
!
A11103 OTOlbl

COMPUTER SCIENCE & TECHNOLOGY

DATA BASE DIRECTIONS—
The Conversion Problem

10-54

NBS Special Publication 500-64

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities- — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

^Some divisions within the center are located at Boulder, CO 80303.

Htloiai Burtau of Stxatedi

COMPUTER SCIENCE & TECHNOLOGY:

DATA BASE DIRECTIONS—
The Conversion Problem

Proceedings of the Workshop of the d. 5-

National Bureau of Standards and the

Association for Computing Machinery,

held at Fort Lauderdale, Florida,

November 1 - 3, 1977

OCT 2 9 1980

flM. CjCU. ' Ore-

Cicioo

John L. Berg, Editor:

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

Daniel B. Magraw, General Chairperson

Working Panel Chairpersons:

Milt Bryce, James H. Burrows,

James P. Fry, Richard L. Nolan

Sponsored by:

s National Bureau of Standards

^^^^^^y^ Association for Computing Machinery

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary

Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued September 1980

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end of

this publicaton.

National Bureau of Standards Special Publication 500-64

Nat. Bur. Stand. (U.S.), Spec. Publ. 500-64, 178 pages (Sept. 1980)

CODEN; XNBSAV

Library of Congress Catalog Card Number: 80-600129

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1980

V,n- siilo by tli<> Superintemlciit of Documents, U.S. Governmpiit Printing Office

Washington, D.C. 20402 - I'rice $5.50

TABLE OF CONTENTS

Page

INTRODUCTION 3

1.1 THE FIRST DATA BASE DIRECTIONS WORKSHOP 3

1.2 PLANNING FOR SECOND CONFERENCE 4

1.3 DATA BASE DIRECTIONS II 4

1.4 CONCLUSION 5

EVOLUTION IN COMPUTER SYSTEMS 7

2.1 QUESTIONS 7

2.2 HARDWARE CHANGES , 9

2.3 SOFTWARE CHANGES 10

2.4 EVOLUTIONARY APPLICATION DEVELOPMENT 11

2.5 MIGRATION TO A NEW DBMS 13

ESTABLISHING MANAGEMENT OBJECTIVES 19

3.1 OVERVIEW 20

3.2 CONVERSION TO A DATA BASE ENVIRONMENT 24

3.2.1 Impact On the Application Portfolio 25
3.2.2 Impact On the EDP Organization. 29
3.2.3 Impact On Planning and Control Systems. ... 35
3.2.4 Impact of Conversion On User Awareness. ... 38

3.3 MINIMIZING THE IMPACT OF FUTURE CONVERSIONS .. 39

3.3.1 Institutionalization of the DBA Function. . 39
3.3.2 DBMS Independent Data Base Design 40
3.3.3 Insulate Programs From the DBMS 40

3.4 CONVERSION FROM ONE DBMS TO ANOTHER DBMS 41

3.4.1 Reasons for Conversion 42
3.4.2 Economic Considerations 43
3.4.3 Conversion Activities and Their Impact. ... 44
3.4.4 Developing a Conversion Strategy 48

3.5 SUMMARY 50

4. ACTUAL CONVERSION EXPERIENCES 53

4.1 INTRODUCTION 54

4.2 PERSPECTIVES 55

4.3 FINDINGS 57

4.3.1 I ndustri al /Governmental Practices 58
4.3.2 The First DBMS Installation 60
4.3.3 Desired Standards 61
4.3.4 Desired Technology 61

4.4 TOOLS TO AID IN THE CONVERSION PROCESS ... 62

4.4.1 Introduction 62

4.4.2 Changing From Non-DBMS To DBMS 62
4.4.3 Changing From One DBMS To Another 64
4.4.4 Changing Hardware Environment 66
4.4.5 Centralized Non-DBMS--di st r i buted DBMS. ... 66
4.4.6 Centralized DBMS--di str ibuted DBMS 67

4.5 GUIDELINES FOR YOUR FUTURE CONVERSIONS 67

4.5.1 General Guidelines 68
4.5.2 Important Considerations 68
4.5.3 Ti ght Control 69
4.5.4 Precise Planning/pre-planning 69
4.5.5 Important Actions 70

4.6 REPRISE 73

4.7 ANNEX: CONVERSION EXPERIENCES 73

4.7.1 Conversion: File To DBMS 73
4.7.2 Conversion: Manual Environment To DBMS. .. 79
4.7.3 Conversion: Batch File System To a DBMS. . 84
4.7.4 Conversion: DBMS-1 To DBMS-2 87

5. STANDARDS 93

5.1 INTRODUCTION 93

5.1.1 Objectives 93
5.1.2 What Is a Standard? 94
5.1.3 Background 94

• 5.2 POTENTIAL BENEFITS THROUGH STANDARDIZATION ... 97

5.3 SOFTWARE COMPONENTS IN CONVERSION PROCESS 98

- i V-

5.3.1 Scenario 1 98
5.3.2 Scenerio 2 99
5.3.3 Scenario 3 100
5.3.4 Scenario 4 100
5.3.5 Miscellaneous Standards Necessary 100
5.3.6 Non-software Components Necessary 100

5.4 RECOMMENDATIONS 101

5.4.1 The Development of a Standard DBMS 101
5.4.2 Generalized Di ct i onary/ di rectory System. . 101

5.5 CONCLUSION 103

5.6 REFERENCES 103

6. CONVERSION TECHNOLOGY--AN ASSESSMENT 105

6.1 INTRODUCTION 106

6.1.1 The Scope of the Conversion Problem 106
6.1.2 Components of the Conversion Process 107

6.2 CONVERSION TECHNOLOGY 109

6.2.1 Data Conversion Technology 110
6.2.2 Application Program Conversion 120
6.2.3 Prototype Conversion Systems Analysis. ... 129

6.3 OTHER FACTORS AFFECTING CONVERSION 138

6.3.1 Lessening the Conversion Effort 138
6.3.2 Future Technologies/Standards Impact 145

BIBLIOGRAPHY 150

7. PARTICIPANTS 161

- v-

PREFACE

In 1972 the National Bureau of Standards (NBS) and the Association

for Computing Machinery (ACM) initiated a series of workshops and

conferences which they jointly sponsored and which treated issues

such as computer security, privacy, and data base systems. The

three -day Workshop, DATA BASE D IRECTION$~-The Conversion
Probl em , reported herein continues that series. This Workshop

was held in Fort Lauderdale, Florida, on November 1-3, 1977, and is

the second in the DATA BASE DIRECTIONS series. The first, DATA

BASE DIRECTIONS--The Next Steps , received wide circulation and,

in addition to publication by NBS, was published by ACM's Special

Interest Group on Management of Data and Special Interest Group on

Business Data Processing, the British Computer Society in Europe,

and excerpted by IEEE and Auerbach.

The purpose of the latest Workshop was to bring together leading

users, managers, designers, impl ementor s , and researchers in

database systems and conversion technology in order to provide

useful information for managers on the possible assistance
database management systems may give during a conversion
resulting from an externally imposed system change.

We gratefully acknowledge the assistance of all those who made the

Workshop's results possible.

S/Je|1|?^3^_/\

Director, Center for Programming
Science and Technology
Institute for Computer Sciences and

Technol ogy

- V i -

A MANAGEMENT OVERVIEW

To a manager, conversion answers the question, "How do I

preserve my investment in existing data and programs in the face
of inevitable changes?" Selection of conversion as a solution
depends directly on issues of cost, feasibility, and risk. Since
change is inevitable, prudent managers must consider
preparations that ease inevitable conversions. How does a

manager choose a course of action?

When Mayford Roark, Executive Director of Systems for the
Ford Motor Company, and Keynoter of the Workshop, sought an

analogue for examining DBMS and the conversion problem, he aptly
selected the idea of "mapping a jungle." Reporting on his

experience, he noted that 90% of his computers were changed within
three to five years and major software changes from the vendor
occurred somewhere between five and ten years after acquisition.

These forced changes coupled with the organization's
changing requirements led Roark to a basic point: "evolutionary
change is the natural state of computer systems." In short, the
ADPmanager's continual task is to "manage change."

Roark's managers experienced the classic benefits of DBMS:
quicker response to changing requirements, easier new
application development, and new capabilities not possible in the
earlier systems, but Roark summarized his conversion experience
within a DSBMS environment in this way:

. hardware changes--havi ng a DBMS was a moderate to major
burden

.

. software changes--dependent on the circumstances, having

a DBMS ranged from negligible impact to a major burden.

. evolutionary application change--havi ng a DBMS was a

moderate boon. It proved effective, but very expensive.

Considering even the conversion to a DBMS, Roark scores this
process a moderate burden because of the risks and costs
associ ated with DBMS.

- V 1 i -

He emphasized this point by describing the major DBMS
need as "easy-to-use, easy-to-apply, and inexpensive
approaches for upgrading" two decades of computer files to a

data base environment.

Given this charge, how did the workshop respond?

Consideration of the conversion to a DBMS led to
several specific caveats intended to control the risk
inherent in such a step.

Though conversion to a DBMS requires careful
preplanning and may not be appropriate for every
application, managers should consider data base
technology an inevitable development thrusting
itself on future data processing installations. A

manager will have no choice but to face this
deci si on eventual 1 y

.

The first DBMS application can make or break the
success of the conversion. The new system's users
must have a receptive disposition which results only
from careful preparation, preplanning, and the
application of basic management skills. The initial
application plays an important tutorial role for
everyone in the organization including such subtle
lessons as:

--whether management is truly committed to the new
system by supporting it with adequate resources,
planning for the continuous support of the system,
and applying the necessary managerial cross-
department discipline.

--whether the installation technical staff truly
appreciates user needs, can adjust to user changes,
and has the necessary skills and backing to carry-
off the task.

--whether any of the DBMS conversion proponents
have accurate estimates of the costs, the proper
tools to use, and a feasible conversion plan
expressed in terms that satisfy a 1

1

risk sharers.

- v i i i

While the staff must know the new
technology, they must not conclude that the
new technology relieves them of the old
project management controls that all new
systems reauire. Tight planning, management
control, cost monitoring, contingency
approaches, user review, and step-wise
justifications must be used.

No "final conversion" exists--planning for
the next one begins now! Prepare your
system to permit evolutionary change to
enhanced tec hn ol ogy-- i nc 1 ud i nq improvements
to DBMS.

How will future technology help managers?
Hardware development, particularly the proliferation
of mini- and micro-computers, networks, and large
mass storage, will increase the need for generalized
conversion tools. On the other hand, dropping
hardware costs will make conversion increasingly
more acceptable. Additionally, special DBMS
machines which promote logical level interfacing
will simplify the conversion process. Major
advances in improved data independence through
software design will also simplify but never
eliminate the conversion problem. Of special
concern to managers: user demand for several data
models will continue.

In the next five years, managers can expect to

see more operational generalized conversion tools
but certainly not full automation of the process.
Significantly, standards design and acceptance by
vendors will plan a major role in the success of
generalized conversion tools. Commercially
available tools for data base conversion seem likely
in ten years but the conversion of application
programs is not likely to have a generalized
solution in the next five years.

Standards address several manager needs in the
conversion process. A standard DBMS would
considerably ease the future conversions involving a

DBMS. A standard data dictionary /directory would
facilitate all conversions. This latter point
emphasizes that the data dictionary /directory can
stand apart from data base systems and, therefore,
can assist the conversion to a first DBMS.

- i X -

A standard data interchange format would ease
considerably the loading and unloading of data and
thus facilitate the development of generalized
conversion tools. Manufacturer acceptance of the
standard format would permit their development of
convertors from the standard form to their system, a

boon to managers either forced to or desirous of
considering a different system.

Similarly, standardization of the terminology
used in data base technology, convergence of
existing DBMS to using common functions, and use by
DBMS of a micro-language or standard set of atomic
functions would assist managers in dealing with
conversion from DBMS to DBMS.

In summary: in the next five to ten years
managers must depend on existing good management
practices rather than wait for automated conversion
tools. Standards, as a management exerted
discipline, will facilitate conversions but users
can expect reluctant acceptance of standards.

-X-

DATA BASE DIRECTIONS

—

The Conversion Problem

John L. Berg, Editor

ABSTRACT

What information can help a manager assess
the impact a conversion will have on a data base
system, and of what aid will a data base system be
during a conversion? At a workshop on the data
base conversion problem held in November 1977
under the sponsorship of the National Bureau of
Standards and the Association for Computing
Machinery, approximately seventy-five participants
provided the decision makers with useful data.

Patterned after the earlier Data Base Direc-
tions workshop, this workshop. Data Base
Directions— the conve rs ion probl em , explores data
base conversion from four perspectives: manage-
ment, previous experience, standards, and system
technology. Each perspective was covered by a

workshop panel that produced a report included
here

.

The management panel gave specific direction
on such topics as planning for data base conver-
sions, impacts on the EDP organization and appli-
cations, and minimizing the impact of the present
and future conversions. The conversion experience
panel drew upon ten conversion experiences to com-
pile their report and prepared specific checklists
of "do's and don'ts" for managers. The standards
panel provided comments on standards needed to
support or facilitate conversions and the system
technology panel reports comprehensively on the
systems and tools needed—with strong recommenda-
tions on future research.

Key words: Conversion; Data Base; Data
Description; Data Dictionary; Data Directory;
DBMS; Languages; Data Manipulation; Query.

-1-

1. INTRODUCTION

Daniel B. Magraw

GENERAL CHAIRMAN

Biographical Sketch

Daniel B. Magraw is Assistant Commissioner,
Department of Administration, State of Minnesota.
For nearly ten years he has been responsible for
all aspects of the State of Minnesota information
systems activities. His more than thirty years'
experience in systems divides almost equally
between the private and public sectors.

A frequent contributor to professional
activities, he was one of the founders and is a

past president of the National Association for
State Information Systems. He taught courses in

Systems for 22 years in the University of
Minnesota Extension Division and he has been a

frequent speaker on many matters relating to
information systems and has been deeply involved
with both Federal and state data security and
privacy legislation.

He was keynote speaker at the 1975 Data Base
Directions Conference.

1.1 THE FIRST DATA BASE DIRECTIONS WORKSHOP

In late October, 1975, a Workshop entitled "Data Base
Directions: The Next Steps" was held in Fort Lauderdale, Florida.
Resulting from a proposal brought to Seymour Jeffery at the
National Bureau of Standards by Richard Canning and Jack Minker,
the workshop was sponsored jointly by the Association for
Computing Machinery and NBS. The product of the intensive two and
a half day effort was a series of panel reports which, as

subsequently edited, were issued under the title of the workshop
as NBS Special Publication 451.

-3-

As early as December, 1975, suggestions were made to
ACM and NBS concerning the desirability of one or more
future conferences on the same general topic. These
suggestions were based on the belief that data base systems
will grow increasingly in importance and pervasiveness and
were supported by perceptions, even prior to issuance of NBS
SP 451, that the workshop had more than met expectations.

The report was issued in 1976; it was generally thought
to be a valuable contribution to several audiences including
top management, EDP management, data base managers, and the
industry. It has had an unusually wide circulation for
reports of this nature.

1.2 PLANNING FOR SECOND CONFERENCE

In February, 1977, ACM and NBS decided in favor of a

second data base workshop and invited me to serve as General
Chairman. An initial planning group was established
consisting of Dick Canning and Jack Minker representing ACM,
John Berg representing NBS, and the chairman. The planning
group entitled the Conference "Data Base Directions II--The
Conversion Problem."

Four working panel subjects were selected. Panel
chairmen were recruited and became members of the planning
group. Subject matter coverage for each panel was specified
by the planning group. Each panel chairman then selected
members of his working panel. In addition, the planning
group specified that the format and procedure for the
workshop should follow closely that of the first workshop.
As in the 1975 workshop, attendance was by invitation only.
Work was done by each panel prior to arriving at the
work shop

.

1 .3 DATA BASE DIRECTIONS 1

1

The workshop was held November 1-3, 1977, in Fort
Lauderdale, Florida. There were approximately 75 in
attendance. Mayford Roark, Ford Motor Company, gave an
excellent keynote address in plenary session, reproduced
herein. Final instructions were given as to objectives of
the workshop, and all panels were in full operation by 10:30
a.m., November 1. From then until the closing plenary
session, each of the four panels met separately with the
ultimate purpose of developing a consensus among its members
on which to base the panel report.

-4-

Each working panel chairman was expected to guide the
group discussion and to assure preparation of a good rough
draft report prior to the closing plenary session. Though
each panel chairman organized his panel in a form best for
his subject, each followed a general pattern. A recorder
was selected from among each panel's members to maintain
"minutes" in visual form on flip chart sheets. These were
displayed so that the principal discussion and consensus
po i nts were V i s i bl e .

One of the panels had done extensive drafting of report
segments prior to the beginning of the workshop. Each of
the other three accomplished the objective of rough draft
preparation by developing detailed outlines. Portions of
the outlines were assigned to individual panel members or to

two person teams for draft preparation. When time
permitted, drafts were reviewed by others on the same panel
prior to their incorporation into the final draft.

Following the completion of the workshop, the drafts
were put into "final" form and circulated to panel members
for final comment prior to submission to the proceedings
edi tor

.

Communication among the four panels was maintained
mainly through the panel chairmen and members of the
planning group who circulated among the panels. At the
closing plenary session, each working panel chairman
presented a twenty minute summary of his panel's findings
and responded to questions or comments from the floor.

I. 4 CONCLUSION

The mix of participants with their differing
perspectives, experiences, and technical expertise provides
a base of knowledge in data base systems that may be
unparalleled. The output from that group should be of
material value, especially to those decision-makers across
the country carrying responsibility for data base futures.
It is hoped that this publication can have an even greater
impact than did Data Base Directions I because it is based
on two more years of extensive experience and because it
attempted to be more direct and pointed in its advice to the
decision- makers. The real value of Data Base Directions
II, however, will be directly proportional to the assistance
that this document provides to the several classes of users.

-5-

2. EVOLUTION IN COMPUTER SYSTEMS

Mayf ord L . Roark

KEYNOTER

Biographical Sketch

Mayford L. Roark is Executive Director of
Systems for the Ford Motor Company in Dearborn,
Michigan. He has been in charge of the corporate
systems function at Ford since 196 5, as Assistant
Controller and later as Director of the Systems
Office before assuming his present position in
1973. He joined the Ford Division of Ford Motor
Company in 1952 as Senior Financial Analyst, and
managed various financial departments at Ford from
1 955-1 965 .

Mr. Roark was a Budget Examiner at the U.S.
Bureau of the Budget from 1947 to 1952.
Previously he was with the U.S. Weather Bureau and
the Colorado Department of Revenue.

He studied at the University of Colorado,
receiving the B.A. "Magna Cum Laude" degree
(Economics), and the M.S. (Public Administration).
He is a member of Phi Beta Kappa.

2.1 QUESTIONS

When I was asked to address this group, with its theme
of "The Conversion Problem," I felt some puzzlement about
the thrust of the meeting. Was there a concern that data
base systems might be something of a special burden for the
organization faced with a conversion problem? Or, rather,
was there the hope that the data base system might be

(
something like "Seven League Boots," for making otherwise
tough conversions into happy and speedy journeys? Or, was
there a lingering horror that the data base systems
themselves might turn out to be conversion nightmares as
improved DBMS resources become available?

-7-

As the working outlines began to arrive through the
mail, it became clear that all of these questions were
concerns. As Jim Fry's statement put it, "The basic problem
we are addressing is the need to migrate data and
applications due to the introduction of new, or change in
the current requirements, hardware, and/or software
systems." In short, it appears that your intent is to map a

jungle.

I won't try to preempt the work of the individual
panels by offering any detailed map of my own. Rather, as a

frequent traveler through this jungle, my traveler's notes
may be of some help to your individual survey parties. My
comments will take the form of generalizations and
impressions. As you survey a topic in depth, you may well
conclude that some of these were inaccurate. This has
certainly been the usual result in geographic history, as
detailed surveys refine the rough findings of early
travel er s

.

As an initial generalization, let me categorize
conversion problems into four families of change:

Hardware Changes ,

Software Changes,

Evolutionary Application Development,

MigrationtoaMewDBMS.

I should like to discuss each of these families of
conversion problems, and to relate my own impressions as to
their frequency of occurrence and their significance with
respect to data base management systems. In an effort to be
as specific as possible, I will try to rate the impact of a

DBMS in each case against a "BB scale "--that's shorthand for
"Boon or Burden." If a DBMS, in my view, is a major boon or
help for a given class of conversion problem, I shall score
it as plus 2. If it is a moderate boon, that will be plus
1. If DBMS is more likely to be a burden than a boon, I

shall score it as minus 1 or minus 2. Now let me proceed to
a discussion of these families of conversion problems.

-8-

2.2 HARDWARE CHANGES

One of my chores at Ford is to undertake, with the aid
of others, a "prior review" of every computer hardware
acquisition involving a change of processor or an added
rental of more than $10,000 a year. I have been doing this
for a dozen years now, during which time I have signed off
on about 3,000 computer projects. If Ford is typical of the
universe, I would guess that 90 percent of all data
processing computers are likely to be replaced within 3 to 5

years from their acquisition. This would not hold for
minicomputers used in dedicated, industrial control
applications; these may remain in operation without
significant change for a decade or more. Data processing
computers do change fairly rapidly, however. For most of
us, 3 to 5 years is long enough to saturate the capacity of
whatever computer we have and to move on to something more
powerful. We are also faced with a dazzling succession of
new products every few years, always with substantial
improvements in cost effectiveness. So, for most of us, I

think the 3 to 5 year cycle is likely to continue for
awhile.

The extent of conversion trauma from a hardware upgrade
depends on the nature of the change. If the change involves
shifting to another supplier, an event that occurred in
something like 5 percent of our hardviare changes, the
conversion effort can be an extended affair requiring a

major effort over a period of a year or more. In such
cases, a DBMS is likely to be something of a burden. In all
probability, the new equipment will require a shift to a

different DBMS. In any event, the logic requiring
conversion will be somewhat more complex and difficult to

j

handle if a DBMS is present.

One of our divisions recently completed a conversion
from Honeywell to Burroughs, a change made necessary because
of reorganization unrelated to the system function. Some of
the application programs to be converted had been developed

I

in Honeywell's IDS environment; they were converted to

j

Burroughs DMS II, IDS is a network system; DMS II is a

!

hierarchical structure, so one might guess that we would have
had problems. In fact, I am assured, both by our own people

t

and by the Burroughs conversion team, that this transition
ijwent fairly smoothly. On the basis of that once- in-a-
Ij
lifetime experience, I would have to score the DBMS in this

I
case as minus 1. Perhaps it would have been minus 2 if the

i

application programs involved had been larger and more

I

compl ex .

