
U.S. Department
of Commerce

National Bureau

of Standards

Computer Science
and Technology

I

NBS

\ PUBLICATIONS

NATL INST OF STAND & TECH

NBS Special Publication 500-86

An Architecture for

Database Management
Standards

100

.U57

I Jo . 500-b6

1982

c. 2

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities' — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering- — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

-'Some divisions within the center are located at Boulder, CO 80303.

Computer Science
and Technology ,e8«4 1982

Prepared by the

Computer Corporation of America

575 Technology Square

Cambridge, MA 02139

for the

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, DC 20234

HaVionil lurcau of Stan4aTd"«

NBS Special Publication 500-86 ^^i^

An Architecture for

Database Management 1^%^

Standards

o

»b. «

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued January 1 982

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number; 81-600174

National Bureau of Standards Special Publication 500-86
Nat, Bur. Stand. (U.S.), Spec. Pubi. 500-86, 52 pages (Jan. 1982)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1982

For sale by the Superintendent of Documents. U.S. Government Prmting Office, Wasfiington, DC 20402

Price $3.25

(Add 25 percent for other than U.S. mailing)

- PREFACE -

In partial fulfillment of its obligations under the
Brooks Act (PL 89-306) , the Institute for Computer Sciences
and Technology (ICST) of the National Bureau of Standards
(NBS) is developing Federal Information Processing Stan-
dards (FIPS) for Database Management Systems (DBMS's) . The
Brooks Act and the executive orders that implement it em-
power ICST to help Federal agencies improve the cost- effec-
tiveness of selecting, acquiring, and using computer
resources. The applications of Federal agencies vary so
widely that a single kind of DBMS would not be suitable for
all of the Government. ICST's Center for Programming Sci-
ence and Technology is therefore developing a family of da-
tabase standards to minimize the Government's data process-
ing costs by reducing data conversion problems, permitting
more efficient use of files, increasing the portability of
programs, reducing the need to retrain staff, and reducing
the time and cost of developing new software and maintain-
ing existing programs.

Standardizing DBMS's requires an architecture to en-
sure integration of family members, to help ICST decide how
to use scarce resources most effectively for the Government
as a whole, and to guide ICST's participation in voluntary
standardization activities. In 1979 ICST contracted with
the Computer Corporation of America to develop such a

framework. This report consists of a proposed architecture
for DBMS standards. As directed by ICST, the contractor
has developed a functional decomposition of the DBMS stan-
dards family. Like many previous efforts in the area of
database standards, this work has focused on identifying
and specifying interfaces.

This document is a contractor's report. The architec-
ture described herein will provide one input to future FIPS
for database management. Because the architecture is still
evolving and other inputs will be considered, the opinions
and ideas expressed here do not necessarily have final
NBS/ICST endorsement.

ICST solicits comments on the contractor's proposed
architecture. Government agencies, commercial vendors, in-
dependent consultants, and other interested parties wishing
to respond to issues raised by the report should contact:

Chief
Data Management and Programming Languages Division
Tech A-255
National Bureau of Standards
Washington, DC 20234

-iii-

Table of Contents

Page

1. INTRODUCTION 1

1.1 Purpose of the Report 1
1.2 The Need for DBMS Standards 2

1.3 Requirements for Database Standards 4

1.3.1 The Federal ADP Community 4

1.3.2 DBMS Vendors 5

1.4 Status of the Strawman Architecture 6

2. A COMPONENT AND DATA MODEL ARCHITECTURE 7

2.1 DBMS Components and Interfaces 7

2.2 The Major Components of the Architecture. 9

2.3 The Core Database Handler 11
2.4 Data Models and Component Families 15

3. ARCHITECTURE DETAILS 19

3.1 The Schema Components ...19
3.1.1 The Structure Definition Language 22
3.1.2 The Integrity Control Language 2 3

3.1.3 The Access Control Language 24

3.2 The Core Database Handling Processors 25
3.2.1 The Envelope 26
3.2.2 The Schema for Schemas 2 8

3.2.3 The Logical Database Handling Processors .. 29
3.2.4 The Physical Database Handling Processors . 33
3.2.5 The File Access Processors 35

3.3 User Interfaces 35
3.3.1 The Query Language Component.. 37
3.3.2 Host Language Interfaces 38
3.3.3 End User Interfaces 39
3.3.4 Special Purpose Processors 40
3.3.5 End User Utilities 41

3.4 Database Administration Aids 42

4. IMPACT OF THE ARCHITECTURE 43

5. REFERENCES 4 6

-iv-

Table of Figures

2.1 Fragment of Component Architecture 8

2.2 Major Conceptual Component Classes 10
of the Architecture

2.3 Core Database Handler 12
2.4 Family of DBMS Standards 16
2.5 Approaches to Accommodating 18

Component Differences

3.1 The Schema Processors 20
3.2 The Core Database Handling Processors 27
3.3 The User Interface Processors 36
3.4 The Database Administration Aids 42

4.1 Standardization for DBMS ' s 45

-V-

AN ARCHITECTURE
FOR DATABASE MANAGEMENT STANDARDS

Computer Corporation of America

This report describes the current status of
an Institute for Computer Sciences and Technology
project on architectures for Database Management
Systems. An architectural framework for develop-
ing DBMS standards is presented. It addresses re-
quirements of both the Federal data processing
community and the DBMS vendor community. The ar-
chitecture groups DBMS functions into both inter-
nal and external components and proposes for these
components a family structure that supports the
integration of DBMS standards for multiple data
models

.

Key words: Database; database function; database
management system; data model; schema;
standards; system architecture; system components.

1. INTRODUCTION

1.1 Purpose of the Report

This report describes the current status of an Insti-
tute for Computer Sciences and Technology project on archi-
tectures for Database Management Systems. A proposed archi-
tectural framework, developed by the Computer Corporation of
America (CCA) , is presented for review by Federal Government
data processing personnel, computer hardware and software
vendors, and other interested groups and individuals.

-1-

This "strawman" architecture is intended for use in
developing Federal Information Processing Standards for
Database Management Systems (DBMS's). The architecture is
referred to as a strawman in that the review of this
report and other feedback will be used to modify and
refine the proposed architecture.

In this section we review the requirements for DBMS
standards and the status of the strawman architecture.
Section 2 presents an overview of the architecture. Sec-
tion 3 discusses the salient details of the architecture.
Finally, Section 4 presents the implication of the archi-
tecture on the standardization of Database Management Sys-
tems.

1.2 The Need for DBMS Standards

Federal Information Processing Standards (PIPS) for
Database Management Systems (DBMS's) would provide impor-
tant benefits. In particular, the standards would benefit
both the Federal Automatic Data Processing (ADP) depart-
ments and the computer industry. For example, the selec-
tion and procurement of computer hardware and software
systems by Government data processing departments often
involves extensive evaluations of dissimilar DBMS's.
While standards exist for character sets, programming
languages, and certain hardware interfaces, no such stan-
dards exist for DBMS's. Yet DBMS's, with a wide variety
of features and performance, are one of the most critical
types of Federal system procurements. The establishment
of standards for DBMS's would greatly facilitate these
procurements.

Standards for DBMS's would encourage computer
manufacturers and commercial system developers to provide
compatible, but competitive DBMS's. Currently, vendors
must design and provide "complete" Database Management
Systems with their own array of dissimilar functions and
interfaces, DBMS standards would be used by vendors to
direct the basic design of their systems; the vendors
could then concentrate on performance improvements, inno-
vative interfaces, and price reductions.

While standards for DBMS's are needed, they are dif-
ficult to develop due to the variation in existing Data-
base Management Systems. Modern DBMS's are complex
hardware and software systems that are used for a wide
variety of applications. These varied and complex systems
have different features and interfaces. DBMS's differ in

-2-

the levels of their interfaces: they can provide inter-
faces to programming languages or interfaces to languages
for non-computer specialists. DBMS' s also differ in the
power of the data management functions they provide; some
provide operations for retrieving or modifying individual
records, while others provide operations for retrieving or
modifying selected groups of records, DBMS' s differ in a
variety of other characteristics including: the physical
access paths that are supported; the provisions for allow-
ing simultaneous updating of the database by multiple
users; the variety of programming languages such as FOR-
TRAN and COBOL that may use a DBMS; and the different data
models such as relational, hierarchic, and network that can
be used to represent an agency's information.

