
of Commerce

National Bureau
of Standards

Computer Science
and Technology

'"StAU Of
*

NBS

PUBLICATIONS

NBS Special Publication 500-78

NBS Programming
Environment
Worksiiop Report

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essentia! services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

UAXIOMAL BURKAC
or ffTAKDAItU5

UBfiARY

Computer Science ^^^^ ^

and Technology

NBS Special Publication 500-78

NBS Progrannming

Environment
Workshop Report

Editors:

Martha A. Branstad

W. Richards Adrion

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, DC 20234

A) to:
f ' >

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued June 1981

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research and
development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end of

this publication.

National Bureau of Standards Special Publication 500-78
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-78, 106 pages (June 1981)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 81 -600068

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1981

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

Price $4.75

(Add 25 percent for other than U.S. mailing)

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY 2

CHAPTER 1 INTRODUCTION 4

Introduction 4

Historical Perspective 5

Benefits from Prograituning Environments 6

Workshop Goals 7

Workshop Organization 8

Report Organization 8

CONTEMPORARY SOFTWARE DEVELOPMENT ENVIRONMENTS 9

1.0 Introduction 9

A. Software Development Environments 9

B. Software Development Products 10
C. Classes of Software Projects 11

D. Classes of tool environments 13
E. Assumed tools and techniques 13

2.0 Fig leaf 14

3.0 Leopard skin 15

4.0 Overalls 18

5.0 Spacesuit 19

6.0 Tool Integration 21

7.0 Tool Standards 23

8.0 Tool Effectiveness and Impact 23

9.0 Summary 24

10.0 References 25

SOFTWARE ENVIRONMENT RESEARCH THE NEXT FIVE YEARS 28

-iii-

1.0 Philosophical Background 28

1.1 Nature of Software Environments 28
1.2 Expected Benefits 31

2.0 Overall Strategy for Our Research Plan 31

3.0 What Must Be Learned from the Research Plan ... 33

3.1 Breadth of scope and applicability 33
3.2 User Friendliness 36

3.3 Reusability of Implementation Modules 37
3.4 Tight Integration of Tool Capabilities 39
3.5 Use of a Central Data Base 40

4.0 A Five-Year Research Plan 42

4.1 Experiments in Building Prototype Sytems 44
4.2 General-Purpose Software Environments 47

References 48

ADVANCED DEVELOPMENT SUPPORT SYSTEMS 50

1.0 Introduction 50

2.0 What will software be like in the future? 52

3.0 What is software quality? 54

4.0 Some issues we discussed 58

Noncumulative Science? 58
Documentation 59
Management Support Capabilities 59
Settings 60
Languages 60
Granularity and Composabil ity 61
Training 61
Security 61
Software Measurement and Prediction 62

5.0 Two Views of the Future 62

THE BUXTON VIEW 62
THE BALZER/BARSTOW/GOLDBERG VIEW 63

6.0 Research Topics 67

Short-Term Urgent Research Topics 67
Long-Range Research Topics 68

-iv-

7.0 Brief Analysis and Comparison 69

8.0 Conclusions 70

HIGH LEVEL LANGUAGE PROGRAMMING ENVIRONMENTS 72

1.0 Introduction 72

2.0 The Model 72

3.0 The Setting 75

4.0 Goals of Model 76

5.0 Research Topics 76

5.1 Environmental issues 77
5.2 Knowledge and Reasoning 80
5.3 Languages 82
5.4 Environment of the Environment 83
5.5 Other Issues 85
5.6 What's omitted 86

6.0 References 87

CHAPTER 6 SUMMARY 88

Group 1 88

Group 2 88

Group 3 89

Group 4 90

Workshop Overview 91

Omissions 92

Recommendations for NBS 93

APPENDIX B 95

General Questions 95

Group 1: Tools and Techniques 95

Group 2: Integrated Systems 96

Group 3: Advanced Support Systems 97

Group 4: Language Environments 99

-V-

NBS PROGRAMMING ENVIRONMENT WORKSHOP REPORT

edited by

Martha A. Branstad
W. Richards Adrion

In May of 1980, NBS hosted a workshop to as-
sess the state-of-the-art in programming environ-
ment technology and to determine the key questions
and issues that must be addressed to use these
techniques to improve software quality and produc-
tivity within the Federal Government. This docu-
ment reports the results of the workshop.

Key words: development support systems;
programming environments; software development;
software tools; toolboxes.

-1-

EXECUTIVE SUMMARY

To help the ICST staff assess the possibilities in the present
and future use of computers to increase both software quality and
productivity, a small workshop for invited participants was held
29 April through 2 May, 1980, at Rancho Sante Fe , CA. The
participants were asked to investigate various approaches to
automating software developnent including the use of "integrated
tool systems" and "high level language environments." Both of
these approaches are often referred to as programming
environments. The workshop was divided into four working groups:

contemporary software development environments,
software environment research,
advanced developnent support systems, and
high level language environments.

As might be expected in a new area of high interest, the
workshop participants did not always agree. However, there was
consensus on three major items:

* additional automation should be used to assist software
development,

* successful information management is a critical but
perplexing issue, and

* experimentation and prototype construction are needed
to investigate concepts.

The group tasked with analyzing the contemporary systems
developed the most definitive statement. It defined four
development environments, each more comprehensive and automated
than its predecessor. The most modest developnent environment,
for medium size projects, augmented basic system tools with:

* a manual requirements definition and specification
methodology,

* a data dictionary to facilitate design,
* an automated (but simple) source code control tool,
* a file comparator for use in verification, and
* manual milestone charts to support project management.

The two groups looking into the future proposed quite a
range of possibilities. The area of most fundamental disagreement
involved what could be accomplished within a 5 to 10 year
timeframe. This disagreement was based upon very different
perceptions of the current state-of-the-art. Some saw present day
reality in terms of projects underway in their research labs;
others viewed reality as mirrored by the technology used in

*

*

*

*

-2-

production shops today. The profound lag in technology transfer
from construction of research prototypes to the use of the
concept in software production was emphasized by these divergent
viewpoints. Participants also strongly disagreed on the intended
user group for future software development environments.

The disparity of views about the user population naturally
led to differences of opinion about the functions required within
a development environment. Surprisingly, the technical
approaches proposed had a strong thread of consensus. Most
participants viewed software developnent as a series of
refinements of objects from the general requirement specification
to the concrete realization of the program. The important
research lies with discovering the transformations and
increasingly automating application of the transformation. The
rapid construction of prototypes was viewed as an important
component of future development environments and an important
concept to apply to the development of the environments
themselves. Usable and efficient environments will be created
only through continued environment construction, experimentation,
and reconstruction. Almost everyone saw data management as the
heart of a software development environment. However, few
techniques or approaches were proposed to deal with the wealth of
information that all felt should be kept. The participants agreed
that development support systems and programming environments
were important research areas.

-3-

CHAPTER 1 INTRODUCTION

Introduction

The Institute for Computer Science and Technology within the
National Bureau of Standards carries out the following
responsibilities under P.L. 89-306 (Brooks' Act) :

* develops Federal automated data processing standards,
* provides agencies with technical assistance for ADP, and
* undertakes necessary research in computer science and

technology.

The goal of P.L. 89-306 is the "economic and efficient purchase,
lease, maintenance, operation, and utilization of automatic data
processing equipment by Federal agencies." As part of its current
standards initiative, ICST is studying methods to ensure the
quality of software developed for the government. Central to
these efforts is the desire to find new and automated means for
supporting and enforcing disciplined software development. The
production of high quality software developed at a reasonable
cost in a timely fashion continues to be an elusive goal. Hiring
trained personnel to produce the software has become an
increasingly difficult task as professional computer scientists
have become a scarce commodity. Thus the need to increase both
the quality of the software being produced and the productivity
of each computer scientist has become an ever more pressing
concern. The solution appears to lie in the use of the very
computer technology we aim to serve.

Automation must be used to serve and augment itself. An
increasing portion of the software development process should be
computerized. This can be accomplished by providing automated
tools to aid the software developer. Many tools already exist.
Compilers, text editors, file comparators, program analyzers, and
test harnesses are examples of such tools. However, rarely have
these tools been designed to work in concert. Consequently, the
assistance they provide is often awkward and incomplete. The
pieces must be joined together to create a whole more powerful
than the parts. A programming environment is the embodiment of
this concept. It provides automated assistance at each stage of
the development cycle to augment the potential of each computer
scientist both in the quality and the quantity of what is
produced

.

Historical Perspective

Tools to aid the programming process were among the first
programs written, at least in the modern age of computing.
Programs could not be loaded, assembled, and executed without
loaders, assembers, device drivers, and other rudimentary tools.
Without these simple aids, the programmer was left to manually
"patch" or key in data. Almost immediately, tools were made more
sophisticated and designed to help the programmer code and debug
programs. These included compilers, cross referencers, run- time
instrumentation tools, debuggers, text editors, and system
libraries. Tools and languages proliferated.

Just as coding was previously viewed as the key software
task, tools to support the coding phase were the most prevalent.
As the emphasis has shifted and software engineering has stressed
the total lifecycle, interest has increased in tools to support
each phase and the development process as a whole. Increased
emphasis upon visible products throughout the process, has led to
increased use of "formal", processable languages for expressing
requirements and designs. These languages, in turn, have
provided a basis upon v^ich analysis can be done and tools to
perform such functions have been built. An increase in
interactive computing has also influenced the desire to have a
well engineered set of tools to support software development. All
these factors have led to an increased interest in programming
environments to support the complete software -development
process

.

The task of developing such support environments is quite
difficult. The software development process, itself, is still
not completely understood, with languages and techniques for use
in the early lifecycle stages undergoing significant
investigation. Although specific tools to support individual
portions of the lifecycle development process exist, joining the
tools together into a coherent and useful system is often
extremely difficult.

Other issues complicate the problem further. Researchers
frequently must contend with a disenchantment with software tools
in general. Many factors have led to this:

1. Tool developers have made extravagant and unjustified
claims for their products. Many tools have been oversold
as a panacea, while they provide only modest functions.

2. Many tools have been developed in research and
academic environments as demonstrations of concepts.
Though successful as prototypes they were never
engineered as production products, though they are being
used as such. These tools are usually not well documented,
not efficiently coded, not robust enough for a production

-5-

environment, seldom portable, and never adequately
supported. Consequently they are unsatisfactory to use.

3. Tools are not often designed with integration in mind.
Where interfaces exist, they are rarely simple and clean.
Consequently, using several tools in concert is usually
difficult (if not impossible).

4. The proliferation of languages and language versions,
subsets, and supersets has made tool developnent
difficult. Tool builders have too often opted to build
tools too tightly coupled to the implementation language,
the application language, the hardware environment and/or
the operating system. These constraints cannot be
completely avoided, but portability, extensibility, and
ease of use are important factors in tool acceptance.

5. Tools have been designed for experts. Many tools are
poorly human engineered for the novice or even the
journeyman programmer. The cry for "user friendly"
systems is heard far and wide.

6. Little analysis of the benefits of automation of
software development has been undertaken. Managers have
been asked to accept that tools increase productivity,
reduce errors, provide more useful documentation, ease
maintenance, etc., without reliable data to back up these
claims. Cost-benefit analysis in this area is very
difficult, but is sorely needed.

Benefits from Programming Environments

A well engineered set of tools that is easy to use and which
work together smoothly offer many advantages, both to the manager
and to the software developer. As with any set of tools well
suited to the task, the software support environment can make the
work easier and the final product better. Proper tools can
increase the productivity of the worker. With a programming
environment that supports the complete lifecycle, intermediate
products such as requirement and design specifications are
produced. These products help to make progress more visible and
give the manager an opportunity to have better control over the
project. Programming environments encourage and support record
keeping which in turn promotes the maintainability of the final
system. Visible intermediate products and complete developnent
records also provide a basis for more insightful and
comprehensive contract monitoring. Information is available so
developers, managers, and purchasers can determine progress and
product usability. Programming environments, development support
systems, integrated tool systems, whatever the name, the concept

-6-

of integrated, automated support for software development appears
to offer a great potential for improving software quality and
productivity.

Workshop Goals

To help the ICST staff assess the possibilities in the
present and future use of computers to increase both software
quality and productivity, a small workshop for invited
participants was held 29 April through 2 May, 1980, at Rancho
Sante Fe, CA. The participants were asked to investigate and
discuss the use of two related but distinct approaches to
automated software developanent , an integrated tools system and a
language environment approach. The integrated tools systems can
be further subdivided into the toolbox and the development
support system approaches. A development support system is a
collection of individual tools appropriately interfaced, with a
user front end and an underlying database. With a toolbox, the
ensemble of tools, the tool application, and the tool output must
be more directly managed by the user. A comprehensive collection
of these tools available in a user engineered system should
increase software quality and productivity dramatically. There
are difficult questions to be solved before such a system could
be operational. Among these are the need to identify a core set
of tool features, to integrate the tools into a system, to
provide flexibility and expandability of service, and to support
data management .

An alternate approach to developnent is through the use of a
high level language environment in which code is evolved through
successive refinement of the initial specifications. This
approach involves the direct automation of the development
process by embedding tool features in a high level language
itself. The language environment would allow the programmer to
specify the problem at a very abstract level, and then gradually
evolve the final code by successive refinement. Interpreters,
syntax-directed editors, consistency checkers, correctness
verifiers, and compilers are tools that would be incorporated
into such an environment. Powerful data management techniques
built on knowledge-based structures would be required. Such a
language environment is at the edge of current research in high
level languages, operating systems, data structures, artificial
intelligence, database management, and program verification.

Both the tool approach and the language environment have
been called "programming environments"; they are complementary
with the integrated tool approach being nearer term. Both
approaches were the subject of the NBS workshop. The goals of
the workshop were to provide an assessment of the current
technology, an indication of needed standards for software tools,
guidance for developing practical near term developnent support

-7-

systems, suggestions for assessing the impact of such technology,
and research directions in programming environments and software
developnent . The workshop was to advise NBS on how to direct its
efforts to achieve high quality software and increased
productivity for the Federal Government through the use of
automation during the software development process.

Workshop Organization

In order to provide manageable topics and discussion, the
subject and participants were organized into four groups.
Following considerable debate, the final partitioning of the
subject matter was based upon a time continuum. Group 1,

Contemporary Software Development Environments, led by Dr.
William Howden was tasked with looking at what could be done
today, the most near term approach to development environments.
Dr. Leon Osterweil led Group 2, Tool Integration Strategies.
This group was to consider what could be produced using today'

s

technology but with a five year delivery date. The remaining two
groups were tasked with looking at research issues. Group 3,

Advanced Support Systems, chaired by Dr. Thomas Standish was
tasked with providing a framework for critical research and
development issues. Group 4, Language Environments, was to
consider development environments built around and in support of
a programming language. Dr. Marvin Zelkowitz chaired Group 4.

The personalities and interests of the participants and the group
interaction caused a some\Aihat different path to be taken in some
of the groups. Group 1 focused clearly on the near- term and set
forth concrete recommendations while Group 2 concentrated on
short-term research questions. Group 4 considered language
issues, while Group 3 addressed itself to the farthest reaches of
the research time continuum.

Report Organization

This report mirrors the organization of the workshop itself.
The next four chapters present the deliberations of each of the
four working groups. Summaries for each and for the workshop as
a whole follow in Chapter 6. In order to more clearly delineate
the domain of each working group and to stimulate thought prior
to the workshop, questions were generated for each group. These
sets of questions and issues appear in Appendix B. Workshop
participants are listed in Appendix A.

-6-

CONTEMPORARY SOFTWARE DEVELOPMENT ENVIRONMENTS

William Howden

Participants
Paul Cohen, Defense Communications Agency
Willicim Howden, University of Victoria
Al Irvine, Softech
James King , IBM
Patricia Powell, National Bureau of Standards
William Riddle, University of Colorado
Leon Stucki , Boeing Computer Services
Leonard Tripp, Boeing Computer Services

1.0 Introduction

A. Software Development Environments.

The software developnent environment consists of the
methods, techniques, and tools which are used during the
development of a software system. Early environments consisted of
a compiler and a linking loader. Later environs included editors
and debuggers, informal requirements and design methods, and
simple programming standards. Many new methods and software tools
have been formulated and built during the last decade and the
software development environment has evolved into a rich
structure of development technology. It is estimated, for
example, that there are now more than 400 commercially available
software development tools.

In May of 1980, the U.S. National Bureau of Standards
sponsored a workshop on software development environments at
Rancho Sante Fe, California. One of the several groups at the
workshop was assigned the task of studying near- term
environments. These are environments that could be built within
the next two or three years using state-of-the-art technology.
The model for the environments that were considered was that of a
toolbox: a collection of automated tools and methods that could
be used to build quality programs. The toolbox group was
successful in designing a succession of increasingly complex
environments. It also discussed the problems of tool and method
integration and a simple powerful approach to this problem -was

proposed. This report describes the basic features of the tool
environments and the approach to integration.

-9-

B. Software Development Products.

The approach that was followed in the design of the tool
environments was to consider first the products that must be
generated by a software project and then the methods and tools
that would be useful in generating those products. This was an
effective approach. It provided structure and direction to the
efforts and avoided the pitfall of attempting to prejudge the
usefulness of a specific tool or tool function without first
discussing the need for it.

The software life cycle was used as the software developnent
model during the discussion of the products that are built during
a software development project. The life cycle model emphasized
the importance of both intermediate and final products. The needs
of different classes of personnel were also considered.
Analysts, programmers, customers, managers, and operations staff
are responsible for and depend on the use of different
development documents. Some of the more important products are
listed below. Some products are closely associated with
particular phases of the life cycle and others transcend the
phases

.

REQUIREMENTS PRODUCTS

Two major classes of requirements products were identified.
The first consists of requirements definition documents. These
documents are generated during the definition of requirements and
form the initial communication medium with the customer. A
special language such as SADT [31,32] may be involved. The second
product consists of the requirements specification. This is a
formal contractual document that defines the system which is to
be built. It is constructed after requirements definition and,
ideally, is represented in some formal language or graphical
notation. PSA/PSL [38] can be thought of as a requirements
specification language.

Requirements definition documents are often informal. They
may consist of large pieces of paper tacked up on the walls,
constructed in a scissors and paste mode. Graphical languages
such as SADT [32] can be used during requirements definition to
build requirement's models. Requirements specifications are
constructed after the definitional phase has been completed when
the requirements can be stated more formally and in more detail.
A prototype user manual for a system may also be a product of the
requirements phase. A test plan based on the functional
properties of the system which are described in the requirements
specifications was also considered to be an important
requirements product. It should define both test data and
expected results as well as procedures for running the tests.

DESIGN PRODUCTS

-10-

"As-built" design representations are geared to help users
understand and maintain a system. The program logic manual for
the IBM 370 is an example of an "as-built" product. "As-built"
representations may contain less detail than "build-to"
developnent design representations which are used by the system
development staff. Structured design diagrams [40] can be used to
construct examples of "build- to" design representations. A
design-based test plan that is based on the system functions
introduced at the design stage should also be generated [16].
The design of a system is often divided into preliminary (or
architectural) design and detailed design. The preliminary
design may be used to construct a build plan. A build plan
describes the order in which modules or parts of the system are
to be designed and built. The preliminary design may also be used
to construct schedules, budgets, resources management procedures,
milestone charts, and maintenance documents. A maintenance
document may describe the "design envelope" for a system. It
lists the kinds and scope of the alterations and customizing
which are possible without altering the design.

CODING PRODUCTS

In addition to the source and object code modules, the
coding phase involves the construction or modification of
management products (budgets, schedules, etc.), user manuals,
change control plans (discrepancy reports, procedures for
correcting errors), and code based test plans. The coding phase
also involves the generation of the reports of all testing and
code analysis activities that are carried out.

MAINTENANCE

Products which are important to and are either used with or
generated during maintenance include configuration
specifications, change control procedures and plans (including
regression tests, data and results), cross reference documents,
and all requirements and design specifications.

C. Classes of Software Projects.

Different toolbox environments are appropriate for different
classes of projects. Two types of projects were considered. The
first was a medium sized automatic data processing application
and the second a large embedded real time software system.

The meditm sized project was assumed to have the
characteristics listed in Table 1. The list is incomplete and is
meant only to delimit certain basic properties of a class of
projects. The description of the users as sophisticated means
that they are capable of understanding and evaluating preliminary
design specifications. The support staff for the project
includes user representatives, industrial engineering personnel

-11-

who carry out management and planning functions, separate testing
staff, and clerical, and operations personnel.

Development time 2 years
frojecu Duageu 9 Z , SOVjk) , \OiO\0

System lifetime 15-20 years

(plus support staff)
Users Sophisticated
Area ADP

Basic characteristics of medium size project

TABLE 1

Basic characteristics of the large system are listed in
Table 2. The development of large systems having these
properties introduces a whole new set of problems. One of the
most significant is communication between developnent personnel.
Many of the issues which must be considered for large systems but
not medium sized result from what are basically system
engineering and management problems.

Development time 3-5 years
Project budget $20,000,000 (development

only, no maintenance)
System lifetime 10 years or more
Development staff 70 programmers

5-7 managers
Users Unsophisticated
Area Embedded real time

Basic characteristics of large scale project

TABLE 2

The number of programmers on the large project will vary and
may start with as few as twenty. The budget of $20,000,000 does
not include maintenance which, over the life of the system, may
amount to $60,000,000. In addition to the characteristics in
Table 2, it was assumed that the large scale project could
involve different development and implementation machines,
geographical dispersion of development personnel, and that it
would be part of an essentially new application.

