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NBS Minimal BASIC Test Programs - Version 2

User ' s Man ual
Volume 1 - Documentation

John V . Cug in i

Joan S. Bowden
Mark W. Skall

This publication describes the set of programs
developed by NBS for the purpose of testing conformance of
implementations of the computer language BASIC to the American
National Standard for Minimal BASIC, ANSI X3. 60-1978. The
Department of Commerce has adopted this ANSI standard as Federal
Information Processing Standard 68. By submitting the programs
to a candidate implementation, the user can test the various
features which an implementation must support in order to conform
to the standard. While some programs can determine whether or
not a given feature is correctly implemented, others produce
output which the user must then interpret to some degree. This
manual describes how the programs should be used so as to
interpret correctly the results of the tests. Such
interpretation depends strongly on a solid und er stand ir,g of the
conformance rules laid down in the standard, and there is a brief
discussion of these rules and how they relate to the test
programs and to the various ways in which the language may be
im pi em en ted .

Key words: BASIC; language processor testing; Minimal BASIC;
programming language standards; software standards; software
testing

^^.KH^Jlil^^i.!!!.®.11^5.1 Version 2 owes its existence to the efforts and
example of many people. Dr. David Gilsinn and Mr. Charles
Sheppard, the authors of version 1*, deserve credit for
construction of that first system, of which version 2 is a

refinement. In addition, they were generous in their advice on
many of the pitfalls to avoid on the second iteration. Mr.
Landon Dyer assisted with the testing and document preparation.
It is also important to thank the many people who sent in
comments and suggestions on Version 1. We hope that all the
users of the resulting Version 2 will help us improve it further.

issued as an NBS Internal Report; no longer available.



Page 2

Table of Contents

Section Page

1 How to Use This Manual 6

2 The Language Standard for BASIC. 7

2.1 History and Prospects ,« 7

2.2 The Minimal BASIC Language 8

2.3 Conformance to the Standard 9

2.3.1 Program conformance 9

2.3.2 Implementation conformance 10

3 Determining Implementation Conformance 11

3.1 Test programs as test data, not algorithms 11

3.2 Special Issues Raised by the Standard Requirements.... 12

3.2.1 Implementation-defined features 12

3.2.2 Error and Exception Reporting 12

4 Structure of the Test System 15

4.1 Testing Features Before Using Them 15

4.2 Hierarchical Organization of the Tests 16

4.3 Environment Assumptions 16

4.4 Operating and Interpreting the Tests 17

4.4.1 User Checking vs. Self Checking 17

4.4.2 Types of Tests 18

4.4.2.1 Standard Tests 18

4.4.2.2 Exception Tests 18

4.4.2.3 Error Tests 19

4.4.2.4 Informative Tests 22

4.4.3 Documentation 23



Page 3

Section Page

5 Functional Groups of Test Programs 26

5.1 Simple PRINTing of string constants 26

5.2 END and STOP 26

5.3 PRINTing and simple assignment (LET) 27

5.3.1 String variables and TAB 27

5.3.2 Numeric constants and variables 28

5.4 Control Statements and REM 28

5.5 Variables 29

5.6 Numeric Constants, Variables, and Operations 29

5.6.1 Standard Capabilities 29

5.6.2 Exceptions 30

5.6.3 Errors 31

5.6.4 Accuracy tests - Informative 31

5.7 FOR-NEXT 33

5 . 8 Arrays 34

5.8.1 Standard Capabilities 34

5.8.2 Exceptions 34

5.8.3 Errors 34

5.9 Control Statements 35

5.9.1 GOSUB and RETURN 35

5.9.2 ON-GOTO 36
1

\. 5.10 READ, DATA, and RESTORE 36

5.10.1 Standard Capabilities 36

5 . 10.2 Exceptions 36

5 . 10.3 Errors 36



Page 4

Section Page

5.11 INPUT 37

5.11.1 Standard Capabilities..... 37

5.11.2 Exceptions 38

5.11.3 Errors 40

5.12 Implementation-supplied Functions 42

5.12.1 Precise functions: ABS.INT.SGN 42

5.12.2 Approximated functions:
SQR , ATN, COS, EXP , LOG, SIN, TAN 42

5.12.3 RND and RANDOMIZE 43

5.12.3.1 Standard Capabilities 44

5.12.3.2 Informative Tests 44

5.12.4 Errors 45

5.13 User-defined Functions. 45

5.13.1 Standard Capabilities 45

5 . 13.2 Err or s 45

5.14 Numeric Expressions 46

5.14.1 Standard Capabilities in context of
LET-sta tement 46

5.14.2 Expressions in other contexts: PRINT, IF,
ON-GOTO, FOR 46

5.14.3 Exceptions in subscripts and arguments 47

5.14.4 Exceptions in other contexts: PRINT, IF,
ON-GOTO, FOR 47



Page 5

j

Section Page

' 5.15 Miscellaneous Checks i*7

5.15.1 Missing keyword 47

5.15.2 Spaces 48

1
5.15.3 Quotes 48

5.15.4 Line Numbers 48

I
5.15.5 Line longer than 72 characters 48

i 5.15.6 Margin Overflow for Output Line 49

!
5.15.7 Lowercase characters 49

\
5.15.8 Ordering Strings 49

5.15.9 Mismatch of Types in Assignment 49

6 Tables of Summary Information about the Test Programs 50

6.1 Group Structure of the Minimal BASIC Test Programs.... 51

I 6.2 Test Program Sequence 54
I

I

I

6.3 Cross-reference between ANSI Standard and Test

I

Programs 71

||
Appendix A: Differences between Versions 1 and 2 of the

' Minimal BASIC Test Programs 75

II

References 76

! Figures

:

Figure 1 - Error and Exception Handling 14

i
Figure 2 - Format of Test Program Output 25

Figure 3 - Instructions for the INPUT Exceptions Test 41

j

i

I

II,



Page 6

1 HOW TO USE THIS MANUAL

This manual presents background information and operating
instructions for the NBS Minimal BASIC test programs. Readers
who want a general idea of what the programs are supposed to do
and why they are structured as they are should read sections 2

and 3. These sections give a brief explanation of BASIC, how it
is standardized, and how the test programs help measure

j

conformance to the standard. Those who wish to know how to |

interpret the results of program execution should also read !

section 3 and then section 4 for the general rules of
j

interpretation and section 5 for information peculiar to
individual programs and groups of programs within the test
system. Section 6 contains tables of summary information about
the tests .

Volume 2 of this publication consists of the source listings
and sample outputs for all the test programs.

The test system for BASIC should be helpful to anyone with
an interest in measuring the conformance of an implementation of

[j

BASIC (e.g., a compiler or interpreter) to the Minimal BASIC
standard. This would include 1) purchasers who want to be sure
they are buying a standard implementation, 2) programmers who
must use a given implementation and want to know in which areas
it conforms to the standard and which features to avoid or be
wary of, and 3) implementors who may wish to use the tests as a

development and debugging tool.

Much of this manual is derived from the technical
specifications in the American National Standard for Minimal
BASIC, ANSI X3. 60-1978 [1]. You will need a copy of that
standard in order to understand most of the material herein.
Copies are available from the American National Standards
Institute, 1430 Broadway, New York, NY 10018. This document will
frequently cite ANSI X3. 60-1978, and references to "the standard"
should be taken to mean that ANSI publication.

The measure of success for Version 2 of the Minimal BASIC
Test Programs is its usefulness to you. We at NBS would greatly
appreciate hearing about your evaluation of the test system. We
will respond to requests for clarification concerning the system
and its relation to the standard. Also, we will maintain a

mailing list of users who request to be notified of changes and
major clarifications. Please direct all comments, questions, and
suggestions to :

Project Manager
NBS BASIC Test Programs
National Bureau of Standards
Technology Bldg., Room A-265
Washington, DC 20234
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2 THE LANGUAGE STANDARD FOR BASIC

2.1 History And Prospects

BASIC is a computer programming language developed in the
mid 1960's by Professors John G. Kemeny and Thomas E. Kurtz at
Dartmouth College. The primary motivation behind its design was
educational (in contrast to the design goals for, e.g. COBOL and
FORTRAN) and accordingly the language has always emphasized ease
of use and understanding as opposed to simple machine efficiency.
In July 1973, NBS published a "Candidate Standard for Fundamental
BASIC" [2] by Prof. John A. N. Lee of the University of
Massachusetts at Amherst. This work represented the beginning of
a serious effort to standardize BASIC. The first meeting of the
American National Standards Technical Committee on the
Programming Language BASIC, X3J2, convened at CBEMA headquarters
in Washington DC, on January 23-24, 1974, with Professor Kurtz as
chairman. The committee adopted a program of work which
envisioned development of a nucleus language followed by
modularized enhancements. The nucleus finally emerged as Minimal
BASIC, which was approved as an ANSI standard January 1", 1978.
As its name implies, the language defined in the standard is one
which any implementation of BASIC should encompass.

Meanwhile, NBS had been developing a set of test programs,
the purpose of which was to exercise all the facilities defined
in the standard and thereby test conformance of implementations
to the standard. This test suite was released as NBS I R

78-1 420-1 , 2 , 3 , and 4 , NBS Minimal BASIC Test Programs - Version
2 User ' s Manual in January 1978. NBS distributed this version to
more than 60 users, many of whom made suggestions about how the
test suite might be improved. NBS has endeavored to incorporate
these suggestions and re-design the tests where it seemed useful
to do so. The result is the current Version 2 of the test suite.
Appendix A contains a summary of the differences between versions
1 and 2.

In order to provide a larger selection of high level
programming languages for the Federal government's ADP
activities, the Department of Commerce has incorporated the ANSI
standard as Federal Information Processing Standard 68. This
means, among other things, that implementations of BASIC sold to
the Federal government after an 18 month transition period must
conform to the technical specifications of the ANSI standard:
hence the NBS interest in developing a tool for measuring such
conformance

.

ANSI X3J2 is currently (April 1980) working on a language
standard for a much richer version of BASIC, which will provide
such features as real-time process control, graphics, string
manipulation, file handling, exception handling, and array
manipulation. The current expectation is for ANSI adoption of

jj

this standard sometime in 1 982 . It is probable that such a

standard for a full version of BASIC would be adopted as a

Federal Information Processing Standard.
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2.2 The Minimal BASIC Language

Minimal BASIC is distinguished among standardized computer
languages by its simplicity and its suitability for the casual
user. It is simple, not only because of its historic purpose as
a computer language for the casual user, but also because the
ANSI BASIC committee organized its work around the concept of
first defining a core or nucleus language which one might
reasonably expect any implementation of BASIC to include, to be
followed by a .standard for enhanced versions of the language.
Therefore the tendency was to defer standardization of all the
sophisticated features and include only the simple features. In

particular. Minimal BASIC has no facilities for file handling,
string manipulation, or array manipulation and has only
rudimentary control structures. Although BASIC was originally
designed for interactive use, the standard does not restrict
implementations to that use.

Minimal BASIC provides for only two types of data, numeric
(with the properties usually associated with real or
floating-point numbers) and string. String data can be read as
input, printed as output, and moved and compared internally. The
only legal comparisons, however, are equal or not equal; no
collating sequence among characters is defined. Numeric data can
be manipulated with the usual choice of operations: addition,
subtraction, multiplication, division, and involution (sometimes
called exponentiation). There is a modest assortment of numeric
functions. One- and two-dimensional arrays are allowed, but only
for numeric data, not string.

For control, there is a GOTO, an IF which can cause control
to jump to any line in the program, a GOSUB and RETURN for
internal subroutines, a FOR and NEXT statement to execute loops
while incrementing a control-variable, and a STOP statement.

Input and output are accomplished with the INPUT and PRINT
statements, both of which are designed for use on an interactive
terminal. There is also a feature which has no real equivalent
among the popular computer languages: a kind of internal file of
data values, numeric and string, which can be assigned to
variables with a READ statement (not to be confused with INPUT
which handles external data). The internal set of values is
created with DATA statements, and may be read repetitively from
the beginning of the set by using the RESTORE statement.

The programmer may (but need not) declare the size of arrays
with the DIM statement and specify that subscripts begin at 0 or
1 with an OPTION statement. The programmer may also establish
numeric user-defined functions with the DEF statement, but only
as simple expressions, taking one argument. The RANDOMIZE
statement works in conjunction with the RND function. If RND is
called without execution of RANDOMIZE, it always returns the same
sequence of pseudo-random numbers for each execution of the
program. Executing RANDOMIZE causes RND to return an
unpredictable set of values each time.
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The REM statement allows the programmer to insert comments
or remarks throughout the program.

Although the facilities of the language are modest, there is
one area in which the standard sets rather stringent
requirements, namely, diagnostic messages. The mandate of the
standard that implementations exhibit reasonable behavior even
when presented with unreasonable programs follows directly from
the design goal of solicitude towards the beginning or casual
user. Thus, the standard takes care to define what happens if
the user commits any of a number of syntactic or semantic
blunders. The need to test these diagnostic requirements
strongly affected the overall shape of the test system as will
become apparent in later sections.

2,3 Conformance To The Standard

There are many reasons for establishing a standard for a

programming language: the promotion of well-defined and
wel 1 -desi gned languages as a consequence of the standardizing
process itself, the ability to create language-based rather than
machine-based software tools and techniques, the increase in
programmer productivity which an industry-wide standard fosters,
and so on. At bottom, however, there is one result essential to
the success of a standard: program portability. The same
program should not evoke perniciously different behavior in
different implementations. Ideally, the same source code and
data environment should produce the same output, regardless of
the machine environment.

How does conformance to the standard work towards this goal?
Essentially, the standard defines the set of syntactically legal
programs, assigns a semantic meaning to all of them and then
requires that implementations (sometimes called processor

s

; we
will use the two terms interchangeably throughout this document)
actually produce the assigned meaning when presented with a legal
program

.

2.3.1 Program Conformance

Program conformance, then, is a matter of syntax. We look
at the source code and determine whether or not it obeys all the
rules laid down in the standard. These rules are mostly spelled
out in the syntax sections of the standard using a variant of
Backus-Naur Form (BNF). They are supplemented, however, by
certain context-sensitive constraints, which are contained in the
semantics sections. Thus the rules form a ceiling for conforming
programs. If a program has been constructed according to the
rules, it meets the standard, without regard to its semantic
meaning

.

The syntactic rules are fully implementation
independent: a standard program must be accepted by all standard
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processors. Further, since we can tell if a program is standard]
by mere inspection, it would be a reasonably easy job to build si

recognizer or syntax checker which could always discover whether'
or not a program is standard. Unfortunately, such a recognizer!
could not be written in Minimal BASIC itself and this probably';
explains why no recognizer to check program conformance hasi

gained wide acceptance. At least one such recognizer does exist,!
however. Called PBASIC [3], it was developed at the University!
of Kent at Canterbury and is written in PFORT, a portable subset;
of FORTRAN. PBASIC was used to check the syntax of the Version 2!

Minimal BASIC Test Programs.

2.3.2 Implementation Conformance

Implementation conformance is derivative of the more
primitive concept of program conformance. In contrast to the way
in which program conformance is described, processor conformance
is specified functionally, not structurally. The essential
requirement is that an implementation accept any standard program
and produce the behavior specified by the language standard.
That is, the implementation must make the proper connection
between the syntax of the program and the operation of the
computer system. Note that this is a black box description of
the implementation. Whether the real i zation of the language is
done with a compiler, an interpreter, firmware, or by being
hard-wired, is irrelevant. Only the external behavior is
important, not the internal structure - quite the opposite of the
way program conformance is determined.

