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FOREWORD

For nearly a decade, a goal of computer users and computer science researchers has been the development

of computer programs with the assurance that the security of information being processed is maintained. The
Institute for Computer Sciences and Technology of the National Bureau of Standards has developed a

comprehensive program in computer security during this period which includes the investigation of technology

that could satisfy this goal. The SRI Hierarchical Development Methodology is the result of a large research

effort sponsored by NBS and several other Federal and private organizations. While a complete automated

system for producing provably secure systems has not been produced and may not even be feasible in the

foreseeable future, the results of the effort have provided a structure for developing secure software where little

structure existed before. This report has been produced by the SRI technical staff based on the results of the

large effort sponsored by and provided to several organizations. Although NBS cannot endorse the

recommendations nor has it verified all of the results contained in the report, NBS is pleased to publish the

report so that this approach to producing computer programs with improved security may be studied and applied

where needed.
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THE SRI HIERARCHICAL DEVELOPMENT METHODOLOGY (HDM)

AND ITS APPLICATION TO THE DEVELOPMENT OF SECURE SOFTWARE
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ABSTRACT

This document provides an introduction to the SRI Hierarchical Development Methodology (HDM). The
methodology employs a staged decomposition of the development process, which separates design, data

representation, and implementation. For any given system development, HDM employs a hierarchical

decomposition of the design and formal specifications of modules and their interconnections. Extensive tools

are used throughout the development to check the appropriateness of the design and its implementation.

The role of HDM in developing secure systems is considered, and various current efforts using HDM to

develop such systems are summarized. The use of the methodology is illustrated by a simple but complete

example. A somewhat larger example of part of a secure data management system is also discussed.

Verification is not considered in this document, although HDM does facilitate verification. The
consistency of formal specifications and their formal requirements can be formally shown, as can the consistency

of programs with their specifications.

Key words: design methodology; formal specification; formal

verification; hierarchical design; programming methodology; security.

* Larry Robinson is now with Ford Aerospace and

Communications Corporation, Palo Alto, California 94306



1. Introduction

This report describes the SRI Hierarchical Development Methodology (HDM), a new approach for

designing large software systems such as operating systems and data management systems. It is particularly

appropriate for the development of system and application software that must meet stringent security

requirements. It is being used in the development of several secure systems and an ultrareliable aircraft

flight-control system. Its use provides significant aid in coping with many of the problems hitherto experienced

in producing and maintaining such systems.

HDM embodies the following concepts:

HDM structures the development process into a sequence of decisions, each of which is described

precisely in an appropriate language.

HDM separates development decisions into three phases -- design, representation, and

implementation.

HDM structures a system design as a hierarchy of abstract machines. Each machine is specified

independently from other abstractions and independently of any ultimate implementation.

HDM facilitates formal verification of designs as well as implementations.

HDM is well suited to the design and implementation of secure systems. Selective use of

verification (e.g., verification of the security of the design) can further enhance the value of HDM
usage.

HDM is supported by tools that aid in all stages of development.

In essence, HDM is an attempt to provide languages, guidelines, and tools to permit a designer to manage
the complexity found in the development of modern systems.

The evolution of HDM has drawn heavily on many of the important ideas of computer science, most

notably those of the following individuals:

Dijkstra- Complexity may be confronted by employing abstraction, in particular by realizing a

system as a hierarchy of abstract machines.

Parnas- A system may be separated into modules, the understandability of each of which requires

little (if any) knowledge of the inner details of the others. Modules may be specified formally

without regard to their implementation.

Wirth— A very simple programming language may be effective, with most complex concepts being

handled as abstractions.

Hoare-- The data representation of an abstract machine may be formally specified.

Floyd-- Program behavior may be formally specified, allowing proof of the consistency between a

formal specification and its program code.

In developing HDM as a synthesis of these important notions, we developed a formal specification

language (SPECIfication and Assertion Language- SPECIAL) and included features in both HDM and

SPECIAL as needed in the process of developing a number of real systems.

The remaining sections of this chapter summarize the major software advances that have led to HDM,
define the concept of a "methodology", and justify the need for a suitable development methodology. The

second chapter summarizes the most important features of HDM. The third chapter considers the relevance of

HDM in the development of secure systems and applications. The fourth chapter provides a detailed

self-contained illustration of the use of HDM by means of a simple example. The final chapter gives a more

elaborate example, discussing the design and specifications of two levels of an illustrative secure data

management system.
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1.1 Advances in Software Technology

For the purposes of motivating the need for a new methodology, it is convenient to divide recent advances
into two categories:

New approaches to the design process.

New approaches to the implementation process.

Many approaches to the implementation process have resulted in easily realized significant improvements
in large systems. Among these are:

Automatic flow-charters for high-level languages.

Trace-and-interrupt packages in interactive execution.

After-the-fact analysis packages that report on the various aspects of program response for test data,

e.g., identifying statements that have not been executed.

Programming without the "go to".

The edict - thou shall not use the "go to" ~ is not a panacea in itself since, as noted by Knuth [24], it is

possible to write structured programs with the "go to", and unstructured ones employing only the "modern"

control constructs. However, the edict derives from a more powerful notion, namely that by imposing

restrictions on the design structure of the software system or on the rest of the development process, significant

improvements can be realized. Thus, greater effort in the design process can pay off enormously by reducing

the complexity of the implementation. This is the basis for most of the following design advances, all of which

we view as fundamental.

Abstraction. The basic principle of abstraction in system development is that in order to solve an

extremely difficult problem, it is useful to try to identify the details that are inessential in making a design

decision and to hide them from the particular interface. In programming, these hidden details typically relate to

what we call data representation or implementation. This approach is made more precise by some of the following

concepts.

Abstract Machines and Hierarchical Decomposition. Dijkstra [11] suggested the following paradigm for

"realizing" a program P that is to execute on a machine M. If it is a difficult task to write such a P, then define a

new machine Mn and a program Pn whose execution on Mn satisfies the intent of P executing on M. The
machine Mn will provide operations that can be invoked in the execution of Pn with some data in structures

that will be modified and referenced. These data structures will be abstract in the sense that their actual

representation in terms of the concrete data structures of M is not apparent to the program using the machine.

Consequently, Dijkstra viewed Mn as an abstract machine, and Pn as an abstract program since it executes on an

abstract machine. Now it remains to implement Mn, which is accomplished by viewing another abstract

machine M(n-l) and a collection of abstract programs P(n-l), each of which implements an operation of Mn.
This process continues until finally an abstract machine Ml is defined that is our target machine M. We denote

Ml as the primitive abstract machine, "primitive" because it is the lowest-level machine under consideration, and

"abstract" because it is not necessarily implemented in hardware. (The total number n of levels is the byproduct

of the design process.)

The following important notions can be observed from this paradigm:

1. The system appears to be built as a hierarchy (or a sequence) of abstract machines. Parnas [35]

shows that, in any structure said to be a hierarchy, it is necessary to identify the components of the

hierarchy and the relation that binds them. In Dijkstra's view, the abstract machines are the

components and the relation "realizes" is the binding relation. The collection of abstract programs

executing on M(i-I) realizes the operations of Mi. (It has been suggested by Hamilton [19] and

others that the hierarchy should take the form of a tree, rooted at the top. We feel that this notion

produces no gain in generality, and thus is not incorporated into HDM; see Chapter 2.)
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2. An abstract program executing on Mi can refer only to the operations provided by Mi. This
exhibits the principle of information liiding, namely, it is easier to control the system development if

only a restricted collection of operations is available to a program. The modularity principle

discussed below reinforces this point.

3. From the perspective of the abstract program that executes on it, an abstract machine can be
viewed as maintaining abstract data structures that are modified and queried, using only operations of
that abstract machine. These data structures are abstract since they are meaningful only with
respect to the operations of the machine, as compared with, for example, the "concrete" data

structures of a real machine. This notion of data abstraction is extremely important in designing
large systems, and offers significant advantages over the more conventional approach of procedure
abstraction. In procedure abstraction, which is the basis of several contemporary methodologies, a

large system is decomposed into procedures, but no attempt is made to form subsets of procedures
that logically constitute a data abstraction.

4. The presentation describes the system as if it were realized top down. It is perhaps convenient to

observe a system a posteriori in this manner. However, actual developments tend to undergo
modifications at different levels in orders that are not strictly top-down. HDM recognizes the

realities of evolutionary development, and helps to organize it. (Note that Dijkstra suggests that

when a particular abstract machine is conceived, the designer usually has in mind certain lower-level

machines that will eventually serve to implement it. To some extent, this phenomenon guides the

design.)

Modules. All large systems exhibit some form of modularity. Parnas [37] has attempted to define a

module more specifically and to show what can be gained by decomposing a system into modules. His view is

that the internal details of a module should not affect the functioning of any other module. This property is

vital both for understanding what service the module supplies and for limiting the effects of changes to a

module. Parnas suggested that a module should be a collection of operations and abstract data structures-like

an abstract machine, but with each module typically supporting one (or a few) abstract data concepts. Examples
of modules might be file systems, memory managers, and message handlers, although these units can

advantageously be substructured into several modules. In our view, an abstract machine is a collection of one
or more modules. However, the reader may visualize each level as a single module.

Abstract Data Type. An abstract data type is a collection of entities called objects and a set of operations

defined on objects of the type. Thus, the only access to the objects of an abstract data type is via the operations

of the abstract data type. A system can be "realized" as an inverted tree of abstract data types (with the root at

the top). A type i residing above type j, type k, implies that the objects of the latter types collectively

represent {he objects of type i. Similarly, the operations of type i are implemented as abstract programs in terms

of the operations of the latter types.

Program Speciflcation. We have previously indicated that a formal specification for a program can be

given to a user to describe what the program does, and to an implementor to specify the desired behavior of the

program. There are several attributes of a good specification, including precision and clarity. Floyd [15]

suggested the use of first-order predicate calculus as a specification language, while others- notably McCarthy
[29] --have advocated recursive function theory. In any event, it has become clear that a specification language

should be based on a mathematical theory. A specification can also be associated with an abstract machine,

module, or abstract data type to portray the effect of invoking operations. Parnas [36] has described a

technique (although not a language) for specifying modules, which indicates the effect of invoking each

operation on the values of abstract data structures. Our approach to specification is based on that of Parnas.

Another approach, due to Guttag [18] and Liskov and Zilles [28], and as applied to abstract data types,

views the operations as mathematical functions. The specification consists of expressions in terms of these

functions that describe the value of the functions for any sequence of function applications, i.e., any sequence of

operations. A survey of several of the current specification techniques is given by Liskov and Berzins [27].
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Program Verification. One approach to determining if a program, or the collection of programs

corresponding to an abstract machine, performs as intended is to prove formally that it conforms to a formal

specification. The proof process is similar to that employed by a mathematician in demonstrating that a theorem

logically follows from a given set of definitions and axioms.

In Floyd's method [16], assertions are placed at strategic places in a program -- the input, the output, and

selected intermediate points — such that each loop contains an assertion. For each path in the program, where a

path is defined by a program fragment bracketed by two assertions, a theorem is generated. If the

corresponding theorems are true for all such paths (a finite number of theorems is thus assured), then the

program is shown to be partially correct with respect to the input and output assertions. (A program is partially

correct if, for all input data that satisfy the input assertions and that cause the program to halt, the output

assertions are satisfied. An extension of the Floyd method can be used to prove that a given program halts for

all input data that satisfy specific input assertions.) Other methods have been developed [5] that avoid the

need for the intermediate assertions, but yield theorems that are more difficult to prove. Regardless of the

method, computer aids are essential to generate the theorems (a relatively easy task) and to aid in proving the

theorems (a relatively difficult task and at present a research area). Generalizations of Floyd's method have

been developed to prove a hierarchical .system of abstract machines ( [40], [17], [21]). Since program

verification is just emerging as a useful approach, it is not of major concern in this report. However, the

techniques that have been used to structure and specify programs to enhance their verification usually also yield

programs that have other desirable characteristics [34].

High-Level Programming Languages. The primary original benefit expected of high-level programming

languages was the production of programs that could execute on many different machines. This is clearly of

economic importance for application programs, and recently for system programs, as their prospects for

portability have become enhanced. High-level programming languages also provide built-in powerful features

(e.g., storage allocation), thus relieving the burden on the programmer. Recently, new features have been

incorporated to aid the programmer in producing more error-free programs. Among these are (1) particular

control constructs that often result in programs with cleaner structure, and (2) declarations of strongly typed

variables that permit the detection of a large class of programming errors at compile-time. As the concept of

data abstraction has become accepted, several recent languages ( [10], [26], [47], [23]), have provided

facilities for abstract data types. We are in favor of many of these augmentations to the concept of a high-level

programming language, but reject the view that programming languages should continue to become more
complex in order to provide those features. Many of these features do not aid in the implementation phase of

development. Instead we advocate a methodology that provides several languages for system development, one

of which is a programming language.

Tools. It has long been recognized that, in certain phases of the development of software, some software

tools are extremely valuable in relieving the programmer of the burden of some tasks that are routine but

tedious and error-prone. Common examples of such tools are: compilers, assemblers, and loaders. Recently,

tools have developed to aid in other phases of system development. Such tools now allow the tracing of a

program execution, the recording of program behavior under testing, and the documentation of subprogram

interconnections. Although these new debugging tools have produced some benefit, the gain is not what was

desired, primarily because these tools were not developed with a set of unified goals. Currently, there is interest

in developing a unified collection of tools, sometimes denoted as a programming environment. For example,

Teitelman [45] is actively developing the Interlisp environment as an extension of and as support for the

language LISP. Interlisp includes special features to allow a programmer to back his program up to a previous

execution point. These tools are collected into a single unified package. We intend to develop a similar

environment to support HDM-a useful collection of tools already exists-and its extensions, including the

incorporation of verification tools as they become available. Such tools are essential to relieve the designer of

much tedious work and to ensure that the underlying rules of the methodology are followed.
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1.2 Software Development Methodologies and Why They Are Needed
There have been numerous advances in software technology, many of which have been applied to real

system development with some success. However, despite this progress, we believe that the practice is still

inadequate, intensified by the need for larger and less error-laden systems.