-12-

D. Classes of tool environments.

Three different classes of tool environments were designed
for medium sized projects and two for large projects. The first
of the three environments for medium sized projects, code named
Fig leaf, covers the bare essentials. It was considered to
contain the minimum set of tools and methods without which it
would be foolish to attempt to carry out such a project. The
second environment, code named Leopard skin, covered most of the
areas in which development staff need environmental support. It
contained tools and methods for assisting the user in all of the
more important parts of the developnent process. The third
environment, code named Overalls, provides a complete and
workmanlike coverage of all tool and technique areas.

Two classes of environments were discussed for large scale
systems. The first was essentially the same as the second
environment for medium systems. Leopard skin was considered to be
the minimal tools and techniques environment for the developnent
of a large scale system. The second environment for large scale
systems, code named Spacesuit, is an elaboration of Overalls.

A rough estimate of capital cost for each of the
environments was made on the assumption that most of the tools
would be purchased and not developed in-house . The cost estimates
provide some idea of the relative cost for each environment but
it was difficult to feel confident with these figures as
absolute. It is reasonable to assume that the costs are measured
in units that range somev\^ere from an American dollar to a
British pound. It was assumed that the training and recurring
costs for tools are amortized over many projects and are not
included in capital costs. Capital cost estimates were made by
estimating what different kinds of tools might sell for.

E. Assumed tools and techniques.

The "assumed tools" are the traditional tools that are part
of all software development environments. They include compilers,
link-editors, assemblers, run-time support routines, and, in some
cases, a source code debugging system. The assumed tool set also
contains a filing system with a built-in back-up and recovery
mechanism. The assumed tools for large-scale systems include
cross-compilers, simulators, and emulators. In some projects the
assumed tools may have special features. It may be necessary, for
example, to have a cross-compiler that is capable of generating
code for either the development or the target machine. It is
likely that some of the assumed tools in the large scale system
environments will be customized for the application. None of the
assumed tools are discussed in later parts of the report. The
primary goal is to discuss tools and techniques which are part of
the current state-of-the-art for software developnent
environments and which can be added to the assumed traditional

-13-

set of development tools.

2.0 Fig leaf

a) CAPITAL COST: $35,000

b) REQUIREMENTS TOOLS AND TECHNIQUES. Fig leaf contains no
automated requirements tools. Requirements definition and
specification are carried out manually. It is assumed that some
systematized, but unsupported (by tools) methodology such as data
flow diagrams[123 or HIPO charts[35] will be used for
requirements definition and specifications.

c) DESIGN TOOLS AND TECHNIQUES. The use of a data dictionary
tool for ADP projects was considered essential [11]. Other
aspects of the design were assumed to be manual. On a medium
sized project the single manager was assumed to be the designer.
The problem of design is greatly simplified if there are no
communication problems. The generation of functional design
documents was considered essential although no particular design
methodology is suggested. The approach to design that is followed
in Fig leaf is a function of the manager' s experience and the
nature of the application problem. Functional design documents
should describe the functions introduced at the design stage of
the software project. They describe functions of individual
modules and parts of programs and are essential to the generation
of test data [15,16].

d) CODING TOOLS AND TECHNIQUES. Fig leaf contains a simple
automated source code control tool [2,30]. The tool is built on
top of a conventional text manager for filing and retrieving
blocks of text. The source code control tool allows the
programmer to enter different versions of procedures and modules.
The tool keeps an index of and allows retrieval of different
versions of the objects. The source code control system may have
facilities for automatically retrieving older versions of a
module or procedure.

e) VERIFICATION TOOLS AND TECHNIQUES. The only automated
verification tool included in Fig leaf is a file comparator
[8,10]. The comparator can be used for different purposes
including version management and regression testing. No other
automated verification tool is included. Verification in Fig
leaf is largely manual. Test plans and files of test data are
constructed and managed manually. The test plans describe
functions or system features to be tested. They are based on
information from requirements and design documents as well as
specific features of the code. Test plans may be indexed and
associated with different versions of modules or procedures or
different configurations of the system.

-14-

f) MANAGEMENT TOOLS AND TECHNIQUES. No automated management
tools are included in Fig leaf. It is assumed that manual
milestones or Gantt charts will be maintained to support
management activities.

3.0 Leopard skin

a) CAPITAL COST: $200,000.

b) DATA BASE. Leopard skin is assumed to include a simple
software engineering data base for storing and retrieving
products that are built during a software project [19,38]. It is
assumed that the source code control system and cross-reference
tools work off the data base. Other tools and techniques in
Leopard skin may or may not use the data base. The software
engineering data base in Leopard skin is built around three
concepts: that of an object, an object property, and a
relationship between objects. Objects may be code modules, test
plans, design documents, milestone charts, requirements
specifications, or any other software development product. The
objects may be textual or internal representations of graphical
objects. Any kind of property can be defined for an object or
any kind of inter-object relationship.

c) DEPENDENCY ANALYSIS. One of the major tacks in software
engineering is the management of dependencies between objects.
Examples of dependencies include the "compiled" relationship
between a source code module and an object code module, the
"calls" relationship between a calling and a called procedure,
the "implements" relationship between a design function and piece
of code, the "must precede" relationship between two tasks in a
build plan, data coupling relationships between two modules in a
structured design, and the "part of" relationship between a
configuration specification and a set of modules and files. The
property and relationship features of the software engineering
data base can be used to support tools for entering and analyzing
dependencies between related objects.

Leopard skin contains a dependency analysis tool for
entering dependency relationships and for retrieving objects that
are related by named dependencies. Sophisticated general purpose
dependency analyzers are capable of carrying out more complex
tasks such as finding the transitive closure of a relationship.

Dependency relationships are entered into the data base in
two ways. The first is manually. The managers decide which kinds
of dependencies are to be maintained and then guidelines and
audit procedures are set up to ensure that the dependencies are
entered and maintained. Dependency relationships may also be
entered into the system automatically, either as a side effect or
through the use of special purpose dependency analysis tools.

-15-

Compilers, for example, can be constructed so that they
automatically enter call relationships between procedures. This
is an example of a side-effect. A module cross-reference tool can
be built whose only purpose is to analyze inter-module references
and enter the appropriate relationships into the data base.

It is important not to confuse special purpose dependency
analysis tools and report generators with the simple, general
purpose dependency analyzer that interacts directly with the data
base. The special purpose tools are built on top of the general
purpose analyzer. It is also possible to build special purpose
tools which report on dependencies which are not stored in the
data base. In this case the dependency analyzer examines objects
directly for certain properties and reports on the dependencies
of interest without entering them into the data base. The only
assumed dependency tool in Leopard skin is the simple general
purpose tool that is used by other special purpose tools.

d) REQUIREMENTS TOOLS AND TECHNIQUES. Leopard skin contains
tools for storing and manipulating machine readable requirements
specifications. Requirements definition may continue to be a
manual methodology. The tool for entering specifications is, like
the source code entry system, a special kind of editor that is
"knowledgeable" about the specification language. It may know for
example, that if "A uses B" , then "B is used by A". The
requirements specification tool is not required to use the
software engineering data base. It may use ordinary files. If it
uses the data base then it may be built so that it automatically
causes the entry of dependency relationships such as "A uses B" (

and the consequent derived "B is used by A") into the data base
[38]. Requirements definition and specification may involve
requirements languages or both languages and methodologies for
defining or specifying requirements. PSA/PSL, for example, is
primarily a specification language. SADT involves both a language
(graphical) and a comprehensive requirements methodology. Other
examples of requirements definition and specification
methodologies include HIPO [35], SAMM [36] and SREM [1].

e) DESIGN TOOLS AND TECHNIQUES. The use of a formal, machine
readable design representation is assumed in Leopard skin.
Possible design methods include the Jackson method [20], PDL [7],
TOPD [34], structured design [40], module descriptions [4], data
dictionaries [11], HOS [15], SARA [9], and Nassi-Schneiderman
diagrams [23]. Tools must be available both for entering and
retrieving designs and for carrying out associated design
analysis. Design analysis tools can be used, for example, to
generate PDL cross-references, execute paths, and show all
possible data flows in a TOPD design, or check the consistency of
interfaces in a module structure.

f) CODING TOOLS AND TECHNIQUES. Leopard skin contains more
elaborate source code entry tools than Fig leaf and it is assumed

-16-

that the tools are built to use the software engineering data
base. Source code modules may have many properties associated
with them such as the time v^en the module was entered, required
hardware, required operating system, and dependencies on other
modules (some combinations of modules go together and some
don' t)

.

Configurations consist of collections of particular versions
of modules or collections of modules that have some other
specified property. Leopard skin allows users to define objects
called configurations and contains a configuration management
tool for retrieving the modules belonging to a particular
configuration. The configuration manager may need to call on
other tools in order to form a configuration and must therefore
be compatible with these tools. The manager may find, for
example, that a module \Ahich is to be included in some
configuration has not been compiled, in which case it will call
the compiler to generate an object module for the source module.
The configuration manager may allow different ways of specifying
configurations (e.g., latest versions of modules, versions for
certain hardware, etc.).

g) VERIFICATION TOOLS AND TECHNIQUES. In addition to the
file comparator included in Fig leaf. Leopard skin includes
several other automated verification tools. A test coverage
analyzer [28,37] is assumed to be available as well as a test
harness (or testbed) [25]. Test plans are required to be stored
in machine readable form and to contain descriptions of the code
to be tested, input variable values, and expected output variable
values. The test harness should be able to automatically test
sections of code specified in test plans and be able to check the
agreement of computed against expected output. Test harnesses
should be capable of testing parts of procedures as well as whole
procedures and modules. Test plans may specify stubs to be used
for procedure calls.

h) MANAGEMENT TOOLS AND TECHNIQUES. Leopard skin contains an
automated project control system. The system maintains a model of
the software development task. The model may vary in complexity
from a milestone or Gantt chart to a CPM or PERT network. The
project control system tools implement facilities for storing
management information and for generating reports. A Gantt chart
project control system, for example, will contain facilities for
allowing time cards to be filed against the Gantt task/ per sonnel
matrix. It will also allow the generation of reports which
summarize time and dollar costs for particular tasks.

i) ACCESSORIES. There is a wide variety of other software
engineering tools available. Leopard skin is not expected to
contain any more than a small number of these, say two or three.
The accessories are expected to be "off-the-shelf" type products.
Possible Leopard skin accessories (beads and feathers) include

-17-

those listed in Table 3.

data flow analyzer [24]
pretty printer (source code)
flow charter [2]
control flow analyzer (generate call graphs) [5]
interface checker (for procedure and functions)
performance monitor (time spent on code sections) [27,29]
module cross-reference tool (uses data base)
documents cross- referencer
units checker (for weakly typed programming languages)
documents preparation tool (for generating reports) [22]
test data generator

Accessory Tools

Table 3

4.0 Overalls

a) CAPITAL COSTS: $300,000.

b) TOOLS AND TECHNIQUES. Overalls contains all of the tools
and techniques in Leopard skin, including all accessories.

c) USE OF DATA BASE. As many of the tools and methods as
possible store the objects which they manipulate and generate in
the software engineering data base.

d) TOOL COMPATIBILITY. Tools which do not use the data base
must be compatible. There are several criteria for determining
compatibility. Compatible tools should be able to call one
another. The configuration manager, for example, must be able to
call the compiler to compile a source module. Sources and
destinations for the input and output for a tool must be
parameterized. In order to be able to use tools together, it
must be possible to tell them where to get their data and where
to put their output. A cross-reference tool, for example, must
not be built in such a way that it always prints its ouput on the
1 ine- printer , and is not capable of sending the information to
other destinations.

-18-

5.0 Spacesuit.

a) CAPITAL COST: $3,000,000.

b) DATA BASE FACILITIES. Space suit contains the same
software engineering data base as overalls, as well as several
additional information management facilities. All tools and
techniques are assumed to use the data base.

Space suit contains an archiving facility for storing
previous versions of requirements, design, and source code
documents. It is not unusual in a large project to forget why
different requirements and design decisions were made. The
availability of an archive system allows project personnel to
examine previous versions before altering some document to make
sure that they are not literally going in circles and re-
introducing a feature that was part of a previous, abandoned
version.

There are often one or two people on a project who are
knowledgeable about what is going on in all parts of a design or
in different modules in the system under development. They
function as a sort of technical Ann Landers, providing advice
about the use of common facilities in the system. The position is
self perpetuating, each time a programmer comes for advice he
probably gives an advisor more information than he gets in
return. In time the advisor will have an enormous knowledge of
the system.

The function of the advisor can be partially filled by an
indexing tool v^ich is capable of searching the data base for
objects which have certain properties. In a generalized data base
management system the function would be fulfilled by the query
language. Care must be taken to prevent use of the index er to
violate the principle of information hiding. The indexer should
not be used to allow a programmer working on one module to find
out about and then start rummaging around in the data maintained
in another module vv^ich is being worked on by some other
programmer. The primary purpose of the indexer is to answer
questions like "Is there a sort facility mentioned in any of the
design documents?"

Policies must be used during the developnent of a large
system for controlling changes to configurations and for
controlling the generation of new versions of different kinds of
documents. It is especially important that the policies be
rigorously enforced in a multi-user environment. Partial control
can be maintained by including a facility in the Space suit data
base that monitors all changes to objects [30]. Each time a user
attempts to file away an object v^ich has been constructed by
changing a previous version of the object, the change control
facility requires that he give a reason for the change. Different

-19-

change logs are maintained for different classes of documents.
The change control system may also implement a policy for
creating new versions of objects and new system configurations.

In addition to the archiver, indexer, and the change control
tools. Space suit is assumed to include a sophisticated cross-
reference facility for cross-referencing the enormous volume of
documents (requirements, design, code, etc.) that is produced on
a large project.

c) REQUIREMENTS TOOLS AND TECHNIQUES. The use of an
automated requirements specifications tool like that used in
Overalls is assumed. The tool, and the associated specifications
language, must allow the incremental construction of
specifications [14]. Both the requirements definition and
specification methodology must incorporate procedures for
incremental construction and review. The use of formal,
systematic requirements reviews is considered essential.

The need for incremental build and review procedures for
large scale systems is partially due to the size of the
requirements documents. It is not acceptable to construct and
then deliver a 500 page specification to a customer and then ask
him for his opinion. The delivery of a hierarchically organized
document, a chapter at a time after the entire document has been
completed, is not acceptable either. Examination of the first few
levels of specifications may reveal a problem that could wipe out
the rest of the document.

The requirements definition and specification stage may
involve experiments in v^ich part of the requirements are
actually carried through to an executable part of the system, or
a simulation of that part of the system. The user interface for
an interactive system, for example, may be simulated to allow the
user to get a feel for the proposed specification for that part
of the system.

d) DESIGN TOOLS AND TECHNIQUES. Space suit, like Overalls,
includes an automated design system. Design representations
(textual and/ or graphic) are stored in the data base. Design
simulation tools such as SIMSCRIPT and GPSS may also be included.
The design methodology in Space suit, like the requirements
methodology, must allow phased or incremental construction. The
methodology must contain formal procedures for design reviews
[39]. Formal reviews are less important in smaller projects where
the designers (there may be only one) can easily communicate with
each other.

Incremental or phased design is necessary in a large project
because different parts of the design are done by people who
cannot keep in constant communication with each other. Parts of
the design may be sent out to different geographical locations

-20-

for development. At certain stages the design will go through a
consolidation or synthesis phase in vs^ich several chief designers
will go through the whole design and then possibly take it apart
and put it back together again. One of the problems that the
design synthesis activity will help solve is that of redundancy.
Lower level parts of a design that are being developed by
different teams may be 85 per cent the same, unknown to both
teams. With some restructuring of the design it may be possible
to remove the redundancy and to design a significantly smaller
and cleaner system.

e) CODING AND VERIFICATION TOOLS AND TECHNIQUES. Space suit
contains essentially the same coding and verification tools and
techniques as Overalls.

f) MANAGEMENT TOOLS AND TECHNIQUES. All of the management
tools and techniques from the smaller environments are included
in Space suit, together with new features that are used to help
deal with the complexity introduced by the increased size of the
projects that are being developed. Space suit includes methods
for constructing build plans and tools for supporting their use
[33]. Build plans are based on preliminary (or architectural)
designs. They specify the order of construction of different
parts of the design. There are a number of reasons why different
parts of a system may have to be developed in a specified order.
One part may depend on another for testing. Some parts may have a
high payoff and can actually be put into use before the other
parts. It may be necessary to carry high risk parts to completion
before the design and implementation of other parts. It may also
be necessary to build prototypes of some pieces of a system. The
manager for a large scale project may decide that dependencies
between build plans and preliminary designs should be stored in
the data base. Related dependencies between build plans and
project control budgeting and scheduling information may also be
stored in the data base. A Space suit management tool can be
built which can be used to analyze the dependencies and to record
the effect of a change in the design of the build plan. Space
suit may involve industrial engineering staff for project
monitoring. Space suit contains a mail box facility for
communication between different developnent personnel.

6.0 Tool Integration

One of the most common arguments against tool integration is
that it imposes an inflexible developnent methodology upon the
developnent staff. One imagines an enormous Rube Goldberg machine
consisting of a nest of hooked up levers, pipes, and wheels. In
order to use tool A you must first use B and the output from A is
always processed by C and then D unless there is input from E.

The idea that an integrated tool environment must consist of

-21-

a complex structure of interconnected tools is misleading. The
fundamental feature of some of the more famous software support
systems is not interconnections but the use of a common kind of
data object by all tools or facilities in the system. The
properties of the basic data object and the knowledge that
different parts of the system have of objects of that type
characterized the degree and kind of integration that is found in
the system. The UNIX operating system, for example, uses the file
as a common basic data object. Little is assumed about files and
the kind of integration found in UNIX is relatively bland or
general purpose. INTERLISP is built around the use of list
structures { S-expressions) as the basic data object. There are a
number of well defined kinds of list structures (functions, A-
lists, prop- lists, etc.) which have interesting properties that
are known about by different parts of the INTERLISP sytem.

The object/ property/ relationship software engineering data
base which is included in all but the simplest of the
environments described in this paper can be used to build an
integrated software development environment. The data base
provides an integrating and unifying medium for interfacing tools
without forcing them into a complex structure of inter-
relationships. Tools get their information from the data base and
put their results back into it without having to interface
directly with other tools. The data base can be used to gain the
advantage of integration without losing the flexibility of the
toolbox

.

The advantages of an integrated tool system which uses a
common data base include that of eliminating the necessity for
multiple copies of the same information. The existence of
different copies of the same information for different tools
creates a horrible consistency and synchronization problem. Every
time one copy or version of a collection of information is
updated or changed, all other copies must be changed also. The
expense and tedium of doing this virtually rules out the
practicality of using certain collections of tools unless they
can be modified to work off the data base. Tools which satisfy
the requirements for tool compatibility (parameterization of
input/ output locations and the ability to call one another) can
often be attached to a software engineering data base with
interface or "data translator" routines. In order to maintain
flexibility it is important to avoid building bridges between
pairs of tools rather than bridging them into the data base.

Properties other than the use of a common data base have
been suggested for an integrated tool system. One is the use of a
homogeneous command language for controlling and using the tools
[13]. There are mixed opinions on this idea. It may help the user
by enforcing uniformity at the interface. Alternatively, it may
hinder the user. There are different levels of human interfaces
for different tools and it may be difficult to construct a

-22-

concise, non- redundant uniform command language for all tools.

7.0 Tool Standards

Two approaches to standardization of environments were
discussed by the toolbox group at the NBS workshop. The first was
that of standardization of tool function. This is appropriate for
tools which have been around for some time and whose basic
features have stabilized. It is not appropriate for many other
tools, even though their use and capabilities are well
understood. Standardization of this type may have a frustrating
and inhibiting effect on software development. It may also be
simply ignored. Another approach to standardization is that of
setting standards for the software environment data base.
Standard formats for "input from" and "output into" the data base
would retain benefits of standardization such as portability
without inhibiting the development of new tools and methods.

8.0 Tool Effectiveness and Impact

It is one thing to propose a class of software development
environments. It is another to convince people to use one of
them. The arguments that the use of a tool environment results in
the construction of better systems at lower cost, that it gives
increased management visiblity and increased analytic ability to
the designer and programmer, must be supported with mathematical
or empirical evidence. Studies have been caried out on individual
methods and tools [e.g. 17] which indicate that they can be
powerful, effective devices but there is little empirical data on
the use of complete software development environments like
Leopard skin. Overalls, and Space suit.

The use of a tool or toolbox environment is more likely to
occur if it is human factor engineered. Built-in dynamic (step
through examples) tutorials are one way of doing this [26].
Getting into and out of a tool must be simple. One way of
measuring the quality of the human factors engineering in a tool
is to see how far you can get with the tool by guessing how to
control and use it before you need the user manual.

Perhaps the most direct way of encouraging the development
and use of a software engineering environment is to require that
the software development contractor be formally obligated to
produce the intermediate as well as the final products that are
associated with the software life cycle. Required intermediate
products may include, for example, data flow diagrams, data
dictionaries, data flow analysis reports, and project status
reports. The software development contractor who is uninterested
in using the tools and techniques in a modern development
environment may be the same contractor who does not really

-23-

believe that the life cycle and its associated intermediate
products are really necessary. If these products are formally
required it should be possible to convince the contractor that
his job will be easier if he uses a tool environment which is
designed to manage and make the production of these products not
only easier but, in some cases, possible.

9.0 Summary

Four classes of software developrient environments have been
proposed. Each can be built in the near term using state-of-
the-art technology. The environments were designed by first
considering the life cycle products that are generated during a
software development project. The environments contain tools and
techniques which can be used to construct those products.

The products oriented approach to software environments
reveals the existence of many activities which are carried out
during a project which otherwise may not be thought of. The
formal recognition of the existence of all of the life cycle
products which are generated during a software development
project may end up making the development time longer but the
final product should be better and the collected intermediate
products will make effective maintenance possible.