The difference in the way conformance is defined for
programs and processors radically affects the test methodology by
which we determine whether the standard is met. The relevant
point is that there currently is no way to be certain that an
implementation does conform to the standard, although we can
sometimes be certain that it does not. In short, there is no
algorithm, such as the recognizer that exists for programs, by
which we can answer definitively the question, "Is this a

standard processor?"

Furthermore, the standard acts as a floor for processors,
rather than a ceiling. That is, an implementation must accept
and process at^ least all standard programs, but may also
implement enhancements to the language and thus accept
non-standard programs as well. Another difference between
program and processor conformance is that the description of
processor conformance allows for some implementation dependence
even in the treatment of standard programs. Thus for some
standard programs there is no unique semantic meaning, but rather
a set of meanings, usually similar, among which implementations
can choose

.
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3 DETERMINING IMPLEMENTATION CONFORMANCE

3.1 Test Programs As Test Data, Not Algorithms

The test programs do not embody some definitive algorithm by
which the question of processor conformance can be answered yes
or no. There is an important sense in which it is only
accidental that they are programs at all; indeed, some of them,
syntactically, are not. Rather their primary function is as test
data. It is readily apparent, for instance, that the majority of
BASIC test programs are algor ithmically trivial; some consist
only of a series of PRINT statements. Viewed as test data,
however, i.e., a series of inputs to a system whose behavior we
wish to probe, the underlying motivation for their structure
becomes intelligible. Simply put, it is the goal of the tests to
exercise at least one representative of every meaningfully
distinct type of syntactic structure or semantic behavior
provided for in the language standard. This strategy is
characteristic of testing in general: all one can do is submit a

representative subset of the typically infinite number of
possible inputs to the system under investigation (the
implementation) and see whether the results are in accord with
the specifications for that system (the language standard).

Thus, successful results of the tests are necessary, but not
sufficient to show that the specifications are met. A failed
test shows that a language implementation is not standard. A

passed test shows that it may be. A long series of passed tests
which seem to cover all the various aspects of the language gives
us a large measure of confidence that the implementation conforms
to the standard .

It can scarcely be stressed too strongly that the test
programs do not represent some self-sufficient algorithm which
will automatically deliver correct results to a passive observer.
Rather they are best seen as one component in a larger system
comprising not only the programs, but the documentation of the
programs, the documentation of the processor under test, and, not
least, a reasonably well-informed user who must actively
interpret the results of the tests in the context of some broad
background knowledge about the programs, the processor, and the
language standard. If, for example, a processor rejects a

standard program, it certainly fails to conform to the standard;
yet this is a type of behavior which can hardly be detected by
the program itself: only a human observer who knows that the
processor must accept standard programs, and that this program ^
standard, is capable of the proper judgment that this processor
therefore violates the language standard.
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3.2 Special Issues Raised By The Standard Requirements

3.2.1 Implementation-defined Features

At several points in the standard, processors are given a

choice about how to implement certain features. These subjects
of choice are listed in Appendix C of the standard. In order to
conform, implementations must be accompanied by documentation
describing their treatment of these features (see section
1.4.2(7) of the standard). Many of these choices, especially
those concerning numeric precision, string and numeric overflow,
and uninitialized variables, can have a marked effect on the
result of executing even standard programs. A given program, for
instance, might execute without exceptions on one standard
implementation, and cause overflow on another, with a notably
different numeric result. The programs that test features in
these areas call for especially careful interpretation by the
user .

Another class of implementation-defined features is that
associated with language enhancements. If an implementation
executes non-standard programs, it also must document the meaning
it assigns to the non-standard constructions within them. For
instance, if an implementation allows comparison of strings with
a less-than operator, it must document its interpretation of this
compar i son .

3.2.2 Error And Exception Reporting

The standard for BASIC, in view of its intended user base of
beginning and casual programmers, attempts to specify what a

conforming processor must do when confronted with non-standard
circumstances. There are two ways in which this can happen: 1)

a program submitted to the processor might not conform to the
standard syntactic rules, or 2) the executing program might
attempt some operation for which there is no reasonable semantic
interpretation, e.g., division by zero, assignment to a

subscripted variable outside of the array. In the BASIC
standard, the first case is called an error , and the second an
exception , and in order to conform, a processor must take certain
actions upon encountering either sort of anomaly.

Given a program with a syntactically non-standard
construction the processor must either reject the program with a

message to the user noting the reason for rejection, or, if it
accepts the program, it must be accompanied by documentation
which describes the interpretation of the construction.

If a condition defined as an exception arises in the course
of execution, the processor is obliged, first to report the
exception, and then to do one of two things, depending on the
type of exception: either it must apply a so-called recovery
procedure and continue execution, or it must terminate execution.
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Note that it is the user, not the program, who must
determine whether there has been an adequate error or exception
report, or whether appropriate documentation exists. The
pseudo-code in Figure 1 describes how conforming implementations
must treat errors. It may be thought of as an algorithm which
the use r (not the programs) must execute in order to interpret
correctly the effect of submitting a test program to an
implementation .

The procedure for error handling in Figure 1 speaks of a

processor accepting or rejecting a-program. The glossary (sec.
19) of the standard defines accept as "to acknowledge as being
valid". A processor, then, is said to reject a program if it in
some way signifies to the user that an invalid construction (and
not just an exception) has been found, whenever it encounters the
presumably non-standard construction, or if the processor simply
fails to execute the program at all. A processor implicitly
accepts a program if the processor encounters all constructions
within the program with no indication to the user that the
program contains constructions ruled out by the standard or the
implementation's documentation.

In like manner, we can construct pseudo-code operating
instructions to the user, which describe how to determine whether
an exception has been handled in conformance with the standard
and this is shown also in Figure 1.

As a point of clarification, it should be understood that
these categories of error and exception apply to all
implementations, both compilers and interpreters, even though
they are more easily understood in terms of a compiler, which
first does all the syntax checking and then all the execution,
than of an interpreter. There is no requirement, for instance,
that error reports precede exception reports. It is the content,
rather than the timing, of the message that the standard implies.
Messages to reject errors should stress the fact of ill-formed
source code. Exception reports should note the conditions, such
as data values or flow of control, that are abnormal, without
implying that the source code per se is invalid.
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Error Hand 1 ing

if program is standard
if program accepted by processor

if correct results and behavior
processor PASSES

else
processor FAILS (incorrect interpretation)

end i f

else
processor FAILS (rejects standard program)

end i f

else (program non-standard)
if program accepted by processor

if non-standard feature correctly documented
processor PASSES

else
processor FAILS (incorrect/missing documentation

for non-standard feature)*
end i f

else (non-standard program rejected)
if appropriate error message

processor PASSES
else

processor FAILS (did not report reason for rejection)
end i f

endif
end i f

* note that all implementation-defined features must be
documented (See Appendix C in the ANSI Standard) not just
non-standard features.

Exception Hand 1 ing

if processor reports exception
if procedure is specified for exception

and host system capable of procedure
if processor follows specified procedure

processor PASSES
el se

processor FAILS (recovery procedure not followed)
end i f

else (no procedure specified or unable to handle)
if processor terminates program

processor PASSES
else

processor FAILS (non-termination on fatal exception)
end i f

endif
else

processor FAILS (fail to report exception)
end i f

Figure 1
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4 STRUCTURE OF THE TEST SYSTEM

The design of the test programs is an attempt to harmonize
several disparate goals: 1) exercise all the individual parts of
the standard, 2) test combinations of features where it seems
likely that the interaction of these features is vulnerable to
incorrect implementation, 3) minimize the number of tests, 4)

make the tests easy to use and their results easy to interpret,
and 5) give the user helpful information about the implementation
even, if possible, in the case of failure of a test. The rest of
this section describes the strategy we ultimately adopted, and
its relationship to conformance and to interpretation by the user
of the programs.

4.1 Testing Features Before Using Them

Perhaps the most difficult problem of design is to find some
organizing principle which suggests a natural sequence to the
programs. In many ways, the most natural and simple approach is
simply to test the language features in the order they appear in
the standard itself. The major problem with this strategy is
that the tests must then use untested features in order to
exercise the features of immediate interest. This raises the
possibility that the feature ostensibly being tested might
wrongly pass the test because of a flaw in the implementation of
the feature whose validity is implicitly being assumed.
Furthermore, when a test does report a failure, it is not clear
whether the true cause of the failure was the feature under test
or one of the untested features being used.

These considerations seemed compelling enough that we
decided to order the tests according to the principle of testing
features before using them. This approach is not without its own
problems, however. First and most importantly, it destroys any
simple correspondence between the tests and sections of the
standard. The testing of a given section may well be scattered
throughout the entire test sequence and it is not a trivial task
to identify just those tests whose results pertain to the section
of interest. To ameliorate this problem, we have been careful to
note at the beginning of each test just which sections of the
standard it applies to, and have compiled a cross-reference
•listing (see section 6.3), so that you may quickly find the tests
relevant to a particular section. A second problem is that
occasionally the programming of a test becomes artificially
awkward because the language feature appropriate for a certain
task hasn't been tested yet. While the programs generally abide
by the test-before-use rule, there are some cases in which the
price in programming efficiency and convenience is simply too
high and therefore a few of the programs do employ untested
features. When this happens, however, the program always
generates a message telling you which untested feature it is
depending on. Furthermore, we were careful to use the untested
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feature in a simple way unlikely to interact with the feature
under test so as to mask errors in its own implementation.

4.2 Hierarchical Organization Of The Tests

Within the constraints imposed by the test-bef ore-use rule,
we tried to group together functionally related tests. This
grouping should also help you interpret the tests better since
you can usually concentrate on one part of the standard at a

time, even if the parts themselves are not in order. Section 6.1
of this manual contains a summary of the hierarchical group
structure. It relates a functional subject to a sequential range
of tests and also to the corresponding sections of the standard.
We strongly recommend that yo u read the relevant sections o f the
standard care full y before running the tests i n a particular
group. The documentation contained herein explains the rationale
for the tests in each group, but it is not a substitute for a

detailed understanding of the standard itself.

Many of the individual test programs are themselves further
broken down into so-called sections . Thus the overall
hierarchical subdivision scheme is given by, from largest to
smallest: system, groups, sub-groups, programs, sections.
Program sections are further discussed below under: 4.4.3
Doc umentation .

4.3 Environment Assumptions

The test programs are oriented towards executing in an
interactive environment, but generally can be run in batch mode
as well. Some of the programs do require input, however, and
these present more of a problem, since the input needed often
depends on the immediately preceding output of the program. See
the sample output in Volume 2 for help in setting up data files
if you plan to run all the programs non-inter activel y . The
programs which use the INPUT statement are 73, 81, 84, 107-113,
and 203.

We have tried to keep the storage required for execution
within reasonable bounds. Array sizes are as small as possible,
consistent with adequate testing. No program exceeds 300 lines
in length. The programs print many informative messages which
may be changed without affecting the outcome of the tests. If
your implementation cannot handle a program because of its size,
you should set up a temporary copy of the program with the
informative messages cut down to a minimum and use that version.
Be careful not to omit printing which is a substantive part of
the test itsel f

.
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The tests assume that the implementation-defined margin for
output lines is at least 72 characters long and contains at least

This should not be confused with the length of a

source code itself. The standard requires
to accept source lines up to 72 characters long,
is smaller than 72, the tests should still run

5 print zones

.

line in the
implementations
If the margin
(according to
less pleasing

the standard), but the output will be aesthetically

Finally, the standard does not specify how the tests are to
be submitted to the processor for execution. Therefore, the
machine-readable part of the test system consists only of source
code, i.e., there are no system control commands. It is your
responsibility to submit the programs to the implementation in a

natural way which does not violate the integrity of the tests.

4,4 Operating And Interpreting The Tests

This section will attempt to guide you
aspects of using the test programs as
implementation conformance,
conformance are covered in
standard itself, especially
document

.

The more
section 3

.

sections 1

through the practical
a tool to measure

general issues of
and of course in the
and 2 of the ANSI

4.4.1 User Checking Vs. Self Checking

Al

1

of the test programs require interpretation of their
behavior by the user. As mentioned earlier, the user is an
active component in the test system; the source code of the test
programs is another component, subordinate to the test user. An
important goal in the design of the programs was the minimization
of the need for sophisticated interpretation of the test results;
but minimization is not elimination. In the best case, the
program will print out a conspicuous message indicating that the
test passed or failed, and you need only interpret this message
correctly. In other cases, you have to examine rather carefully
the results and behavior of the program, and must apply the rules
of the standard yourself. This interpretation is necessary in:

1

2.

.3.

Programs which test that PRINTed
certain format

output is produced in

Programs which test that termination occurs at the
time (this arises in many of the exception tests)

correct

Programs for which conformance depends on the existence of
adequate documentation of implementation-defined features
(both those defined in Appendix C of the standard and for any
of the error tests that are accepted).
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The test programs are an only partially automated solution
to the problem of determining processor conformance. Naive
reliance on the test programs alone can very well lead to an
incorrect judgment about whether an implementation meets the
standard.

it. 4.2 Types Of Tests

There are four types of test programs: 1) standard, 2)
exception, 3) error, and 4) informative. Within each of the
functional groups (described above, section 4.2) the tests occur
in that order, although not all groups have all four types. The
rules that pertain to each type follow. _It i_s quite important
that you be a wa r e o f wh ich type o f test you are running and use
the rules which apply to that type

.

4.4.2. 1 Standard Tests

These tests are the ones whose title does not begin with
"EXCEPTION" or "ERROR" and which generate a message about passing
or failing at the end of each section. The paragraph below on
documentation describes the concept of sections of a test. Since
these programs are syntactically standard and raise n o exception
conditions, they must be accepted and executed to completion by
the implementation

.

If the implementation fails to do this, it
has failed the test. For example, if the implementation fails to
recognize the key word OPTION, or if it does not accept one of
the numeric constants, then the test has failed. Quite
obviously, it is you who must apply this rule, since the program
itself won't execute at all.

Assuming that the implementation does process the program,
the next question is whether it has done so correctly. The
program may be able to determine this itself, or you may have to
do some active interpretation of the results. See the section
below on documentation for more detail.

4.4.2.2 Exception Tests

These tests have titles that begin with the word "EXCEPTION"
and examine the behavior of the implementation when exception
conditions occur during execution. Nonetheless, these programs
are also standard conforming (i.e., syntactically valid) and thus
the implementation must accept and process them.

There are two special considerations. The first is the
distinction between so-called fatal and non-fatal exceptions.
Some exceptions in the standard specify a recovery procedure
which allows continued execution of the program, while others
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(the fatal exceptions) do not. If no recovery procedure is
specified, the implementation must report the exception and then
terminate the program. Programs testing fatal exceptions will
print out a message that they are about to attempt the
instruction causing the exception. If execution proceeds beyond
that point, the test fails and prints a message so stating. With
the non-fatal exceptions, the test program attempts to discover
wh ether the recovery procedure has been applied or not and in
this instance, the test is much like the standard tests, where
the question is whether the implementation has followed the
semantic rules correctly. For instance, the semantic meaning of
division by zero is to report the exception, supply machine
infinity, and continue. The standard, however, allows
implementations to terminate execution after even a non-fatal
exception "if restrictions imposed by the hardware or operating
environment make it impossible to follow the given procedures."
Because it would be redundant to keep noting this allowance, the
test programs do not print such a message for each non-fatal
exception . There fore , when running a test for a non-fatal
exception , note that the implementation may , under the stated
circumstances , terminate the pr ogr am , rather than apply the
recovery procedure

.

The second special consideration is that in the case of
INPUT and numeric and string overflow, the precise conditions for
the exception can be implementation-defined. It is possible,
therefore, that a standard program, executing on two different
standard-conforming processors, using the same data, could cause
an exception in one implementation and not in the other. The
tests attempt to force the exception to occur, but it could
happen, especially in the case of string overflow, that a

syntactically standard program cannot force such an exception in
a given processor. The documentation accompanying the
implementation under test must describe correctly those
implementation-defined features upon which the occurrence o

f

exceptions depends. That is, it must be possible to find out
from the documentation whether and when overflow and INPUT
exceptions will occur in the test programs.