-9-

Hardware conversion can also be a serious trauma when
migrating to new products of an incumbent supplier.
Suppliers do present us with new families of hardware from
time to time that require structural changes in our
application programs and supporting software. Hopefully,
this kind of change will be less frequent in the future than
it has been in the past. Even so, I suspect we are likely
to be faced with something of this kind every 10 years or
so. Already, one hears strange rumblings about the kinds of
changes likely to unfold 2 or 3 years hence in a new product
line called "The New Grad." So far, DBMS has not figured
importantly in any of our conversions within the hardware
products of a given supplier. On the basis of guesswork and
a skeptical disposition, I would have to assume that the
presence of a DBMS for a major hardware family transition
would be similar to that where a change in supplier is
involved, possibly minus 1 or minus 2 on the BB scoring
scale.

The remaining hardware conversions, which represent the
vast majority of all hardware upgrades, involve moving up
within a compatible family of products offered by a single
supplier. In these cases, DBMS would not be much of a

factor, so we might score its presence as zero on the BB
scale.

2.3 SOFTWARE CHANGES

Despite IBM's assurance that MVS is here to stay, our
experience would suggest that we can look for "major"
software upgrades or enhancements from any supplier every 5

or 10 years. At Ford, we are somewhat preoccupied at the
moment with the MVS problem at our large data center in
Dearborn. The completion of this conversion will require a

major effort extending over a two-year period. There are
three substantial groups of data base systems that will be
affected by the conversion; these involve, respectively,
IMS, TOTAL, and SYSTEM 2000. I have checked with each of
the systems groups involved to see how they assess the
impact of DBMS at this point, when we are about midway in
the conversion effort. The managers working with IMS agree
that its presence has added substantially to the difficulty
and complexity of the conversion task--somethi ng close to
twice as much effort as would have been involved with non-
DBMS applications. The IMS conversion involves more than a

new operating system, however. It requires the transition
to a new DBMS called IMS-VS. One manager sees the new
package as offering many attractive new features. Another
manager sees no incremental benefits at all for his
particular applications; but he has no choice, his present
IMS software will not be supported under MVS.

-10-

The managers using TOTAL and SYSTEM 2000 see no special
conversion problem at all in going to MVS.

This sampling of experience adds up to a very mixed
bag. As the warnings say about some drugs, a major software
conversion "may be hazardous to your health "--but again, it
may not. I think we have to score the presence of a DBMS in
such a situation with a range from 0 to minus 2 on the BB
scale.

We do have numerous other software changes, of course,
on an almost continuous basis--new releases to old operating
systems, new software packages to handle new functions, and
the like. There is nothing in our experience to indicate
that DBMS is much a factor one way or another in these minor
changes.

2.4 EVOLUTIONARY APPLICATION DEVELOPMENT

Now we move into the territory of what the systems
function is all about, and what DBMS also is all about.

Before getting into the particulars about this family
of change, we ought to be clear on one central point.
"Evolutionary change" is the natural state of computer
systems, just as it is for biological systems. Perhaps I

!

should not push this analogy too far because there is one
dramatic di f ference--evol uti onary change works more rapidly

i

in computer systems, where even 5 years can produce dramatic
I changes in structure, outputs, and even objectives.

During the past 5 years, the workload at our major
j
computer centers at Ford has been growing at close to 20
percent annually. I might explain here that we attempt to

,

measure workload' in BIPS (Billions of Instructions
{

Processed) for purposes of capacity planning. So, when I

I

say that growth has been close to 20 percent a year, I mean
that the BIPS have been growing at close to 20 percent

I

annually.

As best as I can judge, about half of this growth
results from new applications and about half from new
adaptations of existing applications.

The new adaptations, which are often described by the
\ rather condescending term "maintenance," include a lot of

II

things. One is simply the effect of volume. If we sell
I
more cars, other things equal, we will process more BIPS.

I

Another is changing requirements. In our industry, every
' model year is, in a sense, a new game. The products may
change, terminologies may change, and data requirements may

-11-

change. One of the biggest sources of changing requirements
in the automotive industry is government regulation. The
work of the regulators never ceases, nor does the growth in
requirements for additional data elements in the burgeoning
computer records that we must maintain as evidence of
compliance with all sorts of directives from Washington.

Some of these changing requirements are massive things
like OSHA regulations or like corporate fuel economy
standards. Others seem almost trivial until they are
examined in the context of required changes in computer
files. The industry is currently being asked to adopt as an
international standard a 16-character vehicle identification
number. Our existing identification numbers, with 11

characters, turn up in more than 50 separate computer files
in North America alone. The cost of converting these files
and their related application programs to the new
international standard is estimated at $3 million.

In all fairness, the government is not the only source
of changing requirements, our engineers and product planners
are pretty good changers themselves. Our service parts
files include roughly twice as many parts today as 10 years
ago, when our basic inventory control system was developed.
Our organization people contribute more than a fair share of
changing requirements. Every time there is a corporate
reorganization, we find it necessary to go through a

restructuring of the hundreds, or even thousands, of
computer files and application programs that are affected by
the real i gnment

.

And even systems people are contributors to the
evolutionary process, only we usually call the changes
"efficiency improvements." Almost every systems activity
has its own more or less continuous effort aimed at cleaning
up programs that run inefficiently, that are hard to
maintain, or that otherwise need overhaul.

To make another sweeping generalization, I would judge
that each of our systems activities annually rewrites
somewhere between 5 percent and 25 percent of its.
accumul ated code

.

I

I

What a fantastic opportunity for data base management I

systems! I would score the DBMS impact on this area of

i

evolutionary application development as plus 2 and proceed
to the next topic except for one problem. The DBMS benefits?
can be extremely difficult to realize in practice, and the
price of the cure is sometimes worse than the pain of the

i

ailment. i

-12-

Many of our files most subject to change are huge
affairs. Some of these files run into the billions of bytes
of data. For systems of this size, processing costs may be
counted in 6 or 7 figures annually. An added overhead
burden in a range of 30 percent to 40 percent can amount to
several hundreds of thousands of dollars in added annual
cost. One of our activities last year made an analysis of
overhead associated with one of its large data base systems
and found that 70 percent of the instructions being executed
resulted from DBMS overhead. This activity is in the
process of restructuring its DBMS with the objective of
reducing processing requirements by a full 40 percent.

Several years ago, another of our activities launched a

large-scale data base system in which nearly half of the
file requirements were required for pointers. Processing
requirements in such a case can far exceed expectations
based on any prior experience. This sort of overhead can
mean a loss in processing productivity, something that has
to be weighed against any benefits in programming
productivity.

The best score I can give DBMS, therefore, for its
impact on "evolutionary application development" is plus 1.

It sometimes works well, but it can also be awfully
expensive.

Somewhere in the deliberation of this "or related
groups," there ought to be some consideration of what can be
done to simplify DBMS technolgy. If this is not possible,

j

perhaps there could be some guides or standards to protect
j

the systems designer with a modest problem from unwittingly
stumbling into a huge solution out of all proportion to his
need. Sometime in the future, I would like to go through an
exercise like this again and conclude, without any
reservation, that DBMS is an unqualified boon for the

j

evolving system regardless of its size and complexity. We
are still in the very early stages of DBMS art.

2.5 MIGRATION TO A NEW DBMS

I have saved this family of conversion problems until
last. In a sense, it overlaps all three of the categories I

I

discussed earlier. Migration to a new DBMS may be prompted
by a change of hardware; it may be forced by a change of

j

software; or it may be undertaken with a view to realizing
I

the benefits we discussed under "evolutionary applications
j

development." Still, the migration to a new DBMS is a major
I event that deserves consideration in its own right, whether
the migration is from a non-DBMS environment or is the rare
change from one DBMS to another.

-13-

There is a logical inconsistency in assigning any
rating at all to this family of conversion problems. It is
like asking, "What impact does DBMS have upon itself?" Yet,
at the risk of sounding completely illogical, I am going to
assign a BB rating of minus 1 to this category of conversion
problems on the ground that a DBMS is a high-risk
undertaking entirely apart from whether it is related to
changes in hardware, software, or applications.

Moving to a new DBMS is not unlike the process of
;

getting married, it takes a lot of desire, commitment,
|

sacrifice, and investment. It involves moving to a wholly
new lifestyle. Once there, the return to the old lifestyle
may be difficult or impossible without wrenching adjustment
probl ems .

I

I have several times had the experience of encountering i

a spokesman for some other organization who tells me, "We've
made the policy decision that all future development work in
our organization will be based on DBMS." This makes me
shudder. It is a little like saying, "We've decided that

^

everyone should get married." I must add, however, that in ;

every instance cross examination has established that,
policy or no policy, the organization in question still does
a lot of its computer business outside the DBMS environment.
I expect this will be true of nearly all of us for many,
many years to come, or at least until the DBMS technology
can be simplified to the point where it no longer requires
total desire, total commitment, total preparation, and heavy
i n vestment

.

Not too long ago, we compiled a catalog of all the
computer systems applications in use at our North American
divisions and affiliates. The listing came to something
like 50,000 application programs. Some of these resulted
from major projects requiring scores of man-years to !

develop. Others were relatively simple. The full range of <

applications represents a wide spectrum of data needs and "

complexity. DBMS technology today does not really address i

this whole range of developmental requirements. Perhaps it
never should. In any event, migration to a new DBMS system

\

must be taken as one of life's climactic events to most
systems people. We all need more guidance about when to I

undertake such a migration and how to stay out of trouble ^

when we do. i

These, then, are the major problems to be found in this
jungle of systems conversions. To summarize, my BB scorings
have suggested that a DBMS can constitute a moderate-to-
heavy burden for major hardware conversions and major'
software conversions. The presence or availability of DBMS, * ,

however, can be a moderate-to-strong boon for evolutionary'.

-14-

application development. Finally, the migration to a "DBMS

system can be a long and tedious journey, especially where
existing systems of great size and complexity are involved.

DBMS', in short, still offers attractive visions of a

world in which systems might respond quickly to changing
requirements, in which new creative applications might be
easily spawned from existing data files, and where data
bases, in the words of Dan Magraw at the earlier conference
of two years ago, can "move the DBM's into the area of
decision making."

These visions ought not to be taken lightly. In

preparing for this meeting, I checked back with our managers
who have been in the DBMS mode for 5 years or more. What
benefits did they really get? Their consensus might be
summarized as follows:

1. They, indeed, have been able to respond more quickly
to changing requirements, although not always as
easily as they once hoped.

2. New applications development has been easier. The
managers see a productivity improvement factor in a

range of 10 percent to 20 percent.

3. Most important, the managers believe they have
capabilities that previously did not exist at all.

Let me expand on these capabilities for a moment.
Those 50,000 computer programs I mentioned are a long-time
accumulation in response to numerous problems and
opportunities that were perceived by our division and staffs
over a period of two decades.

Our typical division, which might correspond to a

moderate- si ze company, has its own accumulation, usually a

range of 1,500 to 3,000 programs. If the division is not

I

yet in a DBMS environment, each of those programs comes with
[its own set of files. In the last two years, we have been
[greatly influenced by the concepts of "top-down design" and
["structured programming." For systems of recent vintage,
these approaches may have provided a logical structure that
would give some accessibility to files. For older systems,

j:with what our people call "spaghetti programs,"
[l acc e ss i b i 1 i ty is something el se- - f ragmen ted and scattered
li
files, with all the access keys hidden in "spaghetti code."

j
As functional entities for the purposes they were first

[created, these old programs may serve well. Even where we
want to launch a new application that will need to draw on

jithe data in these files, the problem is not overwhelming.

-1 5-

We can, and do, write programs to get at the needed data
files, wherever they exist.

But suppose we do not want a new system. All we want
is an in-depth analysis of a difficult problem on which 5 or
10 different files have something useful to say. This is a

sort of problem that gives computer people a bad reputation
as being slow -moving and unresponsive. It can be extremely
difficult to extract data from 5 or 10 different sources,
all with different maintenance cycles and data control
procedures, and produce anything but a mess.

We do a lot of computer-based analysis at Ford because
we have found that the data resources in our computer files
can open up all sorts of insights and understanding that
would otherwise be lost. I wish we could do even more, but
this form of analysis can be very time consuming and i

frustrating in the non-DBMS environment. We have been
working on one such exercise involving non-DBMS file sources
for more than three months, all because of the relative
inaccessibility of data. Last week we decided to skip a !

promising analysis altogether because it would have taken
jj

more than a month to extract and organize the needed data
from a variety of source files. t

i

So, when our managers talk about new capabilities from
j

DBMS, they are talking about one of the computer's most [•

important potenti al s- - the power to carry analysis to
entirely new levels of understanding.

The benefits cited by our managers are impressive
testimonials. Why, then, has the data processing world been
so slow in converting to DBMS? I have seen no studies that
would provide an accurate measure as to the proportion of
data processing oriented to DBMS. In the absence of any '

sure data, I am going to offer the opinion that the
proportion is no greater than 10 percent to 20 percent.

I have never expected that all computer systems would,
;

or should, move to DBMS. In the early Seventies, however, (

as we first began to realize the potential of this,
technology, most of us, even the conservatives I believe,
would have expected that something approaching half of all

;

computer files would acquire a DBMS format by the end of
1977. Even at Ford, where I believe the impact of DBMS hasf
probably been greater than average, the progress has seemed j;

slower than I would have expected. This painfully slow
I

progress points up perhaps the greatest conversion problem
of all--how can we move to a DBMS environment with existing
systems? I in

-16-

Most of our DBMS user divisions made their first moves
to data base at least five years ago. A couple of these
divisions went through a conversion trauma, eventually
recovered, and never undertook a subsequent DBMS project.
Once was enough, they concluded.

The other divisions have continued to extend their data
bases in areas of new systems development. But, this leaves
a very large accumulation of computer files more or less
untouched by the new technology. One manager, possibly our
most enthusiastic data base advocate, believes that about 40
percent of his divisional data is now in DBMS format after
some five years of development. He guesses that this figure
may reach 70 to 80 percent in another five years.

We have still another group of divisions with heavy
maintenance workload who have elected not to try the DBMS
approach at all.

The problem is not unlike that of our Detroit skyline.
We recently completed a magnificent new Renaissance Center
along the riverfront, with some of the most beautiful hotel
and office structures to be found anywhere. This is
exciting, but there is still a long way to go to bring the
rest of the city up to Renaissance Center standards. The
accumulation of history is still a huge obstacle to those
who want the best of things right now. Omar Khayyam, who
summed up so many things in language that a sophomore can
understand, expressed this frustration perfectly:

" ... could thou and I with fate conspire
To grasp this Sorry Scheme of things entire.

Would we not shatter it to bits--and then
Re- mould it nearer the Heart's desire!"

All of us, however, have to find ways to working with
what we have inherited. We might all wish we could somehow
get rid of the old mess and start all over again.
-Unfortunately, that old mess represents an investment in the
hundreds of millions of dollars for my company and in many
tens of billions of dollars for all of us collectively.

tl

One of our divisions several years ago tackled this
frebuilding problem in what seemed to me an innovative kind
tof way. This division had identified 15 overlapping files
ithat had evolved over the years, with inventories and other
idata related to parts. As might be expected, there was much
il redundancy , and it was difficult to reconcile one file to
another. A complete overhaul of the applications programs
did not seem feasible, but the division hit on the idea of a

DBMS master file to serve as a sort of front end to these

-17-

application programs. There was a saving of more than
$100,000 annually in data preparation and data control.
This limited effort brought the division into the DBMS
environment and laid the basis for solid evolutionary
development, including subsequent application revisions to
exploit more fully the potential of the data base
environment.

If there is one thing I would particularly want to see
come out of this conference, then, it would be some easy-
to-use, easy-to-apply , and inexpensive approaches for
upgrading this great accumulation of computer files we have
all been working on for the last two decades or so. We have
all had tantalizing but too-brief experiences with data
bases as they can be. The question before us now is, what
can we do to make those benefits available wherever we need
them?

Where does an organization with an accumulation of
1,500 to 3,000 programs begin, without going out of business
for a year or two? What tools can it use to map out its
data resources? How can it go about restructuring these i

files without scrapping its investment in application
programs? And, even if the files can be rebuilt, what about
the necessary remodeling of the interface points within the
old programs? I hear that someof you came up with answers
to these questions. Perhaps you can point the way to this
new data-rational world we all seek.

The realization of this promise is still a long way
off. The real world of tomorrow will come when the DBMS can
contribute to the evolutionary process of applications
development and to the full analytical use of computer
resources, without exacting an extortionate price; when the

'

DBMS can aid in the evolutionary process of hardware and
j

software change; and when the decision to go to a DBMS is no :

longer a high risk affair requiring an all-out commitment
through one of the most difficult conversion problems to be
found in systems.

I have no doubt that something very much like this
world of tomorrow will appear one of these days, in great
part because groups like this one pressed on relentlessly t n

\

the definition of problems and the search for creative
|

solutions. ^

I

-18-

3. ESTABLISHING MANAGEMENT OBJECTIVES

Richard L. Nolan

CHAIRMAN

Biographical Sketch

Richard L

consul tant
systems. As
Company, Inc
the Harvard
c 0 n t r i

proce s

c 0 n t r i

areas

buted
sing
b u t i 0 n s

of:

Nolan is a researcher, author, and
in the management of information
Chairman of the Nolan, Norton &

, and a former Associate Professor at
Business School, Dr. Nolan has

to improving the management of data
in complex organizations. His

include major publications in the

The four stages of EDP growth

Management accounting and control of data
processing

Managing the data resource function

Computer data bases

Dr. Nolan's experience
computer systems includes
with the Boeing Company,
Defense, and numerous

with the management of
earlier associations
the Department of

other large U.S. and
European public corporations.

PARTICIPANTS

Marty Aronoff
I Richard Canning
I Larry Espe
j

Gordon Everest
Robert Gerritsen

Richard Godlove
Samuel Kahn
Gene Lockhart
John Lyon
Thomas Murray
Jack Newcomb

T. Wi 1 1 iam 01 1

e

Michael Samek
Steven Schindler
Richard Secrest
Edgar Sibley

I

-19-

3,1 OVERVIEW

"Assimilation of computer technology into organizations
is a process that has unique characteristics which
management does not have a substantial base of
experience to draw upon for guidance. Perhaps the most
important unique characteristic is the pace of
penetration of the technology in the operations and
conventional information systems." [Richard L. Nolan,
"Thoughts About the Fifth Staae," Data Base , Fall
1975.]

The pace of the assimilation of computer technology
into the data processing organization is represented by the
S-shaped "Data Processing Learning Curve."

The Data Processing Learning Curve is approximated by
the growth of the data processing budget and reflects the
staged evolution of the data processing environment along
four growth processes:

Growth process T he po r tf ol i o of computer applications .

The programs and procedures which are used by tFe
organization in its business activities. The Applications
Portfolio represents the cumulative end product of the data
processing organization.

Growth process #2_. The data processing organization and
technical capabi 1 i ties . The organization structures and
technical c a p a b i 1 i t i e s found within the data processing
department which are required to develop and operate
application systems. These include:

Data Processing Management Structure

Hardware and Software Resources

Systems Development and Operations Organizations

Growth process #_3 • Data processing pi a n n i n g and ma nagement
control sy stems . The set of organization practices used to
direct, coordinate and control those involved in the
development and operation of application systems, including:

DataProcessingPlanning

Project Management

Top Management Steering Committees

Chargeout

Performance Measurement

ASSIMILATION OF COMPUTER TECHNOLOGY OCCURS

IN FOUR STAGES

BUILDING THE
APPLICATIONS
PORTFOLIO

BUILDING THE
DP ORGANIZA-

m
TION

<D
nm
o BUILDING THE
o
o DP MANAGEMENT
a PLANNING AND
ir5 CONTROL

Gro^ DEVELOPING
USER AWARENESS

Functional

Cost-reduction

Applications

Specialization

for Technological

Learning

Consolidation 1 Data Base

of Existing 1 on-line

Applications
1
Applications

/
Middle 1 Layering

/Managernent 1 and

1 "Fitting"

Formalized 1 Formal

Controls j Planning and

1 Management
1 Control

Held 1 Effectively

Accountable 1 Accountable

Stage I:

Initiation

Stage II:

Contagion

Stage Ml.

Control

Stage IV: Tim*
Integration

Figure 2-1
Processing Learning Curve.

j

Growth process #4_. The user . The members of line and staff
departments who must use the applications systems in order
jto perform their jobs.

The nature of Data Base Management Systems (DBMS)
'dictates that they interface with each of the four growth
lareas. First, the DBMS acts as the data manager for all

I

types of application systems. Second, the DBMS introduces a

-21-

new level of technology to be assimilated by the data
processing organization, and it calls for the introduction
of a new data processing organization structure: the Data
Base Administrator. Third, the DBMS requires that
application system planning be more comprehensive and that
control through "chargeout" be restructured to reflect
shared resource usage. Fourth, the DBMS may impact the user
by providing new functional capabilities and mechanisms for
data retrieval.

Because of the integral position occupied by the DBMS
in the systems environment, the conversion to data base
technology and its use should be carefully managed. In
managing the conversion to data base technology, data
processing managers should have a well articulated set of
objectives regarding each of the four data processing growth
processes. These objectives should form the foundation for
goals against which data base conversion activities are
measured

.

The initial objective of the Establishing Management
Objectives panel was to analyze the impact of the data base
conversion effort on each of the four data processing growth
processes. Based on this analysis, the panel then
determined the management considerations associated with
data base conversions. The management considerations
identified by the panel can be summarized into four key
concepts

:

. KEY CONCEPT #U DBMS CONVERSIONS ARE A MATTER 0£
^EN?" NOT "WHETHER?"

Conversion from a non-data base to a data base
environment is a part of the natural evolution of
data processing within an organization. A data
processing department which has matured and
progressed to a Stage III environment is typically
faced with high maintenance costs and an inability
to respond to ad hoc inquiries and requests from
user management for integrated reports. This
situation, in effect, forces the data processing
department to employ data base technology to
restructure the applications portfolio. In other
words, conversion to a DBMS is primarily a question
of how soon the data base environment should begin
to be constructed, not whether a data base
environment should be implemented.