The basic unifying component in the three more sophisticated
of the four classes of environments is the software engineering
data base. It is predicted that the use of a simple data base
will not only make integration possible, but it will make the
construction of an integrated environment easier than that of an
uninteg rated toolbox.

Two classes of tools and techniques were excluded from the
proposed environments: those beyond the current state-of-the-art
and those whose range of applicability is highly restricted or
whose cost/ef fectiveness is still open to question. The first
includes, for example, transformational programming systems [3]
and the second, symbolic evaluators [18] and program mutation
systems [6]. The references for the included tools and techniques
indicate typical examples and are not meant to be complete.

The use of a software engineering environment is encouraged
if contractors are formally obliged to produce intermediate life
cycle products. The effectiveness of individual tools has been
studied but there is little information available on the
effectiveness of complete environments. A research project which
included the construction of and an evaluation o-f the
effectiveness of a software development environment would provide
important and much needed information about the question.

-24-

10.0 References

[1] M.W. Alford, "A Requirements Engineering Methodology for
Real-time Processing Requirements," IEEE Transactions on
Software Engineering , Vol SE-3, 1977.

[2] Auto flow II Users Guid

e

, Applied Data Research, Prince-
ton, New Jersey.

[3] R. Balzer, N. Goldman and D. Wile, "On the Transforma-
tional Implementation Approach to Programming," Proceedings
2nd International Conference on Software Engineering , Los
Angeles, 1976.

[4] B. Boehm, "Some Experience with Automated Aids to the
Design of Large Scale Reliable Software," IEEE Transactions
on Software Engineering , Vol SE-1, 1975.

[5] J. Brown, "Getting Better Software Cheaper and Quicker,"
in E. Horowitz, Editor, Practical Strateg ies for Developing
Large Software Systems, Addison-Wesley, Reading, Mass. 1975.

[6] T.A. Budd, R.J. Lipton, and G. G. Sayward, "The Design
of a Prototype Mutation System for Program Testing,"
Proceed ing National Computer Conference , AFIPS, 1978.

[7] S.H. Caine and K.E. Gordon, "PDL-A Tool for Software
Design," National Computer Conference Proceedings , Vol 44,
1975.

[8] E.D. Cal lender, "Industrial Practices to Control Comput-
er Program Costs," SAMSO-TR-75-2 93 , 1976.

[9] I.M. Campos and G. Estrin, "Concurrent Software System
Design Supported by SARA at the Age of One," Proceedings 3 rd
International Conference on Software Engineering , Atlanta,
1978.

[10] Compare Facility, Network Operating System, CYBER
Series, Control Data Corporation.

[11] Data Manager Users Guide, MSP Inc., Lexington, Mass.

[12] T. DeMarco, Structured Analysis and System
Specification , Yourdon Inc., N.Y. , 1978.

[13] J.R. Ehrman, "The New Tower of Babel," Datamation ,

Feb., 1980.

[14] D.P. Freedman and G. Weinberg, Ethnotechnical Review
Guide, Ethnotech, Lincoln, Nebraska, 1979.

-25-

[15] M. Hamilton and S. Zelden, "Higher Order Software-A
Methodology for Defining Software," IEEE Transactions on
Software Engineering , Vol. SE-2 , 1976.

[16] W.E. Howden, "Functional Testing and Design Abstrac-
tions," Journal of Systems and Software , (to appear)

.

[17] W.E. Howden, "Applicability of Software Validation
Techniques to Scientific Programs," ACM Transactions on
Programming Languages and Systems , July, 1980 .

[18] W.E. Howden, "Symbolic Testing and the DISSECT Symbolic
Evaluation System," IEEE Transactions on Software
Engineering , Vol. SE-3, 1977.

[19] C.A. Irvine and J.W. Brackett, "A System for Software
Engineering," Infotech State- of- the-Art Report on Structured
Analys is and Design , Infotech, Maidenhead, England, 1978.

[20] M. Jackson, Principles of Program Design , Academic
Press, London, 1975.

[21] D.B. Knudsen, A. Berfsky, and L.R. Satz, "A Modifica-
tion Request Control System," Proceed ing 2nd International
Conference on Software Engineering , Los Angeles, 1976.

[22] Librarian User Reference Manual , Applied Data Research,
Princeton, New Jersey.

[23] I. Nassi and B. Schneiderman , "Flowchart Techniques for
Structured Programming," ACM Sigplan Notices , Vol. 8, 197 3.

[24] L.J. Osterweil and L.D. Fosdick, "DAVE- A Validation
Error Detection and Documentation System for FORTRAN Pro-
grams, " Software Practice and Experience , 6, 1976

.

[25] D.J. Panzl , "Automatic Software Test Drivers,"
Computer, 11,1978.

[26] R.L. Patrick, "A Checklist for System Design,"
Datamation , January, 1980.

[27] Program Problem Evaluator (PPE) Users Guide , Boole and
Babbage, #U-D503, Palo Alto, California.

[28] C.V. Ramamorthy and S.F. Ho, "Testing Large Software
with Automated Evaluation Systems," IEEE Transactions on
Software Engineering , Vol. SE-1 , 197 5.

[29] Resolve Users Manual , Boole and Babbage, Palo Alto,
Cal ifornia

.

-26-

[30] M.J. Rochkind, "The Source Code Control System," IEEE
Transactions on Software Engineering , Vol SE-1 , 4, 1975

.

[31] D.T. Ross and K.E. Schooman, "Structured Analysis for
Requirements Definition," IEEE Transactions on Software
Engineering , SE-3, January, 1977.

[32] SADT , The Softech Approach to System Development , So f-

tech, January, 1976.

[33] D.J. Schultz, "A Case Study in System Integration Using
the Build Approach," Proceedings ACM National Conference ,

1979.

[34] R.A. Snowden and P. Henderson, "The TOPD System for
Computer-aided System Development," Infotech
State- of- the-Art Report on Structured Analys is and Design ,

Infotech, Maidenhead, England, 1978.

[35] J.F. Stay, "HIPO and Integrated System Design," IBM
Systems Journal , 2,pp 143-154.

[36] S.A. Stephens and L.L. Tripp, "Requirements Expression
and Verification Aid," Proceedings 3 rd International
Conference on Software Engineering , Atlanta, 1978.

[37] L.G. Stucki , "New Directions in Automated Tools for Im-
proving Software Quality," in R. T. Yeh, Editor, Current
Trends in Programming Methodology , Vol. 2, Prentice-Hall,
Engelwood Cliffs, N.J., 1978.

[38] D. Teichroew and E.A.Hershey, "PSA/PSL: A Computer-
aided Technique for Structured Documentation and Analysis of
Information Processing Systems," IEEE Transactions on
Software Engineering , Vol. SE-3, 1, 1977.

[39] E. Yourdon, Structured Walkthroughs , Yourdon Inc., New
York, 197 7.

[40] E. Yourdon and L. Constantine, Structured Design ,

Prentice-Hall, Englewood Cliffs, N.J., 1979.

-27-

SOFTWARE ENVIRONMENT RESEARCH THE NEXT FIVE YEARS

Leon Osterweil

Participants

Lori Clarke, University of Massachusetts
Donald Good, University of Texas
Raymond Houghton, National Bureau of Standards
Thomas Love, ITT
Leon Osterweil, University of Colorado
Patricia Santoni, NOSC
Daniel Teichroew, University of Michigan
Athony Wasserman, UC-San Francisco

1.0 Philosophical Background

1.1 Nature of Software Environments.

In our early deliberations about how to design a five-year
research plan for studying software environments, it became
increasingly clear that we would have to address the central
question of what a software environment really is. We were
reticent to attempt a formal rigorous definition, believing that
this might lead to unproductive squabbling over wording, and also
that this research area is still too young and speculative to
lend itself to such formalism. Believing, nevertheless, that
this is a central issue, we opted to reach a consensus about the
nature of software environments through construction and
discussion of examples.

Our discussions of examples spanned the following software
scenarios to be supported by environments. This abbreviated list
is intended to be representative and is by no means exhaustive.

* A large group (500) of programmers is charged with the
maintenance of long lifecycle (10 years) software which
they, in general, have not written themselves. This group
needs (at least) tools to help study and analyze the code;
maintain version control over the code; and test and verify
changed code.

* A team of real-time programmers is in the early stages
of analysis and design for a distributed real-time
processing system. The team needs tools to facilitate the
process of understanding and agreeing upon the system
requirements, creating, adjusting and verifying the system

-28-

design, coordinating and controlling the system coding and
testing, and assisting in the process of altering system
code, design and/ or requirements whenever this is
indicated

.

* A management team is responsible for the software
production efforts of up to several dozen people, possibly
working on several different projects. The team needs to
make crucial resource allocation decisions in order to
assure timely and acceptable completion of the projects.
The team needs tools and mechanisms for obtaining
visibility into the activities and progress of the software
production personnel and projects.

* An independent team for quality control analysis is charged
with the responsibility of determining the presence or
absence of errors from finished software products in a
timely and cost-effective fashion. It needs a collection
of analysis and testing capabilities for proceeding in a
straightforward way to an identification of specific
errors, or for raising, in an orderly, systematic way,
its confidence in the absence of errors.

In each of these scenarios it is clear that individual tools
and aids do exist to facilitate the work, but that these tend to
be isolated, stand-alone tools capable of supporting only
isolated parts of the work to be done. What is needed, however,
are tool configurations to provide integrated, continuous
support. Hence, we came to agree that in a general, vague sense
an environment should be thought of as a software system which
attempts to redress the failings of individual software tools
through serendipitous integration.

It is necessary to elaborate on this statement by being more
specific about the nature of the "failings" of individual tools
and vs^at is meant by "serendipitous integration." Each of the
four scenarios just presented can be relatively easily described
by a word or phrase characterizing the nature of the underlying
software job to be done. Thus the first is a maintenance
scenario, the second a large-scale production scenario, the third
a management scenario, and the fourth a Quality Assurance (QA) or
Verification and Validation (V&V) scenario. An environment is
characterized and distinguished by the fact that its specific
mission is to help individuals and teams to perform their
software jobs more effectively. Insofar as a support system's
tools, interfaces and internal structures are integrated to
provide strong, comfortable, continuous support for a specific
job at hand, the system can be considered to be " serendipitously"
integrated to meet the needs of that job, and hence to be an
environment. Individual tools "fail" because their support,
although often strong, is usually only narrowly focused on
isolated aspects of a software job.

-29-

It now becomes clear that the task of creating effective
environments is elusive and difficult because it is tantamount
to understanding the nature of the fundamental software processes
themselves. A specific environment does not merit the name
unless it provides strong uniform support for the entire process
it is intended to facilitate. That is not possible until and
unless that process is fully appreciated and understood. Hence
in a fundamental sense, environment developnent seems destined to
progress more or less in parallel with our growing understanding
of software processes.

Presently we seem to be in a good position to make
substantial progress along these parallel lines. We have grasped
the critical importance of software developnent, maintenance,
management and quality assurance. We have begun to differentiate
between them and yet also to see their close interrelations. We
have constructed significant individual tool capabilities in
these areas and gained valuable experience (both good and bad)
with them. Partially through these experiences we have come to
better understand the underlying processes which are in need of
support. We have defined procedures and methodologies to guide
humans in these various software endeavors, and have begun to
gain experience with them. In summary, we seem poised to attempt
to meld together the most promising of our tools into systems of
support for our most promising methodologies in the key areas of
software production, management, maintenance, and V&V.

Although optimistic about current prospects for making
significant progress in this work, we were also struck by the
immensity of it. One of our group (Donald Good) advanced the
opinion that this work is at least as ambitious and difficult as
the problem of creating superior high level programming
languages. In terms of progress. Good believes we are at a very
preliminary stage corresponding to the period immediately prior
to the appearance of Fortran in the mid-1950 's. The analogy
seems quite apt. What lies ahead for us is a long period of
development and experimentation during which we must match
automated tools and problem expression media and notation with
developing understanding of underlying problem areas and emerging
solution methodologies. It seems clear that this matching
process will proceed through a sequence of successive
improvements in the form of a succession of environments, much as
high level language technology has improved through the creation
and evaluation of a succession of high level languages. It
seemed agreed, moreover, that the analog of Fortran, i.e. a
widely applicable and acceptable, general purpose environment,
has yet to appear.

It was also agreed that a vigorous effort towards the goal
of producing such an environment is clearly indicated.

-30-

1.2 Expected Benefits.

There was a diversity of opinions about the expected
benefits of such an environment. Improved software quality,
efficiency, manageability, and maintainability all were proposed,
but efforts to pinpoint the most overriding and crucial of these
bogged down. Here too, the high level language analogy seems
useful. It is difficult to determine even now, no less in 1950,
the greatest benefit of a high level language. Is it
readability, manageability, increased productivity or improved
quality? We finally agreed that high quality, general purpose
environments will offer ample quantities of all of these
benefits. Good suggested that these benefits would probably
accrue indirectly, because environments would relieve software
people of much drudgery, freeing them for proportionately more
creative and intellectual activity. Thus software solutions
would be more carefully thought out and arrived at after more
numerous and thorough iterations. There seemed to be good
agreement about this point.

Thus the group seemed generally agreed upon the obvious
desirability of such environments and was eager to press on to
discussions of how most effectively to pursue their creation.

It was agreed that this could be done most effectively when
guided by a considerable base of diverse knowledge, much of which
is currently unavailable. Hence the group next discussed the
problem of characterizing and categorizing the knowledge needed.

2.0 Overall Strategy for Our Research Plan

The knowledge base needed for the effective production of
general purpose software environments appears to be large and
diverse. Hence its accumulation should be guided as much as
possible by an overall plan. The purpose of this section is to
set up the framework within v^ich such a plan can be developed
and articulated.

We decided that the outlines of a research plan could
perhaps best be established by first identifying a set of
distinguishing characteristics of an environment. Towards this
end, we identified five characteristics which we believe a
support system must possess in large measure if it is to merit
the appellation "environment." In so doing, we are suggesting
that the proposed experimental research program be focused on
studying these five characteristics: their nature, their
achievabil ity, the ways in v^^ich they might possibly conflict
with each other, and eventually whether they are in fact actually
the critical characteristics. The five are:

-31-

1. Breadth of Scope and Applicability. An environment must
extend strong support to a software person or team across the
full range of aspects of the software job being done.

2. User Friendliness. An environment must provide strong,
direct, comfortable support. It must not oblige the user to
accommodate himsel f/hersel f to it, but rather it must accommodate
itself to the user. This accommodation must extend beyond the
usual items: clear diagnostics, fail-soft error recovery, clear
easy-to-use input languages, and HELP subsystems. The
environment must in addition provide direct, painless support for
the user in the actual procedures of his/her day-to-day work. It
must not oblige the user to adapt to or relearn a new way of
doing business.

3. Reusability of Internal Components. An environment must
be flexible in adjusting to different and changing user needs.
This flexibility can probably only be achieved by constructing
the environment out of tool fragments, rather than whole tools.
We strongly agreed that a collection of monolithic tools,
standing side-by-side under the umbrella of a common user
interface, is unlikely to be both flexible and efficient in
meeting the possibly unforeseen diversity of needs which users
may have. A comprehensive collection of easily reconfigur able
tool fragments would offer this flexibility with the potential
for efficiency as well.

4. Tight Integration of Capabilities. An environment's
capabilities must work closely with each other to provide the
user with a sense of continuously strong support. An environment
must support a user community in doing its work according to its
own procedures. Yet the environment itself is to be implemented
by a possibly small set of tool fragments to be configured and
reconfigured in response to the (possibly changing) requirements
of the end-user community. This poses the danger that the user
might be made uncomfortably aware of the fact that his/her needs
are being met by an amalgam of different tools and tool frag-
ments. This must be strenuously avoided, as it violates the
principle of User Friendliness. It can be naturally avoided by
assuring that the individual tools and fragments maintain an
awareness of the existence and capabilities of each other.
Through this awareness the tools, tool fragments, and integrating
software should avoid duplication of services and reports. The
tools and fragments must also be preconditioned to
uncomplainingly tolerate each other's quirks.

5. Use of a Central Information Repository. It was agreed
that it is quite reasonable to think of an environment as an
information utility. In an important sense, the purpose of an
environment is to assure that software workers can get the
information they need to do their jobs at the time the
information is needed. From this perspective, the purpose of an

-32-

environment' s tools is to capture such information, analyze and
process the information, and disseminate the information. Given
this view, we agreed that any environment should be actually
implemented along the lines of this model. At the center of the
environment must reside a data base of total information about
the software project. Surrounding this data base should be an
information management system whose job it is to access the data
base in response to requests made by the environment's tools,
tool fragments and (possibly) user interface components.

It is important to observe here that these five
characteristics are not represented to be orthogonal, nor is it
suggested that they capture the essence of what an environment
ought to be. Hence in that they overlap or conflict, that
overlapping or conflict presents a possible obstacle to the
eventual effective construction of general purpose environments,
and thereby suggests an important area of inquiry and research.
Some of these areas of apparent conflict will be identified and
discussed in some detail in subsequent sections.

3.0 What Must Be Learned from the Research Plan

This section considers each of the five distinguishing
characteristics of an environment. For each the nature and
importance of the characteristic is elaborated, with respect to
the subject of software environments. We then explain the
central questions which must be explored in order for true
general purpose software environments to become realities.

3.1 Breadth of scope and applicability.

The central issue here is the need to determine just how
broad and encompassing an environment can reasonably be expected
to be. One member of our group observed, only half in jest,
"there must be something like 2 raised to 10 to the 6th different
environments," that might be built. These differ from each other
along a multitude of coordinates which one might use for
categorization, and, indeed, in the coordinates which are
appropriate

.

The representative list of examples of support systems,
given in the first section of this report, begins to indicate
this diversity. That list indicated that it is reasonable to
consider building environments to support software development,
maintenance, verification, testing and management. Other
software activities worth considering are documentation and
distribution

.

Within each of these activities there is considerable
diversity in what might be supported. For example a software
production environment might have to support any particular

-33-

software lifecycle model or concept. Thus it might encompass
some or all of: requirement analysis, preliminary
(architectural) design, detailed (algorithmic) design, and
coding. It would presumably also support some level of testing,
analysis and verification. This support might be applicable only
to the output of the coding phase or to any or all other phases.
The environment would have to generate reports, summaries and
analyses upon which to base the various reviews called for by the
lifecycle model as well. Similar broad variation should be
expected among all support systems which might be considered
environments for facilitating the various other software jobs.

More variation must be expected as a result of differences
in source languages. A verification or maintenance environment
for COBOL programs must of necessity be different from one for
LISP programs. There is a certain amount of obvious truth to
that statement. The issues can become much deeper, however, when
one considers the remarkable range of programming languages and
the attendant effects they have on support environments. A
language such as LISP is different from COBOL or FORTRAN in some
very fundamental ways. Some of these differences make it
possible, indeed natural, to edit, test and analyze LISP programs
in elegant and powerful ways which would be impossible for a
language like COBOL. The INTERLISP system, for example, [7]
exploits this, giving a tangible example of the profound impact
that a language can have on its support environment.

In a similar way, we noted that an environment to support
EL-1 [2] program production would have certain fundamental
differences from environments for most other contemporary
languages. El-1 supports the design phase, as well as the coding
phase, of software development. Hence testing and certain
verification procedures can and should be applied uniformly to
designs and code in an EL-1 development environment (as is
currently being done [3]). The close confederation of these
phases, on the other hand, makes it more difficult to separate
and identify progress on these phases. This could complicate
matters in the creation of an EL-1 management environment.

Different application areas must inevitably also lead to
differences in the environments needed to support them. For
example, FORTRAN might be used to create a numerical software
library or a spacecraft control system. In the former case there
would typically be little or no formal requirements analysis and
preliminary design. This appears to be due to the maturity of
the problem area and the suitability of mathematics as a
requirements and design notation. In the latter case there would
be extensive amounts of requirements and design creation,
analysis, review and reporting. Clearly the environment's
support mechanisms would have to vary similarly. The latter
problem area is also generally considered to be of more critical
importance than the former, as errors have the clear potential

-34-

for causing loss of life and property. Thus a testing and
verification environment for spacecraft control would of
necessity include costly verifiers and simulators which would
probably be inappropriate in a numerical software testing and
verification environment. Indeed, because spacecraft control
software is concurrent, tools for testing, analyzing and
verifying the concurrent behavior of this software would be
essential here, but of no value for the numerical library.
Different problem areas also mandate the need for differences in
security mechanisms, version controls, and customer reporting in
environments supporting these problem areas.

A project's size can also have an important impact on the
support environment for that project. Here the primary effect
seems to be the need for better and more effective communication
and control as project size grows. The communication needs of a
2-3 person project are obviously far more modest than the needs
for a 100-person project, involving 2-3 levels of management. In
the larger project there are also needs for privacy and
configuration management and control which are either absent or
sharply reduced in a small project environment.

Having thus established that there is a need for an enormous
number of different environments we are now left with the
question of how to supply them all.

Some questions which seem worth exploring as vehicles for
elucidating this overriding question include the following:

* Under what circumstances, if any, is it reasonable to
synthesize larger, more encompassing environments out of smaller
ones?

* Along what degrees of freedom (if any) can we expect to
transform one environment for use in meeting a related set of
needs. (e.g. it seems reasonable to build tool modules which
could be altered to change a PL/I production environment to a
FORTRAN production environment. What other sorts of alterations
can we expect to be able to make?)

* What sorts and amounts of methodological change in a using
project can be comfortably supported and adapated to by a support
environment?

Although a certain amount of this inquiry seems self-
contained, the answers to these questions must certainly come, at
least in part, out of the research into the other four
characteristics of an environment, to be described next.

-35-

3.2 User Friendl iness

.

