
S. Department
Commerce Computer Science
Uonal Bureau 30(1 TeChnOlOgV

K7n NBS Special Publication 500-74

W\ } Features of

Software Development Tools

(®)

/l\
(in) (fn) (out)

// /l\W
(l)(C) (T) (S)(D)(U)(M)

/I IWW
1-4) (1-2) (1-6) (1-19) (1-9) (1-6) (1-6)

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities' — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering' — Mechanical

Engineering and Process Technology' — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.

National Bureau of Standards

LibrarVf E-01 AdnUn. BIdg,

MAR 1 6 1981

not Ckc((Urc

no. ^oo'id

m)
c ^

I

1

Computer Science
and Technology

NBS Special Publication 500-74

Features of

Software Development Tools

Raymond C. Houghton, Jr.

Center for Programming Science and Technology
institute for Computer Sciences and Technology
National Bureau of Standards
Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrlge, Secretary

National Bureau of Standards

Ernest Ambler, Director

Issued February 1 981

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This publica-

tion series will report these NBS efforts to the Federal computer community as well as

to interested specialists in the academic and private sectors. Those wishing to

receive notices of publications in this series should complete and return the form at

the end of this publication.

National Bureau of Standards Special Publication 500-74
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-74, 24 pages (Feb. 1981)

CODEN: XNBSAV

Library of Congress Catalog Card Nunnber: 80-600193

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1981

For sale by the Superintendent of Documents, U.S. Government Printing Office, Wasliington, DC 20402

Price $1.75

(Add 25 percent for otfier tlian U.S. mailing).

TABLE OF CONTENTS

Pag e

1. Introduction 1

2. The Importance of Tool Features 2

3. Formalizing the Use of Tool Features 3

4. A Taxonomy of Tool Features A

5. Using the Taxonomy 16

6. Scope of the Taxonomy 18

7 . Concl us ion 19

8. References 19

iii

!

1'

Features of Software Development Tools

Raymond C. Houghton, Jr.

Abstract

Software tools are powerful productivity and quality
aids that in many cases are not being used effectively.
This report discusses an effort to lessen this problem by
providing a formal way in which tools can be classified
according to the features that they provide.

Key words: Dynamic analysis; programming aids; software de-
velopment; software engineering; software tools; static
analysis; taxonomy.

1. Introduction

Software development tools are computer programs that
aid the specification, construction, testing, analysis,
management, documentation, and maintenance of other computer
programs. Thus, software development tools include the
traditional tools of a programmer (e.g. compilers,
editors), more recently developed tools (e.g. design aids,
program analyzers, testing tools) , and tools currently in
the research stage (e.g. formal verifiers, programming
environments) . Tools are important because they can be used
to increase software productivity and quality. As a result,
their use has evolved as an important part of software
development. Most importantly, they represent a class of
software that can be used and reused within many different
software development environments. The use of software
tools provides the opportunity to reduce cost and improve
competitive advantage.

Although software tools are an important part of
quality software development, there does not currently exist
a clear body of techniques for making effective use of such
tools. This situation exists in part due to the confusion

NOTE: Certain commercial products are identified in this
paper for clarification of specific concepts. In no case
does such identification imply recommendation or endorsement
by the National Bureau of Standards, nor does it imply that
the material identified is necessarily the best for the
purpose o

1

generated by the lack of standard terminology for the
functions and characteristics of software tools. It is
difficult to compare and to evaluate alternative tool
packages for use in specific operating environments. As a

result, there is a lack of technology transfer by tool
developers to the user community.

This report discusses an approach aimed at correcting
some of these problems. It presents a framework for tool
comparison and a scheme for classifying tools by the
features they provide. Features of software tools are
presented in a hierarchical classification system called a

taxonomy. Following a period of comment and review, NBS
plans to issue the taxonomy as a Federal Information
Processing Standards Publication (FIPS-PUB) Guideline to
provide a common reference within the Federal Government for
terms and definitions associated with software development
tool s

.

2. The Importance of Tool Features

Software development tools have grown in complexity
over recent years as have other software applications. Most
early tools performed a single function and were very simple
to operate. These early, simpler tools have since given way
to more complex tools which in some cases have their own
built-in command languages. This growth is leading to tool
systems where the programmer works totally within the system
to develop software.