It is of interest to ask why the wisdom of Dijkstra, Hoare, and Parnas, and others has not been widely

accepted and creatively applied by software system designers. In our opinion, the reasons are as follows:

The ideas represent an inherently new mode of thinking about systems that is not easy to

understand or to apply routinely.

The ideas have been illustrated only on particular, comparatively simple problems. Many system

designers would experience difficulty in extrapolating to more complex problems, e.g., complex

operating systems, message processing systems.

No languages or formalisms have been provided to enable a designer to formulate decisions

according to these ideas.

There are gaps in the theory that prevent the application to complex systems.

The net result has been a misapplication of the basic ideas. Witness the intensity generated over

"structured programming", a term coined by Dijkstra to denote the new approach to programming based on

abstraction. The concept has been so trivialized by many of its current practitioners (some view it as just

programming with single-input, single-output blocks or programming without the "go to") that Dijkstra has

almost disavowed any connection with the term "structured programming."

A "methodology" for a technical discipline consists of notation, formalism, languages, procedures, and

guidelines, all based on scientific principles. It is supported by on-line tools, and illustrated by worked-out

examples. In addition, a methodology should be sufficiently robust to allow incremental extension to cover

newly discovered problems and advances.

For the development of software, the current optimal choice for the "scientific principles" are the concepts

of data abstraction and the mathematical basis of programming. The "procedures" should be of the form that

precludes the writing of randomly structured programs, and that requires the statement of decisions in a

particular order.

Several other methodologies for software development are being pursued elsewhere. These include (1)

Higher Order Software (HOS) [19], (2) Chief Programmer Team [31], (3) various approaches involving

structured design, and (4) an approach based on algebraic specifications [18]. We feel that (2) and (3) appear

to be too informal and do not embody sufficient data abstraction. The others, although incorporating formalism

and data abstraction, have yet to be tested on difficult real systems and do not yet have some of the important

ancillary features of a methodology.
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2. A Summary of HDM
This chapter provides a brief summary of the Hierarchical Development Methodology. HDM decomposes

the design of a system into a hierarchy of abstract machines, linearly ordered with a different abstract machine

at each level in the hierarchy. Each abstract machine in the hierarchy is dependent only on the functionality of

lower-level machines. Each abstract machine provides all of the facilities (operations and abstract data

structures) that are needed to realize (i.e., to implement operations of and to represent the data structures of)

the machine at the next higher level. The facilities of the highest-level abstract machine, and only those of that

machine, are visible to a user of the system. The lowest-level machine, denoted as the primitive machine,

contains facilities that the designer deems as primitive, e.g., the hardware on which the system is running or a

programming language. A machine is itself decomposed into modules, each module having operations and data

structures which typically define a single abstract data concept. As in the Parnas module concept, the module is

the programming ww/Yof HDM; each of the modules may be independently implemented. The programs

implementing a module can access the data structures of their own abstract machine, but not those of

lower-level machines. Lower-level data structures may be modified only by the execution of lower-level

operations. Thus the internal details of a module remain hidden from above the module.

In HDM there is a clear separation of the aspects of system realization into stages, as follows:

1. Conceptualization of the system.

2. Definition of the functions of the external interface and the structuring of those functions into a

hierarchy of abstract machines, each consisting of one or more modules.

3. Adding further abstract machines to the structure of the entire system, including modules within

the hierarchy that are not externally visible.

4. Formal specification of each module.

5. Formal representation of the data structures of each machine in terms of those of the modules at

the next lower level.

6. Abstract implementation of the operations of each module, i.e., writing an abstract program for

each abstract machine written in terms of the operations at the next lower level.

7. Coding, or transforming the abstract programs into efficient executable programs.

Parnas [38] has characterized software development as a sequence of decisions, where it is likely that

decision di is dependent on earlier decisions dl, d(i-l). What Parnas recognized as vital is that there is a

proper order for decisions, namely the earlier decisions have the greater impact on the ultimate success of the

system. Thus it is vital to identify the important decisions and to evaluate them critically. HDM has been

designed to formalize this decision model.

Each of the stages of HDM involves the making of decisions, and HDM provides languages to express

these decisions. Those decisions associated with stages (1) through (4) are generally considered as design.

Those associated with stage (5) and with stages (6) and (7) involve representation and implementation,

respectively. The decisions made from stage (1) to stage (7) are roughly in order of decreasing importance. For

example, whether or not to use paging involves a design decision, and is clearly more important than how to

store the page table -which is a representation decision. The algorithm for page replacement is an

implementation decision. This approach contrasts with the current approach to software realization in which the

program itself is used to capture all of the decisions of design, representation, and implementation. In a system

designed according to HDM, the four stages would largely be pursued in order. Thus, all of the design

decisions should be made before the representation or implementation is attempted. However, backtracking is

normally expected. In addition, it is not implied that a designer first considers the highest abstract machine,

then the next highest and so on, i.e., top-down design. We would expect that attention would be given to

several abstract machines at a time, i.e. when a designer conceives of a particular abstract machine at a position

in the hierarchy, he might also have in mind lower level abstract machines to implement that machine. It is also

possible for the design to be accomplished top-down while the implementation proceeds bottom-up.

Module specification (stage 4) involves the expression of the intent of a module, independent of its

implementation. The language SPECIAL (SPECIfication and Assertion Language) ( [42], [39]) is used for this
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purpose and enables the concise and formal description of a module. SPECIAL is also used for writing

intermodule representations (stage 5), which we call mapping func tions. The intermodule implementation

programs (stage 6) are called abstract programs, since each can be viewed as running on an abstract machine
whose operations they invoke. Abstract programs are intended to be directly compiled into executable code

(stage 7). The language used for writing abstract programs can be extremely simple since most of the

complexity of the programs is embodied within the abstract machine operations invoked by the programs. We
have developed a clean simple language (ILPL -- Intermediate Level Programming Language) to describe

abstract programs. Alternatively, programs could be written directly in a modern programming language such as

Ada, Euclid, or Modula.

The first three stages of HDM are fundamental to the development. The decisions precisely formulated

for these stages provide an early documentation of a system, prior to implementation, and significantly more
understandable than the implementation. They thus provide the basis for good implementation. The results of

these stages also provide the assertions that define what correctness means for the system. Since each stage of

HDM has an appropriate formal language for expressing the decisions made at that stage, machine checking is

possible. Existing tools accomplish some types of machine checking for these stages.

The specifications for the highest-level abstract machine are a concise description of the system as seen by

the user, but only in terms of those facilities that are relevant to the specifications, i.e., implementation details

are omitted from the specification. In addition, the module specifications and mapping functions are used [40]

to formulate assertions for the proof of the abstract programs. This report is concerned primarily with the

design aspects of HDM, although references are included that discuss techniques for verification in HDM.

HDM is a new synthesis of several promising approaches to software design. It has been developed to

address deficiencies in the current software practice. It has been clearly influenced by the concepts of

hierarchical programming and its extensions, in particular the important principles of hierarchical design, of

doing design prior to implementation, of decomposing a system into small manageable pieces, and of carrying

out a proof of correctness simultaneous with design. Although these principles are well-known, they are difficult

to apply to real systems. The key to the effectiveness of HDM is that it offers a practical means for

constructing, manipulating, evolving, and maintaining formal program abstractions. This property is absent in

current structured programming methodologies, and present in only primitive form in modern programming

languages. Formal abstraction provides the mechanism for verification, separation of specifications and

implementation, variations in the order of binding design decisions, family design, and other desiderata of

modern system development.

At present, HDM is evolving and does not yet possess all of the on-line aids that would ease its routine

use. For the immediate future (say the next two years), it will see its greatest use in systems where correctness

is of extreme concern. We anticipate that in the future, HDM-like methodologies will be an important approach

to the design of general software.

This document is intended to serve as an overview of HDM, describing in some detail most of the

features needed to design and implement systems. Some attempt is made to justify particular features and to

compare HDM with other approaches, but this report is not intended to be a complete survey on design

methodologies. A more complete description of HDM can be found in the three-volume HDM Handbook

[41, 44, 25].

Chapter 3 of this report discusses the uses of HDM in the development of secure systems and subsystems.

Chapter 4 presents an example of the use of HDM, organized according to the stages of HDM outlined above.

Chapter 5 presents part of the design of a secure data management system as an illustration of HDM's
usefulness in designing a secure application system.
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3. The Use of HDM for Attaining Security

This chapter presents some of the important aspects of HDM for developing software satisfying security

requirements.

The attainment of security requires an overall perspective on the system needs. In general, it is very

difficult (if not impossible) to enforce elaborate security policies in an application environment if the underlying

system is insecure - unless the application environment is extremely restrictive (e.g., has no sharing of

resources, or hides all of the facilities of the underlying system). Thus it is necessary to consider the security

provided by the operating system, not just the security provided by an application environment. Further, the

attainment of security can be adversely affected by improper design, by poor choice of programming language,

and by improper implementation. Any weak link could provide a critical flaw.

The ways in which HDM contributes to the attainment of secure software have been considered at length

in [34]. These issues are only summarized here.

Suitability for verification is the major factor that differentiates HDM from the wealth of development
methodologies. Since correctness is so critical for security, formal verification of security properties is

considered mandatory for certain systems. HDM was developed to address the need for verifying large systems.

HDM organizes the development into stages, the system into a hierarchy of abstract machines, and the

machines into modules to produce units small enough and well structured enough to be amenable to

verification. A verification methodology based upon this approach has been developed [40]. However, even if

formal verification is not attempted, the precision and discipline imposed by HDM encourage sound design and

implementation. The concentration on careful design and matching implementation, and the potential for

analysis throughout make HDM an excellent choice when security is an issue.

3.1 Current Uses of HDIVI for Security

HDM is being applied to the design of several systems with critical requirements. These include secure

systems designed at SRI, namely the Provably Secure Operating System (PSOS [33], [14]) and a secure

real-time operating system (TACEXEC [13]). (HDM is also being used for NASA by SRI in the development

of SIFT, an ultrareliable fault- tolerant computer system [46].)

HDM is being used outside of SRI as well. The Ford Aerospace and Communications Corporation is

developing a system [KSOS] whose user interface is compatible with UNIX (Registered Trademark of Bell

Laboratories) and which is based on a security kernel [30]. The security of the KSOS design is being subjected

to formal proofs that the specifications are consistent with a formal model for multilevel security [2].

At the time of writing, all of the kernel specifications have been subjected to the proof process, and the

proofs have pointed out the flaws remaining in the design. Honeywell is using HDM on its own version of

KSOS [KSOS-6], and has used it in the past for a flight-control system [3] and for the design and proof of a

secure kernel for a Multics-like system (together with the MITRE Corp.) [22]. In addition, there have been

and are various other experimental uses of HDM.

Until now, most of the applications of HDM have been to operating systems or kernels in which there are

extremely critical requirements. In many of these efforts, verification is an important consideration.

3.2 Requirements

A system should be designed with a clear understanding of what requirements it is to meet, particularly

with regard to security. It is desirable to have a precise definition of what it means for a system to be "secure".

For example, the PSOS design permits the implementation of highly sophisticated security policies; various

properties of the basic PSOS protection mechanism have been formalized. The KSOS design has a security

kernel which provides enforcement of a multilevel security policy (under which information at a given security

level cannot filter down to a lower level). A formal requirement that the specification for each kernel function

satisfies this model is being used for the proofs mentioned above. (An earlier version is given in [12].) It is

also applicable to trusted processes that are authorized to selectively violate the security of the kernel.
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3.3 Design

HDM enforces constraints on the way in which a design is defined, although it does not essentially

constrain what the design can achieve or what functionality can be implemented. Use of hierarchical design

structure and formal specifications for each module in the hierarchy contributes to the avoidance of many types

of security flaws commonly found in the design and implementation of existing systems. For example, the

notion of abstract machine specifications is particularly powerful in isolating a design from its implementation.

Thus only the operations of an abstract machine are visible, and the data structures of the abstract machine can

be encapsulated within the implementation. The specification language enforces strong "typing" of abstract

objects, which also helps to avoid a large class of traditional security flaws. The systematic handling of exception

conditions helps to avoid still another class of flaws. A detailed discussion of the use of HDM concepts in

evaluating the designs of several existing systems is given in [34]. Proofs of consistency of the specifications

with the requirements further help to eliminate design flaws.

3.4 Programming Languages and Implementation

A design specified in HDM may be implemented in a variety of ways. However, the desire for secure

systems and for verified systems puts additional requirements on programming, and makes some programming

languages much more desirable than others. For example, where secure systems are concerned, use of HDM
leads to a design that is compartmented, e.g., to take advantage of the separation of policy and mechanism. It is

desirable that these advantages be retained in the programming language.

Several recent programming languages have adopted features that make them desirable for use with HDM
in the production of secure software. Such features include the creation and deletion of abstract data types and

objects of those types, the strong enforcement of the typing implied by those data types, and the encapsulation

of data abstractions and module implementations. These features are also seen to enhance verifiability.

Language features for handling exceptions and synchronization of concurrent execution are also emerging.

Newer languages that may eventually be useful for writing secure software are Euclid, Modula, Gypsy, and

possibly a constrained version of the new DoD/1 language (Ada). It is intended that HDM support a variety of

such languages (initially Modula [for KSOS], Pascal [for SIFT], and Ada). (Support for languages such as

Fortran and Cobol would be possible, but these languages do not make full use of the power of the

methodology.) In general, the use of a modern programming language aids in better software production. The

use of program verification can further aid in this process.

3.5 The Role of HDM in Verification

Although verification is not a main thrust of this document, a few comments on verification are

appropriate. In general, verifiability is greatly enhanced by the use of HDM [40]. The staged decomposition of

the development process permits design proofs to be carried out before implementation is attempted (providing

a formal means for early evaluation of the design), and then permits proofs of program correctness. The

hierarchical decomposition of the design into levels of abstract machines is particularly valuable in simplifying

both the design proofs and the program proofs. Use of formally based languages of HDM is vital to both types

of proof. Design proofs demonstrate a formal consistency between the formal specifications (in SPECIAL) and

a formal model (e.g., a model of the security requirements). These specifications also form a basis for the

program proofs, verifying that the program implementing a module specification is consistent with its

specification. As noted above, the choice of programming language can greatly influence the feasibility of

verification.

4. A Simple Example of the Use of HDM
In this chapter, HDM is used to describe a complete -- although very simple -- system: a "stack" module

implemented in terms of an "array" module. The discussion is organized into seven sections: a review of HDM,
and one section for each stage outlined in Chapter 2.