As noted earlier in this report, an environment must
present its repertoire of support capabilities to its users in as
supportive, unobtrusive and non- inter fering a way as possible.
There are a few ramifications of this basic requirement that bear
elaboration. Most fundamentally, the underlying tool
capabilities must be robust enough to survive user abuse
(intentional or inadvertent) , communicative enough to both
explain errors in use and instruct in proper use, and liberal
enough to both accept user input and produce user output in a
form and language close to the form and language of the software
activity being supported. Individual software tools invariably
suffer disuse and distrust for lack of one or more of these
essential characteristics. Hence it is all the more important
that constituent tool capabilities all be robust, communicative
and colloquial.

User friendliness in an environment, however, entails more
than just assuring the friendliness of individual tools. In
addition the accessibility and usability of the entire package of
tools must also be assured. Thus, for example, there must be
adequate mechanisms for acquainting the user with the range of
capabilities available for guiding him/her to the selection of
appropriate capabilities. This need to keep an accurate catalog
of available capabilities seems clear. What is less clear is
whether the catalog should be used as a basis for attempting to
reduce duplication of capabilities. Experience suggests that a
sort of Software Darwinism tends to cause better capabilities to
automatically supplant weaker capabilities without the need for
external enforcement. On the other hand, overly large, confusing
ensembles of tools can present an intimidating hostile appearance
to the user that could discourage the use of an environment.

It was agreed that, regardless of the size or sophistication
of any tool cataloging or indexing scheme, it is, nevertheless,
essential that the scheme, and the underlying capabilities
themselves, be able to communicate with the user in a way with
which the user is familiar and comfortable. The central issue
here is that the purpose of an environment is to support the user
in performing his/her job. This communication between the user
and the environment must be in the terminology of the user's job
setting. Support capabilities extended must furthermore directly
support the methodologies and institutions of the user's job
setting, rather than forcing the user to alter his/her way of
doing or thinking about his/her work in order to use the
environment capabilities.

In some sense what is being described here is not simply
friendliness to the user, but rather friendliness to the user's
way of doing work. This appears to be more easily demanded than
furnished. As already observed, if we are to be saved from

-36-

having to recreate every support system and environment from
scratch/ it will be necessary to configure environments as much
as possible from standard modular capabilities. We now recognize
that this configuration must be done in such a way as to directly
support the user' s way of getting his/her job done, no matter
what that may be. The user's procedures should, in addition, be
expected to change with time. The support environment must
likewise change accordingly while remaining supportive and
friendly to the new procedures. This appears to require the use
of extremely flexible, robust, and compatible modular
capabilities. It will be necessary to determine whether it is
reasonable to expect to be able to build such modules which,
nevertheless, display acceptable efficiency characteristics.

Finally, the group explored the issue of whether artifical
intelligence and human factors research might be applicable to
investigations of user friendliness in environments. The group
seemed agreed on this in principle, but considered at length only
the narrower issue of whether computer graphics might prove
useful in helping to achieve friendly user interfaces. It was
agreed that graphics should be expected to be particularly useful
v^en the problem area and/ or its procedures could be naturally
captured pictorially. Thus, for example, a software management
environment would presumably profit from being able to
communicate with its users by way of management procedure
diagrams, time and effort graphs, PERT charts, and specimen
report forms. Similarly a requirements or design creation aid
within a software developnent environment would presumably profit
from being able to directly display the pictorial specifications
which are the natural form of SAMM [5], SADT [6] or RSL [1]
specifications

.

It was less clear v^ether the use of graphics would be of
much help in environments supporting communities where pictorial
forms of communication are not already in use. In addition it
was suggested that the expense of elaborate graphics systems such
as those featuring color and motion will probably only rarely be
j ustified

.

3.3 Reusability of Implementation Modules.

Earlier sections of this report have already discussed the
apparent need for an environment to be constructed out of small
flexibly rearrangeable modules or tool fragments. This appears
to be perhaps the only way in which we can expect to construct a
number of different environments without having to build each
from scratch. It appears to be as basic an idea as the
manufacturing notion of building and maintaining a product line
(e.g. automobiles, TV sets, appliances) out of a modest set of
standard parts and subassemblies. We have also already observed
that this notion appears at first glance to complicate efforts at
making environments user-procedure- friendly . That goal seems to

-37-

require the total concealment of the identities and
characteristics of the implementation modules, and their smooth
welding into a support system patterned closely after the user'

s

own procedures. This appeared to place very heavy demands on the
flexibility and interchangeabil ity of these modules, suggesting
perhaps that they must each be very narrow in scope if this goal
is to be attainable.

The foregoing discussions lead one to believe that the
"Internal Reusability" characteristic might not be so much an
independent characteristic of environments as, perhaps, a
derivative of other characteristics.

Be this considered a derived or independent environment
characteristic, there appears to be no doubt that investigation
of the feasibility of building environments out of small tool
fragments is one of the most pressingly important research areas
for the near term. Certainly if experience does not show that
significant families of tool fragments can be assembled and found
to be highly flexible, broadly applicable, yet acceptably
efficient, then it will be necessary to drastically revise our
thinking about the practicality of creating a diversity of user-
friendly software environments at bearable cost.

We had little difficulty identifying potentially useful tool
fragments for use in certain places of some environments. For
example, a parser seems to be a good example of a useful tool
fragment, as a number of tool capabilities rely upon a facility
for creating a token string or parse tree. Thus a single parser
would be used by a variety of subsequent tool fragments for doing
such things as prettypr inting , error checking, static analysis,
or compiling.

The parser would perhaps be coupled with various of these
subsequent tool fragments in different environments and at
different times. A parser is a particularly good example of a
tool fragment, because parsers can be automatically created by
parser generators, and hence very readily altered as well, for
example, to meet changing needs for different languages and
dialects. Hence here is an example of a tool fragment creation
mechanism which is very flexible in creating a powerful,
reasonably efficient, widely applicable tool component.

This example is encouraging, and it serves to stimulate us
to look further for other such tool fragments. It was also
proposed that a set of general purpose static analysis modules
would constitute a good tool fragment. These modules would
implement a small number of widely applicable data flow analysis
algorithms, operating only on annotated representations of
program data flow. These representations would be created by
other tool fragments as abstractions of the original program.
Hence the data flow analysis fragment would have little knowledge

-38-

of extraneous source language detail. Research is showing that a
small, well chosen set of data flow algorithms can be useful in
error detection, verification, and optimization across a very
broad family of source languages. Research also appears to
indicate that a concise pseudo- language notation can be used to
effectively direct the automatic configuration of the algorithms
into the various specific error scanners and verifiers that might
be needed in different environments or as the needs of a given
environment evolve.

Promising as these examples seem, there was nevertheless a
feeling that they are rather isolated examples. Our group was
pessimistic about the existence of similar tool fragments to be
used in building such important environment components as user
interfaces, management reports, generalized editors and graphics
packages. It was agreed that such fragments can probably be
built, but that they will have to be the products of research and
experimentation still to come.

We also agreed that the need for tool fragments to maintain
a central data base was perhaps the most pressing need of all.
There was some sentiment that acceptable fragments of this sort
already exist. Another point of view held that these existing
information management system capabilities might prove to be too
inefficient to be an acceptable part of a full environment. It
was held that the full range of requirements placed on an
information management system by an environment were not yet
known and must be determined in order to enable definitive study
of this crucial area.

3.4 Tight Integration of Tool Capabilities.

We also agreed that a true environment is characterized by
the close interaction and cooperation of its constituent
capabilities. This issue has already been touched upon in
discussing the ramifications of the term "user friendly." In that
discussion we stressed that user friendliness specifically
implies friendliness to the way in which the user does his/her
job. Thus tool capabilities must be merged into a system
offering smooth continuous support for the user in the
performance of his/her actual work procedures. Clearly this
requires at least the appearance that the constituent tool
capabilities are working closely together. We felt, moreover,
that in a true environment this close cooperation among
capabilities must be actual, not simply apparent.

We believe that in a smoothly functioning environment it
will be important for the tool capabilities to be aware of each
other. Thus tools should facilitate each other's work by pre-
and post- processing data structures for each other. Tools
should also be careful not to duplicate services and messages to
the user. In these ways the efficiency and overall appeal of the

-39-

environment to the user are assured. Interlisp was prominently
mentioned as an example of a support system whose constituent
capabilities are very tightly integrated both in fact and
appearance, to yield a very appealing system.

We have already discussed the fact that the need for tight
integration appears to pose a direct conflict with the need to
construct environments out of flexible, general, reconfigurable
modules (tool fragments). It seems clear that if the tool
fragments are too general and reconfigurable , then they cannot
exploit any significant knowledge of each other's workings —
on 1 y each other's interfaces. Thus it seems close integration
can only be projected as an illusion by such components as the
IMS or user interface.

Before resigning ourselves to the inherent irreconcilability
of these two characteristics, however, it seems useful to study
the Interlisp example. One important motivation cited for
needing to build environments out of tool fragments was the need
to alter environments to fit a range of (probably evolving) user
procedures. We find, however, that Interlisp seems to be able to
accommodate itself to a range of (changing) user modes. Thus
apparently this can be accomplished with tightly coordinated tool
capabilities.

It was argued that Interlisp is still rather narrow in its
range of support and user community, thus probably not qualifying
as a true environment, and that it is only this restriction in
scope that enables it to be both flexible and tightly integrated.
The discourse then lapsed into conjecture, culminating eventually
in good agreement that much could probably be learned by studying
Interlisp and attempting to extrapolate from this example.

3.5 Use of a Central Data Base.

The final, and perhaps most important, characteristic of an
environment is that it be coordinated and focussed by access to a
central repository of information. It was generally agreed that
a software project is profitably thought of as being a
coordinated effort to gain and disseminate a highly structured
body of knowledge about a problem and its solution. That being
the case, the progress of the project will be best assured and
facilitated by capturing, structuring and disseminating that body
of knowledge as faithfully and effectively as possible. These
considerations seem to clearly imply the use of a data base and
encompassing information management system as the centerpiece of
any environment.

It was agreed that by taking this approach the effective
diffusion of knowledge to all project personnel would be
facilitated. This certainly does not imply the giving of all
pieces of knowledge tp all people. Quite to the contrary.

-40-

effective diffusion of knowledge means purveying to each person
precisely that information v^ich he/she needs to accomplish his/
her job at any given time. This would be accomplished by using
the environment's tools to access the data base for specific data
in response to needs as expressed to the tools by users. Tool
capabilities might simply search the data base for needed
information, might report back combinations of data or data
aggregates, might update the data base in response to user input,
or might augment the data base with the outcomes of analyses of
data base contents as requested implicitly or explicitly by
environment users. In all cases the outcome would be an up-to-
date, immediately, centrally accessible body of complete project
information, whose access would be facilitated by the powerful
tools of the environment.

This highly attractive picture seems to us to be marred by
serious questions of procedure and practicality. The most
immediate questions seemed to us to be questions of what should
go into the data base and how it should be organized. The
immediate and obvious answer, that "...everything should go into
the data base...", was rapidly shown to be inadequate. After
discussion and, once again, consideration of examples, it became
apparent that there were widely different opinions of what was
meant by "everything." For example some people believed that a
software production environment should preserve in an archive all
obsolete version of code, all discarded designs, even all of the
sketches and jottings produced during early problem formulation
and conceptualization. Others objected to this, stressing the
lack of utility and inevitable large-scale waste of resources
inherent in this approach.

A resolution of this discussion appeared to come out of a
subsequent discussion of the structure and organization of the
data base. Here it was proposed (by D. Teichroew) and widely
agreed that the data base must be organized as a model of the
software activity being supported. In this approach the users,
processes, data items, data flows and procedures of the soft-
ware activity and setting are modeled and represented as
entities; attributes are relations in a data base, managed by
an information management system. Thus the data needed by an
individual in the performance of his/her work is readily
available because it is organizationally grouped together within
the data base as the attributes and relations of a small set of
entities. The need for analyses and reports can be semi-
automatical ly identified and satisfied as the result of
recognizing when entities, attributes, and relations within the
data base have no current values. Tools could be invoked
(manually or automatically) to supply these values.

Another important concern which was expressed was that we
determine v^at procedures are necessary to insure the correctness
and consistency of the data base, especially in the face of the

-41-

continual changes to v^ich it will be subjected. The magnitude
of this problem is perhaps most graphically illustrated by
considering the impact on a highly structured software
development data base of such an apparently small change as
altering a single line of program text. In particular, if this
source line is in a declaration statement, then its alteration
might render invalid parts or all of such related data base
denizens as the token string, parse tree, flow graph, and
diagnostic reports. For each change, all possibly impacted data
base objects must be known, then analyzed, then perhaps purged or
altered. The potential cost of such activities is intimidating.
Yet the necessity of these activities is undeniable. It may very
well be that consideration of the need and cost to do this sort
of updating will be a key factor in determining the size and
complexity of data bases for support environments.

4.0 A Five-Year Research Plan

The purpose of this section is to sketch the outlines of a
plan for conducting a research program aimed at providing
substantive answers to the questions posed in the previous
section. The plan was arrived at after careful consideration of
both the knowledge needs, as just described, and the current
state of the experience and expertise of the research community.
It was noted that most of the learning needed is empirical and
pragmatic in nature. A great deal of qualitative experience and
quantitative statistics must be accumulated. Further it was noted
that a number of researchers are currently poised to begin
experimentation aimed at accumulating some of the needed
knowledge. Thus, we concluded that it would be most effective
for these and other researchers to embark upon a program of
experimental work which is guided, at least in a general way,
towards the objectives which we have agreed upon as being
desirable

.

Accordingly, our plan essentially maps out a program of
experimentation, having two separate thrusts. The first
experimental thrust, intended to commence immediately, calls for
the development of prototype support systems, each of which is
intended to provide some specific insights into environment
characteristics, as well as experience with moderate scale tool
integration

.

The second experimental thrust, not intended to begin for
three years or more, will use the experience gained to attempt
the synthesis of some full scale general purpose environments.

The studies of prototype systems during the first thrust
should each be aimed at learning about one or more of the five
stated characteristics of an environment and their interplays and

-42-

relationships. It seems to us that the research community is
currently in a position to learn a great deal by studying
existing support systems and frameworks and also by building a
variety of new, small to moderate scale support systems. The
study of existing systems is a particularly logical step in that
it should provide insights into effective integration strategies
as well as answers to questions in some of the five previously
described areas. Such studies should also make clear the areas
in v^ich more learning is most needed and in which this can be
accomplished through new system construction. Thus clearly, this
system construction should be done in such a way as to elucidate
as many of the outstanding critical questions as possible.
Clearly it is possible now to gain a considerable number of
important insights into such questions as:

* How to structure and maintain environment data bases?

* Upon what sorts of tool fragments might environments be built?

* What are some specific tradeoffs between flexibility and tight
integration of tools?

* What are reasonable uses of graphics in user interfaces?

Following shortly are some suggestions for research projects
aimed at providing insights into some of these and related
questions. These suggestions are intended to be taken as
examples rather than mandates.

It is expected that as this line of experimental research
proceeds, the level of tool integration will increase, forming
the basis for the second research thrust -- namely large scale
integration of tools into general purpose environments. This
thrust, though properly based upon the first thrust, is expected
to have a different character, focusing mainly on the issue of
breadth of scope. It is expected that this line of
experimentation will draw upon all previous experience and
learning, in attempting to determine the reasonable limits of
tool integration. We will certainly find that it is unreasonable
to construct an environment so powerful and encompassing as to
meet the changing needs of all people at all times. We expect to
learn, however, the limits which ought to be placed on the
generality and scope of general purpose environments, as well as
the techniques which are helpful in achieving large scale tool
integration

.

Our group seemed agreed that it is important to delay this
thrust for 3-5 years, rather than initiate it immediately. There
currently seem to be so many important gaps in our knowledge in
critical areas, that this sort of enterprise seems inordinately
risky. It was felt that any research activity, initiated now,
and aimed at such large scale tool integration would rapidly bog

-43-

down amidst the crossfire of the critical unresolved questions
which we previously described.

4.1 Experiments in Building Prototype Sytems.

1. Studies of Existing Successful Support Systems.

We believe that a wide variety of useful insights can be
gotten by close examination of the slowly growing number of
successful support systems currently in use. Interlisp and EL-1,
already mentioned, are two examples of successful developnent
support systems which currently exist. The UNIX TM [4] operating
system, along with its elaborate set of existing coordinated
tools, seems to be a good basis for the construction of a variety
of other support systems.

We believe it would be quite profitable to study these
examples in an attempt to determine what makes them successful.
It would be most useful, for example, to study their user
interfaces to see which characteristics seem to make interfaces
popular and useful. It would be helpful to determine, for
example, what levels of HELP (tutorial) systems, graphics
support, and directory assistance seem minimally necessary to
insure utility and popularity in these systems. By studying a
variety of support systems, we should furthermore be able to gain
insight into v^ich features are generally useful, and which are
perhaps desirable only for limited classes of users.

Another important type of understanding, obtainable by such
studies of examples, is an understanding of the importance of
tight coupling of tools. It is maintained that the popularity of
Interlisp and EL-1 derive directly and inherently from the
specialization of their support tools to a single subject
language. UNIX base support systems, on the other hand, are
constructed from capabilities which, in general, themselves
have no special language knowledge. Study of these examples can
and must help us to come to an understanding of the extent to
v^hich language knowledge in tools is important. Study of
examples and basic tool building research must then enable us to
formulate notions of how language- intel 1 igent tools and tool
fragments can be efficiently created from a base of more general
tools and techniques.

Study of these existing systems should also help us
to better understand the data base/lMS requirements for
environments. Each of these existing support systems seems to
maintain to some degree of rigor and formality a central
information base. The success of the various strategies in
meeting user needs can surely be studied. In particular it would
be important to study the type and amount of information
retained, and the acceptability of these retainment policies to
users.

-44-

Each support system has also adopted, apparently only
implicitly, some model of its users and their activities. It
would be interesting to formalize those models. From such
formalizations could, for example, be determined the breadth of
support extended by each system. User surveys could help
determine the uniformity and strength of such support. This
would help determine the ranges of applicability which are
feasible for current support systems.

The models would also enable a determination of the
flexibility currently offered by such systems. It has been
hypothesized that environments must accommodate themselves to
their users' way of getting their jobs done, not vice versa. It
is important to determine v\tiether current support systems do
this. If not, it is important to determine whether this lack of
flexibility is a significant source of dissatisfaction. It would
also be important to decide if any such lack of flexibility is an
essential consequence of tight integration, or v^ether perhaps
better tool fragments could be used to achieve both tight
integration and flexibility.

The list of things which should be studied in existing
support systems could go on indefinitely. Perhaps it is best to
close simply by observing that much experimental work can be
carried out on currently existing support systems. This work
should be used to guide the creation of new experimental systems
in the direction of systems which can provide elaborative, rather
than duplicative, insights and understanding.

2. Tool Fragment Studies.

This would be an experimental program aimed at identifying
useful sets of tool fragments, and the extent to which they can
support tight integration in the desired tool capabilities.

The experimentation would begin with the designation and
assembly of a reasonable set of fragments to meet the needs of a
specific, sharply circumscribed software activity. For example
lexer, parser, flowgraph generator, verification condition
generator, theorem prover, data flow analyzer, and test probe
inserter fragments might be designated as the fragments necessary
to provide total comfortable support for the verification and
testing activity. An actual verification and testing procedure
would then be hypothesized in formal detail. The selected tool
fragments would be configured and integrated to support this
activity. The experimental program would be continued by
attempting to reconfigure the tool fragments in response to a
variety of changes, such as changes in the testing and
verification procedures to be supported, change in the source
language, and change in the user community (e.g. the addition of
managers as observers of the activity)

.

-45-

In the process of adapting to these changes, the tool
fragments will be altered to provide needed flexibility, or
perhaps the need for new or different sets of tool fragments will
be recognized. In an important sense, this line of study is
aimed at starting to understand what, if any, analogy exists in
software production, to the manufacturing concepts of
interchangeable parts and assembly line production. As in
manufacturing, it is expected we will discover that the utility
of these notions is not uniform. That is to say, we expect to
find that useful sets of tool fragments can be successfully
produced to form the basis for construction of some types of
software environments, but perhaps not all. Thus experimentation
with a wide variety of tool fragment sets seems indicated.

3. Data Base Studies.

This would be an experimental program aimed at determining
ways in v^ich informational bases for environments can be
adequately stored, accessed and maintained. Following our
conjecture that data bases for environments should be structured
in accordance with models of the software jobs supported, this
research project would begin by creating precise detailed models
of various software jobs. This activity would be useful in
itself as such models are extremely rare or nonexistent. From
these models, data base schema would be designed and information
management systems either built, adapted or simulated. The
important experimentation would then entail the actual or
simulated use of these data base /iMS's to determine the true
performance requirements on them.

What must be determined are the sorts of demands which
typical usage places on support system data bases and IMS's.
Hence, for example, at first simulated streams of user requests
should be directed towards the support system data base/lMS.
(With the passage of time other research activities, such as the
one described previously, should result in the creation of actual
support system prototypes. These might be used to capture actual
streams of user requests) . Measurement probes, inserted in the
IMS could then determine the searching, updating and deleting
operations implied by these requests, and the required rates at
which these operations must be performed. These measurements are
needed in order to enable data base implementors to design schema
which will facilitate efficient data base operations in support
of expected user request sequences.

This sort of experimentation should help provide answers to
the question of how much information the data base should store.
Clearly information storage becomes excessive when it
significantly hinders frequently occurring searching and/ or
updating operations. Actual measurements taken on a variety of
simulated support systems should elucidate these issues.
Presumably different types of support systems will be found to be

-46-

amenable to the maintenance of different amounts of archival
storage. This experimentation might also suggest useful
hierarchical storage schemes.