A generic DBMS architecture is needed to provide in-
depth unification to the wide variation of functions and
components of Database Management Systems. The complexity
of DBMS's can be represented by an architecture that clas-
sifies functions into components, and identifies both
external and internal interfaces to these components. For
example, file access functions could be grouped into a
standard internal component, while output specification
and formatting could be grouped into a standard external
report writer component. The strawman architecture is
proposed to meet this need,

A generic DBMS architecture must also accommodate
multiple data models. Functions and languages common to
relational, hierarchic, and network data models must be
identified for each component type. For example, some
query language functions are available in DBMS's for each
of the three models mentioned above. Other functions and
languages exploit the complexity or simplicity of a given
model, A family of components in the strawman architec-
ture is proposed for encapsulating the similarities among
the data models and for supporting the required model
dependent extensions.

The architecture must also allow for the systematic
evolution of standards for Database Management Systems.
The architecture should accommodate the prioritization of
standardization efforts based on the needs of the Federal
ADP community and the state-of-the-art in database tech-
nology. Future standard developments can proceed as
Federal usage priorities and technology stabilizations
permit.

-3-

1.3 Requirements for Database Standards

Standards for DBMS' s must satisfy a diverse range
of requirements for both the Federal ADP community and the
vendors that supply Database Management Systems. The
requirements for each of these groups are. discussed below.

1.3.1 The Federal ADP Community

The standards must facilitate the selection, procure-
ment, and use of a Database Management System for a given
application environment. These requirements impacted the
design of the strawman architecture. They include:

1) Facilitate the Selection of the Best DBMS.
An architectural framework for DBMS standards should
facilitate the comparisons of systems that emphasize
different features for different applications. The
standards must support a variety of systems to meet
the respective needs of different applications.

2) Facilitate the Procurement of DBMS's.
Standards for Database Management Systems are required
so that procurement requests can directly reference
the standards instead of being forced to specify their
own DBMS requirements. The architectural impact is
that the standard should guide the alternative deci-
sions to be made by the procurement departments. In
particular, the standards must be complete enough that
ancillary specifications are generally not required.

3) Preserve Investment in Future Applications and User
Training.
The training and application development investment
required to use a DBMS continues to increase. DBMS
standards must therefore support commonality and evo-
lution between different applications in order to
share procedures (and policies) in the database pro-
grams and to reduce the learning time required for a

new application or a new Database Management System.
An implication of this objective is that the standard
must be sufficiently complete so that most application
programs can be written entirely with constructs that
are part of the standard.

Note that this objective is directed towards
future application and training since no one type of
existing DBMS dominates either the Government ADP
departments or commercial users. Current DBMS

4

installation statistics indicate that over 20 dif-
ferent systems are widely in use on large mainframe
computers [CW 1981].

1.3.2 DBMS Vendors

For the DBMS industry, standards should encourage
competition, facilitate the introduction of DBMS products,
and allow for the systematic evolution of DBMS features.
These requirements also impact the design of an architec-
ture and are reviewed below.

1) Encourage Competition and Innovation.
Standard DBMS interfaces for programming languages and
interactive query languages would provide a well-
defined target (and market) for DBMS vendors. Imple-
mentors could concentrate on cost/performance trade-
offs instead of proliferating end user interface
designs.

In addition, if internal interfaces were stand-
ardized, creative special purpose interfaces could be
built on top of the standard internal interfaces. The
standardization would insure that such interfaces
would run on a number of hardware and software sys-
tems. In this way, the existence of a standard sup-
ports rather than suppresses innovation.

The strawman architecture can be seen to motivate
three different types of DBMS vendors. Some vendors
would choose to supply standard internal interfaces
through combinations of hardware and software com-
ponents. Other vendors could supply the standard
external interfaces to COBOL and FORTRAN programs,
report writers, and query languages. Still other ven-
dors could supply non-standard special purpose exter-
nal interfaces that conform on their use of an inter-
nal interface.

2) Facilitate the Evolution of DBMS Standards.
Rather than freezing DBMS's, the architectural frame-
work must be prepared for upward compatible changes.
The architecture should identify which interfaces are
currently suitable for standardization and which
should not yet be standardized. The architecture
should have well-defined avenues for extension of the
defined facilities of the system. The extensions can
be implemented first as part of specific systems. If
proven beneficial, the extensions can be standardized
for a given data model. If feasible (and desirable)

-5-

the extensions can be standardized for all data
models. Extensions can be fed through the standardi-
zation process and cause the standards themselves to
evolve in controlled and systematic directions.

3) Facilitate the Introduction of Standards.
The Federal Government is dependent upon the vendor
community to produce systems which comply with Federal
Information Processing Standards. To be effective, it
is important that procuring agencies have an adequate
selection of systems that comply with the standard.
The successful introduction of the standard is, there-
fore, dependent upon the willingness of a sufficient
number of vendors to produce compliant systems.
Emphasis on this requirement encourages the adoption
of a standard that supports the functionality,
language styles, and data models prominent in existing
systems since that will reduce the vendor investment
required. Emphasis on this requirement also
encourages the concept of a family of standards so
that systems designed for different types of applica-
tions can still be considered standard.

1.4 Status of the Strawman Architecture

The strawman architecture is based on several key
features including the comprehensive identification of
DBMS functions, the grouping of those functions into com-
ponents, the support of multiple data model standards, and
the specification of both internal and external inter-
faces. Each of these key features, independently of one
another, will contribute to the development of effective
DBMS standards.

In developing the architecture, CCA first collected
an extensive list of functions that are found in existing
and proposed DBMS' s. Next, criteria based on efficiency
and data model independence considerations were esta-
blished for analyzing the functions. These criteria were
then used to collapse and group the functions into com-
ponents that could be effectively packaged as products,
possibly by independent producers.

More detailed specification of this DBMS architecture
is in progress; this report does not describe a final
product. CCA is currently in the process of refining the
components and providing detailed descriptions of their
functions and interfaces. The main purpose of this report

-6-

is to allow for a review of the strawman architecture's
key features by the computing industry and the Federal ADP
community.

2. A COMPONENT AND DATA MODEL ARCHITECTURE

The strawman architecture groups DBMS functions into
both internal and external components and defines for
these components a hierarchical family that supports the
integration of standards for multiple data models. The
identification of components in the architecture is dis-
cussed in Section 2.1. The major groupings of those com-
ponents and their respective interfaces are described in
Section 2.2. The key internal interface to the core data-
base handler with the standardized internal access to the
schema of schemas is discussed in Section 2.3. Section
2.4 describes how the hierarchical family of components
supports the multiple data models.

2.1 DBMS Components and Interfaces

The building blocks of the strawman architecture are
components and their interfaces. The components represent
groupings of related DBMS functions and are designed to be
potentially separate DBMS products. Each component is
characterized by a collection of interfaces through which
'users' can activate the functions of the component.

The 'users' of a component can be both end users or
other components of the architecture. The end user inter-
faces, the conventional targets of standardization activi-
ties, include direct interfaces to users and application
programs. Standardization of these interfaces would per-
mit users and application programs to be transferred from
product to product without expensive training and conver-
sion costs.

When an interface to a component is used only by
another component of the architecture, it is called an
internal interface. Standardization of these internal
interfaces would permit and encourage the growth of a plug
compatible DBMS industry. Database Management Systems
involve a large number of external interfaces. Requests
made through these interfaces are, in the course of their
execution, eventually translated to associated retrieval

-7-

and update operations on some physical storage medium. By
defining and standardizing key internal interfaces, dif-
ferent vendors could develop and market different or com-
peting external interfaces. Similarly, vendors could
separately market internal components that employed inno-
vative hardware and software technologies.

Figure 2.1 shows an example fragment of a component
architecture. The two circles represent components. The
square inserts, labelled with numbers on the perimeter of
each circle, represent interfaces for each component to
its users. Those interfaces are the mechanisms through
which the intended functions of the component are exer-
cised. A line coming into one of these interfaces
represents a use of that interface either by an end user,
labelled "E", or by another component.

Figure 2.1 Fragment of Component Architecture

In this example there are two components. Component
A provides services to an end user and could be used for
schema maintenance, database administrator aids, database
retrievals, etc. Component B, on the other hand, performs
some functions that are needed by Component A in order to
satisfy a user request. Those internal functions could be
for file access, sequencing through database objects or
higher level set oriented functions. The important con-
cept is that Component A must invoke those functions
through the defined interface to Component B.

-8-

When a connection is used in the architecture to show
the use of one component interface by another component,
this interconnection is a necessary part of the architec-
ture. That is, the architecture requires that the func-
tion of the one component be accomplished by employing the
services of another component.

