
U.S. Department
of Commerce

National Bureau
of Standards

Computer Science

and Technology

NBS

PUBLICATIONS

l^lir(|j|j||nL,°!,,??!*'^P * TECH

NBS Special Publication 500-83

Proceedings of the

Computer Performance

Evaluation Users Group

1 7th Meeting

"Increasing Organizational

Productivity"

100

'no. 500-83

1981

c. 2

NATIOI^AL BIJREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

^Some divisions within the center are located at Boulder, CO 80303.

comre~ Computer Science
National Bureau onri Tor*hnr>lr>nw wATioifAL BUREAU
of Standards allU I tJUl II lUIUy y or sTANDAaua

UBRAirr

NBS Special Publication 500-83 V ' ^^^l

Proceedings of the
^

Computer Performance m^'^
Evaluation Users Group (CPEUG)

1 7tli Meeting

San Antonio, Texas

November 1 6-1 9, 1 981

Proceedings Editor

Terry W. Potter

Conference Host
Headquarters, Air Training Command
Department of the Air Force

Sponsored by
Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued November 1 981

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the

Federal Government for computer science and technology activities. Tne
programs of the NBS Institute for Computer Sciences and Technology are

designed to provide ADP standards, guidelines, and technical advisory services to

improve the effectiveness of computer utilization in the Federal sector, and to

perform appropriate research and development efforts as foundation for such
activities and programs. This publication series will report these NBS efforts to

the Federal computer community as well as to interested specialists in the

academic and private sectors. Those wishing to receive notices of publications in

this series should complete and return the form at the end of this publication.

National Bureau of Standards Special Publication 500-83
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-83,320 pages (Nov. 1981)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 81-600155

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1981

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Price $9.00

(Add 25 percent for other than U.S. mailing)

Foreword

The theme of CPEUG addresses the principal challenge of the 80 's

INCREASING ORGANIZATIONAL PRODUCTIVITY —as well as the direct
challenge to information processing professionals of increasing data
processing service and quality while minimizing cost. The relevance of
this theme is reflected in the topics of recent news accounts and

magazine articles touching on the management challenge in all sectors of
our economy. Congress and the President clearly set forth the challenge

as a goal for the Federal Government in the Paperwork Reduction Act of
1980:

"automatic data processing and telecommunications technology
shall be acquired and used in a manner which improves service
delivery and program management, increases productivity,
reduces waste and fraud, and reduces the information
processing burden on the public and private sectors."

Productivity growth in both the private and public sectors is an

important factor in achieving our stated national goals of:

— reducing inflationary pressures,
— raising living standards,
— making U.S. goods competitive in world markets, and
— protecting the quality of the environment.

Productivity is defined as the relationship between the quantity of
goods or services produced (output) at a given level of quality and the
resources used (input). This relationship can be measured over time for

an organizational unit or for an economy as a whole by comparing a

specific period with a preselected base period. Productivity
improvement, therefore, is an increase in the ratio of outputs to

inputs; that is, a higher quantity and/or quality of goods or services
at the same cost, or the same quantity of goods or services at a lower
cost, without sacrificing quality.

It is obvious that productivity improvement is important. For a

company, productivity means producing at a lower cost than the
competition. For a government, productivity means providing more
service for a tax dollar. For a nation, productivity means improving
the standard of living, controlling inflation, and competing effectively
in world markets. From 1945 to 1970, U.S. productivity increased at an

annual rate of 3.2 percent. However, from 1966 on, productivity in the
U.S. grew at a much more modest rate of 1.6 percent, and in 1978, the

rate slipped below 1 percent. This trend continued in 1979, when
productivity actually declined by almost 1 percent.

The major factors which affect productivity growth are:

Human resources; constituting 70 percent of the input cost in

the U.S. economy. Business Week projects that 45 million jobs will
be affected by increasing automation before the year 2000 — that's
half of the present total.

Technological progress; better products, processes, and
systems. Promises of office automation and workflow steamlining
challenge management to improve the productivity of the 55 million
white collar workers in the U.S. (white collar worker productiv-
ity increased only 4 percent from 1968-1978, while blue collar
productivity improved 84 percent during that period).

Investment and economic growth; new tools and capital equip-
ment and expanding or declining market for outputs. Business Week
recently projected a tripling of U.S. investment in computer-aided
design and computer-aided manufacturing equipment to about $5
billion in 1985. The greatest impediment to reaping the produc-
tivity gains from these tools was seen by many experts to be soft-
ware development. The theme of CPEUG 80 ~ CPE Trends in the 80 's

— reflected on the spectacular growth, progress, and changes in

computers and computer applications in the 70 's as well as future
trends of the 80 's. This year's theme suggests where the direction
of computer usage and performance improvement efforts should be

going. Increasing organizational productivity will be a focus of
both Federal and commercial management for years to come. Our
contributions to both increased efficiency and effectiveness in

computer utilization — from microcomputers to supercomputers to

digital switches in communications — will be of much importance in

the drive for increased productivity. Our sensitivity and inge-
nuity in increasing the productivity of the user and his results,
not just high CPU utilization levels and greater channel utiliza-
tion, will be a key factor in our organizations' ability to succeed
in increasing productivity.

I hope you both enjoy and greatly benefit from this year's
conference. A truly fine team on this year's conference committee
dedicated their time, talent, and effort unstintingly to bring it

about. To all of them, their names appear elsewhere in these pro-
ceedings, my sincerest thanks for a job well done. I especially
thank Peter J. Calomeris for an excellent job of keeping us to our
deadlines and the painstaking job of arranging for all of the
publications. A special thank you also goes to our hosts — the u. S.

Air Force, Air Training Command.

Carl R. Palmer
CPEUG 81 Conference Chairperson
November 1981

iv

CP

Preface

The theme of CPEUG 81 directly addresses the principal
challenge of the 80 's ~ INCREASING ORGANIZATIONAL PRODUCTIVITY, To
meet this challenge, information managers and performance specialists
must ensure that their organizations increase the quantity and quality
of automated information services while minimizing costs. The Conference
program reflects the critical role of information services in the
productivity and survival of today's organizations, as well as such
trends as increasing personnel costs, limited budgets, and the
convergence of data processing, word processing, and communications
technologies. The keynote address (Business Automation and
Productivity — Fact, Fiction, and Prediction) and the keynote panel
(Impact of Changing Technology on Productivity) will clearly focus
the Conference on this challenge.

As in previous Conferences, CPEUG 81 has expanded the size and

scope of the technical program to encompass the expanding role of CPE.

There are three parallel sessions instead of two, and new areas such as

Office Automation are included. Track A is devoted to
performance-oriented management throughout the life cycle, and includes
sessions in such areas as Requirements Analysis, Capacity Planning,
Systems Development, and Acquisition. Track B concentrates on special
technologies (data base machines, data communications, etc.) and
analysis tools/techniques important to good performance and
productivity. Track B also spotlights several special application
areas, including state and local government, medical, welfare, and

personnel systems. Track C consists of tutorials and case studies
that offer familiarization and training in the major areas addressed in

the other two tracks. The program also includes three receptions
and expanded Birds-of-a-Feather special interest sessions to promote the

informal exchange of ideas and experiences that is a trademark of
CPEUG. Many people contributed to the success of the CPEUG 81

program. Carol B. Wilson, Program Vice-Chairperson, organized the
tutorial track and several sessions in other tracks. The Conference
Cormittee, session chairpersons, authors, tutors, and referees all

deserve special recognition for their time and patience. The
invaluable administrative support of Sylvia M. Mabie merits special
thanks

.

Thomas F. Wyrick
CPEUG 81 Program Chairperson
November 1981

V

Abstract

These Proceedings record the papers that were presented at the
Seventeenth Meeting of the Computer Performance Evaluation Users Group
(CPEUG 81) held November 16-19, 1981, in San Antonio, TX. With the
theme, "Increasing Organizational Productivity," CPEUG 81 reflects the
critical role of information services in the productivity and survival
of today's organization, as well as such trends as increasing personnel
costs, limited budgets, and the convergence of data processing,
communications, and word processing technologies. The program was
divided into three parallel sessions and included technical papers on

previously unpublished works, case studies, tutorials, and panels.
Technical papers are presented in the Proceedings in their entirety.

Key words: Benchmarking; capacity planning; chargeback systems;
computer performance management; data base machines; end user
productivity; human factors evaluation; information system management;
office automation; performance management systems; resource measurement
facility; simulation; supercomputers.

The material contained herein is the viewpoint of the authors of
specific papers. Publication of their papers in this volume does not
necessarily constitute an endosement by the Computer Performance
Evaluation Users Group (CPEUG) or the National Bureau of Standards. The
material has been published in an effort to disseminate information and
to promote the state-of-the-art of computer performance measurement,
simulation, and evaluation.

vi

CPEUG Advisory Board

Dennis M. Conti, Executive Secretary
National Bureau of Standards

Washington, DC

Richard F. Dunlavey
National Bureau of Standards

Washington , DC

Dennis M. Gilbert
Federal Computer Performance Evaluation

and Simulation Center
Washington, DC

Carl R. Palmer
U.S. General Accounting Office

Washington, DC

James E. Weatherbee
Federal Computer Performance Evaluation

and Simulation Center
Washington, DC

vii

Conference Committee

CONFERENCE CHAIRPERSON

PROGRAM CHAIRPERSON

PROGRAM VICE -CHAIR PERSON

PUBLICATION CHAIRPERSON

PUBLICITY CHAIRPERSON

PROCEEDINGS EDITOR

ARRANGEMENTS CHAIRPERSON

REGISTRATION CHAIRPERSON

AWARDS & VENDOR PROGRAM CHAIRPERSON

LOCAL ARRANGEMENTS CHAIRPERSON

FINANCE CHAIRPERSON

Dr. Carl R. Palmer
U.S. General Accounting Office
(202) 275-^797

Thomas F. Wyrick
Federal Computer Performance
Evaluation and Simulation Center
(703) 274-7910

Carol B. Wilson
Fiscal Associates, Inc.

(703) 370-6381

Peter J. Calomeris
National Bureau of Standards
(301) 921-3861

Theodore F. Gonter
U.S. General Accounting Office
(202) 275-5040

Terry W. Potter
Digital Equipment Corporation
(617) 493-9749

Dr. Jeffrey M. Mohr
Arthur Young & Company
(202) 828-7176

Alfred J. Perez
U.S. Air Force Data Systems
Design Center
(205) 279-4051

Robert G. Van Houten
U.S. Army Command & Control
Support Agency
(202) 695-6272

William R. Hunsicker
Headquarters, ATC/ACDMX
(512) 652-6471

James G. Sprung
The MITRE Corporation
(703) 827-6446

viii

Referees

Barbara Anderson L. Arnold Johnson

H. Pat Artis John C. Kelly

Duane R. Ball Howard S. Kresin

V. David Cruz David Lindsay

Jeffey Gee Bobby L. McKenzie

Thomas P. Giammo Jim Mulford

Dennis M. Gilbert Paul R. Nester

Theodore F. Gonter Terry W. Potter

Gregory Haralambopoulos Peter Robson

John E. Hewes Dennis Shaw

Phillip C. Howard Thomas F. Wyrick

ix

CP

Table of Contents

FOREWORD iii

PREFACE V

ABSTRACT vi

CPEUG ADVISORY BOARD vii

CONFERENCE COMMITTEE viii

CPEUG 81 REFEREES ix

EFFECTIVE LIFE CYCLE MANAGEMENT - TRACK A

REQUIREMENTS & WORKLOAD ANALYSIS

SESSION OVERVIEW
Jim Mulford
International Computing Company 5

LONG-RANGE PREDICTION OF NETWORK TRAFFIC
William Alexander
Richard Br ice

Los Alamos National Lab 7

FUNCTIONAL GROUPING OF APPLICATION PROGRAMS IN

A TIMESHARE ENVIRONMENT
Paul Chandler
Wilson Hill Associates 15

CLUSTER ANALYSIS IN WORKLOAD CHARACTERIZATION FOR
VAX/VMS

Dr. Alex S. Wight
University of Edinburgh 21

xi

CAPACITY. DISASTER RECOVERY & CONTINGENCY PLANNING

SESSION OVERVIEW
Theodore F. Gonter
U.S. General Accounting Office 37

CAPACITY MANAGEMENT CONSIDERATIONS
J. William Mullen
GHR Energy Companies 39

CAPACITY CONSIDERATIONS IN DISASTER RECOVERY PLANNING
Steven G. Penansky
Arthur Young & Company 45

END USER PRODUCTIVITY

SESSION OVERVIEW
Terry Potter
Digital Equipment Corporation 57

SERVICE REPORTING FOR THE BOTTOM LINE
Carol B. Wilson
Fiscal Associates, Inc.

Jeffrey Mohr/Chan Mei Chu

Arthur Young and Company 59

AUTOMATING THE AUTOMATION PROCESS
Lou El sen

Evolving Computer Concepts Corp 67

METHODOLOGY FOR ANALYZING COMPUTER USER PRODUCTIVITY
Norman Archer
Digital Equipment Corporation 71

SYSTEMS DEVELOPMENT & MAINTENANCE

SESSION OVERVIEW
Phillip C. Howard
Applied Computer Research 83

DESIGN OF INFORMATION SYSTEMS USING SENARIO-DRIVEN
TECHNIQUES

W. T. Hardgrave/S. B. Salazar/E. J. Beller , III

National Bureau of Standards 85

CONTAINING THE COST OF SOFTWARE MAINTENANCE TESTING-AN
EXAMINATION OF THE QUALITY ASSURANCE ROLE WITHIN U.S.
ARMY COMPUTER SYSTEMS COMMAND

Maj. Steven R. Edwards
U. S. Army Computer Systems Command 93

HISTORICAL FILES FOR SOFTWARE QUALITY ASSURANCE
Walter R. Pyper

Tracer, Inc 101

xii

ADP COST ACCOUNTING & CHARGEBACK

A STEP-BT-STEP APPROACH FOR DEVELOPING AND IMPLEMENTING A DP

CHARGING SYSTEM
Kenneth W. Giese/Dean Hal stead/Thomas Wyrick
FEDSIM 109

CONTROL OF INFORMATION SYSTEMS RESOURCE THROUGH
PERFORMANCE MANAGEMENT

SESSION OVERVIEW
John C. Kelly
Datametrics Systems Corporation 121

INCREASING SYSTEM PRODUCTIVITY WITH OPERATIONAL
STANDARDS

David R. Vincent
Boole & Babbage, Inc „ 123

BENCHMARKING

SESSION OVERVIEW
Barbara Anderson
FEDSIM 141

UNIVERSAL SKELETON FOR BENCHMARKING BATCH AND
INTERACTIVE WORKLOADS: UNISKEL BM

Walter N, Bays/William P. Kincy, Jr.

Mitre Corporation 143

COMPARING USER RESPONSE TIMES ON PAGED AND SWAPPED
UNIX BY THE TERMINAL PROBE METHOD

Luis Felipe Cabrera
University of California, Berkeley

Jehan-Francois Paris
Purdue University 157

PRACTICAL APPLICATION OF REMOTE TERMINAL EMULATION
IN THE PHASE IV COMPETITIVE SYSTEM ACQUISITION

Deanna J. Bennett
AF Directorate of System Engineering 169

COST/PERFORMANCE EVALUATION - METHODS & EXPERIENCES

AN EVALUATION TECHNIQUE FOR EARLY SELECTION OF
COMPUTER HARDWARE

Bart D. Hodgins/Lyle A. Cox, Jr.

Naval Postgraduate School 181

DEFICIENCIES IN THE PROCESS OF PROCURING SMALL COMPUTER

SYSTEMS: A CASE STUDY
Andrew C. Rucks/Peter M. Ginter

University of Arkansas 191

COST/PERFORMANCE COMPARISONS FOR STRUCTURAL ANALYSIS
SOFTWARE ON MINI- AND MAINFRAME COMPUTERS

Anneliese K. von Mayrhauser/Raphael T. Haftka
Illinois Institute of Technology 199

xiii

SPECIAL TECHNOLOGIES & APPLICATIONS - TRACK B

FOCUSING ON SECONDARY STORAGE

SESSION OVERVIEW
H.Pat Artis
Morino Associates, Inc 221

EXPERIENCES WITH DASD, TAPE, AND MSS SPACE MANAGEMENT
USING DMS

Patrick A. Drayton
Southwestern Bell Telephone Company 223

DASD CAPACITY PLANNING 3350 DASD
Keith E. Silliman
IBM Corporation 231

AN ANALYSIS OF A CDC84U-m DISK SUBSYSTEM
J. William Atwood/Keh-Chiang Yu

University of Texas at Austin 239

PERFORMANCE PREDICTION & OPTIMIZATION
- METHODS & EXPERIENCES

SESSION OVERVIEW
Thomas P. Giammo
FEDSIM 249

TUNING THE FACILITIES COMPLEX OF UNIVAC 1100 OS
John C. Kelly
Datametrics Systems Corporation

Jerome W. Blaylock
System Development Corporation 251

APPROXIMATE EVALUATION OF A BUBBLE MEMORY
IN A TRANSACTION DRIVEN SYSTEM

Wen-Te K. Lin

Computer Corporation of America

Albert B. Tonik
Sperry Univac 259

COMMUNICATIONS NETWORKS—TECHNOLOGICAL DEVELOPMENTS &

APPLICATIONS

SESSION OVERVIEW
Jeffrey Gee

Network Analysis Corporation 269

LOCAL INTEGRATED COMMUNICATION SYSTEMS:
THE KEY TO FUTURE PRODUCTIVITY

Andrew P, Snow
Network Analysis Corporation 271

PERFORMANCE ANALYSIS OF A FLOW CONTROLLED COMMUNICATION
NETWORK NODE

P, G. Harrison
Imperial College, London 277

xiy

CASE STUDIES

RESOURCE MANAGEMENT IN A DISTRIBUTED PROCESSING
ENVIRONMENT—COMPUTER RESOURCE SELECTION GUIDELINES

Eva T. Jun

U.S. Department of Energy 293

PANEL OVERVIEWS

OFFICE AUTOMATION AND PRODUCTIVITY
Chairperson

:

Mary L. Cunningham
National Archives & Record Service 305

COMMAND, CONTROL, AND COMMUNICATIONS MANAGEMENT
CHALLENGES IN THE 80 'S

Chairperson:
Robert G. Van Houten
HQ Army Command & Control Support Agency 309

ADP COST ACCOUNTING & CHARGEBACK
Chairperson

:

Dennis M. Conti
National Bureau of Standards 311

SUPERCOMPUTERS, CPE^ AND THE 80 'S PERSPECTIVES AND CHALLENGES
Chairperson

:

F. Brett Berlin
Cray Research, Inc 313

ADP CHALLENGES IN MEDICAL, PERSONNEL, AND WELFARE SYSTEMS
Chairperson

:

Dinesh Kumar
Social Security Administration 315

INFORMATION SYSTEMS AND PRODUCTIVITY IN STATE & LOCAL
GOVERNMENT

Chairperson:
Ron Cornel ison

State of Missouri 317

THE ADP PROCUREMENT PROCESS - LESSONS LEARNED
Chairperson

:

Terry D. Miller
Government Sales Consultants, Inc 319

DATABASE MACHINES
Chairperson

:

Carol B. Wilson
Fiscal Associates 321

XV

TUTORIAL OVERVIEWS

MEASUREMENT, MODELING, AMD CAPACITY PLANNING:
THE SECODARY STORAGE OCCUPANCY ISSUE

H. Pat Artis
Marino Associates 325

MICRO-COMPUTERS IN OFFICE AUTOMATION
Wendell W. Berry
National Oceanic and Atmospheric Administration 327

COMPUTER PERFORMANCE MANAGEMENT IN THE ADP SYSTEM
LIFE CYCLE

James G. Sprung
Mitre Corporation 329

SIMULATION TOOLS IN PERFORMANCE EVALUATION
Doug Neuse/K. Mani Chandy/Jay Misra/Robert Berry
Information Research Associates 331

COMPUTATIONAL METHODS FOR QUEUEING NETWORK MODELS
Charles H. Sauer
IBM Thomas J. Watson Research Center 335

PRODUCTIVITY IN THE DEVELOPMENT FUNCTION
Phillip C. Howard
Applied Computer Research 337

ACQUISITION BENCHMARKING
Dennis Conti
National Bureau of Standards 339

SOFTWARE CONVERSION PROCESS AND PROBLEMS
Thomas R. Bushback
General Services Administration 3^*1

RESOURCE MEASUREMENT FACILITY (RMF) DATA:

A REVIEW OF THE BASICS
J. William Mullen
The GHR Companies, Inc 3^3

Papers in this volume, except those by National Bureau of

Standards authors, have not been edited or altered by the National

Bureau of Standards. Opinions expressed in non-NBS papers are

those of the authors, and not necessarily those of the National

Bureau of Standards. Non-NBS authors are solely responsible for

the content and quality of their submissions.

The mention of trade names in the volume is in no sense an

endorsement or recommendation by the National Bureau of

Standards.

xvi

Effective Life Cycle Management

Track A

1

Requirements and Workload Analysis

SESSION OVERVIEW

REQUIREMENTS & WORKLOAD ANALYSIS

James 0. Mulford

International Computing Company
3150 Presidential Drive

Fairborn, OH 45324

Accurate definition and analysis of ADP requirements and
their resultant system workload is probably the most difficult
issue to be addressed by performance analysts. Requirements
may be defined in numerous ways (e.g., user terminology,
existing system workload, existing prograns, new concepts of

operations) and the performance analyst must translate these
definitions into terms that can be applied in system sizing,
performance analysis, benchmark definitions, or other CPE
tasks. Many problems are encountered during this translation,
including the following:

large amounts of data must be analyzed
requirements are defined in various forms
user terminology must be understood by the analyst
new requirements are often not fully defined

These requirements and workload analysis complexities will
continue to haunt performance analysts into the 198's. In

fact, expanded use of automation to improve complexities of
this analysis. Fortunately, tools and techniques that aid in

requirements and workload analysis are receiving increased
emphasis. Advances in ADP technology (e.g., processing speed,
memory size and management, telecommunications, DBMS) have
allowed this renewed emphasis on new tools and techniques.
Better and more complete data on system workload can now be
maintained. Advanced analysis techniques (e,g., cluster
analysis, data reduction and characterization) are now being
applied. Automated requirements definition tools (e,g,,
PSL/PSA) are now available.

The following papers illustrate this renewed emphasis on
innovative methods for analyzing requirements and system
workload. All three papers demonstrate productive, cost
effective approaches which can be applied in many environments,
I sincerely hope that these papers will be followed (in future
years) by additional and increasingly sophisticated approaches
to requirements and workload analysis,

^ Problem Statement Language/Problem Statement Analyzer,
University of Michigan

5

LONG-RANGE PREDICTION OF NETWORK TRAFFIC

William Alexander
Richard Brice

Los Alamos National Laboratory
Computing Division

Los Alamos, NM 87544

A method of making long-range computer system workload predic-
tions is presented. The method quantifies the effect of qualitative
changes in computing by identifying assumptions and by considering the
effect of a change on individual users. The method is illustrated by
an example involving message traffic in a large computer network.

Key words: Computer networks; long-range forecasting; user behavior;
workload forecasting.

1 . Introduction

Management planning procedures sometimes
require computer system workload forecasts
for five or even ten years in the future.
Present workload prediction methods are
inadequate at such long ranges because the
changes in system use are likely to be quali-
tative rather than just quantitative.
Perhaps a computer measurement professional
should be reluctant to make such long-range
predictions if, possibly, too much credence
will be given them. However, when you must
make these predictions, how do you proceed?

In this paper we present a method for
making long-range workload predictions that
quantifies the effects of qualitative changes
in computing. Naturally, such predictions
are somewhat speculative, and we claim only
to provide a framework with which to organize
and quantify assumptions. The method con-
sists of constructing a polynomial expression
for the workload in which each term
represents the effects of one change. The
terms are constructed by concentrating on the
effect that the change will have on individu-
al users. This method explicitly represents
assumptions and allows parametric ranges of
results

.

Some papers on workload forecasting for
management planning look at current workload
analysis; others study the extent of growth
or change in computing activities. Determi-
nation of the current workload is heavily
represented, probably because it is the most
straightforward process in forecasting.
Prediction methods include measurement tech-

niques [1-5],-^ abstraction of synthetic work-
loads from the measurements [4,6,7], and
reduction of the measurement data to manage-
able magnitude, for example, clustering
analysis [8-10]. A second category addresses
forecasting from a management perspective.
These papers attempt to determine growth or

change in activities that may affect comput-
ing needs. Isolated approaches exist that
attempt to bridge the gulf between qualita-
tive changes in the activities and their
quantitative effects on computer resource re-

quirements. Prediction methods in this area
include extrapolation from resource require-
ments of existing application programs
[11-13], forecasting of resource requirements
for applications that are not yet completely
implemented [14,15], and also some effects of

Figures in brackets indicate the

literature references at the end of this pa-
per .

7

feedback between workload and level of ser-
vice provided to users [16].

The essence of these approaches is to
determine the nature of the current computing
workload and, using this information, to pro-
ject the amount of similar work that will be
done at some future time. There are differ-
ences in how the current workload determina-
tions are made and in the fundamental units
of measure used to describe the workload.
The units of measure range from resource
utilization data for specific computer com-
ponents to characterizations of project ac-
tivities. These approaches seem best suited
for short term (1-2 year) forecasts, because
the effects of quantitative changes are like-
ly to outweigh the effects of qualitative
changes during this interval.

These methods are not suited to our
specific problem, which is to forecast ef-
fects of qualitative changes in computing.
In particular, these approaches do not ad-
dress the influence that revolutions in com-
puting hardware and services exert on how a

user does his work. A second difficulty in
forecasting is that long-term forecasts are

almost certain to be wrong. This difficulty
suggests that these forecasts should be cast
in a form that is easy to update as new in-
formation arrives. Some problems that may
occur if updating is not anticipated are
described in Reference 17.

In Part II, we describe the need to
predict message traffic in the Los Alamos Na-
tional Laboratory (Los Alamos) Integrated
Computing Network up to 1990. In Part III,
we explain our method and illustrate its use.

2. The Problem

2.1 Integrated Computing Network

At Los Alamos, the Central Computing Fa-
cility (CCF) includes an Integrated Computing
Network (ICN) that allows all validated com-
puter users at the Laboratory access to al-
most any of the machines or services of the
CCF.

Figure 1 is a schematic diagram of the
ICN. At the "front end" of the Network (the
right side of the diagram) an arbitrary

CFS

IBM 3850

IBM 3350

IBM 434 1

IBM 370/ 148

PAGES

VAX 11/780 (2)

VERSATEC

PLOTTER (2)

FR 80 (3)

XEROX 9700

PRINTER (2)

FILE

TRANSPORT

SWITCHES

SEL

32/55 (4)

WORKERS

CRAY 1 (4)

CDC 7600 (4)

CDC CYBER 73 (2)

CDC 6600 (1)

DEVELOPMENT

MACHINES

VAX 11/780 (3)

VAX 11/780 (1)

POP 11/70 (1)

SYNC

POP 11 (3)

TERMINAL

CONCENTRATOR

POP 11 (12)

SECURITY

CONTROL

P0P11 (1)

WORK STATION

CONCENTRATOR

VAX 11/780 (1)

DISTRIBUTED

PROCESSORS
GATEWAY

VAX 11/760 (3)

DATA

COMM
CENTER

-TERMINALS

WORD
-PROCESSING

SYSTEMS

external

"networks

Li

INTELLIGENT

WORK
STATIONS

VAX

-OlSTRlBUTEO

PROCESSORS

Figure 1. Functional Diagram of the ICN

8

number of terminals (currently about 1350)
and remote entry stations are concentrated in

stages to front end switches (the SYNCs), so

that traffic can be routed between any termi-
nal and any worker computer. Thus, aside
from administrative restrictions, a user can
log in on any worker from any terminal. The
worker computers include three Cray-Is, four
CDC 7600s, one CDC 6600, and two CDC Cyber-73
computers. Each of the worker computers is

connected to the File Transport (FT) switches
and, by the FT switches, to the "back end" of
the Network (left side of the diagram) . The
FTs allow the workers to send files to each
other and to the special service nodes in the
Network. The special services provided by
the Network at present include

o an output station (PAGES) to which are
attached a wide variety of printing and
graphics devices,

o a mass storage and archival facility
(CFS) [18] , and

o XNET, which handles file traffic between
workers and computers outside the ICN.

Messages between workers and SYNCs are
usually quite small and are never larger than
1000 bytes. Messages routed through the FTs
can be as large as 25,976 bytes; large files
are broken by the sending machine into mes-
sages no larger than this, and the messages
are sent sequentially (the ICN is not a

packet-switching network).

In this paper, a "message" is one user-
or program-defined group of bytes (plus net-
work header) transferred together from a

source node to a destination node in the ICN.
"Nodes" include terminals, worker computers,
and special service stations, but not concen-
trators or switches (SYNCs and FTs). From
the point of view of network implementation,
messages are certainly the appropriate unit
of workload. From a larger view, considering
the ICN as a unit, one might first think of
workload in terms of terminal sessions, tasks
submitted for execution on worker computers,
etc. We believe that messages are an addi-
tional valid measure of workload, because
there is a fairly direct correspondence
between user or user program commands and
messages generated. Messages result from a

carriage return at the terminal and from cer-
tain explicit program functions or worker
computer command language commands.

With colleagues we have just begun a new
network performance measurement and evalua-
tion project on the ICN. This project in-
cludes measurement and characterization of
message traffic in the Network and analytic

and simulation models of the Network. With
these models we are beginning to identify the
critical resources in the Network as well as
to investigate the effects of increased
traffic load, new equipment, and alternate
configurations. Both the measurements and
the models are at present rather crude.

In some of the following analysis we
treat short messages (less than 100 bytes)
and long messages separately, because our
models indicate that different resources are
critical in handling them. The critical
resource limiting the Network's capacity to
carry large messages seems to be buffer space
in the switches, while line capacity and
switch processor capacity are critical for
small messages.

At present there are about 3000 users of
the CCF. We measure approximately 20 large
and 80 small messages per second in the back
end of the Network and about 100 small mes-
sages per second in the front end. This is

0.06 small and 0.007 large messages per
second per user.

2.2 The Forecasting Assignment

Recently we were asked by management to

predict what the network traffic in the ICN
would be at various points in the future up
to the year 1990, 10 years from now. Current
management forecasts indicate that the number
of users of the Network will grow linearly
from the present 3000 to 5700 in 1990;
managers also anticipate a certain number of
large worker computers in the Network by that
year

.

If the kind of work people do and how
they go about doing it both remained con-

stant, then the problem would be relatively
straightforward. We might, for example, sim-
ply predict that the load in 1990 would be

(5700/3000) * (present load)

ignoring the different number and kinds of

worker machines in 1990 on the assumption
that messages are generated by programs and
people, not primarily by machines. However,
computing habits have changed significantly
in the past 10 years, and they are likely to

again in the next 10. Timesharing radically
altered the way people used computers in the

1970s, distributed processing and networks
are doing it now, and there may be time for
two more revolutions by 1990. Change seems
to be a given in computing, and no one has

developed a model to predict it. Thus we

preceded our response with numerous caveats,

and, when management promised to heed them,
... --^ work.

9

Clearly, the traditional PME predictive
tool, namely a model of the Network, does not

apply directly to this problem; models are

designed to take workload as input, not to

predict it. Furthermore, there exists at

present no characterization of our computer
workload in terms of "worksteps" or "activity
units" [12,13], nor any formula for translat-
ing from these to network activity. Finally,
even if we had such workload characterization
and such a translation formula, it is not

clear that the formula would be valid for

computing conditions 10 years hence. In

fact, the nature of the problem and the lack

of data force us into the role of futurists,

a role for which a systems analyst may be no

better qualified than the next person.

3. The Solution

3.1 The Method

The central idea of our method is to

concentrate on the individual user, that is,

to predict the effect on the user of future
changes in network equipment, topology, and
services. This is clearly risky, because
people are the least understood and least
predictable element in computing systems.

Nevertheless, this focus seems necessary, be-

cause we do, in fact, believe that network
traffic is affected more by what people
choose to do and how they choose to do it

than by the equipment they use. Of course,

network topology, equipment, and services
make certain tasks easy and others more dif-

ficult, but so do other factors. We are not

trying to literally predict human behavior;
we are trying to orient and focus our think-
ing in the face of too much uncertainty.

The first step is to identify factors

that will change computing in our network.

Then we quantify the effect of each factor on

network traffic that individual users gen-

erate. Finally, we collect the terms

representing each factor into a polynomial
expression

.

3.2 Five Factors

We were able to identify five factors

that we believe will affect the way people
use the ICN in the next few years. They are

as follows.

1. Specialization of the Network. At

present, CFS and PAGES are specialized
nodes to which users from any worker
can send files for permanent storage

or for output. In the future, spe-

cialized nodes for word processing,

for a network status and performance

data base, and for other unanticipated
functions may exist. (In fact, word
processing software is available on a

PDP-11/70 in the Network now, but this
software is not yet widely used.) In
addition, the worker computers them-
selves may become more specialized
with some machines serving mostly as

number crunchers and others as

general-purpose front ends to the
number crunchers

.

2. Increased use of intelligent and
graphics terminals.

3. Proliferation of distributed proces-
sors (DPs) and local networks of DPs
within the Laboratory but outside the
ICN. For a variety of reasons, the
number of mini- and midicomputers out-
side the ICN continues to grow. They
are used both for specialized pur-
poses, such as process control, and
for general computing; some are con-
nected in small local networks. Typi-
cally these can communicate with any
node in the ICN via XNET.

4. Electronic mail. Some electronic mail
system will probably be installed at

the Laboratory within the next few
years, although it may be implemented
as a separate mechanism rather than
through the ICN.

5. Connections with remote networks. The
most likely candidates are the comput-
ing facilities at other Department of

Energy laboratories. Since these in-

stallations tend, at present, to have
sufficient computing power for their
own needs , the connections will prob-
ably be used to transfer data, pro-
grams, reports, etc., rather than to

allow remote use of our computers.
Similar connections to additional net-
works are possible.

Each of these five factors is either a

trend that we see now in computing at Los

Alamos or a capability currently being dis-

cussed and considered for inclusion here. In

other words, we did not attempt any serious
long-range crystal ball gazing, although the

method allows this if you have the courage
(see Section E) . In the next section, we
discuss the effect of each of these five fac-

tors on network message rates.

3.3 Analysis of Factors

It seems easiest to break the estimation
of the effect that a change will have on any

10

system measure into two steps. First, one
can analyze the qualitative aspects of the
effect. For example, is the effect most na-
turally expressed as a ratio to the present
number of messages a user generates or as an
addition to that number? Is it independent
of the user's current activity? Is it in-

dependent of the number of users? Answers to

these questions will determine the position
of the factor, which represents a given
change in the polynomial formula for comput-
ing the value that the measure is expected to

have in the future. The second step is then 2

to plug in a numeric value for each factor,

or perhaps a range of numeric values.

We will illustrate this two-step process
for each of the factors described in the pre-
vious section.

1. The specialization of the Network will
clearly increase message rates. As

specialized service nodes are added
one by one, an individual user doing
tasks functionally equivalent to

present tasks will generate, perhaps
even unknowingly, more network mes-
sages as his files are shipped to

these nodes. The portion of a user's
messages due to specialization will
grow in proportion to the increased
specialization of the Network. There-
fore, a formula for the number of

small messages in the Network should
contain a multiplicative factor a in a

term

a*m*Ny

,

where Ny is the number of ICN users in

the future year in question and m is

the observed rate of small messages
per user today. That is, specializa-
tion will increase small messages per
user per unit time by some factor a.

There will be a similar term
A"-M"Ny

in the formula for large messages.
The way specialized nodes are now used
indicates that the users will mostly
ship large files that will appear as

large messages; this is partly a

matter of economics. For every large
message in our network there is at
least one small protocol message, so 3

that the absolute increase in the two
types may be about equal; however, be-
cause there are presently more small
than large messages, A is greater
than a.

If we observe that 80% of large mes-

sages currently go to or from special-
ized nodes, and if we believe that a

user will generate 50% more messages
because of network specialization by
year y, then the value for A in the
formula for that year should be 1.4.

We might plug in values of 1.2, 1.4,
and 1.8 to get a range of answers
corresponding to a range of assump-
tions about future network specializa-
tion.

The effect of intelligent and graphics
terminals will be limited almost en-
tirely to the front end of the Net-
work. The use of graphics terminals
will increase the large message rate
from workers to terminals, because
terminal output will sometimes consist
of plot information for a full screen
instead of one line of text. The ef-

fect of intelligent terminals, whether
graphics or not, may be complicated.
On the one hand, the ability to do lo-

cal processing, especially screen
editing, should result in fewer mes-
sages of much larger average size. On
the other hand, some users may program
their terminals to issue very frequent
program or network status checks on a

background basis and take some action
only when a certain response is ob-
tained, thus greatly increasing the
small message rate.

In any case, the factors b and B

representing this effect should prob-
ably be multiplicative as are a and A
above. Management projections indi-
cate that 1000 of the terminals in the

Lab will be intelligent in 10 years.
We have observed that, at present,
about one-fourth of all terminals are

logged in on any morning. An assump-
tion of an upper bound of 2.5 large
messages per minute at these terminals
gives 625 large messages per minute,
which is about half the present rate;

thus, we used values of from 1.1 to

1.5 for B. We used values of from 0.9

to 1.1 for b. The small range of

values for b indicates that not all
terminals will be intelligent and that
most messages are already small.

The increased use of distributed pro-
cessors and of local networks will
certainly decrease the ICN message
rate per user. Almost all of these
users' terminal traffic, which con-

sists mostly of small messages, will
be eliminated from the ICN. They will
still use the ICN for executing large

11

programs prepared locally and for spe-
cial services mostly involving large
files

.

Once again, we decided that the fac-
tors c and C should be ratios of the
present message rates per user.
Values of from 0.5 to 1 for C and 0.25
to 1 for c seem reasonable.

4. If electronic mail is implemented us-
ing the ICN, then, obviously, message
traffic will increase. It is not at
all clear that there is any correla-
tion between the rate at which users
currently generate messages and the
rate at which they wil] receive mail.
However, mail traffic will probably be
proportional to the number of people
using the system. We assumed the re-

lationship will be linear (although
there are certainly other plausible
possibilities). Thus we included
terms

d"Ny and D"Ny

SMy = a*b*c*m*Ny + d*Ny + e

LMy = A"B*C*M*Ny + D-Ny + E

(1)

(2)

where

SMy and LMy

m and M

Ny

are the number of small
and large messages per
second in the ICN in year

y;

are the current (1980)
number of small and large
messages per second per
user

;

is the number of CCF users
that year;

is the factor by which
network specialization
will affect the number of
small messages per second
per user that year;

in the formulas for the number of

small and large messages. We eventu-
ally decided that people would send
and receive less than five large mail-
ings per day, which is a negligible
addition to our load; therefore, we
used the value zero for D.

5. The additional message traffic caused
by connecting our network to others
would depend very much on the adminis-
trative nature of the connection. If
remote users were given essentially
the same capabilities as local users,
then the appropriate adjustment to the
formulas is simply to increase the
value of N by the number of remote
users. If use of the connection is

restricted to sharing programs, data,
and reports between sites, in other
words, if the link is used as a fast
substitute for the Postal Service,
then the message rate might be in-
dependent of the number of users alto-
gether and might depend instead on
programmatic schedules. We assumed
that the latter was more likely and
added a simple term & to each formula
to account for some small constant
number of messages due to this connec-
tion.

3.4 Formulas

Collecting all the terms defined in the
previous section resulted in the following
formulas

:

b represents the effect of
intelligent terminals;

c represents the effect of
distributed processing;

d is the number of small
messages per user per
second due to electronic
mail

;

e is the number of addition-
al small messages per
second due to connections
to external networks; and

A, B, C, D, and E are the corresponding fac-
tors for large messages.

We can now plug various values for each
of the factors into the formula and get "best
guess," "worst case," and other values for
message traffic. We can also experiment with
the effects of particular assumptions; for
example, we can assume that all terminals
will be intelligent in 10 years or that elec-
tronic mail traffic is proportional to the
square of the number of users. We can inves-
tigate "disaster" scenarios; to illustrate,
we can determine the rate at which intelli-
gent terminal owners would have to generate
status queries to the Network to saturate its
message handling capacity. Finally, we can
determine by inspection or by trial which as-
sumptions are most critical, for example, the
above formulas are clearly more sensitive to
the value of a than to the value of e.

12

3.5 Other Possible Factors

The five change factors discussed above
are certainly not the only ones that will af-

fect computing in the Laboratory in the next
few years. Since we constructed the above
formulas, we have learned that, unknown to

us, others in the Laboratory were already
planning another change, namely a

Laboratory-wide automated information manage-
ment system (AIMS). Some of the pieces of

such a system, such as accounting programs
and some inventory programs, are already run
on worker computers in the ICN. Their in-

tegration into a comprehensive, widely used
management information system would certainly
increase network message rates. The point of

this example is that as many people as possi-
ble, from a variety of disciplines, should be

included in the process of thinking of

changes in computing.

More speculative changes than those we

have given might also be included in a pro-

jection. Very powerful processors on a sin-

gle chip will soon be available at very low

cost. The use of high-quality graphics out-

put devices may become much more widespread
at the Laboratory to display movies (16

frames of graphics output per second) used to

study simulation modeling programs. Although
present worker computers are not capable of

producing 16 frames per second from these
programs, long sequences of frames could be

generated and stored in CFS; these could be

fetched and fed to the graphics device by the

cheap powerful processor at such a rate. If

this happens, it will greatly increase the

large message rate.

4. Conclusions

Inserting our "best guess" factor values
into the above formulas resulted in message
rates for 1990 of five to six times the
present observed rates. To anyone familiar
with the history of computing, it might seem
unlikely that any workload measure on any
system will grow by "only" 500% in 10 years.

If this projection, in fact, turns out to be

low, the reason will probably be that we

failed to anticipate some development in com-

puting that radically affects network use.

The necessity of anticipating such changes
is, of course, the greatest weakness of our

method; however, this weakness is inherent to

the problem. It can be overcome somewhat by
requesting input from as many people as pos-
sible.

Our method of prediction presented in

this paper identifies specific assumptions.
It allows experimenting with different values
of factors to see the part each plays in the

total prediction. More accurate data about
the effect of a given change can be easily
incorporated into the formulas so that pred-
ictions grow more accurate in an evolutionary
way. Concentrating on the effects on indivi-
dual users might also work well for short-
term predictions, but we found this method
especially helpful as a way of isolating and
organizing the uncertainties and shakey as-
sumptions inherent in long-range prediction.

References

[1] Lindsay, D. S., A Hardware Monitor Study
of a CDC KRONOS System, Proceedings,
International Symposium on Computer Per-
formance Modeling Measurement and
Evaluation, Harvard University, March
1976, pp. 136-144.

[2] Partridge, D. R. and Card, R. E.,

Hardware Monitoring of Real-Time Comput-
er Systems, Proceedings, International
Symposium on Computer Performance Model-
ing, Measurement and Evaluation, Harvard
University, March 1976, pp. 85-101.

[3] McDougall, M. H. , The Event Analysis
System, Proceedings, 1977 SIGMETRICS/CMG
VIII, Washington, D.C., November 1977,

pp. 91-100.

[4] Keller, T. W. and Lindsay, D. S.,

Development of A Performance Evaluation
Methodology for the CRAY-1, Proceedings,
1977 SIGMETRICS/CMG VIII, Washington,
D.C., November 1977, pp. 169-176.

[5] Abrams, M. D. and Neiman, D. C, NBS
Network Measurement Methodology Applied
to Synchronous Communications, Proceed-
ings, CPEUG80, Orlando, Florida, No-
vember 1980, pp. 63-70.

[6] Hughes, J. H. , A Functional Instruction
Mix and Some Related Topics, Proceed-
ings, International Symposium on Comput-
er Performance Modeling Measurement and

Evaluation, Harvard University, March

1976, pp. 145-153.

[7] Terman, F. W. , A Study of Interleaved
Memory Systems by Trace Driven Simula-
tion, Proceedings, Symposium on Simula-

tion of Computer Systems, Boulder,
Colorado, August 1976, pp. 3-10.

[8] Mamrak, S. A. and Amer, P. D. , A Feature
Selection Tool for Workload Characteri-
zation, Proceedings, 1977 SIGMETRICS/CMG
VIII, Washington, D.C., November 1977,

pp. 113-120.

13

[9] Agrawala, A. K. and Mohr, J. M. , The Re-

lationship Between the Pattern Recogni-

tion Problem and the Workload Character-

ization Problem, Proceedings, 1977

SIGMETRIC/CMG VIII, Washington, D.C.,
November 1977, pp. 131-139.

[10] Artis, H. P., A Technique for Establish-
ing Resource Limited Job Class Struc-
ture, Proceedings, CMC X, Dallas, Texas,
December 1979, pp. 249-253.

[11] Linde, S. and Morgan, L. , Workload Fore-
casting for the Shuttle Mission Simula-
tor Computer Complex at Johnson Space
Center, Proceedings, CMC XI, Boston,
Massachusetts, December 1980, pp. 10-15.

[12] Mohr, J. and Penansky, S. G., A Frame-
work for the Projection of ADP Work-
loads, Proceedings, CMG XI, Boston, Mas-
sachusetts, December 1980, pp. 5-9.

[13] Perlman, W. and Jozwik, R. , DP Workload
Forecasting, Proceedings, CMG X, Dallas,
Texas, December 1979, pp. 469-475.

[14] Smith, C. and Browne, J. C, Modeling
Software Systems for Performance Predic-
tions, Proceedings, CMG X, Dallas, Tex-
as, December 1979, pp. 321-342.

[15] Smith, C. and Browne, J. C, Performance
Specifications and Analysis of Software
Designs, Proceedings, Conference on
Simulation Measurement and Modeling of
Computer Systems, Boulder, Colorado, Au-
gust 1979, pp. 173-182.

[16] Axelrod, C. W. , The Dynamics of Computer
Capacity Planning, CMG Transactions,
Number 29, September 1980, pp. 3.3-3.21.

[17] Tomberlin, R. D.
,
Forecasting Computer

Processing Requirements: A Case Study,
Proceedings, CPEUG80, Orlando, Florida,
November 1980, pp. 255-261.

[18] Blood, M.
,
Christman, R. , and Collins,

B.
,
Experience with the LASL Common File

System, Digest of Papers from Fourth
IEEE Symposium on Mass Storage Systems,
Denver, Colorado, April 1980, pp. 51-54.

FUNCTIONAL GROUPING OF APPLICATION PROGRAMS

IN A TIMESHARING ENVIRONMENT

Paul Chandler, CCP, CDF

Wilson Hill Associates
1025 Vermont Ave., N.W., #900

Washington, DC 20005

The ability to adequately describe the computing
environment is important in the selection of timesharing
services. A method is presented by which the user can
functionally describe the workload in terms of require-
ments for processing, data input, and data output.
Large numbers of programs can thereby be reduced to
only eight functional categories which are sufficient
to characterize the workload. Unsophisticated non-ADP
oriented users who are unable to use traditional per-
formance or resource oriented groupings can use this
functional method satisfactorily.

1. Introduction

Procurement of a timesharing
service can be a lengthy and costly
process in many large procurement ef-
forts. The primary objective of such
procurements usually is to provide
the most cost effective computer sys-
tem which will meet both current and
future needs.

The acquisition of a computer
system presupposes that the workload
is well defined. Typical parameters
used include turnaround time, core
size or segment, CPU time, number of
I/O transfers, number of lines
printed, etc. However, many of these
parameters are available only through
specially implemented hardware or
software monitors. These monitors
require knowledgeable ADP personnel
sensitive to procurement needs, as
well as a thorough understanding of
system requirements.

Many procurement efforts suffer
from a lack of specific resource or
performance areas and are left with
only a functionally-oriented bench-

mark which does not lend itself well
to a lowest cost acquisition. Also,
many procurements must deal with a
sizable workload and cannot simplify
their workload easily. Additionally,
the procurement specialist who is
conducting the computer acquisition
process may be far removed from daily
processing requirements or else be
faced with relatively unknowledgeable
ADP users who do not understand the
details of machine processing.

This inability to characterize
the workload is the subject of this
paper. Outlined is a method by
which the benchmark workload can be
segmented by a reduction in the num-
ber of programs into distinct
classes

.

2. Methodology

This method provides for a func-
tional grouping of application pro-
grams using three representative cri-
teria. A dichotomous classification
exists already in the minds of many
ADP personnel of I/O versus CPU.
This method separates the "I" from

15

the "O" and uses the three parameters
of

o Processing

o Input

o Output

By using a selection method by
which each criteria is judged to be
either an important or less impor-
tant functional attribute of each
application program, a clustering of
programs emerges which share similar
functionally oriented characteris-
tics .

Figure 1 shows the eight possi-
ble ratings using the three criteria
described

.

Class Rating Factors
ID CPU Input Output

Al Low Low Low
A2 Low Low High
A3 Low High Low
A4 Low High High
A5 High Low Low
A6 High Low High
A7 High High Low
A8 High High High

Figure 1. Criteria Classes

The assignment of application
programs to a class depends upon the
relative rating of each of the three
criteria to the application. In
order to perform this classification,
standardized and descriptive data
must be collected for each applica-
tion system.

Data typically can be collected
by means of a comprehensive data
collection effort which results in
each application being described in
functional terms. Such a descrip-
tion will include a narrative de-
scription of the program's primary
purpose, an estimate of required
data input and output, and general
qualitative descriptions of program
processing.

Additional data may be collect-
ed for some quantitative data such
as number of files, number of re-
cords or transactions processed,
size of the data base, language
type, and number of tape mounts.

Not included are specific per-
formance oriented data such as speed
of execution or elapsed seconds for
a file I/O, or resource oriented
data such as CPU seconds, core size
used, number of bytes transferred
from disk to core, etc. Only gen-
erally available data obtained from
a knowledgeable user is required
without specific hardware or soft-
ware monitoring.

Following this qualitative data
collection, each of several knowl-
edgeable ADP persons reviews the
collected data. These persons need-
not be users or persons from whom
data was collected. These persons
then make a binary high/low choice
for each of the three criteria iden-
tified earlier for each application
program. Each person is asked to
work alone for the initial selec-
tion. Upon completion, for each
person, there will be a rating for
each program as to their evaluation
of program functionality in each of
three categories.

The ratings of each application
program are compared and the persons
asked to reevaluate their assign-
ments if conflicts arise. Addition-
ally, some information as to data or
other interdependencies between pro-
grams might be used to classify an
application, as well.

The result of the selection
process is that for each application
there are three descriptors. For
the binary high/low judgment re-
quired for this model across all
three criteria, eight different com-
binations are possible. Figure 2

shows these eight combinations in a
spatial relationship.

A8 A7

Figure 2. Spatial Relationship
of Criteria

16

Each of these dimensions can be
thought of in a spatial relationship
in such a way that the selection of
these criteria will define a larger
group of applications.

3. Application of Method

This method anticipates that a
natural grouping of programs will
occur, and that groups of applica-
tions will tend to have similar
characteristics based solely on the
qualitative ranking of individual
applications

.

An example is drawn from a re-
cent Federal procurement effort of
around 6.5 million dollars including
96 application programs in a commer-
cial timesharing environment. This
procurement effort was characterized
by a wide geographic dispersion of
the user community, little or no in-
formation about application systems,
or any other good, well-defined
quantitative measurements.

Following the application of
this method, the 96 programs were
classed in eight functional cate-
gories out of which one or two pro-
grams could be selected for bench-
marking. Figure 3 shows the distri-
bution of these programs across
groups

.

ID Group Name

little or no requirement for
either CPU, input or output.
These application systems
tend to be either in use at
remote sites or of an infre-
quent nature, or used at a
central location for selected
special purposes. Included
are those applications which
query current operating
system status, perform rudi-
mentary reports or text
storage of small files, or
simple computational pro-
grams .

A2 - Display Oriented Output

This group relies to a greater
extent on some kind of for-
matted output either in
tabular, report, or plotted
form. Computational usage
appears to be low, and
most applications seem to be
parameter driven with small
operator input required. The
data bases used for this group
appear to be fixed and well
defined with infrequent up-
dates. Also included are
applications with high
volume, repetitive type out-
put .

Number of Rating Factors
Applications CPU Input Output

Al System Support 19 Low Low Low
A2 Display Oriented Output 17 Low Low High
A3 Data Entry 1 Low High Low
A4 Information Manipulation 7 Low High High
A5 Basic Analysis 29 High Low Low
A6 Display Oriented Analysis 9 High Low High
A7 Complex Data Entry/Edit 7 High High Low
A8 Complex Data Manipulation 7 High High High

Figure 3. Group Distribution

Also included in this example is an
assignment of a group name for each
of the eight classes. The para-
graphs describe each functional
group as used in this illustration.
Similar names and characteristics
could be defined for another set of
applications

.

Al - System Support

This group comprises those
application programs with

A3 - Data Entry

Although only one program was
classed in this group for the
applications surveyed, this
group might be characterized
by those programs which are
primarily input dependent,
and which include a substan-
tial processing of data in
file building.

17

A4 - Information Manipulation

This group depends on a fair
amount of operator supplied
input and produces voluminous
output. Computational re-
sources are used in the build-
ing of file indexes, but no
inter-file relationships or
permanent index structure
(such as in DBMS applications)
occurs. Simple statistical
methods may be used in some
applications

.

A5 - Basic Analysis

This group contains those
applications in which a fairly
sophisticated computational
usage of machine resources is
needed, either through direct
number crunching or in the
building of file indexes.
Both input and output are
equally weighted, but form
a low part of the resources
used

.

A6 - Display Oriented Analysis

This group represents a sophis-
ticated usage of output faci-
lities to the exclusion of
operator supplied input.
Proprietary display packages
are used in some applications.
The computational resources
used appear to be high.

A7 - Complex Data Entry/Edit

Unlike the Data Entry group
(A3) , these applications
utilize on-line input of data
with on-line correction and
validation of input. The
computational usage is also
high. Output is a secondary
consideration here from the
user viewpoint, since the
primary purpose of these
applications is to facilitate
data entry and validation.

A8 - Complex Data Manipulation

This group was judged to have
the highest need and use of all
three criteria measured. The
overriding concern addressed
here is the apparent need for
high volume input and output
together with complex data

manipulation or index
structures

.

Once the initial grouping was
made, a second pass was made of each
group in order to generalize common
features among programs. Of the 96
applications to which this method
was applied, less than 7 of these
had to be reevaluated, and then only
a shift in one criterion resulted.

4. Discussion

A possible problem with the
validity of this method might occur
when only small application program
environments are considered. In
the example presented, a good dis-
tribution occurred across all
groups but one, and the distribution
appeared to be non-random. In pro-
curement efforts where there are
only a limited number of programs,
it might be difficult to be certain
that the best grouping had been
achieved

.

The familiarity of the evalua-
tion with ADP was initially consi-
dered to be a potential problem,
but did not prove to be insurmount-
able in this study as knowledgeable
personnel who had some ADP back-
ground were available. In those
instances where the evaluators
are non-ADP oriented, it seems
likely that additional qualitative
data must be collected.

An interesting extension of
this method would include the quan-
tification of each workload criteria
into small discrete steps. Each
step could represent an increment
of the respective criteria such
that all values between an arbi-
trarily low and high point would be
represented. The workload could
then be divided up using the method
presented here.

For the example given, by far
the greatest time was spent in data
collection. The actual evaluation
of applications only required a few
days. It. seems likely that those
procurement specialists faced with
knowledgeable ADP persons will be
in a better position than those
faced with unfamiliar users.

In the environment where there
is a scarcity of information, this

18

approach appears to offer some help
in workload quantification. This
method provides a method acceptable
from a procurement specialty where
a savings of time and money can be
obtained in environment where there
is little information.

The author is grateful to Dr. Shahla
Butler for her inspiration in this
effort, and to Thomas Mink for his
review of the manuscript.

References

[1] Bayraktar, A. N. Computer
Selection and Evaluation ,

June 1978, U.S. Dept. of
Commerce, NTIS #AD-A061-070

.

[2] Ferrari, Domenico, Computer
Systems Performance Evaluation ,

Prentice-Hall, 1978.

[3] National Bureau of Standards,
Guidelines for Benchmarking
ADP Systems in the Competitive
Procurement Environment , FIPS
PUB 42-1, May 15, 1977.

[4] National Bureau of Standards,
Guideline on Constructing
Benchmarks for ADP System
Acquisitions , May 19, 1980.

CLUSTER ANALYSIS IN WORKLOAD
CHARACTERISATION FOR VAX/VMS

Alex S. Wight * ,**

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Permanent address : Department of Computer Science
, University of Ed inburgh , Ed inburgh , U.K. EH9 3JZ

**This work was done while the author was
with Digital Equipment Corporation ,Maynard

,

MA 01754

Accurate models of computer system workloads are
desirable for system modelling, performance evaluation
studies, capacity planning, benchmarking, tuning and sys-
tem selection. The use of cluster analysis for workload
characterisation has received much attention recently.
In this paper we explore the use of cluster analysis for
characterisation of workloads on VAX systems running the
VMS operating system. In a largely interactive environ-
ment we take as our basic workload unit the program or
executable image invoked by a command from a terminal
user e.g. file directory manipulation, editor, compiler,
application program. We discuss some of the problems of
cluster analysis and the possible uses of cluster
descr iptions

.

Key words: Cluster analysis. Workload characterisa-
tion.

1. Introduction

There are many reports of stu-
dies of computer system workload
characterisation
[3,4,5,6,10,13,24,25,27,31]. Accu-
rate models of workloads are desir-
able for system modelling, perfor-
mance evaluation stud ies ,capacity
planning, benchmarking, tuning and
selection. The use of cluster
analysis in this work is not new
[28]. Clustering algorithms have
been developed as tools in a wide
range of disciplines where extensive

data analysis and recognition and
classification of patterns are
important. There exist both good
surveys [12,14,15,18,19,20,22] and a

number of books which describe clus-
tering algorithms and the analysis
of the results of clustering
[7, 16, 2 1,26,.2 9, 3 0,3 3, 3 4, 35] . The
application of cluster analysis to
the problem of providing concise
descriptions of computer system
workloads has been advanced most
recently by Artis [6] , Mamrak and
Amer [32] and Mohr and co-workers
[3,4,5] .

21

In particular Agrawala et al
[4] discuss the validity of using
cluster analysis while Artis [6] and
Agrawala and Mohr [3] also discuss
the representativeness and useful-
ness of the clusters which are gen-
erated. Mamrak and Amer [32] and
Hughes [27] discuss the problem of
deciding which of the available,
measured features can be used to
describe the workload units submit-
ted to the clustering process.

These studies illustrate the
feasibility of applying cluster
analysis to accounting log or system
measurement data and generating con-
cise descriptions of the workload
submitted to the computer system in
the measurement period. If a clear
picture of a stable workload already
exists we do not need sophisticated
analysis to confirm it. Cluster
analysis may be used either to dis-
cover if available data points lie
within known or expected groupings
or to discover if they do exhibit
any structure or concise groupings.

There is a very large number of
publications on the use of cluster
analysis. Useful starting points
are the papers by Dubes and Jain
[18,19] which describe and examine
the problems of amalgamating the
results of cluster analyses, sta-
tistical analyses, intuition and
insight. Kendall [30,31] makes many
points advising caution in the use
of cluster analysis and stressing
the importance of the analyst who is
familiar with the context of the
data and appreciates the strengths
and weaknesses of the algorithms
employed. Clustering results must be
interpreted with care. Diday [17]
discusses some possible new
approaches

.

The VAX/VMS operating system
running on the DEC VAX 11/780 is
being used in an ever-widening range
of environments. To characterise the
workloads in these environments
requires a comprehensive methodol-
ogy. In this paper we present an
initial approach to the use of clus-
ter analysis as part of the metho-
dology required to get useful models
for a number of possibly very
diverse workloads. In a largely
interactive environment we take as

our basic workload unit the program
or executable image invoked by a
command from a terminal user e.g.
file directory manipulation, editor,
compiler etc.

2. Tools

Our starting point was Artis'

s

very comprehensive discussion of the
use of cluster analysis for capacity
planning [6]. A search of the
1 iterature
[7, 11, 12, 14, 16, 18, 19, 20, 29] reveals
ISODATA [8,9,23] as one of the most
popular clustering algorithms. This
may not be unrelated to the fact
that it's heuristic nature makes
analysis of it difficult! Cluster
analysis which attempts to classify
a population of objects on the basis
of features describing each object
has developed in many disciplines
ranging through the biological and
social sciences and engineering.
With a version of ISODATA available
, the example of Artis and the
recurring commendation of ISODATA in
the literature we chose to use ISO-
DATA.

The standard accounting log of
VMS does not provide sufficiently
detailed resource usage data for
characterising the submitted work at
the level of individual programs.
Ultimately we are interested in
characterising in detail interacti\/e
users and the programs they invoke.
VMS was adapted to write additional
messages to the accounting log
recording statistics for each exe-
cuted image or command.

These statistics cover:

CPU time
Elapsed time
Memory occupancy
Disc traffic
Terminal traffic
Paging activity

Since it obviously imposes an
additional overhead and causes
interference this form of monitoring
can be switched off and on for
periods of interest. CPU time is
not recorded accurately, but in the
standard VMS form by sampling and
recording with a 10 millisecond

22

unit. Attempting to account CPU
time accurately at the 1 microsecond
level raised the total data collec-
tion overhead from around 5% to over
10% and was abandoned. Records from
a relevant period of an available
accounting log can be extracted and
used as data for statistical and
cluster analysis.

As we have stated already a

majority of authors in the cluster-
ing literature advocate caution in
applying a chosen algorithm to new
data, in particular see
[15,18,19,22,30,31]

.

3. Testing

We proceeded as follows:

(a) Fisher's Iris data [30] has
been used many times to test clus-
tering algorithms. We checked that
our ISODATA program gave results
consistent with Kendall's analysis
[30].

(b) We generated artificial
data representing points on a 2-
dimensional grid. These represented
intuitive ideas of dense, diffuse
and scattered clusters, clusters of
odd shape and outliers. Dubes and
Jain [18] give the results of apply-
ing different clustering algorithms
to similar artificial data. Our
results were at the same time dis-
turbing and reassuring. It was a
worthwhile exercise to gain confi-
dence in choosing values for the
ISODATA control parameters but a

salutary lesson in treating all
clustering results with care since
it is certainly possible even with a

known algorithm and "obvious" data
to generate quite different clusters
from runs with different parameter
settings

.

(c) We next proceeded to use
image accounting data collected from
a VAX system which was processing a

known and well-defined load of
interactive scripts submitted from a

remote terminal emulator. This gave
us the opportunity to explore the
interplay of cluster analysis and
performance evaluation. We had to
consider the . problems of feature
selection and scaling and continue
exploring parameter settings in this

much more complex case. Here again
the literature generally persuaded
us to follow Artis's example and
scale the data using the robust mean
and standard deviation for each
feature such that for each feature
the data is normalised with unit
variance. The BMDP statistical pack-
age was used for statistical
analysis of the data. Use of robust
statistics for scaling reduces the
effect of outliers but one must
always remember that any scaling
affects the formation of clusters.
For this known data the results were
encouraging and the expected group-
ings did appear .

4. Points from the Tests

The use of a remote terminal
emulator provides a desirable con-
trolled environment for this form of
testing as well as more general per-
formance work [1 , 2, 36, 37]. In this
.case we can explore the effects on
the clusters we see of different
feature sets e.g. a resource con-
sumption set and a rate of resource
consumption set [3] . For explora-
tory analysis of this type one
expects to iterate between cluster-
ing and examining and interpreting
clusters produced. Anderberg [7]
suggests generating a first set of
clusters and investigating indivi-
dual clusters before perhaps re-
clustering. Outliers can be con-
sidered at this point too. Note the
difference between ISODATA which
weights features equally and
attempts to reduce the variance of
features within each cluster formed
and the approach of Agrawala and
Mohr [5] where it is intended that
the clusters formed reflect their
"natural" shapes with different
weights being given to features in
different clusters as they are esta-
blished. ISODATA tends to produce
hyperspheres and treats all clusters
identically. An "elongated" cluster
may not be immediately obvious. If

it is contained uniquely within a

hypersphere it must be deduced by
examining the variances of the
features for members of the cluster.
Otherwise the analyst must deduce
from the collection of cluster
descriptions that a series of small
possibly dense clusters are in fact
closely related and when viewed on a

23

larger scale form one identifiable
group

.

5. Experiment

The image accounting package
was installed on a VAX system in use
for software developnent. Over a

working day 1791 image records were
recorded. The following five
features were chosen for the cluster
analysis

:

CPU time
Elapsed time
Direct I/O rate (request/CPU sec.)
Buffered I/O rate (request/CPU sec.)
Page read rate (request/CPU sec.)

Statistics for these features
are displayed in Figure 1. The clus-
tering program was run with an upper
limit of 50 clusters allowed. It is
clear from the statistical summaries
that we are likely to reach this
number. In fact after 10 iterations
of trying to improve the clusters we
have reduced the number of clusters
to 37.

6. Cluster Summaries

At this point when we look
closely at the ISODATA summary
statistics we find the average dis-
tance of patterns or data points
from their centroids or cluster cen-
tres to be 1.8 while the average
distance between cluster centers is
31.2. The co-ordinates of a cluster
centroid are the mean values for
each feature of the cluster members.
Note that these are distances in the
transformed data space. This gives
a picture of tight, well-scattered
clusters. Only four of the thirty-
seven have points with an average
distance from the centroid greater
than 3.0 compared with average dis-
tance between centroids of 31.2. For
the cluster centroids the distance
to the nearest centroid ranges from
1.75 to 51.2 with a mean of 8.0.

7. Validity

Dubes and Jain [19] discuss in
detail the question of how valid
clusters are. They feel that in
general, engineering applications,
including computer science, tend to

ignore cluster validity and authors
are happy to demonstrate that the
algorithm works in some sense that
they consider suitable. We agree
with the observation and criticism
but nevertheless proceed, taking the
view that cluster analysis is an
exploratory tool to be used with
care in examining the available
data , investigating hypotheses and
seeking underlying structure. The
density of our individual clusters
and the way they are spread satis-
fies us while we examine the popu-
lous clusters in the light of our
knowledge of the workload.

8. Cluster Descriptions

Figure 2 shows that the 8 clus-
ters with the most members include
94.8% of the images. If these clus-
ters have inter pretable characteris-
tics we have a starting point for a

characterisation of the workload.
The values of the centroids of these
clusters are displayed in Figures
3,4,5 in terms of the untransformed
values of the features. For each
cluster we can look for the dominant
features and for each image name we
have a list of the clusters in which
it appears. The groupings of the
clusters can now be checked and
interpreted by consulting this list.
Although there are cases where
images appear in many different
clusters interpretation is possible.
The cluster groupings of Figure 2

are roughly as follows.

[1] Clusters 1,5 and 10 are
represented by average values
of the features chosen and turn
out to be largely calls on
standard command language util-
ities manipulating files and
directories. Such commands
where they appear in other
clusters are cases where they
have generated a large value
for a particular feature and
been treated as a separate
cluster since ISODATA will
split a cluster if there is a

large variance in one feature.

[2] Clusters 14 and 18 are dom-
inated by demands for CPU time
and high terminal traffic
represented by buffered I/O.
The images represented here are

24

editor use,mail utilities and
application programs.

[3] Cluster 21 is dominated by a
high page read rate The members
of 21 are subsets of some of
the previous images but also
closely clustered.

[4] The grouping of clusters 7 and
9 is dominated by a high buf-
fered I/O rate and these clus-
ters contain images making
heavy use of video terminals.

Rather than continue in this
vein examining all the remaining
very small clusters we first com-
plete the broad picture with a more
conventional statistical analysis.
Returning to the raw data we list
for each feature the images with the
highest values. When we trace those
to the clusters we find that they
have been identified as clusters and
often the elongation effect can be
discerned i.e. a number of small
clusters have the same dominant
feature and are seen to be identi-
fied as nearest neighbours in the
transformed hyperspace.

Turning to Figure 6 and the
most frequently occurring images we
find as follows. The most common
image with 312 instances has all but
16 of these in clusters 1,5 and 10.
Proceeding to the second and third,
all except 4 of 194 are in 1,5 and
10 and all except 7 of 190 likewise.
There are 77 unique images recorded
and 76% of all images recorded are
accounted for by instances of the 10
most frequently-occurring images.

9. Workload Modelling

The clusters found can be used
as a basis for a model of the work-
load. For each important cluster
that we identify real or synthetic
programs must be available or gen-
erated with characteristics matching
those of "average" cluster members.
The number of occurrences of a model
job in the workload model must be
adjusted so that the load on the
system generated by each cluster is
maintained. More detailed study of
the accounting log allows us to look
for variations in the load over time
and fluctuations in the mix of

active programs. The log also con-
tains sufficient information for
commonly occurring sequences of com-
mands to be found and incorporated
in models. We do not of course get
user characteristics like typing
speeds and think times.

We may hope that the largest
clusters formed from a series of
logs allow us to model what appears
to be a stable component of the
workloads under study. However we
must also take note of the outliers
or very small clusters as they may
turn out to make some of the
greatest demands for system
resources or be characterised by
very variable activity. If the
small clusters and outliers make
significant demands on the system
then representing their effect is
important but may be more difficult
if they differ dramatically from
site to site, period to period and
especially if they largely reflect
the choice of features for the clus-
ter generation. This form of varia-
tion is also influenced by the level
of workload unit we choose and the
nature of general-purpose interac-
tive computing.

Note also that having identi-
fied clusters we must look at them
in terms of features not used for
clustering both in construction of
models and possible amendments to
the clustering and characterisation
methodology

.

10. Discussion

Cluster analysis has often been
discussed and used for workload
characterisation in general and
benchmark construction in particu-
lar. Much useful work can be done
with fixed workloads [1, 2,36,37] but
as user communities broaden and
technological change speeds 'changes
in user demands on computing systems
it is desirable to attempt to gen-
erate currently representative work-
load models and keep them up-to-
date .

This work explores part of the
methodology and indicates that clus-
ter analysis can be used for data
from highly interactive systems with

25

a wide range of user demands as well
as some of the more constrained
batch environments previously
reported

.

Cluster analysis has developed
its own literature in separate
fields. There is still scope for
analysis of clustering techniques
for computer workload characterisa-
tion e.g. feature selection, effect
of correlation between features,
effects of scaling and weighting of
features, algorithm
compa r ison ,val id i ty of clusters, use
of clusters, efficiency of algo-
rithms and integration of results
into a more complete characterisa-
tion methodology.

11. Acknowledgements

Many people contributed to an
enjoyable and productive time at
Digital. For the work reported here
thanks particularly go to Colin
Adams, Rick Fadden, Steve Forgey and
Ted Pollak for many hours of assis-
tance and discussion.

References

[1] Adams, J.C, Currie, W.S. and
Gilmore , B.A.C., The Structure
and Uses of the Edinburgh
Remote Terminal ESnulator,
Software Practice and Experi-
ence, Volume 8, 1978.

[2] Adams, J.C., Performance Meas-
urement and Evaluation of
Time-Shared Virtual Memory Sys-
tems, Ph.D. Thesis, University
of Edinburgh, 1977.

[3] Agrawala, A.K. and Mohr, J.M.,
Some Results on the Clustering
Approach to Workload Modelling,
Proceedings of CPEUG 13th
meeting, October 1977. NBS
Special Publication 500-18.

[4] Agrawala, A.K. and Mohr, J.M.,
The Relationship Between the
Pattern Recognition Problem and
the Workload Characterisation
Problem, Proceedings of
SIGMETRICS/CMG V| | | , November
1977.

[5] Agrawala, A.K., Mohr, J.M. and
Bryant, R. , An Approach to the
Workload Characterisation Prob-
lem, Computer, June 1976.

[6] Artis, H.P., Capacity Planning
for MVS Computer Systems, in
Performance of Computer Instal-
lions, ed . Ferrari, D.
, North-Holland Publishing Com-
pany, 1978.

[7] Anderberg, M.R. , Cluster
Analysis for Applications,
Academic Press, 1973.

[8] Ball, G.H., Data Analysis in
the Social Sciences: What About
the Details?, AFIPS FJCC ,

Volume 27, Part 1, 1965.

[9] Ball, G. and Hall, D.J., ISO-
DATA, A Novel Method of Data
Analysis and Pattern Classifi-
cation, Stanford Research
Institute, 1965.

[10] Barber, E.O. , Asphjell, A. and
Dispen, A., Benchmark Construc-
tion, Performance Evaluation
Review , Volume 4, Numbe^ 4,
1975.

[11] Bayne, C.K., Beauchamp, J.J.,
Begovich, C.L. and Kane, V.E.,
Monte' Carlo Comparisons of
Selected Clustering Procedures,
Proceedings of Annual Meeting,
of American Statistical Associ-
ation - Statistical Computing
Section, 1978.

[12] Blashfield, R.K. and Alden-
derfer, M.S., A Consumer Report
on Cluster Analysis Software,
The Pennsylvania State Univer-
sity, 1976.

[13] Boi, L. , Cazin, J., Martin, R.

and Bourret, P., The Use of a

Synthetic Workload for the
Optimal Allocation of Files on
Disk Units, in Performance of
Computer Installations, ed

.

Ferrari, D. , North-Holland Pub-
lishing Company, 1978.

[14] Cole, A. J. , ed . , Numerical Tax-
onomy, Academic Press, 1969.

26

[15] Cormack, R.M., A Review of
Classification , Journal of the
Royal Statistical Society
(Series A) , 1971.

[16] Clifford, H.T. and Stephenson,
W. , An Introduction to Numeri-
cal Classification, Academic
Press, 1975.

[17] Diday, E., Problems of Cluster-
ing and Recent Advances, IRIA
Research Report Number 337,
1979.

[18] Dubes , R. and Jain, A.K., Clus-
tering Techniques: The User's
Dilemma, Pattern Recognition,
Volume 8, 1976.

[19] Dubes, R. and Jain, A.K., Vali-
dity Studies in Clustering
Methodologies, Pattern Recogni-
tion, Volume 11, 1979.

[20] Duran, B.S. and Odell, P.L.,
Cluster Analysis, Lecture Notes
in Economics and Mathematical
Systems, Spr inger-Verlag , 1974.

[21] Everitt, B., Cluster Analysis,
2nd edition, John Wiley, 1980.

[22] Friedman, H.P. and Rubin, J.,
On Some Invariant Criteria for
Grouping Data, Journal of the
American Statistical Associa-
tion, 1967.

[23] Gnanadesi kan , R. , Methods for
Statistical Data Analysis of
Multivariate Ctoservations , John
Wiley and Sons, 1977.

[24] Hall, D.J. and Dev Khanna , The
ISODATA Method Computation for
the Relative Perception of
Similarities and Differences in
Complex and Real Data, in
Mathematical Methods for Digi-
tal Computers. Volume

| | |
(Sta-

tistical Methods for Digital
Computers), ed . , Enslein, K. ,

Ralston, A. and Wilf, H.S.,
John Wiley and Sons, 1977.

[25] Haring, G. and Posch, R. , On
the Use of a Synthetic
Online/ Batch Workload for Com-
puter Selection, Information
and Management, Volume 3,
Number 3, 1980.

[2 6] Haring, G. , Posch, R. ,

Leonhardt, C. and Cell, G., The
Use of a Synthetic Jobstream in
Performance Evaluation, The
Computer Journal, 1979.

[27] Hartigan, J. A., Clustering
Algorithms, John Wiley and
Sons, 1975.

[28] Hughes, H.D., A Study of a Pro-
cedure for Reducing the Feature
Set of Workload Data, Computer
Performance Evaluation in the
'80s, Proceedings of CMG X| ,

1980.

[29] Hunt, E. , Diehr, G. and Gar-
natz, D. , Who Are the Users? An
Analysis of Computer Use in a

University Computer Center,
AFIPS Conference Proceedings,
Volume 38, 1971.

[30] Kendall, M.G. , Multivariate
Analysis, Hafner Press, 1975.

[31] Kendall, M.G. , The Basic Prob-
lems of Cluster Analysis, in
Discriminant Analysis and
Applications ed . , Cacoullos,
T. , Academic Press, 1973.

[32] Mamrak, S.A. and Amer , P.D., A
Feature Selection Tbol for
Workload Characterisation,
Proceedings of SIGMETRICS/CMG
VI I I , November 1977.

[33] Pore, M.D., Moritz, T.E.,
Register, D.T., Yao , S.S. and
Eppler, W.G. , On Evaluating
Clustering Procedures for Use
in Classification, Proceedings
of American Statistical Associ-
ation, Statistical Computing
Section, 1978.

[34] Sokal, R.R. and Sneath, P.H.A.,
Numerical Taxonomy, W.H. Free-
man, 1973.

[35] Spath, H. , Cluster Analysis
Algorithms for Data Reduction
and Classification of Objects,
Ellis Horwood Ltd., 1980.

[36] Stephens, P.D. , Yarwood, J.K.,
Rees, D.J. and Shelness, N.S.,
The Evolution of the Operating
System EMAS 2900, Software
Practice and Experience, Volume

27

10, Number 12, 1980.

[37] Wright, L.S. and Burnette,
W.R., An Approach to Evaluating
Timesharing Systems: MH-TSS A
Case Study, Performance Evalua-
tion Review, January 1976.

GO
<_>

o

UJ
cc:

t—
>-
oo

sr

cn
1

—

cn
oc
OC

oc

oc

233.330

c;

Si
3-

i>n
1—

1

500.00

i^no g OCo
.—

1

o o o
SI

STANDARD

i

DEVIATION

!

oc

Ln
Ln

358.069

i
^^
oc
.—

1

cr
<—

1

CSJ

cCi
cn

lA
t<n
Ln

SC

UJ .—

1

g cno
cn

Ln

CNJ

r>n

^A
hn

MEAN

i
m
cr
ivn

oc
cr
1—

1

oc
oc
cr.

t

—

LD

cr
.—

1

tvn L̂n
oc

hn
fvn
t^n

oc

CPU

i

(10

MILLISECONDS)!

ELAPSED

TIME

i

(SECONDS)

!

D
RECT

I/O

RATE

i

Q

0/CPU

SEC

!1

BUFERED

I/O

RATE!

QIO/CPU

SEC

I

PAGE

READ

RATE

!

QIO/CPU

SEC

!

29

<
N
E
liJ

O
<
<
z
o

CO
D- cn

no O

UJ

LU

<
2

O

<
-I
<

CVJ

O-
ZDO

CO oo
D- t—

1

=3o •\

in q:: a-
CD I—

1

Q- <
1X1

:3
w
OS

o

LU
CJ

CO
LU LUM cc:

oo

O CO

o
oo

Ln o
1*^

o

30

LU
ca CO

LU =)

<_>
LU LU ^
CD h- O
<3: o: «
Q_ ck: a

LU
COO LU

LU h— =3
ac <c CL.
LU ce: <_)
LL. \
u_ o o
=D \
cxa •—

I o

LU
CO

LU
h- ZD

I— <C o_
c_> o
LU \
ck: o o
O >—

' C3

CO LU -

Q- s: c_3

3p: CO

CO

Q_ O
t_) I—

I

CO

cn
Ln

CD CD
oo

Ln
LTl ^ No
I—

1

to
1—1

1—

1

rH
CD /-^

LO
CM
1—

1

LU
-J

oo H-
CD

I—UJ
LH rv.o
CSJ wq:

UJ
n

1-H

Q- oo

O CM
LA

CD

OO
Ln
CM

cr
CM oo
OO

CM
OO
CM

Ln
CD Ln
1—

1

Ln

a. cvi
ZDO CO
Q£ CM
tD

cn
oo
o- ôo in
CO

CM --v
- CMO C50

hn w

•=r

00
- CO

CD oo

o
cr:
CD

oo

31

UJ
CO

UJ =3
q:: Q-

UJ LU
C3 I— O
<a: <E «
D- cr: o

LH -
j

UJ
OO

C3 UJ
UJ 1— ID
o:: <c o.
UJ Of o
u_
U_ o o
=) —
03 —, O

LA ^
- O

(X)

UJ
{/:>

UJ
I— ZD

»— <C o_
t_> OS C_J
UJ
Qi O O
ca « o

CD OO
CNI

-

oc

a- o
C-> rH

OO
OO

OO
o
iS3

n
cn

in
LT
CN

rH

OO

CNJ hN
<—

1

OO
cr

CNJ
CNI OO
CN)

1-H
cr

a* UD
CD cn

to
t—

1

cr

•=r OO
oo

CO
1—

«

Q_

O
cn 1—1

32

33

oo 1^

CNl

OO 00

LA
CM

o

LU

o
<

a.

O

>-

3
o
LU

o
LTl

3-O OO

in

CM
CD

CM O
cn

o
o

OO

o

CnI

O
CN

T
m

T
o

I

OS

34

Capacity, Disaster Recovery,

and Contingency Planning

35

SESSION OVERVIEW

CAPACITY, DISASTER RECOVERY,

and CONTINGENCY PLANNING

Chairperson: Theodore F. Gonter
U.S. General Accounting Office

Speakers: J. William Mullen
GHR Companies

Steven G. Penansky
Arthur Young & Co.

Duane Fagg
NAVDAC

ABSTRACT

At a recent computer conference a report from a capac-
ity management/planning task force concluded that capacity
needs are a business problem. Since data processing supplies
the services that the business element uses to perform its
functions, it concluded that requests for additional compu-
ter capacity must be made jointly between the business ele-
ment and data processing. Thus, a capacity management/
planning effort requires a close working relationship
between the business and data processing community.

In addition, these same businesses most often depend
on continuous availability of data processing services.
To ensure the continuous availability of adequate services
businesses develop contingency/recovery plans. These plans
must provide for computer capacity considerations to ensure
that sufficient capacity will be available to maintain
adequate DP service.

The purpose of this session is to demonstrate the
validity of the task force conclusion and the importance
of capacity related considerations in the contengency/
recovery planning process. The presentations and papers
in this session introduce considerations in capacity manage-
ment/planning, introduce the importance of capacity planning
in disaster recovery planning, and offer an approach to inte-
grating the DPI security, performance management, and con-
tingency planning functions.

37

CAPACITY MANAGEMENT CONSIDERATIONS

J. William Mullen

The GHR Companies, Inc.
Destrehan, LA

Initiating an installation capacity management
program required certain basic elements that must be in
place in the installation to assure success of the program.
These basic elements will be addressed with respect to
their relationship to the business community and how this
interaction should be developed in support of the capacity
management /planning effort. An additional aspect of the
capacity management program and function, capacity
requirements in disaster recovery planning, will be out-
lined with respect to the aid that the capacity manage-
ment function can provide to the disaster recovery planning
effort

.

Key words: Business case; business elements; business
problem; capacity management; capacity planning; disaster
recovery planning.

1. Introduction

Increased demand for computing
services has given impetus to
dramatic growth in many corporate
data centers. Finding themselves
unprepared to predict and respond to
these increases in requests for
computing services unable to maintain
acceptable service levels for the
user community and having to cope
with management demands and equipment
delivery schedules, installations are
beginning to realize the benefits of
implementing a capacity management
and planning program. The obvious
questions that installation personnel
responsible for program implementa-
tion ask themselves are concerned
with establishing a starting point
for the capacity managem.ent /planning
program determining if the basic
elements are in place in the installa-
tion to support the program and how
to evaluate program direction.

Three major topical areas
should be considered in answering the
above questions:

o Environment for program
implem.entation

:

o Elements required for the
process ; and

o Communications of results to
management

.

Each of these major topics will be
addressed in the following sections
on an overview level with a final
section devoted to capacity
management /planning considerations in
the disaster recovery plan develop-
ment and how the capacity management/
planning program efforts can provide
aid in developing the plan.

39

2 . Environment

Impetus for implem.entation of a
capacity management/planning program
generally stems from an environment
where demands for increases in com-
puting services from the user or
business community have resulted in
immeasurable and uncontrollable work-
load growth and a continuing decline
in service levels. It is at this
point where no amount of perform.ance
tuning will solve the problem,
implications and consequences of the
problem have been escalated to a
management level most of us would like
to avoid and reaction mode has become
a way of life in the installation.
Thus, installation personnel begin a
serious attempt to establish a
capacity management /planning program.

A primary consideration in
program implementation is the
management structure of the installa-
tion and organization and the place-
ment of personnel responsible for
performing the capacity management/
planning function within the current
organizational structure. Managing
capacity and planning for capacity of
future hardware and software compon-
ents requires the availability and
communication of a wide range of
information. Information from lower
levels within the installation con-
cerning current configurations
utilization and workload characteri-
zations are required. Contact with
middle and upper management within the
business community of the organization
is required to understand business
strategies, business direction and to
match current business demands with
hardware/ software component utiliza-
tion and workload characterization
data. Once this wide base of communi-
cations has been established, a view
of hardware and software component
utilization based upon business
demands can be developed and an en-
vironment is created in which the
installation's current capacity can
be managed and future business demands
on installation can be projected.

A perception of the capacity
management and planning function as a
business problem must be created
within the installation and the
business organization. This view
should be based upon an economic
supply and demand situation. Suppl"

is the installation's ability to
provide acceptable service at a reason-
able cost. Demand is the business
community's requirements for service
and the time constraints imposed by
these demands upon the installation.
Once the capacity management /planning
requirements are viewed as a ijusiness
problem, personnel in the installation
can begin to address the capacity
management/planning function in terms
of the business community as well as
hardware/ software component utiliza-
tions. This brings about the
necessity for service level agreements.

Developing service level agree-
ments with the business community
users begins the capacity management/
planning process. Service level
agreements provide the target that
personnel performing the capacity
management /planning function must hit.
From a capacity managem.ent view, the
service level agreement defines
current service level requirements and
allows the installation to evaluate
the business community's requirements
for service against current deliver-
ables. From a capacity planning view,
service level agreements provide
insight to short-term business re-
quirements as well as a definition of
business objectives, direction and
long-range service requirements.
Adjustments can be made, based upon
inputs obtained from service level
agreements to distribute and better
manage current capacity as well as '

project future capacity requirements.

A basis for capacity management/
planning is technical knowledge. This
knowledge is normally associated with
the performance analyst or software
analyst function. Though expertise
is required in dealing with management
and planning for the installation's
hardware/ software component require-
ments

,
personnel performing the

capacity management/planning function
should have skills more aligned with
management. These skills include the
oral and written communications
ability to translate capacity require-
ments from technical terms to business
terms for each given level of manage-
ment receiving information. The end
result of this translation becomes the
business case for satisfying service
demands of the business community.
Additionally, such skills as inter-

-wing and negotiating will prove to

to

be very useful in the interaction with
management within the business com-
munity structure in determining their
service requirements and developing
realistic service level agreements.
In most installations, several people
V7ill be required to staff the capacity
management/planning function to assure
that the above skills are available.

The final consideration in this
area is the charter of the capacity
management/planning function. As
stated, staff performing the function
should be positioned within the
organization's management structure to
provide interaction with mid and upper
management in the MIS as well as the
business community's organization.
The charter should provide freedom
from day-to-day operational problem
solving and still allow latitude for
affecting change. Without the ability
to affect change within the installa-
tion and the hardware/software com-
ponents as well as the operating mode,
the capacity management /planning
function becomes an exercise in
futility with little or no return on
the investment of resources.

3. Process Elements

Technical knowledge and informa-
tion is the basis of the capacity
management /planning function and the
raw input to the analysis and pro-
jection process. The initial infor-
mation needed for the process is a
complete, up-to-date inventory of the
hardware/ software in use in the
installation and an understanding of
its capabilities and resource require-
ments. Applications should be char-
acterized by workload requirements and
subsystems needed for their support in
processing. Hardware components
should be characterized by their
function for support of processing and
their capability and potential for
growth. The inventory can thus become
the base for planning growth in the
installation's hardv/are and software
components and the applications the
installation must support. The inven-
tory will also be an aid in the work-
load characterization process in
breaking out the various business
functions and systems that must be
characterized.

An antecedent to the capacity
management/planning program is a
strong measurement base from which
data on configuration component
utilization can be obtained as well as
resource requirem.ents of the various
business systems receiving service.
Consideration must be given to the
configuration and the workloads it
must support to enable the installa-
tion to select those measurement tools
which will provide the information
required with the least impact upon
the configuration. Measurement tools
selected must be able to provide
configuration utilization in concert
with obtaining measurement data which
will provide resource consumption
information that can be related to the
business entities receiving service.
Measurement data from the tools must
be in a form that will provide ease of
analysis and archival for historical
purposes. Currently available
measurement tools (i.e. SMF

,
RMF) tend

not to have either of these qualities
in their raw form. A major considera-
tion for the installation is imple-
menting a central repository of
information which contains those
measurement elements necessary for
tracking resource consumption and
workload growth as well as input to
workload characterization. This task
has proved to be difficult for most
installations. Many installations
achieve some form of repository which
provides configuration utilization and
resource consumption growth statistics
but fail to provide a mechanism for
relating the utilization and consump-
tion statistics to the various busi-
ness entities receiving service.

The final consideration in the
capacity management /planning process
is modeling and analysis for projec-
ting workload growth and future
resource requirements . Persons under-
taking the modeling and projection
task will require both the low level
measurement data as well as knowledge
of business direction to properly
apply their modeling knowledge. With-
out knowledge of current service
requirements by the various business
entities and planned business direc-
tion and strategies, the modeling
process must depend entirely upon
historical data which may not reflect
growth patterns representative of
current business direction and
strategies becomes a major requirement

41

in the capacity management/planning
process

.

4. Communications

Effective communications of the
results of the capacity management/
planning process to management is the
area where many installations fail to
meet the expectations of their capaci-
ty management/planning programs.
Reporting results of the program can
be divided into three specific areas

:

o data processing reporting;

o business reporting; and

o joint reporting.

Data processing reporting re-
volves around configuration utiliza-
tion information and component utili-
zation at a gross and sometimes very
detail level. Most installations
have achieved some degree of exper-
tise in measurement, tracking, and
reporting on configuration component
utilization and resource consumption
growth, but do not provide business
entities this information by system,
processed.

Business reporting revolves
around reporting at the level of
transactions, batch jobs, and output
volumes in some form. Additional
information may be provided on the
contribution to component utilization
by various business entities, but
this is generally not done at much
more than a very broad spectrum of
the business comm.unity (i.e. division,
group within division, section, etc.).
Very few installations have the
mechanisms in place to provide infor-
mation at the application level.

Joint reporting involves a com-
bination of data processing reporting
and business reporting to provide
management v/ith a history and current
view of configuration utilization and
business entity resource consumption.
Projections, based upon knowledge of
business direction and strategies,
can be given to management to provide
a view of future configuration
capacity requirements based upon
business growth.

Reporting must be tempered to
the various levels of management with-
in the organization. Reports must be
more concise and free from technical
detail as the level of management
being address moves higher up the
corporate ladder. This approach to
presenting a joint "business case" to
higher levels of corporate management
tends to strengthen the communica-
tions between DP and business manage-
ment and provide impetus for coopera-
tion in support of the capacity
management/planning process.

5. Disaster Recovery Planning

Anyone involved in developing
an installation disaster backup and
recovery plan will atest to the
difficulty in defining the processing
requirements necessary at a backup
site and matching these requirements
to sites available for backup
purposes. Several of the elements
involved in the capacity management/
planning process provide inputs to
the disaster recovery planning
process

.

Inventory of applications and
component processing requirements
will help assure that no critical
application has been overlooked in
defining the applications required to
continue the business processing at a
backup site and will aid during
backup site usage negotiations in
assuring that necessary hardware/
software components and options are
in place at the backup site.

Resource consumption require-
ments of the systems that are to run
at a backup site will assist the
personnel responsible for site deter-
mination and selection and provide
personnel at the backup site with
information to judge their configura-
tion's ability to handle the
additional workload requirements.

A final aid to the disaster
planning effort provided by the ca-
pacity management/planning effort is

an understanding of the business
direction and objectives of the
organization. This understanding
will help personnel involved in
disaster recovery planning to identi-
fy those systems critical to continu-
ation of the business and the

42

business impact loss of processing
capability will have upon the
organization

.

6 . Summary

Throughout the preceeding para-
graphs , the idea of approaching the
capacity management /planning process
as a business problem and the involve-
ment of mid and upper level management
from the business community in the
process. Effects upon measurement
tool selection and reporting results
of the capacity management/planning
efforts to management must be
approached from both the component
utilization level and the business
element level. This combination
provides the necessary inputs to the
workload characterization process

,

reporting process, and planning
efforts for future business element
capacity requirements. Data elements
from the data processing environment
and the business community can help
achieve a viable disaster recovery
plan by combining requirements for
component processing and business
service

.

