
c^Te'Js:"" Computer Science
and Technologytional Bureau

Standards

NBS Special Publication 500-77

Specifications and Test
IVIethods for Numeric
Accuracy in Programming
Language Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology' — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

Some divisions within the center are located at Boulder, CO 80303.

-or£«p' Computer Science
JUN15 1981 and Technology

NBS Special Publication 500-77

Specifications and Test
Metlnods for Numeric
Accuracy in Programming
Language Standards

John V. Cugini

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards

Ernest Ambler, Director

Issued June 1981

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end of

this publication.

National Bureau of Standards Special Publication 500-77
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-77, 42 pages (June 1981)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 81-600056

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON; 1981

For sale by.the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Price $2.75

(Add 25 percent for other than U.S. mailing)

Specifications and Test Methods for Numeric Accuracy
in Programming Language Standards

by John V. Cugini
Institute for Computer Sciences and Technology

National Bureau of Standards

Abstract

.

This publication formulates language-independent and
machine-independent criteria for assessing the quality of
floating-point arithmetic operations and functions. The criteria
require that results be within the limits generated by perturbing
the arguments or operands by a specified amount, and thus allow
for the mathematical instability of some functions at certain
arguments and also for the granularity of numeric representation
inherent in digital machines. Automatic test methods derive
naturally from the accuracy requirements. Model algorithms for
testing are included.

Key words

;

Computer arithmetic; conformance testing; numeric
accuracy; programming language standards

1

Table of Contents

1 Introduction 4

1.1 The Problem of Specifying Numeric Accuracy 4

1.1.1 Standardization Problems 4

1.1.2 Implementation Problems 5

1.2 Design Goals 6

2 Mathematical Instability 7

3 Machine Granularity 8

4 Criteria for Numeric Accuracy 10

4-. 1 Criteria Based on Argument Perturbation 10

4.2 Bounding the Argument Error 13

4.2.1 Relative Error 13

4.2.2 Significant Digits 14

4.2.3 Floating Point Decimal 15

4.3 Conclusions 17

5 Test Methods 17

5.1 Design Goals 18

5.2 Accuracy of Numeric Constants 18

5.3 Sufficiency of Test Method 20

5.4 Coding Necessary Tests 22

5.4.1 Relative Error Test 22

5.4.2 Floating Point Decimal Test 24

5.5 Testing Compound Expressions 25

5.6 Multiple Operands «. 26

2

5.7 Special Cases 26

5.7.1 Arguments and Operands with Small Integer
Values 26

5.7.2 Non-m.onotonicity within Allowed Domain 27

6 Limitations 28

6.1 Overflow and Underflow 28

6.2 Not Appropriate for all Functions 29

6.3 No Guidance for V/hich Arguments 29

7 Summary 29

Appendix A - Sample Wording for Software Standard 31

Appendix B - Sample Algorithms for Automatic Test Procedures.. 33

References 39

i
3

1. INTRODUCTION

1.1 The Problem Of Specifying Numeric Accuracy

1,1.1 Standardization Problems

In order to support program portability, programming

language standards [FOPT78, EASI78, PL/176, Jens75, Ada80]

endeavor to specify the behavior of standard-conforming programs.

In the ideal case, the language standard would assign a unique

semantic meaning to each standard program. Thus, a

standard-conforming program would produce exactly the same

results even when executed on different kinds of computing

hardware, given standard-conforming language processors for those

systems

.

In certain functional areas, such as integer arithmetic,

character string manipulation, and control structures, the actual

situation closely approaches the ideal. In so-called "real" or

"floating point" arithmetic, however, this is not so, largely for

two reasons. First, there is no one, obviously "best", way for

digital hardware to model the capabilities in question, and so

one abstract operation, such as division, has a variety of

mutually inconsistent implementations. There will be more detail
^

on the problems of simulating real arithmetic on discrete
\

machines throughout the paper. Second, implementations of real

arithmetic in a language are almost always closely bound to

underlying hardware, among which there is such diversity. A

language primitive, again taking division as an example, is

typically handled directly by a corresponding hardware primitive

(not, for instance, by a software routine operating on strings

whose characters represent the operand values) .

How then can a language standard treat real arithmetic? Let

us distinguish three approaches (from strictest to most lenient):

1. Specify exactly what the results of any arithmetic expression

must be, perhaps in terms of an abstract machine. This

approach preserves the strict notion of standardization
mentioned above: for each program there is a unique

interpretation

.

2. Formulate some criterion of accuracy which does not uniquely

specify a result for any given operation or function, but

rather sets a constraint which processors must obey in order

to conform. Thus, for a standard program, there exists a set

of "legal" outcomes, any one of which a processor is free tq

assign. f

3. Explicitly or implicitly disavow any criterion of accuracy.:

As long as a processor recognizes the syntax associated with

the language's functions and operations, it may assign an^^

value as the result and still conform, technically, to thcf

standard

.

4

The first approach, while theoretically satisfying, is not
practical, in that few if any implementors could be expected to
abide by such a strict rule. Moreover, even if there were
conforming processors, specification of e unique answer would
necessarily place an upper as well as lower bound on the accuracy
of the result. That is, under such a rule, processors would be
forbidden to achieve a mere accurate result than specified, since
this would conflict with the standard just as would a less
accurate result .

The third approach is, in fact, the one currently being used
by many of the popular languages with real arithmetic, e.g.,
BASIC, FORTRAN, Pascal, and PL/l (Ada does specify an accuracy
rule for computation with real numbers v^hich is similar, although
not identical, to the approach which will be described herein).
The disadvantages of failure to specify accuracy should be
apparent; it is not a strategy for standardization, but rather
an abstention from standardization. The theoretical problem is
that there is no result a processor can generate, no matter how
outlandish, for which one can cite the standard to show that the
processor has failed to conform. More practically, such a
"standard" gives implementors no guidance as to what level of
accuracy their processors should achieve, and so lower quality
arithmetic is encouraged by default. Furthermore, purchasers
have no way to compare language processors with respect to the
quality of their mathematical functions. In short, it simply
does not suffice for a language standard to appeal to our
intuitions about what constitutes reasonable behavior for a

processor, nor can a standard naively state that "+" means
addition in the formal mathematical sense and let it go at that.
Computers can do useful simulations of real arithmetic but
simulation is not identity and it is the job of the standard to
specify the capabilities and limitations of the processor's

j implementation of real arithmetic.

It is the contention of this paper that the second approach
' is the preferable alternative; that it would address the
problems of standardization and quality just mentioned, while
1 still being a realistic goal implementors could reasonably be
expected to achieve.

I
1.1. 2 Implementation Problems

I
If setting accuracy limits is a good idea, why hasn't it

>|been done? One practical problem is that word lengths (to hold
1 floating point values) differ among machines and it would be
1 unwise for a language standard to make conformance difficult

I

simply because of hardware constraints. More importantly, there
'is the general problem of characterizing the behavior (and any
/useful criterion of accuracy will depend on this
'characterization) of discrete simulation of the mathematics of
ireal numbers. If there were some simple exact model for such
|simulation (such as exists for character manipulation, e.g., one

5

character per byte) we would expect that language processors and
the underlying hardware would long since have adopted this model,
and no problem would ever have arisen. Note that this is the
situation that prevails for logical operations which are
themselves discrete in nature and thus allow for exact simulation
by discrete machines. Few difficulties attend the implementation
of string concatenation or substring operations just because
exact simulation is possible and therefore all implementors
converge on the exact logical specification. But real
mathematics is inherently non-discrete. No machine can return
the exact value for SIN (0.2), since this is an irrational
number. The impossibility of exact simulation of real
mathematics leads to diverse implementation, hence the difficulty
of formulating an acceptable accuracy criterion.

What are the practical implications of these theoretical
considerations? What, concretely, are the sources of inaccuracy?

1. The granularity of numeric representations in discrete
machines. The general problems discussed above find their
hardware expression in the finite (and usually fixed) number
of bits for the mantissa and exponent of a floating point
number

.

2. The inherent instability of some functions and operations for
certain arguments. It is easy to produce cases where a small
error (relative or absolute) in the argument will generate a
much larger error in the result. We will see that this
instability interacts with machine granularity, to ill
effect

.

3. Poor algorithms, both at the hardware level for elementary
operations and in subroutine libraries for functions.

Clearly, when testing how well a computer system has
implemented its mathematical capabilities, we need somehow to
build into our test criterion a recognition of the unavoidable
limitations imposed by the first two items. Any inaccuracy
beyond that attributable to these causes must be presumed to
result from sub-optimal implementation and it is just this that
we would like to discourage.

1.2 Design Goals

The objective, then, is to formulate a criterion of accuracy
for floating point operations and functions which meets the
following specifications:

1. Since the problem of standardization cuts across language and
machine boundaries, the criterion should apply generally to
floating point arithmetic. It should be based on only
minimal assumptions (and these should be explicit; see next

item) about the implementation mechanism. It should not be
tied to properties peculiar to individual programming
languages or computing hardware. In particular, the
criterion will neither imply nor rely on any standardization
of mathematical operations at the bit or hardware level .

Hardware standardization is a worthy but distinct goal,
currently the object of an IEEE effort [Coon80l.