The component architecture provides a basis for par-
titioning the development and use of DBMS standards. Some
components and interfaces are presently suitable candi-
dates for standardization. Other components represent
features that are just beginning to appear in DBMS' s and
may be candidates for standardization at a later date.
The selection and procurement of a DBMS could be based on
only a subset of the standardized components. Similarly,
a vendor could market a selected subset of components and,
in fact, could choose to market only external interfaces.

In summary, the strawman architecture identifies each
of the components of a Database Management System in terms
of three factors: (a) the functions that those components
perform, (b) the interfaces that each component has to its
users, and (c) the necessary connections of each component
to other components. In the next section an overview and
classification of these components is presented.

2.2 The Major Components of the Architecture

The strawman architecture consists of four major com-
ponent groups. This partition, shown in Figure 2.2, con-
sists of schema processors, core database handler, user
interfaces, and database administrator aids.

An overview of each of the four groups is presented
below. In Section 3, more details on the individual com-
ponents are presented.

A. The Schema Processors. Schema processors are a col-
lection of components for handling all aspects of
database definition, including structure definition,
substructure definition, access control, integrity
control, storage structure definition, device media
control, logical performance measurement specifica-
tions and physical performance measurement specifica-
tions. The schema processors provide language pro-
cessing capabilities to translate user requests, vali-
date them, and then initiate activation of all user
operations via the core database handler.

-9-

Schema
Processors

DBA
Aids

Core DB
Handling

Processors

User
Interfaces

Figure 2.2 Major Conceptual Component Classes of the Architecture

B. User Interfaces- This portion of the architecture
includes the components for query language processing,
host language interfacing and other more advanced user
interfaces, such as natural language interfaces and
tools such as editors to assist in the construction of
user requests.

-10-

C. Database Administration Aids. This portion of the
architecture includes the data dictionary and database
design aids. Both of these functions require informa-
tion that is defined by the schema processors and
stored by the core database handler.

D. The core database handler. These components are the
central elements of the component architecture. They
provide the storage and retrieval facilities for sJA
data stored in the system: that is, both user data and
system data (such as schemas) that are required by
other components of the system. The interface to the
core database handler is a logical interface that pro-
vides functions for manipulating both sets of records
and individual records. In addition to providing (and
defining) a target interface for query language pro-
cessors, the core database handler also provides
facilities to support interfaces to host language
application programs and to schema processors. Since
the latter typically deal with the database a

"record-at-a-time" , the requirements for the packaging
of data being retrieved, stored, or updated are quite
different from those of typical query processors.

The first three types of components communicate with
the database through the core database handler and commun-
icate with each other indirectly by reading and updating
internal schema data through the core database handler.
The rationale for this integral part of the architecture
is discussed in the next section.

2.3 The Core Database Handler

The core database handler and its management of the
schema of schemas are integral parts of the architecture
as shown in Figure 2.3. The database handler performs all
of the storage, retrieval, and updating of the user data;
maintains the internal schema data; and interfaces to the
operating system. The schema processors, DBA aids, and
user interfaces, send commands and receive data inside a
package called an envelope.

The presence of a well-defined interface to the core
database handler is an unusual and significant feature of
the architecture. The more typical DBMS architecture will
include specific interfaces between host languages, query

-11-

Schema

Processors

DBA

Aids

User

Interfaces

CORE DATABASE HANDLER

Logical DB Processor

Physical DB Processor

Schema
of

Schemas
Database

Figure 2.3 Core Database Handler

-12-

language processors, report writers, etc., and even the
more "internal" parts of the system. These various end
user interfaces axe lliit translated into a single well-
defined, common interface. Since there is no defined tar-
get for the user interface below the level of already
existing user interfaces, it is practically impossible for
any organization other than the vendor of the DBMS to
create new user interfaces. With the proposed architec-
ture, new user interfaces can be created that employ the
same core database handling facilities that are used by
already existing user interfaces.

The use of an envelope to communicate with the core
database handler serves several purposes. The external
interfaces can package multiple commands together with
error condition exits and alternatives in an envelope and
give the envelope to the core database handler. The core
database handler can use the set of commands for multiple
command concurrency control, optimization, and data
streaming and return a set of data to the requesting pro-
cess in an envelope. Note that if the set of data
required by a given component cannot be directly specified
using the core database handler functions, a covering
envelope can be specified to request a larger set of the
organized data. The final data selected can then be con-
trolled by the requesting component. For example, a user
may require records with a given fourth character in a
certain field. If the core database handler did not
directly support that functionality, it could retrieve the
set of records having that character anywhere in that
field. The external interface component could check the
retrieval records and only return to the user the required
records.

Users of the core database handler depend upon stan-
dard access to the data definitions input through the
schema processors; the database administration aids and
the user interfaces reference the schema data through the
core database handling facilities. The external com-
ponents thus need to know the logical structures in which
the schema information can be obtained. If we allowed
these logical structures to be invented by the creators of
the schema processors, the schema information would be, in
effect, inaccessible to the creators of other components.
An inaccessible or non-standard internal schema represen-
tation would not permit compatible components from dif-
ferent vendors. Hence the component architecture requires
a standard access to the schema data. The strawman archi-
tecture proposes that the schema information be stored in
a gchem^ sif ^chemas database in order to standardize
access to that information and still provide extremely
flexible access to it. The combination of this architec-
tural feature and the well-defined core database handler

-13-

interface makes it possible to have separate components
for handling each different type of schema and multiple
components for handling database administration aids and
user interfaces.

The need for a standardized internal logical inter-
face and standardized functions for retrieving information
about the schema can be illustrated by a simple example.
Suppose a DDL and COBOL DML were standardized. The stan-
dard had facilities for defining a record and items in
that record. The DML had language constructs for sequenc-
ing through the records. Now suppose a user, another ven-
dor, or a standards committee wanted to build a general
purpose query language (or report writer) on top of this
standard. The query language processor would allow a user
to specify record names and item names that are to be
printed. The implementor of that interface would be faced
with two problems. First, at runtime, the query language
processor would need to check the existence of an item
name in a record and determine the type of the item. The
type of the item is needed since character strings are
printed differently than integers or packed decimal
numbers. Without an internal schema of schemas, this
information cannot be determined at runtime. Without a
standardized internal schema of schemas, the query
language would be implementation specific.

The standardization of the DML only in terms of pro-
gramming language constructs causes a similar problem. It
is unreasonable to expect the query language processor to
generate standard DML and invoke the compiler (and possi-
bly the precompiler) in response to a runtime request.
Again, a standardized internal interface for the logical
DML functions at the core database handler level would be
needed to develop non-vendor specific interfaces.

The standard interface at the core database handler
level to the user data and schema data is needed to pro-
vide the flexibility and extensibility to DBMS systems and
standards. This interface illustrates the power of stan-
dardizing internal interfaces. Additional flexibility and
extensibility through the strawman architecture are pro-
vided through component families that are discussed in the
next section.

-14-

2.4 Data Models and Component Families

To be effective in directing the development of DBMS
standards, the architecture must support multiple data
models. The data model of a Database Management System
consists of the data structures, the operations on those
structures, and the update - controlling integrity con-
straints. Different database systems support different
data models for reasons of implementation history and
because different data models are best suited to specific
applications. In standardizing DBMS's, this valuable
diversity should be preserved.

This approach gives rise to the concept of a family :

a related set of standard DBMS's, the members of which may
differ but which are similar whenever possible.

This concept is thus intended to ensure that dif-
ferent members of the family of standards are similar
wherever possible. This objective is achieved through the
notion of the component type: a set of components, all
members of which perform the same basic task. Members of
a component type generally differ in data model. The two
functional elements shown in Figure 2.1 actually denote
component types rather than components. The concept of
the component type makes the assumption that the same
basic kinds of functions need to be performed in a Data-
base Management System independent of data model. So the
same component types appear in DBMS's that support dif-
ferent data models.

The concept of a component type allows us to create a

hierarchy of standards, as illustrated in Figure 2.4. At
the first level of the hierarchy. Level A, the family of
standards is represented by a set of component types. At
the next level down. Level B, we find individual instances
of each component type. For example, if a component type
is a query language processor, then at Level B we may find
component standards for a CODASYL query language proces-
sor, a relational query language processor, and so on. At
Level C, we find individual components; that is. implemen-
tations of component standards.