There is a summary of the requirements for exception
handling in the form of pseudo-code in section 3.2.2 (Figure 1).

4.i|.2.3 Error Tests

These tests have titles that begin with the word "ERROR" and
examine how a processor handles a non-standard program. Each of
these programs contains a syntactic construction explicitly ruled
out by the standard, either in the various syntax sections, or in
the semantics sections. Giv en a pr ogr am with a syntac ticall

y

non-standard construction the processor must either reject the
program with a message to the user noting the reason for
rejection , or , i f i t accepts the program , i t must be accompanied
by documentation which describes the interpretation of the
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construction. Testing this requirement involves the submission
of deliberately illegal programs to the processor to see if it

will produce an appropriate message, or if it contains an
enhancement of the language such as to assign a semantic meaning
to the error. Thus we are faced with an interesting selection
problem: out of the infinity of non-standard programs, which are
worth submitting to the processor? Three criteria seem
reasonable to apply:

1. Test errors which we might expect would be most difficult for
a processor to detect, e.g., violations of context-sensitive
constraints. These are the ones ruled out by the semantics
rather than syntax sections of the standard.

2. Test errors likely to be made by beginners, for example use
of a two character array name.

3. Test errors for which there may very well exist a language
enhancement, e.g., comparing strings with "<" and ">".

Based on these criteria, the test system contains programs
for the errors in the two lists which follow. The first list is
for constructions ruled out by the semantics sections alone
(these usually are instances of context-sensitive syntax
constraints) and the second for plausible syntax errors ruled out
by the BNF productions.

Context-sensitive errors:

1. line number out of strictly ascending order

2. line number of zero

3. line-length > 72 characters

4. use of an undefined user function

5. use of a function before its definition

6. recursive function definition

7. duplicate function definition

8. number of arguments in function invocation <> number of
parameters in function definition

9. reference to numer ic-suppl ied-function with incorrect number
of arguments

10. no spaces around keywords

11. spaces within keywords and other elements or before line
n umber
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12. non-existent line number for GOTO, GOSUB, IF... THEN,
ON . . . GOTO

13. mismatch of control variables in FOR-blocks (e.g.,
interleaving

)

14. nested FOR-blocks with same variable

15. jump into FOR-block

16. conflict on number of dimensions among references: A, A( 1 ) ,

A( 1 , 1

)

17. conflict on number of dimensions between DIM and reference,
e.g., DIM A(20) and either A or A(2,2)

18. reference to subscripted variable followed by DIMensioning
thereof

19. multiple OPTION statements

20. OPTION follows reference to subscripted variable

21. OPTION follows DIM

22. OPTION BASE 1 followed by DIM A(0)

23- DIM of same variable twice

Context-free errors:

1. use of long name for array, e.g A1(1)

2. assignment of string to number and number to string

3. assignment without the keyword LET

4. comparison of two strings for < or >

! 5. comparison of a string with a number

I

6. unmatched parenthesis in expression

I
7. FOR without matching NEXT and vice-versa

•I

8. multiple parameters in parameter list

I
9. line without line-number

I 10. line number longer than four digits
,1;

11

« 11. quoted strings containing the quote character or lowercase
letters
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12. unquoted strings containing quo ted -st r i ng-char ac te r

s

13. type mismatch on function reference (using string as an
argument

)

14. DEF with string variable for parameter

15. DEF with multiple parameters

16. misplaced or missing END-stat ement

17. null entries in various lists (INPUT, DATA, READ, e.g.)

18. use of "*»" as involution operator

19. adjacent operators, such as 2 " -4

When developing programs to test for possible enhancements,
we also tried to assist the user in confirming what the actual
processor behavior is, so that it may be checked against the
documentation. For example, the program that tests whether the
implementation accepts "<" and ">" for comparison of strings also
displays the implicit character collating sequence if the
comparisons are accepted. When the implementation accepts an
error program be sure to check that the documentation does in
fact describe the actual interpretation of the error as exhibited
by the test program. If the error program is rejected, the
processor's error message should be a reasonably accurate
description of the erroneous construction.

There is a summary of the requirements for error handling in
the form of pseudo-code in section 3.2.2 (Figure 1).

4.4.2.4 Informative Tests

Informative tests are very much like standard tests. The
implementation must accept and process them, since they are
syntactically standard. The difference is that the standard only
recommends, rather than requires, certain aspects of their
behavior. The pass/fail message (described below) and other
program output indicates when a test is informative and not
mandatory. All the informative tests have to do with the quality
(as opposed to the existence) of various mathematical facilities.
Specifically, the accuracy of the numeric operations and
approximated functions and the randomness of the RND function are
the subjects of informative tests. Some of the standard tests
also have individual sections which are informative, and again
the pass/fail message is the key to which sections are
informative and which mandatory. If numeric accuracy is
important for your purposes, either as an implementor or a user,,
you should analyze closely the results of the informative tests.
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4.4.3 Documentation

There are three kinds of documentation in the test system,
serving three complementary purposes:

1. The user's manual (this document). The purpose of this
manual is to provide a global description of the test system
and how it relates to the standard and to conformance. At a

more detailed level, there is also a description of each
functional group of programs and the particular things you
should watch for when running that group.

2. Program output. As far as possible, the programs attempt to
explain themselves and how they must be interpreted to
determine conformance. Nonetheless, they make sense only in
the context of some background knowledge of the BASIC
standard and conformance (more detail below on output
f ormat ) .

3. Remarks in the source code. Using the REM statement, the
programs attempt to clarify their own internal logic, should
you care to examine it. Many of the programs are
algor ithmically trivial enough that remarks are superfluous,
but otherwise remarks are there to guide your understanding
of how the programs are intended to work.

There is a format for program output consistent throughout
the test sequence. The program first prints its identifying
sequence number and title. The next line lists the sections of
the ANSI standard to which this test applies. After this program
header, there is general information, if any, pertaining to the
whole program. Following all this program-level output there is
a series of one or more sections, numbered sequentially within
the program number. Each section tests one aspect of the general
feature being exercised by the program. Every section header
displays the section number and title and any information
pertinent to that section. Then the message, "BEGIN TEST."
appears, after which the program attempts execution of the
feature under test. At this point, the test may print
information to help the user understand how execution is
proceeding.

Then comes the important part: a message, surrounded by
asterisks, announcing "*»» TEST PASSED »*«" or "»»» TEST FAILED
***". If the test cannot diagnose its own behavior, it will
print a conditional pass /fail message, prefacing the standard
message with a description of what must or must not have happened
for the test to pass. Be careful to understand and apply these
conditions correctly. It is a good idea to read the ANSI
standard with special attention in conjunction with this sort of
test, so that you can better understand the point of the
particular section.
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There is no pass/fail message for the error tests, since
there is, of course, no standard semantics prescribed for a

non-standard construction. As mentioned above, error programs
usually generate messages to help you diagnose the behavior of
the processor when it does accept such a program.

After the pass/fail message will come a line containing "END
TEST." which signals that the section is finished. If there is
another section, the section header will appear next. If not,
there will be a message announcing the end of the program. Not e

that each section passes or fails independently ; all sections

,

not just the last , must print "*** TEST PASSED ***" for the
program a

s

a whole to pass. Figure 2 contains a schematic
outline of standard program output.
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Format of Test Program Output

PROGRAM FILE nn : descriptive program title.
ANSI STANDARD xx.x, yy.y ...

message if a feature is used before being tested, cf. section 4.1
and general remarks about the purpose of the program

SECTION nn . 1 : descriptive section title.

interpretive message for error or exception tests
and general remarks about the purpose of this section.

BEGIN TEST.

function-specific messages and test results

»»» TEST PASSED (or FAILED) ***

or
*** INFORMATIVE TEST PASSED (or FAILED) **«

or
conditional pass/fail message when
it cannot be determined internally,

or
message to assist analysis of processor
behavior for error program

END TEST.

SECTION nn.2: descriptive section title.

SECTION nn.m: descriptive section title.

END PROGRAM nn

Figure 2
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5 FUNCTIONAL GROUPS OF TEST PROGRAMS

This section contains information specific to each of the
groups and sub-groups of programs within the test sequence.
Groups are arranged hierarchically, as reflected in the numbering
system. The sub-section numbers within this section correspond
to the group numbering in the table of section 6.1, e.g., section
5.12.1.2 of the manual describes functional group 12.1.2.

It is the purpose of this section to help you understand the
overall objectives and context of the tests by providing
information supplementary to that already in the tests. This
section will generally not simply repeat information contained in
the tests themselves, except for emphasis. Where the tests
require considerable user interpretation, this documentation will
give you the needed background information. Where the tests are
self-checking, this documentation will be correspondingly brief.
We suggest that you first read the comments in this section to
get the general idea of what the tests are trying to do, read the
relevant sections of the ANSI standard to learn the precise
rules, and finally run the programs themselves, comparing their
output to the sample output in Volume 2. The messages written by
the test programs are intended to tell you in detail just what
behavior is necessary to pass, but these messages are not the
vehicle for explaining how that criterion is derived from the
standard. Program output should be reasonably intelligible by
itself, but it is better understood in the broader context of the
standard and its conformance rules.

5.1 Simple PRINTing Of String Constants

This group consists of one program which tests that the
implementation is capable of the most primitive type of PRINTing,
that of string constants and also the null PRINT. Note that it
is entirely up to you to determine whether the test passes or
fails by assuring that the program output is consistent with the
expected output. The program's own messages describe what is
expected. You may also refer to the sample output in Volume 2 to
see what the output should look like.

5.2 END And STOP

This group tests the means of bringing BASIC programs to
normal termination. These capabilities are tested early, since
all the programs use them. Both END and STOP cause execution to
stop when encountered, but STOP may appear anywhere in the
program any number of times. There must be exactly one END
statement in a program, and it must be the last line in the
source code. Thus, END serves both as a syntactic marker for the
end of the program, and is also executable.



Page 27

Since the program can't know when it has ended (although it
can know when it hasn't), you must assure that the programs
terminate at the right time.

5.3 PRINTing And Simple Assignment (LET)

This group of programs examines the ability of the
implementation to print strings and numbers correctly. Both
constants and variables are tested as print-items. The

1
variables, of course, have to be given a value before they are

j

printed, and this is done with the LET statement.

PRINT is among the most semantically complex statements in

j

BASIC. Furthermore, the PRINT statement is the outstanding case
I of a feature whose operation cannot be checked internally. The

!

consequence is that this group calls for the most sophisticated
user interpretat ion o f any in the test sequence

.

Please read
I

carefully the specifications in the programs, section 12 of the
ANSI standard, and this documentation; the interpretation of
test results should then be reasonably clear.

The emphasis in this group is on the correct representation
of numeric and string values. There is some testing that TAB,
comma, and semi-colon perform their functions, but a challenging
exercise of these features is deferred until group 14.6 because
of the other features needed to test them.

j

5.3.1 String Variables And TAB

^ The PRINTing of strings is fairly straightforward and should
be relatively easy to check, since there are no

j

implementation-defined features which affect the printing. The
only possible problem is the margin width. The program assumes a

||
margin of at least 60 characters with at least M print zones. If
your implementation supports only a shorter margin, you must make
due allowance for it. The standard does not prescribe a minimum

I margin.
J

The string overflow test requires careful interpretation.
Your implementation must have a defined maximum string length,
and the fatal exception should occur on the assignment
corresponding to that documented length. If the implementation
supports at least 58 characters in the string, overflow should
not occur. Be sure, if there is no overflow exception report,
that the processor has indeed not lost data. Do this by checking
that the output has not been truncated. A processor that loses
string data without reporting overflow definitely fails.

Checking for a TAB exception is simple enough; just follow
the conditional pass/fail messages closely. Note that one
section of the test should not generate an exception since, even
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though the argument itself is less than one, its value becomes
one after rounding.

5.3.2 Numeric Constants And Variables

In the following discussion, the terms " si gni f icand " ,

"exrad", "explicit point", "implicit point", and "scaled" are
used in accordance with the meaning ascribed them in the ANSI
standard .

The rules for printing numeric values are fairly elaborate,
and, moreover, are heavily implementation-dependent; accordingly
conscientious scrutiny is in order. There are two rules to keep
in mind. First, the expected output format depends on the value
of the print-item, not its source format. In particular, integer
values should print as integers as long as the signif icand-width
can accommodate them, fractional values should print in explicit
point unsealed format where no loss of accuracy results, and the
rest should print in explicit point scaled format. For example
"PRINT 2.1E2" should produce "210" because the item has an
integer value, even though it is written in source code in
explicit point scaled format. Second, leading zeros in the exrad
and trailing zeros in the significand may be omitted. Thus, for
an implementation with a significand -width of 8 and an
exrad-width of 3, the value 1,230,000,000 could print as
" 1 . 23OOOOOE+OO9" at one extreme or "1.23E+9" at the other. The
tests generally display the expected output in the latter form,
but it should be understood that extra zeros can be tacked on to
the actual output, up to the widths specified for the
implementation

.

The tests in general are oriented toward the minimum
requirements of six decimal digits of accuracy, a significand
length of six and an exrad-width of two. You must apply the
standard requirements in terms of your own implementation's
widths , however

.

5.4 Control Statements And REM

This group checks that the simple control structures all
work when used in a simple way. Some of the same facilities are
checked more rigorously in later groups. As with PRINT, END and
STOP, these features must come early in the test sequence, since
a BASIC program cannot do much of consequence without them. If
any of these tests fail, the validity of much of the rest of the
test sequence is doubtful, since following tests rely heavily on
GOTO, GOSUB, and IF. Note especially that trailing blanks should
be significant in comparing strings, e.g. "ABC" <> "ABC ".

Subsequent tests which rely on this property of IF will give
false results if the implementation doesn't process the
comparison properly.
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The tests for GOTO and GOSUB exercise a variety of transfers
to make sure the processor handles control correctly. If
everything works, you should get intelligible, self-consistent
output. If the output looks scrambled, the test has failed.
There are no helpful diagnostics for failures since it is
impossible to anticipate exactly how a processor might
misinterpret transfers of control. Look carefully at the sample
output for the GOTO and GOSUB programs in Volume 2, to know what
to expect

.

The IF... THEN tests use a somewhat complex algorithm, so pay
attention to the REM statements if you are trying to understand
the logic. On the other hand, these tests are easy to use
because they are completely self-checking. You need only look
for the pass/fail messages to see if they worked. It is worth
noting that the IF.. .THEN test for numeric values depends on the
validity of the IF.. .THEN test for strings, which comes just
before.

The error tests are understandable in light of the general
rules for interpretation of error programs given earlier.

5 . 5 Variables

The first of these programs simply checks that the set of
valid names is as guaranteed by the standard. In particular. A,
AO, and A$ are all distinct. There are no diagnostics for
failure, since we expect failures to be rare and it is simple
enough to isolate the misinterpretation by modifying the program,
if that proves necessary. A later test in group 8.1 tests that
the implementation fulfills the requirements for array names.

Default initialization of variables is one of the most
important aspects of semantics left to implementation definition.
Implementations may treat this however they want to, but it must
be documented, and you should check that the documentation agrees
with the behavior of the program. Thus this is not merely an
informative test; the processor must have correct documentation
for its behavior in order to conform.