2. VJe will assume only that real values are represented in
familiar fixed precision, floating point form. Throughout,
the convention shall be that "d" represents the number of
digits of precision, and "b" the base. There is no provision
for fixed point numbers, nor for variable precision or
multi-precision capabilities.

3. The criterion, to be meaningful, must reject poor
implementations. On the other hand, it should be possible
and practical for a conscientious implementor to meet the
criterion, using currently available hardware. This means,
for instance, that the problems of machine granularity and
mathematical instability must be taken into account.

4. The criterion should provide an explicit and objective metric
for the quality of implementation. This is important not
only so that we can determine whether or not a processor
conforms to the language standard, but also so that
purchasers will have a reasonable means of comparison when
judging processors' mathematical facilities.

5. The application (even if not the justification) of the
criterion ought to be exoteric, especially in that one of its
principal purposes is incorporation into language standards.

2. MATHEMATICAL INSTABILITY

In this section, we will focus on functions of a single
variable. The results apply equally well, however, to the
arithmetic operations, which can be thought of as functions of
several variables. This generalization will be explicit in later
sections

.

It is important to realize that a function may be extremely
sensitive to an error in its argument(s), and that this holds for
relative as well as absolute error. That is, just as a given
absolute error in an argument does not imply a similarly small or
large absolute error in the value of the function, so also a

given relative error in an argument does not bound the resulting
relative error in the function value. In the case of absolute
error, we may expect the error in the function to be magnified
roughly by the slope of the function in the vicinity of the
argument, i.e., approximately:

7

absolute error in f(x) = f'(x) * absolute error in x

Similarly, there is a relative error magnification factor, such
that, approximately:

f '

(x) * X
relative error in f(x) = * relative error in x

f(x)

For example, sin(3.1416) is quite sensitive to relative errors,
and arccos(. 0000001) quite insensitive. For further details see
Sterbenz [Ster74].

The point is simply that knowing the argument accurate to
one part in a million does not guarantee similar accuracy in the
resulting function value. This is a proposition of mathematics
and has nothing to do with the characteristics of computers. Any
reasonable criterion of accuracy for computer evaluation of
functions must, however, allow for the relative sensitivity, or
insensit ivity, of the function and argument in question.

3. MACHINE GRANULARITY

Machine granularity refers to the inability of a discrete
machine to represent real numbers exactly. Specifically,
arguments to functions will generally be represented with some
unknown but bounded error. As discussed in the last section,
even a small error in the argument may produce a large error in
the function value. Clearly we need to understand the
relationships among machine granularity, accuracy, relative
error, and numerical computation.

All modern digital computers represent floating point
numbers as a series of d digits (with an implicit radix point)
times the base, b, raised to some integral power. An impl icit
des ign goal is to keep the relative error for representation of
any numeric value within some constant bound

.

Thus, when
discussing real arithmetic and accuracy, relative, rather than
absolute, error is the appropriate measure. (Why, one may ask,
do machines not adopt a direct logarithmic representation, which
would keep relative error exactly constant? The d,b form is
preferred because there exist reasonable algorithms for both
addition and multiplication of numbers in such form, whereas
addition of logarithmically represented numbers is difficult.) In
particular a "d ,b" machine (one whose floating point numbers use
d digits of base b) can always represent a value with relative
error <= b**(l-d) / 2^ [Ster74] . The actual relative error may be
quite a bit lower, firstly, just because the value to be
represented happens to be very near one of the available hardware
encodings (e.g., as with relatively small integer values), and
secondly because the value is near the high end of the set of
values for a given exponent. Specifically, on this second point,
where N is an integer, values just above b**N will be susceptible

8

to a relative error of b**(l-d) / 2, as just mentioned, but
values just below b**N can always be encoded with an error <=
b**(-d) / 2. Let "x" stand for some value which is to be
approximated by the best available hardware representation in a
d,b machine. Then, the general formula for the bound, P, on the
relative error of the approximation is (where logb is the log
base b, P is the logb (abs (x)), and INT(P) is the largest
integer <= P)

:

b ** (INT (P) - P - d + 1

)

R

or, logarithmically:

logb (R) = INT(logb(abs(x))) - logb(abs(x)) - d + 1 - logb(2)

Graphically:

-3 -2 -1

logb (R

)

logb(abs(x)

)

12 3

-d+l-logb(2

)

(least accurate)

-d-logb(2

)

(most accurate)

So as x goes through a cycle of values (those within one
exponent value), the maximum relative error gets gradually lower,
until we begin a new cycle, at which time, the error jumps up to
the worst case again.

One other result will be relevant in the next section. Let
us ask, what is necessary for one d,b machine to match the
performance of another? We will characterize the target machine
by dl,bl and the simulating machine by d2,b2. We must force the
least accurate representations within the simulator to be at
least as good as the most accurate within the target. Using the
previous expressions for relative error bound, we derive:

bl**(-dl) / 2 >= b2**(l-d2) / 2

b2 ** (d2-l)
>= 1

bl ** dl

9

(d2 - 1) - (dl * logb2 (bl)) >= 0

d2 >= 1 + (dl * logb2 (bl))

How many bits, for instance, do we need to maintain six decimal
digits of precision, for all values? Using the formula:

d2 >= 1 + 6 * log2 (10)

d2 >= 1+6*3. 32193

d2 >= 20.9316

i.e., at least 21 bits.

In the special case where bl is an integral power of b2 , or
vice-versa, we can relax the original condition, because their
cycles "line up" and thus the most accurate regions for the
target will never coincide with the least accurate of the
simulator. Such a simulator can always represent any number as
accurately as the target as long as d2 >= dl * logb2 (bl) . Thus
we see that, in the general case, it costs the simulator exactly
one more digit than in this more favorable special case.

4. CRITEPIA FOR NUMEPIC ACCURACY

4.1 Criteria Eased On Argument Perturbation

The set of criteria proposed herein is based on the
following ideas:

1. Any conventional machine can encode, in floating point form,
any numeric value to some reasonably specifiable accuracy,
expressed as a maximum relative error, or in some closely
related way, e.g., significant digits.

2. Every such encoding represents some exact value, which can be
treated as if it were error- free (although, with respect to
the source code, this is not typically so) . For any of the
familiar functions provided by high-level programming
languages, there exists an algoritlim (since these functions
are, after all, computable) [Bohl75] which will return the
"best" approximation of the function value (for the argument
as encoded internally). That is, the encoded function value
returned will be no farther from the real value than any
other available encoding.

3. The effect of the error involved in encoding the argument is
highly variable, as suggested in the section on mathematical
instability. Accuracy criteria must reflect the sensitivity
of the function and argument.

10

The criterion, then, broadly speaking, is that, within some
determined allowance for encoding of numeric values,
implementations under test must do no worse than the best
possible implementation operating on the worst value (s) allowed
for the argument(s). That is, we imagine the behavior of a

hypothetical d,b machine (the target) with optimal algorithms for
its arithmetic. The implementation under test (the simulator)
must do, in some sense, at least as good as the target. We must
be careful not to lean too heavily on the above image; though it
can be a helpful conceptual aid, we shall see that it is
susceptible of varying interpretations.

Let us confine ourselves for the moment to the problem of
what we should expect of the evaluation of a function of simple
numeric constants. A precise formulation is: we specify two
functions, el(x) and e2(x), which define the endpoints of a real
interval containing x. We then require that the result of any
computed operation or function be some value actually taken on by
the operation or function within the domain [el(x), e2(x)]. This
requirement is represented by set A below. In some cases no
internal representation may exist which strictly satisfies this
requirement, e.g. arccos (lE-22); we then enlarge the range
just enough to allow for this possibility, and this is expressed
by set B.

In set notation, then, where cf(x) is the computed value of
f(x), the requirement for continuous functions of a single
variable is:

cf(x) € A U B, where

A = { y I y=f(x) " el(x) <= x <= e2(x) }

max(A) + min(A)
B =

{ y I M = " el(M) <= y <= e2(M) }

2

The purpose of the error bound functions, el and e2, is to

I

allow for the granularity inherent in digital machines. We will

[
face some difficulties in devising a suitable bound; there are

i several plausible choices, each with its own advantages and

I

drawbacks (see section 4.2, below). The criterion above is

') easily generalized to functions of several variables simply by

I

requiring the computed result to be within the range generated by

i the multi-dimensional domain specified by the application of el

1
and e2 to each of the arguments. Also, in cases where A is

I discontinuous (e.g. as can occur with TAN and MOD), there must

;
be one set B for each continuous interval in A. For the common

I

language-based functions, there will be no more than two such

1 intervals.

More generally, for any numeric expression, we can state the

criterion recursively: the computed function must evaluate to

some value actually taken on by the true function within the

11

domain formed by the allowed evaluation of the argument{s). If
the argument is itself the result of a function (or operation),
the criterion must be re-applied to that function. If the
argument is a variable, its allowed evaluation is that of the
expression last assigned to it. If the argument is a constant,
the allowed evaluation is given by el and e2

.

The motivation for this criterion follows directly from the
considerations presented earlier. By allowing the implementation
to return any value actually taken on by the function in a given
domain, we allow for possible mathematical instability within a
relevant vicinity, not just at the nominal argument. Moreover,
this scheme not only allows somewhat inaccurate results where
precise computation is difficult, but it also requires high
accuracy where theoretically achievable.

