
. Department
Commerce

onal Bureau
tandards

Computer Science
and Technology

•tAU 0'

NBS Special Publication 500-76

Database Architectures-

A Feasibility Workslnop

Report

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and, to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology- — Building Technology— Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

^Some divisions within the center are located at Boulder, CO 80303.

or 9tAX»iJU»
UBRASt

JUN i 5 1981

not Ci'

ClCioo

no, ^00 -76

Computer Science
and Technology

NBS Special Publication 500-76

Database Architectures—
A Feasibility Workshop
Report

Edited by:

John L. Berg

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, DC 20234

Marc Graham

445 Euclid Avenue
Toronto, Ontario

Canada M6G2T1

Kevin Whitney

A. D. Little, Inc.

Acorn Park

Cambridge, MA 02140

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrlge, Secretary

National Bureau of Standards

Ernest Ambler, Director

Issued April 1981

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Governnnent for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing to

receive notices of publications in this series should complete and return the form at

the end of this publication.

National Bureau of Standards Special Publication 500-76
Nat, Bur. Stand. (U.S.), Spec. Publ, 500-76, 64 pages (Apr. 1981)

CODEN; XNBSAV

Library of Congress Catalog Card Number: 81-600004

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1981

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

Price $4.00

(Add 25 percent for other than U.S. maihng)

FOREWORD

This report constitutes the results of two workshops
held at the National Bureau of Standards to survey and re-
port on the major technical consequences of implementing a

three schema DBMS architecture, including the various imple-
mentation options and the identification of any necessary
research.

Workshop 1, held on August 1-2, 1978, investigated the
general topic of data independence. The participants were
Mr. Charles Bachman, Dr. Thomas DeLutis, Dr. Rob Gerritsen,
Dr. Eugene Lowenthal, Mr. Frank Manola, Dr. Alan Merten, Mr.
Philip Shaw, Dr. Diane Smith, and Dr. Gary Sockut.

Workshop 2, held on August 22-23, 1978, examined sup-
porting topics such as query languages, data dictionaries
and database conversion. The participants were Dr. Donald
Chamberlin, Dr. Eric demons, Ms. Nancy Goguen, Dr. Henry
Lefkovits, Mr. David Shipman, Dr. Stanley Su , Major Anthony
J. Winkler, and Dr. Carlo Zaniolo.

NBS gratefully acknowledges the assistance of the fol-
lowing individuals: Dr. Mani Daya contributed many ideas
during pre-meeting planning sessions with the editors. Dr.
John Smith and Dr. Gary Sockut offered comments which were
included in the report. Dr. Alan Goldfine, NBS, played an
important role in preparing the report for publication.

-iii-

TABLE OF CONTENTS

Page

1. INTRODUCTION 3

1.1 WORKSHOP OBJECTIVES 3

1. 2 MOTIVATION 4

1. 2. 1 Goals 4

1.2.2 Accomplishments 4

2. DATA INDEPENDENCE 5

2.1 INTRODUCTION 5

2.2 DATA INDEPENDENCE DEFINED 6

2.3 THE THREE SCHEMA FRAMEWORK 11

2.3.1 ANSI Schemas and Their Mappings 11
2.3.2 The Conceptual Schema 14
2.3.3 The External Schemas 15
2.3.4 The Internal Schema 16

2.4 USING DDLC JOD78 IN THE ANSI FRAMEWORK 16

2.5 CONCLUSIONS 31

3. IMPLEMENTATION ISSUES 33

3.1 INTRODUCTION 33

3.2 DATABASE ENVIRONMENT 34

3.2.1 Distributed Databases 34

3.2.2 Special Purpose Machines 37

3.2.3 Higher Level DML 40
3.2.4 Advanced Programming 44

3.3 END USER FACILITIES 45

3.3.1 Is the ANSI user analysis correct? 45

3.3.2 Does subject architecture impede EUF? 49

3.3.3 Is EUF different from
programming interface? 49

3.4 DATA DICTIONARIES 50

3.4.1 What is the data stored in a DD/D? 50

-V-

3.4.2 Languages used with a DD/D system 51
3.4.3 Services performed by the DD/D 52

3.5 TRANSLATION/CONVERSION 54

3.5.1 Database Translation 54
3.5.2 Program Conversion 55
3.5.3 Dynamic Conversion 55

3.6 CONCLUSIONS 57

APPENDIX A - REFERENCES 58

-vi-

DATABASE ARCHITECTURES:
A FEASIBILITY WORKSHOP REPORT

John L. Berg

,

Marc Graham,
Kevin Whitney,

Ed i tor

s

To help the decision maker evaluate the po-
tential benefits and pitfalls in moving forward
with database technology, the National Bureau of
Standards organized two workshops whose results
are presented in this report. The workshops, held
in August 1978, explored the progress plan and
potential pitfalls involved in specifying, design-
ing, and implementing systems based on the
ANSI/X3/SPARC framework and the CODASYL JOD
languages specification. Workshop 1 investigated
the general topic of data independence, and
Workshop 2 examined supporting topics such as
query languages, data dictionaries, and database
conversion

.

Key words: Conversion; Database; Data-description;
Data-dictionary; Data-directory; Data-
manipulation; DBMS; Languages; Query; Standards.

-1-

1. INTRODUCTION

1.1 WORKSHOP OBJECTIVES

The workshops sought to explore the technical feasibil-
ity of a DBMS architecture with a high degree of data in-
dependence using the ANSI/X3/SPARC framework. The CODASYL
78 JOD languages are used, where possible, to insure speci-
ficity in the discussions. Workshop 1 was charged with:

1. Specifying criteria for determining the degree of
data independence in any DBMS architecture in order
to determine the degree of independence in the sub-
ject architecture.

2. Providing the criteria for dividing the fun':tional
components of a DBMS into internal, conceptual, and
external schemas, and the mappings between any pair.

3. Identifying problems in the ANSI/SPARC approach to
data independence.

4. Assigning the CODASYL specification statement
classes to the schemas of the ANSI/X3/SPARC frame-
work, using the criteria for data independence
developed above.

Workshop 2 was charged with developing answers to the fol-
lowing questions in order to facilitate any eventual imple-
mentation :

1. How can we protect the user's investment in existing
databases and application programs?

2. What is the role of the data dictionary/directory in
preserving the user's data base investment?

3. Is there anything in this architecture which medi-
ates against, or supports, end user use of the data-
base? What specifications for end user facilities
should be produced?

4. Is this architecture suited to the coming genera-
tions of database environments: distributed data-
bases, special purpose machines, associative
storage, advances in programming methodology, and
other predictable technological advances?

-3-

1.2 MOTIVATION

1.2.1 Goals.

To help the decision maker evaluate the potential bene-
fits and pitfalls in moving forward at this time with data-
base technology, the National Bureau of Standards organized
two workshops whose results are presented in this report.
These two technology feasibility workshops of two days each
brought together 16 industry and academic experts to explore
the progress plan and potential pitfalls involved in speci-
fying, designing, and implementing database management sys-
tem technology based on the ANSI/X3/SPARC framework and the
CODASYL JOD languages specifications. The first workshop
was charged with discussing the degree of data independence
provided by such an approach and the acceptability of the
CODASYL languages specifications as candidates for the con-
ceptual schema and external schema of the framework. The
second workshop concentrated on implementation- related is-

||

sues such as the role of the data dictionary, the supporting
j]

machine environment, and the distributed databases. The 0

results of these workshops are recorded in this report.

1.2.2 Accomplishments.

The main product of the workshops is this report. It
was edited from the notes, wall charts, and transcribed
proceedings of the workshops. Whenever the editors felt
there was substantial concurrence on a topic, they included
it in the report. Where there were significant matters of
particular interest to an individual participant in the
workshops, that person wrote a position paragraph which is
included in this report and attributed directly to its au-
thor . This is indicated in the text by the participant's
name, which appears underlined and bracketed, immediately
following the position. All referenced documents are indi-
cated by an abbreviated name enclosed in brackets. The com-
plete list of references can be found in Appendix A. The
goal of the editors of this report was mainly to provide an

j

outline in which these position paragraphs would fit.

If we have asked the right questions, provided a frame-
work for analysis, and stimulated productive discourse on
the technical feasibility of the ANSI framework for DBMS
with these workshops and this report, our goals will have
been met

.

-4-

2. DATA INDEPENDENCE

2.1 INTRODUCTION

In his book on database management systems, C. J. Date
emphasizes the importance of data independence by devoting a
separate section to the concept. He writes that an applica-
tion is data-dependent when

... knowledge of the data organization and ac-
cess technique is built into the application
logic. ... In a database system, however, it
would be extremely undesirable to allow applica-
tions to be data-dependent. There are two major
reasons: (1) Different applications will need
different views of the same data ... (2) The
DBA must have the freedom to change the storage
structure or access strategy (or both) in
response to changing requirements, without the
necessity of modifying existing applications.
[DATE]

While the goal of data independence is to isolate changes in
the database from changes in the application view, a more
precise definition was needed to permit the workshop parti-
cipants to evaluate the degree of data independence provided
by the ANSI/X3/SPARC framework.

A few published definitions will show the great diver-
sity of views on exactly what data independence means:

Data Independence has very specific properties,
and can provide very specific predictable bene-
fits ... even though data independence is so
complex a phenomenon that it approaches confu-
sion, it is possible to specify data indepen-
dence functions and capabilities. [ANS75]

Data Independence is concerned with the problems
of separating application programs from some as-
pects of the storage and structure in the data
base ... for the protection of investment in
data and programs in a changing business and
computing environment. Thus, "how much indepen-
dence" is an economic question involving trade-
offs between flexibility and efficiency. [JARD]

Data Independence is " ... the immunity of

-5-

applications to change in storage structure and
access strategy." [DATE]

Stonebraker attempted to introduce a rigorous defini-
tion of data independence and to classify database transfor-
mations by the degree of independence provided, but little
has been done with his model since. The issue to be dis-
cussed, then, is can we define data independence in a pre-
cise and measurable way and, if so, how much do the ANSI ar-
chitecture and CODASYL provide?

Before starting into discussions, the workshop partici-
pants prepared the following list of key terms for which
standard definitions would facilitate their work:

Data Independence
Data
Information
Integrity
Constraint
Index

Of these items, the workshop specified data indepen-
dence, the (three types of) schemas and mappings as most im-
portant for their discussions.

Schema
Conceptual
Internal
External

Logical data structure
Mapping

2.2 DATA INDEPENDENCE DEFINED

The workshop discussion began with the workshop
leader's prototypical definition:

Data independence protects (a user's) investment
in databases and programs by insulating the user
from inevitable changes in applications, data,
and computer systems.