5.6 Numeric Constants, Variables, And Operations

j

5.6.1 Standard Capabilities

i
This group of programs introduces the use of numeric

expressions, specifically those formed with the arithmetic
operations ( + ,

-, '*
, /, ^) provided in BASIC. The most

troublesome aspect of these tests is the explicit disavowal in

j

the standard of any criterion of accuracy for the result of the

i

operations. Thus it becomes somewhat difficult to say at what
point a processor fails to implement a given operation. We
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finally decided to require exact results only for integer
arithmetic, and, in the case of non-integral operands, to apply
an extremely loose criterion of accuracy such that if an
implementation failed to meet it, one could reasonably conclude
either that the precedence rules had been violated or that the
operation had not been implemented at all.

Although the standard does not mandate accuracy for
expressions, it does require that individual numbers be accurate
to at least six significant decimal digits. This requirement is
tested by assuring that values which differ by 1 in the 6th digit
actually compare in the proper order, using the IF statement.
The rationale for the accuracy test is best explained with an
example: suppose we write the constant "333.333" somewhere in
the program. For six digits of accuracy to be maintained, it

must evaluate internally to some value between 333.3325 and
333.3335, since six digits of accuracy implies an error less than
5 in the 7th place. By the same reasoning, "333.33^" must
evaluate between 333.3335 and 333.33^5. Since the allowable
ranges do not overlap, the standard requires that 333.333 compare
as strictly less than 333 . 33^. Of course this same reasoning
would apply to any two numbers which differed by 1 in the sixth
digit.

The accuracy test not only assures that these minimal
requirements are met, but also attempts to measure how much
accuracy the implementation actually provides. It does this both
by comparing some numbers in the manner described above for 7, 8,
and 9 decimal digits, and also by using an algorithm to compute
any reasonable internal accuracy. Since such an algorithm is
highly sensitive to the peculiarities of the system's
implementation of arithmetic, this last test is informative only.

5.6.2 Exceptions

The standard specifies a variety of exceptions for numeric
expressions. All the mandatory non-fatal exceptions occur when
machine infinity is exceeded and they all call for the
implementation to supply machine infinity as the result and
continue execution. The tests ensure that machine infinity is at
least as great as the guaranteed minimum of 1E38, but since
machine infinity is implementation-defined, you must assure that
the value actually supplied is accurately documented.

It is worth repeating here the general guidance that the
timing of exception reports is not specified by the standard.
The wording is intentionally imprecise to allow implementations
to anticipate exceptions, if they desire. Such anticipation may
well occur for overflow and underflow of numeric constants; that
is, an implementation may issue the exception report before
execution of the program begins. Note that the recovery
procedure, substitution of machine infinity for overflow, remains
in effect

.
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Underflow, whether for expressions or constants, is only
recommended as an exception, but, in any case, zero must be
supplied when the magnitude of the result is below the minimum
representable by the implementation. Note that this is required
in the semantics sections (7.4 and 5.^) of the standard, not the
exception sections (7.5 and 5.5).

5.6.3 Errors

These programs try out the effect of various constructions
which represent either common programming errors (missing
parentheses) or common enhancements (** as the involution
operator) or a blend of the two (adjacent operators). No special
interpretation rules apply to these tests beyond those normally
associated with error programs.

5.6.4 Accuracy Tests - Informative

Although the standard mandates no particular accuracy for
expression evaluation, such accuracy is nonetheless an important
measure of the quality of language implementation, and is of
interest to a large proportion of language users. Accordingly,
these tests apply a criterion of accuracy for the arithmetic

which is suggested by the standard's requirement that
numeric values be represented accurate to six
decimal digits. Note, however, that these tests are
not only because there is no strict accuracy

but also because there is no generally valid way for
to measure precisely the
Such a measurement involves
facilities being measured.

operations
individual
significant
informative

,

requirement

,

a computer
operations,
use the very

accuracy of
calculations

its
which

own
must

is based on the concept
least as accurate as a

which uses the least
by the standard. It is

The criterion for passing or failing
that an implementation should be at
reasonable hypothetical implementation
accurate numeric representation allowed
best explained by first considering accuracy for functions of a

single variable, and then generalizing to operations, which may
be thought of as functions of two variables. Given an internal
precision of at least d decimal digits, we simply require that
the computed value for f(x) (hereinafter denoted by "cf(x)") be
some value actually taken on by the function within the domain
[ x-e , x+e ] , where

e = 10 (int (loglO ( abs (x))) + 1 - d)

For example ,

sin(29 . 1234 )

suppose we want to test the
and we specify that d=6. Then:

value returned by

= 10
"

= 10
"

= 1E-4

(int (loglO ( 29. 1234 )) + 1 - 6 )

(int ( 1 .464 ) - 5 )
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and so we require that csin(x) equal some value taken on by
sin(x) in the interval [29.1233, 29.1235]. This then reduces to
the test that -.7507297957 <= c si n ( 29 . 1 23^ ) <= -.7505976588 .

The motivation for the formula for e is as follows.
According to the rule for accuracy of numbers, the internal
representation of the argument must lie within [x - e/2, x +

e/2]. Now suppose that the internal representation is near an
endpoint of the legal interval, and that the granularity of the
machine (i.e., the difference between adjacent internal numeric
representations) in that region of the real number line is near e

(which would be the coarsest allowed, given accuracy of d

digits). Given this worst case, we would still want a value
returned for which the actual argument was closer to that
internal representation than to immediately adjacent
representations. This means that we allow for a variation of e/2
when the argument is converted from source to internal form, and
another variation of e/2 around the internal representation
itself. The maximum allowable variation along the x-axis is then
simply the sum of the worst-case variations: e/2 + e/2 = e.

This is reasonable if we think of a given internal form as
representing not only a point on the real number line, but the
set of points for which there is no closer internal form. Then,
all we know is that the source argument is somewhere within that
set and all we require is that the computed value of the function
be true for some (probably different) argument within the set.
For accuracy d, the maximum width of the set is of course e.

It should be noted that the first allowed variation of e/2
is inherent in the process of decimal (source) to, e.g., binary
(internal) conversion. The case for allowing a variation of e/2
around the internal representation itself is somewhat weaker. If
one insists on exact results within the internal numerical
manipulation, then the function would be allowed to vary only
within the domain [x - e/2, x + e/2], but we did not require this
in the tests

.

Note that the above scheme not only allows for the discrete
nature of the machine, but also for numeric instability in the
function itself. Mathematically, if the value of an argument is
known to six places, it does not follow that the value of the
function is known to six places; the error may be considerably
more or less. For example, a function is often very stable near
where its graph crosses the y-axis, but not the x-axis (e.g. COS
(1E-22)) and very unstable where it crosses the x-axis but not
the y-axis (e.g. SIN (21.99)). By allowing the cf(x) to take on
any value in the specified domain, we impose strict accuracy
where it can be achieved, and permit low accuracy where
appropriate. Thus, the pass/fail criterion is independent of
both the argument and function; it reflects only how well the
implementation computed, relative to a worst-case six-digit
machine .
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Finally, we must recognize that even if the value of a

function is computable to high accuracy (as with COS (1E-22)),
the graininess of the machine will again limit how accurately the
result itself can be represented. For this reason, there is an
additional allowance of e/2 around the result. This implies that
even if the result is computable to, say, 20 digits, we never
require more than 6 digits of accuracy.

Now all the preceding comments generalize quite naturally to
functions of many variables. We can then be guided in our
treatment of the arithmetic operations by the above remarks on
functions, if we recall that the operations may be thought of as
functions of two variables, namely their operands. If we think
of, say, subtraction as such a function (i.e. subtract (x,y) =

x-y), then the same considerations of argument accuracy and
mathematical stability pertain. Thus, we allow both operands to
vary within their intervals, and simply require the result of the
operation to be within the extreme values so generated. Note
that such a technique would be necessary for any of the usual
functions which take two variables, such as some versions of
arctan .

It should be stressed that the resulting accuracy tests
represent only a very minimal requirement. The design goal was
to permit even the grainiest machine allowed by the standard to
pass the tests; all conforming implementations, then, are
inherently capable of passing. Many users will wish to impose
more stringent criteria. For example, those interested in high
accuracy, or implementors whose machines carry more than six
digits, should examine closely the computed value and true value
to see if the accuracy is what they expect.

5.7 FOR-NEXT

The ANSI standard provides a loop capability, along with an
associated control-variable, through the use of the FOR
statement. The semantic requirements for this construction are
particularly well-defined. Specifically, the effect of the FOR
is described in terms of more primitive language features (IF,
GOTO, LET, and REM), which are themselves not very vulnerable to
misinterpretation. The tests accordingly are quite specific and
extensive in the behavior they require. The standard tests are
completely self-checking, since conformance depends only on the
value of the control-variable and number of times through the
loop. The general design plan was not only to determine passing
or failing, but also to display information allowing the user to
examine the progress of execution. This should help you diagnose
any problems. Note especially the requirement that the control
variable, upon exit from the loop, should have the first unused,
not the last used, value.
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The FOR statement has no associated exceptions, but it does
have a rich variety of errors, many of them context sensitive,
and therefore somewhat harder for an implementation to detect.
As always, if any error programs are accepted, the documentation
must specify what meaning the implementation assigns to them.

5.8 Arrays

5.8.1 Standard Capabilities

The standard provides for storing numeric values in one- or
two-dimensional arrays. The tests for standard capabilities are
all self-checking and quite straightforward in exercising some
feature defined in the standard. Note the requirement that
subscript values be rounded to integers; the program testing
this must not cause an exception or the processor fails.

5.8.2 Exceptions

The exception tests ensure that the subscript out of range
condition is handled properly. Note that it is here that the
real semantic meaning of OPTION and DIM are exercised; they have
little effect other than to cause or prevent the subscript
exception for certain subscript values. Since this is a fatal
exception, you must check (since the program cannot) that the
programs terminate at the right time, as indicated in their
messages .

5.8.3 Errors

As with the FOR statement, there are a considerable number
of syntactic restrictions. The thrust of these restrictions is
to assure that OPTION precedes DIM, that DIM precedes references
to the arrays that it governs, and that declared subscript bounds
are compatible

.

Three of the error programs call for INPUT from the user.
This is to help you diagnose the actual behavior of the
implementation if it accepts the programs. The first of these,
#73» lets you try to reference an array with a subscript of 0 or
1 when OPTION BASE 1 and DIM A(0) have been specified, to see
when an exception occurs.

The second, #81, allows you to try a subscript of 0 or 1 for
an array whose DIM statement precedes the OPTION statement.

The third program using INPUT, #84, is a bit more complex
and has to do with double dimensioning. If there are two DIM
statements for the same array, the implementation has a choice of
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several plausible interpretations. We have noted five such
possibilities and have attempted to distinguish which, if any,
seems to apply. Since the only semantic effect of DIM is to
cause or prevent an exception for a given array reference,
however, it is necessary to run the program three times to see
when exceptions occur and when they don't, assuming the processor
hasn't simply rejected the program outright. Your input-reply
simply tells the program which of the three executions it is
currently performing. For each execution, you must note whether
an exception occurred or not and then match the results against
the table in the program. Suppose, for instance, that you get an
exception the first time but not the second or third. That would
be incompatible with all five interpretations except number 4,
which is that the first DIM statement executed sets the size of
the array and it is never changed thereafter. As usual, check
the documentation to make sure it correctly describes what
happens.

I 5.9 Control Statements

I This group fully exploits the properties of some of the
control facilities which were tested in a simpler way in group 4.

\

As before, there seemed no good way to provide diagnostics for
I failure of standard tests, since the behavior of a failing
I

processor is impossible to predict. Passing implementations will
I cause the "«** TEST PASSED ***" message to appear, but certain
' kinds of failures might cause the programs to abort, without
j

producing a failure message. Check Volume 2 for an example of
J correct output.

!

I
5.9.1 GOSUB And RETURN

I
Most of the tests in this group are self-explanatory, but

' the one checking address stacking deserves some comment. The
j

standard describes the effect of issuing GOSUBs and RETURNS in

ij terms of a stack of return addresses, for which the GOSUB adds a

j new address to the top, and the RETURN uses the most recently
added address. Thus, we get a kind of primitive recursion in the

jj

control structure (although without any stacking of data ) . Note
that this description allows complete freedom in the placement of
GOSUBs and RETURNS in the source code. There is no static
association of any RETURN with any GOSUB. The test which
verifies this specification computes binomial coefficients, using
the usual recursive formula. The logic of the program is a bit
convoluted, but intentionally so, in order to exercise the
stacking mechanism vigorously.
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5.9.2 ON-GOTO

The ON-GOTO tests are all readily understandable. The one
thing you might want to watch for is that the processor rounds
the expression controlling the ON-GOTO to the nearest integer, as
specified in the standard. Thus, "ON .6 GOTO", "ON 1 GOTO", and
"ON 1.4 GOTO" should all have the same effect; there should be
no out of range exception for values between .5 and 1.

5.10 READ, DATA, And RESTORE

This group tests the facilities for establishing a stream of
data in the program and accessing it sequentially. This feature
has some subtle requirements, and it would be wise to read the
standard especially carefully so that you understand the purpose
of the tests

.

5.10.1 Standard Capabilities

All but the last of these tests are reasonably simple. The
\

last test dealing with the general properties of READ and DATA,
although self-checking, has somewhat complex internal logic. It
assures that the range of operands of READ and DATA can overlap '

freely and that a given datum can be read as numeric at one time
and as a string at a later time. If you need to examine the
internal logic closely, be sure to use the REM statements at the
beginning which break down the structure of the READ and DATA
lists for you

.

5.10.2 Exce pt ions

The exceptions can be understood directly from the programs.
Note that string overflow may or may not occur, depending on the
implementation-defined maximum string length. If overflow (loss
of data) does occur, the processor must report an exception and
execution must terminate. If there is no exception report, look

jcarefully at the output to assure that no loss of data has
occurred .

5.10.3 Errors

All of the error tests display results if the implementation
accepts them, allowing you to check that the documentation
matches the actual behavior of the processor. Some of the
illegal constructs are likely candidates for enhancements and
thus the diagnostic feature is important here.
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5.11 INPUT

This group, like that for PRINT, calls for a good deal of
user participation. This participation takes the form, not only
of interpreting program output but also of supplying appropriate
INPUT replies. The validity of this group depends strongly on
the entry of correct replies.

5.11.1 Standard Capabilities

The first program assures that the processor can accept as
input any syntactically valid number

.

It is absolutely
essential, then, that you reply to each message with precisely
the same set of characters that it asks for. If it tells you to
enter "1.E22" you must not reply with, e.g. "1E22". This would
defeat one of the purposes of that reply, which is to see whether
the processor correctly handles a decimal point immediately
before the exponent. Once you have correctly entered the reply,
one of several things can happen. If the processor in some way
rejects the reply, for instance by producing a message that it is
not a valid number, then the processor has failed the test since
all the replies are in fact valid according to the standard. To
get by this problem, simply enter any number not numerically
equal to the one originally requested. This will let you get on
to the other items, and will signal a failure to the processor as
described below.

If the processor accepts the reply, the program then tests
that six digits of accuracy have been preserved. If so, you will
get a message that the test is OK, and may go on to the next
reply. If not, you will get a message indicating that the
correct value was not received, and the program will ask if you
want to retry that item. If you simply mistyped the original
input-reply, you should enter the code for a retry. If your
original reply was correct, but the processor misinterpreted the
numeric value, there is no point to retrying; just go ahead to
the next item. The program will count up all the failures and
report the total at the end of the program.

The next program, for array input, assures that you can
enter numbers into an array, and that assignments are done left
to right, so that a statement such as "INPUT I, A(I)" allows you
to control which element of the array gets the value. Also, it
is here (and only here) that the standard's requirement for
checking the input-reply before assignment is tested. Your first
reply to this section of the test must cause an exception, and
you must be allowed to re-enter the entire reply, otherwise the
test fails. The rest of the program is self-checking.