KEY CONCEPT #2: CHOOSE THE DBMS CONVERSION
APPLICATION CAREFULLY

The initial application used for conversion to data

-22-

base technology represents an important learning
experience for the entire organization. As such,
the initial application should:

-be a non-trivial application
-demonstrate the "power" of the DBMS facilities
-be simple to avoid overextension caused by
attempting to do too much, too fast

KEY CONCEPT #3: TREAT THE I NITIAL AND SUBSEQUENT
DBMS CONVERSIONS SIMILAR T_0 OTHER SYSTEMS PROJECTS

Although a data base conversion introduces a new
technology to the organization and requires the
involvement of all areas in the systems environment,
the risk exposure of this conversion effort can best
be minimized by managing the conversion as any other
large project would be managed. The same planning
and justification procedures should be used. The
same project management mechanisms should be
exercised throughout the project life cycle.
Because of the major impact caused by a data base
conversion, special efforts should be made to
coordinate conversion activities with steering
committees, senior management, and user areas.

KEY CONCEPT #4 : PLAN AND STRUCTURE FOR FUTURE DBMS
CONVERSIONS NOW; DBMS CONVERSIONS WILL BE A WAY OF
UTFE

Certainly, once a DBMS is successfully installed,
the conversion of applications to that DBMS will
continue. However, the mature organization should
also plan on converting to another DBMS at some
point in time. The second DBMS may be just an
enhanced version of the first DBMS, or it may be a

totally new software package. In either case, it is
certain that a mature data processing organization
will want to take advantage of new DBMS facilities
and efficiencies; therefore, DBMS conversions will
become a way of life.

To prepare for these continued conversions, the data
processing organization can take several steps to minimize

jl

their i mpac t

:

minimize the application system processing logic,
ij program code and data base design dependencies on
f the features of a particular DBMS

-23-

institutionalize the Data Administration function

fully document all business system functions on an
integrated dictionary

The overall DBMS conversion philosophy developed by the
Establishing Management Objectives panel can be summarized
as follows:

Appreciate the technol ogy , but recognize that DBMS
conversion i s a^ management pr obi em .

The panel approached the topic of data base conversion
in a chronological manner. As such, the following sections
are organized to reflect management considerations during
the life- cycle of data base conversion efforts:

. CONVERSION TO A DATA BASE ENVIRONMENT

. MINIMIZING THE IMPACT OF FUTURE CONVERSIONS

. CONVERSION FROM ONE DBMS TO ANOTHER DBMS

3.2 CONVERSION TO A DATA BASE ENVIRONMENT

A certain level of maturity is necessary before
conversion to a data base environment is feasible. In

general, data base technology is not appropriate for data
processing departments in Stage I or early Stage II

environments. With these exceptions, conversion to a DBMS
should be initiated as soon as possible. However, the Stage
III environment is most compatible with the initial
conversion.

The following sections discuss the impact of conversion
to a DBMS on the four data processing growth processes,
n amel y

:

Applications Portfolio

Data Processing Organization

User Awareness

Data Processing Planning and Management Control
Sy s tem

s

i

-24-

3.2.1 Impact On the Appi ication Portfol io

.

Conversion to a

data base environment will genera 1
1 y necessitate a

substantial restructuring of the organization's application
portfolio to take advantage of the enhanced capabilities of
the DBMS. The several potential approaches that permit
converting the application portfolio range from an
evolutionary approach, in which new or replacement
application systems are developed using data base
technology, to a revolutionary approach, in which new
development is suspended until existing application systems
are converted to the new environment. Regardless of the
particular approach selected, an ordering indicating a

priority for conversion must be developed for the
application portfolio. Within this ordering, the
entry -

1 evel application i s of critical importance ! The
above topiFs are 9Tscussed in greater detail in the
following sections.

Approache s To Appi ication Conversion . Two basic
approaches exist for conversion of the application portfolio
to a data base environment: revolutionary and evolutionary .

Actually, these two approaches represent opposite ends of a

continuum of approaches. No single approach is universally
best. In fact, more than one approach may be operable
within a given conversion; i.e., certain application systems
may be converted on a revolutionary basis while other
systems are converted in an evolutionary manner.

In the revolutionary approach to conversion, sometimes
called resys temi za ti on , one rewrites and restructures
existing application systems as necessary to operate under
the new DBMS. Generally, one should avoid exclusive use of
this approach for the following reasons:

Risks overextension caused by attempting too much,
too fast.

Delays in one sub-project may impact others.

Insufficient resources may be available for
developing new systems during the conversion.

At the opposite extreme of the revolutionary approach
is the evolutionary approach in which all new systems are
jdeveloped under the new environment. Existing systems are
Inot converted but rather are replaced at the end of their
(inormal life cycle. This approach reduces the risk of
joverextension and the impact of delays in sub- pr o j ec ts

.

jHowever, there are disadvantages to an evolutionary
'approach

:

-25-

Complex interfaces with existing, conventional
systems are generally entailed.

Local inefficiencies and redundancy typically
result.

Current organizational deficiencies and constraints
may be perpetuated.

Just as the conversion of the entire applications
portfolio may be approached in an evolutionary or
revolutionary manner, so may the conversion of a single,
existing application system. In other words, the entire
application system may be converted to the new environment
at one time, or the conversion may take place in phases.
The latter approach, in which the reporting and update
functions are converted gradually, using bridges, has the
advantage of early availability of both cross-functional
data and the new features of the DBMS. Furthermore, greater
flexibility in scheduling the conversion is provided.
However, the gradual approach has the disadvantage of
redundant development and data storage, and requires
increased management to provide and control the conversion
bridges

.

One temporary measure that may be employed to avoid or
postpone conversion is to extract data from existing master
files in order to build a transient, integrated data base.
This data base is not maintained but instead is recreated on
a cyclic basis. The data base is used for cross- functi onal
reporting and analysis. This approach provides early
availability of cross-functional data and lends itself to a

specialized interrogation language. At the same time, there
are certain disadvantages to this approach:

Availability of data is achieved at the expense of

redundancy and reloading.

Problems of timeliness and consistency may be
created.

Basic application limitations are perpetuated.

Maintenance Moratori ums . There are never sufficient
resources, nor is it appropriate, to permit continued
maintenance and enhancements of application systems during
the conversion to the data base environment. Moreover,
conversion requires a relatively stationary target. Thus, a

moratorium on maintenance (or more accurately on
enhancement) may be declared during conversion.

-26-

The declaration of a maintenance moratorium must be the
result of agreement among user, senior, and data processing
management. Senior and user management support is necessary
for the conversion. However, if senior management is the
primary motivator behind the conversion, there will be some
degree of user resistance to a maintenance moratorium. On
the other hand, if the conversion is driven by user
management, senior management will tolerate a moratorium on
maintenance only so long as it does not interfere with
normal business functions. In either case, user and data
processing management must jointly determine the scope and
duration of the moratorium and agree to the circumstances
under which it may be modified or cancelled.

A common device for invoking moratoriums is a steering
or priorities committee. Composed of data processing and
user management, the steering committee is responsible for
approving projects and establishing priorities. The
steering committee does not manage, nor does it relieve
management of its business responsibilities. Rather, it
provides a forum for discussion and has power derived from
its membership and sponsorship.

Analysis of Opportunities . Certain application systems
indicate better opportunities for conversion than others.
The following types of applications represent good
opportunities for conversion:

An application system using many different master
files and/or many internal sorts, indicating the
need to represent complex data structures and to
support multiple paths between data.

An application with a requirement for on-line
inquiry and/or update of interrelated data. A DBMS
would still be applicable, although not required, if
the data were not interrelated.

An application system with chronically heavy
maintenance backlogs, suggesting redundant data
and/or inflexibility with respect to its data
structures.

An application system requiring a broader view of
data (either more detail or greater cross-functional
breadth)

.

An application which crosses functional or
organizational boundaries (e.g., project control).

-27-

An application which cannot support basic business
needs.

An application which provides data used by other
systems.

Certain types of applications represent poor
opportunities for conversion. For example:

A purchased application which is maintained by a

third party supplier.

An application which uses historical data and which
is processed infrequently.

A recently installed application system which is
effective in satisfying user needs.

An analysis of the characteristics of the existing
applications based on the above considerations will yield a

preliminary ordering for conversion of the application
portfolio. As the conversion is planned in more depth, the
preliminary ordering will be revised and refined to reflect
such factors as precedence relationships regarding
conversion, level of effort required, and the availability
of resources .

Se 1 ec ti ng the Entry - level Appl i cat ions . In converting
to a data base environment, a key decision is selecting the
en try -level application. In an ideal world, the initial
application would be selected as the vehicle for making
mistakes and learning how to convert and how to manage the
conversion. It would have a low profile and not present any
risk to the business. However, the realities of the world
will force initial conversion of a system which has
visibility, contains some element of risk, and which must be
completed quickly. The factors listed below should be
considered in identifying the best opportunity for
developing technical competence while simultaneously
reducing risk and visibility:

The application should be representative and non-
trivial .

It should be a good DBMS application (though not
necessarily the best).

It represents a relatively low risk to the business.

-28-

It provides sufficient opportunity for learning.

It is either an old system or technically obsolete.

It provides eventual visibility as a vehicle for
management controls.

It is "owned" by a vocal, important, but neglected
(by data processing), segment of the business.

3.2.2 Impact On the EDP Organization. This section discusses
the following topics relating to the impact of conversion on
the data processing organization:

Organizational considerations.

Technical aspects: tools and methodologies.

Data processing personnel skill requirements.

Organizational Considerations . Converting to a data
base environment generally entails reorganization of the
data processing function in order to provide the technical
and administrative means for managing data as a resource. A

key organizational consideration is the need to establish a

Data Base Administration (DBA) function within data
processing. Conversion will also impact the applications
development and computer operations functions within data
processing;

Data base administration . The Data Base Administration
(DBA) function is responsible for defining, controlling, and
administering the data resources of an organization The many
responsibilities of the DBA function are not discussed in
detail here since they are covered extensively in the
literature. However, some of the major responsibilities
include the following:

Data base definition/redefinition. DBA must have
primary responsibility for defining the logical and
physical structure of the data base, not merely
consulting responsibility.

Data base integrity. DBA is responsible for
protecting the physical existence of the data base
and for preventing unauthorized or accidental access
to the data base.

Performance monitoring. DBA must monitor usage of
the data base and collect statistics to determine
the efficiency and effectiveness of the data base in
satisfying the needs of the user community.

-29-

Conflict mediation. DBA must mediate the
conflicting needs and preference of diverse user
groups that arise because of data sharing.

Many alternatives exist for locating the DBA function
within the overall corporate structure. Three such
alternatives include the following:

Within the data processing organization. In order
to avoid an application orientation or an emphasis
on computer efficiency, DBA should, in general, not
report to Applications Development or Computer
Operations, respectively. Rather, DBA should report
to the highest full-time data processing executive.

Corporate level. When located at the highest
corporate level, DBA can take a broad view of data
as a corporate resource. Furthermore, DBA is in a

position to resolve conflicts between user areas.
When DBA resides at this location, some of the more
technical aspects of the DBA function are typically
performed within the data processing organization.

Matrix organization. This structure is patterned
after the aerospace industry where a given project
draws upon all functional areas. In this case, the
DBA staff would report functionally to DBA but would
also report directly to a project manager. This
organizational strategy has the advantages of
recognizing the integration required for a data
base, puts DBA at an equal level with other
functional areas, and serves to increase
communication during application development.

Within the DBA function, the two basic organizational
strategies are functional specialization versus application
areaspecialization.

Functional Specialization. This strategy organizes
DBA according to functions performed, such as data
base design, performance monitoring, data
dictionary, and so on. This approach has the
disadvantage of ensuring that no one person is
knowledgeable about all aspects of DBA support for a

particular application system.

Application Area Specialization. In this approach,
one person within DBA is responsible for performing
all DBA functions for a particular application area,
including both application development and
operation. This approach has the disadvantage of
developing expertise within functional areas of DBA

-30-

more slowly. Furthermore, unless controlled,
activities within DBA may become fragmented.
However, this approach results in an interesting and
challenging job and facilitates attracting and
keeping capable personnel.

Applications devel opme nt . Conversion to a data base
environment will affect the applications development
function within the data processing organization in several
ways. The most fundamental impact upon applications
development will be the change from an applications
orientation to a data orientation. Conversion to a date
base environment should also broaden the scope of the
application developers. Specifically, the developers need
to understand the basic business processes and to develop
application systems that cross organizational boundaries.

The application development methodology will have to be

I

modified by delimiting the relative responsibilities of both
j

DBA and applications development. Moreover, the basic
approach to application development may be revolutionized as
a result of conversion to a DBMS. Specifically, instead of
a rigorous approach to application development, the DBMS may

I

permit an iterative or convergence approach. With this
I approach, user requirements are not defined in detail before
i

developing the application system. Rather, user
requirements are defined at a more general level and a

system is quickly built using the DBMS. When presented with
the system outputs, the user specifies any required changes,

' which are then incorporated into the system. This process
I

is repeated until the application system satisfies user
needs. Note that this approach to application development
requires a DBMS in which data base definition, creation, and
redefinition and report writing are quickly and easily
accompl i shed

.

i
Computer operations . Conversion to a data base environment

I

will Tmpac t the Computer Operations function in two ways.
I

First, many of the responsibilities of computer operations
function will be transferred to the newly established DBA

' function. Second, the characteristics of the application
systems may change. Specifically, the DBMS may facilitate
the development and operation of on-line applications as

I opposed to the more traditional batch systems,
r Consequently, the computer operations function may have to

reorganize to operate within this more dynamic environment.

I

Technical Aspects - - Tool s and Methodologies . Because
i

the subject of DBMS selection has been covered adequately in
the literature, it was not addressed by this panel.
However, the following are some of the tools and
methodologies typically required in making effective use of

-31-

the DBMS after its installation:

Data dictionary /directory. A tool for organizing,
documenting, inventorying, and controlling data. It
provides for a more comprehensive definition of data
than is possible in the DDL facility of most
commercial DBMS's. As such, it is essential for
management of data as a resource.

Data base design and validation tools. Used to
facilitate the design process and to validate the
resultant design prior to programming. Included in
this category are such tools as hashing algorithm
analyzers and data base simulation techniques.

Performance monitoring tools. Useful in analyzing
and tuning the physical data base structure. These
tools provide statistics on data base usage and
operation

.

Application development tools. Used to facilitate
the development of application systems, including
such tools as terminal simulators which operate in
batch mode and test data base generators.

Data base storage structure validation utilities.
Used to verify that a stored data base conforms to
its definition or to assess the extent of damage of
a damaged data base. Examples include a "chain
wal ke r" u ti 1 i ty .

Query/report writer facility. Enables users to
access the data base and extract data without having
to write a procedural program in a conventional
programming language.

Data base design methodology. Needed to standardize
tbe approach to data base design and to provide
guidance in using the data base design, modeling,
and monitoring tools.

Application development methodology. Specifies the
standardized approach to developing application
systems; i.e., the activities to be performed during
the development process and the corresponding roles
and responsibilities of each of the various project
participants. Of particular importance is the need
to define the points in the development process at
which DBA and applications development functions
must interface and the relative responsibilities of
each with respect to application development.

-32-

Documentation methodologies. Needed by DBA to
document data definitions uniformly and to document
data base design decisions.

Data Processing Personnel Skill Requi rements . The
impact of conversion to a data base environment on skill
requirements will be considered in this section.

Types of skills . The following types of skills are needed
in a dart a base envi ronment

:

Data Base Administration. DBA should be staffed
with individuals who are strong technically,
interface well with people, and collectively are
knowledgeable about the DBMS itself, the tools
necessary to support it, the application development
process, and the corporation and its data.

Logical data base design. Within DBA there is a

need for individuals possessing the ability to
recognize and catalog data elements, to group
related data elements, identify relationships
between groups, and to use the data description
language.

Physical data base design. Within DBA there is a

need for individuals knowledgeable with respect to
organization techniques, data compression, trade-
offs in data base design, simulation, and modeling
techniques.

DHL programming. DBA should include individuals
with knowledge of the DML and its associated host
language, data base navigation, and the currency
concept.

Acqui s i ti on and training . Obviously, the required skills
may be developed internally or acquired externally. Hiring
the required personnel has the advantage of bringing
experience and new ideas into the data processing
organization. However, individuals knowledgeable with
respect to DBMS are scarce and hence expensive. Moreover,
individuals brought in from the outside typically have

I little, if any, knowledge of the business.
I

Developing skills internally has the advantage of
I building DBMS skills on top of knowledge of the business.
I Furthermore, control can be exercised over what is learned

i and when. Finally, it is generally less expensive and
disruptive than hiring.

-33-

When skills are developed internally, there are several
possible approaches to training:

f

In-house. In this approach, staff personnel i

possessing the necessary skills teach these skills
to others by means of courses or joint projects.
This approach may fit well with initial application c

development and has no cash cost. Moreover, the
mere act of having to teach their skills to others I

enhances the knowledge and understanding of the f

teachers themselves. There are several
disadvantages to this approach: it requires the
time of the most capable personnel when they may be
more effectively used elsewhere; it cannot be used

I

where the required skills do not exist internally; i

as a closed system, it excludes differing points of 5

view.

Vendor. This approach utilizes the courses offered i

by DBMS and support software vendors. Vendor s

courses may be a relatively inexpensive approach,
particularly when courses are bundled as part of the ,

purchase/lease price. Furthermore, the internal
j

staff are likely to benefit from the expertise of
the vendor. However, the courses may be only a i

thinly-disguisedsalespitch.

Other approaches. Additional approaches to training
include:

-independent educational organizations

-collegesor universities

-videotape/cassette courses

Tur nover . Conversion to a data base environment may result
Tn empl oyee turnover. The new DBMS may be perceived by the
staff as being threatening and, hence, may be resisted.
This resistance to change may be overcome somewhat by
involving the staff in the series of decisions leading to
the acquisition of a DBMS. If required skills are obtained
through hiring, the existing employees are likely to resent
the high salaries paid to the new employees. Finally, as
the skills of the staff increase, so does their market value
and it becomes increasingly expensive to retain the staff.
These three factors -- resistance to change, resentment of
new hires, a.nd increased employee market value -- tend to
increase turnover following conversion to a DBMS
environment.

-34-

On the other hand, certain factors tend to decrease
turnover^ Specifically, conversion to a data base
environment involves new opportunities for individual growth
and excitement such as new technology, new hardware and
software, and major development efforts. Properly
exploited, these factors can increase job satisfaction and
correspondingly decrease turnover.

3.2.3 Impact On Planning and Control Systems. With the
exception of the chargeout mechanism, conversion to a data
base environment will not affect the basic mechanisms for
planning and control. However, recognize that conversion is

i t sel f a^ process to be ma naiged . This entail s applying
justification procedures for conversion, planning the
conversion, establishing review and approval checkpoints,
and monitoring progress.

Planning the Conversion . Planning for the conversion
requires the involvement of senior, user, and data
processing management:

Attempts to convert to a data base environment
without senior management support runs a high risk
of failure. If senior management has not formally
authorized DBMS studies or incorporated DBMS
planning into corporate plans, the probability of
successful conversion is remote.

Conversion will have a significant impact on user
departments in the form of disruption of normal data
processing services, restructuring of application
systems, and a change in orientation on the part of
users from ownership to sharing of data.
Consequently, user involvement in planning the
conversion is critical.

Conversion to a DBMS generally affects the
structure, system development methodology, personnel
skill requirements, and hardwa re/ sof twa re
configuration of the data processing function. The
lead time necessary to develop the appropriate
infrastructure for operating in a data base
environment must be appreciated and planned for
accordingly.

Given senior management support for the conversion, one
strategy for obtaining the required involvement in the
planning process is to establish a steering committee for
the data base as mentioned in the earlier section on
Maintenance Moratorium. This steering committee contains
representatives from both user departments and from data
processing and is responsible for controlling the evolution

-35-

of the data base. As such, the Data base Steering Committee
is subordinate to the data processing Strategic Steering
Committee, which is concerned with the evolution of the
entire data processing function within the enterprise.

Given the appropriate participation, a necessary first
step in converting from a non-data base to a data base
environment is the development of an architectural plan for
the data base. This plan describes the intended structure
of the target data base. Conceptually, a data base
represents a model or image of the organization which it •

serves. In order for the data base to represent an accurate
image of the organization, it is necessary for the data base
structure to reflect the fundamental business processes
performed in the organization. Consequently, the designers
of the data base must first understand the key decisions and

i

activities required to manage and administer the resources
and operations of the enterprise. This typically entails a

:

c ros s- f un c t i onal study of the enterprise in order to i

identify the business processes and information needs of the
various user departments.

!

The architectural plan permits planning and scheduling
the migration of application programs, manual procedures,
and people to a data base environment. This implementation
plan must incorporate review and approval checkpoints that
enable management to control and monitor the conversion!
process.

Control 1 i ng the Conversio n. The actual conversion to a

data base erTvironment is effected by a project team composed
of representatives from user departments, applications
development, and data base administration. At formally
established checkpoints during the conversion, the data base
steering committee reviews the progress of the project.
Items reviewed and analyzed include the following:

Projected benefits vs. actual benefits

Data quality (i.e., completeness, timeliness, and
availability)

Projected operating and development costs vs. actual
costs

Actual costs of collecting, maintaining, and storing
data vs. benefits realized

-36-

Project performance (i.e., performance of the
project team against the conversion schedule and
budget)

Based on the review, the data base steering committee
takes the appropriate approval action (e.g., go/no go) with
respect to the conversion activity.

Chargeback Considerations . The costs of operating in a

data base (i.e., shared data) environment are extremely
difficult to charge back to individual users in an equitable
manner. At best, complex job accounting systems can only
approximate actual resource usage. Moreover, the chargeback
algorithm must not be dysfunctional with respect to its
impact on the various user departments. Conversion to a

data base environment frequently requires that a user
department supply data which it does not itself use. The
chargeback algorithm must reward, not penalize, such
behavior on the part of the user department.

Some considerations in developing an appropriate
chargeback algorithm include the following:

Consider capitalization of the costs of conversion
instead of treating such costs as current expense in

order to avoid inhibiting user departments from
undergoing the conversion.

User departments typically have little control over
the costs of conversion. Consequently, consider
treating such costs as unallocated overhead, since
allocation will have little effect on the decisions
or efficiency of the user departments.

Because ongoing costs of collecting, maintaining,
and storing data are difficult to associate with
individual users, consider developing percentage
allocation factors for these costs based on periodic
reviews of data base usage. Alternatively, consider
treating these costs as overhead.

Resource usage for retrieval and processing purposes
are easier to approximate, and such costs should be
charged directly to the users.

Consider incorporating a reverse charging mechanism
into the chargeback algorithm in order to compensate
users who supply data which they do not use.