Although this is a statement of objectives rather than
a proper definition, the workshop participants improved it ,

to

:

The objective of data independence is to permit
!

the use of information in a changing environ- .

ment. [Smith] I

This point was later expanded in a joint position paper

^

by Diane and John Smith: '

i

-6-

The term "data independence" has different,
though related, meanings when applied at the
CONCEPTUAL level and the EXTERNAL level.

i. Meaning at the CONCEPTUAL level: Data
independence is achieved when the
relevant structure of the enterprise is
revealed, and its representation over
computer storage is hidden . It is not
sufficient merely to hide representation
details— this would imply that an "emp-
ty" conceptual schema would be an ade-
quate solution.

ii. Meaning at the EXTERNAL level: Data in-
dependence is achieved when the relevant
structure of the enterprise appears to
the user in a desirable ex ternal
representation , and the internal
representation over computer storage is
hidden. It is possible that the internal
representation will be chosen to reflect
the desired external representation.
[Smiths]

Data Independence is the property of a data
management system that provides alternate views
of the same stored data, and preserves them dur-
ing the evolution of the data environment.
[Manola]

The objective of data independence is to permit
the continued acquisition, storage, retrieval,
and dissemination of information in support of
the operation of the enterprise over time. The
effect is to insulate the enterprise from the
inevitable changes that occur in applications,
data, computers, and the enterprise's view of
itself. [De Lutis]

These attempts to agree on an intensional definition (one
which designates the qualities of objects to which it ap-
plies) having failed, the group turned to devising an exten-
sional definition (one which designates the objects to which
it applies) of data independence. The workshop participants
devised this extensional definition of data independence by
enumerating the classes of changes permitted by a database
system with a high degree of data independence. The follow-
ing list of capabilities as relating to data independence
was recorded and augmented by Bachman:

-7-

a. changing character of floating point number or in-
teger representation,

b. changing record delimiter mechanism,
c. changing names of records, sets, and items,
d. changing location within record of item,
e. adding/subtracting unreferenced items,
f. changing internal format of items, including coding

schema

,

g. changing precision of data items to make more pre-
cise ,

h. changing units of measure,
i. adding new record and set types,
j. adding consistency and derivation declarations,
k. changing data model,
1. refining conceptual schema declarations,
m. changing primary and secondary key indexing tech-

niques,
n. changing set implementation technique,
o. changing location of records from one site to anoth-

er,
p. changing number of records or specific content which

represent a single real world entity.

Throughout this discussion it was clear that various
levels of data independence were poss ible--correspond ing to
the characteristics of the data that could be changed
between storage and use. Each schema is a description of
the data, with emphasis on various characteristics of the
data as shown in the following table:

ANSI schema

ex ternal
conceptual

internal

Data characteristic

format
structure
access

representation

DIAM level

end user
infolog ical
string
encoding
phys ical

dev ice

There may be mappings between each level, with a degree
of data independence permitted at each level. Some changes
such as renaming a field may occur at one or more levels,
while others such as selecting the indexing mode occur only
at one level.

Several participants used a model like this one to
clarify their view of some aspects of data independence.
Gerritsen argued, for example, in the following position
paragraph, that machine independence is not a concern of
DBMS data independence:

-8-

Computer independence should be considered
separately from the overall question of data in-
dependence because:

1. Change in computer and/or DBMS occurs
much less frequently than changes in
data, applications, and enterprise
model

.

2. Insulating programs from changes in com-
puter transcends the capability of the
DBMS. Examples of changes from computer
to computer that affect programs but
cannot be controlled by the DBMS in-
clude:

a) collating sequence
b) number of distinct characters
c) number of characters stored per

word
d) precision of arithmetic.

3. A large degree of computer independence
can be attained by means that have no
relation to the means used to obtain in-
dependence from changes in applications,
data, and the enterprise model. Comput-
er independence can be attained simply
by implementation of the DBMS on a
variety of computers. Examples of DBMS
that are currently available on a large
variety of computers are TOTAL and SEED.
[Gerr i tsen]

Using examples from his paper on database reorganiza-
tion, Sockut divided database changes into four DIAM levels
as follows

:

Changes at the infological level (conceptual
schema) :

attributes can be added, deleted, com-
bined, split, or renamed

relationships can be created, destroyed,
or renamed

migrating an attribute in a 1-N rela-
tionship from the 1 to the N or vice
versa

-9-

- changing among 1-1, 1-N, and M-N rela-
tionships.

Changes at the string level (internal schema):

- creating, destroying, or renaming a
string (record or set)

rearranging fields on a record or
records in a set

- establishing or removing a secondary in-
dex, or a search key within a record
type that is densely indexed on that key

- changing the order of a set's members.

Changes at the encoding level (internal schema):

modifying the basic representation,
scale, encryption, size, precision,
character code, etc., of an attribute
encoding

- modifying the relationship encoding as,
for example, changing set implementation
among embedded chains, pointer arrays,
and bit maps.

Changes at the physical device level (internal
schema)

:

- changing access methods

changing hash parameters

remapping areas to devices

eliminating overflow. [Sockut]

The focus on levels of data description and the map-
pings between them clearly delineates the major distinction,
between a two schema and a three schema DBMS framework. In
a system using only two schemas, one for representing data
as stored and another for representing data as used, there'
will be N X M mappings for N storage views and M application!
views. When a storage view changes, M mappings must change;
when an application view changes, N mappings must change.

|

By contrast, a three schema system has a single conceptual,
view separating the storage views from the application]
views. In this case, only one mapping changes if a storage
view or an application view changes.

-10-

At run time these two system organizations produce the
same database manipulations, so they provide an identical
degree of data independence. Thus, the important question
is not the theoretical degree of data independence (complex-
ity of mappings from storage to usage), but the practicality
of providing that degree of data independence. A capability
which is so inconvenient that it is never used provides no
greater data independence than one which is theoretically
nonexistent. In this sense, the three schema approach pro-
vides much more data independence, since a change requires
changing only a single mapping rather than N storage or M
usage mappings.

This distinction between theoretical and actual data
independence is clearly expressed in Lowenthal's definition:

Data Independence is a property of the program
interface provided by a EMS; namely, it is a
(necessarily qualitative) measure of the extent
to which changes in the implementation of the
interface, and specifically changes in the or-
ganization of the data, can be made without the
requirement to modify programs.

Potential data independence more precisely
refers to the changes which could be made. This
can be determined from the interface itself.

Actual data independence refers to those aspects
of the potential data independence which are ac-
tually supported by the EMS— i.e., the existence
of mechanisms to 1) change the data and 2) con-
tinue to preserve the program's view of the
data

.

As with other measures of user interfaces, such
as " high- levelness ," "ease-of-u se ," etc., data
independence is not absolute, but must be relat-
ed to the needs of the enterprise. [Lowenthal]

2.3 THE THREE SCHEMA FRAMEWORK

2.3.1 ANSI Schemas and Their Mappings.

After discussing the aspects of data independence, the
workshop proceeded to investigate the ANSI framework and
specifications for its schemas and the mappings between
them. These schema definitions and mappings provide the
measure of data independence being sought.

-11-

Figure 1 shows the subset of the ANSI/X3/SPARC archi-
tecture of primary concern to our discussion. Only those
interfaces of direct interest to the data independence
workshop are shown. These are:

1) Jonceptual Data Description
4) External Data Description
7) External Data Manipulation Language

13) Internal Data Description
36) Internal/Conceptual Data Transformation
38) Conceptual/External Data Transformation

The internal, conceptual, and external schemas are de-
fined in the ANSI/X3/SPARC documents [ANS75], [ANS77]. In
general terms, the conceptual schema represents a long-term
view of the enterprise independent of its databases or in-
formation processing applications. The internal schema is a
description of the organization's databases. An external
schema is a description of the data used by a collection of
application programs of the enterprise. Logical data ele-
ments of an external schema need not correspond in a one-
to-one way with physical data fields described in the inter-
nal schema. The values of external data items may be trans-
lations, transformations, concatenations, logical or arith-
metic computations, or other algorithms performed on one or
more internal data values.

-12-

F ig ur e 1

ANSI/SPARC DBMS Study Group Architecture

-13-

2.3.2 The Conceptual Schema.

Some criteria suggested by workshop participants for
permitting a language element to be in the conceptual schema
or to be excluded from it were the following:

- The function declared by the language element should
be appropriate for the schema

This type of language element is required for the
schema

Each function should be described in only one schema
or part of a schema

There should be only one way of representing rela-
tionships in the conceptual schema

Descriptions in the schemas should not duplicate one
another

Nothing in the conceptual schema is ignorable; each
declaration must have effect or import to the enter-
prise administrator

The conceptual schema factors repetitive declara-
tions out of the internal and external schemas.

Smith commented on what should be specified at the con-
ceptual level:

The conceptual schema is intended to capture all
aspects of an enterprise necessary to provide
support information for its operation. Thus,
both the structural and behav ioral aspects of
the enterprise must be specified.

Structural aspects consist of the entities ,

attributes , categories , and relationships
comprising the enterprise as well as the naming
mechanisms used to reference them. Important
naming mechanisms are: associative naming (e.g.,
the employee with ID# = 99999); operative naming
(e.g., the employee last hired); functional nam-
ing (e.g., the number "2+3"); and relationship
naming (e.g., the employee who is assigned to
project Q . It is of utmost importance to note
that it is unlikely a given structural component
is interpreted in the same way throughout the
enterprise. For example, in a hotel the object
"reservation" may be interpreted by some class
of users as an entity with attributes "date,"

-14-

"reservee," and "room." A second class of users
may interpret "reservation" as a relationship
among the entities "reservee," "date," and
"room," where "reservee" has attributes "name,"
"address," etc. Another class of users may view
a "hotel reservation" as one subcategory of
"reservation" among many such as "plane reserva-
tion," "library book reservation," etc. Thus,
the conceptual schema must specify the structure
in a way that permits all these different in-
terpretations to be captured.

The behavioral aspects of an enterprise consist
of the operations performed within an enter-
prise. Such operations are reflected in the in-
formation system as insertion, deletion, and up-
date operations applied to its structural as-
pects. It is important to note that the effects
of such operations are rarely restricted to iso-
lated objects in the structure. Rather, they
have side effects that ripple over related ob-
jects. For example, in a personnel application
the termination of an employee would require not
only his deletion from the system, but also his
removal from health plans, car pools, and pro-
ject assignments. It would probably also re-
quire new assignments being made to fill some of
these newly emptied slots. These side effects
must also be captured in the conceptual
schema--either as an aspect of an operation or
as an integrity constraint specified separately
from the operation. [Smith]

2.3.3 The External Schemas

.

Workshop participants seemed generally in agreement on
the nature of external schemas, making such comments as:

- The CODASYL subschema is a proper example of an
external schema

- The external schemas will be allowed to use data
models convenient to the user's applications and
programming languages

Multiple concurrent external schemas are needed to

isolate one user's view from another user" s view of
the database. For example, record order and struc-
ture should be variable from one external schema to

another

-15-

The external schema is the proper level of granular-
ity for access control.