This evolution of t®ol development has caused major
problems in communicating exactly what a tool does. For
example, a compiler once was a simple tool that performed
the single function of translating high level language to
machine language. Today, we have compilers that interpret,
optimize, perform run-time checks, and generate
cross-references, profiles, formatted output, and other
forms of documentation. Does the term compiler adequately
describe these multi-functional systems, or do people still
think of a compiler as a simple tool that performs a single
function? There are other examples of tools whose
complexity has outgrown their names. These include
verification systems, program analyzers, program
preprocessors, flow analyzers, software development systems,
simulators, and programming environments. In each of these
examples, one should press for further details about the
tool to determine exactly what it does.

2

The features incorporated in a software tool are the
details one should seek. Careful identification of features
allows one to distinguish one tool from another and to
determine which is more appropriate for a given application.
In order to do this, one must acquire detailed information
on a tool. This should include what a tool accepts as input
and how it accepts it, the way it manipulates and analyzes
that input, and what a tool produces as output for both the
tool user and for further processing by other tools. With a

careful analysis of this information, one can begin to
understand the real capabilities of a tool and can compare
these capabilities with those of other tools. The taxonomy
of tool features presented in Section 4 provides a framework
for communicating and a basis for understanding the
capabilities of a tool.

3. Formalizing the Use of loci Features

For now let us assume that we have a way to carefully
and succinctly discover the individual features of a

software tool. The sections that follow will address how
one could use the resulting information. Examples of each
of these uses will be shown in Section 5.

Compa r i son _& Eval ua t ion o f So f twa r e Tool s . Once all the
features of a tool are known, its features can be compared
to the features of other tools. The presence (or absence)
of a specific feature in a given tool is apparent. Thus, a

potential tool user has a rational means for determining
whether to include a tool for consideration. For example,
if a tool user is interested in a tool that has the features
of high level language input, program instrumentation,
dynamic coverage analysis, and output report generation,
then the user may find several tools that fall within this
classification. The user can then focus on the additional
features offered by each of the tools and perform a cost
benefit analysis on these additional features. Once a set
of candidate tools has been determined based on desired
features, the user can focus on other considerations, such
as implementation languages, application language, hardware
and software requirements, availability, performance,
portability, support and available documentation.

Basis fo r Info rmat ion Organ i za t ion . Since features provide
a vehicle for the comparison of software tools, one of their
apparent uses is as a basis for retrieval in a database.
Just as library searches are based on keywords, tool
searches can be based on features. Relationships can be
formed between the features of a tool and its name. Thus,
when one wants to know all the tools available that have

3

certain features, then an additional relationship may be
defined that relates these features only with those tools
that possess them. From here it is a simple matter to
provide any other information that may be desired about the
tools in question.

The NBS Software Tools Database [Houg80] is a

relational database that possesses this capability. One of
the purposes of the database is to initiate a means by which
persons in the Federal Government can determine what tools
are available and what their capabilities are. An example
of tool information retrieval from the database is shown in
Section 5.

CI assi f ica t ion o f Software Tool

s

. Since features provide a

means by which we can describe software tools, then they can
also provide a means by which we can classify software
tools. In order to do this, we must discover and describe
all the features for every known software development tool,
gather them all together, eliminate duplication, and order
them. The resulting order is called a taxonomy. The
taxonomy is used to classify tools by associating the
ordered features with the tool being classified. An example
of this will be given in section 5 after first presenting
the taxonomy.

4. A Taxonomy of Tool Features

The taxonomy that will be discussed was developed to
satisfy the following goals:

a. The taxonomy shall allow NBS to classify all currently
available software development tools.

b. Each class shall include terms that have the most
specific meaning where possible,

c. The classes shall allow easy comparison and evaluation
of tools.

d. The classes shall be related to the life cycle of an
automated data system.

All of the goals were met except for the last. Life cycle
relationships, although possible, were found to be outside
the scope of the taxonomy that was developed.

The initial development of the taxonomy was performed
under contract [1] to the National Bureau of Standards and

[1] Contract NB79SBCA0273 to SoHar, Inc. and SoHaR
Subcontract No. 102 to Software Management Consultants.