In HDM, a system evolves from an initial concept to verified executable code as a sequence of "decisions".

In each stage of the development process, the system developer makes a series of decisions. The stages are

ordered so that improper decisions tend to be exposed early, and therefore can be corrected early.

The verification aspects of HDM are found in [40]. Some aspects of verification are discussed below in
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connection with the first six stages.

A primary concern is to illustrate the staged, decision-oriented development of a system using the three

languages of HDM -- HSL (the Hierarchy Specification Language), SPECIAL, and ILPL. Brief introductions to

these languages are given to produce a reasonably self-contained description. However, the simplicity of the

example does not properly illustrate many of the advantages of HDM as applied to complex systems. More
details on HDM and a more complex example appear in [41, 44, 25].

4.1 Review of the Mechanisms of HDM
In HDM, a system is realized as a linear hierarchy (a sequence) of abstract machines, sometimes called

levels. The top level is called the user-interface, while the bottom level is called the primitive machine. These two

machines together are called the extreme machines. The remaining levels are called intermediate machines. Each

machine provides operations, each of which has a unique name and arguments. An operation is invoked, similar

to a subroutine call in a conventional programming language, by associating values for the operation's

arguments. The invocation of an operation can return a value and/or modify the internal state (abbreviated as

state) of the machine, as reflected by the values of the machine's abstract data structures. As discussed later, the

"return" of an operation can be either a value or an "exception", the latter corresponding to one of a number of

conditions that are defined for the module.

The "user-interface" provides the operations that are available to the user of the system. The operations of

the "primitive machine" are typically constructs of a programming language and possibly some of the hardware

operations.

A machine specification characterizes the value returned and the new state for each possible machine

operation and each possible state of the machine. The specification describes the functional behavior of a system

(returned values for all input combinations), but not necessarily the performance of the system or the resources

consumed by its execution.

The realization of a machine (not the primitive machine, hereafter noted as machine i) is a two step

process. First, the abstract data structures of a machine i (i not I) are represented by those of the next

lower-level machine i-1. Second, each of the operations of a machine i (i not 1) is implemented as a program in

terms of the operations of machine i-1. The collection of implementations for all machines excluding the

primitive machine constitutes the system implementation.

A machine is sometimes decomposed into simpler units called modules. For the purposes of this

discussion, a module may itself be viewed as a machine; however, in ••eality a module's specification need not be

self-contained, unlike that of a machine.

Clearly, system implementation is the desired end-product of the system development process. However,

its emergence takes place only at stage 6. In the five previous stages, important decisions are made that logically

progress toward the end product.

4.2 Stage 1 — Conceptualization

In stage 1, the problem to be solved is formulated in general terms. Typically, the statement is in terms of

constraints imposed on the extreme machines, and of the performance expected from, the system. Currently,

English is employed as the description medium, although consideration is being given to a formal language for

conceptualization. For our single example, we will utilize the Conceptualization stage to provide informal

descriptions of the extreme machines.

The user interface provides a collection of individually accessible stacks, manipulatable by conventional

stack operations. The primitive machine consists of a collection of individually accessible arrays, as provided by

a conventional high-level programming language. This example is developed according to the stages of HDM.
The completed example is presented in the following figures.
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Figure 4-1: Specification of ttie STACKS Module

MODULE stacks $( maintains a fixed number of stacks of integers,

each of the same fixed maximum size)

TYPES

stack_name: DESIGNATOR $( names for stacks)
;

PARAMETERS

INTEGER max_stack_size $( maximum size for a given stack) ;

FUNCTIONS

VFUN ptr(stack_name s) -> INTEGER i; $( stack pointer, or

number of elements, of stack s)

HIDDEN;
INITIALLY

i = 0;

VFUN stack_val(stack_name s; INTEGER i) -> INTEGER v;

$( V is the ith value of stack s)

HIDDEN;
INITIALLY

V = ?;

OFUN push(stack_name s; INTEGER v);

$( puts the value v on top of stack s)

EXCEPTIONS
stack_overflow : ptr(s) = max_stack_size;

EFFECTS
'stack_val(s, 'ptr(s)) = v;

'ptr(s) = ptr(s) + 1;

OVFUN pop(stack_name s) -> INTEGER v;

$( pops the stack s and returns the old top)

EXCEPTIONS
stack_underflow : ptr(s) = 0;

EFFECTS
'stack_val(s, ptr(s)) = ?;

'ptr(s) = ptr(s) - 1;

V = stack_val(s, ptr(s));

END MODULE
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Figure 4-2: Specification of the ARRAYS Module

MODULE arrays $( maintains a fixed number of fixed-size

integer arrays)

TYPES

array_name: DESIGNATOR;

PARAMETERS

INTEGER array_size $( the number of elements in an array);

FUNCTIONS

VFUN access_array(array_name a; INTEGER i) -> INTEGER v;

$( returns element i of array a)

EXCEPTIONS
array_bounds : i < 0 OR i > array_size - I

;

INITIALLY
V = 0;

OFUN change_array(array_name a; INTEGER i, v);

$( changes the ith value of array a to v)

EXCEPTIONS
array_bounds: i < 0 OR i > array_size - 1

;

EFFECTS
'access_array(a, i) = v;

END MODULE
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Figure 4-3: Mappings for STACKS and ARRAYS

MAP stacks TO arrays;

EXTERNALREFS

FROM stacks:

stack_name: DESIGNATOR;
INTEGER max_stack_size;

VFUN ptr( stack_name s) -> INTEGER i;

VFUN stack_val( stack_name s; INTEGER i) -> INTEGER v;

FROM arrays:

array_name: DESIGNATOR;
INTEGER array_size;

VFUN access_array( array name a; INTEGER i) -> INTEGER v;

INVARIANTS

FORALL arrayname a: access_array(a, 0) < = arraysize - 1

AND
access_array(a, 0) > = 0;

MAPPINGS

stack_name: array_name;

max_stack_size: array size - 1

;

ptr( stack_name s): access_array(s, 0);

stack_val( stack name s; INTEGER i):

IF 1 <= i AND i <= access_array(s,0)

THEN access_array(s, i)

ELSE ?;

END MAP
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Figure 4-4: Abstract Implementation of the STACKS Module

IMPLEMENTATION stacks IN TERMS OF arrays;

EXTERNALREFS

FROM stacks:

stack_name: DESIGNATOR;
INTEGER max_stack_size;

OFUN push(stack_name s; INTEGER v);

OVFUN pop(stack_name s) -> INTEGER v;

FROM arrays:

array_name: DESIGNATOR;
INTEGER array size;

VFUN access_array (array_name a; INTEGER i) -> INTEGER v;

OFUN change_array(array_name a; INTEGER i, v);

TYPE MAPPINGS
stack_name: array_name;

INITIALIZATION
BEGIN

max_stack_size < - array_size - 1

;

END;

IMPLEMENTATIONS

OPROG push(stack_name s; INTEGER v);

DECLARATIONS
INTEGER i;

BEGIN
i <- access_array(s, 0) + 1;

EXECUTE change_array(s, i, v) THEN
ON array bounds : RAISE(stack_overflow);

ON NORMAL: ; END;
change_array(s, 0, i);

END;

OVPROG pop(stack_name s) -> INTEGER v;

DECLARATIONS
INTEGER i;

BEGIN
i <- access_array(s, 0);

IF i = 0 THEN RAISE(stack_undernow); FI;

change_array(s, 0, i-1);

V < - access_array(s, i);

RETURN (v);

END;
END IMPLEMENTATION



15

4.3 Stage 2 - Extreme Machine Interface Design
In stage 2, more detail is developed for the two extreme mactiines, concerned primarily with the

decomposition of these machines into modules and the selection of the operations of the constituent modules.
An interface description is derived for each module, specifying the module's operations and providing supporting

information. The interface description is sometimes [18] referred to as the "syntax" of a module, in contrast to

the specification (stage 4) which is referred to as the "semantics".

For our example, each (extreme) machine is a single module: "stacks" for the "user-interface", and
"arrays" for the "primitive machine". Hence we here refer to "stacks" and "arrays" both as machines and as

modules.

4.3.1 Interface Description for "stacics"

MODULE stacks

stack-name: DESIGNATOR

INTEGER max stack size

OFUN push(stack_name s; INTEGER v )

OVFUN pop(stack_name s) -> INTEGER v

Some brief remarks about the syntax of SPECIAL are appropriate. First, all reserved words are in caps.

Second, SPECIAL is a "typed" language in that a type is associated with each item when declared, thus

permitting subsequent appearances of the items in a specification (see stage 4) to be checked for consistency

with their declared type. For present purposes, a type is a set of values. The type INTEGER (a primitive type

of SPECIAL) has as values all of the integers - positive and negative (including zero). The type BOOLEAN
(also a primitive type of SPECIAL) has as values TRUE and FALSE. Although not needed for this example,

there are additional primitive types. New types, e.g., sets, vectors, structures (records), subtypes, may also be

constructed out of existing types.

One or more types noted as designator types can be associated with a module. The values of these types,

called designators, serve as names for abstract objects of the module. The interface description of a module lists

all of its designator types. For example, the "stacks" module interface description declares the designator type

"stack_name" (an abbreviation for name-of-stack).

Following the designator types, the interface description lists the module's parameters. A parameter of a

module is a symbolic constant that, upon initialization of the module, acquires a value which is not subsequently

changed by any operation invocation. The parameter mechanism enables a module specification to have some
generality. Often a module can appear in different machines in the hierarchy, with a different value for the

parameters

Another reason for leaving the values of parameters unbound at specification time is that they are often

dependent on the values of lower-level parameters, in a manner that is not decided until later stages.

The "stacks" module has the single integer-value parameter "max stack size", whose value is the

maximum number of elements that can be in a stack. The reader should observe that we have made the

decision for this example that all stacks of the module are of the same fixed size.

Finally, the interface description lists the operations of the module. Depending on whether iis invocation

returns a value and/or causes a state change, an operation is declared to be one of the following three kinds:

V-function (VFUN) ~ returns a value, but causes no state change.'

'Consistent with Parnas' notation [36], we denote operations as "functions", even though they do not necessarily have the properties of

mathematical functions.
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0-function (OFUN) - causes a state change, but does not return a value.

OV-function (OVFUN) — returns a value and causes a state change.

The "stacks" module has two operations:

"push" — causes an integer v to be placed on top of stack s.
^

"pop" ~ causes the integer value v on the top of the stack s to be removed and returned.

The reader should note that the decision to provide integer stacks is manifested by declaring the second

argument of "push" and the returned value of "pop" to be of type INTEGER.

4.3.2 Interface Description for "arrays"

For "arrays", the interface description is as follows:

MODULE arrays

array_name: DESIGNATOR

INTEGER array size

VFUN access_array(array_name a; INTEGER i) -> INTEGER V
OFUN change_array(array_name a; INTEGER i, v)

The designator type "array name" has as values the names of arrays maintained by the module. All arrays

are of a given fixed size, namely the value given to the parameter "array size". Two operations are provided:

"access_array" - returns the integer v in the i-th location of array a.

"change_array" — causes the integer v to be stored in location i of array a.

As with "stacks", we have declared the values stored in arrays to be of type INTEGER.

4.4 Stage 3 ~ Intermediate Machines and Interface Description

In stage 3 "intermediate machines" are selected to bridge the gap between the extreme machines. The
choice of intermediate machines is one of the most creative aspects of the use of HDM. In general, relatively

simple modules with relatively simple interdependences are sought. As in stage 2, each intermediate machine is

decomposed into modules, each of which is given an interface description. Also in stage 3, a hierarchy description

of the system is produced in HSL (Hierarchy Specification Language), listing the modules assigned to each

machine and the ordering of the machines in the hierarchy.

For the example, no intermediate machines are required. Thus the hierarchy description is

STACKS EXAMPLE

(INTERFACE levell stacks)

(INTERFACE levelO arrays)

(HIERARCHY stack example (levelO implements levell)

^Hereafter we will refer to "stack s" as a shorthand for "the stack that corresponds to the designator s",
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4.5 Stage 4 -- Module Specification

In this stage, a specification is written (in SPECIAL) for eacli of the modules identified in the two

previous stages. The specification for the modules that constitute a machine provide a complete description of

that machine's functional behavior. Thus the specifications of the "user-interface" modules completely describe

the functional behavior of the system.

SPECIAL specifications have been designed to facilitate communication of design decisions and to be

machine processable for automatic consistency checking. The semantics of SPECIAL can be stated precisely.

4.5.1 Expressions in SPECIAL
In presenting a program using a conventional programming language, one produces a sequence of

statements. On the other hand, a specification in SPECIAL is a collection of expressions. Each expression is of a

particular type, characterizing the type of the values returned by the expression. Expressions are constructed

using constants, variables declared in the specification, built-in functions and connectives of the language,

functions (O, OV, and V) of the module being specified, and additional functions declared to produce a more

readable specification. The following are examples of types of expressions supported by SPECIAL.

1 . Arithmetic Expressions

The value returned by an arithmetic expression is of type INTEGER or REAL. An arithmetic expression

is a single constant, a variable or a user-defined function of type INTEGER or REAL, or is built out of existing

arithmetic expressions using the operations " + ", "*", "/".

2. Boolean Expressions

The value returned by a boolean expression is of type BOOLEAN. The constants TRUE and FALSE are

boolean expressions, as are variables and functions declared to be of type BOOLEAN. The operations AND,
OR, "'" (NOT) and " = >" (IMPLIES) are used to build up boolean expressions from existing boolean

expressions.

3. Relational Expressions

Using the infix relational operators (namely " = ", "<", "<=", ">", ">=", "' = "), boolean expressions are

constructed from existing expressions. For "= " (or
"~ = "), the resulting expression is of the form A = B (or A

"= B) where A and B are required to have the same type. For the other operators, each of the two component

expressions is required to be of type INTEGER or REAL.

4. Conditional Expressions

A conditional expression is of the form IF P THEN Q ELSE R, where P is of type boolean, and Q and

R are of the same arbitrary type. The type of the resulting expression is the type of Q (or R).