43

CAPACITY CONSIDERATIONS IN DISASTER RECOVERY PLANNING

Steven G. Penansky

Arthur Young & Company
Washington, DC 20036

Increasing dependence on data processing in the Federal govern-
ment and private industry has resulted in growing interest in recovery
plans that minimize the impact resulting from a loss to an organization's
data processing capability. Although disaster recovery planning is not
generally the responsibility of an organization's CPE group, capacity
considerations play a significant role in the development of a cost-
effective recovery plan, and CPE practitioners are being asked to par-
ticipate in the development of these plans.

This paper describes and discusses several aspects of the disaster
recovery planning process in which capacity considerations should be
addressed. The concepts of a "minimum configuration" and "recovery
windows" are discussed. Capacity considerations involved in evaluating
component recovery strategies based on reciprocal agreements, equipped
recovery centers, recovery shells, and multiple facilities are presented.
Finally, relationships between ongoing capacity planning and recovery
plan maintenance activities are examined.

Key words: Capacity planning; contingency planning; disaster recovery
planning.

Most Federal agencies and organizations
in the private sector rely heavily on
automatic data processing (ADP) systems to

achieve mission or corporate goals. Their
dependence on the continuing availability of
these systems makes these organizations
vulnerable to disasters such as fires, flood,
earthquakes, or other unexpected and

undesirable events which may affect their ADP
facilities. While brief interruptions in ADP
senrice might be tolerated, most organizations
would suffer considerable harm should a

service interruption persist. The length of
an "acceptable" service interruption varies
considerably from organization to

organization. However, it is clear that in
most cases, just the potential of a prolonged
interruption in ADP services calls for the
development of disaster recovery plans to
mitigate the impact of the interruptions

should they occur. This paper discusses a

number of capacity-related considerations
which should be included when these plans are

developed.

1. Background

In most ADP installations, the

responsibility for disaster recovery planning

has traditionally rested with operational

groups. These groups, in most cases, have not

fully satisfied their responsibility for

protecting critical corporate or agency

operations or assets. They have incorporated

an increasing number of security measures

designed to reduce the number of threats to

which an ADP facility is subject. They have

also instituted programs for the off-site

storage of critical data and, in some cases,

have executed letters of agreement with other

45

similar facilities to provide "back-up" in the
event of a disaster. Actual recovery plans
were developed in only a few cases and, despite
these efforts, adequate protection was rarely
achieved [l]^

.

In recent years, data center management
in both the Federal government and private
industry has become increasingly aware of the
importance of effective recovery plans.
Reports from external auditors and examiners
(e.g., reports from audits conducted by bank
or insurance examiners or CPA or other firms)
and guidelines issued by internal auditing
groups (e.g., 0MB Circular A-71 [2 J) have
focused management's attention on the critical
importance of these plans. As a result, more
concerted, corporate or agency-wide efforts
have been laimched to identify recovery
requirements and develop a suitable recovery
plan to meet these needs. It is in these more
recent efforts that CPE practitioners most
often have become involved.

Generally, these more recent efforts at
recovery planning have taken a more realistic
view of the organization's needs and have set
about the development of a plan satisfying
these needs. Traditionally the responsibility
of operational (but, with increasing
frequency, corporate security) groups,
recovery planning now involves
representatives from a wide range of

organizational components. CPE practitioners
are being asked to participate in the recovery
planning process to provide much needed data
on the capacity requirements which must be met
by the individual recovery "strategies" which
are ultimately combined to provide a framework
for the full recovery plan. Although these
capacity considerations are only a small part
of the overall planning process, they play an
important role in identifying viable
strategies on which to base a plan and in

ensuring that the plan continues to provide
the required protection as workloads and
configurations change.

2. Overview of the Disaster Recovery Planning
Process

A full description of the steps involved
in developing an effective recovery plan is

beyond the scope of this paper. However, the

various capacity considerations involved in

the recovery planning process are best
presented in the context of this process. The
following paragraphs present an overview of
this process, emphasizing those aspects of the

Figures in brackets indicate the
literature references at the end of this
paper

.

planning process in which capacity
considerations play an important role.
Several of the important concepts involved in

disaster recovery planning are also described.
The four key phases in the recovery planning
process are identified in figure 1. Section
3 discusses the capacity considerations
related to each of these phases.

FIGURE 1

PHASED APPROACH TO PLAN DEVELOPMENT

PHASE 1 - ASSESS RECOVERY REQUIREMENTS

PHASE 2 - EVALUATE ALTERNATIVE RECOVERY STRATEGIES

PHASE 3 - PREPARE RECOVERY PLAN

PHASE 4 - REVIEW & TEST PLAN ON ONGOING BASIS

2.1 Phase 1 - Assess Recovery Requirements

The purpose of this phase is to identify
the organization's recovery requirements and

to determine the "recovery windows" and the

"minimum configuration" which then become key
ingredients in the disaster recovery planning
process. The primary steps and results of
Phase 1 are presented in figure 2.

The first step in this process should be

the development of a series of preliminary
assumptions on which the recovery requirements
are to be based. In particular, these

assumptions should address:

The type of disasters which will be

addressed (or ignored) by the plan.

The availability of public
utilities, transportation, and other
types of support not directly
controlled by the ADP facility, and

The time (e.g., end of week, end of

month, etc.) when the disaster would
occur.

By identifying and documenting these

assumptions, the organization can ensure that

the recovery requirements are based on a

common set of assumptions regarding the nature
and scope of the disaster. Additional
assumptions will be added throughout the

planning process.

46

FIGURE 2

PHASE 1 — ASSESS RECOVERY REQUIREMENTS

STEPS: RESULTS:

• ANALYZE THREATS AND EXPOSURES • APPLICATION RECOVERY PRIORITIES

• EVALUATE LOSS POTENTIAL AS A FUNC • RECOVERY WINDOW CHARACTERISTICS
TION OF TIME

• MINIMUM CONFIGURATION RcOUIRE-
• DEFINE RECOVERY WINDOWS MENTS

• IDENTIFY MINIMUM CONFIGURATION
REQUIREMENTS

REVIEW WITH MANAGEMENT AND
USERS

Because the potential losses incurred by
an organization will differ for each
application system considered, and because,
with all likelihood, the magnitude of these
potential losses will change as a function of
the length of the service interruption,
recovery requirements should be expressed on
an application- by-application basis and as a

function of time. Political considerations
may make it difficult to develop a precise
ranking of these recovery requirements. In

these cases, priorities may be assigned to

classes of similar applications. At this
point, a number of applications (or one or
more classes) are identified as "critical
applications." These applications are
included in subsequent recovery planning
efforts, the remainder (which might include
"applications" such as systems development,
performance reporting, etc.) are considered
deferable until normal operations resume.

The time dependent nature of these
requirements suggests that several recovery
strategies may be required - each operating
in one or more time frames. These time frames
are termed "recovery windows" and are based
on the recovery requirements identified. For
each of the recovery windows identified, a
"minimum configuration" must be identified.
This configuration is the smallest set of:

• people;

space, power, and other
environmental preparations;

. hardware;

software;

data;

documentation;

. communications (data and voice),
and;

supplies

needed to process an organization's critical

applications in each recovery window. As a

final step in this phase, the prioritized
applications, recovery window definitions, and

minimum configuration requirements are
reviewed with management and users.

2.2 Phase 2 - Evaluate Alternative Recovery.
Strategies

During this phase, the recovery
requirments determined during Phase 1 are used

to analyze alternative recovery strategies and

select an overall recovery approach on which
the organization's recovery plan can be based.

Figure 3 summarizes the key steps in this

process and the results to be obtained.

Depending on the length of a service
interruption, one or more recovery strategies
may be needed to restore an organization's ADP
capabilities in the most cost-effective
manner. Multiple recovery strategies are
usually required because inherent time delays,

costs, or other considerations preclude the

use of a single strategy throughout the

duration of a disaster. For example, an
organization may need 24 hours or more to

FIGURE 3

PHASE 2 —
EVALUATE ALTERNATIVE RECOVERY STRATEGIES

STEPS:

• IDENTIFY VIABLE RECOVERY
STRATEGIES

• EVALUATE STRATEGIES AGAINST
RECOVERY REQUIREMENTS

• EVALUATE COSTS OF ACCEPTABLE
STRATEGIES

• REVIEW WITH MANAGEMENT AND USERS

RESULTS:

• ALTERNATIVE RECOVERY STRATEGY
EVALUATION

• COST ANALYSIS

• OVERALL RECOVERY APPROACH
RECOMMENDATIONS

transfer its critical application to an

alternate site (Strategy A) due to the

logistical problems involved in such a

transfer. As a result, manual procedures and
recordkeeping (Strategy B) may be required to

maintain critical functions in the hours
immediately following a disaster.

The recovery strategies generally
available to an organization include:

Clerical procedures - The use of

forms, logs, and other recordkeeping

measures to record critical

information and build a queue of
work to be processed once automated

processing capabilities are

restored. If this strategy is to

be used successfully, these forms

and logs along with written
procedures describing their use

must be developed prior to the

disaster and kept up-to-date.
Because of the large number of paper

records which result, clerical
procedures are generally useful
only for short- interval recovery
windows, such as 48 hours or less.

Formal reciprocal agreements -

Agreements which guaranty that an

organization struck by a disaster
can share another organization's ADP
facility and processing time.

Though simple to establish in

principle, these agreements are

difficult to maintain and are

unlikely to be totally reliable.

The impact of such agreements on the

"unaffected" organization usually

limits the use of this strategy to

recovery windows of one week or

less.

Recovery shells - A building
equipped with the raised floor,

power, cooling, fire protection,
security, and other preparations
needed to establish a new ADP
facility but not data processing
hardware or communications
facilities. The viability of a

strategy based on the use of a

recovery shell is directly related
to the hardware and communications
vendors' ability to deliver
replacement equipment.

Equipped recovery centers -

Complete ADP facilities, equipped
with compatible hardware and

communications equipment. Access
to these facilities can generally
be obtained within hours after a

disaster is declared. However,
their continued use is usually
limited to between 30 and 60 days.

Cost is usually the primary obstacle
to the use of these facilities.

Multiple ADP facilities - The use

of two or more geographically
separated facilities, the smallest
of which is large enough to process

the organization's critical

applications. The nature of this

strategy ensures the availability
of a recovery facility throughout
the duration of a disaster. Because
the use of multiple facilities
involves business decisions and

commitments beyond the scope of

disaster recovery, it is difficult

to determine the direct costs
associated with this strategy.

I

48

Once the technical, logistical,
organizational, and other implications of
these strategies have been identified, an
evaluation on these terms is usually conducted
to eliminate those strategies which are not
consistent with the recovery requirements or
which have unacceptable consequences in other
areas. These component recovery strategies,
each operating in one or more recovery windows
and for some subset of the organization's
critical applications, can then be combined
to form one or more recovery approaches (see
figure 4). The costs associated with
alternative strategies and approaches is then
examined and an overall recovery approach
selected. The results of this evaluation are
then reviewed with management and users to

ensure they understand the advantages,
disadvantages, costs, and any special
considerations associated with each
alternative and concur with the overall
recovery strategy selected.

2.3 Phase 3 - Prepare Recovery Plan

Once the framework of the plan has been
defined, a recovery plan development team must
be established and the detailed planning,
analysis, and documentation required to

prepare the actual recovery plan must be
performed. The primary steps and results in
this phase are presented in figure 5- The
specific plans and procedures to be prepared
in this phase are largely a function of the
particular recovery approach selected. As the
final step in this phase, the plan should be

reviewed with senior management, users, and

ADP management to ensure that the completed
plan meets the expectations of all concerned.

2.4 Phase 4 - Review and Test Plan on Ongoing
Basis

During this phase, initial training for

management and operational personnel should
be conducted and the detailed plan developed
in Phase 3 tested (see figure 6). Individixals
who have direct responsibility for disaster

recovery should be thoroughly versed in the

plan and its execution. Those who do not should

be acquainted with the policy and procedures
defined in the plan.

Periodic testing of the plan is essential

to ensuring that it will provide the necessary
protection if and when it is needed. Tests

should be conducted in a manner that evaluates
the capabilities of the plan under a realistic

set of conditions which could be expected

during a disaster. An organization's most

critical applications should be tested first,

and the full range of functions required to

successfully process these applications
should be tested.

Maintaining the recovery plan once it has

been developed is a vitally important

function. As is the case in most planning

efforts, the recovery plan developed in Phase

3 will be out of date by the time it is

completed. The formal plan maintenance

process developed in Phase 3 must be continued

FIGURE 4

COMBINATION OF STRATEGIES TO FORM
OVERALL RECOVERY APPROACH

PRIORITY
APPLICATION CLASS OVERALL RECOVERY APPROACH

PERSONNEL 1

ACCOUNTS
RECEIVABLE

1

INVENTORY
CONTROL

2

PAYROLL 3

C

STRATEGY
1

STRATEGY
9

STRATEGY
3

STRATEGY
4

STRATEGY

STRATEGY
6

EXPECTED RECOVERY DURATION (MONTHS)

49

FIGURE 5

PHASE 3 — PREPARE RECOVERY PLAN

STEPS: RESULTS:

• ESTABLISH PLAN DEVELOPMENT TEAM • PLAN DEVELOPMENT TEAM
ORGANIZATION

• PREPARE DETAILED PROJECT PLAN
• PROJECT PLAl'J

CONDUCT DETAILED APPLICATION
REVIEW • APPLICATION RECOVERY REOUIRE

MENTS
• PREPARE PROCEDURES FOR INITIATING
RECOVERY • DESCRIPTION OF CRITICAL RESOURCES

• PREPARE PROCEDURES FOR • DETAILED RECOVERY PROCEDURES
APPLICATION PROCESSING

• STAFFING AND RESPONSIBILITIES
• FINALIZE RECOVERY TEAM
ORGANIZATION AND RESPONSIBILITIES • MAINTENANCE AND TESTING

PROCEDURES
• PREPARE PROCEDURES FOR MAIN
TAINING AND TESTING PLAN • APPROVED RECOVERY PLAN

• FINALIZE PLAN DOCUMENTATION AND
REVIEW WITH MANAGEMENT AND USERS

throughout the life of the plan to reflect the
many changes which are a regular part of data
processing.

FIGURE 6

PHASE 4 - REVIEW AND TEST PLAN

ON ONGOING BASIS

STEPS:

• TRAIN MANAGEMENT AND
OPERATIONS PERSONNEL

• CONDUCT PERIODIC TESTING

RESULTS:

A DISASTER
RECOVERY
CAPABILITY

3.1 Phase 1 - Assess Eecovery Requirements

Since Phase 1 is concerned primarily with

evaluating exposure and risks and prioritizing
recovery requirements, capacity
considerations do not play a major role. One

might argue that, at this stage, questions
about

:

the capacity of an organization's
ADP configuration,

the capacity requirements of
individual applications, and

the capacity which may be required
to support an organization's
critical applications in a recovery,

environment

• PERFORM ONGOING MONITORING
AND MAINTENANCE

3. Capacity Considerations

Capacity considerations are present in

many aspects of the disaster recovery planning
process. The following sections describe the
major considerations involved in terms of each
of the recovery planning process phases
described above.

should not even be considered. The exposures
and potential losses identified and the

recovery requirements derived should be based
solely on the impact of a disaster and, at
this point, not on the efforts and costs

required to satisfy these recovery
requirements.

The early stages of Phase 1 do provide

an opportunity to gather information which
will be used later in this phase and in

subsequent phases. This informtion should
include

:

Resource requirements of each
individual application

50

Run times

CPU and memory requirements

DASD space requirements

Tape drive requirements

Communications requirements

Printing/ punching
requirements

Other special output
requirements (special forms,
bursting, decollating, COM,

etc.)

System and supporting software
needed to process all applications

Operating system software

Special on-line systems

Utilities

Assemblers, compilers, linkage
editors, etc.

Supporting systems (data base
system(s), tape library
system, etc.)

Others

An inventory of all computer
hardware and communications
equipment

Type of equipment

Vendor

Model

Special features.

Much of this information will already be

available if a comprehensive CPE program has

been established.

Once the organization's recovery

requirements have been defined and the

recovery windows selected, the minimm
configuration required to process the critical

applications in each recovery window must be

determined. Since many critical applications
are processed on a periodic basis, this

determination must be based on earlier
assumptions regarding the conditions under
which a disaster would occur. A "realistic
worst case" scenario should be developed

describing the most disadvantageous time when
a disaster could reasonably occur in terms of
the resource requirements of the
organization's critical applications. A

disaster at that time would require the

heaviest use of the AflP facility and would
probably result in the highest vulnerability
from a corporate or agency standpoint.

Based on this scenario, the minimum
configuration can be selected using the
information described above or other available
information sources. Each of the components
described in Section 2.1 should be considered.
In developing this configuration, the

following should be kept in mind:

Only the gross characteristics of
the configuration need be
determined; however, care should be
taken to identify any special
features which must be provided or
any other conditions which must be
met.

Operations in a recovery
environment will be difficult, at
best. Few if any deviations should
be made from normal operating
procedures and more than an adequate
supply of all critical resources
should be included in the

configuration.

In particular, additional capacity
should be included to account for

the fact that:

the system used for recovery
may not be tuned to the
critical applications, and

normal processing schedules
will be interrupted and

additional capacity may be

needed to "make up" lost time.

3.2 Phase 2 - Evaluate Alternative
Recovery Strategies

Phase 2 capacity considerations center

around the suitability of the alternative
strategies available for disaster recovery.

As defined in Section 2.2, these strategies

generally include:

Clerical procedures

Formal reciprocal agreements

Recovery shells

Equipped recovery centers

51

Multiple ADP facilities.

Since these strategies may be suitable for one
or more groups of applications and for one or
more recovery windows, the capacity
considerations described should be applied to

each situation for which a strategy is being
considered.

3.2.1 Clerical Procedures

In the event of a disaster, clerical
procedures impose a substantial burden on the

personnel in user departments. These
personnel, who have become accustomed to using
an automated system, are suddenly forced to

revert to manual recordkeeping. The

difficulties they encounter stem primarily
from a lack of:

adequate staffing levels, which may
have been reduced with the advent
of the automated system;

training in the manual system due

to turnover, transfers, and

retirement; and

forms, logs, and procedures needed
to re-establish the manual system.

Although clerical procedures are often an

effective method of continuing critical
functions in the period directly following a

disaster, personnel capacity should be

examined as a significant factor in the success
of this strategy.

3.2.2 Formal Reciprocal Agreements

For disasters of short duration, formal

reciprocal agreements can be effective. Some
organizations can afford to share some portion
of their ADP facilities with another
organization for short periods of time.

Difficulties are generally encoimtered when
longer periods are involved. Because of the
risks involved in assuming that only a short

period of recovery will be required, and the

effort needed to maintain the high degree of
hardware and software compatibility a

reciprocal agreement requires, these
strategies are only effective in special
circumstances.

Before getting involved in a formal
reciprocal agreement, an organization should
look carefully at its capacity requirements
and the capacity available at the other
site(s). It should evaluate whether it could
afford to give up 30-40^ of its configuration
capacity and still process its workload. Does
it have the time to process portions of several

of the other organization's applications (each
day, if necessary) to gi;iaranty hardware and
software compatibility? Does it really want
to "buy into" someone else's disaster?

3.2.3 Recovery Shells

Recovery shells are relatively easy to
evaluate from a space standpoint: determine
the size of the site needed to house the

minimum configuration(s) identified in Phase
1 including room for disk, tape, and related
storage; input and output control areas; data
entry; etc. Power, cooling, and several other
requirements are handled the same way. If a

shell looks "tight", opt for a larger one.

From a hardware and commxmications
standpoint, the use of a shell is predicated
on the vendor's ability to deliver the
necessary equipment and provide the

communications hook-ups needed. If possible,

get vendors' commitments on replacement
equipment in advance, in writing, and store

them off-site. Don't forget the time required

for installation and debugging. If your
organization can't get a firm commitment, or

if it can't afford the delays involved, use a

shell for the later recovery stages and select
a more reliable strategy for the earlier

stages of recovery.

3.2.4 Equipped Recovery Centers

Equipped recovery centers come in sizes.

The sizes are usually based on the size of the

CPU in the configuration, with the number and

type of DASD devices, the amount of memory,

and the type of communications provided scaled
proportionally. Sometimes several size

options are available from the same vendor.

Selecting the right size center is

relatively easy if your organization's needs
fit nicely between the limits of each size

class. If they don't you may be paying for

more than you need, but anticipated growth
over the next few years may justify the

additional capacity. Otherwise you'll have to

develop your plan around the features provided

by the class you need now and then revise the

plan a few years from now. A quick look at

the features and costs of each class and your

growth plans should answer the class selection

question. Also remember that your plan will

take six months or more to develop to the point

that you could actually use the center

effectively, so adjust your capacity estimates

accordingly.

If your organization has some type of

exceptional requirement which is beyond the

scope of a size class which otherwise meets

52

your needs, service bureaus in the vicinity
of the recovery center may be able to provide
the additional capacity your organization
needs. The cost may be lower than moving up
a class. This approach is most applicable to
COM, printing, data entry and other kinds of
processing that can be done "off-line."

3.2.5 Multiple ADP Facilities

Multiple ADP facilities provide the most
flexibility in recovery planning and are often
the most costly strategy. However, many of
these costs are not directly attributable to

disaster recovery. A second ADP facility can
be used in a variety of ways depending on the

nature of the applications portfolio, the

organization's willingness to incur rather
high costs, and their willingness to undertake
business ventures:

As a ready recovery site with
sufficient equipment and staff. The

relatively high cost of this
approach would be a direct expense

to the organization. This type of
redundancy might be required if
recovery had to be as immediate as

possible.

As a separate but equal facility,
handling approximately half of the
workload and with approximately
half of the total capacity. This
assumes that the organization's
critical applications account for
less than half of the total
workload.

As a service bureau selling time for

processing that could be pre-empted

in the event of a disaster. In most
cases, this would involve a separate

business venture.

A ready site must have sufficient capacity to

process the critical applications and to begin

this processing within some rather stringent

time constraints. This would certainly

require ready capacity in all areas, including

personnel. The service bureau approach
imposes additional complications on an already

difficult problem. Though certainly feasible,

it is a decision with business and capacity
considerations beyond the scope of disaster

recovery.

When evaluating the suitability of each

strategy and formulating an overall recovery

approach, the impact of the organization's

growth plans on each strategy should be

considered. Each strategy should be reviewed

to determine if it will still be practical and

cost-effective in two to five years. The

impact of each strategy on the growth plans
should also be examined.

3.3 Phase 3 - Prepare Recovery Plan

During Phase 3, the detailed policies,

plans and procedures to be included in the

final recovery plan must be prepared. Much
of this effort parallels the analysis tasks
in Phase 1 only with more attention to detail.
Many of the capacity considerations involved
have been discussed above.

One particular procedure to be prepared
in this phase involves a considerable number
of capacity considerations. This procedure
addresses the replacement of the ADP facility
or any equipment damaged during the disaster.
In the event of a partial or total loss to the
ADP facility, decisions must be made about
relocating the ADP facility. Similarly, if
the facility can be salvaged but the

configuration was destroyed, decisions must
be made whether more (or less) powerful
components should be acquired, and if so, which
ones.

3.4 Phase 4 - Review and Test Plan on Ongoing
Basis

From a capacity standpoint, Phase 4 is

primarily concerned with "closing the loop" -

updating the plan to reflect the changes in:

Hardware, software, staff, etc. at
the primary site

Changes in corresponding areas at

the site(s) used in the recovery
plan

Organizational policies,
priorities, or practices which
affect the recovery plan

The organization's applications
portfolio.

To provide the necessary updated information,

close cooperation and formal interfaces must

be developed between a number of facility
management functions. Most of the information

needed to update the recovery plan should be

available from the organization's capacity

planning process. Other information should

be available from application system

development and change control programs.

Truly effective plan maintenance will

ultimately require a change in the way the

organization "does business," requiring new

or improved interfaces between these and other
ADP and business fimctions.

53

4. Conclusions

Concerns regarding the impact of

processing interruptions have stimulated
increased interest in effective disaster
recovery plans. To ensure the effectiveness
of these plans, capacity considerations must

be incorporated throughout the recovery
planning process. CPE practitioners should
become increasingly involved in plan
development and maintenance activities to

ensure that recovery plans provide sufficient
capacity to ensure the continued availability
of an organization's critical ADP functions.

I would like to acknowledge the contribu-
tion Mr, Donald Cloud of Arthur Young L

Company's Providence, Rhode Island office
has made to the development of the concepts
and approaches described in this paper.

Ref erences

[l] Comptroller General's Report to The
Congress, "Most Federal Agencies Have
Done Little Planning for ADP Disas-
ters," U.S. General Accounting Office,
December 18, 1980.

[2] Office of Management and Budget,
Circular A-71, Transmittal Memo-
random No. 1, "Security of Federal
Automated Information Systems,"

July 27, 1978.

54

End User Productivity

55

SESSION OVERVIEW

END USER PRODUCTIVITY

Terry Potter

Digital Equipment Corporation
Maynard, MA

Carl Palmer pointed out in this year's proceedings
Foreword that Productivity is defined as the relationship
between the quantity of goods or services produced (outputs) at
a given level of quality and the resources used (input).
Therefore, the end user of a computer system should see higher
quantity and/or quality of goods or services at the same cost
if productivity increases, or at least the same
quantity/quality at lower cost. Issues in measuring/reporting
on productivity; techniques to increase productivity; and
methods to analyze or view end user productivity are the key
theme of this session.

Computers were a major boost to U.S. productivity during
their early development since they were put on assignments
which required little human intervention and were well
structured/repetitive. Archer points out that today the
applications of computers are more interactive, involving major
human intervention doing work which is highly unstructured and

non- repetitive. These new applications of computers are
requiring fundamental changes in both hardware and software.

New hardware such as local area networks, geographically
distributed systems, new database facilities, graphics and

intelligent terminals, microcomputers, as well as new
architectures are beginning to emerge. New types of software
allowing application development without programming or, at

least, more automation of application development are also
emerging. Elsen's paper focuses on one aspect of this new type
or style of software development.

The era of "end-user-driven" computing is now upon us.

Understanding the work that the user does will be key to

engineering the systems which are flexible enough to meet the

productivity goals of an organization. The paper by
Wilson/Mohr begins to address the issue of measuring and

reporting service while allowing the user to define work in a

flex ible manner

.

In the past, performance analysts have viewed their job as

analysing the computer system and its underlying structures.
In the near future, however, performance analysts will be

forced to view both the computer and the personnel subsystems.
Archer's paper discusses a framework for doing performance
analyses at different levels of system complexity. That is, he

proposes a finite state modeling framework to express both the

computer and personnel subsystems. Given this framework, one
can apply the typical performance analysis methods we have all

become accustomed to.

57

SERVICE REPORTING FOR THE BOTTOM LINE

Carol B. Wilson

Fiscal Associates, Inc.

Alexandria , VA

Jeffrey M. Mohr
Chan Mei Chu

Arthur Young & Company

Washington, DC

The productivity of the end-users of an ADP Installation is affected
by the service being rendered by the installation, and by the anticipated
service levels. Losses in productivity of the end-users can ripple out-
ward in the form of losses in benefit to the organization from missed
opportunities, etc., or in the form of increased cost to the organization
to produce the same products or services. As the ADP installation becomes
more critical to the success of the organization, the need to ensure the
continuation of adequate service becomes more important. This paper de-
scribes the basis of an approach to user service reporting based on the
fiscal aspects of ADP service. Such a system would provide the neces-
sary information to various levels of organizational management to per-
mit the assessment of ADP performance as it affects end-user productivity
and the bottom line for the organization.

Key words: ADP installation management; cost-benefit; performance manage-
ment; productivity; user service reporting.

1. Productivity and ADP Service

Productivity of the American work force
has become a general issue of concern to

business and government. For the past sev-

eral months , hardly any issue of a manage-
ment related periodical has failed to have
an article on productivity. We read arti-
cles concerning the great productivity found

in the Japanese industries which is no long-
er found in American industries. We read
articles on how Theory Z of management will
increase the productivity of our work force.

Books have come out concerning the psycho-
logical factors of groups and norm settings,

and how this affects the work flow and pro-
ductivity of workers in different environ-
ments. Such concerns have also been voiced
in the computer industry, as the productivity
of ADP personnel lags behind the technologi-

cal advances made in the hardware area. In

response to these concerns, the ADP industry

has seen an upsurge in the development of

productivity tools for both ADP professionals
and non-ADP professionals using ADP as a

resource.

The concept of aiding programmer pro-
ductivity extends back many years. For
example, the addition of the Report Writer
capability to the COBOL language was an

early productivity tool aimed at reducing
the time and effort required to format and
generate typical reports. The early efforts

in the file management system area were also

driven and sold for productivity increases

by reducing the effort required to handle

increasingly larger and more complex sets of

data. Following this, products were devel-

oped; e.g., data base management systems.

59

which would permit a non-ADP person to access
data and perform some limited formatting and
manipulation of that data for reporting pur-
poses without having to use an ADP profess-
ional as a go-between.

What has sparked this interest in pro-
ductivity? Are we striving for greater pro-
ductivity for the sake of greater productiv-
ity, or, is there some underlying principle
that drives the pressure to maintain or to
increase productivity of the work force?
While there are undoubtedly sound social and
psychological reasons for having people work
productively, we feel that the primary inter-
est in productivity relates to the fact that
decreases in productivity decrease the bene-
fit, or profit, to the organization. That is

to say, that productivity affects the bottom
line figure for an organization. This can
easily be seen when we objectively look for
a definition of productivity. Productivity
can be defined as the amount of work perform-
ed for a given amount of dollars. Productiv-
ity will increase when more products or ser-
vices are produced for a specified cost.
Increasing the output of an organization -

products or services - increases the benefits
to the organization in the form of income,
increased social benefits, etc. If the in-

crease occurs without a corresponding in-

crease in the cost to produce the output, the

net benefit to the organization is increased.

So what does user service reporting have
to do with productivity? Many ADP installa-
tions provide a valuable, possibly critical,
service to the organization by providing com-
puting resources to the organizational units
to assist them in carrying out their func-
tions. The service which the installation
provides can affect the productivity of the

organizational units. As the ADP installa-
tion service becomes more critical to the

success of the organization, the need to en-
sure the continuation of adequate service
becomes more important. A user service re-
porting system will be needed to provide the

necessary information to the organizational
management which will permit the assessment
of ADP performance as it affects user pro-
ductivity and the ability of an organization
to maximize its net benefit.

During fiscal year 1981, the National
Bureau of Standards supported work (under

contract NB80SBCA0501) to look into the

feasibility of developing a user service re-
porting system (USRS) which would support
decisions made to maximize the net benefit
to an organization. The problems associated
with developing a USRS based on such a con-
cept and the requirements which would be

placed on the USRS were the major topics of
the contract. In the remainder of the paper,
we summarize the work of the contract and
discuss the requirements of such a USRS.

2. Service and Net Benefit to the
Organization

The goal of any ADP installation should
be to meet the computing needs of its user
community; i.e., to provide the needed ser-
vice to the users. User service reporting
should be the cornerstone of all computer
performance management programs in that
(1) reports of deviations below the required
level of service should be the trigger mech-
anism for some type of performance improve-
ment activity; (2) information should be pro-
vided by the reporting system to enable pro-
per planning for the application of user
workloads to the ADP installation resources
to enhance productivity and maximization of
net benefit. Because the requirements for
service vary and the demands placed on the
installation may vary, the task of managing
service becomes one of global balancing and
planning for the best overall benefit to the
organization. It should be noted that the
ADP installation itself only generates a

direct benefit to the organization if it

brings in outside income from "renting out"
its excess capacity. Otherwise, the ADP
installation's benefit to the organization
can only be measured in terms of the net
benefits to the organization of having the
workload run on it, where the net benefit to

the organization for a particular piece of

workload can be defined as the difference
between the benefit to the organization an^
the total cost of performing the work using
the ADP installation resource.

How are service and net benefit related?
Bennett [BENNW 81] discusses this relation
by pointing out that if an ADP installation
provides service to an efficient user and
minimizes to a practical point the time re-
quired to successfully complete the unit of
work and the required level of user effort,
that the installation is providing practi-
cally maximal effective service. Further,
service may be considered to have improved
if the time-to-completion or user effort are
reduced and such reductions lead to reduced
costs to the user or increased benefits.
The setting of service goals and the level
of service rendered can affect the product-
ivity of the end-users . There are no univ-

ersal "best" service levels, since the

levels depend upon the environment of the

work force which uses the ADP resource. For
example, the response time of an online
system should be fairly fast for repetitive

60

data entry so that the system does not slow
down the person entering the data. However,
in some situations it has been shown that a

rapid response may actually lead to greater
errors, uneasiness, and lessened productiv-
ity of a terminal user.

In the section immediately below we
give a general overview of the concept of

maximizing net benefit to an organization.
The reader is referred to the NBS special
publication [MOHRJ 81a] and other references
in the bibliography dealing with cost and/or
benefit analysis of ADP service and the
economics of computing. This discussion is

included to ensure that the reader has a

general notion of cost-benefit analysis and
its informational requirements, since the
informational requirements form the basis of

the approach to a USRS. In the section fol-
lowing the discussion of net benefit, we ex-
amine what general requirements this approach
places on a USRS.

3. Concept of Maximizing Net Benefit to the
Organiztion

The crux of user service reporting and
the management of service to the users lies
in the identification of the computing needs
of the user community. The approach taken
in this paper is that analysis of computer
performance should be based on the fiscal
aspects of rendering ADP service to the of-
fered user workload, and the determination
of xvrhich work should be included in the of-
fered user workload and the service it should
receive be based on the net benefit of that
work to the organization. The underlying
assumption is that benefits and costs assoc-
iated with the use of the ADP resources In

support of an organizational program can be
quantified. In fact, it is pointed out

[BENNW 81] that if the benefit associated
with a unit of work can not be determined,
the decisions concerning the usefulness of

the work and its relative priority with re-
spect to other work can not be objectively
determined

.

The provision of a particular service

or end-product by an organization is assumed

to have an intrinsic value. Benefits are

assumed to be the positive advantages which

an organization receives as a result of sup-

plying an end-product to another organiza-
tion or individual. In the commercial sec-

tor, that value relates to profit to a busi-

ness. In the Federal sector, the value may

be derived from satisfying social needs of

the country as expressed in the system of

public laws and Congressional mandates.
Qunatifying such benefits can be quite com-

plex, and a discussion of the associated
problems is definitely beyond the scope of
this paper.

Although non-trivial, we will assume
that the gross benefit to the organization
for a particular unit of work can be deter-
mined. It remains, then, to determine the
gross, or total, cost to the organization of
processing that work at its ADP Installation.
The total cost of processing work for a pro-
ject (j) can be expressed as

C(j) = CU(j) + CI(j) (1)

where C(j) is the total ADP-related cost for
work for project (j

)

CU(j) is the Indirect costs to project (j)
CI(j) is the direct Installation costs

to project(j)

.

CU(j) relates to the service rendered by the
ADP installation and would include such
things as the cost of the direct users of the
project (i.e. , personnel who directly use the
ADP resource such as programmers, data entry
clerks, etc.) and delay costs (e.g., lost
opportunity costs or user impact costs).

CI(j) would Include the computing system cost
(e.g., chargeback) and auxllllary costs. It

is well to note that CU(j) may be positive or
negative, since

CU(j) = P(j) - S(j) (2)

where P(j) is the personnel cost
S(j) are the savings incurred as the

result of productivity Increases
due to ADP reducing the effort.

It is at this point that we can begin to see
where service, end-user productivity, and the

bottom line are related. End-user productiv-
ity is affected by the service both rendered
(i.e., response) and anticipated. Losses, or

gains, in productivity will ultimately be re-
flected in costs and benefits to the organi-
zation.

Regardless of the cause and source of

the ADP service degradation, the end result

will be the same - some degree of Impact on

the user community. When the user community

is unable to perform their assigned jobs due

to ADP service failures, resources are wasted,

user costs increase, and productivity de-

creases. Hence, when service rendered does

not meet the required levels, delay costs may

be accrued. The estimation of the more tang-

ible costs is fairly straightforward, invol-

ving estimating the length of time a user is

61

non-productive while waiting for an overdue
response from the ADP installation. But
there are often less tangible delay costs,
involving, for example, changes in work pat-
terns of attitudes of users. An example of

less tangible delay costs is given by Axelrod
[AXELC 79] when he discusses the effect of a

job not meeting the estimated turnaround
time. The effect may range from loss time
and productivity of the user as he diverts
his time to a monitoring operation with re-
spect to the system queries, to a loss of

potentially profitable jobs because of lack
of user confidence in the ADP installation.

Secondary delay costs may also occur as

the poor service to the direct user ripples
its way outward in the form of missed dead-
lines on projects, decisions being made using
incomplete data, decisions postponed, lost

opportunities for benefits, etc. It should
be pointed out that resources are always
wasted when service is poor, since they do

not contribute to the gross benefit to the

organization and could always be expended
more profitably in other areas. It is not

a valid argument that such costs are not real
because salaries must be paid anyway, ma-
chines leased, etc., since, st some point,
end-user productivity loss will translate
into additional resources (e.g., manpower)
requirements

.

Given that the above determinations and
calculations can be made, we can define as

follows the net benefit to the project (j) of

performing its work by using the ADP instal-
lation resources:

NB(j) = B(j) - C(j) (3)

where B(j) is the gross benefit to the organ-
ization for project(j)

C(j) is the total cost of using the

ADP installation.
The equation above assumes that the instal-

lation has a particular configuration which
is tuned to perform in a certain manner.

When the characteristics of the installa-
tion's ability to provide service change,

the NB(j) will change, because C(J) depends

on the direct installation costs - CI(j) -

and the performance of the installation,
which affects CU(j).

For a given ADP installation capability,
the net benefit to the organization as a

whole for the ADP resource is defines as:

NB = B - C (4)

where B is the benefit to all projects given
the installation capability

C is the cost of using the ADP instal-
lation.

Since the net benefit, NB, depends on the
precise capabilities of the ADP installation
and the make-up of the user workload, a set
of NB(i) could be developed for various al-
ternative installation capabilities. The
proper mix of user workload and ADP instal-
lation resources could then be determined by
maximizing the NB(i). It should be noted
that sub-maximizations must be performed
throughout the process, since the determina-
tion of whether a particular user job will
become part of the workload depends on system
and auxilliary costs, which in turn depend
on installation capability.

In order to quantify these economic
consequences, the user reporting system must
be able to describe user workload at a high
enough level to relate meaningfully the
workload to the costs and benefits associated
with the user work. In addition, methods to

translate user work to installation-specific
measures are needed to estimate the capacity
required to support the user workload at a

specified level. Such a capability would
permit the costs to the installation to be
weighed against the costs and benefits to
the users of using the installation, all of

which would lead to the maximization of net
benefit to the organization. Such capabil-
ities are not found in performance systems
today. In the following section we discuss
why these characteristics are important.

4. User Reporting System
,

4 . 1 Environment

The user needs the ADP installation to

process his workload within certain service
thresholds if the net benefit to the organ-
ization is to remain practically maximal.
User service reporting enters the picture by

providing the necessary information to keep
the service function of the ADP installation
under control - although it may not provide
all the information necessary to arrive at a

solution to the performance problem. Fur-

ther, the user service reporting system must
provide the information necessary to relate
user workload to the service characteristics
of a given configuration if planning is to

be effective in ensuring that the needed
levels of service are provided.

The goal of a user service reporting
system should be to provide information with
respect to ADP service to support the deci-
sions being made by the upper management.

62

the project /line management, and the ADP in-
stallation management. The users need to
know what service to expect and what costs
will be incurred in acquiring and using the
services of the ADP installation if they are
to effectively control and plan their pro-
grams and projects. The ADP manager also
needs information concerning the current
level of service being provided to the user
and the impact of the projected workload on
the installation's ability to provide service.
The USRS should provide an important link be-
tween the user community and the ADP instal-
lation.

Both the user and the ADP manager need
service information in order to properly con-
trol the execution of their projects and pro-
grams. For example, a manager of direct
users may need to make a decision regarding
the addition of data entry clerks to a pro-
ject if the system is not responsive enough
for the current staff to perform the data
entry function. Likewise, the manager of a
program development group may need to make
decisions regarding the assignment of multi-
ple development tasks to an individual due
to the long turnaround time of the ADP in-
stallation in processing batch work. These
types of decisions are control, or operating,
decisions which are made to accomodate short-
term situations that exist when the ADP in-
stallation is not providing acceptable levels
of service. If such situations were to occur
over a sufficiently long period of time,

planning decisions would be most likely be
made by user managers and the ADP manager,
resulting in a mutually acceptable course
of action.

Decisions in the planning area require
more and different information than is re-
quired for making control decisions. In
particular, not only would information re-
lated to the quality of service being pro-
vided be necessary, but also information con-
cerning the cost of providing service at dif-
ferent levels. Such cost information would
include both the direct cost to the ADP in-
stallation of providing the required levels
of service, and the indirect cost to the

organization when service falls below the

specified levels.

4.2 Requirements

In order for a user service reporting
system to satisfactorially support both the
ADP manager and the user community in effect-
ively managing their projects, the following
requirements must be met by the system:

* The ability to provide management
with information necessary to make

informed cost analyses in order to
maximize net benefit to the organization

* The ability to provide information that
is needed by the user community to con-
trol their projects and resources

* The ability to provide information that
is needed by the ADP manager to control
the computing resource

The first requirement is necessary if the
proper planning is to be carried out to en-
sure that the required service level can be
met by the ADP installation in the future as
it processes the user workload. The last
two requirements support the control, or

operational, decision-making processes of

the user community and the ADP installation
manager

.

4.2.1 Informed Cost Analysis

In the discussion above, we have noted
that the computing needs of the user commun-
ity should be determined by satisfying the
overall goal of maximizing net benefit to
the organization. The level of service pro-
vided by the ADP installation may affect
both the costs and the benefits of completing
the user's work functions. To be useful to
a USRS report recipient, the work units for
which service reports are generated should
correspond to the work units of the function
being performed. That is to say, the users
must be given the ability to define units
of work, and , thus, the levels at which the
workload will be described, so that the re-
ports are in user-oriented terms and mea-
sures. The definition of user work units
will vary from installation to installation,
and even from application system to appli-
cation system within an organization.

Further, the full cost of ADP service
must be reported, which includes both user
and ADP installation costs. The service
level requirements placed on the ADP instal-
lations reflect the quality of service re-
quired by the user community to successfully
meet its schedules and deadlines. When the

ADP installation is meeting these require-
ments and is available, cost incurred by
projects for idle workers, missed deadlines,
etc., are not attributable to the ADP re-
source. However, whenever the ADP instal-
lation is unable to meet the service require-
ments of all, or part, of its user community,
there is a cost impact to projects of not
having adequate service. For example, the

lost time, and hence cost, ^associated with
having data entry clerks sit idle while the
computing resource is unavailable is an

63

additional cost incurred by the project,
since the work they would have been perform-
ing must still be performed when the ADP re-
source becomes available. The estimation of
such delay costs is not necessarily straight-
forward or simple. Such information, however,
is essential to the user community in con-
trolling project costs and for management in
making planning decisions. In order for a
USRS to satisfy this requirement, it must be
able to model (calculate) the costs incurred
by individual users and projects based on
different levels of ADP service. When the
reporting system is supporting the control
function, it must be able to model delay
costs based on the actual ADP service being
provided. When the reporting system is sup-
porting the planning function, it must be
able to model the costs based on projected
service and performance levels as estimated
from workload projections and projected
changes to the system configuration. The
satisfaction of this objective is of great
importance to the overall ability of the USRS
to support the decision-making processes,
particularly in the planning area.

4.2.2 Planning and Control of Projects

An ADP installation functions as a ser-
vice to the user progrmmatic groups and pro-
jects of an organization. Almost all user
ADP work is not an end in itself, but is a
part of a larger project or program. The
programs and projects have schedules and
deadlines to meet, and milestones to be
reached. These schedules and deadlines were
projected based on the quality of service the
user expected to receive from the ADP instal-
lation. The level of service was based on
the function of the user project and was to

help to optimize the end-user's productivity.
In order for a manager to control effectively
his project and meet his deadlines and sche-
dules, he needs information concerning the
service he is receiving for the ADP instal-
lation and the service that he can expect to

receive in the near term.

Reporting to the user community the

level of service it has received is probably
not as important as projecting the quality of

service that will be provided. Although it

may be argued that the community already
knows the level of service it is receiving
from the ADP installation, and that the re-
porting of such informatin is not necessary,
it is the inclination of users to blame the
computer anytime projects are not going well,
or are delayed. ADP service information
would appear useful in helping a user manager
isolate a problem with a project in which the
service being received from the ADP instal-

lation might be a contributing factor.

The user service reporting system must
be able to provide the required information
concerning the projected quality of service
early enough to serve as input to the deci-
sion-making process. The requirement is
critical is the reporting system is to be
able to support the project control function
of the user. Such information is needed by
the user managers to determine the adjust-
ments that need to be made to the work
schedules. This is especially important if
ADP usage is on the critical path of the
project. The ability of the USRS to fulfill
this objective may hinge on its ability to
relate service with system configuration and
offered workload.

4.2.3 Control of the ADP Resource

The ADP manager has the responsibility
for ensuring that the ADP installation meets
the service requirements of the user commun-
ity when it is processing the expected work-
load, and that the ADP installation is run
in an efficient, effective manner. In order
to carry out these functions, the ADP manager
needs to know where in the system the service
bottlenecks are to be found. The key to this
requirement is that the USRS must be able to
relate the quality of service to factors
which can point to the specific areas which
need improvement if the service level is to
be brought within control limits. The USRS
is not to take the place of a performance
management system, but should be able to
provide service related data to such a sys-
tem. The USRS should indicate when a per-
formance problem exists, and the performancie
management system should be used to diagnose
the problem.

5. Conclusion

With the possible exception of ADP ser-
vice bureaus or commercial timesharing ser-
vices, an installation does not exist to

provide ADP services, but to support an
organization's mission. The service which
an ADP installation provides its users can
impact the productivity of the end-users and,

eventually, the net benefit to the organi-
zation. Since such decisions will be made
at multiple levels throughout the organi-
zation, the USRS must be capable of supplying
information at the appropriate level to each
report recipient. In particular, the USRS
must be able to relate the service rendered
to the costs of providing, or not providing,
adequate service to the organizational units.

During the course of the study it was

64

determined that no current performance sys-
tems satisfy the requirements outlined above.
The primary cause for the lack of acceptable
systems is one of orientation - user versus
ADP system. That is to say, the current
systems are heavily ADP-system oriented and
they report service in ADP units which are
easy to track but which do not necessarily
relate to user work functions. The USRS de-
scribed above, on the other hand, must be
very user-oriented if it is to fulfill its

goal of assisting management in maximizing
net benefit to their organization. There
are three issues which must be resolved be-
fore the USRS descibed above can be

developed

:

* ADP system support in the definition of
user work units and service character-
istics

* techniques for the estimation of bene-
fits and delay costs

* increased user involvement

The resolution of each of these issues is

necessary if the USRS is to be developed.

The NBS report [MOHRJ 81a] discusses the pro-
spects for resolving these issues. Further,
it discusses at length the differences in
workload characterization required by this

approach versus the traditional workload
description. It discusses the requirements
on the user community as a result of the

required, new characterization. It recom-
mends particular service measures to be re-

ported which relate to cost-benefit calcu-
lations. The conclusion of the report is:

The proposed approach to ADP service
reporting should be useful in virtually
all organizations or agencies. The

approach is directed towards assisting
the organization in making those deci-

sions that will maximize net benefit by
providing information describing the

total costs and benefits of the level
of ADP service being provided. The re-

ports will be in terms known and under-
stood by the user. The information in

the reports should be compatible with
the various types of management inform-
ation presented to high level managers.

The ADP service reports should be well-
suited for inclusion in an overall re-

porting system.

References

[AXELC 79] Axelrod, C.W. Computer Effect-
iveness: Bridging, the Management /Technology
Gap. Washington, D.C. Information Resources
Press, 1979.

[AXELC 80] Axelrod, C.W. The Dynamics of
Computer Capacity Planning. CMC Transactions
1980 September; 29: Section 3.

[BENNW 81] Bennett, W.D. Computer Perform-
ance: A Conceptual Framework. To be publish-
ed as a NBS Special Publication, 1981.

[EDPPR 80] Fulfilling User Service Object-
ives. EDP Performance Review. 1980 October;
8(10): 1-7.

[FLEMI 81] Flemming, I.J. Service Level Ob-
jectives as Capacity Management Criteria.
Record of the Third Annual Conference on Com-
puter Capacity Management. 1981 April 7-9;

163-170.

[GUERJ 80] Guerrieri, J. A. Establishing
True User Requirements. Small Systems.
1980 September; 8: 26-27+.

[HOWAP 80] Howard, P.C. Planning Capacity
to Meet User Service Requirements. Computer
Performance Evaluation CMG XI. 1980 December
2-5; Boston Massachusetts. Computer Measure-
ment Group: 147-151.

[KLEIJ 80] Kleignen, J. P.C. Computers and

Profits: Quantifying Financial Benefits of

Information. Reading Massachusetts: Addison-
Wesley Publishing Company, 1980.

[MOHRJ 81a] Mohr,J. and Wilson, C. Draft: A
Report Describing an Approach to ADP User

Service Reporting. Contract No. NB80SBCA0501
National Bureau of Standards, 1981.

[MOHRJ 81b] Mohr, J., Wilson, C, and Chan,

M. Fiscal Aspects of ADP Service Management.

Proceedings of CMG XII. Computer Measurement
Group (to be published).

[NOLAG 79] Nolan, G.J. Standard Costing for

Data Processing. Controlled Resource Manage-
ment Through Computer Performance Evaluation
CMG X. 1979 December 4-7; Dallas Texas.

Computer Measurement Group: 12-6.

65

AUTOMATING THE AUTOMATIC N PROCESS

Louis C. Elsen

Evolving Computer Concepts Corp.
St. Loius, MO

The increasing demands for data
automation support have created a new
"frontier": A COMPUTER SYSTEM THAT CAN
PROGRAM ITSELF. When one considers that $4

billion of our $6 billion Federal budget for
automation support is allocated to staffing
and that the introduction of new and
improved technologies place increasingly
difficult requirements on personnel, the
need for the new "frontier" becomes
apparent. The introduction of automated
automation has evolved by necessity— it is a

new concept whose time has come. The
circumstances that brought us to this
evolution stem from:

+ rapid growth in technology which
makes a particular computer
system virtually obsolete before
it is delivered.

+ personnel which is at a crisis
level. (A January MIS report
predicts shortages of 50,000 in

1981.)

The result of these two "circimstances"
has had a significant impact on annual cost.

+ Hardware is decreasing at 20%.

+ Manpower is increasing at 15%.

+ Software is increasing at 30%.

Today in order to operate a "typical"
computer installation, an annual budget
ranging from $800,000 to $1.2 million is

required. This cost becomes considerably
more significant when one considers the two
distinct parts of each installation:

+ HARDWARE
-Mainfr ames
-Utilities
-Env ironm ent
-Suppl ies

+ STAFFING
-Managers
-Analysts
-Programmers
-Operators

The latter of the two parts, staffing,
currently accounts for 70 to 80 percent of

an installation's budget. This is a far cry
from the cost relationships that were in

existence 20 years ago. Then, an average
installation was able to operate on a budget
of approximately $500,000 with 65-75 percent
of its total resources allocated to

hardware. This impacted the growth of data
automation leading to the development of
computer performance management (CPM)
systems which targeted efforts toward
increasing hardware productivity. This
philosophy and approach to CPM has continued
through the years; although, the target
emphasis has shifted and should now be
redirected toward increasing personnel
productivity

.

This can be acomplished by evaluating
those functions most commonly performed by
data automators, reducing them to their
logical components and then automating them.

The end result is:

+ reduced programming requirements by
elimination of menial or simple
design/ programming tasks;

67

+ increased site productivity by facil-
itating software generation, thereby
reducing the time required to achieve
a desired system objective;

+ increased programmer productivity by
redirecting programming efforts to

areas where automatic programming is

not yet practical or achieved.

Although these "results" appear to rep-

resent an unrealistic utopia that should be
reserved for a science fiction novel, this
capability does exist. Basic analysis of
many computer facilities revealed that the

"computer's" primary function was usually
nothing more than a sophisticated filing

system and that the majority of the
functions being "programmed" were either
putting something into the "file cabinet" or

getting something out. Observation of
techniques employed by analysts and
programmers revealed two methods for
accomplishing these input/ output functions.

+ Batch: the processing of data
accumulated over a period of time.

+ On-Line: the processing of data
immediately with a response received
as soon as possible, usually within
seconds

.

To continue the thrust of automating
automation, one must continue analyzing data
automation, further reducing it to its logi-
cal components, grouping similar functions
together, analyzing how each individual com-

ponent or function is performed, and finally
reducing the programming logic to machine
logic. We, as data automators, perform

these functions daily whenever we automate a

personnel, budget, or inventory system. We

study the manual intensive functions being
performed, reduce them to their logical com-
ponents, then program the computer to do
them. A computer program which is the prod-
uct of the techniques I have just outlined
is the Logical On-Line User's Inquiry System
(LOUIS).

LOUIS is a system which writes on-line
computer programs to retrieve data from the
"file cabinet." It was designed to provide

managers and functional users with the
information they need when they need it.

The programs LOUIS produces have the full

range of capabilities comparable to

generalized inquiry systems currently on the
market. LOUIS was not designed to be the

answer for everyone. It is not an update
system, nor is it a batch system. The

original design objectives of LOUIS were to

automate approximately 60 percent of the

programming requirements necessary to obtain
data from an on-line data base. It performs
this function well.

As alluded to earlier, programming
efforts must be divided into logical
categories. An attempt to automate
"everything" in one huge system would
probably be catastrophic. LOUIS is just one
part of the entire programming scheme;
incorporating the techniques employed by
LOUIS and applying them to update and batch
systems would yield similar results.

LOUIS is unique because it writes
tailored programs optimized for the
particular machine it is running on. When
an individual specifies a data base name,

LOUIS interrogates the data file to

determine the format, type, and size of the

file. It analyzes the data to determine
record volume, identifies numeric data and

dates, and edits them to ensure accuracy.
LOUIS continues performing analysis on the

information it obtains, including the types
of inquiries it has executed, performing the

very same functions programmers perform.
The programs LOUIS writes are optimized
assembly language programs. This approach
achieves improved throughput and minimum
system impact. To understand what (in my
opinion) necessitates the use of ASSEMBLY
language and why its use has diminished, I

must now refer you to the past.

When computers were first designed,
machine/assembly languages were the only
means of "programming." Due to its
tediousness and complexity, few individuals
became qualified in the "art." The
evolution of data automation progressed in

conformance with the law of supply and

demand. In order to increase the number of
individuals capable of interfacing with
computer, "simpler" languages were created.

+ Higher Level Languages-A language in

which each instruction or statement
corresponds to several machine code

instruction. These languages allow
programmers to write in notation with
which they can become familiar.

- COBOL
- FORTRAN
- BASIC
- etc

.

+ Report Writers-A processing program

that can be used to generate reports
from existing sets of data through
parameter cards which control the
flow of the program execution.
Report writers usually execute in the

batch mode.

- SIS
- TRS
- lifWDMS (These two systems are

complete data management systems
which provide a capability to
update the data base also.)

- TOTAL
- etc,

+ Inquiry Languages-A processing
program which utilizes a simple
command language whereby the
interrogation of the contents of a

computer's storage may be initiated
at a local or remote point by use of
a keyboard, touchtone pad, or other
dev ice

.

- AZ7
- IDS QUERY
- etc.

Although these "simpler" languages
eased the loads on programmers and users,
the workload on the computer was dramatic-
ally increased. For example, a program
written in Assembly Language required the

programmer to write 5,000 lines of code
which produced 5,000 executable machine
instruction. However, the same program
written in COBOL or a higher level language
could be written in 500 lines, but when this
program is compiled and reduced to its
assembly language counterpart, the execut-
able code generated required 8,000-10,000
lines. The Report Writer, in this instance,
required 50 lines of code and generated
25,000-30,000 lines of executable code.
When using an Inquiry Language, 1-5 lines of
code are necessary, producing 40,000-50,000
executable lines. There are three areas to

be examined in this instance.

1. The Assembly Language Program is

usually the ultimate in machine
efficiency and productivity.

2. Programmers using higher level
languages can dedicate much less
time per program.

3. Through the use of inquiry langu-
ages, users can now communicate
directly with the computer; thereby
increasing their productivity.

This now brings us to the present.
Although we are providing data automation
support to managers and functional users,
their need for the processing of information
and the communication of that information
necessary for the productive operations of
an office continues to exist; and there just

aren't enough data automators to program all

the requirements that exist. With the
introduction of such technologies as word
processing, teleconferencing, and electronic
mail which are becoming the vast array of
the interconnected technologies available
through communications networks, the need
for data automators is continuing to grow.
By incorporating systems such as LOUIS to

perform tasks in basic system design and

programming, we are able to utilize data
automation personnel more effectively and
thereby increase overall productivity.
Management is then in a position to reduce
required manpower or redirect programmer
expertise to critical areas and accomplish
their objectives without sacrificing
internal machine efficiencies. A computer
system designed to write specific programs
for each user application provides:

+ System analysis and design
+ Programming
+ Elimination of program debugging time
+ Program optimization
+ Program documentation

All without the need for manual
intervention

.

In order to provide some validity to

this presentation, here are several facts
and figures obtained from evaluation of
LOUIS. One installation in Denver measured
an increase in productivity of ratios
between 50:1 and 80:1. Eleven sites, when
performing their analysis, recorded a 17:1

reduction in cost. These figures were
relevant to hardware performance alone.
Another installation was capable of reducing
and redistributing its programmer work force
by 35 individuals. In a national survey
conducted by the Air Force and substantiated
by the Department of Defense, savings in the
quarter-billion- dollar range were achieved
in just the first year.

Unbelievable? Not really. Increased
productivity at each site where LOUIS was
loaded was achieved because LOUIS allowed
the user to request desired information in

the required format when it was needed.
LOUIS did not question the user's need for

information. It simply analyzed the request
and proceeded, to write the programs
necessary to obtain the answer as quickly as
possible

.

The philosophy expressed is shared by
John J. Connell, author of an article titled
"The Fallacy of Information Resource
Management," appearing in I nfosystems , May
1981. Mr. Connell identified four kinds of
information related activities:

69

+ Identifying
+ Processing
+ Transporting
+ Using

He stated that the identification and use of
information are the "responsibility of indi-
vidual, thinking, human beings" and that the

processing and transporting "can be aided by
outside attention, as the successes achieved
in data processing amply demonstrate."

It is my belief that the "...successes
achieved in data processing..." and the
roles of data automators must continue to

provide users with the information desired
when they need it.

However, I disagree slightly with Mr.

Connell's opinion of identifying and using
information. I believe these two items of
information related activities can be en-
hanced by data automation. Through educa-
tion, users can become aware of what infor-
mation can be gathered, how this information
can be used, and presented with new
methodologies to further enhance
productivity through the use of data
automation

.

You may ask, "Exactly where does CPM

fit in this evolution?" It is my opinion
that CPM should play a new role, one which
incorporates management of the "total site
productivity." I envision computer
performance managers performing two distinct
functions, utilizing automation to

accomplish both.

+ The first function performed by CM
should provide users with a cost
analysis of their current and
projected data automation support.
This service will assist users in

determining whether or not the
advantages of obtaining desired
information is worth the expenditure.

+ The second function should
concentrate on the internal workings
of the site. The goal here is to

achieve the most cost-effective
balance between human and manchine
resources .

In summary, it is important to analyze
the areas I have just described because
doing so can bring the realization that
these jobs are currently being performed
manually. It is my contention that in order

to produce truly cost-effective results, the
performance of these jobs must be automated!

I perceive that in the not- too-distant
future, a computer system will allow a user
to state his new requirement interactively
at a terminal. The "computer" will ask the
user pertinent questions to obtain
information such as the relationships of
data fields, the frequency and types of
information requests, and the volume of
information to be stored, retrieved, etc.
The "computer" will then perform analysis as
required to determine necessary hardware
augmentation (if any), estimated cost, and
feasibility in terms of the machine's
capability. The findings will be compiled
in a report to the requester and computer
performance manager. It can then be
reviewed to determine cessation, continua-
tion, or modification of the plan. Once
this has been acomplished, it is perfectly
logical to have the "computer" go on to

actually write the programs needed to
implement the new procedure in a timely,
efficient manner. We have reviewed and

substantiated the shift in the managerial
functions performed by CPM from a hardware
emphasis to that of personnel. We have
tracked the path of data automation and its
programming evolution and shown the need for

automating data automation. We have
demonstrated feasibility, operability, and

cost effectiveness of such.

As data automators, we can produce
far-reaching, beneficial results by auto-
mating data automation. Reducing our work-
load, increasing central site productivity,
and providing better service will signifi-
cantly enhance our country's productivity
and economic status. As managers of a great
resource, we are bound to insure a smooth,
productive, secure transition into the
future providing management with the means
to obtain current data necessary to
efficiently manage defined areas of
responsibil ity.

70

METHODOLOGY FOR ANALYZING COMPUTER

USER PRODUCTIVITY

Norman P. Archer*

Digital Equipment Corporation
146 Main Street

Maynard, MA 01754

A methodology is proposed for the analysis of computer user
productivity. The methodology is based upon a multi-layered level

structure of the computer system in an interactive environment, where
each lower level develops more detail of the interactive system. This
structure enables a logical approach to the analysis of interactive
systems, and productivity may be analyzed at any level, from the lowest
primitive function up to the most aggregated system level. Here,

considerations of productivity are considerably different in scope and

direction, depending upon the level of detail. Examples are drawn from
the area of text editing, which is having an increasingly strong effect
on the performance of interactive systems.

Key Words: Productivity analysis; interactive systems; text editors;
end user performance; performance analysis.

1. Introduction.

In the time since electronic computers
were first invented and used, there has been
a continuing decline in the cost per unit
work accomplished by computer systems. The
cost per unit time for the human resources
working with the assistance of computer
systems has increased steadily over the same
time interval. This latter cost has been the
driving force behind the ever-increasing move
towards automation. In theory, the computer
assists the human user to the extent that
there is a net decrease in the overall cost

*0n leave from McMaster University, Hamilton,
Ontario

.

of work done. In order to accomplish this
desirable result, the computer system-human
interface should be designed in such a

fashion that the computer can perform more of
the task with little human intervention.

This has not been difficult to do with
standard clerical accounting tasks, which
formed the first great wave of automated
business systems. Here, in essence the
computer is turned loose on a great stack of
well-defined and repetitive tasks, and the

results are returned to the user in some

well-organized fashion at a later time.
There is very little need for human
intervention in such a batch-oriented
environment. Hence the productivity
improvement has been due to the speed at

which the computer carries out its tasks, and

this has shown orders of magnitude increases
due to hardware evolution alone.

71

But now the next wave of business
systems is in the process of evolution, with
the rapidly increasing usage of on-line data
base systems, the automated office,
timesharing computer program development and

other similar uses, all sharing the common
attribute that they are highly interactive
systems. All carry out a variety of
unstructured and non-repetitive tasks, under
the close direction of the user. These
interactive systems are feasible only because
the system hardware costs are so low that
they are no longer the important
consideration they were when the first wave
of business system development was in

progress. Now we are faced with a different
set of problems. The current concern now is

with the human interface, since the user is

seated in front of a terminal and a great
deal of human intervention is required due to
the lack of structure in the tasks the system
is performing. Any improvement in the
efficiency of these interactions is most
beneficial, because the limiting and most
expensive factor in the cost equation is the
human

.

A class of tasks which is consuming a

rapidly increasing proportion of interactive
system time includes the automated office
functions such as word processing and
electronic mail, as well as the more
traditional task of computer program
development. Of these tasks, for example,
100 percent of the time spent on a word
processing system involves the use of a text
editor, while measurements have shown that at

least 50 percent of the commands issued
during interactive program development
involve text editing[1]. Thus it is very
clear that user productivity is strongly
affected by text editor design. Many of the

human factor problems of text editors which
have been addressed by other workers are

reviewed in a recent article by Embley and
Nagy [2]. Miller and Thomas [3] have also

reviewed the more general problems
encountered in the use of interactive
systems. This report will discuss a

structure or taxonomy for the analysis of
interactive user productivity, with specific
attention to the analysis of text editing
interactions as examples.

2. Functional Characteristics Of

Text Editors.

There are a wide variety of text editors
available on modern computer and word
processing systems. The functional
differences among text editors are very
large. However, there is a certain degree
of commonality among editors intended

primarily for prose editing. Similarly,
there are common features among editors used
primarily for computer program editing. As

time has gone on, most of the more recently
developed text editors have evolved towards a

much more common functionality which may be

used for both prose and program editing.

The line editor was the first type of
text editor developed, due to the fact that
the originally available terminals were hard
copy terminals, which require line editors.
Many varieties of this type of editor have
been developed and used, primarily in

systems and application programming work.
The chief characteristic of the line editor
is that it addresses one line of text at a

time. Most line editors allow only vertical
movements of the cursor, so if an operation
is to be performed upon a character or

string of characters on a particular line,
then an editing command is keyed in which
specifies the string in question, and the
operation to be performed upon it. The
operation may usually be extended to include
a range of lines, if desired. Line editors
were and are used primarily for computer
program editing, since computer programs are
line oriented. Some of the more specialized
line editors allow line-by-line syntax
checking as the program is entered, and may
also allow program compilation and execution
from within the editor. However, line
editors do not lend themselves well to the

features which are desirable in editing
proseC 3].

For the more general text editing tasks,

including both prose and programs, a screen
editor (often referred to as a character
editor) appears to have several advantages
over the line editor, from the user's point

of view. First of all, since it is appli-
cable to a broad range of editing tasks, it

requires the user to be familiar with only

one editor and one set of editing commands
which may be used for any type of task.

Secondly, the screen editor allows the user

to view an entire page of text, and to move
the cursor about on that page. The cursor is

normally used to point to the text which is

to be entered, modified or deleted. The
cursor may be moved by keyboard command,
mouse, lightpen or other pointing devices.
The operation to be performed upon the text

is then input to the computer by means of

special function keys or, as in the case of
the line editor, by keying in the instruc-

tion. The rapidly reducing costs of

hardware have made the screen editor a viable

tool in many interactive environments. The
chief disadvantage of the screen editor
compared to the line editor is that, to make
it an effective tool, much higher trans-

72

mission rates are required from the system to

the terminal and a higher price is paid in

cpu time. This must be weighed against the
cost of the human resources making use of the
system. If the primary use of the system is

computing, and machine resources are
limiting, then the choice of a screen editing
system is less likely. This is frequently
the case in a university environment, for

example. Here machine costs are usually a

very strong consideration, and from the point
of view of the university administration,
student time used in editing text of any
kind is relatively cheap. The opposite is

usually the case for a firm employing
clerical and professional staff for work
involving text preparation, where the cost of
personnel time may outweigh the cost of the
additional computer resources required to

support screen editing,

3. An Analysis Framework.

In order to analyze user productivity in

an organized and logical fashion, the first

step is to develop a framework for the
analysis. One way of looking at the
interactive environment is to develop a

model with increasingly detailed levels of
the system load in order to observe and

possibly improve system performance at each
of the more detailed levels. Consider the
model which is illustrated in Figure 1.

Since we are interested in user productivity
we are naturally interested in general system
characteristics in the presence of the global
system workload. The global characteristics
that are well known to affect user
productivity are the system response time
and availability. Most system performance
studies concentrate on the analysis of
system performance in the presence of this
global load

.

If we are interested in user produc-
tivity, however, we must consider the next
lower level of this model, where the
individual user is described by a position.
This is essentially a description of the
tasks which a user in this position is

likely to perform, including the frequency
of performing each such task type. The
performance and productivity of a user in a

specific position is generally given by:

a) the type and number of tasks the user
must carry out

,

b) the experience of the user with these
tasks, and

c) the ability of the user.

Note that we are concerned here with
the user's productivity while using the
computer system. Clearly, we could expand

the discussion to other non-computer oriented

tasks if we wish, in the standard systems
analysis manner. However, this is beyond

the scope of this report and the discussion
will be restricted to those tasks involving
interactive computer system usage.

At the next lower leveKthe task
level) , more detail allows us to consider the

properties of the individual tasks in which
the user is involved. The characteristics of

a particular task would include:

a) the type of task (for example,
transcription from a typescript,
editing from a marked copy, etc.),

b) the amount of time required to
complete the task,

c) the expected error rate from the
user/task pair,

d) the ultimate disposition of the
completed task (program execution,
printed copy, etc.), and

e) the experience of the user with this

type of task.

The subtask level is more detailed than

the task level, allowing us to address such

questions as the amount of time the user

spends carrying out certain activities while
performing a specific task. This in turn

permits more direction in performance
improvement, because we may identify certain

relatively primitive operations which the

user performs frequently. The example shown

in Figure 1 illustrates subtasks used to

describe editing operations. There are

three primary subtasks shown here: text
entry, subtext entry, and housekeeping. The

text entry subtask includes operations
relevant to the direct entry of text, and

related cursor movement and editing
functions invoked directly by function keys.

The subtext entry subtask involves those
operations in which it it necessary to key in

character string instructions for editing
purposes, and includes function editing and

cursor movement relevant to the editing of

these string instructions. The housekeeping

subtask includes remaining operations such as

instructions for formatting printer output,

filing documents, and sending electronic
mail

.

Each of the primary text entry subtasks

includes the primitive functions of keyed

text, cursor moves, and editing function
commands which are at the lowest level in

this structure. It is not necessary for all

of the lower level functions to be common to

these three subtask states. Neither must

these functions be restricted to any
particular subtask state. Finally, a

secondary subtask state is the entry/exit

73

LEVEL

GLOBAL

USERj-1 USER .

3

TASK,

SUBTEXT
ENTRY

KEYED
TEXT

USER
j+1 POSITION

TASK TASK. TASK

TEXT
ENTRY

HOUSE-
KEEPING

I
FUNCTIONS

EDITOR
ACCESS

SUBTASK

CURSOR
MOVES

FUNCTION

Figure 1. Text Editor Level Framework

74

state, which normally has little direct
effect on user performance because it is

entered rather infrequently.

The primitive functions which are at the
lowest level in this structure include any
character which may be entered into the
text, any function key or keyed instruction
which may carry out specific operations such
as "delete word", "replace", etc., and any
key or instruction which controls cursor
movement. Cursor movement includes such
screen editing operations as keyboard arrow
keys or certain applications on light pen or

mouse-driven screen editors. It may also
include functions which control line editor
cursors ("pointers").

Frequently used functions in text
editing systems are often built into special
function keys. These might include the
ability to move the cursor by entities which
are larger than the usual cursor movement by
character, and cursor movement by word,
line, paragraph or page are common. Other
special function keys may be designed to

allow the deletion or insertion of larger
entities as well, or to perform special
operations such as filing the current
document

.

Some frequently performed functions do

not lend themselves to function key
definition. For example, searching the text
for a particular character string will
require the user to define the desired
character string. This will involve
switching to what has been defined above as

subtext entry mode, where the subtext is the

character string in question. Similarly, a

replace operation will require the
definition of the string to be replaced as

well as the string which replaces it. Line
editors are more likely to require subtext
entry of the operation to be performed.
Subtext entry is not necessarily a dis-
advantage, because it may allow greater
flexibility in user control of the editing
system.

4. Productivity Analysis.

Productivity analysis considers the user
time and output, and the cost of the suppor-
ting system. From the point of view of the
productivity analyst, the analysis structure
differs less in form than in emphasis, de-
pending upon the level of detail upon which
interest is to be focussed. For this reason,

the following discussion will be directed in

turn to the various levels outlined above for

the analysis structure. The task level will

be discussed first, because the specific task
itself is a common basis which varies little.

no matter which system we are considering.
From here we can build to an aggregated task
mix at a higher level, or we can break down

the task to more detail at a lower level.

4. 1 The Task Level

.

To develop an understanding of the basic
force which drives the evolution of inter-
active systems to more productive forms, it

is helpful to consider various classes of
interactive tasks, where the amount of
structure in the tasks performed may range
from very high to very low. Examples of such
tasks are given below.

Degrees Of Task Structure

a) Highly Structured
- Data entry
- Transcribing text from document or
dictation

b) Moderately Structured
- Editing text without the aid of
marked-up copy

- Writing a computer program inter-
actively, without the aid of notes

c) Loosely Structured
- Writing a letter, memo or story

without the aid of notes
- Developing a project proposal from

a few ideas

Highly structured tasks are on the
borderline between tasks which can be com-
pletely automated and those which require
some human intervention. Frequently, the

human intervention is required only to
transform information from one form to
another. Since the ultimate bottleneck in any
productivity improvement effort in this area

will always be the user, technological
evolution will eventually solve this problem

by eliminating the human from highly
structured tasks. For example, the most
commonly used text entry device is the
keyboard, and even the most proficient
keyboard users can not improve their keying

speeds above about one hundred words per

minute. Added to this is the fact that a

substantial number of users do not
touch-type, and many get out of practice

because they use a terminal infrequently.

The obvious solution to this problem is to

develop better text entry devices, and some

progress has been made in this area. As an

example, optical character readers may be

used to enter printed text directly into the

computer for editing and storage purposes.

Some progress has been made in the area of

voice text entry systems, but these are a

number of years from being sufficiently

75

reliable and capable devices to substitute
for keyboard entry.

There is less direct aid possible or

even likely from computer systems in less

structured environments. For example,
automatic spelling verification and context
editing are clearly feasible and are being

used to some degree on word processing
systems. But creativity will continue to be

the sole province of the human in the
foreseeable future. On the other hand, the

computer system can be an aid to the human in

improving the speed with which creative ideas

can be transformed into concrete form. It is

at this point where a great deal of common-

ality appears to exist among the writer, the

artist, and the engineer. Design engineers
already make use of CAD(Computer Aided
Design) techniques in designing mechanical
and electronic equipment and buildings, among
other things. The creative, unstructured

task is clearly a task in which benefits can

be derived from a marriage of graphics and

text editing techniques. These can combine
to give the creative mind a potentially
productive working tool in the form of a

"professional work station". Such an inter-

active work station could include techniques
to allow color graphics, split screen editing
features and the ability to quickly generate
hard copy or to set type. The writer could

then have the option of integrating text with
drawings and figures, thus improving the
quality of the final presentation. All of
these features are feasible now, but are only
available as integrated packages on a few

relatively expensive systems. The difficulty
is, of course, in justifying these systems on

the basis of productivity improvement, except

in relatively specialized situations.
However, technological evolution has in the

past and will continue to surmount these cost

obstacles

.

4.2 The Global Level.

Global productivity deals with the
productivity of the entire system, including

the computer system and the human work force

using the computer. At this level the
executive priority decisions are made on the

acquisition of resources to support various
system applications, based presumably on
productivity improvement. However, such
decisions may be influenced by other factors
such as prestige and the ability to attract

and keep high quality employees.

Tools used for productivity analysis at

this level include operations reviews for the
study of human productivity, and some
quantitative techniques for workflow
analysis[4]. A range of measurement and

analysis tools for the study and improvement
of computer system performance are available.
These include [5] analytic modeling, hardware
and software monitoring, benchmarking, etc.,

around which an entire industry has grown and

thrived.

For interactive systems, tradeoffs are

made in the usual manner between the cost of
increasing system resources and the resulting
productivity improvement due to decreasing
response times. It should be noted that pro-
ductivity in this context is rarely quanti-
fied in an organized manner. Rather,
computer system management tends to rely on

the complaint level of the users as a stimu-

lant for taking action. It is not clear that
shorter response times mean higher user per-

formance for all interactive tasks[6]. In

fact, Williams and Swenson[7] suggested that

system resources needed to produce short
response times when not required by the user

are detrimental to overall productivity; in

many cases they studied, user performance was

not adversely affected by longer response
times. However, for most text editing tasks

it is critical that response times be short,

since most text editors are designed around

this assumption.

4.3 The Position Level.

The analysis of the productivity of a

particular position is necessarily tied in

with the entire system, because of inter-

actions among the positions in an

organization. Engel et al [8] discuss the

design and evolution of a prototype office
automation system, which indicated a redesign

of some of the lower level positions due ito

the delegation and shifting of certain tasks
among the users. There are many issues in

the automated office environment which can

cause a great deal of employee concern due to

the possible elimination of office jobs. Not

all of these concerns are due to the complete

automation of certain tasks, although this is

currently an important issue in the banking

industry, for example. Productivity analysis

in such an environment cannot ignore the very

real concerns of management and workers with

both job security and the quality of the work

environment

.

Some issues deal with shifting of tasks

to other positions, thus either reducing the

prestige of the original position or

eliminating it entirely. For example,
consider a task which may be a source of

tension in an automated office. Suppose a

manager, before the introduction of

automation, has dictated formal letters or

memos which his or her secretary has then

drafted and given to the manager for editing.

76

The final copy is then typed, given to the
manager for signing, and finally mailed.
With word processing and electronic mail , the
manager now has the opportunity to do his or
her own typing and/or editing, and finally to

send the mail to its destination with no
assistance required from the secretary. The
ease of keying and making corrections to the
copy is an enticement that many managers
cannot resist. However, the fact that the
new task may reduce the time spent on other
tasks assigned to the manager's position must
be considered. It is very simple to analyze

the productivity improvement or reduction
resulting from such a change. Suppose a

manager wishes only to edit and mail the

document which will be initially keyed in by
his or her secretary. The decision would be

in favor of the manager carrying out this

task if

C < C

m s

where C is the cost per task carried out by
the manager , and

C is the cost per task carried out by

the secretary

c = H X (E + L)

m m m m

C = H X E' + H X (E + L)

s m m s s s

where the subscripts m and s refer to the

manager and secretary respectively, and

H is the hourly rate paid,

E is the time to correct the edited
copy

E' is the manager's time to mark up

the printed copy, and
L is the corresponding mailing time.

Analyses of this type are not appropriate for

the informal short notes and reminders often
communicated among managers and their employ-
ees in an automated office environment. To

maintain the spontaneity, informality and
speed of such communicaions , it is important
that the sender interface directly with the

communication system for maximum productiv-
ity.

state model shown in Figure 2, which is a

model of the subtask structure level of
Figure 1. The transitions among the sub tasks
are shown, as well as transitions among the

primitive functions making up each subtask
state. For a particular task, it is possible
to measure the time spent by the system in

each subtask state and/or function substate
and thus determine how much time was spent in

more productive operations. For example,
keying text in the text entry subtask state

is clearly the most productive operation
which may be carried out, and it is more
productive if no further editing is required
due to entry errors or other changes. Among

the least directly productive activities are

moving the cursor or telling the system to
perform the next editing operation. The time
spent on these operations should be minimized
as much as possible by improved system
design

.

An important issue which also directly
affects the efficiency of text editing is the

design of the command language with which the

user communicates to the system. This was

addressed recently by Ledgard, Whiteside,
Singer and Seymour[9].

In order to analyze the performance of
various text editing systems, we have devel-
oped a system which allows recording and

time-stamping keystrokes from user terminals.
Software has been developed to perform ana-

lyses on the transitions among the various
states the system may occupy while the task

is being carried out. The fractions appear-
ing in Figure 2 represent the transition
probabilities from each state to its possible
successor states, in this case for a sample

editing task being performed with a screen

editor. We can also measure the time spent

and the number of keystrokes transmitted
while in the various model states. The

following table contains a comparison of the

time and keystrokes in each of the states of

the subtask model, for a text entry task and

an editing task respectively. Note that

these results are for only one sample task in

each case, so they will not be representative
of such tasks on this editor. There is a

wide variability among results obtained in

entering and/ or editing different tasks, with

another source of variability being in the

user performing the task.

4.4 The Subtask Level,

At the subtask level it is necessary to
look at specific models of the particular
class of task in question. This allows us to
begin looking at issues such as software and

hardware system design. Consider the finite

77

Figure 2. Subtask Interactions
For A Sample Text Editing Task

78

Table 1. State Time And Keystroke Analysis
Of Sample Text Entry And Edit Tasks

Text Entry Task Edit Task
Subtask Time(%) Kysk(%) Time(%) Kysk(%)
Function

Text Entry
Keyed Text 91.8 96.5 38.7 46.0
Edit Fns. 2.8 1.8 10.8 6.

1

Cursor Moves 'i.3 1.1 40.8 37.2

Subtext Entry
Keyed Text 0.0 0.0 1. 1 0.4

Edit Fns. 0.0 0.0 0.0 0.0
Cursor Moves 0.0 0.0 4.2 7.6

Housekeeping
Keyed Text 0.3 0.3 0.8 1.3

Ed it Fns

.

0.0 0.0 0.5 0.2

Cursor Moves 0.8 0.3 3.

1

1.2

Editor Entry/ 0.0 0.0 0.0 0.0

Access

Figures given in Table 1 are rounded, so the

zeros appearing in the table do not mean that
no count was observed for the related func-
tion. It should be noted that, since such a

high percentage of time is spent keying text
for the text entry task, there may be little
to be gained by system modifications for

tasks of this type. Some improvement may be

made by user training in keying or in

correction of errors detected during keying.

For the text editing task, the user usually
spends a high percentage of time moving the
cursor or using editing functions. Thus the

editing process might be faster if

modifications were made to the editing
software or in keyboard design, and these are

candidates for further investigation.

As mentioned above, it is important from
the point of view of productivity improvement
that efforts be made to maximize the amount
of time actually spent keying text in the

text entry mode. This is true only if the
total time spent on the task also decreases.
It is possible to have a system in which very
little time is spent not keying text in the

text entry mode, but which is so awkward to

use that the total time increases substan-
tially. This is the case with some primitive
line editors which require re-entry of an

entire line in order to correct an error.

A particular use of the finite state
model is in the comparison of text editing
system performance. By comparing state times
and keystroke counts for specific tasks, it

is possible to determine which system is

better for that task, and also to determine

why. Hammer and Rouse[10] used a Markov ian

model to carry out a statistical analysis of
variance comparison of text editor perfor-
mance in a similar situation. Most statis-
tical tools used for such comparisons require
that the finite state model be zero-order
Markovian. The four state subtask model is

likely to satisfy this assumption, but an

analysis at the primitive function level
might not, since the transition probability
from one function state to another state may
depend upon the previous state occupied.

4.5 The Function Level.

If a product is to be designed to per-
form well in a particular environment, the

most important considerations, aside from the
cost, involve the needs and perceptions of
the ultimate user. There are many important
human factors considerations in this area,
such as user satisfaction, keyboard layout,

and terminal and work station design. These
questions have been considered elsewhere in

some detaiK for a review, see reference
[11]).

Other considerations of importance at

this level include software design, because
design improvements to the software of a text
entry system may improve the user's perform-
ance substantially. This may be done by
reducing the time spent in activities which
are not directly productive, such as cursor
movement. To determine how much time is

spent using each of the primitive functions,
data may be gathered on representative tasks,

and finite state model analysis applied at

the detailed level. In this manner it is

also possible to detect sequences of func-

tions which are performed frequently and
which might be automated. If cursor movement
functions are found to be satisfactory, both

by function design and by the placement of

function keys on the keyboard, then one can

turn to the design of editing features. A

flood of such special features is undesir-
able, since a typical user has the memory
capacity to learn and use only a relatively

small percentage of such editing functions.

Boies[12] found that only a small number of

the commands available on a text editor were

used. It may be preferable to have a small

number of easily learned and useful features,

and to invoke any little-used features
through a common subtext entry function such

as a function menu. A rough guide to the

emphasis which should be placed on improving

a particular function should be based on the

frequency with which the user is expected to

make use of the function. Features which

could handle any well-defined tasks automa-

tically and thus reduce the interaction time
of the user are also desirable, but these are

79

typically heavy users of system resources
such as cpu time and system memory. Func-
tions in this category include automatic
spelling verification and context editing.

In certain positions where a text editor

is used a substantial fraction of the time,

user-defined functions may play a role in

giving greater flexibility to a text editing
system. For example, if the user can define

a function which will automatically generate
an appropriate letterhead, with date and
salutation, this can save a great deal of
time. Similar comments apply to mailing
lists. In the case of computer program
editors, optional line-by-line syntax
checkers for the particular language being
used may be effective, especially for the

novice. The ability to compile and execute
programs from within the editor can avoid the

time spent invoking and then leaving the

editing system in each cycle of debugging.

5. Conclusions.

This paper has presented a framework for

the evaluation of computer user productivity,
with examples drawn from text editing sys-

tems, since this is an area in which a sub-
stantial impact could be made in the near

future. The intention of this conceptual
framework is to provide a logical form for

the analysis of computer systems at any
desired level of detail. We may wish to look

at the global characteristics of the system

itself such as the response time and
availability, or we can look at the very
detailed level of keystroke input. The
framework is useful in helping to avoid
excursions into those areas in which the

analyst may not have either interest or
influence for promoting change. The tools

used for productivity analysis at these
levels will differ widely in approach.
However, the major point is that productivity
improvement can be promoted at any level in

the framework. A particularly useful appli-
cation of this approach is in the analysis of
interactive systems, the source of the exam-

ples used in this discussion.

I especially wish to acknowledge the
assistance of Mr. Rollins Turner in

assembling the system used to capture
terminal character data for use in these
studies

.

References

[1] Doherty, W.J., Thompson, C.H. and
Boies, S.J. An Analysis of Interactive
System Usage With Respect to Software,
Linguistic and Scheduling Attributes,
IBM Research Report, RC 3914, 1972.

[2] Embley, D.W., and Nagy, G. , Behavioral
Aspects of Text Editors, Computing
Surveys , V. 13. 1981, pp. 33-70.

[3] Miller, L.A., and Thomas, J.C. Jr.,

Behavioral Issues in the Use of
Interactive Systems, Int. J

.

Man-Machine Studies , V.9, 1977, pp.
509-536.

[4] Smith, S. A., Minimizing Processing
Costs In An Automated Office System,

Cybernetics , V. 10, 1980 pp. 232-242.

[5] Ferrari, D. , Computer Systems
Performance Evaluation , Prentice-Hall,
Englewood Cliffs, N.J., 1978.

[6] Shneiderman, B., Human Factors Experi-
ments In Designing Interactive Systems,
Computer , V. 12, 1979, pp. 9-19.

[7] Williams, J. D. and Sevenson, J. S. ,

Functional Workload Characteristics and

Computer Response Time In The Design of
On-Line Systems , Proceedings, Computer
Performance Evaluation Users Group
Thirteenth Meeting, NBS Special
Publication 500-18, U. S. Dept. of
Commerce, Washington, DC, 1977, pp.
3-11.

[8] Engel, G.H., Groppuso, J., Lowenstein,
R.A., and Traub, W.G., An Office
Communications System, IBM Systems
Journal , V.18, 1979, pp. 402-431.

[9] Ledgard, H. , Whiteside, J. A., Singer,

A. and Seymour, W., The Natural
Language of Interactive Systems,
Communications of The ACM , V.23, 1980,

pp. 556-563.

[10] Hammer, J.M., and Rouse, W.B., Analysis
And Modeling of Freeform Text Editing
Behavior, Proc. 1979 International
Conf . Cybernetics And Society , 1979.

[11] Rouse, W.B., Design of Man-Computer
Interfaces For On-Line Interactive
Systems, Proceedings Of The IEEE , V.63,

1975, pp. 847-857.

[12] Boies, S.J., User Behaviour In An

Interactive Computer System, IBM System
Journal , V. 13, 1974 pp. 1-18.

80

Systems Development
and Maintenance

SESSION OVERVIEW

SYSTEMS DEVELOPMENT & MAINTENANCE

Phillip C. Howard

Applied Computer Research
Phoenix, AZ 85068

This session will review several concepts that may be useful during
the system development life cycle in both the development and maintenance
stages. The papers address methods for simplifying that statement of
user requirements, for improving the quality assurance function, and for

using configuration management techniques to reduce maintenance costs.

The papers represent practical applications of several software
engineering concepts which contribute to the improvement in both software
quality and productivity. The specific techniques discussed in the three
papers apply to different stages in the life cycle and encompass the

statement of user requirements, the application of configuration
management techniques, and the role of quality assurance.

83

DESIGN OF INFORMATION SYSTEMS

USING SCENARIO-DRIVEN TECHNIQUES

W. T. Hardgrave
S. B. Salazar

E. J. Seller, III

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, DC 20234

This paper describes a technique for developing information systems using
a scenario-driven design approach. The approach emphasizes client (that
is, the user who is purchasing the system) participation in the design
process. The first step is to develop a collection of "scenarios" which
document the interaction between the computer and the human user. Using
the scenarios, information-flow diagrams and database designs may be
constructed. After the client has approved these documents, they can be
used to establish disk capacity requirements and transaction rates, and
finally to specify all hardware and software requirements. The primary
advantage of this approach is that the scenarios provide a good indica-
tion of the ultimate usefulness and cost of the system. The client can
review these documents and approve, modify, or reject the system design
before any software is generated. This paper describes the scenarios, the

information flow technique, and the database design approach using, as an

example, a small business application.

Key Words: Database design; data dictionary; design; flowchart; information
flow; information systems; interactive systems; requirements; scenarios.

1. Introduction

Designing an interactive information
system requires specialized techniques that
are unnecessary in the development of other
types of computer systems. Human factors
issues are involved, since the user community
typically does not consist of computer spe-
cialists. Interactions between humans and
computers must be clearly defined. The data-
base must be described independently of any
particular programs. Standard flowchart
practices must be modified to capture the

data flow through an interactive system.

This paper describes a technique for

developing a logical design for an interactive
information system. The product of this de-

sign process is a document having these com-

ponents :

* Collection of scenarios
* Information flow diagrams
A Datahase design

Step-by-step approaches to the development of

the components, which are identified below,

will be presented in subsequent sections.

The term "scenario" is defined for the

purpose of this paper as a detailed documen-
tation of the interaction between a computer

system and the human user working at a term-
inal. A scenario is essentially a hard-copy
of an interactive session. This level of

detail is seldom available until after the

system is implemented and capable of writing
output to a terminal. One goal of the

scenario-driven design approach is to capture
this level of detail before implementation.

The collection of scenarios is a com-
plete description of every screen format that

the terminal operator may possibly encounter.
The data appearing in the scenarios should be

typical of data that may actually be used in

the application. Thus, this collection of

scenarios completely and "by example" de-

scribes the user interface to the information
system. The scenarios are discussed further

in Section 2.

The information flow diagrams describe

the movement of data through the system.

They show where data enters the system, where
it exits, where it is stored, and where it is

displayed for the human user. While standard

flowcharts have had widespread usage, the

application of flow diagrams to interactive
systems requires a somewhat different

approach. A particular format and some
stringent conventions are discussed in

Section 3.

85

The database design is a complete de-
scription of the data that is to be held and
permanently maintained by the system. One
expects this data to have a long life span;
certainly it will be longer than the execu-
tion time of any programs that manipulate it.

Therefore, it is necessary to describe the
data apart from any particular program or
subroutine. The database design technique,
discussed in section 4, is an application
and extension of the "entity-relationship
model" [1]

.

The scenario-driven technique is cur-
rently being designed as part of a project to
automate the operation of a wholesale book
dealer. The examples used throughout this
paper are taken from that applieatdon.

There is one significant advantage of
this method. There will be detailed commun-
ication between the system designer and the
client (the user who has. contracted to pur-
chase the system) during the design stage,
as the client will review the scenarios many
times during their development. Thus, when
the report on the logical design is avail-
able, the client is already familiar with
the system and can be confident that it meets
expected needs. There is no mystery and
little chance that the client will receive a

system substantially different than envi-
sioned .

2. Scenarios

There are some other benefits that come with
the development of detailed scenarios:

* The scenarios may be included in the
User's Manual as tutorial material.

* The scenarios may be incorporated into
a test plan to determine system
acceptance.

* The scenarios may be used as the basis
for the contract between the client and

the systems designer or software
implementer

,

The following subsections will discuss the
development of screen-based scenarios and
the menu format. Examples of menus from the
wholesale book system are included.

2.2 Development

In a screen-based scenario design, all
scenarios will have in common the top level
screen, that is, the first screen that the
user views. The master menu gives an over-
view of the aspects of the organization
addressed by the information system, thereby
defining the scope of the system. The de-
signer and the client must work on the master
menu until an agreement is reached and the
menu satisfies both parties. During this
process, the system designer and the client
must learn each other's terminology and
develop a common basis for further work.

2.1 Definition

A scenario is a detailed documentation
of the interaction between a computer system
and the human user working at a terminal.
Scenarios may be written to mimic the inter-
action on a line-by-line basis; a menu-by-
menu basis, a screen-by-screen basis, or any
other basis that can reasonably be put into
the design document. For the book wholesaler
system, scenarios are written on a screen-by-
screen basis, that is, each complete computer-
human interaction (such as "ordering", "re-
ceiving") is documented In terms of the
screens sequentially viewed by the user. Each
screen described here consists of a menu or a

menu plus system prompts.