The case for setting up an optimal implementation as a
target rests on two observations. First, the use of a criterion
based on a hypothetical d , b machine does not imply that the
implementation under test uses exactly d , b hardware

.

Just
because the target is conceived as an optimal implementation does
not mean that a real implementation must be optimal to its last
bit to pass. Rather, as we will see in detail later on, we can
establish a series of target machines and then implementations
under test can be easily classified according to the most
stringent criterion they are capable of passing. It is not the
primary purpose of the criterion to determine whether or not a
given system is producing results which are optimal for its
particular d,b characteristics (although there is a relationship
between optimality of the simulator and of the hypothetical
target, as we shall see below) . Rather we look at the accuracy
we could expect from an optimal implementation using, say, six
digits and then ask merely whether or not the implementation
under test has done at least as well regardless of the number of
digits it actually uses

.

If it does as well, then we may
characterize it as (at least) a six digit system.

The second point is that, for a target

,

optimal
implementation is an appropriate criterion. Indeed, what else
could we specify as a logical goal? There is no other obvious
choice; even if there were, its adoption would imply acceptance
of and encourage sub-optimal implementations - hardly the purpose
of a software standard. Such a sub-optimal criterion would also
introduce the anomalous possibility that an implementation using
d-l,b hardware would pass the d,b test.

It might be worth stressing that this criterion is intended
to apply to language-based primitives, not to user-defined
functions, i.e., functions implemented by writing source code
subroutines which can then be invoked elsewhere in the program.
The latter are subject to error analysis, based on knowledge of
their algorithms. The criteria and test methods of this paper
are concerned only with gauging the quality of the computational
tools directly embedded in the language itself; error analysis

12

of algorithms may then be undertaken, based on the measured
accuracy of the facilities with which such algorithms are
real ized .

Thus, this criterion directly applies only to high-level
languages as such, not to algorithms on the one hand or hardware
on the other. For instance, no distinction is made between the
operations of exponentiation and addition, even though their
means of implementation are likely to be quite different, because
linguistically they are both primitive operations, directly
available to users for computing a numeric result based on two
operands

.

4.2 Bounding The Argument Error

How should we specify the endpoints, el(x) and e2(x), of the
interval for the argument or operands? The choice of el and e2
will reflect the conditions we wish to impose on the set of
internal numeric representations available to the implementation.
There are several reasonable strategies, three of which will be
presented here. Further, we will evaluate each approach with
respect to the general design criteria outlined in section 1.2.
We will see that the choice of formulation for the endpoint
functions depends on the purposes for which one wants to employ
an accuracy criterion.

4.2.1 Relative Error

If we view the whole process of floating point encoding of
numeric values as an attempt to maintain a stable maximum
relative error, R, then it seems natural simply to designate some
tolerable value for the maximum and then require that all
functions and operations be computed within this allowance.
Thus, el and e2 are simply the min and max of x*(l-R) and
x*(l+R). If, for instance, we set the relative error bound, P. =

lE-6, then we would require that sin (1.23) evaluate to some
value actually taken on by the sin function within [1.22999877,
1.23000123], that is .94248839 < sin(1.23) < .94248922. As we've
seen in section 3, this criterion requires a machine such that
b**(l-d) / 2 <= R.

This approach has much to recommend it. First of all, it

abstracts from any particular hardware design (it is irrelevant
whether b=2 or b=16, e.g.), as is appropriate for a specification
within a language standard. Second, it is a useful measure of
accuracy for many important applications which use floating point
computation, e.g. engineering. Third, it is simple to use and
understand; relative error is a natural and familiar concept in
mathematics. No specialized knowledge of computer arithmetic is

necessary. Fourth, such a criterion is compatible with

13

contemporary hardware, in that it is practical for
implementations to conform to such a standard (see previous
section on granularity and relative error)

.

There are two problems with the approach, neither very
serious, but worth mentioning. First, using relative error gives
us a somewhat looser characterization of floating point
computation than some of the techniques to follow. Recall that
for a d,b machine, the relative error bound in some parts of the
number line will be b times smaller than in others. Even for
binary arithmetic (b=2), the maximum relative error fluctuates
considerably. For higher b, a constant relative error bound
provides an even poorer description. Of course, one may counter
that this is an argument against a high value of b in the
hardware, (that it does not provide a stable relative error) and
not a shortcoming of the criterion. The second problem is that
of selection: what do we choose as a maximum allowable relative
error? There is no obvious choice or series of choices. Of
course, we could always find a number motivated by prevailing
hardware. If, for instance, we knew that all machines of
interest carried at least 20 bits, an obvious (though stringent)
value for P would be 2 ** (-20). This strategy, however, gets us
too bound up with the hardware and too far from a user-oriented
approach (i.e., who would choose 2 ** (-20), if he had no
familiarity with internal numeric representation?) . Choosing
integral powers of ten seems reasonable, given the inherent
arbitrariness of the problem. It is user-oriented, easy to
apply, and gives us a series of criteria to which implementations
may aspire. Those interested in comparing various
implementations could classify candidates according to the level
of accuracy they passed (lE-5, lE-6, lE-7, ...). A language
standard could adopt one such value as representing the minimally
acceptable performance for a conforming processor (e.g., lE-5 for
single precision, lE-10 for double precision, if provided in the
language)

.

4.2.2 Significant Digits

This approach is based more closely on the concept of
requiring a candidate implementation to be "at least as good" as
some target d,b machine. Specifically, we require that arguments
be represented accurate to d significant digits of base b, i.e.,
an error no greater than one half unit in the d+1 significant
digit. Mathematically, el and e2 are the min and max of x + or -

this half unit, which equals (b **
(int (logb(abs(x)))-d+l)) / 2.

Letting b=10 and d=6, sin(1.23), for instance, would have to
evaluate to some value of the function in [1.229995, 1.230005],
i.e., .94248713 < sin(1.23) < .94249048. As with simple relative
error, this approach is (or at least can be) suitably removed
from hardware considerations and reflects a simple model of
accuracy with which many people are familiar.

14

How does the use of significant digits compare with that of
relative error? All the advantages of simple relative error
apply equally to a significant digit error bound. VThile relative
error gives a somewhat inexact characterization of actual
hardware functionality, the significant digits can be used to
describe a criterion very closely tailored to a given machine.
This can be done, however, only by specifying that d and b of the
target be equal to that of the underlying hardware of the system
under test. But this would usually entail setting b=2 or 16. If
we do this, we lose many of the advantages just alluded to, and
also incur severe machine dependence. In short, such a criterion
might be appropriate for testing whether a particular system is
optimal, but is highly inappropriate in a language standard, or
for any machine- independent use, e.g., comparison of several
systems for procurement. All high level languages express
numbers in decimal . This is the natural model for numeric
representations and accuracy requirements should be expressed in
a way compatible with users' normal intuitions.

Assuming, then, that b=10, we do have (in contrast to
relative error) a very natural discrete series of criteria to
apply, simply by varying d over reasonable integer values. Thus
implementations could be classified as having passed the 6 or 7

or 8 (decimal) digit test: very handy for comparative
evaluation. What is the minimally acceptable number of digits?
The ANSI standard for Minimal BASIC, while mandating no
particular accuracy for operations and functions, does require
that numeric constants be accurate to six decimal digits.
Presumably, most machines are capable of meeting this requirement
(21 significant bits are necessary and sufficient). Recall from
section 3 that for a d,b machine to represent values accurate to
N decimal digits, (where b is not an integral power of 10) we
must have d >= 1 + (N * logb(10)). The specification for Ada
allows declaration of the number of significant digits for
floating point variables

.

The major drawback of the use of significant digits is

simply the variation in relative error. It seems somewhat
unnatural to require an arguiment value like 99E-8 to fall within
[98. 99995E-8, 99.00005E-8] (relative error about 1/2,000,000)
while allowing 101E-8 to be anywhere within [100 . 9995E-8

,

101 . 0005E-8], (relative error about 1/200,000) especially given
that the encoding may well be done in binary hardware. Such an

approach is artificial in that it makes a gross distinction based
on an accident of decimal representation.

4.2.3 Floating Point Decimal

The third possibility is to adhere exactly to the notion
that an implementation under test must match the performance of a

target d,b machine. For reasons discussed above, we will assume
that b=10. This criterion then becomes simulation of a floating
point decimal machine. If we let d=6, for instance, then we

15

require that sin(1.23) evaluate to some value taken on in [l.?3,
1.23], i.e., the exact value. As usual, we would have to apply
an enlargement rule to this generated range.

Of course, floating point decimal encoding cannot exactly
represent many values. How then do we specify accuracy for
inexact arguments, e.g., what should we require of the evaluation
of sin(1 . 234567)? There are two choices here. First, we could
require that conforming implementations exactly duplicate the
operation of the target machine, i.e. since a six digit machine
would round the argument to 1.23457, the value returned must be
the best representation of sin(1 . 23457) . From a purely formal
standpoint, this is somewhat attractive since we have now
specified a unique meaning for floating point calculations (of
course we would need rules on how to break ties, etc.) . As
mentioned earlier, however, such definition would represent an
upper as well as lower limit on accuracy and is therefore
undesirable. A second way is to use the concept of argument
perturbation again. We let el and e2 be the min and max
respectively of the argument itself and the nearest d-digit
decimal number. Since the target machine changes the argument
from 1.234567 to 1.23457, we will require that the returned value
of the function be correct for some argument within [1.234567,
1.234570]. This reduces to .94400543 < sin(1 . 234567) <

.94400643.