The program for string input comes next and, as with the
numeric input program two considerations are paramount: 1) you
should enter your replies exactly as indicated in the message and
2) all input replies are syntactically valid and therefore if the
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implementation rejects any o f t hem , it fails the test. A

potentially troublesome aspect of this program is that the
prompting message cannot always look exactly like your reply. In

particular, your replies will sometimes include blanks and
quotes. It is impossible to PRINT the quote character in Minimal
BASIC, so the number-sign (#) is used instead. For ease of
counting characters, an equals (=) is used in the message to
represent
the quote

blanks .

and when
Therefore , when you see the

theyou see the equals
,
type

will fail and you will have a chance
a reported failure really is a

just your own mistyping before bypassing

number-si gn
, type

blank. If you
to retry,
processor

the

forget , the item
so make sure that
failure and not
retry. As with the numeric input, if the processor rejects one
of the replies, simply enter any reply whose evaluation is not
equal to that of the prompting message to bypass the item and
force a failure. The second section of the string input program
does not use the substitute characters in the message; rather
you always type exactly what you see in the message surrounded by
quote s

.

The program for mixed input follows the conventions
individually established by the numeric and string input
programs. Its purpose is simply to assure that the
implementation can handle both string and numeric data in the
same reply.

5.11.2 Exceptions

Unlike the other groups, where each exception type is tested
with its own program, all the mandatory exceptions for INPUT are
gathered into one routine. There are two reasons for this:
first, there are so many variations worth trying that a separate
program for each would be impractical, and second, the recovery
procedures are the same for all input exception types. It is,
then, both economical and convenient to group together all the
various possibilities into one program. Underflow on INPUT is an
optional exception and has a different recovery procedure,
governed by the semantics for numeric constants rather than
INPUT. It, therefore, is tested in its own separate program.

The conformance requirements for input exceptions are
perhaps the most complex of any in the standard. It is
worthwhile to review these requirements in some detail, and then
relate them to the test. The standard says that
"unquoted-strings that are numeric-constants must be supplied as
input for numeric-variables, and either quoted-str ings or
unquoted-strings must be supplied as input for string-variables."
Since the syntactic entities mentioned are well-defined in the
standard, this specification seems clear enough. Recall,
however, that processors can, in general, enlarge the class of
syntactic objects which they accept. In particular, a processor
may have an enhanced definition of quoted-str ing

,

unquoted-string, numeric-constant, or, more generally.
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input-reply, and therefore accept a reply not strictly allowed by
the standard, just as standard implementations may accept, and
render meaningful, non-standard programs. The result is that the
conditions for an input exception may depend on
implementation-defined features, and thus a given input-reply may
cause an exception for one processor and yet not another. Note
that the same situation prevails for overflow - the exception
depends on the implementation-defined maximum string length and
machine infinity. Thus, "LET A = 1E37 * 100" may cause overflow
on one standard processor, but not another.

When running the program then, a given input-reply need not
generate an exception if there is a documented enhancement which
describes its interpretation. Of course, such an enhancement
must not change the meaning of any input-reply which is
syntactically standard. Note that, of the replies called for in
the program, some are syntactically standard and some are not;
they should, however, all cause exceptions on a truly minimal
BASIC processor, i.e. one with no syntactic enhancements, with
machine infinity = 1E38 and with maximum string length of 18.

Another problem is that, for some replies, it is not clear
which exception type applies. If, for instance, you respond to
"INPUT A,B,C" with: "2, ,3", it may be taken as a wrong type,
since a numeric-constant was not supplied for B, or as
insufficient data, since only two, not three, were supplied. In
such a case, as with all exception reports, it is sufficient if
the report is a reasonably accurate description of what went
wrong, regardless of precisely how the report corresponds to the
types defined in the standard.

As with all non-fatal exceptions, it is permitted for an
implementation to treat a given INPUT exception as fatal, if the
hardware or operating environment makes the recovery procedure
impossible to follow. The program is set up with table-driven
logic, so that each exception is triggered by a set of values in
a given DATA statement. If you need to separate out some of the
cases because they cause the program to terminate, simply delete
the DATA statements for those cases. REM statements in the
program describe the format of the data.

After that lengthy preliminary discussion, we are now ready
to consider how to operate and interpret the test. The program
will ask you for a reply, and also show you the INPUT statement
to which it is directed, to help you understand why the exception
should occur. Enter the exception-provoking reply, exactly as
requested by the message. If all goes well, the implementation
will give you an exception report and allow you to re-supply the
entire input-reply. On this second try, simply enter all zeros,
exactly as many as needed by the complete original INPUT
statement, to bypass that case - this will signal the program
that that case has passed, and you will then receive the next
message .
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Now, let us look at what might go wrong. If the
implementation simply accepts the initial input-reply, the
program will display the resulting values assigned to the
variables and signal a possible failure. If the documentation
for the processor describes an enhancement which agrees with the
actual result, then that case passes; otherwise it is a failure.

Suppose the implementation reports an exception, but does
not allow you to re-supply the entire input-reply. At that
point, just do whatever the processor requires to bypass that
case. You should supply non-zero input to signal the program
that the case in question has failed.

When the program detects an apparent failure (non-zeros in
the variables) it allows you to retry the whole case. As before,
if you mistyped you should reply that you wish to retry; if the
processor simply mishandled the exception, reject the retry and
move on to the next case.

Figure 3 outlines the user's operating and interpretation
procedure for the INPUT exception test.

5.11.3 Errors

There is only one error program and it tests the effect of a

null entry in the input-list. The usual rules for error tests
apply (see section 4.U.2.3).
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Instructions for the INPUT exceptions test

Inspect message from program
Supply exact copy of message as input-reply
If processor reports exception
then

if processor allows you to re-supply entire
then

enter all zeros (exactly enough to satisfy
INPUT request)

if processor responds
then

test passed
else (no pass message

zeros not assigned

reply

original

that test passed

after entering zeros)
to variables

test failed (recovery procedure not followed)
endif

else (not allowed to re-supply entire reply)
supply any non-zero reply to bypass this case
test failed (recovery procedure not followed)

end i f

else (no exception report)
if documentation for processor correctly describes syntactic

enhancement to accept the reply
then

test passed
else (no exception and incorrect/missing documentation)

test failed
endif

endif

I

]

Figure 3
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5.12 Implementation-supplied Functions

All conforming implementations must make available to the
programmer the set of functions defined in section 8 of the ANSI
standard. The purpose of this group is to assure that these
functions have actually been implemented and also to measure at

least roughly the quality of implementation.

5.12.1 Precise Functions: ABS.INT.SGN

These three functions are distinguished among the eleven
supplied functions in that any reasonable implementation should
return a precise value for them. Therefore they can be tested in

a more stringent manner than the other eight which are inherently
approximate (i.e. a discrete machine cannot possibly supply an
exact answer for most arguments).

The structure of the tests is simple: the
test is invoked with a variety of argument
returned value is compared to the correct result,
are equal, the test passes, otherwise it fails,
displayed for your inspection and the tests are
The test for the INT function has a second section which does an
informative test on the values returned for large arguments
requiring more than six digits of accuracy.

function under
values and the
If all results
The values are
self-checking

.

5.12.2 Approximated Functions: SQR , ATN , COS , EXP , LOG , SIN , TAN

These functions do not typically return rational values for
rational arguments and thus may only be approximated by digital
computers. Furthermore, the standard explicitly disavows any
criterion of accuracy, making it difficult to say when an
implementation has definitely failed a test. Because of these
constraints, the non-exception tests in this group are
informative only. We can, however, quite easily apply the ideas
developed earlier in section 5.6.4. As explained there, we can
devise an accuracy criterion for the implementation of a

function, based on a hypothetical six decimal digit machine. If
a function returns a value less accurate even than that of which
this worst-case machine is capable, the informative test fails.

To repeat the earlier guidance for the numeric operations:
this approach imposes only a very minimal requirement. You may
well want to set a stricter standard for the implementation under
test. For this reason, the programs in this group also compute
and report an error measure, which gives an estimate of the
degree of accuracy achieved, again relative to a six-digit
machine. The error measure thus goes beyond a simple pass/fail
report and quantifies how well or poorly the function value was
computed. Of course, the error measure itself is subject to
inaccuracy in its own internal computation, and no one
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measurement should be taken as precisely correct. Nonetheless,
when the error measures of all the cases are considered in the
aggregate, it should give a good overall picture of the quality
of function evaluation. Since it is based on the same allowed
interval for values as the pass/fail criterion, it too measures
the quality of function evaluation independent of the function
and argument under test. It does depend on the internal accuracy
with which the implementation can represent numeric quantities:
the greater the accuracy, the smaller the error measure should
become. As a rough guide, the error measures should all be <

iCCG-d), where d is the number of significant decimal digits
supported by the implementation (this is determined in the
standard tests for numeric operations, group 6.1). For instance,
an eight decimal digit processor should have all error measures <

.01 .

Another point to be stressed: even though the results of
these tests are informative, the tests themselves are
syntactically standard , and t hus must be accepted and proc e ssed
by the implementation

.

If, for instance, the processor does not
recognize the ATN function and rejects the program, it definitely
fails to conform to the standard. This is in contrast to the
case of a processor which accepts the program, but returns
somewhat inaccurate values. The latter processor is arguably
standard-conforming, even if of low quality.

This group also contains exception tests for those
conditions so specified in the ANSI standard. Most of these can
be understood in light of the general guidance given for
exceptions. The program for overflow of the TAN function
deserves some comment. Since it is questionable whether overflow
can be forced simply by encoding pi/2 as a numeric constant for
the source code argument, the program attempts to generate the
exception by a convergence algorithm. It may be, however, that
no argument exists which will cause overflow, so you must verify
merely that if overflow occurs, then it is reported as an
exception. For instance, if several of the function calls return
machine infinity, it is clear that overflow has occurred and if
there were no exception report in such a case, the test fails.
Also, as a measure of quality, the returned values with a given
sign should increase in magnitude until overflow occurs, i.e.
all the positive values should form an ascending sequence, and
the negative values a descending sequence.

I 5.12.3 RND And RANDOMIZE

Unlike the other functions, there is no single correct value
to be returned by any individual reference to RND, but only the
properties of an aggregation of returned values are specified.
The standard says that these values are "uniformly distributed in
the range 0 <= RND < 1". Also, section 17 specifies that in the
absence of the RANDOMIZE statement, RND will generate the same
pseudorandom sequence for each execution of a program;
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conversely, each execution of RANDOMIZE "generates a new
unpredictable starting point" for the sequence produced by RND.
The RND tests follow closely the strategy put forth in chapter
3.3.1 of Knuth's The Art o f Computer Programming [4], which
explains fully the rationale for the programs in this group.

5.12.3.1 Standard Capabilities

The first two programs test that the same sequence or a

novel sequence appear as appropriate, depending on whether
RANDOMIZE has executed. Note that you must execute both of these
programs three times apiece, since the RND sequence is
initialized by the implementation only when execution begins.
The next three programs all test properties of the sequence which
follow directly from the specification that it is uniformly
distributed in the range 0 <= RND < 1. If the results make it
quite improbable that the distribution is uniform, or if any
value returned is outside the legal range, then the test fails.
Of course, any implementation could pass simply by adjusting the
RND algorithm or starting point until a passing sequence is
generated. In order to measure the quality of implementation,
you can run the programs with a RANDOMIZE statement in the
beginning and then observe how often the test passes or fails.
Note that, if you use RANDOMIZE, these programs should fail a

certain proportion of the time since they are probabilistic
tests

.

5.12.3.2 Informative Tests

There are several desirable properties of a sequence of
pseudorandom numbers which are not strictly implied by uniform
distribution. If, for instance, the numbers in the sequence
alternated between being <= .5 and > .5, they might still be
uniform, but would be non-random in an important way. These
tests attempt to measure how well the implementation has
approached the ideal of a perfectly random sequence by looking
for patterns indicative of nonr andomness in the sequence actually
produced. Like the tests for standard capabilities, these
programs are probabilistic and any one of them may fail without
necessarily implying that the RND sequence is not random. If a

high quality RND function is important for your purposes, we
suggest you run each of these programs several times with the
RANDOMIZE statement. If a given test seems to fail far more
often than likely, it may well indicate a weakness in the RND
algorithm

.
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5 . 1 2 . M Errors

The tests in this group all use an argument-list which is
incorrect in some way, either for the particular function, or
because of the general rules of syntax. As always, if the
processor does accept any of them, the documentation must be
consistent with the actual results. Note that the ANSI standard
contains a misprint, indicating that the TAN function takes no
arguments. The tests are written to treat TAN as a function of a

single variable .

5.13 User-defined Functions

The standard provides a facility so that programmers can
define functions of a single variable in the form of a numeric
expression. This group of tests exercises both the invoking
mechanism (function references) and the defining mechanism (DEF
statement )

.

5.13.1 Standard Capabilities

These programs test a variety of properties guaranteed by
the standard: the DEF statement must allow any numeric
expression as the function definition; the parameter, if any,
must not be confused with a global variable of the same name;
global variables, other than one with the same name as the
parameter, are available to the function definition; a DEF
statement in the path of execution has no effect; invocation of
a function as such never changes the value of any variable; the
set of valid names for user-defined functions is "FN" followed by
any alphabetic character. The tests are self-checking. As with
the numeric operations, a very loose criterion of accuracy is
used to check the implementation. Its purpose is not to check
accuracy as such, but only to assure that the semantic behavior
accords with the standard.

5.13.2 Errors

Many of these tests are similar to the error tests for
implementation-supplied functions, in that they try out various
malformed argument lists. There are also some tests involving
the DEF statement, in particular for the requirements that a

program contain exactly one DEF statement for each user function
referred to in the program and that the definition precede any
references

.
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5.14 Numeric Expressions

Numeric expressions have a somewhat special place in the
Minimal BASIC standard. They are the most complex entity,
syntactically, for two reasons. First, the expression itself may
be built up in a variety of ways. Numeric constants, variables,
and function references are combined using any of five
operations. The function references themselves may be to
user-defined expressions. And of course expressions can be
nested, either implicitly, or explicitly with parentheses.
Second, not only do the expressions have a complex internal
syntax, but also they may appear in a number of quite different
contexts. Not just the LET statement, but also the IF, PRINT,
ON. ..GOTO, and FOR statements, can contain expressions. Also
they may be used as array subscripts or as arguments in a

function reference. Note that when they are used in the
ON. ..GOTO, as subscripts, or as arguments to TAB, expressions
must be rounded to the nearest integer.

The overall strategy of the test system is first to assure
that the elements of numeric expressions are handled correctly,
then to try out increasingly complex expressions in the
comparatively simple context of the LET statement, and finally to
verify that these complex expressions work properly in the other
contexts mentioned. Preceding groups have already accomplished
the first task of checking out individual expression elements,
such as constants, variables (both simple and array), and
function references. This group completes the latter two steps.

5.14.1 Standard Capabilities In Context Of LET-st a t ement

This test tries out various lengthy expressions, using the
full generality allowed by the standard, and assigns the
resulting value to a variable. As usual, if this value is even
approximately correct, the test passes, since we are interested
in semantics rather than accuracy. The program displays the
correct value and actual computed value. This test also verifies
that subscript expressions evaluate to the nearest integer.

5.14.2 Expressions In Other Contexts: PRINT, IF, ON-GOTO, FOR

Please note that the PRINT test, like other PRINT tests, is
inherently incapable of checking itself, and therefore you must
inspect and interpret the results. The PRINT program first tests
the use of expressions as print-items. Check that the actual and
correct values are reasonably close. The second section of the
program tests that the TAB call is handled correctly. Simply
verify that the characters appear in the appropriate columns.