5. Quantifled Expressions

To express properties relating to a large number of values, SPECIAL provides quantified expressions that

are in the first-order predicate calculus. The universal quantified statement is written as

FORALL x|P(x): Q(x)

or

FORALL x: P(x) = >Q(x).

The meaning is "For all values of x such that P(x) is true, Q(x) is also true." Clearly, P(x) and Q(x) are

of type BOOLEAN, as is the type of resulting expression. The variable x can be of any type, usually declared

prior to its introduction in the specification.

The existentially quantified statement is written as

EXISTS x|P(x): Q(x),

which has the meaning "There exists a value x such that, if P(x) is true, then Q(x) is also true."
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4.5.2 Role of "
?

" in SPECIAL
SPECIAL provides the particular value UNDEFINED (abbreviated as "?") to stand for "no value". It is

used in a specification where the designer wishes to associate the absence of a meaningful value with a data

structure. (UNDEFINED should not be confused with "don't care", which stands for some value.)

UNDEFINED is only used in a specification, not in an implementation; no operation can return "?" as a value.

For purposes of establishing type matching rules, however, "?" is assumed to be a value of every type.

4.5.3 Specification of "stacks"

Now we are ready to discuss the SPECIAL specification of the module "stacks". This specification consists

of three paragraphs. TYPES, PARAMETERS, and FUNCTIONS. More complex modules would require

additional paragraphs, omitted here for simplicity.

1. TYPES paragraph

Here the types referred to in the specification are declared. It is required that all designator types (e.g.,

"stacks" for this module) be declared, but the declaration of other types can be deferred until the first

appearance of an item of that type. Note that comments — $(This is a comment) - can appear anywhere in a

specification.

2 PARAMETERS paragraph

All of the parameters are listed as they appear in the interface description of the module.

3. FUNCTIONS paragraph

Most of the functionally interesting information in a module specification is embodied in the FUNCTIONS
paragraph. Each of the operations of the module ("push" and "pop" for the module "stacks") is listed and

individually specified. In addition, other functions, typically V-functions corresponding to data structures, are

introduced to assist in the specification of the operations. It is emphasized that, except for the primitive

machine, the data structures serve only for purposes of specification.

We separately consider V-functions and O- and OV-functions.

a. Specification of V-functions

For purpose of specification, a V-function returns a value and never causes a state change. A V-function

is classified as [primitive or derived] and [visible or hidden]. Thus a V-function is one of four flavors, identified

by the combination of reserved words that appear in its specification.

The primitive V-functions - "ptr" and "stack_var' for the "stacks" module - correspond to the module's data

structures. Their specification requires the association of an initial value with each possible argument value.

That is, all primitive functions are defined to be "total", although many argument values correspond to physically

meaningless conditions. For such conditions, the value of the function is usually "?". The expression following

INITIALLY specifies the initial value. The primitive v-function "stack_var' returns the INTEGER v

corresponding to the i-th location in stacks. We have decided that the initial value v of "stack-val" for any stacks

is to be "?" for all i. The expression

V = ?

which is understood to mean

FORALL s; i: stack_val(s, i) = ?

captures this decision. Note that in general the expression need not determine a unique initial value for a

primitive V-function.

The other primitive V-function, "ptr" returns the value i of the stack pointer for stack s. The initial value

of "ptr" is 0 for all stacks, reflecting the decision that all stacks are to be initially empty.

A liiddenV -i\xnci\on cannot be called from outside the module, i.e., it is not an operation. The reserved

word HIDDEN in the V-function specification declares the function to be hidden. Clearly, "stack_var' should be
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hidden since only the top element of the stack is to be accessible. However, some designs for a stack allow the

pointer to be accessible.

The visible V-functions are operations that return a value, but do not cause a state change. They are

identified by the absence of the word HIDDEN in the specification. As is the case for all operations, the

specification can indicate a list of exception conditions. Since the "stacks" module has no visible V-functions, we
defer discussion of exception conditions to the next section.

The value of a derived V-function is specified in terms of the values of the primitive V-functions. In the

specification of a derived V-function, an expression that defines the returned value appears following the

reserved word DERIVATION.

Because a V-function can serve multiple roles (say as an operation and a data structure), the length of a

SPECIAL specification can be reduced, as compared with an alternative specification technique in which

operations and data structures are separately specified.

b. Speciflcation of O- and OV-functions

All O- and OV-functions are state-changing operations. An operation can return one of n exceptions exl,

ex2, exn (we use the descriptive term "raise" in referring to exceptional returns), or can return "normally".

No state change occurs when an operation invocation raises an exception. A value-returning operation (V- or

OV-function) will return an actual value upon the NORMAL return; an 0-function merely returns. Exception

returns are a way of associating particular events with classes of states and values of the operation's arguments.

In the specification of an operation, the specification of each exception condition consists of a name (typically a

mnemonic for the condition) followed by a boolean expression that characterizes the condition. The list of

exception conditions follows the reserved word EXCEPTIONS.

The behavior of an operation that has n exception conditions is determined as follows: if the expression

corresponding to exl evaluates to true, then the first exception is raised; if the expression corresponding to exl

evaluates to false and the expression corresponding to ex2 evaluates to true, then the second exception is raised;

...; finally, if the expressions corresponding to exl, exn evaluate to false, the operation returns normally.

For the O-function "push", there is the single exception condition, specified as:

stack_overflow: ptr(s) = max stack size

The expression evaluates to true when the number of elements in the stack is equal to the maximum size

of a stack.

Following the reserved word EFFECTS, the state changes that can occur as associated with O- and

OV-functions, together with the value corresponding to the NORMAL return of an OV-function, are specified.

The specification consists of a collection of boolean expressions, each called an ejfect (in which the order of

presentation is irrelevant). Semantically, the collection of effects should be read as a single expression which is

the conjunction of the expressions corresponding to each of the effects. An effect can reference the following:

arguments to the operation, values of primitive V-functions before the invocation ("old" values) of the

operation, and value that primitive V-functions will obtain after the invocation ("new" values). In the

specification, a single quote, "'"
,
preceding a primitive V-function indicates the value of the V-function after the

invocation. The collection of effects defines the new value of each primitive V-function in terms of old values

and argument values in the following way: the feasible new values for the primitive V- functions are those for

which each of the effects evaluates to TRUE. Thus the specifications need not be deterministic, i.e., they need

not define a unique new value for each primitive V-function argument list. However, the specifications for our

simple example are deterministic.

When the new value of a primitive V-function for some argument is not constrained by the specification,

it is assumed that the new value is identical to the old value.

For "push", the effects are:

'stack_val(s, 'ptr(s)) = v;

'ptr(s) = ptr(s) + 1;

They constrain the new value of "ptr(s)" to be the old value incremented by one, and the new value of the
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pointer for s to be the value v pushed onto the stack. Note that since the effects do not constrain the values of

stack_val(s,i) for i

~= 'ptr(s), such values remain unchanged.

We will not burden the reader with a discussion of the effects for "pop", except for a few remarks. First,

note that the returned value v is specified to be the INTEGER on the top of the stack in the old state. Second,

the location at the top of the stack is the old state changed to be "?". It should be clear that this latter state

change is apparent only in the specification. The implementation need not be concerned with this apparent

storing of "?".

4.5.4 Speciflcation of "arrays"

Since the specification of the module "arrays" is relatively straightforward, only a few clarifying remarks are

necessary. The V-function "access_array" serves both as the principal data structure of the module and as an

operation. Its invocation raises an exception if the actual argument i is out of bounds. Thus, although the

function is defined to be total, its representation (for example, as a data structure in a programming language)

need only account for values of i that are within bounds.

4.6 Stage 5 -- Data Representation

4.6.1 Overview of Module Representation

In this stage, the primary concern is with representing the data structures of each machine (other than the

primitive machine) in terms of the data structure of the next lower-level machine. The description of the

representation of a machine m in SPECIAL is denoted as the "m mapping". As with a module specification, a

mapping can be checked for self-consistency, but also for consistency with the module specifications, interface

description, and hierarchy description.

A mapping, similar to a module specification, does not act as executable code. Instead, a mapping is a

formal description, serving as a record of the representation decisions and as an input to a verification system.

Thus the representations are conveniently described using the SPECIAL expression mechanism.

Since the hierarchy for our example contains only two levels, only one mapping is required, for "stacks".

The mapping contains three paragraphs: EXTERNALREFS, INVARIANTS, and MAPPINGS. (For more
complicated systems, additional paragraphs would be required.) Before discussing the mapping in detail, it is

appropriate to present informally the basic representation decisions.

4.6.2 Representation Decisions for "stacks"

Each stack of integers is represented as an integer array. The current value of the stack pointer for stacks

is the value in the 0-th location of the array a corresponding to s. Each of the "defined" elements in stack s ~

those in position 1, 2, ptr(s) - are in corresponding positions of array. Thus the locations of array a starting

with location ptr(s) + 1 hold values that are inconsequential to the "stacks" module. Since all locations of the-

array except the 0-th are available to hold stack elements, the maximum stack size is the array size minus one.

4.6.3 EXTERNALREFS Paragrapii

In the EXTERNALREFS paragraph are listed all the items of the upper level that are to be represented,

and those of the lower level that are the targets of the representation. For both levels, the items of concern are

primitive V-functions, parameters, and designator types. Clearly, the primitive V-functions and parameters are

of concern here as they are the data structures of the respective machines. However, the mapping must also

consider the designator types of the upper modules, since they embody a set of values that have meaning only

at the upper module, and thus are part of the data of that module. The inclusion of type information here

(although redundant with information in the module specification) permits the type checking of a mapping as a

self-contained unit.
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4.6.4 MAPPINGS Paragraph

In this paragraph the representation decisions that were informally presented above are precisely

formulated. Each upper-level data item is separately represented, that is, associated with an expression in terms
of lower-level data items. The expression associated with an upper-level data item can be viewed as a definition

of that item in terms of the data items at the next lower level.

The first of the mappings

stack_name: array_name

captures the decision that the type "stack_name" is to be represented by the type "array_name". it is

understood that each designator s of "stack_name" is to be represented by a unique designator a of
"array_name", although at this point it is not necessary to define precisely the correspondence between values of

the two types. In general, a designator type of the upper level can be represented by any type of the lower level.

Thus, designators can be represented (for example) by integers; indeed, assuming that a primitive machine
supporting designators is not available, the ultimate representation of designators is likely to be in terms of such
primitive data types as integers, characters, or machine words.

The second of the mappings

max_stack_size: array size-l

captures the decision that the maximum number of stack elements is one less than the size of an array.

The third of the mappings

ptr(stack_name s): access_array(s, 0)

captures the decision that the stack pointer is stored in the 0-th location of the corresponding array. Note
that s, declared to be of type "stack name", appears in the defining expression in a context in which

"stack_name" has no meaning. Clearly, s in the defining expression refers to the unique "array_name"

designator corresponding to s. In general, when an argument a of some type t associated with the upper level

appears in the defining expression, it is assumed to be the unique element a' that is the representation of

a. Thus the type of a in the defining expression is t\ where t' is the type that represents t.

The fourth of the mappings

stack_val(stack_name s; INTEGER i) :

IF i > 0 AND i < = access_array (s, 0)

THEN access_array (s, i)

ELSE ?

captures the decision that "defined" elements of the stack appear in corresponding elements of the array. For i

corresponding to an undefined stack element, the expression must evaluate to "?"

4.6.5 INVARIANTS Paragraph

This paragraph contains boolean expressions (invariants) in terms of the lower level that are intended to

be true after the execution of a program that implements an operation of the upper level machine. In effect,

the invariants express constraints on the lower level state. It should be understood that the invariants are

expected to be satisfied by any program referring to the operations of the lower-level machines. Generally, many
invariants can be posed, but only those that assist in the verification, that are significant in the documentation of

the system, or that simplify the implementation are included.

The single invariant of our example

FORALL array_name a:

access_array(a, 0) < = array_size-l

AND
access_array(ia, 0) > = 0
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constrains the value in the 0-th location of all arrays to be bounded by 0 and array size-l. Since the stack

pointer is stored in the 0-th location of the corresponding array, this invariant indeed seems reasonable.

4.7 Stage 6 -- Abstract Implementation

In stage 6 each machine (other than the primitive machine) is implemented in terms of the machine at the

next lower level. For machine i, the implementation consists of

An initialization program whose execution causes the state of machine i-1 to become a state that

maps (up) to the initial state of i; A program for each operation of i that satisfies its specifications.

All programs of the implementation of i reference operations of i-1.

For expressing the implementation programs, we have developed the language ILPL (Intermediate Level

Programming Language). Although, in principle, almost any programming language could be used to express

machine implementations, ILPL is particularly well-suited in that its syntax, type checking rules, and model of

computation are compatible with the other languages of HDM.

We will not present a detailed description of ILPL, but instead illustrate some of its features in connection

with the implementation of "stacks". First, we present a brief overview of the language.

4.7.1 Overview of ILPL
ILPL is an extremely simple imperative language, avoiding many of the complex features of high-order

programming languages. The main purpose of ILPL is to describe a sequence of calls to operations. Some of the

significant features of ILPL are the following:

Simple argument passing discipline: In ILPL, all arguments are passed by "value". Of the

conventional schemes for passing arguments - by "value", by "reference", and by "name" — "call by

value" is conceptually the simplest. It has several advantages in implementing secure systems,

including the avoidance of a wide class of security bugs referred to as "time-of-creation to

time-of-use" modifications [34].

Limited built-in data structures: In HDM, most of the data structures are provided by specified

modules. Thus, ILPL need provide only a few simple kinds of data types, namely integers,

characters, booleans, vectors, and structures (records).

Controlled side-effects: Since an ILPL program consists mainly of calls to operations of a machine,

the only side-effects are changes to V-functions as portrayed in the specifications of modules.

Simple storage allocation: The only allocation carried out in the execution of an ILPL program is for

local variables. Any dynamic allocation of objects is reserved for the modules that maintain such

objects.

No design aids in the language: Since HDM separates design and implementation decisions into

distinct stages, all descriptions relating to design are expressed in SPECIAL or HSL.

Structured exception handling: The program implementing an operation has multiple return points,

one corresponding to the normal return and the remainder corresponding to the exceptional returns.

A program referencing an operation "handles" any of the possible returns - exceptional or normal ~

for that operation.