Is such a criterion a good idea? It has some strong
advantages [Hull78] and equally strong disadvantages. From the
point of view of formal language definition

,

(as opposed to
application utility) floating point decimal provides an
especially clean model of computation. Users conceive and
express numbers in decimal form. Floating point decimal is just
a way of making the implementation conform to users' intuitions.
Furthermore, a language definition based on floating point
decimal has far less need for a multiplicity of numeric data
types (with all the ensuing semantic complexity), e.g., real,
fixed-point decimal, integer, since their desirable logical
properties are encompassed in the model. (The model is even
stronger than the combination of the three types mentioned, e.g.
it would require l.IE-33 * 1.1E33 to equal exactly 1.21.) In
short, the argument for floating point decimal is that operations
which appear to give exact results by a plain reading of the
source code, are in fact required to do so. For computations
which are not exact within the length of d, a reasonable error
bound can still be formulated.

The clear disadvantage is that it is quite difficult to
implement with binary hardware. Except for "small" (< b**d)
integers, decimal numbers are not generally exactly representable
in binary or hexadecimal format. The earlier comments on
instability show that even a very small error in an argument or
operand can cause a large error in the result. Most binary
hardware will not correctly calculate .123456 - .123455 =

1.00000E-6 unless it represents numbers accurate to about eleven

16

decimal digits (but notice that most hand calculators will;
their users would complain otherwise)

.

To sharpen the issue: is it reasonable or not to require
that .1 + .1 + .1 equal .3? Is it reasonable to require that the
source code "X = 1.2345E-22" will really assign that value to X?
From the user's point of view, it depends largely on whether he
regards the numeric constant as an approximation in the first
place (in which case it is irrelevant whether he gets a good
decimal or good binary encoding), or whether ".1" in the source
code really means .1. Any accuracy criterion will implicitly
adopt one or the other assumption, neither of which is always
true .

4.3 Conclusions

Weighing all the considerations above, it appears that there
are two good ways to characterize accuracy requirements, each
emphasizing a different purpose. When floating point arithmetic
is to be "applications-oriented", i.e. thought of as a tool for
solving engineering, scientific, and statistical problems, then a

simple relative error bound on the arguments and operands is most
appropriate. For such applications, numbers are merely points on
a number line, inherently approximate (especially when the
numbers represent some physical measurement, itself subject to
error) and therefore the incommensurability of binary hardware
with decimal numbers can be accommodated for the sake of
execution efficiency.

When a programming language is oriented towards the casual,
unsophisticated user, then the "hand-calculator" model is a good
one, and simulation of a floating point decimal target machine is
the appropriate criterion. It may also be useful for the
computer scientist or mathematician who needs a strict formal
model for the computational semantics of a language. For
example, proofs of correctness may be easier if it is guaranteed
that when executing a loop and incrementing a counter by .1, the
values taken on are exactly -.2, -.1, 0, .1, .2, ...

A criterion based on significant digits could be used in
place of relative error. While open to some objections (see
above), it is still a reasonable choice. Also, it is compatible
with what little accuracy standardization has been done so far in
Minimal BASIC and Ada.

5. TEST METHODS

This section discusses the justification for and practical
aspects of automatic testing techniques recommended for use with
the above criteria. Appendix B contains model test algorithms
and may be used to help clarify the material of this section.

17

5.1 Design Goals

As design goals, we will posit that:

1. The tests should be machine independent, written in a
portable version of the language whose facilities are under
examination. This excludes examination of dumps, or the use
of non-decimal numeric constants, such as some
implementations provide for exact encoding of values.

?. The tests must be "black box" tests, i.e., there is no
attempt to analyze the internal algorithm (hardware or
software) by which results are computed. It is only the
result itself which is to be used. This approach is typical
of testing language processors: the standard prescribes only
the external behavior of a processor's various facilities,
and the test design follows from this.

3. As is true of most testing, we want it to be necessary, and
"almost" sufficient for a processor to pass the test in order
to conform, i.e., a truly conforming processor will be
certain to pass, and a non- conforming processor will very
probably fail

.

4. The determination of the outcome of the test (pass or fail)
must be as automatic as possible. It would be highly
undesirable, for instance, to depend on human inspection of
the results to discover whether or not the test was passed.
This last constraint implies that the tests will need to
compare internally generated values and then produce summary
reports, indicating perhaps only which, if any, arguments
caused failure.

However, we shouldn't think of internal comparison merely as
a convenient tool for testing. It is a central part of the
semantics of a programming language that certain comparisons will
be true or false; indeed the only other way to tell whether a
computation is accurate is simply to display the result on some
external device - and this display is very often less important
than that the behavior of the program during execution be
consistent with our normal intuitions about the way comparisons
work in the language. "IF 1.4 < SCRT(2)" is not just a way of
testing accuracy, but is part of its very meaning.

5.2 Accuracy Of Numeric Constants

The comparison of internal values brings us to a central
problem: if we compare the result of a function or operation to
some numeric constant, how do we know that the constant itself is
accurate? If the criterion specifies that .94248839 must be less
than sin(1.23), is it sufficient merely to code "IF .94248839 <

SIN (1.23)"? We can decide whether or not this is legitimate by

18

considering the accuracy, not only of functions and operations,
but of simple numeric constants.

We must first recognize that constants act very much like
arguments of a special function. A reference to a constant must
be evaluated by the processor just as surely as a square root.
In both cases, only an approximation of the true result is
delivered, as the outcome of some internal process. The
"function" to which constants are arguments is special because,
within a language definition, it is the most primitive ^mechanism
available to the user for expressing a numeric value. This is
reflected in constants' role as the termination condition for the
recursive statement of the accuracy criterion given earlier.
That is, we can state that the accuracy of a function depends on
the allowed accuracy of its arguments, which, if they are
functions, depends on the accuracy of their arguments, and so on.
But when an argument is a constant , we are forced to state
explicitly what we require of its evaluation, and, as mentioned
earlier, this requirement will express our model of the
underlying set of values available in the implementation.
Calling constants "primitive" does not imply that the actual
processing of constants is simple. For example, even though "2 +
3" is, in the abstract, a syntactically and semantically more
complex object than " 1 . 234 5E-22 "

, the evaluation of the former
will likely be a simpler process than that of the latter.

Contrast this with the role of variables. We can normally
assume that variables are exact because they are bound to the
hardware representation of a numeric value. Thus, variables are,
unlike constants, primitive for eval ua tion , though not
de finitional ly

.

We assume here that the "evaluation" of a

variable normally consists merely of fetching the hardware
word(s) corresponding to it. Throughout the tests, our paradigm
of evaluation will be movement from a constant or expression to a

variable, in the broad sense of either an assignment statement or
some form of input. (We will not distinguish between the
evaluation of a constant in the source code and from an external
medium.) Thus, we will assume that the following code fragments
are equivalent for testing purposes:

1. IF .94248839 < SIN(1.23)...

2. A = .94248839
B = SIN (1 . 23)

IF A < B . . .

3. READ A,B (where the input device supplies
" .94248839" and "1 . 23 ")

IF A < SIN(B)

The accuracy criteria presented in the previous section
applied to language- embedded functions, such as sin, log, sqr,
and operations, such as +, **. We now find that we are compelled
to specify some criterion for the accuracy of numeric constants
in order to justify fully a specific testing procedure based on

19

the intentionally abstract, machine independent criteria for
functions and operations.

If constants are arguments to an implicit function, as
argued, it seems natural to apply to it the same criteria we
apply to any other function of a single variable. In this case,
the mathematical function serving as the ideal for our
approximation is of course f(x) = x. If we are using, say,
relative error <= lE-6, then we will require that the constant
"1.23" be equal to some value actually taken on by f(x) in
[1.22999877, 1.23000123], which of course reduces to simply
1.22999877 <= evaluation of "1.23" <= 1.23000123. If we apply a
floating point decimal criterion (with d >= 3), then of course
the evaluation must be exact (indeed, it is the exact evaluation
of "most" numeric constants that constitutes much of the appeal
of floating point decimal). This approach, since it corresponds
exactly to that for explicit functions and operations, of course
preserves all its advantages such as machine- independence and
susceptibility to leveling.

Although this approach is feasible, it unfortunately
sometimes precludes coding a test which is both necessary and
almost sufficient for conformance. Let us say we want to require
relative error <= lE-6 for all functions, operations,, and
constants. We've shown earlier that this requires .94248839 <

sin(1.23). We cannot, however, simply write "IF .94248839 <

SIN (1.23)". The possible error in "1.23" is no problem; indeed
it is just the potential variation in the argument that the
criterion is based upon. But with relative error <= lE-6,
".94248839" could legally take on any value within [.94248745,
.94248933]. Now suppose there is an actual hardware
representation within [.94248839, .94248933]. If both
".94248839" and "SIN (1.23)" evaluated to it (e.g., .942489) then
the comparison would indicate failure, even though both
evaluations were within their respective boundaries. Since we
never want a false indication of failure from a test, we have to
weaken the condition. We must choose a constant whose greatest
legal val ue is .94248839, which in this case means backing off by
the allowed relative error. This gives us a test which will
never fail a conforming processor, but it is a weaker test, more
likely to allow non-conforming processors to pass.