The concept of a family of standards is created by
having different aspects of interface specifications
standardized at each level. At Level A, elements of syn-
tax and semantics that should not vary across data models
are established. For example, the syntax for arithmetic
or the syntax for comparison operators (less than, greater
than, etc.) may be standardized. At Level B, language
elements that vary from data model to data model are

-15-

A, Component Types

B. Components

CCDASYL
QLP

C. Products

QLP y RW i LDBP

* ^ ^-Level Standard

- syntax for arith-
metic

- syntax for compar-
isons
(e.g. < , >)

Relational
Mapping

QLP

h-LS2L^ Standard

-syntax for set traversal

Vendor 1

Specif icl
QLP

K/^ £-Lgvel
ImplementQC Options

- line editing characters

Figure 2.4 Family of DBMS Standards

-16-

specified. For example, the syntax for set traversal
would be established in a network-set oriented query
language but not in a relational query language. Finally,
at Level C, we find the options that are left to the end
implementor s (e.g., line editing characters for an
interactive query language processor). This notion of a
family based on component types then ensures that, to the
maximum extent possible, members of the family are simi-
lar; that is, wherever they can be the same, they are.
Members differ only with regard to the facilities that are
particular to their data models.

The Level A/Level B approach can be implemented by
identifying common interface features of a component type
and creating functions and statement fragments that would
be common across all components of the type. As in Figure
2.4, the comparison operators ">" and "<" could be fixed
and incorporated into all query languages regardless of
data model. Howe- er, this does not guarantee that the
final Level A syntax will consist of a set of statements.
It could end up consisting of delimiter, arithmetic and
comparison symbols, augmented by unrelated clauses. If
the language being specified were a query language this
would mean that it could be impossible to express a com-
plete query using only Level A language constructs.

However, an initial examination suggests that suffi-
cient commonality can be imposed on the individual com-
ponents of a type to guarantee that a coherent Level A
language could be produced. The advantages to making this
additional effort are threefold:

- the possibility of having portable programs for those
willing and able to restrict themselves to Level A
features

,

- easier program convertibility even for those who can-
not, and

- a natural mechanism for language enhancement and evolu-
tion.

The third advantage is very important. Component
types such as query language and schema description pro-
cessors continue to evolve. Each new DBMS conference
introduces new query operators and structuring primitives.
Very frequently these are additions to functionality and
not just changes to style. When such an innovation proves
useful and achieves some amount of acceptance, attempts
are made to add it to other languages of the same type.

The existence of a common core at Level A for any
component type provides a natural route for assimilating
such innovation. The new feature could be introduced as a

level C extension and if successful (accepted by other

-17-

implementor s) would be "promoted" to Level B. If useful
at Level B and compatible with other data models, the
functionality could be promoted to Level A, and DBMS's for
all models would support this feature. This strategy can
be characterized as a "star-fish" approach to accommodat-
ing technical innovation. The core of the starfish is all
the Level A features. Each arm is a Level B variant that
implements different features and approaches.

This approach is quite different from the "onion-
skin" strategy suggested by [Date 19801 where three dif-
ferent DBMS approaches (the relational, hierarchic, and
network) are constrained to be subsets of one another. As
can be seen in Figure 2.5, if a hierarchic component con-
tains a feature that a network component in the "onion-
skin" approach does not, it must perforce be added to the
network language or eliminated from the hierarchic
language.

Figure 2.5 Approaches to Accommodating Component Differences

This is because the network language is simply an
extension of the hierarchic language and "autom.atically"
inherits all its features. To add a new feature using
this strategy means that it must be added at the outer
ring first and then pushed inward. Thus, a new feature
cannot be added to just a relational component without
also adding it to all the other components. Because it
enforces no such inclusion discipline, the Level A/Level B
approach can permit each component to have Level B

-18-

features with no counterpart in other components of that
type. In this way Level B becomes the place to standard-
ize model dependent features.

In summary, the family and component concepts both
contribute to standards that can be used to integrate dif-
ferent approaches to database management. Furthermore,
both concepts also support the evolution of such stan-
dards.

3. ARCHITECTURE DETAILS

The individual components of the DBMS architecture
were designed to support a wide range of implementation
strategies. Whenever the separation of a particular func-
tion into more than one component would reduce performance
the separation was eliminated. The components can be
placed into the four classes described in Section 2:
schema processors, core database handling processors,
user interfaces, and DBA aids. Within the framework of
these classes, each of the individual components is
briefly described.

3.1 The Schema Components

Eight schema components handle all aspects of data-
base definition. Their positions in the architecture are
illustrated in Figure 3.1. A brief summary is given of
the kinds of information specified in the interface
language for each of these processors.

Structure Definition

A Structure Definition Language (SDL) is used to
define the structure of an application's information that
is to be represented in a DBMS. The structure is defined
in terms of the atomic elements and interrelationships
among the atomic elements.

-19-

Figure 3.1 The Schema Processors

-20-

SubStrUCtUCe (view) Definition

A view in the DBMS Component Architecture is a man-
ifestation of a database whose derivation can be specified
by means of query language (QL) or other operations
applied to structure and substructure definitions.

Integrity ContCPl Definition

An Integrity Control Language (ICL) is used to
specify constraints on a database and actions that can be
taken to maintain its integrity.

Access Control Pef inition

An Access Control Language (ACL) is used to define
for each user of the DBMS which objects he can access in
what manner.

Storage Structure Definition

A Storage Structure Definition Language is used to
describe for each object defined in the SDL how it is phy-
sically implemented. For example, it is used to describe
how objects are positioned, the amount of space they will
need, and whether they will be linked together by
pointers.

Device Mapping Definition

A Device Mapping Control Language (DMCL) is used to
specify how a storage structure is mapped onto physical
storage media such as disks.

]^ogical PerfQcmange Statistigg

A Performance Statistics Definition Language (PSDL)
is used to specify what statistics are to be collected.
At the logical level of a DBMS these can include statis-
tics about the logical objects stored by the DBMS as well
as the transactions that access these objects.

Physical Performance Statistics

The physical PSDL is used to specify what statistics
are to be collected about storage and device level objects
and operations.

The separation of these definition functions into
individual components was motivated by the expectation
that for many applications only a subset of these func-
tions would be needed. Of the eight interface languages
described above, preliminary specifications have been

-21-

developed for three. These designs are highlighted below-

3.1.1 The Structure Definition Language

A structure definition language (SDL) is used to
define the structure of the application being represented
in a DBMS. It defines it in terms of the atomic elements
and interrelationships that the DBMS supports. The
"strawman" Level A SDL proposes constructs:

a) to name atomic elements, and
b) to name and describe two levels of interrelationship:

the entity and the database.

Atomic elements are called items . Items are the
basic units of reference in a database. They are intui-
tively equivalent to CODASYL data items and relational
attributes. An item is specified in the SDL by a valid
name and type.

The first type of interrelationship that can be
defined is the enti ty . An entity represents interrela-
tionships among items. It is similar to a relational
tuple and to a CODASYL record. An entity does not allow
for optional items, groups, or repeating items. An entity
is specified in the SDL by giving a valid name and listing
the names of the items being interrelated.

The second type of Level A interrelationship is the
database. The database definition collects together all
entity definitions. A database definition is equivalent
to a set of relation definitions and to a CODASYL schema
containing only "flat" records. It is specified in the
SDL by giving a valid name and listing the entity names to
be included.

A "strawman" CODASYL Level B SDL would provide con-
structs :

a) to name and describe CODASYL style sets,
b) to name and describe CODASYL style groups, and
c) to include CODASYL style sets in the specification of

a database.

A CODASYL set is called a relationship in the "straw-
man" Level B SDL. The features of a relationship that are
specified using the SDL are the singular set option and
the ordering option. At this Level B, a database struc-
ture can consist of any entities (records) and relation-
ships (CODASYL sets) selected by the creator of the data-
base .

-22-

3.1.2 The Integrity Control Language

An Integrity Control Language (ICL) is used to name
and specify:

a) constraints on database and DBMS objects,
b) the circumstances under which a constraint is to be

checked, and
c) when appropriate, the actions to be taken when a con-

straint is violated.

The ICL is also Used to display these specifications and
to delete them.

The differences between specifying structure and
specifying integrity control can be subtle. In a sense, a
structure definition constrains data instances to the
types that have been specified in the SDL. Type (struc-
ture) declarations frequently have associated with them
constraints on the effects of operations that can be
applied to them. For example, relational insertions and
value modifications are not permitted to introduce dupli-
cate tuples into relations. CODASYL modifications are not
permitted to change the membership of a FIXED set. Yet
these same implicit constraints can be explicitly
expressed in a general purpose constraint specification
language such as an applied predicate logic or an
appropriate query language. For the "strawman" specifica-
tions, an attempt is being made to treat all constraints
uniformly by providing appropriate statements for specify-
ing assertions.