Type compatibility with SPECIAL: ILPL provides only a subset of the types of SPECIAL, essentially

those that are easily implemented. Among those omitted is the "set". However, ILPL does support

designator types, enforcing the same protection rules for designators as SPECIAL.

The implementation of "stacks" contains four paragraphs: EXTERNALREFS, TYPE MAPPINGS,
INITIALIZATION, and IMPLEMENTATIONS, discussed next.
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4.7.2 EXTERNALREFS Paragraph

All of the operations of both levels are listed. Also included are the parameters of both machines (since

they can be referenced as operations) and the designator types. Complete type information is given here for all

arguments and results, even though it duplicates information in the module specifications, allowing the

implementations to be complete for purposes of type checking.

4.7.3 TYPE MAPPINGS Paragraph

The mappings of the designator types of the upper machine are listed. Again, this information has already

appeared (in the representation), but its appearance here means that the implementation is self-contained.

4.7.4 INITIALIZATION Paragraph

The "initialization" program is given which when executed will drive the lower-level machine to a state that

maps to the desired initial state of the upper-level machine. For the example, the initialization program has only

to establish a value for the "stacks" parameter "max_stack_size". Note that the image of the initial state of

"arrays" is such that "ptr(s)" has the initial value 0.

The reader might wonder how the initial value of"?" for stack_val(s, i) is realized. Recall that the

representation for "stack_var is

stack_val(s; 1) :

IF i > = 1 AND i < = access_array(s, 0)

THEN access_array(s, i)

ELSE ?

But the initial value of access_array(s, 0) is 0, in which case the expression following IF is false for all i. Hence,

for the initial state of "arrays" the representation of "stack_var becomes

stack_val(s, i) = ?

which is the initial value desired.

4.7.5 IMPLEMENTATIONS Paragraph

Following are the programs that implement the operations of "stacks". The informal description of the

program for "push" should serve as a documentation of the program, and assist a reader in grasping the syntax

of ILPL.

INFORMAL DESCRIPTION OF "push"

Retrieve the 0-th element of the array (p, the stack pointer);

If i=p+l is beyond the array bounds (and thus exceeds the

maximum stack size), raise the "stack_overflow" exception

and exit;

Modify the i-th location in the array to be v (push v onto

the stack);

Modify the 0-th location in the array to be i (increment the

the stack pointer);

For the actual program, the first statement is

i <- access_array(s, 0) + 1

No exception is expected from the invocation of access_array(s, 0), since the second argument (0) is clearly in

bounds. The second statement

EXECUTE change_array(s, i, v) THEN
ON array bounds : RAISE(stack_overflow);

ON NORMAL : ;

END;

illustrates the mechanism for exception handling in ILPL. Following EXECUTE is a reference to an operation.
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change_array(s, i, v), that can lead to an exception, in this case "array_bounds". The text following ON has the

following meaning: If the "array bounds" exception is raised as a result of the invocation of "change_array", then

the "stack_overflow" exception is raised as the termination of the program for "push". (If the "change_array"

operation had more exceptions than were expected, they would be accommodated by additional "ON" terms.) If

the "array bounds" exception is not triggered, then the invocation of "change_array" terminates "normally" by

storing v in the i-th location of array s.

To complete the description of the program, no exception is expected for the statement

change_array(s, 0, i),

since it is seen that i is within bounds.

4.8 Stage 7 -- Coding

The abstract programs associated with stage 6 must ultimately be transformed into efficiently executable

programs. That is the task of stage 7. In general, the task may be accomplished automatically or manually. The
choice may rest on the actual hardware and on the tools available for compiling or assembling code. The
development of automatic tools for accomplishing stage 7 is encouraged.

5. Illustrative Design of a Secure DMS

5.1 Introduction

This appendix illustrates the use of HDM in the design of secure applications subsystems by giving a

skeletal design for a secure data management system. The fundamental emphasis is on the application of the

methodology, and not on the detailed design of the data management system. Thus, the design is intentionally

incomplete as it is intended to serve primarily as a vehicle for the illustration.

The goals of such a data management system are familiar: to provide storage and retrieval facilities for

large data collections, with a high degree of generality in data description, in query definition, and in the user

interface. The system should also be reliable and efficient in operation, and easy to use.

Consistent with the goal of demonstrating the suitability of HDM for developing an applications subsystem

with appropriate security, the concept of a relational data base has been chosen as representative of suitable

generality and scope. It is recognized that there is much controversy in the data management world over the

various types of data management systems, and that there are applications for which the relational approach may
be inappropriate. The choice of a relational model here should be construed not as an unqualified advocacy of

that approach, but rather as illustrative.

The emphasis in the design given here is on the mechanisms of the intermediate levels of a data

management subsystem, namely, the notions of relations and views and the access authorization that they

provide. The higher-level issues of providing appropriate user interfaces are considered to be important, but

secondary for present purposes. Similarly, lower-level issues such as operating system efficiency are also

considered as secondary issues for present purposes.

5.2 Overview of the Design

The present design is fairly simple, but general. It can be easily embellished so as to increase efficiency or

ease of use. However, whereas such embellishments do not add to the illustration of the methodology, their

presence has been eschewed.

In accordance with the use of the methodology, the design is decomposed into levels of abstraction. The
fundamental abstraction used here is that of relations. A relation contains data organized as a set of tuples that

can be

The individual fields can be named and manipulated separately. The next higher-level abstraction is that

of views, which provide authorization for selective accessing of the data in a relation, including reading and
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writing of data in particular data fields by context. Views permit access to relations in a higher-level language
than that provided by relations themselves. The next higher-level abstraction is that of queries, which permit
requests about the data in relations that are more user-oriented. These three levels arc part of the design, and
can be augmented with other levels, e.g., lower levels for retrieval efficiency, and higher levels for user

convenience. These levels of abstraction are discussed below.

5.3 Relations

The literature on the relational model of data has been growing rapidly in the last few years, beginning
with Codd [8]. For various developments, the reader is referred to [7], [32], [20], and [43], for example.
An excellent survey is given by Chamberlin [6].

For present purposes, the terms DOMAIN, SCHEMA, RELATION, and TUPLE are defined first, in

order to develop the concept of a relational data base. In informal terms, a DOMAIN is a basic semantic
variable of a body of data. More formally, a domain d is a variable of a particular type (here considered as a

character string) whose range is a set of possible values. A convenient example, given by [7], involves

domains such as EMPLOYEE, SALARY, MANAGER, DEPARTMENT, ITEM, VOLUME, and FLOOR. A
SCHEMA s is a vector of domains chosen to model some body of data. Three schemas are given.

si: EMPLOYEE, SALARY, MANAGER, DEPARTMENT
s2: DEPARTMENT, ITEM, VOLUME
s3: DEPARTMENT, FLOOR

In formal terms, a RELATION r for a schema s with domains (dl, dn) is a subset of the cartesian

product dl X d2 X ... X dn, i.e., a particular set of instances of a general schema. Three relations rl, r2, and r3

are considered here, based on the schemas si, s2, and s3, respectively. These are given the symbolic names
EMPLOYMENT, SALES, and LOCATIONS by which they may be identified at the query level. The symbol w
(wl, w2, etc.) is used to denote a value.

SALES is a set of tuples {[w4, w5, w6]} : r2

LOCATIONS is a set of tuples {[w4, w7]} : r3

A TUPLE t of a relation r is an instance of the schema for that relation. That is, it is a vector tw of

values, one from each of the domains in the schema for which the relation is defined. A relation is then seen

to be a set of tuples for its schema. For example, the relation rl (EMPLOYMENT) may contain tuples such as

[Smith,9000,KelIy, personnel]

.

A RELATIONAL DATA BASE for a set of domains is a collection of relations each of whose schemas is

a subset of that set of domains. In the design given here, the collection of relations in any data base rdb is

catalogued as a directory of relations for that data base, r_set = get_relations(rdb). (The functions pertaining to

relations are summarized in Figure 5-1.) In the above example, the three relations rl, r2, r3 form a relational

data base rdb (called DEPARTMENT_STORE) that may be one of many data bases known to the system. A
catalog of data bases is provided by the function rdb set = get data basesO.

Additional functions provide the ability to create relations and to modify their contents. For example,

t_set = get_tuples(rdb,r) provides the set of tuples forming the relation r. The function tw =

get_values(rdb,r,t) provides the vector of values tw[i] in a particular tuple t. The function

update_tuple(rdb,r,t,tw) permits the assignment of new values to a tuple. The set of functions associated with

the maintenance of relations forms the module RELATIONS (see Figure 5-1). (Terminologies in the literature

differ slightly from one to another. The notion of relations given here is also slightly different from the others.

What is sometimes called an attribute is here called a domain. Within a schema there may be differently

identified domains with the same range, but the identically identified domain is not allowed to appear repeatedly

in the same relation.)

(For simplicity, it is assumed here that all relations are in "third normal form" [6]. Intuitively this means

that each relation deals with a single concept and contains at least one unique key. This assumption greatly

simplifies inserting, deleting, and updating. It avoids ambiguity and minimizes inconsistency.)
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5.4 Views

Access to a data base is governed by the use of VIEWS on the relations of that data base. A view acts as

a selector, or mask, which, when applied to a particular relation, selects specific tuples from that relation, and

extracts appropriate values from those tuples. Queries, discussed below, are used to access data by invoking

views on different relations of the same data base.

In the given design, a view is applied to a relation by means of the function tl_set = extract(rdb,view).

In the sense that the result of this extraction is itself a relation (with the same schema), a view may
conveniently be considered as itself being a relation (i.e., as the result of extraction). However, this can be

confusing unless careful distinction is made between the vectors defining a view and the tuples of either the

original relation or the extracted relation. This distinction is helpful, since the definition of a view itself looks

like that of a relation.

In the sense that an authorized view is required in order to extract information from a relation, a view also

acts as a capability for selective access to the relation. In the given design, the set of authorized views for each

relation is catalogued in a directory of views, view_set = get_views(rdb,r). Access to these views may be

granted as desired.

5.5 Primitive Views

A view is either primitive or nonprimitive. A PRIMITIVE VIEW v for a given relation r contains a single

vector vw of values for the schema of the relation, where vw = get_view_vector(rdb,v). However, each value

vw[i] may be either a value from its own domain, or one of two special values "*" and "%". Here "*" denotes the

universal value, and "%" denotes the null value. (For simplicity, "*" and "%" are considered to belong to every

domain. However, note that each domain could also contain a null value of its own, other that "%".) In

essence, "*" extracts any given value, while "%" extracts only itself, irrespective of the given value. Each view

also contains appropriate access authorization, discussed below.

More precisely, consider the value vw[i] (for domain s[i]) for a view v, and the value tw[i] of a tuple t to

be considered for selection, where tw = get_values(rdb,t). A value tw[i] is EXTRACTABLE by vw[i] if and

only if vw[i] is
"*" or "%" or the value tw[i] itself. A tuple is SELECTED if and only if each of its values is

extractable. If a tuple t of relation r is selected, extraction takes place as follows, as a part of extract(rdb,v). If

vw[i] = "*" or vw[i] = tw[i], then tw[i] is extracted; if vw[i] = "%", then "%"
is extracted. (Note that if neither

of these cases applies, then by definition the tuple is not selected.) Thus "*" acts as a "don't-care" in the

selection, while "%" acts as a filter (mask) in the extraction. No values from domain s[i] may be viewed when
vw[i] = "%". The null value "%" is returned in place of the actual value in position i of any selected tuple. The
extraction of the tuple value tw[i] by the view value vw[i] is summarized in Figure 5-2.

Specifications for the modules RELATIONS and PRIMITIVE-VIEWS are given in Figures 5-4 and 5-5,

respectively. These represent a detailed design for a prototype set of functions supporting the relational concept.

The following discussion of queries is purposely not specified in detail, in that the relations and views modules

are intended to be general enough to support different query languages.

As an example, consider the schema si and the relation rl (called EMPLOYMENT) on that schema. A
primitive view on that relation rl has the view vector vw = [*,*,*,*], which provides access to each domain of

each tuple in the relation. A restricted primitive view on rl is vl with vwl = [*,%,*,*], which provides access

to all tuples, but with no SALARY information. A still more restricted primitive view on rl is v2 with vw2 =
[*,%, Kelly,%], which provides access to just those tuples in rl with Kelly as the manager, returning the

employee information, but filtering out the salary and department information. The result of "extract(rdb,vl)"

is thus a set of tuples [wl,%, Kelly,%].

Since the result of tl_set = extract(rdb,view) is a set of tuples over the same domain as that for r, this

result is itself a relation (with the convention that the values "%" and "*" are included in every domain). Thus,

one view for a given relation may have a second view applied to it, and so on.

The above discussion concerns reading da a ''-"ough a view. Similarly, operations exist to update, insert,

and delete through a view. In the case of updating, ^e function "v_update" permits a value to be updated for

each tuple in a relation selected by the view. The function "v_insert" permits a new tuple to be inserted. The
function "v_delete" permits tuples selected by the view to be deleted. Additional functions permit new views to

be created for existing relations and more restricted views to be created for existing views. The set of functions
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provided by the module PRIMITIVE-VIEWS is summarized in Figure 5-1.

5.6 Nonprimitive Views

A NONPRIMITIVE VIEW for a relation r is a set of two or more primitive views for r; it may be built up

by set UNIONS of primitive views. In general, then, a VIEW is either a nonprimitive view or a set consisting of

just one primitive view. Although externally it is thought of as just a set of primitive views, e.g., {[*,%, Kelly, *]

,

[*,*,Jones,*]} on rl, a nonprimitive view could be represented in some compressed internal form (see below).

5.7 Queries

A QUERY is a request to obtain information from a data base and is stated in some well-defined language

called a query language. Queries operate on views and may provide more flexibility than views with respect to

formatting and searching. They are often also far more concise. Whereas each view above is for a single

relation (although this is not a necessary distinction - see below), queries may involve multiple relations. (The

distinction between queries and views is somewhat similar to interpreted versus compiled access, although a

query may in fact be compiled into extractions using particular views.)

As an example, consider the primitive view v3 with vw3 = [*,*, Kelly,%] on the relation rl above.