4

is reported in detail in [Reif80]. The present taxonomy is
an update of the one presented in that report. Further
updates are anticipated as the taxonomy approaches adoption
as a FIPS. Therefore, comments on the usefulness,
implementation, structure, and content are solicited by the
autho r .

The taxonomy is a hierarchical order of software tool
features and is illustrated in figure 1. At the bottom or
feature level of the hierarchy are a total of 52 tool
features. Each of these features will be defined and
discussed in the sections that follow. At the third level
are the classes of tool features. These are subject,
control input, transformation, static analysis, dynamic
analysis, machine output, and user output. Each of the 52
features have been placed into one of these classes. In

order to provide a way to abbreviate a tool classification,
keys have been assigned to each of the elements in the third
and fourth levels. Each of the keys will be identified in
the sections that follow and examples of their use will be
shown in Section 5.

The second level of the taxonomy covers the basic
processes of a tool. These are input, function, and output.
The highest level, software development tool features,
covers all the levels below. The taxonomy has been designed
to be expandable. It is expected that future updates of the
taxonomy will include additional features and possibly
additional levels.

5

+ +

I
Software Development Tool

I

I
Features

I

+ +

/ I \
/ I \

/ I \

+ + + + + +

I
Input

I I
Function | I

Output
|

+ + + + + +

/ \ / I \ / \

I
Sub- [Control

I
Trans- | Static

|
Dynamic | Machine | User

I

I
ject

I
Input

I
format ion

I
Anal ys i s I Anal ys i s I

Output | Output

|

I i I I I

+-+
I I I I I I I I I I

Individual Features
I I I I I I I I I

+-+

Figure 1. Taxonomy of Software Development Tool Features

6

Input . Input features are based on the forms of input which
can be provided to a tool. These features fall into two
classes, one which is based on how the tool should operate
(control input) and the other based on what the tool should
operate on (subject) . Using a compiler as an example,. the
subject is the code that will be compiled and the control
input is the set of commands which specify compiler options
(optimize, debug, cross reference, etc.).

INPUT
Subject Control Input

II; Text CI. Commands
12. VHLL C2. Parameters
13. Code
14. Data

Table 1. Input

Sub j ec t (Key ; I) . The subject is usually the main
input to a tool. It is the input which is subjected to
the main functions performed by a tool. The four types
of subjects are data, code, VHLL (very high level
language) , and text.

11. Text - The input to the tool is presented in a

natural language form. Certain types of tools are
designed to operate on text only (e.g., text
editors, document preparation systems) and require
no other input except directives or commands.

12. VHLL - The input to the tool is a program
written in a very high level language that is
typically not executed. Three recognized types of
VHLL's are requirements languages, design
languages, and description languages.
Requirements and design languages are both used to
define programs and to provide a means for
generating automatic documentation. Examples of
requirements languages include the Problem
Statement Language [Teic77] and the Requirements
Statement Language [Bell77]. An example of a

design language is Program Design Language
[Cain75]. Description languages are used to

describe attributes of the input in high-level,
non-procedural form. An example of a description
language is Backus-Naur Form (BNF)

.

7

13. Code - The input to the tool is a program
written in a language that is subject to a given
translation process before it is executed. Code
is the language form in which most programming
solutions are expressed and includes high level
languages, assembly languages, object
representations or parametric representations.
High level languages are problem-oriented (e.g.,
COBOL and FORTRAN) , while assembly languages are
machine oriented but symbolic in nature. Object
code represents an input that is typically
executable without further translation, while
parametric representation (e.g., NAMELIST in
FORTRAN IV) inputs variables to be translated.

14. Data - The input to the tool is a string of
characters to which meaning is or might be
assigned. The input (e.g. raw data) is not in an
easily interpreted, natural language form. A
simulator that accepts numeric data to initialize
its program variables is an example of a tool that
has data as input.

Some tools, such as editors, operate on any if the four
of these input forms. In cases such as this, the input
form is chosen from the viewpoint of the tool. Since
editors view the input form as text, then text would be
the correct choice for this tool.

Control Input (Key ; C) . Control inputs specify the
type of operation and the detail associated with an
operation. They describe any separable commands that
are entered as part of the input stream.