Most Importantly, the scenario Is a tool
to facilitate communication between the client
and the system designer. That is, the scen-
ario is a very simple visual Image that de-
scribes one part of system behavior. A
comprehensive collection of scenarios can
describe system behavior in enough detail to
convince the client that the system will
perform as envisioned.

After some agreement is reached on the
nature of the master menu, work may proceed
on the screens at the next level of detail.
There is no established format for the sce!n-

arios; the screens may describe menus, user
commands, or any Interaction that is accept-
able to both the client and the designer.
This process of defining progressively lower
levels of the system continues until all
possible interactions have been completely
specified.

There are problems involved In the man-
agement of this documentation. An exhaustive
enumeration of all possible scenarios will

result in a large number of screens for even
a small system. As menus at different levels

are redesigned, it becomes tedious to main-
tain consistency and verify correctness of

the interfaces.

The notation used in the scenarios is

not a metalanguage. The data requested from
the user or printed for the user should be

typical data from actual situations. This
avoids any formatting problems and similar
misunderstandings between the client and the
systems designer.

86

2.3 Menu Format

The menu format is illustrated in Fig-
ures 2-1 through 2-4. Each menu (and its

corresponding screen) is numbered to indicate
its level, starting with the master menu as

0.0. A menu has four columns with the fol-

lowing headings

;

* Number

* Option

* Next

* Page

Each entry in the menu represents a pos-
sible selection by the user. The "option" is
the textual statement of the function that is
displayed for the terminal operator. The
"number" signifies the key stroke to select
the corresponding option.

The "next" and "page" fields do not
actually appear on the screen when the system
is implemented. However, they are necessary
for the writer and the reader of the logical
design document in order to develop and follow
the sequence of menu displays. The "next"
field indicates which menu appears next if

the corresponding number is selected. The

"page" field gives the actual page number in

the logical design document. Both of these
fields are useful, albeit redundant. The page
field is useful to the reader of the final

design document; and the next field is useful
during the development cycle, when menu num-

bers are available but page numbers are not.

2.4 Sample Screens and Menus

The sample screens on the following pages
describe part of the "ordering" process for

the book wholesaler system. The level 0.0

menu is the first menu that a terminal user
would see after starting the system. "Order-

ing" is selected by typing "1" in response to

the system's prompt "Select one:".

The "Next" field of the "ordering" entry

indicates that the next menu to appear will
be the 1.0 menu. After it appears, as shown

in Figure 2-2, the terminal user may choose
to order for a customer or order something
to be stored in the inventory. In this case,

a "1" is typed to signify an order for a

customer

.

As indicated by the "Next" field of the

first entry in the 1.0 menu, the next menu to

appear will be the 1.1 menu. In menu 1.1,
the terminal user may choose to create a new
order or to add to an existing order. In this

case, the new user chooses to add to an exist-
ing order by selecting "2". The system then

prompts the terminal user for the "Customer
Order Group Number", abbreviated COG//. The
system prints the customer identifier and
the shipping address.

According to the menu of the next screen,
the 1.1.2 menu, the terminal user may select
to search for the title based on one of

several possible inputs. In this case, the
terminal user selects a search on ISBN. The
system prompts for the ISBN, the International
Standard Book Number, which is the unique
identifier for books. After the ISBN has
been entered, the system adds the book to the
order group and prints a message to that
effect as shown. As indicated, the screen
would refresh itself to allow the operator to

order another title for this customer order.

Menu 0.0

No. Option Next Page

1 Ordering
2 Receiving
3 Inquiry/Update
4 Picking List/Invoice/PO
5 Accounting functions
6 End of day
7 Return to Operating System

1.0
2.0

3.0
4.0
5.0
6.0

2

40

106

147

166

183

Select one: 1

Figure 2-1 Screen 0.0

Menu 1 .

0

No. Option Next Page

1 Order for customer
2 Order for inventory

1.1

1.2

3

26

Select one: 1

Figure 2-2 Screen 1.0

Menu 1 .

1

^0. Option Next Page

1 New order
2 Add to order

1.1.1
1.1.2

4

10

Select one: 2

Enter C0G#: 53296

Customer Id. is: NLM
Shipping Address is: National Library of

Medicine
9600 Rockville Pike
Bethesda, >ID 20014

Figure 2-3 Screen 1.1

Menu 1.1.2

No. Option Next Page

i Search on alt. key 1.1.2.1 30
2 Search on ISBN 1.1.2 10
3 Search on series 1.1.2.3 35
4 Enter as new title 1.1.2.4 37

5 End order 0.0 1

Select one: 2

Enter ISBM: 0-13-854547

An order for Structured System Design by Gane
and Sarson has been added to COG// 53296 for

National Library of Medicine.

Figure 2-4 Screen 1.1.2

3. Flow Diagrams

3.1 Characteristics

Flow charts have been used for many years
to describe the flow of computer programs and
data. Although the diagrams used here are
similar to traditional flow charts, some

stringent rules for their creation and use
have been Imposed. These restrictions, dis-
cussed below, make the diagrams easier to

read and more useful as a management tool.

As depicted in Figure 3-1, the foirmat

for the flow diagram exhibits the following
characteristics

:

* All flow is from left to right.

* The triggering event is the first box on
the left.

* The process ends with the rightmost box
(usually labeled "end").

* The left margin is partitioned by "roles";
that is, the organizational (or external)
entities are listed down the left margin.
One role that is usually included is

"database". In this way, processes that
store data in or retrieve data from the

database may be documented.

* The boxes have various shapes that are
assigned meanings to fit the application.
This example uses trapezoidal, square,
and cylindrical symbols; the meanings are
explained below.

The diagram shown in Figure 3-1 is short

and fits on one page; most diagrams will
require several pages.

There are several advantages in using
this kind of flow diagram:

* The triggering events can easily be spotted
by looking on the leftmost part of the dia-
gram.

* The involvement of a particular role can be
isolated by looking along the appropriate
horizontal strip.

* Time may be measured horizontally. Time
intervals after triggering can be set up
along the horizontal axis and charting
symbols placed in the appropriate zones.

* Parallel charts may also be created. For
example, in a manufacturing enviornment, a

materials flow diagram can be set up par-
allel to the information flow diagram.
The materials flow documents the flow of
parts, subassemblies, etc.; the information
flow documents the paperwork.

However, since a flow diagram should be
generated for each possible flow sequence,
there may be problems with the management of

this volume of documentation.

3.2 Sample Flow Diagram

The sample flow diagram shown in Figure
3-1 depicts the flow for the part of the

ordering process discussed previously. The
trapezoidal boxes represent the display of a

menu; the menu number is given inside the box.

In cases where there is a square box under-

neath the trapezoid, the menu interaction
requires input of a data-item by the terminal
user. The name of the data-item is contained
in the box. The freestanding square boxes
represent processes that the system performs.
If the process stores or retrieves data from

the databases, this is signified by a line
from the process to the appropriate databasfe.

Herein, the term "database" is used very
loosely and could, in this case be used inter-
changeably with the term "file". The various

databases are represented by the cylindrical
symbols

.

In Figure 3-1, the flow begins on the

left when the customer prepares the order.

The order then goes to the ordering depart-

ment. The terminal operator calls the sys-

tem into operation and the level 0.0 menu is

displayed. This is signified by the trape-
zoid containing 0.0. The terminal operator
selects option 1; this is signified by the
"1" above the trapezoid. Then menu 1.0 is

displayed. The terminal operator selects

option 1; again this is signified by the "1"

above the trapezoid. Then menu 1.1 is dis-

played; the terminal operator selects option
2. The box below the trapezoid indicates

that the terminal operator must enter the

"Customer Order Group Number", abbreviated
COG//. As shown by the square box, the system
retrieves the customer order group from the

88

"Customer Order File", abbreviated CO. Also,
the system gets the "Customer Identifier",
abbreviated C#, from information contained in
the COG. Finally, the system retrieves the
"Shipping Address", abb reviated SA and dis-
plays it along with the customer number.

The next menu to be displayed is menu
1.1.2. The terminal operator chooses to
search on ISBN. The system requests the ISBN
and the operator enters it. The system then
searches the title file to ensure that the
ISBN is valid. If the ISBN is not valid,
then other menus not shown here are invoked.
Finally, the title is added to the COG and
the process ends.

entity

* Defining non-key attributes for each entity

* Enumerating relationships

* Determining keys for the relationships

* Defining non-key attributes for the rela-
tionships

* Determining which relationships may also
have the dual role of entities

* Assigning dual keys to dual entity/rela-
tionships

ROLES

CUSTOMER

ORDERING
DEPT.

RECEIVING

DEPT.

DATABASE

PROCESS:

ADD-TO-ORDER

PREPARE
ORDER

ADD HUE
TO
CO FILE

Figure 3.1: Sample Flow Diagram

4. Database Design

The database design is, roughly speak-
ing, the format of the various data files
that are to be stored permanently (usually
on a disk) . The actual values in the files
may change as different data enters and
leaves the system. We will refine this
concept as we proceed.

Our approach to database design con-
sists of several steps as described below.
While it is similar to the entity-relation-
ship approach described by Chen [1], the
technique is specified in more detail and
may differ somewhat from his philosophy.

The process consists of:

* Enumerating entities

* Determining the key attribute of each

4.1 Entities

First, the designer must enumerate the
entities. An entity is a concept that the
designer wants the information system to
recognize and manipulate. For example, in
an inventory system, a part would be an
entity. For some applications, there are
many possible choices for entities and de-
cisions on tradeoffs may be required. The
discussion herein will center on the Whole-
sale Books example rather than dealing with
generalities

.

In the wholesale book application, the
basic entities are:

* Customers

* Publishers

* Titles

89

Sample record diagrams giving the most
important attributes of each entity are

sho\^n in Figure 4-1. In the actual
database, more attributes are necessary;
some are omitted for this discussion to keep

it manageable.

Each entity is uniquely identifiable

by a single attribute called the key (denoted

by "*" in the figures). For example, a

person may be uniquely identifiable by his/

her social security number or a part may be

uniquely identifiable by the part number.

4.2 Relationships

Next, the designer must enumerate the
relationships, that is, the associations
among entities. The attributes of a

relationship should describe the relationship,
not the individual entities, and therefore

must include the keys, but no other attri-
butes, of the entities involved.

Figure 4-2 shows some typical relation-

ships; again these are modified from the

actual application for simplicity. However,

they are quite similar to an early design

before the complexity required by the client

was introduced. The item-order relationship
relates customers to titles. A customer

(CID) orders a title (ISBN) in some quantity

(QTY) . The title/publisher relationship
relates titles to publishers. A publisher
(PID) publishes a title (ISBN)

.

Our example is somewhat more complex.

The item-order relationship needs to be

grouped to reflect which books appear on an

incoming order. Also, the item orders need
to be grouped to reflect which items are

included on a single order to the publisher.

Therefore, the item-order relationship needs

to be referenced as an entity in other
relationships. This is accomplished by

adding an attribute. Customer Order Group
(COG#) which becomes the key of the augment-
ed item-order dual entity /relationship (as

shown in Figure 4-3, with the key denoted

by "**").

4.3 Data Dictionary

The purpose of the data dictionary is

to provide a written description of each
attribute that is referenced in the database

(in both entities and relationships). The

data dictionary can be used as a basis for

communication among the various people work-
ing on the questions that arise during the

design process concerning the purpose and

meaning of various data-items. Whenever the

database is reorganized, the data dictionary

TITLES

ISBN* Title Author Cost Price

CUSTOMER

CID* C-Name C-Address

PUBLISHER

PID* P-Name P-Address

Figure 4-1 Entities

ITEM-ORDERS

CID* ISBN* Qty

TITLE /PUBLISHER

ISBN* PID*

Figure 4-2 Relationships

ITEM-ORDERS

COG//** CID* ISBN* QTY

Figure 4-3 Dual Entity/Relationship

is updated to reflect the new organization.
Thus, the data dictionary is an important
tool for managing and controlling the system
design process.

Although the creation and maintenance
of a dictionary can be an expensive under-
taking, it is possible to scale the complex-
ity to fit the application. For example,
the dictionary may contain many attributes
for each data-item or as few as two; it may
be managed manually or with a computerized
system.

Because this approach is intended for a

small organization with limited resources,
the data dictionary described here is as

simple as possible and may be managed manu-
ally at a small cost. As depicted in Figure
4-4, the dictionary is a table with two

columns: data-item and narrative. Each

90

entry in the table describes one data-Item,
or attribute, that is defined in the system.
The column labeled "data-item" contains
the names of the data-items, while the

column labeled "narrative" contains descrip-
tions of the data-items meaningful to the

user. The usefulness of the data dictionary
(as well as its complexity and cost) could
be increased by adding more information to
each entry. For example, a column "entity"
could be added to keep track of the entitles
in which each data-item appears.

References

[1] Chen, Peter, "The Entity-Relationship
Model—Toward a Unified View of Data",
ACM Transactions on Database Systems

,

Vol. 1, No. 1, March 1976, pp. 9-36.

[2] Gane, Chris and Sarson, Trish,
Structured Systems Analysis: Tools and
Techniques Prentice-Hall, Englewood
Cliffs, NJ, 1979, 241 p.

DATA DICTIONARY

DATA-ITEM NARRATIVE

ISBN International Standard Book Number
Title Title of book
Author Author of book
Cost Publisher's price for book
Price Our normal price for this book
CID Unique identifier for customer
C-Name Name of Customer
C-Address Address of Customer
PID Unique identifier for publisher
P-Name Name of publisher
P-Address Address of publisher
Qty Quantity: Number of this ISBN

ordered by this CID
COG# Customer Order Group Number:

Unique identifier for Purchase
Order

Figure 4-4 Data Dictionary Table

5. Concluding Remarks

The information system design technique
presented in this paper is based on a sur-
prisingly simple but rarely-used idea

—

that the systems analyst build a mock-up
of the system for review by the client
before implementation begins. The method
of constructing the mock-up, described
herein, is the development of a collection
of "scenarios," the possible interactions
between the computerized information system
and the human user. The client and the

system designer take part in a number of

iterations of reviewing and revising
scenarios, while the information flow and
the database design proceed in parallel.
Approval of a collection of scenarios by
the client is the first milestone in the

development of the system.

91

i

CONTAINING THE COST OF SOFTWARE MAINTENANCE TESTING

-AN EXAMINATION OF THE QUALITY ASSURANCE ROLE

WITHIN U.S. ARMY COMPUTER SYSTEMS COMMAND

MAJ Steven R. Edwards

Quality Assurance Directorate, US Army Computer Systems Command
Ft, Belvoir, VA 22310

This paper provides a brief introduction to the US Army Computer
Systems Command (USACSC) to include its various elements and their
respective functions. The previous (prior to 1 Sep 80] requirements
for software maintenance testing within the Command are examined, with
the greatest emphasis being placed on the specific allocation of the
Quality Assurance Directorate's resources (manpower and computer)
necessary to fulfill these requirements. Key points in this portion
include an explanation of Developmental Center Testing (DCT) , Environ-
mental Testing (ENT) as an independent, third-party test, and Field
Validation Testing (FVT) . The evolution of third party testing
within the Command is also discussed. Major points envisioned in

the revised testing procedures which the Command and QAD are implement-
ing are detailed including a discussion of the advantages and dis-

advantages of independent testing as perceived by various members of

the academic community as well as by the individuals directly involved
with this independent testing within USACSC, Conclusions reached as

a result of weighing these advantages and disadvantages and their
ultimate impact on the revised testing procedures are also examined.
The underlying point is the anticipated increase in effectiveness of

the Quality Assurance program obtained from the readjustment of
resources, the gradual phasing out of the Environmental Test, and
the subsequent increase in "up front" QAD involvement. Concluding
comments encompass an overview of the methodology being developed to

gather and evaluate feedback data on the success and/or shortcomings
of the revised procedures. This feedback data includes reports of
problems in fielded systems, especially immediately subsequent to

the release of maintenance changes to this software, as well as

requested changes to fielded systems.

Key words: Developmental Center Test, Environmental Test, Field

Validation Test, Independent Testing, Quality Assurance Program,

Software Change Package, Software Maintenance Testing,

1. Introduction

This paper examines the issues of soft-
ware maintenance testing as a part of the
quality assurance mission within the United
States Army Computer Systems Command
(USACSC). Such an examination is particu-
larly relevant at this time, since a sign-

ificant change in the procedures is in

progress. Thus, it is logical to document

the software maintenance testing require-
ments within USACSC prior to September 1,

1980, discuss the perceived need for change
in these procedures, and then detail the
revisions underway. Since maintenance
testing is an integral part of the overall
quality assurance effort within the Command,
any change in this part necessitates an in-

depth review of the role of the quality
assurance element in general. This

93

consideration is also addressed in the sub-
sequent discussion.

In order to provide the desired setting
for a discussion of the specific topics
described above, a brief overview of USACSC
is apropros. This introduction to the
command focuses on its mission, organiza-
tion, and functions in the role of a central
design agency responsible for developing
automated systems for the Army. The mission
of the Command is shown in figure 1.

USACSC MISSION

• SERVE AS THE PRINCIPAL ARMY DEVELOPER OF

MULTICOMMAND ADP SYSTEMS.

• DESIGN. TEST, INSTALL AND MAINTAIN ADP SYSTEMS.

• DIRECT THE ARMY ADP STANDARDIZATION

PROGRAMS.

• PROVIDE TECHNICAL ASSISTANCE TO HQDA STAFF

AGENCIES AND MAJOR ARMY COMMANDS.

• CONDUCT SOFTWARE RESEARCH PROGRAMS.

Figure 1. USACSC Mission

Multicommand ADP systems are in support of
functional applications which are similar
in two or more major Army Commands.
Figure 2 shows how the various elements
within the Army interact with USACSC in

support of this mission. The Assistant
Chief of Staff for Automation and
Communications is responsible for establish-
ing overall objectives, policies, and
procedures for Army Staff direction and
guidance for the design, development,
installation, and maintenance of Army
management information systems. (A

planned reorganization within the Army
Staff will alter this element; nevertheless,
USACSC will continue to receive Army
Staff guidance and direction.)

Within their respective areas of
responsibility, the Army Staff agencies
formulate statements of requirements for
new systems, or changes to existing systems,
which are then forwarded to USACSC. As

the principal Army developer for Standard
Army Multicommand Management Information
Systems (STAMMIS), USACSC receives the
approved requirements and undertakes systems
design or change. Additionally, USACSC

AS«|ILtFM|

ASST CHIEF of STAFF

for

AUTOMATION

and

COMMUNICATIONS

DCSlOt

OCSPER

CO*

DCSROA
REOUIIEMENTS

DCSOPS

T«EO

OCC

D«M liUUI

COMPUTER

SYSTEMS

COMMAND

SYSTEM DEVEIOPMENT,

INTEORDTiail t TESTMQ

SrSTEMS FOR THE FIEID

USER

COMMANDS

Figure 2. Army Interactions
With USACSC

provides technical support to user commands,
both in the US and overseas. The authorized
strength of the Command includes 382 mili-
tary and 1102 civilians scattered through-
out nine geographic locations. Systems
interfaces are a major concern of the
command. Figure 3 shows a typical array of
interfaces for one of the standard systems.
Documentation and configuration management
of interface specifications are extremely
difficult. An element that makes this
control even more complex is the fact that
different systems developers may be involv-
ed. Hence, a developer could easily make '

changes in specifications to one system
without anticipating the impact these
changes could have on other systems. To

preclude problems in this area, interface
control is exercised at Command level.

This centralization within a single
central design agency permits the coordina-
tion and management of interface require-
ments between systems controlled by differ-

ent proponent agencies.

This paper focuses on the Command's
Quality Assurance Directorate (QAD) and

its interactions with three of the Command's
software developers: Logistic Systems
Directorate, Personnel and Force Accounting
Systems Directorate and Financial Systems
Directorate. These Assigned Systems
Developers (ASD) design, test, install,

and maintain over forty standard systems
in response to Department of the Army
Proponent Agencies (PA) approved require-
ments. The STAMMIS are operational at

94

STANFINS INTERFACE

WITH OTHER SYSTEMS

IHSOPS

SOPPIT

smis «

INIEtFUND

inilNG

>SIC

368(

STANFiNS

SDPCIIS

iNunruNii

iniiHG

i i L

SIIRtlPS IFS

1E«M DP

IKCOMI

Figure 3. STANFINS Interface
With Other Systems

tenance testing is composed of three levels

of evaluation conducted by the system devel-
oper, followed by an independent third party
test conducted by the Quality Assurance
Directorate. At the conclusion of these
tests, the systems change package is subject-

ed to its final test at a field site where
it is evaluated by representatives of the

major Army command user community (with

Quality Assurance, Proponent Agency, and

System Developer personnel on site).

These tests are further defined in USACSC
regulations as follows [1]

:

Developmental Center Test Level I

(DCT I) - A test which occurs after design,
coding, desk checking, and successful
compilation of a new or changed program has
occurred and which insures that the program
operates efficiently. Primary objectives
of the DCT I are:

approximately 150 Army Data Processing
Installations world-wide. Some of the
functional requirements that are satisfied
by the standard systems developed by
USACSC are portrayed in figure 4.

- Identify and correct all program
errors

.

- Exercise program decision and logic
flow affected by change to demonstrate
technical correctness of program.

FINANCE PERSONNEL LOGISTICS

INSTALLATION ACCOUNTING STRENGTH ACCOUNTING: SUPPLY MANAGEMENT

ACTIVE ARMY
INVENTORY ACCOUNTING

RESERVES
MAINTENANCE REPORTING

CIVILIAN PAY RETIRED COMMISSARIES

CIVILIAN
DATA INQUIRY PORT OPERATIONS

RSD BUDGETARY CONTROL
FORCE DEVELOPMENT

INSTALLATION SUPPORT
MILITARY POLICE

AMMUNITION

Figure 4. Functional
Systems Operational

2. Software Maintenance Testing

Having provided this broad description
of USACSC, it is now appropriate to delve
more deeply into its software maintenance
testing. Maintenance testing is the test-
ing of approved software changes which
result from systems enhancements proposed
by the PA and Army activities currently
processing the system. The assigned devel-
oper, in conjunction with the proponent,
programs the necessary changes and assembles
the altered software into a systems change
package (SCP] . Formal test condition
requirements, which specify the requirements
necessary to test the change, are prepared
by the proponent for functional changes and

the developer for technical changes. Main-

- Exercise program functions affected
by change to demonstrate functional correct-
ness of the program.

- Assure compliance with programing
and documentation standards.

The DCT I is normally performed by the
programer who conducts the test utilizing
developer checklists (no formal test plan).

The programer examines the developers
existing test data base and prepares
additional test data as necessary to test

all data types which have been affected
by change. At the conclusion of the test,

the programer considers test data for

permanent inclusion in the developers data
base and approves the program for the next
level of testing in accordance with the

developers internal procedure.

Developmental Center Test Level II

(DCT II) - A test of the individual programs
which have completed DCT I, grouped in their
appropriate jobs/cycles. Primary objectives

of the DCT II include:

- Identify and correct program inter-

face errors.

- Exercise all variations of job flow

affected by change to demonstrate technical
correctness of the job.

95

- Exercise all functions affected by
change to demonstrate functional correct-
ness of the job.

The DCT II is normally a joint respon-
sibility of programers and their super-

visors. A Test Director may be appointed
if the developer desires. Formal test
plans are not required, but detailed check-
list outlining performance standards and
I/O requirements are strongly recommended.
The developer maintained data base will be
supplemented as necessary to meet test
objectives. At the conclusion of DCT II

the applicable programer will insure that
actual output agrees with predetermined
results and that the program interfaced
properly within the job.

Developmental Center Test Level III

(DCT III) - A systems test which exercises
multiple jobs interfacing in the total
system. The objectives of the DCT III are:

- Demonstrate to the proponent agency
and the developer that all change require-
ments have been met.

- Demonstrate that all cycles of the

system affected by change will execute
and are technically adequate.

- Demonstrate that all outputs affected
by change are correct and functionally
adequate

.

The DCT III is conducted by the developer,
may be monitored by QAD, and is validated
by the proponent agency. A formal test
plan is required. The developers test

data base will be examined by the proponent
agency and supplemented as required to
thoroughly test changes to the system. At

the conclusion of the test, a formal report
is prepared and a signed acceptance is

required prior to release to the next stage
of testing.

Environmental Test - A third-party,
technical test of SCP in the form they are
to be shipped to customers. The test
evaluates machine and human interface by
using the computer operations manual,

target hardware, representative operator
skills, and live data bases captured from
field installations. The primary objectives
of the ENT are to:

- Insure all jobs affected by change
will execute to end of job.

- Successfully load program and JCL
changes and execute other implementing
jobs necessary to install the systems

change.

- Evaluate the accuracy and complete-
ness of the computer operations manual.

The Quality Assurance Directorate is

responsible for developing the ENT plan
and appointing the ENT director. Upon
completion of ENT a formal recommendation
of release to the next stage of testing is

signed by the Test Director. The ENT is

covered in more detail in subsequent
discussion.

Field Validation Test - A test
conducted at an operational unit with
representatives of the user community,
proponent, developer, and quality assurance
on site. The primary objectives of the
FVT are to:

- Demonstrate to participants that the
software change satisfies performance
requirements of the change.

- Evaluate functional and ADP

documentation for accuracy and ease of
understanding.

Installation of the SCP and subsequent
execution of the cycles/ jobs are to be

under normal production environment and are

the responsibility of the host unit. There-
fore, the FVT is the only test conducted in

a true production environment. At the
conclusion of the FVT a formal memorandum
of agreement is prepared and the change is

approved or rejected for release to all
field users. If the system has multiple

,

version (e.g., different operating systems)

a supplemental site is chosen to run the
change for a specified time prior to
release. (There are also emergency change
packages and urgent change packages but
the time criticality of these changes
dictates an abbreviated testing cycle).

Since the primary focus of this paper
is on the Quality Assurance Directorate's
role in the maintenance testing cycle, a

more detailed look at the resources and
methodology employed in the ENT is

pertinent. In order to maintain strict

third-party independence, a significant
amount of duplication has necessarily
evolved. For example, separate test data
bases for each system are procured and

maintained by the QA Directorate.
Additionally, system unique card decks,
documentation, master files, -etc. must be
obtained and managed to conduct ENT. The
magnitude of these requirements, coupled
with the personnel resource constraints
imposed on the ENT function, dictates that

96

the individual testers become generalists,
i.e., capable of interpreting systems
documentation and overseeing the job/
cycle execution (much as a system analyst
at a data processing installation), but for
the most part unfamiliar with the specific
functional output of the system. Thus, the
ENT is a technical checkout which insures
that the various cycles will execute without
abnormal termination. (This check-out, of
course, is limited by the constraints of
the data base utilized). To maintain the
integrity of the ENT, the Quality Assurance
Directorate must maintain accountability
of the systems change package from the
beginning of the ENT until final release
to all users. This entails a quality
assurance representative delivering the
package to the field test, remaining on-site
with the developer's representative to
monitor any necessary "fixes", and finally
performing the necessary actions to cause
the creation of the shipment tapes and
documentation for each user. These steps
are required from a quality assurance
point of view, but they create considerable
overhead beyond that which would be required
to only perform an independent test at a

given point in the change package life
cycle.

3. Perceived Need to Change Procedures

The EOT, as described above, was
established as a testing requirement in

1974, almost certainly because of critical
problems with change packages after their
installation by Army users. The ENT evolved
to insure that change packages would
install and run without abnormal termination.
Although this may seem to be a basic
criteria for developer testing, it was
evidently not met frequently enough which
caused the creation of the ENT function.
(There are many explanations for this
including variances in developmental and
user hardware, time constraints imposed
on the developer, inadequate test data
bases, and the all encompassing human
error). During the seven years since the
implementation of the ENT, many theoretical
questions concerning its desirability and
effectiveness have been raised. Two of
the most pertinent issues are: (1) The
value of an independent test in general
and (2) The Quality Assurance role within
the overall life-cycle of a maintenance
change.

The question of the value of an
independent test is more complex than it

might appear at first glance. Should an
independent test be conducted at all?
If so, should there be a myriad of indepen-

dent test activities (or individuals)
associated with each system or one central
test activity? At what stage in the devel-
opmental cycle should the independent test
activity erter the process; that is, should
they insist on examining the change package
at the end of the "assembly line" much as
a quality assurance worker in a factory?
Or, would it be better to test early in
the programing process thereby detecting
fatal flaws, but negating the effect of a

final independent test before final
release? There is considerable academic
material available on the subject. One
theory on the desirability' of a test
similar to ENT is that this type test is

one of two extremes. At one end of the
spectrum (the ENT is at this end) is the
person who treats the software as a "black
box" and attempts to provide the majority
of possible inputs, verifying that the
programs meet the specifications. At the
opposite end is the individual who studies
the program logic and, for example, tries
to design test data for each potential
branch in the logic. Both methods are
held to be too extreme and, in reality,
impossible to fully accomplish [2]. But

this theory deals with the broad arena of
software development and testing. USACSC,
specifically QAD, in recognition of the
fact that perhaps the "text-book" solutions
were not being utilized, commissioned
several studies of the quality assurance
program. One of these studies concluded
that the Environmental Test should be
combined with the DCT III to be conducted
as the latter is now. This report suggests
that "independent third party testing is

only a good idea if it is an oversight
activity. In gaining the independence of
a third party test, so much expertise is

lost from the proponent and development
groups that the results are bias free but

too shallow to be worthwhile. Only by
keeping those who know the most about the

software in the testing loop can their
deep knowledge be used to speed up the

cycle of error detection and correction.
While there is always danger of bias where

the test group has special knowledge, this

danger is less than the one of trivializing
the tests. Whenever objective measures of
test quality are available, the best of

both worlds can be obtained: The expert
group can conduct the test, and the
independent group can verify (in the sense
of an auditor) the objective measure is

satisfied [3]." A second study, performed
internally, reached similar conclusions in

noting that "The ENT is excessively
expensive and time consuming for the
purpose it serves.... This is not a

comment on the diligence or dedication of

97

the personnel who conduct ENT; it is simply
that the ENT was devised as a measure to
cure a symptom, that symptom being fielding
packages which did not load or execute..,.
To do this is essential; however, it can be
accomplished easily and cheaply by conduct-
ing all or part of the DCT Level III on a

broadcast ready package and target hardware
[4]."

Thus both general literature and
specific studies appeared to point toward
the same conclusions. But it would be
insufficient to separate independent test-
ing as an entity unrelated to its role in
the context of the complete quality
assurance program; i.e., if the ENT is not
paying sufficient dividends, what will?
Again there is abounding literature concern-
ing an ideal QA program, some general in

nature, some dealing specifically with
USACSC. One of these general works views
quality assurance as only one of three
software assurance methods. Figure 5

graphically depicts these three methods.
The interesting point is that the quality
assurance portion of this triad is respon-
sible for conducting design reviews, audits,
walk-throughs , and witnessing acceptance
testing [5] . Returning to the specific
studies of QAD, there is a common thread
exemplified by the following quote: "No
enterprise can afford to use more people
to check quality than to create the
objects to be checked. The solution is to
make QAD an oversight activity [6]." A
major conclusion of virtually every report
was that QAD should concentrate more of its
resources in up-front activities such as
simulation, optimization, design reviews,
and monitoring the testing conducted by
the developer.

4. Revised Testing Procedure

With the stage being so obviously set
for a change in the Command's QA program,
particularly regarding independent testing,
the following changes were instituted on
September 1, 1980:

- Selected standard systems would
undergo revised testing procedures. Change
packages for these systems would not be
subjected to ENT, but instead would have a
DCT Level III with ENT objectives and be
conducted on target hardware. The devel-
oper for these systems would be the Command
representative at the field test and QAD
participation in these final tests would
be virtually non-existent.

- On a time-phased basis, additional
systems would undergo these revised testing
procedures. Eventually, all USACSC systems
would transition to the revised testing
procedures

,

- Quality Assurance resources would
gradually be shifted to the upfront
activities previously mentioned, i.e.,
simulation, optimization, design reviews,
and early test monitoring.

The impact of these changes can not be
underestimated. The quality of products
affecting the operation of the entire
Army was at issue. The revised procedures
were not received with overwhelming
acceptance by the various developers in
the command, although their objections
were most likely keyed by a perceived
increase in workload without a correspond-
ing increase in manpower. The theoretical
wisdom of the change was not significantly

FACTOR QUALITY ASSURANCE ACCEPTANCE TESTING INDEPENDENT V&V

PRIMARY OBJECTIVE ENFORCE STANDARDS DEMONSTRATE ACCEPTABLE

PERFORMANCE
ELIMINATE CRITICAL

ERRORS

ORGANIZATION INDEPENDENT GROUP DEVELOPMENT GROUP INDEPENDENT GROUP

RELATIVE SIZE SMALL STAFF. LONG

DURATION
LARGE STAFF, MEDIUM

DURATION
MEDIUM STAFF, LONG

DURATION

APPLICABILITY DELIVERABLE

SOFTWARE
OPERATIONAL

SOFTWARE
CRITICAL

SOFTWARE

MAJOR STRENGTH COST BENEFIT RATIO WIDELY ESTABLISHED EXTREMELY EFFECTIVE

MAJOR WEAKNESS DIFFICULT TO

INITIATE

SUBJECT TO TUNNEL

VISION

REQUIRES ADDITIONAL

RESOURCES

Figure 5. Comparison of Software Assurance Methods

98

questioned. Nevertheless, there was
sufficient apprehension to cause a

delay in the change (originally scheduled
for July 1, 1980) and a reduction in the
number of systems initially affected.
Regardless, the mechanism to eventually
accept the revision for all STAMMIS was in

place.

It was also recognized that any major
change in testing of software was palatable
only if some method of tracking the effec-
tiveness of the new procedures was devised.
In this regard, QAD instituted an after the
fact tracking for change package releases
called STAMMIS Release Evaluation and
Performance Profiling. This methodology,
in its early stages, is primarily the
gathering of pertinent information about a

particular change package release in a

format which facilitates the comparison
of this data from one release to the next.
Significant trends can then be charted and
reported to managers. The many elements
of information being gathered can be
divided into two major catagories: Those
which describe or differentitate vis-a-vis
other systems (these factors include size,

age and % programs changed in a release)
and those which provide some indications
as to the effectiveness of the recent
change packages for a system (including
number of incidents submitted by users
against the system, number of changes

requested against the system, number of

emergency and/or urgent changes required
and frequency of normal change package
releases.) Although the system is in its

early stages of development, it is

theorized that it will be used as an aid

in answering questions related to the

effect of change on system stability, the

optimal time between change package
releases, the relationship of system
size to stability, and other pertinent
quality indicators.

5. Conclusion.

bility and role in the complete testing of
their systems. Undoubtedly there will be
set backs, perhaps even a decline in the
quality of USACSC products for a period of
time. In fact, it would be an anomaly if

problem areas did not occur. However,
in the long run the shifting of QAD
resources described herein can result in

significant savings in the cost of
software maintenance while actually
strengthening the QA program within the

Command.

References

[1] USACSC Manual 18-1

[2] Meyers, G.J., Software Reliability
,

John Wiley and Sons, New York 1976

[3] Hamlet, R., Testing of Data
Processing Software, contract report
for Battel le Columbus Laboratories,
1980.

[4] Fox, M. and White, P. Report of

QAD Special Study on Testing,
Memorandum ACSC-QA, 1979.

[5] Fujii, M. S., A Comparison of Software
Assurance Methods, Logicon, Inc.

[6] Hamlet, R.
,
Testing of Data Processing

Software, Contract Report for Battelle

Columbus Laboratories, 1980.

The Quality Assurance Directorate
of the US Army's Computer System Command
has undergone some major "soul-searching"
narticularly with regard to its role in

independent testing. As a result of this

self-evaluation, the changes detailed in

this paper are being gradually implemented.
Six systems have been placed under the new
procedures and all have experienced one or

more releases of systems change packages
with the revised testing methodology. No

significant problems have been encountered
and, for the most part, the developers are

optimistic about their increased responsi-

99

HISTORICAL FILES FOR SOFTWARE QUALITY ASSURANCE

Walter R.

Tr acor
2007 We

Ful ler ton

,

Pype r , Ph . D

.

, Inc .

St Olive
CA 92633

This paper summarizes a combination of ideas, adapted
from software engineering and other disciplines, which
provide insight into software life cycle management
activities. This paper is written for an audience which
may not be familiar with software engineering terminology,
and some ideas and terminology are taken from related
file maintenance and systems analysis fields. The impact
of historical files, which represent the software develop-
ment and testing activity, upon traditional software
configuration management (CM) and software quality assur-
ance (SQA) is examined. The implementation of historical
files s exp 1 or ed. Both advantag e s and d i s advan ta g e s are
ind i c a t e d The relationship to k e ywo r d cross-re f e r enc ing
is d i s c u s s e d .

Keywo r d s Conf iguration manageme n t (CM); cross r e f ere nee
data s t r u c tur e

;
design, documenta t ion; functiona 1

;

h i s to r i c a 1 file
;
keyword; life cy c 1 e management

;

r e qui re-
me n t s > s o f twar

e

quality assurance (SQA); specifi c a t ion

1 . Introduc t ion

The intent of this paper is to
summarize a combination of ideas,
adapted from software engineering and
other disciplines, which provide in-
sight into software life cycle
management activities. This paper is

purposely written for an audience
which may not be familiar with soft-
ware engineering terminology, so some
ideas and terminology are taken from
related file maintenance and systems
analysis fields.

Software configuration management
is an area of software quality assur-
ance which is concerned with
controlling the current version of
each document, program listing, and
other items associated with a soft-
ware system. In the maintenance of

such a configuration management
system, some key decisions must be
made regarding which information to
keep and which to throw away.
Ideally, nothing is discarded from
program inception to system delivery
and on into system maintenance. The
challenge to the configuration
manager is to develop a reasonable
update procedure for documents, pro-
gram listings, tapes, etc., so that
there is traceability from one
version to the next and so that the
current state of documentation
matches the supported software. Some
trade-offs are necessary. In some
cases, previous versions of documents
listings, tapes, etc., cannot be
physically maintained; and even if
resources were provided to do that,
the cross-reference system between
current and all other versions

101

of these items requires an additional
resource which may grow to eclipse the
originally envisioned software system
development activities.

Although it is generally diffi-
cult to decide what to throw away
when a new version of a controlled
item is produced, one solution has
been to keep copies of the previous
two versions. Of course, one major
change followed by three successive
minor changes eliminates the version
reflecting the major change from the
configuration management system, so
any such arbitrary rule may cause
disaster in terms of t r ac e ab i 1 i ty

.

See Figure 1.

Current Version
(Minor Cha.ige)

Minor Change

Minor Change

Major Change

Figure 1, CM Update Procedure

The idea of maintaining a

historical file which cross references
all updates in each controlled item is
proposed as a way in which a software
configuration might be controlled
appropriately. The idea is a fairly
s t r a i gh t - f o rwar d one, but its implemen-
tation does require discipline which
may not traditionally be found in the
configuration management arena. The
application of historical files to
wider areas of software quality
assurance is pursued in Section 3,
entitled "Wider Application to
Software Quality Assurance (SQA)".

2. Applications to
Configuration Management (CM)

The basic procedures for software
CM employ tools and techniques which
can produce the current version of a

controlled item (document, program
listing, etc.) and indicate the
relation between any two items. An
equally important CM capability is to
produce technical and management
information on any item, such as the
number of internal program segments
in a software task or the location(s)
of a given data segment within the
entire software system. It is not
intended that the use of a historical
file might eliminate the need for
such traditional CM tools. The major
benefit of a historical file to CM
is in minimizing the concern over
lost information due to elimination
of early versions of a controlled
item.

The historical file records any
change to a controlled item and
cross-references that change to all
documents, computer codes, etc.

,

which are functionally affected by
the change. One challenge is to
identify all of these furctional
relationships and record the cross-
references appropriately. Another
challenge is to set up the historical
file organization in the most useable
form at the "beginning". A thir 1

challenge is to identify the "begin-
ning". When does one begin to keep
a historical file?

Let's start by considering the
last challenge first. A historical
file may be initiated at any point
in the software engineering life
cycle, but there is a point of
diminishing returns, and there may >

be a point of insignificant return
for the effort invested. If it is
possible to begin the historical
file near the inception of the life
cycle (wherever that is judged to
be), there are rewards for keeping
track of approved and eliminated
ideas, together with the correspond-
ing judgment criteria, during the
early stages of requirements
generation.

If the historical file is

implemented when the preliminary
software design document is generated
that document provides an outline for
the historical file organization
which is close to the ideal, since it

reflects the organization of the
product itself - the computer code.
Valuable information on software
requirement specification decisions
will have been lost by waiting to

initiate the historical file until

102

the preliminary design document is
produced, and it is possible to
reorganize the historical file based
upon the structure of any document or
listing. By automating the historical
file, the reorganization procedure may
be accomplished less painfully.

The second challenge, that of
setting up the historical file organi-
zation in the most useable form, has
been partially discussed already.
Should its organization be arbitrary,
should it follow a particular document,
or should it be a reflection of the
program listing itself? The latter
organization, that of the program
listing itself, is proposed as the
most useful, since the historical file
is then keyed directly to the code for
design, dev.- lopment , maintenance and
other purposes. It is suggested at
this point that one of the major
sources of software maintenance cost
is the cost associated with familiari-
zing personnel with the software
design, preliminary to maintenance
updates to the cod e . Sine e all doc u -

ments are written in s uppo rt of the
computer code itse If

,
_

it s e ems
reasonable that th e hi s tor i c a 1 file
should be organize d pa ral 1 el to the
coda .

The content o f th e hi s 1 0 r i c a 1

file has not been disc u s s e d to this
point , and it is h igh t ime we 1 o ok e d

at that in some de tail . Th e his tori c a 1

file represents de sign dec i s ions

.

What was done? Why was it done?
When was it approved? What effect
did it have? The historical file
should contain, at a minimum, the
foil owing

:

• Location of Change - supporting
information is listed under
appropriate historical file
section.

• Chronology - date change was
implemented in CM controlled
i t em

.

change? It is proposed that this
cross-reference include usage of
a keyword file where keywords and
keyword phrases are associated
with the historical file section
in which the change is being
described. These keywords pro-
vide a secondary check on code
and data segments which might be
affected by this change. A
second type of explicit cross-
referencing which lists all
locations in associated documents
where changes are required is a

traditional part of CM control,
and would not necessarily appear
within the historical file.

The last element of a historical
file entry responds to the first
challenge listed earlier. The ability
to adequately cross-reference the
changes to a software system and pro-
vide checks against inadvertent
"ripple effect" of a change has
plagued software designers and main-
tenance personnel in the past. The
idea suggested here is to associate
keywords and keyword phrases with
each program segment (subroutine;
procedure, etc.) of the computer code
and consequently with the associated
historical file section. These
keywords and phrases provide
functional relationships between code
segments which yield a semi-automated
control by listing all code and data
segments which share the keywords
and phrases contained in that
historical file section. See
Figure 2 for a Fortran example.

SUBROUTINE EXAMPLE
C 3 .4.1
C PURPOSE
C

C

C

C KEYWORDS
C

C

C

Description of Change -

Standardized format of changes
to documents, listings, etc.

Criteria for Change -

Standardized comments for reasons
beh ind change

.

C r o s s -Re f e r e nc e s - What was
functionally affected by this

Figure 2. Keyword Section in Preamble

Admittedly, a lengthy check-list
of code and data segments might result
from the cross-reference procedure
using keywords as the means for
relating an altered historical file
entry to the balance of the entries.
This procedure is amenable to

103

refinement by means of sub-categories,
so that the check-list is not so
extensive. The intent is to be
exhaustive in the cross-reference
exercise, so it may be well to employ
manual sub-category sorting techniques
rather than automate to the degree
that the intrinsic value of such a

cross-referencing procedure is lost.

In what respect have we aided
the CM process? If the historical
file were not available we might
expect that the following deficiencies
would exist in our CM system:

• The history of changes to a given
code segment or document section
might be difficult to trace back
more than a few versions prior
to the current version.

• The reasons for changes to design,
requirements, etc., might be
obscured or non-existent with
traditional CM techniques.

• The cross-reference between
sections of documents or segments
of code might not exist in a

useable form for maintenance or
design changes, thus amplifying
the aftershock of CM activity.

The additional savings associated
with a reduction in the need for
maintenance of multiple prior versions
of listings and documents may be the
strongest reason for implementing a

historical file.

tools and testing activity. In order
to formalize the organization of the
historical file and tie it to the
delivered code structure, it is
recommended that both the code and
the historical file be structured
with a numbering scheme which is
common to the final design document.
In particular, the individual sec-
tions of the final design document
should be implemented within the code
in single program segments (subrou-
tines, procedures, etc.) or in groups
of program segments (e.g. tasks).
The numbering system associated with
those individual sections of the
design document may be included with
the preamble or header comments in
the individual program segments and
may be likewise repeated in the
historical file. In the event that
a program segment does not match
a design document section uniquely,
as in the case with certain utility
programs, an appropriate itbsequence
numbering is possible so tuat the
correlation is maintained.

The advantages to the mainten-
ance of such a common numbering
scheme extend beyond configuration
management activity, discussed
earlier. All parent and descendant
documents which support the code may
be referenced directly to code seg-
ments. Test results at all levels
may be referenced directly to code
segments. A historical file is

easily organized and maintained
based upon such a numbering procedure.

3. Wider Applications to
Software Quality Assurance (SQA)

Upon test or examination of any
code segment by means of SQA tools,
the results of such examination should
be recorded in an easily accessible
central file. The ramifications of
such testing and the ability to dupli-
cate the test should be referenced
within that same central file. The
intent of these suggestions is to

minimize maintenance cost - the great-
est potential cost of software if
redesign and major updates to the
software are included in maintenance
costs

.

It is suggested that the
historical file, with an organization
which reflects the code structure, is

the appropriate place to record
results of the application of SQA

The effort involved in maintain-
ing the common numbering system is

insignificant compared with the
potential advantages gained. The
historical file may be organized in
such a fashion that proposed updates
to any code segment are complemented
by extensive background on prior
testing, validation and verification
associated with that code segment.
Any data segment which is affected by
a proposed change should be similarly
categorized in the historical file.

If the suppo r t i n g da ta b as e is

organized by such a s t rue tur e d

procedure the pos s i bi 1 ity of unex-
pected errors due t o c ode or
documentation upd a t e c an be s i gn i f i

cantly diminished

There is no s u bs t itu te f or
manual review and c or r e 1 a t i on of

104

some information, but the presence of
a historical file with built-in
features which reduce the search and
correlation process to a standardized
procedure is a significant aid.

4. Implementation of
the Historical File

The individual entries within a

historical file may be formatted
under the appropriate section number
to include the items indicated in
Section 2, plus any others that are
identified by the user. Each entry
may be cross-referenced in some
fashion, and the section in which the
entry resides is cross-referenced by
keyword as well as by section number
which matches the final design docu-
ment sectioi. number.

The historical file reside
edit-driven system with the abi
expand, concatenate and delete
sections, as well as to search
sort on given keywords or other
attributes. The ability to rap
access any portion of the file
numerical pointer is a key to
usefulness. The relationship b

keywords and numbered sections
maintained within the preamble
header of program segments (sub
tines, procedures, etc.) and du
cated in the historical file un
it is critical to save space in
historical file and not repeat
keywords within the historical

s on an
1 i ty to
file
and

idly
by
its
e twe en
i s

or
rou-
pli-
less
the

the
f ile .

Advantages to implementing a

historical file have been outlined
in Sections 2 and 3. They are
summarized here:

• Preserve design history of
s o f twar e

.

• Provide cross-reference to

control structure and data
structure changes.

• Provide essentially unlimited
backup to current version of all
items under CM control.

• Provide insight to design
processes for new imp 1 emen t o r s

.

• Provide detailed history to
support maintenance activity.

• Provide management tool for
extraction of significant

software update activity.

• Provide central repository of
all testing and SQA activity.

Resistance to the implementation
of a historical file is generally
prompted by lack of resources, to wit:
time, money and personnel. The
return on investment for such a tool
is generally not realized to a sig-
nificant degree until all major design
work has been completed; although
structuring the development activity
so that design changes at all levels
are carefully recorded and organized
yields some very important benefits.

Each individual involved in the
development of the software may go to
the historical file to gain under-
standing of otherwise tersely-written
documents. A significant time savings
is effected, and added insight into
total system requirements is derived
by the reviewer. Attempts to "second-
guess" the system architects are
diminished, and due to the increased
level of information available, the
implementor is given greater con'i-
dence in the basic design. If that
is not the case, useful suggestions
for improvement will be forthcoming
at an early stage where the cost of
change is small by comparison to
later stages.

The details of implementation of
a historical file are, to a great
degree, dependent upon the resources
and particular needs of the sponsoring
organization. Some of the advantages
and disadvantages of starting the
historical file before the final
design document is produced have
already been discussed. The sugges-
tion here has been to start as soon
as possible and structure the histori-
cal file so that it may be altered at

a later date to reflect the final
design document. This is no easier
task than restructuring the require-
ments document in terms of the final
design document, so this author
recognizes that the task of restruct-
uring is probably not amenable to

automation for many complex projects.

The process of correlating
keywords within the requirements
document and the initial design
specification allows a semi-automated
procedure for relating the preliminary
historical file (based upon the

105

requirements specification) to the
final historical file, thus antici-
pating the organization of the final
design specification. See Figure 3.

Require-
ments
Spec i f i-

cat ion

I
Prelimi-
nary
Histori-
cal File

Prelimi- Final
nary Design
Des ign Document
D 0 c umen t

1
Restruc- Updated
tured Histori-
Histori- cal File
cal File Structure

Figu e 3. Historical File
Update Process

If the reader feels that we are
beginning to magnify the software
development effort beyond reason,
consider the effect of doing the
cross-reference exercise to generate
a representative historical file.
The mechanism of thinking about cross-
references in detail provides the
designer with insight perhaps not
otherwise accessible, and the added
attention to that detail should
reveal problems with consistency and
completeness in the design. This
activity occurs at an early enough
stage to make changes which might be
impossible once the coding cycles
have begun.

5 . Summary

or after several maintenance versions
have been generated.

By organizing such a file to
match the structure of the delivered
code, and providing the ability to
cross-reference related documents,
test results, SQA results, and other
information, cost effective CM and
software maintenance is more
probable. If data structure is also
considered in the generation of the
historical file, heretofore
unexploited software maintenance
techniques are indicated.

The intent of this paper has
been to generate interest in the use
of historical files for reducing
software maintenance costs and to
provide greater visibility into the
software development process, thus
reducing the cost of design change
by moving more of the detailed review
of design decisions towa.-c' the
beginning of the software development
process

.

The keyword cross-reference
approach has been suggested as
logical complement to the historical
file. This provides a second check
on maintenance activity, and yields
likely nooks and crannies to search
for "ripple effect" errors. The
use of keywords and phrases is
explored in more detail in 0.J .

References

[l] Pyper, Walter R., The Effectiv e

Use of Comments, Tracor, Inc..
20 March~198l7

The concept of a historical
file has been utilized effectively in
many areas of systems and information
science. It is a standard tool in
the control of organizations and large
projects. It has been somewhat
neglected in software engineering,
possibly due to the apparent complex-
ity and cost of maintaining a separate
historical file when so much was
already being recorded and controlled
by CM techniques

.

One key element which has been
lost is -the history of design
decisions which provide great insight
into sometimes obscure reasons for the
existence of data and control struc-
tures in their final, delivered form.

106

ADP Cost Accounting

and Chargeback

107

A STEP-BY-STEP APPROACH FOR DEVELOPING

AND IMPLEMENTING A DP CHARGING SYSTEM
Kenneth W. Giese
Dean Halstead

Thcmas F. Wyrick

Directorate of System Evaluation*
Federal Coitputer Perfontiance Evaluation

and Siimilation Center (FEDSIM)
Washington, DC 20330

Charging for data processing (DP) services refers to distributing
the costs of providing DP services to the users who receive the
services. The distribution of costs requires definition of the basic
DP services, the resources used to provide the services, and the costs
incurred to obtain and make use of the resources. A charging system
is cortprised of two subsystems: the rate-setting and the billing
subsystems. The rate-setting subsystem incorporates procedures for
forecasting the use and the total cost of each service and establish-
ing the rate to be charged for each unit of service. The billing
subsystem includes procedures for monitoring the use of services,
applying the rate for each service unit to corpute the total charge
for the services each user receives, and reporting the charges to the
user and pertinent accounting groups. Organizations may or may not
collect funds to recover the costs of DP services.

The Federal Government has established policies that call for
distributing the "full costs of operating DP facilities to users
according to the service they receive." The National Bureau of
Standards (NBS) , assisted by the Federal Cotputer Performance Evalua-
tion and Simulation Center (FEDSIM) , is developing a set of Guidelines
to assist Federal DP management in iitpleitienting the charging aspects
of this policy. This paper describes a step-by-step methodology for
the developitent and inplementation of a charging system that will form
the basis of the Guidelines. The material presented in this paper
represents an overview of the preliminary results of the Guidelines
development project and may change during the review of the draft
Guidelines document. Selected technical and policy references are
cited to encourage further investigation.

Key words: DP cost accounting; DP cost allocation; chargeback;
pricing; standard costing; chargeout; charging; charging system.

*The views and conclusions contained in this paper are the authors' and should not be
interpreted as representing the official opinions or policies of FEDSIM or of any other
person (s) or agency associated with the Government. Moreover, this paper contains the
authors' summaries of official documents and, therefore, may not reflect the full
intent of those docunents.

109

1 . Introduction

On September 16, 1980, the Office of
Management and Budget (OB) issued Circular
No. A-121, "Cost Accounting, Cost Recovery,
and Inter-Agency Sharing of Data Processing
Facilities." This Circular requires
Federal agencies to irtplement policies and
procedures to (1) account for the full
cost of operating data processing (DP)

facilities; (2) allocate all DP costs to
users according to the DP services re-
ceived; (3) evaluate inter-agency sharing
as a means of supporting major new DP
applications; (4) share excess DP capacity
with other agencies; and (5) recover the
cost of inter-agency DP sharing. The
Circular specifies that agency procedures
for cost accounting and charging mast be
consistent with the guidance provided in
Federal Government Accounting Panphlet
Number 4 (FGAP 4) , "Guidelines for Account-
ing for Autonatic Data Processing Costs,"
U.S. General Accounting Office (GAO) , 1978.

While Circular No. A-121 and FGAP 4

describe general criteria that agencies
should use for cost accounting. Federal DP
managers need technical guidance in the
area of charging. The National Bureau of
Standards (NBS) is developing a Federal
Information Processing Standard (FIPS)

Guidelines to provide the needed guidance.
The Guidelines will incorporate the "best
practices" as described in the literature
and as used by exertplary managers in the
Federal Government and private sector.

This paper presents an introduction to
charging for DP services and summarizes a
step-by-step methodology for developing and
iiiplementing a charging system. The
material described in this paper represents
an overview of the preliminary results of
the Guidelines development project. These
results may change during further review of
the draft Guidelines. Selected technical
and policy references are cited to encour-
age further investigation.

2. Introduction to Charging
for DP Services

The term charging for DP services
refers to the process of distributing the
costs of providing DP services to those who
receive the services. The procedures used
to charge and recover costs for services
will vary from DP facility to DP facility.
Services, resources, and their interrela-
tionships are the fxmdamental concepts that
must be understood in order to understand
hew to charge. The term "service" refers

to the work performed by the DP facility
for its users. In order for work performed
by the DP facility to be classified as a
service, the work must be measured by only
one metric and must have a user billing
rate (price) associated with it. The
metric is referred to as a service unit and
is the smallest category of work for which
the users can be charged. Services can be
as sirtple as catputer processing, with CPU
seconds as the service unit, or as cotplex
as a machine resource unit (MRU) , which is
an algorithm that combines several differ-
ent services and that uses the number of
MRU's as the service unit.

The term "resource" refers to the items
eitployed by the DP facility to provide one
or more services. In order for a resource
to be included in the charging system, the
DP facility must incur a cost for obtaining
or using the resource. Exaitples of re-
source categories that are used in DP
facilities are those listed in A-121 and
FGAP 4: personnel, equipnent, software,
supplies, contracted services, space
occupancy, intra-agency services and
overhead, and inter-agency services. The
total cost of each resource is used as the
basis for determining the cost of each
service, which is in turn used as the basis
for calculating the billing rate that will
be charged for that service. The concepts
of accumulating and accounting for the
total costs of DP services are described in
detail in FGAP 4.

The billing rates for the DP facility's
services typically are developed by divid-
ing the total cost of a service by either
the projected utilization or available
capacity for the service, such as the
number of hours the service is available
for use. Usage accounting procedures
collect and store the number of service
units for each service utilized by each
user. These data are reduced and reported
to the respective user. If the DP facility
is recovering its costs, then the billing
rates for the service units are applied,
the charge for the work is calculated, and
a bill is prepared and sent to the user.

The procedures used to charge for
services are referred to in the draft
Guidelines as a "charging system." Develop-
ing a charging system requires many decis-
ions that can affect not only the DP
facility, but also the entire organization.
Exaitples of the decisions are (1) whether
to charge the users for all of the re-
sources used to provide a service, or to
charge for only certain resources; (2)

whether or not to use the charging system

110

to try to influence service usage patterns;
(3) v^ch services the DP facility should
charge for; and (4) which resources are
used to provide a particular service.
These types of decisions are the main focus
of the draft Guidelines.

3. Functional Description of a
Charging System

An operational charging system is
ccitposed of two subsystems: rate-setting
and billing. (See Figure 1.) The rate-
setting subsystem supports the development
of the rates charged for each service.
The billing subsystem records usage and
applies the rates to cortpute the total
charges for the services each user re-
ceives .

3.1 Rate-Setting Subsystem

The rate-setting subsystem of a
charging system is most often linked to the
organization's fiscal cycle, which subse-
quently dictates the schedule of the
subsystem's operation. The frequency of a
typical cycle is yearly. The main objec-
tive of the rate-setting subsystem is the
setting of billing rates. Billing rates
are the prices users are charged for the
services they receive. Most organizations
atteitpt to keep billing rates constant
throughout the fiscal cycle to prevent
disruption of budgets, which explains the
interdependence between the subsystem and
the organization's fiscal cycle. The work
perfontied in the rate-setting sv±)system is

best described by dividing it into four
procedures: usage forecasting, cost
forecasting, setting billing rates, and DP

management accounting. Extensive interac-
tion occurs between the various procedxores,

and the work is not always catpleted in the
exact order shcvm in Figure 1. Each
procedure is briefly discussed belcw.

The first procedure of the rate-setting
subsystem is usage forecasting. Usage can
be forecast by one or more of several
techniques. Some examples of forecasting
techniques are surveying users to estimate
the amount of service they will require,
performing a trend analysis based on
historical usage data, or a combination of
the two. After the forecasts have been
cotpiled and validated for accuracy, the DP
facility determines if available DP capac-
ity can support the forecasted usage. If

not, steps must be taken to adjust either
DP capacity or the nuirber of service units
that users are requesting. Additionally,
the DP facility evaluates the usage fore-

casts for each service to determine if the
DP facility should continue to offer the
service

.

Cost forecasting involves estimating
the costs incurred to provide the resources
needed to support each service. The objec-
tive of cost forecasting is to estimate all
costs for the fiscal cycle. There are
several techniques often used for cost
forecasting. One of the more camion
techniques involves extrapolating the DP
facility ' s current operating budget into
the planning period by itemizing changes to
the budget reflecting estimated future
costs. Once cost forecasting is carpleted,
the costs and benefits of each DP service
are evaluated by ccxiparing the forecasted
usage and cost estimates to determine if

that service can be econcmically provided.
Cost forecasts can be used as a basis for
the DP facility's budget requests.
Together, usage and cost forecasting
provide the data needed to set billing
rates.

Setting billing rates involves alloca-
ting the forecasted DP costs to the various
DP services. This allocation involves
determining the portions of each resource
or group of resources (resource center)
used to support each service. The total
cost of each service is divided by either
the forecasted capacity or the forecasted
usage for that service; the result is

referred to as a "standard rate." The
standard rate is the minimum amount that
must be charged for each service unit to
fully recover the cost of providing that
unit. Differential surcharges or discounts
may be applied to each standard rate, if
appropriate, to develop the final billing
rate for each service. The standard rates
may also be used to develop charging
algorithms, if the DP facility is using
them. Charging algorithms are the equa-
tions used to coirpile the usage of several
different services into a total usage unit,
such as the MRU described earlier. The
billing rate for the total usage unit is
calculated using seme combination of the
standard rates of each of the services in

the algorithm. The billing rates are then
published and used as a basis for develop-
ing the users' DP budget requests.

The final procedure in the rate-setting
subsystem is a set of activities referred
to as DP management accounting. These
activities include budget planning and the
formulation of budget requests; establish-
ing and maintaining accounts and accounting
information for users and the DP facility;
and providing any interface that may be

111

Hw
><w
m
CA

H

PQ

HW
><w
n

M
HHa
cn
I

w

n

60

60
M

O
(0

s
O

I

9
60

112

required between the DP, budgeting, and
accounting gro\:ps of the organization.

3.2 Billing Subsystem

The billing subsystem consists of the
procedures errployed to monitor the usage of
the services; to prepare and distribute
reports of each user's service utilization
and charges for that utilization; and to
recover costs. If the DP facility is
recovering costs, usage reports may then be
viewed as bills. Service usage is typi-
cally monitored continually; reporting
typically occurs monthly; and cost recov-
ery, which may or may not occur, typically
follcws a schedule that is closely tied to
the fiscal cycle of the agency.

Usage accounting procedures, in the
context of charging, refer to recording the
service \jnits received by each user. Usage
of DP equipttient and software is typically
monitored by job accounting software run in
conjunction with the ccrtputer's operating
system. Manual procedures, including time

sheets, data entry logs, tape mount logs,

and other manual logs may be used for
personnel and other resources. Data fron
the job accounting software and the manual
logs are corpiled to produce records of
total services received by each user during
a given period.

Reporting consists of the procedures
ertployed to reduce the usage accounting
data, to apply the billing rates to the
results of the reduction, and to produce
reports surtmarizing the total service
utilization and charges for that utiliza-
tion for each user. Many DP facilities ac-
tually provide their users with a report at
the end of each ccjiputer session or run
which suniTvarizes the services received for

that session or run and the estimated
charges for those services. If the DP
facility has chosen to recover the charges
for its services, then in most instances
the reports that have been produced can be
viewed as the bills used for recovery.

Recovery consists of the procedures
eitployed for the collection of funds.

There are several different techniques that
can be used to handle the recovery of
charges. One technique is to have the user
deposit an amount of money into an account
maintained by the DP facility. The DP
facility then debits the user's account
every time the user utilizes the DP facil-
ity 's services. In this situation, the
reports or bills reflect the charges that

have already been removed fron the user ' s

account. Another technique is to have the
user send funds to the DP facility for each
bill received. Whatever technique is used
by a DP facility, it must fit in with the
policies and procedures that each agency
has for the transferral of external and
internal funds . The agency ' s accounting
department typically handles all of the
agency-level record-keeping for, and actual
movement of, the funds.

4. Outline of the Charging System
Development and Iitplementation

Process

The draft Guidelines discusses in
detail four phases and eleven steps for
developing and inplementing a charging
system. (See Figure 2 .) This section
provides a sunmary of the major tasks
required for each of the eleven steps.

4.1 Planning Phase

The planning phase incorporates two
steps: (1) determining the management
structure and approach to developing and
inplementing the charging system; and (2)

setting the objectives for the DP facility,
for charging for DP services, for the
charging system, and for the charging
system development project. These steps
result in the preparation of a high-level
management plan for the development
project.

"Step 1" Determine the Management
Structure and i^proach

There are four major tasks in Step 1.

The tasks are primarily the responsibility
of the organization's management. First,

the level of management involvement and
support in the design, development, iitple-

mentation, operation, and maintenance of
the charging system should be determined.

This involves defining the degree of
organizational ccmmitment to charging for

DP services, the charging system, and the

charging system development project.

Second, a charging team should be formed.

The team should consist of at least one
representative from each fmctional group
in the agency that will be affected by the

charging system, including DP, management,
budgeting, accounting, and the users.

Third, the charging team should identify
the major types of work that will need to

be perfontied and assign the responsibility
for conpleting the work to the appropriate
team meiriDer or the group they represent.
Fourth, the methodology that the organiza-

113

PLANNING PHASE

1. DETERMINE THE MANAGEMENT STRUCTURE

AND APPROACH
2. SET OBJECTIVES

DESIGN PHASE

3.

A.

ESTABLISH THE ALLOCATION STRUCTURE

DESIGN THE CHARGING SYSTEM

RATE-SETTING PHASE

5. FORECAST USAGE
6. FORECAST COST

7. SET BILLING RATES

8. CONDUCT DP MANAGEMENT ACCOUNTING

BILLING PHASE

9. DEVELOP AND IMPLEMENT USAGE ACCOUNTING

PROCEDURES
10. DEVELOP AND IMPLEMENT REPOR,TING

PROCEDURES
11. DEVELOP AND IMPLEMENT RECOVERY

PROCEDURES

Figure 2. Charging System Development
Phases and Steps

tion will use in the design, development,
inplaa:v8ntation, operation, and maintenance
of the charging system should be defined by
the charging team. The team's decisions
should be documented in a formal Project
Plan which outlines the individual tasks to
be performed in each subsequent phase and
step.

"Step 2" Set Objectives

Step 2 consists of four major tasks.
These tasks are coordinated by the charging
team, vtose objective for this step is to
provide a formal definition of the objec-
tives for the DP facility, for charging for
DP services, for the charging system, and
for the charging system development pro-
ject. First, the management-level DP
objectives should be defined to indicate
how DP relates to the organization as a
whole. This involves determining the
relationship of the DP facility to the
organization, the level of maturity of the
DP facility, and whether approval for DP
usage should be via the DP facility's or
user's budget. Since these ctojectives

affect the charging system and the entire
organization, they should be coordinated
with upper management and all other
involved groups. Second, the DP facility's
or agency's objectives for charging for DP
services should be determined. Exaiiples of
these objectives are to (1) increase the
accountability of DP to upper management
and the users, (2) irtprove the relationship
between charging and the capacity planning
process, (3) recover the cost of operating
the DP facility, (4) encourage more effi-
cient use of resources by the users, (5)

encourage the DP facility to keep prices
ccitpetitive with outside vendors, and (6)

influence the behavior of users regarding
their use of the resources.

Third, the objectives of the charging
system should be deterroined. These objec-
tives should define how the charging system
should be structured and designed. There
are ten primary objectives of a charging
system identified in the draft Guidelines
document: (1) repeatability, (2) under-
standability, (3) equitability , (4) audit-
ability, (5) adaptability, (6) inexpensive
to operate, (7) easy to irtplement and
maintain, (8) controllability, (9) stabil-
ity, and (10) sirtplicity. Many of these
objectives are not ccrrpatible and the
charging team must work to explore trade-
offs between conflicting objectives.

Fourth, the objectives of the charging
system project must be defined. This
involves setting the goals, schedules, and

114

budgets for accorplishing the phases,
steps, and tasks defined in the Project
Plan.

4.2 Design Phase

During the design phase, the objectives
set forth in the planning phase are used to
direct the conceptual development and
preliminary design of the charging system.
The objectives of this phase are to estab-
lish an allocation structure, vrfiich is a
matrix to be used to assign the resources
to the services, and a global charging
system design. During this phase, the
global requirements for the charging system
are identified and alternatives for satis-
fying the requirements explored. The
allocation structure and charging system
design provide a starting point for the
detailed design, development, irrplementa-

tion, and operation of the rate-setting and
billing subsystems. The global charging
system design serves to coordinate the
individual steps and tasks of subsequent
phases. The design phase is coordinated
and performed by the charging team members.

"Step 3" Establish the Allocation Struc-
ture

Step 3 consists of seven major tasks.
First, the methods for allocating the costs
of the resources to the services should be
determined. There are two decisions vAiich

must be considered, (1) should the costs of
all or only a subset of the resources be
allocated to the services, and (2) should
billing rates be based on standard or
actiaal costs. The first decision is
self-explanatory and is a function of the
policy of the DP facility or the agency in
which it resides. The second decision
concerns how often the billing rates are
set. Billing rates based on standard costs
are set once for the fiscal cycle; billing
rates based on actual costs are changed as
often as necessary to ensure that they
reflect the actual costs to produce them.
Second, the charging methods or bases
shoiiLd. be determined. There are two
charging method decisions that shoiiLd be
determined: (1) should the rates be based
upon projected usage or estimated total
capacity; and (2) should the services
offered by the DP facility be charged using
a single factor, multiple factors, or an
extension of the multiple factors method?
(These are discussed in detail in the draft
Guidelines .

)

Third, the services that the DP facil-
ity wants to provide should be itemized.

The service unit for each service should
also be defined. Fourth, the resources
that the DP facility uses to provide each
service should be itemized. Fifth, the
centers, or logical groupings used to
accumulate the resources and services,
should be identified. Sixth, the structure
for allocating the costs of the resoiarces
and resource centers to the services should
be constructed. The actual costs of the
resources are not placed into the alloca-
tion matrix at this time, because they are
not yet kncwn. Seventh, the charging
algorithms, if they are to be used, should
be developed.

"Step 4" Design the Charging System

Step 4 consists of four major tasks.
First, the global fxmctional requirements
of the system should be identified,
analyzed, and documented. The requirements
for the charging system that are of primary
concern are the basic inputs, processes,
and outputs needed for the various proce-
dures. The allocation structure provides a
basis for defining requirements for collect-
ing, processing, and reporting information
about resources, costs, and services.
Second, the global functional requirements
should be used to define and document the
data requirements of the system. The
amount and types of needed and available
usage and cost data should be closely
examined and defined. The data require-
ments document is very iirportant and should
be continually refined throughout the
charging system developnent project. All
design decisions should be checked against
the availability of the data needed to
develop and irtplement the procedures and
systems that those decisions dictate.
Third, the basic alternatives for satisfy-
ing the functional and data requirements of
the charging system must be explored.
Exanples of the decision trade-offs for
each of the procedures of the charging
system are manual versus autotiated, in-
house versus purchased, and existing versus
notf. The potential costs of each alterna-
tive for each procedure should be weighed
against its benefits. These decisions are
iterative and may result in the need to
modify the objectives and requirements of
the system. Fourth, based on decisions
made in the first three tasks, a global
charging system design document should be
carpiled, reviewed, and eventually approved
or disapproved by the charging team,
i^proval leads to the next two phases,
during which the detailed designs are
produced, the system and subsystems are
developed, and finally they are inplemented
and operated. Disapproval means that

115

earlier phases, steps, and tasks must be
re-evaluated and, if necessary, repeated
until approval is obtained by the involved
parties.

4.3 Rate-Setting Phase

This section describes the four steps
to follcw in setting rates. The agency's
standard DP systems development techniques
should be used in conjunction with this
section to structure the detailed design,
developnnent , iitplementation, and operation
of the rate-setting si±)system. During the
rate-setting phase, the detailed decisions
concerning the type and structure of the
rate-setting subsystem are made. This
section presents information which is
pertinent to the operational rate-setting
subsystem to aid in its detailed design,
development, irtplemeritation, and operation.
The functional procedures include the
forecasting of usage and costs, setting of
billing rates, and performing DP management
accounting tasks.

"Step 5" Forecast Usage

Step 5 consists of four major tasks.
First, users' projected workload require-
ments should be obtained. The projections
should be in terms of the service units
that are established in the allocation
structure. Second, the forecasts should be
analyzed and used to determine the capacity
needed by the DP facility to provide those
forecasts. Third, discrepancies between
available or obtainable DP capacity and
usage forecasts should be resolved.
Fourth, the allocation structure should be
reevaliaated and, if necessary, restructured
to incorporate the resolutions between the
users' forecasts and DP capacity.

"Step 6" Forecast Costs

Step 6 consists of four major tasks.
First, an estimate of the budget that will
be proposed for the DP facility, for the
planning period of the charging system,
should be developed or obtained. Second,
additional cost data that are either not
contained in the budget estimate or not
contained in the detail that is needed
should be <±)tained. Third, the cost data
should be analyzed and the costs for the
resources and resource centers should be
calculated. Fourth, the allocation struc-
ture should be reevaluated. Resources and
resource centers for which no cost could be
obtained should be removed fran the alloca-
tion structure or consolidated under other
categories.

"Step 7" Set Billing Rates

Step 7 consists of five major tasks.
First, the estimated costs of the resources
and resource centers should be incorporated
into the allocation structure and the total
cost for each service calculated. Second,
the "standard rate" for each service unit
should be calculated. The standard rate
can be calculated in one of three ways:
(1) by dividing the total estimated cost of
a service for the planning period by the
total projected usage, (2) by dividing the
total estimated cost of the service for the
planning period by total available DP
capacity, or (3) by using a technique that
considers the total projected usage and
cost over the projected (multiyear) life of
the service. Third, coefficients for each
charging algorithm variable, if charging
algorithms are being used, should be
calculated. Fourth, any factors for
normalizing charges between carpeting or
similar services, such as multiple machines
or DP facilities, should be determined.
Fifth, any surcharges, priority charges,
and discounts that are to be used should be
determined. The end result of these tasks
is the calculation of a billing rate
(price) for each service offered by the DP
facility

.

"Step 8" Conduct DP Management Accounting

Step 8 consists of three main tasks.
First, procedures should be developed for
the establishment and maintenance of user
and DP facility accounts. Second, proce-
dures should be developed and irtplemented
for assisting users and the DP facility in
establishing and justifying their budgets.
Third, procedures should be developed for
providing coordination with the organiza-
tion's accounting and budgeting divisions,
the DP facility, and the users concerning
areas connected to the charging system,
such as the recovery of charges and user
accounts. These procedures are needed to
keep track of actual expenditures of both
the DP facility and the users. FGAP 4

provides the guidance needed for management
accounting for the DP facility.

4.4 Billing Phase

Billing includes functional procedures
for accounting for usage, producing and
distributing usage reports and bills, and
recovering charges fran users. During the
billing phase, these procedures are defined
in detail, developed, irtplemented, and used
in an operational environment. The proce-
dures directly affect the users, the DP

116

facility, and the organization's accounting
and budgeting practices. Representatives
frem these groups should be involved in the
detailed design, developnvent, inplementa-
tion, and operation. Cost accounting for
the DP facility is not addressed in the
draft Guidelines document; however, cost
accounting does occur in parallel with the
billing phase.

"Step 9" Develop and Iitplettent Usage
Accounting Procedures

Step 9 consists of two major tasks.
First, the usage accounting procedures that
are needed to collect the necessary data
for the charging system should be designed
in detail. These procedures typically
include both autcrtated and manual methods.
When designing the procedures, the design-
ers should be sure that all of the data
have been identified from the planning,
design, and rate-setting phases. The
second task is to develop, implement, and
operate the usage accounting procedures.
Development of these procedures will
typically include purchasing off-the-shelf
software

.

"Step 10" Develop and Implement Reporting
Procedures

Step 10 consists of two major tasks.
First, the reporting procediires should be
designed in detail. This consists of
determining (1) how to reduce the usage
accounting data, (2) how to apply the
billing rates, and (3) how to report the
usage levels and charges. Second, the
reporting procedures should be developed,
inplemented, and operated. Development of
the reporting procedures will typically
include purchasing off-the-shelf software
and making modifications to it as neces-
sary.

"Step 11" Develop and Iitplement Recovery
Procediores

Step 11 consists of four major tasks.
First, the policies of the organization for
transferring funds should be researched.
Second, techniques for adjusting charges in
error should be developed. Third, the plan
for recovering fiands from the users and
accoxmting for those funds should be
designed in detail, developed, inplemented,
and operated in accordance with the
agency's policies and practices. Finally,
feedback from the users should be obtained
and procedures should be modified as
needed.

5 . Conclusion

The purpose of this paper is to iden-
tify the critical phases, steps, and issues
in charging system development and irrple-

mentation. The approach and issues
presented in this paper are not intended to
provide a cctrprehensive , detailed plan for
developing and inplementing a DP charging
system. The topic is too ccnplex and far
reaching to be standardized; hcwever, a
general approach and best practices can be
established.

In setting policies and developing
guidelines for charging users for the DP
services received, the Federal Govemitent
is attempting to shift the responsibility
for DP costs frcm the DP facility to the
users. Such a shift raises questions that
are addressed in CMB Circular A-121, FGAP
4, and the draft Guidelines discussed in
this paper. The underlying theme of these
new policies and guidelines is iitproving
the accountability of both Federal DP
facilities and their users.

In addition to irtproving accountabil-
ity, a charging system can also inprove
both the DP planning process and the
cotmunications between the DP facility and
its users. The approach presented in this
paper stresses the iitportance of planning
and ccmmunications as the fundamental
elements for the successful design, develop-
ment, iiipleitentation , and operation of a
charging system.

The authors thank Dr. Dennis Conti of MBS
and the many other professionals in both
Government and cormercial organizations who
participated in the Guidelines developrtent
project and the preparation of this paper.

Bibliography

[1] Bernard, Dan, et al. Charging for
Conputer Services; Principles and
Guidelines , Petrocelli, 1977.

[2] Gushing, Barry E. , "Pricing Internal
Ccjrputer Services - The Basic Issues,"
Management Accounting , i^ril 1976,
57(10), pp. 47-50.

[3] Dearden, John and Nolen, Richard L.

,

"How to Control the Ccuputer Resource,"
Harvard Business Review , November-
December 1973, 51, pp. 68-78.

117

[4] "Charging for Cortputer Services," EDP
Analyzer , July 1974, 12(7), pp. 1-13.

[5] "Job Accounting and Chargeback," EDP
Performance Management Handbook , June
1980, pp. 2.0.1-2.90.5.

[6] "Standard Costing in Data Processing,"
EDP Performance Review , June 1981

,

9(6), pp. 1-6.

[7] "A User-Oriented i^proach to Charge-
back," EDP Performance Review , February
1975, 3(2), pp. 1-6.

[8] McKell, Lynn, Hansen, James V.

,

Heitger, Lester E. , "Charging for
Conputer Resources," Ccmputing Surveys ,

June 1979, 11(2), pp. 105-120.

[9] Nolan, Richard L. , "Controlling the
Costs of Data Services," Harvard
Business Review , July-August 1977, pp.
114-124.

[10] United States Office of Management and
Budget, "Cost Accounting, Cost Recovery
and Inter-agency Sharing of Data
Processing Facilities," Circular No.
A-121, September 1980.

[11] Schaller, Carol, "Survey of Ccnputer
Cost Allocation Techniques," Journal of
Accoimtancy , June 1974, 137(6), pp.
41-49.

[12] Statland, Norman, et al, "Guidelines
for Cost Accounting Practices for Data
Processing," Data Base , Winter 1977, 8,

pp. 2-20.

[13] United States Government Accounting
Office, "Illustrative Accounting Proc-
edures for Federal Agencies," Federal
Government Accounting Panphlet Number
4, 1978.

[14] Zmud, Robert W. , "Selecting Cotputer
Resources for Inclusion within a
Pricing System," Journal of the
American Society for Information
Science , November-December 1975, pp.
346-348.

Control of Information Systems

Resource Through
Performance Management

119

SESSION OVERVIEW

CONTROL OF THE INFORMATION SYSTEM RESOURCE
THROUGH PERFORMANCE MANAGEMENT

John C. Kel ly

Datametrics Systems Corporation

Burke, VA 22015

Performance evaluation has expanded during the past few years to

take on a more global view of the data processing function. Perfor-
mance analysts can no longer limit their activities to system tuning.
The issues have become broader than just the central hardware and soft-
ware. Thus the shift in terminology from performance evaluation to

performance management. Two trends have forced this change in empha-
sis. First, with the thrust toward on-line systems, the performance
of systems has become visible to a wider and wider user community. Per-
formance evaluation can no longer be confined to the back room. It

is out in the open whether we like it or not. Second, the productivity
of the entire organization depends more and more on the computer system.
In many cases, corporate profits are directly related to computer per-
formance.

The papers presented in this session address some of the issues
associated with the trend away from evaluation toward management.
David Vincent discusses some of the basic issues associated with per-

formance management and describes how the pieces fit together. Dennis
Norman discusses the issues as they relate to an on-line network. The
session will finish with a panel discussion of the issues presented
in the papers as well as answers to the following questions:

• What is the proper role of computer performance management
(CPM)? Does it properly include such activities as programmer
product i V i ty?

• Where should CPM be located within the organization?
• How many people are required to support CPM?

• What experience and education are needed for CPM analysts?
• Is it possible to cost justify CPM?

• Is there really a difference between performance evaluation,
performance management, and capacity planning?

• How does one take into account user perceptions versus reality?

• What are the most useful measures of performance?

The panel will consist of myself, the two speakers, and the follow-

ing individuals: Larry Greenhaw of the Texas Department of Human

Resources, and Ken Moore of the National Bureau of Standards.

121

INCREASING SYSTEM PRODUCTIVITY

WITH OPERATIONAL STANDARDS

David H. Vincent

Boole & Babbage, Inc.

Educational Services Division
Sunnyvale, CA 94086

ABSTRACT

The user service levels achieved by a data center are dependent on
three variables: volume, mix, and efficiency.

By isolating and tracking these elements, the data center can
assign accountability to the user for their demands on the system as
well as isolate system inefficiencies to be corrected by the data
center. These methods also help to create the environment where data
center and user can agree on the essentials of the delivery of computer
services

.

One of the most outstanding individ-
uals to come out of the American Industrial
Revolution was a young man by the name of

Frederick W. Taylor. Taylor's "scientific
management" had a large effect on the tre-

mendous surge of affluence we have experi-
enced in the last seventy years which has
lifted the working masses in the developed
countries well above any level experienced
before, even that of kings and queens of

old. Taylor's analysis of work and resul-
tant method improvements resulted in produc-
tivity gains unequaled in history^

.

His analysis of work in the 1880's was

exemplified by his study of shoveling iron
ore in a steel mill. In this study, he
found gross inefficiencies in the actual pro-
cess of shoveling. By breaking the motions
and actions of the workers down into measur-
able segments, he was able to develop better
work methods (something like tuning a com-
puter) and standards of performance so that
output could be judged on a day-to-day
basis.

This work was finally completed, as we

now know it, shortly after he passed on dur-

ing World War I, at which time American in-

' Actually, Taylor was preceded in

philosphy, by another "irascible genius",

Charles Babbage, who documented some of the

earliest forms of scientific management in

his most successful book. On the Economy of

Machinery and Manufactures (1832) . However,
it took Taylor to "rediscover" and implement
practical scientific management in America.

dustry in general began to adopt his princi-
ples. Some of Taylor's disciples carried on
his work thereafter; notably, Frank and

Lillian Gilbreath (who were the subject of a

movie "Cheaper oy the Dozen") and Henry
Gantt, who initiated project scheduling in a

Gantt Chart. The common interest uniting
those people was the analysis of work and
translating that analysis into more produc-
tive and efficient procedures and flows of
work.

The analysis of work involves the fol-
lowing:

1 . The identification of all processes
necessary to produce an end product or
result

2. The rational (and manageable) organiza-
tion of the sequence of operations so as

to make possible the optimal flow of

work
3. The analysis of each individual opera-

tion or process including measurement
and historical trending

4. The integration of the above into an
overall process of producing a product
or result

This established process has been used
successfully for decades in American indus-
try (and Japanese, and German, and . . .).

It is my contention that the size and com-
plexity of the data center has now evolved
to a point where this methodology may be
applied in greater depth to realize signif-
icant economic benefits.

123

The role of the data center in the orga-
nization to which it belongs has increased
from simple payroll and accounting applica-
tions in the 60' s (remember "tab runs");

through inventory and distribution systems
in the 70's; to online, realtime management
and operational applications in the 80' s. A

good example of the online operational appli-
cation of the 80' s is the automated teller
systems in banks. In this case, the data
center has gone to a point where it actually
interacts with bank customers.

As the data center evolves towards a

utility-like process, the end product of the

data center is service. With the prolifera-
tion of online systems, service has become
highly visible to the user and a much more
tangible element in top management consid-
eration. In fact, service levels have be-
come so visible to the world outside the
data center that, to a large extent, they
are considered the measure of the data
center's performance. The perception of
service falls into three basic categories^:

1 . Online response time
2. Batch turnaround

5. Availability

When one of these is outside a user's
expectation, the DP manager's phone begins
to ring with complaints. Moreover, the busi-
ness environment in which the DP manager now
lives is one that expects him to manage his
operation the same as any other functional
unit of the enterprise. At this point, many
DP managers are beginning to feel the strain
of trying to negotiate and maintain service
levels without the benefit of having fully
implemented traditional scientific manage-
ment principles in their data centers.

One major element of scientific management
is the need to understand the elements of

the service to be performed and the vari-
ables that can affect them. These variables
have one of two sources: data center
operation or user behavior. There are many
data centers that have not yet quantified
the difference in, say, response time caused
by data center inefficiency as opposed to

that caused by user behavior. This is

because the analysis of work has not been
related to these two factors.

These data centers are usually per-
ceived by its users as being poorly run be-
cause all variances from negotiated response
times are attributed to the inefficiency of
the data center. When analyzing work, there
are in fact only three universal causes of
deviation from a standard which will cause
response time to be better or worse than
plan:

1 . Volume
2. Mix

3. Efficiency

The financial term for these deviations
is variance and simply means the difference
between planned versus actual results. The
first two variances are attributable to user
behavior. The third variance is the only
one that can be attributed to the operating
of the data center. In essence, the plan-
ning and anticipation of the volume and mix
considerations (user behavior) are much of
what capacity management is all about.

In this paper, I will explore methods
of determining the relationship of volume,
mix, and efficiency on the current system
and how we might predict performance at
various levels. The goal will be to define
performance curves giving standard levels of
service at varying levels of volume and mix.

Volume is a measure of activity in
terms of jobs or transactions by job or
transaction type. The various jobs or
transactions in types result from the dif-
ferences in computer resources consumed to
process that particular job or transaction.
Differences in volume can be measured by'

comparing forecast or plan to actual. For
example, the running of Job A123 resulted in
the following volumes:

PLAN TIMES ACTUAL TIMES VARIANCE
JOB RUN RUN (PLAN -ACTUAL)

AI23 <2>

The volume variance in this case is ex-
pressed as 2 jobs over plan. In terms of

resources expressed in standard work units-^,

it is 2 times planned resource per run of

Job A123' Let's say Job A1 23 should use:

^These were the first three items
listed in a poll done in Arizona with 150 DP
managers. Appendix A contains a full list
prepared during the 1981 EDP Performance
Management Conference.

^For this example, a standard work unit
will be considered for the case of CPU only.

The standard work unit is basically CPU time
factored for the relative power of the CPU.

124

Units
(000)

CPU standard work units = 170

Planned SWU's divided by planned work-
load is in fact the planned rate of SWU
consumption for a job from this work-
load .

I/O *

Memory ^

Total standard work units = 170

Therefore, the volume variance is 2

times 170,000 SWU's units or 340,000. This
may also be expressed in terms of dollars if

a standard cost per SWU's can be calculated
and applied.

3' The volume variance is then a function
of the jobs run over or under plan times
the planned resource (SWU) consumption
rate. This isolates those resources
consumed over or under plan as a result
of users running a different number of
jobs than planned.

4. The numeric calculation of volume vari-
ance is then:

Now let's take an example where there

is a volume and mix variance. Let's suppose
that we have 22 jobs that require a total of

4,320,000 SWU's (an average of 196,364 per
job).

The actual activity turns out to be 24

jobs requiring a total of 5,760,000 SWU's
for a variance of 1 ,440,000. The matrix of
the above with additional information is

then constructed as follows:

(000)

JOB P A v WORK UNITS P A V

A123 4 6 <2> 170 680 1020 <340>
B357 8 3 5 80 640 240 400
C896 10 15 <5> 300 3000 4500 <1500>
Totals 22 24 <2> 4320 5760 <1440>

The volume variance is calculated:

Planned SWU'sVariance of job runs X
Planned Workload

Volume Variance

<2> X ^11^ = <392.8>

The mix variance is calculated^:

1 . The planned SWU rate (

Planned SWU's
Planned Workload

was just calculated for use in the vol-
ume variance.

2. The actual SWU rate is the key element
in the calculation of the mix variance
because the difference between the
planned and actual SWU rates is a result
of a workload with different elements.

3. The difference in the SWU rates is multi-
plied by the actual workload.

4. The numeric calculation of this example
is then:

The volume variance is calculated:

Variance of Job Runs

X

Planned SWU's
Planned Workload

Volume Variance

The variance of job runs is calculated
by subtracting the actual total jobs run

(24) from the plan (24) with a resultant
2 jobs run over plan. The brackets in-

dicate that this variance will have an
unfavorable impact on data center per-
formance.

4 In this case, the SWU's per job are
not varied. As can be seen in the next
example, they are varied and this will re-

sult in an efficiency variance. The formula
for calculating mix variance would be modi-
fied to reflect the fact that both mix and
efficiency variance contribute to the
difference between the planned and actual
SWU rate. The revised formula would then
be:

Planned SWU's Actual SWU's

Planned Workload Actual Workload

X

Actual Units

Efficiency Variance = Mix Variance

125

= MIX VARIANCE

- ^) X 24 = <1047.2>

The mix variance is the amount of stan-
dard work units consumed over or under plan
as a result of having different jobs run
than were planned which, in turn, consumed
different amounts of resources. The summary
of the variance is then:

Volume Variance <392.8>
Mix Variance <1047.2>

Total Variance <1440.0>

Now we can expand tlie same example to

demonstrate an efficiency variance. Let's

say that we have the following data:

1 . The total efficiency variance is a sum
of the individual efficiency variances
calculated for each job run.

2. Each job variance is calculated by mul-
tiplying the actual runs of the job
times the job's SWU variance (planned
minus actual SWU's to process each run
of the job).

3. The calculation would then be:

Actual
Times Efficiency

Job Job Ran SWU Variance Variance
A123 6 5 30
B357 3 <20> <60>
C896 15 <200> <3000>
Total Efficiency Variance <3030>

The new total variance summary is then:

Standard Volume Variance <392.8>
Work Units Mix Variance <1047.2>

Workload (OOO) Efficiency Variance <3030.0>

<4470.0>
Job P A V P A V

Al 23 4 6 <2> 170 165 5

B357 8 3 5 80 100 <20>

C896 10 15 <5> 300 500 <200>

Total 1 22 24 <2>

Total SWU'

(000)

s

P A V

680 990 <310>

This says that the data center perfor-
mance of running these jobs, especially Job
C896, suffered either because of:

1. A bad application program,
2. Some system deficiency,
3. A bad estimate of what it would take to

run the job, or

4. A bit of all three.

It should be noted that user behavior
caused 32^ of the total variance. Often,
the user behavior element contributes even
more to the total variance, especially at

,

peak periods.

640 300 340

3000 7500 <4500>

4320 8790 <4470>

In this case, the SWU' 's consumed per

job were different than planned. Since we

have kept everything the same except the

actual SWU's per job, the volume and mix
variances are exactly as previously cal-
culated .

The efficiency variance is calculated
by:

(Planned Job SWU^ - Actual Job SWU^

)

X

Actual Jobsi = Efficiency Variance^
+

(Planned Job SWU^ - Actual Job SWU^)
X

Actual JobSjj = Efficiency Variancej^

Where can SWU's be obtained? Most
computer systems have some kind of log that
accumulates resource usage. CPU time is the
easiest measure, but relative CPU power dif-

ferences dictate that adding pure CPU time
from different CPU's might be erroneous over
time. IBM has offered a solution with MVS

by providing Service Units which are inter-
nally calculated. These Service Units are
indeed CPU time times an internal power
factor which result in theoretically com-
patible service units over a variety of IBM
CPU's.

The Institute for Software Engineering
has also provided a great deal of literature
in this area which deals with Software
Physics. The direction of this work is some-

what similar to the service unit methods
built into IBM and PCM systems, but is much
more complex.

126

So far, the analysis of variance has
focused on service units or the amount of

work going through a data center. How do
these translate to levels of service?

The data processing work plan basically
consists of putting out the required volume
and mix of work as a basic requirement, and
on a timely basis as a second but equally
important requirement in most shops. We can
be sure that capacity has been exceeded when
the data center physically cannot process
the required workload even if it were to run

a full three shifts per day, seven days a

week. But below this level, there are other
considerations that become practical limita-
tions of available hours to do data process-
ing work. The variances analyzed earlier in

this paper will affect the timeliness of the

data turnaround, especially in on-line sys-
tems. Plans of user workload are especially
important during the peak online requirement
that occurs during the normal five-day work
week. This is especially important if the
data center is very involved in the basic
business of the company with which it works,

such as a bank or department store.