2,3.4 The Internal Schema.

The workshop also discussed the internal schema brief-
ly, with comments such as:

The CODASYL DDL and DSDL form a proper example of a
possible internal schema:

- When a set expresses the binding of a relationship,
it is properly part of an internal schema

Similarly, when a set expresses an access path, it
belongs in the internal schema.

Only one position paragraph was written on the internal
schema, arguing that its existence need not be known by the
users of a data management system or by the enterprise ad-
ministrator:

Given a conceptual schema, a set of external
schemas, data volumes, access frequencies, logi-
cal access path frequencies, storage device
characteristics, performance requirements, and
other performance/ storage constraints/ costs

,

then it is possible to represent internal schema
design decisions in a mathematical optimization
model. Such a model can perhaps be solved "op-
timally" or, through heuristics, be used to find
"good" solutions. Such a model can be incor-
porated in the DBMS. Since the DBMS only
creates, modifies, and uses the internal schema,
the user need not know of its existence. Hence,
except for internal requirements of the DBMS,
the concept of " internal schema" can be estimat-
ed . [Gerritsen]

2.4 USING DDLC JOD78 IN THE ANSI FRAMEWORK

Rather than allocating DDLC language elements to the
three schemas, the workshop participants grouped all data
description language elements into the conceptual schema.
Then, those relating to the storage and efficient retrieval
of the data were moved to the internal schema, and those re-
lating to user views, applications, and programming
languages were moved to the external schemas.

-16-

Smith made the following statement about the inclusion
of operations in the conceptual schema:

The conceptual schema should describe more than
just the structure of an enterprise. It is
equally important to describe its behav ior as
characterized by the operations that effect
changes within it. Such operations can be de-
fined over the components of the structure
without introducing any implementation detail.
Each operation should be specified in terms of
basic insert, delete, and update operators,
high-level naming mechanisms, and we 11- conceived
control structures. The use of appropriate nam-
ing mechanisms makes it possible to refer to ob-
jects without considering access paths and other
representation detail. Control structures are
necessary to define the scope of the objects af-
fected and could take the form of quantifiers or
more conventional constructs such as recursion
and iteration.

Such an extended specification provides several
advantages

:

i. it permits users to understand how
change is effected in the enterprise,

ii. it provides implementors with a basis
for implementation optimization,

iii. it provides DBAs with a basis for veri-
fying that high-level integrity con-
straints will be maintained,

iv , it provides a basis for access
control--if all accesses are channeled
through only the specified operators.

References ;

1. Liskov, B., and Zilles, S. "Programming
With Abstract Data Types." Proc . of a

Symposium on Very High Level Languages ,

SIGPLAN Notices 9, 4, April 1974.

2. Mylopoulos, J., Bernstein, P., and Wong,
H. K. T. "A Language Facility for
Designing Interactive Database-Intensive
Applications." Supplement to Proc. 1978
ACM SIGMOD Conference, Austin, Texas,
May 1978, 15-25.

-17-

3. Smith, J. M., and Smith, D. C. P. "In-
tegrated Specifications for Abstract
Systems." University of Utah, Computer
Science Dept. Report UUCC-77-112 (Sept.
1977). To appear in IEEE Trans, on
Software Engineering . [Smith]

This discussion of which data description language
statements should belong in the conceptual schema was organ-
ized according to the DDLC ' s nine categories of language
elements. A summary of the allocation of language elements
is shown in Table 1, which should be interpreted according
to the following two paragraphs:

The schema category identifies a schema and names its
characteristics. Its syntactic elements include the schema
access- control clause, the schema CALL clause, and the SCHE-
MA NAME clause. The schema category inspired no comment.

The structure category names the data structures that
the schema describes. The syntactic elements of this ca-
tegory include the Data-name clause, the KEY clause, the
OWNER and MEMBER clauses, the SET-NAME and RECORD NAME
clauses, the OCCURS clause, and the ORDER clause.

Discussion of the structure category focused on the
adequacy of the CODASYL set for defining the relationships
among entities described by the conceptual schema. Several
participants objected to the multiple uses of the CODASYL
set construct, as explained in the following position para-
graphs. Smith objects to the use of SET to show access path
information.

-18-

Table 1

DDLC Allocation of Language Elements

LANGUAGE ELEMENT
CATEGORY

ASPECTS INCLUDED IN SCHEMAS

INTERNAL CONCEPTUAL EXTERNAL

1. SCHEMA X y
NAME, CALL,

ACCESS CONTROL

2. STRUCTURE
NAMES X X X
KEYS PERFORMANCE ACCESS
SETS, GROUPS ACCESS PATHS RELATIONSHIPS
ORDER PERFORMANCE SEMANTIC PRESENTATION
MAPPING
PLACEMENT
REPRESENTATION

3. VALIDATION
CHECK PICTURE TYPE REPRESENTATION DOMAIN PRESENTATION

IDENTIFIES, INSERTION X
CONSTRAINTS, SOS X
SOURCE/RESULT X

4. DML INTERFACE vA.

5 ACCESS CONTROL X X

6. MEASUREMENT

7. TUNING X X X

8. RESOURCE
ALLOCATION X

9. ADMINISTRATION X X X

-19-

Certainly the SET and RECORD statements can be
used at the conceptual level to specify rela-
tionships between objects. However, in prac-
tice, these statements are frequently used to
specify the access paths that are to support the
relationships. For example, consider the fol-
lowing schema and three CODASYL descriptions:

Figure 2

Enrollment Example

STUDENT

ENROLLMENT

CLASS GRADE

B

RECORD Enrollment
05 Name
05 Class #

05 Grade #

RECORD Enrollment
05 Grade #

RECORD Student
05 Name

RECORD Class
05 Class #

SET SE
OWNER Student
MEMBER Enrollment

SET CE
OWNER Class
MEMBER Enrollment

RECORD Enrollment
05 Name

/* Flat File Model */

/* CODASYL Model */

-20-

05 Class #

05 Grade #

RECORD Student
05 Name

RECORD Class
05 Class

RECORD Grade
05 Grade #

This structure implies a large number of access
paths, many of which are redundant.

Conceptually y each of the CODASYL descriptions
permits the same information to be
ex tracted--but using different access paths.
Thus, RECORD and SET are good constructs for
specifying access paths--an internal schema pro-
cess. This freedom to specify the enterprise in
multiple ways, employed at the conceptual level,
would yield multiple specifications of the en-
terprise. This requires a schema reconciliation
step that could be avoided either by disciplin-
ing the use of constructs or by providing a sin-
gle construct that does only what is wanted.
The second option is usually more practical to
implement. [Smith]

Sockut amplifies this point, and also has the same com-
plaint about the OCCURS clause:

The CODASYL Set is inadequate as a mechanism
for describing relationships in the conceptual
schema because:

1. The only way to specify a relationship
is to define a SET or OCCURS, which
unfortunately specify the
relationship's implementation as well.
It would be better to separate rela-
tionship definition (C- level) from re-
lationship implementation definition
(I-level and possible E-level as
well) .

2. SET sometimes means both a relation-
ship and an access path (if it is a

non-singular set) , and sometimes it

means only the access path (if it is a

singular set) .

Here is my view of the ideal:

-21-

1, Conceptual schema level: Specify re-
lationship including its multiplicity
(i.e., 1-1 f 1-many or many-many).

2. Internal schema level (and possibly
external schema level): specify im-
plementation of relationship (e.g.,
SET vs. OCCURS). Also specify access
paths which do not implement relation-
ships (e.g., a SET with OWNER=SYSTEM)

.

[Sockut]

Lowenthal also comments:

CODASYL DDL provides two ways of defining 1-N
relationships--sets and nested repeating
groups. At the conceptual level, there should
be only one way of expressing a relationship;
linked list (set) vs. contiguity (repeating
group) should be an internal consideration.
[Lowenthal]

Since the OCCURS clause affects the data storage struc-
ture, it should be moved to the internal schema from the
conceptual. If an external schema is used with a program-
ming language which supports repeating groups, then OCCURS
may also be used there.

The OCCURS clause affects both the internal and
external schemas. There seems to be agreement
that OCCURS affects the external. It affects
the internal because it controls implementation
of a relationship through physical contiguity
rather than with pointers. The presence of the
OCCURS in the DDL as well as in the COBOL
subschema DDL is a clear indication that CODASYL
intends for the presence of OCCURS to affect the
storage structure. [Gerritsen]

There was considerable discussion of the ORDER clause
and its roles. Performance aspects belong in the internal
schema, semantic aspects belong in the conceptual schema,
and presentation or display aspects belong in the external
schemas. The following comment argues for excluding ORDER
from the conceptual schema:

The effect of supporting ORDER as a reasonable
conceptual schema attribute has a negative ef-
fect on data independence (in the CODASYL case)
because a given set type can have only one ORDER
clause in the CODASYL DDL. A set may have, in
the real world, several valid ordering s-- i .e .

,

-22-

different users perceive different orderings.

If the enterprise administrator changes his mind
about which mechanism is to be used to express
an ordering, some programs will have to be
changed. Contrast this with the relational ap-
proach where all orderings are item based and
all are symmetric. [Lowenthal]

Smith, however, notes an important exception to this
point:

When order is used to improve the performance of
a database management system (DBMS) , then it
should be considered an implementation mechanism
and specified in the internal schema. However,
when an ordering is used within an enterpr ise
(to facilitate either communication or its ac-
tivities), this should be reflected in the con-
ceptual schema. Typically queue and stack dis-
ciplines may be used to service customers. If

the service operators are included in the con-
ceptual schema (see position paper by D. Smith
on the inclusion of operators in the conceptual
schema) , then the notion of order is necessary
to utilize these operators as intended. This
capability extends the applicability of DBMSs
beyond their current use as record keeping sys-
tems to the more dynamic situations inherent in
control applications. [Smith]

Another DDLC structure clause which caused debate was
the KEY clause which defines entry points to the database.
The primary objection is expressed in this position para-
graph :

The "KEY - IS" clause in CODASYL 1978 detracts
from data independence objectives in that the
intent of the clause is to define an "entry" to

the record type from the DML. The effect is to
bind the DML to the DDL. E.g., if I modify the
schema to delete the record key attribute from
an item, then all programs which used the item
as an entry point will now be invalid— the DML
processor will reject the FIND. [Lowenthal]

The val id at ion category declares rules that constrain
occurrences of the data structures declared in the structure
category. The syntactic elements of this category include
the CHECK and DUPLICATES clauses, the record IDENTIFIER
clause, the TYPE and PICTURE clauses.