CI. Command s - The control input to the tool
consists primarily of procedural operators, each
capable of invoking a system function to be
executed. A directive invoking a series of
diagnostic commands (i.e., TRACE, DUMP, etc.) at
selected breakpoints is an example. A tool that
performs a single function will not have this
feature but will most likely have the next.

C2. Parameters - The control input is a series of
parameters that are associated with the functions
performed by the tool. Parameters are usually
entered as a result of a prompt from a tool or may
be embedded in the tool input. An interactive
trace routine that prompts for breakpoints is an
example of a tool with parametric input.

8

Function . The features for this class are shown in Table 2.

They describe the processing functions performed by a tool
and fall into three classes: transformation, static
analysis, and dynamic analysis. Again using a compiler as
an example, the transformation features would be translation
and possibly optimization, the static analysis features
would be error checking and possibly cross reference, and a

dynamic analysis feature may be tracing.

Transformation

Tl. Editing SI.

T2. Formatting S2.

T3. Instrumentation S3.

T4. Opt im i zat ion S4.

T5. Restr uctur ing S5.

T6. Translation S6.
S7.
S8.
S9.
S10
Sll
S12
S13
S14
S15
S16
S17
818
S19

FUNCTION

Static Analysis

Aud iting
Comparison
Complexity Measurement
Completeness Checking
Consistency Checking
Cost Estimation
Cross Reference
Data Flow Analysis
Error Checking

. Interface Analysis

. Management

. Resource Estimation

. Scanning

. Scheduling

. Statistical Analysis

. Structure Checking

. Tracking

. Type Analysis

. Units Analysis

Dynamic Analysis

Dl. Assertion Checking
D2. Constraint Evaluation
D3. Coverage Analysis
D4. Resource Utilization
D5. Simulation
D6. Symbolic Execution
D7. Timing
D8. Tracing
D9 . Tuning

Table 2. Function

9

Transformation (Key ; T) . Transformation features describe
how the subject is manipulated to accommodate the user's
needs. They describe what transformations take place as the
input to the tool is processed. There are six
transformation features. Each of these features is briefly
defined as follows:

Tl. Ed i ting - modifying the context of the input by
inserting, deleting, or moving characters,
numbers, or data.

T2. Formatting - arranging a program according to
predefined or user defined conventions. A tool
that "cleans up" a program by making all statement
numbers sequential, alphabetizing variable
declarations, indenting statements, and making
other standardizing changes has this feature.

T3. Instrumentation - adding sensors and counters to
a program for the purpose of collecting
information useful for dynamic analysis [Paig74].
Most code analyzers instrument the source code at
strategic points in the program in order to
collect execution statistics required for coverage
analysis and tuning (see D2 and D9)

.

T4. Opt im i za t ion - modifying a program to improve
performance, e.g. to make it run faster or to
make it use fewer resources. Optimizing compilers
have this feature.

T5. Restr uctur ing - reconstructing and arranging the
subject in a new form according to well-defined
rules. A tool that converts unstructured code
into structured code is an example of a tool with
this feature.

T6. Transl a t ion - to convert from one language form
to another. Tools that have this feature include
compilers, structured language preprocessors, and
conversion tools.

b. Static Anal ysis (Key : S) . Static analysis
features specify operations on the subject without
regard to the executab il i ty of the subject [Howd78] .

They describe the manner in which the subject is
analyzed. There are nineteen static analysis features.
Each is briefly described as follows:

SI. Aud i t ing - conducting an examination to
determine whether or not predefined rules have
been followed. A tool that examines the source

10

code to determine whether or not coding standards
are complied with is an example of a tool with
this feature.

52. Compa r i son - Assessing similarities between two
or more items. A tool that compares programs or
test runs for maintaining version control has this
feature

.

53. Compl ex i ty Measurement - Determining how
complicated an entity (e.g., routine, program,
system, etc.) is by evaluating some number of
associated characteristics [Mcca76] [Hals77]. For
example, the following characteristics can impact
complexity: instruction mix, data references,
structure/ control flow, number of interactions/
interconnections, size, and number of
computations

.

54. Compl eteness Checki ng - assessing whether or not
an entity has all its parts present and if those
parts are fully developed [Boeh78]. A tool that
examines the source code for missing parameter
values has this feature.