3.2.4 Impact of Conversion On User Awareness. The most
fundamental impact of conversion to a data base environment
is the required change in orientation on the part of users.
No longer are files and applications "owned" by a particular
user department. Rather, data must be viewed as a corporate
resource to be shared by all user departments. The
requirement for sharing constrains the freedom of a user to
change arbitrarily and unilaterally the definition of the
data

.

Sharing of data will impact users in a second way.
Following conversion to a data base environment, users may
be required to supply data which they themselves do not use.
As already discussed, the chargeback algorithm must be
structured to reward such behavior. Furthermore, suppliers
of data in general must be infused with a sense of
responsibility (not ownership) for the data in order to
maintain data quality.

Conversion to a data base environment may impact the
user community in other ways:

Planning the conversion. User participation in
developing both the architectural plan and
implementation plan is necessary in order to obtain
user commitment and to ensure that the resultant
data base satisfies user needs.

Disruption of operations. Normal data processing
services are likely to be severely disrupted as a

result of such factors as limited availability of
personnel and maintenance moratoriums. Furthermore,
the conversion may disrupt and strain user
operations as new and old applications are operated
in parallel.

Resolution of inconsistencies. Creation of the data
base typically entails merging of application-
oriented files. During this process,
inconsistencies in both data definitions and data
values are identified. These inconsistencies must
then be resolved by the relevant user departments.

Structure of user department. The structure of a

user department may no longer be effective following
conversion; e.g., the user department may be
designed around a particular application system.
Restructuring application systems during conversion
may precipitate user reorganization.

-38-

New organizational roles. Conversion may cause new
organizational roles to evolve in user departments.
For example, in order to provide coordination
between Data Base Administration and the user
departments, a "user data administrator" may evolve.
The user data administrator serves as the focal
point for participation and involvement on the part
of the user department both during and subsequent to
the conversion.

Systems analysis. By providing such tools as a

high-level query language and/or a generalized
report writer, the DBMS enables non-technical users
to access the data base directly; i.e., users are
less dependent upon programmers to satisfy simple
requests for information. This increased
availability of data may result in the migration of
the systems analysis function from data processing
to user departments.

Personnel skill requirements. Conversion may impact
the skill requirements of user personnel. For
example, conversion to a data base environment may
also result in operating certain application systems
online, requiring that the user department acquire
or develop terminal operations skills.

3.3 MINIMIZING THE IMPACT OF FUTURE CONVERSIONS

The initial conversion to a data base environment is

not likely to be the only data base-related conversion that
an enterprise will undergo. Rather, conversions of one form
or another are likely to be a way of life. However, there
are certain measures that the data processing organization
can take to minimize the impact of future conversions,

1
1 ncl udi ng

:

Institutionalization of the Data Base Administration
function.

I

. Insulation of programs from a particular DBMS.

DBMS independent data base design.

j

3 . 3 . 1 I n s t i tu t i onal i za t i on of the DBA Function. A well-
jestabl ished DBA function will minimize the impact of future
idata base conversions. Specifically, the DBA function
should take action as follows:

-39-

J^aintain data definitions and relationships in an
up-to-date data dictionary.

Document -the structure and contents of all data
bases independently of the data description language
of the DBMS.

Develop methodologies and standards for data base
design which are independent of any particular DBMS.

3.3.2 DBMS Independent Data Base Design. The recent work of
the ANSI/X3/SPARC Study Group on DBMS" i ntroduc ed the idea of
a conceptual data model. The topic has also been pursued i

extensively in research papers. In practical terms it
amounts to design and documentation of the data base in a

form independent of any particular DBMS. In translating the
conceptual model to the data description language of the

|

DBMS selected for implementation, the design decisions which S

are predicated on the characteristics of the DBMS are more J

clearly distinguishable from the natural structure of the i

data. Should the DBMS be changed subsequent to I

implementation, it is possible to focus more clearly on the
j

structural conversions required of the data base and the
applications accessing the data base. As a point of 1

interest, use of the conceptual data model is appropriate
whether a DBMS or conventional files are to be used. }

3.3.3 Insulate Programs From the DBMS. Two sets of :

circumstances may motivate an organization to attempt to
insulate its application programs from any one DBMS. On the
one hand, an organization may be unwilling to commit
completely to the use of a particular DBMS. Rather, it may
desire to keep its options open with respect to converting
to a different DBMS at a later date. Alternatively, a large
mul t i - d i V i s 1 0 n corporation may desire to develop common I

application systems for the divisions; yet it may find that .

the data processing organizations within autonomous '

divisions have installed different DBMS's.

It is possible to build an interface between
application programs and the DBMS in order to isolate the
programs from the DBMS. That is, the programs do not
interact directly with the DBMS. Rather, standard program!
requests for DBMS services are translated into the required
DML statements either at compilation time or at execution
time. Thus, application programs are insulated from changes
in the DBMS as long as an interface module can be developed
to translate program requests into the DML statements of the

j

new DBMS. Similarly, a single application will execute
j

under any number of DBMS's as long as the appropriate!
interface modules exist. Furthermore, the mul t i - d i v i s i on
corporation retains the flexibility of standardizing on a.

-40-

single DBMS at a future date. The negative aspects of this
approach include reduced system efficiency and the
possibility of ending up with a pseudo-DBMS whose
capabilities represent the lowest common denominator of the
various DBMS's for which interfaces are built or planned.
Nevertheless, a number of corporations worldwide have
adopted or are adopting this approach.

3.4 CONVERSION FROM ONE DBMS TO ANOTHER DBMS

As a data processing organization goes through the
experiential learning necessary to assimilate data base
technology, the functions and features of the data base
management system package currently installed will tend to
be more highly utilized. Users will have positive
experiences with the facilities offered by the DBMS and will
subsequently place greater burdens on those facilities.
Also, the technical capabilities of the DBMS will be
increasingly utilized by the data processing staff in order
to meet user requirements.

In short, the tendency to use the full functions of the
DBMS over time will place a strain on the capabilities of
the DBMS. This is manifested by either decreasing systems
processing efficiency or increasing effort necessary to
develop systems which meet user needs. These increased
costs are recognized by both users and data processing
personnel who then initiate a search for increased DBMS
capabilities and, thus,' begin data base conversion effort.

This second type of data base conversion can be
characterized by either a complete change in data base
management system packages or an upgrade in the version of
the DBMS currently installed. This section discusses the
impact of the conversion from one data base system
environment to another on each of the four growth processes
previously discussed. The section is organized as follows:

Reasons to go through the conversion.

Economic considerations of the conversion effort.

Conversion activitiesand their impacts.

Developing a strategy for the conversion.

-41-

3.4.1 Reasons for Conversion. As has been previously
discussed, the most prevalent reason to undertake a

conversion from one DBMS to another DBMS-1 to DBMS-2
Conversion is to install a better DBMS . A better DBMS is
usually defined as having:

Improved functions (more complete).

Better performance.

Improved query capability.

Development of richer data structures.

More efficient usage of the computer resource
through decreased cycles and/or space.

Improved or added communication functions.

Availability of transaction processing.

Distributed processing capability.

Another major reason to undertake a DBMS-1 to DBMS-2
Conversion is to standardize DBMS usage within the company.
Many large corporations are finding that the DBMS selections
made several years ago to meet specific application needs
have resulted in the installation of several DBMS packages
within the data processing organization. The impact of
multi-DBMS usage in a single data processing environment is
major. For example:

Application programs are constrained to the design
and processing characteristics unique to each DBMS.

Data files are structured to be accessed by a single
DBMS.

Design and programming personnel develop the skills
necessary to implement systems associated with a

single DBMS.

The multi-DBMS environment results in a substantial
investment in data processing personnel technical skills and
reduces the potential for integrating applications that
operate on different DBMS's.

For these reasons many companies are now developing
standards for data base management system usage. Those
standards are usually application systems to be developed
under a single DBMS. Exceptions may exist where the
application to be developed is stand-alone in nature with a

-42-

low potential for integration with other systems.

The last major reason for DBMS-1 to DBMS-2 conversion
is that such a conversion is dictated by a ha rdwa re change .

Many of the commercially available DBMS's are offered
large mainframe vendors. As such, a move from one hardware
vendor to another will necessitate a change in DBMS usage.
This can become quite a complex effort in that the source
code and data base storage structures of all programs will
require changes. If there is a history of hardware
conversions in the company, the wise data processing manager
should select a DBMS that is not hardware dependent.

3.4.2 Economic Considerations. A key concept that was
introduced in the previous section is that the data base
conversion effort should be analyzed and managed like any
other high-risk systems project. The same concept applies
to a DBMS-1 to DBMS-2 conversion effort. As a result, the
DBMS-1 to DBMS-2 conversion should be justified on the same
basis as any other systems development effort is justified
in the company. An economic justification should be made on
the basis of costs and benefits associated with the data
base conversion. The economic justification is particularly
important if the major reason for the data base conversion
is either better DBMS o r standardization o f DBMS usage . For
a hardware change" tT^e cosl and benefits Tssoc i a ted with the
DBWS conver si on should be included in the justification for
the hardware change.

The economic justification for a DBMS-1 to DBMS-2
conversion should be based on a succinct articulation of the
COSTS and BENEFITS directly associated with the conversion
effort. Costs should be identified on an incremental basis
and be classified into three categories:

One-time conversion costs.

Incremental costs for each planned application to be
converted to the

new DBMS.

On-going DBMS support costs.

Benefits should likewise be identified on an
incremental basis within the same time frames as the
associated costs. Benefits are divided into two categories:

Discernible/definable cost savings in development,
maintenance, and operations.

-43-

Intangible cost savings.

A more complete description of the types of economic
considerations to be addressed is contained in DATA BASE
DIRECTIONS : THE NEXT STEPS , National Bureau of Standards
Special PUb 1 i c a t i on 45 1

.

Above all , the justification f o

r

d_ data base conversion
s h oul d be developed and commun i ca ted to management in the
s ame ma nne r that any other pr oj ec t i s justified .

3.4.3 Conversion Activitiesand Their Impact. The impact of
a DBMS-1 to DBMS-2 conversion effort can be felt on each of
the four growth processes previously discussed. Many of the
types of impacts are the same as those previously identified
in a conversion t£ data base technology. Users and data
processing management should recogn i ze t ha t many of the same
experiential learning processes occur in subsequent data base
conversions as they do in the initial effort.

Impact On A p p 1 i c a t i o n Portfol io . The impact of
subsequent dTta base conversi ons on application portfolios
occurs in three areas:

Application programs.

Data bases

.

Ca tal ogued modul es

.

A p p 1 i c a t i 0 n programs . Because application programs are
buffered from actual data storage structures by the DBMS,
the unique characteristics of each DBMS will have a major
impact on application programs in the following areas:

DBMS "call" structures.

Programs view of data and mappings (model,
structure, content).

Application program logic.

Data communications.
i

Data bases . Physical data storage structures and logical
data rel ationships are implemented via unique DBMS utilities
and are patterned after distinct DBMS requirements. As
such, data bases developed under one DBMS are not readily
accessible by other DBMS packages. Specifically, data bases
are impacted by the vagaries of data base management systems
in the following ways:

. Data base definitions in both the DBMS and in the
Data Dictionary.

Data content and storage format.

Use of data base design and simulation aids.

Conversion aids.

Catal ogued modul es . Though processed just as any other
program, catalogued modules differ from application programs
in their function and method of development. The specific
types of catalogued modules which are impacted by a change
in DBMS are:

Catalogued queries.

Catalogued report definitions.

Catalogued transaction definitions.

Impact On the Data Processing Organization . As was
previously discussed in the section on conversion to the
data base environment, the major impact on the data
processing organization structure is the implementation of
the Data Base Administration organization. Because this DBA
structure has already been integrated into the data
processing environment during the initial data base
experience, the conversion from one DBMS to another will not
have a major impact on it. Only procedural fine-tuning will
be required as the functions of the DBMS change. However,
it should be recognized that a substantial learning curve
will likely exist as the new DBMS technology is assimilated
by DBA personnel. Other organizational structure changes in
the data processing environment as a result of the DBMS-1 to
DBMS-2 conversion will be minimal.

The major organizational impact throughout both data
processing and users areas is likely to be in the technical
and functional education required before, during, aTTB after
the conversion effort. Data processing and user personnel
in all areas of systems development and operation will have
to be trained on the new aspects of the DBMS. Training
programs for all people should be identified and initiated
in advance of the conversion implementation.

Another major area of impact on the data processing
organization from a data base conversion is the
modifications in docume ntati on necessary to accommodate the
new DBMS environment. Changes in documentation will occur
in the following areas:

-45-

DBMS functional and
documentation

.

technical support (reference)

Functional and technical descriptions of
application systems converted onto the new DBMS

any

Physical and logical descriptions of any data
converted .

bases

User- oriented descriptions of application systems
processing characteristics.

System development methodology documentation that
references particular aspects of data base or
application development.

Impact On Data Processing Management Control Sy stems .

As previously discussed, Data Processing Management Control
Systems comprise those sets of procedures regularly used to
control both systems development and operations functions.
The conversion from one DBMS to another is not going to
modify the conceptual framework used to control the data

specific changes willprocessing env.i ronmen t . However
affect the mechanics of control:

changes

Data processing budgeting and user chargeback .

chargeback algorithm used to charge users for
processing services is likely to change because
modifications in:

DBMS overhead (cycles).

DBMS space requirements. •

methods of implementing logical relationships.

ownership of data items.

differences in efforts required to design
implement application systems.

The
data

of

and

differences in methods used
queries and periodic reports.

to structure ad-hoc

methods of charging end-user cost
one-time costs of conversion,
allocating these charges can also be important
lump sum vs. periodic payments).

centers for the
The time-frame of

(one

Systems devel opme nt me thodol ogy

-46-

There will be changes in the time frame and types of
effort required in systems development.

Conceptual approach to developing systems may change
due to total effort or time frame required to
generate sample reports on test data bases.

Design procedures in the methodology not likely to
change if DBMS facilities are similar; only jargon
should change in documentation.

Data processing pe rformance measurement .

Systems development and operations
which data processing personnel
measured should change due to new
especially to a new learning curve.

standards by
are regul arly
functions and

Computer
standards
technol ogy

.

Integrity control

.

operations performance
will change due to

monitors and
new processing

Adequate data base backup should be carefully
analyzed and managed during the conversion process.

Operational restart/recovery procedures will change
due to new DBMS functions or utilities.

Processing of data exceptions may differ.

Secur i ty control .

Differences in methods of data access security
should be recognized.

Data manipulation restrictions may vary from DBMS-1
to DBMS-2.

Privacy control

Where appropriate, special care should be taken
all privacy disclosures are logged during a

base conversion per recent government regulations

that
data

Impact
conver SI ons
as possible

Oji

i s

to

User Areas A key note of data base
that the conversion shoul d be a s transparent
user areas . This axiom holds that the

processing i mpac t on user areas should be held to a minimum
and that the' necessary technical capabilities to support the
conversion should reside in the data processing area.

-47-

The impact of the data base conversion effort should be
readily apparent to users regarding:

Functional improvements (e.g., new query language).

Increased data content (e.g., "while we are
changing, let's add ...").

Increase in sharing of data will highlight data
inconsistencies, validations, and format errors.

Possible planned disruption of services during
conversion period.

Data ownership changes.

User mental images or expectations may change.

Archival data capabilities may change (e.g., meeting
the needs of IRS, EEO, etc.).

3.4.4 Developing a Conversion Strategy. The well-managed
data processing installation should carefully articulate a

data base conversion strategy and plan before initiating any
conversion effort. Specifically, the data processing
management personnel should do the following:

Determine specific conversion objectives.

Analyze pros and cons and develop a memo of
rationale.

Develop a conversion strategy.

Develop a detailed plan for procedures, data, and
programs.

The following is a list of possible strategies which
may be undertaken:

Unbundle conversion of procedures, programs, and
data (conversion may affect all)

Build bridge from old programs to new data
structures

Convert non-vital program first

Migrate data and program conversion as maintenance
threshold is approached

-48-

Consider bringing in outsiders to convert procedures

Run parallel for vital systems:

-frustrated users may be a problem.

-you will probably be turning up old bugs.

-parallel may be security blanket only.

Avoid parallel running where possible by careful
planning and phased cut over or "fast" cutover with
fall back contingency plan, but note the possibility
of high risk exposure.

Map how all users use the shared resources.

Split input stream between old and new applications
and plan valildity checks carefully.

Use DBMS facilities such as dumping/loading and
mapping, if available.

Convert data all at once, then convert programs as
needed.

Restructure data if necessary before any program
conversion.

Benchmark first.

Once the appropriate conversion strategy is determined,
a detailed conversion plan should be developed. The
following is a list of considerations to reference when
developing a conversion plan:

Develop a work plan as in any other systems
development effort.

Append original feasibility documents and review in
the light of latest detailed specifications for
conversion.

Re-evaluate "Go/No Go" at pre-defined checkpoints in

conversion process.

Subject the conversion process to standard project
management control

.

-49-

Develop a contingency plan.

Use planning document as an education tool for
pro j ec t personnel

.

Evaluate and select conversion aids.

Flesh out impacts (see section on Conversion
Activities and their Impact above) into manageable
tasks. Schedule these tasks and establish a

reasonable v^ork breakdown structure.

Go through planning document with an implementation
ha t 0 n .

Control project on at least a weekly basis.

Plan for heavy user involvement in data translation
to resolve inconsistencies and consolidate
validationchecks.

Involve external and internal audit staffs.

3.5 SUMMARY

In summary, the panel on Establishing Management
Objectives analyzed the impact of a DBMS conversion in terms
of the four growth processes along which the D.P. function
evolves, n amel y

:

the portfolio of computer appl i cat ions

the D.P. organization and its technical
c a p a b i 1 i t i e s

the D.P. planning and ma nageme n t control sy stems

the user

Two types of DBMS conversions were addressed: (1) the
initial conversion to a data base environment, and (2) the
conversion from one DBMS to a second DBMS.

Four key concepts summarize the findings of the panel:

Conversion to a data base environment is primarily a

question of how soon the data base environment
should begin to B"e constructed, not whether a data
base environment should be implemented

Because the initial data base application represents
an important learning experience for the entire
organization, great care must be exercised in
selecting the entry -

1 e vel data base a p p 1 i c a t i o

n

The exposure to risk associated with a DBMS
conversion is minimized by managing the conversion
as any other large systems project

An organization will likely be involved in multiple
DBMS-related conversions, from the initial
conversion of conventional applications to data base
technology to the conversion of applications from
one DBMS to a second DBMS. Accordingly, the D.P.
organization should plan and structure for future
DBMS conversions now in order to minimize the impact
of future conversions

In closing, appreciate the technology involved, but
recognize that a data base conversion is a ma nagement
problem.

I

-51-

4. ACTUAL CONVERSION EXPERIENCES

James H. Burrows

CHAIRMAN

Biographical Sketch

James H. Burrows is Director of the Institute
for Computer Sciences and Technology within the
National Bureau of Standards. At the time of the
workshop he served as Associate Director of Data
Automation, USAF and was responsible through the
Director for all data automation matters within
the Air Force. He directed, controled, and
managed the Air Force's overall data automation
program. Prior to that position, he was Technical
Director for Command and Information Systems
Division and Department Head for the Computer
Applications Department at MITRE.

He is a graduate of the United States
Military Academy and has degrees from MIT and the
University of Chicago. He is a member of ACM,
Institute of Management Sciences, AAAS, and
American Society of Public Administration.

Partici pants

Edward Arvel
Michael Carter
Joseph Col 1 i ca

El i zabeth Courte
Ahron David

i

Ruth Dyke
Halaine Maccabee
Steven Merritt

Alfred Sorkowitz

-53-

4.1 INTRODUCTION

The members of this panel reviewed their experiences
under various conversion scenarios to identify the critical
factors which led to success or led to delays and failure.
The panel felt that the resultant list would benefit
managers facing data base conversion projects. While it
would have been noteworthy if some set of tools,
methodologies, etc. had emerged from the experience of the
group which would make any future conversions easy and
riskless, the panel found none. In the panel's opinion, a

successful conversion takes tedious preplanning and careful
execution; and in the current state of practice no known
panacea ex i st s

.

This panel will not try to tell you how to justify data
base conversion but will give its best advice on what to
consider when approaching the conversion task. The panel
began its considerations with the assumption that the
justification had been previously determined. The panel
agreed that its experience proved conversion justified. In

fact, for some panel members conversion was unavoidable.
Others felt they had demonstrated the value of conversion to
DBMS but with some reservations. In either
experience may help you.

TEN CONVERSION EXPERIENCES

Scenarios:

Manual to DBMS 2

File to DBMS 6

DBMSl to DBMS2 2

1 involved machine
1 involved machine

change
change

Ha rdware

:

IBM -Univac - Honeywell

DBMS Packages:

IMS - TOTAL - DMS 1000 - S2K - IDS I & II

Table 1: Conversion Experiences

-54-

The panel consisted of practitioners, people who fought
In the trenches and who made or followed decisions to use
DBMS techniques in actual si tua t i ons--and who, in most
cases, had to suffer the barrage of consequences.

The group reviewed only recent experiences, although
several participants have been using the concepts and
techniques since the early 60's. Table 1 presents a summary
of the types of conversion scenarios reviewed, the machines
involved, and the DBMS variety.

Specific details and guidelines that resulted from the
review of these experiences during the workshop are detailed
below in the section called, "ANNEX: CONVERSION
EXPERIENCES."

4.2 PERSPECTIVES

During the course of its discussion, it became clear
that the panel and the people with whom the panel dealt saw
DBMS technology, its promises, and its threats differently.
One of the simplest views sees a batch system with an on-
line access method to allow queries and, possibly, on-line
data-entry, e.g., a permanent operation using a leased
national timesharing network for access during the day with
overnight update on owned facilities. One might use this
operational mode as an educational step in the process of
selling and orienting the user and technical personnel to
the power and first level details of DBMS or as an
intermediate step in transitioning from one DBMS to another.
Another view saw the DBMS as a "super access" method,
promoting fast response and reducing the manpower costs of
responding to new requirements. A third view saw data base
systems as the best way to permit ad hoc on-line access and
a fourth saw them providing multi-file processing with
minimal expenditure of technical talent.

However, all of the above were considered subsidiary to
a view that DBMS controls the growth of information in
support of the corporate business act i v i t i es- -wi t h less pain
and suffering for all participants.