-23-

Data validation was generally agreed to be a function
of the conceptual data description except for the following
statements and clauses:

The CHECK clause specifying range restrictions of a
data element may also appear in an external schema
as long as the constraint in the external schema is
more restrictive than the constraint in the concep-
tual schema.

- Those aspects of the PICTURE and TYPE clauses that
express the precision or domain of data elements be-
long in the conceptual schema since they specify se-
mantic information about the data items in the data-
base. Those aspects which express the format and
presentation of the data items belong in the exter-
nal schemas.

The structural constraint clause is a way of speci-
fying a relationship rather than a data value con-
straint. In this sense, it more properly belongs in
the structural category than in the validation ca-
tegory.

The DML interface category declares procedures which
may be involved by a DML function and parameters to be sup-
plied in these procedures. The syntactic elements of this
category include the RANGE KEY clause, the set occurrence
SELECTION clause, and the WITHIN area clause. This was the
only time in the discussion that the interrelationships of
the DDL and the DML were explicitly addressed. Lowenthal
commented in two position paragraphs:

We have ignored the effect the DML has on data
independence characteristics--rem ember my defin-
ition of data independence refers to the "pro-
gram interface" which includes the EML. For ex-
ample, consider the N-1 relationship:

-24-

Figure 3

An N-1 Relationship

DEPT. #

LOCATION

EMPLOYEE #

DEPT. # (FOR RELATIONAL)

SALARY

The query expressed in S2000 query language is:

WHERE salary GT $10,000 AND
location EQ plantQ

and the same query expressed in a relational
calculus language is:

WHERE dept .location EQ plantQ
AND THERE EXISTS employee :

dept.dept# EQ employee .dept#
AND salary GT $10,000

Note that the S2000 statement refers only to
items (domains) and not records (relations).
Therefore, the statement is independent of
whether LOCATION is in the department record or
in the employee record. This is not true in the
relational EML example--it is assumed that LOCA-
TION is in DEPT. If LOCATION moves to EMPLOYEE
then either the statement is invalid or else
there must be a mapping which allows the exter-
nal view to see LOCATION in DEPT— I 'm not sure
this is definable. In other words, a EML which
minimizes references to record names supports
item migration as an aspect of data indepen-
dence. (Of course, the CODASYL DML also refers
explicitly to record names). [Lowenthal]

The access control category declares authorization
mechanisms for access to and change to the occurrences of
the data structures declared in structure category. The
syntactic elements of this category include the ACCESS-

-25-

CONTROL clauses.

Time did not permit the workshop participants to ex-
plore this subject fully. The following points were made
and Manola contributed a more detailed position paragraph:

Access control is actually a property of the map-
pings between schemas, rather than the schemas them-
selves .

- Access control does not affect the actual data in-
dependence, but may have an effect on the practical
data independence of a data management system.

The access control information belongs partly in the
conceptual and partly in the external schemas.

The proper mechanism for access control at the
external level is the external schema (CODASYL
subschema). That is, each distinct set of user's
access rights to the database should be defined in a
separate subschema. Particular subschema have
identical access rights designated for that subsche-
ma .

Manola comments:

Access control functions go into the conceptual
schema (as well as in other schemas) for the
following reasons:

1. Access control rules (like integrity
rules) are part of the description of
the enterprise the conceptual schema is
supposed to model. Generally speaking,
no one objects to the idea that custo-
mers, suppliers, and products are enti-
ties of interest to certain types of
conceptual schemas, and should be de-
fined in them. Moreover, few people ob-
ject to the idea that, if there are
rules of various kinds about which sup-
pliers supply which products, or which
products are shipped to which customers,
these sorts of rules legitimately belong
in the conceptual schema (I can imagine
a EXDD rule that says we don' t ship
weapon x to country y) . Certainly pro-
ducts of various kinds (as well as
plants, warehouses, etc.) are enterprise
resources that we need to keep track of.

-26-

and may well be described in the concep-
tual schema. Well, the database of an
enterprise is an enterprise resource
which we need to keep track of (or so
database people have been preaching for
years) , and which could well be
described in the conceptual schema.
Moreover, users of that database system
could also be viewed as entities of in-
terest, and the semantically meaningful
relationships between these users and
the database (plus the definition of the
properties of legitimate users itself)
describe in some sense the security
rules of the system. That the
ANSI/SPARC framework envisaged this ap-
proach is shown by page vi of its report
where it says "By defining the persons
with access to the database management
system as entities of interest, it is
possible to directly model the rules of
access and thus provide the necessary
access control at the level of the con-
ceptual schema. Access may be further
limited at other levels,"

2. I would initially imagine security
pol ic ies being defined at the conceptual
level. This would include overall
government regulations under which the
company must operate that are relevant.
For example, a privacy-type policy might
be one which states that any person can
see the data stored about himself in the
database. Another policy might be the
normal DOD security policy that a person
might have the appropriate clearance be-
fore he can see a piece of classified
data. The actual implementation of
these policies might be specified at the
internal level (e.g., how the system
stores the fact that a piece of data has
a certain classification, or that a user
has a specific clearance)

.

3. I view the separation of the usual data
in a database and the security and in-

tegrity rules, information about users
which these rules might require, etc.,
as being a very artificial one. I see
no reason why I should not be able to
ask the DBMS what users have access to a

-27-

particular piece of data or document,
just as I ask what suppliers supply part
xyz. Having to go through an entirely
independent mechanism to access this
type of information seems both unwieldy
and insecure. (There are a number of
other types of "metadata" which I might
want to get from the database too, such
as what relationships do objects x and y
have in common.)

4. It is inappropriate to leave access con-
trol to external schemas, let alone to
the operating system. The operating
system is able to control access in
terms of the objects it knows about.
Generally these are rather coarse ob-
jects like files. The database system
will have to be responsible for enforc-

c ing access rules on those objects which
it alone has defined and knows about
(while the operating system protects the
physical representations and the data-
base management system itself) . While
use of the external schema facility to
define "security views" is one way of
implementing access control (and one
which I advocate in many cases) , it is
not the only way. I would not like to
see any assumptions made here unduly
constrain users in how they implement
their access control. Moreover, this
appears to require the burying of the
access control rules in the mapping
specifications for the external schemas,
rather than having them explicitly de-
clared somewhere. [M anola]

The measurement category directs the DBMS in collecting
data about database use, population, etc. Since there are
no syntactic elements of the 1978 JOD DDL in this category,
the workshops did not discuss this category.

The tun ing category declares guidelines for database
organization to assist in tuning database performance. The
syntactic elements of this category include SOURCE and
RESULT clauses, the PRIOR processable clause, the LOCATION
mode is clause, the LINKED to clause, and the SEARCH clause.

-28-

There was considerable discussion of this class of
language specification, but little consensus. The main
points brought out by the discussion were:

- Tuning options affect practical data independence,
but not theoretical data independence.

It is important to distinguish volume of data from
frequency of use in specifying tuning statements.

Record usage statements should be in the conceptual
or internal schema to reflect global data
usage--rather than the data usage of a single class
of applications related by an external schema. (See
position paragraph following this list).

Tuning should be an internal schema matter and use-
ful only to the DBMS which might use the information
to modify the schema automatically.

Three position paragraphs were submitted on this topic:

From a formal point of view, a tuning declara-
tion (such as frequencies of use and volumes of
conceptual entities) exposed in terms of concep-
tual objects is part of the declaration of the
internal-conceptual mapping (since it affects
how the conceptual objects will be represented
at the internal level). From the point of view
of packaging such declarations into various
languages, it will probably be convenient to
package them in the conceptual schema, as this
is a central point for collecting global de-
clarations about the system as a whole.
[Manola]

Performance oriented estimates/ proj ections
should include frequency and volume data. They
are optionally included in the conceptual schema
expressed in terms of abstract observable pro-
perties of conceptual schema objects. They may
be of use to:

internal schema designers

automatic internal schema generators

DBMS for automatic tuning of the data-
base in ways which may not even be re-
flected in the internal schema.

Note that some performance related information

-29-

could be provided in a program (i.e., in EML or
external schema) --e .g . , "I intend to retrieve
4000 employee records"--which will cause the
DBMS to stage the data to high speed storage or
take other appropriate action. [Lowe nthai]

The SOURCE clause is appropriately categorized
under the EXTERNAL schema, not under the CONCEP-
TUAL schema. It is an EXTERNAL schema component
because it permits construction of a record that
contains values derived from relationships. For
example, consider

Figure 4

SOURCE clause example

DEPT

ONAME

Jl
EMPL

EDNAAAE
ENAME

EDNAME has as SOURCE DNAME. This permits a view
(EXTERNAL schema) without the DEPT record and
without the DE set in which an employee's dept
name (as EDNAME) is still available. Contrary
to assertions made at the meeting by Frank Mano-
la and Charles Bachman, the SOURCE clause does
not act as a clause associated with data base
integrity (if it did it would properly be asso-
ciated with the conceptual schema as well). The
JOD specifically states that SET SELECTION must
be used to accomplish this kind of integrity.
SOURCE allows one to tell the DBMS— "replicate
an item here and give its replication a new
name." Since one could do this for all items in
records that own sets (into the members) without
change to the enterprise model, or to allowable
data, it seems not to be associated with the
conceptual schema. [Gerr itsen]

-30-

The resource allocation category names organizational
units appropriate for managing system resources, and con-
trols the assignment of occurrences of the declared data
structures to those units. The syntactic elements of this
category include the AREA NAME clause and the WITHIN area
clause

.

The administration category names and provides for the
invocation of DBA supplied procedures. The syntactic ele-
ments of this category include the CALL clause.

The workshop noted that database procedures, like all
other forms of user exits, reduce portability. In that
sense, they serve to reduce data independence.

2.5 CONCLUSIONS

The group agreed to the following basic conclus ions ;

- No intensional definition of data independence is
possible

.

The two schema and the three schema architectures
provide the same degree of theoretical data indepen-
dence .

The three schema architecture provides a greater de-
gree of practical data independence.

-31-

3. IMPLEMENTATION ISSUES

3.1 INTRODUCTION

While the participants in the first workshop had been
charged with the examination of a single issue, data in-
dependence, the second workshop was charged with four large
areas. These areas relate very closely to implementation
problems, in contrast to the more nearly theoretical con-
cerns of the first workshop. These areas were not addressed
in any detail by the ANSI/SPARC study group report, nor by
the latest CODASYL Journals of Developnent . The main task
of the second workshop was to find the pitfalls in the
ANSI/SPARC framework and pitfalls in the CODASYL JOD specif-
ications as an implementation of that framework in the con-
text of these four areas.