What we're really talking about here
are the end user's work schedules and how
that impacts the ability of the data center
to plan and deliver services matching their
schedules as postulated in the User Behavior
Elasticity Theorem^; which states that the

degree to which the data center can influ -

ence end -user behavior is inversely propor-
tional to the degree that data processing
is involved in the basic business of the

organization . This can be illustrated by

two examples.

The first is in the banking industry
where automated tellers are being imple-
mented. The data center cannot influence
the end -users of this application to any
noticeable degree because the bank's basic
business depends upon having the automated
tellers operating when its clients (i.e.,

depositors, withdrawers, etc.) want to make
a transaction. Chargeback schemes, manage-
ment pressure, and the like will have little
or no effect. On the other hand, a company
producing buggy whips that has not inte-

grated data processing into its basic busi-
ness will tend to be much more flexible in

terms of end -user behavior because produc-
tion and distribution will continue whether

^This is my theorem developed from
personal observation and many discussions
about chargeback systems.

the data center runs or not. Hence, it is

more elastic as charging schemes and manage-
ment pressure are applied.

We are also talking about the necessity
for conscious management decisions regarding
the economic benefits of achieving a given
online response time versus the system costs
that will be required to provide that level
of response. Or, as another case, the
adding of another application to the online
system in light of its potential impact on
the response time of current users and appli-
cations may or may not be possible under the

current configuration because of the impact
it will have on the service required for
other applications. This is where perfor-
mance management comes in, specifically, the

analysis of performance data. What we want
to know is which user-controlled variables,
i.e. , volume and mix, will impact service
level performance. Those of us who have
been tracking this type of data over time

know what happens when a CPU gets over 30%
busy and are well aware of exponential deg-

radation of service levels that occur beyond
this level. This is also true for many
other areas within the system depending on
where the system bottleneck is. Are there
tools that will identify such sensitive
areas in the system? If so, how might they
be applied?

The software tools and sources of data
needed to perform this kind of analysis are
readily available. You probably have some
of them installed on your system already.

When the data center has analyzed the

effects of user behavior and workload, the

next logical step is to relate them to the

capability of the system. Peak period per-
formance will probably be the main ingre-
dient in any service agreement. The first
step in predicting system capability is to

know what the system can do now. By imple-
menting performance reporting, there will be

data relating to user workload characteris-
tics. These can then be related to service
level achievement.

First, we must assume that the system
is properly tuned. A second assumption is

that the workload has been shifted to the

extent possible (i.e. , batch work at night
so as not to interfere with online work).

At this point, the theorem of User Behavior
Elasticity applies. The next logical step
is to develop the operational standards of

performance in terms of service levels based
on the current configuration and end -user
service level objectives.

127

In the case of predictive models, such

questions as "What effect on service levels

will be experienced by adding another chan-
nel or MSD device?" can be modeled and the

results calculated against the current work-
load. Future anticipated workload growth
can also be modeled to see future service
level achievement with the current system.
Shifts in volume and mix as compared to

plan, when modeled, will illustrate service
degradation caused by user behavior.

Alternative hardware and software
options may be considered to find what is

needed to maintain negotiated end -user
service level requirements. Additions to

the current system or other alternative
systems may also be modeled to measure the

impact

.

The major characteristics of a good
predictive model are the following:

1 . Results can be easily validated
2. Easy to use

5. Will distinguish the various hardware
and software characteristics of avail-
able products

4. Can easily integrate user historical
data to define workload characteristics

5. Economical to run

5. Easy to interpret reports

The first and foremost requirement is

that the model be easy to validate. The
value of a predictive model is in its pre-
diction!

The second and very important require-
ment is that the model be easy to use. This

will reduce the need for highly technical
systems people or, at the very minimum, a

mathematical theoretician to use the prod-
uct. Rather, the model should be usable by

a trained business analyst. Most errors
made by models are created from erroneous
input. Complicated models tend to be re-

splendent with such opportunities for error.

The predictive model ideally will easily
incorporate hardware and software alterna-
tives available to the data center, so that

the analyst can play "what if?" games. That
is, various configurations can be matched
against various workload and service-level
requirements to determine which configura-
tions would be optimal. This type of anal-
ysis lends itself extremely well to the

decision-making needed in the process of

appropriating capital goods (i.e., data
center hardware or software). From this

data, various suitable configurations can be
selected and the cost effectiveness of each
evaluated. The cost of various user service

levels may also be calculated. Both the
capital and service analysis will assist in
establishing the financial requirements for
the data center.

It is important that the model be fed
from an historical data base fed by the
various system monitors so that workload
data can be easily integrated. This may be
used to define current standards of perfor-
mance as well as defining trends for pre-
dictive modeling.

The model should be economical to run,
that is, it should not consume much computer
time. Since this process will be inter-
active and many passes of the model will be
required to determine the new performance
curve, each pass should run in a couple of

minutes or less.

And finally, the output must be easy to

interpret and readily presentable for manage
raent reporting. Again, a business analyst
should be able to interpret the output and
be able to input various alternatives as a

result of the output from any given pass of
the model.

The objective of this measuring, ana-
lyzing, and modeling will be to derive per-

formance curves that can become operational
standards of performance that show the rela-
tionship of service level achievement versus
user behavior. Exhibit 1 shows the process
involved in establishing such standards. It

is an interactive process that involves
tuning and end -user negotiations until
finally an agreed standard of performance
has been set. However, the standard is

dynamic. Exhibit 2 is a generalized per-
formance curve with user -controlled vari-
ables along one axis and service level per-

formance along the other. User-controlled
variables are, in fact, the various levels
of volume and mix for each of the various
categories of work.

In this case we will discuss TSO trans-
action response as a function of the volume
of user activity. The data for this graph
may be obtained from CMF, RMF, or SMF. In

the case of a DOS or in non-IBM environ-
ments, the system log that records the

volume of activity and system resources
consumed should provide the necessary data.
Exhibit 3 is an example of a System Workload
Summary^ from which the following data can

be obtained:

"Exhibits 3, 4 and 5 were produced by
CMF for an IBM MVS system.

128

1 . Volume of transactions by performance
groups

2. Service units used in each system area

Exhibit 4 is the CPU Utilization Report
which shows:

1 . CPU busy data
2. CPU queue data

Exhibit 5 is a TSO Subsystem Perfor-
mance Report which shows:

1 . TSO response by time period
2. TSO response by command

3. Concurrent TSO users

The above data was fed into the SAS
statistical program to determine which data
showed a relationship between TSO response
and another variable. The variable with the
closest relationship turned out to be the
CPU queue time"^ which is directly affected
by user volume and mix. In the case of our
system, we are currently CPU-bound, so this

is not a surprising bottleneck. As you can
see in Exhibit 6, a linear regression line

has been drawn with the standard error shown
as a dotted line on either side. In this
case the standard error is 1 . 1 seconds on
either side of the regression line. Basi-
cally this says that two -thirds of the time,
observances of TSO response versus CPU queue
time will fall within the area bounded by

the dashed lines.

The same analysis was done for TSO mix
in Exhibit 7. This line turned out to be

flat and was essentially meaningless because
of the variation in data. Again, this cor-
responded to what we wish the system to do.

TSO has a high priority, so even at high CPU

busy levels, the TSO service should not

suffer.

Exhibits 8 and 9 show the effect on TSO
response caused by total service units con-
sumed and concurrent users respectively. In

both cases there is a direct relationship,
even though the standard error is larger.

As you can see, using historical data, sys-

tem interrelationships with user behavior
can be derived. However, this kind of data
tends to be linear, and does not answer the

question of how the system will react to

user behavior at levels not yet experienced.

'As calculated by Little's Rule,

or the mean length of a queue is equal to

throughput times queueing time.

A third problem is that the system is

never exactly the same from one period to

the next. For this reason, it is extremely
important to correlate performance data from
the system to data logged from a change
management tracking system. A change manage-
ment tracking system is basically a problem
reporting system for all hardware, software,
and applications problems and changes made
to the system. There have been many times
that a one-byte code change on Sunday night
caused a system to come to its knees on
Monday morning with resultant days of anal-
ysis before the change was found. Each
system change needs to be documented and

available for analysis when performance data
shows a major deviation. This analysis goes
a long way towards explaining the efficiency
variance we discussed earlier and should be

mapped to each change in the performance of
the system.

Using a Model to Plot a Curve

Because graphing historical data will
not always answer the questions of future
system behavior for future user workloads, a

model is often used to simplify the process.
By using a model, curves may be defined for
each system limitation as well as an overall
curve for the present system capability.
This requires many iterations of a model to

define the points on the curve and even more
iterations to define other possible curves.

It is also important to validate the model
to actual system results. That means, if we
pick a point on the performance curve and

take the corresponding volume and response,
how close does this match reality? In other
words, will the point fall within the bounds
defined in the linear projection and stan-
dard errors graphed in the analysis of his-
torical data as was shown in Exhibit 8?

If indeed the model can be validated
and the results are consistent, we have in

fact defined an "operational standard."
"Operational standard" as used here means
that there is a standard performance charac-
teristic for a given level of user activity
on the current system. This becomes an ex-

tremely powerful tool for negotiating ser-
vice levels with users. A major misunder-
standing with users can be avoided if they

realize that for some levels of user activ-
ity, response will be lower. This is espe-
cially true if there are peak periods with
extreme activity for short periods during

the day and that activity causes the "knee"

of the curve to be reached.

Exhibit 10 comes from an actual case
where a factory made a union agreement to

clock out all employees in ten minutes.

129

This agreement brought the system to its

knees. The exhibit shows a performance
curve for a 370-148 which averages 2.0-

second response time for about 10,000
transactions during an 8-hour period. If,

however, 625 transactions come in between
4:00 and 4:10 and must be processed in the
same two -second response time, a different
system will be required. This is due to the

fact that 625 transactions in a ten-minute
period are equal to 30,000 transactions in
an 8-hour period. A curve is drawn for a

3033 to illustrate the system expansion
needed to accommodate the 10 -minute traffic
at 2-second response. In this case, the

company management will have to weigh the
service requirement against the additional
investment. If user behavior is relatively
inelastic, there will soon be a 3033 in-

stalled.

Exhibit 1 1 is a performance curve of

the Boole & Babbage data center that was
made as an example for a case study. This

system is comprised of:

CPU M80 (370-148) plus 6MB memory

Disc 6x 3330

8x STC 3630 (3350)

Tape 3x STC 4534

Channels 4 plus byte multiplexor

Operating
System MVS/ JES2/TS0/SPF/VAM/CICS

Response time shown by the model de-

graded significantly after 20 concurrent
users and 1.1 transactions per second. In

further analysis of this case, we found that
we are indeed CPU -bound. This means that as
the CPU resource is consumed by a workload
or variations in user behavior patterns, deg-

radation of service will be a direct result.

A 4341 Model 2 with expanded CPU capacity is

on order and we hope to see some relief this

fall when it is installed. The next step in

this process will be to model the perfor-

mance curve of the new system. We may then
find some other system bottleneck such as

I/O or DASD. In the meantime, we now have
our operational standard of performance for
TSO.

The Future of Performance Curves

ison to planned performance curves has value
in determining:

1 . Data center efficiency
2. The effects of user behavior (volume and

mix)

3. Benefits of tuning
4. The ability of the data center to meet

various levels of activity
5. The benefits of various system alter-

natives

Because of these benefits and the fact
that future models will get even more in-
volved in simulating operating system
parameters (i.e., SRM under MVS), perfor-
mance curves should be available on a real-
time basis. This means linking the Change
Management Tracking System and realtime
system monitor/model so that early warning
mechanisms can be implemented. Realtime
monitors will in effect simulate system
changes and signal when the performance
curve has changed from plan. This will
provide an effective tuning tool by dis-
playing these changes much like the IPS
parameters in which domains and multipro-
gramming levels are displayed in the IBM
Initializaion and Tuning Guide .

By monitoring the effects of user
behavior, both on a continuous after-
the-fact basis as well as in models, the

data processing operation has implemented an
important element of scientific management.
The work analysis is done by the system
itself while the manager deals with the
question of user behavior and the inte-
gration of DP into the business. >

The modeling of a workload against a

given system is not only necessary, but is

feasible with currently available tools and
technology. The computation of and compari-

130

APPENDIX A

MEASURES OF PRODUCTIVITY IN DP OPERATIONS

RESULTS OF VOTING*

MEASUREMENT FACTOR RANKING VOTES

ONLINE RESPONSE TIME 1 198

ON-TIME REPORTS 2 160

SYSTEM UPTIME 3 141

USER SATISFACTION 4 I37

RERUN PERFORMANCE 5 101

REPORTS DISTRIBUTED W/O MISTAKES 6 56

NUMBER OF INTERRUPTS IN ONLINE SERVICE 7 55

PROBLEM RESOLUTION TIME 8 47

CPU UTILIZATION 9 45

COST OF OPERATION 10 43

ACTUAL VS. SCHEDULED RUN TIME 11 39

DEMAND BATCH TURNAROUND 12 34

RECOVERY TIME FROM FAILURE ~ 34

TIME SHARING INTERACTIVE RESPONSE — 30

LATE JOBS FAULT OF OPERATOR — 30

OUTAGES BY CATEGORY — 29

APPLICATION PROGRAM ABENDS — 27

NUMBER OF PROJECTS WITHIN BUDGET — 24

HARDWARE/SOFTWARE RELIABILITY, INTFAC — 23

NUMBER AND TIME OF TAPE MOUNTS — 20

JOBS COMPLETED PER COMPUTER HOUR — 19

PEOPLE TURNOVER — 16

ABSENTEE RATE — 15

*Based on a survey of a meeting of data center managers at the 1981 EDP Performance Con-
ference in Phoenix, Arizona, February 23-26, 1981.

131

APPENDIX B

EXHIBITS

1. Establishing operational stan- 7. Linear regression - TSO response/TSO mix
dards

2. Generalized performance curve 8. Linear regression - TSO response/SU's

3. CMF system workload summary 9. Linear regression - TSO response/concur-
rent users

4. CMF CPU utilization report 10. Performance curve for B/B DC

5. CMF TSO subsystem performance 11. Performance curve for B/B DC
report

6. Linear regression - TSO re-
sponse/CPU Q

FXHIRIT 1
ESTABLISHING STANDARDS

RUN

CONTtJUOUS

MONfTORS

MPLEMENT

CHANGES

132

0T2 0^0. 0«. 12'

3.00. 21 .13

0.30.B4.I],

0.00.06.121

133

I UT IL (^AT ION (

EXHIBIT 4

CM I"LF - HI CPU

tflTit fflP TSO

en:CllT*Bie ASIOiKfCT TF ElT. Tl'^c)
Ql'Cue OEn^'H - J.M, M»«INUM QMFUP SIIF - 9)
^0 CHaNN?L ANJ Mo OevlCF BJSY (OCT OF EIT. T I*

1

15. J X OF CP'i 81IST Fnp 8»TCh
a.i t OF CPU BUSY FOB TSO

r TftS«S • 13.5 (OF CPU BUSY fOO ST»»TFn TASKS

2. 0

ri ' 'BL Fi

'1. ITB»CTno OVEBMFfiO (PCT OF EM

CPU 0 (76) SEC tin

I CF CU SUSY
CPU PUSV 0IST3i»»tTI0^

BUSY PEKCENT

EXHIBIT 5

a sp; AP

vEtA'".'^ us<?ts

0.0 flwtaar.f iiSFRS

134

136

EXHIBIT 10 ^

8-

7_

TSO
6_

RESPOSE

CONCURRENT
TSO

I
USERS

APPENDIX C

A BIBLIOGRAPHY FOR FURTHER STUDY

1. Arnold 0. Allen, Probability , Statistics
and Queuelng Theory with Computer Science
Applications , Academic Press, New York,
N.Y. (1978).

2. C. Warren Axelrod, Computer Effectiveness :

Bridging the Management/Technology Gap ,

Information Resources Press, Washington,
D.C. (1979).

3. L. Bronner, Capacity Planning: An
Introduction , IBM Technical Bulletin
GG22-9001-00 (January 1977).

4. L. Bronner, Capacity Planning: Imple-
mentation , IBM Technical Bulletin
GG22-9015-00, (January 1979).

5. J. P. Buzen, "Queueing Network Models of

Multiprogramming", Ph.D. Thesis, Harvard
University, Cambridge, Mass. (1971).

6. Computer ,
April 1980, IEEE Computer

Society (contains several articles of

interest)

.

7. Peter F. Drucker, Management : Tasks-
Responsibilities-Practices

,
Harper & Row,

New York, N.Y. (1974)

.

8. Jeffrey L. Forman, Change Communication :

A Management System , IBM Technical Bul-
letin GG22-9254-00 (July 1979).

9. An Architecture for Managing the Informa-
tion Systems Business, Volume I: Manage-
ment Overview , IBM GE20-662-0 (January
1980)

.

10. Problem and Change Management in Data
Processing - A Survey and Guide , IBM

GE19-5201-0 (August 1976).

11. IBM System Journal , Volume Nineteen,
November 1, 1980, "Installation Manage-
ment, Capacity Planning."

12. H. Kobayashi, Modeling and Analysis: An
Introduction to System Performance
Evaluation Methodology, Addison-Wesley

,

Reading, Mass. (1978).

13. J. D.C. Little, "A Proof of the Queueing
Formula, L= W,

"Operations Research 9 ,

pgs. 383-387 (1961).

14. J. Martin, Design of Real-Time Computer
Systems , Prentice-Hall, Englewood Cliffs
N.J. (1972).

15. J. Martin, Systems Analysis for Data
Transmission

,
Prentice-Hall, Englewood

Cliffs, N.J. (1972).

16. Montgomery Phister, Jr. , Data Processing
Technology and Economics , Santa Monica,
Calif. (1977).

17. Charles H. Sauer/K. Mani Chandy, Computer
Systems Performance Modeling , Prentice-
Hall, Englewood Cliffs, N.J. (1981).

18. David R. Vincent, "Software Tools for
Service Level Management", Data Manage-
ment

, pgs. 25-29, (March 1981).

19. David R. Vincent, "Measuring Performance
Online" , ICP Interface , Data Processing
Management , (Summer 1980)

.

20. David R. Vincent, "Service Level Manage-
ment", 1980 CMFGXI Proceedings

, pgs.

196-207.

21. Daniel A. Wren, The Evolution of Manage-
ment Thought , John Wiley & Sons (1979).

138

I

ll

SESSION OVERVIEW

BENCHMARKING

Barbara Anderson

Federal Computer Performance Evaluation
and Simulation Center

Washington, DC

Benchmarking is a method of measuring system performance
against a predetermined workload. The approaches and tools
used to represent this workload in benchmark tests have been
evolving and improving over the last several years. The first
two papers in this session; 1) "Universal Skeleton for Bench-
marking Batch and Interactive Workloads" by William P. Kincy,
Jr., and Walter N. Bays of the Mitre Corporation, and 2)
"Comparing User Response Times on Paged and Swapped Unix by the
Terminal Probe Method" by Dr. Luis Felipe Cabrera of the
University of California, Berkeley and Dr. Jehan-Fr ancois Paris
of Purdue University present new approaches to contructing
benchmarking tests. The final paper, "Practical Application of
Remote Terminal Emulation in the Phase IV Competitive System
Acquisition," by Deanna J. Bennett of the Phase IV Program
Management Office of the Air Force and the mini-panel with
Randy Woolley of the Tennessee Valley Authority and Robert
Waters of the Air Force Computer Acquisition Center detail
recent experience in various aspects of benchmarking for system
acquisition

.

1U1

UNIVERSAL SKELETON FOR BENCHMARKING

BATCH AND INTERACTIVE WORKLOADS.*

UNISKEL BM

Walter N. Bays
Wi 1 1 iam P. Ki ncy , Jr.

MITRE
Houston, TX

77058

The most important objective of the acquisition of new
computer systems is to acquire the least expensive system or systems
which have the necessary capability to meet workload and quality of

service requirements.

The determination of "the necessary capability" may be accomplished
by several methods; the most important and accurate method being the
execution of performance benchmarks in a "Live Test Demonstration
(LTD)".

Building benchmarks is time-consuming and costly. This is

particularly true if the benchmarks are designed to represent accurately
the batch and interactive workloads to be executed.

One solution would be a benchmark which could be adapted to
represent any workload requirements relatively inexpensively. Such a

benchmark (UNISKEL BM) is the subject of this paper.

1. Introduction

1.1 Background

UNISKEL BM was developed for NASA's
Johnson Space Center, Houston, Texas by
MITRE. The primary objective of the
benchmark effort was to design represent-
ative benchmarks which could be used to

select new computer systems to replace
obsolete systems in the JSC Central
Computing Facility (CCF). The CCF is a

general purpose, open shop-type computing
facility supporting the administrative,
shuttle mission planning and shuttle
engineering and development functions at

JSC.

An additional objective of the
benchmark effort was to emphasize, where

possible without adding to the cost of the

development effort, the universal applic-
ability of the benchmark to any agency
having similiar benchmarking requirements.
These goals led to the design of a benchmark
skeleton which could be used by any agency
in custom designing a benchmark. In fact,

this benchmark skeleton was used by MITRE to

build benchmarks for the the Bureau of
Census to be used in their acquistion of the

Bridge System.

1.2 Use of UNISKEL BM

The benchmark skeleton described in

this paper provides a procedure for
integrating programs (SYNTHETIC TASKS) and
descriptions of functions to be accomplished
by system software (editor, utilities, etc.)
(SYSTEM PROCESSOR TASKS) into job streams.

1^3

These job streams are further organized into

benchmarks representing specific workloads

to be executed by the System Under Test

(SUT)fc These synthetic and system processor
tasks may be interactive or batch and may be

designed to represent a real workload (one

being executed on an agency's system today)

or a perceived workload (one expected to be

executed on new systems in the future).

A model of any real workload may be

derived from accounting data. Although this

workload inevitably has the characteristics
of the system it was excuted on, UNISKEL BM

represents it as a mix of vendor-independent
FORTRAN or COBOL tasks, and functionally
specified system processor tasks. The
resulting benchmarks are independent of a

vendor's accounting convention and include a

mix of tasks representing an explicit amount

of work to be accomplished. The work to be

accomplished is described by the following:

SYNTHETIC TASKS:

Virtual Storage Size

Number of kernels to be executed
Number of accesses to tape/disks
Record Size
Number of lines of print

Think time (Interactive Tasks)

SYSTEMS PROCESSOR TASKS:

Functions to be performed

The major advantage of UNISKEL BM is

that an agency procuring new systems can

save the time required to design synthetic
programs and a benchmark structure which can

be easily converted and executed on a

proposed system or configuration of systems.
UNISKEL BM also includes a Live Test
Demonstration (LTD) procedure which may be

tailored to an agency's requirements. This

allows the agency to concentrate efforts on

1) building a model of the future workload
and plugging the workload characteristics
into an existing benchmark framework (this

can be accomplished manually), 2) defining
the quality of service desired in new
systems (in terms of response times for

interactive work and overall batch
capacity),- and 3) testing the benchmarks to

assure that the benchmark represents the

desired workload.

UNISKEL BM would not be appropriate for

an agency buying a minicomputer or desiring

only to measure the speed of a CPU when

executing specified instruction mixes. It

is appropriate for mainframe competitive
procurements where the objective is to

procure balanced systems to process a known
workload under defined quality of service
objecti ves

.

1.3 Scope of Paper

Section 2 describes the UNISKEL BM
concept including a brief description of the
workload model which provides input data to
UNISKEL BM. Section 3.0 describes the
UNISKEL BM structure and provides a brief
overview of its generation and execution.
Appendix A describes the procedure a vendor
would follow to conduct a Live Test
Demonstration (LTD) using the benchmarks.
This example procedure is extracted from
NASA/JSC's documentation supporting their
acquisition action. Appendix A is not
attached to this paper. It will be provided
separately to anyone having an interest in

that 1 evel of detai 1

.

2. UNISKEL BM Concept

2.1 Design Objectives

The UNISKEL BM was designed 1) to be as

independent as possible from any vendor's
system, 2) to minimize biases for or against
any particular computer system architecture,
and 3) to minimize a vendor's time and

effort in support of the LTD.

A study of the architectures indicated
that a benchmark which meets the following
criteria meets the design objectives:

• Easily transportable
t Representative of the expected

workload as pertains to:

0 Workload characteristics
• Virtual main storage re-

qui rements.
• "Locality of reference"

profile. (Locality of reference pertains to

the way a program proceeds through its

instructions and data, e.g., sequentially,
randomly or some other profile.)

The last criterion, if not repre-
sentative of the real world, could impact

performance depending on whether the system
being benchmarked is virtual or non-virtual

in its storage management. These criteria

are addressed further in the following
paragraphs.

2.2 Structural Overview

UNISKEL BM is composed of synthetic
programs, data to be processed and
descriptions of functions to be accomplished
by systems processors/utilities. The

1U4

synthetic programs have been designed to be

fully transportable to any system having an
ANSI/78 FORTRAN compiler. The synthetic
program can be made to represent different
sizes of batch or interactive tasks. The
synthetic tasks are characterized by the
number of cycles of CPU kernels executed,
the number of I/O accesses to disk and tape,
the number of lines printed and the
voluntary wait (think) time between
interactive activities. The structure of a

synthetic task is illustrated in Figure 1.

SYNTHETIC PROGRAM

DATA ARRAY
(Data Space

Si ze

MULTIPLE
COPIES OF

OF KERNELS

(Instruction
Space Size)

CONTROL LOGIC

DYNAMIC
CONFIGURATION
PARAMENTERS

CPU Seconds
I/O

Record Length
Print Lines
Local ity

Prof i 1

e

Think Time

Figure 1. Synthetic Program Structure

The systems processors/utilities
functions to be executed are also organized
into tasks (by the demonstrating vendor).
These tasks utilize the systems processors
of the System Under Test (SUT).

These synthetic and system processor
tasks are organized into jobs or runstreams.
The jobs are further organized into bench-
marks, one representing a prime shift
workload and one representing a non-prime
shift workload. The non-prime shift bench-
mark is batch only. The prime shift
benchmark contains interactive activities
and background batch jobs. The prime shift
benchmark is designed to be demonstrated
utilizing a Remote Terminal Emulator (RTE).

An RTE is illustrated in Figure 2.

COMM REMOTE
HOST FRONT TERMINAL

END EMULATOR

SCRIPT 1

SCRIPT N

Scripts 1 through N in Figure 2 repre-
sent terminal users 1 through N. These
emulated terminal inputs cause interactive
tasks (synthetic and systems processors) to
be executed. These inputs are delivered to
the system being demonstrated at rates which
are representative of the line speeds of the
real communications.

The prime and non-prime shift
benchmarks may be generated in various sizes
representing different sizes of the
representative workload. For example, in

NASA/JSC's acquisition specifications, one

size of computer system that was acceptable
was a system which had the equivalent
capacity of two UNIVAC 1108's. Conse-
quently, benchmarks would be executed which
represented the prime and non-prime shift
workloads of two llOB's under acceptable
quality of service objectives. A proposed
system of the proper size would have to
demonstrate that capability by executing the
benchmarks within the threshold elapsed
times and response times specified in the
specifications.

Different sizes of benchmarks are
generated by replicating a base size. For

example, the base sizes used by NASA/JSC are
shown in Table 1. These sizes were defined
as having a Performance Rating of 0.5. The

Performance Rating (PR) is a measure of a

system's throughput when executing these
benchmarks. For example, any system which
can complete these PR 0.5 workloads in the

specified elapsed time is considered to be

at least a PR 0.5 system for the purposes of
the acquisition action.

Table 1. Benchmark-Base Sizes PR 0.5

BENCHMARK PRIME NON-PRIME
CHARACTERISTICS SHIFT SHIFT

-SUT-

BATCH INTER-
ACTIVE

BATCF

Program Size,

36-bit words.
Minimum: lOK lOK lOK

Maximum: 76K 45K 125K
I/O Accesses:

To Disk 29K 90K 22K

To Tape: 19K 0 22K
Jobs

:

8 NA 20

Interactive Users: NA 8 NA

Jobs Using Tape: 1 0 1

Tasks Executed: 94 628 289
Files: 8 80 220

Elapsed Time in

Minutes

:

<--- .200 > 210

Figure 2. Remote Terminal Emulator

145

Different sizes of benchmarks are
generated by replicating these PR 0.5 sizes.
For example, a system being proposed as

having a Performance Rating of 6.0 would
demonstrate that capability by executing
benchmarks of size PR 6.0. These sizes
would be generated by adding 12 copies of

the PR 0.5 sizes together. The PR 6.0 size
non-prime shift benchmark would consist of

240 batch jobs (20 batch jobs x 12 = 240).
The prime shift benchmark would be generated
the same way and would consist of 96
interactive users and 96 background batch
jobs.

2.3 Scoring and Evaluation

The benchmarks are designed for ease of

scoring and of evaluation. Two measurements
are used to evaluate performance. These are
the elapsed time required to accomplish a

well-defined, finite batch or interactive
workload (the selected sizes of the
benchmarks), and the response times for the
emulated interactive users at terminals.
For a system being proposed as having a

specified performance rating, the benchmark
elapsed time, must be equal to, or less
than, the elapsed time threshold contained
in the specifications. In addition, a

specified percentage of all interactive
transactions, of the same type, must have a

response time equal to, or less than, the

response time goals specified.

This method of evaluation is based on

the concept of testing a base size of bench-
mark on a known system and determining the

thresholds (elapsed time and response times)
of acceptable performance with the represen-
tative workload. Based on this, and the
knowledge of how much capacity would be

required in the known system to meet the
requirements new systems are being procured
for, a Performance Rating requirement can be

determined

.

For example, the NASA/JSC benchmarks of

size PR 1.0 were tested on JSC's 1108's.
The size of the benchmark and/or the elapsed
times and response times were adjusted so

that the PR 1.0 size could be executed on an

1108 with acceptable quality of service.
The future workload to be executed on the
new systems was determined to be equivalent
to N 1108's. Consequently, systems having a

Performance Rating of N are to be procured.
A system executing a benchmark of PR N size,
within the specified elapsed and response
times, has N times the capacity of an 1108
when executing the benchmark.

For example, a mul ti -processor
configuration, or a loosely coupled con-
figuration of more than one system utilizing
one input stream for batch, proposed as
having a PR7 capability must demonstrate
that capability by executing a size PR7
benchmark. A configuration of more than one
uncoupled systems can also be accommodated.
This is shown in the following example.

LTD REQUIREMENT: TWO UNCOUPLED SYSTEMS
HAVING TOTAL CAPACITY = PR 7.0

SCORING EQUATION:

CAPACITY SIZE N + CAPACITY SIZE M .EG.

DESIRED CAPACITY

CAPACITY (SIZE N OR M) =

ELAPSED TIME THRESHOLD
X SIZE

MEASURED ELAPSED TIME

For example: A batch benchmark of

sizes PR 3.0 and PR 4.0 were demonstrated on

two uncoupled systems to meet a capacity
requirement of PR 7.0. Actual elapsed times
were 200 minutes for the PR 3.0 LTD and 215
minutes for the PR 4.0 LTD. The elapsed
time threshold was specified as 210 minutes.
Using the above equations, the actual
capacities would be rated as follows:

210 minutes 210 minutes
X 3 + X 4

200 minutes 215 minutes

= Combined Capacity

3.15 + 3.91 = 7.06 OK

Size restrictions should be placed on

the demonstrator during the LTD. For
example, it may be desirable to limit the

capacity rating attributed to a system to
the size of the benchmark executed. In the

example above, a rating of greater than 3.0

would not be allowed because a PR 3.0
benchmark was executed. To receive a 3.15
rating would require the execution of a

benchmark of PR 3.5 size. This agency-
imposed restriction recognizes that the
relationship between the size of the work-
load and the elapsed time is not linear.

The prime shift benchmark LTD would
also include an evaluation of response
times. The actual LTD response times would
have to meet response time criteria as

specified in the statement of work.

1U6

Typical

might be:

response time specifications

1. Of the M different types of
transactions, N must meet the following
criteria

:

a) 85% of executions of a

transaction must have a response time of
equal to or less than the response time
threshold (RTT), plus

b) 98% of executions of a

transaction must have a response time of
equal to or less than two times the RTT.

2. The balance of transactions
(M minus N), must meet the following
criteria:

a) 50% of executions of a

transaction must have a response time of
equal to or less than the response time
threshold (RTT), plus

b) 98% of executions of a

transaction must have a response time of
equal to or less than two times the RTT.

Note that each different type of
transaction has its own RTT.

An agency would probably allow no more
than 15% of the transaction types to fall

into the criteria described in "2." above.

2.4 Workload Representation

UNISKEL BM represents any workload
which can be described at the task level in

the following terms:

BATCH OR INTERACTIVE TASKS:
VIRTUAL MEMORY SIZE
CPU SECONDS TO BE BURNED
NUMBER OF I/O ACCESSES TO DISK AND

TAPE
NUMBER OF PRINTED LINES OF OUTPUT
LOCALITY OF REFERENCE-INSTRUCTIONS

AND DATA
THINK TIME FOR INTERACTIVE TASKS

SYSTEMS PROCESSOR/UTILITIES TASKS:
STATEMENT OF FUNCTIONS TO BE

ACCOMPLISHED

These workload characteristics are
stated in terms acceptable as input to the
UNISKEL BM. Such a workoad model is

illustrated in Tables 2 through 4. Table 2

represents an overall workload on one or

more systems. Table 3 represents one
component of the overall model. Each line

item (E&D-l, etc.) will become one synthetic
task with the characterstics shown. These
individual component models (there is one
for each marked entry in Table 2) are
normalized in a combined model of individual
synthetic or system processor tasks.
Several pieces of the prime shift model are
shown in Table 4.

Table 2. Composition of CCF Workload

COM- MAJOR PROGRAMS/ BATCH DEMAND TOTAL
PONENTS PROCESSORS

SVDS SVDS, SVDSl, 15%* 11%*

SVDS2, SVDS3
NASTRAN LINKl, LINK4, 1%* 1%*

LINK 8

E&D ABSLB,TRASYSP, 20%* 15%*

SSFS, ETC.

PLOTS V8 PLOT, V PLOT 5%* 4%*

TRWPLT
SYS
PROC COB, FOR, ASM, ED, 23%* 59%* 32%*

MISC. OPEN SHOP,

OPS, MNGMT. 36%* 41%* 37%*

TOTAL 100% 100% |100%

BATCH/INTERACTIVE
(DEMAND) SHARE: 75% 25%
DISK/DRUM ACCESSES
PER CPU+I/0 SECS. 16.5 24.2
TAPE ACCESS PER CPU+I/0 4.0 3.2
SECS.

10 DIVIDED BY CPU 1.38 2.89

Model Components

Table 3. E&D Batch Model

PROGRAM PROGRAM CPU I/O ACCESSES FREQ.

SIZE K SUP
WORDS SEC DISK . TAPE

E&D-l 63 27 1101 1

E&D-2 63 61 405 3

E&D-3 66 354 2868 1

E&D-4 72 166 3512 2

E&D-5 72 168 14562 3108 1

E&D-6 72 5 492 5

E&D-7 76 385 770 1

TOTALS
Each 30000 3108 14

SUP SECONDS: 1474 818 101

TOTAL SUP SECONDS = 2393 lO/CPU = 0.62

147

Table 4. PRl Prime Shift
Workload Model

PROG. PROG. CPU SUP I/O ACCESSES FREQ*THINK
SIZE SECONDS TIME

DISK TAPE

SYSTEMS PROCESSORS - DEMAND:

ED-1 5 1.456 107 11x28 8

ED-2 5 1.743 129 65x9 8

ED-3 5 .801 73 245x12 8

MISCELLANEOUS DEMAND^

MISC-1 5 .028 56 2 9x28 1

MISC-2 5 .006 6 9x6 3

MISC-3 5 .020 20 52x20 11

BALKbKUUINU bAILH:

SVDS-A 68 213.0 3076 1x0

SVDS-B 75 17.0 1027 1x0

SVDS-C 75 21.0 481 1x0

PRIME SHIFT TOTALS"!

CPU DISK TAPE FREQ.

Each: 234428 36968 6180
SUP SECONDS: 3208 6389 1202

TOTAL SUP SECONDS: 10823 lO/CPU = 2.37

Disk Accesses/Second = 17. 3

Tape Accesses/Second = 3. 7

* Transactions X Subtransactions

In addition to the workload
characteristics shown on the previous
tables, the CPU kernels to be used to burn

CPU time and the locality of reference
profile must be selected. An agency has a

choice of using multiple copies of any
subroutine or instruction mix (kernels) to

burn CPU time.

These, kernels are calibrated (CPU
milleseconds per cycle and size). "N"

cycles of the kernel are executed to burn

the desired amount of CPU time. A task (the

synthetic program in the benchmark) burning
100 milleseconds of CPU and doing 10

accesses to disk per execution, would do an

I/O, burn 10 ms of CPU time by executing,
for example, 5 cycles of a 2 ms kernel, do

another I/O, burn another 5 cycles, etc.

until the 100 ms and the 10 I/O's had been
completed.

The kernel selected could be sub-
routines of applications in the expected
workload or could be "canned" instruction or
operations mixes. NASA/JSC and the Bureau
of Census elected to use primarily sub-
routines of real applications to enhance
represent at i veness

.

The kernels selected to burn CPU time
also are involved in the "locality of
reference" capability of UNISKEL BM. The

size of an activity or task is made up of
instructions and data. The instruction size
comprises library routines, synthetic
program logic, and the multiple kernel
copies. The data arrays also contain
records which vary in number based on the

desired total size of the activity. A

synthetic task representing a real task of

20,000 words in size could be generated as

approximately 10,000 words of instructions
and 10,000 words of data. The instructions
might include 2,000 words of overhead
instructions and 80 copies of a kernel con-
taining 100 words each (8000 words). The

number of copies of the kernel depend on the
calibration of the kernel selected and the
size to be represented. The number of data
records would be selected the same way.

The multiple copies of the kernel and

the data records provide two functions.
First, they allow the selection of a kernel

copy and data record for execution based on

a distribution or profile which is similiar
to that locality of reference profile shown

by the real application. For example, based

on a profile entered into the synthetic pro-

gram, different copies of the kernel and the

data records will be selected each time the

CPU is to be utilized. Since the synthetic
activity is progressing through its instruc-
tions and data similiarly to the real appli-
cation, no bias is introduced for either
"paging" or "swapping" memory management
systems. The locality of reference mechan-
ism also assures that CPUs with cache memory
have realistic "hit ratios."

The major problem presented by this

capability of UNISKEL BM is determining what

the locality of reference profile is for the

real application being represented. A

special sampling routine. Code Interruption
Analyzer (CIA) was developed to assist in

this determination for the NASA/JSC
benchmark

.

Second, the use of kernel cycles and

similiar blocks of data for each I/O, main-

US

tain the independence from the system upon
which the benchmark is developed. Note that
the method of accounting for use of re-

sources, seconds, standard units of proc-
essing, machine resource units, etc., is

immaterial as the work executed is stated in

terms of number of kernel cycles for CPU
time, number of I/O accesses to various
devices, elapsed wall clock time for the
total benchmark and response time for inter-
active activities. This independence is

furthered by allowing the LTD vendor to
compile the benchmark allowing program sizes
to vary with word size and the instruction
packing capability of the compiler. For

example, an activity within the benchmark
may be representing object code, on a UNI VAC
system, of 30,000 36-bit words containing
instructions and data. This same activity,
after being converted and compiled on a

CYBER system, could be only 18,000 60-bit
words in size. This is acceptable for
UNISKEL BM.

2.5 Other Features

UNISKEL BM is a framework within which
all types of workload can be represented.
For example, data base management systems
and transaction processors in the SUT could
be exercised by jobs designed to func-
tionally exercise those processors. To

date, neither of the users of this framework
have had a requirement to exercise such

capabi 1 i ty

.

There is also a framework for meeting
floating point accuracy requirements. This

is accomplished by the selection of the

kernels to be executed. In the NASA/JSC
application, some kernels had a requirement
for 14 decimal digets of accuracy. This

would require some systems to execute those
kernels using double precision.

Special kernels could also be designed
to exercise special capabilities required in

systems to be acquired. For example,
kernels could be designed to verify special

arithmetic or logical capability of a

proposed system.

2.6 UNISKEL Limitations

The primary limitations on UNISKEL BM

are two. First, program sizes of less than

10,000 36-bit words cannot be represented
due to the overhead associated with the

synthetic program. We found this not to be

a problem in the NASA/JSC benchmarks.

Second, the generation and testing of

new benchmarks utilizing UNISKEL BM, even

assuming the workload and locality of
reference characteristics are available,
represent a significant task both in terms
of human resources and computer time. The
generation of these benchmarks by a new
using agency is the subject of paragraph 3.

It should be noted that although
significant effort is required, the human
and computer resources required to build
benchmarks using UNISKEL BM is probably an

order of magnitude less than starting from
scratch and building benchmarks utilizing
synthetic programs.

3. Benchmark Generation

This section describes how an agency
uses the UNISKEL framework to build a

benchmark. Each step of the process is

discussed briefly; then automatic generation
tools are discussed. Figure 3 illustrates
the benchmark generation process.

Figure 3. Benchmark Generation

The first step is to determine from the

workload model which parts of the benchmark
will be represented by synthetic tasks and

which by system processor tasks. As

149

discussed, a system processor task is the

execution of a standard system program to
accomplish specific work. A synthetic task

is the execution of a synthetic program to
consume the same resources as a user written
program.

In the case of the non-prime shift

workload model presented in section 2.4, 23%
of the work is accomplished by system
processors, and 77% by synthetic tasks.
These percentages apply only to the baseline
system, as system processor functions may
require different resources on different
systems. For example, a text editor command
requiring 80 Service Units to execute on an

IBM system may require 0.1 SUP seconds to
execute on a UNI VAC system. This is based
on differences in accounting methods, system
speeds, operating systems, and software
efficiency. There may also be a difference
between systems for synthetic tasks due to

compiler efficiency, etc. These differences
are not undesirable, as the procuring
agency's requirements are not for a certain
amount of service units to be consumed, but

are for a certain amount of work to be

accomplished in a specified amount of time.

Utility tasks such as text editing,
file copying, and compilation are best
represented by system processor tasks.
These tasks are more expensive than
synthetic tasks for the agency to develop
and for the vendor to convert, but more
accurately represent the real workload and
differences between competing system
software. Some utility tasks and all user
programs will be represented by synthetic
tasks.

3.1 System Processor Tasks

A system processor task is constructed
from a functional description (script) of a

sequence of operations to be performed.
This script, commonly written in English, is

translated into JCL for a particular system.
If the task is to be interactive, think
times are also specified. For example, the
script for a text edit system processor task

may be:

Change all occurrences of ENT to ENTR.

List lines 12 through 50.

On line 50, change 7.0 to 7.5.

On line 48, change RTRY to RETRY.
List the last line of the file.

The workload model includes frequency
of execution and resources but due to system
accounting limitations may omit number of

transactions per interactive execution and
transaction think time. The agency must
estimate any missing factors, then develop
by trial and error a script which consumes
the proper resources and seems "reasonable"
for the real user activity being emulated.

In a competitive procurement these
scripts must be designed with conversion in

mind. When writing a script for system A,

how the same function would be accomplished
on system B must be considered. Then the
function must be clearly specified in such a

way that vendor B will accomplish it in a

realistic way, neither taking unfair
advantage nor being unfairly prevented from
using a special feature of system B. For
example, if a vendor has a text editor
feature of "change string, and list changed
line", the agency should not force him to

use two seperate commands "change string",
and "list changed line". If a vendor has a

single editor command that accomplishes all

five steps of the above example, he should
not be permitted to use it, since a user
would be unlikely to work that way. Command
stacking, entering multiple commands on one
line, may be permitted, however.

3.2 Synthetic Tasks

Building synthetic tasks requires
several steps. First, CPU burning kernels
are chosen. A kernel is a subroutine that
does a certain amount of work; that is, on

the baseline system it burns a calibrated
amount of CPU time. Then the synthetic
program sizes and composition are
determined, and the locality of reference
model is incorporated if desired. Then the

synthetic programs are compiled and linked.
A synthetic task is an execution of a syn-
thetic program with parameters which select
CPU time, number of I/O's to disk and tape,
disk file size and record length, number of
lines of print, and frequency of locale
change. The selection of a synthetic
program to execute for a task selects the
kernel type (and therefore the instruction
mix) as well as the memory size. These
steps are described in more detail below.

3.2.1 Synthetic Program Structure

Figure 4 shows the overall structure of

the synthetic program. For the data array,
there is simply a declaration of an array in

blank common. Also contributing to the data

space size (D-size) of the program are the
local data for each kernel and for the

control logic.

150

COMMON // P0SI(6000)

kernels' local data

control logic

local data

Fortran library
local data

INKl - INK3

FPKl - FPK3

KER, DATA

Invariant Control Logic

Fortran Library

Figure 4. Program Composition

The control logic comprises the main
program SYNTH, the input/output routine lOW,

and other routines, all of which are invar-
iant whatever the type and size of the
program. The control logic also includes
two routines KER and DATA which are specific
to the program size and type. They have
encoded in them knowledge of the number and
names of kernels and the length of the data
array. The last components of the control
logic are the Fortran library subroutines
whose size and number is system and compiler
dependent

.

A program uses one or more types of
kernels. There are enough replicas of each
kernel type to achieve the desired instruc-
tion space size (I-size). For example, a

program using the general floating point
kernel (FPK) and the integer Bucholz kernel
(INK) may include FPKl, FPK2, FPK3, INKl,

INK2, and INKS. The only difference between
the kernels of a type is the entry point
name.

After initialization, the interactive
synthetic program sends a THINK command to
the RTE. The RTE delays the specified time
(THINK time), then sends the time of day.
Then the synthetic program executes a

transaction and sends another THINK command.
The response time is the time between time
of day being sent and THINK being received.
The batch execution of a program is simply

the execution of a single transaction
without the RTE dialog. Figure 5 shows the
execution flow of a transaction. The CPU
time for the transaction is interleaved with
the proper number of I/O's and locale
changes

.

ditarQ)

send THINK
command

recei ve
T.O.D.

determine
locale

locale

execute
kernel (s)

no

time for \
I/O or locale

^ change? /

I/O

do I/O

Figure 5. Execute Transaction

Each of these bursts of CPU time is

generated by executing one or more kernels
(Figure 6). It is determined how much of
the burst to consume in each kernel type.
For example, suppose it is determined by the
Code Interruption Analyzer, or by estima-
tion, that a program uses 60% INK and 40%
FPK. A 15 millisecond burst would be
divided 9 ms INK and 6 ms FPK. If one pass
through INK has been calibrated at 0.9 ms
and one pass through FPK at 1.2 ms , the
burst will be done by 10 executions of INK

and 5 of FPK. These multiple executions may
be accomplished by looping around a call to
the kernel, or by passing a loop count to
the kernel which loops internally. This
selection is made to best represent the
actual frequency of subroutine calls.

151

done

For each type
of kernel

done

calculate portion
of CPU time

to burn

calculate number
of kernel

iterations

based on locale
select a

kernel copy
and data block

For number of
ernel iteration

execute
kernel

Figure 6. Execute Kernels

3.2.2 Kernels

The kernels used should be
representative of the agency's workload
because this relatively small portion of the
benchmark code consumes the bulk of the CPU
time. They could be actual subroutines from
the real workload, or could be code which
provides the same frequency of logical and

arithmetic operations or high level language
operations as the real workload. Thus,

though the benchmark programs are synthetic,
they execute very much like real programs.

The kernels may be written in FORTRAN
or in any language callable from FORTRAN.
Thus, though UNISKEL is FORTRAN based, it

has also been used to represent COBOL
workloads. The kernels should conform to
applicable ANSI language standards in order
to eliminate or minimize the conversion
effort required by various vendors. Real

subroutines may be modified to conform to
the necessary transportability standards
while remaining representative of the
workload.

Other restrictions may be followed
which make benchmark generation easier. The
compiled size of a kernel should be small
enough that the task sizes can be
represented with the desired granularity and
large enough to allow the largest desired
program to be constructed. The size of the
instruction space of a program is accurate
to within the size of one kernel. But

compiler and UNISKEL limitations restrict
the maximum number of kernels which may be

included in a program. So in order to
represent large programs, large kernels may
be required.

Similarly, the CPU time consumed by one
pass of a kernel should be low enough that
the desired task CPU times can be achieved
with the desired granularity. The CPU time
consumed by a synthetic task can be accurate
only to within the CPU time of one kernel
execution. But the overhead of the control
program is proportionally higher for short
kernel execution times. This does not mean

that the task CPU time will be wrong, but
that task calibration will be more diffi-
cult, and that the instruction mix will not

be so representative. In order to avoid
this, longer executing kernels may be
requi red

.

The execution of a kernel should be

independent of other routines. A kernel

should have no output parameters and should

not modify its input parameters. Local

variables should be minimized and common
variables should be used with caution.
Particularly to be avoided is non-uniform
execution time and run-time data initial-'

ization. A kernel reads its parameters, and

works in blank common, thus exercising the
locale mechanism.

The CPU time of the kernels must be

calibrated to within the required precision.
At NASA/JSC the method used was a FORTRAN
main program that queries the CPU time used,

executes a kernel a large number of times,
and again queries the CPU time used. The

CPU time of the kernel is the total CPU time

divided by the number of times executed.

3.2.3 Program Sizes

The compiled size of each the com-

ponents of a synthetic program must be

determined. Then the number of kernel
copies and amount of blank common necessary
to achieve the desired instruction and data

sizes on the baseline system are calculated.

152

3.2.4 Locality of Reference

The locality of reference may be
specified for a synthetic program by means
of a reference histogram; this is called
directed locale. Blank common is logically
divided into a number of blocks; for JSC we
arbitrarily chose 1000 word blocks. A
locale is achieved by executing a certain
kernel copy and referencing a certain block
of data. For each kernel copy and for each
data block, a probability of access is
entered in the histogram. When the
synthetic program makes an instruction
locale change, it uses a pseudo- random
number generator to choose a kernel copy on

the basis of the instruction histogram.
When it makes a data locale change, it uses
a pseudo- random number generator to choose
a data block on the basis of the data
histogram. It is not necessary that the
sequences of random numbers be the same for

different vendors. The agency may permit
the vendor to use a convenient modulus, as

long as the algorithm remains intact.

These histograms are compiled into the
synthetic programs. Two locale parameters
supplied as parameters at run time are the
I-locale threshhold and the D-locale thresh-
hold. The former is the number of CPU
milliseconds to consume between instruction
locale changes. The latter is the number of
instruction locale changes to make between
data locale changes.

If a locale model is not available,
random locale may be used, in which case the
probability of choosing each locale is

equal. The I-locale and D-locale parameters
are entered at run time as with directed
locale. The working set of a program on a

virtual system may tend to be larger with
random locale than with directed locale for
any given locale threshholds. So if random
locale is to be used, slightly longer locale
threshholds may be chosen to compensate.

Figure 7 shows a locale histogram for a

program of 18 kernels and 19 blocks of blank
common. The histogram value represents the
probability of access of a locality. The
peaks in the histogram correspond to high
activity subroutines, loops, and data
structures in the real program. Note that
there are 6 kernels and 10 data blocks which
are rarely referenced. On a virtual memory
system these might not be in the program's
working set; but they would be referenced
occasionally. Random locale corresponds to

a flat histogram: no locale is subject to
high activity or low activity.

Directed Locale

*

* *

** **
*** * ** *

*** * ** *** **
***** *** *** * **** ***
***** **** *** * ********
****************** *******************

KERNELS DATA

Random Locale

****************** *******************
****************** *******************
****************** *******************

KERNELS DATA

Figure 7. Directed and Random
Local

e

3.3 Benchmark Jobs

The number of jobs in which to
apportion the tasks of the workload is first
decided, then the jobs are created. The
minimum number of jobs is the degree of
concurrency needed in competing systems.
The goal is to allow all vendors to use
their machines to full potential. Having
more jobs also minmizes tailoff, the time at
the end of the benchmark during which the
system is not fully utilized due to
insufficient concurrency. The maximum
tailoff is on the order of the execution
time of one job. The factors limiting the
number of jobs are granularity of task
execution times and overhead of job
initiation and termination.

A job, consists of JCL for initiation
(job identification, file assignment, etc.),
JCL for each task, and JCL for termination.
Thus, for example, job 1 may consist of
tasks 3, 7, 7, 2, 14, 3, and 10. Job 2 may
consist of tasks 7, 2, 8, 17, and 3. The
jobs are constructed to have roughly equal

execution times to minimize tailoff. The
executions of tasks within a job are
independent, and so may be in any order.

Support jobs are also created which

catalog, initialize, and delete the bench-
mark files. These run before and after the
benchmark proper. In the NASA benchmark,
source files are initialized by copying from
base source files. Binary files are
initialized with date and timestamp records.

153

3.4 Batch and Interactive Benchmarks

The work required to build a benchmark
down to the level of job generation (dotted
line in Figure 3) should be significantly
less than that required by conventional
methods. Even greater savings can be
realized if more than one benchmark need be

generated. This will frequently be the case
as an agency's requirements evolve during
the course of benchmark specification and
construction

.

From this job generation level the
benchmark implementor may change: PR size
of benchmark, number of jobs, number of

tasks, and interactive think times. And for
synthetic tasks the implementor may also
change: CPU, I/O, lines of print, output
record length, output file size, and
frequency of locale change. These possibly
extensive modifications can be made and a

new benchmark generated and calibrated in a

matter of days. Even if a complete
benchmark generation is done, this will be
easier the second time after the agency is

familiar with the techniques. The gener-
ation of a benchmark can be simplified by

the use of automatic generation tools,
described below.

3.5 Generation Tools

The UNISKEL approach can be used to
manually generate a benchmark. Or, if

access to a UNIVAC 1100 system can be
arranged, there are a number of automatic
generation routines available, written in

UNIVAC Symbolic Stream Generator language.
This section briefly describes these
routines

.

One routine (SKEL/PROGRAMS) determines
the composition of the synthetic programs
based on the desired kernel (s) and program
size, the control program size, the kernel
sizes, the FORTRAN library size, etc. It

considers both the instruction space size
and the data space size. It detects certain
errors which would make the desired program
size infeasible.

Based on the above criteria,
SKEL/PROGRAMS generates the unique source
code for each program. It also generates
routines which compile the source code and
link it into executable programs. It allows
different (FORTRAN callable) languages to be

used for the kernels if desired.

Another routine (SKEL/ASSIGN)
determines the tasks which comprise each job
based on estimated task elapsed time. All

jobs are of approximately equal length to
minimize tailoff. A related routine
(SKEL/ORDER) randomly reorders the tasks
within each job.

Based on the job composition,
SKEL/RUNBUILD generates the JCL or RTE
scripts for each job. It considers the
files neccesary for each run and generates
the JCL to assign them. It also generates
support routines which catalog, initialize,
and delete benchmark files.

Other routines assist in calibration
and documentation by producing formatted
tables describing the tasks and jobs, and by
producing a job which executes each task
once. Additional information on these
routines will be furnished on request.

4. Benchmark Execution

4.1 Benchmark Testing

It is necessary to consider the
execution of the benchmark by the agency and
by the vendors. The agency will run the
benchmark for pre-release verification, for

accurate sizing of its own system, or for
system tuning. The vendor will convert and

generate a benchmark and will conduct a Live
Test Demonstration to demonstrate
performance to the agency.

In the construction of a benchmark, an

agency should consider the requirements for
testing the benchmark on its own system.
For realism, the benchmark typically
includes many files, large and small, infre- >

quently referenced as well as frequently
referenced, both catalogued and temporary.
It will, therefore, require large amounts of
mass storage and require special procedures
for execution on a general purpose system.
This could require that a system's files be

"unloaded" prior to testing the benchmark.
This is time-consuming and expensive. As an

alternative for testing purposes, a second
benchmark can be constructed which accu-
rately represents the workload character-
istics but which requires less storage.
Since it would be almost identical to the
real benchmark, it would require very little
additional effort but would minimize the
cost of testing.

4.2 Benchmark Conversion

Two major goals of benchmarking are
often difficult to achieve together. The

benchmark should be representative so that a

system which performs acceptably on the
benchmark will perform acceptably on the

154

real workload. But it should not be too
difficult for vendors to implement, because
the vendor's implementation cost may be
passed on to the government in terms of
higher bids.

Most of the synthetic program source
code is a subset of ANSI 66 and of ANSI 78
FORTRAN for easy transportability. Only the
I/O routine and the clock routine are
written in assembler language and must be

receded by the vendor. These two routines
total 50 lines.

Some incompatibilities may remain,
however-, between compilers said to conform
to the ANSI standard. So the modular
construction of the benchmark minimizes the
amount of code to be converted. The FORTRAN
control software modules total 500 lines.
For each program the two unique modules (KER

and DATA) average 200 lines together. For
as many copies as are needed by the largest
program there are kernel modules of about 50

to 100 lines each.

All the KER and all the DATA modules
are very much alike. All the kernel copies
are identical but for entry point name.

There are approximately 300,000 lines of

code in the JSC benchmark; however, there
are only about 1000 lines in the unique
modules

.

The components to be written or
converted are the source code discussed
above, the system processor scripts, the
synthetic task JCL, the files, and the RTE
commands. The system processor scripts
should be chosen with conversion in mind.
Benchmark files are either text files,
binary data files whose structure is

dictated by the vendor supplied I/O routine,
or files created by system processors, so

file conversion should be minimized.

After the system processor task JCL is

written, the JCL conversion should be
straightforward. Each synthetic task is the
invocation of a synthetic program with two
lines of parameters. Each synthetic program
uses the same file(s) in the same way.

Files are neither created nor destroyed
except possibly by system processor tasks.
Temporary files are assigned at job start
and are not freed until job end. Therefore,
the execution of one task is independent of
the execution of another, and without
knowing the containing jobs, the vendor may
determine the JCL for each synthetic task.

The JCL for each job in the base
workload is constructed. Each job is

specified as a sequence of tasks whose JCL
can be combined with job initiation and job

termination JCL to form the complete job
JCL. The rest of the jobs are constructed
from the base jobs by changing job names and
possibly changing file names.

The vendor converts and compiles the
synthetic programs, converts the system
processor tasks, generates and replicates
the files, and builds the jobstreams. The
benchmark is then ready to run.

The main elements of a description of

the benchmark for the vendor are descrip-
tions of programs, files, tasks, and jobs.

The vendor is supplied with source code for
each routine in the benchmark and specifi-
cations for each assembler routine. This

source code includes one copy of the invar-

iant portion of the control logic, one copy
for each program of the variant portion of

the control logic, KER and DATA, and many
copies of each kernel. The programs are

then described by their constituent modules.
For example:

Program 5:

SYNTH ,SETTR ,BMTIME ,FFGTST, ICV, lOW,

LIBRY,LOCD,LOCI,ZOR
KER5,DATA5
INK1,INK2,INK3,INK4
FPK1,FPK2,FPK3,FPK4

The benchmark files are described as

fol lows:

File 1:

One copy per job
temporary
300KB
indexed sequential access
binary data
initialized by supplied program

The tasks are described as follows:

Task 1:

Execute synthetic program 3 with
parameters
0,20,448,256,5,2,0,218,5
5,16,0,1,9
Disk output to file 9, FORTRAN Unit 9

Task 3:

Copy file 6 to file 7

The jobs are described as follows:

Job 1:

Task 3, Task 7, Task 7, Task 2,

Task 14, Task 3, Task 10

155

4.3 Verification

The procuring agency will verify at LTD
time that the benchmark work was done, that

it was done in the required time, and that
performance goals were met. UNISKEL pro-
vides convenient ways for the agency to do

as much verification as it deems necessary.
The system clock measures the benchmark
elapsed time. The system log verifies that

the work was done. The vendor supplied RTE

log analysis program verifies that response
times were acceptable. These primary checks
are easy to use, but may not be reliable
enough for the agency's needs, so other spot
checks are typically used.

A stopwatch verifies the benchmark
elapsed time, as well as correct system
clock operation. Print output from some of
the jobs is examined to see that the start
and stop times from the system log are
correct, and that the proper tasks were
executed. The timestamped RTE log is exam-
ined for the same reason, and to verify
response times. The synthetic program
writes timestamps in all its output, which
are checked for consistency.

In interactive mode, the synthetic pro-
gram reads timestamps from the RTE, which it

prints along with its own timestamps. Prior
to LTD, the agency test team may have the
system clocks of the RTE and of the System
Under Test set to different dates and times.
This difference is checked in the RTE log.

The binary files in the benchmark are
created by an initialization program that
fills them with timestamps. The synthetic
program writes over some or all of these
files with timestamps of its own. Prior to
LTD, the test team selects certain temporary
files to be made permanent. The timestamps
in these files, as well as those in some

other permanent files, are examined after
LTD for consistency.

The synthetic program keeps a count of

the number of times the kernels are called,
and this value is printed for verification.
A more rigorous check can be accomplished
with an addition to the kernel. The kernels
may compute pseudo- random numbers based on

a seed supplied by the agency prior to LTD.

The final numbers generated by each program
execution depend on the seed and on the
number of calls to the random number
routine. These values may be printed and

compared against the known values.

156

COMPARING USER RESPONSE TIMES ON PAGED AND SWAPPED

UNIX BY THE TERMINAL PROBE METHOD

Luis Felipe Cabrera

Department of Mathematics
and

Electronics Research Laboratory
University of California, Berkeley

Berkeley, CA 94720

jehan-Frangoi s pSris

Department of Computer Sciences
Purdue University

W. Lafayette, IN 47907

In this paper we present a comparison of user
response times on paged and swapped versions of the
operating system UNIX for the DEC VAX 11/780. The tech-
nique used was to construct a script that periodically
evaluated the system's work -load and measured the
system's response times to a set of benchmark programs.

These measurements, collected at two different
sites, show that differences of responsiveness observed
between the two systems depended much more on the work-
loads and the configurations than on the operating sys-
tems themselves.

Since we only used standard UNIX tools to build our
scripts, they are highly portable and can be installed on
any standard UNIX system in a matter of minutes without
bringing the system down.

Keywords: terminal-probe method; UNIX.

1. Introduction

A change from one version of an
operating system to another one
always constitutes a difficult prob-
lem for the management of a computer
installation. The problems of
updating the software while attempt-
ing to keep the user's interfaces as
unchanged as possible are well
known. We will address here another
problem, namely, the performance
implications of the change.

Numerous tools already exist
with the purpose of predicting or
measuring the performance of a com-
puter system. In contrast to many
of these tools, the method we
present here requires no special
hardware and very little effort for
modeling the system or estimating
its work-load. The technique used,
which applies to all interactive
systems, essentially consists of
constructing a script that periodi-
cally evaluates the system's work-

157

load and measures the system's
response times to a set of benchmark
programs. As we will see, the only
drawback of the method is that sys-
tems with highly variable work loads
will require longer data gathering
periods

.

Since standard UNIX tools were
used to build these scripts, they
are highly portable and can be
installed on any standard UNIX sys-
tem in a matter of minutes without
bringing the system down. Moreover,
the philosophy of the method is by
no means specific to UNIX systems
and could be applied to other
interactive systems.

Section 2 of this paper
presents those features of the UNIX
operating system which are relevant
to our problem. In Section 3 we
introduce the data gathering method.
In Section 4 we present and analyze
diagrams which compare the perfor-
mance of the installations under the
different versions of the operating
system. Section 5 discusses some
general issues about comparing dis-
tinct operating systems. Section 6

has our conclusions.

2. The UNIX System

UNIX is a trademark for a fam-
ily of time-sharing operating sys-
tems developed at Bell Laboratories
during the last twelve years [10,
9]. The first version of UNIX was
implemented in 1969 on a PDP-7.
Since then, several versions of UNIX
have been developed at Bell Labora-
tories. They were primarily aimed
at various members of the PDP-11
family of minicomputers and, in

1978, Bell Laboratories released a
version of UNIX aimed at the new VAX
11/780. Despite the fact that the
VAX hardware was designed to support
a paged virtual memory system (DEC'S
own VMS), the successive versions of
UNIX developed at Bell Laboratories
did not support paging. This
motivated a group at the University
of California, Berkeley, to imple-
ment a virtual memory extension to
UNIX for the vAx [1]. This exten-
sion used a Global LRU (Least
Recently Used) page replacement
strategy with use bits simulated by
software and is now an integral part

of what is known as the "Berkeley
UNIX."

One of the most remarkable
features of UNIX is its user inter-
face. On logging in, each user is
assigned a special process contain-
ing a command interpreter that
listens to the terminal. This com-
mand interpreter, known as the shell
[2], parses the input line decod ing
the command requested, its flags,
and the arguments passed to it. The
shell then exec 's the command. The
shell also has a Fedirection mechan-
ism that allows it to read command
lines stored in files. Users can
thus define sequences of shell com-
mands, known as shell scripts, and
store them in files awaiting later
invocation. The versatility of
these scripts is greatly enhanced by
the fact that the shell language
also contains control-flow primi-
tives, string-valued variables and
even simple arithmetic facilities.
Itius, building a sequence of com-
mands that will be repeatedly exe-
cuted at fixed time intervals is on
UNIX a nearly trivial task.

The portability of our tools
was also facilitated by the fact
that UNIX handles automatically all
file allocation decisions. UNIX
files are accessed through a hierar-
chy of directories and the typical
user is not aware of the physical
location of the files he or she
manipulates

.

3. The Data Gathering Method

Our strategy for monitoring
each system's responsiveness was the
same one used in Cabrera's perfor-
mance analysis study of UNIX [3].
It consists of running periodically
a set of predefined benchmarks in a

totally automatic way. This was
achieved by writing a shell script
that is essentially a loop contain-
ing the benchmarks together with
commands that gather statistics
about the work loads and measure the
time it takes each benchmark to com-
plete. Each time the script has
cycled through the execution of
these commands, it executes a sleep
command that suspends its execution
and then wakes it up after a
predetermined number of seconds.

158

This script is then run as a back-
ground job (with the same priority
as any user process) during the
operation time of the system.

This data gathering method can
be categorized as a time-sampling
method [7] and in fact is very simi-
lar to Karush's terminal probe
method [8]. By using it, we measure
the work load of the system as well
as the dependency of our performance
indexes on the underlying equipment.
We are thus evaluating the perfor-
mance of an installation.

Although running a script
affects the load of the system—and
thus its responsiveness, it was felt
that this would not affect the vali-
dity of our comparison study since
each system would be presented with
the same script. The main purpose
of our comparison experiment was
precisely to observe how each system
reacted to this stimulus.

Our commitment to use only
standard UNIX tools decided us upon
the usage of the t ime command for
measuring the completion time of
each benchmark. The t ime command
returns, upon completion of the com-
mand it prefixes, three measure-
ments; response time, system time
and user time. Response time is
only accurate to the second (time
truncates, does not round o f f) .

This low resolution of time ,

together with our desire that no
individual measurement be off by
more than 10%, led us to restrict
ourselves to benchmarks that would
never take less than five seconds to
complete

.

4. The Measurements

The design of a comparison
study like ours is faced with many
constraints and trade-offs. There
are basically three main areas in
which major decisions have to be
made: the selection of the bench-
marks, the length of the data gath-
ering period and the representation
of the data.

Since our method measures the
performance of an installation,
i.e., the work load is also included
in the observations, a desirable

goal is to use as benchmark a task
representative of the user's tasks.
At the same time, one must try to
capture the work load through some
characterization. Then, the
response time of the task is plotted
against the characterization of
load .

We have chosen tasks which
exercise the system in a "natural"
way (i.e., we did not run tasks
which would a priori perform better
in a paged env ironment or in a swap-
ping environment) and which were
representative of the user's activi-
ties at the time. Since text pro-
cessing constituted on both sites a

significant part of the system's
load, we decided to use, in both
sites, the command man man as bench-
mark The man command retrieves and
formats the entry for any given com-
mand out of the on-line copy of the
UNIX Programmer's manual; thus man
man retrieves and formats the manual
entry for the man command. This
task is interesting because the
entry is retrieved from disk using
the widely used formatting program
nroff . lb avoid screen output prob-
1 em s wh e n running the script, the
output of man man was sent to
/dev/null instead of sending it to a

real terminal. This had the effect
of discarding the already formated
text of the retrieved page. The
length of each data gathering period
was determined at each site and will
be discussed in the next two subsec-
tions. As for the display of the
data, after an exploratory analysis
of our measurements it was decided
to use 7 5-percentile curves. In
Figures 1 and 2 we display four
curves for the task man man using
the number of logged in users as
characterization of load. The four
curves are the median (50-
percentile) , mean, 75-percentile and
90-percent ile of the distribution of
response times per value of our work
load characterization.

Figure 1 displays these curves
for the swapping system and Figure 2

for the paging system. In them we
may appreciate how the influence of
the outliers becomes apparent in the
90-percent ile curve. We may also
notice that the median of the
response time samples are con-

159

sistently lower than the mean of the
samples. This happens in any dis-
tribution which is skewed towards
the lower range values or, whose
outliers lie in the higher range of
the values. These tWD characteris-
tics were common to all our data.
*Ito deemphasi ze the effect of
outliers we chose to use the 75-
percentile curve to display our
data. This decision was partially
motivated by unavailability of abun-
dant data from one of the sites;
95-percentile curves would have been
too much influenced by outliers.

We decided on two single-
variable characterizations of load:
number of users logged in and number
of user processes. This latter
index represents the number of
processes which have been generated
by user commands. It does not
include any system generated
processes

.

4.1. The Berkeley Measurements

This analysis was based in 431
data points for the swapping system
and 1455 points for the paging sys-
tem generated during the second half
of 1979. Throughout the data gath-
ering period the system's hardware
remained unaltered. The work load,
however, underwent a substantial
change (by very large programs such
as the VAX version of the algebraic
manipulation system MACSYMA [6]) to
thoroughly exercise the memory
management capabilities of the new
kernel

.

Given the small amount of main
memory the system had at the time,
these large address space programs
did influence significantly the work
load of the system. The hardware
configuration of the system was a

VAX 11/780 CPU, 512K bytes of main
memory, 16 ports, two RP06 disk
drives with a DEC disk controller
and one TE 16 tape drive.

We shall present data for three
tasks: the command man man , the
execution of a cpu-bound job and the
compilation of a short C program.
The choice of the cpu-bound job was
motivated by our desire to observe
the effect paging had on a task that
would almost never be swapped out:

its size is 2K bytes.

Figures 3 and 4 display the
75-percent ile curves of the response
time for the command man man. On
both figures we see that the swap-
ping system performs slightly better
than the paging system at higher
load levels. This difference can be
justified by the dramatic change in
the workload which occurred v*ien the
paging system was brought up. Since
we do not have data from stand-alone
measurements, we cannot rate the two
systems solely on these data, but it
becomes apparent that neither out-
performs the other one throughout
all the values of load.

Figures 5 and 6 display our
data for the CPU-bound job. This
job consists of two nested loops and
an inner block of statements. A 9
statement sequence of integer arith-
metic operations is executed 100,000
times. The size of the object code
is only 2K bytes— i.e. four 512 byte
pages-- and thus its probability of
being swapped out is quite small.
It is quite interesting to observe
that the paging system outperforms
the swapping system under both char-
acterizations of the workload. This
can be explained in terms of the
additional I/O activity existing in
the paging system. Indeed, since
our job is very small in size and
performs no I/O, the only impedi-
ments that may block it to run to
completion are time-quantum expira-
tions and multiprogramming delays.
Thus our cpu-bound job is either
running or in the ready queue. In

the paging system it more often gets
the CPU because of other jobs being
blocked by page faults. This fact
makes us believe that trivial tasks
should perform better in the paged
version of UNIX.

Figures 7 and 8 display our
data for the C compilation of a

small C program. This is the only
observed task where the swapping
system appears superior. This is
specially clear in Figure 8 where
the number of user processes charac-
terization of load is used. We
believe that the difference in per-
formance observed in this case is
mostly due to the change in workload
which occurred in the system. The

160

execution of processes whose size
was much larger than the available
memory created high contention for
memory. Ihus medium size processes
like the C compiler would always be
losing their used pages and paging
in those pieces of code needed for
further processing. Their resident
set would never be allowed to remain
at any reasonable size. The effect
of large processes was quite notice-
able at the time, specially when
processes like VAXIMA [6] would do
garbage collection through a 2 Mega-
byte address space. At those
points, response time for all com-
mands would degrade ostensibly.

4.2. The Purdue Measurements

These experiments were per-
formed during the Summer of 1980 on
the VAX 11/780 of the Department of
Computer Sciences at Purdue Univer-
sity v\^en the Department decided to
switch from UNIX version 7 to Berke-
ley UNIX. At that time, the machine
had 3 Megabytes of main memory, 56
ports, three RM03 disk drives on
Massbus 0 and one TE16 tape drive on
Massbus 1.

Vfe chose to run as benchmarks
the UNIX command man man , which
formats and displays the entry of
the UNIX manual describing the com-
mand itself as veil as a small
script containing "man man" and
several small tasks. As said
before, this choice was motivated by
the fact that text processing con-
stituted then the application con-
cerning the greatest number of
users. In UNIX version 7, the man
command is implemented as a shell
scr ipt while Berkeley UNIX uses
directly executable code. Since
this latter alternative is
inherently much faster than a
script, which must be interpreted by
the shell at each execution, a

direct comparison of the response
times for the man man command would
have been grossly unTair to the ver-
sion 7. Vfe thus decided to run the
version 7 script in place of the
original man command in our measure-
ments with the Berkeley UNIX. As a

result, the response times for the
man man command measured at Purdue
were much higher than those observed
at Berkeley, where the same problem

d id not occur .

Because of the short interval
of time left between our decision of
running the script and the scheduled
switch from swapped to paged UNIX,
we were only able to collect 152
measurements with the swapped ver-
sion of UNIX. This left us with
about ten observations for each load
level, as expressed either by the
number of users logged in or the
total number of user processes.
These values were obviously much
lower than those required to obtain
acceptable estimators of the 75 per-
centiles of the response time.

f^ced with the same problem,
but on a much smaller scale, one of
the authors [3, 4] decided to clus-
ter neighboring load levels with
insufficient numbers of observa-
tions. For instance, if 30 was the
minimum acceptable sample size and
there were 19 observations
corresponding to 15 users logged in
and 12 observations corresponding to
16 users, the tWD sets of observa-
tions would be merged into a single
set of 31 observations and this set
made to correspond to a work load of
(15+16)72 = 15.5 users. The same
approach applied to our Purdue data
would unfortunately resulted into
too little load levels after clus-
tering. We decided therefore to use
a scheme in which the 75 percentile
for the load level i would be com-
puted taking in account all the
measurements at load levels i-1, i

and i + 1. This filtering greatly
reduced the influence of outliers on
the 75 percentiles. It has, how-
ever, the unfortunate side-effect of
introducing a positive correlation
between neighboring values on the
percentile curves and therefore
should not be considered as a sub-
stitute for more measurements

Figure 9 and 10 display the
75-percent ile curves of the response
time for the script version of the
man man command. As one can see on
both fig ures , the response times for
the swapping version of UNIX appear
to be somewhat higher than those
corresponding to the paging UNIX and
exhibit also a more erratic
behavior. These results apparently
do not agree with those observed on

161

the Berkeley VAX. One should how-
ever point out that the Purdue VAX
had a much larger memory and that
all our measurements relative to the
paging version of UNIX were made
during the month immediately follow-
ing the conversion to Berkeley UNIXr
thus before any change in the work-
ing habi ts of the users could have
occurred.

Another point to mention is
that the curves representing the
75-percentiles of the response time
against the number of user processes
are somewhat better behaved than
those corresponding to the number of
users. Ttiis suggests that the
number of user processes is a better
estimator of the system's workload.

5. Discussion

One can conclude from our meas-
urements that the switch from UNIX
version 7 to Berkeley UNIX did not
alter significantly user's response
times on any of the two monitored
installations. This conclusion,
however, depends on the work loads
observed on the two machines and is
by no means an answer to the ques-
tion: "Which one of the two operat-
ing systems is better?"

Paging was introduced, more
than twenty years ago, in order to
allow bigger jobs to run on machines
then characterized by very small
main memories. It became later a

nearly universal feature of large-
scale multi-access systems because
it allowed to keep more jobs simul-
taneously residing in main memory,
thus avoiding swapping delays. As
it was quickly noticed, paging
unfortunately never comes for free

:

it requires special hardware, intro-
duces a fair amount of software
overhead and performs very poorly
with programs exhibiting scattered
reference patterns.

One may then question the effi-
ciency of paging at a time where
main memory is so cheap that it
becomes possible to keep residing in
memory enough conversational users
to saturate the CPU of a machine
like the VAX. Wbuld this be the
normal case, jobs would typically
run without having been ever swapped

out during their execution. Hhis
would remove any incentive for
implementing a paging scheme. More-
over, it would even make straight
swapping more effective than paging
since it is usually more efficient
to bring into memory the whole
address space of a program in a sin-
gle I/O operation than by succes-
sively fetching faulting pages.

This argument does not, how-
ever, stand against the well-known
fact that larger address spaces have
always resulted in larger programs.
In fact, one of the strongest
motivations of the Berkeley UNIX was
to provide the larger address space
required by algebraic manipulation
programs. Our measurements on the
Berkeley VAX show indeed that the
switch from swapping to paging has
significantly altered the system's
work load by allowing bigger jobs to
run on the machine. Although it did
not appear in our data, the same
phenomenon also occurred on the Pur-
due VAX, whose current work load is
strikingly different from the one
existing before the switch to Berke-
ley UNIX.

The main advantage of one
operating system over the other one
is thus more a question of increased
capabilities than faster response
times. As a cynical observer could
point out, the switch to a better
system might be accompanied by an
increase of the average response
time resulting from the increased
demands placed on the system's
hardware

.

6. Conclusions

We have presented here a simple
method for comparing user response
times on two versions of an operat-
ing system. The method used con-
sists of constructing a script that
periodically evaluates the system's
load and measures the system's
response times to a set of benchmark
programs. This method can be very
easily implemented on UNIX or any
other system that has features
allowing to submit periodically a
set of tasks and to collect informa-
tion on response times and system's
workload. It does not require the
system to be brought down and does

162

not affect the normal operation of
the installation.

Results concerning a paged and
a swapped versions of the VAX 11/780
UNIX system show that the observed
differences of responsiveness
between the systems depended more on
the workloads and the configurations
than on the operating systems them-
selves .

Thus our methods should not be
construed as a technique for compar-
ing the inherent merits of two
operating systems, but rather as a

tool giving prompt quantitative
answers on the responsiveness of any
particular installation.

Acknowledgements

Ihe work reported here was sup-
ported in part by the NSF grant MCS
80-12900. The authors express their
gratitude to their respective
departments for having provided the
facilities used in this study.

Nether 1 ands ,pp 205-215.

[5] Digital Equipment Corporation,
VAX 11/780 Techn ical Summary .

Ma yn aT3 , Mas sT^ 197 8

.

[6] Fateman, R. J., Addendum to
the Mathlab/MIT MACSYMA Refer-
ence Manual for VAX/UNiX VAX-
IMA, Department of EECS

—

Computer Science Division,
University of California,
Berkeley (Dec . 1979) .

[7] Ferrari, D. Computer Systems
Performance ITvaluati on ,

Prentice-Hall , Eng lewood
aiffs, NJ, 1978.

[8] Karush, A. D. , The Benchmark-
ing Method Applied to Time-
Sharing Systems, Rept. SP-3347,
System's Development Corpora-
tion, Santa Monica, CA, August
1969.

[9] Kernighan, B. W. and J. R.
Mashey, The UNIX Programming
Environment, Computer 14, 4

(Apr. 1981), 12-24.

References

[1] Babaoglu, 0., W. Joy and J.
Porcar, Design and Implementa-
tion of the Berkeley virtual
Memory Extension to the UNIX
Operating System, Department of
EECS—Computer Science Divi-
sion, University of California,
Berkeley,

(1979).

[2] Bourne, S. R. , The UNIX Shell,
The Bell System Technical j.
5T7 6^art 2 (Jul . -Jdig~. 19787^
1971-1990.

[10] Ritchie, D. M. and K. L. Thomp-
son, The UNIX Time-Sharing
System, Comm . ACM 17, 7 (Jul.
1974) , 365-375. A revised ver-
sion appeared in The Bell Sys-
tem Technical J. 57~, 6~Part 2

(Jul. -Aug. 19787/ 1295-1990.

[11] Ritchie, D. M., S. C. Johnson,
M.E. Lesk and B. W. Kernighan,
The C Programming Language, The
Bel 1 System Technical j. 5 7"^ 6

Part 2 (Jul. -Aug. 1978), 1991-
2019.

[3] Cabrera, L. F., A Performance
Analysis Study of UNIX,
proceed ing

s

of the 16th Meeting
oi tFe CPEUG^ Orlando^ FT7
October 1980, pp. 233-243.

[4] Cabrera, L. F., Benchmarking
UNIX : A Comparative Study, in
Expe r imental Compu te r Perfor-
mance Evaluation (D. Fer rar i

and M. Spadoni eds.) North-
Holland, Amsterdam,

163

120.0

6. 8. 10.

NUMBER OF USERS

Figure 1 Median, Mean, 75 and 90 percentiles for ""man man""
and Swapped UNIX

LiJ

I—

I

I—

UJ
cn

100.0

80.0 -

60.0 -

40.0 -

O
Q_
CD

^ 20.0

.0

X MEDIAN

<!> MERN

+ 75-PCTILE

90-PCTILE

2. 6. 8. 10,

NUMBER OF USERS
12. 14

Figure 2 Median, Mean, 75 and 90 percentiles for "man man"

and Paged UNIX

164

Figure 3 Response Time 75-percentile vs Number of Users
for the "man man" command

100.0

.0 5. 10. 15. 20. 25.

NUMBER OF USER PROCESSES

Figure 4 Response Time 7 5-percentile vs Number of User
Processes for the "man man" command

165

HO.00

CO
30.00

20.00

X SNRPPING

O PfiGING

.00

.0 2. 6 8

NUMBER OF USERS
10, 12. 14.

Figure 5 Response Time 7 5-percentile vs Number of Users
for the CPU-bound job

40.00

30.00 -

20.00

CD

co 10.00
LU

X SNAPPING

O PAGING

.00

.0 5. 10. 15.

NUMBER OF USER PROCESSES
20, 25.

Figure 6 Response Time 75-percentile vs Number of User
Processes for the CPU-bound job

166

80.00

CO

IxJ

CO

60.00

^o.oo

X SNRPPING

O PRGING

o
to 20.00
LU

.00 ±
.0 2, H. 6. 8. 10.

NUMBER OF USERS
12.

Figure 7 Response Time 75-percentile vs Number of Users
for the C compilation

80.00

LiJ

60.00 -

40.00
UJ
CO

O
CO 20.00
LU

X SWRPPING

O PRGING

.00
_L

.0 5. 10. 15. 20,

NUMBER OF USER PROCESSES
25.

Figure 8 Response Time 7 5-percentile vs Number of User
Processes for the C compilation

167

150.0

CO

Lu 100.0

UJ
CO

O 50.0
Q_
(D
UJ
OH

X SNRPPING
- 0 PRGING

e

1 1

1 1 1 1
1

.0 6. 8. 10.

NUMBER OF USERS
12. 14. 16,

Figure 9 Response Time 75-percentile vs Number of Users
for the script version of "man man"

150.0

.0. 2. H.. 6. 8. 10. 12. 14. 16.

NUMBER OF USER PROCESSES

Figure 10 Response Time 75-percentile vs Number of User
Processes for the script version of "man man"

168

PRACTICAL APPLICATION OF REMOTE TERMINAL EMULATION
IN THE PHASE IV COMPETITIVE SYSTEM ACQUISITION

Deanna J. Bennett

Air Force Phase IV Program Management Office
Directorate of System Engineering

Gunter AFS, AL 36114

The Air Force's Phase IV program is the largest computer system
acquisition ever attempted. It will replace the Air Force inventory of
base supply UNIVAC 1050-11 and base level support Burroughs B3500 cccn-

puter systems. At the outset, a strategy was developed for expressing
the workload requirements for the more than 200 systems to be replaced.
Specific system throughput requirements were established. Along with
this the decision had to be made how to validate the capabilities of the
proposed systems to support the workload.

The point of this paper is to outline how the following questions
were answered by the Air Force in the currently on-going Phase IV

acquisition: Given a real acquisition situation, how can we test
effectively? What are the practical day-to-day decisions that must be
made to support the selected testing strategy?

The end decision regarding the workload test approach was to use some

tools from the classic benchmarking tradition, but to enhance their
effectiveness with the use of remote terminal emulation. This deter-
mination was only a starting point for a number of implementation deci-
sions that had to be made by the Air Force to support effective use of an

emulator.

The current status of the Phase rv program is that contracts have

been awarded to two contractors to compete for worldwide system
replacement. The contracts require transition of five major standard Air

Force on-line automated data systems (ADSs) and a small sampling of stan-
dard Air Force batch systems, and demonstration of contractor-proposed
systems with the transitioned Air Force standard software. At the end of

the contract, based on cost and evaluation of performance, one contractor
will be selected for vrorldwide system replacement.

Key words: Benchmark testing; Phase IV; remote terminal emulation;

response time; terminal networks; workload sizing.

1 . Introduction

The Phase IV program was formally
established in early 1976, as the vehicle
by vAiich a large inventory of nearly obso-
lete computers in the Air Force inventory
could be replaced. Because of its size and

conplexity, the Program was established on

an innovative basis, unhampered by prece-
dents in the competitive conputer selection
and acquisition process. The replacement
strategy was developed to fit the need and

169

to recognize the economies of scale that
could devolve from such a massive acqui-
sition. In its overall management and pro-
curement approach. Phase IV falls somewhere
between off-the-shelf ccsnputer acquisitions
typically managed by the Air Force Computer
Acquisition Center (AFCAC) , and the weapons
system development and acqujsition projects
normally managed by system program offices
(SPOs) throughout the Air Force.

One of the concepts typically imple-
mented by SPOs is "fly before you buy," in

which prototypes, including aircraft, are
put through their paces in a real life

environment before any ccxnmitment is made
to large-scale manufacture. This was the
most attractive aspect of the weapons
system approach for Phase IV and was incor-
porated into our acquisition strategy.
This is why we have two "prototype" system
contractors. The main advantage is that it

minimizes the risk of incorrectly esti-
mating the processing capabilities of pro-
posed computer systems before using them to

replace over 2 00 Air Force systems around
the world. A miscalculation could have
severe impact on the capability of the new
systems to keep up with day-to-day base
mission support demands. One basic testing
requirement emerged as paramount: workload
processing capabilities had to be validated
well in advance of commitment to worldwide
replacement by either of the competing
contractors.

2. The Communications Testing Problem

In Phase IV, we are using classic
benchmarking techniques to create inputs to

exercise the batch workload profile on the
proposed system. This is necessary to

verify batch processing throughput
capabilities, but is not sufficient to

satisfy us that the real range of workload
can be supported. The base level systems
being replaced through the Phase IV program
have a critical on-line as well as a batch
mode support roles.

There are five major on-line automated
data systems vAiich support aircraft
maintenance, supply, civilian and military
personnel, accounting and finance, and
civil engineering functional users at each
Air Force base. Depending on the location,
anywhere from twelve to over one hundred
fifty independent devices have to be sup-
ported by the new systems at some time in

the system life. In addition to the physi-
cal capability to support the terminals,
the system's responsiveness to the user is

a key concern.

We rapidly concluded that batch bench-
mark techniques were inapplicable to our
problem, and searched the field for the
proper tool to apply. All the historical
options for demonstrating processing capa-
bility on-line testing problems, bearing in
mind the bounds of technical, economic, and
practical feasibility, as well as the ulti-
mate objective : to verify not only that
the required terminal network could be sup-
ported but also that the support was
timely

.

2.1. Simulation Unacceptable

The verification required for on-line
system sizing dictated that the actual
system be tested and that the mode of test
not interfere with the internal system
processing. On this count alone, a simula-
tion or model-based verification was
rejected. Construction of proper models
would be expensive. The technical feasibi-
lity of performing the effort was assessed
as minimal, given the short time available,
the range of vrorkloads that would have to

be modeled, and the likelihood that newly
announced equipment lines could be proposed.
Also, for all practical purposes, since the
contractor would have to be performing the
simulation/modeling exercise for the final

test, the Air Force assurance of accuracy
would cCTne down to "trust me" as the veri-
fication that the model was performing v^at
was required. A convincing bottom line to

the brief consideration of simulation is

the GSA prohibition of simulation as the
sole basis for a Contract Award, a tacit
acknowledgement of simulation's more
artistic than anpirical nature.

2.2 No Sample Terminals
or Alternative Inputs

Before computers became sophisticated
enough to handle more than a few terminals,
the verification of a system's capability
to handle a small number of terminals could
be done simply by hooking the actual ter-
minals up to the test system. As time and
technology progressed, often a few ter-
minals were used to represent a much larger

whole in the benchmark process. The risk
increases, of course, with the dwindling
percentage of terminals actually demon-
strated. After a point, the contention and
queuing problems attendant on a large num-
ber of terminals are unrealistically over-
looked when three or four "representative
devices" are used in their place. Also, use
of live terminals implies the use of live

operators. While computers can generally be
relied on to produce reproducible results.

170

human operators cannot be counted on to do
the same. This violates one of the basic
tenets of benchmarking in the Government:
Have a controllable, reproducible
experiment.

The controllability factor led to other
experiments in stress testing, such as that
used several years ago in the World Wide
Military Command and Control Systan
(WWMCCS) computer system acquisition. In

this benchmark, the externally-generated
terminal inputs were queued on tapes and
batched in. While controllability and
reproducibility were assured, the system
impact of handling large volumes of devices
and their communications overhead aspects
was not assessable.

Using a combination of input messages
queued on tape and a sampling of inputs
from several live devices was judged to

have too many of the disadvantages of
either technique, and not enough advantages
to reasonably pursue for Phase IV 's purpose.

2.3 The Practical Default.

The option of having a full-scale benchmark
test with an entire live terminal network
was also rejected out of hand. The sheer
management burden of monitoring and

controlling activities across over 100 ter-
minals was enough to render this prac-
tically and economically unfeasible.
Dissatisfaction with the traditional
choices for assessing workload processing
capacity led to a single reasonable option:
remote terminal onulation. The only method
that could satisfy the requirement for

testing throughput capacity in a terminal-
oriented environment on all practical, eco-
nomic and technical counts was to require a
remote terminal emulator. Emulation is

within the practical , technical state of
the art. It is controllable and repro-
ducible. It can demonstrate all the

effects of communication contention and
line strategies on the system under test.

We could see no other way of testing.

2.4 Support for RTE-Based
Test Requirements

Phase IV Program management was also
reasonably convinced that as long as we

were breaking new ground in other ways, we

should take advantage of the current tech-
nology and do as complete a job of sizing
verification as possible by requiring a

remote terminal emulator (RTE) as a basic
test tool. Before committing to an RTE
requirement. Phase IV had to verify its

legality in terms of Goverrment contracting
regulations.

Before the publication of the GSA RTE
standard which applies across the
government, specially-created, tailored
variants of emulators were required when
emulation was considered for application to

a benchmarking problem. The variants
depended on the specific desires of the
individual user or acquisition office. The

result was repeated development costs for

competing vendors, seen as limiting the

field of ccxnpetition to only "wealthy"
ccxnpetitors. Because of this cost aspect,
RTE-based pre-award competition was not per-
mitted by GSA for Government acquisitions.

In the design of the Phase IV acquisi-
tion strategy, we circumvented this histori-
cal objection to the sunk pre-award cost of
RTE-based ccxnpetition. The Phase IV com-
peting contractors will perform post-award
benchmarks under paid contract while they
compete for final selection as the Air
Force-wide implementation contractor. Cost
to vendors was not an issue, because the
cost was to the Government. Because of the
large number of systems involved, this
investment for Phase IV is cost effective,
whereas in single site acquisitions it could
have been prohibitive. However, we did some

groundwork before RFP release to assure our
management and ourselves that our costs
would be primarily test-related costs, not
RTE development costs: A survey of the emu-

lation capabilities of canputer manufac-
turers v^o could reasonably be expected to

submit Phase IV proposals verified that each
had an existing emulator with the basic
required characteristics.

The Request for Proposal (RFP) that was
issued in 1978 for Phase IV was the first

Air Force RFP which required remote terminal
emulation. It was written before publica-
tion of the GSA standard, but it should be

noted that the Phase IV RTE requirements are
relatively close to the new standard.

3. Phase IV Workload Test ?^proach

The Phase IV problem was to orchestrate
a throughput test to verify that the work of

2 37 separate systems with 2 37 variations on

a common processing framework could be

handled by new systems. This required deve-
lopment of some method for distilling the

critical characteristics of the workload
into simple, testable quantities, and
deciding how to choose what the physical
system under test should look like.