Many also see DBMS as a new sequence of buzz words and
acronyms: schema, root segment, subschema, DDL, DML; a new
mystique; a new barrier between the ADP community and the
real world. As an industry, we may yet learn that grist for
the Ph.D. mill and true payoff to the business world are not
necessarily the same. But, the boss knows it and suspects
these new "academically sponsored" techniques. Who else
invents language sounding like that above?

-55-

And as usual, the new technology threatens the current
technol og i st s

.

Many of those selling DBMS emphasize the "total"
commitment to the integration possible using a DBMS. This
convinces management that DBMS, more than a new risk, means
"total" risk. Who would make a decision to so "expose" the
company? Many managers hear about the attributes of DBMS
that make it seem a new technology that looks good for
everything. But managers have seen other new technologies
with similar histories. They share with DBMS the following
tra i t s

:

More variants seem to appear daily

No one seems to be in charge of standards, or even
have a clue on how to start

What is available on the market is of uneven
qua 1 i ty--ease of use, reliability, power and vendor
support seem to be random variables

No accepted guidelines on "how to use" and "what to
avoid" in the new technology seem to exist. This
disconcerts managers.

The technology conflicts with other forces. In DBMS
the basic principle is this: the corporation should
consider its data as a central, corporate resource,
not a private resource of each local subunit. At

the same time, it is clear to the large national and
international corporations that local authority is
the only way to inspire local responsibility.

Confusion over the fundamental purpose of the new
technology. It is not clear whether the advocates
of DBMS are technologists trying their best to meet
requested /perceived needs or management specialists
who see an opportunity to enforce central control.
In any case, DBMS technology claims advantages for
the user whether the corporation pursues
centralized, decentralized, or distributed
responsibility, authority, or data processing.

-56-

4.3 FINDINGS

The panel found management's attitude about data
processing shifting to concentrate on the data aspects.
Data is not a private resource for local exploitation.
Therefore, management must commit to both plan for and
control the use of the data.

The first commitment, to plan for the use of data
across the corporate body, is clearly a new job that is
beyond the purview of any single department and also beyond
the authority usually vested in the data processing
department. Anyone trying to do central planning faces a

struggle because each private domain will resist change.

Not only a new agent, but also a new function is needed
for central planning: Data Base Administration. Performed
at two levels, this function may not be under a common
manager. The first level is development/design oriented.
This group designs the data base, makes available the
appropriate tools and utilities, analyses the usage of the
data base(s), and restructures the data base. This group
also establishes the procedures for the second level, the
opera t i on- or i ented Data Base Administrators.

These operat i on- or i en ted Data Base Administrators must
deal with the physical aspects of the data base. Such old
concepts as allocation of storage, protection, recovery,
dumps, verification, etc., are performed in quite different
ways under a DBMS.

Typical figures for the size of the DBA group may fall
between 4 and 30. Only in very small installations, is it a

one man job.

The panel unanimously warned against an ov erambi t i o us

project size for the initial data base application. This
usually results in errors in cost and time estimates. The
anxious user withdraws to a "wait and see" mode and
announces changes in his needs as the project progresses.
The too-large project will probably be unable to cope with
such changes, even if the original goals are successfully
delivered. All of this leads to alienation of the users and
managers and a distinct hesitation to continue with the new
application technology.

The panel noted the availability of packages at many
levels. However, knowledge of how to best choose and use a

data base system is in short supply in any organization
about to enter the data base world. Help from both
consultants and suppliers is available and should be used.

-57-

4.3.1 Industrial /Governmental Practices.

The deliberations on pre-planning and planning
identified a dichotomy between private industry and the
Federal Government in both the processes controlling and the
results accomplished.

Indust r i al /Commerc i al (I/C) practice, when making
decisions on hardware and support software (DBMS,
Telecommunications, etc. packages), requires a study of the
alternatives followed by negotiations with acceptable
suppliers. The suppliers would be asked for their help in
determining how to use their system. I/C firms may insist
that the DBMS and other packages come from an independent
supplier of software.

This practice allows for a cooperatively developed
proposal to be put before management; one in which each
party to the proposal knows his role. More than one firm
may be requested to make such a proposal. Outside
consultants who are familiar with the various aspects of
such a proposal may be used "to keep everybody honest." Such
an evaluation may take nine months to a year, but
significant preliminary design on how to use the to-be-
supplied hardware/software system would have been done.

In the Federal Government practice, whose major
procurement dictum is maintenance of competition, the
selection of hardware is predicated on a functional
specification. For systems to be implemented in-house
implies a hardware functional specification to permit
various subsystems of the hardware to come from different
vendors. Specific details of support software cannot be
specified if such specification gives special advantages to
only one vendor or, alternately, eliminates too many
com pet i tors

.

At best, this leads to a watered-down software
specification that may not be strong enough to support the
intent of the internal Federal Government user. At worst,
this leads to a strong version of the specification such
that no one can supply as an off-the-shelf software system.
Testing such a system will take place long after selection.
Systems lacking extensive field use are notorious for being
unstable and poorly matched to the job at hand. Examples of
such systems are the WWMCCS and the ill fated ALS. It also
means that non-vendor developed support software is seldom
bid by the equipment manufacturer.

-58-

In terms of time, this system of procurement produces a

one or two year procurement process which requires a

benchmark testing period oriented to some standard language.
Such benchmarks cannot take special advantage of a vendor-
specific operating systems or DBMS.

After the hardware is selected, the internal software
group must do a preliminary detailed design, using the
specific hardware/software selected in order to determine
whether the original requirements can be met. At best, this
leads to- an additional one to two year delay over industrial
practice. At worst, it leads to a squabbling, contentious
confrontation between two groups with even a possibility of
law suits, threats, and ultimate abandonment of the original
obj act i ves .

Buying high technology from an adversary point of view
rather than a mutually cooperating point of view leads
inevitably to extensive delays and increased costs--if not
to outright failure.

Note also that during the lag in the Federal Government
procurement cycle, several things occur. The problem
changes in scope. As noted in the keynote address,
industrial growth in capacity required each year (stated not
in dollars but in computation) grows 10-20 percent per year.
The user gets discouraged and cancels; or worse, is given
two more years to extract new promises from the internal ADP
manager. In addition, while waiting for ha rdwa re/ softwa re
selection, the internal ADP team must: 1) Bide its time; 2)
gamble on the winner and proceed concurrent with
procurement; 3) disband; or 4) assist the user in making
larger plans. The first is wasteful, the second is risky,
the third introduces delay and confusion after selection and
the fourth leads to extensive over-commitment of both the
to-be-acquired hardware and the internal manpower.

Thus, the panel found significant differences between
I/C and Federal practice. While the differences may have
much larger implications they also increase hardware costs
for the Federal Government when buying a DBMS.

A way to avoid some of the difficulties described is

for the federal agency to create a truly functional
specification in the user's terms and to ask for a

competitive turn-key total system. This will eliminate
third party sources, etc., since the total system is to be
procured and supplied by a single source. However,
upgrading the system to handle additional growth
requirements would require, at best, an interim upgrade and,
at worst, a totally new procurement process. This would be
anathema to a concern with a profit motive. Simply stated.

-59-

cost-conscious organizations would not consider the Federal
Government's methods to be good business practice.

4.3.2 The First DBMS Installa tion. When installing a DBMS
tor the first time, management , user and service supplier
must "get its feet wet" in a quick and successful project.
This argues for phasing implementations into small packages
deliverable in, at the most, four to six months. This
allows each group to develop confidence, give feedback,
adjust its plans and expectations to match better the tasks
at hand and to feel, in general, comfortable with the
changes.

Installing the first DBMS will result in changes to
lines of authority and responsibility, some real and some
apparent. Do not let the new data base administrators be
stymied by the old war-lords. Fiefdoms exist and must be
continued but the data base administrator is responsible to
the organization as a whole and needs the necessary
authority and management support. Of course, this new
operating mode will require new responsibilities and
corporate approval before old negotiated responsibilities
can be discarded.

One way to get assistance in promoting acceptance of
the data base administrator is to keep the communication
lines open. This enables all to observe the changing
environment, to get frequent statements of management
support for the data base administrator, and to reaffirm the
resolve to continue and complete the desired conversion.

It may come as a surprise to old hands in the business
that conversion to data base environment from either a

current file system or a manual system will each require a

fault tolerant or "forgiving" mode for data base generation
and update. Even from automated files, there may well be
illegal values, voids, etc. in the file. This could cause a

significant number of errors to be found by the edits when
building the new data base, especially if internal DBMS
pointers are value dependent.

Your users will need help. Do not "over automate" on
the initial change from manual files. Use the current data
in its current forms to meet today's needs. Get it into the
data base and clean it up as the data is needed for new
applications. Cleanup can be a significant and unplanned-
for activity. Accept the dirty data and give some service
of value. Do not take the position that it's their fault
that the data base cannot be generated. Help them.

-60-

For those converting already automated systems, keep a

parallel backup for each full system conversion until the
new system is solid. This may be three to six months.

Try scanning a file for range of values on an item:
illegal or nonsense values are frequently present.

4.3.3 Desired Standards.

The panel regreted the lack of common terminology in
the data base management arena; indeed it appears that every
new development of any size brings with it an opportunity to
create a plethora of new names and verbs to distinguish
minor variations. The underlying fundamental concepts should
be given standard terminology and variants clearly explained
and justified.

Conversion tasks would become easier if each data
management system had the same functions available, or
possibly a basic subset of some superset. Common functions
with common definitions would create the same result for the
user, even though the implementations varied. This may be
both unachievable and undesirable, given the several
differing fundamental file forms. However, it may be
possible within classes of data base systems.

A third useful area for standardization is a micro-
language (atomic verbs) in which the functions (commands) of
a data management system can be described so that the
detailed specific actions of each command are obvious. This
would make definitions more clear and precise. It would
facilitate comparing DBMS's and it would facilitate re-
implementation of a DBMS or emulating one DBMS with another,
an action which might be needed to facilitate changing
hardware and DBMS.

4.3.4 Desired Te chn q]_oq

The panel saw the need for tools to assist conversion
from one DBMS to another. Unfortunately, they might have to
be dependent on a particular situation but converting one
DBMS file to another should be possible without going back
to transaction mode or card image mode, the most prevalent
way of generating a data base.

Another technology development needed is the creation
of a model - independent data description that could be
automatically mapped into any Data Description Language.

-61-

4.4 TOOLS TO AID IN THE CONVERSION PROCESS

4.4.1 Introduction

.

The rapidly changing field of data
automation ensures that opportunities will always be
available for transition of application software. This
transition may involve evolving from a non-DBMS environment
to an exclusively DBMS arena, transitioning from one
hardware environment to another through a common DBMS,
transitioning from one DBMS to another on either existing or
new hardware, or entering the distributed processing area.
This section will attempt to explore the various aspects of
these transitions and the role which DBMS and other tools
may play in achieving the transition goal. Extensive use
will be made of the effects of transfer from one DBMS to
another. The specific effects which will be discussed
include transfer of people, transfer of data, transfer of
capabilities, and transfer of procedures.

4.4.2 Changing From Non-DBMS To DBMS.

Perhaps the most traumatic of conversions involves the
initial move of an organization into the DBMS world. For
the traditional application programmer, the DBMS looms as
not only an unknown world but also as a threat to job
security. The first task then is to provide the threatened
programmers with the proper training, not only on the
specific DBMS to be used, but also on the advantages and
disadvantages of DBMS as a whole. Of great utility in the
transfer of people is on-site vendor provided training.
Ground work for the move, however, should initially be laid
through commercially available courses dealing with data
base systems independent of a vendor implementation.
Initial training should begin either before or during the
DBMS procurement cycle so that the present personnel will
see the DBMS for its utility and not as a threat.
Furthermore, thorough conceptual training will ensure
greater utility from the DBMS vendor's on-site training.
Care must be taken to ensure that the vendor's course
includes a practical exercise to demonstrate the advantages
of DBMS, specifically in the areas of interfaces, DDL, and
DML. The wise planner will quickly recognize that the most
important resource for training people is time. If
possible, time should be set aside following vendor training
for application programmers to experiment with the procured
system before requiring production programming. This
exercise may involve design and programming for data
conversion needs.

-62-

The transfer of data from independent files to DBMS
control can require extensive resources. The process is
usually a download by stand alone application programs then
upload through DBMS dependent application programs. Although
the concept sounds easy, the volume of data as well as
variety of storage formats, devices, and locations can, and
do, drive the cost of transition to very high levels. The
solution to this problem lies mostly in the continued
efforts of managers to keep current their documentation on

files and their uses. This documentation may take the form
of written narratives and file format charts but perhaps the
most effective tool is the data element d i ct i onary/ di recto ry
(DD/D). This automated system can provide managers with
current information as to the type, size, location and usage
of data. Although used most extensively in coordination
with DBMS, the DD/D can ensure that managers and those
responsible for the inclusion of data in a data base are
provided a complete view of the agency data as a whole as
well as usage of that data by application programs. In

addition to these tools, current research by Jim Fry of the
University of Michigan and Arie Shoshani of SDC [See the
Conversion Technology panel report.] in data translation and
conversion promise future tools for describing source data
files and providing translation to some target format.
Emphasis should also be placed on determining a common
interchange form for the conversion of data between hardware
type s

.

Moving from a non-DBMS to a DBMS environment involves,
in most cases, a matching of like functions in many
independent application programs to shared functions in the
DBMS. Consequently, this movement involves removing code
from the application programs and replacing it with code to

interface with the DBMS. The bulk of application dependent
code should remain the same. Capabilities such as
bac kup/ recovery and physical data structuring will be moved
as a whole to the DBMS. In the DBMS environment, no
capabilities are lost to the application programs- -onl

y

gained.

No tools are currently available to aid in this
!|
transfer of capabilities, but all DBMS share a common

' repertoire of functions to include facilities for data
creation, update, and deletion. These capabilities,

I

however, vary depending upon the underlying conceptual model
of the DBMS. Standardization of DBMS capabilities and
syntax could allow for a more complete predesign effort
through knowledge of system features. *

-63-

As mentioned earlier, conversion forces management to
take a much tighter control by establishment of a

j

centralized function known as Data Base Administration
(DBA). Within the DBA function, procedures are further ^

established to deal with data integrity, accessibility,'
confidentiality, and miscellaneous control. The primary!
tool of the DBA is "clout" or having a position in the •

organization with the authority and responsibility to ensure
the compliance with established procedures. The DD/D isi
also used by the DBA to aid in the design, implementation, <

andmaintenanceofthedatabase. '
\

4.4.3 Changing From One DBMS To Another. Perhaps the least
|

ex pi ored area of conversion and need tools involves the '

migration of applications from one DBMS to another. This i|

conversion process is second in impact on users only to '!

initial entry into a DBMS environment. The training of i

personnel on the new DBMS is simplified somewhat by a
'

previous exposure to the "DBMS way of doing things." The ,

application programmer, however, will be required to viewt
the data with which he works in a new manner, especially if

}

the move is from one conceptual model to another; e.g., from
a network to a hierarchically oriented DBMS or vice-versa.

\

Training will be the primary tool in conversion, including
both vendor and follow-on in-house training sessions and i

exercises. For conversion between certain DBMS (CODASYL-
like systems, for example), automated tools may be used for
direct syntax transformation in both DDL and application '

programs. Conversion, however, between systems which do not I

share a similar syntax or mode of interface, e.g., TOTAL to
IMS, IMS to DMS-1100, will require extensive training to
learn the new Data Manipulation Language (DML), DDL, and
interfaces.

In migrating data to the new environment, no new '

problems will be encountered which have not previously been
discussed. The download programs should, however, already^
be developed for such purposes as data base archiving
(dumpi ng)

.

The transfer of capabilities provides the greatest
impact on the conversion between dissimilar DBMS. DDL i

presents the first difficulty in conversion. In order to
implement the new data base, some description of the new
data base structure must be developed in the target DDL.
Automated translation tools can be developed if the source
DDL is extensive. Manual translations, however, seem more

j

appropriate due to various changes in the way in which DDL
may be interpreted; e.g., DATA SET in DMS-II is not the same
as DATA SET in IMS.

-64-

A DML, as mentioned earlier, offers the most advantages
to automated translation when the interface syntax is fixed
(CODASYL's DML). When the interface is purely through
dynamically built character strings (IMS, TOTAL) automated
conversion can only replace CALL statements of one format to
CALL statements of another. The DML functions, although
common (GET, PUT, CREATE, DELETE, UPDATE), also vary in
interpretation. An example: FIND in a CODASYL-like DBMS
only locates a record as stated in the record selection
expression and a subsequent GET must be issued to load the
data into the issuing program's work area. A GU (get
unique) in IMS not only accesses a record but also requires
the Segment Selection Argument (SSA) to find the appropriate
record. Therefore, the capability of a single DML command
may not be replaceable by another single command of the new
DBMS. Conversely, several commands which span both DDL
and DML (record selection expression/set selection) in a

CODASYL-like DBMS may be replaceable by one command (GU
W/SSA). Other commands of the source DML may not be
duplicated in the DML of the target DBMS. Apart from the
DDL and DML capabilities, more basic differences may exist.

Shared functions which DBMS supply are often quite
different. Where one DBMS may supply item level locks,
another may make only record or data base locks available.
Access controls, recovery, and auditing are just a few of
the support capabilities which vary between DBMS, even those
which implement the CODASYL specifications. The change in

capabilities, therefore, is indeed the most evident
conversion problem in migrating applications between
dissimilar DBMS.

The transfer of procedures will usually be transparent
to the application programmer but will impact heavily upon
the DBA. Because of the differences in capabilities and
architecture of DBMS, the DBA will be forced to adapt
fastest to the changing environment. The DBA must
immediately recognize differences in the operation of the
new DBMS and take steps to avoid turmoil. Procedures must
be changed as little as possible in external appearance.
The application programmer must interface with the DBA in
the same manner as before. The DBA, however, must determine
and apply new procedures to ensure maximum system efficiency
based on the information passed across this interface. The
DBA's primary tool in this environment will then be training
and any available consulting services.

-65-

4.4.4 Changing Hardware Environment. The most frequent i

mot i vat ion for conversion is caused by an impending upgrade
|

in hardware from one manufacturer's equipment to another or
between non-software compatible lines of the same vendor.
Within this environment, change can extend from simply ^

migrating applications from a DBMS on the current machine to
j

the same DBMS on the target hardware (TOTAL on IBM to TOTAL
j

on CDC), through changing DBMS between machines (IMS on IBM
}

to DMS on UN I VAC 1100), and, finally, to initial !

implementation of a DBMS environment on the new computer.
Two of these situations (DBMSl to DBMS2, non-DBMS to DBMS)
have been previously discussed. The additional impact of
changing hardware, however, adds a new dimension to the
training problem. Migration of data also is a bit more
difficult in that some form must be established in which to ,

download data for subsequent upload on the target machine. 3

Transfer of both capabilities and procedures apparently are 3

not impacted or complicated by this transition.]

The additional transition of DBMS on the current
|

hardware to the same DBMS on the target hardware begins to
j

show the utility of standardizing both interfaces (end-
|

user- f ac i 1 i t i es) and capabilities. Whether the DBMS in
]

question is CODASYL-like or not, costs are significantly 1

reduced when syntax and capabilities remain constant across
||

hardware types. Examples of systems which provide these |

transition opportunities include TOTAL, SYSTEM 2000 (Non-
CODASYL) and IDMS (CODASYL-like). Applications which
utilize these systems can concentrate on more operating ;

system dependent transitions (JCLl to JCL2) because of the
j

relatively small changes required in DBMS oriented syntax. '

Because of the vendor enforced (or de facto) DBMS
i

standardization across machines, a ut oma tecf~tool s can greatly
;

aid transition and may be as simple as filtering source
j

programs and recompi 1 a t i on .

j

4.4.5 C e ntralized Non-DBMS--di str i buted DBMS. With cheaper
}

system communication costs and better cost/ performance ;

ratios of the minicomputer (some supporting virtual memories
j

in the millions of characters and most, if not all, offering
large-scale peripheral disk storage), the use of data base
software can be relocated from centralized large-host)!

environments to mini-based decentralized arrangements of
|

data processing facilities. Conversion from the traditional !

centralized mode to distributed data base processing is
\

fraught with both technical and management perils. The
\

mini -based DBMS generally does not offer the diversity of
j

facilities available with data base systems centrally)
resident in larger hosts and, in fact, may constrain the

;

design of the application systems planned for dispersal.
Replicating the application software, data base structure
(DDL), and data base software may require a severe ,

-66-

reorientation of existing ADP management philosophy.
Management and control of multi-site operations, ADP
standards, application development and data base
administration will be made more difficult. Conversion of
data previously centralized requires that some intermediate
data form be created for downloading appropriate subsets of
the old file(s) and subsequent uploading on the distributed
hardware. Standardized interfaces (DDL, DML and end-user
facilities) and common DBMS capabilities will reduce the
management problems encountered during the design,
development, conversion and operation of distributed data
base implementations (even if data base management software
and mi n i -computer hardware differ from site to site).

4.4.6 Centralized DBMS--di st ributed DBMS. The problems of
conversion from a centralized mode of DBMS operation to
distributed data base processing are somewhat eased by the
presence of experienced and knowledgeable personnel at the

j

beginning of the conversion, but are still of concern.

I

Aside from the difficulties associated with the migration of
; existing application code (dependent upon the existing
business functions to be dispersed, degree of
transferability of the programming languages presently in
use, limits on size of load modules, etc.), further problems
surface if dissimilar data base logical structures (network,
hierarchical relational, etc.) are encountered.

I Conversion to a distributed data base structure that is
similar to the existing centralized structure should be an
easier task. DDL differences may exist, however, between
the existing and target data base systems as well as the

I

obvious job control language differences. The target
[

(distributed) data base software may not offer the
I facilities used (or planned for use) in the existing
centralized applications, and support of user business

I

processes may thus be reduced. The problems noted in the

j:

conversion of centralized non-data base applications to a

,! decentralized data base mode remain unchanged for the

j

migration from centralized to decentralized data base modes.

4.5 GUIDELINES FOR YOUR FUTURE CONVERSIONS

The panel concluded that the single most important

I

guideline to offer a group about to embark on a system
k conversion wasto use their best management techniques. It is
I a technically difficult job, like most large software system
developments, and one must apply all well-known software

I development methods.

-67-

i

4.5.1 Ge neral Guidelines. The discussion of the various
conversion scenarios revealed the fact that several
management practices had been utilized in all of the
successful conversions which, though common across all data
processing environments, were of particular relevance in the
data base environment where problems and errors in
establishing policy proliferate across all applications
ut i 1 i zi ng the DBMS

.