Page 47

The second program is self-checking and tests IF, ON-GOTO
and FOR, one in each section. As with other tests of control
statements, the diagnostics are rather sparse for failures.
Check Volume 2 for an example of correct output.

5.14.3 Exceptions In Subscripts And Arguments

The exceptions specified in section 7 and 8 apply to numeric
expressions in whatever context they occur. These tests simply
assure that the correct values are supplied, e.g., machine
infinity for overflow, zero for underflow, and that the execution
continues normally as if that value had been put in that context
as, say, a numeric constant. Sometimes this action will produce
normal results and sometimes will trigger another exception,
e.g., machine infinity supplied as a subscript. Simply verify
that the exception reports are produced as specified in the
individual tests.

5.14.4 Exceptions In Other Contexts: PRINT, IF, ON-GOTO, FOR

As in the immediately preceding section, these tests make
sure that the recovery procedures have the natural effect given
the context in which they occur. As usual for exception tests,
it is up to you to verify that reasonable exception reports
appear. The PRINT tests also require user interpretation to some
degree

.

5.15 Miscellaneous Checks

This group consists mostly of error tests in which the error
is tied not to some specific functional area but rather to the
general format rules for BASIC programs. If you are not already
thoroughly familiar with the general criteria for error tests, it
would be wise to review them (sections 3.2.2 and 4.4.2.3 of this
document) before going through this group. A few tests require
special comment and this is supplied below in the appropriate
subsection.

5.15.1 Missing Keyword

Many implementations of BASIC allow programs to omit the
keyword LET in assignment statements. This program checks that
possibility and reports the resulting behavior if accepted.
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5.15.2 Spaces

Sections 3 and 4 of the ANSI standard specify several
context sensitive rules for the occurrence of spaces in a BASIC

The standard test assures that wherever one space may
several spaces may occur with no effect, except within a

or unquo t ed -st r i n g . There are certain places where
either must, or may, or may not appear, and the error
test how the implementation treats various

program

,

occur
,

quoted -

spaces
programs violations of
the rules

5.15.3 Quotes

These programs test the effect of using either a single or
double quote in a quoted string. Some processors may interpret
the double quote as a single occurrence of the quote character
within the string. The programs test the effect of aberrant
quotes in the context of the PRINT and the LET statements.

5.15.4 Line Numbers

The first of these programs is a standard, not an error,
test. It verifies that leading zeros in line numbers have no
effect. The other programs all deal with some violation of the
syntax rules for line numbers. When submitting these programs to
your implementation, you should not explicitly call for any
sorting or renumbering of lines. If the implementation sorts the
lines by default, even when the program is submitted to it in the
simplest way, the documentation must make this clear. Such
sorting merely constitutes a particular type of syntactic
enhancement, i.e., to treat a program with lines out of order as
if they were in order. Similarly, an implementation may discard
duplicate lines, or append line numbers to the beginning of lines
missing them, as long as these actions occur without special user
intervention and are documented. Of course, processors may also
reject such programs, with an error message to the user.

5.15.5 Line Longer Than 72 Characters

This program tests the implementation's reaction to a line
whose length is greater than the standard limit of 72. Many
implementations accept longer lines; if so the documentation
must specify the limit.
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5.15.6 Margin Overflow For Output Line

This is not an error test, but a standard one. Further, it
involves PRINT capabilities and therefore calls for careful user
interpretation. Its purpose is to assure correct handling of the
margin and print zones, relative to the implementation-defined
length for each of those two entities. After you have entered
the appropriate values, the program will generate pairs of
output, with either one or two printed lines for each member of
the pair. The first member is produced using primitive
capabilities of PRINT and is intended to show what the output
should look like. The second member of the pair is produced
using the facilities under test and shows what the output
actually looks like. If the two members differ at all, the test
fails. It could happen, however, that the first member of the
pair does not produce the correct output either. You should,
therefore, closely examine the sample output for this test in
Volume 2 to understand what the expected output is. Of course
the sample is exactly correct only for implementations with the
same margin and zone width, but allowing for the possibly
different widths of your processor, the sample should give you
the idea of what your processor must do.

5.15.7 Lowercase Characters

These two tests tell you whether your processor can handle
lowercase characters in the program, and, if so, whether they are
converted to uppercase or left as lowercase.

5.15.8 Ordering Strings

This program tests whether your implementation accepts
comparison operators other than the standard = or <> for strings.
If the processor does accept them, the program assumes that the
interpretation is the intuitively appealing one and prints
informative output concerning the implicit character collating
sequence and also some comparison results for multi-character
strings

.

5.15.9 Mismatch Of Types In Assignment

These programs check whether the processor accepts
assignment of a string to a numeric variable and vice-versa, and
if so what the resulting value of the receiving variable is. As
usual, make sure your documentation covers these cases if the
implementation accepts these programs.
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6 TABLES OF SUMMARY INFORMATION ABOUT THE TEST PROGRAMS

This section contains three tables which should help you
find your way around the programs and the ANSI standard. The
first table presents the functional grouping of the tests and
shows which programs are in each group and the sections of the
ANSI standard whose specifications are being tested thereby. The
second table lists all the programs individually by number and
title, and also the particular sections and subsections of the
standard to which they apply. The third table lists the sections
and subsections of the standard in order, followed by a list of
program numbers for those sections. This third table is
especially important if you want to test the implementation of
only certain parts of the standard. Be aware, however, that
since the sections of the standard are not tested in order, the
tests for a given section may rely on the implementation of later
sections in the standard which have been tested earlier in the
test sequence

.
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6.1 Group Structure Of The Minimal BASIC Test Programs

Program ANSI
Group Number Section

1 Simple PRINTing of string constants 1 (3,5,12)

2 END and STOP 2-5 (4,10)

2.1 END 2-4 (4)

2.2 STOP 5 (10)

3 PRINTing and simple assignment (LET) ......6-14 (5,6,9,12)

3.1 string variables and TAB 6-8 (6,9,12)

3.2 numeric constants and variables 9-14 (5,6,9,12)

4 Control Statements and REM 15-21 (10,18)

4.1 REM and GOTO 15-16 (10,18)

4.2 GOSUB and RETURN 17 (10)

4.3 IF-THEN 18-21 (10)

5 Variables 22-23 ( 6 )

6 Numeric Constants, Variables,
and Operations 24-43 ( 5 , 6,7)

6.1 Standard Capabilities 24-27 ( 5 , 6 , 7)

6.2 Exceptions 28-35 ( 5,7)

6.3 Errors 36-38 ( 7)

6.4 Accuracy tests - Informative 39-43 ( 7 )

7 FOR-NEXT 44-55 ( 10,1 1 )

7.1 Standard Capabilities 44-49 ( 1 0 , 1 1 )

7.2 Errors 50-55 ( 1 1 )

8 Arrays 56-84 ( 6,7,9,15 )

6.1 Standard Capabilities 56-62 ( 6,7,9 , 15 )

8.2 Exceptions 63-72 ( 6,15 )

8.3 Errors 73-84 ( 6,15 )
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Group Structure of the Minimal BASIC Test Programs (cont.)

Group Program ANSI
Number Section

9 Control Statements 85-91 (10)

9.1 GOSUB and RETURN 85-87 ( 10)

9.2 ON-GOTO 88-91 (10)

10 READ, DATA, and RESTORE 92-106 ( 3 , 5 , 14)

10.1 Standard Capabilities 92-95 ( 3 ,5 , 14)

10.2 Exceptions 96-101 (14)

10.3 Errors 102-106 ( 3 , 14)

11 INPUT 107-113 (3,5,13)

11.1 Standard Capabilities 107-110 (3,5,13)

11.2 Exceptions 111-112 (3,5,13)

11.3 Errors 113 (13)

12 Implementation-supplied Functions 114-150 (7,8,17)

12.1 Precise functions:
ABS, INT, SGN 114-116 (8)

12.2 Approximated functions:
SQR, ATN, COS, EXP, LOG,
SIN, TAN 117-129 (7,8)

12.3 RND and RANDOMIZE 130-1 42 (8 , 17 )

12.3.1 Standard Capabilities 13O-I34 (8,17)

12.3.2 Informative tests 1 35-1 42 ( 8 )

12.4 Errors 143-150 (7,8)

13 User-defined Functions 151-163 (7,16)

13.1 Standard Capabilities 151-152 (7,16)

13.2 Errors 153-1 63 ( 7 , 16 )
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Group Structure of the Minimal BASIC Test Programs (cont.)

Group Program ANSI
Number Section

1M Numeric Expressions 164-18^ (6,7,8,10,
11,12,16)

14.1 Standard Capabilities in context of
LET-statement 164 (6,7,8,16)

14.2 Expressions in other contexts:
PRINT, IF, ON-GOTO, FOR 165-1 66 (7 , 10,1 1,12)

15

14 .3 Exceptions in subscripts and
167 -171 (6,7,8,16)

14 . 4 Exceptions in other contexts:
PRINT, IF, ON-GOTO, FOR 172 -184 (7,10,11,12)

185 -208 (3,4,9,10,12)

15 . 1 . 185 (9)

15 .2 186 -191 (3.4)

15 . 3 192 -195 (3,9,12)

15 . 4 196 -20 1 (4)

15 . 5 Line longer than 72 characters . . . . 202 (4)

15 .6 Effect of zones and margin on PRINT . . 203 ( 12)

15 .7 204 -205 (3,9,12)

15 .8 Ordering relations between strings . 206 (3,10)

15 .9 Mismatch of types in assignment . . 207 -208 (9)
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6.2 Test Program Sequence

PROGRAM NUMBER 1

NULL PRINT AND PRINTING QUOTED STRINGS.
REFS: 3.2 3.^ 5.2 5.^1 12.2 12.

M

PROGRAM NUMBER 2

THE END-STATEMENT.
REFS: 4.2 4.4

PROGRAM NUMBER 3

ERROR - MISPLACED END-STATEMENT.
REFS: 4.2 4.4

PROGRAM NUMBER 4

ERROR - MISSING END-STATEMENT.
REFS: 4.2 4.4

PROGRAM NUMBER 5

THE STOP-STATEMENT.
REFS: 10.2 10.4

PROGRAM NUMBER 6

PRINT-SEPARATORS, TABS, AND STRING VARIABLES.
REFS: 6.2 6.4 9.2 9.4 12.2 12.4

PROGRAM NUMBER 7

EXCEPTION - STRING OVERFLOW USING THE LET-STATEMENT.
REFS: 9.5 12.4

PROGRAM NUMBER 8

EXCEPTION - TAB ARGUMENT LESS THAN ONE.
REFS: 12.5

PROGRAM NUMBER 9

PRINTING NR1 AND NR2 NUMERIC CONSTANTS.
REFS: 5.2 5.4 12.4

PROGRAM NUMBER 10

PRINTING NR3 NUMERIC CONSTANTS.
REFS: 5.2 5.4 12.4

PROGRAM NUMBER 11

PRINTING NUMERIC VARIABLES ASSIGNED NR1 AND NR2 CONSTANTS.
REFS: 5.2 5.4 6.2 6.4 9.2 9.4 12.4

PROGRAM NUMBER 12

PRINTING NUMERIC VARIABLES ASSIGNED NR3 CONSTANTS.
REFS: 5.2 5.4 6.2 6.4 9.2 9.4 12.4

PROGRAM NUMBER 13
FORMAT AND ROUNDING OF PRINTED NUMERIC CONSTANTS.
REFS: 12.4 5.2 5.4
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PROGRAM NUMBER 14

PRINTING AND ASSIGNING NUMERIC VALUES NEAR TO THE MAXIMUM AND
MINIMUM MAGNITUDE.
REFS: 5.^1 9.4 12.4

PROGRAM NUMBER 15

THE REM AND GOTO STATEMENTS.
REFS: 18.2 18.4 10.2 10.4

PROGRAM NUMBER 16

ERROR - TRANSFER TO A NON-EXISTING LINE NUMBER USING THE
GOTO-STATEMENT

.

REFS: 10.4

PROGRAM NUMBER 17

ELEMENTARY USE OF GOSUB AND RETURN.
REFS: 10.2 10.4

PROGRAM NUMBER 18

THE IF-THEN STATEMENT WITH STRING OPERANDS. .

REFS: 10.2 10.4

PROGRAM NUMBER 19
THE IF-THEN STATEMENT WITH NUMERIC OPERANDS
REFS: 10.2 10.4

PROGRAM NUMBER 20
ERROR - IF-THEN STATEMENT WITH A STRING AND NUMERIC OPERAND.
REFS: 10.2

PROGRAM NUMBER 21

ERROR - TRANSFER TO NON-EXISTING LINE NUMBER USING THE
IF-THEN-STATEMENT.
REFS: 10.4

PROGRAM NUMBER 22
NUMERIC AND STRING VARIABLE NAMES WITH THE SAME INITIAL
LETTER .

REFS: 6.2 6.4

PROGRAM NUMBER 23
INITIALIZATION OF STRING AND NUMERIC VARIABLES.
REFS: 6.6

PROGRAM NUMBER 24
PLUS AND MINUS
REFS: 7.2 7.4

PROGRAM NUMBER 25
MULTIPLY, DIVIDE, AND INVOLUTE
REFS: 7.2 7.4

PROGRAM NUMBER 26
PRECEDENCE RULES FOR NUMERIC EXPRESSIONS.
REFS: 7.2 7.4
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PROGRAM NUMBER 27
ACCURACY OF CONSTANTS AND VARIABLES.
REFS: 5.2 5.4 6.2 6.4 10.4

PROGRAM NUMBER 28
EXCEPTION - DIVISION BY ZERO.
REFS: 7.5

PROGRAM NUMBER 29
EXCEPTION - OVERFLOW OF NUMERIC EXPRESSIONS.
REFS: 7.5

PROGRAM NUMBER 30
EXCEPTION - OVERFLOW OF NUMERIC CONSTANTS.
REFS: 5.4 5.5

PROGRAM NUMBER 31

EXCEPTION - ZERO RAISED TO A NEGATIVE POWER.
REFS: 7.5

PROGRAM NUMBER 32
EXCEPTION - NEGATIVE QUANTITY RAISED TO A NON-INTEGRAL POWER.
REFS: 7.5

PROGRAM NUMBER 33
EXCEPTION - UNDERFLOW OF NUMERIC EXPRESSIONS.
REFS: 7.4

PROGRAM NUMBER 34
EXCEPTION - UNDERFLOW OF NUMERIC CONSTANTS.
REFS: 5.4 5.6

PROGRAM NUMBER 35
EXCEPTION - OVERFLOW AND UNDERFLOW WITHIN SUB-EXPRESSIONS
REFS: 7.4 7.5

PROGRAM NUMBER 36
ERROR - UNMATCHED PARENTHESES IN NUMERIC EXPRESSION.
REFS: 7.2

PROGRAM NUMBER 37
ERROR - USE OF '»«' AS OPERATOR.
REFS: 7.2

PROGRAM NUMBER 38
ERROR - USE OF ADJACENT OPERATORS.
REFS: 7.2

PROGRAM NUMBER 39
ACCURACY OF ADDITION
REFS : 7.2 7 . 4 7 .6

PROGRAM NUMBER 40
ACCURACY OF SUBTRACTION
REFS : 7.2 7.4 7.6
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PROGRAM NUMBER 41

ACCURACY OF MULTIPLICATION
REFS: 7.2 7.4 7.6

PROGRAM NUMBER 42
ACCURACY OF DIVISION
REFS: 7.2 7.4 7.6

PROGRAM NUMBER 43
ACCURACY OF INVOLUTION
REFS: 7.2 7.4 7.6

PROGRAM NUMBER 44
ELEMENTARY USE OF THE FOR-STATEMENT

.