From our discoveries about what constitutes excessively
large data bases should flow a variety of useful derivative
information. We should find out, for example, whether very broad
scope environments do or do not place excessive demands on the
data base and IMS ' s that must support them. We would find
environments in which the rate of updating is sufficiently low to
make the storage of redundant and derived information acceptable
or even profitable. We should also be able to identify and
perhaps characterize environments in which the storing of
redundant information is impractical because of frequently
occurring changes.

It is expected that this line of research might well serve
as a stimulus for data base and IMS research, as we suspect that
currently available technology will be found to be unsatisfactory
in meeting the needs of environment data bases and IMS ' s

.

4.2 General-Purpose Software Environments.

1. Construction of a General Purpose Environment to a Given Set
of Specifications.

The purpose of this activity would be to actually construct
a general-purpose software environment. It is assumed that this
activity will not commence until after at least three years'
experimental implementation, aimed at least partially, towards
this goal. Hence this effort will build upon a base of successes
in significant tool integration, in understanding the ingredients
of a viable user interface, and in identifying software
activities well enough understood and supported to be subjects
for broad, strong, uniform support by tools. The totality of
such experience should place active workers in the field in a
position to clearly specify a general area of software activity
and how it is to be supported by a software environment. An
example of what seems achievable in this time frame might be an
environment to support the needs of a medium sized team in at
least coding and design of batch processing software written in a
small set of closely related language dialects.

It should be stressed that this goal is not likely to be
satisfactorily achieved without an experimental learning
process such as was previously described. Starting from such a

knowledge base, however, the goal of successfully producing
environments of this scope seems reasonable. A program of
continued experimentation and developnent should continue to
broaden the scope of the environments produced, within bounds
which should become more clearly understood as our ambitions

-47-

grow.

2. An Experimental Test Bed for Configuring Environments

A far more ambitious and wide-ranging activity would be the
assembling of a very wide assortment of tools and tool fragments
with the goal of trying to configure them into a variety of
environments. This activity would differ essentially from the
previously described activity. It would not be directed towards
the creation of single environments based upon the best products
of earlier experimentation. Instead it would be directed at
determining the range of environments producible from a fixed set
of capabilities, and at evaluating the strengths and weaknesses
of competing tools and tool fragments in the overall context of
usage in a general environment. In a sense this is tantamount to
a laboratory for environmental experimentation, and the activity
supported, a forerunner of environmental engineering.

This sort of endeavor seems to entail greater risk, as we
currently have a little experience in integrating software on so
large a scale. Thus we currently have no basis for believing
that such large sets of tools can be readily reconfigured to
allow for the rapid construction of alternative environments
which would be necessary for comparative evaluation. Perhaps the
most realistic appraisal of this activity is that it is destined,
at least within the next five years to be done by a free
marketplace, rather than in a central facility.

References

[1] T.E. Bell, D.C. Bixler, and M.E. Dyer, "An Extendable
Approach to Computer-Aided Software Requirements Engineer-
ing," IEEE Transactions on Software Engineering , SE-3, pp.
49-60, (January 1977).

[2] "ECL Programmer's Manual," Center for Research in Com-
puting Technology, Harvard University, TR 23-74, 1974.

[3] E . Ploedereder , "Symbolic Evaluation of User-Defined
Procedures in ELI, " Center for Research in Computing Tech-
nology, Harvard University, TR 01-79, 1979.

[4] D.M. Ritchie and K. Thompson, "The UNIX Time-Sharing
System, Commun ications of the ACM, 17, pp. 365-375, (July
1974).

[5] S.A.Stephens and L.L. Tripp, "Requirements Expression
and Verification Aid," Proceedings of the Third
International Conference on Software Engineering , IEEE Cat.
#78CH1317-7C.

-48-

[6] D. T. Ross and K.E. Schoman, Jr., "Structured Analysis
for Requirements Definition," IEEE Transactions on Software
Engineering , SE-3, pp. 6-15, (January 1977).

[7] W. Teitel, et al . Interlisp Reference Manual , Xerox
Palo Alto Research Center, September 1978.

-49-

ADVANCED DEVELOPMENT SUPPORT SYSTEMS

Thomas Standish

Participants
Robert Balzer, Information Sciences Institute
David Bar stow, Schlumberger-Doll
Meera Blattner, Lawrence Livermore Labs
Martha Branstad, National Bureau of Standards
John Buxton, University of Warwick
Adele Goldberg, Xerox Pare
Robert Morris, Bell Labs
Stephen Squires, National Security Agency
Thomas Standish, UC-Irvine

1.0 Introduction

The purpose of the Final Report of the Working Group is
threefold: (1) to provide an overview of the technical area
addressed by the Working Group, (2) to summarize the group's
discussions at the Workshop, and (3) to state the conclusions
reached by the Group.

The specific technical area that our Working Group was
asked to address was "Advanced Developanent Support Systems." We
were asked to consider deliberately a long-range time frame.
Specifically, we assumed throughout our discussion that the
programming environments we were considering were intended for
use a decade or more in the future.

Our discussions were wide-ranging, technically advanced, and
very lively. They were catalyzed by a creative ferment that
arose from the juxtaposition of the views of the practitioners
and advanced thinkers.

During the first session of the Working Group, the
participants examined two possibilities for the agenda that it
would follow.

The first possibility was to decide on the characteristics
of the user "setting" to be addressed by Advanced Development
Support Systems and then to address a range of issue areas
pertaining to that chosen user setting, such as software quality,
the software lifecycle, software management support, program
development tools, database properties, documentation, user
interfaces, and maintenance. The rationale for adopting this
approach was a recognition that programming environments are
engineered artifacts built to suit given purposes and that
variation in the purposes for which they are built can lead to

-50-

variation in the technologies that are appropriate. Thus, it was
viewed as important first to settle on the characteristics of the
user setting with regard to such choices as single-user versus
multiple users, production use or experimental use, long
maintenance lifetimes versus short maintenance lifetimes, and so
forth. Following the selection of an agreed-upon set of
characteristics for the setting, it was thought to be profitable
to examine the technical approaches appropriate to the given
setting from a number of different vantage points, and then to
attempt to synthesize the results.

The second possibility we examined for our agenda was to
adopt a three-step "top-down" approach. The three steps are as
follows: (1) Attempt to portray how software in the future might
be different from software as we know it today; (2) Address the
question of what software quality properties the programming
environments we are building should incorporate; and (3) Attempt
to characterize technical approaches, tools, and environment
designs that will help produce software in the form identified in
the answer to (1) and having the software qualities identified in
the answer to (2). The rationale for this approach was that it
could lead to a unifying, general view of the characteristics
needed for general purpose Advanced Development Support Systems.
If one believes, as did some of the participants, that software
as we know it today will cease to exist, and that new forms of
machine-based software will replace it, then it makes sense to
adopt the "top-down" approach.

The Working Group decided to adopt the "top-down" approach
instead of the "setting-driven" approach, and its deliberations
followed the three steps outlined in the preceding paragraph.

The structure of this Final Report is influenced by the
Group's choice of the "top-down" approach in the following sense.
In the first three of the following sections of the Report, we
cover the agenda items in the chronological order that they were
discussed by our Group, namely: (1) What will software be like
in the future?, (2) What is software quality?, and (3) What are
the issue areas that need to be addressed in achieving software
quality in Advanced Development Support Systems?

In addition to touching on a wide range of issues, the
Working Group produced two views of future programming
environments. These views are presented in the fourth section
and serve as a basis for further analysis and discussion.

In the fifth section, we present research topics we feel
need to be investigated in connection with the two views.

In the sixth section, a brief discussion is given of some of
the individual reactions to the future views presented in the
fourth section. When a first draft of this Final Report was

-51-

circulated, the Working Group members commented in strikingly
diverse ways, and this commentary, in effect, continued the work
of the Working Group. The written reviews of the first draft
thus became a source of material for the analysis and comparison
given in the fifth section.

In the final section, we state what we believe to be some
consensus conclusions achieved by the Group as a whole.

2.0 What will software be like in the future?

If our vision of software is too much rooted in the present
and insufficiently cognizant of likely future trends, we face the
danger of presenting views of the future that will be
technologically obsolete.

It is important, therefore, to attempt realistic predictions
about how the characteristics of computer software might change
in the early 1990s in response to likely changes driven by two
strong forces: (1) increased emphasis on software quality
considerations, and (2) dramatically altered economic conditions
for computing.

Another force that may play a large role in shaping the
nature of future software is the emergence of practical,
knowledge-based , intelligent systems to assist programmers and
managers in the task of building computer systems. Though our
approach to this is a bit more speculative than our approach to
the likelihood of changed economic conditions, no vision of
future programming environments can be judged to have been
carefully considered in the absence of examination of the
possible contributions of intelligent, mechanical programming
assistance as an integral feature of future programming
environments

.

Regarding the influence of software quality considerations,
we foresee increased emphasis in some important future settings
on software quality assurance disciplines. Since improvement in
software quality is a driving force behind the emergence of
improved programming environments, we predict the emergence of
better supporting tools and methodologies that are aimed at
software quality assurance. It is likely that environments used
in production settings will continue to adopt increasingly more
powerful supporting methodologies and tools yielding improved
engineering practice in response to the demand for improved
software quality.

We predict improvements in software measurement techniques
and in techniques for estimating software production costs and
resource consumption. We foresee improvements, also, in
management disciplines, communication disciplines (including

-52-

documentation), and individual programming disciplines as the
production engineering aspects of software science become better
known, better validated, and more widely diffused in practice.
We envisage that future programming environments will become
highly- integrated and sophisticated in their response to these
driving influences, and that special tools and techniques, such
as the use of rapid prototyping methodologies will emerge.

Conservative estimates of the impact of the new VLSI
technology indicate that in the not too distant future, we may
have fast, cheap chip computers of substantial memory capacity
sitting on our desktops. The need for communication and
cooperative programming and the non-declining cost of peripherals
will likely create the perception that it is sensible to arrange
these desktop computers into networks that share expensive
peripherals and common databases. Furthermore, the
interconnection bandwidth in such local computer networks will
likely be sufficient to support message communication and program
and data transfer at very reasonable rates.

We view it as likely that such computing arrangements will
improve substantially the computing power available to individual
programmers and managers in comparison to that available in
current time- sharing or batch processing environments, and our
deliberations were conditioned by a consciousness that the nature
of practical software might well shift, if the economics of
computing were to shift, say, in the direction of making it
practical to record substantial volumes of design decisions and
design rationale, or to change the power and size of the
resident, desktop software.

For example, if million-word, fifty-nanosecond desktop
computers become available for on the order of a few thousand
dollars, intelligent, automated programmer's assistants running
on top of Interlisp with a half-million words of program and data
will become feasible, whereas in today's time-sharing
environments, they are often impractical. This shift in scale
affects the consideration of what is both possible and practical
in the early 1990s

.

Thus, it is our view that the characteristics of software
will shift in the decade of the 1980s in the following ways: (1)
Software will tend less to exist in paper representations and
more to exist inside the machine. Paper may tend to be used less
and less as a container for documentation as the machine
representations tie together various quality assurance practices
and software communication disciplines for training, design
validation, maintenance, incremental redesign, etc. (2) The
availability of cheap bulk memory and the possibility that
desktop computers will support resident software development
tools of substantial size and at substantial computational speeds
create incentives for software to evolve into forms in v^ich

-53-

designs and refinements are captured in the machine and are
subject to extensive annotation, indexing, and commenting. It
may be possible to capture decisions, rationale, refinement
transformations, version derivation records, and the like, and to
derive parts of the software by means of tools of substantially
increased automatic (or human- assisted) power. (3) Incentives
will exist to drive software into a form that resides in a
database and provides hooks and handles for a high degree of
integration between the tools and management disciplines used in
its development. Software products may become less
distinguishable from the environments in vy^ich they were
developed. It is possible (likely?) that programs as they are
conceived today may cease to exist.

3.0 What is software quality?

Inasmuch as a principal aim of the evolution of future
programming environments is to assure the development,
maintenance, and upgrade of quality software, it is important to
inquire into the nature of software quality. What is software
qual ity?

In our view, software quality is multi-dimensional. Nearly
every software system exhibits a number of general dimensions of
quality such as: (1) reliability and correctness, (2)
efficiency, (3) maintainability, (4) transferability, (5)
responsiveness to user needs, (6) timeliness of delivery, and (7)
unit cost.

In addition to these general software quality properties,
particular software systems might exhibit special dimensions of
software quality related to their context of production and use.
For example, some software systems might have quality goals
relating to: (1) meeting real-time constraints, (2) fault-
tolerance, (3) self-diagnosis, (4) modifiabil ity in the face of
changing requirements, (5) commercial marketability, and so
forth

.

Pursuit of software quality along these various dimensions
may involve trade-offs. For instance, increasing efficiency may
trade-off against low unit cost.

On the other hand, pursuit of some goals may simultaneously
help in the pursuit of others. As one example, enhancing
maintainability during pre-release development may lower overall
lifecycle costs. As a second example, production of software
that is initially efficient, correct, and responsive to its
requirements increases chances that it will be delivered on time.

In general, in considering software quality goals, no single
goal is to be pursued at the expense of the others and no single

-54-

optimization criterion can be established. There is no point in
maximizing one dimension of quality at great expense when so
doing reduces some other dimension of quality below a required
threshold level.

Thus, we might profitably view software quality goals as
simultaneous constraints to be satisfied rather than as measures
to optimize independently of one another. From this viewpoint,
if programming environments are built to help achieve software
quality goals, then programming environments can be viewed as
constraint satisfaction systems.

Some software quality goals may be viewed as secondary goals
rather than as primary goals, in that their achievement
indirectly supports the achievement of primary software quality
goals. For instance, if we look at the goal of "simplicity" (in
the sense of trying to achieve the least complex design that
meets given requirements), we see that "simplicity" is not an end
in itself. Rather, it is a goal, which, if achieved, supports
other software quality goals such as implementabil ity, low risk,
maintainability, and ease of learning.

Thus, when we attempt to justify why a given programming
environment has certain features, incorporates certain tools, or
supports particular disciplines, we may construct justifications
either by direct appeal to primary software quality goals, or by
reasoning chains that show how primary goals are attained
indirectly by achieving one or more intermediate goals.

There are also software quality issues that arise in
connection with the software lifecycle. Because we live in an
imperfect world, where requirements are never likely to be
complete or accurate, designs are never likely to reflect the
requirements perfectly, and implementations are never likely to
satisfy the requirements or to reflect the design intentions
perfectly, we must resort to special measures and disciplines in
order to improve software quality progressively.

Thus, testing, on the one hand, and maintenance, on the
other hand, occupy prominent roles in the software lifecycle
because of imperfection in earlier lifecycle stages. As another
example, the idea of rapid prototyping methodologies makes sense
because they are a means whereby we can construct working initial
subsystems that create the functionality that the user sees, so
that we may detect imperfections in our understanding of the
requirements and so that we may accelerate the learning process
by which we discover and articulate the true user needs. From
the point of view of constraint satisfaction systems, rapid
prototyping allows early satisfaction of some of the constraints.

At a deeper level, we see that there are feedback loops
between the activities in the software lifecycle that help us

-55-

incrementally to improve the understanding and the software
quality achieved at each stage. Thus, we may only really begin
to understand the requirements when we are exposed to the
behavior of an implementation. Cyclical exposure to the behavior
of the artifacts we build may be necessary to achieve
understanding of the true requirements, especially for a system
we are attempting to synthesize for the first time.

We also see that a number of software management practices
sprout from the necessity to utilize reliable methods for
achieving software quality, wherein we attempt to detect and
remedy flaws in the quality of visible products in each of the
lifecycle phases as they participate in feedback learning and
improvement loops.

Seen from the software quality viewpoint, adequate
production programming environments for programming in the large
must support management disciplines to schedule activities,
configure resources, engage in quality assurance monitoring, and
adjust incremental effort to achieve the required quality in each
of the visible lifecycle stage products.

The nature of the tools appropriate for programming
environments is critically affected by these processes of
feedback learning and incremental improvement. For example, if
we anticipate that requirements statements and design statements
will change in response to feedback learning from later lifecycle
discoveries, then it profits us to consider the desirability of
trying to capture requirements and design decisions in machine-
manipulable form, and to have tools available with which to keep
them up to date as a project evolves.

In summary, because each lifecycle stage takes place in the
context of imperfect predecessors, we are led to consider
feedback loops which lead to incremental improvement of the
products at earlier stages. These interplays have impacts both
on the tools we need in programming environments and on
management disciplines needed to manage activities at each of the
lifecycle stages.

Many serious problems would disappear if we lived in a
perfect world v^ere requirements were perfectly and completely
articulated, where designs were consistent, complete, and
perfectly reflected the intentions of the requirements, and where
implementations perfectly realized the designs. For instance,
the need for testing, design walkthroughs, independent
validation, and so forth, would entirely disappear. But part of
the complexity in building effective production programming
environments comes from dealing with imperfect and incomplete
information as "boundary conditions" for each of the lifecycle
activ ities

.

-56-

Another important topic that comes up in connection with
software quality is that of software "metrics". How do we
measure what has been accomplished so far on a software project,
and how can we accurately predict what remains to be
accomplished? How can we measure software properties such as
efficiency, unit cost, size, partial correctness, degree of
completion, and so forth? We know that simple bug counts are not
a reliable indicator of how many bugs remain to be discovered.
We know that simple counts of the number of lines coded is not a
measure of the degree of project completion.

With regard to the art of estimation, we need theories of
how the dependent variables we are trying to predict depend on
independent variables we can measure. For example, how does
degree of project completion depend on measurements of partial
correctness and on lines of code written versus lines estimated
to be needed, if at all? While the science of "software
measurement and prediction" might still be regarded as being in
its infancy in terms of our known stock of validated theories of
practical utility, it is clear that a mature science of "software
metrics" would substantially improve our chances of building
production programming environments in v^ich we could produce
quality software that is reliable, efficient, correct, responsive
to its user needs, and is delivered on time and within budget.

Another set of issues that affect our considerations of
software quality are those involving relationships between
differing kinds of expertise required to create and maintain
software systems. Often, in practice, we may need to congregate
teams of specialists with expertise in different areas when
building, debugging, or upgrading software systems, and it may be
necessary for these teams of experts to cooperate.

For example, in building an inertial navigation module, we
may need to draw on the knowledge of a physicist to design or
upgrade portions of the system relying on knowledge of
kinematics, dynamics, coordinate systems, and the like. We may
need to draw on the expertise of a numerical analyst to design or
debug portions of the system connected with accuracy decay in
updating a description of current position derived from
accumulating piecewise incremental measurements. And we may need
to draw on the knowledge of expert programmers to implement or
debug the system in executable form and to settle questions about
nomenclature scoping rules for local variables in procedures, and
the 1 ike

.

It may not be possible for any of these three types of
experts to answer questions or to reason effectively in the
specialties that are the trained province of the others. Not
only must such teams of experts congregate and cooperate at
system design time, it may also be the case that we must
recongregate such expertise if we are to debug or upgrade a

-57-

system during the software maintenance phase of the lifecycle.

In considering the design and implementation of the system,
problem solutions expressed in languages familiar to each of the
experts who must contribute to the system design at different
levels must be translated into linguistic expressions at lower
representational levels. That is, we must be able to shape the
data and operations available at each level of representation of
the system so as to imitate the behaviors required at the next
level up in order ultimately to realize the behaviors required at
the user level.

Thus, there are software quality considerations related to
the accuracy and adequacy of representational processes at the
various levels of linguistic abstraction spanning the gap from
the naked machine up to the application domain, and there are
structural and economic questions involved in training new
personnel to understand how multi- layered systems work and in
bringing to bear the right kind of expertise and capability to
diagnose, repair, and upgrade the system during maintenance.
Effective programming environment tools, including documentation
and training tools, must address these issues adequately.

4.0 Some issues we discussed.

In this section, we summarize some of the issues that were
discussed during the Working Group' s deliberations subsequent to
our examination of the nature of future software and the nature
of software quality. These issue summaries are not given in the
strict chronological order we treated the issues, as the
discussion often provided incremental contributions to our
understanding of certain topics in an interleaved fashion. Thus,
the remarks are collated and sorted by topic from notes taken
during the meeting.

Noncumulative Science?

.

A troublesome issue that recurred throughout our discussions
was whether or not we were engaged in a cumulative science. That
is, have we been able to arrange matters so that we stand on each
other's shoulders in order to make cumulative progress, as
opposed to stepping on each other's toes. In general the
participants agreed that, in the present state of software
science, we do not have very effective mechanisms for finding out
what history says about a particular problem or v^at solutions
history suggests. This concern reflected itself in a positive
way in our conclusions in terms of an agreed-upon desire to
identify technical approaches to effective reusability of
software. It also led us to wonder how much of our own
deliberations consisted of a replay of history unknown to us.

-58-

Documentation

.

Some of the participants advanced the view that
documentation should be a byproduct of the development process.
This was envisagd to consist of saving the transformations,
design decisions, and rationale used in system development. One
participant took the position that there exist structures of
decisions (such as " divide- and- conquer ") and that to understand a
program, someone must understand its underlying structures of
decisions. One observation about the prospects of mechanization
of such decision capture was that we should expect transformation
sets always to be incomplete and open-ended and that provision
must be made for extension.

One view of documentation capture is that the programmer (or
designer) should announce v^at he is doing while he is
implementing a system. But this leads to the problem of
"excluded magic" in which the expert can't say what he is doing
since he is unconscious of it. It thus becomes an important
technical problem to be able to identify those points at which
the programmer may be unconscious of the knowledge he uses. Can
a machine be programmed to identify those points where there is a
fact about the domain or a belief about the domain that needs to
be exposed?