5.3 Sufficiency Of Test Method

Note that problems arise only when the granularity of the
system under test is considerably finer than necessary. The
anomaly above could not arise unless there was at least one
hardware numeric representation in an interval corresponding to
the maximum relative error, whereas a system could theoretically
pass the test with only one representation in an interval twice
as large. By contrast if a binary system with 20 bits of
precision attempts to pass the criterion for R = lE-6, the most
stringent of which it is capable, the requirement for accuracy of

20

constants will allow an error of at most one bit for some values
(in the regions just below integral powers of 2) and optimal
encoding for others (in the regions above) - altogether a near
optimal situation - and the tests will accordingly be very
strong

.

Even when the system under test has a set of numeric
representations finer than necessary, the tests for some
functions and arguments will still be quite strong, although
others are weak. The strength of the test for any function and
argument has to do with the size of the error allowance for the
returned value, as compared to the size of the error allowance
for the constant. The error allowance for constants is always
the same, P, and so the question reduces to whether the error
allowance for the function is large relative to R, in which case,
the extra allowance for the constant is not important (and this
occurs just where the function is unstable, as described
earlier) , or whether it is small relative to R, in which case the
error allowance for the constant predominates (this, of course,
where the function is stable) . Thus we get a weak test only if
the level of the criterion being applied is weak relative to the
system under test, and the function is quite stable at the
argument in question.

A system with numeric representations grosser than that
implied by the argument endpoint functions, el and e2, would
almost surely fail. Consider a test such as "IF A < SIN(X) < E
THEN PASS ELSE FAIL". For many arguments, the allowed variation
in the function value will be approximately equal to that in the
constants themselves. Indeed, this is the normal case, where the
function is neither especially stable nor unstable. Moreover,
the error allowance for constants is, by design, just large
enough to contain exactly one hardware numeric representation of
a minimally "fine" set of such representations. A minimally fine
machine would then often have to produce the optimal result of
three adjacent d istinct representations for, respectively. A,
SIN(X), and B. This is, of course, what we should expect since
the criterion was designed around the concept of optimal
performance on a machine of given granularity, expressed by el
and e2. But a machine with fewer than three available distinct
representations (and this is sure to arise in many of the
individual tests in a sub-minimal machine) could not possibly
pass, barring lucky mistakes, even if, especially if, it performs
optimally relative to its own capabilities, since this would
involve mapping at least two of the three values involved to the
same internal representation.

In fact, the general point should be made that even though
individual tests may be weak, a processor must pass all the tests
at a given level for all functions and operations with all
arguments and operands in order to qualify at that level. It is

quite unlikely that a processor v^ich generated non- conforming
results for any significant proportion of the individual tests
would still manage to pass that entire test set.

21

As for the floating point decimal tests, we will see below
that they often require exact results, and are therefore very
difficult for a non- conforming processor to pass; it is doubtful
that any implementation would even attempt to qualify as a

d-digit decimal implementation, unless it truly had an underlying
decimal data type (whether this was based on hardware, firmware,
or software) of sufficient length.

5.4 Coding Necessary Tests

Given the above constraints, how do we code tests that are
as strong as possible and yet are necessary for conformance? The
general idea, of course, is to calculate, based on argument
perturbation, the limits within which the evaluation of some
function should fall. We must code a constant whose legal range
of eval ua tion does not overlap with that of the function in
question

.

To illustrate, let us work through an example of the
code necessary to test the accuracy of evaluation of sin(1.23),
using both the relative error criterion with R=lE-6, and the
floating point decimal criterion, with d=6

.

5.4.1 Relative Error Test

The first step is to calculate the mathematical limits,
based on allowed argument perturbation. Since the argument may
vary within [1.22999877, 1.23000123], we find that:

sin(l. 22999877) = .9424883 908186... = PI
sin(1.23) = .9424888019317... =P2
sin(l. 23000123) = .9424892130434... =P3

We now must find one decimal representation (since this is
to be written in source code) which is less than Pl/(1+R) and
another which is greater than P3/(l-R). Given that the test is
for level R=lE-6, we should obtain a decimal representation of at
least nine digits, which will make the test suitable for systems
whose internal encoding carries up to nine significant digits.
For systems of higher precision, the test will be weaker than
necessary, but presumably such a high precision system would not
normally be attempting to pass at such a comparatively low level
as R=lE-6. For nine digits, then, we shall use .942487448 and
.942490156, giving us the test: "IF .942487448 < SIN(1.23) <

.942490156 THEN PASS ELSE FAIL".

By our accuracy criterion for constants, ".942487448" must
evaluate to some hardware representation < PI and ".942490156" >

P3. We will strictly require, as the criterion implies, that
there always exists at least one actual hardware representation
within the legal range of a constant. Indeed, the error bound
expresses just this availability of a set of representations in

22

the target machine sufficient to represent any value to that
accuracy. Mathematically, we have now arrived at three
expressions, a constant, a function, and a constant, whose legal
ranges of evaluation according to el and e2 = min and max of x*(l
+ or - R), are strictly disjoint. Furthermore, the range of the
function falls in between those for the constants, and the range
for each of the constants must contain at least one hardware
representation

.

We cannot, however, strictly require "IF .942487448 <

SIN(1.23) < .942490156" to be true because we haven't shown that,
in contrast to the ranges for constants, there must exist a
hardware representation within the legal range of "SIN (1.23)".
Indeed, if we know nothing more than that any value can be
encoded with relative error <= lE-6, we must quite often assume
that there might not be such a representation. Let M be the
midpoint of the allowed range, i.e., M = (Pl+P3)/2. If PI <=

(1-R)*M or (equivalently) if P3 >= (1+R)*M, then, because M (as
any number) must be representable with an error <= R, we can
assume a distinct representation exists, and the test is
necessary. Another formulation, strictly in terms of PI and P3
is that we must have (P3-P1)/ (P3+P1) >= R for the interval to be
large enough. If not, then we must, somewhat artificially,
enlarge the allowed interval to guarantee the existence of at
least one representation in it. This enlargement corresponds to
the actual loss of information that occurs when a stable function
is evaluated. For example, most systems will not evaluate
cos(arccos(lE-22)) as lE-22, because of the loss of information
when computing arccos. If the allowed interval is too small,
then we substitute for it the encompassing interval [M*(l-R),
M*(l+R)]. In fact, PI and P3 are slightly too close to assume
the existence of a hardware representation between them and so we
must weaken the test as indicated. Thus, the "new" PI and P3 are
.942487859 and .942489745, and as before we must encode the
limiting constants such that they do not overlap with our
enlarged range.

It is noteworthy that the extrapolation of this principle to
the accuracy of constants accounts for their allowed error. That
is, if we think of a constant, e.g., "1; 23" as equivalent to the
invocation of the identity function, e.g., " IDENT (1 . 23

)

" , and
then apply the undersize range principle, we would reason that
the value of the function must be within the range generated by
the domain [1.23, 1.23]. But the resulting range, also [1.23,
1.23] of course, is too small and must be enlarged to

[1.23*(1-R), 1.23*(1+R)]; but this is just the allowable
variation for constants. Thus we picture the inaccuracy as

stemming, not from the constant itself which is taken to be
exact, but from the implicit function evaluation resulting in an
undersize range. Thus, constants are treated exactly analogously
to functions, and with the very same justifications.

23

5.4.2 Floating Point Decimal Test

We need to distinguish three cases in the floating point
decimal tests: 1) inexact arguments, 2) exact arguments with
inexact results, and 3) exact arguments with exact results.
Although the underlying rationale of matching the performance of
a target is the same for all cases, its application in the tests
is slightly different.

In the general case the argument length (i.e., number of
significant decimal digits in the argument) is greater than d.
As mentioned earlier, we will then establish our argument domain
as that between the nominal argument and the nearest d-digit
decimal encoding. So, for instance, with d=6, the argument
interval for sin(1 . 234567) is [1.234567, 1.23457]. In case the
argument is exactly halfway between two available encodings, we
could adopt a tie-breaking rule, or simply allow the interval to
contain both adjacent encodings. As with relative error, we then
obtain upper and lower limits on the function value, which in
this case gives us .94400543 < sin (1 . 234567) < .94400643. Now,
however, we have a simpler rule for writing constants. Since the
error allowance for constants will simply be the difference
between the constant and the nearest six digit encoding, we
simply set the lower limit to the next lowest six digit constant,
and the upper limit to the next highest. Thus, we write: "IF
.944005 < SIN(1 . 234567) < .944007 THEN PASS ELSE FAIL".

As with the relative error test, we must assure that at
least one distinct hardware representation exists between the
encoded limits for a minimal machine. For floating point
decimal, this is trivially solved by noting whether or not the
encoded limits differ by at least two in the last digit. In our
example, they do, and so the test is necessary and valid as it
stands. Conceptually, a minimal six digit machine must evaluate
sin(1 . 234567) to some value between .94400543 and .94400643.
Since there does exist a six digit number within these limits,
namely .944006, the test may be strictly applied.