55. Consi stency Checki ng - determining whether or
not an entity is internally consistent in the
sense that it contains uniform notation and
terminology [Walt78], or is consistent with its
specification [Robi77]. Tools that check for
consistent usage of variable names or tools that
check for consistency between design
specifications and code are examples of tools with
this feature.

56. Cost Est imat ion - assessing the behavior of the
variables which impact life cycle cost. A tool to

estimate project cost and investigate its
sensitivity to parameter changes has this feature.

57. Cross Reference - referencing entities to other
entities by logical means. Tools that generate
call graphs or tools that identify all variable
references in a subprogram have this feature.

58. Data Flow Anal ys i

s

- graphical analysis of the
sequential patterns of definitions and references
of data [Oste76] . Tools that identify undefined
variables on certain paths in a program have this
feature.

11

S9. Er ro r Checki ng - determining discrepancies,
their importance, and/or their cause. Tools used
to identify possible program errors, such as
misspelled variable names, arrays out of bounds,
and modifications of a loop index are examples of
tools with this feature,

510. In te r face Anal ys i

s

- checking the interfaces
between program elements for consistency and
adherence to predefined rules and/or axioms. A
tool that examines interfaces between modules to
determine if axiomatic rules for data exchange
were obeyed has this feature.

511. Manag ement - aiding the management or control
of software development. Tools that control
access, updates, and retrievals of software;
tools that maintain and control data definition
and use; and tools that manage test data sets are
examples of tools with this feature.

512. Reso urce Estimation - estimating the resources
attributed to an entity. Tools that estimate
whether or not memory limits, input/output
capacity, or throughput constraints are being
exceeded have this feature.

513. Scanning - examining an entity sequentially to
identify key areas or structure. A tool that
examines source code and extracts key information
for generating documentation is an example of a

tool with this feature.

514. Sched ul ing - assessing the schedule attributed
to an entity. A tool that examines the project
schedule to determine its critical path (shortest
time to complete) has this feature.

515. Statistical Anal ys i

s

- performing statistical
data collection and analysis. A tool that uses
statistical test models to identify where
programmers should concentrate their testing is
one example. A tool that tallies occurrences of
statement types is another example of a tool with
this feature.

516. Structure Checki ng - detecting structural flaws
within a program (e.g. improper loop nestings,
unreferenced labels, unreachable statements, and
statements with no successors)

.

12

517. Tracki ng - tracking the development of an
entity through the software life cycle. Tools
used to trace requirements from their
specification to their implementation in code have
this feature.

518. Type Anal ys i

s

- evaluating whether or not the
domain of values attributed to an entity are
properly and consistently defined. A tool that
type checks variables has this feature.

519. Uni ts Anal ys i

s

- determining whether or not the
units or physical dimensions attributed to an
entity are properly defined and consistently used.
A tool that can check a program to ensure
variables used in computations have proper units
(e.g. hertz = cycl es/ seconds) is an example of a

tool with this feature.

Dynam ic Anal ys i s (Key ; D) . Dynamic analysis
features specify operations that are determined during
or after execution takes place [Howda78]. Dynamic
analysis features differ from those classified as
static by virtue of the fact that they require some
form of symbolic or machine execution. They describe
the techniques used by the tool to derive meaningful
information about a program's execution behavior.
There are nine dynamic analysis features. Each is
briefly described as follows:

Dl. Assertion Checki ng - checking of user-embedded
statements that assert relationships between
elements of a program. An assertion is a logical
expression that specifies a condition or relation
among the program variables. Checking may be
performed with symbolic or run-time data. Tools
that test the validity of assertions as the
program is executing or tools that perform formal
verification of assertions have this feature.

D2. Constra int Eval ua tion - generating and/or
solving path input constraints for determining
test input [Clar76] . Tools that assist the
generation of or automatically generate test data
have this feature.

D3. Cover ag e Anal ys i

s

- determining and assessing
measures associated with the invocation of program
structural elements to determine the adequacy of a

test run [Fair78] . Coverage analysis is useful
when attempting to execute each statement, branch,
path, or iterative structure (i.e., DO loops in

13

FORTRAN) in a program. Tools that capture this
data and provide reports summarizing relevant
information have this feature.