Management Support Capabilities.

Whether to discuss the topic of management support
capabilities was a source of controversy to the participants.
One participant felt that management support capabilities were of
more immediate concern than of long-range concern, and that it
was therefore not in the charter of our Working Group to discuss
them. (Our charter was specifically to address long-range
issues.) Another participant felt sufficiently strongly about the
irrelevance of management support that he absented himself from
the deliberations until the discussion of management support was
concluded.

One participant with a background as a practitioner noted
that there are different management styles in different
organizations and that programming environments might profitably
adopt a "tool kit" approach that allows an organization to
assemble a management discipline tailored to its own particular
philosophy, standard operating procedures, and the quality
assurance practices.

A number of participants justified the necessity for
attention to management considerations as follows. In any given
state of development of software science, no matter how powerful
the tools available to a single user, it is likely that somebody
will want to attempt construction of a system requiring an order
of magnitude more power than that available to the single

-59-

user. That is, ambitions may always outpace the power available
to a single user. Under such circumstances, we will need to
combine the power of several users and they will need to
cooperate, collaborate, and communicate. It was further
emphasized that lots of software development in the U.S.
Government is not single user development, and that the Working
Group would not adequately adhere to its charter if it failed to
address multi-user activities. Whenever there is a need for
communication, collaboration, and apportionment of effort, there
is a need for management, and so, in at least some settings of
relevance to the Workshop sponsors, management support cannot
be ignored.

Setting s

.

It became evident during the course of the discussions that
different participants had differing ideas in the back of their
minds about the characteristics of the settings to be addressed
by programming environments. Some were interested in providing
maximum leverage to the single user to amplify his programming
power. To others, security was irrelevant since they had no need
to work in secure environments. To others, concern for increased
power for the individual programmer was of less concern than
increased power in quality assurance practices for teams of
people since that is where they perceived there to be critical
leverage

.

Thus, by choosing the "top-down" approach, the Working Group
tacitly failed to identify the characteristics of the settings
that environments were to address. This led to frank
disagreements about the importance of various issues and concerns
with respect to the tacit assumptions about settings each
participant held but was never asked to state explicitly.

Lang uages

.

One participant identified four possibilities for languages
appropriate to programming environments: (1) a new language is
devised for each application domain, (2) a wide- spectrum language
is used v^ich contains many special sub- languages all present at
once, (3) there is a tower of refinement levels of language
moving from concrete implementation languages through modelling
languages up to domain specific languages, and (4) one uses
different distinct non- interacting languages for design,
programming, and requirements analysis (e.g., SADT, flowcharts,
and COBOL)

.

Some thought that the appropriate user language is the
language of his domain of application. Others thought that the
system specification language should be operational in the sense
that one can execute it and analyze it. One participant held
that if one uniformly uses an "evaluable specification" the

-60-

methodology can be applied across the range of languages from the
application domain to the implementaton domain. Another objected
that such an approach may take away from the application domain
user some kinds of concepts he is interested in using, and that
in some situations, procedural languages may be unusable and
declarative languages would be needed. A practitioner-oriented
participant stressed the importance of developing better
understanding of the multiplicity of domain specific languages
and how they were related to the software lifecycle.

Granularity and Composabil ity

.

One participant felt that having a small grain size in the
environment tools and in the units of interaction with the user
enabled one to get surprising, useful compositions never dreamed
of in advance. Another observed that software reusability may be
inversely proportional to grain size i.e., the smaller the
grain size of a tool, the more likely it is to be reusable. For
example, in future environments, there may be no single tool
identifiable as a "compiler". Rather compilation may result from
composing the actions of smaller size tools such as parsers,
program improvement transformers, and code- generators for one or
more target machines.

Training

.

Many participants felt it was a major research topic to
investigate how to train programmers to understand the design,
construction, and maintenance of a system. Some felt it crucial
to have excellent training in the use of future environments as a
prerequisite to their eventual technology transfer and
deployment

.

Security

.

An issue of concern to some was that of security since, as a
practical matter, they felt that a number of important user
settings, characteristic of government and industrial
contractors, were required to address security. Security was
viewed as achievable in layers that raise the economic cost of
penetration by perceived threats. That is, there exist
techniques that make it expensive to penetrate a system and that
lower the bandwidth of the penetration channel. In this context,
one must balance risk against threats at given levels of economic
investment

.

It was observed that implementing a security policy in
industrial settings is costly and inconvenient, so that anything
programming environments could do to provide for, e.g., trusted
operating systems, secure data, isolable systems, and so on,
would greatly enhance the attractiveness of environments in
certain settings, whereas failure to address such issues might

-61-

mean that environments were unusable in practice despite other
advantageous characteristics.

Software Measurement and Prediction.

Several of the participants noted that the state of the
science of software measurement and prediction is currently
unsatisfactory, and they emphasized that improvements in this
area would be welcome as an integral part of effective
environment technology.

For instance, it is known that measuring the amount of code
written is not sufficient as a progress measure and that bug
estimates are insufficient for assuring software quality. Yet
there is a clear need for metrics to measure progress toward
software project goals.

5.0 Two Views of the Future

In this section, we present without analysis or commentary,
two views of future environments that were created during one of
the days of the NBS Workshop by members of our Working Group.

Because the time for their creation and refinement was
short, the views are brief. Nevertheless, their subsequent
examination led to stimulating discussion by the Working Group
about appropriate research topics to investigate, and about what
technical approaches may have promise. Thus, they played an
integral part in our evolving discussions and analysis, and they
helped us to reach our conclusions.

THE BUXTON VIEW.

"A software support system is intended to provide
long-term support for large, long-lived and evolving
software projects. The support includes programming- in-
the- small; that is, designing and constructing modules in a
programming language as system components supported by
suitable design and implementation tools. Even more
critically, it supports programming- in- the- large ; that is,
overall system specification and design and building and
controlling over long life- times the different
configurations and versions of the project which arise in
response to the evolution of requirements. This is a less
well understood area and requires new and different
languages and tools; for example, declarative rather than
procedural system description languages.

A basic ingredient of the methodology of such a
system is the realization that a software project, in the
present state of our knowledge of the subject of software

-62-

engineering, is best developed through a series of prototype
stages. The support system must provide tools to support
the generation and testing of a sequence of prototypes. It
must provide the ability to generate production versions of
the project from selected members of the sequence which are
crystallized out to provide service to end-users of the
pro j ect

.

The development of such a system, which is clearly a
large software project, is itself best undertaken as a
series of prototypes. In the later stages of its evolution
such a system is itself one of the projects which it
supports; that is, it becomes self-supporting. Furthermore,
it enables some benefits to be transmitted from previous
experience, acquired both in its own development and in the
develoment of the projects it supports.

THE BALZER/BARSTOW/GOLDBERG VIEW.

The Goal

The Goal is to specify a system development
environment in v^ich an operational model in the language of
the domain can be used as a prototype of the intended system
and can be refined into an efficient implementation.

Users

The Specifier is expected to be an expert in creating
models of the pertinent aspects of his domain.

The Refiner is expected to be an expert in realizing
models as efficient implementations. In the long term,
portions of this role may be automated.

Philosophy

An operational prototype forms the interface between
the Specifier and the Refiner, and separates their
activities

.

The Specifier proposes a model of the pertinent
aspects of his domain and uses the operational
characteristics of the model to determine whether it matches
his intent. Typically, the first model will be functionally
inadequate and the Specifier will iterate this modelling
activity until an acceptable operational prototype is
obtained

.

Upon completion of the above specification activity,
the Refiner, through a process of multi- level design.

-63-

realizes this operational prototype as an efficient
implementation

.

This design process is recorded as documentation and
as the basis for later redevelopnent (maintenance) . The
resulting implementation is never modified; rather, the
design process is modified to yield a new implementation.
The feasibility of this maintenance approach rests upon the
reliability and the economics of the redevelopnent process.

The system development environment should eventually
be capable of supporting itself.

Essential Components
(all machinable)

1. Mappings Between Levels of Concepts

Design concepts are organized in a multi- level fashion.
Each level consists of an operational or at least analyzable
specification

.

There exist mappings v^ich can be applied to a concept or
concepts at one level in order to convert them to concepts
at other levels. The validity of the resulting
implementation depends on the validity of the mappings.

2. Languages

There are a number of languages required, such as:

Specification Language
Refinement Language
Mapping Language
Documentation Language

3. Viewing Behaviors

The Specifier must be able to determine whether or not a
proposed prototype (even an incomplete one) matches the
system's functional requirements. This implies that the
prototype is either operational or analyzable and that the
resulting behavior can be observed in understandable form in
the language of the domain.

4. Documentation

The refinement activity is captured as a record of the
design. This record can be reformulated to provide a clear
top-down presentation of the developnent . This
reformulation and record provide a readable (understandable)
basis for future redevelopments . As such, it must include

-64-

the justification supporting design decisions as well as the
decisions themselves.

5. Repository

Two information sources are available:

(a) An encyclopedia of the cumulative results from Computer
Science used to map concepts from one development to
another. These mappings are chosen mainly on efficiency
criteria

.

(b) A library of previous designs (not merely resulting
realizations). These designs can be redeveloped (as in any
other maintenance activity) to assimilate the functional
unit into the current activity. This provides a general
reusability capability. Such modifiabil ity becomes more
critical as the size of functional units increases.

Usage Scenario

1. Specify the System

1.1 Use the operational aspects of the specification as a
guide for further elaboration of the specification as a
prototype for determining the system's functional behavior.

1.2 Compare operational behavior with desired Functionality.
This comparison relies on the ability of the system to
produce readable and understandable descriptions of the
prototype's functional behavior.

1.3 In case of mismatch, modify system specification and
repeat behavior comparison. This step is a validation of
the proposed model at the domain concept level. This rapid
prototyping capability allows significant aspects of the
system testing to occur before implementation. This permits
the Specifier activity to be independent of Computer Science
expertise

.

1.4 In the event that the domain specification language is
not fully operational then some refinement will be needed in
order to reach an operational prototype.

2. Map specification into implementation

2.1 This step is needed only if the operational
specification is not sufficiently efficient to be used as an
implementation (or fails to meet some other implementation
criterion)

.

2.2 This mapping process is driven mainly by efficiency

-65-

concerns and is dependent primarily on Computer Science
expertise. However, the applicability and/ or advisability
of any mapping may also be dependent on domain properties.

2.3 At each step in this design process, the Refiner has
the option of either:
(a) selecting a mapping from the encyclopedia, or
(b) assimilating a previous design from the library by
redeveloping the design, or
(c) expanding the set of mappings or designs in the
Repository

2.4 The validity of the resulting implementation derives
from the process of its development, through the validity of
the individual mappings and designs employed. Testing is
still required because these mappings may be incorrect.

2.5 The attempt to apply a mapping may uncover
incompleteness(es) in the specification, e.g., insufficient
constraints. This requires an elaboration of the
specification and a rederivation of the design.

2.6 A structured presentation of the design is needed as an
enhancement of the recorded design to facilitate
under standabil ity of the process during future developanents

.

2.7 The operational nature of the developing implementation
provides an opportunity to highlight remaining critical
decisions by instrumenting or analyzing the current
(incomplete) design.

3. Maintain the system

3.1 Maintenance is the process of assimilating the previous
system design. Redevelopment of the previous system design
is required as a result of either:
(a) enhancement or upgrading of the specification,
(b) tuning of the design,
{ c) new implementation criteria, or
(d) errors in the mappings employed.

3.2 This maintenance activity is an instance of refinement.
Step 2.3. As such, the expertise required by a Maintainer
is the same as that of a Refiner.

3.3 Enhancements (upgrades) of the specification are made by
the Specifier in response to changed user requirements.

3.4 In response to expansion of the Repository, the system
may issue notifications of possible opportunities to
assimilate the expansion into existing designs.

66-

6.0 Research Topics

In order for programming environments based on the views
given in the previous section to be realizable as effective
working production systems, a number of research topics need to
be investigated.

We have identified the following (more or less urgent)
research topics that must be investigated if the Buxton View is
to be satisfactorily realizable in production versions.

Short-Term Urgent Research Topics.

1. Rapid Prototyping Systems, particularly those that are
rapidly responsive to evolving requirements.

2. Management Capabilities for programming in the large,
particularly managing huge configurations and production of
system variants.

3. Sophisticated Automated Test Methodologies, including
automatic test case path analysis, test case coverage analysis,
and test case generation.

4. Databases for programming environments, particularly
history-taking and derivation management.

5. Understanding Software System Levels, particularly doing
abstraction correctly and making progress on techniques for
domain specific modelling languages.

Since the Buxton View relies heavily on progressive
improvement of prototypes, careful version and configuration
control, and on effective testing methodologies to assure
software quality, it is clear that if the above research topics
can be satisfactorily investigated and if good results can be
attained and transferred into practice, the Buxton View could be
realized in a production version, say in the early 1990s .

The construction of a practical, working, production
programming environment along the lines of the Balzer-Barstow-
Goldberg View relies on the attainment of a number of long-range
research goals. For example, if an automated on-line
Encyclopedia of Computer Science knowledge is to be built, we
must understand how to codify programming knowledge in machine
usable form. While important steps have already been taken in
this direction, and v^ile the results are by no means meager, it
is clear that more remains to be done before the Encyclopedia of.

Computer Science expertise can be automated and applied to the
mapping of programs in problem specific language into efficient
underlying implementations without substantial human intervention
at the detailed transformational level.

-67-

In the following list of long-range research topics, we have
interwoven topics that are essential to investigate before the
Bal zer-Barstow-Goldberg View can be realized along with other
topics of substantial interest to us, whose investigation would
have strong benefits for understanding how powerful programming
environments could be built.

Long-Range Research Topics.

1. Modelling the design process, including: (a) theories of
multi- level design and mappings across conceptual levels, and
(b) the nature of maintenance and incremental redesign.

2. Codification of programming knowledge, including that v^^ich
is (a) human usable, and (b) machine usable. Research issues
here include: (a) VThat is it?, (b) How do you use it?, and (c)
How to structure it.

3. User interfaces, including both physical interfaces and
languages, and identifying different points of view with which
users can approach the system.

4. Specification languages, including the spectrum from: (a)
domain independent specification languages to (b) domain
dependent languages.

5. Modelling the user of the environment (either the Specifier
or the Refiner)

.

6. Prototype environment developments

7 . Management models

8. Understanding the educational process, including identifying
and validating effective means of training users in how to use
advanced environments.

9. Evaluation and analysis of high level models, including
those that are: (a) declarative, and (b) procedural.

10. Understanding technologies for distributed knowledge
sources, including shared use, update, and coordination.

11. Developing a good cognitive or psychological theory of
system understanding. Some issues are: (a) What is a good
explanation of a system or program?, and (b) What makes system
explanations readable or comprehensible? Some possible
techniques to investigate are: (a) use an initial, simple,
incorrect model and use exceptions to improve it progressively
into an explanation that is complete and accurate, and (b)
present simplified views in intellectually digestible chunks
that isolate and study subsystems of a system, and then

-68-

consider interactions between the views.

12. Browsing. What are good techniques for browsing a large
knowledge base to identify knowledge relevant to some set of
needs?

7.0 Brief Analysis and Comparison

In this section we briefly analyze and compare just a few
aspects of the two views of future environments given in the
previous section. A number of the observations in this section
were received as written reactions to an earlier draft of this
Final Report.

With regard to the Buxton View, we need to spell out what we
mean by a prototyping methodology in greater detail. We need to
identify perhaps several alternative technical approaches to
prototyping, we need to understand how the behavior of prototypes
is supposed to be reviewed by system users, and we need to know
how that review can lead to systematic examination and update of
the system requirements statements. In this connection, we need
to be concerned with what form the representation of the
requirements will take, and with the overall methodology for
incremental improvement of the requirements statement that is
supposed to result from the use of prototyping methodologies.

Another observation about the Buxton View is that it
diverges from the Balzer-Barstow-Goldberg View in that the
Encyclopedia of Computer Science Expertise, which is integral to
the design of the latter view, does not derive from the Buxton
View. That is, one has to codify and express computer science
expertise as an activity separate from those envisaged in the
Buxton View.

With regard to the Balzer-Barstow-Goldberg View, some
participants felt strongly that there should be additions made to
assure that it would be useful for programming in the large.
These participants felt it would be a useful step to indicate
additional steps to be taken to accommodate programming in the
large, and that while there was insufficient time in the context
of the Workshop to give this subject adequate thought,
nonetheless the subject should be acknowledged in the Final
Report. One participant noted that the Balzer-Barstow-Goldberg is

not adequate to the mission of the National Bureau of Standards
until it addresses programming in the large.

Some participants expressed skepticism that the research
goals needed to make the Balzer-Barstow-Goldberg View viable
could be attained in a reasonable period of time. One
participant commented as follows on this subject: "Being ' far
out' is not a sufficient goal. No matter how far out some notion

-69-

might be, it does not really do us much good unless we know how
to reach it from some foundation. This is fundamental to the
notion of computing." The attainability of the Balzer-Barstow-
Goldberg View might be better understood if it were possible to
give a reasonable estimate of how much codified computer science
expertise might be needed and what scale of effort might be
needed to produce it.

8.0 Conclusions

Some conclusions that were more or less agreed upon by the
participants are as follows:

1. Rapid Prototyping A development system is required
that facilitates quick, inexpensive creation of operational
prototypes or models. Solutions to many software problems
are not achieved in a straightline fashion, but rather
through progressive refinement of a model starting with an
initial trial solution. The intermediate solutions are
progressively improved many times until a satisfactory
solution is achieved. Systems that facilitate this solution
refinement and that make it affordable to solve significant
problems more than once are needed.

2. Layers of Refinement A progressive refinement from
application domain model to machine implementation was viewed
as a basic mechanism for creation and representation of the
product. As technology advances, the refinement from one
layer to another should become increasingly more automated.
Currently the mappings are done manually. Eventually they
should be incorporated within the system itself. In either
case, the mappings or transformations should be recorded as
part of the system documentation.

3. Documentation Documentation should be viewed as a by-
product of the production process. Recording or saving the
product alone is insufficient. The production process must
also be saved so that it can later be modified to produce a
new product which is a variant of the old. Thus, not only
the final product, but the intermediate stages and the
mappings between them must be part of the documentation. The
capture of this information should be performed by the system
with little or no intervention from the developer.

4. Maintenance Maintenance is an activity encompassing
both error removal and system upgrade. The system upgrade
portion of maintenance should be viewed as incremental
redevelopment. Systems should be constructed so this view is
economically viable. Products should never be modified by
changing a piece of code. Instead, the product should be
redeveloped, as required, so that requirements, design, and

-70-

implementation are always coherent refinements of one
another

.

Underlying the very concept of a development environment is
a need for better organization and management of information.
Advances in this area affect the ability to achieve the
documentation and maintenance approaches described in the
previous paragraphs. Considerable amounts of infoirmation
concerning the process of program creation must be stored and
organized to be accessed later from various and changing points
of view. Information must be managed to support cumulative
aspects of the science. Programs and the development process
must become reusable.

-71-

HIGH LEVEL LANGUAGE PROGRAMMING ENVIRONMENTS

Marvin Zelkowitz

Participants
W. Richards Adrion, National Science Foundation
Alfred Aho, Bell Laboratories
Daniel Bobrow, Xerox Corporation
Thomas Cheatham, Harvard University
John Cherniavsky, National Science Foundation
Susan Gerhart, Information Sciences Institute
Gordon Lyon, National Bureau of Standards
John Nestor, Carnegie-Mellon University
Terry Straeter, General Dynamics Corporation
Marvin Zelkowitz, University of Maryland

1.0 Introduction

This report is a summary of the group on Requirements for a
High Level Language Programming Environment that was part of the
National Bureau of Standards' Workshop on Programming
Environments that was held at Rancho Sante Fe from April 29 - May
2, 1980. Although written by a single author, this report
incorporates the views of the entire group that spent long hours
in early May working towards a consensus view of programming
environments. The author wishes to thank all of them for their
help

.

2.0 The Model

Software is often delivered late, is unreliable, is not
maintainable and has a host of other well known problems. In
order to look at possible improvements, a model programming
environment was developed. It was believed that this model could
incorporate most of the ideas needed to greatly improve
programmer productivity. This model is sufficiently general so it
is usable even if some of the needed research results, mentioned
later, are not fully developed. Although the use of high level
languages is rarely explicitly mentioned, the underlying
assumption is that such a set of languages is needed to interact
with the implementation of the model. More about this later.

Assumed hardware and software technology circa 1990 was the
starting point of our discussions. Although mentioned as a date,
it was used only as some unspecified future milestone - we
explicitly did not want to be bound by any near term (within next
five years) developnents since these would be adequately covered
by two of the other three groups at the workshop. We assumed that
any such system that we proposed would probably be built from

-72-

scratch, and would not need to have its goals compromised by the
reality of extending an existing system. Experience of several of
the members in the group on current day experiments in
programming environments (PIE [2], PDS [1]) gave us first hand
knowledge of some of the problems in developing such systems.

The basic model consists of a set of objects that are
hierarchically related. An object is a collection of entities,
where an entity is a set of (attribute, value) pairs. Attributes
are things like author, source code, specifications, date of
creation, and version number. By having a two level structure of
attributes and entities, the same concepts can be viewed in
different ways by different individuals. Thus each user of such a
system would have his own perspective of the environment, i. e.,
each user would have his own view environment as part of the
larger programming environment.

For example, a given module might have the attributes of
author, source code, specifications, cost, and schedule. The
programmer' s environment would contain source code, schedule, and
specifications, but might not contain the detailed cost. A
project manager would need the schedule, cost, and probably the
specifications, but would need the source code. There is only
one copy of the actual source program or specifications, and
numerous objects are able to reference these indirectly via its
entities.