Suppose it is desired to obtain the set of those employees whose salary is at most $8000. This could be

conceived of as a set of primitive views v4 with vw4 = {[*, 8000, Kelly,%], [*, 7999, Kelly,%], ...} on rl, spanning

the entire salary range up to $8000. However, from an efficiency viewpoint, such a representation would be

ridiculous. Thus some notation such as vw4 = [*,< 8000, Kelly,%] would seem appropriate, if this set were to

be represented directly as a nonprimitive view. An alternative is the construction of a query.

Many query languages can be implemented on top of the mechanisms provided here. For illustrative

purposes, SEQUEL is used here. (See [4], and [7].) Relative to the running example of the relations rl, r2,

r3 given above, SEQUEL permits queries of varying complexity, such as the following.

Ql: SELECT EMPLOYEE,SALARY
FROM EMPLOYMENT
WHERE DEPARTMENT = personnel;

Q2: SELECT EMPLOYEE,FLOOR
FROM EMPLOYMENT,LOCATIONS
WHERE EMPLOYMENT.DEPARTMENT = LOCATIONS.DEPARTMENT;

Similarly, the example of the view v4 above would be handled by a query

Q3: SELECT EMPLOYEE,SALARY
FROM EMPLOYMENT
WHERE MANAGER = Kelly

AND SALARY < = 8000

In attempting to honor such a query, the data management system must first check that the query is

consistent with views authorized to the user (see below) and then retrieve and format the desired information.

Using the query language, it is possible to rename or permute the order of the domains, to convert the units or

representation of a domain, and to eliminate domains altogether.

As an example of the honoring of a query, consider the query Q2. Two views are required, such as va =

[*,%,%,*] on rl and vb = [*,*] on r3. The views [*,<8000,%,*] and [*,*], respectively, would also suffice,

although the query would then provide the desired information only for those employees with salaries under

$8000.

If such a query were to be used repeatedly, it would be desirable to state it directly or compile it into a

sequence of statements in the view language. However, the accesses defined by each view must be reevaluated

on each such reuse to ensure the extraction of the most recent version of the data and to guarantee that any
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revoked access will be correctly revoked. In the case of Q2, the query corresponds to the set "result" of ordered

pairs [ EMPLOYEE , FLOOR ] given by

LET ta_set = extract (rdb,rl,va);

LET tb_set = extract (rdb,r3,vb);

FORALL ta INSET ta_set

FORALL tb INSET tb_set

IF ta[4] = tb[l] THEN [ta[l], tb[2]] INSET result;

Note that queries could be named and parameterized. For example, Ql could be generalized for an

arbitrary department "dept", and cited as Ql(dept) -- with the given example being Ql (personnel).

If the data management system ensures consistency of all data entered into it, then it is possible to

eliminate mention of specific relations as well as specific views from the queries, and thus leave the choice of

view and relation up to the data management system. For example, consider the more abstract statement of

Q2, as follows.

Q2: SELECT EMPLOYEE, FLOOR)

This query could be interpreted as before. However, if a (redundant) fourth relation existed that included

both EMPLOYEE and FLOOR, then ambiguity would exist as to how to interpret the query. Nevertheless, the

correct interpretation would be made, so long as the data base was consistent.

5.8 Enrichments of the View Language
Since a view is the unit of authorization for selective access, it may be desirable to provide increased

granularity of protection. One way to do this is to treat queries as complex views and to protect them in a

similar manner. Another (possibly equivalent) approach is to enrich the scope of the view representations, as

suggested above by v4. In addition to the "<" notation mentioned above and the related comparisons (e.g.,

">", "> ="), it would be desirable to write arbitrary expressions on the values of the tuples in a relation, such

as

vw[l] > "Q", assuming vw[l] is a character (ASCII collating

sequence implied),

vw[2] < vw[3] + vw[4], assuming vw[i] are integers,

vw[5] AND vw[6] = TRUE, assuming vw[i] boolean,

vw[7] = vw[8], assuming vw[i] of the same type,

and so on. These constraints are easily expressible in the query language. However, there could be

advantages to expressing them explicitly as views.

Another enrichment would be to require the vectors defining views to contain sets rather than values, and

to redefine "%" and "*"
to be the null set and the universal set, respectively. Then extraction can be specified on

the basis of set inclusion. This seems somewhat more natural than the formulation presented here in terms of

the extraction; however, it significantly complicates the view definition language. (On the other hand, the view

definitions would no longer look like relations.)

It is straightforward to make each relation and each view order-independent, e.g., by requiring ordered

pairs of domain-typed descriptors and corresponding values. Then tuples would look like [dl:wl, d2:w2, ...].

This tends to complicate the calls given here, although it may be desirable for other reasons. However, note

that the query language is order-independent.

Another possible enrichment entails the creation and naming of multirelational views. However, with the

notion of views used here, these are unnecessary if multi-relational queries are compiled into efficient sequences

of requests on views.

Some of these elaborations of the view definition language could be included in a production relational

data management system. For present purposes, however, they are beyond the scope of the desired illustration.

Therefore they are not included in the specifications. In general, views are expected to be fairly simple,

indicating essentially just what domains are accessible, and how they may be restricted. The m.ore sophisticated
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selections are expected to be handled by the query language, although frequently used queries should

presumably be explicitly stated - either written in or compiled into the view language.

5.9 Access Authorization

As noted above, authorization to access values of certain domains in a relation requires possession of a

suitable view for that relation. Moreover, it requires authorization for the intended use of the information

accessible via the given view. In particular, specific authorization is required to read (extract) or update a

relation, as well as to perform other operations. Such authorization is associated with each relation and with

views on relations. Authorization to access a relation is undifferentiated by domains. That is, if a relation is

directly readable (or writable), each value of every tuple in that relation is readable (or writable). In general,

however, each relation is directly accessible only to its creator. He may in turn grant selective access to others

by means of views.

Specific authorization is required (and may be granted) to destroy a relation, to grant and revoke access to

a relation with specified authorization, and to read, insert, delete, and update tuples within a relation. There is

also control over whether a user may create relations at all within a given data base.

Access to a view of a relation is controlled by explicit authorization associated with that view. However,

this access is differentiated by domains, based on the occurrences of "%" and "*" within the view. For a view of

a particular relation, different domains of the relation may have different accessibility. For example, the

maintainer of a relation may disperse different views to different users, each reflecting access to different

domains within the tuples of that relation.

As an example, possession of the view vl = [*,%,*,*] on rl with read authorization permits read access to

the entire relation except for the salary field, which is invisible to this view. If this view is the only one

provided for this relation to a particular user, he can never read any salary information, either explicitly or

implicitly. He may in turn construct from vl on rl (and pass to other users) more constrained views -- for

example, v5 = [Green,%,*,*] on rl, or v6 = [*,%,Jones,*] on rl — but can never construct more powerful

views than what he has available. Note that the absence of read authorization prohibits the use of any operation

(at the view level and at the query level) that requires the reading of the prohibited domain information.

Permission to update the values of any tuple within a relation requires a view with "*"
in the positions to

be modified, as well as "update" authorization associated with that view. A view with a particular value, e.g., v3

= [*,*, Kelly,%] on rl with "update" authorization would permit updating of just those tuples containing the cited

value for the appropriate domain. Similarly, authorization to insert, delete, and indeed to destroy the relation

itself requires a view with the appropriate authorization.

Note that a user may have one view for a relation with some particular authorization, as well as a different

view for that relation with a different authorization. An example for views on rl would be vl with read

authorization and v6 with update authorization.

In the present design, a view never changes once it is created. It may be given to other users and may be

used to generate more restricted views. However, a revocable view may be created for a given view; the

revocable view retains the usefulness of the original view until it is revoked -- at which time it loses all

usefulness.

5.10 Hierarchical Structure of a Relational Data Management System

A data management system can be structured around these abstractions, for example with five conceptual

levels built successively upon the primitives of an operating system interface. From the top level of the data

management system downward, these levels are as follows.

COMMANDS (including queries)

VIEWS
PRIMITIVE VIEWS
RELATIONS
RETRIEVAL
THE OPERATING SYSTEM (including virtual memory)
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The functions of each of these levels should now be fairly self-evident. The COMMANDS level of the

data management system accepts requests in some convenient query language to define relations, to instantiate

them, and to retrieve data according to available views. It is capable of interpreting multirelation requests. The
VIEWS level maintains sets of primitive views for the same relation. The PRIMITIVE VIEWS level interprets

primitive views, and enforces the desired access authorization. (It could be absorbed into the VIEWS level.)

The RELATIONS level maintains data in the form of various relations. The RETRIEVAL level aids in

obtaining an efficient implementation of relations in terms of the primitives of the operating system. It is

particularly concerned with the efficient management of virtual memory. It could conceivably be absorbed into

the RELATIONS level, but is kept separate here so as to expose some issues that may have major impact on

system performance. Figure 5-1 provides a summary of specific functions of each level.

The design is conceptually similar in concept to those of [32], [43], and [1].

5.11 The Detailed Design

The specifications for the RELATIONS module and for the PRIMITIVE VIEWS level are given in Figures

5-4 and 5-5, respectively. Figures 5-2 and 5-3 illustrate the functions "extract" and "and_views" of the

PRIMITIVE VIEWS module.

Various nonprimitive functions have been omitted that can easily be implemented by using the available

functions. For example, in the module RELATIONS, it may be desired to add a new domain (initially with null

values for each tuple) to a given relation and thence to update the data for that domain. Similarly, operations

for flagging ("marking") certain tuples or linking tuples of different relations can be conceived; however, they

can be conceptually handled by including extra domains within a relation, to hold the marking or linking data by

means of the functions specified here. Other special mechanisms may be readily added if desired for efficiency

or ease of use.

Similarly, set operations on relations are desirable, such as set union, set intersection, set difference,

Cartesian product, and projection (i.e., domain elimination). However, in a data base in which updates are

made continually, the derivative relations thus obtained must also be maintained dynamically. Thus, it is

natural to use views to perform such operations.

As noted above, for simplicity, the order of domains within a relation and within a view is made visible at

the interfaces to the relations and views modules, but not at the query level. This is not essential. Note also

that update by domain rather than by index is in fact provided by the function "update_tuple_value".

5.12 Implementation

The specifications are given in terms of abstract designators for domains, schemas, relations, tuples,

relational data bases, and views. The access authorization inherent in data bases, relations, and views could be

implemented either in terms of capabilities corresponding directly to the designators for those abstractions (e.g.,

see [33]), or in terms of access control lists, or perhaps even as a combination of both. The designators for

domains, schemas, and tuples can be represented simply as integers or symbolic names, as desired.

Considerable attention is paid in the literature to whether relational data base systems can be as efficient as

conventional systems. The latter typically have lower-level language interfaces, and devote greater attention to

accessing details — although in many cases putting greater burdens on the users. The consensus seems to be

that, whereas there are certain applications for which a relational interface is less efficient, clever optimization

(e.g., at the RETRIEVAL level and in the choice of normal form) can make relational systems essentially as

efficient for a very large and realistic class of applications. Besides, where efficiency is critical, a user may be

permitted to use primitives of the views and relations modules directly. (Additional primitives desirable for

increasing efficiency are omitted here.)

Numerous other implementation issues also arise naturally in this design, such as efficient handling of

multi-relation queries, associative bypasses to deferred updating (e.g., batched updating) of data bases. For an

interesting discussion of various implementation issues, see [9].
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5.13 Conclusions

This appendix presents the outline of a simplified relational data management system. The simple design

specified here is intended to illustrate the applicability of the methodology to the design of secure applications

systems. It is noted that the machine-independence of the relational interface makes it appropriate for

implementation on a wide range of hardware and operating systems.
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Figure 5-1: Summary of Lower-Level Data Management System Functions

PRIMITIVE VIEWS:
extract

createview

destroyview

grant_access (create_restricted_view)

revokeaccess (revoke_restricted_view)

vupdate
v_insert

vdelete

RELATIONS:
create_data_base

createdomain

create_schema

createrelation

create_tuple

deletetuple

updatetuplevalue

destroy_relation

rename relation

Figure 5-2: Result of extract{Tdh,-v) on Tuple tw[i], if Selected

EXTRACT: | tw[i]
twl[i]=

I
% * w w'

? I
^ 'O "o

vw[i] *
I % * w w'

w
I

- - w

Note: "-" indicates no selection; w' '= w.

Figure 5-3: Result of and_viewsivw[\],\wl[i\)\ w' "= w.

ANDVIEWS: | vw [ i

]

vw2[i]= I
% * w w'

% I
% % % %

vwl[i] *
I

% * w w'

w I % w w %
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Figure 5-4: Specifications for the module RELATIONS

******************************************************************

Relational data bases -- definitions

DOMAIN d: variable of a particular type whose range is a set of

possible values

SCHEMA s: vector of domains

RELATION r for a schema s: subspace of the schema, representable

as a set t_set of tuples (see below), plus

authorization information.