Integrity control applies not only to user created
data objects in a database but also to schema objects.
For example, there may be a requirement to provide access
privileges (as specified in the ACL) to some particular
object only if there exists no access grant to some other
object or set of objects. In this case a constraint is
needed that applies to data in the access control schema
rather than in some user database,

A constraint specification language is data model
dependent in that constraints must be definable over
structural features at both Level A and Level B. For
example in the CODASYL model, a user may wish to impose
the constraint that each CODASYL set of a particular type
must have exactly two members or that a CODASYL group may
repeat exactly three times. Since the constraint sub-
language is, in essence, a version of the query language,
the same Level A/Level B decomposition exists.

-23-

Constraints can be checked in a variety of cir-
cumstances. They can be checked:

a) immediately after a primitive data manipulation opera-
tion such as an entity insertion or deletion,

b) after some logical group of changes (e.g., at the end
of a transaction) , or

c) upon user demand.

Only in the first case where a model dependent operation
must be referenced is the specification data model depen-
dent.

Integrity control can be either active or passive.
Passive control takes the form of checking a constraint in
the specified circumstances and rejecting the initiating
action when the constraint is violated. Active control
can take corrective actions, issue warning or reports, or
notify some appropriate authority.

3.1-3 The Access Control Language

An Access Control Language (ACL) is used to specify
for each object what operations can be performed by which
users. This specification process is known as authoriza-
jLiou. Once an authorization has been made and given to
the core database handling processors, it is the responsi-
bility of these processors to enforce it.

Access rights are specified in terms of:

a) the operations that can be used,
b) the data objects that can be accessed,
c) the users to whom the rights are granted,
d) any time constraints on when the rights can be used,
e) the equipment that can be used in exercising the

rights

,

f) legal job-mixers in which the rights can be exercised,
g) special procedures for authenticating the access, and
h) whether or not the rights can be passed on to other

users.

Only the specification of the operations and the data
objects are data model dependent.

Access rights to schema objects are specified with
respect to the schema of schemas that is a part of the
interface to the core database handling processors. These
are standard formats for each different kind of informa-
tion maintained by the DBMS. The schema will be designed
using only Level A SDL constructs. Thus, the same ACL
(and ICL) constructs can be used for this data as are used
for user databases.

3.2 The Core Database Handling Processors

The core database handling processors are the heart
of the architecture. They perforin all of the storage,
retrieval, and updating of user data, and they maintain the
schema of schemas. There are three distinct, major com-
ponents: the logical database processor, the physical
database processor and the file access processor. Each of
these components interacts closely with an associated set
of components that can be classified as DBMS utilities.
These utilities are provided to facilitate DBMS operation.
The positions of all of these components in the architec-
ture are illustrated in Figure 3.2.

There are three significant features embodied in this
part of the architecture:

- there is a single, well-defined interface to all of the
core database handling processors,

- a schema for schemas is defined and accessible through
the common interface.

- there are three levels of components and their associ-
ated internal interfaces within this class.

The key concept underlying the common interface to
the core database handler is the "envelope". This is
described in Section 3.2.1. The schema for schemas is
discussed in Section 3.2.2,

The effect of defining interfaces below the level of
logical database processing provides a target for the
designers of operating systems and of special purpose
hardware. In this way, the strawman architecture facili-
tates the clean and efficient interfacing of Database
Management Systems with their host machines. Without this
kind of a well-defined physical level interface, it is
difficult to create Database Management Systems that are
both efficient and smoothly transportable.

The descriptions of these components are presented in
three subsections, corresponding to each of the three
major components (i.e., Sections 3.2.3, 3.2.4, and 3.2,5).

-25-

3.2.1 The Envelope

The schema processors, the database administration
aids, and the user interfaces including query language
processors, report writers, programming language inter-
faces, etc. will all use an "envelope" to request func-
tions and receive data. An envelope io the logical data
base processor will contain one or more commands to per-
form database functions packaged (in an envelope) as one
unit. An envelope LrQm the LDBP will contain the results
of this package, including both status messages and data
items.

The envelope will thus involve at least one communi-
cation from an external interface component to the LDBP
and, after processing, one communication from the LDBP
back to this component. These communications can be of
arbitrary length. The envelope concept is similar to
stored procedures that are available in several DBMS' s.

An envelope must be bracketed by statements that
identify the beginning and end of the sequence of com-
mands. The brackets also associate the envelope with a
user program and various status indicators and output
options. An envelope with brackets is also the unit of
communication for an executing user program that accesses
a database. Envelopes would be generated by a user inter-
face processor (i.e., compiler or preprocessor) in its
processing of a user program.

A different number of envelopes could be generated
for the user program, depending on the power of the LDBP.
At one extreme one envelope could be generated for each
database access from the program. Alternately, multiple
database accesses could be bracketed into one envelope.
With a sufficiently powerful LDBP, the database accesses
could be intermixed with program control logic (looping
and branching) and some computations. For example,
updates which take existing field values and multiply them
by a constant could be accomplished entirely within the
LDBP if arithmetic capabilities were present. Similarly,
simple conditional power in the LDBP could reduce communi-
cations with the user program components. In the cases
where complex program control logic exceeds the capabili-
ties of the LDBP, the processing of an envelope could
return more data than is actually needed.

Several alternatives exist for sending envelopes.
One alternative would be to have the LDBP (and perhaps the
PDBP) invoked as a separate, shared process. A second
alternative would be to have the LDBP (and possibly even
the PDBP) completely compiled into the host workspace.

-26-

Figure 3.2 The Core Database Handling Processors

-27-

The first alternative is needed to allow the incor-
poration of concurrency control and recovery in the LDBP,
Furthermore, unless the host process can also be trusted,
the incorporation of view mapping, access control,
integrity control and auditing in the host workspace is
impossible because of security considerations.

In regard to the expense of message passing, it is
desirable to move out of the host process as soon in the
architecture as possible. Note that each communication
from the host to the LDBP will, in most cases, result in
one or more communications from the LDBP to the physical
database processor. Similarly, each communication to the
PDBP will result in one or more communications from the
PDBP to the file access system. Therefore, a LDBP com-
piled into the host workspace could result in an increase
in process message traffic between the LDBP and the PDBP
or the file access system. In order to reduce the task
switching required for this communication, the interpro-
cess communication should support the general notion of
pipes or variable length messages. The host system should
be able to send an envelope of commands with one message
to the LDBP. Similarly, the LDBP should be able to send a
stream of data items and status messages back to the host
with one message. In practice, on many operating systems,
this type of communication is basically handled as a
buffering problem: the host says send me, at most, n
units worth of data; send me, at most, the next n units,
etc.

However, the second alternative of having the needed
LDBP and PDBP functions linked directly into the host
workspace is the most efficient with regard to message
passing. In this case, communication with the LDBP would
be through procedure calls. Protection issues and con-
currency control might be handled by trusting host proces-
sors, shared, reentrant run time libraries, or calls to
the operating system.

3.2.2 The Schema for Schemas

This section describes briefly and informally the
types of information that must be included in a schema
database for a DBMS based on the strawman architecture.
It discusses decisions that influence both the design and
specification of the schema database.

The primary issue in designing the schema for schemas
is that of the data model to be used. This schema is to
be accessible through the same interface as user data. It
would therefore be convenient if the schema were

-28-

represented using the same data model as user data. The
logical structure of user data is represented in a two
level data model based on the Level A/Level B concept
described in Section 2. The Level A data model consists
of structuring capabilities and operations that can act as
a common basis for supporting any number of data model
extensions. Anticipated extensions (i.e., the Level B
data models) would include relational, network, and
hierarchic models.

The Level A capabilities are intended to be indepen-
dent of any particular Level B data model. This means
that any Level B query language could be used to query a
schema whose design is restricted to Level A features
(since these features are a subset of the Level B
features) , This suggests that the design for the schema
of schemas, if possible, be restricted to the Level A
features.

One other schema of schemar design decision was that
data dictionaries and user interfaces should be able to
query the schema of schemas on any 'name' without knowing
the role (entity, attribute, view, etc.) of the name
within the database.

The schema for schemas contains all of the informa-
tion input to the DBMS through the schema processor com-
ponents. This information includes definitions for data
structures, views, integrity control, access control,
storage structures, device media utilization and perfor-
mance m.onitoring as described in Section 3.1.