The basic operation of this system is a set of
transformations that map objects into other objects. A compiler
transforms a source program object into a relocatable object in a
program library. A verifier checks whether the source code
object implements the specifications object. Editors,
optimizers, verifiers, compilers, and other software tools are
examples of transformers that can be built using today'

s

technology.

However, the real power of such a system is in applying new
transformations that can be added to such a system. Applying a

transformer that takes a machine description (in some language
like ISP, for example) and an abstract algorithm into a specific
source code object should aid in portability and in maintaining
multiple versions of an existing system. Changes to the
specifications of a running system can be propagated more easily
into the source code if many of these transformations are
automated, and thus help in the maintenance phase. These and
other research objectives will be described later in this report.

Objects are hierarchically related and can be interrogated
at any level. At the top level would normally be the abstract
requirements and the bottom level would normally be the concrete
code to execute the intended function. The system can be
interrogated at any of these levels, and the structure derived

-73-

from these interrogations. Thus it would be possible to trace
back a given source code function to one of the requirements.
Similarly, changes in requirements should automatically reflect
themselves as changes to the source program.

The environment will keep history information about all
objects (i. e., where they came from). Such a structure would
greatly aid in managing a large software development.
Configuration control would be possible and maintenance, the
major cost- factor in current day developments, should be more
under control since all changes should be traceable. The use of
transformations should aid in rapid prototyping so that models of
a given programming project can be tested before great
expenditures of time and money.

Every object has a contract attribute. This concept
generalizes the ideas of program interfaces and assertions. At
the highest level the contract gives the requirements that the
object has to meet, while at the lowest level it would represent
the formal specification of the function that the source code
implements. A program verifier could check the consistency of
these. In addition, interfaces between two modules can be
checked in a more thorough manner. This is an extension of the
simple data input-output interfaces checked by PSL/PSA or the
package structure in the language Ada. The term "contract" is
used intentionally instead of the more common "assertion" or
"formal specification" in order to get away from the notion of
verifying only source level statements.

The system is also self-descriptive and contains facilities
for measuring its own performance. Any user should be able to
interrogate the system to determine the status of the environment
and v^at is expected next (e. g., HELP files on many current-day
systems). This allows novices (and experts, too) to manipulate
objects more easily. The measuring characteristics of the model
will enable management (of the environment itself or of some
software project being developed in the environment) to control
operations better.

This model incorporates most of the ideas that have been
proposed in the last few years. However, what is most attractive
about it is that it is flexible enough to be built without most
of the above mentioned features. Given the appropriate underlying
data base, the basic object relations can be built today. It
would be easy to incorporate an environment, such as described by
the Department of Defense Stoneman Document for the programming
language Ada, within this structure [7]. In a later section of
this report the various research topics needed to achieve an
efficient implementation of this model will be described. Even if
some of these research ideas are not fulfilled in the near
future, the remaining ones can be incorporated in a practical
production programming system.

-74-

Experience with unit developnent folders shows that there is
some real hope that this model might be quite productive [4].
Unit development folders are an effective management tool in use
today, and have proven to be effective in organizing data about
individual components in a large developing system. Such folders
contain all of the data pertinent to such a component. The model
just developed can be considered as an abstraction of such a
folder, thus it gives credibility that this model may in fact be
quite usable in a production environment.

3.0 The Setting

Given the basic model, the major question is how to build
such a system. An important related question that then arises is
for v^om is the system to be built? It was decided that it should
be built for experts and not for the large mass of programmers.
By experts we mean both those knowledgeable in computer science
and those experienced in the application area that needs the new
software. We intentionally ignored the less sophisticated user
since we realized that since we cannot yet build a truly
effective environment for experts, we have no hope of helping
everyone. If we had such an environment, then we could tailor it
to others by restricting the set of transformations that can be
applied

.

We have also ignored as a major requirement the single
programmer working in a laboratory (although he should be helped
by whatever develops) , since this is not where the current
problems in software productivity arise. Thus we are considering
the multiuser environment where individuals need to communicate
with each other. Projects are generally multiyear, with a
changing staff. The use of interactive terminals (as opposed to
batch) is assumed, as well as a sufficiently powerful computer
system to give each user a large amount of computing power (more
about this later)

.

In exploring this model, however, we must be careful to
avoid several pitfalls. We must not build a system only for
ourselves (basically expert computer science researchers in a
specialized laboratory setting) . The resulting system must be
useable in a large industrial setting (with an appropriately
trained staff) and it must be able to be used to develop large
software packages by large groups of programmers. It must also
take into account real-world constraints like staff turnover,
deadlines, long system lifetimes, generally lower level of
expertise by the staff and other issues. We believe that this
report addresses these issues.

One minority viewpoint must be mentioned here since we
believe that it is unlikely, but possible, to happen. The view is
that only single person projects need be considered since an

-75-

individual's productivity would increase by so much that most
projects currently taking large groups could be done by
individuals working alone. This may very well be true; however,
the majority view was that after considering the changes in
programming over the last 30 years, we would simply increase the
complexity of the tasks we set out to program - thus keeping the
multiprogrammer environment active for many years.

4.0 Goals of Model

Before describing the details of the model and the research
needed to develop such an environment properly, it must first be
answered why such a model is needed, and how it differs from
existing systems. Most problems in software today occur as
communications problems. Requirements are poorly understood and
are translated into ambiguous specifications and designs.

^ Programmers have inadequate information about the interfaces
among various modules in a system. Maintenance is difficult since
different sites have different versions of a system and it is
difficult to perform configuration control.

However, many of today' s tools are oriented towards
correcting source level programs. But actual coding only takes
about 20 per cent of the effort on large programming projects.
Thus most of the future benefits in improved productivity and
reliability will be a result of improved communications and
interfaces

.

The proposed model of section 2 is based upon strict
communication paths between parts of a system (called objects).
In addition the model is sufficiently general so that almost any
superstructure or methodology that adheres to this communication
protocol can be built on top of it. We believe that this will be
most effective in increasing information transfer among the
components of a project.

5.0 Research Topics

In order to realize the model described in section 2, the
current field of computer science was surveyed and the known
problems needed to be solved were identified. These were broken
down into 5 basic areas:

1. Environment Issues. The description of objects and the
various transformation tools needed for them.

2. Knowledge and reasoning issues. The basic ways the
environment helps the programmer (e. g. theorem proving, data
management, algorithmic analysis, and inferencing)

.

-76-

3. Language Issues. The source languages needed to specify
problem solutions.

4. Environment of the environment issues. The interfacing of
the environment with the underlying hardware and the interfacing
of the environment with the human programmer.

5. Open Issues. A set of identified problems with no
satisfactory research plans, as yet.

The remainder of this report will expand on these 5 areas.

5.1 Environmental issues.

The first, and perhaps hardest, of the issues to be discussed is
the environment itself. How are objects created? transformed?
interrogated? And what will be the underlying hardware v^ich
executes the system? These questions can be addressed via the
following research topics.

a) Models

Research is needed in developing models to manage a system'

s

life cycle. This report addresses one paradigm for developing
software - others are possible and all should be investigated.
The attractiveness of the model of section 2 is that it can be
built today without many of the proposed features that will make
it quite productive, yet with enough of them to allow for
improvement over today' s technology.

b) Transformations

The basic transformation techniques need to be investigated.
The underlying assumption is that a user will develop a system in
a high level requirements or specification language and the
system will (semi) automatically produce transformed objects that
represent the executable system. The levels of these
transformations must be specified, including what sort of
transformations are made. Algorithmic languages are still needed
to define requirements, specifications and design. These topics
will be discussed in greater detail in section 5.2 on knowledge
and reasoning and in section 5.3 on languages.

c) Theoretical aspects

The current model of the software life cycle assumes
requirements, design, code, test and operational phases. But
actual software development rarely adheres to that pattern. For
example, the operational phase consists of a "bug fixing"
component and an enhancement component as new features are added
to the system. This enhancement activity means a redesign, recede
and retest operation. In addition conversion to new hardware is

-77-

rarely an easy task. What model actually predicts this behavior?

We need a theory of program development and a quantitative
measure of such development. Various complexity measures have
been proposed for analyzing the structure of the source code.
Individuals such as Halstead, McCabe, McCall and others have
proposed measures for indicating how complex or error prone a
system is likely to be [3,5]. We also need measures of design
and requirements. Source program length is too restrictive a
concept to apply to the entire life system, yet source code
length is still the best predictor of source program errors and
reliability.

Without productivity measures we have no way of knowing
whether one methodology is better than another. More importantly
without such measures, it is impossible for project managers to
know if a given project is under control or is actually late and
poorly organized. Currently lines of code per unit of time (e.g.
statements per month) is the most commonly used and accurate
(within a factor of 2 or 3) measure; but it is far from being
acceptable. It is only reasonable during the coding phase of a
project (about 20 per cent of the developnent cost) which means
that the entire requirements and design phases have 0
productivity, and it does not include any of the maintenance
activities where productivity, but not cost or activity, will be
close to 0. Such measures, to be effective, should be automated
and ideally will be created by the transformations attached to
the various objects in the environment.

d) Hardware

The effects of hardware technology of the 1990 ' s will play
an important part in a programming environment. Two major
developments will have a major impact. These are the developnent
of large storage systems and distributed systems with high
communication bandwidths.

The first of these means that storage will be essentially
free. Thus an environment will be able to save almost everything
that happens. The real problem then becomes one of what to save?
Much like the typical programmer (or this author), whose desk
soon becomes cluttered with stacks of old computer listings, a
large data base can soon become cluttered with too many
retrieveable objects. The real research question is how little
(not how much) of this information to save so that nothing
"essential" is lost and everything "relevant" can be retrieved.
Essential and relevant will be left undefined at present.

With large distributed systems (e.g. an intelligent terminal
in every home connected to a central computer facility)
environments will be "distributed". How to manage this large
decentralized system is another major issue. On a small scale.

-78-

this is related to the cross compiler - simulated environment
issue in applications areas like embedded systems. If a system
is developed on a large computer within one development
environment, but must execute on some other computer in some
other environment (e.g., in a missile or radar unit), some
mechanism must be devised for either down loading the new system
into the operational environment and testing it there in an
effective manner or by testing the new environment within the
development environment via simulation.

One possible solution is for the specifications of an object
(i.e., its contract attribute) to contain details of the
underlying environment. Thus the specifications of a system
would be read by a simulator which would test the higher level
specifications. As each object is transformed into explicit
machine- oriented algorithms, the simulator at that level would
have less to interpret. It would be possible with this structure
to simulate other environments for testing.

Other technology issues will be discussed in the section on
environment of the environment.

e) Specialization

As mentioned in section 3, the model of section 2 is
designed for experts; however, there is a need to specialize the
system (i.e., by restricting certain transformations) for large
classes of users. Many less sophisticated programmers need to
have access to the environment but may not have the knowledge to
use the full range of capabilities that are available. For
example, a standard programming shop might have a "canned" set of
transformers for converting a specification into a source
program. The programmers would simply develop the specifications
and run the set of transformations.

f) Evaluation of impact

One of the hardest issues that the group tackled was one of
evaluating the success of the environment. What means exist for
moving the programming environment from the research laboratory
into the commercial programming world? A quantitative measure of
productivity could validate this environment, but none that are
generally accepted currently exists, and as mentioned earlier,
the development of such measures is an important part of this
research area. Lines of source code seems unrealistic to
consider as the basis for any such productivity measure since
this environment is oriented towards producing objects and not
source program listings.

It was believed that technically successful systems will
generally get more use and become more popular. The example of
UNIX, a generally unsupported system developed by Bell Telephone

-79-

Laboratories for the PDP 11 computer, which has become extremely
popular, comes to mind. Success in the marketplace is the basic
measure that we considered. Although the author is somewhat
skeptical of this approach, until better quantitative measures
are developed, little more can be proposed at this time.

5.2 Knowledge and Reasoning.

At a basic level, a programming environment might be thought of
as an extension to present day debugging systems. However, the
scope of these new environments encompasses much more. Perhaps
the biggest difference is the introduction of artificial
intelligence applications. There is little anticipation of large
scale automatic programming systems for very complex problems;
however, the computer is becoming an important logical decision
making tool for use in many areas. Using computers to help make
logical, yet algorithmic, decisions will enable programmers to
devote more of their energies to the creative less algorithmic
aspects of programming. The following areas are central to these
concerns

.

a) Theorem proving

The general consensus was that theorem proving techniques
for algebraic languages are adequate and will not improve much.
Many of the current problems with verifiers are not in the proof,
but in the verification condition, i.e., what to prove by
specifying the theorems to prove. The proofs are usually
solvable

.

There is some need to extend the domain of applicability.
Pointer variables and aliasing (i.e., sharing of storage such as
referring to the same location via a global variable name and a
subroutine parameter) are handled by only a few systems. The
extension of current verifiers to process quantificational logic
is not always possible. The area of program logics is only
beginning to be explored.

The major research problems still unresolved seem to be:

1. Having enough computer resources (time and space) to
carry out the proofs, although the emergence of cheap easily
available microprocessors may soon change that, and

2. Developing enough theories about specific problem areas,
so that proofs do not always have to start from scratch. We need
a "catalog" of theorems, much like the standard mathematical
formulas, that can be applied to a large class of applications.

b) Algorithms

Algorithms are crucial for system operation. For increased

-80-

productivity we would like to be able to reuse existing source
programs, modules, algorithms, etc. The proposed transformational
model permits this. A pure algorithm can be transformed into a
specific instantiation usable with a specific source language.

In some applications, although code is reused from project
to project, the cost savings of this reuse are not great.
Significant sections of the code must be rewritten even if the
"algorithm" doesn't change. Therefore, we need a mechanism for
classifying such algorithms. Other than numerical functions
(e.g. sine, tangent), the design of such a classification scheme
has so far eluded us.

The underlying structure of the proposed transformations
depends very much on algorithm design. A transformation which
takes an abstract algorithm and a machine description and yields
a source program on a specific machine needs as input a rich set
of abstract algorithms. Thus we need to continue research in
developing new basic algorithms for general purpose use. Current
research in evaluating bounds on algorithm execution time or size
is needed to give better cost estimates on their use.

Related to this is the need for generalized models (i.e.,
algorithms) of the programming environment itself. The program
design methodology is also an algorithm. The current trend is to
collect ideas like top down programming, stepwise refinement,
walkthroughs, chief programmers, etc. and call it a methodology.
These and other paradigms must be considered and evaluated.

c) Libraries and catalogues

Related to the issue of algorithm design is the need to
access what is actually available. As mentioned previously, a
classification scheme is needed to identify basic (non- numeric)
algorithms. We need a set of standard definitions so that two
algorithms that supposedly transform the same data type really do
so (e.g., two sort algorithms really have the same output data
given the same input data)

.

d) Data base design

Data bases are needed to manage the information within an
environment, thus they are an important topic. Managing objects
within an environment is usually a data access problem. However,
the group had little to contibute to this important research
area. The basic data models (hierarchical, network or relational)
must be studied for applicability within this environment. Query
languages needed to interrogate objects must be developed. The
existence of large memories at low cost is the basic
technological change we foresee in the near future.

-81-

5 . 3 Languages

.

Language is the glue that holds the model of section 2 together.
The ultimate goal of the system is to solve a given application
problem by constructing an object to solve this problem. This
object will specify the solution in some language. Due to the
large trained programming industry and the human nature to resist
change, this language will probably be some evolutionary
development from current day languages. Currently Fortran and
Cobol are the most widely used with languages like Pascal and
PL/I used to a much lesser extent. The current interest in Ada as
a new Department of Defense language for embedded computer
systems shows that all language issues have not as yet been
solved. While Ada is a step forward in solving many of the issues
in program design (such as abstract data types and module
design), there are still concepts that are not completely
developed in Ada (such as real time programming, formal
specifications, and parallel processing)

.

Current languages, such as mentioned above, are all variants
of the basic Algol 60 procedural structure that is based upon the
von Neumann computer architecture consisting of a large main
memory and a small fast arithmetic unit. Execution proceeds by
accessing a datum from the memory, manipulating it in the
arithmetic unit and replacing it in the main memory. The
execution is instruction by instruction. Other mechanisms are
possible. Languages like LISP and APL imply a different structure
and need continued investigation. Non- procedural approaches might
be an important developnent

.

This report previously addressed the need for a query
language to interrogate objects. The design of such a language
is also needed. The basic data contained by all objects that
such a query language could access is also unknown. This query
language must also interface with the programming environment'

s

command language needed to manipulate objects and to create new
objects by invoking some transformation.

Many of the problems in languages stem from the problem of
separating the language from the environment. What constructs go
into a language and which are given by the environment? Are
digits of accuracy, array bounds and file characteristics
language or environment issues? Most current languages confuse
this

.

The largest payoff will probably come in the area of
specification languages. Current day systems are extremely simple
in terras of the set of problems they can solve. There is no way
to write down a complex English- oriented specification today and
expect any sort of logical processing on it. There is also a need
to expand the domain of applicability and generalize their usage.
For example, HDM is one approach towards program verification

-82-

conditions. Other approaches need be tried. Systems like PSL/PSA
and SREM touch only part of the specification/ requirements
issues

.

The basic design of a specifications language is not yet
clear. In solving a large complex problem, the role of the
computer must be considered. In one paradigm (e. g., SREM) the
effect upon computer processing is central to the modular
breakdown of the system into components. However, in others, t.he

processing of data through the system is crucial with the
computer being only a component considered along with others.
There is no clear consensus as to which approach is best for a
specifications language or if possibly both are required
depending upon the application area. The answer.s are still
unclear.

5.4 Environment of the Environment.

The programming environment exists as part of a larger
environment - that of computers, programmers and other technical
personnel. The proper use of the programming environment depends
upon the proper interface between the programming environment and
this larger environment.

a) Technology

Given the environment, there needs to be a mechanism for
interfacing with it. One level is the programming language
discussed in section 5.3. The hardware that supports the
environment is another crucial factor. It was previously
mentioned that the hardware we envision will consist of large
memories with many dispersed systems all communicating via high
bandwidth communication lines. It is assumed that computing
power is "cheap." With the advent of mass production of
microprocessors, that technological developnent has essentially
arrived

.

Given a distributed system, where does the environment
reside? Parts will be local to the user and parts will be at
some central site. How to develop such systems and to develop
load sharing strategies are important research issues.

An important application area currently poorly handled is
the area of embedded computer systems. In this case software for
an applications computer is developed (usually) on some other
larger computer. While the developnent computer may have testing
tools for checking out the source program, the actual integration
testing stage consists of very crude octal dump routines on the
actual applications computer. There is an important need to
integrate this environment into a programming environment. There
has to be a way of simulating in an easier manner than at present
the host environment on the developnent environment.

-83-

Compatibility between environments will be an important issue.

b) User interface

The input/output device that connects a user to an
environment will greatly affect programmer productivity. Most
current devices are based upon the basic teletypewriter where the
user types in lines of text and the device responds with lines of
text

.

Graphics will have an increasingly important role in the
developnent of future devices. The resolution on many graphics
devices is increasing and the use of color adds an entire new
dimension to the process. Neither development has been explored
fully in the program developnent process. The first steps towards
graphical usage are the screen editors now becoming common. Color
adds information to a line of text without any loss, but has had
no impact as yet on development methodologies or tools.

Better graphics devices may change the way programming
languages are developed. All widely used languages assume stream
input; however, a screen input may be more practical in the
future. The location of a given statement on a screen can
indicate its structure. Visual presentation should make it
easier to comprehend a program. Thus concepts like BEGIN-END
blocks may become outdated in future languages and be replaced by
location constructs (e.g., prettypr inters in existing Pascal
compilers) , and the entire parsing and nesting structure of
languages may be altered (at least at the source language level).

Voice is another communication medium that is starting to
have an impact. Current systems can recognize a few words of
spoken voice and some work is progressing using digitized voice
for output.

Other than keyboards, touch plays little role today.
However, various experimental devices have appeared from time to
time and others can be expected in the future. There is a need
to incorporate these devices within the Input/Output structure of
existing and future programming languages.

c) Education

Educating people in the proper use of an environment is no
small task. Programmers, used to a standard way of developing
software, will probably resist changes such a programming
environment may bring. Retraining is an issue that must be
considered when an environment is developed, and not left until
the very end. However, our group did not have any concrete
proposals in this area. There is, also, the need to develop
training programs for new programmers. In addition, the
environment only specifies a set of objects and their

-84-

transformations. The actual methodology to use this system must
be developed.

5.5 Other Issues.

Several other topics are needed to provide an effective
environment. These topics are described as follows:

a) Quality control

The ability to measure and evaluate software all through its
development is critical for proper management control. This is
necessary for planning a new project and for monitoring a current
project to determine possible schedule slippage or other anomaly.
Automating these measures with the programming environment allows
for more frequent and objective measures to be collected.

Currently there is much research in complexity measures.
These measures are all based upon characteristics of source
programs that could be extracted by an appropriately designed
compiler. A correlation between such measures and human
characteristics like programming ability in a specific
application area would allow for better matching of programmers
and tasks. Other research in applying statistical theories of
error propagation on system reliability [6] should be a useful
management tool for evaluating system testing and ultimate system
reliability.