4.5.2 Important Considerations.

Analyze all possible file organizations. Do not
assume that the most efficient way is going to be a

data base. Some applications can perform better
using sequential files such as tapes or other access
methods such as Index Sequential.

Analyze the final stages of the conversion. How
will you convert to production? Will it be (or can
it be) converted module by module, transaction by
transaction, or will it be necessary to "push the
button" and convert to production all at once?

Develop a representative model of the company's !

business for design purposes. This model should
j

provide the basis for the design of the data base
i

wh i c h wi 1 1 be i n prod uct i on .
1

Determine the degree of security and integrity !

required for the operation of the data base. Who
will have access to certain information? How will
unauthorized use be prevented? How will you recover
or reconstruct the data base in the event of a

software or hardware failure?

Determine the space requirement for the production
data base. Determine if all the data on the file is
necessary and is being used. Check for redundant S

data. (It is not always bad to have redundant data, ^

especially if it will improve retrieval time.) ^

c

Build a small version of the data base and test for ^

deficiencies in the design or in the modules. The §

testing must be thorough and cover all facets of the
company's business. Users' involvement in this .

stage should be heavy but should not dictate how the
data base is to be designed or what access methods '

must be used.

-68-

Determine whether a Data Base Administrator is
needed for your organization. The DBA will be
responsible for the security and integrity of the
data base (including recovery and backup) and act as
an agent between the User's group and the data
processing group.

Determine the type of support you will need from the
vendor. Will classes be given on data base
technology? Will the vendor be readily available
when a problem arises? Contact various users in
your area. Attend a local users group meeting and
find out the types of probl ems and solutions that the
group has come up with, especially talk to users in
the same type of business. Valuable information can
be obtained and you will not re-invent the wheel.

Determine how eager upper management is to undertake
the task of converting. If they support you, the
task will be easier and more efficient.

Look into the future. Determine whether the present
design of the data base is the most efficient one in

case new applications are introduced. Do not be
afraid to redesign if it proves to be more
efficient. Provide for a purge of unneeded data.
Reorganize the data bases on a regular basis to re-
claim unused space or to compact the data. One very
large data base may not be feasible.

Determine whether to use standard vendor supplied
software or develop you own.

Once a decision has been made to convert to a DBMS,
check and re-check for contract to be signed. Have
a contract attorney study the agreement.

4.5.3 Ti ght Control . In successful conversion efforts,
spec i al empha si s must be placed on establishing procedures
and policies and insuring that they are followed. Examples
of these procedures and policies include internal standards,
data base administration, and explicit (precisely defined)
goal s

.

4.5.4 P rec ise PI ann i ng/ pre-pl ann i ng

.

The probability of a

conversion succeeding is directly proportional to the degree
of preparation. Preplanning efforts involve:

establishing current baselines and identifying
perceived inadequacies

-69-

defining requirements or specifying what are the
desires of the conversion

enumerating as many alternatives as practical and
determining their appropriateness in the target
environment

establishing feasibility in terms of costs, people,
and time

describing milestones and benefits

receiving and documenting a management commitment to
a specific alternative

Planning efforts must begin immediately upon management
commitment and include:

organizing for the project

defining support software requirements

evaluating available systems (packages)

describing selection criteria

selecting and procuring software

building a well-defined implementation plan
including staffing, training, detailed design, and
implementation strategy

seeking final plan coordination and approval

4.5.5 Important Actions. The panel recommended several
actions:

Do Establish Review Points. When describing a plan,
care must be taken to ensure flexibility in order to
support changing/overlooked requirements. Points
must be scheduled at which time the plan is reviewed
and updated as required. Decisions must also be
made as to the appropriateness of proceeding with
devel opmen t

.

Do Involve End Users. The data processing
department must be extremely careful not to ignore
user input to the development process. No one knows
the functional requirements which must be met better
than the end user.

-70-

Do Keep Scope Reasonable. The scope of the project
must be dictated by practicality. Attempt only as
much as is attainable within well defined time
frames and technology. Once the scope is defined,
stay within its bounds.

Do Not Stifle Prototyping. Modeling is perhaps the
best method available for trying out ideas.
Encourage validation of concepts through
prototypi ng

.

Do Shift Responsibility to Where the Expertise
Exists. Always ensure that responsibility for
achieving goals is placed where the ability to both
understand and accomplish them exists.

Do Phase the Implementation. Within an overall
context, ensure that total system conversion is

planned and executed in attainable increments.

Be Wary of Entanglements. System conversion
planners must always review commitments with the
goal of avoiding crippling dependence upon
manufacturers, proprietary packages, and maintenance
agreements. Recognize Costs/Benefits of New
Technology. Quantify both the advantages and
disadvantages of being the first to use new
technol ogy

.

Do get adequate management commitment. Make sure
management knows beforehand what resources and time
periods are required, what has been available, and
what progess, if any, has been made. Do not let
them walk away from it. They are key players.

Do initially select an important but tractable
portion of the ultimate and have some results in
four to six months. This forces a early and
realistic review. One also hopes it demonstrates the
new capabilities, emphasizes the ability of the
implementors to handle the new technology, and
provides better insights into both the technical and
operational (people oriented) problems that the
organization will face.

Do introduce your technical staff to the new
technology. First, when you are studying whether to
go data base but, also, immediately before and
during the initial implementation. Sometimes six
months to two years pass from initial study to start
of implementation. Further, training for the
i ni t i al deci si on process is usually "book learning"

-71-

and quite stale by implementation time.

Do orient and educate your users. Next to
management, this group is the key to success. They
must feel comfortable with what you say. That means
they should have a role in deciding what they get
and when. In addition, they must prepare themselves
for the new modes of operation.

Do keep the user group on your management review
team. They can keep you out of trouble. They can
change their priorities and needs to fit your
capabilities to deliver. They can help you resist
pressures for early and extra delivery since they,
too, want and need a quality product. By keeping
them in the loop, you risk less chance of surprising
them and evoking resistance on delivery.

Do set up a central "data base control group."
Useful in any big system or series of related
systems, it becomes essential in a data base
oriented organization. Such a group may have
several levels with differing managers but these
groups must be coordinated. There is a policy
level, an implementation level, and an operational
level. The impl emenat i on group does most of the
administrative and design work involved in bringing
into being and providing for the efficient structure
of the data base(s). The operational level is
responsible for the operational integrity of the
data base and must take the actions for
restart/recovery in addition to any periodic
initialization/dumping or consolidation of the
actual data base.

Do implement a data d i ct i onary/ d i recto ry . As a key
item common to all systems, it is needed to make the
data base a corporate rather than a private entity.
Because the data is to be shared across groups who
are not responsible for the data, it is essential
that the "meaning" of each data item be documented.
A data item, besides having a name, a form, and
values chosen from some well documented set, has
several meanings. One is the English description;
another is an operational description of how the
value is determined; another is how the data is
commonly used and by whom. All of these must be
known to avoid confusion and to avoid having data
misused.

-72-

Do ask for and accept help from the vendor of the
data base system. If you are also changing hardware
at the same time, put pressure and some of the risk
on that vendor. Good advice must be available during
your learning period. Consultants are useful, not
only initially, but also during design and
implementation time.

4.6 REPRISE

The most significant finding: the ingredients for
success are management commitment and discipline, skilled
people, clear roles, and lots of cooperative conversation
between the parties involved. Not a new discovery but still
significant--and more essential than ever ?,t this stage in
DBMS evol ut i on

.

4.7 ANNEX: CONVERSION EXPERIENCES

4.7.1 Conversi on: File To DBMS. The three user experiences
wh i c h f 0 1 I ow i 1 1 ust rate the scenario of converting from a

file system environment to a data base environment without a

change in hardware resources.

Conversi on Experience - A.

Goal

s

. Studies were conducted to analyze the problems of
the file environment. Problems identified by the functional
user and data processing departments included prohibitive
maintenance and enhancement costs, slow implementation of
additional user requirements, heavy data and processing
redundancies, and lack of data integrity.

Summary of actions . The problems described in the previous
section Tedi to the data base decision. Following this
decision, a consulting firm prepared a data base conversion
plan to execute those tasks in the plan leading up to but
not including the conversion of data or application systems.
A directory of steps and tasks in the data base system plan
that the consulting firm prepared follows.

Step 1: Evaluate the Present Information System
Task 1.1 Information Flow Analysis
Task 1.2 Current ADP Analysis
Task 1.3 Current Reports Analysis
Task 1.4 Status of Present Information System

for Data Base
Task 1.5 Draft of Data Base Administration

Responsibil ities

-73-

step 2: Define Data Base Requirements
Task 2.1 Service Analysis Development by Report
Task 2.2 Service Analysis Development by Function
Task 2.3 Data Dictionary Development

Step 3: Develop Initial Data Base Architecture
Task 3.1 Distribute Data Dictionary Elements
Task 3.2 Distribution Optimization
Task 3.3 Architecture Description

Step 4: DBMS Package Evaluation and Recommendation
Task 4.1 Architecture Mapping
Task 4.2 Support Features
Task 4.3 Secondary Features
Task 4.4 Recommendation

Step 5: Application Redesign
Task 5.1 Design and Program Documentation
Task 5.2 Structured Programming Analysis
Task 5.3 Implementation Controls

Step 6: Configuration Analysis and Evaluation
Task 6.1 Current Load Analysis
Task 6.2 Future Load Analysis
Task 6.3 Simulation Modeling
Task 6.4 Simulation Analysis

Step 7: Implementation and Conversion Plan
Task 7.1 DBMS Installation Planning
Task 7,2 Data Conversion Planning
Task 7.3 Application Conversion P-lanning

Step 8: Personnel Development and Training
Task 8.1 Assess Available Talent Levels
Task 8.2 Develop a Formal Training Plan

During these tasks the consulting firm provided project
direction and DBMS expertise. Company personnel assigned to
the project received practical training while preparing for
planned conversion of application software and data files.

Some points should be noted about the tasks prepared
for the data base system plan:

The evaluation of the results from tasks 1.1 through
1.4 was used to support the data base decision.

The data base administration function was
established following a draft of responsibilities
prepared in task 1.5.

-74-

The initial data base architecture described in task
3.3 was package independent.

The DBMS package recommended in task 4.4 was
influenced by constraints imposed on the evaluation
process. The influences included the need to
interface with teleprocessing and the ability to
install DBMS with an initial or pilot application
system conversion in just four months.

The application conversion plans in task 7.3
identified functional redesign requirements
resulting from the service analysis conducted in
task 2.2 to correct deficiencies in existing
software and to benefit from the facilities offered
by the DBMS package.

At this time the recommended DBMS is installed and the
conversion and implementation of the pilot application
system and its data files to data base is completed. The
conversion effort was successful but not without its
problems. The functional user organizations feel the
benefits of DBMS in the areas of performance, data integrity
and responsiveness on the part of the data processing
department to change requests. However, further
implementations to DBMS are suspended due to a redefinition
of priorities outside the data base system plan.

Conci usi ons . Factors contributing to the success of that
conversion or to the problems that occurred were:

Management demonstrated commitment by the funds made
available for consultant services, by the investment
in preplanning and planning tasks, and by the
establishment of a DBA function. This commitment
was instrumental in the responsiveness and
cooperation that was sorely needed from data
processing personnel and users alike when the data
base project was undertaken.

The establishment of a DBA function in the data
processing organization invariably creates a

political struggle between the DBA, the Manager of
Systems and Programming, and the Manager of
Operations. The use of consultant services
minimized the political problem; at least during the
preplanning and planning phases. However, the
impact or trauma is felt most during the pilot
application system conversion process. The lack of
adequate management support to the DBA function as
demonstrated by its placement within the data
processing organization and the limited personnel

-75-

resources only aggravated the political problem. As
such, the establishment of the DBA function was less
than effective. The influence of such political
struggles on the suspension of further data base
conversion activities is difficult to determine.

A major problem in converting from a non-data base
environment to data base is that during the period
when data base expertise is critically needed, you
are least able to provide it. This problem was
eliminated with the expertise provided by
consultants..

The placement of the DBA within the data processing
organization and the limitation of its
responsibilities contributed to the lack of support
at the right level of management for continuation of
the data base project. This was very much in
evidence when staff meetings were conducted to
prioritize data processing activities.

The benefits realized by the conversion and
implementation of the pilot application system
resulted from the redesign activities. However, the
cost/benefit analysis was instrumental in

identifying a pilot system that had low risks, early
benefits, and visibility. These three factors alone
may very well save the future of the data base
project in the context of further implementations of
data base. Once a data base conversion effort is

suspended, it normally takes support from the user
community to reactivate it.

Problems encountered during the conversion process
were due, for the most part, to inadequate training
of people in the usage of the DBMS and in the
interpretation of its diagnostics. The amount of
training planned was reduced in an effort to
compensate for an insufficient number of people made
available to convert the pilot system.

Conversion Experie nce - B_.

Goal

s

. The experience involved choosing and using a DBMS to
support processing of solar hardware system data. The solar
hardware data resided in file format, yet structural
relationships existing between and among data records could
not be supported in any reasonable manner in the file
oriented environment. In addition, many of the user
requirements were not adequately defined and there was
considerable worry about whether the known requirements

-76-

could ever be met.

Summary of actions . A group was gathered to define the
users' information processing requirements and to determine
whether a DBMS solution could be provided within a

reasonable time at reasonable costs. Initially, all
combinations of hardware and software solutions were
considered because the data processing center within the
organization did not have a DBMS. As time progressed, the
users' requirements became clearer and time-sharing service
sol ut i ons- -t he desired mechanism for achieving a hardware
change -- were dismissed because of control and cost
factors. The conclusion was to provide a DBMS for the
existing hardware.

Although unanswered questions remained regarding the
feasibility of this approach, many desirable aspects were,
on the other hand, apparent. The DBMS selected was
available in a bundled form from the hardware vendor--no
additional costs--and the software could be delivered in a

timely manner. In addition, the selected DBMS supported the
required structural relationships with its CODASYL
orientation.

The best understanding of what output requirements the
DBMS should provide was used to design the data base and
implement application programs. All of the requirements
were met in a reasonable time within reasonable costs.

Conclusions . Critical points in the success of this DBMS
conversion experience were:

DBMS expertise was available from the beginning--a
most important time in any DBMS environment.

The users participated in defining the information
processing requirements.

Expertise was available in matching information
processing requirements to available DBMS
capab i 1 i t i es

.

The vendor provided adequate training and sufficient
time to gain experience after the training was
completed. This provided the necessary insights
into the actual capabilities of the chosen DBMS.

Portions of the output requirements were
sufficiently well documented and were of reasonable
magnitude to demonstrate successful operation of the
DBMS demonstration.

-77-

Conversion Experience - C.

Goals

To convert a large number of antiquated files to the
state-of-the-art technology.

To provide for a more efficient way of retrieving
and updating data.

To eliminate redundancy through a centralized data
bank

.

To eliminate erroneous information through data
integrity.

To provide better management of information.

To provide for more system security.

Summary of actions . Only one alternative was available to
convert existing files to a DBMS and at the time only one
DBMS could meet the requirements set by upper management. A

hierarchically structured data model DBMS used exclusively
with its own higher level language interface was chosen.

The first conversion had to execute the load procedures
eight times until all known errors were eliminated. Each
load took over 100 hours to run with no checkpoints.
Fortunately no crashes occurred during any of the runs. The
load process, in itself, was not a major problem; however,
some erroneous data present in the old file was input to
data bases. The users were encouraged to be involved in

checking and re-checking the new system. At times, the
users requested changes which, to them, seemed minute, but
which required large programming and system changes. Some
users wanted to have more information in the data base (such
as segment's last date of change) while others were
concerned with space and efficiency. We provided a backup
system which we could fall back to in case the conversion
failed. Meetings with users continued for six months until
repeated testings satisfied us that we had reached a

satisfactory level of accuracy.

Another problem resulted from personnel assignments.
While one group was loading the data base, another was
testing. The group that loaded the data base did not have
as good an understanding of content as the testing group.
Consequently erroneous data was loaded. If both groups had
worked more closely, most of these problems would have been

-78-

resol ved

.

Conci us i ons . The following points are characteristic of
successful conversions in the described scenario:

1. Management commitment ensures sufficient resources
and end user support of the conversion effort.

2. DBMS expertise must be available from the beginning
of the conversion effort.

3. Adequate preplanning and planning activities are
instrumental in the conversion to data base.

4. The end users must participate in defining
information processing requirements.

5. The DBA support must be a strong and continuing
comm i tmen t

.

6. In the DBMS package evaluation, expertise must be
available to match the information processing
requirements to the capabilities of available DBMS
packages

.

7. Adequate and timely training must be provided and
sufficient hands-on experience must be gained prior
to any conversion of application software.

8. A conservative staging plan, one which selects an
application system for initial implementation that
offers low risks, high benefits and visibility, must
be developed to insure continuing resource support.

9. The DBMS conversion must be thoroughly and
adequately tested prior to the production cycle. A

fall-back procedure should be established in the
event that the conversion is not successful.

4.7.2 C onv ersion: Ma nual E nvironment T o DBMS. This scenario
represenfs conversions in vTFTrcF Jafa Ts maintained and used
manually in the source (old) environment and it is desired
to convert the data and functions directly to a DBMS without
first introducing a non-DBMS file system.

Convers i on Experience - A

.

Goals . The goal of this conversion was to mechanize
f unct i ons performed manually by separate operating
departments using the same input documents. The input
documents triggered each of these departments to perform its

-79-

own -functions using its individual, manually-maintained data
records. The flow of the input documents went from one
department to another. The flow was sequential in nature
since one department had to complete its function before the •

next could begin. Each department independently maintained
its own data records. The records in each department

j

contained some common data components. i

This total process had never been mechanized before I

because of the complexity of the operations involved and the ,

lack of data structures to represent the interrelations of
i

the data and functions. DBMS technology made mechanized
!

processing and a common data storage place feasible.

The expections of mechanization included:
|,

1, Better performance of end-user functions through
[

more accurate records and increased capability of f

machine over human operation.
,

ii

2. More efficient performance of functions through '

elimination of duplicate record keeping and
mechanization. '

Summary of actions . The project selected a network DBMS
including f ul 1 communications and transaction management
capability. Interactive terminals were designated for end
user locations as well as an interface developed with a

front-end system controlling the flow of the inputs to the
system and the distribution of the outputs to the
appropriate user departments and to other mechanized
systems.

The conversion from a manual environment to the full
^

DBMS has been completed successfully at one site and the
DBMS has been operational for several years. During this
time, more sites have been converted to the system.
Interfaces between this system and other DBMS systems are
being developed. Since these interfaces are not yet
operational 8 conclusive findings cannot be stated.

Concl us [_o_n s . The task of interfacing two DBMS should not be
underestimated, especially if the systems use different
software or hardware. For example, plenty of time should be
allocated in developing the interface simply to work out the
kinks of reading data created by another DBMS in a language
with a different bit structure and character set.

When an interface is first developed between two
systems, time must also be allotted to resolving differences
in how one system identifies or names what are thought to be
common data elements. Both systems may process the same

-80-

widgets, but one may be concerned with inventory and the
other with maintenance or repair. Both systems can be
involved with some of the same widgets, but the way they
identify or represent them may be different. These
differences may not be apparent or may seem trivial until an
actual mechanized interface is attempted.

Merely because there could be a mechanized link between
two systems does not mean there should be such a link. It

may be far more economical to use a manual interface,
especially for low volume interactions or in cases where the
viewpoints of the two systems differ greatly.

Environments with multiple DMBS are very frustrating to
users if these DBMS each use different input devices with

i
different sign-on procedures and modes of interaction.

Coordination and planning between the DBMS in
development are needed to prevent proliferation of different
terminal equipment at the same user locations.

Conversi on Experience - B_.

Goal

s

. The goal of the project was to automate a manual
document retrieval system.

j

Summary of actions . In this project, management greatly
I

" s i mpl i f i ed"" the decision process by directing conversion to
a custom-built document retrieval system which would be
converted to our local hardware (i.e., converted from one
hardware manufacturer to another). Apparently, the reason
for this decision was that a copy of the software could be
obtained free. A software conversion (COBOL-to-COBOL) had
to be done before the local document retrieval application
could be automated with the software. Then, the software
had to be augmented (new code) to add needed functions,

I
including: (a) more extensive editing of input data; (b)

more user- ori ented processing of retrieval requests; and (c)

I

redesign of outputs.

I

After the software conversion started, analysis made it
apparent that the capture of the manual data in a machine-
readable form would require about twelve staff/years. Also,
on-going entry of new documents and servicing users would

i have required a permanent staff of 4-5 people. Attempts to
convince management of these needs were unsuccessful.

1
The events that followed were:

-81-

A successful software conversion followed by
augmentation of the converted software.

Design of procedures and entry forms, and
identification of resources needed to capture the
manual files.

Shelving of the project because resources were not
available to either contract the data capture or to
staff it in house.

Concl us i ons » While not a conversion to a true DBMS, this
experience illustrates, by their absence, several points
necessary for DBMS conversions.

Importance of planning and analysis before any
decisions are "cast in concrete."

In this case, the software was decided upon before
analysis. And the software chosen was totally
inappropriate for these reasons: (1) It was not
running on the same brand of hardware as the local
system, so it had to be converted. (2) It was
custom-built and no support was available from the
originator. (3) Software documentation was
fragmentary and obsolete--we got source code,
compiler listings, test data, and very little else
that was useful. (4) The software did not provide
adequate functions so it had to be augmented with

. new code.

Importance of obtaining a commitment of resources
sufficient for the entire project before starting
any part of it. In this case, the decision-makers
had no comprehension of what would be involved.
Neither the one-time data capture nor the on-going
support staff needed could be had when the time came I

to actually implement the retrieval system and
service customers with it. Therefore, extensive
conversion and analysis were wasted.

Recommendati ons .

The manual -to-DBMS conversion situation has two
characteristics which make it unique among the Data Base
conversion situations:

1. Data not already machine-readable

-82-

2. Users not accustomed to automated systems

Consequently, those contemplating such a conversion should
take the following actions:

Develop implementation strateg y. Purpose: Control cost and
meet sched ul e

.

Limit scope. It is necessary to limit the scope of
the conversion to something manageable and do-able.
Limit objectives to high- volume, high-usage
functions. Do not try to automate low-usage and/or
exception cases. Stick to your initial limited
scope. Do not be tempted to agree to ad hoc
extensions of scope. Prioritize and save good ideas
for future enhancements.