D4. Reso ur ce Ut i 1 i za t ion - analysis of resource
utilization associated with system hardware or
software. A tool that provides detailed run-time
statistics on core usage, disk usage, queue
lengths, etc. is an example of a tool with this
feature

.

D5. Simulation - representing certain features of
the behavior of a physical or abstract system by
means of operations performed by a computer. A
tool that simulates the environment under which
operational programs will run has this feature.

D6. Symbol ic Exec ut ion - reconstructing logic and
computations along a program path by executing the
path with symbolic rather than actual values of
data [Darr78]

.

D7. Tim ing - reporting actual CPU times associated
with parts of a program.

D8. Trac ing - tracking the historical record of
execution of a program. Tools that produce trace
histories or allow the setting of breakpoints for
tracking down errors have this feature.

D9. Tun ing - determining what parts of a program are
being executed the most. A tool that instruments
a program to obtain execution frequencies of
statements is a tool with this feature.

Output . Output features, which provide the link from the
tool to the user, are illustrated in Table 3. They describe
what type of output the tool produces for both the human
user and the target machine (where applicable) . Again using
a compiler as an example, the user output would be
diagnostics and possibly listings and tables (cross
reference) , and the machine output would be object code or
possibly intermediate code.

14

OUTPUT

User Output Machine Output

Ul.
U2.
U3.
U4.
U5.
U6.

Computational Results Ml.
Diagnostics M2,
Graphics M3.
Listings M4.
Text M5.
Tables M6.

Data
Intermediate Code
Object Code
Prompts
Source Code
Text

Table 3. Output

User Output (Key ; U) . User output features handle
the interface from the tool to the human user. They
describe the types of information that the tool
provides for the user and the form in which this output
is presented. There are six user output features.
Each is briefly defined as follows:

Ul. Computational Resul ts - an output from the tool
is simply the result of a computation. The output
is not in an easily interpreted natural language
f o rm (e.g. text).

U2. Diagnostics - an output from the tool simply
indicates that a software discrepancy has
occurred. An error flag from a compiler is an
example

.

U3. Graphics - an output from the tool is
graphically presented with symbols indicating
operations, flow, etc. A tool providing a

flowchart of a program is an example.

U4. Listings - an output from the tool is a listing
of a source program or data and may be annotated.
Many different forms of listings can be generated.
Some may be user controlled through directives.

U5. Text - an output from the tool is in a natural
language form. The output may be a choice of many
different types of reports and the formats may be
user defined.

U6. Tables - an output from the tool is arranged in
parallel columns to exhibit a set of facts or
relations in a definite, compact and comprehensive
form. A tool that produces a decision table
identifying a program's logic (conditions,
actions, and rules that are the basis of

15

decisions) is an example.

b. Machine Output (Key ; M) . Machine output features
handle the interface from the tool to a target machine.
They describe what the machine expects to see as output
from the tool. There are six machine output features.
Each is briefly described as follows:

Ml. Data - the input to the machine is
representations of characters or numeric
quantities to which meaning has been assigned. A
tool generating input to a plotter is an example.

M2. Intermed ia te Code - the input to the machine is
between source code and machine code. A tool
producing P-code for direct machine interpretation
is an example.

M3. Ob j ec t Code - the input to the machine is a

program expressed in machine language which is
normally an output of a given translation process.
A tool producing relocatable load modules for
subsequent execution is an example.

M4. Prompts - the input to the machine is a series
of procedural operators that are used to
interactively inform the system in which the tool
operates that it is ready for the next input.

M5. Source Code - the input to the machine is the
program written in a procedural language that must
be input to a translation process before execution
can take place.

M6. Text - the input to the machine is presented in
a written form that can be read without machine
interpretation. A tool producing English text
which is fed to the machine is an example.

5, Using the Taxonomy

Section 3 discussed in a very general level the use of
tool features. Now that we have defined the features of a

tool and given each of them individual keys, we can discuss
some very specific uses of the taxonomy.

Tool Classi f icat ion . To classify tools with the taxonomy,
one must identify a tool's input, functional, and output
features. As many features are identified as necessary to
fully describe the capability of a tool. Identifying tool

16

features, in some cases, can be a major challenge because
most tool descriptions fail to provide sufficient
information. Considerable effort may be required to acquire
the information necessary to identify what the tool does and
how it interfaces with the external environment.