Other work is seeking better measures on programmer
productivity. One research problem is to simply define
productivity such that it applies to the entire software life
cycle. Given such a measure, management could use it to track
project progress. However, in order to measure productivity, we
have to collect data on v^at one is doing. It is not yet clear
exactly what needs to be collected. All data is currently
organized around the current phases of the software life cycle,
yet as mentioned previously, perhaps the entire model is not the
most effective.

b) Testing

Testing, a topic of interest as long as we have been
programming, is still imperfect. In spite of numerous tools, the
development of a random set of ad hoc test cases is still the
major testing strategy. Program verifiers, data flow analyzers,
symbolic execution and test data generators all exist in varying
degrees of success, yet are seldom used in spite of the fact that
they have been shown to be effective. More research is needed
here

.

c) Standards

-85-

The use of standards in programming environments must be
developed carefully. Programming environments are relatively new
and there are still many unanswered questions as to exactly what
should be in them. To standardize too early leads to imperfect
program development systems that may stifle innovation, yet to
standardize too late may be futile since everyone would have
his/her own variety of environment.

It seems highly unlikely that any standard environment could
be developed within the time frame considered in this report.
However, lower level more specific aspects of the environment are
ripe for standardization. Most noticeably, protocol issues
should be standardized. The interfaces between objects need
clarification. There should be a standard interface between an
object and its environment. Along with language standards, we
certainly would want specification and requirements language
standards. A common set of definitions for environmental issues
is needed. The interface between a user at a terminal and the
programming environment might be standardized.

5.6 What's omitted.

In describing this model, the group freely admitted that they
were not experts on several topics (on most topics, but not all),
or were unable to delineate clearly the benefits of the model on
specific program development problems. Some of these have already
been mentioned. This section contains several others.

a) System integration

It is not clear that the process of combining modules
developed by separate individuals will be truly helped by this
model. While we believe that it is so, we have nothing to base it
on

.

It is believed, however, that such a programming environment
will aid in managing the interfaces between modules developed by
different individuals, and thus aid in solving the system
integration problem. In addition, the historical data maintained
by the system for each object should aid in keeping track of a
module's developnent history. Again this will aid in system
integration

.

The problem seems to be in the "bug fixing" process.
Currently a programmer finds an error and fixes the problem.
During this time other programmers are generally not allowed to
add or change modules to the developing system. With the new
model environment, the management of such modules should be
enhanced, but is not clear how.

b) Maintenance

-86-

Some aspects of maintenance are aided by this model. Changes
and updates to the source code can be monitored. In addition,
with appropriate transformers, changes to specifications can be
(semi) automatically filtered into source programs and verified.

Distribution of the altered system to many sites poses the
same problems as system integration. Since each version of the
developed system will execute within a different programming
environment, some of the communication problems mentioned
previously must be considered.

c) Evaluation and Impact

As mentioned earlier, the evaluation and impact of this new
environment must be considered. Popularity is not a good measure,
but is the best we came up with. The development of good
objective productivity and reliability measures will aid in
evaluating this model as well as many others.

6.0 References

[1] Cheatham T. , J. A. Townley and G H Holloway," A system
for program refinement" , Fourth International
Conference on Software Engineering , Munich, September,
1979, 53-62.

[2] Goldstein I. P. and D. G. Bobrow, " Extending object
oriented programming in Smalltalk" , 1980 LISP Conference ,

Palo Alto CA, August, 1980.

[3] M. Hal stead. Elements of Software Science , El-
sevier Computer Science Library, 1977.

[4] Ingrassia F. S.," The Unit Development Folder - a new
approach to monitoring software developnent" , Advances
in Computer Programming Management , vol 1 . , Heyden and
Son, Philadelphia, 1980, 226-238.

[5] T. McCabe, "A Complexity measure", IEEE Transactions on
Software Engineering Vol 2, No. 4, 1976.

[6] Musa J. D. , "A theory of software reliability and
its application", IEEE Transactions on Software
Engineering , Vol 1, No 3, 1975, pp 312-327.

[7] Department of Defense, Requirements for the Ada
Programming Support Environment "Stoneman", February, 1980.

-87-

CHAPTER 6 SUMMARY

Group 1

Group 1 defined a series of four increasingly comprehensive,
and automated environments for medium and large development
projects. Each of the environments could be constructed using
state-of-the-art technology. It was assumed that all
environments included compilers, link-editors, assemblers, run
time routines, and source coder debugging systems. For large
systems, it was assumed that cross-compilers, simulators, and
emulators were also available. The most modest developnent
environment, for medium size projects, augmented the base tools
with

:

* a manual requirements definition and specification
methodology,

* a data dictionary to facilitate design,
* an automated (but simple) source code control tool,
* a file comparator for use in verification, and
* manual milestone charts to support project management.

In all but the most modest environment, the tools interfaced with
a central data base, using it as the source of information and
storing results back into it. Thus the data base became the
integration medium. The most elaborate environment was designed
to support the development of large, real time systems. It
included automated tools for requirements specification, design,
extensive program analysis and testing, documentation
preparation, and system management. Archiving and change control
facilities for requirements, design, and source code documents
were also provided. In all four of the environments the emphasis
is upon organization, management, and control. Procedures are
well defined and documented and records are maintained so project
status is discernable throughout development. In each successive
environment more of the procedures are automated and additional
tools are provided to assist in analyzing and managing the
products and the project itself. Group 1 felt that all four of
the environments could be built today.

Group 2

Group 2 was charged with investigating environments that
could be produced within 5 years. For developnent environments
of this category, the technology for the parts and pieces is
largely in place but innovation is required to integrate the
components into a coherent vv^ole. Group 2 considered five

-88-

characteristics paramount for a development environment to
possess

:

* breath of scope and application,
* user friendliness,
* reusable components,
* tight integration, and
* use of a central information repository.

Group 2 stressed the difficulty in building a true software
development environment. They felt that an environment must have
a broad scope and must be based upon a deep understanding of the
software developnent process. Although such an understanding is
growing, it was felt that additional insight is required before a
firm foundation for an environment can exist. Consequently a
phased research approach was adopted. First, small prototype
environments for specialized task areas where procedures are well
defined and understood should be constructed. After
experimentation with the specialized environments, broader scoped
general purpose environments should be constructed.
Experimentation should be directed toward the key issues
associated with the critical characteristics of an environment.
For example, the dependency of an environment upon life cycle
models, programming language, user application, and project size
should be investigated to determine the breadth of scope
practical in an environment. Group 2 felt that research plans
for longer than 5 years were unwise because the area is one of
such creative activity that the potential for great upheaval and
radical change is high.

Group 3

Group 3, tasked with defining research issues and directions
for development support systems, was challenged with creative
disagreement. The diversity of views underscored the ferment and
activity in the research community. Basic to the conflicts were
disagreements about the user and the usage setting for
developnent environments. Some felt that 10 years in the future
large development projects will still be done by large groups of
people who must communicate, cooperate, and be managed. The
basic tasks will remain quite similar to those of today but the
development environment should provide an automated solution to
many of the information and people management concerns of today.
Others felt that future development projects will be accomplished
in a very different manner. Application oriented users will play
a greater role in the development, using languages and tools
closely meshed with their application expertise. Programming
environments will be so powerful and the productive potential of
each developer will be so greatly increased that much smaller
groups will be able to accomplish the development of even large
projects. However, even with such fundamental disagreement about

-89-

how software development will be done in the future, both
factions agreed (more or less) upon certain technical issues.

* Rapid prototyping Future developnent systems should
facilitate the quick, inexpensive creation of operational
prototypes or models.

* Layers of refinement— A progressive refinement from
application domain model to machine implementation was
viewed as a basic mechanism for creation and
representation of the product.

* Documentation Documentation should be viewed as the
by-product of the production process with both the
intermediate products and the process itself being saved.

* Maintenance Maintenance should be viewed as
incremental redevelopment.

* Information organization and management
Organization and management of information are
fundamental and critical aspects of the program
developnent environment. Until solutions to the
information management problems are found, programming
environments will be unable to realize their full
potential

.

Group 4

Group 4 was concerned with research issues for environments
based upon a programming language approach to developnent. They
modelled an environment as a hierarchy of objects, where each
object is a collection of entities. An entity is defined to be a
set of attribute- value pairs. Objects are related to other
objects in the hierarchy through the application of specific
transformations. Program developnent within the environment is
viewed as a series of object transformations, where each
transformation refines a general or abstract object into a more
detailed or concrete object. The transformations can also be used
to ascertain program development information, perform
optimization, produce documentation, etc. Such development
environments are to serve expert users who would work in groups
to develop software products. Five major areas of research
activity were delineated by Group 4:

* Environment Issues—Several key areas require
investigation to develop a stronger model of programming
environments: more accurate models of program
development, better understanding of required object
transformations, effective measuring techniques, and
accurate assessment of the future hardware base.

-90-

* Knowledge and Reasoning Issue s- -Prog ramming
environments provide automated assistance to programmers
to augment their capabilities. To do this adequately we
need more knowledge about algorithms and information
handling

.

* Languages--A great deal of research remains to be done
on languages. The inherent structure of languages and
language classes needs investigation. Language approaches
to specification and query are also fruitful areas for
research

.

* Inter faces--The influence of hardware and people on
environments must have additional study and development.
Utilization of future hardware technology and successful
interface with users may determine the ultimate success
of development environments.

* Other—How to develop high quality software is an open
question that environments are being designed to answer.

Workshop Overview

As might be expected in a new area of high interest, the
workshop participants did not speak with one voice. However,
there was agreement on two major items:

* the importance of using automation to assist software
development, and

* that successful information management was a critical
but perplexing issue.

The group tasked with the most near term approach suffered the
least disagreement and developed the most definite statement.
The groups tasked with looking into the future found quite a
range of images in their respective crystal balls. Perhaps the
area of most fundamental disagreement was the conception of what
could be accomplished within a 5 io 10 year timeframe. It
appeared that this disagreement was based upon very different
perceptions of the current state-of-the-art. Some saw present day
reality in terms of projects underway in the research labs

7

•)cthers viewed reality as mirrored by the technology in use in
current production shops. The profound lag in technology
transfer from construction of research prototypes to the use of
the concept in the production arena impacted the workshop as it
does the industry. Another broad area of disagreement was
the intended user group for future software development
environments. The disparity of views about the user population
led to differences of opinion about the functions required within
a development environment. Considering the pervasiveness of the

-91-

disagreement, there was surprising agreement about technical
approaches. Software development was viewed as a series of
refinements of objects from the general requirement specification
to the concrete realization of the program. Discovery of the
transformations and the increasingly automated application of the
transformations was seen as an important research topic. The need
for the rapid construction of prototypes was viewed as an
important component of future development environments and an
important concept to apply to the development of the environments
themselves. It was felt that only through continued environment
construction, experimentation, and reconstruction would the goal
be achieved. Almost everyone saw a data repository as the heart
of a software development environment. However, there were few
opinions expressed on how to deal with the wealth of information
that all felt should be kept. The participants agreed that
development support systems and programming environments were
important topics and ripe research areas.

Omissions

Although many topics were discussed at the workshop and many
issues raised, in reviewing the results, major omissions became
ev ident

.

1. Identification of major settings.

During workshop planning sessions it was agreed that the
type of programming environment required would be highly
dependent upon the setting in v^ich it was to be used.
Identification of major settings was deemed a task that merited
attention at the workshop, but it was never adequately addressed.

2. Determination of what to do with the wealth of information
comprising the environment data repository.

There was almost universal agreement that a data repository
was at the heart of a programming environment or development
support system, but little more was said on the subject. What
information should be saved? How it should be organized? Who
should manage or control the information? To v^om should what
access be granted? All are questions that if even asked,
generated few responses. Handling of the data associated with an
advanced development support system is a key issue that may well
determine the ultimate success of such systems.

3. Validation of programming environment technology.

The entire software field suffers from an inability or
perhaps an unwillingness to validate its technology. In the
beginning of this still rather new field, the mere existence of a

-92-

working system (or program) that seemed to accomplish its
designated task, was taken as proof enough of the validity of the
approach. As scientists become more concerned with which of
several proposed ways is the best, the question of validation
creates problems. Projects are so expensive that it is not
feasible to perform experiments of realistic size that compare
alternative techniques for development. Possible approaches to
this problem of determining the validity of techniques was sought
at the workshop. No discussions ensued.

Recommendations for NBS

Obviously it is too early to specify detailed standards for
sophisticated software development support systems and
development environments. However, it is not too soon to
consider the standardization issues and approaches. Inopportune
environment design could preclude potentially advantageous
approaches to standardarization . The most promising and
appealing approach is to define standard features, protocols and
interfaces so that functional pieces can be independently
developed and yet be compatible and capable of being used as
building blocks in the construction of environments. The
workshop suggested specific avenues to pursue.

-93-

APPENDIX A

Group 1: Contemporary Systems

Paul Cohen , DCA
William Howden , UC-San Diego
Al Irvine, Softech
James King, IBM
Patricia Powell, NBS
William Riddle, Cray Labs
Leon Stucki , ECS
Leonard Tripp, BCS

Group 2: Five Year Systems

Lori Clarke, U. of Massachusetts
Donald Good, U. of Texas
Raymond Houghton, NBS
Thomas Love , ITT
Leon Osterweil, U. of Colorado
Patricia Santoni , NOSC
Daniel Teichroew, U. of Michigan
Anthony Wasserman, UC-San Francisco

Group 3: Support Systems

Robert Balzer, ISI
David Barstow, Schlumberger-Doll
Meera Blattner , LLL
Martha Branstad, NBS
John Buxton, U. of Warick
Adele Goldberg, Xerox
Robert Morris, Bell Labs
Stephen Squires, NSA
Thomas Standish, UC-Irvine

Group 4: HLL Approach

W. Richards Adrion, NSF
Alfred Aho, Bell Labs
Daniel Bobrow, Xerox
Thomas Cheatham, Harvard
John Cherniavsky, NSF
Susan Gerhart, ISI
Gordon Lyon, NBS
John Nestor , Carnegie-Mellon
Terry Straeter , General Dynamics
Marvin Zelkowitz, U. of Maryland

-94-

APPENDIX B

QUESTIONS AND ISSUES

In order to clarify the domain of each working group and
stimulate thought, a list of questions and issues has been
prepared. A set of general questions plus sets specific to each
working group have been included.

General Questions

1. Support requirements seem to vary drastically depending upon
the application, project size, general skill level of the
developers, etc. Identify major categories of environment
settings. For example, one category is the single gifted user
setting

.

2. Given the setting, what are the requirements?

3. What is the impact of using a programming environment, and of
not using one? How can the impact be determined?

4. What criteria should be used for determining the suitability
of a programming environment?

5. How can the technology be validated?

6. What is the state of the art?.
. What can we do today?
. What can we do starting today?
. What should we plan for tomorrow?

Group 1: Tools and Techniques

Assumptions: Today' s technology

Group products:
1. list of core tool functions
2. discussion of feasibility of standard tools
3. discussion of mechanisms for standardizing tools
4. discussion of tool research issues

Issues

:

-95-

1. Identification of the core set of tool functions and
systematic development techniques.

* what tool functions do various classes of development
personnel require?

* what tool functions support which life cycle activities?
* what tool functions support which life cycle products?

2. Identify tool properties and discuss their importance.

* availability
* capital costs
* operating costs
* functional capabilities
* complexity
* life cycle placement
* automation
* effectiveness
* domain and range
* auditing
* management
* applicability

. area of application
_ana uaae

. CLJ-cd ^j. a. J. J

. language

. project size

3. Tool organization and availability

* identify those tool functions currently available as
features of automated development tools and classify
those tools as multi- or single function

* indicate those not currently available, but which can
be constructed with today' s technology as extensions
to current tools or as new tools.

* compare the advantages of large multifunction tools
with those for collections of independent single
function tools

Group 2: Integrated Systems

Assumptions: today' s technology with a 5 year delivery date

Group products:
1. feasibility of standard integrated system

a. standard framework plus tools as building blocks
b. standard system for each Federal standard language
c. standard tool interfaces

2. mechanisms for handling a standard integrated facility

-96-

Issues

:

1. Is there an ideal or best methodology for the software
developnent process? What are desirable features of
development methodologies?
* What are the principal activities during development?
* What data flows between these activities?
* What metrics can be used to decide when to go to another

activ ity?
* What automation exists for these activities?
* What automation has been the most effective?
* What information is needed to support these activities?
* What are the proper roles and relations of human choice

and machine support?
* What are the most critical activities and what support
could most improve performance in these areas?

2. What are the primary products produced during software
development?
* What are they called and what is their nature?
* What information content should they have?
* How do they feed each other?
* How, when, and by whom are they produced?
* What tools are needed to facilitate the production,

storage, and retrieval of these products?

3. How should tools be organized?
* What development activities should be supported?
* How well are related activities supported by related

tools?
* Indicate data inputs/ outputs for tool classes.
* To what extent can existing tools be integrated and at

what cost?
* Major design issues

. interfaces

. representation

. data management

. extensibility
* List tool areas that need further development.
* Which methodologies can be supported by currently

available tools?

Group 3: Advanced Support Systems

Assumption: research and development area

Products

:

1. list of key technical issues
2. framework for critical research and development
3. feasibility of standard development support systems

-97-

Questions and Issues:

1. Design Goals: What should the design goals of an advanced
development support system be? What purposes should an advanced
programming environment serve?

2. Software Quality: What aspects of software quality should an
advanced programming environment support: (a) in the advanced
environment itself?, and (b) in the application systems the
environment is used to construct and maintain?

3. Software Lifecycle: What phases of the software lifecycle
should an advanced programming environment support? (a)
requirements analysis, (b) specification, (c) design, (e)
implementation and coding, (f) debugging, testing, and module
integration, (f) maintenance and upgrade?

4. Software Management Support: What software management support
should an advanced programming environment provide? (a) cost
estimation, (b) critical path scheduling, (c) task schedule
management, { d) reporting on resources spent, (e) monitoring of
performance of programmer teams, (f) others.

5. Program Development Tools: What program development tools
should an advanced programming environment support? (a) program
analysis, (b) program transformation and optimization, (c) text
and document management, (d) version control, (e) others.

6. Database Properties: What should be the structure of the
database for an advanced programming environment? What should it
contain? What policies should there be for user access privileges
and capabilities?

7. Documentation: What special support, if any, should be given
to documentation in an advanced programming environment?

8. User Interface: What should be the properties of the user
interface to an advanced programming environment? (a) consistent?
(b) extensible (as with the UNIX Shell)?, (c) others?

9. Pervasive Services: What pervasive services should an
advanced programming environment offer (i.e. services available
at any time that can interrupt any activity, and which allow the
interrupted activity to resume after use)? (a) help system, (b)

on-line manuals and documentation, (c) others?

10. Maintenance and Upgrade: What special tools and disciplines
should an advanced environment support, if any, for the
activities of maintenance and upgrade?

-98-

Group 4: Language Environments

Assumption: research area

Products:
1. feasibility of approach and domain of applicability
2. major research issues
3. timeframe for research and development
4. impact on and interaction with Federal standards

Questions:

1. Language issues in a HLL programming environment

Language features
. Can a consistent and complementary language be used to
describe requirements, specification, design, code, testing
and maintenance?

. What will such a language look like? Will it be
procedural (e. g. Algol-like), applicative (e.g. Lisp-like)
or other?

. Will we need several 'similar' languages to use over a
project's lifetime? Do we now have the technology to build
such a system?

. What concepts now under study will be more important for
new languages?

. What ideas not now being studied should be?

. Some of the concepts now being investigated include:
encapsulated data types, modules and information hiding, top
down, bottom up, stepwise refinement, stubs, threads, etc.,
process protection and synchronization, formal specifications,
source code verification, testing strategies. What should be
added to this list, and what deleted?

*The concept of a program design language (PDL) or pseudo code
has been proposed as a design language.
. How can these be automated?
. What information can such a compiler produce to aid the
designer "see" the entire design?

. How can these designs be converted to source code?

. How can these be automatically updated whenever source code
is updated?

. Can this idea be extended to specification languages or
requirement languages?

2. Interface with other technologies

*What sort of tools are needed?
. Are the current crop of tools sufficient, or do we
need to rethink the entire development process?

. Most current tools emphasize development. How do we

-99-

incorporate maintenance and enhancement into process (and
language)?

*V?hat effects will the current hardware technology have on
language environments; specifically, what will cheap
microprocessors with large memories have?

*Integrated tools will need to access a project data base.
. What sort of language is needed?
. How do we manage the insertion and retrieval of data?

*Does artificial intelligence play a role here?
. What sort of knowledge-based data structures are needed?
. Do we have the technology today to build such a system?

Impact and directions

*How do we measure productivity?
. What sort of accounting, data collection and auditing

is needed in such an environment?

*What are the current major efforts in this area today?

*Where should research (and research funds) be directed
over the next 5 jo 10 years?

*Can we identify who' s now doing what?

it U.S. GOVERNMENT PRINTING OITICE : 1981 O—340-997 (1719)

-100-

NBS-n4A (REV. 2-8C)

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No, 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NBS SP 500-78 June 1981

4. TITLE AND SUBTITLE

NBS Programming Environment Workshop Report

5. AUTHOR(S)

Martha A. Branstad and W. Richards Adrion, Editors

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. Stote, ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 81-600068

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

In May of 1980, NBS hosted a workshop to assess the state-of-the-art in

programming environment technology and to determine the key questions and

issues that must be addressed to use these techniques to improve software

quality and productivity within the Federal Government. This document

reports the results of the workshop.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

development support systems; programming environments; software development;

software tools; toolboxes.

13. AVAILABILITY

fX] Unlimited

I I

For Official Distribution, Do Not Release to NTIS

[X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

106

15. Price

$4.75

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

Ciiy State Zip Code

(Notirication key N-S03)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$13; foreign $16.25. Single copy, $3 domestic; $3.75 foreign.

NOTE; The Journal was formerly published in two sections; Sec-

tion A "Physics and Chemistry" and Section B "Mathematical

Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and

technology, with primary emphasis on work at NBS. The magazine

highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement

standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and
automatic data processing. Annual subscription; domestic $11;

foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE; The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AlP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based on
NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)—Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMEHCE

COM-21S

3rd Class