171

3. 1 Workload Expression TXBLC !• XI AVERAGE PEAK HOUR OH-LIIIC WORKU>AD CATEGORIES

System workload representation for

replacement of a single system is done most
commonly by constructing a single line pro-
jection of future workload and constructing
a single timed benchmark test, a set of

programs which reflect the work profile for

the current system. (Naturally, the vali-
dity of the ensuing test is limited by the
validity of the analysis and the availabi-
lity of programs in appropriate languages
to form the mix.) Capability to handle
workload growth can then be measured by

decreasing the amount of time permitted to

run the program mix. Figure 1 shows this
approach diagrammatical ly

.

0 1 2 3 4 5

Years After Installation—

Figure 1. Typical Single System
Workload Expression

INPUT INPUT OUTPUT OUTPUT LOGICAL
CATEGORY MSG CHAR MSG CHAR DSK I/O

1 82S 72, 891 5,058 450,418 42,735
2 1,817 161,713 12,017 1,059,513 94,794
3 2, 556 225,027 15. 583 1,337,839 132,400
4 3, 218 283, 035 19,590 1,744,843 166,692
5 3,728 330,729 24,193 2,151,753 205,769

Note that as these categories were
developed on the basis of collections from
individual Air Force bases, there is no
straight line relationship across cate-
gories for various workload components.
This means that test development must be
tailored to each category. The single
system acquisition approach of developing a
single mix and decreasing the amount of

time permitted for its execution to test
increased throughput requirements is doubly
inapplicable for Phase IV. First, it is a

batch-oriented approach vAiich does not
account for variances in numbers of
terminals. Second, in Phase IV, each cate-
gory is really a separate workload profile,
unrelated to lower or higher workload
categories.

Instead of projecting workload by base,

fixed categories are used and the Air Force
base sites move through the categories.
This simplifies the vendor sizing effort,
as workload factors are already distilled
into usable form for input to sizing
models. Figures 2 and 3 give an example of
how bases might move through the categories
between two given calendar years.

To use this most common workload repre-
sentation for Phase IV 's wide range of
types and volumes of processing could
require 237 separate workload projections
and tests to be developed. Besides implying
an impossible test development workload,
this would be spurious precision, given the

basic "plus or minus" imprecisions of

workload projections, however carefully
they are constructed.

For Phase IV, the performance sta-

tistics from a sampling of current sites
were collected and massaged into a set of

workload "categories", using both the
empirical data from sites and overall
growth rate projections. These categories
were defined to the analytical level

required by sizing models. See Table 1 for

an example of the workload characteristics,
by category, for the U1050 workloads.

A,B,C
D.E.F

G,H

1 2 3 4 5

Workload Categories

Figure 2, Year 1 Workload for Bases

A, B, C, D, E, F, G, H

In Figure 2, Air Force bases A through H

are mapped into 5 workload categories, de-

172

pending on their workloads in Year 1 of
system life.

B.C.D

E.F

G,H

1 2 3 4 5

Workload Categories

Figure 3. Year 3 workload for Bases
A, B, C, D, E, F, G, H

Figure 3 shows these same bases and
workload categories in Year 3 of system
life, and shows how the workloads of bases
have grown, causing most to migrate into
larger categories.

Given this analytical framework, the
testing problem is to verify that there is

a system available to satisfy the workload
requirements of each category, not each
individual base. These category examples
are simplifications. In fact there are

five workload categories for the U1050
workload projects projections and 10 for
the B3500 workloads.

3.2 Stress Testing Philosophy

Phase IV contractors are permitted by

the Air Force to match their equipanent

lines against the workload categories,
letting "break points" fall vAiere they make

optimal use of equipment capabilities. For
example, a vendor could propose to satisfy
workload categories 1 through 4 with the
lowest level processor in an equipment
line, categories 5 through 7 with a

slightly enhanced model , and categories 8

through 10 with yet a more powerfvil model.
Another proposal could have far different
matching of the Government's workload cate-
gorizations to equipment models.

This required us to be prepared to test any
of the fifteen workload categories we had
established to anticipate all potential
"break points" in contractor proposals.
For the Air Force to develop a test for
each category and mode, as we in fact did,

required construction of 32 separate tests
-- 15 on-line, 15 batch and 2 combined on-
line and batch tests.

One major feature of the Phase IV

acquisition that made such a test develop-
ment effort feasible is that the contractor
will be supplying all the software for the

test. All workload categories and their
characteristics (messages in, characters
in, cards punched, and so forth) are ex-
pressed in terms of automated data systems
(ADSs) which the contractor is responsible
under contract to transition to his pro-
posed system. The Air Force test develop-
ment effort did not require selecting a

specific mix of high-order language
programs that the ccxnpeting contractors
could easily run on their systems, as in

historical benchmark construction. Rather,
a carefully measured collection of transac-
tions was collected to exercise the collec-
tion of ADSs to fit the workload profile.
This applies equally to the batch and on-
line tests (for Phase IV separate on-line
and batch workload tests are required
except in a few cases); however, this paper
addresses solely the on-line test construc-
tion problems. The amount of work done by

test developers in selecting the individual
program transactions frcsm this large pool
was monumental, but was unhampered by the
"high order language" constraint.

4. Specific RTE Implementation Decisions

The Phase IV on-line workload tests are
executed by the Phase IV contractors on

their own RTFs using Air Force software
they have transitioned to work on their
systems. Much of the test burden is put on

the contractors. Commitment to the use of

an RTE for validating terminal-related pro-
cessing capabilities did not remove all the

Air Force test burden, nor was it an end
decision. It was only the beginning of a

series of other implementation decisions.

4. 1 How Many Terminals To Test?

A flexible workload testing strategy
was required to match the latitude allowed
the proposing vendors. Stress testing was
at the heart of the strategy: the workload
processing capabilities tested had to be

measured by testing the largest workload
against which a configuration was proposed.

Given the workload definition scheme

and the determination that an RTE would be

required, the next decision to round out the

definition of the test enviroment was how
many terminals would be associated with the
on-line test for each workload category.
The RFP presents two terminal profiles for

173

each system at each base : the number and

types of terminals required at initial

installation, and the number and types pro-
jected at an augmentation point 54 months
after initial installation, a point close to

the end of the initial contract life. We

took the obvious option and decided to test
the larger number of terminals, that at
augmentation.

Many Air Force base systems are asso-
ciated with each workload category at the
augmentation point. We had to test the

terminal configuration for an actual Air
Force base as defined in the RFP because
this is the basis for vendor proposals,

and, most importantly, for their com-
munications strategies. Our stylized
workload categories associate the same

number of on-line transactions with all
bases within the category, independent of

the number of terminals actually projected
for the base. We developed tests for the

terminal profile of the base in the cate-
gory with the largest number of terminals.
This tests the fullest ccanmunications-
related overhead, e.g., polling, multi-
plexing, and/or concentration (depending on

the contractor-proposed methodology), for
the largest number of terminal devices. If

a configuration can support the largest
nximber of terminals projected for it, then
it certainly can support fewer terminals.

The decision involved a trade-off.
There is a Phase IV terminal response time
requirement as well as a workload volume
requirement. Spreading inputs and their
associated outputs across a large number of

terminals could have the effect of making
the average terminal response time easier
to meet than if the same number of transac-
tions had to be queued up for fewer
terminals. The risk of making the response
time easier to meet was far lower than the

risk of specifying a test system with so

few terminals that we wouldn't be prepared
to validate a unique communication strategy
a vendor might propose for larger numbers
of terminals.

4.2 Who Provides the RTE Inputs?

The contractor-transitioned Air Force
software was the basis for the test. But

who would create the emulated terminal
inputs?

We could have defined a "mix" of trans-
action types for each transitioned data
system, (e.g., 40% updates, 50% inquiries,
and 10% record deletions), and had the
contractor provide the transactions. The

problem with this is that the system test
activity must reflect the activity defined
in the Phase IV workload category defini-
tions for the test to produce valid
results. Gross definitions of transaction
types could in fact result in the contrac-
tor being forced to generate more workload
than required by vrorkload sizing merely to
fit the transaction percentage profile—or,

in imposing lesser workloads than required
because the contractor could select lew
activity variants of transaction types.

Another "easy" alternative frcan the
Government test development standpoint is

to put the entire burden on the contractor
and let him run any mix of transactions
which he says will fit our "bottom line"
workload category requirements. The addi-
tional test burden is on the contractor —
but there is virtually no way in which the
Air Force can be assured that what we see

is what we think we are seeing!

These two alternatives have been used
in other RTE-based system tests. They
generally stem from a desire to see the
system driven, but a lack of software on
which the user can base the demonstration,
either because of the cost and time to con-
vert extant complex interactive software,

or because the teleprocessing requirement
is new and there is no software. Phase IV

is not constrained by the lack of demon-
stration software. Since the contractor-
converted Air Force automated data systems
have to accept the same inputs as on
current equipment, we decided to specify
every transaction for every emulated ,

terminal. We could and did develop indivi-
dual terminal scripts whose "bottom line"

total workload fit the profiles for each
workload category. Note that both the ter-
minal activities and the initial vrorkload

categorization were based on our current
equipment, so the test and specification are

totally compatible.

4.3 What Transactions to Select?

Methodology for test transaction selec-
tion was to individually test a small
sampling of transactions frcan all software
systems that were part of the on-line
workload test to determine their profiles
when acting against pre-defined test data
bases. This profile included number of disk
I/Os generated, number of characters input
and output, and other characteristics
directly related to the workload category
figures. Then an automated "mix and match"
program selected the proper numbers and
kinds of transactions and created the speci-

174

fic scripts by terminal by software system
(ADS). Each script was validated to have
the proper number of transactions and in to-
tal they were validated to provide the
correct amount of work against the ADS.

Besides completion of all specified
processing in one hour, there is a response
time requirement to be met in the workload
test. The Phase IV systems must provide a

maximum 10-second average response time for

80% of all on-line transactions, with a

maximum 30-second response time for any one
on-line transaction. The sampling of tran-
saction types used in the Air Force scripts
was carefully selected to support a fair

test of on-line support capability. Real,

on-line, interactive type transactions were
selected. Batch-oriented transactions were
not included on the rationale that response
time's importance is related to queries for

small quantities of information, not large

reports. A batch job vAiich requires signi-
ficant file manipulation is not an interac-
tive type process just because it can be

activated from an interactive terminal

.

Because of the average response time
requirement, we had to further restrict our

test transaction types and test data. For
Phase IV 's workload test, response time is

defined as the time between the last opera-
tor action of the input and the display of

the first human-readable character of the

output. What if there is no response?
Vfhat if the input generates output to

several terminals? In our case, if that
occurs, it invalidates our average response
time calculations. You can't calculate the

time between input and output if there is

no output, or if there is no input. As

these types of transactions are supported
by current Air Force software that will be
carried over to the new system, the tran-
sactions that exhibited unacceptable forms

of output for test purposes and response
time calculation were eliminated frc«n con-
sideration in building our terminal
scripts.

4.4 Who Controls Timing of RTE Inputs?

The last critical strategic decision to

be made was how to handle time spacing of

the inputs. Our terminal scripts spread
inputs for each terminal across the
60-minute test period, ensuring that the
last input was entered sufficiently in

advance of the end of the 60.00 minutes
that its respxDnse could be generated within
the timed test period. Further, the
scripts for individual terminals
interacting with the same software system

were given staggered start times
within the first few minutes of the timed
test period to avoid a "lock step" series
of contention-generated delays.

Though our scripts were generated so

they could be run "as is" , we had to decide
if that should be required of the con-
tractor. Execution completely in accor-
dance with the script time spacing of

transactions might make it impossible for

the contractor to meet response time
requiranents. This is because all the
scripts for all the software systems in the
mix could not be tested in advance, at the
same time. (If we could do that, we would
be able to handle our projected workload on
the systems we have today, and we wouldn't
need to replace them!) There is a potential
that some combinations of transactions
across ADSs and terminals might uninten-
tionally occur in such a way that a snowball
attenuation of response times could result.
We decided that the contractor shouldn't
have to pay for the quirks in our script
development effort, and that some adjust-
ments to the timing of inputs should be

permitted

.

The degree of freedom permitted the
contractor was important to define. If we

gave them complete control, there would be
nothing to prevent a virtual non-mix to be
run, with the terminal scripts run sequen-
tially on an ADS by ADS basis, e.g.,
running all supply transactions, then all
finance transactions, etc. Our ultimate
decision was that the contractor could run

all scripts as provided, or could modify
them under tight constraints.

If the time delay between inputs from
any script is to be adjusted by the contrac-
tor, the script must be changed so that the
first transaction is initiated in the first

five minutes of the test period, the last
transaction is entered in the last five
minutes, and all transactions in between are
distributed evenly across the test period,
i.e., they have identical delay times be-
tween them.

5. Resulting Test Characteristics

What we ended up with at the end of

this on-line test development effort was
the following:

(1) A useful test tool, a remote ter-
minal anulator, defined as the basis for
the test.

(2) A workload test strategy that

175

rested completely on the pre-defined
workload categorizations vAiich could verify
the telecommunications support capability
by the system under test in the most
stressful (largest number of terminals)
situation.

(3) Scripted terminal inputs and out-

puts designed by the Air Force to specifi-
cally exercise the Air Force-defined
workload

.

(4) A strategy for permitting the

contractors to eliminate timing-related
quirks in the Air Force data without
degrading the purposes of the mix test.

What we didn't fully realize was that
we also had a flexible test basis with
which we could test the workload processing
support capabilities for any of the Air
Force sites in the world — with some test
degradation. This "object lesson" came
toward the end of the development cycle for

the thirty-two separate Phase IV workload
test packages.

6. Accounting for

Implementation Redirection

Original Phase IV plans called for one-
for-one replacement of current U1050 and
B3500 systems, even though they usually are
located on the same base. After initial
Phase IV proposals were received and after
a large amount of work had been invested in

developing workload tests. Air Force and
congressional reexamination of Phase IV 's

implementation plans resulted in a redirec-
tion of this concept. The one-for-one phi-
losophy fell by the wayside for a large
number of bases vftiich would now either get

a single computer system to replace their
two on-base computers or be remote sites
associated with regional centers. The same
workload categories applied, in additive
fashion, to the single systems: the U1050
and B3500 projected workloads at a given
Air Force base would have to be handled by

the same system.

From the batch testing standpoint, no

real problems were posed. The U1050-based
test and the B3500-based tests could be run

concurrently to test capability to process
the combined workloads. From the terminal
network and testing stand-point, at this
point all bets were off. The workloads of

the two systems at each base are
independent. The mix of new combined
workloads and remaining single workload
systems meant that workloads from separate
categories were combined on a base-by-base

basis. The "maximum number of terminals"
approach didn't fit the real life bases
anymore. The base with the largest number
of terminals for its B350 0 workload cate-
gory could have far less than the maximum
number of terminals for its U1050 workload
category. We couldn't run the RTF tests
"as is" because we would be requiring the
contractors to test networks that were not
proposed and not required by the contract.

The problem test designers had to deal
with was simply put: Now that the tests
have been designed and developed to spread
all the on-line work across the maximum
number of terminals for any base in a given
workload category, how can we test fewer.

One option was to redevelop the

tests. This was impossible. While we were
updating our strategy, the offerors were
updating their proposals. Having to deal
with the proposal flexibility factor would
put us back in the mode of developing over
a hundred tests to cover all possible
combinations, just to be sure we had the
right mix available for the contractors to
run

.

The other option was to maintain the
amount of work, but decrease the number of

emulated test terminals to fit the actual
test Air Force base. Decreasing the number
of terminals to be emulated wDuld
apparently also lose the work input by
these terminals. Rather than "falling
back" on the amount of workload required to

be processed, the work was input directly
at the mainframe instead of via the deleted'

terminals. This could be done because of

the way the Air Force software works. Live
terminal transactions can be batched into a

disk file in the test set up process, and
pulled off the disk file to have the same
effect on the data base as the live trans-
actions for the B3500 software during the

test. For the U1050 software, direct card
reader input of the transactions identical
to the live transactions has the same

effect. Any terminal in the test data
package in excess of the actual test con-
figuration was deleted frcm the test, but

its transactions were redirected for the
alternative input. From the network stand-
point the test is somewhat easier. From the

workload standpoint, the system is per-
forming the same test. This approach
required no redevelopment of test materials,

continued to support full vrorkload testing,

and verified to the developers that we had a

powerful, well-constructed test methodology.

176

7. Conclusions

This paper has described how Phase IV
decided that a remote terminal emulator
would be used for its on-line workload tests
and the major implementation decisions we

had to make in supporting the use of the
RTE. In addition to those mentioned above,
we had to decide v*iat to call our terminal
input collections -- scripts as the Air
Force does, or scenarios as the rest of the
world does. We had to decide how fast a
terminal operator types so we could include
the correct operator time in our script time
delays and in our constraints to the con-
tractors. We had to weight the number of
transactions that could be input and output
at a device by the kind of device it was --

a terminal with a screen display displays
output faster than a printer output ter-
minal , and so can handle more transactions
in an hour than the printer terminal. We

had to decide how to present the scripts to
the contractors, and decided that print
image format on tape would be acceptable.
And there were many other decisions like

this, every day of the test development
effort.

We planned RTE use into our on-line
tests the hard way. There was no GSA
standard, so we had to create our own RTE
specification, and justify it as a require-
ment. Just about everywhere there was a
decision to be made, we made the decision
that would give the Air Force the most
visibility and the most control over the
testing process. Usually this meant more
work for us. But we have the users of 2 37

Air Force systems to answer to if things
don't work out correctly.

In the end, we decided that we have a

very good on-line workload test. It hasn't
been run yet by the contractors, and that
will be the final proof. We also have ccme
to realize, over the course of thousands of

hours of COTiputer time and several years of
development and refinement of RTE scripts,
that use of an RTE is not to be undertaken
lightly. The end requirement must comple-
tely justify not only the burden put on the
contractor performing the test, but also
the massive amount of time and money it
takes to adequately prepare for its use.

177

Cost/Performance Evaluation

- Methods and Experiences

179

AN EVALUATION TECHNIQUE FOR EARLY
SELECTION OF COMPUTER HARDWARE

Bart D. Hodgins
and

Lyle A. Cox, Jr.

Naval Postgraduate School
Monterey, CA 93940

There is a need for a decision making tool for use early in the com-
puter selection process. Such early selection tools are critical to the
decision maker due to the environment in which the manager of large scale
procurements is forced to operate.

The instruction mix technique was well known in the early years of
computing. It was simple, easy to use and easy to understand. However,
as the complexity of machines and support software grew, the technique
was replaced by more sophisticated performance prediction tools. With
certain modifications, this technique can continue to provide important
information. By using a number of instruction mixes in a computer as-
sisted environment, it is possible to find performance trends of hardware
in the very early design stages. These trends can be used effectively to
make selection decisions.

The instruction mix sensitivity technique as demonstrated here has

the potential to aid the decision maker in evaluating the performance of

a system prior to the actual existence or availability of that hardware
without resorting to costly and time consuming techniques such as simula-
tion or model i ng.

1. Introduction

There is a need for a decision
making/selection tool for use in the com-
puter selection process (particularly for
those involved in the very large procure-
ments typical of our government). The in-

struction mix sensitivity technique as

demonstrated here has the potential to aid
the decision maker in evaluating the per-
formance of a computer prior to the actual

existence or availability of that hardware
without resorting to costly and time con-
suming techniques such as simulation or

model i ng.

1.1 Background

Large Automated Data Processing pro-
curements evolve through a cycle that of-

ten last five to seven years. The selec-
tion of computer hardware is forced to oc-
cur early in the procurement cycle. This

long period of time from selection to
operational installation often necessi-
tates procurement decisions to be made be-

fore prototype hardware is available.
Hardware selection must be made quickly
and accurately. Errors cost time and mo-
ney. Any delay caused by selection can
have a ripple effect building through the
entire process. Poor selection of the
hardware to be used as the basis for a

system can result in cost overruns in oth-
er areas to compensate for the lack of ac-

ceptable hardware performance. At present
there is no general method for computer
hardware evaluation and selection com-

pletely suitable for use early in the pro-

curement cycle. Poor procurements are of-

ten made because the decision maker is

forced to make a selection without the
benefit of having candidate hardware
available. Similarly, selections of

equipments are often based on imprecise
and quantitatively vague ideas of the ac-

tual operational utilization that the sys-
tem will face years in the future.

There are several methods currently
being utilized for the evaluation of a

computer's performance. They include:

181

(1) benchmark programs which are existing
programs coded in a specific language,

then executed and timed on a target
machine [1], (2) kernel functions which
are typical functions partially or com-
pletely coded and timed [1], (3) simula-
tions which are a combination of a model

of the system, model of the workload, and

a measurement of the resulting data [2],
and (4) analytic models which are

mathematical representations of the target
machine [1]. These methods are all in use
(principally in industry) to evaluate pro-
posed computer systems for procurement.
For smaller procurements these methods are

effective because their acquisition cycle
is shorter. In some cases it is even pos-

sible to wait until both hardware and

software are available, and to use the

standard evaluation techniques in making a

specific computer system selection.

In large acquisitions, selection must
occur early, and unique problems arise
that cannot be easily solved by the vari-
ous evaluation techniques. Evaluation by

the benchmark program method is impossible
because the different machines are not al-

ways available. Even if a prototype
hardware of a future system were available
for evaluation, the benchmark programs and
the kernel function methods often prove
inadequate because the support and appli-
cations required to validate the technique
usually do not exist at that point.

When a selection must be made quick-
ly, there is usually neither the time, mo-
ney, nor the sufficiently detailed design
information necessary to model /simul ate

the proposed computer systems. How can

the selection be scientifically made? It

is because of this problem that the in-

struction mix sensitivity technique (IM-

SET) has been developed.

1.2 The Instruction Mix Sensitivity Tech-
nique Overview

The instruction mix sensitivity tech-
nique is based upon the older instruction
mix method for predicting computer
hardware performance. In the instruction
mix method a number was computed which
represented the average thruput of a par-
ticular hardware. This number was based
upon the relative usage of a given in-

struction in a particular application, and

its execution time on the evaluated
hardware. Where the older method was
based on a single mix representing a

specific application, the sensitivity
technique evaluates trends in the differ-

ences between a computer's predicted thru-
put over a collection of mixes represent-
ing various applications. The advantage
of this technique is that neither the
hardware of software need be completed --

only the organization and technology need
be determined. The eventual utilization
of the system need not be precisely de-
fined. This technique provides immediate
evaluation results with a minimum expendi-
ture of time and money.

Using the IMSET requires only that
the vendor furnish the performance specif-
ications regarding instruction execution
times. These performance specifications
are often available years in advance of a

prototype model. With these times, and
the analysis technique presented here, the
evaluator can compare the predicted per-
formance of any hardware against the anti-
cipated application. The particular
machines to be considered in the selection
need not be prototyped.

The use of the IMSET as a tool for
evaluation provides the decision maker
with a profile representing the candidate
computer's average execution time for the
various applications presented in the set
of instruction mixes. From the data the
decision maker can select the hardware
with the best profile for the intended ap-
plication. For example, if the evaluator
is looking for a machine to perform ac-
counting functions then the selection
would be based upon how sensitive each
candidate is to the mixes which represent
accounting and related functions. The
less sensitive the machine in terms of ex-
ecution time the more appropriate it would
be for selection, since this indicates
that it can execute effectively a broad
spectrum of related functions.

2. Instruction Mix Sensitivity Technique

2.1 History

The instruction mix as a technique
for evaluating the performance of a

computer's hardware came into being in the
late 1950's and early 1960's. It evolved
as a result of the limitations of an ear-
lier technique for measuring a computer's
performance called the instruction execu-
tion timing method.

The instruction execution timing
method considered only a single class of

instructions. The instruction mix tech-
nique incorporated along with the arith-
metic class, the logical class (i.e. COM-

182

PARE, SHIFT, MOVE, etc.), and in some in-

stances I/O and other miscellaneous in-

structions. Associated with each instruc-
tion in the mix was the percentage of use
of that instruction, called a weighting
factor unique to that particular mix.

This weighting factor represented the ap-
proximate probability of occurrence of
that instruction in the programs to be

used on the machine. For instance, in a

scientific instruction mix one would find
that the percentage of floating point mul-
tiplications would be higher than the per-
centage for that same instruction in a

data processing instruction mix. The pro-
babilities in an instruction mix were
determined by either statically or dynami-
cally tracing the programs representative
of specific applications.

The instruction mix technique is easy
to apply. By multiplying the execution
time of each instruction by the weighting
factor and summing, one obtains the time
required to execute an average instruction
for that particular mix on that particular
computer. This average time can be in-

versely related to a thruput rate in

instructions-per-second (IPS). These to-
tals can then be compared with similar
rates obtained from other machines, to

give an idea of relative CPU thruput.

Mixes for many applications have been
developed. The most popular of all mixes
was the Gibson Mix [3] developed by Jack

C. Gibson in 1959 on data obtained on the
IBM 7090 computer. The Gibson Mix was
considered a general -technical mix. There
were other similar mixes [4, 5, 6, 7, 8,

9, 10] for data processing, navigation,
scientific, and a myriad of other applica-
tions.

As computer hardware and software
technology advanced, especially as systems
moved into a multiprogramming environment,
it soon became apparent that using a sin-

gle instruction mix to evaluate absolute
performance was no longer adequate. Among
the shortcomings of the technique was its

failure to account for differences in ad-

dressing modes, word sizes, and operand
lengths. The effect of system software
upon the mix weights was difficult to as-

sess. Perhaps the biggest disadvantage
was the problem of how to validate the in-

struction mix to insure that a particular
mix accurately reflected the intended ap-
plication. How can the instruction proba-
bilities be determined if the programs
representing the eventual workload have
not yet been written?

2.2 IMSET

The variation of the instruction mix
technique described here is called the in-

struction mix sensitivity technique (IM-

SET) [11]. The IMSET uses a set of ten

instruction mixes chosen from over 20 can-
didates [11] to represent a wide range of
computer applications, spanning from
real-time thru scientific to business com-
putations. Utilization of the IMSET pro-
vides the evaluator with a profile
representing a hardware's execution times
across all mixes in the set (and hence
across a broad spectrum of applications).
The comparative profiles of execution
times provide the decision maker with a

quantitative prediction of how sensitive
each computer is to the various mixes and

hence how the system would perform over a

wide range of applications. This is in

contrast to the instruction mix technique
which only provided the evaluator with a

thruput evaluation on one mix -- one ap-
pl i cat ion.

The IMSET uses eighteen functional
instructions which constitute the basis
for evaluation. These include seventeen
specific instructions and one "I/O miscel-
laneous" category. The eighteen function-
al instructions and ten mixes which con-
stitute the IMSET are shown in Table I.

To use IMSET it is necessary to
determine the execution times of the 18

instructions for each central processor to
be evaluated.

A detailed discussion of the develop-
ment of this technique and the details of

calculating hardware timing figures are

discussed further in Hogin's report [11].

While particular care must be paid to

determining the timing figures, the pro-
cedure is not difficult.

Of particular interest is the han-
dling of concurrency in modern hardware.
In the standard application of the in-

struction mix technique many special
features such as concurrency of a central
processor's hardware were ignored. For
example, some processors begin execution
of a second instruction before the current
instruction has finished its execution.
This allows effective execution times to

be cut significantly. The IMSET presented
here takes into account the overlap capa-
bilities of the machines being evaluated
by applying a "Knuth Factor". This idea

was provided by [12], and is described in

[11]. The Knuth Factor compensates for

183

TABLE I

IMSET FUNCTIONAL INSTRUCTIONS AND MIXES

IMSET niXES

I. ARITHMETIC

FiXFn PpINT

(SP) (DP)

FLOATING

POINT (SP)

II. LOGICAL III. CONTROL IV.

I/O

1ISC.

BRANCH

X
LU
C3

PROCESS CONTROL

MESSAGE PROCESSING

REAL TIflE

COmUHICATION CNTL

DATA COflPRESSION

NAVIGATION

TLfl THRUPUT

TECHNICAL GENERAL

SCIENTIFIC

COMPOSITE GENERAL

.06'l

.050

.12C

.nsr

.19f

.23(

.09(

.02^

0.0'

.02

.013

.005

.lOf

.002

.06f

.25(

.m(

.02

0.0"

.022

.001

.00510

.020

.002

.060

0.0

0.0

.025

0.0*

022

o.o*

0*

01i|

0.0*

0.0*

0.0'

0.0*

0.0*

0.0*

0.0*

10*

0.0*

012

0.0*

0.0*

0.0*

0.0*

0.0*

0.0*

0.0*

0.0*

0.0*

0.0*

005

0.0*

0.0*

0.0*

oil

095

.003

0.0*

0.0*

0.0*

.001

0.0*

0.0*

0.0*

.011

.056

.003

0.0*

0.0'

0.0*

.001

0.0*

0.0*

0.0*

.011

.020

.003

0.0

.010

.020

.075

.120

.020

.290

.108

0.0

.121

.022

.033

.070

.075

0.0

0.0

0.0

0"5|

CO'

0291

0.0

.150

.010

.070

0.0

0,0

0.0

0.0

0.0'

O.Q

.^oo

.m

,500

,'175

,27fl

,30C

,22r

.36]

28'

M

.480

.ItO

.100

0.0*

.060

.ma

.15(1

.775

.132

0.0*

o.o

0.0

.0501

0.0

0.0

0.01

0.0

0.0

0.0

0.0

.03CI

0.0

.03(|o

.06(

.0';

.o'ld

0.0

o.o

0.0'

0.0

058

0.0*

.0*

.060

0.0

0.0

0.0*

0.0*

0.0*

0.0*

0.0*

0.0*

035

0.0*

0.0*

0.0*

0.0*

225

0.0'

020

052

020

.090

.120

140

.190

.103

.187

057

* Weight not assigned by mix for this functional instruction

184

the machines which have overlap or paral-
lel processing abilities by scaling down
their execution times by an amount compar-
able with the typical use of this feature
by most programs and compilers.

2.3 Some User Notes

The I/O instructions omitted from
many mixes caused problems with early
evaluations. I/O instructions are a mix-
ture of peripheral capability and a cen-
tral processor capability. The mixes
presented here include the I/O instruc-
tions in the miscellaneous category rather
than as a specific instruction. In this
way the central processor's ability to
handle I/O is treated as an average over
all of the I/O instructions without having
to specify an exact instruction or partic-
ular device.

It should be pointed out that the in-

struction mix was a tool to be used prin-
cipally for the comparative evaluation of
the central processor hardware. The way
the central processor is configured with
other system components such as storage
devices and other I/O and peripheral dev-
ices must be considered separately. This
characteristic of the instruction mix
technique carries over to IMSET.

The user must be aware that the
software associated with the system in-

cludes the operating system, language pro-
cessors, in addition to applications pro-
grams. All these have an impact upon
overall performance. The mixes in IMSET

reflect all types of computation, making
it possible to consider performance in

both system software and application
software areas.

3. A Demonstration of IMSET

In the final stage of the IMSET

development process six micro-computers
were selected for competitive evaluation
to demonstrate the strength of the IMSET

when used to evaluate machines closely re-

lated in characteristics. This was in-

tended to reflect an actual evaluation for
selection situation. The micros selected
are all 8-bit or 16-bit machines ranging
from some earlier models to some much more
recent ones. Those selected are the ZILOG
8000, INTEL 8086, MOTOROLA 68000, DIGITAL
EQUIP. CORP. LSI 11/23, and the TEXAS
INST. 9900.

Determination of the individual in-

struction times for each of the micro-

computers is presented in [11].

The demonstration to obtain the pro-
files of all hardwares chosen versus the
set of ten mix applications of the IMSET
was conducted on the computerized evalua-
tion system. Three sample profiles are
shown in Figures 1 through Figure 3. Fig-
ure 4 is the composite of all the micros.
Table II provides a key for the instruc-
tion mixes listed by letter for each of

the computer profiles.

When analyzing the profiles it is im-

portant to remember that the purpose of

the IMSET is to compare a machine's execu-
tion time sensitivity between applica-
tions, not only its estimated effective
execution speed for any one application.
The sensitivity between applications is

determined by comparing the times of exe-
cution -- the performance trends. Consider
the following example:

Table II

KEY TO THE INSTRUCTION MIXES PRESENTED
IN FIGURE 1 THROUGH FIGURE 4

LETTER INSTRUCTION MIX

a Process Control

b Message Processing

c Real Time

d Communication Control

e Data Compression

f Navigation

g TLM Thruput

h General Technical

i Scientific

j General Composite

Suppose we wish to select a micro-
computer whose principal purpose is ex-

pected to be the processing of both navi-
gation and telemetry applications.

We first screen all candidate
machines to verify that they 1) meet our

185

13

16L

14 .

TIME

MICRO

SECS
^"^^

4 .

. S

d e f 3 h
IH3TRUCTI0H

Mi:<ES

'1=4. 352309
to=6. 171390
':=» 1 0.53665:
d=»3. '350

f»l 1 . 31405:
3=6. 163400
h-3. 375123
i = i:

J =7. 420423

FIGURE 1. DIGITAL EQUIPMENT CORP LSI 11/23

TIME

MICRO

SECS

5 .

4 .

3 .

2 .

1

d e f 3 h i

INSTRUCT I OH
MIXES

.1=2. 739150
b=2. 521359
c=4. 379433
d=3. 445000
«=4. 367409
f=6. 627600
j=3. 406500
h=4. 071330
i =6. 374759

J =3. 663729

FIGURE 2. ZILOG 8000

186

13

IS

14

TIME 12

MICRO

SECS

8

S i

4 .

a=3. 299730
b»4. 361490
c =5. 3 13333
6=7. 79&388
C= 9. isc'S??;"

f = li-J. 341731
9»i3. i52S29'j

»la5. 307403
i=»15. 134319
J "4. o34>5oi3

d e 1^ h
IHSTRUCTIGM

f-li;-1E3

FIGURE 3. MOTOROLA 68000

INSTRUCT I CM
HIXE3

Figure 4. Composite sensitivity profiles of microcomputer hardwares

(1) ZILOG 8000, (2) INTEL 8086, (4) MOTOROLA 68000,

(5) TEXAS INSTRUMENTS 9900, (6) LSI 11/23.

187

minimum absolute performance requirements
and 2) conform to other system require-
ments such as availability of support
software, peripheral compatibility, etc.

For those machines which meet these cri-
teria, we apply the IMSET procedure. The

micro-computer selected should present the
smallest change between the two applica-
tions (since the eventual percentage of
workload is not known for the two com-
ponents).

For our example, we will assume that
the IMSET technique will be used to decide
between the Digital Equipment Corp. LSI

11/23 and the Motorola 68000 for our navi-
gation and telemetry problem. The IMSET

results are:

Table III

IMSET Demonstration Results

Avg. time/inst. Sensitivity
PROCESSOR (microseconds) (per cent)

NAV Mix TLM MIX

Motorola 58000 10.8 8.6

DEC PDP 11/23 11.3 6.2

26

84

This analysis suggests that the
MOTOROLA 68000 might be the more prefer-
able micro-computer due to its lower sen-

sitivity (more uniform performance) to the
two appl ications.

If we were certain that the principal
function of the system was telemetry, that

the navigation functions to be performed
are minimal, and that this balance betvveen

the functions would never change signifi-
cantly during the lifetime of the system,

the DEC 11/23 would be the better choice
due to its greater thruput for telemetry
applications. In the early stages of sys-

tem design we are seldom sure of all these
things. Averaged over both applications,
the performance of the two candidates is

roughly equal. However, as long as we
cannot be certain of what the workload
proportions will be between navigation and

telemetry, it would be prudent to select
the machine whose performance is less sen-
sitive to fluctuations in the job mix, in

this case the Motorola 68000.

This is a very simple example. The
IMSET is capable of being used in much
more challenging evaluation situations.

with more complex workloads and complicat-
ed computer systems. It does, however,
demonstrate its utility and ease of use.

5. Conclusions

We have introduced a method, the IM-
SET, with which the decision maker can
quickly and efficiently select a computer
hardware from a number of candidates. One
simple example of the application of this
method was presented and profiles of actu-
al hardwares were shown.

Validation of the mixes vs. applica-
tions when using the IMSET for evaluation
is not the problem it was for the instruc-
tion mix method. When evaluating by the
IMSET method, particular sensitivities
within a broad area of intended use are
being measured, whereas with the instruc-
tion mix method, execution time of a

specific application was being estimated.
Thus, validation is not an issue when
utilizing the IMSET.

The advantages to using the IMSET
over other currently used techniques are
tremendous. As mentioned above when early
selection is required, the decision makers
are often not able to utilize many of the
more sophisticated, and proven methods.
With the IMSET the decision maker needs
only the manufacturer's projected instruc-
tion set execution times. With these
times it is possible to obtain the evalua-
tion data within a matter of hours and at

minimal cost. This technique provides a

savings in time, savings in money, and
greater confidence in the selection.
Perhaps its most attractive advantage is

its ease of use.

The data provided by IMSET can be in-

tegrated easily into more comprehensive
selection techniques. While a discussion
of this aspect is beyond the scope of this
paper, it is easy to see how IMSET could
be used in specifying or selecting systems
when used in the context of the Cost-Value
Selection Technique [14], or similar
methodologies.

The strength of the IMSET as an

evaluation tool lies in the fact that it

is able to be applied in the absence of

available hardware and specific knowledge
of intended application. It is very im-

portant that a tool such as the IMSET be

an integral part of any decision making
process affecting the procurement of com-
puter systems in the future.

188

REFERENCES

1. Lucas, Jr. H. C, "Performance Evalua-
tion and Monitoring," Computing Surveys,
V. 3, No. 3, P. 79-90.

2. Svobodova, L., Computer Performance
Measurement and Evaluation Methods:
Analysis and Applications, p. 52-56, Amer-
ican Elsevier, 1976.

3. IBM Technical Report TR00.2043, The
Gibson Mix, by J. C. Gibson, p. 2, 18 June
1970.

4. Corsiglia, J., "Matching Computers to
the Job - First Step Towards Selection,"
Data Processing Magazine, p. 23-27, De-
cember 1970.

5. Arbuckle, R. A., "Computer Analysis
and Thruput Analysis," Computer and Auto-
mation, V. 15, No. 1, p. 12-19, January
1966.

6. Flynn, M. J., "Trends and Problems In

Computer Organization," Information Pro-

cessing 74, p. 3-10, 1974.

7. Knight, K. E., "Changes in Computer
Performance," Datamation, V. 12, No. 9, p.

40-54, September 1966.

8. Raichelson, E. and Collins, G., "A

Method for Comparing the Internal Operat-
ing Speeds of Computers," CACM, V. 7, No.

5, p. 309-310, May 1964.

9. Weitzman, C. , Distributed
Micro/Minicomputer Systems, p. 18-19,

Prentice-Hall, Inc., 1980.

10. Honeywell Inc., St. Petersburgh Fla.

Aerospace Div., ESD-TR-76-295 , Secure Com-
munications Processor Selection Trade
Study, by C. H. Bonneau, March 1976.

11. Hodgins, B. D., "A Computer Evalua-
tion Technique for Early Selection of

Hardware" Naval Postgraduate School , De-

cember 1980.

12. Computer Science Department Stanford
University Report CS-186, An Empirical
Study of Fortran Program, by D. E. Knuth,

p. 32, 1970.

13. Eckhouse, Jr., R. H. and Morris, L.

R., Minicomputer Systems, 2nd ed. , p.

138-139, p. 142-143, Prentice-Hall, 1979.

14. Barbour, R., Holcombe, J., Harris,
C, and Moncrief, W. , "Applications and

Limitations of the Cost-Value Techniqu
for Competitive Computer Selection
Proceedings, Computer Performance Evalua
tion Users Group 15th Meeting, 1979.

189

DEFICIENCES IN THE PROCESS OF PROCURING

SMALL COMPUTER SYSTEMS:

A CASE STUDY
Andrew C. Rucks

Peter M. Ginter

University of Arkansas
College of Business Administration

Fayetteville, AR 72701

The Latin phrase caveat emptor is nowhere more applicable than in the
practice of acquiring computer systems for small business and small govern-
ment entities. In a recent issue of Business Week, it was estimated that
approximately 50 percent of the purchasers of small computer systems are
dissatisfied with their systems. While many computer users are litiga-
ting vendors for redress of losses caused by insufficient data processing
capability, this does not address the major failings of the process of
procuring small systems. The small system procurement process produces
a high rate of failure because many buyers inadequately analyze their
data processing needs and fail to express these needs to potential vendors
in a manner that will lead to the procurement of need satisfying computer
systems.

Key words: Computer procurement; proposal evaluation; RFP preparation;
small systems.

1. Introduction

Many small organizations have experi-
enced dissatisfaction with procured computer
systems [l]. Ample evidence of the frustra-
tion experienced by small organizations is

found in recent litigations brought against
computer vendors [2,3]. A recent procure-
ment undertaken by the County Commission of

Escambia County, Alabama offers a typical
example of the major cause of user dissatis-
faction — a poorly developed solicitation
document. The inadequacy of the Escambia
County solicitation document was precipita-
ted by a lack of technical expertise and a

general reluctance to obtain assistance
that could have contributed to the planning
and execution of a successful procurement.
The purpose of this paper is to (1) discuss
a poorly prepared request for proposal (RFP)

,

(2) indicate the probable consequences of

issuing an inadequate request document and

(3) offer a simple but effective RFP out-

line tailored for small organization procure-
ments .

The RFP that is the basis for this paper
was issued by the County Commission of

Escambia County, Alabama in December 1980.

Proposals were submitted to the Commission
by three vendors. These vendors are not
identified in this paper since to do so

would be in variance with disclosure restric-
tions specified in the proposals.

2. Critique of the RFP

The Escambia County RFP is typical of

proposals for which far too little data
processing needs analysis has been performed
and too little computer procurement exper-
tise has been utilized. As a result, the
RFP failed to precisely express the County
Commission's requirements to potential
vendors. The Escambia County RFP suffered
from three major deficiencies; (1) perfor-
mance specification vagueness, (2) require-
ments contradictions, and most importantly
(3) a lack of functional requirements. The
RFP was divided into seven major sections in-
cluding: I—General Conditions, II—Vendor

191

Support, III—Escambia County's Responsibi-
lities, IV—System Requirements, V— Soft-

ware Requirements, VI—Form of Surety Gua-

ranty, and VII—Appendix (see table 1). The

major sections of the RFP will be reviewed
briefly in order to delineate the proposals

debilitating weaknesses.

Table 1. Contents of the Escambia County
RFP

Page

I. GENERAL CONDITIONS 1

1. Purpose 1

2. Closing Date 1

3. Vendor Proposals 1

4. Demonstrations 1

5. Acceptance of Proposal
Content 1

6. Rejection of Proposals 2

7. Incurring Costs 2

8. Vendor Contract Respon-
sibilities 2

9. Equipment Expandability ... 2

10. Delivery and Installation . . 3

11. Site Preparation 3

12. Type of Contract 3

13. Vendor's Guarantee 3

II. VENDOR SUPPORT 5

III. ESCAMBIA COUNTY'S RESPONSIBI-
LITIES 6

IV. SYSTEM REQUIREMENTS 7

1. System Summary 7

2. Equipment Requirements 7

3. Equipment Operating Software
Requirements 8

4. System Installation 8

V. SOFTWARE REQUIREMENTS 9

A. Financial Management
Information System 9

1. Vendor Accounting 9

2. Payroll Accounting 10

3. General Ledger and
Budgetary Accounting . . 11

B. Property (Real and Personal)

fax Billing and Collection . . 13

VI. FORM OF SURETY GUARANTY 15

VII. APPENDIX 17

2.1 Section I—General Conditions

All three of the deficiencies suggested
above were apparent in Section I of the

Escambia County RFP. For instance, the RFP
suggested "vendors may be required to demon-
strate the capability of their proposed equip-
ment and system software." Yet there was
little in the RFP to suggest the actual capa-
city requirements. Also in this section, the
RFP required vendors to "submit his best and
cheapest proposal." This requirement was
rather contradictory and provided little in

the way of a meaningful statement of expecta-
tions. Additionally, the Escambia County RFP
confounded vendors' proposals by demanding
delivery of a "garbage collection service
billing and collection system" but never
itemized specifications in Section V— Soft-
ware Requirements. The County also weakened
considerably its negotiating position by
indicating that it desired to consider only
lease-purchase procurement plans. The RFP
stated "Escambia County prefers a three-year,
lease-purchase plan (lease with option to
purchase)." This requirement precluded vendors
from offering alternative methods of acquisi-
tion.

2.2 Section II—Vendor Support

The vendor support section of the
Escambia County RFP likewise left considerable
to the Imagination in terms of specificity
and clarity. The RFP called for "vendors...
to supply both tested hardware and software"
but failed to describe what tests were re-
quired. This section also contained such
vagaries as: "the vendor is requested to

,

furnish maintenance within four hours of

being called on an 8-hour day basis..." and
"The vendor would be required to train the
county's personnel..."

2.3 Section IV—System Requirements

Section IV was potentially an important
part of the RFP and yet this section con-

tained specifications which were contradictory
with the general conditions specified in

Section I. Moreover Section IV contained
statements such as "only equipment currently
in production shall be proposed" which left

the door open for a variety of vendor inter-
pretations .

Within one subsection of Section IV was
an attempt to specify the operating software
for the system to be procured. The RFP speci-

192

fied a "disk-operating system." The meaning
of this requirement was never clarified.
Additionally, programming languages and util-
ity software were treated with equally vague
and non-specific language. For example the
RFP stated:

The vendor shall provide
interpreters and/or compilers
considered to be the prime
programming language for the

equipment offered. These
programming languages shall
be the latest and most up-
to-date versions available.
Also, sort and utility routines
to support the system shall be
supplied by the vendor.

2.4 Section V—Software Requirements

Applications software specifications
were a consistent and persistent problem
with the Escambia County RFP. Application
software was mentioned in three sections of

the RFP and these references were not con-

sistent in terms of identifying the required
application software. Table 2 illustrates
these inconsistencies. It is interesting
to note that even though "Voter Registra-
tion" software was mentioned in the Soft-
ware Requirements section of the RFP, a

statement of requirements for this software
package was not included in the RFP. The

property tax system was the only applica-
tions software item mentioned in all three
applications software references.

Table 2. Application Software References in

the Escambia County Alabama RFP

Application Software RFP Paragraph References
Title 1-10* IV-1** V***

Financial Management
Information System yes no yes

Property Tax Billing
& Collection System yes yes yes

Garbage Collection
Service Billing &

Collection System yes yes no

Voter Registration no yes yes

Automobile Liscense
Records no yes no

*Section title—Delivery and Installation
**Section title—System Summary
***Section title—Software Requirements

3.0 Vendor Responses

As a result of RFP specifications which
were often contradictory and much too general,
the task of evaluating the actual requirements
of Escambia County was subject to a variety
of interpretations. This vagueness provided
vendors an opportunity to interpret the RFP
according to their own equipment and soft-
ware availability. In addition, vendor pro-
posals could legitamately contain vagaries

which seemingly satisfied the purchaser's
needs. A summary of the vendor's responses
is provided in table 3.

4. Proposed Remedies

The incompleteness, vagueness, and
inconsistency of the Escambia County RFP
precipitated the delivery of proposals that
were incomplete and impossible to compare
in terras of system costs. It was difficult
to make a cost comparison because each of the
vendors chose to interpret at least one of the
"may include" clauses in the RFP to mean
"not required", therefore, incongruous sys-
tems were proposed. As a result the Escambia
County Commission was strongly urged to with-
draw, rework, and resubmit its RFP.

4.1 RFP Outline for Small Organizations

An RFP becomes the basis for dealings
between the organization acquiring a computer
system and computer system vendors. Simply
stated an RFP discloses to potential vendors
thewho, what, where, when and how of a pro-
curement action. Thus an RFP can be divided
into as few as five major sections including:
(1) procuring organization, (2) contract terms
and conditions, (3) delivery schedule, (4)
system specifications and, (5) operating
environment

.

4.1.1 Procuring Organization

This section of an RFP should be used
to provide vendors with information con-
cerning the business name and address of the
organization issuing the RFP. The organiza-
tion's agent (s), contracting officer, pro-
curement manager and other responsible indi-
viduals and their responsibilities should be
listed. It may be desirable to include a

brief description of the mission of the organi-
zation and its history.

4.1.2 Contract terms and conditions

This section of the RFP delineates all
procurement and contract administration pro-
cedures. Potential vendors must be told when
proposals are due, the form of proposal sub-

193

RFP Para.

Table 3. Summary of Vendor Responses

Vendor I Vendor II Vendor III

I-l

1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-9

I- 10 (a)

(b)

(c)

(d)

(e)

I-ll

1-12

Concurrance assumed

Concurrance assumed

Concurrance assumed

Concurrance assumed

Questionable concur-
rence

Concurrance assumed

Concurrance assumed

Concurrance assumed

Qualified concurrance

Concurrance assumed

Exception: 120 days
after award (DAA)

Concurrance assumed

Concurrance asstuned

Concurrance assumed

Concurrance assumed

Concur: No cancellation
penalty at end of years
1 and 2 (unknown in third
year) ; 50% lease payment
credited to purchase, soft-

ware not included in
lease agreement

Concur

Concur

Concur

Concur

Concur

Concur

Exception: Escambia
Co. to incur all "liv-
ing/traveling cost"
associated with a

demonstration

Concur: includes Unknown
copies of warranties
and performance
guarantee

Qualified concurrance Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Concurrance assumed

Unknown

Concur

Exception: 240-360
DAA

Concurrance unknown,
but assumed

Unknown

Exception: implemen- Unknown
tation by Oct. 1, 1981

Exception: implemen- Unknown
ted by Oct. 1, 1981

Concur

Concur

Concur: Cancellation
penalty-the lesser of

20% of remaining con-
tract value or 4

times the montly
lease charge. No
penalty charged if

converted to purchase.
Maximum price increase
under contract 5%

per year

Unknown

Unknown

Exception: does not
offer a lease with
option to purchase
(LWOP) plan-offers
"Government Instal-
lment Sales Plan"
that calls for 10%
down and the remain-
der financed over
36 or 60 months.
Requires Escambia
County to sign a

"Non-Funding Clause"
which disallows
termination of the

194

RFP Para.

Summary of Vendor Responses (cont.)

Vendor I Vendor II Vendor III

contract, except
when the county
does not have suffi-
cient funds in a

fiscal period to

pay the contract
amounts. The clause
precludes Escambia
County from securing
replacement services,
except from thisvender
curing the life of
the contract.

1-13 Concurs with perfor-
mance bond provision.
Exception to require-
ment of specifications
and vendor responses
becoming part of con-
tract .

Concurs with perfor-
mance bond provision.
Exception same as

Vendor I

Unknown

II Proven hardware and
operating software
supplied. An account
manager will be
assigned, the qualifi-
cations of this person
were not supplied.
The number and type of

"Customer Service
Representatives" assign-
ed to the county is

determined by the
manager. Telephone
support provided. No

charge for support ser-
vices. Concurrance as-
sumed with provision of

backup facilities.
Page 3 of Appendix A
indicates that
Covington Co. , is a

comparable installa-
tion. However, does

not indicate if back-
up can be obtained.
Preventive mainte-
nance performed
monthly. On call
maintenance with 4

hour response time

between 8 and 5

(assumed to be 8 a.m.

to- 5 p.m.). Whether
or not this applies
7 days per week is

unknown. Parts depots
in Montgomery and

Concur on tested
hard-ware and soft-
ware. A Marketing
Representative and
a Systems Engineer
will be assigned
as Project Man-
ager (s) . Some
categories of System
Engineer support
offered at no
charge, other types
of service offered
at the rate of $68.00
per hour. On call
maintenance service
available on a 24

hour per day, 7 day
per work basis for
major system compo-
nents and 7 a.m. to

6 p.m. Monday
through Friday
for minor systems
components. No
added charge for
leased systems,
except for the
minor system
components servi-
ced outside the

afore mentioned
limits which will
be billed at a

fee to be deter-
mined. No re-
sponse time

Proven hardware and
operating software
will be supplied,
the quality of
application soft-
ware is unknown

.

Does not address
project manager or

systems analyst sup-
port. No preventive
maintenance offered.
"Same day" response
time offered, but
no cost stated.

195

Summary of Vendor Responses (cont.)

RFP Para. Vendor I Vendor II Vendor III

II

(cont.

)

III

IV-

1

IV-

3

IV- 4

V-A 1.

V-A 2.

V-A 3.

V-B

Mobile. Concurs with
training of country
personnel

.

Concurrance assumed

Concurrance assumed

Master Control Program
COBOL
RPL

General Ledger and
Budgetary Accounting

Payroll

Same as V-A 1.

Property Tax System

guarantee is offered.
Concurs with training
needs

.

Concurs

Concurs

System Support
Program RPGII
compiler

No promised delivery
schedule

Financial Management
Information System

Same as above

Same as above

Property (Real and
Personal) Tax
Billing and Collection
System

Unknown

Concurrance assumed
by Virtue of a

proposal being
submitted.

Interactive Multi-
programming Opera-
ting System
COBOL Compiler

Unknown

Financial Management
Information System

Same as above

Same as above

Tax Collection
System

mission, the procedure for contract award,

the procedure for conducting face-to-face
negotiations, the penalties to be imposed
if the vendor fails to deliver any or all
of the items specified in the RFP, the

procedure to be followed for terminating
a contract, and the procedure for resolving
disputes arising from the contract. In

summary the contract terms and conditions
section of an RFP presents all of the legal
understandings among the parties.

4.1.3 Delivery schedule

The delivery schedule should contain a

list of all of the items to be delivered
under the contract—not only hardware and

software", but also training and manuals,
etc. ; and the date by which the items must

be delivered. It is customary to express
delivery dates in terms of days-after-con-
tract award (DAA)

.

4.1.4 System specifications

This section informs potential vendors
of the procuring organization needs in terms

of a complete system. As a complete system
specification, this section of an RFP is

divided into five subsections: (1) hard- >

ware specifications, (2) software specifi-
cations, (3) system performance specifica-
tions, (4) maintenance requirements, and

(5) training requirements.

Hardware specifications should be
stated in functional terms. In other words,
the procuring organization should not place
itself in the position of specifying system
architecture to vendors. Included in hard-
ware specifications are the desired charac-
teristics of terminals, printers, secondary
storage devices, etc. Since it is unlikely
that a live test demonstration (LTD) will
be conducted as part of the pre-award pro-
posal evaluation process, it is particularly
important to be specific concerning the
type and quantity of secondary storage.

Software specifications fall into two
categories: system software and applica-
tions software. The system software to be
delivered includes: an operating system,

system utilities, text editor(s), programming

196

language interpreters and compilers, and pro-
gramming support utilities (e.g. link/editor).
For small systems, the description of these
items should be general and functional in

nature.

The major emphasis in developing the
system specifications section of the RFP
should be devoted to providing vendors with
detailed descriptions of the applications
software that is to be delivered. This
description should include as much detail
as possible concerning the purpose of the
software, the quantity and description of

input data, the quantity, frequency, and
description of all reports to be generated
by the software system.

The majority of procurements of large
scale computer systems include provisions
for an LTD. An LTD is used to determine
if the data processing capacity of a

proposed system is sufficient to meet the
intermediate term (five to eight years)
needs of the procuring organization. How-
ever, this is generally not feasible for
small system acquisitions. The expense of

preparing and conducting an LTD makes it

impractical for small system procurements.
The procuring organization may achieve some

protection from insufficient capacity by
requiring a "proof of capacity period" after
delivery during which system capacity can
be tested.

Maintenance and vendor support are
perhaps the two most critical elements to

be measured in the procurement of small
computer systems. Since most small organi-
zations do not have personnel with the tech-
nical background to repair either the soft-
ware or hardware, the procuring organization
must rely upon the vendor to provide these
critical services. Therefore, it is impor-
tant to precisely state requirements for

maintenance of hardware and software. On-
site maintenance, common for large instal-
lations, is impractical for small systems,
therefore, the user of small systems must
decide between on-call and per-call main-
tenance services. A good approach to this

problem is to specify the temporal require-
ments for vendor response to service calls

and then request that the vendor provide the

organization with descriptions of their
offerings in these areas.

Vendor training of the procuring organi-
zation's personnel must be specified in the
RFP. The organization must decide the
scope of training required and the location
of training. The most frequently followed
scenario is to identify the training re-

quired and have vendors provide a list of
dates and locations for the desired train-
ing.

4.1.4 Operating Environment

This section discloses to vendors the
characteristics of the site where the sys-
tem will be installed. It shouJ.d contain
detailed drawings of the site with dimen-
sions that will indicate to vendors such
important considerations as the length of
cabel runs. Other important information
includes air conditioning and electrical
system capacity.

References

[l] Computers: A burst of critical feed-
back. Business Week , February 2, 1981,
pp. 68-71.

[2] Laberis, B,, Judge OK's $2.3 million
award to NCR user, Computerworld

,

May 25, 1981, p. 11.

[3] Davis, L.
,
Burroughs admits to 160 suits,

MIS Week , Vol. 2, No. 29, July 22, 1981,
pp. 1+.

197

COST/PERFORMANCE COMPARISONS FOR STRUCTURAL ANALYSIS
SOFTWARE ON MINI- AND MAINFRAME COMPUTERS

Anneliese K. von Mayrhauser
Raphael T. Haftka

Illinois Institute of Technology
Department of Computer Science

Chicago, IL 60616

Due to an ever-increasing selection of machines and widely differ-
ent charging algorithms, the question often arises "on which machine
does a program run most efficiently and/or cheaply". The program's
behavior, i.e. its resource demands on the machine under consider-
ation and their impacts on charges to be explored, as well as

accuracy and correctness of the program's results and reliability of
the computer service. Human factors influence decisions as well.
We will discuss the selection of computer services from a user's point
of view with an emphasis on structural analysis software. However, the
data collection and evaluation procedure which analyses cost and
performance relevant factors and their relationship with each other
can also be applied to other software. The decision making process
uses a set of automated tools which we developed.

Key words: Performance comparison; program behavior;
structural analysis.

1. Introduction

A number of studies have described
approaches for machine selection from a com-

uter center management perspective

([1]-C4],C7]) . Other work has taken the

user point of view, but has only examined
measurable technical factors such as re-

ponse time and transmission rates ([8], [9]).
In assessing the cost-effectiveness of
computers or computer services for a partic-
ular application task, these methods turn
out to be less than useful, because they do

not deal with human factors adequately and
they leave little room to compare different
software packages which could be used to
perform the application tasks with respect
to their quality on the various machines
under study.

Morgan and Campbell ([5]) suggest to

construct an executable model of the set of

programs to be run on machines under con-
sideration because they are more flexible
and avoid conversion problems. Since a user
is also interested in the correctness of re-

sults of those programs on all machines,
executable models of them will not do.

Bell ([6]) reports that experimental com-

parisons are likely to be either very crude
or very expensive. One of the biggest prob-

lems is that performance indices, resource
consumption and therefore charges can vary
for the same job, due to differing workload
situations which the user is unable to con-
trol. This variability factor should be

assessed and taken into account when select-
ing a computer service installation. Usually
a more stable, predictable job cost is to be

preferred- but this depends on the charging
algorithm employed as well as on the machine
characteristics. Because of these limitations
as well as a limited budget for the study,
accurate performance studies for some

199

problems were augmented by more informal
approaches, such as a general experience with
systems, studying installation statistics,
or interviewing users, and limited model
building for some programs.

One question which has been interesting
the scientific computing community in the
last few years is that of the cost-effect-
iveness and viability of minicomputers
versus main frames. Minicomputers promise
cheaper, more widely available computing
facilities, but they pose many problems,
particularly to those with large calculations
in mind. The smaller main memory means that
users have to make more use of disk I/O.

Many minicomputers have a smaller word size
with a devastating effect on accuracy.
Storaasli and Foster (QO]) report 4-digit
accuracy on PRIME 400 for a medium-sized
problem as compared to 8-13 digit accuracy on

a CDC CYBER 173. Longer elapsed times leave
more room for machine hardware failures
during a run. Pearson et al . (CUIl) report
some theoretical calculations required
twenty-four hours or more, but the mean time
between failures was also approximately
twenty-four hours. Lack of adequate software
libraries, debugging facilities, document-
ation and operations staff often hampers
users of minicomputers. Some studies
([11] - [14]) show that based on machine
cost alone minicomputers may be two to four
times more cost-effective than main frames.

The users of structural analysis software
on minicomputers have conducted several
studies that point to the economic advantages
of using such machines (e.g., ClOD, [15]).
These are based on data gathered by running
structural analysis programs for a limited
set of problems and machines.

When assessing the cost-effectiveness
of services, the following steps should be

followed:

(a) Set up of evaluation experiment.
This involves designing a represent-
ative set of problems which are to be

solved by the computers. The software
packages and the computers/computer
services also need to be determined.
These are the input variables. Output
variables, e.g. the class of performance
indices and other relevant information
need to be determined as well. This will

influence the relevant data to be col-

lected during the measurement phase.

(b) benchmark and data collection and their
analysis.
The set of problems is actually run on

some of the machines and technical and
human performance factors are observed.

The raw performance data are processed
and transformed into more concise in-
formation which enables their interpret-
ation with respect to relevant perform-
ance indices.

(c) comparison, trade-off, evaluation
Finally the quality (or lack thereof)
of the various choices is assessed with
respect to all performance indices. This
may be done by interpreting actual
measurement data or by interpolation
and/or extrapolation of measured data,
or estimation of system performance
through the use of results for another
system.

As an example, let us take a user of
structural analysis software. If he wants to
assess the cost-effectiveness of a mini-
computer versus a mainframe, the previously
mentioned studies need to be extended in

several directions. First, to use a wider
mix of programs and more representative mix
of problems for the comparison. Second, to

include in the study several machines so

that the results do not reflect only the
charging algorithm at a particular installa-
tion. Last, to further assess the human fac-

tors involved in such comparison.

2. Experimental Design

Since the overwhelming majority of
structural analysts use finite element meth-
ods, the present study is limited to such
programs. By judicious choice of the type of
problems and the type of structural analyses
employed, one can obtain a reasonably relia-
ble comparison. The following are the
elements in such a comparison.

2.1 Most commonly used types
of analysis

(i) Linear static solution for displacement
and stresses

(ii) Linear eigenvalue analysis - calcu-
lation of buckling loads and vibration
modes

(iii) Nonlinear response due to large deform-
ations and material nonlinearities

2.2 Type of problem

(i) A simple cantilever beam
(ii) A plate with a hole
(iii) A stiffened cylinder

These problems are solved for the

different analysis types. Several models are

used for each problem, ranging from a very

200

crude model to a refined one, with varying
degrees of freedom ranging from a few dozen
for a crude model to more than a thousand for
the refined one.

2.3 Computer programs

Three computer programs are used; these
programs are:

1. SAP IV - A general purpose finite ele-
ment program developed at the University
of California at Berkeley is probably
the most widely used "free" (it costs
$200.) finite element code.

2. SPAR - A general purpose finite ele-
ment program developed by W.D. Whetstone
which serves as a prototype of a com-
mercially developed code.

3. TWODEL - A special purpose finite ele-
ment program developed by D. Malkus at
IIT for large deformation analysis of
two dimensional elasticity problems. It

is representative of in house codes.

2.4 Computers and Charging
algorithms

Our study on the cost-effectiveness of

minicomputers and mainframes from a user's
point of view uses the charging algorithms in

several installations as the measure of the

cost of running any of the selected problems.
In most cases the charging algorithms are
devised to recover the total cost of owning
and operating the system, and in some cases

to show profit.

Most of the runs were performed at the

computer center at the Illinois Institute
of Technology. The school operates its own

PRIME 400 minicomputer and buys computing
services on a UNIVAC 1100/81 from the United
Computing System Corporation. A few runs were
made also on the CDC CYBER 176 owned by a

large manufacturing firm, and on the UCS CDC

CYBER 176 and on the VAX 11/780 owned by the
IIT Research Institute. The performance on

these computers was used to predict costs on
a few additional systems. The following is a

brief description of the computer systems
that were used in this study, their charging
algorithms and the method used to predict
costs on them.

IIT - PRIME 400 - The PRIME 400 is a

medium size computer which is used at IIT to

support interactive computing. The present
configuration has 1.25 Megabytes of memory
and two disk drives. The system is very busy
from 9 AM Monday through Saturday with about
20 to 30 users. However, most of the users

are not CPU intensive and do not put a heavy
computing load on the system. As a result, the
CPU intensive structural analysis programs
often show very good response times even
during the day. In running on the PRIME 400
it was found that the response time and I/O

times are quite sensitive to the workload
while the CPU time is not. The amount of
workload depends on the number of users, but
more importantly on the kind of work they are
doing, i.e. whether they are doing simple
editing tasks or compiling and running CPU
intensive jobs with considerable working set
size or core requirements. To account for the
variability, runs were performed for light,
medium,and heavy load periods on the PRIME.
The results were averaged to indicate an

expected result, as well as to give an idea
of the possible deviation from it. It is

important to realize that a considerable
spread in the consumption of a particular re-
ource need not entail the same difference in

cost. Whether it does or not depends on how
sensitive the corresponding charging algo-
rithm is with respect to that response. The
charging algorithm for the system is given in

Table 1 (considerable discounts are available
at non-business hours).

NASA - Langley Research Center PRIME 400-

The NASA Langley Computer Center operates
several minicomputers including a PRIME 400

computer. The charging algorithm (see Table 1)

was devised to recover the capital and oper-

ating costs. Although the NASA PRIME 400
supports a small number of users, they run

more CPU intensive jobs than the IIT users

resulting in a comparable system load. There-
fore it was assumed that program performance
is similar on the IIT and NASA systems.

Experience confirmed this. The cost of run-

ning a job on the NASA PRIME 400 was cal-

culated based on this assumption. The two

PRIME computer services charge for an

unstable resource such as wall time (one may

also call it connect time, since these
services are interactive); this was not un-

common among the charging algorithms for

computer services which we encountered. The

charge serves a regulatory function, because

it is a deterrent when the system is crowd-
ed and any additional work would slow it

down further. For long jobs it also encour-
ages the use of batch runs when they are of-

fered as an alternative.

NASA - Langley Research Center Cyber 173

The NASA Langley Research Center operates
several CDC main frames including two CYBER

173 computers which are used to support inter-

active computation. The charging algorithm is

devised to recover capital and operating ex-

penses.

201

Haftka has an extensive experience using
the SPAR program on both the I IT and NASA
SYSTEMS. Based on this experience the follow-
ing assumptions were used to predict cost on
the NASA Cyber 173.

1. The CPU time on the Cyber is 1.5 times
that of the CPU time on the UNIVAC
1100/81.

•2. The I/O charges are calculated based on
the number of reads and writes from the
SPAR data base available in the SPAR
output. It was assumed that these num-
bers are similar for both systems, and
that the charge per disk access is 1.1
times the minimum charge per access.
This is based on the feature of the
charging algorithm which is relatively
insensitive to the number of words in

each read or write operation.

3. The amount of core required is assumed
to vary from 70K octal for the smallest
number of nodes to 120K for the largest
number of nodes.

4. Based on the above considerations the
cost of running SPAR on the NASA Cyber
is:

Cost = (1 + 0.048A) {0.0136T, + O.OO3ni0)

where

T^ = UNIVAC 1108/81 CPU time (sec)

ni0 = combined number of disk reads and

writes reported by SPAR

A = core storage (in units of lOK octal

words)

Large Manufacturing Company CDC
Cyber 176 - A few runs of SPAR were made on a

Cyber 176 which is owned by a large manu-
facturing company. The charging algorithm is

given in Table 1. It appears to be fairly
high on CPU and low on I/O and core storage
charges. In predicting costs on this machine
it was assumed that CPU times can be predicted
from the UNIVAC 1100/81 results based on pub-
lished data ([16]) rating the UNIVAC 1100/81
at 1800 KOPS and the Cyber 176 at 9300 KOPS.

It was assumed that the ratio of I/O time to

CPU time is the same on both machines. Be-

cause the I/O cost on the Cyber 176 is low,

even a large error in this assumption is not

expected to change the cost much.

Concordia College Computer Network (CCCN)
CCCN provides administrative, instructional
and research computing services to a large
number of educational institutions. The serv-
ice includes a large software development
staff and the charges are computed to recov-
er costs of operating the center. Interactive
and batch services are provided by a UNIVAC
90/80 mainframe installed in December 1980.
The UNIVAC 90/80 is roughly equivalent to an
IBM 370/158 in raw processing power.

The prediction of costs of running on
the CCCN UNIVAC 90/80 were based on the
charging algorithm given in Table 1 with the
following assumptions:

1. CPU times are 2.25 longer than on the
UNIVAC 1100/81. This is based on pub-
lished data ([16]) rating the UNIVAC
1100/81 at 1800 KOPS and the UNIVAC
80/90 at 800 KOPS.

2. Core requirements were estimated at
200K bytes for the small problems and at
300K bytes for the large problems.

I IT Research Institute VAX 11/780 -

The I IT Research Institute (IITRI) operates
a DEC VAX 11/780 with 3 Megabytes of core
memory and 650 Megabyte disk space. It does
not have a floating point processor. As it is

not heavily loaded, time is available to out-
side users. The charges are given in Table 1.

2.5 Performance indices

As part of the design, performance vaV*-

iables must be chosen. The "utility" of a

service to a user is a function of those
performance factors which affect the value
and usefulness to the user and thus necessar-
ily subjective and dependent on particular
needs in a given situation. For this study we
chose the following performance variables as

being most important in comparing the com-
puter service alternative.

1. correctness of results

2. turnaround time

3. system availability or "uptime"

4. support - technical help, documentation

These factors are fairly self explan-
atory and were selected because they are
obviously important. Other situations and

users may choose a different set of factors
which reflects their goals better. For a com-

prehensive list of performance variables see

202

[17] and [18].

3. Benchmark and data collection
analysis

3.1 Data collection and analysis

Measurement data collected during the
benchmark are used for job cost prediction
and performance comparison of the two ma-

chines. The following statistics are collect-
ed for each run:

-CPU time (measured in seconds)
-I/O time (measured in seconds)
-memory used (measured in K bytes)
-turnaround time (measured in seconds)
-number of disk I/O operations
-job cost (measured in $)

A comprehensive program performance
measurement system was developed for the data
collection and analysis. This system will

automatically instrument the FORTRAN source
programs by inserting CALL statements at the

entry and exit points of each module in the

system. The CALL statements invoke a routine
called REFSTR which will collect performance
data. Example:

SUBROUTINE ELT3A4 (A,B)

CALL REFSTR ('ELT3A4', 'ENTRY')

. body of subroutine

IF (ISTOP.EQ.O) GOTO 99999

99999 'call REFSTR ('ELT3A4', 'EXIT')

RETURN
END

The REFSTR data collection routine logs
entries and exits from modules in the system,

captures the CPU and I/O times at each of

these points, and writes this program trace
information out to a permanent file in very
large blocks. The program trace data from
REFSTR looks like this:

ROUTINE CPU I/O

$MAIN$ ENTRY 11 1694 9 1964

FACMGT ENTRY 11 1704 9 1964
FACMGT EXIT 13 0202 9 1964

LODCMN ENTRY 13 0246 9 1992

INPUTJ ENTRY 13 0522 9 2172

ELTYPE ENTRY 13 4028 9 4352
PLANE ENTRY 13 4034 9 4352

ELT3A4 ENTRY 13 4098 9 4454
PLNAX ENTRY 13 4104 9 4454

Calibration studies have been performed on

REFSTR to determine the CPU and I /a overhead

which is generated by the data collection it-

self. This instrumentation overhead is removed
during analysis by the ANALYZ program. ANALYZ
processes the raw data from REFSTR, removes
instrumentation overhead, and prints summary
performance results (Figure 1). ANALYZ also
produces the following dynamic call matrix to

be used for further analysis or program re-

structuring for virtual memory systems
(Figure 2). A routine called LSP was developed
to fit polynomial curves to the resource con-

sumption and cost data using a least squares
technique. LSP also can plot the data points
and fitted curves.

The benchmark performance data is col-

lected at the job level for all jobs, at the
program level for all SPAR jobs, and at the
subroutine level for a few selected SAPIV
jobs. Since SPAR is a modular sequence of

rather independent tasks, it was not necessary
to collect measurement data at the subroutine
level. SAPIV, on the other hand, is not se-

quentially structured, but is a conglomerate
of subroutines with frequent interaction.
This necessitates more detailed performance
data collection from which SAPIV s resource
consumption models are derived (see sample
output from ANALYZ for example of detailed
analysis). The resource consumption statis-
tics are collected differently on each ma-

chine. In each case instrumentation overhead
is measured and removed from the data, if it

is significant. Job cost computations are
based on resource consumption and are not
directly taken from the job accounting out-
put.

3.2 Benchmarks and their results

3.2.1 Beam problem

A cantilever beam was modeled by plane
beam elements (E24 elements in SPAR) and

three vibration modes and frequencies were
calculated using the SPAR program. The num-

ber of nodes was varied from 5 to 600 degrees
of freedom per node. This simple problem ex-

posed a bug in the PRIME version of SPAR.

The program could not calculate more than two

vibration modes and frequencies. On the

UNI VAC there was no problem. Performance
data and cost (prime time rate) for the beam
problems are given in Tables 2 (UNIVAC 1100/

81) and 3 (PRIME 400). The total cost proved

to be very close to a linear function of the

number of nodes for both computers. It was

therefore possible to predict accurately the

cost of 600 node runs by extrapolating the

cost of the 5-280 node runs, It is therefore

assumed that the 5-600 node results can be

used safely to extrapolate cost up to 1200

nodes. Figure 3 shows the actual cost points

203

and the predicted cost curves for both com-
puters. The triangles represent cost points
for the UNIVAC 1100/81, the circles averages
for different load situations on the PRIME
400, It can be seen that although the results
may have been sensitive for certain resources,
they are not very sensitive in their cost, and
cost predictions for other problem sizes can
be expected to lie within an analogous range.

The beam runs are about twice as expens-
ive to run on the UCS UNIVAC 1100/81 than on
the I IT PRIME 400. The response time or turn-
around time is favorable on the PRIME for the
small problems. The UNIVAC is quite faster for
the larger problems.

The performance of the other computers
for the beam problem was actually measured or
estimated and the results are summarized in

Table 4. The costs of running the problen on

the NASA PRIME-400 are comparable to those at
IIT. The UCS UNIVAC 1100/81 is the most ex-
pensive mainframe. The low cost on the Cyber
176 is a result of low I/O charges on that
machine compared to the NASA Cyber 173 ($0.84
of $2.25 versus $8.00 of $ 8.60). When evalu-
ating the total cost results in Table 4 the
main difference is not between minicomputers
and mainframes but between service bureau
computers (the two UNIVAC machines) and the
user owned machines and their lower charges.

3.2.2 Plate problem

A rectangular plate with a hole was mod-
eled with quadrilateral plane stress finite
elements (Figure 4 insert). It is subjected
to uniform loads. Stresses are calculated with
the number of nodes varying between 35 and 594.

The problem was run with the SAP IV and SPAR
programs. Tables 5 and 6 show results for
various machines.

The turnaround time on the UNIVAC is

much better than that of the PRIME. Just as
for the beam problems, the measured data were
used to predict costs of running problems up-

to 1200 nodes. The cost data and the predic-
tive curve are given in Figures 4 (SPAR) and
5 (SAPIV). The cost of the plate problems in-

creases much more rapidly on the PRIME than on

the UNIVAC. Table 7 shows a cost comparison
for all computers based on the data in Table 5

and 6. For SAPIV, the user owned CDC has the
lowest charges whereas the two UNIVACs and

the minicomputer IIT PRIME 400 are most ex-

pensive. For SPAR, the 1200 node figures show
a clear disadvantage for the IIT PRIME 400.

The plate problem was now analyzed for
large deformations using the TWODEL program.
Performance and cost variables for the UCS

UNIVAC 1100/81 and the PRIME 400 are given
in Tables 8 and 9. The problem is much cheaper
to run on the PRIME 400 than on the UNIVAC
1100/81. The 289 node problem was the largest
that could be run on the UNIVAC 1100/81 be-
cause of core limitations. The PRIME 400
with its virtual memory could handle larger
problems. The excellent performance of the
program on the PRIME 400 is attributed to
two factors. First, the large core require-
ments on the UNIVAC 1100/81 are very expens-
ive (fifty percent of the cost of the 289
run was core cost). Second, the program was
written by the developer on both machines.
As a result it does not suffer from the dete-
rioration in performance that afflicts pro-
grams that have been converted to different
machines by users who are not as knowledge-
able about the program as its developer.
This applies to the SPAR and SAP IV programs.
A comparison of the CPU times on the PRIME
400 and the UNIVAC 1100/81 for the plate
problem shows the following ratios. The PRIME
400 CPU times are 7-15 times longer for
SAP IV, 7-13 times longer for SPAR, but only
5-8 times longer for TWODEL. The comparison
with other computers is given in Table 10.

The cost on the two UNIVAC computers is very
high and the cost on the CDC computer is very
low compared to the PRIME 400.

3.2.3 Stiffened cylinder problem

A stiffened cylindrical shell, see
figure 6, modeled by plate and beam elements.
The lowest four vibration frequencies and the
buckling load of the cylinder were calculated
using the SPAR program. Three models were used

with 5x5, 10x10, 15x15 grids of elements o,r

36, 121 and 256 nodes, respectively.

The cylinder problem revealed two bugs

in the SPAR program on the PRIME. The stress
analysis which is preliminary to the buckling
calculation was not correct when combined
membrane-bending elements were employed. As

a result it was necessary to use twice as

many plate elements; pure membrane elements
and pure bending elements. Unfortunately, the

mass matrix was not calculated properly with
this replacement. As a result we had to per-

form the calculations in two separate runs,

one using double elements for buckling
analysis and one using combined elements for

the vibration analysis. This did not increase
the cost of the run substantially but was an

inconvenience for the analyst.

The results of CPU and I/O times, re-

ponse time and cost are given in Table 11

for the UCS UNIVAC 1100/81 and in Table 12

for the IIT PRIME 400. Comparison with other

computers is given in Table 13 for the

204

largest problem of 256 nodes. It can be seen
that for this problem the performance of the
PRIME 400 is dismal and that of the CDC very
good. Next the same problem was run with the
SAP IV program and produced quite different
results. The PRIME 400 performed excellently
whereas the UNIVAC 1100/81 and the UCS Cyber
176 had convergence problems. A change of
parameters solved them for the 36 node prob-
lem, but difficulties remained for larger
ones. To resolve these was beyond the know-
ledge of an average user.

The benchmark results showed that cor-
rectness of the results cannot automatically
be assumed. One problem area was improper
conversion for those packages which were de-
veloped on one machine and subsequently
transported to another. We found several
problem types that could not be run correctly
on the PRIME due to those problems (30 per-
cent of the beam runs and 50 percent of the
plate runs were completely correct when run
on the PRIME). Another contributing factor
lies in the fact that certain problems require
high precision floating point values to be
stored and manipulated and the minicomputer's
smaller word size and floating point operand
size can produce incorrect or poor results.
On the other hand, some of the mainframes
exhibited correctness and feasibility problems
as well. The most important thing a user can
do to protect himself is to check results
carefully and validate them, if possible.

3.3 Other performance factors

Availability was considered important.
Table 14 shows percentage of uptime, mean
time between failures (MBTF) and mean time to
repair (MTTR) for UCS UNIVAC 1100/81 and PRIME
400. The UNIVAC data is taken from published
figures (UCS "Data Link") for January through
December 1980, PRIME 400 data could only be

obtained for the months of October through
December 1980. The PRIME system is down fewer
times than the UNIVAC, but is down for extend-
ed periods of time. The overall uptime of the
UNIVAC is somewhat better than the PRIME.

Support is a very important performance
factor for many users. Support includes
availability and quality of technical help
and documentation. We found both the UNIVAC
and PRIME centers to be somewhat deficient in

support. We found the UNIVAC documentation to
be fairly good, the access to documentation
to be good, but the access to technical help
to be poor (due to contract between service
bureau and university). We found the PRIME

documentation to be weak and unavailable for

reference on site. Purchase is always requir-
ed. Only standard PRIME manuals are available.

Information about IIT PRIME 400 particular-
ities is communicated by "word of mouth".
Although the technical people are fairly
competent, they are far overburdened and un-

able to provide a consistent level of support.

The results for all performance factors
can be used with a weighted scoring method
to determine which of the machines has the
highest utility and to perform a utility/cost
trade off analysis. For a subset of the
results in this paper such an analysis was
performed in [17], the same method could be
used for the results presented here.

4 Concluding remarks

The study of the performance of struc-
tural analysis programs on mainframe and
minicomputers has not shown a clear cut
advantage of either type of computer. Both
mainframe and minicomputer had difficulties,
but with different problems. For mini-
computers some of these problems were due to

portability problems (SAP IV, SPAR) and im-

perfect conversion from mainframe software
to a minicomputer. As the problem sizes
increased, the minicomputers were less effi-
cient for those programs which were not
developed for them; but some of the main-
frames could not run those problems adequate-
ly, either. The minicomputer clearly out-

performed the main frame for the one program
which was developed on the minicomputer
(TWODEL).

The cost comparison does not show any
drastic difference between main frames and

minicomputers except for the user owned

CDC CYBER. This probably reflects a competi-
tive marketplace where the decrease in the

cost of raw computation has stimulated an

increase in programming and computer services
offered. There is no longer a main frame
monopoly on (structural analysis) software
and services have to be priced to be com-

petitive with minicomputers. The user owned
machines which just charge to cover their
costs naturally are cheaper than those which
need to show profit and may have marketing
and other related expenses. This reduces the

problem to one of microeconomics and price
theory ([19]).

The study reported in this paper has

been supported by the office of Naval Re-

search under contract No. N00014-80-C-0364.

The authors wish to acknowledge the help of

Mr. Dennis Witte in obtaining and process-

ing the performance data.

205

References

[I] Randal, J.M., and Badger, G.F., Using
Quantitative Criteria for Computer
Selection , Computing Services Office,
University of Illinois at Urbana-
Champaign, Urbana, IL, 1976.

[2] Sharpe, W.F., The Economics of
Computers , Columbia University Press,
New York, 1969.

[3] Strauss, J.C., A Benchmark Study, AFIPS
Conference Proceedings 41 , FJCC, 1972,

pp. 1225-1233.

[411 Kernighan, B.W,, Plauger, P. J., and
Plauger, D.J., On Comparing Apples and

Oranges, or why my Machine is better than

your Machine, Performance Evaluation
Review, Vol. 1, No. 3, 1972, pp. 16-20.

[5] Morgan, D.E. and Campbell, J. A., An

Answer to a User's Plea?, Proc. 1st
ACM-SIGME Symp. on Measurement and
Evaluation , February 1973, pp. 112-120.

[6] Bell, T.E., Computer Performance Varia-
bility, AFIPS Conf. Proc. 43, NCC, 1974,

pp. 761-766.

[711 Timmreck, E.M., Computer Selection
Methodology, Computing Surveys, Vol. 5,

No. 4, 1973, pp. 199-222.

[8] Mamrak, S.A. and Amer, P.D., Comparing
Interactive Computer Services -

Theoretical, Technical, and Economic
Feasibility, Proc. NCC , 1979, pp. 781-

787.

[9] Mamrak, S.A. and DeRuyter, P. A.,
Statistical Methods for the Comparison
of Computer Services, Computer , Vol. 10,

No. 11, 1977, pp. 32-39.

[10] Storaasli, 0.0. and Foster, E.P.,

Cost-Effecti ve Use of Minicomputers to

Solve Structural Problems, AIAA Paper
No. 78-484, 1978.

[II] Pearson, P.K., Luchese, R.R.,

Miller, W.H., and Schaefer, H.F.,

Theoretical Chemistry Via Minicomputer,
Minicomputers and Large Scale Computa-
tions , American Chemical Society, 1977,

pp. 171-190.

[12] Norbeck, J.M. and Certain, P.R.,

Large Scale Computation on a Virtual
Memory Minicomputer, Minicomputers and

Large Scale Computations , American

Chemical Society, 1977, pp. 191-199.

[13] Wagner, A.F. Day, P., Van Buskirk, R.,
and Wahl , A.C., Computation in Quantum
Chemistry on a Multi -Experiment Control
and Data-Acquisition on a Sigma 5

Minicomputer, Minicomputers and Large
Scale Computations , American Chemical
Society, 1977, pp. 200-217.

[14] Freuler, R.J. and Petrie, S.L.,
An Effective Mix of Minicomputer Power
and Large Scale Computers for Complex
Fluid Mechanical Calculations,
Minicomputers and Large Scale Computa-
tions, American Chemical Society, 1977,

pp. 218-234.

[15] Conway, J.H., The Economics of
Structural Analysis on Supermini s,

Proc. 7th ASCE Conference on Electronic
Computation , 1979, pp. 373-385.

[16] Lias, E.J., Tracking the Elusive KOPS,

Datamation , November 1980, pp. 99-105.

[17] Von Mayrhauser, A.K. and Witte, D.E.,
Cost/Performance Comparisons for Pro-
grams on Different Machines, to be

presented at EC0MA.9 , October 6-9, 1981,
Copenhagen.

[18] Miller, W.G., Selection Criteria for

Computer System Adoption, Educational
Technology , Vol. 9, No. 10, 1969,

pp. 71-75.

[19] Cotton, I.W., Microeconomics and the
Market for Computer Services, Computing
Services , Vol. 7, No. 2, 1975,

pp. 95-111.

206

Table 1. Charging algorithms (dollars)

1. IIT PRIME 400

2. NASA Langley Research Center

PRIME 400

3. UCS UNIVAC 1100/81

4. Concordia College UNIVAC 90/80

5. Large Manufacturing Company CDC CYBER 176

6. NASA Langley Research Center -

CDC CYBER 173

7. UCS CDC CYBER 176

8. IIT Research Institute VAX 11/80

0.02 {1, + T„) + T,

T^ = CPU time (sec)

T^ = I/O time (sec)

Tj = wall time (hours)

SOTj + 15T2

T^ = CPU time (hours)

T, = wall time (hours)

0.18T^ + 0.0011A(T^ + T^)

Jr

T^ = CPU time (sec)

I/O time (sec)

A = (core/512) words

(0.156 + 0.0000248A)T

T = CPU time (sec)

A = core (kilobytes)

0.2T
1

0.0003A (T^ + T2) + .03 * T2

Tj = CPU time (sec)

T^ = I/O time (sec)

A = core (kilowords)

See section on "Computers and Charging
Algorithms," pages 2-4.

Confidential

0.05Tj + 5T2

T^ = CPU time (sec)

T2 = connect time (sec)

Table 2. Beam results on the UCS UNIVAC 1100/81
using SPAR

Number of
Nodes

5

25

60
90

125

280
450
600

1200 *

* predicted

CPU I/O Time Turnaround Time Cost
(sec) (sec) (min) (dollars)

5.06 15.77 3:21 1.83
5.74 16.12 2:50 2.07
7.07 18.17 6:04 2.66
8.30 19,79 2:41 3.16
10.29 22.81 4:26 4.07

16.70 32.59 7:17 6.90
22.52 41.73 3:16 9.53

30.73 59.68 7:45 13.80
60.76 72.12 8:55 30.89

207

Table 3. Beam results on the IIT PRIME 400 (averages)

liUlllUC 1 U 1 U 1 1 MIC T /D Timo
f C 1 1 e 1

V acL) Ti (tie ^ uo 1 1 ars)

C 1 d 7nit . / u 17 fiSX / . Do 1 •m n fi7U . 0/
1 7 4"^
i / . HO 1 'fni . UJ n 7"^

60 30.65 28.45 2:37 1.22
90 37.07 22.84 1:57 1.23
125 47.82 37.25 6:02 1.80
280 94.24 63.11 5:41 3.25
450 141.07 132.87 11:04 5.16
600 197.38 125.76 13:47 6.68
1200 * 422.92 262.02 26:36 14.14

* predicted

Table 4. Comparison of the 600 and 1200 node beam problems
on various computers (the estimated 1200 node results
are given in parentheses)

Computer CPU I/O Turnaround Time Total

(sec) (sec) (min) Cost (dollars)

IIT ^
197.38 125.76 13:47 6.68

PRIME 400 (422.92) (262.02) (26:36) (14.14)

NASA LRC * 197.38 125.76 13:47 5.08

PRIME 400 (422.92) (262.02) (26:36) (10.17)

UCS UNIVAC 30.73 59.68 7:45 13.80

1100/81 (60.76) (72.10) (8:55) (30.89)

NASA LRC 46.1 8.60
CYBER 173 (91.14) (20.78)

LMC 6.05 24.5 2.24

CYBER 176 (11.76) (35.4) (3.98)

Concordia 69.14 11.13

College (136.71) (22.34)

UNIVAC 90/80

* estimated
+ average

208

Table 5, Plate linear analysis with SPAR on various computers

Number of
Nodes

UNIVAC 1100/81

35

72

143
285

594
1200

IIT PRIME 400

CPU
(sec;

4.80
6.98
11.89
24.46
60.58
170.27

I/O

(sec)

14.25

15.55
18.36
25.27
44.78
102.31

Turnaround
(mi n: sec)

1:27
1:44
2:08
2.48
4:36
9:23

Cost
(do! lars]

1.69
2.46
4.22
8.69

21.94
62.89

35

72

143

285
594

1200

32.11
58.40

123.14
285.14
805.96
2500.40

19.18
29.91
44.96
123.65
679.25
1370.10

1:23
2:58
4:30
8:56

41:24
144:15

1.05
1.81

4.18
8.39

28.71
126.21

Table 6. Plate linear analysis with SAP IV on various computers

Number of CPU
Nodes (sec)

UNIVAC 1100/81
35 4.52
72 6.77

143 11.85
285 25.38
594 78.59
1200*

, 316.58
IIT PRIME 400

35 30.82
72 66.40
143 166.12
285 396.80
594 1186.52
1200* 3791.00
UCS CYBER 176

35 .54

72 1.00
143 1.69
285 4.10
594 11.96
1200* 32.96
IIT Research Institute VAX 11/780

35 10.36
72 20.94
143 59.62
285 182.43
594 568.33

+ **

I/O Turnaround Cost
(sec) (mi n: sec) (dollars)

1.11 1:13 0.90
1.93 1:51 1.56
3.54 2:12 2.97
8.19 3:08 7.15

26.94 10.08 23.61

122.14 18:54 98.67

25.65 7:55 1.26

41.15 11:00 2.33

47.15 21:27 4.62

82.61 25:32 10.01

216.10 54:08 28.95
685.74 112:12 108.60

1.88 0.96

3.08 1.92

4.48 3.36

10.82 7.20

38.21 21.60
99.18 70.81

0:25 0.52

0:30 1.05

3:30 2,98
5:28 9.12

12:41 28.42

* estimates
+ averages
** jobs were run in batch mode, no connect time charges

209

Table 7. Comparison of the cost of linear analysis of the 594 (1200) node
plate model on various computers (in dollars)

Computer SAP IV SPAR
System 594 1200* 594 1200*

I IT PRIME 400+ 28.95 108.65 28.71 126.21
NASA LRC PRIME 400* 23.38 59.64 17.06 56.90
UCS UNIVAC 1100/81 23.61 98.67 21.94 62.89
NASA LRC CYBER 173 ** 6.84 18.90
LMC CYBER 176* 4.23 11.39 2.85 7.82
Concordia College UNIVAC 90/80 28.98 116.42 22.28 69.57
UCS CYBER 176 21.60 70.81
I IT Research Institute VAX 11/780 28.42 **

+ average of several runs
* predicted results
** data insufficient for prediction

Table 8. Plate nonlinear analysis on the UCS UNIVAC 1100/81

Number of CPU Time I/O Time Core Storage Turnaround
Nodes (sec) (sec) (Kwords) Time (min)

35 19.97 0.35 22.9 32:47
72 54.15 0.66 28.4 38:01
143 156.91 1.29 42.5 55:10
289 549.69 1.78 76.0 137:21
600* 2030.59 3.59 175.7 650:43

Cost

4.61
13.13
42.68
189.33

1151.80

* estimates

Table 9. Plate nonlinear analysis on the I IT PRIME 400

Number of CPU I/O Time Response Cost
Nodes Time (sec) Time (min) (dollars)

35 156.01 2.74 7:08 3.29
72 379.95 3.81 10:09 7.84

143 978.05 19.47 29:59 20.45
289 2693.59 69.70 70:50 56.44
600* 8693.00 287.91 204:14 193.06

* estimates

Table 10. Comparison of the cost (in dollars) of nonlinear analysis of the
289 and 600 node plate models on various computers using the TWODEL program

Computer CPU Time (sec) Core^ Cost (dollars)

System 289 600* 289 600* 289 600*

IIT PRIME 400 2694. 8693. -- -- 56.44 193.06

NASA LRC PRIME 400* 2694. 8693. — — 40.13 123.50

UCS UNIVAC 1100/81 550. 2030.6 76.0 175.7 189.33 1177.66

LMC CDC CYBER 176* 58.8 217.1 42.2 97.6 12.52 49.80

Concordia College 1238. 4570.7 320. 740. 203.03 794.20

UNIVAC*
* estimates: + UCS UNIVAC 1100/81 and LMC CDC CYBER 176 core requirements are given in

K words. Concordia College UNIVAC core requirements are given in K bytes.