REFS : 11.211.4

PROGRAM NUMBER 45
ALTERING THE CONTROL-VARIABLE WITHIN A FOR-BLOCK.
REFS : 11.2 11.4

PROGRAM NUMBER 46
INTERACTION OF CONTROL STATEMENTS WITH THE FOR-STATEMENT.
REFS: 11.2 11.4 10.2 10.4

PROGRAM NUMBER 47
INCREMENT IN THE STEP CLAUSE OF THE FOR-STATEMENT DEFAULTS
A VALUE OF ONE.
REFS : 11.2 11.4

II
PROGRAM NUMBER 48

I

LIMIT AND INCREMENT IN THE FOR-STATEMENT ARE EVALUATED ONCE
1

UPON ENTERING THE LOOP.
! REFS : 11.2 11.4

jj

PROGRAM NUMBER 49

( NESTED FOR-BLOCKS.
REFS: 11.2 11.4

' PROGRAM NUMBER 50
ERROR - FOR-STATEMENT WITHOUT A MATCHING NEXT-STATEMENT.

I

REFS : 11.2 11.4

PROGRAM NUMBER 51
ERROR - NEXT-STATEMENT WITHOUT A MATCHING FOR-STATEMENT.
REFS : 11.2 11.4

j PROGRAM NUMBER 52
ERROR - MISMATCHED CONTROL-VARIABLES ON FOR-STATEMENT AND
NEXT-STATEMENT.
REFS: 11.4

j.
PROGRAM NUMBER 53

ERROR - INTERLEAVED FOR-BLOCKS.
REFS: 11.4
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PROGRAM NUMBER 54
ERROR - NESTED FOR-BLOCKS WITH THE SAME CONTROL VARIABLE.
REFS : 1 1 .

i|

PROGRAM NUMBER 55
ERROR - JUMP INTO FOR-BLOCK.
REFS : 1 1 . 4

PROGRAM NUMBER 56
ARRAY ASSIGNMENT WITHOUT THE OPTION-STATEMENT.
REFS: 6.2 6.4 9.2 9.4 15.2 15.4

PROGRAM NUMBER 57
ARRAY ASSIGNMENT WITH OPTION BASE 0.

REFS: 6.2 6.4 9.2 9.4 15.2 15.4

PROGRAM NUMBER 58
ARRAY ASSIGNMENT WITH OPTION BASE 1.

REFS: 6.2 6.4 9.2 9.4 15.2 15.4

PROGRAM NUMBER 59
ARRAY NAMED 'A' IS DISTINCT FROM 'A$'.
REFS: 6.2 6.4

PROGRAM NUMBER 60
NUMERIC CONSTANTS USED AS SUBSCRIPTS ARE ROUNDED TO NEAREST
INTEGER.
REFS: 6.4 5.4

PROGRAM NUMBER 61

NUMERIC EXPRESSIONS CONTAINIfvT SUBSCRIPTED VARIABLES.
REFS: 6.2 6.4 7.2 7.4

PROGRAM NUMBER 62
GENERAL SYNTACTIC AND SEMANTIC PROPERTIES OF ARRAY CONTROL
STATEMENTS: OPTION AND DIM.
REFS: 15.2 15.4

PROGRAM NUMBER 63
EXCEPTION - SUBSCRIPT TOO LARGE FOR ONE-DIMENSIONAL ARRAY.
REFS: 6.5

PROGRAM NUMBER 64
EXCEPTION - SUBSCRIPT TOO SMALL FOR TWO-DIMENSIONAL ARRAY.
REFS: 6.5

1

PROGRAM NUMBER 65
EXCEPTION - SUBSCRIPT TOO SMALL FOR ONE-DIMENSIONAL ARRAY,
WITH DIM.
REFS: 6.5 15.2 15.4

PROGRAM NUMBER 66
EXCEPTION - SUBSCRIPT TOO LARGE FOR TWO-DIMENSIONAL ARRAY,
WITH DIM.
REFS: 6.5 15.2 15.4
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PROGRAM NUMBER 67
EXCEPTION - SUBSCRIPT TOO SMALL FOR ONE-DIMENSIONAL ARRAY,
WITH OPTION BASE 1

.

REFS: 6.5 15.2 15.4

PROGRAM NUMBER 68
EXCEPTION - SUBSCRIPT TOO LARGE FOR ONE-DIMENSIONAL ARRAY,
WITH DIM AND OPTION BASE 1.

REFS: 6.5 15.2 15.4

PROGRAM NUMBER 69
EXCEPTION - SUBSCRIPT TOO LARGE FOR TWO-DIMENSIONAL ARRAY,
WITH DIM AND OPTION BASE 0.

REFS: 6.5 15.2 15.4

PROGRAM NUMBER 70
EXCEPTION - SUBSCRIPT TOO SMALL FOR ONE-DIMENSIONAL ARRAY,
WITH OPTION BASE 0.

REFS: 6.5 15.2 15.4

PROGRAM NUMBER 71
EXCEPTION - SUBSCRIPT TOO SMALL FOR TWO-DIMENSIONAL ARRAY,
WITH DIM AND OPTION BASE 0.

REFS: 6.5 15.2 15.4

PROGRAM NUMBER 72
EXCEPTION - SUBSCRIPT TOO SMALL FOR TWO-DIMENSIONAL ARRAY,
WITH DIM AND OPTION BASE 1.

REFS: 6.5 15.2 15.4

PROGRAM NUMBER 73
ERROR - DIM SETS UPPER BOUND OF ZERO WITH OPTION BASE 1.

REFS: 15.4

PROGRAM NUMBER 74
ERROR - DIM SETS ARRAY TO ONE DIMENSION AND REFERENCE IS MADE
TO TWO-DIMENSIONAL VARIABLE OF SAME NAME.
REFS: 15.4 6.4

PROGRAM NUMBER 75
ERROR - DIM SETS ARRAY TO ONE DIMENSION AND REFERENCE IS MADE
TO SIMPLE VARIABLE OF SAME NAME.
REFS: 15.4 6.4

PROGRAM NUMBER 76
ERROR - DIM SETS ARRAY TO TWO DIMENSIONS AND REFERENCE IS MADE
TO ONE-DIMENSIONAL VARIABLE OF SAME NAME.
REFS: 15.4 6.4

PROGRAM NUMBER 77
ERROR - REFERENCE TO ARRAY AND SIMPLE VARIABLE OF SAME NAME.
REFS: 6.4
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PROGRAM NUMBER 78
ERROR - REFERENCE TO ONE-DIMENSIONAL AND TWO-DIMENSIONAL
VARIABLE OF SAME NAME.
REFS: 6.4

PROGRAM NUMBER 79
ERROR - REFERENCE TO ARRAY WITH LETTER-DIGIT NAME.
REFS: 6.2

PROGRAM NUMBER 80
ERROR - MULTIPLE OPTION STATEMENTS.
REFS: 15.4

PROGRAM NUMBER 81

ERROR - DIM-STATEMENT PRECEDES OPTION-STATEMENT.
REFS: 15.4

PROGRAM NUMBER 82
ERROR - ARRAY-REFERENCE PRECEDES OPTION-STATEMENT.
REFS: 15.4

PROGRAM NUMBER 83
ERROR - ARRAY-REFERENCE PRECEDES DIM-STATEMENT.
REFS: 15.4

PROGRAM NUMBER 84
ERROR - DIMENSIONING THE SAME ARRAY MORE THAN ONCE.
REFS: 15.4

PROGRAM NUMBER 85
GENERAL CAPABILITIES OF GOSUB/RETURN

.

REFS: 10.4

PROGRAM NUMBER 86
EXCEPTION - RETURN WITHOUT GOSUB.
REFS: 10.5

PROGRAM NUMBER 87
ERROR - TRANSFER TO NON-EXISTING LINE NUMBER USING THE
GOSUB-STATEMENT

.

REFS: 10.4

PROGRAM NUMBER 88
THE ON-GOTO-STATEMENT

.

REFS: 10.2 10.4

PROGRAM NUMBER 89
EXCEPTION - ON-GOTO CONTROL EXPRESSION LESS THAN 1.

REFS: 10.5

PROGRAM NUMBER 90
EXCEPTION - ON-GOTO CONTROL EXPRESSION GREATER THAN NUMBER OF
LINE-NUMBERS IN LIST.
REFS: 10.5
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PROGRAM NUMBER 91

ERROR - TRANSFER TO NON-EXISTING LINE NUMBER USING THE
ON-GOTO-STATEMENT

.

REFS: 10.4

PROGRAM NUMBER 92
READ AND DATA STATEMENTS FOR NUMERIC DATA.
REFS : 5.2 14.2 14.4

PROGRAM NUMBER 93
READ AND DATA STATEMENTS FOR STRING DATA.
REFS : 3.2 5.2 14.2 14.4

PROGRAM NUMBER 9*^

READING DATA INTO SUBSCRIPTED VARIABLES.
REFS: 14.2 14.4

PROGRAM NUMBER 95
GENERAL USE OF THE READ, DATA, AND RESTORE STATEMENTS.
REFS: 14.2 14.4

PROGRAM NUMBER 96
EXCEPTION - NUMERIC UNDERFLOW WHEN READING DATA CAUSES
REPLACEMENT BY ZERO.
REFS: 5.5 14.4

PROGRAM NUMBER 97
EXCEPTION - INSUFFICIENT DATA FOR READ.
REFS: 14.5

PROGRAM NUMBER 98
EXCEPTION - READING UNQUOTED STRING DATA INTO A NUMERIC
VARIABLE

.

REFS: 14.5

PROGRAM NUMBER 99
EXCEPTION - READING QUOTED STRING DATA INTO A NUMERIC
VARIABLE

.

REFS: 14.5

PROGRAM NUMBER 100
EXCEPTION - STRING OVERFLOW ON READ.
REFS: 14.5

PROGRAM NUMBER 101
EXCEPTION - NUMERIC OVERFLOW ON READ.
REFS: 14.5

PROGRAM NUMBER 102
ERROR - ILLEGAL CHARACTER IN UNQUOTED STRING IN DATA
STATEMENT.
REFS: 3.2 14.2
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PROGRAM NUMBER 103
ERROR - READING QUOTED STRINGS CONTAINING SINGLE QUOTE.
REFS: 3.2 14.2

PROGRAM NUMBER 104
ERROR - READING QUOTED STRINGS CONTAINING DOUBLE QUOTE.
REFS: 3.2 14.2

PROGRAM NUMBER 105
ERROR - NULL DATUM IN DATA-LIST.
REFS: 14.2

PROGRAM NUMBER 106
ERROR - NULL ENTRY IN READ'S VARIABLE-LIST.
REFS: 14.2

PROGRAM NUMBER 107
INPUT OF NUMERIC CONSTANTS.
REFS : 5.2 13.2 13.4

PROGRAM NUMBER 108
INPUT TO SUBSCRIPTED VARIABLES.
REFS: 13.2 13.4

PROGRAM NUMBER 109
STRING INPUT.
REFS: 3.2 13.2 13.4

PROGRAM NUMBER 110
MIXED INPUT OF STRINGS AND NUMBERS.
REFS: 13.2 13.4

PROGRAM NUMBER 111
EXCEPTION - NUMERIC UNDERFLOW ON INPUT CAUSES REPLACEMENT BY
ZERO .

REFS: 5.6 13.4

PROGRAM NUMBER 112
EXCEPTION - INPUT-REPLY INCONSISTENT WITH INPUT VARIABLE-LIST.
REFS: 13.4 13.5 3.2 5.2

PROGRAM NUMBER 113
ERROR - NULL ENTRY IN INPUT-LIST.
REFS: 13.2

PROGRAM NUMBER 114
EVALUATION OF ABS FUNCTION.
REFS: 8.4

PROGRAM NUMBER 115
EVALUATION OF INT FUNCTION.
REFS: 8.4



PROGRAM NUMBER 116
EVALUATION OF SGN FUNCTION.
REFS: 8.4

PROGRAM NUMBER 117
ACCURACY OF SQR FUNCTION.
REFS: 7.6 8.4

PROGRAM NUMBER 118
EXCEPTION - SQR OF NEGATIVE ARGUMENT.
REFS: 8.5

PROGRAM NUMBER 119
ACCURACY OF ATN FUNCTION.
REFS: 7.6 8.4

PROGRAM NUMBER 120
ACCURACY OF COS FUNCTION.
REFS: 7.6 8.4

PROGRAM NUMBER 121
ACCURACY OF EXP FUNCTION.
REFS: 7.6 8.4

PROGRAM NUMBER 122
EXCEPTION - OVERFLOW ON VALUE OF EXP FUNCTION.
REFS: 8.5

PROGRAM NUMBER 123
EXCEPTION - UNDERFLOW ON VALUE OF EXP FUNCTION.
REFS: 8.4 8.6

PROGRAM NUMBER 124
ACCURACY OF LOG FUNCTION.
REFS: 7.6 8.4

PROGRAM NUMBER 125
EXCEPTION - LOG OF ZERO ARGUMENT.
REFS: 8.5

PROGRAM NUMBER 126
EXCEPTION - LOG OF NEGATIVE ARGUMENT.
REFS: 8.5

PROGRAM NUMBER 127
ACCURACY OF SIN FUNCTION.
REFS: 7.6 8.4

PROGRAM NUMBER 128
ACCURACY OF TAN FUNCTION.
REFS: 7.6 8.4

PROGRAM NUMBER 129
EXCEPTION - OVERFLOW ON VALUE 0' TAN FUNCTION.
REFS: 8.5
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PROGRAM NUMBER 130
RND FUNCTION WITHOUT RANDOMIZE STATEMENT.
REFS: 8.2 8.4

PROGRAM NUMBER 131
RND FUNCTION WITH THE RANDOMIZE STATEMENT.
REFS: 8.2 8.4 17.2 17.4

PROGRAM NUMBER 132
AVERAGE OF RANDOM NUMBERS APPROXIMATES 0.5 AND 0 <= RND < 1.

REFS: 8.4

PROGRAM NUMBER 133
CHI-SQUARE UNIFORMITY TEST FOR RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 134
KOMOLGOROV-SMIRNOV UNIFORMITY TEST FOR RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 135
SERIAL TEST FOR RANDOMNESS.
REFS: 8.4

PROGRAM NUMBER 136
GAP TEST FOR RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 137
POKER TEST FOR RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 138
COUPON COLLECTOR TEST OF RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 139
PERMUTATION TEST FOR THE RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 140
RUNS TEST FOR THE RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 141
MAXIMUM OF GROUP TEST OF RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 142
SERIAL CORRELATION TEST OF RND FUNCTION.
REFS: 8.4

PROGRAM NUMBER 143
ERROR - TWO ARGUMENTS IN LIST FOR SIN FUNCTION.
REFS :7. 27. 48. 28.

4
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PROGRAM NUMBER 144
ERROR - TjiO ARGUMENTS IN LIST FOR ATN FUNCTION."
REFS: 7.2 7.4 8.2 8. '4

PROGRAM NUMBER 145
ERROR - T'//0 ARGUMENTS IN LIST FOR RND FUNCTION.'
REFS: 7.2 7 . 4 8.2 8

.

'4

PROGRAM NUMBER 146
ERROR - ONE ARGUMENT IN LIST FOR RND FUNCTION.'
REFS: 7.2 7.4 8.2 8.4

PROGRAM NUMBER 147
ERROR - NULL A RGUM ENT -L I S T FOR INT FUNCTION.'
REFS: 7.2 7

.

'4 8.2 8.4

PROGRAM NUMBER 148
ERROR - MISSING ARGUMENT LIST FOR TAN FUNCTION.'
REFS: 7.2 7

.

'4 8.2 8. '4

PROGRAM NUMBER 149
ERROR - NULL A R GUM E NT -L I S T FOR RND FUNCTION.'
REFS: 7.2 7

.