If, however, the limits were, say, .94400513 and .94400589,
then we could not use the resulting "IF .944005 < F(X) <

.944006". When such an undersize range (i.e., one not containing
a d-digit number) results, we must enlarge the range to include
at least one of the two adjacent d-digit representations. One
reasonable rule would be that if the original undersize range
contains the midpoint of the two adjacent d-digit numbers, it is
enlarged to include both; if not, then it is enlarged to include
only the unambiguously nearer. Thus, for six digits, [.94400513,
.94400589] is enlarged to [.944005, .944006] and is tested with
"IF .944004 < F(X) < .944007", but [.94400577, .94400589] is
enlarged to [.94400577, .944006] and is tested with "IF .944005 <

F(X) < .944007". This rule is a consistent generalization of our
rule for evaluation of constants. Note, however, that this is
not the same treatment of undersize range as specified in the
general criterion in section 4 . 1 .• The resolution of the problem
of an undersize range is different than with the relative error

24

criterion because we know not only the maximum allowed separation
between representations, but also their actual values.

When the argument length does not exceed the number of
available decimal digits, the argument is assumed to be exact,
and thus the function value may be computed accurate to an
arbitrary number of digits. Assuming for the moment that the
correct value is not itself expressible in six digits, it will
always fall between two adjacent six digit numbers. We then
apply the rule of the last paragraph, treating the allowed range
as a zero-width interval. Thus, the undersize range [.94400567,
.94400567] is enlarged to [.94400567, .944006], and [.9440055,
.9440055] to [.944005, .944006]. Again, note that this agrees
with our treatment of constants.

When both the argument and result are exact within six
digits, e.g., sqrt(1.44) = 1.2, 1.23456 - 1.234 = 5.6E-4, then we
may simply code the exact test. This is, of course, the special
strength of floating point decimal: we get exact results
whenever, in decimal computation, it is possible.

If we wished to impose the criterion of exact simulation of
an optimal floating point decimal machine, then all tests would
be simple equality tests. For example, when testing
sin(1 . 234567) , we note that an optimal six digit machine would
round the argument to 1.23457, and then find the nearest
approximation to the true value for 1.23457, namely .94400643...
Thus our test would be: "IF SIN(1 . 234567) = .944006 THEN PASS
ELSE FAIL"

.

It should be clear that the tests never require a more
accurate result than that which an actual d-digit floating point
decimal machine would optimally deliver. Therefore, the tests
are necessary for any acceptable simulator.

5.5 Testing Compound Expressions

Although the test method as outlined has been applied only
to function evaluation where the argument is a simple numeric
constant (or, equivalently, a simple variable to v*iich such a

constant has been assigned) , it can be generalized to compound
expressions as well. As mentioned earlier, the criterion applies
recursively to any numeric expression. Of course, as the
expression grows, the criterion becomes weaker, since it is based
on a worst-case analysis and for this reason testing of large
expressions is less important than that of single functions or
operations. Nonetheless, an unambiguous bound for large
expressions can be computed by successive application of the

criterion. There are two rules to keep in mind when doing so:

first, if at any step, a generated range is undersize, it must be
enlarged at that point. This reflects the model of computation
that there may be hardware- bound intermediate results, and thus

information may be lost. We do not require symbolic analysis of

25

expressions to avoid this loss. The earlier example of
cos(arccos(lE-22)) illustrates this point. Second, only at the
end of the worst case analysis do we compute the non-overlapping
constants to be compared with the result; this is not done at
each step. Note the distinction between the endpoints of the
allowed interval, which are computed at each step, and the
usually different source constants used in the actual comparison
with the result.

Also, note that as long as we abide by the rule of
non-overlapping allowed intervals, we can compare functions with
other functions as well as with constants, e.g., "IF SIN(X) <

SIN(Y)". The choice of X and Y must be done carefully, however.
It is not sufficient, as might be thought, merely that X and Y be
far enough apart so that their allowed evaluations are disjoint.
The ranges for the SIN function might still overlap if, for
instance, the slope in the vicinity of X and Y is low enough so
as to generate undersize ranges.

5.6 Multiple Operands

Most of the examples given so far have involved functions of
a single variable, for ease of discussion. The generalization to
binary operations or functions of several arguments is quite
natural. We simply apply the allowed argument perturbation to
all the operands and allow the result to be anywhere within the
range generated by this multi-dimensional domain. For instance,
using the relative error criterion with P=lE-6, the expression
".3 ** .2" must evaluate to some value of the exponentiation
operator, x**y, within the two-dimensional domain given by
.2999997 <= x <= .3000003 and .1999998 <= y <= .2000002. The
minimum is .786002739 = .2999997 ** .2000002, and the maximum is
.786003432 = .3000003 ** .1999998. We then test the evaluation
exactly as we would for an interval generated by a
single-argument function, with the usual considerations for
undersize range and calculation of source constants

.

5.7 Special Cases

5.7.1 Arguments And Operands With Small Integer Values

Although the relative error criterion can be applied
consistently to any numeric value, it might be reasonable to
strengthen the tests by assuming that all machines can represent
"small" integers (e.g., between -1000 and +1000) exactly. This
does, of course, go beyond the initial premise that the only
thing we know about internal representation is that there must
exist at least one hardware encoding within a maximum relative
error, R, of any arbitrary value.

The assumption of small integer representations is
reasonable because any cl,b machine can represent such integers.
The assumption is useful because it allows us to require certain
desirable results in tests, which we otherwise could not do. For
instance, most users would want their machines to satisfy the
following equalities:

1
I . 0 + D = 5

o I^ J. 7 — 1 O

J . o / 4 — z

4. 3 ** 3 = 27

5. cos(0) = 1

6. log(l) = 0

7. exp(0) = 1

8. sqrt(9) = 3

Without the assumption of exact integer representation, none
of the preceding tests could be required directly in the code.
(Of course, the above tests are perfectly valid for the floating
point decimal criterion.) Given that small integers are exactly
representable , then of course the original philosophy of
requiring the implementation under test to match the performance
of an optimal machine implies that whenever all the arguments and
the result take on such integer values, we can encode a simple
equality test. Another special consideration is that raising
negative values to other than integral powers is generally not
allowed, and so when testing, e.g., -5.12 ** 3.0, we would have
to assume that the evaluation of "3.0" was exact.

5.7.2 Non-monotonicity Within Allowed Domain

The criterion does not depend on the function being
monotonic , or even continuous, within the argument domain. When
these conditions arise, however, the transition from criterion to
test program is somewhat indirect and less susceptible to
automatic test data generation. Some examples will illustrate
the point

.

If we test the evaluation of sin(x) near pi/2, it is

important to realize that the maximum value allowed is not simply
the value of the function at one of the two endpoints of the
domain (assuming one is less than and the other greater than
pi/2). It is, of course, one; the minimum allowed value would
be that at one of the endpoints. This case is also special in

that we would want to take advantage of the assumption that small

27

integers are exactly representable in order to require: "SIN(X)
<= 1" rather than the weaker check based directly on the relative
error criterion.

The criterion does not always reduce to the requirement that
the evaluation of the function be between two limiting values.
Testing tan(x) near pi/2, in fact, requires source code in the
form: "IF TAN (1.5708) < A OR TAN (1.5708) > B THEN PASS ELSE
FAIL" since within the domain, the range of the tan function
consists of all values outside of a given interval. Likewise,
MOD (0.9, 0.3) could legally give some value either slightly above
zero or slightly below 0.3.

Note, however, that for the five usual binary operations (+,
-, *, /, **), extreme values of the operation will always be
found at one of the four points representing the extreme values
of the operands. This is because all the operations are
monotonic along either operand axis, i.e., when holding one
operand constant, varying the other gives a montonic function as
long as the sign of the varied operand doesn't change. The
endpoint functions for variation of the operands never allow a
change of sign, so it is always sufficient to examine the value
of the operation taken on at the four extreme points of the two
dimensional domain.

6. LIMITATIONS

The approach outlined in this paper is intended to be of
wide, but not unlimited, applicability. Let us make explicit
those problems which are not addressed.

6.1 Overflow And Underflow

Any test programs based on the proposed approach must take
into account the finite range of magnitudes which contemporary
machines can handle. Most implementations, for instance, will
not produce an accurate evaluation of exp(1000) or exp(-1000).
Most language standards do not specify a minimum range of values
to be supported, but the Minimal BASIC standard does mandate a
range of lE-38 through lE+38 (these figures were chosen based on
an eight bit exponent for binary hardware) . Since this has not
aroused any opposition among implementors , it may represent a
reasonable conservative assumption for test programs.

28

6.2 Not Appropriate For All Functions

The approach of this paper is intended to solve the problems
associated with measuring the accuracy of the traditional, smooth
mathematical functions which typically do not take on "d,b"
values (i.e., values exactly expressible in a d,b system), even
for d,b arguments. For functions which do take on such values,
it is appropriate to adopt a stronger criterion of exact
evaluation. Thus, we should require:

1. abs(-2 . 34) = 2.34

2. int(3

.

7) = 3

3. max (1

.

2, 2. 3) = 2.3

4. sgn(-

.