210

Table 11. Cylinder buckling and vibration analysis on the UCS UNIVAC 1100/81

Number of CPU Time I/O Time Turnaround Cost
Nodes (sec) (sec) Time (min) (dollars)

36 27.28 19.34 7:09 7.36
121 110.65 28.16 10:11 29.21
256 302.59 48.45 19:52 79.97

Table 12. Cylinder buckling and vibration analysis on the IIT PRIME 400

Number of CPU Time I/O Time Turnaround Cost
Nodes (sec) (sec) Time (min) (dollars)

36 579.93 343.28 64 19.53
121 3197.10 1184.54 156 90.23
256 10784.0 6589.98 774 360.38

Table 13. Comparison of the 256 cylinder problem on various computers

Computer CPU Time I/O Time Total Cost
(sec) (sec) (dollars)

IIT PRIME 400"^
^ 10784 6590 360.38

NASA LRC PRIME-400 10784 6590 283.37
UCS UNIVAC 1100/81 302.59 48.45 79,97

Concordia College 680.8 110.96

UNIVAC 90/80*

LMC CDC CYBER 176* 58.2 24.2 12.64

NASA LRC CYBER 173* 453.9 29.55

+ averages

* predicted results

Table 14. Uptime - downtime characteristics

UCS UNIVAC 1100/81 IIT PRIME 400

98.9 96.7

56.79 87.98

34.7 178.2

Uptime %

MBTF (hours)
MTTR (minutes)

211

MODULE CPU %CPU I/O %l/0 #CALLS #RETURNS
$MAIN$ 0.065 .08 .007 .04 1 1

FACMGT 1.849 2.38 .0 .0 11
ELAW 0.139 .18 .128 .48 546 546

ADDSTF 21.396 27.51 9.023 34.09 1 1

SESOL
STRSC

TOTAL

CPU
%CPU
I/O

%I/0
#CALLS
#RETURNS

31.583
.944

77.769

40.61
1.21

10.213
1.255

26.467

38.59
4.74

amount of CPU time spent in module
fraction of total CPU time spent in module
amount of I/O time spent in module
fraction of total I/O time spent in module
number of entries into module
number of exits from module

1

1092

1

1092

Figure 1. Summary performance results

TO: 1 2 3 4 5

FROM:

1 $MAIN$ 0 1 1 1 1

2 FACMGT 0 0 0 0 0

3 LODCMN 0 0 0 0 0

4 INPUTJ 0 0 0 0 0

5 ELTYPE 0 0 0 0 0

6 PLANE 0 0 0 0 0

7 ELT3A4 0 0 0 0 0

8 PLNAX 0 0 0 0 0

9 ELAW 0 0 0 0 0

10 POSINV 0 0 0 0 0

Figure

CALL MATRIX
6 7 8 9 10

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 .0 546 0

0 0 0 0 546

0 0 0 0 0

Dynamic call matrix

212

Dollars

610—

/ /

/

40-

28—

e—
1

1
1 1 1

'
1

1
1

1
1

e zee 4ee eee eee leee i2ee

Number of Nodes

Figure 5. Comparison of total cost for the plate problem using the SAP IV program

2\H

Figure 6. A typical cylinder model

215

Special Technologies and Applications

Track B

217

Focusing on Secondary Storage

219

SESSION OVERVIEW

FOCUSING ON SECONDARY STORAGE

H. Pat Artis

Morino Associates, Inc.

Vienna, VA 22180

During the past decade, secondary storage has been the fastest
growing resource for most installations. These devices now dominate the
physical planning process and they represent an ever more significant
portion of hardware budgets. The papers in this session address three
secondary storage management topics. They are:

o user experiences with an automated space
management system. These systems attempt to

reclaim space occupied by datasets that have
been unreferenced for long periods of time.

o guidelines for designing IBM I/O configurations
to insure system performance.

o an analysis of the architecture and performance
characteristics of the CDC 844-41 disk
subsystem.

Each of these papers provide a valuable perspective and the
session should be informative for those who attend

.

221

EXPERIENCES WITH DASD
,
TAPE, AND MSS

SPACE MANAGEMENT USING DMS
Patrick A. Drayton

Southwestern Bell Telephone Company

St. Loius, MO 63101

This paper was written to share our experiences in the space
management of DASD, Mass Storage and tape datasets in order to reduce DASD cost
and improve the performance of the I/O subsystem. Included is a description of

the situation which precipitated our turning to space management as a

solution. Also included are the standards and procedures we introduced and the

software products we utilized and wrote to service our needs. Finally the
results that were achieved and some unforeseen problems that arose are
documented

.

Key words: data set, migration, DASD, MSS, space management, performance, disk
management system.

1. System Configuration

The system under discussion was an IBM

3033AP with 16MK running under
MVS-SE2. It was configured with 73

3350-type DASD and 4 STC 8360 DASD.

In addition, it utilized 12 tape
drives, one 2305 drum and one 100
GIGABYTE Mass Storage System (MSS)

with four readers. The drum and
8360s, were dedicated to local page
data sets.

The system served as the corporate
test system and was used by 800
programmers from primarily 7 A.M.- 5

P.M. The average daily workload
consisted of 1700 batch jobs in 25
initiators, 65,000 TSO transactions
processed by an average of 70 on-line
users, plus a small test IMS system
with two message processing regions.

2. Problem Definition

The problems came to light in

October 1980 when the 3033 was
upgraded to an attached processer (AP)

but the user community did not
experience any measureable service
improvements. The CPU could not be
driven above 65% busy and batch
thruput was below our service
objective of 80% jobs turned around in

under two hours. TSO response time on
average was acceptable (2.2 seconds)
but intermitant responses of 2-5

minutes were not unusual.

Initial investigation identified the
problem as the MSS. Its four readers
were busy 90-100% of the time with an
average of six data sets awaiting
service, this caused data sets to

require over a minute from initial
request to accessability on the

staging packs. This resulted in jobs
being swapped out for an average of

4.3 minutes of a total average elapsed
time of 11.5 minutes. In other words
37% of the time a job was awaiting
data set servicing. On comparing long

wait swap times on MSS and non-MSS
systems it was estimated that 80% of

the long wait time was directly
attributable to the MSS related

223

functions. Further investigation
uncovered the fact that the operating
systems method of new data set
allocation caused severe degradation
to MSS performance. During MSS space
allocation no additional new or old
data sets could be allocated even if

they were already staged until after
the initial new space allocation
request was satisfied. MSS volumes
are considered mountable devices and
MVS allocation will stop all
like-device allocations until the

current allocation recovery is

resolved. With these problems in mind
we felt the improvement of MSS service
was the number one priority item to

improving overall service to the user
community

.

In the process of developing solutions
to improving MSS service, additional
problems were uncovered. One of these
was extensive use of the private pack
concept by application programming
groups. That is, each application was
given a number of dedicated DASD
volumes to use as they saw fit with no
guidance or policing. This was an
outgrowth of capacity planning which
required applications to justify their
DASD requirements. These requirements
were translated into DASD volumes and
distributed as dedicated packs. The

problem we found with this concept was
the application programmers were not
space managers and the packs contained
old data, over-allocated data sets,
and were badly fragmented.

Also the shared DASD pool was badly
fragmented, it contained many
out-of-date data sets and the current
data sets were badly over-allocated
and poorly blocked. This had resulted
in uncontrolled growth of DASD
requirements. When the user community
could not allocate adequate real DASD
they turned to MSS for their data
space needs. This further aggravated
the MSS busy condition by placing many
highly active partitioned, TSO data
sets and indexed files on MSS.

Two additional problems soon became
evident. There were no data set
naming standards in place. Data sets
were named at the whim of the user so
that the ownership could not be
ascertained. In addition no data set

placement guidelines had been issued.
The problem this presented to MSS was
previously described. In addition
this caused system and user data sets
to be spread throughout the real DASD
pool. Data sets were placed by the
user wherever space was available
without regard for DASD contention or
data set performance.

3. Corrective Action

Now that the problems had been
identified we set about to relieve
them. Our solutions are summarized as

follows

:

1. Disk Pack Reconfiguration Plan -

this plan grouped
functionally-related data sets
together, removed the private pack
concept, and configured packs
based on performance.

2. Data Set Naming Standard - in

order that ownership could be
established and to allow data
migration the data set name had to

be in a standard form and this
standard had to be automatically
enforceable.

3. Data Set Placement and Migration
Plan - this plan established where
data sets should be placed based
on their data set characteristics
and usage activity. In addition,

a

criteria for moving data sets
after their creation if their
usage activity changed was
required. Finally an automated
method of accomplishing the above
was essential to minimize manpower
requirements.

3.1. Disk Pack Reconfiguration Plan

As described earlier there existed a

need to configure data sets by usage
to allow better control and
performance of the DASD subsystem.
One of the first criteria implemented
was the termination of the private
pack concept. This was met with
resistance from the user community but
was overcome with upper management
backing plus the commitment that

future user data space requirements
would be met.

224

All DASD was then divided by function
as follows:

1. Scratch/work volumes - these nine
(9) volumes contained temporary
data sets which would be deleted at
job termination.

2. System data sets - all data sets
containing system-required modules
plus system-wide data sets such as
SMF, JES SPOOL, JES checkpoint, and
page/swap data sets were located on
these 13 volumes. Page and swap
data sets were on dedicated volumes.

3. Application libraries - each
application's object, load and
source libraries were contained on
these six (6) volumes. Because of
their low usage levels source

libraries were used to fill the

space remaining on local page
packs. We found this was an
excellent use of this space and did
not cause any paging service
degradation.

4. TSO data sets - these five volumes
contained TSO edit type data sets.
In order to insure space was
available for TSO edit usage all
data sets not used in 14 days
were deleted and user data sets
older than 28 days were copied to

user DASD (see item g)

.

5. VSAM data sets - these three (3)

volumes contained volume-size VSAM
data spaces. This eliminated
hundreds of user VSAM data spaces
spread throughout DASD. This also
allowed for more accurate space
management of VSAM data sets. Our
initial survey found 45% of the

VSAM data sets were either empty or
-unusable.

6. Test data bases - frequently we had
.requirements for 1-4 volumes of
DASD to perform volume tests or
conversion work for an
application. In the past this

precipited a mad scramble
attempting to secure unused volumes
from other systems. This was
replaced by a pool of four 3350s;
which were scheduled on an as
needed temporary basis.

Requests for a total of more than
four volumes from multiple users
caused volume sharing. For example
one application would have the

volume for twelve hours a day. At

the end of their test period the

pack would be dumped and then
restored with the next user's data.

7. User data sets - the vast majority
of DASD was contained in this

pool. All user test data sets,
libraries, and data bases were
located on these 39 volumes. These
were the only volumes to

participate in data set migration.

8. New MSS allocation staging - these
three (3) volumes contained all
newly created permanent data sets.
During nightly maintenance the data
sets on these packs were migrated
to either real DASD (user data set

volumes) or MSS. This was done to

avoid the degradation new data set

allocation caused on the MSS and to
allow efficient placement of user
data sets on real DASD.

This new DASD configuration greatly
enhanced our ability to control space
requirements and I/O performance.

3.2 Data Set Naming Standard

The naming standard was beneficial in
locating the owner of a data set when
problems arose. It also made possible
the accounting for space usage back to

the user department. This in turn
allowed for better capacity planning
of future DASD and MSS requirements.

However, the naming standard was
essential for continuation of the MSS
group concept after data set migration
was started. MSS performance is

enhanced by the use of the group
concept. This concept causes the

volumes of MSS to be logically
connected and space requests to be
directed to a group name and be
satisfied by any volume in that group

(similar to a generic name). We chose

to assign groups by application.
Therefore, any migration to MSS must go
to a particular group. The data set

name must, therefore, correctly identify
the application owner.

225

The standard we implemented was as
follows

:

Each data set contained two index
levels "DD.dddt" where DD is the

department level (we have three) ddd
is the division level within that
department, t is the district within
that division.

This standard matched our current TSO
user ID scheme of DDdddtu with u

representing the individual user. All
data sets created over TSO by a user
are automatically supplied the two
standard indices. In addition, for
performance we installed three user
catalogs based on the department level
qualifiers. As an aside, many of our
users added a third level index of
their initials to allow them to

interogate the catalog for their
unique three levels to obtain a

listing of their data sets.

Enforcement of our standard was
accomplished through the use of DMS
(see below)

.

3.3 Software Products

There were two software products used
to take the data placement/migration
plan from paper to reality. It will
be noted in each portion of the plan
where a particular tool was utilized.
Following is a brief synopsis of the
software used.

1. DMS- (Disk Management System) by
Application Development Systems,
Inc. This was our primary
migration tool and our standard
enforcer. This product
accomplished the following:

a. Movement of data to and from MSB
and DASD.

b. Archival to tape of old data
sets.

c. Deleting of old data sets.
d. Deleting of non-standard named

data sets.
e. Releasing of over-allocated

space in sequential and
partitioned data sets.

f. Deleting of non-catalogued data
sets.

2. SAS - Statistical Analysis System
by SAS Institute Inc. We made use
of this wide-spread data tool as

follows.

a. Process SMF data to report on
data set activity.

b. Process RMF data to report on
DASD pack and string contention.

c. Process MSS trace data to report
on MSS performance.

d. Produced control card data to
direct DMS processing.

3. Local Programs - local programs
were required to build control
cards for DMS to handle the
migration from DASD to MSS.

3.4 Data Set Placement Plan

The purpose of this plan was
three-fold

:

1. Reduce the load on the MSS readers
by migrating busy data sets from
MSS to DASD.

2. Reduce the need for increased real
DASD by migrating unused data sets
to MSS.

3. Avoid the degradation of new
allocation on MSS by delaying the

placement of new data sets until
nightly maintenance.

The placement standards were
established as follows:

1. DASD - frequently accessed (more
than 15 times/week) user data sets;

system data sets, ISAM data sets,
application group object, load, and
source libraries; large (over 50
MB) IMS, VSAM data bases.

2. MSS - Intermediate access (1-14

times per week) , intermediate sized
(0-50MB) data sets. The MSS
cartridge holds 50MB of data).

3. Tape - not frequently accessed
(less than once/week), large
sequential data sets (larger than
200 MB), system log files, archived
data sets.

The DASD placement of system and

application libraries was handled in

the reconfiguration plan. In addition
at this time each application's
libraries were given a 20% space
increase for growth and placed on DASD

226

so that no further expansion of these
libraries was possible without the

space manager's knowledge. The
application programming staffs were
then made accountable for their
library contents and insuring that

they remain within the established
space limitations. Large data sets
and IMS data base were placed as
specified by the space manager. All
new large space requests were handled
by the space manager. VSAM data sets
were placed in the common VSAM data
spaces.

MSS placement was handled by the

introduction of a new-WSS DASD pool
and the elimination of direct new
space requests to MSS by all but
system maintenance jobs. This was
accomplished through the use of JES

and TSO exits to restrict the use of

the MSS unit parameter. The users
placed all new non-TSO, non-tape type
data sets on the new-MSS DASD volumes
and during nightly maintenance the
data sets were either copied to real
DASD or MSS based on the following
usage criteria: A data set used four
times in two days was copied to DASD.

Otherwise it was moved to MSS.

Tape data set placement was basically
the catch-all for data sets that were
too large for MSS or DASD.

3.5 Migration Procedure

The final phase of the space
management solution was the
development of a migration procedure
which would reduce the load on MSS and
remove uneeded DASD data sets without
inconveniencing the user community.
Figure 1 is a summation of the final

migration procedure parameters.

MIGRATION PROCEDURE

DASD - MSS
NOT ACCESSED IN FIVE DAYS
DMS AND LOCAL PROGRAM USED

MSS - DASD
ACCESSED 15 TIMES IN 7 DAYS
SAS AND DMS PROGRAM USED

DASD - TAPE
DATA BASES NOT ACCESSED IN TWO MONTHS

MSS - TAPE
NOT ACCESSED IN SIX MONTHS

TAPE - DELETED
NOT ACCESSED IN ONE YEAR

FIGURE 1

3.5.1 DASD to MSS

Smaller (less than 50MB) data sets
were migrated to MSS if they had not

been accessed in five days. This
resulted in an average of twenty data
sets being migrated daily. This
figure would have been larger but we

were not able to keep up with the

growing demand of MSS space. For
economy reasons MSS cartridges were
not ordered until they were needed.
Therefore our MSS had only 42% of the
allowable cartridges installed but the
cartridges installed were 67%
allocated. DMS was used to identify
those data sets not accessed in five
days and a local program was written
to read the MSS control table and to
assign MSS group identification based
on data set name. It also supplied
control cards to DMS so that it would
perform the copy.

227

3.5.2 MSS to DASD RESULTS

All MSS data sets accessed 15 times in
the past seven days were migrated to
DASD. This was done so that the delay
from a data set being heavily accessed
and its migration to a faster device
would be minimal but also avoid the
migration of every MSS data set that
was accessed. This resulted in an
average of ten data sets being
migrated daily. SAS was utilized to
read SMF data to identify heavily
accessed MSS data sets and to build
control cards for DMS to perform the
copy

.

3.5.3 DASD to Tape

Larger data sets (over 50MB) not used
for two months were archived to tape.
If required, the user had to request a

restore via a TSO command and the data
sets was returned during nightly
maintenance. This was a slight
inconvenience but one day turnaround
for data inactive for over two months
was not felt to be excessive.

3.5.4 MSS to Tape

MSS data sets not accessed in six
months were archived to tape. This
was caused because of the pressure of
cartridge growth. Again, the user
needed only to request a restore on
TSO to retrieve his data set.

3.5.5 Tape to Delete

Tape data sets, which had their
retention periods exceeded were
deleted. In addition, DMS archived
data sets which were over one year old
were deleted. For MSS data sets that
were archived after six months, this
involved a six month retention on
tape. For DASD data sets archived
after two months, this involved a ten
10 month retention.

4 . Results

The total effort from the perception
of the problem to the attainment of
improved results was six months. The
total manpower required was one person
full time and two people for 25% of
their time. Figure 2 summarizes the
outcome of this effort.

Before After Change

MSS READER BUSY 95% 57% -38%

MSS DATA SET
STAGE TIME 62SEC 2 7SEC -3 5 sec

MSS DATA SET
QUEUE 6.0 1.1 -4.9

JOB LONG
WAIT TIME 4.3MIN 2.1MIN -2.2 min

JOB ELAPSED
TIME 11.5MIN 7.9MIN -3.6 min

JOB INPUT Q
TIME 65MIN 20 MIN -45 min

TSO RESP TIME
(TRIVIAL) 2.2SEC 1.5SEC -.7 sec

TSO TRANS-
ACTIONS (8-5) 55K 67K +12K

JOBS PROCESSED
(8-5) 1100 1700 +600

CPU BUSY(8-5) 65% 85% +20%

DASD ADDITION
(6 MON) 8 2 -6

FIGURE 2

As oulined previously, the MSS device
was a "bottleneck to good system
performance. The migration/placement
efforts reduced the MSS reader busy
from S% to 57^ with the IBM guideline
value issued as 70^. More importantly,
the service provided by MSS improved
as measured by average data set stage
time reduced from 62 to 27 seconds and
average number of MSS data sets awaiting
service reduced from 6.0 to 1.1. This
in turn was reflected in improved batch
performance by reducing long wait
swapped out time from U.3 to 2.1
minutes and average job elapsed time
from 11.5 to 7-9 minutes. This also
effects the batch service queues by
reducing average job input queue time
from 65 to 20 minutes. The TSO system
also benefited as evidence the
reduction from 2.2 to 1.5 seconds in
TSO trivial response time while the

228

workload executed by TSO increased
from 55,000 to 67,000 transaction per
day. This increased workload was also
evidenced in the increase in CPU busy
from 65 to 85%.

Two notes on those results -

1. All of this was accomplished with
an increase of only two DASD
volume s

.

2. The greatest performance
improvements were realized by
eliminating the allocation of new
MSS data sets directly to MSS (i.e.

reader busy was reduced from 80% to

57% after this was implemented) and
the dedication of 8360 's as local

page data sets (this increased the

CPU busy percentage from a level of

75% to a level of 85%).

We are satisfied that the results
experienced justified the effort
expended

.

4.1 Continuous Monitoring

In order to insure a good system
performance, continuous monitoring of
the DASD/MSS environment was done.

This included weekly reviews of:

1. DASD channel and string usage using
RMF data.

2. DASD pack usage and queueing using
RMF data.

3. Allocated and available DASD space
using DMS reports.

4. MSS available space using IDCAMS
utility reports.

5. MSS reader busy and data set

staging performance using SAS

analysis of MSS trace files.

Any time the data indicated a problem
in, a particular area corrective action
was taken immediately. This prevented
small performance problems from
becoming major system bottlenecks.

4.2 Experiences

Not always was it obvious that the end

would justify the means. There were
times where it was doubtful any

progress could be made. I felt it

would be informative to relate some of

our more interesting experiences.

1. Data set naming standards - the

users were given six weeks notice
that only standard names would be
retained - all non-standard data
sets would be deleted. The user
community said there was no way
they could handle that change in

under one year. Management
supported our decision and we cut

over as planned. Suprisingly, there
were fewer than ten requests to

restore data sets of the more than
4000 that were scratched. That

indicated to us the larger number
of unused data sets on DASD and MSS.

2. Private packs - next to the naming
standards the elimination of

private packs was the least liked
of our changes. But we found that

if the needed space was provided
when the user required it that was
all that the user desired. They
didn't relly want or need their own
volume

.

3. Reference date updates - since DMS
used a data set's last reference
date for migration purposes it was
Imperative that this be accurate.
We found that soon after we

implemented our plan users
developed programs that opened all

their data sets on a weekly basis
in order that they remain on DASD.
We have caught a few users doing

this and stopped them. We have
also coded programs that process
SMF data to identify this activity
and report it to upper management.

4. PDS directory problems - with our
release of MVS (SE2) there occurred
a problem. DMS updates the VTOC
each time a data set is opened ;the

reference time, date, and jobname.
If two users are updating the same
partitioned data set, a problem can

occur of having overlapped VTOC
updates which are not replaced in

the correct sequence. After losing
track of a few partitioned data
sets, we turned DMS tracking of
system-wide partitioned data sets

off.

229

MSS maintenance procedures - due to

the way MSS picks and stages each
data set, any maintenance which
operates at the data set level is

very time consuming. DMS operates
at this level, and it takes about 12

hours to do a DMS backup of 30 MSS
volumes and three (3) hours to scan
100 MSS volumes for invalid data
set names. For this we chose the

incremental backup featyre if DMS

whereby only changed data sets are
backed up. This dramatically
reduced our maintenance time.

Large record length on MSS - a data
set with a record length larger
than track size (13030 bytes) could

not be placed on MSS. This

occurred because the DASD (3350)
maximum is (19069 bytes). We had
no solution to this problem and were
forced to move these data sets to
tape after two months of non-use.

Non-catalogued data sets - all of

our migrations from MSS to DASD and
vice versa assume that the user can
find the location of his data set
by means of its catalog entry. For
that reason all volume references
had to be removed and all

non-catalogued data sets were
deleted

.

Empty data sets - when the initial
migration concept was announced
many users sought to guarantee DASD
space by allocating empty data sets

just in case they would need it.

DMS released over-allocated space
but as of this writing could not
free totally empty data sets. This
resulted in a manual process of

reviewing listings and deleting
empty data sets.

APF libraries - data sets in the

Authorized Program Facility have
their volume serial number listed.
Movement of these data sets caused
system problems. We had to exclude
these from our migration.

10. Release over-allocated. Through
the use of DMS we released
over-allocated space in

partitioned and sequential data
sets. We averaged two volumes of
space released during every weekly
run. This process required less
than fifteen minutes per week.

5. Conclusion.

In summary there are three areas which
were vital for the success of this

project. They were communication to

the user community, management
commitment; and credibility.

Throughout our effort we continually
communicated with the user via letters
to their management and bulletins to
the programmers as to what we were
doing, when the change was effective,
why things were changing, and the

effect of the change. To this end we
made extensive use of an already
established user group. This user
group contained one representive from
each application and served as our
liaison to the users.

There were numerous times where the
user complaints of changes required

could have turned management off to

our project. But fortunately they

stuck with us and weathered the
storm. With their backing the
changes were made, the standards wer^
followed, and our project was a

success.

The fact that we showed the user that
we could deliver service was very
important. After placing all those
restrictions on them if we had not

been able to accomodate legitimate
space requests all of our efforts
would have been for naught. I feel

this was the most important concept of

making a data set placement and
migration plan work-credibility with
the user community.

I would like to acknowledge the
efforts of Greg Marshall, in trouble

shooting DMS problems and Jeff Wides,
for sharing his MSS expertise and

performance data.

230

DASD CAPACITY PLANNING
3350 DASD

Keith E. Silliman

IBM Corporation
Federal Systems Division

18100 Frederick Pike
Gaithersburg, MD 20879

A pragmatic approach to Direct Access Storage Device (DASD) I/O
capacity is viewed as the ability to do I/O in terms of the number of I/O
operations and bytes of data transferred. Maximum and "average" I/O
capacity algorithms are developed for 3350 DASD, Data transfer and
density of reference capacity values are derived. Examples of capacity
value usage are given.

Key Words: DASD I/O Capacity, Density of Data Reference, I/O Capacity
Algorithms, 3350 DASD.

INTRODUCTION

There is an increased need to understand
the capacity of Direct Access Storage Devices
(DASD) to do I/O, in terms of the number of
I/O operations or data bytes transferred per
unit of time. DASD technology has made
tremendous advances in increasing data
density. The resulting reduction in the cost
per megabyte has made possible increased
amounts of "online" data. Those increased
amounts of online data, the fixed size of
existing computer facilities, and the
increasing floor space costs associated with
new facilities have necessitated even higher
density DASD.

Sizing of DASD subsystem based on the
number of megabytes of data to be stored,
floor space, and available funds frequently
produce configurations with the fewest number
of the highest density DASD available. As a

result, we believe there is an increased
awareness of the performance impact of the
I/O subsystem [1,2,3,^,5,6] and consider-
able emphasis is being placed on capacity
planning [7,8,9].

DASD capacity to do I/O is a critical
consideration in the design and tuning of

high performance computer systems, especially
online, data retrieval or Data Base
Management Systems (DBMS). Increasing
amounts of data are stored, accessed and
retrieved from DASD. Responsive user
interactions require an adequate DASD
subsystem. The design of the DASD subsystem,
inturn, depends on definitive system
requirements and knowledge of device
characteristics and capacities. This paper
explores the capacity of the 3350-type DASD
to do I/O in an IBM 3/370 MVS environment.

3350 DASD

The IBM 3350 [10] is a large capacity,
fast access, high data rate. Direct Access
Storage Device unit. A unit consists of two
drives, each with a head/disk assembly (HDA)

with 16 recording surfaces. Each drive has a

data storage capacity of 317.5 million bytes,
allocated in 16,650 tracks (19,069 bytes per
track) and grouped into 555 cylinders (30

tracks per cylinder). The disks rotate at

3,600 revolutions per minute, sixty
revolutions per second, or once every 16.7

milliseconds. A minimum of 10 milliseconds
is required to move the access mechanism
(read/write head). The maximum head movement
time (seek) is 50 milliseconds. The data
transfer rate is 1.198 million bytes per
second

.

231

The 3350 is a Rotation Position Sensing
(RPS) device [11]. It logically disconnects
from the channel following the set sector
conmand and waits for the specified sector to
come under the read/write head. That waiting
time is the rotational delay time. When the
specified sector comes under the read/write
head, the device attempts to logically
reconnect with the channel. Following a

successful reconnect, data transfer
commences. At the end of data transfer, a

simultaneous channel end/device end I/O
interrupt is presented to the CPU, completing
the DASD portion of the I/O operation.

A projection of device utilization to
100 percent with a device service time of 20

milliseconds indicates a device capacity of
180,000 I/O operations per hour or 50 per
second. If the device service time was 16.7
milliseconds and 100 percent busy, the
capacity would be 216,000 I/Os per hour or 60

per second (one per revolution)

.

However, the elongated queue delay effect as
a function of resource utilization (response
time = service time/(1-resource utilization)
will cause I/O response time degradation with
higher device utilizations.

If at I/O initiation time the read/write
head is not positioned to correct cylinder, a

seek occurs to move it. During the seek, the
I/O pathway is available to service other
requests. At seek completion, the channel is

notified and the set sector command is

issued .

If the device cannot logically reconnect
because a pathway component is busy (i.e.,

head of string, control unit, or channel), a

missed reconnect occurs and a full rotation
(16.7 milliseconds) must complete before
another logical reconnect is attempted. All

the while, the device is busy "processing"
the I/O operation.

3350 CAPACITY MEASUREMENTS

Measurements of I/O activity provide
insight to DASD I/O capacity. A plot of 3350
device busy and I/O operations per hour is

presented in Figure 1. The data plotted are

one-hour samples for individual 3350 devices
that exhibited device utilization greater
than 10 percent. (The 10 percent threshold
was an arbitrary choice to reduce the total
number of samples plotted.) They are from a

one-week period on two IBM S/370 158 attached
processor (mixed online and batch workload)
systems and an IBM 3033 (batch) system. The
maximum rate for a one-hour sample was
approximately 127,000 I/O operations, or 35

per second, and a 72 percent device
util ization

.

33§0 I/O CAPACITY
MEASURED 1 HOUR SAMPLER

so

«>

P fiO-

C- 30-

o ao

10-

Legend

X saas

30000 72000 lOaOOO 144000 180000

I/O OPERATIONS / HOUR

FIGURE 1 3350 I/O CAPACITY MEASURED 1 HOUR SAMPLES

A measure of queue delay is plotted with
device busy for the same samples and is

presented in Figure 2. That plot indicates
an increase of queue delay with increased
device utilization but with some significant
deviations. Samples of relatively high
device utilization and low queue delay occur,
implying synchonized arrivals, probably a

single user on the device.

The plot in Figure 1 indicates an

average device service time of approximately
20 milliseconds (derived by multiplying the
device utilization by the number of seconds
per hour and dividing by the number of I/Os

per hour) . Samples in the lower right have
shorter device services times, indicating
small effective data block sizes and/or
minimal seeks and missed reconnects. Samples
in the upper left have longer device service
times, indicating larger effective data block
sizes and/or increased number or duration of
seeks and missed reconnects.

232

3350 I/O qUEUEING
MEASURED 1 HOUR SAMPLES
m-

so-

o 80-
X

W-
1

ao-

X*00~
X

X
4o-

ao-

ao- Legend
to- * IBB &P

X soas
0-

A iBS53B4StoflB7BaBge
PIRCBNT I/O ^UBUGD

FIGURE 2 3350 I/O QUEUEIKC MEASUSED 1 HOUS SAMPLES-

task then processes the data read or prepares
additional data to be written and may repeat
the process. A schematic diagram of a

complete DASD I/O operation is presented in

Figure 3.

10

Tim*

I0S2 I A«o«k«T(on

I
flotnien

Y_ _ _ Tf I

0*nc* Sanrla Tim*

Excp Tima

General guidelines, or rules-of- thumb

,

for performance tracking and comparison have
been developed. Batch system environment
values are 35 percent device busy and an
average queue length of 0.1 [2,33. Data base
system values are 30 percent device busy and
average queue length of 0.04 [4]. Measured
I/O activity rates for 30 to 35 percent
device utilization are 36,000 to 72,000 per
hour or 10 to 20 per second (see Figure 1).

Up to 15 percent of the I/O operations are

queued for 30 to 35 percent device
utilization (see Figure 2).

DASD I/O

A DASD I/O operation is the sum of a

combined effort of the CPU, channel, control
unit, head of string, and device. The
sequence of events is as follows: A software
task requests a DASD I/O operation by
executing the Execute Channel Program (EXCP)

code which includes a Start I/O (SIO)
instruction. With the successful execution
of the SIO (condition code = 0), the I/O

subsystem portion of the operation is
initiated. A seek may occur to position the
read/write head to the specified cylinder.
The set sector command is issued by the
channel. The device revolves to position the
requested data area under the read/write
head. The device logically reconnects with
the channel and data transfers. The
simultaneous channel end/device end I/O
interrupt is processed by the I/O Supervisor
(lOS) routines in the CPU. Finally, the task
that requested the I/O operation is informed
that the data transfer has completed. That

Device service time is the elapsed time
from successful SIO to data transfer
completion [3,4]. The EXCP, or I/O time, is

the device service time plus the combined CPU
processing of the EXCP, any queue delay
incurred initiating the I/O, and the I/O
interrupt processing which follows data
transfer

.

The DASD I/O process may be interrupted
or delayed at any of several steps. Higher
priority tasks may preempt the CPU from the
task attempting to execute the EXCP. A busy
component of the logical channel (channel or
device) can cause the request to be queued
for later processing when the component is

available [1]. An unsuccessful SIO
(condition code = 1) will occur if the DASD
control unit or head of string is busy even
though the channel and device are not busy

[3]. Tha condition occurs in a shared DASD
or a channel/ string switched environment.
Seek frequency and duration are a function of
data set placement, access methods used, and

concurrency of device use. The duration of
rotational delay is primarily a function of
missed reconnects which occur because of I/O
pathway component busy.

Our experience indicates that DASD I/O

times (from EXCP to EXCP) should average 100

milliseconds or less on S/370 Model 158 or

larger systems. Five general areas contrib-

233

ute to that elapsed time: (1) CPU time re-
quired to execute the EXCP and process the
I/O interrupt, (2) logical channel queue time
waiting to successfully start the I/O, (3)

seek time, (4) rotational delay time, and (5)

data transfer.

The time required by the CPU to process a

DASD I/O operation depends on the CPU speed
(MIPS/MOPS) and the number of instructions
executed. Measurements of MVS environments
indicate 10,000 to 50,000 instructions per

I/O operation [5] for supervisory and
application functions combined. The number

of supervisory instructions is fixed for a

given access method. "In MVS 3.7 . . . the

path length for an EXCP is approximately 3800

instructions" [12]. The number of
application instructions depends on the data
block size and the intensity of the scan of

the data read or the build process for data

written. The number of instructions divided

by the CPU instruction processing rate
provides the CPU time.

The logical channel queue time is the

delay time spent waiting for the required I/O

pathway components to become available to

satisfy the request and is a function of the

I/O subsystem utilization [6]. The magnitude
of the delay will vary up to a multiple of

the device service time when multiple
requests are made to an individual drive.

The seek time delay will occur whenever

the read/write head is not positioned at the

correct cylinder. Seek times for an IBM 3350

are 10 to 50 milliseconds. Random access

data will generally have one seek per I/O

operation, whereas sequentially accessed data

will generally have multiple I/Os per seek.

On a contended DASD, even sequentially
accessed data may have one seek per I/O.

Rotational delay time will occur for
essentially every DASD I/O. The average

rotational delay (not including missed
reconnects) is 8.3 milliseconds (one-half of

a revolution) . Missed reconnects occur as a

function of the I/O pathway component
utilization [6]. Each missed reconnect adds

16.7 milliseconds to device service time and

corresponding increases in I/O response time.

Consecutive missed reconnects can, and do,

happen

.

Data transfer time depends on the data

block size; the number of bytes transferred
at the rate of 1.198 million bytes per second

(roughly 1,000 bytes per millisecond). For

direct access I/O using Basic Direct Access
Method (BDAM), the effective data block size

is the actual block size. Using search

previous I/O, with either Basic Sequential

Access Method (BSAM) or Queued Sequential
Access Method (QSAM) , may result in an
"effective" data block size twice the actual
block size [31. Use of multiple buffers may
also cause the effective data block size to

be larger than the actual.

Three of the I/O component times (CPU

time, seek time, and data transfer time) are

fixed as a function of the hardware and

software. Logical channel queue time and

rotational delay time, including missed
reconnects, are not bounded, especially in a

shared DASD environment.

DASD CAPACITY DISCUSSION

The preceding discussion of 3350 DASD,

DASD I/O characteristics, and the data
presented in Figure 1 indicate that, in

general, a maximum of one I/O operation can

occur per device revolution, or 60 per
second. Because of contention at the CPU and

I/O pathway component level (seeks, missed
reconnects, and variable data transfer
times) , the "average" capacity is signifi-
cantly less then one transfer per revolution.

Consecutive data blocks can be read or

written (if the CPU is fast enough to execute

the required I/Os and application instruc-

tions to process the previous I/O interrupt,

process the data, and initiate the next I/O

operation) in consecutive device revolutions,

assuming sequential BDAM reads or writes on

one cylinder (no seeks) of a dedicated de-

vice, string, control unit, channel, and CPU.

However , after the last data block on a track

is transferred, the next revolution will oc-

cur without a data transfer. Following the

transfer of the last data block on the track

N, the CPU will be busy processing the I/O

interrupt while the first data block on track

N+1 is moving under the read/write head.

An analytical representation of that rela-

tionship for different data block sizes is

presented in Figure i». To read or write 10

consecutive one-tenth track size data blocks

requires 11 revolutions. An average of five

revolutions will be required to read or write

four one-quarter track data blocks. Two con-

secutive half track blocks require an average

of three revolutions, and an average of three

revolutions, and an average of two revolu-

tions will be required for each full track

block

.

DASD I/O CAPACITY ALGORITHM

Based on the assumption of the effective

maximum of one I/O operation per device
revolution and a missed revolution between

the consecutive accesses of the last data

23**

block on a track and the first on the next
track, a Maximum DASD I/O Capacity Algorithm
was develop)ed. That algorithm is as follows:

This algorithm indicates the maximum
capacity of a 3350-type DASD to be 216,000
I/Os per hour (60 I/Os per second) for very
small data block sizes. Capacity decreases
steadily with increased data block size to
108,000 I/Os per hour (30 I/Os per second)
for half track blocks (9,300 bytes) and
remains at that level to full track blocks
19,000 bytes). Data block sizes in excess of
full track cause a further decrease in I/O

capacity.

head movements (seeks), (3) missed recon-
nects, (4) and application tasks are not
dispatched in a timely fashion. A minimum
seek (one cylinder) requires 10 milliseconds,
or more than half a revolution, a maximum
seek requires 50 milliseconds, or three
revolutions. A single missed reconnect
causes a 16.7 millisecond (one revolution)
delay.

"Average" DASD I/O capacity may be
one-third (or less) of the mazlmum capacity.
An algorithm for Average DASD I/O Capacity,
using the one-third value, is as follows:

Average DASD

I/O Capacity

Maximum DASD I/O Capacity

3.3

.10 Track Stock Sin

1740 BvtH

CPU

Oi/Cu

D«vici

.25 TndE Block Sn
4628 Byw

CPU

0«v

50 Trtdc Block S»

CPU

Oi/Cu

LXTrKdc Block Su

1902S

CPU

Ch/Cu

-I m—J
_ CE/DE SI

P
SIO CE/OE SIO

CE/OE SIO CE/DE SIO

CE/OE SIOn I p^ wsn wmn mm

En
CE/DE SIO

] I

CE/OE SIO

a

CE/DE SIO CE/DE

I

Figuie 4 Aa:e»ing Comtcutiva Data Blocks

This algorithm indicates the average
capacity of a 3350 DASD to be approximately
65,000 I/O's per hour (18 I/Os per second)
for very small data block sizes. With
increased data block size, it decreases to

32,000 I/Os per hour (9 I/Os per second) for

half track (9,300 bytes) data blocks and
remains at that level to full track (19,000
bytes) block size. Figure 5 presents the
algorithm results for maximum and average
DASD I/O capacity for data block sizes from
1,000 to 19,000 bytes per data block.

MODELED 3350 PERFORMANCE
I/O PER

eo-

M-

46-

g «-

8 »-

^ 30-

O
:> iB-

12-

0-

0-
C> 1 k

-|—I—I—I—I—I—r-
"T

—

I I
.

1—1—

I

Legend
A MAXIMWM

EFFBCTIViS DATA BLOCK SIZE k bytes

AVERAGE DASD I/O CAPACITY

FICUEIE 5 MODELED 3350 PERFORMANCE I/O PER SECOND VS DATA BLOCK SIZE

The "average" capacity should be of
primary interest to the computer systems
analyst not the maximum capacity. Where
average connotes practical or realistic
values. The maximum rate projections assumed
dedicated CPU and I/O subsystem components.
DASD revolutions will be missed (i.e., go
unused) in a contended environment because;
(1) I/O operations cannot be initiated, (2)

The I/O capacity values obtained from the

algorithm are consistent with the measurement
data presented in Figure 1 and the "rule-of-
thumb" value of 30 to 35 percent for I/O

component busy. Twenty-seven percent (62 of
229) of the samples in Figure 1 are between
32,000 and 65,000 I/Os per hour. Only six
percent (14 of 229) exceed 65,000 per hour.

235

Those values are from a population of samples
of unknown data block sizes that did not
include any samples with device utilization
less than ten percent.

The 35 percent device busy rule of thumb

implies similar capacity values. For device
service times of 20 milliseconds (approxi-
mately the value derived from the samples in

Figure 1), the device capacity at 35 percent
busy would be 63,000 I/Os per hour or 17.5

per second (.35 * 3600 / .020 sec). For 35
millisecond device service times, the device
capacity would be 36,000 I/Os per hour or 10

per second (.35 * 3600 / .035 sec). For a

constant device utilization value (e.g., 35

percent), the device capacity decreases as

device service time increases.

DATA TRANSFER CAPACITY

Multiplying the derived DASD I/O
capacity values by the corresponding data
block sizes produces capacity data rates in

bytes transferred. The maximum and "average"
data rate capacities are plotted as a

function of data block size in Figure 6. The
maximum data rate capacity indicated is

approximately 570,000 bytes per second (30

full track blocks) which is half the 1,198

million bytes per second instantaneous data
rate. The corresponding average data rate
capacity is 170,000 bytes per second (9 full
track blocks) . Smaller data block sizes
produce a lesser number of bytes per second
even though the number of data blocks
transferred is larger.

MODELED 3350 PERFORMANCE
BYTES PER SECOND VS DATA BLOCK SIZE

Legend

10 ti |2 18 14 IS 10 IT 10 IS

BFFBCTIVE DATA BLOCK SIZE k bytes

DENSITY OF REFERENCE CAPACITY

Dividing the algorithm-derived I/O
capacity values by the number of hundreds of
megabytes of data stored on a 3350 (3.17)
gives a measure of I/O capacity per 100

megabytes of data storage, or Density of
Reference Capacity. The maximum and average
3350 density of reference capacities are
plotted as a function of data block size in

Figure 7. The maximum density of reference
(per 100 megabytes) is indicated to be 18

I/Os per second for very small data block
sizes, decreasing with increased data block
size to 9 I/Os per second for half track and
larger. The average density of reference is

indicated to be 5 I/Os per second for very
small data block sizes, decreasing with
increased data block sizes to 3 I/Os per
second at half track and larger data block
si zes

.

CAPACITY VALUE USAGE

DASD I/O capacity values can be utilized
as guideline, or rule-of-thumb values. For
example, while doing a data flow analysis of
a planned response-oriented computer system,
the implicit requirement to accomplish 18-20

I/Os per second (at 4 k bytes each) to a 3350
file becomes apparent. A comparison with the

3350 DASD capacity values indicates that
18-20 I/Os per second is within the capacity
of the device but above the average for that
data block size. Project management should
be alerted to a possible performance problem.
Cost/ performance trade studies should be

initiated to assess the benefit/ impact of in-

creasing the data block size or distributing
the data file (and accesses) across multiple
devices

.

FIGURE 6 HODELBD 3350 PERFORMANCE BYTES PER SECOND VS DATA BLOCK SIZE

MODELED 3350 PERFORMANCE
DENSITY OF DATA REFERENCE

0 i 2 8 i s i ^ 0 a lb U l2 lb 14 lb 10 0* M lb

iFFBCnVB DATA BLOCK SIZE k bytes

Legend
A MAXIICai

FIGURE 7 HODELED 3350 PERFORMANCE DENSITY OF DATA REFERENCE

236

The planning process for the migration
of data from 3330-1 to 3350 DASD could use
these values. I/O activity rates on the
existing DASD are either known or measurable
values. For 3330-1 DASD, the I/O rate
measures are density of reference values per
100 megabytes because of 3330-1 is a 100

megabyte device. Comparison of those 3330-1
values with the derived 3350 values indicates
whether the I/O capacity requirements of the
data to be moved exceeds the capacity of the
intended 3350 DASD. Average density of
reference of the volumes to be migrated
should not exceed the projected value for the
receiving device. If the I/O rate to
existing 3330-1 volumes exceeds the projected
values for 3350s, the migration may result in

increased I/O contention and degrade I/O
response times.

Systems tuners should compare these
capacity values with their system measure-
ments. Significant deviations, either below
or above these values, warrant further
investigation. Systems not completing work
or providing unsatisfactory response times
should be expecially scrutinized. If

sufficient workload exists, low activity
rates (less than 5 I/Os per second) on the
most active devices may indicate excessive
head movement or I/O pathway contention
problems. Values above the average may
indicate too much data per volume (data base)

or insufficient number of devices (paging and
public work space). Systems with heavily
accessed volumes (10 to 20, or greater, I/Os
per second) and a CPU with a significant
amounts of wait time (20 to 30 percent or

greater) need to have the access frequency/
contention reduced by distributing the data
accesses across more devices.

SUMMARY

We believe DASD capacity should mean
more than the number of bytes of data stored
on the device. Computer system analysts and

managers need to become sensitive to DASD
capacity to do I/O, the number of I/O opera-
tions, and the bytes of data transferred per
unit time.

A discussion was presented indicating
the combined, coordinated interaction of the
CPU and I/O subsystem components required to

accomplish DASD I/O. The speed of the CPU

does not contribute to DASD I/O capacity or

impairment thereof as long as the combined
instruction execution time of I/Os and appli-
cation code and any resultant CPU queue delay
is less than the revolution period, of the
DASD (16.7 milliseconds for 3350s). CPUs
with less capacity than a S/370 Model 158,

application functions with a high level of

data manipulation, or a high multiprogramming
level may have 3350 DASD I/O capacities lower

than indicated here.

A 3350 DASD I/O capacity algorithm that

quantifies DASD I/O capacity, I/Os per
second, and bytes transferred per second has
been developed. Maximum and average capacity
predictions were made. We believe this
algorithm can be generalized to all DASD but
have restricted our presentations and
discussion to 3350-type DASD. Units of
measure and predicted values are presented
for DASD density of reference. They may be

helpful in migration of data to higher
density DASD.

The effective data block size and DASD
track size are critical components of DASD
I/O capacity. In general, the maximum number
of I/O operations per second occur with the
smallest block sizes where the CPU and data
transfer times are minimized. For small data
block sizes, the majority of the resource
utilization burden is on the CPU. Increased
data block size cause additional CPU costs to

process the data as well as increased trans-
fer timesv However, CPU utilization de-

creases because I/O operations occur less

frequently, whereas I/O pathway component
utilization increases. The overall time
required to process a given amount of data is

reduced because of the dramatically increased
number of bytes of data transferred per
second

.

The number of blocks of data per track
determines the maximum I/O capacity of a

DASD. Missing the next consecutive data
block in a sequential I/O operation following
the last block on the track becomes increa-
singly frequent with increased block size.

For data block sizes greater than half track,

essentially every data block is the last one

on the track.

The I/O capacity measures of DASD I/O

operations per second may be a more mean-
ingful guideline than the 30 to 35 percent
device utilization r ule-of-thumb values.
Average 3350 DASD I/O capacity is predicted

to be between 9 and 18 I/O operations per

second, depending on the effective data block

size (for one-hour intervals). Unknown data
block sizes can be approximated (channel
service time multiplied by the device trans-

fer rate) .

237

References

1. K. Ziegler, Jr., "DASD Configuration and
Sharing Considerations," Technical
Bulletin GG22-9052, IBM Corporation
(1978), Available through the local IBM

Branch Office.

2. '0S/VS2 MVS Performance Notebook,'
GC28-0886, IBM Corporation (1979).
Available through the local IBM Branch
Office

.

12, C. C. Burns, "Memory Can Increase Your
Capacity," Technical Bulletin
GG22-9053, IBM Corporation (1981),
Available through the local IBM Branch
Office.

3. R. M. Schardt, "An MVS Tuning Approach,"
IBM Systems Journal 19, No. 1, 102-119

(1980).

4. S. Holt, "Information Management System
- Virtual Storage - Multiple Virtual
Storage (IMS/VS/MVS) Performance and
Tuning Guide," Technical Bulletin
G320-6004, IBM Corporation (1980),
Available through the local IBM Branch
Office.

5. J. B. Major, "Processor, I/O Path and

DASD Configuration Capacity," IBM
Systems Journal 20, No. 1, 63-85 (1981).

6. S. E. Frisenborg, "DASD Path and
Device Contention Considerations,"
Technical Bulletin G22-9217 (1981) IBM
Corporation, Available through the local
IBM Branch Office.

7. L. Bronner, "Capacity Planning: An

Introduction," Technical Bulletin
GG22-9001, IBM Corporation (1977),
Available through the local IBM Branch
Office

.

8. L. Bronner, "Capacity Planning:
Implementation," Technical Bulletin
GG22-9015, IBM Corporation (1979),
Available through the local IBM Branch
Office.

9. 'Capacity Planning Extended (CPX),'
SB21-2392, IBM Corporation (1981),
Available through the local IBM Branch
Office.

10. 'Reference Manual for IBM 3350 Direct
Access Storage,' GA26-1638, IBM
Corporation (1977), Available through
the local IBM Branch Office.

11. D. T. Brown, R. L. Eibsen, and C. A.

Thorn, "Channel and Direct Access Device
Architecture," IBM Systems Journal 11,

No. 3. 186-199 (1972).

238

AN ANALYSIS OF A CDC844-41 DISK SUBSYSTEM

J. William Atwood
Keh-Chiang Yu

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

In contrast with IBM control programs, input/output supervisor
software for CDC systems frequently issues transfer requests for entire
program images (e.g., when loading or rolling out a program). These
program image transfers have substantially larger service times than
regular input/output accesses. A detailed simulation model has been
used to show that, for CDC systems, significant performance advantages
normally accrue when the access path to the rollout files is disjoint
from the path(s) used for regular input/output accesses. The system
modelled has a 12-spindle CDC 844-41 disk subsystem, which is shared
between two CDC Cyber 170/750 central processors. Projections for a

20-spindle subsystem are also reported.

Keywords: CDC 844-41; computer system evaluation; disk subsystem con-
figurations; input/output; modeling; rollin/rollout files; simulation.

1 . Introduction

After an upgrade in central processor
capacity at the Computation Center of the
University of Texas at Austin (UTA), a

careful measurement study was instituted to

evaluate the performance of the new
configuration. Event-trace data were
recorded from the system, and a simulation
model was validated. The model was used to

project the performance of the system if the
file allocation algorithms were altered in

order to minimize the expected seek time for

the disk subsystem. The observed data and

the model results have been reported in

[1].^

While making the measurements it was
observed that typical service times for most
input/output accesses to the disk subsystem
were in the range of 35-45 ms. However,
rollout accesses had typical service times
in the range of 150-250 ms. Input/output
software for CDC processors normally
processes these two kinds of access
identically, i.e., a new file is allocated
space in the next (or most) available
spindle, regardless of the type of the file.

Thus the disk subsystem appears as a number

Present address:
Department of Computer Science
Concordia University

2 Montreal, Quebec, Canada
Figures in brackets indicate the literature
references at the end of this paper.

of identical servers, with a service time
distribution containing two distinct
components with widely differing means.

When the two new CDC Cyber 170/750
processors were installed at UTA, the disk
subsystem consisted of 12 spindles and three
controllers. After examining the
preliminary measurement results, it was
conjectured that the merging of rollout file
accesses with regular file accesses was
operating to the detriment of the overall
performance of the disk subsystem. When the

rollout files were confined to a single disk
spindle, connected to the processors through
a fourth controller, a spectacular
improvement was observed, in that the
interactive response time for short requests
dropped by a factor of four.

As it was not clear whether the
improvement was due to the separation of the
two file types, or to the additional
capacity provided by the new controller, a

study was instituted to examine various disk
subsystem configurations, and recommend a

best configuration for maximizing the
performance of the overall system. It has
been found that separation of rollout files
from regular files results in improved
performance, except in certain cases of
severe overload of the disk subsystem.

In section 2 , the important
characteristics of the disk subsystem are

discussed. Section 3 contains a discussion
of the experimental environment in which the
disk parameters were measured. Section 4

239

introduces the simulation model. Section 5
gives some data concerning the observed
performance of the various parts of the disk
subsystem. In section 6, the model
projections for various 12-spindle
configurations are presented, and the
observed effects are explained. In sections
7 and 8, configurations with altered file
management algorithms and increased numbers
of spindles are evaluated, and the
desirability of separating rollout and
regular file accesses is shown to be even
greater than for the cases reported in

section 6. Section 9 concludes the paper
with discussion of the results and
indications of directions for further
research.

2. Disk Subsystem Parameters

2.1 Disk Subsystem Configurations

In the CDC Cyber 170 system measured,
each 844-41 (IBM 3330-equivalent) disk
spindle is connected to two 7154
controllers, which are each connected, via a

channel and a peripheral processor (PP), to

both central processors.

2.2 Data Arrangement

CDC 844-41 disks are sectored; there
are 24 sectors per recording surface, and 19

data recording surfaces per cylinder, making
a total of 456 sectors per cylinder.
Because the 7154 controller can buffer only
one sector at a time, a PP cannot transfer a

received sector to central memory and issue
the read function for the next sector before
it has passed the read heads. Therefore
files are allocated to alternating sectors:
a logical track consists entirely of
even-numbered sectors on a cylinder, or

odd-numbered sectors. This is called
half-tracking by CDC. For the UT-2D control
program [2] used on the system measured, a

logical track contains 228 sectors. For

CDC's Network Operating System (NOS) [3],
running on CDC 6000 Series or Cyber
processors, the disk is divided into top and

bottom (9-surface) halves, and a logical
track contains 107 sectors.

2.3 File Types

For UT-2D and NOS, files are of four

types: system files, rollout files,
permanent files, and local files. In UT-2D,
permanent files are allocated using a ring
counter, to spread them evenly across all

spindles. Local files are allocated to the

"least full" spindle. Space for all file
types is allocated in units of one logical
track. For UT-2D, when a logical track is

requested to create or extend a file, the

first (lowest numbered) track on the

selected spindle is chosen. This tends to

pack the disk towards the lower-numbered
cylinders, and to spread all file types
evenly across all in-use cylinders. When
the last sector of a logical track is read
or written, the PP program must follow a

track chain (in a table in central mem.ory)

to determine the location (on disk) of the
logical track containing the next sequential
sector of the file.

I/O software within NOS and UT-2D
requests transfers in units of a sector,
which makes it convenient to specify any
unit of transfer from one sector up to
several logical tracks in one I/O request.
Requests originating from user programs
normally involve the transfer of small
quantities of information. Requests
originating directly from control program
activity normally involve the transfer of
much larger blocks of information (e.g., a

whole compiler) , and are also much less
frequent

.

2.4 Disk Spindle Parameters

The elapsed time (service time), T
.

, at
a disk spindle required to complete a

request for data transfer to/from a

moveable-head disk consists of three
components (see Figure 2-1):

1 . the time required to move the
reading head to the cylinder
containing the data (seek time, T^)

;

2. the time required to rotate the
spindle so that the data to be

transferred is under the read/write
head (rotational latency time, T^^);

3. the time required to actually
transfer (read/write) the data
between central memory and the disk
spindle (data transfer time, T.).

T : seek time
s

T^ : rotational latency time

T^ : data transfer time

Figure 2-1: Disk Subsystem Service Times

The time required to complete an I/O

request consists of the disk service time,

plus waiting times for the disk, the

controller, the channel, and a peripherial
processor

.

3. Experimental Environment

3.1 System Configuration

The main computational resource at the

University of Texas at Austin Computation
Center (at the time of the study) consisted
of two Cyber 170/750 central processors,
each with 262,144 60-bit words of central

240

memory, 20 peripheral processors, and 24
channels. The two Cyber processors share
access to a 505,204 word extended core
storage (ECS) facility, and to a mass
storage (disk) subsystem. The disk
subsystem consists of four CDC 7154 disk
controllers and twelve spindles of CDC
844-41 disk storage.

The two processors run under control of
the UT-2D operating system [2]. The normal
mode of operation is that interactive jobs
are run on CPU A, and batch jobs are run on

CPU B. When interactive jobs request input
from their terminal, they are rolled out to

ECS. If ECS gets too full, jobs with long
residence times are swapped to a disk
spindle with its own controller. Batch jobs
are rolled out directly to the same swapping
spindle from central memory, without going
through ECS. System, local, and permanent
files are kept on the remaining eleven
spindles, and accessed through three
dual-access controllers.

UT-2D has two primary components in

each processor: MTR (MoniToR), which
executes in PP zero, and which is in overall
control of the system (on that processor);
and CMR (Central Memory Resident), which
runs on the central processor, and performs
functions which are difficult or

inconvenient for MTR to do itself (usually
because they require substantial computat-
ional resources) . One other PP on each
processor is dedicated to managing the

system console display; the remaining 18 PPs
form a pool to be used for input/output
operations and for other operating system
functions

.

3.2 Data Recording

Data concerning the operation of UT-2D
were recorded by an event-trace probe
embedded in MTR and CMR [4], using a buffer
managed by CMR. This buffer is periodically
written to tape by a transient PP routine.

For the models and data reported later in

this paper, two tapes were running (one for

each machine), over the same time period,

but the event recording was not synchronized
between the two machines.

Data concerning the disks were recorded
at the conclusion of each data transfer, by

the disk driver which is resident in all PP

routines. All waiting times that occur from

the time that the channel is requested to

the time that the channel is released are

recorded. If the data transfer involves
multiple logical tracks, the data for each
logical track are recorded separately, but

it is possible to distinguish these cases.

The data are reduced by an event
delogging program called EVENTD [5], which
produces statistics and histograms for

events of interest, as well as a summary

page of overall statistics.

4. A Queueing Network Simulation Model

The results described in section 5 have
been used in a simulation model of the

configuration described in section 3.1. The

model is written in a queueing network

simulation language called QSIM [6]. The

QSIM preprocessor converts the model
description into a Fortran program. A

simulation model was used because of the

desire to accurately model the details of
the seek, latency, and data transfer
activity, and because of the two-path
switches in front of both the disk spindles
(access via two controllers), and the
controllers (access from two CPUs).

The model has two levels, which
represent the general job flow and the I/O

subsystem, respectively. The first level
consists of two closed chains which model
the processors, the tape drives, the

rollin/rollout servers, and the user think
time. The second level model is patterned
after the physical interconnections (among

channels, controllers, and spindles) which
occur in the actual system. Because of the
fact that these resources are held

simultaneously by a job, passive resources

[?] are used heavily in the model. The
complete model is described in Yu [8].

This model was validated by comparing
its performance statistics to the

observations reported in section 5. The

essential feature required for model
validation was the introduction of the

multi-part model for the data transfer
characteristic, as described in section 7.

5. Measured Values

5 . 1 Interactive Response Time

When an interactive transaction is

completed, the program image is rolled out
to ECS. If the program image resides too

long in ECS, it is copied to disk. When the

interactive user hits carriage return, those
images which have spilled over to disk must
first be copied back to ECS, prior to being
rolled into central memory. The interactive
response time thus consists of the time
between the initiation of a request for

rollin and the initiation of a request for

rollout, for all transactions, plus the time
required to copy from disk to ECS (the disk
subsystem response time for a rollin
request) , for those transactions which have
spilled over, averaged over all

transactions

.

5.2 Disk Subsystem Performance

Two trace tapes representing quite
different load situations are presented in

the two following subsections.

5.2.1 Trace Tapes 72/73

Trace tapes 72 and 73 were taken on a

busy day, at about 11.30 a.m. The number of

interactive users on line was 109, but the

demands that were placed on the two

processors were relatively light. Therefore
these tapes represent a situation where no

component of the disk subsystem is a

bottleneck (i.e., has a substantial queue),

so that the disk subsystem is, in some

sense, operating in a "linear" range. Note,

however, that the disk and controller
utilizations are substantially in excess of

241

those recommended by CDC for this disk
subsystem.

Table 5-1: Disk Subsystem Times—Tapes 72/73

Interactive Batch
Pop* Time % Pop* Time

Regular Accesses
Chan wait 0 204 9 6 14 0 107 7 .0 10

Cont wait 0 240 1

1

3 17 0 294 19 .2 28
Spin wait 0 089 4 2 6 0 053 3 .5 5

Spin serv 0 911 42 8 63 0 586 38 .3 56

Total 1 444 67 9 100 1 040 68 .0 100

Rollout Accesses
Total 979.0 1064.0

* Average number of jobs waiting or being
served at each point.

Table 5-1 presents the components that
make up the disk subsystem response time.

For regular file accesses, actual disk
service time accounts for two thirds of the
disk subsystem response time, with the
remaining one third resulting from queueing
for a channel or a controller. Thus
queueing is present at the channel and at

the controller, but it is not severe. The
last line of Table 5-1 gives the disk sub-
system response time for interactive spill-
over rollout and batch rollout requests.

5.2.2 Trace Tapes 74/75

Trace tapes 74 and 75 were taken on the
same day as trace tapes 72 and 73. but at

3.30 p.m. The number of interactive users
increased only slightly to 112, but the
demands that they placed on the processors
were much heavier. Therefore the total
controller capacity tends to limit the
overall system performance, and the disk
subsystem is operating at well in excess of
maximum reoomended utilization.

Table 5-2: Disk Subsystem Times—Tapes 74/75

Interactive Batch
Pop* Time % Pop* Time %

Chan wait 2 880 111 5 55 3 270 118 3 58

Cont wait 0 924 35 8 18 1 020 36 9 18

Spin wait 0 144 5 6 3 0 143 5 2 3

Spin serv 1 260 48 8 24 1 200 43 4 21

Total 5 208 201 7 100 5 633 203 8 100

Rollout Accesses
Total 904 .0 849.0

* Average number of jobs waiting or being
served at each point.

Table 5-2 presents the components that
make up the disk subsystem response time.

For regular file accesses, the controller
wait is almost as large as the disk service
time, and the channel waiting time is larger
that the sum of all other wait times. Thus
severe queueing is present at the channel
and the controller, and the disk subsystem
is overloaded. The last line of Table 5-2
gives the disk subsystem response time for
interactive spillover rollout and batch
rollout requests. These are actually
slightly smaller than those for trace tapes
72/73.

6. Projections for Alternate Configurations

Several experiments have been performed
to examine the question: what is the effect
of merging rollout file accesses with
regular (user) accesses to the disk
subsystem? Since rollout transfers tend to

be much longer than regular transfers,
variance will be introduced into the service
time for the disk spindles, which will have
the effect of lengthening the response time
of the disk subsystem for regular accesses.
On the other hand, if the fourth controller
(used for rollout files) is less utilized
than the first three (used for regular
files) , then the average channel utilization
for regular files may be lowered, resulting
in a shortened disk subsystem response time.
The disk subsystem response time for rollout
file accesses should be shortened in all
cases, because more paths will be available.

Three configurations of the disk
subsystem are presented:

1 . Three controllers and 1 1 spindles
for regular file accesses, arranged
in a triangle with (4, 4, 3)

spindles on each leg, one controller
and one spindle dedicated to rollout
file transfers (configuration A).

This is the actual hardware
configuration measured.

2. Four controllers and 12 spindles,
arranged in a square with three
spindles on each leg. All 12

spindles are used indiscriminately
for both kinds of transfers
(configuration B)

.

3. Four controllers and 12 spindles,
arranged as for configuration B, but
with rollout files confined to a

single spindle, and regular files on

the remaining eleven (configuration
C)

.

The motivation for configuration C is that

it is "similar" to configuration A in the
sense that only one spindle contains rollout
files.

6.1 Trace Tapes 72/73

Table 6-1 reports the results for trace
tapes 72 and 73. As can be seen, the

rollout channel (channel 4, configuration A)

has a utilization approximately equal to the

utilization of the regular channels.
Therefore, effects due to increased channel
availability should be negligible, and the
changes in system performance should be due

entirely to the variance introduced by

merging the two classes of files.

242

Examining the data for configuration B,
it may be seen that the disk subsystem
response time increases for regular
accesses, and decreases for rollout
accesses, as expected. The overall
controller utilizations, channel
utilizations, and logical channel queue
lengths increase, for both the interactive
and batch processors. As a result, the
interactive response time increases by 13J,
and the batch throughput drops by 2.4J.

rise, while the others fall, resulting in an

unbalanced situation, and a further decrease
in system performance: interactive response
time rises by 25% compared with
configuration A, and batch throughput falls
by 5.51. Note that when the system becomes
saturated, the two channels used for rollout
files will bottleneck first because of the
unbalance. This suggests that confining the
rollout activity to a single spindle is

undesirable, when regular and rollout files
share controllers.

Table 6-1: Utilizations and response
times for tapes 72/73

Logical Channel Queue Length
Interactive

Table 6-2: Utilizations and response
times for tapes 74/75

Logical Channel Queue Length
1 2 3 4 Total Config Interactive

1 2 3 4 Total Config
.076 . 080 .047 .430 0.633 A

.123 . 156 .132 .117 0.528 B 1 .07 1 .06 .757 .436 3.323 A

.119 . 059 .084 .822 1.084 C .661 .537 .484 .581 2.263 B

.422 .285 .476 1 .42 2.603 C

Batch
1 2 3 4 Total Config Batch

1 2 3 4 Total Config
.035 . 041 .028 .233 0.633 A

.101 . 074 .083 .080 0.338 B 1.26 1 .21 .800 .210 3.480 A

.081 . 020 .041 .315 0.487 C 1 .00 1.03 .951 .955 3.936 B

1 .02 .627 .948 1 .45 4.045 C

Channel Utilization
Interactive Channel Utilization

1 2 3 4 Total Config Interactive
1 2 3 4 Total Config

.415 . 440 .384 .459 1.698 A

.468 474 .467 .459 1.868 B .771 .796 .762 .477 2.806 A

.598 414 .361 .653 2.026 C .733 .753 .742 .720 2.948 B

.806 .659 .638 .822 2.925 C

Batch
1 2 3 4 Total Config Batch

1 2 3 4 Total Config
.312 , 332 .289 .415 1.348 A

.379 376 .357 .361 1.473 B .775 .823 .768 .413 2.779 A

.490 287 .235 .560 1.572 C .715 .723 .712 .693 2.843 B

.792 .623 .584 .795 2.794 C

Controller Utilization (interactive + batch)

1 2 3 4 Total Config Controller Utilization (interactive
1 2 3 4 Total Config

.551 575 .512 .607 2.245 A

.592 599 .579 .579 2.349 B .914 .930 .908 .629 3.381 A

.699 531 .470 .756 2,456 C .879 .890 .883 .866 3.518 B

.915 .826 .794 .920 3.455 C

Interactive Statistics
Configuration A

Response time 554
Disk subsystem

response time
(regular) 67.6
(rollout) 979

Batch Statistics
Configuration A

Throughput 25.4
Disk subsystem

response time
(regular) 67.9
(rollout) 1064

626

92.6
417

695

103

897

Interactive Statistics
Configuration ABC
Response time 1664 1505 1534
Disk subsystem

response time
(regular) 202 179
(rollout) 904 577

172

1033

24.8 24.0

96.6
669

104

939

Batch Statistics
Configuration A

Throughput 42.3
Disk subsystem

response time
(regular) 204
(rollout) 849

38.8 38.8

244

740
242

947

With configuration C, the controller
and channel utilizations for those
controllers connected to the rollout disk

243

6.2 Trace Tapes 7H/75

Table 6-2 presents the results of the
analysis of configurations A, B, and C for
trace tapes 74 and 75. As the utilization
of the rollout channel in configuration A is

considerably smaller than the average
utilization of the regular channels,
spreading the files evenly over four
controllers lowers the average channel
utilization for those channels which were
used for regular files in configuration A.

On the interactive processor, the
decrease in response time due to more
channel availability is sufficient to

overcome the increase caused by the
introduction of variance, resulting in a

modest improvement in the response time

(9.0% for configuration B, 7.8% for

configuration C) , and in the disk subsystem
response time for regular file accesses.
However, due to the larger variance on the
batch processor (rollout file accesses are
longer and regular file accesses are
shorter), the net result is an 8.3% decrease
in batch throughput, accompanied by an

increase in the disk subsystem response time
for regular file accesses. Note also that,
because of controller saturation, the disk
subsystem response time for batch rollout
files accesses is worse in configuration C

than it is in configuration A.

6.3 Discussion

These three experiments at two load
levels appear to support our contention that
for normal to heavy loads, the variance
introduced by merging long and short
accesses results in a reduced system
capacity, while for extremely heavy loads
the lowered channel utilizations compensate
for the variance effects, making the

separate controller configuration less
desirable

.

7 . Projections for Altered File Management

The distribution of data transfer times
for regular file accesses in UT-2D can be

divided into four distinct components [1]:

1. An exponentially distributed compon-
ent, with a mean of approximately 10

ms., representing normal user I/O;

2. An uniformly distributed component,
with a mean of 158 ms., representing
searches for end-of-information when
updating random access files;

3. A component representing accesses
requiring two seeks (i.e., the total
data to be transferred in one access
is split between two physical
cylinders)

;

4. A component representing loading or

checkpointing operations (typically
requiring three or more seeks)

.

The second component is an artifact of the
organization of UT-2D file accesses, and is

necessitated by the fact that the position
of the end-of-information sector within a

logical track can only be determined by
reading sectors from the logical track until
end-of-information is discovered. This

necessitates a search of, on average, one
half of a cylinder, requiring one half of 19
rotations of the spindle, or 158.333 ras. In

this section a series of experiments are
reported in which this component is deleted
(i.e., the required information is assumed
to be stored in central memory)

.

Table 7-1 shows the change in disk
subsystem response time for regular file
accesses, for trace tapes 72/73 and 74/75.
Comparing case I with case II, it may be
seen that a substantial improvement in the
disk spindle service time, T^ , has occurred.
This drop in T, is reflected in an even
greater drop in the overall disk subsystem
response time, T , due to reduction of
queueing caused by high channel and
controller utilizations. (For example, for
trace tape 74, a drop of 7.0 ms. in T,

results in a drop of 90.0 ms. in the disk
subsystem response time T .)

Table 7-1: Disk subsystem response times
(regular file accesses).

Trace Tapes 72/73

Configuration A B C

System case T
-r

T
—

r

chg"^ T—

r

chg"^

Inter. I* 42.8 67 6 96 2 +42% 104. +53%
II 33.4 45 1 82 0 +82% 84.3 +87%

Batch I 38.3 67 9 96 6 +42% 104. +53%
II 31 .8 44 6 78 4 +76% 81 .8 +83%

Trace Tapes 74/75

Configuration A B C

System case T—

r

T—

r

chg"^ T—

r

chg"^

Inter

.

I* 48 9 202. 179. -11% 172. -15%

II 41 9 1 12. 131 . + 17% 138. +23%

Batch I 43 4 204. 244. +20% 262. +28%
II 39 4 123. 177. +44% 191. +55%

*I : before deletion
II: after deletion

"""percent change compared with config A

An additional result of interest is

that, because the rollout file accesses and

the regular file accesses now have mean
service times that are even more disparate,
the variance introduced by merging the two
file types together causes a greater
(percentage) degradation in the performance

of the disk subsystem in case II than is

observed for case I.

Given that the uniform component in

case I is an artifact of the organization of

file accesses in UT-2D, which may be easily
corrected by reprogramming (in fact, this

change has already been made) , it follows

that case II is the preferred mode of

operation. This implies that separation of

244

rollout files from regular files is likely
to be desirable, even if the rollout
controller is underutilized. This result
should therefore be applicable to other CDC
operating systems, as the end-of-inforraation
position is stored in central memory (in the
File Status Table entry) for systems such as
CDC's NOS [3]

.

8. A 20-3pindle Configuration

As the interactive processor
utilization is less than 0.5 for a

12-spindle disk subsystem, and as other
studies had indicated that interactive
activity would saturate the disk subsystem
at about 150 users [1], various 20-spindle
configurations were investigated, with an
interactive load of 200 users.

Various configurations were
investigated: Configuration D is identical
to configuration A, except that two
controllers are added, with eight spindles
between thera. Configurations E and F

arrange the 20 spindles into two triangles,
with one rollout disk for each class of
rollout file (batch and spillover
interactive) . Configurations G and H are
similar to configuration C, except that
eight spindles are added between two
controllers, and two spindles are dedicated
to rollout files, as for configurations E

and F.

Table 8-1: Statistics for 20-spindle
configuration

.

Configuration D E F G H D

Response time 1854 1836 1744 1795 1813 1424

Throughput 46.6 43.2 45.1 43.1 44.1 47.2
Disk Subsystem

response time
Interactive

(regular) 133 199 189 197 202 146

(rollout) 5280 955 792 792 829 387
Batch

(regular) 113 185 159 185 179 122

(rollout) 1561 908 771 855 855 405

The first five columns of Table 8-1

give various statistics for the different
subsystem configurations. There is little
to choose among them: the largest and

smallest response times differ by only six

percent. However, the disk subsystem
response time for interactive rollout file

accesses is over five seconds for

configuration D. This implies that this

configuration is limited by the capacity of

the rollout channel. (Configurations E, F,

G, and H have two rollout spindles;

configuration D has only one.) To

compensate for this, the model was run using

a rollout transfer time that was

approximately 40% smaller. (This

corresponds to the use of a full-tracking
disk with a controller capable of buffering
more than one physical record at a time.)

The last column of Table 8-1 gives the

result for this run. The interactive
response time and the batch throughput are

clearly superior to all other configurations
studied

.

This again reinforces our previous
conclusion that rollout file activity should
be separated from regular input/output
activity, especially if it can be given
adequate transfer capacity.

9. Discussion

9.1 Applicability of the Data

The data observed are for a unique
operating system, executing a computational
workload which is almost entirely research-
and student-oriented, i.e., which has little
business data processing component.
However, except for the way in which direct
access updating is done, UT-2D is

essentially identical to NOS as far as

organization of the I/O subsystem is

concerned. Therefore we feel that the data
and the models presented here are also
applicable to CDC 6000 Series and Cyber
systems operating under NOS. Valid models
for NOS systems could be obtained either by

deleting the direct access component (see
section 7) in the present models, or by

running the models with data gathered
directly from a NOS system [9].

9.2 Comparison vilth IBH Systems

The transfer time characteristic has
several components, and the details of its

shape were essential to achieving validation
of the system model. The characteristic is

radically different from published
characteristics for IBM 3330 systems [10,

11], in spite of the fact that the physical
equipment (disk spindle) is identical. This
difference may be due to the fact that the

I/O software of UT-2D (and NOS) organizes
data accesses to the disk subsystem in quite
different ways from the ways in which
System/370 I/O Supervisors organize data
accesses. This difference is so strong that
Zahorjan [11] found no differences in his
results when he varied the shape or the mean
value of the transfer time distribution,
whereas our results depend critically on

these parameters.

The major point of difference comes
from the decision to optimize locally [i.e.,

to reduce the total time for an individual
transfer (especially a long transfer such as

a rollout access)]. This makes CDC systems
fundamentally different from IBM systems
(even though the disk spindles are

electrically identical). For CDC systems,
the possibility of extremely long transfers
will lead to a very large variance in the

service time for data transfers, which will
interfere severely with the ability of CDC

disk subsystems to provide good service,
because the waiting time for the controller
is very strongly influenced by the variance
of the service time for the disk spindles.

9.3 Study Results

In section 6.3 we have shown that,
except for extremely heavy loads, the

measured system appears to operate more

245

efficiently if the rollout activity is

separated from the regular activity. We

note that the load represented by trace

tapes 74 and 75 is unusually high (it was

created by reducing the number of disk
spindles from 20 to 12 for one day without
informing the users) , and as such would not
normally occur in practice.

In section 7 we reinforce our
conclusion, as the simulation model results
project that operation conditions closer to

those in CDC's NOS show a clear preference
for separation.

In section 8 we note that the gains to

be made can also be invalidated if the

rollout path is not allocated sufficient
transfer capacity. We therefore feel that
it is necessary to separate the rollout
activity from regular I/O, in order to

maximize the performance of the disk
subsystem, except when the whole disk
subsystem is sufficiently overloaded that
increased channel availability can overcome
the effects of the variance introduced.

9.4 Future Work

A considerable amount of data is

available in the trace tapes, which has not
been used in the present study. Since the
original study was done, a simulation model
has been developed which was used to

evaluate the utility of seek/read-write
overlap in this system. The results are
reported in [1] . Further refinement of the
rollin/rollout model elements is planned.
One solution to the long holding times is to

apply preemption to the disk transfers,
i.e., to break them up into multiple
transfers with release of the channel
periodically [12]. This will lower the
variance of the disk spindle service time,

but increase the elapsed time required to

complete long operations, as interfering
disk arm movement may take place. A study
is currently planned to determine whether
the benefits which can be obtained outweigh
the disadvantages accruing from the
preemption

.

In addition, the continuous holding of
resources on the path between the central
processor and the disk spindle is a major
factor contributing to the results presented
in this paper. Another study will examine
the performance improvement which results
when the disk subsystem requests are
centrally scheduled, i.e., when the required
resources (PP, channel, controller, spindle)
are not allocated until all are available.

The authors would like to acknowledge the
assistance of the staff of the Computation
Center at the University of Texas at Austin,
expecially N. Person, W. Jones,
Dr. T. Keller, G. Smith, and Dr. C. Warlick,
and the encouragement of Dr. J.C. Browne,
who invited the first author to visit the
University of Texas during 1979-80. This
study was supported in part by the Natural
Sciences and Research Council of Canada,
grant number A-8634, and in part by the

Computation Center and the Department of
Computer Sciences, University of Texas at
Austin

.

References
[1] Atwood, J.W., Yu, K.-C, and Mc Leod

,

A., An Emperical Study of a CDC 844-41
Disk Subsystem, Performance Evaluation
(accepted for puplication)

.

[2] Howard, J.H.. A Large Scale Dual
Operating System, in Proceedings ACM
Annual Conference 1973, pp. 242-248.

[3] NOS Version ^_ Reference Manual , Control
Data Corporation, St. Paul, Minn.,
1978. Publication numbers: 60435400
(Volume 1), 60445300 (Volume 2).

[4] Howard, J.H., and Wedel, W.M., The
UT-2D operating system event recorder ,

Technical Report TSN-37 , University of
Texas at Austin Computation Center,
February, 1974.

[5] Howard, J.H., and Wedel, W.M.,

EVENTD-UT-2D event tape summary/ dump ,

CCSN-38 (Revised),

Texas at Austin

[6]

Technical Report
University of
Computation Center, August, 1977.
McGehearty, P.F., QSIM, an

implementation of a language for the
analysis of queueing network models,
M.A. Thesis, University of Texas at

Austin, Dept. of Computer Sciences,
1974. See also Foster, D.V.,
McGehearty, P.F., Sauer, C.H., and
Waggoner, C.N., A Language for Analysis
of Queueing Models, Fifth Annual
Pittsburg Modeling and Simulation
Conference, April 1974.
Sauer, C.H. and MacNair, E.A.,
Simultaneous Resource Possession in

Queueing Models of Computers,
Performance Evaluation Review , vol. 7,
no. 1, 1978, pp. 41-52.
Yu, K.-C, The effect of system
configuration and file placement on the

performance of a CDC 844-41 disk
subsystem, M.A. Thesis, University of
Texas at Austin, Department of Computer
Sciences, 1980.

Lo Cicero, C. , An event-trace study of
the performance of the I/O subsystem
for a CDC Cyber 172 computer,
M.Comp.Sci Thesis, Concordia
University, Dept. of Computer Science,

1980.

[10] Bard, Y. , A Model of
Multipathing , Comm .

No. 10, October 1980,

[11] Zahorjan, J., Hume, J.

K.C., A Queueing Model of a Rotational
Position Sensing Disk System, INFOR ,

Vol.

[7]

[8]

[9]

Shared DASD and
ACM, Vol. 23,

pp. 564-572.
.N.P., and Sevcik,

No. 3.16,

pp. 199-216.

[12] Browne, J.C
Operating
Engineering

,

No. 9, September 1980,

October 1978,

Interaction Of
and Software

IEEE, Vol. 68,

pp. 1045-1049.

246

Performance Prediction and Optimization
- Methods and Experiences

247

SESSION OVERVIEW

PERFORMANCE PREDICTION & OPTIMIZATION

- METHODS & EXPERIENCES

Thomas P. Giammo

Federal Computer Performance
Evaluation & Simulation Center

The two papers of this session entitled, "Tuning The
Facilities Complex of UNIVAC 1100 OS" and "Approximate
Evaluation of a Bubble Memory in a Transaction Driven System"
are about as far apart in their basic nature as can be imagined
while remaining within the context of the subject of this
session. One is a highly pragmatic "how to" approach to

obtaining specific operation system parameters in a particular
operating system while the other is a highly abstract approach
to predicting the general characteristics of a model of a

computer system. In one sense, this diversity in content is a

measure of a broad scope of our field. Each paper represents
an important facet of the work that we need to perform in order
to achieve results that are practical and capable of implemen-
tation as well as soundly-based from a theoretical viewpoint. I

believe that each of the papers will be found to be very
helpful to the audience which it addresses.

In another sense, however, the diversity in content is

indicative of a continuing problem in our field — the apparent
difficulty of the theoretical and practical elements of the

performance evaluation community in finding common ground.

249

TUNING THE FACILITIES COMPLEX OF UNIVAC 1100 OS

John C. Kelly

Datametrics Systems Corporation
Burke, VA 22015

Jerome W. Blaylock

System Development Corporation
Slidell , LA 70458

Performance of UNIVAC 1100 computer systems is largely determined
by the way the operating system, 1100 OS, manages the hardware resources.
Since workload and performance requirements are unique to a particular
site, UNIVAC supplies an extensive set of performance parameters for
tailoring the system. One set of parameters, those associated with
the Facilities Complex are examined in detail. The Facilities Complex
is responsible for managing mass storage (disks and drums). The para-
meters associated with the Facilities Complex are defined, performance
hypotheses are stated, and sources of data for testing the hypotheses
are discussed. This paper extends and updates work reported by Kelly
and Route [1^]

.

1 . I ntroduct ion

The 1100 OS, commonly referred to as

the EXEC, is divided into six major compon-
ents: Symbiont Complex, Coarse Scheduler,
Activity Control, Dynamic Allocator, Facil-

ities Complex, and I/O Complex. The Sym-
biont Complex buffers data between I/O de-
vices and main memory. The Coarse Schedu-
ler selects which runs should be opened
next. Activity Control manages CPU dis-
patching and allocates CPU quanta. The
Dynamic Allocator manages main memory. The
Facilities Complex manages peripheral stor-
age devices and allocates file space. The
I/O Complex controls all I/O operations
performed on the system.

The Facilities Complex consists of a

set of non-resident EXEC segments that must
be loaded when their services are required.

Services performed by the Facilities Com-
plex include such things as file assignment,
space allocation, and file cataloguing. A

list of the frequently used segments is

presented in Table 1. To keep track of what
devices are on the system and how much space
is allocated to which files, the Facilities
Complex makes use of an extensive set of
control tables. They are summarized in

Table 2. The relationship among the DLT,

DAD, search item, and lead item is presented
i n Fi gure 1

.

Upon receiving a new request for mass
storage, the Facilities Complex first checks
the EST to determine if sufficient space
exists on the device type requested. If

sufficient space is not available on the

requested device type, it selects another
device type according to the selection rules

defined at system generation time. The
Facilities Complex then accesses the LDUST
and MBT to allocate the mass storage request-
ed.

The Facilities Complex processes facil-
ities requests in three passes. The first
pass checks for the availability of the

facilities being requested. If the requested

251

Table 1. Main Segments Associated with
Fac i 1 i t i es Comp 1 ex

Table 2. Control Tables Used by Facilities
Comp 1 ex

Segment Name Deecrlptlon

FIMAIN The entry point for the FacllltieB Cooiplcx. All
Tcc|U66CB lnlCl.AHy go Co FSiAIN which scCivACes
ubordlnate segmentB to do the work.

FIA5G Process 9ASG and 9CAT requests.

FIFREE Process @FR£E requests.

FIUKQ Process ^MODE. and ^QUAL requests.

FALL Allocate mass storage in track (TRK) or position
(POS) granularity.

FASEC Allocate mass storage sectors to EXEC.

FIBRKI Break facility request into a standard format
for processing.

FICKAC Check availability of cooinunleations line.

FICKAF Check availability of mass stprage apace.

FICKAT Check availability of tape drives.

FICRIT Create PCT item for file being assigned.

FIHOU) Place a run In a facilities hold state (put on
BOLDQ) due to unavailability of facilities.

FREL Release mass storage.

FRSEC Release mass storage sectors assigned to EXEC.

ROLBAK Initialize a canned run to reload a file.

ROLOOT Initialize a canned run to unload a set of files.

DRC Manage the master file directory.

Control Table Description

MCT Master Configuration Table. Describes the attri-
butes for all devices conflgrzred on the system.

HFD Master File Directory. Describes the attributes
of all catalogued files in the system

MBT Master Bit Table. Defines how space is allocated
on each mass storage device.

DAD Device Area Descriptor. Describes each contigu-
ous block of mass storage allocated to a file.

DLT Directory Lookup Table. Part of the MFD that
contains a pointer for each catalogued file to
either a search item or lead item.

EST Equipment Summary Table (also called EQPSUM)

.

Defines the number of 'positions and tracks avail-
able on all mass storage devices of the same type,
^ere is one entry for each device type Buch as
8450 's.

LDDST Logical Device Unit Status Table. Defines the
status of each mass storage device configured on
the system.

LEAD
ITEM

HI

MAIN
ITEM

DAD TABLE*

DAD
TABLE

NEXT DAD TABLE~»
PREVIOUS DAD TABLE

ERA F lltST WORD
FRA LAST WORD I

OAO
TABLE

DAT 8

DIRECIOIIY
LOOKUP
TABLE

'1 -» jn

SEARCH
ITEM

FILE NAME«

FILE NAME*
FILE NAME*

'2— If
»4^lo d<i

SEARCH
ITEM

loa not exist.

PILE NAME '

LEAD
ITEM

MAIN
ITEM

DAD TABLE*

DAD
TABLE

HASH (QUAUFIEU'I'ILE NAME) • I

LEAD
ITEM

MAIN
ITEM

F-CYCLE •

Figure 1. Master File Directory

252

facilities are not available, the run is

placed on the facilities hold queue (HOLDQ)

until they become available. When it is

determined that all system resources re-

quested by the run are available, pass one
is completed. The second pass builds the
required control tables and creates the MFD
entries. The third pass performs the actual
allocations. Only mass storage requests
with initial reserves require allocation;
if no initial reserves are specified, the
allocation is handled dynamically by the

I/O Complex.

The Facilities Complex has been studied
in depth by [1,3,6] and as parts of larger
studies by [2,4,5].

2. Virtual Mass Storage

Mass storage (peripheral storage on

drums and disks) is managed as a virtual
resource on UN I VAC 1100 systems. That is,

from a user's viewpoint, the system contains
an infinite amount of mass storage space.

When more space is allocated than is physi-
cally available, the system creates space
by rolling out infrequently used files to

tape. When the ratio of allocated space to

configured space becomes large, there is a

great potential for the system to begin
thrashing by moving files bacl< and forth
between real mass storage (disks) and vir-
tual mass storage (tapes). The most severe
problem occurs when a terminal user requests
a catalogued file which has previously been
rolled out to tape. The user must wait for

the appropriate tape to be mounted and the

file rolled back to disk -- a process which
in extreme cases may require up to two

hours [3,5,6].

The amount of mass storage available is

monitored by the element FALL. When mass
storage available drops below a specified
limit, FALL calls ROLOUT to initiate the

rollout process. ROLOUT starts a critical
deadline batch run which calls the SECURE
processor to perform the actual rollout.
The SECURE processor is a utility program
supplied by UNIVAC to maintain backup copies
of all catalogued files. When started by

ROLOUT, SECURE will unload enough files to

bring mass storage availability up to a pre-

defined level

.

2.1 Mass Storage Thresholds

A set of user definable thresholds de-

termine when the system should consider mass
storage to be approaching saturation. When
the available mass storage drops below
threshold MSW1 , mass storage is said to be

"tight." This condition is detected by FALL
which in turn calls ROLOUT to initiate the

rollout operation. The critical ity of mass
storage is tracked by four other thresholds,
MSW2 through MSW5. These thresholds trigger
different throttling mechanisms to prevent
available mass storage from being totally
exhausted before rollout can be completed.
The thresholds are defined in Table 3.

Table 3. Mass Storage Thresholds

Definition Default Value2

MSUl MSW2 + HSW4 3120 If BuisB itorage available
la leee than HSWl , FALL
calls ROLOUT. Also Che
mininnjni number of cracks
to be unloaded.

MSW2 MSW3 + MSW4 2340 Print warning message on
console

.

MSW3 0150 1560 Stop run scheduling with
"CS H."

ttSVi MSW3 / 2 780 Print warning oiessage on
console

.

MSW5 0200 128 Stop all requests except
chose J>y EXEC.

^ MAXOPN is the maxiiEuni ninnher of batch Jobs allowed open ac Che
same cime.

^ Default values are baaed on a MAXOPN value of 15.

Arguments can be made for setting MSW1

high or low. A low setting minimizes the
average amount of unused (available) mass
storage, while running the risk of reaching
the critical thresholds where throughput wil

be curtailed. High settings reduce the risk
of reaching the critical thresholds, but in-

crease the amount of mass storage that re-

mains unused. The proper setting really de-
pends on the rate at which mass storage is

consumed compared to the rate at which it

can be made available with a rollout. The
settings are also dependent upon the number
of files with current backups when a rollout
takes place.

2.2 Number of Tracks to Unload

The element ROLOUT calculates the number
of tracks to unload from the formula:

NTRKS = TOTRKS
PERCNT

AVAIL (1)

where

TOTRKS = Total number of mass storage
tracks configured on the system

PERCNT = Fraction of configured tracks
to be unloaded. (Current de-
fault is 10.)

AVAIL = Number of tracks currently
aval lable.

253

The number of tracks to be unloaded during
a rollout varies depending upon the number
of tracks available at the time the rollout
is initiated. The objective is to maintain
the number of available tracks approximately
equal to PERCNT percent of the total tracks
aval lable.

The number of tracks to be unloaded is

further constrained by the equation

MSW1 < NTRKS < TFAST (2)

F(X) = Function for computing point
values for TSLR and MTBR.

G(X) = Function for computing point
values for SIZE.

EQBIAS = Equipment bias (default = 2).
PVBIAS = Private file bias

(default = 1).

FCBIAS = F-cycle bias (default = 1).

UEFBIAS = User defined bias.

The functions F(X) and G(X) use Tables h and

5 respectively to compute point values that
lie in the range 0-32.

That is, at least MSW1 tracks will always be

unloaded, but never more than TFAST. TFAST
is currently coded at 30,000 octal or 12,288
decimal and is historically based on the

number of tracks on one FASTRAND. The number
of tracks to be unloaded has important per-
formance implications since it affects how
frequently rollouts will have to be performed.

2.3 Selecting Which Files to Unload

The Unload Eligibility Factor (UEF) de-
termines which files to unload during a roll-

out operation. if the UEF is improperly set,

the wrong files may be rolled out resulting
in an unnecessarily high number of rollbacks.
Ideally, only infrequently used files should
be rolled out. When a rollout is initiated,
the SECURE processor is started via a canned
run stream. SECURE computes the UEF for

each catalogued file and selects those files

with the highest UEF for unloading.

The UEF is computed from the formula:

UEF = (CRNCY-'-F(TSLR) + FREQCY-'^F (MTBR)

+ SIZEWT^'-G(SIZE))/2^^™^

+ EQBIAS + PVBIAS + FCBIAS

+ UEFBIAS (3)

where

CRNCY = Currency weighting factor
(default = kO).

TSLR Time since last reference in

hours

.

FREQCY = Frequency weighting factor
(default = 20).

MTBR Mean time between references
in hours.

SIZEWT = Size weighting factor
(default = 10).