The result of classification is a features designator
called the taxonomy key. The key is formed by collecting
the individual feature keys according to the their position
in the taxonomy. For example, a tool that has the following
features:

Code Input
Command Control
Code Instrumentation
Complexity Measurement
Cross Reference Generation
Dynamic Coverage Analysis
Listing Output
Cross Reference and Coverage Reports Output
Instrumented Code Output

would have the following classification when individual keys
are chosen:

I3.C1/T3.S3.S7.D3/U4. U5.M5

Note that the slash is used to separate the input,
functional, and output features and the period is used to
separate individual keys. It can be seen from the example
that the key clearly and succinctly communicates the results
of classification and summarizes the tool attributes.

Since the identification of tool features can be
difficult for some types of tools, it is anticipated that a

user's guide to the taxonomy will be published. This guide
will provide a step-by-step procedure for identifying the
features of tools with many actual examples for a wide
variety of software development tools.

Comparison o f Software Tool s and Information Retr ieval . In
section 3, we described a user who was interested in a tool
that has the features of high level language input, program
instrumentation, dynamic coverage analysis, and output
report generation. Using individual keys from the taxonomy,
a retrieval request could be specified as follows:

I3/T3&D3/U5

where 13, T3, D3, and U5 represent the features, the slash
is used to separate input and output, and the & is a logical
'and' of the features. In English this retrieval request

17

would be: "Give me all the tools which accept high level
language programs as input, perform the functions of program
instrumentation and dynamic coverage analysis, and provide
reports as output." A retrieval of this request from the NBS
Software Tools Database would yield the
tools:

following list of

NBS ANALYZER
PET
NODAL
ITDEM
COTUNE II
LOGIC
FAVS

JOVIAL TCA
RXVP
PACE
TEST PREDICTOR
TATTLE
PDS
CAVS

EAVS
DYNA
PACE-C
JIGSAW
TPT
JAVS

After examining and comparing the application languages and
the additional features offered by these tools, the
retrieval request could be further specified as follows:

13 ' FORTRAN/T3&D3& (S1'^S8)/U5

where SI represents code auditing, S8 represents data flow
analysis, the ' delineates the actual language of the source
code, and " is a logical 'or'. This request in English
would be: "Give me all the tools which accept Fortran
programs as input, perform the functions of program
instrumentation and dynamic analysis and either code
auditing or data flow analysis, and provide reports as
output." This retrieval request would yield the following
tool s

:

PET FAVS TPT

Note that the number of tools that a potential
must consider has been greatly reduced.

tool user

6. Scope of the Taxonomy

The taxonomy is primarily a classification scheme for
software development tools. There are, however, many tools
that are broader in function and application that can not be
easily classified by the taxonomy. These tools include
operating systems, system utilities (linkage editors,
loaders, tape handlers, file system, sorters), data base
management systems, and management information systems.
These tools serve as an extended part of a system and are
outside the scope of the taxonomy. Since most of the
features in the taxonomy are specific to the software
development process, only tools specific to software
development should be classified.

18

7. Conclusion

Software tools are powerful productivity and quality
aids that are not being effectively used in many Federal
programming environments. This report has discussed an
effort to lessen this problem by providing a formal way in
which tools can be classified. The use of a taxonomy of
tool features can be used to (1) categorize currently
available tools, (2) standardize terminology associated with
tools, and (3) ease the task of comparing and evaluating
tools. Use of the taxonomy should help users determine
precisely what a given tool can offer and consequently what
its benefits are.

8. References

[Bell77] T. E. Bell, D. C. Bixler and M. E. Dyer, "An
Extendable Approach to Computer-Aided Software
Requirements Engineering", IEEE Transactions on
Software Engineering, Vol SE-3 , No 1, 1977.

[Boeh78] B. W. Boehm, J. R. Brown, H.

Lipow, G. J. MacLeod and M.

"Characteristics of Software
North-Holland Publishing Company, NY,

Kaspar, M.
J . Me r r i tt

,

Qual i ty"

,

1978.

[Cain75] S. H. Caine and E. K. Gordon, "PDL: A Tool
for Software Design", Proceedings of the National
Computer Conference, 1975.

[Clar76] L. A. Clarke, "A System to Generate Test Data
and Symbolically Execute Programs", IEEE
Transactions on Software Engineering, Vol SE-2,
September 1976.