3) = -1

rather than the weaker range tests which would result from the
direct application of the relative error criterion.

6.3 No Guidance For Which Arguments

An important design question is the choice of arguments or
operands for which one will test a given function or operation
(see [Lozi78]). In general, test programs should include
arguments of large, medium, small, and zero magnitude, both
positive and negative. The function should be tested at any
point where its value is especially stable or unstable, such as
its zeros, poles, maxima, and minima. The relative error
magnification factor mentioned in section 2 can be helpful in
identifying stable and unstable domains. For the binary
operations, one must test a wide variety of pairs of these
conditions

.

7 . SUMMARY

The entire proposal for numeric accuracy criteria and test
methods can be shown to follow as a logical consequence of a few
simple principles. An implementation under test is categorized
according to its ability to match the performance of a given
abstract machine. That is, we characterize an abstract machine,
and, based on that characterization, construct source code
statements whose outcome is guaranteed. If the candidate
implementation always successfully produces those outcomes when
presented with the source code, then it passes the test at the
level of the abstract machine upon which the test was based .

The foregoing summarizes the justification for the test
method. The interesting question is how we choose to
characterize the abstract target machine. The contention is that

29

such a characterization is provided by stipulating, first, the
minimal properties of the underlying data representation, and
second, that within the worst-case constraints imposed by these
properties, the implementation is optimal. The various
formulations for the criteria are then dependent on the given
properties of the data representation.

To illustrate, let us take a series of properties, each
added to all the preceding, and, with each, display comparisons
which must test as true because of that incremental property:

Property

relative error <= .00001

Compa rison

SQRT(4) > 1.999969
2.000041 > 2

data is represented in d,b
format and d,b are integers
and d>=6, b>=2 (therefore,
integers are exact)

b is even

SORT (4) = 2

2.000021 > 2

SQRT(2.25) =1.5

b=10 SQRT(2.9929) =1.73
2.0000051 > 2

d> = 8 SORT (.11108889) = .3333
2.000000051 > 2

Notice that as one increases the strength of the properties,
the allowed evaluation of the same expression (e.g. "2") becomes
more and more accurate. Test programs can then distinguish among
implementations, based on which comparisons they preserve as
true. The algorithms in Appendix B exploit this idea.

The properties themselves will be chosen based on the
desired model of computation, e.g. relative error vs.
floating-point decimal, and degree of precision required e.g.
d=6 or 8 or 12.

30

Appendix A - Sample Wording for Software Standard

The central purpose of this paper has been to justify a
practical criterion which can be incorporated into programming
language standards so as to make processor conformance contingent
upon a certain level of accuracy in the evaluation of numeric
expressions. Alternatively, such a criterion could be adopted as
a single independent standard which could then be applied across
the board to all languages supporting floating point arithmetic.

Following are two drafts suitable for inclusion in the
semantic specification of numeric expression evaluation. For the
relative error criterion:

The evaluation of numeric expressions, variables, and
constants involving real values shall be as follows

.

Evaluation means development of an internal numeric
representation such as can be stored in a variable. Thus
variables are as accurate as the evaluation of the
expressions assigned to them and are exact in the sense that
no accuracy is lost simply by assignment between variables.
All conforming implementations must support a set of
internal representations such that any numeric value within
the maximum and minimum magnitude can be encoded with a

relative error no greater than some implementation defined
maximum, P, which shall be at most lE-5.

Numeric constants, whether in the source code or on an
external medium, shall be evaluated with a relative error no
greater than R. Numeric functions and operations in
programs (except for INT, SGN, ..) shall be evaluated to
some value actually taken on by the true mathematical
function or operation within the domain of allowed
evaluation for their arguments and operands (which may
themselves be compound numeric expressions)

.

If the range of allowed values generated by this
specification for any function or operation forms an
interval, [L,H] such that abs((H-I.)/ (H+L)) < R, then,
letting M be the midpoint, (L+H)/2, the range shall be
enlarged to [M*(l-R), M*(H-R)] to ensure that at least one
internal representation exists within the legal range of
val ues .

In addition, all conforming processors shall be capable
of exact representation of all integer values between -1000
and +1000. When the arguments or operands of a function or
operation all have such integer values, and when the true
mathematical value of the function or operation is also such
an integer, then the evaluation shall be exact.

31

For an accuracy criterion based on the floating point
decimal model of computation:

The evaluation of numeric expressions, variables, and
constants involving real values shall be as follows

.

Evaluation means development of an internal numeric
representation such as can be stored in a variable. Thus
variables are as accurate as the evaluation of the
expressions assigned to them and are exact in the sense that
no accuracy is lost simply by assignment between variables.
All conforming implementations must support a set of
internal representations such that any numeric value within
the maximum and minimum magnitude can be encoded exactly to
an implementation-defined number, d, of significant decimal
digits, which shall be at least six, i.e., all
implementations must support floating point decimal numeric
representation, with at least six significant decimal
digits .

Numeric constants, whether in the source code or on an
external medium, shall be evaluated exactly, if they contain
no more than d significant decimal digits. Otherwise, they
shall be evaluated to some value between that of their true
value and the nearest d decimal digit representation. If
the constant is equidistant from two such representations,
then it may be evaluated to any value between the two.
Numeric functions and operations in programs shall be
evaluated to some value actually taken on by the true
mathematical function or operation within the domain of
allowed evaluation for their arguments and operands (which
may themselves be compound numeric expressions)

.

If the range of allowed values generated by this
specification for any function or operation forms an
interval, [L,H], such that no d decimal digit representation
exists within the interval, then the interval shall be
enlarged as follows . If the interval contains the midpoint
of the two adjacent d decimal digit representations, then it
shall be enlarged in both directions to contain both those
representations. If not, the interval shall be enlarged in
only one direction so as to contain only the nearer of the
two adjacent representations. It follows from this
specification that whenever all the arguments or operands
are exactly expressible as d decimal digit values, and the
true value of the function or operation is likewise so
expressible, then the evaluation is exact. It also follows
that if all the arguments or operands are exactly
expressible, but the true result is not, the computed result
must be within the interval bounded by the true result and
the nearest d decimal digit representation. In the special
case where the true result is equidistant from two such i

representations, the allowed interval is bounded by those
two values.

32

Appendix E - Sample Algorithms for Automatic Test Procedures

Any software standard is considerably strengthened by the
availability of a reasonable automated procedure for conformance
testing. Clearly, it has been the aim of this paper to present a
criterion susceptible to such automatic testing. This appendix
contains schematic algorithms for test data generation and the
complementary test programs themselves. The translation of these
algorithms into the popular computational languages (FORTRAN,
BASIC, Pascal, Ada, PL/l) is a reasonably straightforward
exercise. Note, of course, that the test data generator need not
be written in the same language as that whose implementation is
under test. This is especially important, in light of the fact
that the generator might well need to use some enhanced facility
(e.g., extended precision libraries [Bren78, Wyat76]) which
provides greater accuracy than that directly available in the
language primitives. For instance, a generator of test data
which will be used to test for R=lE-9 must itself compute and
write results accurate to at least 12 places.

The generator must produce the test data files in external
character format. There are two reasons: first, it allows the
generator to be in a different language as mentioned above, or
even a different system; indeed in the ideal case, we would
execute the generator only once and then use the resulting
standard test data file as input to any system we wished to test.
Second, and more importantly, the whole criterion is centered
around the notion of black-box testing of source code and a

standard data environment, not an analysis of internal
processing. This means that we must measure an implementation's
performance, not on data in some internal format, but on data in
machine- independent display format. As mentioned earlier, we do
not distinguish between an implementation' s handling of an
argument, such as "1.23", in the source code and from an external
med ium

.

The following algorithms handle only the cases where the
function is continuous and monotonic within the allowed domain.
Test cases for minima, maxima, and poles must be developed
manually and added to the automatically generated test data file.
This is also true in cases where we wish to rely on the
assumption of exact representation of integers. Additionally, it
would be useful to supplement the accuracy test itself with
routines to handle the special cases of discontinuous ranges and
integer results. These supplementary routines merely involve
different forms of the IF test of the computed value and so have
not been included here. Although the generation of test data
cannot be automated entirely, the accuracy tests themselves
(which presumably will be run far more often than the generator)
are completely automatic, in that, once they are formulated, they
produce reliable objective results, with no need for human
intervention or discretionary interpretation.