SIZE Size in tracks.
UEFWT = Shift factor to reduce UEF

magnitude (default = 5).

Table ^t. Point Values for TSLR and MTBR

POIHTS HOURS DAYS POINTS HOURS CAYS

1 1 .04 17 98 4.08
2 2 .08 18 116 4.83
3 3 .13 19 134 5.58
4 4 .17 20 152 6.33
5 7 .29 21 194 8.08
6 10 .42 22 236 9.83
7 13 .54 23 272 11.33
B 16 .67 24 320 13.33
9 22 .92 25 530 22.08

10 28 1.17 26 740 30.83
11 34 1.42 27 950 39.58
12 40 1.67 28 1160 48.33
13 50 2.08 29 1370 57.08
14 60 2.50 30 1580 65.83
IS 70 2.92 31 •1790 74.58
16 80 3.33 32 2000 83.33

Table 5. Point Values for SIZE

POINTS TRACKS POINTS TRACKS

1 8 17 152
2 16 18 176
3 24 19 200
4 32 20 224
5 40 21 248
6 48 22 272
7 56 23 296
8 64 24 320
9 72 25 376

10 80 26 432
11 88 27 488
12 96 28 544
13 104 29 664
14 112 30 784
15 120 31 904
16 128 32 1024

Four types of files have predefined UEF's.

They are:

UEF = 0, Tape files or files unloaded
UEF = 1, Removable disk files

UEF = 2, Unload-inhibit files (G and V)

UEF = 3, Empty files (0 tracks)

The computation of the UEF is illustrated by

the following example.

254

Time since last reference = h days
Time since last catalogued = 1 04 days
Number of times assigned = ^6

Mean time between references = IO't/46

- 2.3 days
Size of f i le = 200 tracks
Stored on drum (EQBIAS) = 2

Private file (PVBIAS) = 1

Current F-cycle (FCBIAS) = 1

UEFBIAS = 0

UEF = (40--'-17 + 20^'Mi, + lo^vis) / 32
+ 2 + 1+1+0

= 39.9

The information required to compute the UEF
is maintained in the MFD.

3. Master File Directory (MFD)

The Master File Directory (MFD) is

illustrated in Figure 1. The MFD describes
each catalogued file in the system. Entries
into the MFD are made by computing a hash
code index from the file name:

HASH(QUALIFIER'-FILENAME) = i {k)

The hash code is used as an index into the

Directory Lookup Table (DLT) . The DLT then

contains a pointer to a lead item which con-

tains pointers, for each F-cycle of the

file, to main items. The main item contains
the descriptive information for the file.

If two file names generate the same hash

code index, a DLT conflict occurs. The con-

flict is resolved by replacing the lead item

pointer with a pointer to a search item.

The search item then contains the pointers
to the lead items for the files with the

duplicate hash codes.

3.1 Duplicate Hash Codes

Duplicate hash codes in the DLT result
from (1) a DLT too small for the number of

catalogued files, or (2) an inefficient hash-

ing algorithm. The size of the DLT is speci-
fied by the system generation parameter
DCLUTS. Besides defining the size of the

DLT, DCLUTS is used in the computation of

the hash code as follows:

HASH(QUALIFiER--'^FILENAME MOD (DCLUTS) (5)

Analysis by UNIVAC and user sites [5] has

shown that DCLUTS should be at least twice

as large as the number of catalogued files.

Since DCLUTS is also used in the computation
of the hash code, it should also be a prime
number. The use of a prime number improves
the likelihood of generating hash codes
that are uniformly distributed over the

range of the DLT.

The actual hashing algorithm has been
found to be effective when the above guide-
lines are followed. Analysis has shown
that the algorithm is relatively insensi-
tive to the use of similar file names. That
is, similar file names do not usually hash

into the same index. This is contrary to

what was previously reported in [k]

.

Persing [5] analyzed the hashing algo-
rithm using 7,357 file names. His findings
are summarized in Table 6. Unfortunately,
he did not give the actual values used for

DCLUTS. His data are rounded to the nearest
thousand. Two items from his study stand

out. First, low values for DCLUTS result in

nearly every file requiring a search item.

Second, even when the size of DCLUTS is

large, kO% of the files still required a

search item. Even for a perfect hashing al-

gorithm, there will always be some chance of

filenames hashing into the same index. Du-

plicate entries in the DLT are undesirable
for two reasons. First, an extra I/O is

required to read the search Item. Second,

mass storage space is wasted storing search
items. On release Level 36 of the EXEC,

DCLUTS is set to a default value of 12,0^7.

Table 6. Results of Hashing 7,357 File

Names

RATIO TO FILES REQ' I NG % Of

DCLUTS NO. FILES SEARCH ITEMS TOT FILES

2,049 0.3 7,128 97^

17,000" 2.3 2,926 kO%

Approximate value rounded to nearest 1000

3.2 MFD Lock Cel Is

Access to the MFD is controlled by a

set of lock words. Multiple lock words are

used so that two users can access different
parts of the MFD at the same time. The num-

ber of lock words and equivalently the num-

ber of parts of the MFD that can be accessed
simultaneously is computed from the system

255

generation parameter DLOKSF. The number of

lockwords is equal to

2DLOKSF

can result in wasted mass storage space. It

can also result in rollouts if no full posi-
tions are available.

k.2 DAD Table Storage in EXPOOL

where DLOKSF is a positive integer between
zero and four. As it turns out, the EXEC

does not take full advantage of the multiple
lock words. The dominate user of the MFD is

the Facilities Complex, and the first thing
that FIMAIN does is to set all MFD lock

words. Since the Facilities Complex is de-

signed to service only one request at a time,

DLOKSF may as well be set to zero. When the

Facilities Complex is rewritten to process
multiple requests at the same time, it will

be advantageous to increase DLOKSF to three

or four.

4. File Granu 1 ar i ty

Mass storage is allocated in either
track or position granularity. A track is

64 sectors (1 sector = 28 words); a position
is 64 tracks. The number and location of

the granules assigned to a file are defined
in the Device Area Descriptor (DAD) table.

The DAD table defines every contiguous block
of mass storage assigned to a file. The DAD

table also maps a file relative address to a

device relative address.

4.1 Mass Storage Fragmentation

Mass storage can become fragmented much
the same as memory. When mass storage space
is allocated to a file, the EXEC attempts to

assign a contiguous block of space; however,

if none is available, it will assign discon-
tiguous areas to the file. Since each sepa-

rate area of mass storage is defined by a

separate DAD table, extra overhead is re-

quired to access that file. The overhead
shows up as extra mass storage space required
to store the DAD tables, extra memory space

to hold the tables while the file is active,
and extra CPU time to search the DAD tables.

A common cause of too many DAD tables
for a single file is requesting no initial

reserve for the file. When no initial re-

serve is requested, the system will allocate
space in four track increments when it is

needed. This relults in many discontiguous
areas and multiple DAD tables. Some sites
have minimized the likelihood of fragmenta-
tion by changing incremental allocations to

sixteen tracks. Fragmentation can also be

reduced by requesting position granularity
rather than track granularity. Care must be
taken, however, since position granularity

EXPOOL is the EXEC's main memory stor-
age pool. It is an area of main memory re-

served for the exclusive use of the EXEC to
hold such items as DAD tables. The para-
meter NGTB specifies the maximum number of
DAD tables than can be in EXPOOL per cata-
logued file when EXPOOL is "tight." When
EXPOOL reaches a critical threshold of uti-
lization, access to EXPOOL is limited and

one of those things limited is DAD tables.
By keeping the number of DAD tables per file
below NGTB (default value = 5), that is,

minimizing mass storage fragmentation, this
will not be a problem. When the value goes
above five and EXPOOL is tight, extra over-
head will result from moving DAD tables back
and forth between main memory and mass stor-
age.

4.3 Mass Storage Sectors

Each DAD table is one sector (28 words)
in length. The parameter MAXSEC specifies
the maximum number of DAD tables that the

EXEC can read into memory at one time. If

the number of DAD tables per file is low,

MAXSEC may be low. A guideline in [4] sug-

gests setting MAXSEC to the 80th percentile
of the number of DAD tables per file. The
default value is 124.

4.4 Maximum File Size

An option of the file assignment state-
ments allows the user to specify the maximum
file length in granules. When this value is

unspecified, the parameter MAXGRN is used as

a default value. If MAXGRN is set too high,

mass storage may accidently be wasted by un-

debugged or inefficient programs. The cur-

rent default value for MAXGRN is 128. As a

guideline, Kelly [4] suggests that MAXGRN be

set equal to the 80th percentile of all file

s i zes.

5. Performance Problems and Hypotheses

Potential performance problems associ-
ated with the Facilities Complex are summar-

ized below. They are denoted as PI, P2,

etc. for ease of reference. Associated with
each potential problem are a set of perfor-

mance hypotheses denoted HI, H2 , etc.

that might be the cause of the problem.

Each hypothesis also has a brief statement
of how to test the hypothesis.

256

PI . Too many rollouts are occurring .

HI . Not enough tracks are being unloaded .

Monitor the frequency that rollouts are
occurring. Verify that MSWl is proper-
ly set. Monitor the frequency of the
threshold messages on the console.

H2. Users are allowed to allocate mass stor -

age files with no concern for the physi -

cal resources available . Monitor the
number of files assigned to each user,
their space requirements, and their fre-
quency of use. Archive all files older
than a specified number of days.

H3. File requests arrive in a burst pattern .

Prepare a histogram of the interarrival
time of rollouts to determine if time
dependent conditions are causing a prob-
1 em.

H'*. Several very large files dominate mass
storage . Sort files by size. Examine
the usage pattern of large files. Con-
sider removeable paclcs as an alterna-
tive.

H5. Insufficient mass storage is configured .

Quantify the frequency of rollbacks and

the time to complete a rollback. Com-
pare to other sites. Compare to inter-
nal standards and past performance.
Track the growth of the overcommitment
ratio -- the ratio of mass storage
space assigned to the mass storage
space configured.

H6. Too many files have unload inhibited .

Examine all G and V option files to de-
termine if they are necessary. Track
the growth of G and V option files as a

percent of total files.

P2. Too many rollbacks are occurring .

HI . The wrong files are being rolled out .

Check the UEF's of the files being roll-

ed out. Verify that the weighting fac-

tors and points are set properly for

your site. Establish guidelines to aid
in setting weighting factors. Check
all hypotheses for PI.

P3. The time to complete a rollback is too

1 ong .

HI. Heavy workload on the system . Since
rollbacks run as critical deadline runs,

this is unlikely; however, to verify the

hypothesis, correlate the elapsed time
of rollbacks with runs open and other
workload measures.

H2. Many rollbacks queued up . Monitor the

number of rollback requests waiting
when a rollback run completes. Monitor

the number of files rolled back per
run. If more than one file is rolled
back at a time, a queue must have
ex i sted

.

H3. Long time to mount SECURE tape . Check
operator console log or observe opera-
tors in action.

H'*. Long tape search time . Observe roll-
back process in operation. Little can
be done about this except limiting the
number of files on a tape.

Ph. The time to complete a rollout is too
long .

HI . SECURE is doing physical rather than
1 og i ca 1 ro 1 1 outs . When files have cur-
rent copies on tape, they can be rolled
out by simply making the space avail-
able. That constitutes a logical roll-

out. Physical rollouts occur only when
no current backup exists. Physical
rollouts should be avoided. Monitor
rollouts to determine if physical roll-
outs are happening. Evaluate file save
procedures to determine the need for

backing up files more frequently.
H2. Too many files are being unloaded at

once . Evaluate size weight in the UEF.

Evaluate the mass storage thresholds.
Monitor mass storage available.

H3. Heavy workload on the system . See HI

under P3.

P5 . Mass storage availability remains high
even though many rollouts are occurring .

HI . Too many tracks are being unloaded . See
HI under PI

.

H2. The thresholds are set too high . Moni-
tor mass storage available over time.

Monitor frequency of threshold messages
on operator's console. Determine rate
at which mass storage is being used and

adjust thresholds accordingly.

P6. System throughput is being held back by

rollouts and rollbacks .

HI . Rollouts and rollbacks are happening
too often . All of the analyses sug-
gusted for PI through P5 will be help-
ful in this area. Monitor the percent
of runs that require rollbacks as well

as the percent of time spent waiting
for a rollback to complete.

H2. Excessive system resources are being
used to manage mass storage . Compute
the percent of system resources used by

SECURE and other mass storage utilities.

257

Compare to resources used by user
programs.

P7. A large amount of I/O is directed at

the MFD .

HI . DCLUTS is set too low for the number of

catalogued f i les . Compute the ratio of

DCLUTS to the number of catalogued
files. The ratio should be 2.0 or

greater. Compute the percent of files
requiring search items. Monitor per-
centage of search items on a regular
bas i s

.

H2. DCLUTS is not a prime number . DCLUTS
should be a prime number at least twice
as large as the number of catalogued
f i les.

P8. Mass storage space is being inefficient -

ly ut i 1 i zed .

HI . A large number of DAD tables are requir -

ed per file . Prepare a histogram of the

number of DAD tables per file. Compute
average number of DAD tables per file.

Check NGTB and MAXSEC for proper setting.
H2. Disk areas are being assigned but not

used . Prepare a histogram of time since

last reference for all files on the sys-

tem. Pay special attention to all large
f i les.

6. Data Analysis

Data on mass storage usage are avail-
able from several sources: LA, LASSO, DIRVER,
and SECURE. The LA processor reads the Mas-
ter Log File and produces both a ROLBAK and

a ROLOUT summary report. The ROLBAK report
lists the termination time of each ROLBAK
run, as well as the number of files loaded,

the average number of seconds per file load-

ed, the average number of tracks loaded per

second, the number of tapes accessed, and

the average number of files per tape. An

identical report exists for ROLOUT's.

LASSO also summarizes data from the

Master Log File; however, it does not pro-
vide a special report for rollouts/rollbacks.
The information must be extracted from other
reports under the ROLOUT/ROLBAK run ids. It

is not nearly as comprehensive as LA.

DIRVER analyzes the MFD and produces a

series of reports describing each catalogued
file on the system. It provides excellent
statistics on DAD tables, search items, lead

items, and other attributes of the MFD. It

also reports on the amount of mass storage
space configured and available as well as

many other mass storage usage statistics.

SECURE maintains a summary file from
which several reports are available. These
reports are useful in evaluating the vari-
ables used to compute UEF's. The SECURE
Summary Report lists all the files unloaded,
the time they were unloaded, the track size,
and the UEF. The SECURE ROLOUT Report spec-
ifies the individual point values used to

compute the UEF for rolled out files. Un-
fortunately, the UEF's for the rolled back
files are unavailable. Since the time of
the original roll out is not recorded, it is

impossible to recalculate the UEF when the
rollback takes place. This information is

available by searching the SECURE Summary
Report for the day when the file was rolled
out

.

7. Conclusion

Mass storage management, as performed
by the Facilities Complex, has a significant
impact on system performance. The article
has emphasized tuning parameters; however,
the performance analyst must not overlook the

benefits to be gained by instituting a set
of mass storage management guidelines. Many
of the problems resulting from the virtual
mass storage concept can be controlled or
eliminated by exercising more stringent con-

trols on how the users are allowed to assign
mass storage. The approach used in this

article has also been used to analyze other
areas of the EXEC as described in [k]

.

References

[1] Bryant, R. , A Performance Study of the

Facilities Complex, Technical Papers:

Spring USE Conference , March 5-9, 1979,

pp. 29-38.

[2] Caldarale, C.R., State of Georgia Local

Code, Technical Papers: Fall USE Con -

ference
,
September 10-lA, 1979, pp-

255-262.

[3] Gray, G. , Mass Storage Files Management,
Technical Papers: Spring USE Conference ,

March 5-9, 1979, PP. 381-398.

[4] Kelly, J.C. and Route, G.P., UN I VAC 1108

EXEC Level 32R2 Performance Handbook
,

NBS Special Publication 500-3^, National

Bureau of Standards, June 1978.

[5] Persing, T.D., Computer Performance
Evaluation at USAF/AFSC/FTD , Technical

Papers: Spring USE Conference
,
April

17-21
, 1978, pp. 1-16.

[6] Richards, J. et al., A More Reliable

File Maintenance System, Techn ical

Papers: Spring USE Conference
,
April

17-21, 1978, pp. 55-198.

258

APPROXIMATE EVALUATION OF A BUBBLE MEMORY
IN A TRANSACTION DRIVEN SYSTEM

Wen-Te K. Lin
Computer Corporation of America

and

Albert B. Tonik
Sperry Univac

An approximate queueing model is built to evaluate the performance
of a transaction-driven computer system with three levels of memory
hierarchy, one of which is the bubble memory. The criterion of perfor-
mance is the average transaction response time excluding the time spent
waiting for transaction initiation because it does not measure the sys-
tem performance, but the amount of transactions entering the system.
The results are presented in a form which can be used by the system
users to decide how much memory to include in the system configuration
to achieve desired transaction throughput rate and average response
time.

1. Introduction

In a previous paper [1]\ we attempted
to evaluate the effect of a virtual memory
computer system with three levels of storage
hierarchy by using a bubble memory rather
than a head-per-track device (also referred
to as a drum) . From that evaluation we

derived a mathematical model based on data
collected from a virtual memory multiprogram-
ming system which was frequently used by stu-
dents to write their own programs rather thar

to run standard transactions. Therefore,
they shared programs such as compilers and
text editors. In such an application the

limiting device was the intermediate storage
level or paging device. Therefore, replacing
the head-per-track device with a bubble
memory increased system performance by almost
the ratio of speed between those devices.
Such an application reflects neither the

sequential processing of large files, as in

commercial applications, nor the terminals
all accessing a large database, as in tran-
saction oriented systems (real-time).

(1) Figures in brackets indicate the litera-

ture references at the end of this paper.

In this present evaluation, we are
building a mathematical model for a transac-
tion driven system. In such a system, the

people at the terminals are entering trans-
actions and waiting for replies. These
transactions are processed against a common
database. We obtained the specification for
a standard transaction from data collected
from Sperry Univac Transaction Interface Pro-
cess installations.

The mathematical model attempts to

evaluate the time to process a transaction,
while processing "n" transactions simultane-
ously. This multiprogramming leads to queues
at the various devices. The time spent wait-
ing in each queue has to be added to the
response time for each transaction. In addi-
tion, on some devices, as the queue gets
longer, the throughput of the control units
goes up, because of the ability to overlap
latency periods. All of these interactions
are built into the mathematical model.

2. The Standard Transaction

The transaction driven system we want to
model is characterized as one with trans-
actions entered from terminals. The trans-

259

actions are handled by standard programs and

processed against a common database. The

operating system occupies lOOK words of core.

The programs to process each transaction
occupy about 5K words of core each. The pro-
cessing of each transaction requires execut-
ing about 80K instructions. In addition,
during the processing there are about 12

accesses to I/O devices. Of the 12 I/O com-
mands, 8 would be for the secondary storage,
and 4 for the mass storage. The CPU process-
ing and I/O operations for a single transac-
tion are performed in a sequential manner (no

overlap between I/O and computing). Of

course there is overlapping of I/O operations
and computing during the processing of many
transactions simultaneously.

The I/O is characterized as follows: on

the average, an I/O operation will transfer

about 250 words. About half of the I/O

operations are reads and the other half are

writes. However, of the writes about 10% are
straight writes. The other 90% are writes
where only part of the block is written.
This operation entails a read followed by a

write on the next revolution of the device.

the drum is 16.7 ms. The revolution time and
average seek time of the disks are 16.7 ms
and 30 ms respectively. The channel data
transfer rate is 90Qk bytes/sec. The latency
time for the bubble memory is 0.8 ms, and the
data transfer rate is 3M bytes/sec.

In summary

,

t^ = 16.7 or 0.8
= revolution or latency time for drum or
bubble memory

t^ = 1000/(9 X 10^ or 3 X lo'')

= channel time per drum or bubble I/O
t^ = 30 ms + 8.35 ms

= average seek plus search time of the
disk

^
t^ = 1000/(9 X 10^)

= channel time per disk I/O
t = 80K/3 MIPS

= cpu time per transaction

4. Mathematical Model

We can model the system as shown in Fig-
ure 1. Transactions come into the system

In summary,

Mq = lOOK words
= resident software

M = the rest of the memory excluding M^

m = 5K words
= program size for each transaction

I = 80K instructions
= cpu processing of each transaction

a^ = 8
= no . of secondary I/O per transaction

^2
=

= no. of mass storage I/O per transaction
a^ + a^ = 12 I/O

= no. of I/O per transaction
d = 250 words = 1 k bytes

= amount of data transferred per I/O
50% = percentage of read I/O per transaction
5% = percentage of straight write I/O

per transaction
W = 45% = percentage of partial write I/O

per transaction

3. The Hardware Configuration

The transaction system is assumed to run
on a computer system with three levels of

storage hierarchy. The second level memory
are either drums or bubble memory (examples
used will be Univac 8405E) , the third level
memory are movable-arm disks (examples will
be Univac 8433E) . We assumed the cpu is

capable of at least 3 MIPs (million instruc-
tions per second). The revolution time of

Figure 1. Hlgh-Level System Structure

from terminals and queue up at Q. The pro-
cessor S then processes them. Let us assume
transactions are generated by a Poisson pro-
cess with an average rate of X. transactions
per second. We also assume that system S can
process up to N transactions simultaneously
at the average rate of ^ (n) transactions per
second where /c (n) depends on the number n of

total transactions in the system (being pro-
cessed or in the queue). Therefore we have a

birth and death process such that the birth
rate X is independent of the population size
n, while the death rate is/t for n <N and

^ for n>N. Therefore we can calculate the

stationary probability distribution Z. that j

transactions are in the system (including the
ones being served) [2]. Let R represent the
response time of a transaction which is meas-
ured from the time the transaction enters

queue Q until the transaction exists from S,

then

260

oo

R - I /Z . k -M
k=iV ^ ;k=l

N-1
= I Z

k=l
k k = N k

k
(1)

In order to calculate R, we have to cal-

culate and A j^.
Let us assume:

p

=2

tTq = 1, n. = '

ii±
i u u . . . u (2)

Then from birth and death process we

know

Z. =
1

(3)

k=0

Q. = Queue length at station S.

(including the one being served)
(per control unit at

S. = Storage levels
l^r. = Average service time at S.

X. = Throughput of S. (no. of operations
per second)

P. = Probability of a transaction going to

S. after being served by Sq

U. = utilization of S. (fraction of time
it is busy)

C = No. of control units at S„

That means to compute R, all we have to

do is to compute jU ^ (k<N) . In order to com-

pute A we have to look into the structure

of the system S in more detail. The struc-

ture of S is shown in Figure 2. It is a

closed queueing network with three stations.
Sq consists of the cpu and main memory,
consists of secondary memory which can be
either bubble memory or fixed-head disks, and

is movable-arm disks. The size of the
icain memory excluding the part used by the

operating system and any reentrant code is M.

Since each transaction requires m bytes of

main memory, the system can run at most M/m
transactions simultaneously. Let us denote
M/m by N. Each transaction, after being pro-
cessed for an average of l/rQ=t/ (aj^+a„)

seconds by the cpu, has the probability
P, =aj^/ (aj^+a„) of needing service from S^, and
the probability P„=a2/ (a^^+a^) of needing ser-
vice from S2. After being served by either
S^ or ^ transaction goes back to Sq wait-
ing for service by S^ again.

We assume the service time in all three
stations are exponentially distributed with
average of l/r^, 1/r^, l/r2 respectively.
Admittedly this is a rough approximation but
it has been used by other people with good

Figure 2. More Detailed System Structure

results. As outlined in a paper by Gecsei
and Lukes [3j, the following equations can be
derived

:

^1 = ^^0 (4)

^2 = ^2^0 (5)

(6)

(7)

h = ^1/^1 (8)

= X2/Cr2 (9)

% = V^'-V (10)

= U^/(l-U^) (11)

Q2 = CU2/(C-U2) (12)

Here we have nine equations with nine
variables: Q., X., U. (i = 0, 1, 2), and 5

system parameters r^, r^^ , r2. In

order to solve the equations these five

261

parameters must be known. We have already
shown that

^1 ~
^j/^^i

= t/(a^ + a^)

(13)

(14)

(15)

In the following, equations (13) through (17)
will be combined with equations (4) through
(12) to derive

Q^^
and Q^. By eliminating Q-,

Uq, X
, U_, r„ from equations (6), (10;,

(7), (5), C9),^(12f, and (17) we obtain

(18)

Here equations for r^^ and r^ will be
derived. r^^ is the average number of opera-
tions system can process per second. It

can be dependent on the queue length
Qj^ if

the queue is sorted according to sector posi-
tions. However, the definition of standard
transaction states that about w of I/O are
partial-write operation (a read is required
before a write), this makes calculation of r^^

even more complicated. A formula for l/^j^ is

formulated as follows, which has been vali-
dated by simulations (for detail of the
derivation, see [4]).

[3(l+w)t2Q^+2(wt^+t2)+t^]
(16;

""l [2Q^(l+w)]

where w = ratio of I/O request that are
partial write

= revolution or latency time for
drum or bubble memory

= channel time without the extra
revolution

r is the average service rate of system S2

which consists of a number of movable-arm
disks and possibly more than one control
unit. If there is no overlapping of seek
operations among these disk drives, then
is simply 1 divided by the average access
time of the drive. But because of overlap-
ping.

Q„ . A formula for r„ is derived as follows
which has been validated by simulations (for
detail derivation of the formula and its
simulation validation results, see [5]).
This assumes that all devices are on one con-
trol unit.

i=i J

'

and Q =

By eliminating Q , U , X , X
, U, , r, , from

equations (6), (I0),"(7)V (4), it), (ll), and
(16) we obtain

(19)

(l+w)2Q^'=

[3(l+w)t2Q^=2{rt^+t2)+t^](l+Q^)rQP^-(l+w)2Qf

Solving equations (18) and (19) for and Q2
to obtain closed form solution is very dif-
ficult. Therefore, we plotted curves for

Qj^

= f(Q2) and Q- = g(Qj^) in the Q, , Q2 plane
for different values of n. Where the curves
intersect is a solution for each value of n.

is dependent upon the queue length 17

From the solutions for
Q^^

and Q2, we can
obtain values for the other quantities. We
can evaluate r^^ from

Q^^
by using equation 16.

We can find the r2 from Q2 by use of equation

Qq is obtained from equation 6.

We now want to obtain the response time
to process a transaction once it has entered
the memory.

+ t.

i=l

(IT)
R(n) = (a^ + a2) RQ(n) + a^Rj(n) + a2R2(n) (26)

where t^ = average seek plus search time

t^ = channel time
D = no. of devices per control unit
Q' = queue length per control unit

= Q2/C

Where Rj^(n) is the response time for each

request "to the ith facility when the mul-
tiprogramming level is n. The numbers a^^ and
a2 are obtained from standard transaction
definition as defined in Section 3. The
R^(n)'s are given by Karlin, page 433 [2] as:

262

R.(n) =
X. r

.

1-
r

.

1

(21)

From equation (7) through (12),

R, (n) = (Q. + 1)
1 1 r

.

How A. ^ of equations (1), (2), (3), can be
calculated as follows:

K
R(K)

_S
Lr(n)

if K<N

OTHERWISE (22)

2.2

2.0

1.8

i 1.6o

1.1

1,2

;
PONSE

1.0

.8

.6

.t

.2

0.0

BV ONE CONTROL UNIT. INTERNAL RESPONSE TIME DOES NOT
INCLUDE HAITINO AT THE OUTSIDE QUEUE.

a3 5 79 U1315 17 19 21 23 25 27 29 31 53 35 57 39

3.78 1.50 5.22 5.9M 6.66 7.58 8.10 8.82 9.51 10.26

Multiprogramming Level-M

Memory Size (E6 Bits)

Figure 3. Average Internal Response Time
R(M) vs. Multiprogramming Level M

(Configuration One)

By using >tt j^'s, we can compute the response
time by using equation (1).

5. Results From Using Math Model

The results in Section 4 are applied to
the transaction model and the system defined
in Sections 2 and 3. Equation (20) is used
to plot the internal response time for dif-
ferent multi-programming levels (which are
related to the main memory size) . This
internal response time is the time required
for a transaction to loop through the mass
storage. It does not include the waiting
time for the main memory, and it is directly
related to the throughput of the system
(through Equation 22). Equation (1) is used
to plot average response time including time
spent waiting for main memory, for various
values of transaction input rate ^ . The
distribution of the response time can be
obtained by using Equation (3) . Three system
configurations will be used. The first con-
figuration consists of the cpu, one drum and
six movable-arm disks controlled by a single
control unit. The second configuration has
two control units for the six disks.

The third configuration replaces the
drum by bubble memory and has two control
units for the six disks. The response times
for these three configurations are plotted in
Figure 3 and 4, Figure 5 and 6, and Figure 7

and 8 respectively. We can see the response
time improves substantially from configura-
tion 1 to configuration 2. By checking the

5.7-

5 11
,
Abscissa is in units of maximum number of transactions that can be processed
simultaneouslv hnich is related to size of hehoflir in units of millions of bits

5.1.

0.0- ,

13 5 7 911131517 19 Z123 25 27 29 31 33 35 37 39

3.78 1.50 5.22 5.* 6.66 7.38 8.10 8.82 9.51 10.26

Multiprogramming Level-H

flEMORY Size (E6 Bits)

Figure 4. Average Response Time R vs.
Multiprogramming Level M for

Different Transaction Arrival Rate'X
(Configuration One)

values for Qq, Q^^ , and Q^, we find out it is

because the control unit for the disks is the
bottleneck. Therefore, doubling the number
of disk control units improves the response
time. But replacing the drum by bubble
memory improves the response time only a lit-
tle bit, not as much as the ratio of access
time between drum and bubble memory, as shown
in Figure 7 and 8. But if we increase the
size of bubble memory, therefore reducing the
number of I/O to the disks, the response time
improves substantially.

263

Figure 5. Average Internal Response Time
R(M) vs. Multiprogramming Level M

(Configuration Two)

Figure 7. Average Internal Response Time
R(M) vs. Multiprogramming Level M

(Configuration Three)

Figure 6. Average Response Time R vs. Figure 8. Average Response Time R vs.
Multiprogramming Level M for Multiprogramming Level M for

Different Transaction Arrival RateX Different Transaction Arrival Rate X
(Configuration Two) (Configuration Three)

264

6. Conclusion

A mathematical model for transaction
processing system is built, which incor-
porates some elaborate algorithms for han-
dling I/O at drum and disk memory. This
model is then used to evaluate the effect of

the bubble memory in a transaction system.
The model is helpful when a user needs to

decide a system configuration which can meet
certain transaction rates with certain
response times. It provides equations for
plotting response time against both transac-
tion rate and system configuration.

7. References

[1] Lin, W.T.K., and Tonik, A.B., Approxi-
mate Evaluation of the Effect of a Bub-
ble Memory in a Virtual Memory System,
Proceedings 13th Meeting of Computer
Performance Evaluation — Users Group .

October 1977.

[2] Karlin, S., A First Course in Stochastic
Processes . Academic Press, New York,
1969.

[3] Gecsei, J. and Lukes, J.A., A Model for

the Evaluation of Storage Hierarchies,
IBM Systems Journal , No. 2, 1974.

[4] Tonik, A.B., and Lin, W.T.K., Approxi-
mate Evaluation of the Effect of a Bub-
ble Memory in a Transaction Driven Sys-

tem, Sperry UNIVAC Research Report, Blue

Bell, Pa., 19406.

[6] Jewell, W.S., A Simple Proof of : L = w.

Operation Research, 15, 1109-1119, 1967.

265

Communications Networks

-Technological Developments and Applications

267

I

SESSION OVERVIEW

COMMUNICATIONS NETWORKS

—TECHNOLOGICAL DEVELOPMENTS & APPLICATIONS

Jeffey Gee

Network Analysis Corporation
301 Tower Building

Vienna, VA 22180

Communications network is a critcal component in providing effective
information services. Practically every business or industry today is

involved in using some form of communication networks as a bridge between
the people and the information resource. The recent echnology
development in the area of long-haul and local area communication
networks will greatly facilitate the information system user to pursue
various organizational objectives such as resource sharing, increasing
productivity and reducing cost. In order to effectively realize these
objectives, a comprehensive network planning and design process must be
achieved. The efforts should include communication requirements
analysis, performance evaluation and network architecture modeling.

The objective of the session is to illustrate a broader prospective
of communication networks. Consequently, the session is organized with
an introduction of local network technology, a performance modeling of
network node, and a network modeling case study.

The local area network has been and will continue to be one of the

most important network tehnology developments. The first paper titled

"Local Integrated Communications Systems: The Key to Future
Productivity" presents an overview of a local communications network
concept and describes its potential impact to organizational
productivity. In communication networks, flow control traffic congestion
avoidance is an important design consideration to meet performance
requirements. An analytical model for evaluating the performance for a

flow controlled network node is presented in the second paper. Finally,

a case study presentation is given to illustrate the practical experience
of modeling a long-haul star network.

269

LOCAL INTEGRATED COMMUNICATION SYSTEMS:

THE KEY TO FUTURE PRODUCTIVITY
Andrew P. Snow

NETWORK ANALYSIS CORPORATION
301 Tower Building
Vienna, VA 22180

An overview of the types of local communication services required
in typical large organizations is given. Such services as voice communica-
tion, data communications in support of Information Systems, Closed
Circuit Television, Security Management, and Energy Management are discussed.
Desirable characteristics of an integrated communications system that
must provide a highway for these services are presented, with particular
emphasis given to organizational productivity. Transmission media that
are capable of forming the building blocks for an integrated communications
system such as CATV, coaxial cable, microwave, fiber optics, and infrared/
laser communication media are discussed in terms of the desired character-
istics. Finally, an illustrative example of an integrated communication
system is presented.

Keywords: CATV systems; coaxial cable; data communications; fiber optics
information systems; integrated communications; local area networks,
microwave; video teleconferencing.

1. Introduction

Distributed data processing (DDP)

is adding great impetus to local area
network developments. As computing and

storage capabilities decentralize, the

demand for intercommunication among more
and more sophisticated users increases.

DDP, in conjunction with integrated local

communications systems, offers users a

potential to improve individual productivity.

This productivity enhancement is due not

only to the new services that can be offered

but also to the nature of the local network

itself. This article will deal with local

area networks as opposed to long haul

networks. Long haul networks are intercity
type networks where great emphasis is

placed on bandwidth utilization and minimum

distance layouts (as one pays for capacity
by the airline mile). Local area networks
are loosely characterized as being more

intra and interbuilding oriented. For

this reason they are typically on the
order of a few kilometers. [1] In addition
they are usually privately owned by the
organization as opposed to leased facilities
from a TELCO. Also they typically support
data rates that far exceed the tariffed
services or capacity of the TELCO facilities.

2. Services To Be Supported

In the intra and interbuilding environ-

ment, the local network should be able

to support the wide variety of services

that users are demanding. Typical data

communications applications in buildings
today are many terminals accessing one

or more computer hosts for say database

updating, query/response, and programmers

engaged in systems development. In addition

to data communications associated with

some of the classical information systems,

271

the local network should also support
the communications needs of security,
fire, and energy management systems.
These systems consist partly of many micro-
processor based sensor devices that will
typically report back to a computing/data

base machine. In addition many security
systems also have video monitoring require-
ments. Also, with the advent of video
teleconferencing, modern corporate facilities
will require video distribution systems.
It is the video requirement that makes
traditional twisted pair wire cable plant
particularly unattractive in the future.

Another service area is being created
by components of the "office of the future"
Communicating word processing and document
distribution machines are greatly impacting
approaches to information flow in large
organizations. Electronic mail services
have already encouraged many executives
to have terminals on their desks. In

the near future, a terminal on every desk

is not an inconceivable development in

some organizations. The prolific increase
of intelligent devices on the corporate
scene is placing demands on classical
building transmission plants that cannot
be met in a cost effective manner.

3. Desirable Local Integrated
Communication Media Attributes

In order to meet the diverse demands
that organizations are and will be placing
on building physical plants, consolidation
is necessary in order to be cost effective.
The principal attributes that must be

considered in the selection of an integrated
communications media are:

• flexibility
• connectivity
• capacity.

Each of these three attributes directly
affect the ultimate productivity of the

user organization. Productivity will

be discussed in qualitative terms for
each of these attributes.

3.1 Flexibility

Flexibility pertains to the ability
of the integrated media to adapt to both
tactical and strategic change. Tactical
changes deal with the day to day exigencies
of a viable organization while strategic
changes deal with the evolutionary character

of user demands. [2] Examples of tactical
change might be the migratory nature of
people/organizational units within a building
or building complex, and concomitantly
equipment migration. Typically, productivity
during migratory periods is very poor
for the organizational units involved.
When people move many events are triggered.
Terminals and phones move. Support personnel
take word processing equipment with them.
If the magnitude of the move is significant,
simple adjustment of the building wire
plant may not be technically feasible.
The plant may not be able to support the
proposed move. In the cases for which
the plant can adjust, significant wire
installation efforts are often necessary
to get people within "reach" of the plant.
Flexibility in this context means the
provision of reasonable access of the
media to the user's changes.

Strategic flexibility pertains more
towards the ability to adapt to long term
change without expensive architectural
renovation to upgrade the media. In this
context flexibility means inherent or

expandable capacity to handle new require-
ments. An example of strategic flexibility
would be the planned movement of a data
center within an organization's building
or building complex. With traditional
wire plant, the data center is the hub
of thousands of wire pairs that are distri-
buted throughout a building. Movement
of a data center within the same building
might well cause organizational upheaval
or expensive retrofit. In this case it

is either extremely expensive or very
unproductive as users are subjected to
possible interruptions, degradations,
or limitations on service during the move.

A different example of strategic flexibility
would be a planned information system
which will require significant capacity
in comparison to existing services. A

media which could readily adapt to these

two strategic migration examples would

be desirable. Flexibility also means

that the media should be prepared to accom-

modate very dissimilar types of communications

(e.g. , video and data)

.

3.2 Connectivity

Connectivity relates to the ability
of the media to provide all required physical

connections within the building or building
complex. Traditional wire cable plants

are point-to-point in nature. If a particular
device requires connectivity to just a

modest number of physically separated
devices, the point-to-point approach can

272

become quite untenable. If wire is used,
the central switching approach architectures
with their significant reliability implica-
tions are required. Because of bandwidth
limitations, wire can force the separation
of media as opposed to integration. The
any-to-any communications connectivity
requirement within buildings is becoming
more of a reality as time progresses.
The trend is definitely towards the hetero-
geneous as opposed to homogeneous environment.
The IEEE 802 comnittee efforts [3] on
the standardization of both contention
and token local area networks is encouraging
the heterogeneous environment. This environ-
ment will in turn encourage the growth
of multiple connectivity requirements
on the corporate premises. Diverse services
such as electronic mail, electronic document
distribution systems, and communicating
word processing systems will demand diverse
connectivity within buildings. A strong
case can be made for a broadcast type
capability to insure any-to-any physical
connectivity. The implementation of the
any-to-any heterogeneous connectivity
must await acceptance and pursuit of such
standards as the International Standards

Organization (ISO) open systems interconnec-

tion architecture. [4] Organizational
productivity is closely related to this

connectivity endeavor.

3.3 Capacity

Capacity means bandwidth necessary
to support the tactical and strategic
requirements of the user organization.
Tactical capacity relates to the ability
to provide the bandwidth necessary to

support existing and short term requirements.
Some of these bandwidth requirements might
be of the point-to-point single destination
type, while others might be of the multiple
connectivity type. Besides data communica-

tions in support of information systems,

video requirements may exist that require
large amounts of bandwidth. Typical analog

video requires approximately 6 mhz of

bandwidth. Heavily utilized point-to-
point requirements might be supported
at the bandwidth required for the specific
application. Others may be multiple connec-
tivity or more bursty traffic types that
might share high bandwidth channels of

the contention or token nature. These
channels typically will range from 1 to

10 mbps. Proper modulation techniques
or bandlimiting techniques can limit a

10 mbps signal to 6 mhz on an RF type

system or 20 mhz on a baseband system,

respectively. The local integrated communi-

cation media should be able to accommodate

all intra-bui Iding communications requirements.
For this reason a large capacity is required,

especially in comparison with twisted
pair cable. If the system is not able
to support these requirements, productivity
can potentially suffer either because
of disruptive expansions or because of

the forced requirement of managing separate

communications media.

4. Transmission Media Elements

The transmission media building blocks

available in the construction of the integra-
ted communications media are:

• twisted pair wire,
• microwave,
• fiber optics,
• coaxial cable,

0 CATV cable systems,

t Infrared/laser.

Each of these media will be discussed
and compared in terms of the flexibility,
connectivity, and capacity attributes.

The summary of this comparison is shown

on Table 1.

FLEXIBILITY CONNECTIVITY CAPACITY

Twisted Pair Poor Point-to-Point Poor

Microwave Fair Point-to-Point Good

Fiber Optics
(Current Technology)

Fair Point-to-Point;
Limited Broadcast

Excel lent

Coaxial Cable Fair to

Good

Point-to-Point;
Broadcast

Excellent

CATV Excellent - Point-to-Point;
Broadcast

Excellent

Infrared/Laser Fair Point-to-Point Good

TABLE 1: INTEGRATED MEDIA BUILDING BLOCK

4.1 Twisted Pair

The characteristics of twisted pair

have been alluded to in the previous discussion

of each attribute. Wire is a point-to-

point media with little broadcast potential.

Moderate data rates must be supported

by limited distance modems over distances

that are beyond the capability of line

drivers interfaces such as RS-232 or RS-

449. Video capability is extremely limited

273

and specially conditioned pairs are necessary
to pass video over very short distances.
Wire is not a good candidate for an integrated

media but it will continue to exist in

buildings because

• it is there,

• it currently provides the best

support for distribution of

voice.

In the future, if CATV systems can support

voice distribution in a cost effective
manner, new buildings may potentially

be void of twisted pair. Wire cable plant
will most likely exist in parallel with

whatever integrated media is suggested
for existing buildings . It will become
increasingly less attractive in the future.

4.2 Microwave

Microwave systems are point-to-point
in nature. They would typically be used
to link buildings together that are moderate
distances apart or to bridge gaps for

which the organization does not have easement
rights. Microwave is also line of sight
and is nominally limited to a 25 mile
range. Of course the maximum range of

this media cannot be used for extension
of Carrier Sense Multiple Access Collision
Detect (CSMA/CD) contention channels to
other buildings because of propataion
delay. Flexibility of microwave is closely
related to capacity. Digital microwave
links in the 90 mbps ranges are commercially
available. For analog microwave systems
6 mhz passbands are typical. Use of microwave
links requires FCC approval of frequency
plans. The approval process sometimes
requires frequency interference studies.
Towers, line of sight requirements, and

FCC approval make microwave inflexible
at times as a media. Path reliability
is a function of terrain, frequency of
operation, path length, and atmospheric
conditions, however extremely reliable
paths are common.

4.3 Fiber Optics

Fiber optic systems, although principally
point-to-point in nature, can be configured
into a distribution system. This is done
by splitters that subdivide the light

energy into equal parts. The limitation
of this continual splitting technique
is that the power threshold required at
receivers for acceptable bit error probability
is rapidly achieved. Lightwave amplifiers

are still R&D devices. No analog to the

high impedance tap yet exists in the light
world. Fiber optic broadcast distribution
systems are probably five years away from
common commercial application. The capacity
of fiber optics is dramatic. Capacities
in the range of several hundreds of mbps
are possible. Flexibility of optics is

only fair as Frequency Division Multiplex

(FDM) techniques are still in the R&D
stage. This means that very high data
rates must be allocated in a Time Division
Multiple Access (TDMA) scheme to effectively
use this baseband datastream in other
than a point-to-point fashion. Once the

allocation scheme is fixed, changes are

difficult. Also video support requires

T2 (6.3 mbps) data rates for high quality

video.

4.4 Coaxial Cable

Coaxial cable is distinguished from
CATV in that CATV uses FDM techniques
to create separate wideband channels while
coaxial cable operates on a baseband basis.
The coaxial cable system can be repeatered
however and therefore its range is extendable.
It suffers from the same flexibility problems
mentioned in fiber optics distribution
systems in that composite data rates are
required to serve many distinct services.
Some time slots may be dedicated while
others might be used as a contention resource.
Xerox's Ethernet (Trademark of Xerox Corpora-
tion) is a baseband coaxial cable system.
Its capability to provide a user an integrated
coimiuni cat ions media is limited because
of its baseband nature and inability to
easily accommodate video. An advantage

,

of this type of media is its inherent
broadcast capability.

4.5 Community Antenna Television
(CATV) Systems

CATV systems offer perhaps the best
media for integrated communications within
and among buildings in close proximity.
Up to forty-one 6 mhz channels can easily
be supported as shown on Figure 1. Channels
can be used for contention systems, video
distribution, and even point-to-point
communications. As indicated in both

[5] and [6], the service, architectural,
and protocol local area network development
issues are complex. CATV is the best
suited all around local area network media.
This media far surpasses the others in

the flexibility attribute. This flexibility
combined with the any-to-any physical
connectivity and large bandwidth capability
will make it the most commonly used integrated
media type.

274

MHz

i
5.75

11.75

17.75

23.75

29.75

35.75

41.75

47.75

54

60

66

72

Channels

T-7

T-8

T-9

T-10

T-11

T-12

T-13

MHz

I
76

82

88

108

120

126

132

138

144

Channels

FM

MHz

i
150

156

162

168

174

180

186

192

198

204

210

216

Channels

10

11

12

13

MHz

i
222

228

234

240

246

252

258

264

270

276

282

294

300

Channels

M

O

Q

W

FIGURE 1; CATV FREQUENCY ALLOCATIONS

CATV

-i

nin- —

'

MICROWAVE
LINK

BUILDING A

CATV

-A

CATV

BUILDING B

CATV

BUILDING C

A
I
MICROWAVE RADIO

CATV HEAD END

FIGURE 2: EXAMPLE OF A LOCAL INTEGRATED COMMUNICATIONS SYSTEM

275

4.6 Infrared/Laser

Infrared/Laser communications links
are strictly point-to-point media. They
are greatly limited in range due to fog
or rain attenuation and any phenomenon
that might diffract, disperse, or reflect
the unguided but directed light energy.
The flexibility of inf ared/laser links
is about the same as microwave with the
exception that desk top links through
window glass are possible to establish
short i nterbui Iding links (as opposed
to large tower or roof top mounted MW
antennas)

.

5. Example of a Local Integrated
Communication System

An example of a local integrated
communications system is shown in Figure
2. In this example an organization spans
three buildings. Each building has its

own CATV distribution system for its own

communities of interest. For common services,
basic connectivity is provided by derivation
of point-to-point circuits between buildings.
In the first case connectivity between
buildings A and B is obtained by extension
of the CATV system. In the second case
connectivity between buildings A and C

is obtained by a point-to-point microwave

system. This may have been required by
lack of easement between the buildings.
It would be possible to establish a common
broadcast channel between buildings for
use as a contention channel. This could
operate on different frequencies in each
building CATV system and not interfere
with a wide assortment of other services
on other CATV channels peculiar to each
building. These services could include
the entire suite of those mentioned in

Section 3.

6. Conclusion

CATV systems offer the best media
for local integrated communications systems.
For organizational needs spanning several
buildings these integrated systems will
consist of such elements as fiber optics,
microwave, and infrared/ laser links.
Wire plant will continue to exist in buildings
but the appearance of buildings void of
wire in the next five years is a real
possibility. Baseband coaxial systems
will also appear on the scene but are
not good candidates for a flexible integrated
system. CATV systems are the best all

around system in terms of capacity, flexi-
bility, and connectivity. These integrated
local systems will profoundly affect produc-
tivity in the future.

References

[1] Tanenbaum, Andrew S, Computer Networks
,

Prentice Hall, 1981.

[2] Kaczmarek, R and McGregor P, "The
Synthesis of Formal User Requirements:
Defining the Networking Problem To
Be Solved", IEEE 1978.

[3] IEEE 802 Local Network Standard,
Draft 1, July 4, 1981, IEEE Computer
Standards Committee.

[5] Maglaris, B and Lissack, T., "An

Integrated Broadband Local Network
Architecture", 5th Conference on

Local Computer Networks
, IEEE, October

6-7, 1980.

[6] Stack, T. and Dillencourt, K., "Protocols
For Local Networks", Proceedings,
Trends & Applications: 1980 Computer
Network Protocols ; May 29, 1980.

[4] IS0/TC97, N537, Architectural Model

of Open Systems Interconnection,

December 1980.

276

PERFORMANCE ANALYSIS OF A FLOW CONTROLLED

COMMUNICATION NETWORK NODE
P.G. Harrison

Department of Computing
Imperial College

London SW7 2BZ
England

A Markov model is presented for a message processing node with batch

arrivals, window size constraints and an additional flow control based on a

credit allocation scheme to limit congestion effects. The model is sufficiently

general for use in modelling many nodes which represent servers or sub-systems

in any queueing network with congestion controls. Its principal application lies

in the study of communication networks, in particular representing the network-

independent flow control of messages between networks, which may have quite

different message sizes and protocols, via a "gateway". No closed form analytic

solution exists for the direct representation of the congestion control scheme,

and die approach taken is to exploit its properties, approximately in some
cases, to simplify the model, reducing the size of the state space sufficiently

to permit direct, numerical solution of the balance equations. The credit

allocation scheme is shown to be equivalent to the node's operation in different

n^odes^ each with its own buffer capacity. Great simplification is achieved in

this way; credit control need no longer be modelled explicitly. The
approximations made are suitably realistic to retain adequate representation of

parameters, resulting in a good physical interpretation and accurate

predictions. Accuracy is assessed by comparison with the results of explicit

simulations of a selection of nodes of this type with various parameterizations.

Finally, we suggest applications for the model in the assessment and comparison

of performance under various congestion control schemes.

Key words: Communication networks; flow control; performance prediction;

analytic models; queueing models; Markov processes; simulation; validation.

1. Introduction

In communication networks, flow control

schemes are necessary to ease congestion which

would otherwise cause any of a variety of

problems. These include speed mis-matching

(different processing rates at the sending and

receiving nodes), deterioration in efficiency

(e.g. throughput degradation), loss of security or

reliability (e.g. due to buffer overflow at some

node), unfairness (in the sense that certain

classes of message may be allowed to dominate).

Various strategies have been proposed and sub-sets

of these implemented in some actual networks; e.g.

pacing control, [6], >vipd9W sizs. CPPStiaint as in

SNA, DECNET and ARPANET, [6], buffer size

limitation at individual nodes, [8,9], and

isarithmic control, [2]. Performance prediction of

flow controlled networks is important in the

comparison of such schemes, with the aim of

choosing the most efficient (always subject to

adequate attainment of the original objective of

the flow control).

We address this via an analytic model,

constructed initially to represent a node, the

message processor, connecting separate

communication networks with possibly quite

277

different characteristics, such as message size or

protocol; a gateway . Flow control in the gateway

is independent of the characteristics of each

network and uses:

(i) Window size restriction;

(ii) Buffer size limitation via assignment

of a threshold value for the number of

messages therein;

(iii) Message acceptance protocol based on
the availability and issue of credits,

accumulated on completion of processing of a

message unit by the message processor. This

is a pacing control.

The analytic model was developed within a

Markovian framework and results in balance

equations widi many global dependencies in the

sense that certain state transition probabilities

depend on several state vector component values;

in particular, blocking is present. The credit-

based control scheme is shown, in 2.1, to be

equivalent to operation by the node in modes,

representing congestion levels, each with its own
buffer capacity. In this way, the problem

specification is greatly simplified, and the state

> space much reduced, since credit handling need no

longer be modelled explicitly. The approach taken

is to make r<^^ 1,j yti<; approximations to further

reduce the size of the state space, the number of

dimensions in particular. The global state

dependence, e.g. blocking, is still present, but

the resulting small size of the state space

permits direct numerical solution of its balance

equations for the state space probabilities. From
these, important performance measures follow

immediately. The physical realism of the

approximations made retains the original

parameters of the model in an intuitively

significant way, preserving an accurate

representation. Thus the precision of predictions

is expected to be good. Validation is performed by
comparison with the results of simulation tests,

although ultimately validation is only relevant

when based on data measured on actual networks.

Nevertheless, the consistency shown with the

simulated results does increase confidence in the

model; its approximations in particular.

The model has great generality in that it is

the solution of raw balance equations, so that all

its parameters can have any (global) state

dependencies; in particular state dependent

service rates. Thus it can be applied to a variety

of queueing network nodes in the contexts of

communications and computer systems. For example,

whole sub-systems of physical nodes may be

represented by one with state dependent service

rate and/or customer acceptance protocol; indeed

any system with a congestion control scheme which
can somehow be represented realistically by a

single (possibly very complex) processor is a

suitable application.

In the following section, the gateway node
modelled is defined and the analysis resulting in

the reduced state space discussed. The balance

equations for the underlying Markov Process then

follow directly, from which the state transition

probability matrix may be obtained. The validation

exercise is described in section 3, and finally we
suggest applications of the model and extensions

which could be made to increase its generality,

allowing representation of more sophisticated,

stabilized congestion control schemes.

2. The Node Model

2.1 Node Description

The node, shown in Figure 1, accepts batches

of messages from a number of classes, each of

which has its own batch size and input stream.

Incoming message batches from each stream enter a

common hold queue (according to a Poisson arrival

process) from where batches are released into the

server queue of the message processor, whence they

are served on a first-come-first-served (FCFS)
basis. Messages are processed one message at a

time and the following flow control schemes are

operative:

(i) Window control. Each message class is

assigned a maximum number of batches allowed

in the server and hold queues, its window
size;

(ii) Isarithmic control or buffer size

limitation. The server queue has an

associated threshold value such that no
messages are accepted when the queue size

reaches this level and a congested mode is

entered whereby message acceptance is

restricted according to credit availability

as discussed next in (iii);

(iii) Pacing control. Once the threshold has

been reached messages are accepted only if

sufficient credits have been accumulated,

until the queue again becomes empty. The
number of available credits is set to zero

for queue sizes greater dian or equal to the

threshold value. One credit is issued

whenever a message's processing is completed

with a resulting queue length less than the

threshold value. Batches of messages are

accepted from the hold queue, on a FCFS
basis, when the number of accvmiulated

credits is greater than or equal to the batch

size of the class at the front of the hold

queue. On such a message acceptance a number
of credits equal to the batch size is

consumed, reducing the number of accimiulated

credits correspondingly. If the server queue

size becomes zero, non-congested mode of

operation is restored until the threshold is

again crossed.

This is basically the node described in [5]

widi variable message sizes and no time-out

278

mechanism. The time delay involved in the issue of

credits, arising from their own transmission on a

network in the physical system, is not

represented.

Notation:

Number of message classes: R
Message processor service rate: y messages/unit

time

Queueing discipline: FCFS (both queues)

Class arrival rates: \^ batches/unit

time (llrlR)
Class batch sizes: b^ messages

Class window sizes: w^ batches

(llrlR)
Threshold of server queue: T messages

These parameters may be state dependent in

any Markov model, in particular queue length

dependent. The direct representation of this

system in terms of a Markov process involves a

state space with dimensions corresponding to

(i) ordering of batches in the hold and

server queues in terms of their classes;

(ii) number of messages in the server queue;

(iii) number of credits accumulated.

The balance equations have no closed form
solution because of the global state dependencies

of state transition matrix entries on more than

one state vector components, c.f. [1], [7]; for

example due to blocking. Furthermore, direct

solution of the balance equations is infeasible

due to the size of the state space. We therefore

simplify the formulation of the specification for

a model to represent the system so as to reduce

the state space size to such an extent that

explicit solution of the new balance equations

becomes a practicable proposition. The global

state dependencies do not vanish so that a closed

form solution still cannot be derived.

The following observations may be made:

(i) The system operates in either of two
modes:

* congested, when the server queue has

not been empty since the last time the

threshold was reached;

* uncongested, otherwise.

(ii) Uncongested mode may be represented by

some maximum server queue size, C say, where

C^T. Of course it would be meaningless to

have C>T-l+max(bj) since queue lengths

greater than the r.h.s. of this inequality

could only occur after an arrival to a queue

of length greater than T-1, when no batches

are accepted.

(iii) Congested mode may be represented by
* no arrivals for server queue lengths

greater than or equal to T.

* arrivals subject to maximum queue

length T for server queue length less

than T. This is because on a service

completion resulting in a queue length

below the threshold, a single credit is

issued corresponding to a single message

completed. Also, when a batch is

accepted, the number of credits consumed
is equal to the number of messages in

the batch. Thus the sum of the number of

accimiulated credits and the server queue
length is constant, equal to T since at

the threshold there are zero credits

available by definition. This is

equivalent to (ii), uncongested mode,
with C set to T.

The state space, slightly generalised from
this description, is now defined in terms of mode
and server queue length; the credit-based control

becomes implicit and the model specification

greatly simplified.

2.2 The State Space

The state space, S, is the set of ordered

pairs defined by

S = { (n,m) : UnlCm; l^m^M]
where

M is the number of different modes (2 in the

previous section);

m is the mode corresponding to state vector

(n,m), with m=l representing congested mode;
Cjj) is the maximum queue length permitted in

mode m, the mode's capacity , so that Ci=T;
n is the queue length corresponding to state

vector (n,m).

This state space permits a more general flow

control scheme than that described in the previous

section:

(a) Any number of modes is possible, i.e.

M22;
(b) Mode changes may occur when the queue

becomes empty (n=0). Initially, n=0 and m>l;

Cn,>T for a realistic system, otherwise

congestion will never occur in the mode m.
Subsequently, on entry to a state with n=0
from a state (l,m'), a mode transition to

mode m occurs with probability T^mm'' Thus,

in the scheme defined in the previous

section,

^mm' = r 1 if ™=2
0 if m=l

Additional modes may be used to provide

stability in the system by introducing

intermediate capacities, preventing the

immediate onset of repeated congestion. In

fact the scheme can be generalised further,

providing more stability, via multiple

thresholds as discussed in 4.3

(c) A batch from message class r at the

front of the hold queue is accepted into the

279

Credits

ih
Class 1

Class 2

Class S.

Bacefa

arrivals

Hold, queue

Siaala

aes sages

Figure 1. The Flow Controlled Node

server queue in state (n,m) iff the queue

capacity wovild not be exceeded, i.e. iff

n+bj^Cjj^. Hence a form of blocking is

present even in our approximate model,

(d) On crossing the threshold, congested

mode is entered, i.e. a transition to a state

(n,m) with n^T causes m to be set to 1.

2.3 Implicit Representation of the Congestion

Control Mechanisms

The window flow control scheme of the node is

represented implicitly in the parameterization of

the following two quantities for each class k,

llklR:

Pk» probability that any given

message in the hold or server queues belongs

to class k. This is chosen to be proportional

to the window size as well as the arrival

rate of class k. Thus, p^ °^
-"^k^k*

value of pjj will also be influenced by the

window control through A j^, as described

next.

(b) ujj, the constraining factor on the

arrival rate, Aj^, of class k batches,

0<u1j^1. These constraints result from the

rejection of class k message batches when
their number in the hold and server queues is

equal to their window size; the effective

reducing of Aj^ to 0. The constrained

arrival rate for class k is then ujjAk^

The value of uj^ depends critically on
transmission protocol. It is unity if re-

transmission is attempted immediately after

rejection, or equivalently if rejected batches are

stored until they do become acceptable after

further processing of sufficiently many class k
messages. However, more commonly and inevitably if

the total unconstrained message arrival rate (from
all classes) exceeds the message processing rate,

uj(depends on the distribution of batch classes

in the hold and server queues. We denote the

constraining factor for class k in state (n,m) by
uj^Cn): independent of m since the window control

is mode-independent.

The approximation given below for ujj(n) is

based on the mean value of the length of the

combined hold and server queues. We assume that

the total number of messages in these queues has

the same probability distribution, Z, as the

length of die steady state M/M/1 single server

queue with

R
arrival rate E ujj(n)A]jbjj

,

k=l

processing rate y ,

R
and capacity i wj^bj^

,

k=l

henceforth denoted by Q. Thus {ujj(n)} ' are

defined recursively (and non-linearly) and may be

determined iteratively, each being set to 1

initially and successively updated to the required

precision. Convergnce is not considered formally

here. Our approximation for uj^(n) is derived as

follows.

Let q(n) be the mean combined length of the

hold and server queues in state (n,m). Thus,

Q
/ j z(j)

q(n) = (1)

^ Z(j)

j=n

Then the corresponding mean number of batches

in the hold and server queues is

m(n) = ^ + 1/2 (2)
R
Z Pi(n)bi

i=l

where Pi(n) ^ uj(n) A jwj and we use the

280

value of uj(n) given by the previous iteration

to compute pi(n). The addition of 1/2 allows for

the batch currently being processed.

The probability or the queues containing w
class k batches, given total length m(n), is

therefore

('"H{Pk(n)}^ {1-Pk(n)}^(n)-W

for m(n)2w, and we define uj^Cn) to be 1

if m(n)iwij and

unconstrained by window control, Le. if uij(n)=l
for each message class k and queue length n, '^nm
may be inaccurate since, for example, one arrival

stream may dominate through its high arrival rate

and yet have a small, highly constraining window
size.

2.4 The Balance Equations

2.4.1 Further Definitions

^'k ~
/ \

^ (w] {Pk(n)}^ {1-Pk(n)}'°(">-^
w=0

if m(n)2wij (3)

N otes :

(i) In general, m(n) is not an integer, and
die generalized factorial function is used in

the combinatorials to provide an interpolated

estimate for U]^(n) as a function of mean
queue length.

(ii) This approximation assumes primarily

that the hold queue length is always the same
for any given server queue length. A more
precise analysis which does not require this

assumption is given in [3].

The credit allocation control scheme is

reflected implicitly in the effective batch

arrival rate in state (n,m),

R

I ui(n)>^ibi

i=l

R

I pi(n)bi
i=l

(4)

so that I uj(n)A£bi

n+bilCm

= overall message arrival rate in state (n,m)

= (effective batch arrival rate)

* (mean accepted batch size)

as required. Note that for degenerate bj's or

I v4(n)X£

n+bjlCni

1 Pi(n)

n+b^C^

(5)

again as required.

Note too that if batch arrival rates are

Before the balance equations can be derived,

some more definitions are required:

^nm^^) ~ probability that the system is

blocked in state (n,m) waiting to accept a

batch of class k from the front of the hold
queue, l^k^R

B
state (n,m)
^ = probability of any blocking in

= Z Bnm(k)
k=l

(6)

We make the following (intuitively sound)

approximation:

Bnm(k) = ,^AninPk(n)

^0

if bk>Cin-n

otherwise.

(7)

where is the probability that there is at

least one arrival of any class outstanding in the

hold queue in state (n,m). The parameter A^^^ is

important in that its choice of value allows

various different message batch acceptance

protocols to be represented. Some examples of

relevant value assignments are:

(i) For a re-transmit batch acceptance

protocol in which a message batch is

discarded if it cannot be accepted into the

server queue immediately, no blocking occurs

and Ajun - 0 for all (n,m) e S.

Such a protocol is good as regards

buffer protection and no hold queue is

required. Throughput is not reduced

significantly and it is the easiest case to

model; the credit control scheme is

redundant. However, the protocol is unfair to

large batches which do not have bounded
waiting time for service and suffer severely

if there is heavy small batch traffic.

(ii) Hold queue widi FCFS discipline and

unbounded buffer size (unlimited queue
lengdi). For state (n,m)eS,

R
let A(n) = E bkXkiqj(n) (8)

k=l
the total, window -constrained, external

281

message arrival rate in state (n,m).

If ^ (n)2)J| the system is overloaded and
there will always be a blocked arrival; A^m
= 1.

If A(n)<y,

Ajim ~ Prob(total no. of messages in hold 8c

server queues > n : server queue

length = n)

Considering the whole system as an M/M/1
single server queue, this yields

Anm - P rob(queue length > n

: queue length ^ n)

=1- (9)

Q
E Z(j)

j=n

in the notation of 2.3. This is the

parameterization we choose for our model.

Clearly, further i^proximation has been

introduced, but note that the result is exact

for A (n)=0 and as A(n)->«' with mazimiun
allowed queue size approaching infinity.

Furthermore, one would expect the inaccuracy

introduced to be considerably less than that

arising from the other approximations in the

model.

With the problem now fully defined it is a

relatively simple matter to write down the balance

equations for the scheme. These may be found in

[3], together with a discussion of some numerical

aspects of their solution. We note here that the

size of the state space is

1+(M-1)T+ max Cm, and the number of elements in

l<jn<M
the transition matrix is the square of this value.

Typically, M will be small, e.g. 2 in our original

specification, and T and {CnjJl^ni^M} not large

with respect to computational feasibility; in any

case, the state space size is only linear in T.

No storage optimization techniques have been

found necessary, but the transition matrix is

clearly suitable for sparse matrix processing

techniques. These could be enhanced further using

certain properties of the model. For example by
considering separately die mode changes which can

occur only in very few states; the intervening

states enterable may then be considered to have
only one component, the queue length. In

particular, the state (n,l) with n>T can transit

only to the state (n-1,1) and thence, eventually,

to (T,l). Thus all super -threshold states could be

lumped together into a single composite state.

This would produce a more efficient implementation

with respect to both execution time and storage,

but results in loss of potentially important

detail, viz. the queue length distribution above
the threshold.

3. Validation

3.1 The Simulation Model

The analytic model defined in the previous
sections was validated by comparing its

predictions with those of a simulation model which
represents the node's operating characteristics

explicitly (although very much less efficiendy).

Whilst it is conceded that ultimate validation

must be based on data monitored on at least one
existing physical node, agreement with simulated

results certainly supports confidence in our

model; its implementation, but most importandy
its s^proximations.

The simulation model is an algorithmic

representation of the node defined in 2.1. It

models explicidy the flow of messages in each

class and the window flow control mechanism as

well as the credit allocation/threshold congestion

control scheme which is equivalent to two modes of

congestion. All interarrival times and the message
processor service times are drawn from negative

exponential probability distributions (consistent

with our Markov model), and messages rejected due
to window flow constraints are discarded: a

stream's arrival rate is effectively shut down to

zero when it attempts to violate its window size

limit.

The durations of the time periods simulated

were chosen to be long enough to yield

sufficiendy small standard error estimates on the

derived performance measures: of the order of 5%,
see 3.3. Both the analytic formulae and simulation

are simply programmed in APL, and run on an IBM
5100, the efficiency of which is conducive to

performance evaluation by wrist watchi The
analytic results for each test case required

around 5 minutes of CPU time, whereas the

corresponding simulation runs lasted some 10

hours.

3.2 Node Test Cases

In any test, the total message arrival rate

from all classes must be at least close to the

message processor's service rate in order that any

congestion control become operative. Relatively

low arrival rates were used to validate the

implementations of the models - giving results

close to those of corresponding M/M/1 queues, as

required.

Similarly, for a node with all batches

consisting of only a single message, the maximum
queue length in jH. modes is the threshold value,

since congested mode will be entered as soon as

the queue reaches this size: the modes are

degenerate. Here, the node is precisely a regular

single server queue (M/M/1 under our Markovian

282

assumptions) with the super-threshold states

aggregated into one. Thus, for a single arrival

stream o£ unit-sized batches with window size Q,
in the notation of 2.3, ive should have

Pi = Z(i) for 01i<T

Q (10)

Pt = ^ Z(j)

j=T

where we drop the redundant mode subscript. Now,
batches can be blocked in the hold queue only in

state (T,l) and so the balance equations for our

analytic model reduce (via the conventional method
for the M/M/1 analysis) to

Pi+1 = p (i)Pi for 01i<T-l

Pt = (l-AT)-lp(T-l)Px_i (11)

where p(i) = A(i)/ij(i+l) for message arrival rate

A(i) and processing rate y(i) in state (i,l), and

At is the probability of there being a batch

waiting in the hold queue in state (T,l), see 2.4.

Now, Z(i+1)= p(i)Z(i) for Oj^KQ, so we require

Q
{1-At}"1z(T) = E Z(j) (12)

j=T
which is satisfied by our definition of A in 2.4.

Ntmierical results are in agreement, but this

merely provides some validation of the

implementations of the analytic and simulation

models. Note that although the modes are

degenerate, for finite window sizes the arrival

streams are not; they result in a multi-class

single server queue.

The following selection of nodes defined for

our validation was chosen to demonstrate the most
significant characteristics of the flow controls:

(1) A node with 2 arrival streams and the

threshold value sufficiently high for both

the credit allocation and window flow control

schemes to have significant effects. Note

that a threshold above the sum of the

products of the window size and batch size

for each class would never be reached.

(2) The same node with the threshold reduced

so that the credit allocation control scheme

becomes dominant.

(3) The node with total (unconstrained)

message arrival rate much higher than the

message processor's service rate - a

saturated node.

(4) A node with a third arrival stream of

single message batches with relatively high

arrival rate and window size. Such a stream

allows the server queue length to remain at

its threshold value after a service

completion (in congested mode, of course),

due to acceptance from the hold queue of a

message batch of unit size.

The numerical parameterizations of these

specifications are given in Tables 1-4, along with

their performance predictions. These test cases

are a sub-set of a much more comprehensive set,

revealing our most significant results as

discussed in later sections.

3.3 Estimation of Performance Measures

The primary performance measure, computed by

both the analytic and simulation models for each

test case (3.2), is the probability distribution

of the server queue length. Secondary quantities

then follow immediately, for example throughput,
mean and standard deviation of queue lengdi,

expected message waiting time (through Litde's

Law). In some simulation runs, we also estimated

the proportion of time that:

(a) Each arrival stream is inactive due to

the window contol. In this way the validity

of our approximation for {uif(n)}, 2.3,

could be judged directly.

(b) The hold queue is non-empty, with a

class k batch at the front, l^k^R. Hence the

accuracy of our assignment of values to

{Ajimlt 2.4, can be assessed for cases more
complex than that discussed in 3.2.

(c) The node is in each mode. This can

provide further validation by comparison with

the appropriate marginal state space

probabilities of the analytic model.

In each simulation run, initially both the

hold and server queues are empty and the node is

in non-congested mode. No data is collected until

a period of 5 time constants has el<^sed. The
value used for the time constant is the reciprocal

of the mean state transition rate, averaged over

all states in the sxialytic model. We used

primarily the sampling or "snapshot" method of

data collection, described below, for our

statistical analysis. Cumulative techniques were

also used to provide an alternative approach, but

the resulting estimates are not significantly

different from, in fact are almost identical to,

those based on the snapshot data. The cumulative

variant is described in [4].

Snapshots of the node's state were sampled at

a set of time points uniformly spaced at intervals

of 2 time constants, the first at time equal to 5

time constants. If server queue length i is

observed nj times in a sample of N snapshots,

the estimate for the equilibrium probability of

queue length i is pi=n£/N, O^i^I, where I is

the maximum possible queue length. Assuming that

the sample is independently identically

distributed according to true queue length

probabilities {pi:Oii^I}, the random variable

n^ has binomial distribution with mean Np^ and

variance Npj(l-pj).

Thus, p£ has expected value p^ (as

283

Probability

0.3
Test case 1

Probability

0.3

X —
— n

Test case 2

H _

0 1 234 56 789 10 11

Server queue length

3C .Tr

0 1 2 3 4 5 6 7

Server queue length

Test case 3

X -EX i —

Test case 4

0 1 2 3 4 5 6 7 9 10 11 01 23 45678

Legend: 0 analytic prediction
X simulation estimate
— 2 X standard error limit

Figure 2. Predicted Server Queue Length Probability Distributions

required) and variance pj(l-pi)/N. Hence, pj
has standard error estimate

o[pi] = {pi(l-Pi)/N}0-5 (13)

Since N is proportional to the (simulated)

duration of the run, D say, the standard errors

are proportional to D"^*^. Thus to reduce the

standard error estimates by a factor of f, the

simulation run time must increase by a factor of

f2.

The mean queue length is estimated as

I

I ipi

i=l

and so has standard errror

I

{ I
(i a[pi])2}0.5 (14)

i=l

A numerical comparison of these performance

measures as computed by the analytic and

simulation models is presented in Tables 1-4, with

the goodness-of-fit assessed by the chi-squared

test. Histograms derived for the server queue

length probability distributions are shown in

Figure 2,

3.4 Analysis and Interpretation of the

Numerical Results

3.4.1 Overview and General Observations

From tables 1-4 and the plots in Figure 2 it

can be seen that the analytic and simulation

results exhibit the same general characteristics:

in terms of mean queue length, the distribution

itself and their standard errors. The distribution

is essentially bimodal (with the exception of the

case with high arrival rate discussed below),

decreasing from the idle probability (queue length

284

zero) to a trough before the threshold queue
length, increasing to a maximum at or immediately
below the threshold and falling away sharply for

queue lengths above the threshold. The
corresponding single server queue results, with
window flow controlled arrival rate and all super-
threshold states lumped into one, bear little

resemblance.

Apart from the general bimodal shape, there

are other more local variations in the

distributions. Denoting the probability of queue
length n by P(n), for test cases 1-3,

P(0)>P(1)<P(2)>P(3)<P(4), whereas in case 4 the

probabilities are m onotonicallv decreasing for

sub-threshold queue lengths. This is simply

explained by the absence of a single message batch

stream in all cases other than the fourth. The
(queue length) transition 0->l is then invalid and

queue length 1 can only result from a transition

2->l, on a message completion. Thus P(1)<P(2) and

the effect propagates to P(3) for precisely the

same reason. Similarly in cases 1-3, P(T-1)>P(T)
for threshold value T. This follows since the

transition T->T is invalid (acceptance of a

blocked single message batch on service

completion) and so all super -threshold states must
transit monotonely to state (T-1,1). Propagation

analogous to that discussed above results in

P(T-3)>P(T-2)<P(T-1) in cases 1 and 2, the effect

being less pronounced in case 3 because of the

counteracting high arrival rate.

In contrast, note that in case 4, the

presence of the unit sized batches allows the

transition T->T, yielding very emphatically

P(T)>P(T-1). Further, P(T-l)<P(T-2), explained by

the existence of (T-1)->T (blocked arrival)

transitions: no similar transition is possible

from queue length T-2 and the effect is outweighed

by the others in cases 1-3.

3.4.2 Goodness-of-fit

It is clear from our tables and graphs that

there is very variable agreement between the

analytic and simulation results: from very good
(test case 1) to poor (case 3). The mean queue

lengths for cases 1,2,4 certainly do not differ

significantly (in terms of their standard error

estimates); even case 3 is not outrageous here.

However, more rigorous quantitative testing must
be based on whole distributions. The proportion of

analytically computed probability points lying

outside the 2 x standard error confidence bands on

the simulation results (Figure 2) are 0, 37, 100

and 12 per cent for cases 1-4 respectively.

Excluding case 3, only one point differs by more
than 3 standard errors (queue length 0 in case 2).

Case 3 is the saturated node and is discussed in

some detail in the next section. Note here that

although quantitatively poor, its analytic

predictions still exhibit general characteristics

not inconsistent with the simulation.

Our primary statistical test for goodness-of-
fit is the chi-squared test. This again reflects

the variability of agreement, with values of the

test statistic in the range 12-200 on 8-11 degrees

of freedom (Tables 1-4). The corresponding

percentage points indicate a fit which is good for

case 1 (about 75%), reasonable for case 4 (96%)
and poor for case 2 (99.9%); effectively 100% for

case 3. These results are not too impressive in

themselves, indeed rather surprising in case 2.

But the chi-squared test is well known for its

extreme and unforgiving sensitivity: just one or

two points differing significantly yield a large

contribution in the test statistic which
consequently shows a poor fit regardless of the

sizes of the contributions from the other points.

This is precisely the situation in test cases 2

and 4, as well as many others not reported here,

with particularly large contributions from small

queue lengths (see the last columns in the

tables). If such points are corrected or omitted,

a good fit is indicated. Thus, although the chi-

squared test may suggest a model worthless, it may
be that for a (majority) sub-set of queue lengths

the model provides a good representation

actually supported by this self-same test which
may reject a whole theory on the basis of one

point.

Our model, then, appears to provide a good,
statistically supported representation of queue
length behaviour if underload situations are

excluded. This is especially true near the

threshold, precisely where the control schemes

modelled are most crucial and prediction is most
important. Some possible causes for the

inadequacies identified in the model are revealed

next.

3.4.3 Interpretations

(1) For many of the node specifications examined,

cases 1-3 here, the simulation predicted a sharper

peak in the queue length distribution at (or just

below) the threshold. This is quite consistent

with its lower predictions for the probability of

zero queue length in that non congested mode would
be entered less frequently. Thus the queue

capacity would be greater than the threshold value

less often, and hence the threshold will provide a

more dominating constraint. In more general terms

also, some smoothing of the peak in the analytic

model is consistent with the aggregate type of

representation of window control: discussed

further below.

(2) As expected, the credit allocation control

(CAC) dominated cases give the best agreement,

e.g. case 1: CAC is modelled explicitly and in

greater detail than the window flow control (WFC),
represented only in terms of aggregate effects on

285

arrival rates. Moreover the WFC has representation

independent of the CAC and so of the threshold

value. Thus, if it is inadequate, the analytic

model cannot be expected to be accurate since its

own input (arrival rate) parameters would be

incorrect. This applies regardless of the

threshold value, so that by a "CAC dominated" test

case we really mean one in which WFC has little

effect on arrival rates and not necessarily merely

one with low threshold.

The good agreement obtained in case 1 is

consistent with this argument, but greater

positive support is provided by the poor results

of test case 3 in which batch arrival rates were
high and consequendy adjusted by the WFC to a

considerable extent. Certainly the significant

probabilities predicted for queue lengths 0 and 1

are counter -intuitive, and we postulate that the

inaccuracy arises from our representation of WFC.
Exploring this possibility further, we tested a

case with two arrival streams, one with much
greater arrival rate but small window size. The
resulting adjustments to the batch arrival rates

were therefore substantial, even though the node

was not overloaded. This test gave a chi-squared

statistic of around 500 on 9 degrees of freedom,

strongly suggesting that our arrival rate

adjustment formula (2.3) is inadequate.

On re-computing the analytic results for this

node specification and test case 3, using the WFC-
constrained arrival rates estimated by monitoring

the corresponding simulations (3.3 (b)) in place

of the adjustment formula, much better agreement

was obtained. A need for improvement in our

representation of WFC is clearly identified, and

may be provided to some extent through a

refinement of our aggregate approach, [3]. A more
detailed representation would be preferable, but

recall that it is impractical for this to be fully

explicit (2.1). Note that another similar possible

source of inaccuracy is the formulation of the

batch class selection probabilities, {pk(n)} of

2.3.

(3) Finally, and in the same vein as (2), the

parameterisation of the blocking probabilities

through {Amnl lead to imprecision. Again the

WFC representation is also significant through

{plj(n)}, as well as {Ajiml to a lesser extent.

However, tests using values for the blocking

probabilities estimated in corresponding

simulation runs (compare (2)) were inconclusive.

4. Applications and Enhancements of the Model

4.1 Performance Metrics

Most of the required performance measures can

be derived from the state space probabilities, £.

These are as follows:

(i) Server queue length probability

distribution, marginal probabilities of the

joint probability distribution, £;
(ii) Server utilization, following directly

from (i)

;

(iii) Server throughput;

(iv) Mean and standard deviation of the

server queue length;

(v) Distribution of the time delay for a

message batch to pass through the message
processor, a simple weighted convolution;

(vi) The power of the node, defined as

Througlq)ut of node

Mean message time delay in both queues

2
_ (Throughput)

Sum of mean queue lengths

by Little's Law. Now the throughput may be

derived from the node's state space

probabilities and the sum of the mean queue
lengths obtained by considering the whole
system as an M/M/1 single server queue with

window flow constrained arrival rate (2.3).

4.2 Experimentation

Having derived expressions or algorithms for

the performance measures listed in the previous

section, one can attempt to optimize the node's

performance in various ways, by selection of

appropriate parameter values. For example,

(i) In the graphs of throughput and power
vs. mean time delay or mean queue length

(related by Litde's Law) for messages in the

system, one can identify a knee and a peak

respectively. Optimization would involve

choosing model parameters to achieve

positioning of these points which is best

according to some objective; e.g. maximum
throughput subject to some upper bound on
mean time delay (reflecting provision of some
pre-determined minimal service quality).

(ii) The distribution of the server queue

length is important, particularly if service

rate depends on queue size. Clearly a low
probability of zero queue length is required

(minimal idle time). In addition, the

"spread" of the distribution should not be

too great, otherwise the variance of the

number of messages in the queue will be high,

reflecting a highly variable message delay

time and possible instability; a most
undesirable effect, psychologically at least.

Thus the ideal shape for the queue length

distribution is that of a sharp peak at a

length greater than zero. Furthermore, for a

queue length dependent service rate, one

would like to be able to choose parameter

values such that the peak was located near

the queue length yielding maximum service

rate (the queue is finite, recall); in this

way, throughput should be optimized also.

286

Considerable experimentation with parameter
values, such as the threshold, mode capacities,

batch and window sizes, is possible, since the

significant characteristics of the flow control

scheme are parameterized explicitly. Particular

examples are suggested in [3].

4.3 Extensions to the Model

An immediate extension is to incorporate

state-dependent parameters into the model; arrival

and service rates in particular. Much more
sophisticated optimization may then be undertaken,

as in 4.2. D ynamic flow control schemes are being

used increasingly, particularly in networks with

distributed control functions. The parameters of

such schemes are adjustable according to the

current state of the network. For example, as

congestion increases at any particular node, the

node can reduce, or even shut down to zero in

severe cases, the window sizes of some or all

message classes. Of course the physical mechanism
would involve transmission of control information

on the network, requiring much more complex

modelling which would be impracticable in our

case. However it is a simple matter to incorporate

queue length or mode dependent window sizes, Wj,

represented by pj and Uj in the balance

equations. In this way, the distribution of

messages with respect to class, entering the

message processor queue may be controlled

according to the current state.

State dependent mode capacities may be used

to model stabilizing mechanisms which may operate

physically by issuing variable (fractional or

multiple) credits. Indeed in general, mode
capacity is equivalent to the size of credits

issued on sub-threshold message completion.

Although a less trivial change, the balance

equations are easily modified to accomodate such

dynamic mode capacities. A form of dynamic message
acceptance protocol is represented in this way.

A novel stability mechanism may be provided

by the use of multiple thresholds. In our model,

there is only one threshold, the only significance

of which is that the mode, or queue capacity, may
change when it is reached from below. The mode
always becomes 1, congested, but there is no
analytical reason for this restriction or why a

mode transition probability matrix similar to ^
could not be used. Furthermore, such transitions

are quite realistic and feasible, and capable of

representation in the balance equations, on

approaching the threshold from above as well as

below; one could view the existing model as having

unit mode transition matrix on reaching the

threshold from above.

Using the possibility of a mode change at a

queue length of n as the defining criterion for a

threshold, the empty queue is also a threshold.

Extending this argument, any number of thresholds

may be defined, the mode being subject to change

at any; approaching from above or below. In this

way, stabilizing mechanisms may be represented via

entry to intermediate modes or use of a threshold

band to delay revertion to the old mode on
returning through a threshold. The threshold band
operates as follows:

(i) The band consists of two values for the

queue length, T;^ and Tg with Ty^ < Tg
for thresholds A and B respectively.

(ii) On reaching threshold B from below, the

mode may change; to a "more congested" mode.
For example, m may change from 2 to 1 in our

test case with M=2 at the threshold with

value T. On approach from above, no mode
change occurs.

(iii) Similarly, on reaching A from above,

the mode may change; to a "less congested"

mode. In the same example, m may change from
1 to 2 when the queue becomes empty. On
approach from below, no mode change occurs.

It can be seen that this mechanism will

prevent instability caused by oscillation of the

queue length about a single threshold value having

inverse mode transitions for approach from
opposite directions. In fact in out example we
have precisely a threshold band, with T^ = 0 and

Tg = T, but fat greater generality is possible.

5. Conclusion

An analytic model has been developed which
can represent a wide range of nodes or sub-systems

in queueing networks with congestion control

schemes. The equivalence of the credit- and mode-
based control schemes, together with certain

approximations yield a state space sufficiently

small to permit feasible, direct, numerical

solution of its balance equations; even for

complex nodes with large buffer sizes. At the same
time, enough detail of a modelled system, in terms

of its parameters, is retained to achieve great

generality; mainly through the acceptability of

unrestricted state dependence of the parameter

values.

The type of control modelled is node-to-node
rather than end-to-end, based on single buffer

capacity constraints and restrictions on the

arrival processes to one processor. The control is

localized^ reflecting message pacing and single

node protection, and is eminently suitable for

explication to networks with distributed flow

control. End-to-end flow control is modelled via

the window size parameters, although its explicit

implementation is not.

Validation to date is encouraging, suggesting

that our model provides a good analytic

representation of nodes' behaviour, for server

queue lengths near the threshold in particular.

287

The choices of threshold value and mode edacities

ate crucial for optunizing performance, and diis

domain is the most important for prediction

purposes. We therefore expect that the model can

be a suitable tool for performance prediction in

the next stage of our research - experimentation

with multiple modes and thresholds in the

development of dynamic stability mechanisms, see

4,3.

Perhaps of less obvious importance, it should

be pointed out that in addition to providing a

rich class of models, this modelling process has

increased insight into and understanding of the

corresponding physical processors; resulting in

the proposals for new or extended congestion

control schemes. A network consisting of nodes all

of which possess flow control mechanisms of these

types could provide dynamically well paced,

efficient, fair and secure communication between

end users.

The research reported in this paper

originated during my recent visit to IBM Watson
Research Center, Yorktown Heights, New York. I

would like to extend my thanks to Frank Moss,

Mischa Schwartz, Paul Green, but above all to

Parviz Kermani, for all their help and advice.

References

tl] Chandy, K.M., Howard, J.H., Towsley, D.F.,

"Product Form and Local Balance in Queueing

Networks", J.ACM Z±,2.

[2] Davies, D., "The Control of Congestion in

Packet Switching Networks", IEEE Transactions

on Communications, Vol. COM-20, No. 3, June
1972.

[3] Harrison, P.G., "Analytic model of a

Communication Network Node with Flow
Controls", IBM Research Report RC8832,
Research report DoC81/9, May 1981, Dept.of

Computing, Imperial College, London SW7 2BZ,
England. Also submitted to Computer Networks.

[4] Harrison, P.G., "Performance Prediction of a

Flow Control System using an Analytic Model",
Research report D0C8I/IO, June 1981,

Department of Computing, Imperial College,

London SW7 2BZ, England.

[5] Kermani, P., Bharath-Kumar, K., "A Congestion

Control Scheme for Window Flow Controlled

Computer Networks", IBM Research Report No.
RC8401.

[6] Kleinrock, L., Gerla, M., "Flow Control: A
Comparative Survey", IEEE Transactions on
Communications, Vol. COM-28, No. 4, April

1980.

I7] Lam, S.S., "Queueing Networks with Population

Size Constraints", IBM J. Res. Develop., July

1977.

[8] Lam, S.S., Reiser, M., "Congestion Control in

Store and Forward Networks by Buffer Input

Limits", IEEE Transactions on Communications,

Vol. COM-27, No. 1, January 1979.

[9] Wecker, S., "DNA: The Digital Network
Architecture", IEEE Transactions on

Communications, Vol. COM-28, No. 4, April

1980.

288

Table 1. First Node Test Case

HESSAGE CLASSES; 1 2

ARRIVAL PATES 5.000 3,000
BATCH SIZES 2 ^
UINIiQW SIZES 3 2

MESSAGE PROCESSING RATE - 20.000
THRFSHLILM VALUE = H
NON-CONGESTED MODE CAPACITY = 11

QUEUE PROBABILITY; PROHABILITY; STANtiARU PROBABILITY CHI S«lJAREii"
LENGTH ANALYTIC SIMULATION ERROR M/M/1 (lUELIE CONTRIBUTION

0 . 142 . 137
1 . 060 . 048
2 . 086 , 082
3 . 078 .075
If

. 092 ,101
5 ,106 . 12U
6 . 099 ,110
7 . 178 . 165
8 . Iif7 . 1^6
9 .008 .010

10 .003 , 003
11 .001 .000

SAMPLE SIZE = 1250
LENGTH OF TIME PERIOB SIMULATED = 112.095

MEAN O.UEUE LENGTH
ANALYTIC ;

" " 5 . '497

SIMULATED; 4,562
STD ERROR ; . 140

CHI-SQUARED STATISTIC

MESSAGE CLASSES

ARRIVAL RATES 5,000 3.000
BATCH SIZES 2 4
UINDOU SIZES 3 2

MESSAGE PROCESSING RATE = 20.000
THRESHOLD VALUE = 5
NON-CONGESTED MODE CAPACITY = 8

QUEUE PROBABILITY: PROBABILITY;
LENGTH ANALYTIC SIMULATION

0 . 184 . 136
1 . 078 . 059

. 129 . 148
3 .110 . 138
4 .257 . 260
5' .211 .228
6 . 0 22 . 021
7 , 007 .006
8 . UU3 . 004

SAMPLE SIZE = 1250
LENGTH OF TIME PERIOD SIMULATED = 126.505

MEAN QUEUE LENGTH
ANALYTIC; 27954
SIMULATED: 3.144
STD ERROR: ,091

010 .0 68 ,224
006 . 074 3.287
008 . 080 .239
007 .086 . 152
009 .090 1 . 092
009 . 092 4 . 147
009 . 091 1 . 535
010 , 087 1 , 174
010 .331 . 009
003 .000 ,332
001 , 000 , 098
000 ,000

STANDARD PROBABILITY; CHI SQUARED
ERROR M/M/1 QUEUE CONTRIBUTION

.010 . 068 15. 122
. 007 . 074 5.592
.010 , 080 3.516
.010 , 086 9. 025
. 012 . 090 . 054
.012 .602 1 . 790
. U04 .000 . 076
. 0 0 2 .000 .281
. 0 02 .000 . 022

= 13.510 WITH 11 DEGREES OF FREEDOM

Table 2. Second Node Test Case

1 2

CHI-SQUARED STATISTIC = 35,477 WITH 8 DEGREES OF FREEDOM

289

Table 3. Third Node Test Case

MESSAGE CLASSES

ARRIVAL RATES
BATCH SIZES
uiNrmu SIZES

10 . 000

3

6,000
4

MESSAGE PROCESSING RATE = 20,000
THRESHOLD VALUE = 8
NON-CONGESTED MODE CAPACITY - 11

aiJEUE
LENGTH

PROBABILITY

:

ANALYTIC
PROBABILITY
SIMULATION

STANDARD
ERROR

PROBABILITY

;

M/M/1 OUeUE
CHI SQUARED
CONTRIBUTION

0 . 046 .006 , 002 .001 42.705
1 . 026 ,008 , 003 .002 15 . 091
-y

. 041 .013 , 003 .003 24 . 282
3 . 047 . 021 . 004 .005 17.867

, 064 .023 .004 .007 33.280
5 .110 . 159 .010 .010 27.326
6 .113 .153 . 010 . 016 17.901
7 .287 .320 .013 . 024 4.589
8 , 256 .294 ,013 .932 7.401
9 , 006 .002 , 001 . 000 4.576

10 .003 .001 ,001 .000 1 .680
11 . 001 .000 .000 .000 1 . 068

SAMPLE SIZE = 1250
LENGTH OF TIME PERIOD SIMULATED = 104.202

MEAN QUEUE LENGTH
ANALYTIC; ""5.881
SIMULATED: 6.516
STD ERROR ; ,162

CHI-SQUARED STATISTIC = 197.765 WITH 11 DEGREES OF FREEDOM

Table 4. Fourth Node Test Case

MESSAGE CLASSES:

ARRIVAL KATES
BATCH SIZES
WINIiOU SIZES

.
(1 1) !)

3
1

MESSAGE PROCESSING RATE = 20.000
THRESHOLD VALUE = 6
NON-CONGESTED MODE CAPACITY = 8

QUEUE
LENGTH

PROBABILITY

:

ANALYTIC
PROBABILITY

:

SIMULATION
STANDARD
ERROR

PROBABILITY

:

M/M/1 QUEUE
CHI SQUARED
CONTRIBUTION

0 . 204 .237 .012 . 163 6 . 567
1 . 160 . 139 .010 . 146 3.500

. 143 . 142 .010 .131 .013
3 . 131 . 113 . 009 .117 1 .782
4 . 121 .109 .009 . 105 1 .628
5 . 093 .112 .009 . 094 2.319
6 . 138 , 141 .010 .244 . 098
7 .0 03 , 003 . 002 .000 . 024
8 .001 ,000 . 000 . 000 .868

SAMPLE SIZE = 1250
LENGTH OF TIME PERIOD SIMULATED = aa . 029

MEAN QUEUE LENGTH
ANALi'TIC : 2V672
SIMULATED: 2.637
STD ERROR : . 090

CHI-SQUARED STATISTIC = 16.798 WITH 8 DEGREES OF FREEDOM

290

CP

I

j

Case Studies

291

RESOURCE MANAGEMENT
IN A DISTRIBUTED PROCESSING ENVIRONMENT

—COMPUTER RESOURCE SELECTION GUIDELINES
Eva T. Jun

Resource Planning and Measurement Branch
Division of Operations

Office of Computer Services and
Telecommunications Management

Office of the Assistant Secretary for
Management and Administration

U.S. Department of Energy
Germantown, MD 20874

In an installation where computer resources of various types and
sizes are either available or feasible, resource management and planning
personnel have the responsibility for ensuring that user requirements
are met in the most cost-effective manner. This paper is a tutorial on
what considerations should be a part of the computer resource selection
process for any given application.