[Darr78] J. A. Darringer and J.
of Symbolic Execution
Computer, April 1978.

C. King, "Applications
to Program Testing",

[Fair78] R. E. Fairley,
Dynamic Testing
April 1978.

"Tutorial: Static Analysis and
of Computer Software", Computer,

[Hals77] M. H. Halstead, "Elements of Software
Elsevier - North Holland Pub. Co.,
1977 .

Sc ience" ,

New York,

[Houg80] Raymond C. Houghton, Jr. and Karen A. Oakley,
eds., "NBS Software Tools Database", NBSIR
80-2159, October 1980.

19

[Howd78] W. E. Howden, "A Survey of Static Analysis
Methods", Tutorial: Software Testing and
Validation Techniques, IEEE Cat. No. EH0138-8,
1978.

[Howda78] W. E. Howden,"A Survey of Dynamic Analysis
Methods", Tutorial: Software Testing and
Validation Techniques, IEEE Cat. No. EH0138-8,
1978.

[Mcca76] T. J. McCabe, "A Complexity Measure", IEEE
Transactions on Software Engineering, Vol SE-2,
December 1976.

[Oste76] L. J. Osterweil and L. D. Fosdick, "DAVE - A
_ Validation Error Detection and Documentation
- System for FORTRAN Programs", Sof tware~Pract ice

and Experience, October 1976.

[Paig74] M. R. Paige and J. P. Benson, "The Use of
Software Probes in Testing FORTRAN Programs",
Computer, July 1974.

[Reif80] Donald J. Reifer and Harold A. Montgomery,
"Final Report, Software Tool Taxonomy", Software
Management Consultants Report No. SMC-TR-004,
June 1980.

[Robi77] L. Robinson and K. N. Levitt, "Proof Techniques
for Hierarchically Structured Programs",
Communications of the ACM, April 1977.

[Teic77] D. Teichroew and E. Hershey III, "PSL/PSA: A
Computer-Aided Technique for Structured
Documentation of Information Processing Systems",
IEEE Transactions on Software Engineering, Vol
SE-3, No 1, 1977.

[Walt78] G. Walters and J. McCall, "The Development of
Metrics for Software Reliability and
Maintainability", Proceedings of the Annual
Reliability and Maintainability Symposium, January
1978.

20

NBS-n4A IREV. 2.8CI

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

SP 500-74

2. Performing Organ. Report No. 3. Publication Date

February J.yoi

-f-ITl d Al^l^^ CMDTITI CTITLt AN U bU D 1 1 1 Lb

Features of Software Development Tools

5. AUTHOR(S)

Raymond C. Houghton, Jr.

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

Final

j
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

I

I,

I

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 80-600193

(2J Document describes a computer program; SF-185, FIPS Software Summary, is attached.

1 11. ABSTRACT (A 200-word or iess foctual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

Software tools are powerful productivity and quality aids that in many
cases are not being used effectively. This report discusses an effort to
lessen this problem by providing a formal way in which tools can be classified
according to the features that they provide.

i
1 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

1

Dynamic analysis ; programming aids; software development; software engineering

;

software tools; static analysis ; taxonomy

13. AVAILABILITY

Unlimited

1 1
For Official Distribution. Do Not Release to NTIS

DTI Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

14. NO. OF
PRINTED PAGES

24

15. Price

Q Order From National Technical Information Service (NTIS), Springfield, VA. 22161

f

$1.75

1 it U.S. GOVERNMENT PRINTING OmCE : 1981 O— 340-997 (1526)

_

USCOMM-OC e043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-S03)

J

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from lime to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

$13; foreign S16.25. Single copy, $3 domestic; $3.75 foreign.

NOTE: The Journal was formerly published in two sections: Sec-

tion A "Physics and Chemistry" and Section B "Mathematical

Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and

technology, with primary emphasis on work at NBS. The magazine

highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement

standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and

automatic data processing. Annual subscription; domestic $11;

foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on
various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under
the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSlR's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)—Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by E\

ecutive Order 1 1717 (38 FR 12315, dated May 1 1, 1973) and Part o

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-21S

SPECIAL FOURTH-CLASS RATE
BOOK