Not all the participants agreed that the CODASYL
specifications were, or could become, an implementation of
the ANSI/SPARC framework. The following positions were sub-
mitted :

Comparison of CODASYL and ANSI/SPARC
Architectures . I take strong disagreement with
the premise that CODASYL 78 represents a valid
embodiment of the A/S three schema database ar-
chitecture. While there are three schemas in
CODASYL 78, there are not the required three
schemas: it is not accurate to equate the DDL
schema with the conceptual schema nor the
subschema with external schema. The DDL schema
is not quite the conceptual schema. Too much of
the internal level remains, even with factoring
out pointers and indices into the DSDL. And too
much of what belongs at the conceptual level
remains unspecified, or provided only through
vaguely specified CALL LOCK, or BY PROCEDURE
references. Most damaging is the inadequacy of
the subschema facility provided by CODASYL 71,
which the revisions of 78 did not address. This
cannot be considered an ANSI/SPARC external
schema facility: it restricts subschemas to
resemble too closely DDL schema, thus leaving
conceptual and internal constructs visible in
the user interface. This is not a small objec-
tion, nor is it easily fixed; by closely linking
subschema data access to DDL schema records and
sets, serious limitations have been placed at

-33-

the level and power of available IML statements.
This in turn has serious implications for pro-
gramming effort and productivity, channel traff-
ic in distributed processing, and security and
integrity. [demons]

Lefkovits noted:

The proper issue to be discussed here is not
whether CODASYL 78 is an adequate representation
of the ANSI/SPARC architecture, but rather
whether CODASYL 78 sits into that architecture.
In my opinion it is obvious that the answer to
whether one can equate CODASYL 78 to ANSI/SPARC
must be a categorical negative; for example, CO-
DASYL 78 is a two schema structure and whereas
there is nothing in CODASYL 78 that inhibits the
introduction of a conceptual schema, this has
not been done to date. On the other hand, there
is nothing in CODASYL 78 which appears to be in-
consistent with the ANSI/SPARC architecture and
as such, CODASYL 78 does not inhibit any of the
benefits that can be accrued from this architec-
ture. [Lefkovits]

3.2 DATABASE ENVIRONMENT

The workshop discussed the impact of current hardware
and software technology research on future database prac-
tice. The hardware developments discussed were database
distribution and specialized database machines (" backends")

.

The software developments were structured programming, modu-
lar design, and abstract data types. [LISK], [GUTT]

.

3.2.1 Distributed Databases.

The workshop discussed two questions: one referencing
ANSI/SPARC and one referencing CODASYL. The ANSI/SPARC
framework was seen by some workshop participants as being
well suited to the distributed database environment. Others
thought that the ANSI/SPARC report implied a single coherent
database. Database distribution was said to be a problem
similar in nature to the earlier problem of interrelated
data on disparate storage media and of differing storage
structure

.

Lefkovits made this comment on the incompleteness of
the ANSI/SPARC architecture:

-34-

The ANSI/SPARC architecture does not address it-
self to conventional file organization and dis-
tributed data (databases and/or files). These
two subjects are similar in some ways as they
both address data located outside a single data-
base. There is nothing in the current document
that contradicts such future extensions, other
perhaps than the fact that the role of the data
dictionary/directory will have to be augmented
substantially to reflect these changes. In an
identical manner CODASYL 78 does not address
these subjects either, but it appears that the
same extensions that could be made to the
ANSI/SPARC architecture could be included in
some future version of the CODASYL specifica-
tions. Lefkov its]

The ANSI/SPARC conceptual schema represented to most of
the workshop a good vehicle for coordinating separate data
models and DBMS, but distribution itself was felt to have
ramifications throughout the framework. It was not isolated
in, for example, the internal schema or its mappings.

The workshop was in near agreement that, in its current
state of development, the CODASYL specifications could not
adapt well to a distributed database environment. The focus
of the criticism was the application language interface, the
EML. Discussion of the schema DDL went little beyond an ap-
parent belief that it presented no impediments to distribu-
tion. No grounds for such a belief were offered. No dis-
cussion at all addressed the adaptability of the DSDL to the
description of the distributed environment.

The criticism of the EML was that it was too "low lev-
el." This criticism was the strongest result of the discus-
sion of Database Environment and reappears in other areas.
Therefore, a summary of the definitions and arguments and
the positions submitted by individuals have been collected
and appear later in the Database Environment area.

Within the discussion on distributed databases, it was
pointed out that minimization, or at least reduction, of
channel or network traffic (the amount of data transmitted
between nodes of a distributed data network) was a signifi-
cant goal of any distributed DBMS, since the cost of that
traffic may well be the limiting factor in system use. The
EML of CODASYL, it was thought, would increase that traffic.
The global intention of the application programmer cannot be
expressed in the CODASYL DML. This leaves no alternative to
the implementation policy of retrieving each record request-
ed by the program so that the selection and aggregation
(AVG, MAX, etc.) logic embedded in the program can be

-35-

exercised. A higher level EML would allow these low level
operations to be distributed. Although this does not de-
crease the total amount of computation performed, it tends
to decrease the volume of data transmitted. The amount of
decrease depends on the amount of selection and aggregation
implied by the query and by the amount of cross- node compar-
isons made. (A cross-node comparison references data items
stored at distant nodes in the network.) The following posi-
tions were submitted on this issue:

A low-level DML (such as CODASYL DBTG) is inap-
propriate for a distributed DBMS because the
low-level operators, when applied to remote
data, result in excessive network traffic. It
is necessary to have processes at the remote
system to select and aggregate data before
transmission. If a high-level DML is used, the
system can construct the appropriate processes
to be run at the different sites involved.

The alternative of having the programmer code
separate low-level processes at each site is not
appealing since:

1. the programmer must be explicitly aware
of data location, the programs cannot
survive data reorganization;

2. the coding is much more difficult and
must concern itself with intersite com-
munication;

3. the low-level code must be bound to par-
ticular sites. If a site fails, even
though redundant data is available else-
where, the code cannot execute. A
high-level global program could automat-
ically use alternate data copies;

4. with a high-level program, the compiler
can optimize the global execution based
on database statistics (not possible
with a low- level implementation)

.

[Shipman]

The subschema facility, by retaining a close
link to DDL schema records and sets, places
severe limitations on possible EML. CODASYL 78
represents an improvement over CODASYL 71: for
example, set selection by structural constraint
permits returning to the user only those records
whose contents are of interest; still, placing

-36-

this feature in the DDL schema, and thus requir-
ing increased implementation overhead, will lim-
it its usefulness. Most other possibilities for
reducing the volume of data
transm itted--qual if ication , statistical reduc-
tion, aggregation--are not supported by DDL
schema to subschema mappings. Thus these func-
tions will be performed by most language pro-
grams, requiring that the necessary data be
passed to the user's computer for processing,
rather than being reduced before transmission.
This results in a substantial increase in the
volume of data to be transmitted. [demons]

Some argued that global optimization of CODASYL DML
programs would be capable of decreasing the volume of net-
work traffic which might otherwise result. However, no one
indicated how that optimization might proceed, nor gave any
reference to work which had succeeded in finding or attempt-
ed to find such an optimization technique.

3.2.2 Special Purpose Machi nes.

Do associative memories make the definition of access
paths like CODASYL sets obsolete? Does the navigational DML
make the use of associative memories impossible? Which
functions of a DBMS should be allocated to a backend
machine? What should be the interface between the backend
and the host? How does this fit into the ANSI framework and
the CODASYL specifications? This series of questions pro-
voked a discussion on the means by which the specialized
devices, e.g., RAP [OZKA], CASSM [COPE], etc., could be in-
corporated into the ANSI/SPARC framework or into the CODASYL
specifications. The term "database machine" encompassed a
large variety of specialized non-numeric processors includ-
ing associative memories, text processors, sorting machines,
and so forth. The associative memories under discussion
were disk based, "logic per cell" systems which respond to
requests for data records given values of constituent data
items rather than addresses, and which are capable of limit-
ed logic and computation. (The eventual appearance of
storage technologies other than disk, specifically bubble
memories, in these applications was noted by one of the par-
ticipants.) Associative memories are examples of backend
machines

.

The workshop noted that associative memories eliminated
the need for complex stored data structures such as inverted
files, indices, and so forth. This function of the CODASYL
set is not useful in an associative memory environment. As
to the adaptability of the CODASYL Schema DDL or data model
to associative memories, opinions differed. Some thought

-37-

that the relational model was best suited to these devices.
Su reviews these arguments:

Associative memories with context addressing ca-
pability are more suitable for the relational
model than for the other models because

1. the relational model represents entity
relationships by explicitly storing the
primary keys of the related entities (by
content) rather than the addresses of
the entities, and

2. the representation of relations as flat
tables matches very closely to the ar-
chitecture of associative memories-- thus
the effort of mapping the information
structure of the data to the structure
in the associative memories is minimal.

However, one should not jump to the conclusion
that the relational model is superior than other
models for the following reasons. First, the
capability of associative memories have not yet
been fully exploited. With some hardware exten-
sion, associative memories can handle more com-
plex data structures such as trees and network
efficiently. For example, the CASSM system is
built to process hierarchical structures and
contains pointer transfer capabilities which are
very suitable for data structures using
pointers. Second, the hardware should be built
and modified to meet the application needs.
Hardware consideration should not be a major
factor for determining the suitability or the
superiority of data models. With the drastic
reduction of the hardware cost, one can expect
that new hardware (database machines) can be
built to support any data model which the users
deem suitable for their applications. [Su]

On the EML question, the workshop again criticized the
CODASYL specifications as being too low level. Where some
had thought that optimization could be of assistance in the
distributed environment, the situation was thought to be
worse in regard to associative memories. The parallelism of
these devices can only be exploited through the use of a
higher level EML. When there are "multiple hits" in the as-
sociative memory, it was thought by some, the precision of a
navigational DML would be required. This was taken to mean
that record- by-record or tuple- by- tuple serial operations
are a required part of any DML. Others thought that the

-38-

ability of a higher level DML to deal with a set rather than
an individual returned as the result of a query was a power-
ful argument for the use of such EMLs . It was noted that
associative memories facilitate the implementation and im-
prove the performance of high level DMLs

.

The participants generally thought that the more a
backend machine did in off-loading work from the host com-
puter, the better. Clearly, there must exist some limit to
this off-loading, otherwise the backend simply becomes the
host. Most of the comments made by the workshop to this
point appear in the position by Su

:

Which DBMS functions should be assigned to the
main frame computer and which to the backend
processor{ s) would depend heavily on such fac-
tors as the relative speed, memory size, job
load, peripheral device types and speeds, etc.
of the processors involved. However, in gen-
eral, we should expect the main frame to:

1. carry out the program or query transla-
tion task;

2. support the end-user facilities
(ANSI/SPARC)

;

3. handle schema mappings, terminal commun-
ications, job scheduling and formatting
of output data to the users;

4. control the program execution; and

5. construct and maintain the data diction-
ary.