'4 8.2 8.4

PROGRAM NUMBER 150
ERROR - USING A STRING AS AN ARGUMENT FOR AN
IMPLEMENTAT 10 N-SUP PLIED FUNCTION.'
REFS: 7.2 7. 4 8.2 8

.

'4

PROGRAM NUMBER 151

USER-DEFINED FUNCTIONS.'
REFS: 16.2 1 6.4 7.2 7

.

'4

PROGRAM NUMBER 152
VALID NAMES FOR USER-DEFINED FUNCTIONS.
REFS: 16.2

PROGRAM NUMBER 153
ERROR - SUPERFLUOUS A RGUM E NT -L IS T FOR USER-DEFINED FUNCTION.
REFS: 16.4

PROGRAM NUMBER 154
ERROR - MISSING A R GUM E NT -L I S T FOR USER-DEFINED FUNCTION.'
REFS: 16. '4

PROGRAM NUMBER 155
ERROR - NULL A R GUh E NT -L I S T FOR USER-DEFINED FUNCTION.'
REFS: 7.2 7 .

'4 16.2 1 6
.

'4

PROGRAM NUMBER 156
ERROR - EXCESS ARGUMENT IN LIST FOR USER-DEFINED FUNCTION.
REFS: 16.4
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PROGRAM NUMBER 157
ERROR - USER-DEFINED FUNCTION WITH TWO PARAMETERS.
REFS: 16.2 16.4 7.2 7.4

PROGRAM NUMBER 158
ERROR - USING A STRING AS AN ARGUMENT FOR A USER-DEFINED
FUNCTION

.

REFS: 7.2 7.4 16.2 16.4

PROGRAM NUMBER 159
ERROR - USING A STRING AS AN ARGUMENT AND PARAMETER FOR A

USER-DEFINED FUNCTION.
REFS: 7.2 7.4 16.2 16.4

PROGRAM NUMBER 160
ERROR - FUNCTION DEFINED MORE THAN ONCE.
REFS: 16.4

PROGRAM NUMBER 161
ERROR - REFERENCING A FUNCTION INSIDE ITS OWN DEFINITION.
REFS: 16.4

PROGRAM NUMBER 162
ERROR - REFERENCE TO FUNCTION PRECEDES ITS DEFINITION.
REFS: 16.4

PROGRAM NUMBER 163
ERROR - REFERENCE TO AN UNDEFINED FUNCTION.
REFS: 16.4

PROGRAM NUMBER 164
GENERAL USE OF NUMERIC EXPRESSIONS IN LET-STATEMENT.
REFS: 6.2 6.4 7.2 7.4 8.2 8.4 16.2 16.4

PROGRAM NUMBER 165
COMPOUND EXPRESSIONS AND PRINT.
REFS: 7.2 7.4 12.2 12.4

PROGRAM NUMBER 166
COMPOUND EXPRESSIONS USED WITH CONTROL STATEMENTS AND
FOR-STATEMENTS

.

REFS: 7.2 7.4 10.2 10.4 11.2 11.4

PROGRAM NUMBER 167
EXCEPTION - EVALUATION OF NUMERIC EXPRESSIONS ACTING AS
FUNCTION ARGUMENTS.
REFS: 7.5 8.4 16.4

PROGRAM NUMBER 168
EXCEPTION - OVERFLOW IN THE SUBSCRIPT OF AN ARRAY.
REFS: 6.4 6.5 7.5
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PROGRAM NUMBER 169
EXCEPTION - NUMERIC UNDERFLOW IN THE EVALUATION OF NUMERIC
EXPRESSIONS ACTING AS ARGUMENTS AND SUBSCRIPTS.
REFS: 6.H 7.4 7.6 8.4

PROGRAM NUMBER 170
EXCEPTION - NEGATIVE QUANTITY RAISED TO A NON-INTEGRAL POWER
IN A SUBSCRIPT.
REFS: 7.5 6.2

PROGRAM NUMBER 171
EXCEPTION - LOG OF A NEGATIVE QUANTITY IN AN ARGUMENT.
REFS: 8.5 16.2

PROGRAM NUMBER 172
EXCEPTION - SQR OF NEGATIVE QUANTITY IN PRINT-ITEM.
REFS: 8.5 12.2

PROGRAM NUMBER 173
EXCEPTION - NEGATIVE QUANTITY RAISED TO A NON-INTEGRAL POWER
IN TAB-ITEM.
REFS: 7.5 12.2

PROGRAM NUMBER 174
EXCEPTION - EVALUATION OF NUMERIC EXPRESSIONS IN THE PRINT
STATEMENT.
REFS: 7.5 8.5 12.2

PROGRAM NUMBER 175
EXCEPTION - UNDERFLOW IN THE EVALUATION OF NUMERIC EXPRESSIONS
IN THE PRINT STATEMENT.
REFS: 7.4 7.6 8.6 12.2

PROGRAM NUMBER 176
EXCEPTION - NEGATIVE QUANTITY RAISED TO A NON-INTEGRAL POWER
IN IF-STATEMENT.
REFS: 7.5 10.2

PROGRAM NUMBER 177
EXCEPTION - EVALUATION OF NUMERIC EXPRESSIONS IN THE
IF-STATEMENT

.

REFS: 7.5 10.2

PROGRAM NUMBER 178
EXCEPTION - UNDERFLOW IN THE EVALUATION OF NUMERIC
EXPRESSIONS IN THE IF-STATEMENT.
REFS: 7.4 7.6 10.2

PROGRAM NUMBER 179
EXCEPTION - LOG OF ZERO IN ON-GOTO-STATEMENT

.

REFS: 8.5 10.2
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PROGRAM NUMBER 180
EXCEPTION - EVALUATION OF NUMERIC EXPRESSIONS IN THE ON-GOTO
STATEMENT

.

REFS : 7.510.210.5

PROGRAM NUMBER 181
EXCEPTION - UNDERFLOW IN THE EVALUATION OF THE EXP FUNCTION IN
THE ON-GOTO STATEMENT.
REFS : 7.4 8.6 10.2 10.5

PROGRAM NUMBER 182
EXCEPTION - NEGATIVE QUANTITY RAISED TO A NON-INTEGRAL POWER
IN FOR-STATEMENT

.

REFS : 7.5 11.2

PROGRAM NUMBER 183
EXCEPTION - EVALUATION OF NUMERIC EXPRESSIONS IN THE
FOR-STATEMENT

.

REFS : 7.5 11.2

PROGRAM NUMBER 184
EXCEPTION - UNDERFLOW IN THE EVALUATION OF NUMERIC EXPRESSIONS
IN THE FOR-STATEMENT.
REFS : 7.4 7.611.2

PROGRAM NUMBER 185
ERROR - MISSING KEYWORD LET.
REFS: 9.2 9.4

PROGRAM NUMBER 186
EXTRA SPACES HAVE NO EFFECT.
REFS: 3.4

PROGRAM NUMBER 187
ERROR - SPACES AT THE BEGINNING OF A LINE.
REFS: 3.4 4.4

PROGRAM NUMBER 188
ERROR - SPACES WITHIN LINE-NUMBERS.
REFS: 3.4 4.4

PROGRAM NUMBER 189
ERROR - SPACES WITHIN KEYWORDS.
REFS: 3.4

PROGRAM NUMBER 190
ERROR - NO SPACES BEFORE KEYWORDS.
REFS: 3.4

PROGRAM NUMBER 191
ERROR - NO SPACES AFTER KEYWORDS.
REFS: 3.4
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PROGRAM NUMBER 192
ERROR - PRINT-ITEM QUOTED STRINGS CONTAINING SINGLE QUOTE.
REFS: 3.212.212.4

PROGRAM NUMBER 193
ERROR - PRINT-ITEM QUOTED STRINGS CONTAINING DOUBLE QUOTES.
REFS: 3.2 12.2 12.4

PROGRAM NUMBER 194
ERROR - ASSIGNED QUOTED STRINGS CONTAINING SINGLE QUOTE.
REFS: 3.2 9.2

PROGRAM NUMBER 195
ERROR - ASSIGNED QUOTED STRING CONTAINING DOUBLE QUOTES.
REFS: 3.2 9.2

PROGRAM NUMBER 196
LINE-NUMBERS WITH LEADING ZEROS.
REFS: 4.2 4.4

PROGRAM NUMBER 197
ERROR - DUPLICATE LINE-NUMBERS.
REFS: 4.4

PROGRAM NUMBER 198
ERROR - LINES OUT OF ORDER.
REFS: 4.4

PROGRAM NUMBER 199
ERROR - FIVE-DIGIT LINE-NUMBERS.
REFS: 4.2

PROGRAM NUMBER 200
ERROR - LINE-NUMBER ZERO.
REFS: 4.4

PROGRAM NUMBER 20 1

ERROR - STATEMENTS WITHOUT LINE-NUMBERS.
REFS: 4.2 4.4

PROGRAM NUMBER 202
ERROR - LINES LONGER THAN 72 CHARACTERS.
REFS: 4.4

PROGRAM NUMBER 203
EFFECT OF ZONES AND MARGIN ON PRINT.
REFS: 12.4 12.2

PROGRAM NUMBER 204
ERROR - PRINT-STATEMENTS CONTAINING LOWERCASE CHARACTERS.
REFS: 3.2 3.4 12.2

PROGRAM NUMBER 205
ERROR - ASSIGNED STRING CONTAINING LOWERCASE CHARACTERS.
REFS: 3.2 3.4 9.2



PROGRAM NUMBER 206
ERROR - ORDERING RELATIONS BETWEEN STRINGS.
REFS: 3.2 3.^ 3.6 10.2

PROGRAM NUMBER 207
ERROR - ASSIGNMENT OF A STRING TO A NUMERIC VARIABLE.
REFS: 9.2

PROGRAM NUMBER 208
ERROR - ASSIGNMENT OF A NUMBER TO A STRING VARIABLE.
REFS: 9.2
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6.3 Cross-reference Between ANSI Standard And Test Programs

Section 3' Characters and Strings

3.2: Syntax
1 93 102 103 104 109 112 192 193 194 195 204 205 206

3.4: Semant i c s

1 186 187 188 189 190 191 204 205 206

3.6: Remarks
206

Section 4: Programs

4.2: Syntax
2 3 4 196 199 201

4.4: Semantics
2 3 4 187 188 196 197 198 200 201 202

Section 5: Constants

5.2: Syntax
1 9 10 11 12 13 27 92 93 107 112

5.4: Seman t i c s

1 9 10 11 12 13 14 27 30 34 60

5.5: Exceptions
30

5.6: Remarks
34 96111

Section 6: Variables

6.2: Syntax
6 11 12 22 27 56 57 58 59 61 79 164 170

6.4: Semantics
6 1 1 12 22 27 56 57 58 59 60 6 1 74 75 76 77

78 164 168 169

6.5: Exceptions
63 64 65 66 67 68 69 70 71 72 168

6.6: Remarks
23
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Cross-reference between ANSI Standard and Test Programs (cont.)

Section 7: Expressions

7.2: Syntax
24 25 26 36 37 38 39 40 41 42 43 61 143 144 145

146 147 148 149 150 151 155 157 158 159 164 165 166

7.4: Semantics
24 25 26 33 35 39 40 41 42 43 61 143 144 145 146

147 148 149 150 151 155 157 158 159 164 165 166 169 175 178
181 184

7.5: Exceptions
28 29 31 32 35 167 168 170 173 174 176 177 180 182 183

7.6: Remarks
39 40 41 42 43 117 119 120 121 124 127 128 169 175 178

184

Section 8: Implementation-Supplied Functions

8.2: Syntax
130 131 143 144 145 146 147 148 149 150 164

8.4: Semantics
114 115 116 117 119 120 121 123 124 127 128 130 131 132 133
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
149 150 164 167 169

8.5: Exceptions
118 122 125 126 129 171 172 174 179

8.6: Remarks
123 175 181

Section 9: The Let-Statement

9.2: Syntax
6 11 12 56 57 58 185 194 195 205 207 208

9.4: Semantics
6 11 12 14 56 57 58 185

9.5: Exceptions
7
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Cross-reference between ANSI Standard and Test Programs (cont.)

Section 10: Control Statements

10.2: Syntax
5 15 17 18 1 9 20 i\6 88 1 66 1 76 1 77 1 78 1 79 1 80 1 81

206

10.4: Semantics
5 15 16 17 18 19 21 27 46 85 87 88 91 166

10.5: Exceptions
86 89 90 180 181

Section 11: For-Statement s and Next-Statements

11.2: Syntax
44 45 46 47 48 49 50 51 166 182 183 184

11.4: Semantics
44 45 46 47 48 49 50 51 52 53 54 55 166

Section 12: The Print-Statement

12.2: Syntax
1 6 165 172 173 174 175 192 193 203 204

12.4: Semantics
1 6 7 9 10 11 12 13 14 165 192 193 203

12.5: Exceptions

Section 13: The Input-Statement

13.2: Syntax
107 108 109 110 113

13.4: Semantics
107 108 109 110 111 112

13.5: Exceptions
1 1 2

Section 14: The Data-, Read-, and Restore-Statement

s

14.2: Syntax
92 93 94 95 102 103 104 105 106

14.4: Semantics
92 93 94 95 96

14.5: Exceptions
97 98 99 100 101
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Cross-reference between ANSI Standard and Test Programs (cont.

Section 15: Array-Declarations

1 5 . 2 : S y n t a X

56 57 58 62 65 6 6 67 68 69 70 71 72

15.^: Semantics
5 6 57 5 8 62 65 6 6 6 7 68 69 7 0 71 72 7 3 74
7 6 8 0 81 8 2 8 3 8 4

Section 16: User-Defined Functions

16.2: Syntax
151152155157158159164171

16.4: Semantics
151 153 154 155 15 6 157 158 159 160 161 162 163 164 167

Section 17: The Randomize Statement

17.2: Syntax
1 3 1

17.4: Semantics
1 3 1

Section 18: The Remark-Statement

18.2: Syntax
15

18.4: Semantics
15
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Appendix A

Differences between Versions 1 and 2 of
the Minimal BASIC Test Programs

In the development of Version 2, we introduced a wide
variety of changes in the test system. Some were substantive,
some stylistic. Below is a list of the more significant
differences.

1. Perhaps the most extensive change has to do with the more
complete treatment of the errors and exceptions which must be
detected and reported by a conforming processor. We've tried
to make clear the distinction between the two and just what
conformance entails in each case. Also, Version 2 tests a

wider variety of anomalous conditions for the processor to
handle. It is in this area of helpful recovery from
programmer mistakes that the Minimal BASIC standard imposes
stricter requirements than other language standards and the
tests reflect this emphasis.

2. Version 2 differs significantly from Version 1 in its
treatment of accuracy requirements. We abandoned any attempt
to compute internal accuracy for the purpose of judging
conformance as being too vulnerable to the problems of
circularity. Rather we formulated a criterion of accuracy,
and computed the required results outside the program itself.
The programs therefore generally contain only simple IF
statements comparing constants or variables (no lengthy
expressions). Those test sections where we did attempt some
internal computation of accuracy, e.g., the error measure and
computation of accuracy of constants and variables, are
informative only.

3. There are a number of new informative tests for the PND
function. These are to help users whose applications are
strongly dependent on a nearly patternless RND sequence.

The overall structure of the test system is more explicit.
The group numbering should help to explain why testing of
certain sections of the ANSI standard had to precede others.
Also, it should be easier to isolate the programs relevant to
the testing of a given section by referring to the group
structure.

5. We tried to be especially careful to keep the printed output
of the various tests as consistent as their subject matter
would allow. In particular, we always made sure that the
programs stated as explicitly as possible what was necessary
for the test to pass or fail and that this message was
surrounded by triple asterisks.
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