TUPLE t of a relation r for a schema s: vector tw of values tw[i]

(one per domain d_list[i] in s)

RELATIONAL DATA BASE rdb for a set of domains: set of relations

for schemas on subsets of those domains.
******************************************************************

MODULE relations

TYPES

domain : DESIGNATOR
;

schema : DESIGNATOR ;

tuple : DESIGNATOR
;

relation : DESIGNATOR
;

data_base : DESIGNATOR ;

character string : VECTOR_OF CHAR
;

DECLARATIONS

INTEGER i, j;

domain d;

schema s;

tuple t;

relation r;

data_base rdb;

character_string w $( domain value);

SET_OF character_string range $( range of value);

SET_OF domain d_set $( domains defined for a data base);

VECTOR OF domain d_list $( schema definition);

VECTOR_OF character_string tw, twl $( tuple values);

SET OF tuple t_set $( set of tuples in a relation);

SET_OF relation r_set $( set of relations in data base);

SET_OF data_base rdb_set;

VECTOR_OF BOOLEAN bv;
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PARAMETERS

INTEGER access_length $( length of access vector = 7);

INTEGER grant, revoke, insert, delete, update, destroy, read

$( access codes for relations, distinct integers assumed

among 1, 2, access_length.);

DEFINITIONS

BOOLEAN no_data_base(data_base rdb) IS

NOT rdb INSET get_data_bases();

BOOLEAN no_relation(data_base rdb; relation r) IS

NOT r INSET get_relations(rdb);

BOOLEAN no_domain(data_base rdb; domain d) IS

NOT d INSET get_data_domains(rdb);

BOOLEAN no_schema(data_base rdb; schema s) IS

get_domains(rdb,s) = ?;

BOOLEAN repeated_domains(data_base rdb;

VECTOR_OF domain djist) IS

EXISTS i : EXISTS j : i
'=

j

AND djistli]

= djistlj];

BOOLEAN out_of_range(data_base rdb; domain d;

character_string w) IS

NOT w INSET get_range(rdb, d);

BOOLEAN some_out_of_range(data_base rdb; schema s;

VECTOR_OF character_string tw) IS

EXISTS i : NOT tw[i] INSET get_range(rdb,

get_domains(rdb,s) [i]);

BOOLEAN domain_not_in_schema(data_base rdb; schema s; domain d) IS

FORALL i : d ~= get_domains(rdb, s)[i];

BOOLEAN no_tuple(data_base rdb; relation r; tuple t) IS

NOT t INSET get_tuples(rdb, r);

BOOLEAN no_ability(data_base rdb; relation r; INTEGER i) IS

get_access(rdb, r)[i] = FALSE;

FUNCTIONS

VFUN get_data_bases() -> rdb_set;

$( collection of relational data bases)

INITIALLY
rdb_set = {};
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VFUN get_data_domains(rdb) -> d set;

$( set of domains for the data base)

INITIALLY
d_set = ?;

VFUN get_relations(rdb) -> r set;

$( relations in relational data base rdb)

INITIALLY
r_set = ?;

VFUN get_schema(rdb; r) -> s;

$( the schema used for relation r)

INITIALLY
s = ?;

VFUN get_domains(rdb; s) -> d list;

$( list of domains in schema s)

INITIALLY
djist = ?;

VFUN get_range(rdb; d) -> range;

$( range of the domain variable)

INITIALLY
range = ?;

VFUN get_tuples(rdb; r) -> t_set;

$( tuples in relation r)

INITIALLY
t_set = ?;

VFUN get_value(rdb; r; t; d) -> w;

$( value for domain d in tuple t)

EXCEPTIONS
no_data_base(rdb)

;

no_relation(rdb, r);

no_tuple(rdb, r, t);

no_domain(rdb, d);

no_ability(rdb, r, read);

INITIALLY
w = ?;

VFUN get_values(rdb; r; t) -> tw;

DEFINITIONS
VECTOR_OF domain d list IS get_domains(rdb, s);

schema s IS get_schema(rdb, r);
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EXCEPTIONS
no_clata_base (rdb)

;

no_relation(rclb, r);

no_tuple(rdb, r, t);

no_ability(rdb, r, read);

DERIVATION
FORALL i ; tw[i]

= get_value(rdb, r, t, d_list[i]);

VFUN get_access(rdb; r) -> bv;

$( the access authorization for relation r)

INITIALLY
bv = ?;

OVFUN create_data_base() -> rdb;

$( creates a new data base)

EXCEPTIONS
no_data_base(rdb)

;

EFFECTS
rdb = NEW(data_base);

'get_data_bases()

= get_data_bases() UNION {rdb};

OVFUN create_domain(rdb; range) -> d;

$( creates a new domain for the data base)

EFFECTS
d = NEW (domain);

'get_range(rdb, d) = range;

OVFUN create_schema(rdb; d list) -> s;

$( creates a new schema with d_list as its domains. Identically

composed but differently designated domains may be included,

while the identically designated domain may not appear twice.)

EXCEPTIONS
no_data_base(rdb)

;

repeated_domains(rdb,d_list)

;

EFFECTS
s = NEW(schema);
'get_domains(rdb, s) = d list;

OVFUN create_relation(rdb; s) -> r;

$( creates a new relation for the given schema)

EXCEPTIONS
no_data_base(rdb)

;

no_schema(rdb,s);

EFFECTS
r = NEW (relation);

'get_relations(rdb)

= get_relations(rdb) UNION {r};

''get_schema(rdb, r) = s;

FORALL i
I

1 < =
i AND i < = access_length :

'get_access(rdb,r) [i] = TRUE;
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OVFUN create_tuple(rdb; r) -> t;

$( creates a new tuple t in relation r

(with undefined values) in implementation, t is probably an

integer, or else, identified by a domain value as a key.)

EXCEPTIONS
no_data_base(rdb);

no_relation(rdb,r);

no_ability(rdb, r, insert);

EFFECTS
t = NEW(tuple);

'get_tuples(rdb, r)

= get_tuples(rdb, r) UNION {t};

OFUN delete_tuple(rdb; r; t);

$( deletes tuple t from relation r)

DEFINITIONS
VECTOR OF domain d list IS get_domains(rdb, s);

schema s IS get_schema(rdb, r);

EXCEPTIONS
no_data_base (rdb)

;

no_relation(rdb,r);

no_ability(rdb, r, delete);

no_tuple(rdb,r,t);

EFFECTS
'get_tuples(rdb, r)

= get_tuples(rdb, r) DIFF {t};

FORALL i : 'get_value(rdb, r, t, djist[i]) = ?;

OFUN update_tuple_value(rdb; r; t; d; w);

$( in tuple t of relation r, updates the value for domain d

to w.)

EXCEPTIONS
no_data_base (rdb)

;

no_relation(rdb,r);

no_ability(rdb, r, update);

no_tuple(rdb,r,t);

domain_not_in_schema(rdb,s,d);

out_of_range(rdb,d,w);

EFFECTS
'get_value(rdb, r, t, d) = w;
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OFUN update_tuple(rdb; r; t; twl);

$( replaces the entire tuple)

DEFINITIONS
schema s IS get_schema(rdb,r);

VECTOR_OF domain d_list IS get_domains(rdb,s);

$( VECTOR_OF character_string tw IS get_values(rdb, r, t))

EXCEPTIONS
no_data_base (rdb)

;

no_relation(rdb,r)

;

no_ability(rdb, r, update);

no_tuple(rdb,r,t);

some_out_of_range (rdb, s, twl )

;

EFFECTS
FORALL i : 'get_value(rdb, r, t, d_list[i]) = twlli];

OFUN destroy_relation(rdb; r);

$( destroys relation r from data base rdb)

DEFINITIONS
SET_OF tuple t_set IS get_tuples(rdb, r);

VECTOR_OF domain djist IS get_domains(rdb, s);

schema s IS get_schema(rdb, r);

EXCEPTIONS
no_data_base (rdb)

;

no_relation(rdb,r);

no_ability(rdb, r, destroy);

EFFECTS
'get_relations(rdb)

= get_relations(rdb) DIFF {r};

'get_tuples(rdb, r) = ?;

FORALL 1 1 t INSET t_set :

FORALL i : 'get_value(rdb, r, t, d_list[i]) = ?;

END MODULE
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Figure 5-5: Specifications for the module PRIMITIVE-VIEWS

PRIMITIVE VIEW V for a relation r: a vector vw of values vw[i]

(one per domain d_list[i] in the schema of the relation), plus

authorization. Each vw[i] is either a value w, or the universal

value "*", or the null value "%".

NONPRIMITIVE VIEW: a set of two or more primitive views

for the same schema.

VIEW view for a schema: any set of primitive views.

VIEW DIR view dir for a data base: the set of primitive views

maintained by the VIEWS module.
:^:iifi^>fi i^L-sli: :^ 1^:

MODULE primitive views

TYPES

primitive_view : DESIGNATOR
;

character_string : VECTOR_OF CHAR ;

view vector : VECTOR_OF character_string ;

DECLARATIONS

BOOLEAN b;

INTEGER i, j;

domain d;

tuple t, tl;

relation r;

data_base rdb;

character_string w, wl, w2;

SET OF character_string range;

primitive view v, v2, vj;

view_vector vw, vwl;

SET OF primitive view view set;

SET OF tuple tl set $( extracted relation);

VECTOR_OF BOOLEAN bv, bvl;

SET OF data base rdb_set;

SET OF relation r set;

SET OF domain d set;

SET OF tuple t_set;

VECTOR OF character string tw;

PARAMETERS

INTEGER grant, revoke, insert, delete, update, destroy, read;
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DEFINITIONS

BOOLEAN no_view(data_base rdb; primitive view v) IS

NOT V

INSET get_views(rdb, get_view_relation(rdb, v));

BOOLEAN is_revocable(data_base rdb; primitive_view v) IS

revocable(rdb, v) = TRUE;

BOOLEAN no_data_base(data_base rdb) IS

NOT rdb INSET get_data_bases();

BOOLEAN no_relation(data_base rdb; relation r) IS

NOT r INSET get_relations(rdb);

BOOLEAN no_doinain(data_base rdb; domain d) IS

NOT d INSET get_data_domains(rdb);

BOOLEAN out_of_range(data_base rdb; domain d;

character_string w) IS

NOT w INSET get_range(rdb, d);

BOOLEAN no_ability(data_base rdb; relation r; INTEGER i) IS

get_access(rdb,r) [i] = FALSE;

BOOLEAN no_view_ability(data_base rdb; primitive view v; INTEGER i) IS

get_view_access(rdb, v) [i] = FALSE;

EXTERNALREFS

FROM relations :

DESIGNATOR domain, schema, tuple, relation, data base;

VFUN get_data_bases() -> rdb_set;

VFUN get_relations(rdb) -> r_set;

VFUN get_data_domains(rdb) -> d_set;

VFUN get_range (rdb; d) -> range;

VFUN get_tuples(rdb; r) -> t_set;

VFUN get_values(rdb; r; t) -> tw;

VFUN get_access(rdb; r) -> bv;

OVFUN create_tuple(rdb;r) -> t;

OFUN update_tuple_value(rdb;r;t;d;w);

OFUN update_tuple(rdb;t;tw);

OFUN delete_tuple(rdb;r;t);

FUNCTIONS

VFUN get_views(rdb; r) -> view_set;

$( views for the relation)

EXCEPTIONS
no_data_base(rdb);

INITIALLY
view_set = {};
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VFUN get_view_relation(rdb; v) -> r;

$( schema for the view)

EXCEPTIONS
nodatabase (rdb)

;

no_view(rdb, v);

INITIALLY
r = ?;

VFUN get_view_vector(rdb; v) -> vw;

$( the tuple of %, *, and values defining the view.)

EXCEPTIONS
no_data_base(rdb);

no_view(rdb, v);

INITIALLY
vw = ?;

VFUN get_view_access(rdb; v) -> bv;

$( the access code for the view)

EXCEPTIONS
no_data_base (rdb)

;

no_view(rdb, v);

INITIALLY
bv = ?;

VFUN extractable(w; wl) -> b;

$( TRUE IF value w can be extracted by the selector value

wL Note that the specification handler requires "%%", not "%".)

HIDDEN;
DERIVATION

IF wl = "*" OR wl = "%" OR wl = w
THEN TRUE
ELSE FALSE;

VFUN selects(rdb; t; v) -> b;

$( TRUE IF tuple t conforms to the primitive view v)

HIDDEN;
DEFINITIONS
relation r IS get_view_relation(rdb,v);

view_vector vw IS get_view_vector (rdb, v);

VECTOR OF character_string tw IS get_values (rdb, r, t);

DERIVATION
IF (FORALL i : extractable(tw[i], vw[i])

= TRUE)
THEN TRUE
ELSE FALSE;

VFUN extract(rdb; v) -> tl_set;

$( extracts those tuples conforming to the view, filtered by %)

DEFINITIONS
relation r IS get_view_relation(rdb, v);

SET_OF tuple t_set IS get_tuples(rdb, r);

view_vector vw IS get_view_vector(rdb, v);
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EXCEPTIONS
no_data_base(rdb);

no_view_ability(rdb, v, read);

no_view(rdb, v);

no_relation(rdb, r);

DERIVATION
tl_set

=
{ tl

I

(FORALL 1 1 t INSET t_set:

(IF selects(rdb, t, v) = TRUE
THEN (FORALL i : IF vw[i] =
THEN get_values(rdb,r,t) [i] = get_values(rdb,r,t) [i]

ELSE get_values(rdb,r,t) [i] = vw[i])

ELSE TRUE)) );

VFUN and_views(w; wl) -> w2;

S( ANDs two views together)

HIDDEN;
DERIVATION

w2
= (IF wl = "%"

THEN "%"

ELSE (IF wl = "*"

THEN w
ELSE (IF w = wl OR w = "*"

THEN w
ELSE "%")));

VFUN revocable (rdb; v) -> b;

$( TRUE if V revocable)

HIDDEN;
INITIALLY b = ?;

VFUN get_revocable_views (rdb; v) -> view_set;

$( the set of revocable views for the given view)

HIDDEN;
INITIALLY view set = {};

OVFUN create_view(rdb; r; bv) -> v;

$( creates a primitive view for a relation)

DEFINITIONS
view_vector vw IS get_view_vector(rdb, v);

EXCEPTIONS
no_data_base(rdb)

;

no_ability(rdb, r, grant);

EFFECTS
V = NEW(primitive_view);

'get_views(rdb, r)

= get_views(rdb, r) UNION {v};

'get_view_relation(rdb, v) = r;

'get_view_access(rdb, v) = bv;

revocable(rdb, v) = FALSE;
FORALL i : vw[i] = "*";



43

OVFUN create restricted viewCrdb; v; vwl; bvl) -> v2;

$( creates a revocable view, with desired authorization)

DEFINITIONS
view vector vw2 IS get_view_vector(rdb, v2);

view vector vw IS get_view_vector(rdb, v);

VECTOR_OF BOOLEAN bv IS get_view_access(rdb, v);

VECTOR_OF BOOLEAN bv2 IS 'get_view_access(rdb, v2);

EXCEPTIONS
no_data_base(rdb);

no_view(rdb, v);

no_view_ability(rdb, v, grant);

is_revocable(rdb, v);

EFFECTS
v2 = NEW(primitive_view);

'get_revocable_views(rdb, v)

= get_revocable_views(rdb, v) UNION {v2};

revocable(rdb, v2) = TRUE;
FORALL i : vw2[i]

FORALL j : bv2|j] = (bvlj] AND bvllj]);

OFUN destroy_view(rdb; v);

$( destroys view)

DEFINITIONS
view vector vw IS get_view_vector(rdb, v);

EXCEPTIONS
no_data_base(rdb)

;

no_view(rdb, v);

no_view_ability(rdb, v, destroy);

EFFECTS
'get_view_relation(rdb, v) = ?;

FORALL i : vw[i] = ?;

'get_view_access(rdb, v) = ?;

OFUN revoke_restricted_views(rdb; v);

$( revokes all views created by create_restricted_view

(rdb,v,vwj,bv). Note this is a strong revocation, rather than a

selective revocation — which could be achieved with

slightly more mechanism.)