The backend processor(s) should perform the ac-
tual data retrieval and manipulation operations,
handle the memory management, schedule and con-
trol the query or DML execution, enforce the in-
tegrity and security rules and implement the
data aggregate functions. The data to be passed
from the backends to the main processor should
be the result of a high-level data operation (a
set of records) rather than of a low-level re-
quest (one record at a time) to reduce the
amount of interference generated to the main
processor. [Su]

-39-

Goguen added this comment:

The back-end machine concept places the database
management function on a separate processor with
exclusive access to the database. The host
machine collects data management requests and
transmits these across an interface from the
host to the back-end. Status and results are
accepted from the back-end by the host and sent
to the appropriate application programs.

By separating the data management functions and
placing them on a specialized processor, the op-
portunity exists for designing a high level log-

^ ical interface between the host and back-end
processors. With this approach, data can be
transferred between different host processors
without reformatting and translation, assuming
the back-ends are the same. Thus data conver-
sion can be avoided.

A future conceptual schema in the ANSI/X3/SPARC
framework could provide the basis for a Standard
Data Interchange format which would be the high
level logical interface between the host and
back-end processors. [Goguen]

The workshop participants appeared to agree that the
ANSI/SPARC framework allowed for rapid adoption of special-
ized processors as they become available.

3 .2.3 Higher Level DML.

Having repeatedly criticized the CODASYL DML, the
workshop saw the necessity to define more nearly what they
meant by "high level DML." A first attempt was that in a
high level EML, "you tell the computer what you want;"
whereas, in a low level EML, "you tell the computer how to
get what you want." This was refined to mean that a low-
level EML was procedural or navigational, and a high level
DML was non- proced ur al or non-nav igational . However, these
terms did not appear to have clearly understood definitions.
The following positions were submitted:

A "navigational" interface to a database manage-
ment system is an interface which accesses one
record at a time according to a specific access
path; e.g., "get parent" or "find next in set."
A " non-nav igational" interface tends to operate
on sets of records and to be independent of ac-
cess path; e.g., "join sales to customers by

-40-

matching their account numbers." Like "pro-
cedural," the term "navigational" defines a con-
tinuum on which I would characterize the
hierarchic and network data models as more navi-
gational, and the relational data model as less
navigational, [Chamberlin]

If the word "navigation" is to be used to mean
any type of program-controlled data traversal,
then all DMLs are navigational. They may differ
only in the degree of " nav igational ity ." This
is because all DMLs are used to traverse and
manipulate databases in accordance with the in-
formation structures defined in the external
schemas. However, some of the structural pro-
perties of a database defined in an external
schema are syntactic oriented and are inherent
from the specific data model used. They are not
necessary for defining the semantics of the
data. For example, the concepts of database
key, area assignment, chaining and sequential
access of set members, etc. have more to do with
the access path structure of the data than their
semantics. If we distinguish that part of the
structural properties defined in external sche-
mas which are necessary for describing the se-
mantics of databases from that part which are
not, we can then define a navigational EML as a
language which allows the user to guide the data
traversal through the excess structural proper-
ties and a non- nav igational DML as one which al-
lows the user to retrieve and manipulate data
based only on the semantic properties of the da-
tabase. [Su]

It is difficult to establish that there exists
any language which is not navigational at all;
probably the fact is that some languages are
more navigational than others. A potential
measure of the degree to v^ich a language is na-
vigational is the following: "Every language
statement implicitly contains in its semantics a

data structure which it addresses; the closer
this data structure is to the actual schema
structure, the higher is the degree to v^ich the
language is navigational." [Lefkov its]

Rather than directly address level of EML, which
seems to be an ill-defined and elusive concept,
I address related subtopics: iteration and na-
vigation. Iteration in DML is the ability to
write a single EML statement that retrieves and

-41-

processes all desired record occurrences. For
example, when retrieving the arithmetic average
of salary of all employees of a department, DML
iteration would permit this to be done without
explicit host language looping and arithmetic
statements. Although such facilities are not
provided in the current CODASYL DML, they could
be added with few changes to DDL schema and
subschema facilities. I define database naviga-
tion to be the process by which the user issues
DML statements to make associations between or
among desired records. This definition is in-
dependent of data model and language used— it
applies equally to navigation based on set
membership, algebraic joins or SEQUEL mappings.
Although all implementations require some navi-
gation, user navigation is bad, because it is
time-consuming, difficult, and likely to result
in errors. The alternative is replacing EML as-
sociation statements with DDL statements, that
is, making data associations and accesses part
of the external schema definition. This is
readily done as an extension to the relational
model, as shown by System R and, to a greater
extent, my own research. It has not been done
by CODASYL: no such facilities are included in
the subschema facility. Moreover, extensions
needed to accomplish this may be quite complex
due to the basic set architecture chosen; the
SELECTION clause of CODASYL 78 DDL demonstrates
this. [demons]

Zaniolo provided an overview that linked several of the
topics in order to reveal additional insights:

The ANSI/X3/SPARC architecture is conducive to
data independence, powerful end user facilities
and high level DMLs suited for structured pro-
gramming. Its framework will enable a DBMS to
respond well to environment changes including
distributed data and database machines. The
following features are most important in realiz-
ing the previous benefits: three levels of
schemas , multi-model external schemas, external
schemas derived from other external schemas,
dictionaries. While CODASYL 78 uses three lev-
els of schemas it does not provide the remaining
facilities which, I believe, are necessary to
realize the benefits previously described. I

see no conceptual problem in adding a dictionary
facility specification to the CODASYL 78 docu-
ments. However, the addition of more powerful

-42-

external schema facilities could produce strong
repercussions in the schema DDL required to sup-
port such mapping flexibility.

The objective of this statement is not to pass
judgment on the relative merits of CODASYL 78
and ANSI/X3/SPARC, but to suggest that a dis-
tinction between the two would be useful in
clarifying the discussion and the conclusions of
this workshop.

HIGH LEVEL DMLs ; These languages are very useful
since they facilitate application programming
and promote practical data independence. The
discussion at the workshop focused on two as-
pects of high level DMLs:

i. Aggreg ate Operation A s pe c

t

. This refers
to the capability of manipulating and
retrieving a whole set of records,
selected on the basis of their content,
in a single DML statement.

ii. Non-Navigational Aspect . (The defini-
tion of navigational languages is given
below)

.

Current query languages (e.g. the QLP language
for EMS/1100 of Sperry Univac) support aggregate
operations against network schemas. However,
non-nav igational EMLs will probably require
external schemas different from the network
subschemas of CODASYL 78.

NAVIGATIONAL LANGUAGES ; These are languages
based upon the availability of access paths in
the application schema. Thus the user identi-
fies paths and records of interest and specifies
his query as steps thru them. While access
paths can be defined as purely logical con-
structs, they have traditionally been regarded
as expression of underlying physical structures,
thus impairing data independence. Moreover a

query on a relationship not directly supported
by an access path is expressed differently and
less conveniently than a query on a supported
relationship. [Z aniolo]

The participants agreed, as implied by Chamberlin'

s

statement, that a high level DML takes as its operands and
returns as its results aggregates of records, tuples, enti-
ties, relationships, or whatever, rather than individuals.

-43-

Although no consensus was reached on how non-procedural ity
is recognized, however, it was agreed that procedural ity and
navigation were matters of degree. Some participants felt
that insofar as the means of establishing a relationship
(CODASYL sets or relational joins) between objects (records
or tuples) appeared in the EML, the EML was navigational.
This led to the position, not submitted as a statement, that
the hierarchical model allowed for the least navigational
DML. The workshop did not agree as to whether the choice of
data model dictated the degree of navigation or procedural i-

ty on an associated DML. Some participants thought that a
non-procedural , non- nav igational EML for use with a CODASYL
organized database was conceivable; ethers did not. Dave
Shipman took what might be called a higher level view of
higher level EMLs:

What is a H ig h-Level Language ? A higher- level
language is one in which the contents of the
language more closely resemble the terms in
which the user thinks of his problem. This is
accomplished by embedding the semantics of the
problem domain within the programming language
itself, in terms of DBMS languages. This means
that programs in a high-level EML express the
intent of the query or update, rather than the
sequence of low-level operations needed to carry
it out. A high-level EML pre-supposes a DDL fa-
cility which allows the semantics of the appli-
cation to be reflected in data descriptions
rather than in each DML program which references
those descriptions. A high-level DDL in turn
incorporates constructs natural to modelling the
real world enterprise. High level languages are
easier to write, debug, document, maintain, and
administer. In addition, because a high-level
language is less bound to any particular
hardware or software implementation, new techno-
logies can be absorbed without significant im-
pact on existing application programs.
[Shipman]

3 .2.4 Advanced Programming.

Do either the ANSI/SPARC framework or the CODASYL
specification inhibit database programmers in the use of the
methodology known as structured or modular programming? Can
the results of research into abstract data types be applied
to database problems?

-44-

These questions attempted to elicit the participants'
opinions of recent advances in software engineering that
have some impact on database engineering. Discussion of the
topic was brief. It was felt that the ANSI/SPARC framework
"blends nicely into the ideas of abstract data type" but
there were no further details forthcoming. Concerning the
CODASYL specifications, it was remarked that their complexi-
ty did not lead to elegant programming style.

A number of the participants felt the need for database
operations defined on the semantics of the data and that the
work in abstract data types could be used as an example.
Consider the contrast between the commands STORE EMPLOYEE
RECORD and HIRE EMPLOYEE. The first is expressed in terms
of the data requirements of the DBMS. The second is ex-
pressed in the semantics of the enterprise. The second com-
mand might include side effects such as establishing rela-
tionships (Department- Employee) , updating counts (Number of
Employees in Department), and so forth.

3.3 END USER FACILITIES

The CODASYL specifications to date have not addressed
the end user's needs. The ANSI/SPARC study group identified
four interfaces for the end user, but did not specify them
in detail

.

3 .3.1 Is the ANSI user analysis correct?.

The ANSI/SPARC report recognizes four separate inter-
faces, (numbered 8 through 11), for the end user. They are
the Inquiry Processor (small output volume, interactive);
Report Writer (large output volume, batch); Update Proces-
sor; and Parametric interface.

The majority of the participants considered this
analysis to be incorrect. Don Chamberlin points out in the
following statement that the application programmer inter-
face, interface 7, is presented as being parallel to the end
user interfaces, which he considers an error:

Rol e of Appl icat ion Programm ing Interface in a

DBMS

The ANSI/SPARC framework for a DBMS [ANS77]
treats the application programming interface
(API) as independent of the query, report gen-
erator, and several other interfaces (Figure 5).

-45-

Appl ication
F ig ur e 5

Programmer Interface

DBMS

APPLICATION REPORT QUERY
PROGRAM SPECIFICATION INTERFACE (#9)
INTERFACE (#7) INTERFACE (#8)

An alternative which has several advantages is
to make the API sufficiently rich to enable pro-
grams to be written in support of query, report
generation, etc. (Figure 6).