Key words: Computer resource selection; cost; long range plan; system
requirements; user requirements.

1. Introduction

The purpose of these guidelines is to

ensure that the selection method used for

automatic data processing (ADP) equipment
and services will lead to the acquisition
of an appropriate and cost-effective ADP
resource for a given ADP application
system.

These guidelines outline the process
for selecting the resource upon which an
application is to be run once user require-

ments have been defined.

With the emergence of distributed pro-

cessing technology, resource management and

planning personnel have a wider choice of

equipment selection. In an installation
where computer resources of various types

and sizes are either available or feasible,

planners have the task of matching a

resource to each application.

2. ADP Resource Selection Process

2.1 Timing

The timing of ADP resource selection
is critical to both the user and to the

data processing department. For new appli-
cations, ADP resource selection should take
place during the initiation phase of system
development. As illustrated in Figure 1,

resource requirements should be identified
and quantified after user requirements are
known and either before or concurrently
with preliminary design. For existing sys-
tems undergoing expansion (running on dedi-
cated processors), ADP resource selection
should take place at least 5 months before
projected saturation (much longer in cer-
tain Federal sectors). However, for exist-
ing systems undergoing major modifications,
the appropriateness of the original
resource selected should also be

re-evaluated

.

293

Security/ privacy

Preliminary
Analysis

User Requirements
Study

ADP Resource
Selection

Preliminary
Design

Figure 1. Application System
Initiation Phase

2.2 Understanding User Requirements

A distinction must be made between
user requirements and system requirements.
User requirements should accurately reflect
the functional needs of the user stated in

terms that the user understands, whereas
system requirements should define the com-
puting environment. Quantities in user
requirements should be stated in the units
the user utilizes to measure his tasks, not

in terms of computer system terminology.
Figure 2 illustrates the kinds of critical
user requirements that must be fully
understood.

• Nature of interface with other
systems

:

- One-way or two-way data exchange
- Frequency of interfacing
- Data volume
- Response time requirement

• Nature of processing:
- Computation or data management

extensive
- Accuracy requirement

• Online storage requirements in

terms of:
- Number of files per system
- Average number of records per

file
- Average record length

• Geographical distribution of users

• Peak load conditions:
- Maximum number of simultaneous

users or processes
- Peak frequency of transaction
- Turnaround time requirement

• Input/output requirement:
- Input - screen formatting, data

editing, and validation
- Output - format and volume

• Frequency of usage :

- Average number of interactive and

batch sessions per day
- Average length of connect time

per session

Figure 2. User Requirements

2.3 Long Range Plan

Although the processing requirements
of most applications can be satisfied by
most general purpose computers, conformity
to the data processing department's long
range plans is an important factor in the

selection of a computing resource. The
following paragraphs detail the major
points of one such plan, that used at the

Department of Energy (DOE) Headquarters
Administrative Computer Center in
Germantown, Maryland.

294

1. The Headquarters large scale host com-
puter will be used for systems that
require

:

• Online integration of multiple data
bases—with current technology,
this can best be accomplished on
the host computer because of
response time constraints;

• A large volume of data, because of
the economy of scale offered in

mass storage configurations on
large scale processors;

• A large amount of "number crunch-
ing," where the turnaround time

would be intolerable on smaller
scale processors.

2. Classified material will be processed
on dedicated classified processors.

3. Satellite processors are small to

medium scale processors used to off-
load work from the host processors.
They are appropriate for systems that

do not have the specific requirements
outlined above for a host computer.
Satellite processors can be installed
in field offices as well as Headquar-
ters for the convenience of users.
Factors to be considered in the

assignment of users to any satellite
processor will be based on functional
requirements; geographic location;
user organization; and the need for

access to data, local control, and the

relative capacity of the processors.
Evaluation of these factors must be
made on a case-by-case basis.

4. Office system processors may be pur-
chased and used by specific organiza-
tions within user departments where
proven to be cost-effective. Mini/
micro systems are appropriate for

office automation systems because they

offer user control, fast turnaround
for printer output, and (potential)

economy.

Data processing may be performed on

user-owned processors when the sus-

tained processing load of parochial
data justifies the acquisition of a

computer for data processing and when
capacity of other suitable processors
is not available.

5. The use of computing resources through
interagency resource sharing (for
Federal Government agencies) or com-
mercial timesharing services must be
considered when the following condi-
tions are present:

• When needed as back up for in-house
facilities when in-house computing
facilities are temporarily incapac-
itated or when there is a need for

a temporary means of providing
service due to the saturation of
in-house computing facilities and

urgency of user needs;

• When it is not feasible to provide
proprietary software packages on
the in-house computers;

• When the use of special hardware
capability is necessary;

• When there is a need to access
proprietary data bases.

Interagency resource sharing is avail-
able from several Federal data pro-
cessing centers that serve Federal
agencies throughout the country. The

General Services Administration (GSA)

assists agencies in screening avail-
able Government ADP resources.
Federal Property Management Regula-
tions (FPMR) require that interagency
ADP resource sharing be considered
prior to acquiring ADP resources from
commercial sources.

2.4 System Requirements

User requirements must be translated
into system requirements in order to deter-
mine the computing environment necessary to

accomplish the user's tasks. The size of

the application system plays a major role
in establishing system requirements. Once
application size has been determined, the

physical resources needed to support it can
also be determined, thereby allowing selec-

tion of a processor with sufficient capac-
ity (provided other requirement areas can
be satisfied).

Determining the size of an application
system before it has been developed is a

difficult process. Accuracy depends on a

complete understanding of how functions in

the system being developed are met. Work-
load characteristics (frequency, volume,
etc.) should be gathered in the current
environment. Adjustments can then be made
to estimate projected workload for the

295

future environment. Another means of esti-
mating the size of a system to be developed
is to examine the performance statistics of
current systems of similar volume and
architecture

.

There are often various ways of sup-
porting a user-required function; thus, the
system configuration derived need not be

unique. For instance, screen formatting as
a user requirement can be translated into
either high-speed transmission from the

host or the satellite processor, or the use
of intelligent terminals or local proces-
sors for screen formatting where less than
high-speed transmission of data to the host
computer will suffice. Each alternative
should be evaluated according to how well
it satisfies the highest priority
requirements.

System requirements can be grouped
into five categories: software, hardware,
telecommunications, operating environment,
and performance. A single user requirement
can generate system requirements in more
than one category as illustrated in the
sample derivation of system requirements
from user requirements shown in Figure 3.

Security considerations impose
requirements on all of the above mentioned
areas of the system. A risk analysis
should be performed to determine the extent
of the security provisions necessary to

satisfy user requirements.

The following paragraphs outline some
of the various areas of system requirements
that must be considered in the computer
selection process.

2.4.1 Software

Software support for the application
being considered must be made in terms of

the following considerations.

2.4.1.1 Operating System

The operating system must provide sup-
port in the following areas, where
required

:

2. Software products and utilities

—

• Software control utilities,
• Application support packages, such

as debugging aids, screen format-
ting software, etc.,

• File system maintenance utilities,
such as disk reorganization, data
migration, and recall;

3. Interprocessors communications ability
(where necessary)

—

• Online interface,
• Job networking,
• File transfer;

4. Appropriate file structures, including
compatibility with interfacing
systems

;

5. Number of simultaneous users the soft-
ware is capable of supporting.

2.4.1.2 Data Base Management System
(DBMS)

If the need for a data base management
system is warranted, its architecture must
be evaluated to determine its suitability
to the user's processing requirements for

functional capabilities and efficiency.

2.4.1.3 Language

Systems that are designed using exist-
ing systems as a base have specific lan-
guage support requirements. In addition,
any system of this type also has a limited
number of processors on which it can be
used without a major conversion effort.

,

2.4.1.4 Automated Office System
Requirements

These functions should be supported in

office information systems: word process-
ing, electronic mail, document storage,
calendar planning, and typewriter-quality
output

.

2.4.2 Hardware

Hardware support must be made in terms
of the following considerations.

1. Security and integrity

—

• Control of access,
• Protection against simultaneous

update when data is shared by many
users

;

2.4.2.1 Memory

Memory requirements are related to

maximum execution program size (including
code, tables, arrays, etc.) and operating
system support (e.g., whether or not the

system uses virtual memory)

.

296

(U a
•o o
•1-1 o <u •o "O H
> d 0) CO
o t-l >> •H > 4-1 U
>-l <u 4-1 1—

1

•H CO 0>
o.

C
i.

mb 1
1 ff er

O a
• I-l

on
>
d

> 3 •H o M 4J • iH <u o
CO d o CO 1-1 u
3 1—

1

CO 4J <u •H
B

• T5
B ^
3 I-l

>4-l
UT en

OJ

CO

CO

CM
of

>> I-l B u CM 1-4 B 4J d •a
4-1 u O •H d c d) CO CO d
• >-l •H O X 0) o u B 14-1 I-l CO 4-1

—1 r-l CO •I-l •H •1-1 4J •I-l

•r^ •H u B <J O o 3 4-1 73 01 1—

(

u J3 •iH U 4J D" CO 01 V4 60 •I-l

ca CO 4-1 4-1 14-1 0) OJ > 01 CO J3
c <*-(O. CO U <*-l (0 CO I-l • I-l a 3 •H

CO O 01 CO CO bO 4-1

e u CJ c a OJ OJ T3 4J 0) CO d ca

0) C o O. T3 o o 0) 00 ca cx
u 01 CO •H 3 01 CJ o 4< d O 1—

1

B
•I-l S CO iJ CO U CO CO O. 01 CO \ o
3 (V <u O • I-l CO 1—

1

u M 60 CJ

cr 00 o 01 O 3 14-1 y-i d d
01 ca u 4-1 4-) cr o o I-l s: o> CM •H 01

ai c CO o 01 O 4J B O I-l

CO 1 u I—

1

r-l CO CO q; 3
B B B D. 4J o O CO a I-l I-l 4-1

<u o •H CO u I-l • a> •I-l 01 O CO

u <u •o ca r-l VJ 4J U CO u 3 60 3 1—1

10 I—

1

c 4J •H 01 c d 4J o cr O I-l o
>i •I-l to CO .O CO o 0 CO I-l o> U 4J o
CO b I-l o < 3 O T3 <4-l u c CU CO 4J

a

u
•H
9
O*
a>M
u
9)
CO

&

§

H

ac

CO

CO

CO

a
0)

§
•rH

3

(U

e
<u
4-1

09

>.
CO

d
(U

B
<u

u
•1-4

3
C7l

<S

Ij

01

CO

3

CO

U
<D 60
CO c
3 si

101 CO

as
pi

ce St

XI •1-1 4J o
4J d I-l CO

CO 1-1 01 o. d
4J 3 o 60
CO B V4 •r-l d
T3 o o 4-1 •H

>^ u >4-l O 4J

0) •1-1 CO W
60 > 4-1 CO •H
Wi 0> d d C
CO 4J a; 0) CO 01

i-H CO B I-l

TJ a; 01 4-1 d
CM CX d I-l CO

0 3 •H •1-1 1—1

1—1 3 CO d
>» CO d 4J cr •1-1 o
I-l 3 o •1-1 OJ o o.
01 O U I-l d 3
3 01 u 3 CO

C7" d 01 CJ <i) d
CO CO 01 CO •1-1

CJ 4-1 3 CO d M-l •rH

O 1-1 •1-1 o o
JS 3 4-1 J= a. CO 1—1

a 1-4 60 CO •I-l

•H 3 •H 14-1 3
CO S o 03

d
QJ OJ CO

I-l I-l B
CO lO [4

» 3 O
4J T3

CO

CJ

01 -H
o d

o
o
01

I-l <-> >
0 CO o; 01 d
CO 33 CLi H Id

1 I I I r

CO K Oi H W

>>

CD

<U

a

CO

01

M
3
60

In virtual memory systems, the size of
buffers and system tables that need to be
resident in real memory or shared virtual
memory is a consideration.

2.4.2.2 Accuracy

Number of digits of accuracy repre-
sentable (most often governed by word size)

is a deciding factor for applications with
stringent accuracy requirements. Applica-
tions with numerical processing require-
ments should examine the arithmetic
error-interrupt capability (e.g., overflow,
division by zero, etc.) of potential
computers.

2.4.2.3 Data Storage

Online storage required by an applica-
tion consists of the components required by
production and development work.

Storage for production work consists

of the following components:

1. Production data bases—transaction
files, audit files, master files,

etc
.

;

2. Production program and procedure
libraries.

Storage for development work consists
of the following components:

1. Test data bases;

2. Test program and procedure libraries;

3. Storage taken up by programmer's pri-

vate files, an estimate of which can

be derived by taking the numerical
product of the maximum number of pro-

grammers who have access to the sys-

tem, the average number of files owned

per user, and the average file size.

The total online disk storage require-
ment should be padded by a life-cycle
growth factor.

The minimum number of tape drives
required equals the maximum number of tapes

used simultaneously by the application. If

the application uses tapes that are
imported from or exported to other systems,

tape density is constrained by this factor.

2.4.2.4 Input/Output

Input/output requirements should be
examined in terms of the following factors:

1. Input/output frequency and schedule;

2. Input/output volume;

3. Input/output media (form)— terminals,
punched cards, graphics, microfiche,
page printer, etc. (quality of output
is sometimes a consideration, espe-
cially for office information
systems)

;

4. Output distribution and utilization;

5. Input/output data protection.

2.4.3 Operating Environment

The operating environment must be
considered with regard to the following
factors

:

1. Physical security and safety of

hardware;

2. Geographic location of equipment,
which impacts the serviceability and
maintainability of parts, since some
vendors do not have offices
nationwide

;

3. The operating environment, which must
be understood when selecting terminals
for an application. In some installa-
tions, many users have access to more
than one type of terminal. The number
and types of terminals to which the

users already have access must be

considered.

2.4.4 Telecommunications

Telecommunications applications should
consider the following factors:

1. The number and type of terminals,
their communications speed, and

communications protocol must be

specified

;

2. The distance of transmission and the

proximity of terminals, in order to

determine whether or not the use of a

cluster controller is cost-effective.

298

Applications that need to exchange
data should be processed either on the same
computer or on computers that have the
appropriate interprocessor communications
support facility.

Volume and speed of communications and

their impact on total system performance
must be evaluated by the system designer.

2.4.5 Workload and Performance

Workload should be specified in:

1. Number of runs processed per day;

2. Number of interactive sessions per
day;

3. Hours of required operation;

4. Average and peak number of concurrent
interactive sessions.

Performance specification should be
stated in terms of peak load conditions.
Peak workload should be specified in terms
of the following considerations:

1. Maximum number of users;

2. Peak frequency of transactions;

3. Amount of processing for the average
transaction in terms of lines of code
(translated into number of machine
instructions) , number of operating
system service calls (such as OPEN,
CLOSE, etc.) amount of input/output
(l/O) in terms of records read/written
(translated into actual hardware I/O
requests)

;

4. Growth in terms of number of users,
number of transactions, and number of
records processed per month.

2.5 Criteria for Evaluating Alternative
Resources

2.5.1 Support of Existing Resources

Once the size of the application sys-

tem has been determined, the current capac-
ity of existing feasible equipment should
be reviewed and an impact analysis made to

see how the additional requirements will
impact the overall performance of the

equipment. This is most often achieved by
modeling techniques.

2.5.2 Cost

Cost is often the bottom line in the
selection of a computer resource for an ADP
application. Cost estimates must be made
on the system life-cycle basis.

The cost for computer system support
consists of:

1. Hardware—processor, online storage,
and peripherals;

2. Software;

3. Site preparation and space rental;

4. Maintenance—hardware and software;

5. Operator;

6. Environmental control;

7. System programmer where needed;

8. Materials and supplies;

9. Telecommunications service and
equipment

;

10. Equipment backup/redundancy;

11. Planning and procurement;

12. Application system support;

13. Training;

14. Management.

Cost factors vary from one computer
resource to another. Besides the differ-
ence in purchase prices for a microcom-
puter, minicomputer, and large mainframe
computer, the distribution of expenses
varies with different types of equipment.
Thus, cost-determining factors have been
divided into three cost categories: mini/
micro costs, in-house large mainframe and

satellite processor costs, and telepro-
cessing service program (TSP) costs.

2.5.2.1 Cost of Mini/Micro Computer
Support

When managed by the end user, the

training and management costs for a system
that uses mini/micro computers can be

greater proportionately than those for the

large computer environment because of lack
of expertise in DP management. When users
choose to operate their own computers, they
must be aware of extra costs incurred due

299

to operation of the equipment and coordina-
tion required by the staff to accomplish
the desired functions. They cannot rely on
the data processing department to provide
immediate assistance when support is needed
in the total system operation (e.g., compu-
tefr operators, data entry support, etc.).
Users must spend more of their human
resources to make effective use of the

mini/micro computer.

The alternative to users providing
their own support is for the data process-
ing department to control the procurement,
operation, and maintenance (or a subset of
these functions) of the mini/micro instal-
lations along with the host and satellite
processors. This alternative may prove to

be most beneficial to all parties in the

long run. Procurement and planning can be

done by DP experts. When distributed pro-
cessing is planned centrally, a more
coherent growth can be achieved through
standardization of hardware and software.
(Even in a multivendor environment, there
should be a standard interface with host
and among satellite processors.) The DP
department can absorb the cost of manage-
ment of the processor better because of the

economy of scale in the volume of work
handled.

The feasibility of having the DP
department responsible for the daily opera-
tions of the satellite processors depends
on the complexity of the system and its

geographical location. In view of the high
cost of training, one consideration that
should be made is the career growth path of

persons working on satellite computers.

It is important to evaluate the secur-
ity provisions of candidate systems. If a

system does not offer sufficient support in

this area, provisions added by the user can
often be very costly.

The cost of hardware is normally low
when compared to the total life-cycle sup-
port cost of the system. Users who assume
that the cost of hardware represents the

total cost of the system will find that

they have severely underestimated the total

cost

.

2.5.2.2 Cost of Supporting a Production
Application on a Large Processor

Most installations have a charge-back
system whether or not real dollars are
exchanged. Accounting algorithms vary
greatly according to the values placed upon

various services. When using the charge-
back figures to compare the cost of alter-
native resources, one should make sure that
the algorithms have as the basis that total
recovered cost reflects the true cost of

operations, including all of the items
listed in the previous section, as well as

the cost of auxiliary operations services
such as keypunching, printing, plotting,
etc. (0MB Circular A-121 requires that
charge-back systems of Federal agencies
account for the full cost recovery of ADP
expenditures .

)

2.5.2.3 Cost of Teleprocessing Services
Program (TSP)

The full cost of TSP service can be
derived by adding the following charges to

the TSP bill:

1. Conversion;

2. Management;

3. Telecommunications service cost, where
needed

;

4. Application system support;

5. Training.

2.5.3 Other Considerations

If an analysis of user and system
requirements indicates that neither exist-
ing in-house ADP resources nor resources
available through TSP are appropriate, the

acquisition of ADP equipment will be
required. The need for a dedicated pro- ,

cessor for an application must be justified
on a cost-effective basis.

The selection of ADP equipment will be

based on system requirements as well as the

following considerations.

2.5.3.1 Compatibility with Existing
In-House Hardware and Software

The compatibility of hardware
resources increases the flexibility of con-
figuration. The compatibility of software

reduces the personnel cost of supporting
multiple systems. Compatibility with
existing in-house ADP resources protects
the previous investments in software/
hardware and personnel training. Avail-
ability of common user facilities such as

terminals and remote job entry (RJE) should

also be taken into consideration.

300

2.5.3.2 Ease of System Expansion to Meet
Future Requirements

Since the personnel cost involved in a

major procurement is high, and the process
of a conversion is resource consuming, the
ability to upgrade ADP equipment should be
weighted heavily in the selection process.

2.5.3.3 Vendor Support

The cost of system unavailability in

terms of management cost and degradation of
prograimner/user productivity should be

taken into consideration in comparing
vendor-quoted or published mean-time-
between-failure (MTBF) and mean-time-to-
repair (MTTR) statistics.

2.5.3.4 Hardware and Software
Maintainability

Geographical location and level of
personnel (in-house or vendor) expertise
contribute to hardware and software
maintainability.

2.5.3.5 Time Constraints

Procurement, installation, and train-
ing time must be considered relative to the

urgency of users' needs.

2.6 Summary of the Computer Resource
Selection Process

Figure 4 summarizes the resource

selection process. This process consists
of the following steps:

1. Collection of user requirements;

2. Analysis of user requirements. The

suitable class of equipment can be

identified in most cases by using the

principles stated in the data pro-

cessing department' s long range plans

as baseline resource selection cri-

teria. In instances where user

requirements do not clearly fit any of

the blocks identified in Figure 4,

subsequent steps of analysis should be

taken for all possible configurations.

There are also applications for which

the" processing can be distributed

across computers (e.g., data entry

performed on a minicomputer and data

base management operations performed

on the host); separate analysis should

be done for both components of the

system;

3. Derivation of system resource require-
ments. Once the alternate resources
are narrowed down, the size of the

application (in terms of the amount of

physical resources necessary to sup-

port it) can be determined for each
alternative class of equipment;

4. If resource identified in second step
is available in-house, assessment of

the total impact of supporting an

additional application to determine if

there is sufficient capability, appro-
priate software, sufficient support
personnel, and a requirement to change
current operating procedures. Results
of the impact study may lead to the

procurement actions for TSP service,
hardware/ sof tware , or acquisition of
support personnel;

5. If resource identified in second step
is not available in-house, searching
for a solution based on the Telepro-
cessing Services Program (TSP) . If no

appropriate resource exists there,

procurement actions for equipment of

the class identified must be initi-
ated. In addition to the system
requirements, the factors discussed in

Section 2.5 of this procedure (other
than system requirements) should be

cons idered

.

301

302

Panel Overviews

OFFICE AUTOMATION AND PRODUCTIVITY

MARY L. CUNNINGHAM

NATIONAL ARCHIVES AND RECORDS SERVICE
OFFICE OF RECORDS AND INFORMATION MANAGEMENT

WASHINGTON, DC 20408

Productivity is a very real problem in
the Federal Government. Many Federal
agencies are facing increased demands for
services at a time when resources are
being reduced. To meet conflicting demands
we must find new ways to do our jobs
better. That means, among other things,
that we must improve information
management. Managers of offices are
managers of information. Managers are
effective in running their various
programs only to the extent that they

manage the information upon which the
programs depend. Needed information must
exist in the most convenient place, at the
time when it is needed, and in a form that

can be used most efficiently.

The most important development in

recent years in the field of information
management has been the rapid advance

—

you can even call it a revolution—in

information technology.

"Word processing," basically linking
high speed electric typewriters with
computer capacity, has been part of this
revolution. The impact on the Federal
Government has been dramatic. In 1979 the
General Accounting Office reported that in
fiscal 1977 Federal agencies acquired word
processing equipment that cost about $80
million. This same report estimated that

by this year the annual expenditure for
acquiring new word processing equipment
would be $300 million. A generally
declining price structure for word
processing equipment, combined with
increasing pressure for greater efficiency
and productivity in written communications,
virtually guarantees that by the mid-1980 's

word processing will be a major growth
area. But the fast-moving technology keeps
taking new directions. Both Government
agencies and private businesses that

traditionally produced and acquired
information in paper form are turning more
and more to other media. Undoubtedly this

trend will continue, and even accelerate,
as the technologies become more advanced,
more effective, and less expensive.

Computer professionals are certainly

aware that computers are becoming

smaller and cheaper and are being used
more widely. They will eventually reach

into virtually every office, and into

every aspect of information creation,

maintenance, and use. With new,

simple-to-use minicomputers, ADP support

will be used by more and more non-
technical professionals and managers.

Through the use of communications

technologies, access to information will
dramatically increase.

Another important trend that must be

recognized is the merging of information
technologies. Today a single terminal

may be a word processor, a data
processor, a link in an electronic
communications network, or all of these.

According to a recent Washington Post
article by Will Sparks, Vice President of

Citi-Bank Corporation, "All information
traveling in the world's information
stream is becoming an homogenous flow of

digital bits,... and since, in many cases,

computation is being performed on these

bits of information while they are in

transit, the distinction between computing
and communicating—or between the computer
and the telephone—is vanishing."

All of these trends are of immediate

concern to Federal managers. By and large,

the ordinary Federal manager is ignorant of

the intricacies of computer science and
communications technology. They can banter

the jargon, a little, but must depend on

computer professionals to tell them how it

all really works. Still, because it's their

office and their mission, they must ensure

that the technology used is cost effective
and that it achieves its potential for

controlling the information explosion and

increasing worker productivity.

This aspect of management goes be-

yond the documentation of requirements and

the establishment of performance criteria

before installing a system. Large,

technically complex systems that affect

305

many office processes and procedures may
require considerable expertise to understand
and operate effectively. Even the smaller,
single-function systems—such as micro-
graphic systems for records storage and
retrieval—require the continuing attention
of the office manager if they are to pro-
duce the desired improvements in office
performance

.

Effective management today, then,
requires not only effective managers of
information, but also effective management
of the technological tools of information
management. Non-technical program managers
must understand and effectively use
office automation. Computer science pro-
fessionals will have to be patient with
those managers and teach them what they need
to know. They in turn, must be more
careful to identify and explain what they
are trying to accomplish. This is not an
easy task. To date there is not even a
widely accepted definition of office
automation, much less a set of valid
standards and guidelines to use in
decision making. Office automation is
sometimes defined in terms of the equipment
used rather than the goals or objectives it
is installed to fulfill. Popular
descriptions of the "office of the future"
represent the tasks of the office as
being the same from organization to
organization. That view focuses on the
form of the work in an office, not its
substance. In that view, offices exist to
produce documents, to communicate, or to
store and retrieve information. If that
popular view of office automation prevails,
then office automation will not be cost
effective nor achieve the goal of increasing
overall productivity, "improvements," or
changes in form alone can rarely justify the
expense of installing these technologies.
To be effective—to make real improvements
in office efficiency and productivity—an
office automation system must be carefully
designed to support the real mission of that
office. It must be designed with the goal,
not the process of the office in mind.

It is easy, as historians of the
American experience have recognized, to get
carried away by exciting advances in
technology. We only have to think back to
those days in the 1840 's when Samuel Morse's
new electric telegraph had stirred
American imaginations and entrepreneurs
quickly began to wire the country.

One historian of the telegraph

—

Robert Luther Thompson—has labelled the
1846-1850 period as the time of
"methodless enthusiasm." Everybody wanted
to get into the act. Hastily, poorly built
and duplicating systems were strung
throughout the East and into the Midwest as
the result of starry-eyed dreams of quick
profits rather than in response to needs
and carefully considered plans to fulfill
them.

This was the period of which
Henry David Thoreau wrote in Walden : "We
are in great haste to construct a magnetic
telegraph from Maine to Texas, but Maine
and Texas, it may be, have nothing
important to communicate."

The telegraph was one of the great
developments of Nineteenth century
technology, but its commerical beginnings
were notable for waste, misapplications,
and failed telegraph companies. One of the
best lessons of that experience of
"methodless enthusiasm" was that you must
think in terms of needs and goals when
employing new technologies, rather than
seize upon them for unsuitable purposes
just because they are "there." Let's hope
we remember those lessens as we once again
get "wired".

A good place to start a discussion of

new technologies is with definitions.
Analysts at the Massachusetts Institute of
Technology have defined office automation
as: "The utilization of technology to

improve the realization of office functions,
or, rather, the business objectives of an
office. This definition stresses increased
productivity in the achievement of specific
end results.

Seen in this way, the principal
benefit of office automation is the

increased productivity that results when
employees can perform necessary tasks more
efficiently. The objective of office
automation, then, is not to eliminate
paper—and certainly not to produce more
paper faster—but rather to help us do the
work we need to do, faster and better.

Given the potential for savings, it

is understandable that many agencies are
interested in office automation, and many
cooperative, interagency efforts have
been initiated to develop a coordinated
approach to it.

306

Over the past year, for example, GSA,
0MB, and 0PM have cooperated on a project
to assess the use of office automation by
Federal agencies. Most of the systems
studied during the project were designed for
information storage and retrieval, for text
editing, or for data analysis, using data
processing, data transmission, and word
processing technologies.

Many were designed to perform several
functions, using more than one technology.
All have as their objective improved
delivery of public services and better
management of Federal programs. For
example, in the area of improved delivery
of services, the Social Security Administra-
tion now uses a telecommunications system
to perform necessary files review. The
system has significantly reduced the
length of time that needy beneficiaries
must wait for their checks, and is expected
to save the taxpayers about $25 million
between FY 1980 and FY 1984. A new
Veterans Administration system, called
TARGET, is expected to reduce regional
offices' staffing by 1,488 work-years over
the next 3 years. And, of course, the
processing of income tax returns already
benefits from office automation. A new
IRS system rapidly checks the accuracy and
currency of taxpayer identification data,
so watch out.

This survey demonstrated that Federal
managers are designing and installing a

wide variety of office automation systems
to perform many different tasks. It demon-
strated, further, that there is consider-
able potential for savings when office
automation technology is used appropriately.
But we must emphasize that those systems
must be installed carefully. Social
Security's system, for example, was
the result of more than 2 years of system
design by a large number of Federal and
contractor personnel.

Unfortunately, managers too quick to

opt for technological solutions to systemic
or procedural problems often find that the

results are disppointing. The GAO report
cited earlier said that failure to achieve

expected savings from the use of word

processing equipment was the rule rather
than the exception throughout the Federal

Government. It has been our experience
that a thorough systems analysis is

necessary to give managers a solid basis
for making informed decisions about what
to expect from specific applications of

office automation technology. Office

automation is no magic solution to such

problems as poor clerical skills, backlogs,
or poor turnaround time.

We are now in the process of docu-
menting the characteristics of systems and
operations having high potential for the
cost-effective use of office automation.
The standards we expect to develop, based
on this research, will cover both the
kinds of applications that can benefit
from office automation, and the methods
for studying and evaluating the potential
of individual applications. We plan
to study the experiences of the office
managers, to learn lessons they have
learned, and to share them with others.

Our goal is to help program managers
identify and meet their needs. We intend
to provide the guidance managers will need
to understand what office automation can

—

and cannot— do for them. Managers must
first of all understand the unique
features and capabilities of different
types of equipment. Secondly, they must
be able to identify good applications for
this equipment in their own organization.

Finally, they, and we, need to be
reminded that office automation can't do
it all. We hope that our cooperative
efforts over the next year will lead to
better identification and documentation
of the requirements for designing and
implementing effective automated systems
in the office.

307

COMMAND, CONTROL. AND COMMUNICATIONS MANAGEMENT
CHALLENGES IN THE 80'S

Robert G. Van Houten
HQ Army Command & Control Support Agency

The four speakers in this panel will address a few of the
many different aspects to command, control and communications.

Panel Members are:

Mr. Joseph Volpe

Modernization of the ADP and supporting data communications for
the World Wide Military Communications and Control System
(WWMCCS) taking place under the WWMCCS Information Systems
(WIS) Program will be discussed. A description of the histori-
cal perspective associated with WWMCCS ADP and its status today
will be presented. The WIS modernization goals and problems
will be covered briefly with the associated WIS architectural
solutions. Some challenges will be presented which reflect the
maintenance automated test (bit/byte) needs which stem from all

levels of modern warfare as projected into the 1990*3.

Col. D. L. Moore

Discussion of Computer Performance Management (CPM) require-
ments and activities for the NORAD/ADC operations systems
(Program 427M) . This will include a brief description of the
NORAD/ADC operational ADP systems and will cover the CPM
program developments, accomplishments to date, including
problems encounted and lessons learned, current status and
activities of the CPM program and a proposed approached for the

foreseeable future.

309

Col , Joe Newman

Opportunities for performance management of automation and
communications networks for the Worldwide Military Communi-
cations and Control System (WWMCCS) at three levels: macro
level, intermediate level, and the micro level will be
presented

.

Dr. William Wenker

Co-munications management and capacity planning problems and
goals associated with the WWMCCS system architectures in the
80 's will be presented..

310

ADP COST ACCOUNTING & CHARGEBACK

Chairperson: Dennis M. Conti
National Bureau of Standards

Panelists: Kenneth W. Giese
FEDSIM

Christos N. Kyriazi
Department of Commerce

Ranvir Trehan
MITRE Corp.

ABSTRACT

There is no question that the ADP shop plays a vital role
in the day-to-day operations and survival of most organiza-
tions. However, two distinct views still exist on the nature
of the ADP shop within an organization. One view exists that
the ADP shop is an overhead function that should provide free

service to the users. Another view sees the ADP shop as a

service center that should run on a profit and loss basis. An

extension of this latter view is that the full costs of ADP

should be accounted for and charged back to the users.
However, whether or not these charges are actually recovered
from the users, the mere reporting to the users of their fair
share of the total ADP costs is believed to have a beneficial
effect by increasing the users' awareness of and accountability
for their use of ADP. Most recently within the Federal
Government, 0MB circular A-121 requires agencies to implement
full cost accounting, and where appropriate, cost recovery.
Examples of some of the costs to be accounted for under A-121
are software depreciation and space occupancy costs, in

addition to the more traditional ADP cost elements.

Although many sites currently have some form of chargeback
system, few account for all of the costs of ADP. For those
organizations that are considering implementing a chargeback
system, reluctance by both the ADP manager and the user

community to make their activities more visible makes such an

implementation more difficult.

311

The panel will address several specific aspects of cost
accounting and chargeback. Questions that the panel members
will be asked to address include the following:

1. Is the expense of implementing a full cost accounting
and recovery system justified by its benefits?

2. Is the actual recovery of costs from the users
necessary, or will "information reports" suffice?
What are the advantages to be gained by an actual
transfer of funds?

3. What are the salient features of a good chargeback
system?

4. What are some of the human/ political problems asso-
ciated with introducing a chargeback system into an
organization?

5. How does the trend toward distributed systems compli-
cate the cost accounting and chargeback process?

The panel contains individuals with experience in both
developing chargeback guidelines, as well as overseeing the
implementation of chargeback strategies in a large
organization.

312

SUPERCOMPUTERS, CPE, AND THE 80'S

PERSPECTIVES AND CHALLENGES
F. Brett Berlin

Cray Research, Inc.

1919 Pennsylvania Ave., NW

Washington, DC 20006

The public glamour of minicomputers, microcomputers, and their deriva-
tives (e.g., "distributed systems", "personal computers," "paperless offices,
etc.) tends to support the misconception of supercomputing as a soon-to-pass
anachronism of use to few beyond the specialized worlds of weapons, nuclear
power, or weather prediction and research. Recent events in the supercom-
puter marketplace, however, indicate that true supercomputing is only in

its embryonic stages and that supercomputers will become an even more cru-
cial segment of the CPE practitioner's challenge. While actual numbers
of installed systems are still relatively low ~ less than 40 worldwide,
including all vendors — the breadth of users is rapidly extending far be-
yond the walls of the national research laboratories such as Los Alamos
and Lawrence Livermore Labs. The Cray-lS supercompiuter, for example, is

installed at five scientific service bureaus, several universities, and
a few commercial industrial accounts. Even more significantly, the num-
ber of identified supercomputer prospects has grown from less than 80 in

1972 to over 300 today. As IBM, Hitachi, and Fujitsu realize already an-
nounced intentions to build supercomputer-class systems by the mid-80' s,
the CPE challenges now faced by only a small coterie of supercomputer
users will extend to most sectors of the community. The primary objective
of this seminar is to identify these challenges and to discuss directions
of supercomputer technologies for the mid and late 80' s.

During this session, panelists will discuss their current work in the
supercomputer field and will identify the key current and future issues
which affect supercomputer development. Some of the major issues to be

discussed include:

1. Major CPE Challenges to Current Supercomputer Users : The CPE

practitioner is faced with the same "classic" questions common to

large system, but the unique architectures and performance charac-
teristics may make common CPE tools of only marginal value, and

previous results from conventional architectures useful as a base-

line only.

2. Problem Architectures vs. Supercomputer Architectures : Much of

the speed advantage in a supercomputer results from parallel archi-

tectures. These can be based upon pipelines, processor arrays, or

parallel processors. However, current designs are seriously con-

strained in usefulness by "problem architectures"—or the way the

problem and algorithm is designed to take advantage of certain ar-

chitectures. There are significant costs to tailoring problem soft-

ware to meet special architectures, both in conversion and future

transportability, but there are some cases in which these costs

may be reasonable when compared to potential performance savings.

313

3. Vendor-developed Software Tradeoffs : "Main line" vendors, such
as IBM, DEC, etc., have developed software-rich environments in which
most users rely heavily upon the vendor for the majority of their
system software and utilities needs. Standard packages abound for
almost every application, allowing virtually any user to "computerize"
without sophisticated in-house development. Supercomputer vendors
and users alike are faced with a difficult set of questions which de-
termine the desireabil ity of development and support of software
functions expected by other market sectors. One such function is

virtual memory, which has been implemented by one supercomputer ven-
dor but rejected by another as detrimental to optimum performance.

4. Directions of Future Architectures : Supercomputer researchers
and manufacturers expect to achieve dramatic performance goals be-

fore 1990. In order to accomplish these goals, developers must make
certain assumptions concerning both technology and the future appli-
cation environment.

SESSION PANELISTS

William Alexander Richard McHugh

Los Alamos National Laboratories
Computer Division

Los Alamos, NM 87545

Cray Laboratories, Inc.

3375 Mitchell Lane
Boulder, CO 80301

Art Lazanoff Jack Worlton

Control Data Corporation
8100 34th Avenue South
Minniapolis, MN 55440

Los Alamos National Laboratories
Computer Division

Los Alamos, NM 87545

314

ADP CHALLENGES IN MEDICAL,

PERSONNEL, AND WELFARE SYSTEMS

Chairperson: DINESH KUMAR
Social Security Administration

Panelists

:

Dr . Joe H. Ward , Jr .

Air Force Human Resources Laboratory

Mr. Paul R. Croll
Office of Personnel Management

Lieutenant Colonel Joe Ribotto , Jr.

TRIM IS Program Office

Colonel George A, McCall
Air Force Manpower and Personnel Center

Mr. Dave England
Texas Department of Human Resources

Mr. Norman Clausen
Internal Revenue Service

This session highlights the needs, constraints and
opportunities associated with automatic data processing
applications in the fields of medical, personnel and welfare
systems. The state-of-the-art approaches that are being
undertaken by senior managers involved in the design,
development and enhancements of the ADP system will be
presented. The difficulties encountered in planning,
consolidation and acquisition of computer and communication
systems will be explored. This session includes several
planned presentations by the panel members followed by
questions and comments from the audience.

The panelist presentation in the area of medical systems
will concentrate on the discussion of ADP systems and
approaches being undertaken in the area of medical management
information systems. The functional capabilities of these

systems will be described along with their status and
difficulties encountered during implementation.

315

In the area of personnel systems, the planned
presentations will cover the latest concepts in planning,
design and research on personnel action systems. The
procedures for the implementation of personnel policy through
computer based systems will be discussed. The policy generated
models result in pay-off (utility) of various person-job
actions. The techniques for generating alternative pay-offs
and their optimization will be discussed. The current and
future plans for enhancements of an existing manpower and

personnel data system will be discussed to illustrate the
phased implementation of research concepts. Reference will be
made to the operational Procurement Management Information
System (PMIS). The other planned presentation will cover the

automation opportunities in conducting tests/ examinations along
with related psychometric considerations.

The difficulties encountered in planning and consolidation
of ADP requirements and future needs, due to several
independently run data processing centers, (as compared to a

primarily centralized data processing operation) will be
highlighted.

In the area of welfare systems, emphasis will be on the

difficulties experienced in managing large ADP and
Telecommunications systems along with a discussion of
constraints faced by various installations.

316

INFORMATION SYSTEMS AND PRODUCTIVITY

IN STATE & LOCAL GOVERNMENT

Ron Cornel i son

Office of Administration
State of Missouri

Persons attending this session will gain an understanding of the problems
and opportunities present in the public sector at the state and local level
relating to applying technology to achieve organizational objectives. The
three branches of government—Executive, Legislative and Judicial—will be

represented on the panel. The panelists are: Mr. Christopher Burpo, Arthur
Young and Company, San Antonio, Texas; Mr. Steven Claggett, Regional Justice
Information Service, St. Louis, Missouri; Mr. Ron Cornelison, Missouri
Division of EDP Coordination, Jefferson City, Missouri; Mr. J. C. Humphrey,

Texas Legislative Council, Austin, Texas; and Ms. Carolyn Steidley, Missouri
State Court Administrator's Office, Jefferson City, Missouri.

The panelists will discuss the missions of their respective governmental
agencies and how automation has been applied to increase organizational produc-

tivity. Questions and comments from persons attending will be welcome in this

session.

317

THE ADP PROCUREMENT PROCESS - LESSONS LEARNED

Terry D. Miller

Government Sales Consultants, Inc.

Annandale, VA 22003

The purpose of this session is to review for listeners the latest
techniques in ADP competition, the mistakes that others have made, the
latest rules, etc., so that we will not reinvent the wheel.

Colonel Donald W. Sawyer or a member of his staff will discuss the
Air Force study on how to improve the procurement process by assisting
field offices on the procurement learning curve.

Steve Lazerowich, Federal Proposal Manager of Digital Equipment
Corporation in Lanham, will discuss how a mini vendor looks at government
procurements

.

I will discuss the latest regulation changes and provide continuity
and a wrap-up.

I am not sure you can say we will advance the state-of-the-art. In

the procurement business most people are still learning how to walk. We

will provide detailed lessons on how to walk without falling into

snakepits.

319

DATABASE MACHINES

Panel discussion chaired by:
Carol B. Wilson

Fiscal Associates, Inc.
Alexandria, VA 22304

Over the past 10 years, the use of data base management systems has
been growing as the need to effectively manage and display data has in-
creased. This use of data base management systems has come about because
they offer several advantages: functional capability, online query capa-
bility, and reduced manpower. A DBMS affords the user such things as data
protection, concurrency control, audit trails, and backup /recovery fea-
tures, which he does not have to program or design himself. Likewise,
manufacturers of DBMS's have developed sophisticated, easy-to-use online
query capabilities which permit the user to peruse his data easily, and
with no programmer intervention. DBMS's help to reduce manpower require-
ments through the provisions of data independence, already programmed data
management procedures, flexibility in changing data base design, and the
ability to quickly respond to ad hoc inquiries.

Unfortunately, these attractive advantages do not come without a

price. Most data base management systems suffer in both the performance
and cost areas. They often place extraordinary requirements on the hard-
ware because they are large and complex and because they operate on gen-

eral purpose operating systems and on general purpose architectures. Cost

is also a factor in the DBMS environment as more hardware is purchased to

accommodate the increased resource demands. Hidden costs may also arise
from service and performance problems affecting other, non-DBMS users of

the ADP installation. The performance problems brought about by the extra-

ordinary requirements on the hardware and operating system can, and do,

lead to decreases in ADP installation productivity. Another problem in the

Federal sector comes about because many DBMS's are dependent upon the hard-

ware and operating system. The lack of machine independence leads to

either less competition in future procurements, or in expensive conversions.

The advent of data base machines could possibly be a solution to the

problems mentioned above: decreased ADP installation productivity and

hardware independence. The data base machine is a backend system with both

software and hardware specifically designed for efficient data base opera-

tions. The resource demands normally placed on the ADP system for data

manipulation are off-loaded to the data base machine. Changes in mainframes

may be accommodated by the development of interfaces from the main system

to the data base machine which would afford some hardware independence to

the data base system.

The panelists will discuss why and how the productivity of an ADP in-

stallation could improve through the use of data base machines. They will

describe the communications interface and the unique architectural features.

321

Tutorial Overviews

323

MEASUREMENT, MODELING, AND CAPACITY PLANNING

THE SECONDARY STORAGE OCCUPANCY ISSUE

H. Pat Artis

Morino Associates

Vienna. VA 22180

During the past decade, the economics of
computer performance have undergone a

profound transition. Although hardware
costs were dominated by the central
processor in the early 1970s, today the
relative costs of the central processor and

secondary storage are approximately equal

for most large installations. An example
of this cost transition is shown for a

FORTUNE 50 corporation in Table 1.

1970 1980

Perccnr

Change

CPU Configunlion 360/65J 360/40F 3033U8 3032U4
CPU MIPS 0.8 7.0 875

DASD Configuration 16 2314s 128 3350s

Byies (billions) 0.<6 42.0 9150

MRC Expcnst

CPU $66,060 $134,400 203

DISK S12,360 $108,800 880
Raiio DISKyCPU 0.19 0.79 420

Floor Space 25,000 80,000 320

CPU 6,000 9,000 150

DISK 5,000 40,000 800

Table 1: Typical Installation Growth

1970 - 1980

In 1970, the monthly rental cost (MRC) of

the corporation's CPUs was six times greater
than the cost of secondary storage. Today,

these costs are approximately equal.

Although the corporation has witnessed a

growth in CPU power of 880 percent, their

secondary storage space has grown by more

than 9,150 percent to 46 billion bytes.

Moreover, secondary storage now represents

the majority of the floor space, power and

cooling costs for the installation.

For users of smaller systems like the IBM

4331 or the IBM 4341, the cost transition

has been even more dramatic. It is not

uncommon for the secondary storage costs of

a 4300 class system to be two or three times

the processor cost. Clearly, computer
performance evaluation (CPE) must address

the issue of secondary storage occupancy to

control the costs of data processing in the

1980s.

CPE in the 1970s has primarily concentrated

on the measurement and modeling of the I/O

traffic between the central processor and

the secondary storage devices. Unfortunately,

very little effort has been expended on

understanding how efficiently the space on

these devices is being used. This tutorial

addresses the following topics relevant to

secondary storage occupancy issue:

MEASUREMENT. The available data and
design considerations for a secondary
storage occupancy measurement scheme will

be reviewed. Applications of data from a

prototype system developed by the author
will also be discussed.

SPACE MANAGEMENT. In the past several

years, a number of secondary storage
management systems (HSM, DMS/OS, ASM2, ...

etc.) have evolved that allow
installations to automatically archive
datasets that have been unreferenced for a

specified number of days. Modeling
techniques that allow users to predict the

behavior of a secondary storage management

system in their installation and to

judiciously select the archiving criteria
will be discussed.

DEVICE ARCHITECTURE. Although the most
common statistic quoted by the vendors
about secondary storage devices is that

the cost per byte has steadily declined,
other statistics are somewhat more

valuable. Beginning with the announcement
of the double density 2314, the 3330,

3330-11, 3350, and 3380 have represented a

steady decline of the accessibility per

byte (i.e., maximum I/O power divided by

device capacity). In many installations,
it is not uncommon to find that only

thirty or forty percent of the datasets on

the busiest packs are accessed even once

per week. Therefore, any attempt to

effectively use the remaining space on

these devices may result in unacceptable

I/O scheduling bottlenecks. This problem

will require the development of dataset
placement algorithms that attempt to

optimize an entire installation rather

than a single pack.

CAPACITY PLANNING. An approach to DASD

capacity planning that incorporates

device occupancy, performance and

architecture considerations will be

discussed. This approach is currently

being evaluated by the author.

The audience will also be invited to propose

other topics for discussion.

325

MICRO-COMPUTERS IN OFFICE AUTOMATION

VJendell VI. Berry

National Oceanic and Atmospheric Administration
Office of Budget and Resource Hanagement

nockville, I©

Key v;ords: micro-computers, office automation.

This tutorial describes procedures followed in office automation projects and emphasizes the
significant part played therein by micro-computers. Applications are those experienced over
a six-year period of involvement in administrative automation within the national Oceanic
and Atmospheric Administration, (KOAA) of the U.S. Department of Comr.ierce.

The administrative support environment of a service oriented agency broadly defines the
scope of autom.ation projects discussed. Criteria were developed to guide the institution of
and measure effectiveness of such projects. A systematic approach vjas adopted, and began by
defining functions of the specific target office.

Office functions and tools and procedures used to fulfill them. v;ere of immediate concern.
These helped us in forming an ansv;er to the most important question - vjho was doing the
vjork, what skills and attitudes tovvard changes system, changes vjere present. Most functions
were found to have important inter-organizational aspects to thein. A basic management tool
became the categorization of functions into "administrative processes" that together define
the management of resources in the organization.

Finance, personnel, facilities, material, and general administrative services v/ere five
major groups defined. Administrative divisions and technical operating units contained
portions of these processes. A high degree of inter-relationship among the groups also

existed, and the integrated automation of all of them could be described as the ultimate
office automation goal.

V'ithin the macro structure that provided a dynamic system definition, individual objectives
were defined. Minimal system disruption and cost savings/avoidance v;ere often sited by

those initiating such projects. Tasks vjere scheduled based upon opportunity, politics, and

an overall attempt to develop basic system, modules as a primary priority.

TxiTo basic methods of automation emerged. Integration of existing data into routine vrork

procedures was the first. Data found in existing batch systems formed this basis.

Autom.ation of procedures not previously economical was the second.

The necessity of micro-computers in the above described scenario becomes clearer upon
consideration of their application. In their role as "personal" computers, micros provide

an interface betvjeen hum^ans and the power of computers, essential to the further development

of office automation. Following is an introduction into some areas of r..icro-conputer uses
in administrative computing.

327

Information Processing

1) VJord Processing - As price reductions and raarket competition begin to bring the
multi-purpose micro into the office and the horae, word-processing is becoming a
specialized softvrare application, as opposed to a problem with a hardware dominated
solution. V/ord-processing is now introduced to many as a by-product of the acquisition
of a m-icro-computer system, rather than as an end unto itself.

2) Data-Entry - Exotic forms of rapid data entry are presently utilized in large
volume applications, where their cost m.ay be amortized over many thousands of source
documents. For other system.s, many key-punch operations still continue, and much data
is also keyed in an on-line environiaent into a raini-or maxi computer. The dis-economy
of using computers at human speed provide yet another opportunity for efficent use of
the micro-computer as a "front-end" device to other computers.

Information communication

1) Data Transmission - Within the last fev/ years, much research and development work
has been concentrated upon communication systems enhancements. The use of
micro-computers as part of an information communication network has emerged as result
of this emphasis.

2) Management Information Systems - Interactive graphics has been made available at an
individual managers level on a practical basis by the micro-computer. The much talked
about "what-if" questions may by quickly and vividly ansvjered by graphics, and most
recently, in color.

3) Electronic Mail - Electronic mail netv;orks now exist on many mini and naxi
computers. The proliferation of v;ords in magnetic form allow micro's to perform the

function of a personal electronic filing cabinet. Off-line information storage on

inexpensive media is required for large-scale comi.iunications via computer.

Self-Contained Systeras

1) General Development - Shared use of m.icro- systems has caused many small manual
systems to be automated. BASIC remains the dominant micro language, v;ith many
"dialects" in use. Pascal, Fortran and Cobol also compete for system use.

2) Micro DBnS - An answer to the language conflict and also a part of industry-wide
empahsis upon DBMS' , micro DBMS are now emerging. Mon-data processing professionals
nov; fcllov; a systematic approach to development of their systems.

Current Developm.ents

1) Human Engineering - Error detection produces perhaps 40fo of the total amount of
prograii! coding in many applications. Reducing screen scrolling and providing audio and
flashing screen error indications are examples of features designed v/ith the end user
in mind.

2) Increased coEiputatlonal power - More eight-bit micro's are nov; in use than all

other types of machines combined. Sixteen bit machines are now in many product lines,

and thirty-two bit chips are a reality. These v.'ill put mini-com.puter power on desktops
within a short period of time.

3) Increased storage - Hard disks have arrived for micro use, bringing with them
capacities measured in millions of bytes. Implications for future expansion of micro
usage are wide ranging, considering their projected capabilities.

4) New designs - Elicrocode im.plenentation in hardvjare to support the ADA language, and

the delegation of interrupt handling to subsidiary 16-bit processors in the new 32-bit
chips are an exar;iple of a significant departure from traditional architecture.

328

COMPUTER PERFORMANCE MANAGEMENT
IN THE ADP SYSTEM LIFE CYCLE

James G. Sprung

The MITRE Corporation

McLean, VA 22102

During the last ten to fifteen years,
computer performance has evolved into a

sophisticated manager-analyst interactive
process. The reason for this is the
recognition by government ADP managers, as

well as non-government managers, that a

need exists for doing computer performance
throughout the ADP system life cycle.
The manager continuously faces requests
from users and oversight agencies for

computer resource availability data.

The goal of this tutorial is to

provide the framework for a continuing
computer performance management program
throughout the ADP System Life Cycle. The
tutorial will include descriptions of:

1) The ADP System Life Cycle,

2) the types of performance
studies, and

3) the types of performance tools

The different tools will be described
along with how they can be used to support

the performance studies. The performance

studies will be described along with how
they should be used throughout the ADP
System Life Cycle. Throughout the
tutorial, examples will be presented that
describe the use of each of the tools for
different types of studies during each
phase of the life cycle.

Computer Performance Management must

continuously be of service to managers to

be valuable as an agency function.
Therefore, the need of the CPE analyst to

both perform studies and present
meaningful results is critical. The key
to the continuous aspect of the computer
performance function is the analysts
ability to recognize when the next stage
of the life cycle is occuring and to

perform the studies that are appropriate
at that time. Therefore, the computer
performance staff needs to serve both a

planning and monitoring function. The ADP
resource, to most agencies, is critical to

the agencies existence and with the help
of a computer performance staff, the ADP
resource can provide adequate capacity to

meet the agencies needs.

329

SIMULATION TOOLS IN PERFORMANCE EVALUATION

Doug Neuse
K. Mani Chandy
Jay Misra
Robert Berry

Information Research Associates
911 West 29th Street

Austin, TX 78705

The selection of modeling tools for performance evaluation is

discussed. Simulation and analytic tools are discussed and compared.
A simulation systeim designed to accept computer readable, picture-
oriented models is described.

Key words: Analysis; performance evaluation; pictures; simulation;
tool s

.

1. Introduction

This paper is concerned with the

question of selecting the modeling tool most
appropriate to a performance evaluator's
problems. We first compare simulation and
analytic methods. The advantages of each

method are discussed. We next study two
common types of problems faced by performance
evaluators, and describe the method of choice
(simulation or analysis) for each type. The
important characteristics of good performance
tools are discussed next. The importance of

ease of input to the modeling system is

emphasized. A case is made for using
pictorial or diagrammtic representations of

computer systems as the input to simulation
systems. A simulation system that is

designed to accept such (computer readable)

pictorial descriptions is described.

2. Modeling Methods:
Simulation Versus Analysis

There are two approaches to the modeling
of computer systems: simulation and analytic.

Analytic models consist of sets of equations,
usually derived from queueing theory.

Discrete-event simulation models simulate the

generation of transactions and the processing

of transactions over time. The tradeoffs
between simulation and analysis are described
next.

2.1 Advantages of Simulation

2.1.1 The simulation methodol ogy has
been validated over and over again. There is

absolutely no question about the power of the
simulation approach. Given enough time and
enough measured data, it is possible to

simulate any system to any required degree of
fide! ity.

2.1.2 In contrast, the analytic approach
is limited in power: there are no general
analytic techniques that apply to every situa-
tion. Different sets of equations have been
developed to model different systems. When

a set of equations yields, for one system,
predictions proven to be correct, our faith
in the ability of that one set of equations
to model the given system increases; however,
our faith in the ability to model al

1

systems
by similar sets of equations should not
increase. There is no way of validating a

general analytic methodology because there is

no general analytic methodology . Each

analytic model is usually a distinct set of

equations. At this time, there is no

331

tractable method to generate a set of equa-
tions to model any given system faithfully.
There are classes of analytic models, such as

Markov models, that are very general. How-
ever, such models are not always tractable
because the number of equations in a model may
be too large to be solved in a reasonable
amount of time.

2.1.3 Simulation is easily understood by

programmers. It is much easier to hire
programmers with some experience in simulation
than it is to hire analysts with expertise in

analytic models.

2.1.4 Simulation is flexible. A simula-
tion model can always be changed to track
changes in the system being modeled. An

analytic model may work well for a system
initially, but poorly when the system is

changed. It is not easy to change a set of

equations to model the effect of a new
scheduling policy, for instance.

2.2 Disadvantages of Simulation

2.2.1 Simulations require much more
computer time than analytic models.

2.2.2 There may be a paucity of measure-
ment data from the system to be modeled. If

we do not have the measurements to build a

detailed model, there is no point in building
a detailed model. Analytic methods may work
as well as simulation for simple models.
Simulation models are justified when the data

to parameterize simulation models exists.

3. The Method of Choice

The method of choice -- simulation, anal-

ysis, or a hybrid approach combining simula-
tion and analysis -- depends upon the problem
being solved. Consider different situations
in which models are used.

3.1 The Design of New Systems

Important characteristics of design
efforts include the following.

3.1.1 Designs often change before they

are implemented. Models must be able to track
rapid, and sometimes radical changes in

designs.

3.1.2 The model must be understood by

the designers. This point is very important.

If designers do not understand a model, they
are less likely to cooperate in the modeling
effort. Active cooperation from designers is

an absolutely critical ingredient for a

successful design.

3.1.3 It is difficult to validate a

model when the design is still on the
drawing board. There is nothing to validate
against.

Simulation is the method of choice in
designing new systems because of its
flexibility and ease of understanding.

3.2 Tuning and Capacity Planning

In this case, the systems being modeled
are well-defined. In most cases, the systems
have been on the market for some time and
documentation describing system behavior is

provided by the system vendor. Systems on
the market do not change as radically or as
frequently as designs on the drawing board.
In capacity planning, the modeler knows what
is being modeled. The ability to measure
running systems gives the modeler the oppor-
tunity to carry out intensive validation
studies.

Analytic models can be used effectively
for tuning and capacity planning studies.
Validation against measured data should
provide credibility for the model. Analytic
models can produce output almost instanta-
neously, allowing the capacity planner to
formulate and ask "what if" questions and get
answers, interactively. Interactive dialogue
with the model is very helpful, especially if

the model produces graphic output and English
language-like textual output. Analytic model

may be backed up by simulation models to

enhance credibility and for very detailed
analyses. In this mode, analytic models are
used to evaluate a wide range of options
rapidly, and simulation models are used for
detailed study of a small set of points.

4. Critical Requirements for
Modeling Packages

All good modeling packages must satisfy
the following requirements:

0 A model should be shown to validate

0 Ease of input. A model should be

described succintly and naturally.

0 Useful input. A model should
predict the performance metrics
desired by the modeler.

In fine-tuning and capacity planning,

most of the input to the model should come
automatically from measurement and monitoring
packages. In designing new systems, model

input should come naturally from the descrip-

tions of the designs. Since tuning and

332

capacity planning have been described at
length, the remainder of this paper is

focused on the user of simulation models in

the design of new systems.

5. Simulation Languages

Most simulations are written in FORTRAN
(or some other general purpose language) or
GPSS. GPSS has the advantage of providing
structures specifically for simulation,
whereas these structures have to be explicit-
ly encoded in FORTRAN. GPSS is a general
purpose simulation system; it was not
designed specifically for modeling computing
systems. SIMPL/1 is another general purpose
simulation language which is becoming popular
since it provides simulation facilities and
retains the capabilities of PL/1. In the
last decade, languages designed specifically
for simulation of computing systems have been
developed. ASPOL, QSIM, and RESQ are
pioneering examples. We next describe a

system called PAWS which has the same design
philosophy as QSIM and RESQ. The entire
design of PAWS is based on one key observa-
tion: computer professionals prefer to

describe their systems by drawing pictures .

The ideal simulation system should take
these pictures (or some representation of
these pictures) as input. In practice, a

modeler using a general purpose simulation
system has to translate a graphical descrip-
tion of a computing system into a procedural
description. This translation is often
demanding of the modeler's time. The trans-

lation process is also the source of several

errors. PAWS is designed to take a (computer
readable) representation of a designer's
picture as input. There is little transla-
tion required.

The most important question for develop-

ing a simulation modeling system ought to be:

how do computer professionals describe

computer systems to one another? We will

address this question in this paragraph.

Programmers and architects describe systems

by drawing diagrams which are usually in the

form of graphs. System resources are repre-

sented as nodes (vertices) in the graph.

Edges from one node to another show the

sequence in which transaction use resources.

Usually, computer professionals use a hierar-

chy of diagrams to describe a system. At the

top level of the hierarchy, a system is

blocked out into large aggregates of

resources; for instance, the entire I/O

system may be represented by a single node in

a graph. The model is refined at lower

levels in the hierarchy. The description of

the model refinement is itself another

diagram. For instance, we may draw a diagram

for an I/O system, where the nodes (resources)
are channels, controllers, DASDs , etc., and
the edges show the sequence in which these
resources are acquired and released.

Figures 1 and 2 show a hierarchical
series of diagrams describing a swap-based
time-sharing system [1]. Figure 1 shows a

network with two resources: terminals and a

"computer". Figure 2 shows a refinement of
the computer node, which represents an
aggregate of system resources. The entry and
exit ports of the computer node in Figure 1

are shown in Figure 2. Figure 2 shows that
a computer really consists of CPU, I/O and
MEMORY resources. Jobs entering the computer
node acquire memory, then use the CPU and I/O

a random number of times, release memory, and
leave the computer node.

terminal

s

^
1

computer—

^

Figure 1. A Simple Model:
Top Level of the Hierarchy

probability = 9/10

acqui re

memory
CPU

I/O

subsystem
rel ease
memory

probability = 1/10

Figure 2. A Model of the Computer Node:

Next Level of the Hierarchy

If we wished to, we could refine the

description of the I/O subsystem further. The

important point to note is that in a system
engineer's mind, a model is a picture .

To analyze the model we need more infor-

mation than the basic topology provides.

Specifically, we need to know the scheduling
disciplines by which the resources are

managed, and the amount of each resource
requested by each user. Normally, when a

systems programmer says, "the CPU is managed
according to a round robin fixed quantum

333

discipline with a 20 ms quantum," he expects
to be understood. Unfortunately, most model-
ing systems do not "understand" terminology
which is standard in the computing profession.
So, to build a model of a computer system
using a general purpose simulation system, the
modeler has to translate the discipline,
"round-robin-fixed-quantum," into a sequence
of small operations such as "acquire
processor," "hold for 20 ms," "release
processor," etc. It is this detailed transla-
tion procedure which discourages people from
using simulation models.

Memory is an important resource in

computing systems, and most of the common
memory management disciplines are described

in the literature. A systems engineer is

likely to describe a system by saying "system
X has 512K words and uses a first-come-first-
served, first-fit discipline." The statement
is quite precise, but it may well require 300
lines of code in a general purpose simulation
language. Generating this code takes time and
may cause errors.

PAWS was designed to overcome these
problems. PAWS has a large collection of

routines to model most of the scheduling
disciplines and resources one comes across in

computing systems. For instance, PAWS

"understands" the meaning of a "round-robin-
fixed-quantum" discipline, and the meaning
of 512K words of memory managed using a first-
come-first-served, first-fit discipline."
The input to a PAWS model is designed to

represent the way in which one computer
systems designer describes a system to another
designer.

Resources modeled in PAWS include service
resources (such as CPUs), memory, "passive"
resources such as channels and controllers,
and locks. Disciplines modeled in PAWS

include first-come-first-served, preemptive
priority, non-preemptive priority, round-
robin-fixed-quantum, and polling. Memory
management disciplines include first-fit,
best-fit, and budy system. PAWS also has

high-level language statements for generating
different kinds of transactions, modeling
parallelism (forks and joins), messages,
routing, and processor interference (as in

CPU-channel interference for memory). Users

can also define their own types of resources
(by writing FORTRAN programs) and then create
PAWS models using these resources.

PAWS allows for succinct descriptions of

complex computer systems. Users are supplied
with documented PAWS source code which is also
written in FORTRAN. PAWS is not a black box.

Users may study the library of PAWS routines

if they wish. Indeed, users are encouraged
to add to the library and are provided with
the facilities to do so.

6. Disadvantages of PAWS

PAWS was designed specifically for
modeling computing systems, office automation
systems, and information systems in general.
However, many valuable constructs and sched-
uling disciplines in PAWS do not have
application in modeling systems other than
information systems (though its interface to

user-written FORTRAN code allows a great deal
of flexibil ity)

.

7. Summary

This paper is concerned with the
question, "what are the characteristics of a

modeling package which performance evaluation
experts find most useful?" We showed that
there are two distinct kinds of performance
evaluation personnel: (a) those involved in

designing conceptually new systems; and (b)

those involved in tuning and capacity manage-
ment. We gave reasons why: (a) simulation
is the method of choice for those designing
new systems; and (b) analytic techniques
backed by simulation capability are the
methods of choice in the tuning/capacity
management situation. We emphasized that the
most important characteristic of any modeling
package is ease of user input. We observed
that systems designers described systems to

one another by drawing pictures. We
described a simulation system (PAWS) which
takes as input a representation of these
pictures. The user of the system can add new
modeling contructs and thus tailor the model-
ing system to the user's unique needs. We
think that each performance evaluation group
should adopt a convention for the pictorial
representation of the systems that it

evaluates. PAWS provides a convenient tool

for mapping the pictorial representation into

a running, accurate simulation.

References

[1] R. M. Brown, J. C. Browne, and K. M.

Chandy., Memory Management and Response
Time," CACM , Vol. 20, No. 3, pp. 153-165.

334

COMPUTATIONAL METHODS FOR QUEUEING

NETWORK MODELS

Charles H. Sauer

IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598

A major objective of computing systems (including computer commu-
nication systems) development in the last two decades has been to promote

sharing of system resources. Sharing of resources necessarily leads to

contention, i.e., queueing, for resources. Contention and queueing for

resources are typically quite difficult to quantify when estimating system

performance. A major research topic in computing systems performance in

the last two decades has been solution and application of queueing models.

These models are usually networks of queues because of the interactions of

system resources. For general discussion of queueing network models of

computing systems, see C.H. Sauer and K.M. Chandy, Computer System

Performance Modeling, (Prentice-Hall, 1981), and recent special issues of

Computing Surveys (September 1978) and Computer (April 1980).

In the fifties and early sixties Jackson showed that a certain class of

networks of queues has a product form solution in the sense that

P{n^,...,n^) =

where P{n-^,...,nj^) is the joint queue length distribution in a network with

M queues, X^(n^), m = 1,...,M, is a factor obtained from the marginal

queue length distribution of queue m in isolation and G is a normalizing

constant.

The existence of a product form solution makes tractable the solution

of networks with large numbers of queues and/or large populations, but

the computational methods are non-trivial unless the normalizing constant

itself is easily obtained. This tutorial surveys the most important computa-

tional methods for product form queueing networks.

335

PRODUCTIVITY IN THE DEVELOPMENT FUNCTION

Phillip C. Howard

Applied Computer Research
Phoenix, AZ 85021

Productivity in the development organi-
zation is a function of several influences.
Among these are influences which are strictly
external to the development group, and over
which it has little control, the collection
of tools and techniques available to support
development personnel, and the set of manage-
ment policies and procedures which control

the development function. The combination of

these influences create a development envi-

ronment which yields some level of productiv-

ity. This tutorial will address each of the

key elements of this environment as depicted

in Figure 1: the characteristics of the de-

velopment organization, outside influences,

tools and techniques, management control, and

finally, productivity and its measurement.

To understand productivity in a develop-

ment environment, it is necessary to under-

stand something about the split between main-

tenance and new application development, the

software development life cycle, and the al-

location of effort to the various phases of

the life cycle. Most studies have shown that

an inordinate amount of effort is expended in

the test and integration stage, which is di-

rectly related to errors and their causes.

Various studies of errors, when and how they

occur, and how they can be minimized are dis-

cussed. This ties in with the life cycle and

the allocation of manpower to software pro-
jects. In addition, certain psychological
aspects impacting the programming task are

also considered.

Outside influences on the development
organization are largely related to the na-

ture of the interface with the user organi-
zation and the application itself. In par-
ticular, the experience of both data proces-
sing and user personnel in similar applica-

tions, and the availability of good require-

ments definitions (specifications) are crit-

ical to high levels of productivity. Another
important factor has to do with the complex-
ity of the application. Numerous studies
have shown that there is a direct relation-

ship between complexity and effort, and that

productivity declines as complexity increases.

Considerable attention is given to the ques-
tion of complexity and how to keep it in

control

.

There are numerous tools and techniques
available to development personnel, ranging

337

from design languages to debugging and docu-
mentation aids. Vendors of these products
all claim significant productivity gains, but
the potential compounding effect of several
such tools never really seems to work out in
practice. The various categories of these
tools will be considered and some guidelines
given on how to evaluate them in the context
of a particular development environment. In

addition, one of the special problems relat-
ing to the use of tools, that of properly in-

tegrating them into the working environment
and overcoming people's natural inertia, or
resistance to change, will be explored.

The specific management procedures that
control the development organization also
have an important influence on productivity.
For example, project management not only al-

lows for better control but entails a manage-
ment discipline which contributes to improved
productivity. The basic elements of software
engineering have been shown to contribute to

both improved software quality and improved
productivity. Evidence is also shown to sup-
port the idea that structured programming and
the general class of "improved programming
techniques" can contribute to improved pro-
ductivity as well. Problems of manpower al-
location are discussed, including Brooks'
"mythical man-month" and some ideas on how to
allocate manpower to development work.

All of those influences on the develop-
ment organization—external influences, tools
and techniques, and management practices

—

determine the level of productivity actually
achieved. First, productivity as a ratio of
output to input is examined, with particular
attention to the problems of defining or mea-
suring "output' from a development organiza-
tion. Two possibilities are considered,
lines of code and "functions." Other types
of quantitative measures are also discussed
in the context of developing a productivity
or performance "data base " for the develop-
ment organization.

338

ACQUISITION BENCHMARKING

Dennis M, Conti

National Bureau of Standards

Washington, DC 20234

Abstract

Benchmarking has traditionally been more of an art than a

science, primarily because of the previous lack of well-
established procedures for constructing and testing benchmarks.
As a tool for evaluating vendor performance during the competi-
tive acquisition of computer systems, benchmarking has become
an accepted practice. However, in spite of the widespread use
of benchmarking, especially within the Federal Government,
practitioners are still unaware of the sources of error that
affect the ability of a benchmark to represent a real workload.

This tutorial will explore the purpose of benchmarking
during the acquisition of computer systems, the sources of
error inherent in the benchmark process, and ten steps to

constructing and testing benchmark mixes. These steps have
formed the basis for a recent NBS Federal Guideline in this

area, FIPS PUB 75.

339

SOFTWARE CONVERSION PROCESS AND PROBLEMS

Thomas R. Buschbach

Federal Conversion Support Center
Office of Software Development
General Services Administration

This tutorial will provide users with a basic understanding of the
software conversion process. The technical and management problems
which arise during a conversion project will be discussed. A brief
description of the Federal Conversion Support Center's capabilities
to assist agencies in the conversion process will be given.

1. Federal Conversion Support Center

The Federal Conversion Support Center
(FCSC) was established in May, 1980 as the

Federal Government's primary source for soft-
ware conversion technology. The intended
effect of the FCSC is to ensure careful
consideration of software conversion factors
in ADP equipment and teleprocessing services
acquisitions. The FCSC provides Federal
Agencies with expertise, techniques and tools

to conduct conversion studies and accomplish
software conversions through the provision of

reimbursable services.

2. Software Conversion Process

Conversion, as defined by the FCSC, is

the transformation, without functional change,

of computer programs or data to permit their

use on a replacement or modified ADP system,

telecommunications system, or teleprocessing
service. Historically, Federal agencies have

underestimated the resources required for

software conversion due to a lack of under-
standing of the conversion process. A large

part of the problem is the failure to realize

all the tasks involved in a conversion. The

conversion process consists of the following

tasks: planning; materials preparation;

translation; unit, system, and acceptance

testing; maintenance changes; implementation.

To accurately estimate the cost of a conver-

sion the following cost elements must also be

taken into consideraion; redocumentation , site

preparation, training, management, and tools.

The conversion planning task includes;
a complete inventory of current software,
selecting tools to automate the process,
defining standards for the converted programs
and files, and a software conversion study
which includes schedules and cost estimates.
Some of the problems associated with the
planning task include the large number of

tasks and the amount of material to be handled.

The materials preparation task involves
the generation and validation of test data,

and the formation of conversion work packages.

A system for tracking the work packages from
the time they are formed until they are
accepted back from the conversion contractor
must also be developed. The problems associated
with this task include the amount of test
data required and its comprehensiveness.

The translation task encompasses the

translation of all programs, files, JCL, and
data bases. This would normally include a clean
compile and testing at the program level.

The maintenance change task is required to

track and eventually incorporate changes to the

production software which occur during the
conversion process.

The implementation task includes; system
testing to ensure interoperability of programs,

acceptance testing to validate output from the

system, and cutover from the old to the new
software in the production environment.

341

RESOURCE MEASUREMENT FACILITY (RMF) DATA:

A REVIEW OF THE BASICS

J. William Mullen

The GHR Companies, Inc.
Destrehan, LA

Analysis and understanding of RMF measurement data
is a basic prerequisite to performance management in the
MVS environment. A basic approach to RMF analysis is
described for key measurement data elements often over-
looked in the analysis process, how RMF measures these
values, and some rules-of- thumb based upon the author's
experience. Specifics in the areas of I/O, paging/
swapping, ISO, and analysis of cause and effect relation-
ships of RMF measured data will be discussed.

Key words: Analysis; data elements; I/O; logical
swapping; measurement; MVS; paging/ swapping ; TSO.

1. Introduction

The reduction and analysis of RMF
data is a basic prerequisite to per-
formance management and configuration
tuning in the MVS environment . A
considerable amount of material is
available on the meanings of the
measurement data reported by RMF and
some documents attempt to provide
basic ' rules-of - thumb ' to aid the
analyst in determining current per-
formance levels for a configuration.
A more basic approach to analysis of
RMF data is the understanding of cause
and effect relationships between the
measurement data elements and the
approach to determining interaction
and subsequent courses of action to
alleviate performance bottlenecks
within the configuration.

Analysis of RMF data additionally
requires a basic understanding of the
System Resources Manager (SRM) and the
data collection process whose data
elements are subsequently reported by
RMF. Algorithms used by the SRM to
determine over and under utilization

of the MVS system should be understood
in general with constants in the algo-
rithms that are applicable to the
hardware in the configuration. The
overall knowledge gained from study
and understanding of the SRM algo-
rithms provides a base for cause and
effect analysis of RMF data. The SRM
algorithms are included in Appendix A
for reference.

Discussion of RMF measurement
elements addressed in this paper will
be done by RMF report type to provide
ease of reference for measurement data
elements

.

2. CPU Activity Report

Primary measurement elements
provided in this report are concerned
with the processor average utilization
during the specified m.easurement
interval, the minimum, maximum, and
average number of tasks for the three
types of processing (batch, time-
sharing, started task) and the minimum,
maximum, and average values for the
various queues within the MVS system.

343

A distribution of queue lengths is
provided by RMF to give the analyst
insight into the variances during the
measurement period. Information for
the CPU Activity Report is obtained
by the RMF CPU sampling module
MRBMFECP. This sampling module ob-
tains the maximum, minimum, average,
and distribution values by sampling
the SRM User Control Block (OUCB) and
the ASCB queues which are anchored in
the Resource Manager Control Table
(RMCT) addressed via the CVT. Counts
and statistics gathered are stored in
the ECPUDT data area.

A statistic of primary concern
to the analyst is the ' Out-And-Ready

'

average value. In most instances, an
average value greater than 1.0 for the
measurement interval is usually
interpreted as an indication of over-
initiation of the system. The analyst
should first investigate the data
elements used by SRM in the over-
utilization algorithm from all RMF
reports (i.e. CPU activity, demand
paging, UIC, etc.) to determine if the
system is being operated in an over-
initiated mode and there is a lack of
needed system resources. If no
symptom appears from this analysis,
the analyst should then evaluate the
Installation Performance Specifica-
tions (IPS) designations for minimum
and maximum MPL of each Domain. This
can be accomplished utilizing the RMF
trace facility and specifying the
DMDTCMPL and Dl^lDTRUA trace key word
values. The analyst should look for
any domain that is consistently
running at its specified maximum MPL.
This could indicate an artificial
constraint on the SRM's ability to
raise the system target JIPL and
specifically the MPL for that particu-
lar domain. RMF trace values for the
DMDTCMPL and DMDTRUA trace key words
should be reviewed periodically to
assure proper minimum and maximum MPL
designations in the IPS.

An additional consideration is
the 'Logical-Out-Ready' value and the
effect on TSO logical swap. Logical
swapping considerations will be
addressed later in the paper.

3. Channel/Device Activity Reports

The MVS Operating System pro-
vides information statistics for
physical and logical channels via the

Input/Output Supervisor (lOS) . The
RMF channel sampling module, ERBMFECH,
collects these statistics and pro-
vides information for both physical
and logical channel activity.

Primary interest in the physical
channel reports revolves around the
average service time for the channel.
This value is the calculated average
time required for the channel to
complete an I/O operation. Averages
for channel I/O operations tend to
run in the 10 to 15 millisecond
range. As this value increases, a
significant change may be seen in the
channel busy/CPU wait percentage
though the change may not be rapid
enough to attract attention. A more
significant indicator of channel and
I/O problems are the ' Average-Que-
Length' and '7o Request Deferred'
fields on the logical channel report.
MVS associates each physical channel
and each primary/optional channel
specification with a logical channel.
Of primary interest in the logical
channel report is the ' Average-Que-
Length' field. This field represents
the depth of I/O requests queued for
the logical channel. A value of .1

or greater for this field is an indi-
cation of possible channel overload.
Though a direct correlation may be
seen between this field and percent-
age of channel utilization, channel
utilization is generally not the main
contributor to the problem.

The percentage of request de-
ferred distribution provides the
major indication of the problem. If
requests deferred due to channel busy
is the high percentage, the device
activity report should be consulted
to determine the volume or volumes
receiving the highest I/O activity.
This will give a starting point to
determine if a volume move or data
set moves can be done to alleviate
the problem.

If the percentage of request
deferred due to control unit busy is

the high percentage, then three al-
ternatives must be investigated. The
first is rerouting of channel through
alternate or additional control units.
This is usually not a viable alterna-
tive. The second option is the move-
ment of DASD strings to other less
utilized control units. This can be
a very viable alternative in concert

344

with proper DASD segregation by work-
load at the DASD string level. This
effort will revolve around utilizing
the device activity reports to again
identify the volumes receiving the
most activity and making appropriate
volume or data set moves to distribute
I/O activity. The final alternative
is necessary if channel paths from
more than one processor are routed
through the control unit pairs. Work-
loads on each processor must be evalu-
ated with respect to their use of the
DASD devices on the strings serviced
by the control units to determine if
movement or combining workload pro-
cessing between processors will allow
a better I/O distribution to the
channel paths being serviced by the
control units. A final consideration
is the channel algorithm (i.e. rotate,
LCU) being used on each of the pro-
cessors. With proper DASD segregation
by workload at the string level , the
Last Channel Used (LCU) algorithm has
proved best for most installations
(assuming an MVS/SEl or higher environ-
ment) . Processors will tend to sort
channel and control unit paths out
between themselves which moves DASD
contention down to the string, and
more specifically, the device level.

When device busy is the highest
percentage for deferred requests , the
device usage must be studied to deter-
mine which data sets are responsible
for the high activity level and con-
sider either a consolidation of work-
loads to a given processor or
duplexing the data set (s) involved.
Device busy contention will only occur
in a multi-processor environment.

The objective of analysis of RMF
channel/device activity is the iden-
tification of I/O overload conditions
and more importantly, the elimination
of contention in the multi-processor
environment. DASD contention at the
control unit level is most difficult
to resolve. Through workload segrega-
tion and use or proper channel algo-
rithms , the analyst should attempt to
transfer any contention to the string
and device level. Once this transfer
is accomplished, the contention can
be alleviated through volume and data
set moves on existing DASD strings.

4. Page/Swap Data Set Usage

Resource Measurement Facility
collects information on page data
sets, swap data sets, and syster^
paging activity via the paging
sampling module ERBMFEPG. The
sampling module extracts the data from
two sources : the Paging Vector Table
(PVT) and the Auxiliary Storage
Manager Vector Table (ASMVT)

.

Analysis of the Page Data Set
Usage report and the Swap Data Set
Usage report should be directed toward
the following elements

:

o bad slot/swap set indications
for page or swap data sets;

o average service times for
allocated page and swap data
sets ; and

o allocated page/swap data set
slots and swap sets with
minimum, maximum, and average
slots/swap set indicators.

An increase in page data set service
times is usually caused by an increase
in cross system DASD contention.
Another cause of increases in service
times for local page data sets can be
a spill of swap activity, due to a

shortage of swap sets and swap data
sets, into the local page data sets.
Increases in the number of logged-on
time-sharing (TSO) users is usually
the cause of swap data set spills.
The analyst should continuously review
the statistics on swap set usage. If
the maximum swap sets used is equal
to swap sets allocated for all in-use
swap data sets and is a frequent
condition, swap spill to local data
sets is probably occurring. This will
also be in concert with an increase in
average ended transaction times for
TSO transactions.

Bad slot/swap set counts for page
or swap data sets can indicate the
beginning of DASD volume problems and
induce intermittent abnormal task
terminations into the system. This is

particularly true if a bad slot indi-
cator occurs for the PLPA page data
sets. If bad slot indications go
unnoticed for the PLPA page data set,
the potential for a spill of PLPA into
the common page data set is present
with system performance degradation

3U5

being the end result.

An additional consideration is
the size and placement of page data
sets. Analysis of the usage of the
page data sets from the usage report
will provide the analyst information
on page slots used with respect to
page slots allocated. Several page
(local) data sets should be used and
should be allocated with a minimum of
slots over the measured maximum slots
used. This reduces the seek activity
due to the spread of pages over slots
by the ASM slot sort routine.

A final point is the use of the
RMF trace facility to track page delay
time. The trace key word, RCVMSPP

,

provides the average page delay time
(excluding swap pages) in milliseconds
for transfer of pages during the
measurement interval. This value will
alert the analyst to paging problems
as an initial indicator and tends to
be less subtle than other indicators
discussed

.

5. Paging Activity Report

Paging can be the absolute
controlling factor in the performance
of an MVS system if the analyst does
not recognize the options available to
control the system paging rate. Two
values derived from the Paging
Activity Report are key in the SRM's
system control decision making
process

:

o Demand paging - number of non-
VIO

,
non-swap page-ins plus

page-outs per second; and

o Page fault rate - number of
non-VIO, non-swap page-ins
plus page-reclaims per second.

The analyst should track these values
to determine if they are approximately
equal. In most MVS installations,
page- ins are the primary contributor
to each of these values. The third
parameter required is the page
unreferenced- interval- count (UIC)
average during the interval. This
value must be obtained through the RMF
trace facility by use of the RCVUICA
trace key word. The average UIC value
is a primary value used by the SRM to
determine system over-under utiliza-
tion of the system and tends to be the
most erratic of the three variables

where systems are not memory (real)
overcapacitated . The demand paging
value is used in concert with other
variables in the SRM's decision making
process with only UIC and page-fault
rate being the stand alone variables
in the algorithm. The analyst should
evaluate the feasibility of changing
the SRM constant values to negate
the UIC value as a control and utilize
the page- fault rate (PTR) to control
system paging activity. This can be
accomplished by altering the SRM
constants located in CSECTIRARMCNS in
the nucleus for MVS/SE Release 1 or
prior systems and in SYSl.PARMLIB
member lEAOPTXX for MVS/SE Release 2

and fWS/System Product (SP) systems.

The second portion of the Paging
Activity report displays statistics on
system swapping activity during the
measurement interval. Logical swap
counts and their relationships will be
discussed under the section on TSO
logical swapping. Swap sequence
counts provide the total swapping
activity count for the interval and
averages for pages swapped in and out
during the interval. The primary
element here is the swaps per second
count. In a system with sufficient
swap data sets allocated, the analyst
should try to maintain a 1.0 swap per
second or less average. If this value
tends to be greater, the physical swap
counts section should be analyzed.

VJithin the physical swap counts
section, a primary element often over-
looked is the 'detected wait' swap
count field. Many analyst simply
write this count off to system initia-
tors going inactive. The analyst
should investigate the minimum, maxi-
mum, and average values for active
initiators from the CPU Activity
Report and determine if this is
actually the cause. If not, the other
major contributor to this parameter is

DASD wait time. If investigation of
paging activity and paging service
times appears to be within reasonable
bounds, the analyst should begin in-
vestigation DASD path and device
queueing. Normally this investigation
will show that a given path or device
(s) on the path are experiencing
significant I/O activity, cross system
contention, and queueing of I/O
request. The analyst can use SMF
records to determine the type of work-
load requesting I/O service to the

346

DASD in question, from each processor,
and begin attempts to provide better
workload segragation at both the
processor and DASD level.

Swap counts for unilateral and
exchange on recommendation value swap
counts are associated with IPS design
and parameters and are not in the
scope of this paper.

Additional swap reason counts
are self explanatory to the analyst.
Determining the workloads affected by
the above swap reasons can be accom-
plished through use of the RMF back-
ground monitoring facility and reduc-
tion of RMF type 79 SMF records.

6. TSO Logical Swapping

The TSO logical swap or in
memory swap was introduced with the
release of the MVS/Systems Extensions
(SU50) . At swap out time (terminal
input or output wait) , the TSO user
is evaluated for logical swap. If
the criteria for logical swap is met,
the TSO user's fixed frames, recently
referenced working set frames and
LSQA remain in storage and the user
is placed on the out/wait queue to
await terminal input. If terminal
input is not received during a speci-
fied period (think time) , the TSO
user is physically swapped out of
memory. If terminal input is
received within the specified amount
of time, the TSO user is moved to the
out/ready queue to compete with other
tasks waiting to be swapped in under
normal SRM control.

The control variable for TSO
logical swapping is a value known as
'think time' and is the amount of
time the user is allowed, after being
logically swapped out, to enter data
at his terminal and prevent being
physically swapped out. The maximum
default think time is 30 seconds and
is in the SRM constants table
(IRARMCNS) . An additional value used
in the logical swap decision is the
system average available frame count
(RCVAFQA) . Though the ASM queue
length is also part of the algorithm
for the logical swap determination,
it is negated due to default values
assigned which should not be changed
by the analyst.

Primary controls for raising or
lowering the system think time are the
system average UIC (RCVUICA) and the
system average available frame count
(RCVAFQA) . If the system average LMC
is greater than 30 and the system
available frame count is greater than
300, the system average think time is
raised .5 seconds. If the system aver-
age UIC is less than 20, then the
system average think time is reduced
1 second regardless of the system
average available frame count.

Three problems are present with
the algorithm and the current default
values

:

o the system UIC can be some-
what erratic depending upon
the workload mix processing
on the system;

o the UIC comoarison values
of 20 and 30 are high; and

o the available frame count
value of 300 is too high.

The analyst should review the
logical swap statistics from the paging
activity report to determine the degree
of logical swapping in the system. In
concert, the average available frame
count should be reviewed to determine
if the average available frames is
consistently greater than 100. If this
is the case, the analyst should consider
reducing the default compare value of
300 to 100 and evaluating the results
for logical svxap

.

After taking the above action and
reviewing results , the analyst should
trace the RCVUICA value for minimum,
maximum and average values to determine
UIC ranges under a represenative work-
load. If traces show the UIC value to
be in a range less than 30 but greater
than 10, the analyst should consider
reducing the default values of 20 and
30 for the UIC compare and again review
the effects on logical swap.

Tracing the system average think
time should be done in concert with
the above actions . If the system think
time remains high or at the maximum
value without an increase in the
percentage of TSO users being logically
swapped, the analyst must assume that
the user community has a large average

347

think time for the terminals in use.
The analyst may want to consider
raising the default maximum system
think time to induce more logical
swapping into the system. This should
be done only if sufficient memory is
available and the increases in maxi-
mum think time are gradual with a
thorough review on the effect to
logical swap.

The objective of increasing the
percentages of TSO users logically
swapped out and subsequently swapped
back in is to reduce the instruction
path length and the channel/device
overhead associated with physical
swapping. Care must be taken to avoid
inducing additional demand paging
and memory shortage overhead into the
system with TSO logical swap improve-
ment s

.

7 . Summary

Analysis of RMF data requires an
understanding of the cause and effect
relationships of those variables used
by the SRM to control the MVS system.
Direction for understanding these
relationships and analysis of the data
can be gained through the following:

o review and understanding
of the SRM algorithms for
over and under utilization
of the system;

o review and understanding
the TSO logical swap
algorithm

;

The SRM algorithms and TSO logic
swap algorithms are included for
reference

.

Over utilization(SRM)

:

(UICA < 2) or
(CPUA > 100) or
(ASMQ > 100) or
(PTR > 100) or
(MSPP > 1000) or

(DPR>DPRTH) and ((CPUA> 987o or
(MSPP> 130))

or

((lOUSE = 'I'B) and (CPUA < 98%))

(TMPL > MINMPL) for at least 1

Domain

.

TSO Logical Swap (think time increase)

IF (UICA > LSCTUCTH (30) and
(AMSQA < LACTASTL (100) or
(AFQA > LSCTAFQH (300) then

LSCTMTES = MIN(LSCTMTEH,LSCTMTES
+ LSCTMTEI)

TSO Logical Swap(think time decrease)

IF (UICA LSCTUCTL < (20) or
(ASMQA LSCTASTH > (100) or
(AFQA LSCTAFQL < (0) then

LSCTMTES = MAX(LSCTMTEL, LSCTMTES
- LSCTMTED)

o review and understanding
of the cause and effect
relationships discussed
in this paper; and

o utilization of the RMF
trace facility to obtain
the key values used in
the SRM algorithms and
analysis of the relation-
ships in your system.

Exercising the above recommen-
dations will give the analyst a
substantial start in the RMF data
analysis process.

8. Appendix A.

348

NBS-n4A (REV. 2-ec)

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) November 1981

4. TITLE AND SUBTITLE

Computer Science and Technology: Proceedings of the Comouter Performance
Evaluation Users Group, 17th Meeting, "increasing Organizational Productivity."

5. AUTHOR(S)

Terry W. Potter, Editor

6. PERFORMING ORGANIZATION (If joint or other than NBS, see /n struct/on sj

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. Stote. ZIP)

Same as no. 6

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 81-600155

Document describes a computer program; SF-185, PIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most si gnifi cant information. If document includes a si gnifi cant

bi bliography or literature survey, mention it here)

These Proceedings record the papers that were presented at the Seventeenth Meeting
of the Computer Performance Evaluation Users Group (CPEUG 81)' held November 16-19,

1981, in San Antonio, TX. With the theme, "Increasing Organizational Productivity,"

CPEUG 81 reflects the critical role of information services in the productivity

and survival of today's organization, as well as such trends as increasing personnel

costs, limited budgets, and the convergence of data processing, communications, and

word processing technologies. The program was divided into three parallel sessions

and included technical papers on previously unpublished works, case studies,

tutorials, and panels. Technical papers are presented in the Proceedings in their

enti rety

.

12. KEY WORDS: Benchmarking; capacity planning; chargeback systems; computer performance

management; data base machines; end user productivity; human factors evaluation; infor-

mation system management; office automation; performance management systems; resource

measurement facility; simulation; supercomputers
.

13. AVAILABILITY

^ Unlimited

Q For Official Distribution. Do Not Release to NTIS

^ Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D C
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

320

15. Price

$9.00

ilSCOMM-DC 6043-P80

<^U.S. GOVERNMENT PRINTING OFFICE: 1981-360-997/1850

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company .

Address

City State Zip Code

(Notification key N-503)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

SI 6; foreign $20. Single copy, $3.75 domestic; $4.70 foreign.

NOTE: The Journal was formerly published in two sections: Sec-

tion A "Physics and Chemistry" and Section B "Mathematical

Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and

technology, with primary emphasis on work at NBS. The magazine

highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement

standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and

automatic data processing. Annual subscription: domestic $11;

foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-

piled Trom the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on
NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office. Washington. DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Services, Springfield. VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)—Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717(38 FR 12315, dated May 11, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. S300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

SPECIAL FOURTH-CLASS RATE
BOOK