In summary, the schema of schemas is proposed as just
another database for querying purposes. It is also pro-
posed in the strawman architecture that the user database
update operations, restricted by integrity and protection
constraints, be used to update the schema databases.
These operations will also trigger whatever operations are
needed to create or redefine a database schema.

3.2.3 The Logical Database Handling Processors

This section describes the functionality of the logi-
cal database handling processors. These consist of the
logical database processor itself, the logical loader, the
logical dumper, the data translator, and the test data
generator

,

-29-

Logical Database Processor

The logical database processor performs nine func-
tions :

- logical access,
- view mapping,
- integrity control.
- access control,
- logical performance monitoring,
- concurrency control,
- restructuring,
- auditing, and
- optimization.

Each of the above functions will be described with
respect to its impact on the design of the interface to
this component.

Logical access is the mapping of logical data manipu-
lation operations (DM functions) on a database to physical
operations on the underlying storage structure represent-
ing that database. The DM functions are used for both
user data and schema data. Syntax and protocols must be
provided at the interface to express the DM functions and
to name the database operands. Data retrieved by the core
database handling processors must be returned through the
interface to the user or requesting program.

View mapping is the transformation of logical opera-
tions on a view to logical operations on the database over
which the view is defined. The same syntax can be used to
specify operations on a view as is used to specify opera-
tions directly on parts of the database defined in the
SDL.

Integrity control verifies that an update to a data-
base will leave it in a consistent state with respect to
some set of integrity constraints defined over the data-
base. Constraint checking is invoked either implicitly by
the operators or operands of the access request or expli-
citly by user invocation. Implementing implicit integrity
control requires that the operators and operands of the
update be known. This information is derived from the
update request. Syntax is required in the LDBP interface
to support explicit invocation. When the update would
violate the constraints, either the access should be
rejected or corrective actions (such as insertion of
default values) should be taken. If the access is
rejected, the LDBP must issue notification that this has
occurred. Thus the interface must include output conven-
tions for such messages. Integrity control also verifies
that new integrity constraints defined over a database are
consistent with the existing data in the database.

-30-

Access control verifies that the issuer of an access
request (retrieval or update) has been authorized by the
owner of the data to make such a request. Perfoririing this
function requires that the LDBP component can identify the
request issuer and his associated access rights. Access
control also verifies that the issuer of a request to
update access rights is authorized to make such changes.
Whenever an access control constraint is violated, the
LDBP should issue appropriate messages and record the vio-
lation.

Logical performance tnonitoring is the collection of
statistics about the state and usage of a database in
terms of its logical structure. The collection of these
statistics can be invoked either implicitly by the receipt
of an update that would affect them or explicitly by a
request to scan the database or log files for this pur-
pose. In the former case no special syntax is needed at
the interface. In the latter case an invocation operation
is needed.

Concurrency control coordinates the database interac-
tions of users who are accessing a database at the same
time. Concurrency control permits multiple users to
access a database in a multi-programmed fashion while
preserving the illusion that each user is executing alone
on a dedicated system. The main technical difficulty in
attaining this goal is to prevent database updates per-
formed by one user from interfering with database
retrievals and updates performed by another. To accom-
plish this function the LDBP component must know both the
data to be accessed by each user and the times between
which access to that data by other users might create
problems. Syntax must be provided at the interface to
express this information and to associate it with the
appropriate invoking program.

Restructuring is required when changes are made to
the structure description of a database. New data may
need to be added to the stored representation of the data-
base; existing data may need to be deleted or reorganized.
These changes can be made in a single transaction where
all other accesses against the database are restricted
until the changes have been effected. Alternatively they
may be made incrementally as distinct pieces of data are
accessed in the course of normal operations.

Auditing is performed for purposes of security and
reliability. Any operation on logical data objects can be
recorded. These records can provide the basis for access
trail analysis, statistics collection and, if need be.

-31-

recovery. This function, to be fulfilled satisfactorily,
must be invoked automatically "as required. Security and
recovery based audit requirements must be specifiable by
the DBA or other authorities. Security auditing can be
specified by means of the trigger m.echanisms of the
Integrity Control Definition Language. Recovery auditing
is also specified through the schema languages.

Optimization, in the most general case, uses informa-
tion about access control and integrity constraints as
well as existing access paths to select the best strategy
for implementing an access request and monitoring perfor-
mance. Depending upon the optimization strategies
selected, an LDBP implementation may be able to exploit
user directives to provide desired levels of performance.
Such directives can be provided through the schema proces-
sors.

In summary, then, logical access, view mappings,
integrity control, access control, performance m.onitoring
requirements and concurrency control are all explicitly
requested through the LDBP interface. Restructuring,
auditing, and optim.ization , on the other hand, could be
requested through logical updates on the schema of sche-
mas.

In addition to performing the central task of mapping
logical database access requests to calls on the physical
database processor, the logical database processor also
transforms and transmits data between its users and the
physical database. Associated with it are four utilities
that aid in this latter task: a logical loader, a logical
dumper (unloader) , a data translator, and a test data gen-
erator .

^ogigfll Lo^dgc

The logical loader reads source input data from
machine-readable files and loads it into a database. It
is intended to support rapid entry of large amounts of
data into a database. Such a utility can be a simple
fixed format processor or it can be generalized to handle
input data in a variety of formats.

yhe Logical Dumper

The logical dumper unloads all or part of a database,
as requested, onto an output or storage device. This
utility dumps only logical objects. Dumpers at the physi-
cal database level and file level are proposed to support
the dumping of lower, level structures. The logical dumper
and loader can be used to interchange data between stan-
dard DBMS's and programs external to the DBMS.

-32-

A generalized data translator accepts descriptions of
source data, target data, and a mapping from source to
target. Following these descriptions it transforms the
source data into the desired target format. It has
several roles in a database management environment. The
data translator can be used in logically or physically
restructuring a database and translating a database from
one DBMS to a database in a different DBMS. It may also
be necessary in a heterogeneous distributed database
management environment.

The Test Data generator

Given information on database types and acceptable
ranges of data values, a test data generator produces
legal data objects. It is used in testing DBMS' s and DBMS
application programs.

3.2,4 The Physical Database Handling Processors

The central physical database handling processor is
called the physical database processor. Its functionality
is similar to that of the logical database processor. It
differs primarily in that it processes physical rather
than logical representations of the database. Associated
with it are four utilities: a physical dumper, a physical
loader (restorer), a physical structure checker, and a

volume preconditioner

,

Ths. Physical Database Processor

The physical database processor performs six func-
tions:

- physical access,
- physical performance monitoring,
- physical concurrency control,
- reorganization,
- physical auditing, and
- physical optimization.

Physical access is the mapping of physical data mani-
pulation operations on the physical representation of a

database to calls on the file access component.

Physical performance monitoring is the collection of
statistics about the state and usage of a database in
terms of its physical structure. The collection of these
statistics can be invoked either implicitly by the receipt

-33-

of an update that would affect them or explicitly by a
request to scan the database or log files for this pur-
pose.

Physical concurrency CQntCQl manages the execution of
transactions at the physical structure level to guarantee
the correctness of the database.

Reorgan i 7:ati on is the modification of the physical
database where its structure remains unchanged. It typi-
cally involves the reclaiming of fragmented space result-
ing from data deletions. It may also involve the recon-
struction of director i: ::. and hash chains. Reorganization
is usually initiated to improve performance.

Physical auditing is performed for purposes of relia-
bility. Any operation on physical data objects can be
recorded. These records can provide the basis for physi-
cal statistics collection and recovery.

Physical optimization is the buffering and other low
level optimization of file access requests.

The Physical Dumper

The physical dumper utility is used to perform what
is essentially a "core dump" of a database. It outputs
the database in physical form. Thus, it makes directories
and other physical access path data available for examina-
tion and/or correction by the DBA staff.

The Fhysigal Loader

The physical loader reloads a (possibly modified)
physical dump.

T^ Physical Structure Checker

The physical structure checker is a set of validation
routines used to ensure that the physical database struc-
tures are valid. For example, in a CODASYL style DBMS
they would be used to follow chains to verify that all
owner pointers in a set point to the same owner.

Ihe Volume Preconditioner

The volume preconditioner is a set of routines for
formatting a volume (such as a disk pack) for use by a
DBMS. This may include setting up tables and clearing
space as necessary, depending on the physical requirements
of the DBMS.