Figure 6

Enriched Application Programmer Interface

QUERY
INTERFACE

DBMS

" ">

EXTERNAL SCHEMA INTERFACE

^APPLICATION PROGRAM
INTERFACE

REPORT
GENERATOR
INTERFACE

ETC.

Such an enriched API would need facilities for

submitting ad- hoc queries and updates for execu-
tion (e.g., the EXECUTE statement of SQL
[CHAM]). A system structured according to Figure
6 permits a variety of query and report genera-
tor interfaces to be developed and supported by
programs, to meet a variety of end user require-
ments. [Chamberlin]

Other participants expressed the view that the four
separate interfaces of the ANSI/SPARC diagram represented a
data processing solution, in sharp contrast to a user
oriented solution. In other words, these four operations
appear separate and distinguishable to a computer-
-cnowledgeable data processing professional, but not to an
end user.

Henry Lefkovits drew a diagram (Figure 7) for the
design of an End User Facility or Facilities. The diagram
results from the work of the End User Committee of CODASYL
of which Dr. Lefkovits is the chairman. Although thc-t com-
mittee has yet to publish a jDurnal of Development, their
interim report [EUFTG] indicated that they were developing
specifications for a facility based on the "forms approach."
Explanation of this approach, in v^ich the database is
viewed as a "virtual file cabinet" within v^ich the data is
organized into forms resembling the familiar paper forms on
which business has so long relied, led the workshop to
renewed criticism of parts of the CODASYL JOD specifica-
tions. This discussion is given in the answer to the next
question presented to the workshop.

-47-

Figure 7

Design of an End User Facility

0

DBA
END USER

DB EUF

DDL DDL
PRAGMATICS

DICTIONARY

DB EUF

i.

OBJECT MANIPULATION
LANGUAGE PROCESSOR

DBMS

DATABASE

-48-

3.3.2 Does subject architecture impede EUF?

.

Many participants agreed that the subject architecture
(the three schema framework of ANSI/SPARC implemented in the
CODASYL 78 language) presented impediments to the construc-
tion or use of end user facilities.

The need recognized by the End User Committee to define
an end user view of the database reinforced the beliefs held
by many of the workshop participants that the CODASYL COBOL
Subschema DDL was not sufficient to serve the needs of a
complete external schema defining language. It was stated
by one of the participants that the "subschema facility ...
is fundamentally misdesigned [and] entirely inappropriate"
for use as an external schema facility. Don Chamberlin sum-
marized the views of many in the following statement:

1. CODASYL subschema DDL is not a very rich
facility for defining views of stored
data. Essentially, the defined views
must be simple subsets of the schema.

2. Because CODASYL DDL lacks the "closure"
property, it does not permit "cascading"
of views (views defined on top of
views) . [Chamber 1 in]

The ability to cascade was seen by some as more a
matter of convenience than necessity: the final view or
subschema or external schema could be defined directly from
the schema. However, it was observed that forming views on
views increased security and access control, and provided a

more flexible division of labor between enterprise and ap-
plication administrators, as those roles are defined by
ANSI/SPARC.

Some debate addressed whether a sufficiently powerful
external schema facility to support most users' needs could
be designed to interface with the CODASYL schema DDL, with
the majority apparently believing that it could.

It was remarked that neither the ANSI/SPARC nor CODASYL
documents made any mention of text processing nor of message
management (communicating among end users) and that these
were important features of an end user facility.

3.3.3 Is EUF different from programming interface?

The participants were, for the most part, convinced
that end user facilities did not present any hinderences to
database evolution beyond those presented by application
programs. It was pointed out, however, that the end user

-49-

environment is likely to be less controlled than the data
processing environment. Ad hoc database use may create more
unpleasant "surprises" than might occur in the absence of
end user interfaces. Good intra-enterpr ise communication
and special attention to the preservation of end user views
are two ways to deal with surprises.

3.4 DATA DICTIONARIES

In the center of the block diagram published by the
ANSI/SPARC study group there is an unlabeled triangle from
which emanate a large number of the interfaces recognized
and described by that group. This triangle is the data dic-
tionary, and its role is apparently crucial to the
ANSI/SPARC framework. The study group report gives no de-
tails of a dictionary system beyond the image of a reposito-
ry for whatever control information is needed by the DBMS.

Recent work by the British Computer Society Data Dic-
tionary Systems Working Party [BCS] presents an elaborate
and powerful facility which they called "the data processing
department's own database." Members of the workshop were
quick to point out that the data dictionary/directory (DD/D)
should serve not only the data processing department but the
larger user community as well. They also criticized the
ANSI/SPARC report for failing to see that the dictionary in-
terfaced to the human users of the database. Most of the
workshop participants agreed that a data dictionary system
had two distinct aspects: one oriented towards use by the
DBMS; and one oriented towards use by human beings. The na-
ture of the data stored in a DD/D and the services performed
by it reflect this dual role.

3.4.1 What is the data stored in a DD/D?.

Everything about the data stored or storable in the da-
tabase of interest to the enterprise. Everything except the
data values and programs themselves. As concrete examples:

The three schemas and their associated mappings in'
source and object form.

Security, access control, authorization mechanisms.

Usage information. This was of two types: static]
information as to which data items are used by which^
programs; dynamic information concerning frequency
and volume of use.

-50-

- Validation: range checks, permissible values, etc.

- Narrative text describing data items, aggregates,
etc

.

- An example of human oriented data not of interest to
the DBMS.

An argument was made that the system being described by
this list was broad, too all encompassing. It seemed the
system would "do everything for everybody" although none had
described how it would manage. Of the DBMS-oriented data,
it was argued that since any functioning DBMS kept that in-
formation, calling it a data dictionary served no new pur-
pose. The reply was that the processing of this information
for results not derivable from any single piece of informa-
tion is a new service provided by DD/D systems.

3.4.2 Languages used with a DD/D system.

Three distinct languages were proposed. They were a
customizing language, a maintenance language, and a report-
ing language. This analysis was accepted by the workshop
with the following criticisms and clarifications:

The customizing language need be no more complex than
the options selected at system generation. The only custom-
izing decisions to be made are the choices of optional sys-
tem services.

Reporting from the dictionary is conceptually no dif-
ferent than reporting from the database. The same facility
can be used to do both. This prompted a discussion on the
merits of organizing the dictionary as a database under a

IBMS. On the one hand, it was felt that the dictionary is
information, and a database is a box for storing informa-
tion. It seems reasonable to store the information about
the database in the box. On the other hand, some partici-
pants perceived a marginal increase in security if the dic-
tionary were not stored under the DBMS. The workshop was
reminded that some functions of the dictionary were of use
in the absence of a E8MS. Most workshop members thought the
use of the IBMS to store the dictionary a sensible decision.

Maintenance of the dictionary, it was agreed, differed
substantially from maintenance of the database. Two causes
of this difference appeared:

- Some of the maintenance is done by the system it-

self. Examples of this include dynamic usage infor-
mation as previously mentioned. Other processes of
the system may maintain some information in the

-51-

dictionary. The workshop did not discuss the impor-
tance of automatic versus manual data collection in
the DD/D.

- The effects of changes in the dictionary are poten-
tially much greater than the effects of changes in
the database. There is a considerable difference
between adding a domain to the description of a re-
lation, and adding a tuple to the extension of a re-
lation. It is correct, therefore, to restrict
maintenance of the dictionary to be a single, con-
trollable facility.

3.4.3 Services performed by the DD/D.

The participants suggested several basic DD/D services:

- Resolving name conflicts. These are of two kinds:
two (or more) names for the same thing; and the same
name for two (or more) different things. It is the
effort of collecting this information for the dic-
tionary which recognizes these conflicts.

Generate data descriptions: COBOL FD's, PL/1 data
structures, etc. All, or nearly all, dictionary
products on the market perform this service.

Query cost estimation and access path selection.
The data needed for this service includes: Availa-
bility and selectivity of indices (the selectivity
of an index is the number of unique key values di-
vided by the number of objects indexed); the cardi-
nality of the stored relations; and the average
chain length. The workshop did not define the con-
ditions under which the cost of maintaining this
data outweighs its usefulness.

Audit trails. Not to be confused with the
update/ change logs kept for database backup and
recovery. Two types of audit trails were discussed:

1. a list of which programs are capable of modify-
ing which data items. This can be very useful
for tracking down the source of improper data-
base updates; and

2. a list of the changes made to database programs
in production and development systems.

Impact of proposed changes. A list cross referenc-
ing the data items (attributes, entities, and rela-
tionships) and the programs which access them. This
can help the database administrator avoid mistakes.

-52-

- Data Dictionaries.
Use of a data dictionary can be a signifi-
cant factor in data conversion. The data
dictionary provides a catalog of the data,
both on the item level and in terms of as-
sociations amongst the data. Assuming that
a complete data description is included in
the data dictionary, the data conversion
system can use the information for generat-
ing the appropriate source and target data
descriptions required for the conversion.
A major problem in conversions to date has
been the unavailability of this level of
description in usable form. The definition
has been implicit in the logic of the ap-
plication programs or the data structures,
requiring time consuming analysis to gen-
erate the data description. The
ANSI/X3/SPARC architecture should include
provision for a data dictionary facility.
[Goguen]

- DBMS were introduced to administer and control data
which had until then been allowed to accumulate in
unmanaged file systems. DBMS succeeded in being
data management systems in only a narrow sense.
They manage to control and integrate program access
of the data. Data dictionary systems are now being
introduced to administer and control database
management systems.

In summary, the areas in which a dictionary system
serves a function were seen to be fourfold:

- Operational: the support of production systems
through security, validation, and audit trails.

System development: the support of application pro-
grams under development.

- System installation: can be used to hold the "before
and after" descriptions of databases being
translated/converted

.

- Conceptual Schema or Database Design: useful in all
stag es

.

-53-

3 . 5 TRANSLATION/CONVERSION

The established user of a DBMS will have invested a
considerable sum in the data and the programs which access
and maintain it. Inevitably, changes in all areas affecting
the DBMS will threaten that investment. These changes come
from the enterprise itself, from advancement in technology,
or from growth. The object is to minimize the dollar cost
of these changes.

Two approaches can be distinguished. These are tenta-
tively called the physical and the logical approach. ("Phy-
sical" is not to be taken as a synonym for " brute- force" nor
is "logical" to be confused with "correct.") The physical
approach is the actual, physical translation of the data
from the old format to the new, and the actual rewriting of
the programs to the new environment. The logical solution
is the provision of new schema to schema mappings which
preserve unmodified the old view of the data. It may be
said that the cost of the physical solution is paid all at
once whereas the cost of the logical solution is paid over
time

.