33

Test Data Generator for Relative Error Criterion

/* set switch for one or two arguments */
number-of-arguments = 1 or 2

/* generate test data for relative error
between lE-9 and lE-5 */

logl0-min- relative- error = -9
logl0-max- relative- error = -5
/* write header on t estdata- file to indicate levels of accuracy

being tested */
write " testdata- file" from logl0-min- relative-error

,

logl0-max- relative- error
/* loop to accept arguments and generate

corresponding limits */
read- loop

:

if number-of- arguments = 2

then
read " argument s- file " into argumentl, argument2 at eof stop

el se
read "arguments- file" into argumentl at eof stop

/* loop to generate evaluation limits for each level
of relative error */

for logl0-relative-error = logl0-min- relative-error
to logl0-max- relative- error step 1

/* perturb argument! s) */
relative-error = 10 ** logl0-relative-error
low-argument 1 = argumentl * (1 - relative-error)
high-argumentl = argumentl * (1 + relative-error)
if num.ber- of- arguments = 2

then
low-argument 2 = argument2 * (1 - relative- error

)

high- argument 2 = argument2 * (1 + relative-error)
end if

34

/* calculate endpoints of allowed interval */
if number- of- arguments = 1

then
/* f is single-argument function under test */
nominal-value = f(argumentl)
low-value = f (low-argument 1

)

high- value = f(high- argument 1

)

if low-value > high-value
then

tmp = low-value
low-value = high- value
high- value = tmp

endif
el se

/* g is two-argument function under test
(syntax is incidental - would normally be infix
for the usual binary operations) */

nominal-value = g(argumentl, argument2)
gvalue(l) = g(low-argumentl , low-argument 2

)

gvalue(2) = g(low-argument 1 , high- argument 2

)

gvalueO) = g(high-argumentl , low-argument 2)

gvalue(4) = g(high-argumentl, high- argument 2

)

low-value = gvalue(l)
high- value = gvalue(l)
for i = 2 to 4 step 1

if gvalue(i) < low-value
then

low-value = gvalue(i)
else

if gvalue(i) > high- value
then

high- value = gvalue(i)
endif

endif
next i

endif
/* General test for monotonicity ; does not detect all cases.

This condition should be modified. to reflect function-
dependent criteria, e.g. argument near odd multiples of
pi/2 for the SIN function. Also, function-dependent
tests for range discontinuity should be done here. */

if low-value > nominal- value or nominal- value > high-value
then

if number-of- arguments = 1

then
display

" non-montonic range for argument = ", argument 1,
" and log of relative error = ", logl0-relative-error

else
display "non-montonic range for arguments = ",

argumentl, argument2,
" and log of relative error = ", logl0-relative-error

endif
endif

35

/* if range is undersize, enlarge to ensure existence of at
least one internal representation in range */

if high- value + low-value not = 0
then

if abs((high-value - low-va 1 ue)/ (high- value + low-value))
< relative-error

then
/* condition is true only when low-value and high-value

have the same sign */
midpoint = (high- value + low-value) / 2

if midpoint > 0
then

low-value = midpoint * (1 - relative-error)
high- value = midpoint * (1 + relative-error)

el se
low-value = midpoint * (1 + relative-error)
high-value = midpoint * (1 - relative-error)

end if
end if

end if
/* Low-value and high-value are set to endpoints of the

nominal allowed range for evaluation of the function.
Now we must develop constants whose own evaluation does not
overlap with this range. The slight increase in relative
error is to prevent the imaccuracy inherent in the
decimal encoding of constants from causing such overlap. */

increased- relative-error =

relative-error + (10 **
(logl0-min- relative-error - 3))

if low-value < 0
then

low-limit = low-value / (1 - increased- relative-error

)

else
low-limit = low-value / (1 + increased- relative-error

)

end if
if high- value < 0
then

high- limit = high- value / (1 + increased- relative-error

)

else
high-limit = high-value / (1 - increased- relative-error

)

end if
/* write statement must generate external (decimal) data with

at least three more significant digits than the level of
accuracy being tested. E.g. for logl0-relative-error = -9,
the data should have at least 12 significant digits. */

if number-of-arguments = 1

then
write " testdata- file " from argumentl, low-limit, high-limit

el se
write " testdata- file " from argumentl, argument2,

low-limit, high-limit
end if

next logl0- relative-error
go to read- loop

36

Accuracy Test Program

The sample program below uses test data from the file
generated by the previous algorithm. It counts how many test
points were processed successfully at each level of accuracy and
then produces a summary report of results.

/* set switch for one or two arguments */
number- of- arguments = 1 or 2
/* read in range of levels of accuracy to be covered */
read " testdata- file " into logl0~min- relative- error

,

logl0-max- relative- error
/* test- points- passed array will keep track of the number of

test points passed at each level */
test- points- passed = 0
/* loop to read in arguments and expected values */
argument- loop

:

pass- switch = "no"
for logl0- relative-error = logl0-m.in- relative-error to

logl0-max-relative-error step 1

if number-of- arguments = 1

then
read "testdata- file" into argumentl, low-limit, high-limit

at eof go to report- results
computed- value = f(argumentl)

else
read "testdata- file" into argumentl, argument2,

low-limit, high- limit
at eof go to report- results

computed- value = g(argumentl, argument2)
end if
if pass- switch = "no"
then

/* The following condition has to be modified for testing
of discontinuous ranges, e.g. TAN function near odd
multiples of pi/2. */

if low-limit < computed- value < high- limit
then

add 1 to test- points- passed (- logl0-relative-error

)

pass- switch = "yes"
endif

end if
next logl0-relative-error
if pass- switch = "no"
then

add 1 to test- points- passed (- logl0-max-relative- error - 1)

end if
go to argument- loop

37

report- results

:

for logl0-relative-error = logl0-min- relative-error to
logl0-]nax-relative-error step 1

relative-error = 10 ** logl0-relative-error
display "number of test points passed = ",

test- point s- passed (- logl0-relative-error)

,

" based on relative error = ", relative- error
if test- point s-passed (- logl0- relative-error) > 0
then

overall-relative-error = relative-error
end if

next logl0-relative-error
if test- points- passed (- logl0-max-relative-error - 1) > 0
then

display
"number of test points failing for all relative errors
test- point s-passed (- logl0-max-rela tive-error - 1),
"; processor failed to qualify at any tested level."

el se
display "processor passed all tests for relative error <=

overall- re la tive-error
end if
stop

38

References

[Ada80] "Peference Manual for the Ada Programining Language -
Proposed Standard Document", United States Department of Defense,
Washington DC, July 1980

[BASI78] American National Standard for Minimal BASIC ,

X3. 60-1978, American National Standards Institute, New YorlT, New
York, January, 1978

[Bohl75] Bohlender, G. , "Floating-Point Computation of Functions
with Maximum Accuracy", 3rd Symposium on Computer Arithmetic,
IEEE, November 1975, 14-18

[Bren78] Brent, R.P., "A Fortran Mul ti-Precision Arithmetic
Package", ACM Transactions on Mathematical Software, Vol. 4, No.
1, March 1978, 57-70

CCoon80] Coonen, J.T., "An Implementation Guide to a Proposed
Standard for Floating-Point Arithmetic", Computer, Vol. 13, No.
1, Jan. 1980, 68-79

[FORT 78] American National Standard Programming Language FORTRAN ,

X3. 9-1978, American National Standards Institute, New York, New
York, April, 1978

[Hull78] Hull, T.E., "Desirable Floating-Point Arithmetic and
Elementary Functions for Numerical Computation", Proceedings 4th
Symposium on Computer Arithmetic, IEEE, October 1978, 63-69

[Jens75] Jensen, K. , Wirth, N. , Pascal User Manual and Report,
Springer-Verlag , New York, New York, 197 5

[Lozi78] Lozier, D.W., "A Universal Set of Test Data for Computer
Implementations of Elementary Mathematical Functions" , NBSIR
78-1478, National Bureau of Standards, Washington, D.C., May 1978

[PL/176] American National Standard Programming Language PL/I ,

X3. 53-1976, American National Standards Institute, New York, New
York, August, 1976

[Ster74] Sterbenz P.H., Floating-Point Computation ,

Prentice-Hall, Englewood Cliffs, N.J., 1974, 98-103

[Wyat76] Wyatt, W.T., Lozier, D.W., Orser, D.J., "A Portable
Extended Precision Arithmetic Package and Library with Fortran
Precompiler", ACM Transactions on Mathematical Software, Vol. 2,

No. 3, Sep. 1976, 209-231

[Yohe79] Yohe, J.M., "Software for Interval Arithmetic: A
Reasonably Portable Package", ACM Transactions on Mathematical
Software, Vol. 5, No. 1, March 1979, 50-63

39

NBS-n4A IREV. 2-80

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

PUBLICATION OR
REPORT NO.

NBS SP 500-77

[2. Performing Organ. Report No 3. Publication Date

June 1981

4. TITLE AND SUBTITLE

Specifications and Test Methods for Numeric Accuracy in Programming Language
Standards

5. AUTHOR(S)

John V. Cugini

6. PERFORMING ORGANIZATION f/f joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covere

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State, ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 81-600055

I I

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual sumnriary of most si gnificant information. If document includes a significant
bibliography or literature survey, mention it here)

This publication formulates language-independent and machine-independent criteria
for assessing the quality of floating-point arithmetic operations and functions

.

The criteria require that results be within the limits generated by perturbing
the arguments or operands by a specified amount, and thus allow for the mathematical
instability of some functions at certain arguments and also for the granularity
of numeric representation inherent in digital machines. Automatic test methods
derive naturally from the accuracy requirements. Model algorithms for testing are
included

.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Computer arithmetic; conformance testing; numeric accuracy; programming
!

language standards. I

13. AVAILABILITY

gXl Unlimited

I I

For Official Distribution. Do Not Release to NTIS

^(Xl Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGEj

42 '

15. Price

$2.75

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)
ir U^. GOVERNMENT PRINTING OFFICE : 1981 O-340-997 (1650)

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

SPECIAL FOURTH-CL^SS RATE
BOOK

j

I