-34-

3,2.5 The File Access Processors

File access functionality is typically provided by
operating systems. Standardization at this level could
equally well be considered within the domain of operating
system standards activities as within the domain of data-
base standards activities. However, it is important to
realize that database management imposes specific require-
ments on file systems. The performance and flexibility of
the file system can have significant impact on the overall
performance of any DBMS that it supports. For this rea-
son, many DBMS vehdors choose to provide their own file
management routines rather than use those provided by the
operating system of their host computer.

Only two file access processors have been included in
the DBMS architecture: the file access processor itself
and the file level dumper.

Xiie F_ile Agg^SS PCQgesSQg

The file access processor executes file and device
level data requests. These requests can include commands
to create or destroy files and to read or delete records.
The file system is also responsible for space and device
management. It provides a variety of access structures
(e.g. hashed placement, sequential placement)

.

Ths File £iuiQ£>^

The file dumper performs database dumps at the physi-
cal file level. It makes no distinction between data
objects and access path objects such as indices.

3.3 User Interfaces

The user interface processors are the components of
the DBMS architecture that support the interactions
between databases and their application programmers and
end users. This class of components includes those for
query language processing, host language interfacing and
other more advanced user interfaces, such as natural
language interfaces and tools such as editors to assist in
the construction of user requests. These components and
their position in the architecture are illustrated in Fig-
ure 3.3.

-35-

Core DB
Handling

Processors

Figure 3.3 The User Interface Processors

-36-

The query language component is the most important of
these components. This component is presented first, fol-
lowed by a brief description of the remaining components
in this class. These descriptions are organized into four
separate sections: the host language interfaces, end user
interfaces, special purpose interfaces, and utility pro-
cessors. In the host language section, the host prepro-
cessor (HOST PREPR) , the host processor (HOST PROC) and
the host language/data manipulation language processor
(HOST/DML) are described. The natural language processor
(EUL/NAT'L), formal language processor (EUL/FOR'L), and
multi-media interface processor (MEDIA) , are described in
the section on end user language (EUL) interfaces. The
thesaurus routines (THESAUR) , text searching routines
(TXS) , and real-time data acquisition processors (REAL-
TIME) are described in the section on special purpose
interfaces. The final user interface section on utility
processors describes the program library processor (LIB)
and the various editors (EDIT, EDIT/DATA)

.

3.3.1 The Query Language Component

A query language (QL) is used to specify how database
objects (items, entities and relationships) are retrieved,
manipulated (inserted, deleted and modified) and how new
objects are created. Appropriate retrieval and manipula-
tion operations may be applied to and yield sets of data-
base objects or single database objects. The "strawman"
QL currently being developed will support both "set-at-a-
time" and "record-at-a-time" processing.

The Level A QL components will include the functions
needed for all data models: retrieval, update, and dynamic
creation of structures. The functions will include:

a) retrieval of all instances of a record (entity) type,
b) retrieval of specified items from, instances of a

specified entity type,
c) boolean qualifications of selected entities,
d) qualification based on value set conditions,
e) retrieval involving set comparisons,
f) retrieval involving set operations,
g) retrieval involving qualification on multiple items in

the same record,
h) retrieval involving the use of functions,
i) retrieval involving "cyclic" structures,
j) entity-at-a-time retrieval,
k) retrieval from more than one entity type.

-37-

1) simple value-based output ordering,
in) the storage, deletion and modification of entities,
n) assignment of retrieval results to a new entity type,
0) query composition,
p) transaction definition, and
q) integrity control invocation.

The QL would thus consist of entity selection,
storage, deletion, modification, and integrity constraint
invocation for the structures defined for Level A. A
Level B QL would also include statements for connecting
and disconnecting entities in Level B relationships.

One "strawman" Level B QL that is currently being
investigated, will extend the Level A QL to allow direct
operations on CODASYL sets, owner records, and member
records. The extensions will include features for:

a) traversing a single CODASYL set,
b) traversing several CODASYL sets,
c) testing for empty sets,
d) hierarchic qualification,
e) traversing "link" records,
f) retrieving from sets with multiple member types,
g) retrieving from singular CODASYL sets,
h) retrieving from intra-record structures, and
1) altering membership in CODASYL sets.

3.3-2 Host Language Interfaces

The Host Language Interfaces are primarily intended
for application programmers. They are the processors
needed to provide programming facilities in which data
manipulation operations are embedded in conventional gen-
eral purpose programming languages (e.g., FORTRAN or
COBOL) . There are essentially three approaches for accom>-
plishing this end: emibedded subroutine calls, preprocess-
ing and subroutine calls, and language extensions. The
DBMS architecture was designed to accom.modate all these
approaches.

In the subroutine approach, data management routines
are called from host language programs using conventional
subroutine syntax. The second approach is a simple exten-
sion of the first where a preprocessor is provided to sup-
port more human engineered syntax. The subroutine and the
preprocessor approaches are supported in the architecture
by the two components called the host preprocessor and the
host processor.

-38-

ThS. Host Preprocessor

The preprocessor supports a syntax that can smoothly
meld programming language syntax and database manipulation
syntax. It converts statements in this syntax to pure
host language statements and to calls on the logical data-
base processor.

The Host Processor

The host processor is a (standard) general purpose
programming language compiler.

In the language extension approach, modifications to
accommodate integrated syntax are made directly to the
host language compiler. These may take the form of
developing a compiler for an entirely new language. This
is the case for the research systems RIGEL [Rowe 19781 and
PLAIN [Wasserman 1979] ; or it may take the form of modifi-
cation to an existing compiler as in the case of PASCAL R
[Schmidt 1977]

.

The Host/DML Processor

The host language/data m.anipulation language proces-
sor is a compiler for a language that integrates the capa-
bilities of a general purpose programming language and a
data manipulation language.

In Figure 3.3, the host processor and the host
language/data manipulation language processor are depicted
as direct users of the interface to the core database
handler. Alternately, they can interface to the query
language processor to embed the syntax of the query
language in a host programming language-

3.3.3 End User Interfaces

The end user interfaces support casual users and
technical users. Casual users are those unwilling to
learn or remember a technical query language or data mani-
pulation language. Technical users are non-programmers
who are accustomed to the discipline of using formal nota-
tions. Such users include engineers, scientists, techni-
cians and accountants.

Four end user interfaces are included in the archi-
tecture by way of example. The fact that there are only
four is not intended to imply that these exhaust all pos-
sibilities. It is within precisely these kinds of com-
ponent subclasses that the DBMS architecture should

-39-

encourage innovation. The four components are: a query
language processor (described in Section 3.3.1), a natural
language processor, a formal language processor and a
multi-media interface processor.

£lld User Natural Language Processor

A natural language processor interacts with end users
in a natural language (e.g., English). It converts user
requests into DBMS requests via either the direct inter-
face to the logical database processor or via an interface
to one of the host language processors.

End ysec Formal Language Processor

A formal language processor interacts with an end
user in a very high-level but formatted language (e.g.,
through a forms notation)

.

Xhs. Multi-Media Interface Pcocessor

The multi-media interface processor interacts with
end users by means of a number of different devices.
These may include graphical and audio output devices, and
touch screen and joystick input devices.

3.3.4 Special Purpose Processors

The special purpose processors are included in the
DBMS architecture to add application specific and "non-
conventional" functionality to the DBMS user interfaces.
For example, a text searching capability is a function
usually associated with a document retrieval system and
not a DBMS. However, there is a new and strong pressure
created by a growing interest in automating offices to
integrate into databases such diverse data types as docu-
ments, voice and pictures. Application specific com-
ponents include those for business environments such as
report writers and real-time environments.

Thesaurus Routines

Thesaurus routines accept values of "key" data items
and produce synonyms that are legal database values or
recommended retrieval values. They can also point users
to related terms and otherwise allow users to expand their
queries. The dictionaries needed to support this func-
tionality can be managed by the DBMS just as it m.anages
user and system (schema) databases.

-40-

TgXt S^acghing Routines

Text searching routines are used to implement condi-
tions based on the contents of text data items (or collec-
tions of such items)

.

JP?POrt Writer

A report writer formats data retrieved from a data-
base for output in the form of hard-copy reports. It sup-
ports options such as pagination, page headers, section
divisions, columnar layouts, totals and subtotals.

£Ml-I!lm& Pflta Acquisition Processors

A real-time data acquisition processor inputs data
that is being generated in real-time to a DBMS. It pro-
vides buffering as needed.

3.3.5 End User Utilities

The end user utilities provide tools to users for
creating and storing their queries and data manipulation
requests.

Program Editor

A program editor provides standard editing capabili-
ties that are tailored to the syntax of user interface
languages.

Q^iLS. Edi tor-

A data editor is used to edit text items in database
entities.