Plan on phased implementation. Get something useful
up soon. (Your limited scope--above--shoul d have
selected a useful small application.) Getting
something into actual use soon will:

Let the customer see benefits early and provide
experience on the system
a. Gives the project team some feedback early
b. Buys the project team some credibility with users

for later, larger projects

Plan on re-implementing. The first limited-scope
appl icati on (s) will very 1 i kel y benef i t from later
re- impl ementa ti on

.

Select initial installation/site carefully. Give
yourself the best chance of success. If the system
is planned for several sites, do the easiest one
first.

Understand magnitud e of data capt ure and data cleaning
effort . Everyone, fncTuding top management, must understand"
that capturing the data and correcting it will be a 'large'
effort. This effort is a significant part of overall
project costs; it may be the largest.

It should be understood and budgeted for at the
beginning. Sampling the manual data for accuracy and
completeness is useful in estimating the resources needed
for data capture and correction.

Resolve political problems of ownership of data.

-83-

Source. Where the data is kept by several
organizational divisions, determine which one is the
best source for the application you are converting.

Discrepancies. Designate someone to be responsible
for resolving discrepancies.

missing data elements
incorrect data elements
Obsolete data elements

These, of course, are familiar functions of the DBA.
Such problems are, however, magnified in a situation where
there has been no automation before.

In vol ve users early . Early end user involvement can:

Get some support for the project team

Give end users time to identify:

Changes to their work flow
Changes to staff requirements
Training requirements

Inconsi stency tol eran t systems . In going from a non-
aut omatecT" to an automatedenvironment, higher incidences of
errors or data discrepancies are likely to be found. This
is especially true in initial installations because the new
application software or system software may process the data
incorrectly. The system should be designed to be defensive
in all aspects--f rom program design to backup and recovery
procedures. The system should be able to handle data
discrepancies and inconsistencies gracefully. It should
provide meaningful outputs in the face of data conditions it
cannot process. It should provide easy to use tools to
correct data problems that are found.

4.7.3 Conversion: Batch Fi le System To a DBMS

Conversion Experien ce - A (a^ Feder al Government
Agency)

.

Goal

s

. The goals of this agency were:

to replace outmoded hardware

to implement centralized data management under a

• data base administrator

-84-

to implement both new applications and redesigned
systems in an integrated data base, on-line disk and
telecommunications environment, under a data base
management system, in order:

to permit simple query capabil i ties

to treat data such that:
a. input multiple-use data only once
b. have it accessible, locally and from distant
cities, by terminal
c. allow unstructured queries to be processed
through the use of a query language without the
necessity for programming

Summary of actions . As a Federal agency, the options were
largely dictated by Federal procurement regul ati ons . I f there
were no regulatory constraints, the alternatives would have
been

:

to determine the features needed by the data base
management system, evaluate existing DBMS's and buy
a computer on which the most suitable one for their
needs would run.

This option was not allowed by the procurement
regulations, because it would have resulted in a

sole source procurement.

To include in the request for proposal the DBMS
required features. This option was not allowed
because, in their case, the requirements would have
unduly restricted competition.

To procure the hardware under open competition, and
procure the software separately.

However, regulations do exist and the agency had to

i

select the final option which the procurement regulations
' had forced upon them.

Concl usi ons . The results, in terms of their goal of

j,
creat i ng an integrated data base under a data base
management system, were disastrous. The computer system
that was procured was one on which a suitable DBMS did not
exist. After two and a half years of effort to procure,

i through established DBMS software vendors, a system which
If

could be made to function on this computer, either through
conversion of an existing DBMS or the use of research and
development software, the agency has not yet found a

solution. Even after a contract is eventually awarded, they

-85-

anticipate a 12 to 18 month wait for delivery of the
product.

Therefore, it is safe to say that their goal of moving
onto new hardware and a DBMS has been so delayed by Federal
procurement policy that it will take 3-1/2 to 4 years for
them to recover.

Conversi on Experienc e - Federal Government
Agency)

.

Goal

s

. To convert three stand-alone systems with the
f ol 1 owi ng features

:

Input. Batch systems. Inputs manually transcribed
from messages onto cards.

Outputs. Outputs to other subsystems in the form of
card images on tape that was hand carried, as well
as printed reports.

The features of the new system were to be as follows:

Inputs. On-line system. All error corrections
processed and corrected interactively on a CRT
term i nal .

Outputs. Printed reports.
Ad hoc queries available through a DBMS query
language.
Outputs to other systems automatically generated and
forwarded via a communications network.

Recommendat ions

.

1. Conversion is usually a one-for-one affair.
Redesign occurs when the requirements are changed.
Conversion is usually an excuse for partial or
complete redesign. A common mistake is to assume
that for the price of a conversion effort, one can
also redesign. Experience has shown that this is
not the case. Unrealistic estimates of needed time
and resources result.

2. The need for expertise in the new DBMS is greater at
the beginning of a project than at any other time.
Ironically, this is the time before your staff is
retrained and when your expertise level is the
lowest. Therefore, outside consultants must be
brought in. These outside experts will have a great
impact on your data base design.

-86-

3. The DBMS experts will, at an early stage, have to
design the data base structure. The system design
will then build upon this data base structure. The
process of data base design and system design will
be iterative with a series of changes until both are
in sync.

4. The extreme pressure to get off old machines and
operational on the new machines prevents sufficient
time for thorough analysis and planning. And, as
discussed above, if you are redesigning and not
converting, the time pressure becomes greater.

5. Government procurement regulations do not recognize
that a system is as dependent on the software needed
as it is on the hardware.

6. The move from separate batch systems to an on-line
integrated system, coupled with the need to learn
how to use new hardware, require careful planning
and extensive training in both new concepts and new
techniques.

7. Moving into the centrally controlled DBA environment
requires lead time in the systems development cycle
for data dictionary development and implementation,
and for data standardization to be done carefully.

8. Time required to accommodate recommendations five
and six is seldom available when a move to new
hardware is underway. The result is hasty and
costly straight conversions of obsolete systems;
therefore, the potential benefits of the new
hardware are delayed or lost.

4.7.4 Conversion: DBMS-l To D BM$-2._

Conversi on Experien ce - A. This conversion illustrates
the experience of moving from one DBMS to another, with a

change in vendors.

Goal

s

.

To provide for the ability to update concurrently
and retrieve information from the data base.

To provide for a quick response time for inquiry
purposes

.

-87-

To provide for the capability to have on-line
inquiry even if the DBMS is in abort status or in
recovery stages.

To provide an efficient way to recover and backup
the data base.

To save money in the long run.

To provide tools for security and integrity of the
DBMS.

Summary of actions . At the outset several alternatives were
considered:

Continue with the present DBMS . This alternative
implied maintaining duplicate data bases--one for
inquiry purposes and one for updating purposes. The
inquiry data base was at least one day behind the
second one and at most a week behind the latter. In
order to make the inquiry data base as current as
possible, an image copy was made once each week of
the updated base and copied to the inquiry data
base.

Update the DBMS using the same vendor .

Conver t to another DBMS using a d i f fe re nt vendor .

The new vendor agreed to convert the bulk of the
system quickly and with the least amount of logic
changes to existing modules. This vendor would meet
most if not all of the goals.

Upper management decided to convert to a DBMS using a

different vendor.

In order to meet the restriction of making no logic
changes, the new vendor developed an Emulator to translate

jdynamically (at exeution time) calls in COBOL programs using
the old vendor format without requiring manual re-coding.
Only format changes were required and these were handled
automatically via a standard vendor software package. The

,

Emulator itself was developed by some of the best technical
people available at the vendor site. It sounded and looked
g rea t- -mi n imal programming changes and transparent to users. '

In fact, the programs looked as if they were written in the
i

old vendor DBMS. The Emulator did, however, have certain
|

drawbacks . The overhead incident to using the Emulator was
extremeTy high since the calls were converted at execution
time rather than at the source level.

-88-

Using the initial version of the Emulator would have
resulted in failure to maintain the necessary production
schedule. A task force was brought together to assess the
matter and determine exactly how and where the system could
be improved. The task force included site staff (three) and
vendor staff (two persons).

The task force recommended changing some Emulated
programs to execute under standard software and "looked into
the Emulator internals" in an attempt to improve some of its
functions. The changes yielded significant improvements;
after the changes were effected, the regulator production
sc hed ul e wa s met

.

Another significant problem arose when the Emulator did
not perform properly, e.g., a call to the data base was
mishandled. On the rare occasions when a malfunction of
this sort occurred, the following steps were taken to solve
the problem:

Disable the erroneous call

Inform the vendor of the problem, providing complete
documentation on the problem

Wait for the solution

Re-test the call

Re-load the new version
system library.

of the Emulator to the

The prospect of losing technical support for the
Emulator, in the event of personnel turnover among the
vendor staff who designed and developed the system, was
another potential problem. This situation did materialize,
but the vendor was able to continue technical support with
other individuals.

Conversion of the data bases themselves went extremely
well. Standard utilities were used to unload the data
bases. The tapes were moved physically to the new vendor's
facilities and were converted via a standard vendor utility.
The sub-files were loaded employing user written programs.

Since the on-line system had been installed on the new
system well before the other applications systems, there was
a need to en.sure that the data base on the new vendor system
was as current as the old. With smaller data bases, we
unloaded daily from the old vendor and loaded daily on the
new. With the exception of our largest data base, the other
data bases were unloaded and loaded weekly or monthly. To

-89-

keep the largest sub-file current on the new system, we
captured the data base changes on the old system daily and
applied them to the new data base. These procedures lasted
for approximately one year until our other applications
systems were completely converted.

Conclusions . To summarize our findings:

Differences between terminology associated with each
system were found to be the initial barrier.

Incremental transition was recommended as a means of
graduated "phase-in" to the new DBMS.

An intermediate software system was procured as the
method of transitioning application code. DDL and
DML functions appeared the same across the
transition. Run-time interpretation of code through
calls to interpretive-software was used to provide a

mapping from original DBMS to native- made DBMS
calls. Preliminary conversion of DDL-type
facilities was provided at compile time with mapping
structures being derived for use at interpretation
time.

Recommendat i ons

.

1. Experience in interpretation and run-time mapping
has shown that system overhead can be prohibitive.
Problems encountered in execution require resolution
by the developer of the interpretive software and
can result in excessive response times. It is
thereby seen to be more practical to utilize
standard vendor software where possible. Conversion
costs may be higher in the initial investment but
will eventually be equaled and even surpassed by the
overhead costs of the interpretive method.

2. The development of the interpretive software was
handled by the vendor, with valuable insight of
users. User involvement in the implementation of
the interpretive software provided a more timely
product with greater response to requirements.

3. The interpretive software, by nature, required
processing support over and above that required for
actual application processing. Direct transition
could possibly have utilized to a greater degree the
processing efficiency of the target DBMS. Again,
this leads to the realization that should efficiency
be a major consideration, direct transition may be
more desirable.

-90-

4 . In utilizing
should be
methodol og i es
desc r i pt i on

,

transfer.

direct transition methods, vendors
encouraged to develop standard

for conversion processes in data
data manipulation, and data base

5. Incremental transition insures that timely
conversion can be established for applications.
Prototyping efforts are provided through validation
of earlier increments of the entire transition
process

.

6. Fall back positions must be established. The
transitioned software must be completely validated
before actual acceptance. The ability must always
exist to turn-down transitioned software due to
errors without degrading overall effectiveness of
the data processing operations.

-91-

5. STANDARDS

Milt Bryc

e

CHAIRMAN

Biographical Sketch

Milt Bryce is President of M. Bryce &

Associates, Inc., Cincinnati, Ohio, a company
specializing in providing management consulting
services in areas of systems design, data
management, and project management and control.
Mr. Bryce has been involved with the information
systems field since 1951, working both for major
corporations as an MIS Director and with Univac in
product planning and systems programming. He has
traveled extensively around the world conducting
seminars in systems design and development and
data management. He has been involved with
standards development for the last fifteen years
and has pioneered since the early sixties in

structured information systems design and date
manaaement

.

Participants

Robert Bemer
Don Branch
Jean Bryce
Elizabeth Fong
Al Gaboriault,
Anthony Klug

Recorder

H e n ry C . L e f k o v i t s

C. H. Rutledge
Philip Shaw
Jay P. Thomas
Ewa r t Wi 1 1 ey
J e r ry Winkler

5.1 INTRODUCTION

5.1.1 Objectives. The objective of the Standards Working
Panel was to recommend standards that a manager should
consider when converting data from present sources (manual,
semi-automated, or automated) to a computer Data Base
Management System (DBMS as it is commonly known). The Panel
considered administrative guidelines as well as technical
standards since both are essential to an effective
conversion process.

5.1.2 What Is a Standard? A "Standard" is a consensus or
ccmrFon practice sometimes established by authority derived
from d desire to reduce arbitrary variety for economic
reasons. A standard is one method of insuring compatibility
by using accepted conventions.

Several types of standards exist. For instance, a de
facto standard is a practice accepted through common usag¥7
a 1 though it has not been subjected to official
standardization. On the other hand, standards have also
been approved by an authorized official for use within a

particular organization. For example. Federal Information
Standards Processing (FIPS) are those that have been
approved by the Federal standards process. American National
Standards are those standards that have been approved for
voluntary use by the American National Standards Institute
(ANSI), a body made up of participants from government,
industry, and academe. International standards are those
that have been approved by the International Organization
for Standardization (ISO) for voluntary use by member
nations and international organizations.

In the case of FIPS, ANSI, and ISO, a formal mechanism
has been established to propose, review, approve, and
validate standards. While ANSI and ISO standards are
voluntary for all participants, the FIPS standards are
mandatory within the Federal Government. For mandatory
standards to be effective, an enforcement and validation
mechanism is necessary.

5.1.3 Background. As yet, no formal DBHS standards exist.
Many groups concerned about standardization are actively
working in this area. The committee felt that a review of
the various Standards activities would be worthwhile for the
reader. The Committee included in its review the Data Base
Directions I Report and the activities being carried on by
voluntary groups; specifically, the ANSI/X3/SPARC and
CODASYL croups.

Data Base Directions Overall, the recommendations
of the standards section of Data Base Directions I have two
prominent characteristics: they are still valid, and they
have not been implemented. Specifically, the Committee at
that time recommended the undertaking of more international
activity in data base standardization. Despite considerable
interest in data base, standards are only now beginning to
occur at the national or international level. Nothing
comparable to the International Telegraph and Telephone
Consultative •Committee (CCITT) has been formed. Little
progress has also gone on within the International
Organization for Standardization (ISO). This lack of
progress exists in spite of the various admonitions from

-94-

governmental operating bodies, such as Congressman Jack
Brooks and the House Operations Committee in the United
States, European Economic Community Committees, etc. In

effect, no firm standards efforts have been undertaken.
[Editors's note: subsequent to the preparation of this
report but prior to publication. A MSI initiated several DBMS
activities.]

Voluntary standards bodies such as EC MA, and American
National Standards I n s t i t u te/ St a n da rd s Planning and
Requirements Committe (ANSI/SPARC et al.)have been slow to
agree upon firm recommendations for standards or interim
action. The technical societies have not been able to
recommend agreed upon and coherent roadmaps to the eventual
realization of data base standards. The art end/or science
of decision- ma king using data base data does not seem to
have advanced. Date collection procedures may have improved
since the days of manual actions with paper, but the science
of decision- ma king based on such data does not seem to have
made significant progress. For example: Data Base
Directions I recommended the more accurate usage of terms.
It suggested that "CDBS" (Computer Data Base System) be used
instead of "DBMS" since organizations have always used data
base. This suggestion underscores the important new factors
to be considered by the reader of this new term. However,
the suggestion has not had acceptance. On the positive side
of the data base standards issue, substantial additions have
been made to the literature, and we anticipate eventual,
improved understanding of these issues.

Many practical data base conversions have been
undertaken successfully -- both from conventional systems
to a computer data base system, or from one computer data
base system to another computer database system. A body of
evidence indicating the economic superiority for the data
base approach is accruing. The reader will read of such
evidence in other sections of this report.

t

American National Standards Institute (ANSI) . The
Standards Planning and Requirements Committee TSPARC) of
ANSI /X 3 (Computers and Information Processing) established
in 1972 a study group which was chartered to investigate the
potential for standardization in the area of DBMS.

During early deliberations, the study group concluded
that the proper subjects for DBMS standardization were
interfaces within a DBMS. It was then necessary to define a

framework for DBMS. In 1975, the study group produced an
interim report [3] which described such a framework. A

revised report has also been published recently [A] which
represents the study group's most important ideas relevant
to standardization.

-95-

The framework represents three kinds of objects:
processing functions, pe r son - ro 1 e s , and interfaces between
these. The objects were divided into three basic levels:
the internal, the conceptual, and the external. The
internal level is oriented towards the most efficient use of
the computing facility. The conceptual level contains a

logical representation of the persons, places, things, and
their relations of interest to the organization using the
DBMS. The external level contains different views of the
data base which various applications need to do their
information processing. The three levels are associated
through explicit mappings. Mappings, through their ability
to isolate changes to one level, facilitate data base
conversion and form a basis for orderly standardization of
DBMS. In addition, the ANSI/SPARC framework defines three
administrator roles, one for each of the three levels in the
framework. These distinct roles also are potential aids in

standardization in that responsibilities are clearly
del i n e a t e d

.

Although the study group itself did not recommend to
its parent, ANS I /X3/SPARC , action for or against
standardization of any DBMS component, SPARC recommended to
ANSI/X3 that standardization efforts begin on a CODASYL Data
Definition Language (DDL) and on CODASYL additions to
FORTRAN end COBOL for data manipulation (DML). These
efforts have been initiated.

CODASYL . Through the work of several technical
committees coordinated by en executive committee, CODASYL
has continued to develop specifications for a data
definition language (DDL) and data manipulation languages
(DML) for incorporation into the existing COBOL and FORTRAN
languages. CODASYL has addressed a number of technical
problems including concurrency and device independence and
has endeavored, through task groups of its COBOL and DDL
committees, to resolve inconsistencies between the language
specifications produced by the two committees. CODASYL has
authorized the publication of three journals of development
(DDL JOD, COBOL JOD, FORTRAN JOD) containing the respective
language specifications to facilitate the work of ANSI in
defining standards for the three lanauaaes.

-96-

5.2 POTENTIAL BENEFITS THROUGH STAMDARDI ZATI ON

Standardization can provide many benefits to vendors
and users involved in conversion tasks. In this sense,
users mean the applications development people who will
actually perform the conversion. The benefits can take many
forms. Among the benefits the committee felt could be
realized we re:

Improved Portability,
the logical rel ati
particular insure th
software implementati
the same logical data,
dependencies and allow
different and improved
expenditure of both
would provide protect

i

sizeable investment
establish a data base.

Defining in a standard way
onships of data would in
at diverse hardv/are and/or
ons could successfully address

This could minimize hardware
the users to progress to both
technology with a minimum

time and money. Portability
on against loss of the usually

required by the user to

Improved Education. Standards could provide a basis
upon which educational institutions/corporations can
structure their data processing training
satisfy the needs of their personnel,
standards could reduce the time and
retraining data processing staffs.

programs to

In effect,
expense of

Enhanced Communication. Standard
definitions would enhance communication
and/or vendors. As it now stands, these
being haphazardly developed and becoming
with little common understanding.

terms and
among users
terms are

widely used

Pr oduc t

product
vendors,
prec i se
grea ter

Specification,
specifications

Standards
that could

would provide
be met by al

1

End users will have therefore more
product specifications and could exercise
impact on what products would be

manufactured to satisfy their needs.

Easier to Specify User Reouirements. The
standardization machinery would enable the user
community to be involved in the evolution of the
data base technology. In this respect, it should be

self-evident that the user would have a far greater
interest than the vendor in ensuring that the
standards applicable to data base reflect the need
to minimize the problem of conversion.

-97-

5.3 SOFTWARE COMPONEK'TS IN CONVERSION PROCESS

This section examines the software components of the
data base environment which the committee felt could be
standardized. The rationale for standardization is based on
four different conversion scenarios and the components
which, if standardized, the committee felt would facilitate
conversion. In all cases, technical feasibility of the
standard has not been considered. The term "data base
environment" is used to describe an environment in which the
many parts making up an organization's data base would be
available for shared use and coordination. This approach is

less confusing than using the term "DBMS environment," since
many installations are merely using the DBMS software as a

substitute for traditional access methods. In this
situation, the environment has not changed; it is merely a

change of access method.

The term DBMS will be used
used to manipulate the computer
base. The conversion scenarios

to describe the software
resident portion of the data
considered were:

Moving from a non-data base environment to a

data base environment using a standard DBMS.

Moving from a standard DBMS to the same standard
DBMS within a different hardware environment.

Moving from a Type A standard DBMS to a different
Type B standard DBMS.

Moving from a standard DBMS to a non-standard DBMS
environment.

5.3.1 Scenario 1. Moving from the non-data base environment
to the standard data base environment. When considering the
processes involved in data base conversion, several points
can be identified which can be facilitated by the
availability of standard tools or methods.

Data Fl o w Analysis . To determine the organization's
data requirements, a date flow analysis should be
undertaken. To facilitate this analysis a standard approach
is needed. It should include a complete description of the
data and where it is used, including all input and output
documents, both manual and automated processes.

Dictionary / directory Sy s tern (D/DS^). Although it may be
premature to consider a standard for a D/DS, this is an
important tool for definition analysis and data flow
analysis and to facilitate access to this information. A

-98-

more deteiled discussion of the possible capabilities is

presented elsewhere in the report.

Data Ma nagement Function . An organizational group
concerned with overall responsibility for the management of
data, both computerized and non-computerized. This function
should have a specific functional description.

Data B ase Administrator . A position holding primary
re spon s i b iTi ty for the overall accuracy, timeliness, and
availability of the corporate data through direct control
over the data dictionary/directory system. This position
located within the date management function should have
clearly understood responsibilities.

Loading the Computer Date Base . To facilitate the
conversion effort, specific conventions ere needed for
piecing date into deta bases initially.

C onver si on To the De t e Base E nvi ronment This can be
accomplished by either Til moving current applications to
the new environment with no major changes in process or (2)
Greeting new applications. Both approaches use a Date
Manipuletion Language (DML) to access the data base from a

user-oriented view of the datebese.

5.3.2 Scenerio 2. A DBMS to DBMS conversion where each DBMS
is the same standard and only the hardware changes. In this
cese, the steps in scenerio 1 were presumebly implemented
alreedy. However, additional problems occur:

Date Transl at ion . Moving the dete in the source
computer dete baTe to the terget computer dete bese. This
re ou ires e translation of the data from physical structure
of the source computer to the physical structure of the
target computer. A needed standard facility would be a

method of unloeding the physicel dete to a stenderd
interchange formet, in displey formet representation, and
then loading that data into physical structure of the target
computer

.