3.5.1 Database Translation.

Does the ANSI/SPARC framework or the CODASYL specifica-
tions inhibit the task of data translation? Specifically,
research into data translation has shown the need for Stan-
dard Data Interchange Format (SDIF) [NBS]. How does this
fit into ANSI/SPARC or CODASYL?

The ANSI/SPARC framework was thought an excellent vehi-
cle for data translation. The SDIF was identified with the
conceptual schema. This began a discussion of the require-
ments of an SDIF. Like the conceptual schema, the SDIF
should describe the semantics of the data explicitly. A set
of operations on the semantic constructs of the SDIF should
be defined. The ANSI/SPARC report was criticized for not
providing for these operations. The transformations which
bring the source database expressed in the SDIF into the
target database is described by an expression in these
operators

.

There was some argument that this approach was a case
of "overkill." The complete semantics of the data are not
required in the specification of those formal transforma-
tions needed to modify data structure. A semantically com-
plete conceptual schema facility might facilitate data
translation, but it is not necessary.

-54-

The CODASYL specifications were felt by most workshop
participants to be inadequate to play the role of an SDIF.
On the one hand, too much physical detail is present. On
the other hand, not enough semantic detail is present. A
number of alternative means of representing semantics were
discussed, of which the Entity-Relationship model of Peter
S. Chen was considered by some to be appropriate.

3.5.2 Program Conversion.

The need for a description of the intention of the pro-
grams under conversion, expressed at a high level, was not-
ed. This brought renewed criticism of the CODASYL DML. Su

,

based on recent work [SULO] , drew the diagram in Figure 8.

3.5.3 Dynamic Conversion.

The workshop participants had already criticized the
CODASYL subschema as inadequate as an external mapping fa-
cility. They did not comment on the feasibility of ir\ternal
mappings which would allow a DBA to choose not to undergo
physical data translation. They felt that internal mappings
should be kept simple since, unlike external mappings, they
must be invertible. Where a given external view may not al-
low update, changes to the conceptual database must always
be reflected in the physical database.

An approach called "dynamic restructuring" [GERR] which
combines aspects of the physical and logical approaches was
mentioned. Stored records are marked with a generation
number. Records which are retrieved bearing an outdated
generation number are converted to the latest format before
being stored.

-55-

Figure 8

Conversion Processes

-56-

3.6 CONCLUSIONS

The group reached the following general conclusions:

1. The ANSI/SPARC architecture was well suited for pro-
viding data independence with respect to anticipated
technological development in computer hardware and
so f tware

.

2. Development of end user facility does not hinder
data independence,

3. A data dictionary properly used provides a measure
of data independence with any DBMS architecture.

-57-

APPENDIX A

REFERENCES

[ANS75], "The ANSI/X3/SPARC DBMS Framework, Interim Re-
port of the Study Group on Database Management Sys-
tems," FDT, Vol 7, No. 2, 1975.

[ANS77], "The ANSI/X3/SPARC DBMS Framework, Report of
the Study Group on Database Management Systems," Tsi-
chritzis & Klug, ed . , AFIPS Press, 1977.

[BCS], "The British Computer Society Data Dictionary
Systems Working Party Report," SIGMOD RECORD 9:4, De-
cember 1977.

[CHAM], Chamberlin, D. D. , Astrahan, M.M., Eswaran, K.P.,
Griffiths, P.P., Lorie, R.A., Mehl, J.W. , Reisner,
P., Wade, B.W., "SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control," IBM J. of R &

D, 20, No. 6, November, 197 6.

[CHEN], Chen, P. P-S, "The Entity-Relationship Model —
Towards a Unified View of Data," TODS 1,1 (March
1976) , pp 9-36.

[COPE], Copelan, G.P., Lipovski, G.J., Su, S.Y.W, "The
Architecture CASSM: A cellular system for non-
numerical processing," Proceedings of the First Annu-
al Symposium on Computer Architecture, December 1973,
pp 121-128.

[DATE], Date, C.J., "An Introduction to Database Sys-
tems, Second Edition," Addison-Wesley, Reading, MA,
1977.

[EUFTG] , End User ' Fac il ity Task Group of CODASYL Systems
Committee, "Progress Report," FDT (Bulletin of the
ACM Special Interest Group on Management of Data) , 8,
No. 1, 1976.

-58-

[GERR] , Gerritsen, R, Morgan, H.L., "Dynamic Restructur-
ing of Databases With Generation Data Structures,"
ACM 76, pp 281-2 86.

[GUTT], Guttag, J, "The Specification and Application to
Programming of Abstract Data Types," Ph.D. Thesis,
Department of Computer Science, University of Toron-
to, September 1975.

[JARD] , Jardine, D.A., "Principles of Data Indepen-
dence," Proceedings of the SHARE Working Conference
on Data Base Management Systems, Montreal, July 1973.

[LISK] , Liskov, B, Snyder, A., Atkinson, R. , Schaffert,
C, "Abstraction Mechanisms in CLU," CACM 20:, August
1977, pp 564-576.

[NBS], Fry, J. P., et al . , "An Assessment of the Technol-
ogy for Data- and Program-Related Conversion," AFIPS
NCC 78, Volume 47, pp 379-387.

[OZKA], Ozkarahan, E. A., Shuster, S.A., Smith, K. C,
"RAP - An Associative Processor for Database Manage-
ment," AFIPS NCC 75, Volume 44, pp 379-387.

[SENK], Senko, M.E., "Specification of Stored Data
Structures and Desired Output Results in DIAM II with
FORAL," Proceedings [First] International Conference
on Very Large Data Bases, September, 1975, (available
from ACM), pp 557-571.

[SOCK], Sockut, G.H., Goldberg, R.P., "Data Base Reor-
ganization - Principles and Practice," NBS Special
Publication 500-47, April 1979, Computing Surveys,
Vol. 11 No. 20, December, 1979.

[STON], Stonebraker, M. and Held, G. , "Networks, Hierar-
chies and Relations in Data Base Management Systems,"
University of California Electronic Research Labora-
tory Memorandum No. ERL-M504, March 1975.

-59-

[SULO], Su, S.Y.W., Lo, D.H., Lam, H. , "Application Pro-

gram Conversion Due to Semantic Change," Report

7879-2, Computer and Information Science Department,

University of Florida, March 1978.

-60-

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add m> name to ihe announcement lisi of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Compan>

Address

Cii> Slate Zip Code

(Nolificaiion key N-503)

I

t

114A (REV. 2-8C)

U.S. DEPT. OF COMM.

3IBLI0GRAPHIC DATA
HEETfSee instructions)

1. PUBLICATION OR
REPORT NO.

NBS SP 500-76

2. Performing Organ. Report No 3. Publication Date

April 1981

ITLE AND SUBTITLE

Database Architectures—A Feasibility Workshop Report

.UTHOR(S)

John Lo Berg, Marc Graham, and Kevin Whitney (Editors)

I'ERFORMING ORGANIZATION (If joint or other than NBS. see in struct/on sj

lATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

PONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

li
Same as item 6<

lUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 81-600004

!_J Document describes a computer program; SF-185, FlPS Software Summary, is attached.

ksSTRACTfA 200-word or less factual summary of most significant information. If document includes a significant

''ibiiography or literature survey, mention it here)

To help the decision maker evaluate the potential benefits and pitfalls in

I

moving forward with database technology, the National Bureau of Standards
organized two workshops whose results are presented in this report. The
workshops, held in August 1978, explored the progress plan and potential

I
pitfalls involved in specifying, designing, and implementing systems based
on the ANSI/X3/SPARC framework and the CODASYL JOD languages specification.
Workshop 1 investigated the general topic of data independence, and Workshop 2

(examined supporting topics such as query languages, data dictionaries, and
database conversiono

jj^EY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

j|
Conversion; Database; Data-description; Data-dictionary; Data-directory;

Ijl Data-manipulation; DBMS; Language; Query; Standards.

|.VAI LABILITY

Unlimited

For Official Distribution. Do Not Release to NTIS

20402'^'^°'" Sup. of Doc, U.S. Government Printing Office, Washington, DC

J Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

64

15. Price

$4.00

I

J

NBS TECHNICAL PUBLICATIONS

PERIODICALS

(URNAL OF RESEARCH—The Journal of Research of the

itional Bureau of Standards reports NBS research and develop-

:nt in those disciplines of the physical and engineering sciences in

; ich the Bureau is active. These include physics, chemistry,

jineering, mathematics, and computer sciences. Papers cover a

)ad range of subjects, with major emphasis on measurement

thodology and the basic technology underlying standardization.

50 included from, time to time are survey articles on topics

sely related to the Bureau's technical and scientific programs,

a special service to subscribers each issue contains complete

'^tions to all recent Bureau publications in both NBS and non-

|lS media. Issued six times a year. Annual subscription: domestic
i; foreign $16.25. Single copy, $3 domestic; $3.75 foreign.

IpTE: The Journal was formerly published in two sections: Sec-

h A "Physics and Chemistry" and Section B "Mathematical

jences."

|MENSIONS/NBS—This monthly magazine is published to in-

im scientists, engineers, business and industry leaders, teachers,

jdents, and consumers of the latest advances in science and

jpnology, with primary emphasis on work at NBS. The magazine

mlights and reviews such issues as energy research, fire protec-

ii,

building technology, metric conversion, pollution abatement,

1th and safety, and consumer product performance. In addi-

I, it reports the results of Bureau programs in measurement
kdards and techniques, properties of matter and materials,

,ineering standards and services, instrumentation, and
iDmatic data processing. Annual subscription: domestic $11;

!!ign $13.75.

NONPERIODICALS

Inographs—Major contributions to the technical literature on

'ious subjects related to the Bureau's scientific and technical ac-

:ies.

dbooks—Recommended codes of engineering and industrial

ptice (including safety codes) developed in cooperation with in-

sisted industries, professional organizations, and regulatory

", ies.

cial Publications- -Include proceedings of conferences spon-

id by NBS, NBS annual reports, and other special publications

Topriate to this grouping such as wall charts, pocket cards, and
liographies.

Ilied Mathematics Series—Mathematical tables, manuals, and
|lies of special interest to physicists, engineers, chemists,

llogists, mathematicians, computer programmers, and others

pged in scientific and technical work.

lional Standard Reference Data Series—Provides quantitative

|i on the physical and chemical properties of materials, com-
W from the world's literature and critically evaluated.

|eloped under a worldwide program coordinated by NBS under
I authority of the National Standard Data Act (Public Law
%).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-
selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)—Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amende

Public Law 89-306 (79 Stat. 1127), and as implemented by F

ecutive Order 1 1 7 1 7 (38 FR 1 23 1 5, dated May 1 1 , 1 973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

SPECIAL FOURTH-CLASS RATE

BOOK