Prngram Library

A program library provides a centralized mechanism
for storing and managing the software associated with user
interfaces. This includes user applications programs and
queries under development and in use. This software can
be stored and managed by the DBMS just as it stores and
manages user databases and other system databases.

-41-

3.4 Database Administration Aids

Schema
Processors

Core DB
Handling
Processors

User
Interfaces

Figure 3.4 The Database Administration Aids

The database administration aids are essentially of
two types: a documentation and management aid (a data dic-
tionary/ directory component) and database design aids.
The position of these aids in the DBMS architecture is
depicted in Figure 3.4.

Pata Pictionary/Dicectory

According to the British Computer Society (BCS) , Data
Dictionary Systems Working Party [BCS 19771 , a data
dictionary/directory (DD/D) is a tool for recording and
processing information about the structure and usage of
data. The information, that would appear in such a sys-
tem., can range from the documentation of simple physical
file structures to the design requirements, database
structures and operation protocols of a large and sophis-
ticated enterprise.

-42-

Database Design Aids

The database design aids are a set of routines for
automatically producing logical and physical database
designs. They can create candidate logical designs in
order to study the effects of different designs on tran-
saction and application programming. Similarly, other
design aids can analyze the expected performance for phy-
sical database designs.

4. IMPACT OF THE ARCHITECTURE

The strawman architecture can have a significant
impact on the future development of database management
standards and systems. The benefits of adopting the
architecture for the development of standards would be
threefold.

- to provide an extensible reference model,
- to identify and prioritize interfaces,

and
- to partition and coordinate standardization activities.

The first benefit of the component architecture is
that it identifies a comprehensive set of DBMS and DBMS
related functions and, through its family of components,
supports multiple data models. The component architecture
can thus serve as a reference model that represents a gen-
eric Database Management System and that can be used to
describe and compare existing and future DBMS' s. As a
reference model, the architecture can be used to define
more precisely the direct and indirect relationships among
the different functions of a DBMS. As a reference model,
the family of components can also be used to describe (and
define) the similarities and differences between different
data models.

The second benefit of the strawman architecture is
that it identifies critical internal interfaces as candi-
dates for standardization. The government and voluntary
committees could standardize both the interface to the
core database handler and the internal access to the
schema of schemas. Specification of that interface sup-
ports the independent standardization and development of
separate user and database administrator interfaces. The
core database handler interface, together with standard-
ized access to the schema of schemas, will permit user and
third party vendor extensions to standardized DBMS' s.

Without such an interface, the original vendor must

-43-

develop all of the standard external interfaces for its
own DBMS.

The third benefit of the strawman architecture is
that it partitions the standardization process across com-
ponents and data models. Such partitioning could have
significant influence on voluntary standards committees
and study groups. Each component of the architecture will
have a uniform, minimal subset of syntax and functions
that are common to the relational, hierarchical, network,
and other data models. Each component can also have
independent extensions to capture the significant differ-
•ences betv/een the models.

Under this scenario, the development of DBMS stan-
dards could be organized in a matrix-like fashion as shown
in Figure 4.1. The Level A features would be defined and
would serve as the portion of the reference model for
standards common to all data models, A 'watchdog' body or
technical committee could insure that standards to be
developed for different models conform to the Level A
Specifications. In fact, for some components, all of the
functionality for the different models may be standardized
at Level A such that no further model dependent standardi-
zation is needed.

Standards could be developed that only address
selected components. As a first step, one project or com-
mittee (say CI) could standardize the Level A definitions
for the structure and integrity schemas in the schema of
schemas and for logical database processor functions.
Next a variety of standards projects or committees (i.e.
C2 , C3 , C4 as shown in Figure 4.1) could proceed in paral-
lel. For example, a technical committee could be char-
tered to provide the schema definition and data manipula-
tion functions that are to be supported by the logical
database processor. That interface would thus be indepen-
dent of any specific host language.

In this way. the charter of existing and future com-
mittees could be specified in terms of the reference
model. The existence of such a reference model permits a
latitude in prioritizing and scheduling the development of
particular standards that can better accommodate the
desires of the different data model user communities. For
example, one committee could have an initial charter as
described above. That committee could standardize a net-
work model COBOL interface without immediately trying to
standardize a network model query language- Similarly, a
relational query language could be standardized without
standardizing the relational host language interface.
Still other committees or groups could standardize a

report writer facility for hierarchical systems. Each of

-44-

CQ

C

4-)

a
s

>
o

GO 0

0

>
o

4J
c
o
c

a
i

O >i U
i-i4JrH 3

-U U O U
e£ U C7>H D
^ 3 O U U

C/3

H D-i

CO d^ca w
- Q O

--H U

Qtij U-H

cq

81^

0

0

o

§
•H
4J
(0
NH
U

CQ

(U

rD u (v3

>,C7ii_i4J U
vj C Q-H4J C
O ra UAj W to

0)

d

-45-

these projects or committees would be standardizing level
B extensions of standardized level A components.

In summary, the strawman architecture defines inter-
faces and families of components for multiple data m.odels
in order to provide a unified direction to the development
of Database Management System standards. It is therefore
imperative that Federal ADP departments, the computer
industry and standardization groups provide a constructive
analysis of the architecture.

5. REFERENCES

[BCS 1977]
British Computer Society. "The British Computer
Society Data Dictionary Systems Working Party
Report", Data Base, Vol. 9, No. 2, SIGMOD Record,
Vol. 9, No. 4, December 1977.

[CW 1981]
Computerworld. March 16, 1981, p. 6.

[Date 1980]
Date. C.J. £rL Introduction Database Systems

/

Addison-Wesley . 1980.

[Rowe 1978]
Rowe. L. , and K. Shoens. "RIGEL: Preliminary
Language Specification". Dept. Elec. Eng. and Comp.
Sci., U.C. Berkeley. (December 1978).

[Schmidt 1977]
Schmidt. J. "Some High Level Language Constructs for
Data of Type Relation". ACM Trans, on Data Base
Sys., 2, 3, (September 1977), pp. 247-261.

[Wasserman 1979]
Wasserman, A.I. "The Data Management Facilities of
PLAIN". ACM SIGMOD Conference, 1979, pp. 60-70.

-46-

NBS-n4A iREv. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
RFPORT NO

SP 500-86

2. Performing Organ. Report No.

-

3. Publication Date

January 1982

4. TITLE AND SUBTITLE

An Architecture for Database Management Standards

5. Prepared by:

Computer Corporation of America

6. PEflfORMING ORGANIZATIQN (If joint or other than NBS, see instructions)

Computer Corporation of America
575 Technology Square
Cambridge, MA 02139

7. Contract/Grant No.

NB79SBC0086
8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

National Bureau of Standards
U.S. Department of Commerce
Washington, DC 20234

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 81-600174

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

This report describes the current status of an Institute for Computer Sciences
and Technology project on architectures for Database Management Systems. An

architectural framework for developing DBMS standards is presented. It addresses
requirements of both the Federal data processing community and the DBMS vendor
community. The architecture groups DBMS functions into both internal and
external components and proposes for these components a family structure that

supports the integration of DBMS standards for multiple data models.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Database; database function; database management system; data model; schema;

standards; system architecture; system components.

13. AVAILABILITY

[)C] Unlimited

I I

For Official Distribution. Do Not Release to NTIS

fXn Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D C
20402.

Q Order From National Technical Information Service (NTIS). Springfield, VA 22161

14. NO. OF
PRINTED PAGES

52

15. Price

$3.25

USCOMM-DC 8043.P80

^U.S. GOVERNMENT PRINTING OFFICE: 19 8 2-360-997/1922

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement lisi of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

Cily . State Zip Code

(Nolification key N-503)

1

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

\BS media. I.ssucd m.\ times a >cai ,
Annual siibsciipimn: dcimcMic S I K;

lorcigu S22.50. Single ci)p\ S4.25 domcslic; i.5..15 loieign.

NOTE: The Journal was formerly published in two sections: Sec-

tion A "Physics and Chemistry" and Section B "Mathematical

Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and

technology, with primary emphasis on work at NBS. The magazine

highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement

standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and

automatic data processing. Annual subscription: domestic $11;

foreign $13.75.

NONPERiODICALS

Monographs—Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-

piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteen'h St ,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments. Government Printing Office, Washington. DC 20402.

Order the following NBS publications—FlPS and NBSlR's—from
the National Technical Information Services. Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat, 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May II, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, V.\ 22161,

in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. DC 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

THIRD CLASS

