator
available for development system?

--If NO and an internal emulator is

not available, does benchmark (and

447

procurement) justify its development
as a testing tool?

• For Each Non-RTE Benchmark:

a) Does benchmark complexity justify
'driver' software for effective
testing?

• For Each Benchmark Category:

a) Perform individual problem testing.
--For synthetics, is sufficient level

of detail in analytical data avail-
able (functional and resource
performance information)?

b) Perform integrated testing.

STEP E: FINE-TUNE BENCHMARK AND PERFORM
REPRESENTATIVENESS TEST

• For Each Benchmark Problem:

a) For application software based
problems

:

--Does benchmark workload equal or

closely approximate actual or fore-
casted workloads? Suggested per-
formance measures include:
• Response Times
• Turnaround Times
• Transactions Rates
• Processing Charges or System

Resource Measures

b) For synthetic software based problems:
--Do the same conditions as in (a)

hold true?
--Does synthetic instruction mix
closely approximate actual mix?

--Do system resource measures (memory,

CPU, I/O, utilization, etc.) closely
approximate expected results?

5. Summary and Conclusions

2 Fleming, P. M.
,
Rucks, A. C. A FORTRAN

Synthetic Program for Benchmarking .

Weatherbee, J. E., ed. Computer Performance
Evaluation Users Group: CPEUG 15th Meeting;
1979 October 15-18, San Diego, CA.

Washington, DC: U.S. Government Printing
Office: 193-199.

3 Conti, D. M. Use of Synthetic Benchmarks
for Estimating Service Bureau Processing
Charges . Washington, DC: National Bureau
of Standards (NBS) , Institute for Computer
Sciences and Technology (ICST) . 1976 July.

47p.

4 Conti, D. M. Findings of the Standard
Benchmark Library Study Group. Washington,
DC: National Bureau of Standards (NBS),

Institute for Computer Sciences and Technology
(ICST). 1979 January. 49p.

5 National Bureau of Standards. Federal
Information Processing Standards (FIPS)
Publication. Guidelines for Benchmarking
ADP Systems in the Competitive Procurement
Environment . Washington, DC: NBS, 1977,
May 15, FIPS PUB 42-1.

6 National Bureau of Standards. Federal
Information Processing Standards (FIPS)

Publication. Guidelines for the Measurement
of Interactive Computer Service Response
Time and Turnaround Time. Washington, DC:

NBS, 1978, August 1, FIPS PUB 57.

7 National Bureau of Standards. Federal
Information Processing Standards (FIPS)

Publication. Guideline on Constructing
Benchmarks for ADP System Acquisitions .

Washington, DC: NBS, 1980, September 18,

FIPS PUB 75.

Synthetics are applicable to a variety of
workloads and benchmark requirements. These
must be carefully analyzed with respect to

many of the factors described previously. In

order to limit the effects of software and
compiler optimization, it is also important
that the developer map as many characteristics
of the actual workload as possible and does not

rely exclusively on synthetics.

Various sources of functional synthetic
benchmark routines are available; the best are
undoubtedly the National Bureau of Standards
'Synthetic Library' of COBOL and FORTRAN
routines

.

References

1 Conti, D. , Acquisition Benchmarking
,

Supplemental Proceedsings
, CPEUG, 17th

Meeting, November 1981.

448

NBS-114A (rev. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS SP 500-95

2. Performing Organ. Report No 3. Publication Date

October 1982

4. TITLE AND SUBTITLE

Proceedings of the Computer Performance Evaluation Users Group 18th Meeting
CPEUG 82 - "Increasing Organizational Productivity"

5.

Proceedings Editor - Carol B. Wilson

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

Institute for Computer Sciences and Technology
NATIONAL BUREAU OF STANDARDS

7. Contract/Grant No.

DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234
Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

Institute for Computer Sciences and Technology
National Bureau of Standards
Department of Commerce
Washington, DC 20234

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 82-600622

"] Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT I A 200'word or less factual summary of most significant information. If document includes a significant

bi bliography or literature survey, mention it here)

These Proceedings record the papers that were presented at the Eighteenth Meeting

of the Computer Performance Evaluation Users Group (CPEUG 82) held October 25-28,

1982, in Washington, DC. With the theme, "Improving Organizational Productivity,"

CPEUG 82 reflects the critical role of information services in the productivity and

survival of today's organization. To meet this challenge, the scope of CPE must be

expanded to address performance issues in all aspects of information systems (hard-

ware, software, facilities, communications, personnel, policies, and procedures)

throughout the system life cycle. The program was divided into three parallel

sessions and included technical papers on previously unpublished works, case studies,

tutorials, and panels. Technical papers are presented in the Proceedings in their

enti rety

.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

benchmarking; capacity planning; chargeback systems; computer performance management

systems; queuing models; resource measurement facilities; simulation; supercomputers;

workload characterization.
13. AVAILABILITY

(X] Unlimited

| |

For Official Distribution. Do Not Release to NTIS

(yy| Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

[~J Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

414

15. Price

$11.00

V- u . s .

USCOMM-DC 6O43-P80

GOVERNMENT PRINTING OFFICE: iq82-360"997/2258

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name .

Company

Address

City State Zip Code

(Notification key N-303)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from time to lime are survey articles on topics

closely related to the Bureau's technical and scientific programs.
As a special service to subscribers each issue contains complete
citations to all recent Bureau publications in both NBS and non-
NBS media. Issued six times a year. Annual subscription: domestic

$18: foreign S22.50. Single copy. S4.25 domestic: S5.35 foreign.

NONPERIODICALS

Monographs—Major contributions to the technical literature on
various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences spon-

sored by NBS. NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterh for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, I 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office. Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended,

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 1 1717 (38 FR 12315, dated May II, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Washington, D.C. 20234
Official Business

Penalty for Private Use $300

POSTAGE AND FEES PAID

U.S. DEPARTMENT OF COMMERCE
COM-215

SPECIAL FOURTH-CLASS RATE
BOOK