EXCEPTIONS
no_data_base (rdb)

;

no_view(rdb, v);

no_view_ability(rdb, v, revoke);

EFFECTS
get_revocable_views(rdb, v) = {};

FORALL vj
I

vj INSET get_revocable_views(rdb, v) :

'get_view_relation(rdb, vj) = ?

AND 'get_view_access(rdb, vj) = ?

AND 'revocable(rdb,vj) = ?

AND (FORALL i : get_view_vector(rdb, vj)[i] = ?);
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OFUN v_update(rdb;v;d;w);

$( updates the values of a relation through a view --

for all tuples selected by the view.)

DEFINITIONS
relation r IS get_view_relation(rdb,v);

EXCEPTIONS
no_view_ability(rdb,v, update)

$(EXCEPTIONS_OF update_tuple(rdb,r) redundant:

no_ability(rdb,r, update) OK by construction.);

no_data_base(rdb)

;

no_view(rdb,v);

no_relation(rdb,r);

no_domain(rdb,d);

out_of_range(rdb,d,w);

EFFECTS
FORALL t| (selects(rdb,t,v) = TRUE):
EFFECTS OF update_tuple_value(rdb,r,t,d,w);

OFUN v_insert(rdb;v;tw);

$( inserts a new tuple into the relation referred to by

the given view v: view (%, %, ...) with insert access code

is sufficient.)

DEFINITIONS
relation r IS get_view_relation(rdb,v);

EXCEPTIONS
no_view_ability(rdb,v, insert);

no_view_ability(rdb,v, update);

EFFECTS
LET 1

1

EFFECTS_OF create_tuple(rdb,r) = t IN

EFFECTS OF update_tuple (rdb, t, tw)

;

OFUN v_delete(rdb;v);

$( deletes all tuples selected by the view:

requires delete access)

DEFINITIONS
relation r IS get_view_relation(rdb,v);

EXCEPTIONS
no_view_ability(rdb,v, delete);

$( no_ability(rdb,r, delete) redundant)

EFFECTS
FORALL t|selects(rdb,t,v) = TRUE:
EFFECTS_OF delete_tuple(rdb,r,t);

END MODULE



45

References

1. M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaren, J. N. Gray, P. P. Griffiths, W. F. King,

R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. . IBM
Research Memo RJ 1738, San Jose (25356), February, 1976.

2. T. Berson and J. Barksdale. KSOS: Development Methodology for a Secure Operating System. NCC '79,

NY NY, AFIPS, June, 1979.

3. W. E. Boebert, J. M. Kamrad, E. R. Rang. Analytic Validation of Flight Hardware. Honeywell, 77SRC63,
Systems and Research Center, Minneapolis, Minnesota, September, 1977.

4. R. F. Boyce and D. D. Chamberlin. A Structured English Query Language. SIGFIDET, Ann Arbor,

Michigan, ACM, May, 1974.

5. R. S. Boyer and J S. Moore. Proving Theorems about LISP Functions. / ACM 22, 1 (1975), 129-144.

6. D. D. Chamberlin. Relational Data-Base Management Systems. ACM Computing Surveys 8, \ {M&rch
,

43-66.

7. D. D. Chamberlin, J. N. Gray, and I. L. Traiger. Views, Authorization, and Locking in a Relational Data

Base System. National Computing Conference, AFIPS, 1975, pp. 425-430.

8. E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13, 6 (June 1970),

377-387.

9. E. F. Codd. Implementation of Relational Data Base Management Systems, (Panel Discussion from the 1975

NCC). Bulletin ofACM SIGMOD 7, 3-4 (1975), 3-22.

10. O.J. Dahl. The SIMULA 67 Common Base Language. Norwegian Computing Center, Oslo, 1968.

11. E. W. Dijkstra. Notes on Structured Programming. In S/rwcrwrei/Progz-ow/M/rt^, Academic Press, New York,

1972. C. A. R. Hoare, ed.

12. R. J. Feiertag, K. N. Levitt, L. Robinson. Proving Multilevel Security of a System Design. Sixth Symp. on

Operating System Principles, 16-18 November 1977, ACM, November, 1977, pp. 57-67. In Operating Systems

Review, Vol. 11, No. 5

13. R.J.Feiertag. TACEXEC. SRI International, Menlo Park CA, Final Report, April, 1979.

14. R.J. Feiertag and P.G. Neumann. The Foundations of a Provably Secure Operating System (PSOS).

National Computer Conference 1978, Vol. 48, AFIPS, 1979, pp. 115-120.

15. R. W. Floyd. Assigning Meanings to Programs. Mathematical Aspects of Computer Science, American

Mathematical Society, Providence, Rhode Island 19 (1967), 19-32. J. T. Schwartz, ed.

16. R. W. Floyd. Toward Automatic Synthesis of Programs. Congress 71, North-Holland Publ., IFIP, 1971.

17. D. I. Good, R. M. Cohen, C. G. Hoch, L. W.Hunter, D. F. Hare. Report on the Language Gypsy, Version

2.0. Institute for Computing Science and Computer, The University of Texas at Austin, May, 1978.

Applications Report ICSCA-CMP-10

18. J. V. Guttag. The specification and application to programming of abstract data types. Ph.D. Th., Department of

Computer Science, University of Toronto, 1975. Computer Science Research Group Tech. Report CSRG-59

19. M. Hamilton and S. Zeldin. Higher Order Software - a Methodology for Defining Software. IEEE Trans.

Softw. Eng. SE-2, 1 (March 1976), 9-32.

20. G. Held, M. Stonebraker, and E. Wong. INGRES- A Relational Data Base System. National Computing

Conference, AFIPS, 1975, pp. 409-416.



46

21. C. A. R. Hoare. Notes on Data Structuring. In Structured Programming, C. A. R. Hoare, ed.. Academic

Press, New York, 1972.

22. Honeywell Corp. Project Guardian Final Report. Honeywell Information Systems, Inc., Federal Systems

Division, McLean VA, September, 1977. ESD-TR-78-115

23. J. D. Ichbiah, J. P. Rissen, J. C. Heliard. The Two-Level Approach to Data Independent Programming in

the LIS System Implementation Language. In Machine Oriented Higiier Level Languages, B. vander Poel and

H. Maarsen, Eds., North-Holland Pub. Co., Amsterdam, 1974.

24. D. E. Knuth. Structured Programming with Go To Statements. Comp. Surveys 6, 4 (December 1974),

261-301.

25. K. N. Levitt, L. Robinson, B. A. Silverberg. The HDM Handbook, Vol III: A Detailed Example in the Use
of HDM. SRI International, June, 1979.

26. B. H. Liskov, E. Moss, C. Schaffert, R. Scheifler, and A. Snyder. Abstraction Mechanisms in CLU. MIT
Laboratory for Computer Science Computation Structures Group, July, 1978. Memo 161

27. B. H. Liskov and V. Berzins. An Appraisal of Program Specifications. In Research Directions in Software

Technology, P. Wegner (ed), MIT Press, 1979.

28. B. H. Liskov and S. Zilles. Specification Techniques for Data Abstraction. IEEE Trans. Softw. Eng. SE-1, 1

(March 1975), 7 19.

29. J. McCarthy. Towards a Mathematical Science of Computation. Congress 1962, Amsterdam, The
Netherlands: North-Holland, IFIP, 1961, pp. 21-28.

30. E.J. McCauley and P. Drongowski. KSOS: Design of a Secure Operating System. NCC '79, NY NY,
AFIPS, June, 1979.

31. H. D. Mills. How to Write Correct Programs and Know It. Intl. Conf on Reliable Software, 13-15 April

1975, Los Angeles, CA, in SIGPLAN Notices, , June, 1975, pp. 363-370.

32. J. Mylopoulos, S. Schuster and D. Tsichritzis. A Multilevel Relational System. National Computing

Conference, AFIPS, 1975, pp. 403-408.

33. P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A Provably Secure Operating

System: the System, Its Applications, and Proofs. SRI International, May, 1980. This is the Second Edition,

replacing the 1977 edition

34. P.G. Neumann. Computer Security Evaluation. National Computer Conference 1978, Vol. 47, AFIPS,

1978, pp. 1087-1095.

35. D. L. Parnas. Information Distribution Aspects of Design Methodology. Information Processing 71, IFIP,

1972, pp. 339-344.

36. D. L. Parnas. A Technique for Software Module Specification with Examples. Comm. ACM 15, 5 (May

1972), 330-336.

37. D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules. Comm. ACM 15, 12

(December 1972), 1053-1058.

38. D. L. Parnas. On a 'Buzzword': Hierarchical Structure. Information Processing 74, IFIP, 1974, pp. 336-339.

39. L. Robinson, K. N. Levitt, P. G. Neumann, and A. R. Saxena. A Formal Methodology for the Design of

Operating System Software. In Current Trends in Programming Metliodology, Vol. I, R. T. Yeh, ed., Prentice-Hall,

New York, 1977.

40. L. Robinson and K. N. Levitt. Proof Techniques for Hierarchically Structured Programs. Comm. ACM 20,

4 (April 1977), 271-283.



47

41. L.Robinson. The HDM Handbook, Vol I: The Foundations of HDM. SRIInternational", June, 1979.

42. O. M. Roubine and L. Robinson. The SPECIAL Reference Manual. SRI International, CSL-45, January,

1977.

43. H. A. Schmid and P. A. Bernstein. A Multilevel Architecture for Relational Data Base Systems. University

of Toronto, 1975.

44. B. A. Silverberg, L. Robinson, K. N. Levitt. The HDM Handbook, Vol II: The Languages and Tools of

HDM. SRI International, June, 1979.

45. W. Teitelman. INTERLISP Reference Manual. Xerox Palo Alto Research Center, Palo Alto CA, 1978.

46. J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Melliar Smith, R. E. Shostak,

and C. B. Weinstock. SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft Control. Proc. IEEE
66, 10 (October 1978), 1240-1255.

47. W.A.WuIf, R.L. London, and M. Shaw. An Introduction to the Construction and Verification of

ALPHARD Programs. IEEE Trans. Soft. Eng.. Vol. 2 (December 1976), 253-265.



NBS.114A (REV. 9-76)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATtON OR REPORT NO.

NBS SP 500-67

2. Gov't. Accession No.j 3, R«tip(erf '
. ^f .ession No.

4. TITLE AND SUBTITLE CcmputeT SciencG and Technology -

The SRI Hierarchical Development Methodology (HDM) and its
Application to the Development of Secure Software

5. Pubiicatiori Date

October 1980
$. Performing Organization Cods

7. AUTHOR(S)

Karl N. Levitt, Peter G. Neumann, and Lawrence Robinson

8. PerfoTning Organ. Report No.

{
9. PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Science Laboratory
SRI International
Menlo Park, California 94025

16. Project/Task/Work Unit No.

11. Contract/Grant No.

NBS 5-35932

I
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS rsfree(. City. State. ziP)

Institute for Computer Sciences and Technology
National Bureau of Standards
Department of Commerce
Wa.qhington. D.C. 20234 ^

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 80-600157

I \

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

13. Type of Report & Period Covered

Final

14. Sponsoring Agency- Code

16. ABSTRACT (A 200~word or less factual summary oi most significant information. If document includes a significant bibliograpfiy or

literature survey^ mention it here.)

This document provides an introduction to the SRI Hierarchical Development
Methodology (HDM) . The methodology employs a staged decomposition of the development

process, which separates design, data representation, and implementation. For any

given system development, HDM employs a hierarchical decomposition of the design
and formal specifications of modules and their interconnections. Extensive tools

are used throughout the development to check the appropriateness of the design and

its implementation.

j
The role of HDM in developing secure systems is considered, and various current

j
efforts using HDM to develop such systems are summarized. The use of the methodology

is illustrated by a simple but complete example. A somewhat larger example of part

of a secure data management system is also discussed.

Verification is not considered in this dcJcument, although HDM does facilitate

verification. The consistency of formal specifications and their formal requirements

can be formally shown, as can the consistency of programs with their specifications

17. KEY WORDS (six to twelve entries; alptiabetical order; capitalize only the first letter of the first key word unless a proper name;
separated by semicolons)

Design methodology; formal specification; formal verification; hierarchical design;

programming methodology; security.

18. AVAILABILITY [^Unlimited

I I

For Official Distribution. Do Not Release to NTIS

HKl Order From Sup. of Doc, U.S. Government Printing Office, Washington, DC
20402

I I

Order From National Technical Information Service (NTIS), Springfield,

VA. 22161

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

21. NO. OF
PRINTED PAGES

54

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

2?. Price

$3.75

USCOMM-DC



ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series. National Bureau of Standards Special Publication 500-.

Name

Company

Address

City Stale Zip Code

(Notiflcation key N-S03)

U. S. GOVERNMENT PRINTING OFFICE : 1980 340-997/279





NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic
$l.t; foreign SI 6.25. Single ci)py. $?> domestic; $3.75 foreign,

NOTE: The Journal was formerly published in two sections: Sec-

tion A "Physics and Chemistry" and Section B "Mathematical

Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and
technology, with primary emphasis on work at NBS. The magazine

highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement
standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and
automatic data processing. Annual subscription: domestic $11;

foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications— Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AlP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIP's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (PIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 1 1717 (38 FR 12315, dated May 11, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies

are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature sur-

vey issued biweekly. Annual subscription: domestic $35; foreign

$45.

Liquefied Natural Gas. A literature survey issued quarterly. Annual

subscription: $30.

Superconducting Devices and Materials. A literature survey issued

quarterly. Annual subscription: $45. Please send subscription or-

ders and remittances for the preceding bibliographic services to the

National Bureau of Standards, Cryogenic Data Center (736)

Boulder, CO 80303.



U.S. DEPARTMENT OF COMMERCE
National Bureau off Standards
Washington, D C 20234

OFFICIAL BUSINESS

Penalty for Private Use, S300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

SPECIAL FOURTH-CLASS RATE
BOOK