Program Translation . Restatement of the application
programs reflecting changes to the description of dete ere
necessery as well as changes to the application programs.
Stenderd data description and dete menipuletion functions
are needed in addition to those stated in scenario 1.

-99-

5.3.3 Scenario 3. Conversion between standard versions of
different DBMS. Assumes both standard DBMS incorporated the
points in scenario 1. t^o additional points beyond those
described above are needed, but significant differences in
the details of the data models may occur.

5.3.4 Scenario 4. Standard DBMS to non-standard DBMS
conversion. Similar to Scenario 3 because there would be no
reason to make this step unless no standard DBMS satisfies
information requirements.

5.3.5 Miscellaneous Standards Kecessary. Additional computer
components considered and mentioned as desirable, but for
which standards may be premature or which may not affect the
conversion effort are:

Standard end-user facilities; i.e., a means whereby
a non-computer professional can communicate with the
data base

.

Network interfaces.

Restart functions.

Security functions.

Communication facilities.

Command Languages (operating systems).

5.3.6 Non-software Components Necessary. Many non-software
components are involved in any conversion process. Those
considered by the committee include:

Admini strati ve /management Procedures . The committee
identified no standards which could be applied to these
procedures during conversion. However, the development of
guidelines and checklists based on earlier experience and
lessons learned would be very useful.

Verification of C ompl i a nee With Standards . The
committee believed there is a need for a standard approach
to validating compliance with DBMS standards. An important
component of such a validation would be having a set of
common procedures for measuring compliance.

-100-

5.4 RECOMMENDATIONS

Two areas should be considered immediately for
standardization if progress toward successful conversions is
to be made. These two areas are:

Development of a standard DBMS.

Development of a Generalized Di c ti ona ry/D i r ec to ry
Sy stem

.

5.4.1 The Development of e Standard DBMS. A DBMS standard
would benefit government and industry in their conversion
efforts and the Committee encourages progress toward a DBMS
standard. The work of CODASYL group, with some possible
modifications, appears to offer a first step toward the
complete specification of a DBMS, although some committee
members felt several sucessful commercial DBMS may become de
facto standards. The committee also believed that
consideration should be given to the idea that the standard
should not inhibit any future technological developments in
hardware and software.

5.4.2 Generalized Dictionary/directory System. The use of a

D i c t i 0 n a ry / D i r e c to ry facility is Fii ghl y des i rabl e as a tool
in any conversion process, whether from manual or
conventional file to a data base environment or from one
DBMS to another DBMS. The advantages for the use of a

dictionary facility will be gained primarily in the
following two areas:

It will allow the proper assessment and definition
of the organization's data to be undertaken or to be
made prior to the start of a project.

It provides an essential management mechanism to

control the actual development of the new system.

Since, in this sense, the dictionary facility
chronologically precedes the DBMS targeted in the
conversion, it appears likely that the direct support of the
dictionary facility itself should not depend on the target
DBMS, or, for that matter, on any particular DBMS. In any
case, the dictionary facility must be able to support
descriptive facilities for the data in a logical mode.

Another useful capability is that of being able to

produce processable data descriptions in the target DBMS
environment. This does not, however, imply that this target
DBMS must be used in the implementation of the dictionary
facility, but rather that a suitable (possibly manual)

-101-

interface to this DBMS be made available. It would be
highly desirable, if not required^ that all DBMS had the
same logical interface. Then the dictionary could interface
with multiple DBMS at the same time.

In discussing the architectural placement of the
dictionary, this facility should not exist as an adjunct to
any DBMS, but as a separate facility that interfaces to data
in conventional files as well as to data being managed by
one or more DMBS. A distinction needs to be made in the
manner in which the dictionary facility is invoked;

In the case of a free-standing dictionary, this
facility is invoked under user control. As such, it

is a user option if, and when, the dictionary is to
be invoked in the execution of any process.

In the case of an integrated dictionary, which means
the data dictionary is directly available to the
DBMS, this facility might be invoked automatically
by the system itself in the execution of any
process, thus assuring synchronization of the
process with the information contained in the
dictionary. The feasibility of this approach
depends on the overhead burden it may generate.

Since the use of some of the currently available
dictionary facilities is believed to be of considerable
value in the attainment of these and other goals, it is
visualized that a more general facility, called a

Generalized Dictionary /Directory System, would be more
effective. In brief, a GD/DS is an information system in

and of itself whose subject matter is all the information
about the enterprise on the following classes of entities:

Da ta Components .

Processing Components.

People and Organizational Components.

Events.

Attributes to be included in the data dictionary are
those about the entities themselves, the relationship that
exists among the entities, as well as the context in which
these relationships exist. For example, among the
attributes would be the relationship between systems and
both automated and manual procedures. The generalized data
d i c t i 0 n a ry/ d i rec to ry should contain not only the logical
attributes and relationships between the entitites
described, but also attributes associated with the physical

-102-

location of the entities.

5.5 CONCLUSION

In summary, the committee strongly believes that many
areas for standardization exist within the conversion
process and the data base environment in general. The
committee notes with frustration the lack of overall
progress since the first Data Base Directions workshop.

The committee noted that in actual use DBMS are often
misapplied. It is possible, however, that this misuse
relates to the historical problems in the environments when
DBMS are introduced. For example, most organizations seem
to be obtaining DBMS as their initial introduction into the
data base environment and then find a need for a

Dictionary /Directory which is then introduced as a secondary
action. Only when both of these steps do not really solve
the problem, does the organization look at its total
organization and address the fundamental work necessary.
This fundamental work includes documenting data, systems,
processes, etc., to insure their more effective operation in
this new DBMS environment.

The committee observed that the installation process
actually should be reversed with the data dictionary
introduced first. All of the data within the environment
and the systems that use them should be carefully documented
and defined (including all the developmental shortcuts that
had been taken in the past), and then entered into a

Generalized Dictionary/Directory. Once this is

accomplished, then the appropriate data bases to support
their various information systems in the organization can be
buil t

.

5.6 REFERENCES

The following references are included as part of the
standard panel Report as a convenience to the readers.
Some of the material included was not used directly by the
committee but did influence the thinking of some of the
participants

.

1. Sibley, Edgar H., "Standardization and Databaase
Systems," IFSM TR No. 23, University of Maryland, College
Park , MD 20742

, July 1977

-103-

2. Berg, John L., (Editor). "Data Base Directions -

the Next Step," Proceedings of the Workshop of NBS and ACM
held et Ft. L^u(ier6^^e, FL , October 29-31 , 1 975 , National
Bureau of Standards Special Publication 451

3. ANS I /X3/SPARC Study on Data Base Management
Systems, "Interim Report, 75-02-08," published as Vol. 7,
No. 2 1975 of FDT, the Bulletin of ACM-SIGMOD

4. Tsichritzis, D. and A. Klug (eds.) "The
ANSI/X3/SPARC DBMS Framework: Report of the Study Group on
Data Base Management Systems," AFIPS Press, 1977.

5. CODASYL Data Description Language Committee, "Data
Description Language," Journal of Development, Jan. 1978.

6. Leong-Hong, B. & Marron, B., "A Technical Profile
of Seven Data Element Dictionary /Directory Systems." NBS
Special Publication 500-3, February 1977

7. Lefkovits, Henry C, "Data Dictionary Systems,"
Q.E.D. Information Sciences, 1977

8. CODASYL Data Description Language Committee^ "DDL
Journal of Development," June 1973, NBS Handbook 113,
January 1974, Page 155

9. "Date Dictionary/Directory Evaluation Criteria," M.
Bryce & Associates, Inc., Cincinnati, Ohio

10. "Installing a Data Dictionary," EDP ANALYZER, Vol.
16, No. 1, January 19 78

-104-

6. CONVERSION TECHNOLOGY--AN ASSESSMENT

James P. Fry

CHAIRMAN

Biographical Sketch

James P. Fry is the Director of Database
Systems Research Group in the Graduate School of
Business Administration at The University of
Michigan where he directs research in areas of
database design, distributed systems, database
restructuring and systems conversion. Previously
he held positions at the MITRE Corporation, The
Boeing Company, and E. I. du Pont de Nemours.

Nationally listed in Who's Who in Computer
Research and Education and having published over
thirty-five articles, Mr. Fry is a well known
speaker at AFIPS and IFIPS conferences and an
invited lecturer to others. Professionally he has
participated in the CODASYL organization (on the
Systems Committee and Database Program Disk
Group), the Association for Computing Machinery,
National Chairman Special Interest Group on
Management of Data and the SHARE/GUIDE User
Organization.

Pa rt i c i pa nt

s

tdward Birss
''eter Dressen
Uancy Goguen

Vincent Lum
Robert Marion
Shamkant Navathe
Steven Schindler
Arie Shoshani

Stanley Su
Donald Swartwout
Robert Tayl or
Beatrice Yormarkllichael Kaplan

ilugene Lowenthal

-105-

i

6.1 INTRODUCTION

6. 1.1 The Scope of the Conversion Problem. Two factors make
conversion necessa ry : changes fn users' functional
requirements and changes in their performance requirements.
These changes may necessitate the acquisition of new
software and hardware which, in turn, may require changes to
the existing data programs. For example, the acquisition of
a data base management system to replace a file management
system requires the integration of the original files into a

data base system and modification of the programs to
interact with it. The replacement of a current DBMS with a

new data base system to provide additional functionality may
require a different way of logically structuring the
information (its data model) and a different kind of
language interface. The establishment of a communication
network between differing systems to implement data sharing
will require dynamic (i.e., in real time) conversion of data
between different nodes in the sense that the same item will
repeatedly undergo conversion as it is needed, or
alternatively, it requires conversion of programs when they
travel to different nodes to access data there. Even when
the acquisition of new software or hardware is not
warranted, changes in a users' functional and performance
requirements can require data and program conversion.

What makes conversion difficult is the proliferation of
data models and levels and styles of DBMS interfaces,
internal data representation, and hardware architecture.
This panel will examine the technology that has been
developed to perform conversions, analyze the areas which
require new or improved techniques, and consider strategies
for minimizing the need to convert as well as for
streamlining the unavoidable conversions. Over the past six
years, research and development has primarily centered on
the problem of converting in non-dynamic environments. The
first part of the section called "CONVERSION TECHNOLOGY"
surveys tools and technology currently available for the
conversion of data organization. More recently, data base
program convers i on-- probabl y the most difficult part of the
conversion problem--has received attention. The middle part
of this section considers the directions being taken by;

current data base conversion research. The final part
analyzes the status of the entire technology. The third and
final section explores the factors affecting conversion, the
approaches for reducing the need to convert data and
applications programs, and the impact of new software and
hardware technologies on conversion. Section 4 summarizes
the trends in conversion needs and tools.

-106-

6.1.2 Components of the Conversion Process. When conversion
Ts necessary, users wi 1 1 extract data from their source
environment and restructure them to the form required for
the target environment. While the extraction and
restructuring may themselves be complex, these processes are
frequently complicated further by the undisciplined nature
of the source data. For example, data may exist in
duplicate or contain numerous errors and multiple
inconsistencies. The whole process of extracting it from
its source, "cleaning the data," restructuring it to a

desired form, and loading it into the targeted environment
is generally referred to as data con vers i on or transl ati on .

After a data conversion, particularly one involving
extensive restructuring, the application programs which
process the original data may not run correctly against the
new data. A small amount of restructuring may require only
a simple modification, while extensive restructuring may
require extensive rewrite or redesign. The process of
modifying the programs to process the restructured data is
referred to as application program conversion or
translation. (This report will not consider the problem of
program conversions not related to a change in data
structure.) Let us discuss data conversion and application
program conversion a bit further.

Fi gure 6-1
A Data Conversion Model

-107-

Concept s of Data Conversion

In brief and conceptual terms, the data translation or
conversion process can be represented d i ag rammat i cal 1 y in
Figure 6-1. As shown in this diagram, a data translation
system generally requires three components: a reader, a

rest rue turer , and a writer. While the capability of each
component depends on the individual design of a data
translation system, the reader, in general, accesses data
from its source environment to prepare it for further
processing. The accomplishment of this process
unquestionably requires a description of the data and, thus,
a data description language. The writer is the functional
inverse of the reader, and puts the transformed data into the
target environment. It too requires a description of the
data structure and shares with the reader the need of a data
description language. The restructurer functions quite
differently from that of the other two components. This
component, in general, extracts data from its source or
internal forms and restructures it to a desired format or
structure. This process usually requires a translation
description language.

In a data conversion system with a limited application
intended, the three components may not be distinguishable,
nor the need for the two languages clear. For example, if
one wishes to create a conversion system merely to translate
EBCDIC characters into ASCII, one can create a simple system
with one component and a simple data description language
embedded in it. However, if development of a broadly
applicable data translation system is the goal, clearly one
must have a reader and writer capable of accessing and
putting out data in all kinds of environments and a powerful
restructurer capable of all manners of manipulating data and
of creating some data as well. Such a generalized system
implies the need for versatile data translation description
languages.

Concepts of Data Base Program Conversion

Figure 6-2 represents a general approach to data base
program conversion or translation. To convert a program one
must determine the functions of the program, and its
semantics. Programmers making assumptions about the state
of the data may not, and currently need not, state these
assumptions explicitly in their programs. Therefore, one
usually must provide more information about the semantics of
the program than that provided in the program text and its
documentation. The program conversion process also needs
information about the data structure the program originally
ran against, the new structure it must run against, and how
the two relate. These data descriptions could be the ,same

-108-

as those used to drive the data translation process. The
program, the description of its semantics, and the
description of the data conversion are inputs to the program
conversion process. It uses them to determine the data
originally accessed and how to accomplish the same access in
the new structure, and it produces a new program to do this.
Currently, a combination of manual translation, emulation,
and bridge programs accomplishes this conversion process and
an automatic or semi-automatic program conversion technology
is only in the early stages of research.

PROGRAM
SEMANTICS
DESCRIPTION

DATA
STRUCTURE
DESCRIPTION

1

PROGRAM
CONVERSION

TARGET
PROGRAM

SOURCE
PROGRAM

Figure 6-2
Program Translation

6.2 CONVERSION TECHNOLOGY
I

This section turns from the general concepts of data
and program conversion to the technology by which a

1 conversion is achieved. Since most of the conversion
results have been achieved in data conversion, we focus on
this aspect and limit our discussion on program conversion

j

to those cases which are the result of a data conversion.

-109-

,6.2.1 Data Conversi on Technol ogy

.

Currently, as the common
approach to data conversion, one develops customs" zed
programs for each transfer of data from one environment to
another. This approach is inherently expensive: the
programs are developed for use only once and their
development costs cannot be amortized. Further, poor
reliability results from the greater likelihood of. making
errors as data is passed from program to program. For a

large data conversion effort, tracing data back through
several passes to the source of an error in the data at a

particular point can become unmanageable. As an alternative
one may search for a broader approach to data conversion
with a generalized system. We shall now describe such
systems in more detail.

Problem Discussion . Data exists in many varied and
complex forms; Figure 6-3 (next page), an expanded form of
the diagram in Figure 6-1, indicates some of the
transformations that need to take place in a data
conversion. This diagram illustrates the capabilities
needed by the read and write process in a data conversion
system.

Unloading of data from its source permits reducing the
complex physical structure of the source data base to a very
simple physical structure; namely, a sequential data stream.
The source data base contains not only the information that
interests the user, but also a large amount of control
information, specific to a particular system. This control
information is used by the system for such data management
functions as overflow chaining, index maintenance, and
record blocking. For example, many systems mark a record
to be deleted rather than actually delete it and the unload
transformation can remove such system specific information.
Another factor that causes complexity in the unloading
process is the frequent use of pointers in a source system.
Pointers are used for two basic purposes: (1) to represent
relationships that exist between record instances, and (2)
to implement alternative access paths to the data. During
the unload transformation, the second class of pointers may
be discarded without loss of information. The first class
of pointers, however, contains information that the
transformation must preserve.

The reformat process creates a common data form of the
source data for the restructuring step in the conversion
process. In the case of a simple sequential file, not under
DBMS control, it may enter the conversion process at this
point. Depending on the design of a system, this step may
involve editing (i.e., encoding or receding of items),
limited data extraction, correction, and the like.

-110-

-Ill-

Since this step seeks to create a data structure of the
source data without system-dependent information, one can
consider the mapping between the input and the output of the
reformat process to be generally one-to-one. While this
step looks simple functionally, its actual application and
implementation can be quite complex. For example, an
application program may use the high order bits of a zoned
decimal number for its own purposes, knowing that these bits
are not used by the system. Such specifications of
nonstandard item encodings present a difficult problem in

data conversion.

The load process is the counterpart of the unload
process and needs no further clarification. Note, however,
that the use of a common data form provides additional
benefits, such as easing the portability problem.

The restructuring process undoubtedly represents the
most complex process of a generalized data conversion
system. The languages for this mapping process can differ
widely (for example, some procedural and other
nonprocedural) and the models used to represent the data in
the conversion system are also quite divergent. (For
example, some use network structures; others use
hierarchical structures). More will be said on this topic
later in this section.

Let us now turn to discuss the issue of implementation
briefly. Generally, there are two techniques: an
interpretive approach or the generative approach. In the
interpretive approach, the action of the system will be
driven by the descriptions written in the system's languages
via the general interpreter implemented for the particular
system. In the generative approach, the data and mapping
descriptions are fed into the compiler(s) which generates a

set of customized programs executable on a certain machine.
Later in this section we'll discuss the merits of each of
these approaches.

Turning our attention to the tools that have been
developed for data conversion, we shall first discuss
currently available tools and then the research and
development work in progress.

Ava i 1 abl e Conversion Tool

s

. Currently, available tools
have limited capabilities. Because it is impossible in this
short report to provide an exhaustive survey of all the
vendor-developed conversion tools, we will highlight the
spectrum of capabilities available to the user by providing
examples from specific vendor shops.

-112-

The repertoire of vendor conversion tools begins at the
character encoding level of data conversion with the
provision of ha rdwa re/ f i rmwa re options and continues through
the software aids for conversion and restructuring of data
bases .

Depending on a diversity of conditions, the need to
develop software tools varies from vendor to vendor.
Probably the most prevalent file conversion tool is a COBOL
foreign file processing aid. This type of facility allows
the direct reading or writing of a particular class of files
such as EBCDIC tapes or Honeywell Series 200/2000 files
within COBOL. Although a relatively widespread facility,
its capabilities are nevertheless limited. For example,
some do not handle unlabeled tapes, while others cannot
process mixed mode data types. Aside from the work of
Behymer and Bakkom [DTll], which was aimed toward achieving
a general conversion bridge with a particular vendor, to our
knowledge there are no vendor supported general i zed file
transl ati on tool s

.

In contrast to the above file translation tools, tools
have been developed that have their main applications in a

data base environment. One example of a data base
conversion aid is the I-D-S/II migration aid provided by
Honeywell. Because of the large volumes of data involved
and the fact that the user cannot afford to shut down his
whole data processing shop, a co-existence approach was
adopted. The first step is to reformat the I-D-S/I data
base into the I-D-S/II format, making the necessary data
type conversions and pointer mechanism adaptions. This step
allows the data base to be processed in the I-D-S/II mode,
but not optimally. Additional steps in this migration
include the generation of the additional I-D-S/II pointer
fields (I-D-S/II requires "Prior & Header" chain pointers,
which are allocated in step 1 but not filled in) and the
restructuring of the I-D-S/II (Coexistence) to the more
sophisticated capabilities of I-D-S/II.

Some data base restructuring tools specific to a

particular DBMS have been developed by DBMS users. One
example of this type of tool is REORG [Rll], a system
developed at Bell Laboratories for reorganization of UNIVAC
DMS-1100 data bases. REORG provides capabilities for
logical and physical reorganization of a data base using a

set of commands independent of DMS-1100 data management
commands. A similar capability has been developed at the
Allstate Insurance Company.

-113-

In addition to the above, there are also software
companies and vendors who will do a customized conversion
task on a contractual basis.

Data Conversion Prototype s and Model

s

. Over the past
seven years, a greaT deal "of research on the conversion
problem has been performed, with the results summarized in
Figure 6-4. The University of Michigan, the University of
Pennsylvania, IBM, SDC , and Bell Laboratories initiated
projects, as well as a task group of the CODASYL Systems
Committee. In many cases, interaction and cross-
fertilization between these groups led to some consensus on
appropriate architectures for data conversion. The
individual achievements of these groups is discussed below:

The CODASYL St ored - Da ta Description and Transl ati on
Ta sk Group In 1970 , the CODASYL Systems Committee formed a

task group (originally called the Stored Structure
Description Language Task Group) to study the problem of
data translation. The group presented its initial
investigation of the area in the 1970 SIGMOD (then SIGFIDET)
annual Workshop in Houston [SLl]. In 1972, the group was
reformulated as the Stored-Data Description and Translation
Task Group and presented a general approach to the
development of a detailed model for describing data at all
levels of implementation [SL4,DT2]. The most recent work of
the group specifies the data conversion model and presents
an example language for describing and translating a wide
class of logical and physical structures [SL8]. The
stored-data definition language allows data to be described
at and distributed to the access path, encoding, and device
1 ev el s .

The University of Michigan . The nonprocedural approach
to stored-data definition set forth by Taylor and Sibley
[SL3,6] provided one of the major foundations for the
development at the University of Michigan (see Figure 6-4)
of data translators. In concert with Taylor's language,
Fry, et al. [DTI] initiated a model and design for a

generalized translation.

The translation model was tested in a prototype
implementation of the Michigan Data Translator in 1972
[UT2,4], and the results of the next implementation. Version
I, were reported by Merten and Fry [DT4j.

In 1974, the work of the Data Translation Project of
the University of Michigan focused on the data base
restructuring problem. Navathe and Fry investigated the
hierarchical restructuring problem by developing several
levels of abstractions, ranging from basic restructuring
types to low level operations [R6].

-114-

S Eh
(X. <o (2J oW Oh> cc
a oa o

o ••

« Pd

1 rH
c ft O

o 0 •H 0
rt ^
4-! o o

tn ft ra CO
•H 0)

Id 0)

ai o
;3 (n c o

(D o o
an ti 2
rH cd oj

+i H
ai CM

an
a

1

an SL

H H) p
0) a
t3 o 0
O +J •H

CO

EH
Q

O sM
<

bO
ol d
3 0H

-P
0)

H

§
CQ

a
0)

+J VH a
(U ai •H

-P <M
0 cd <U

S "3 Q

0) o
ft o
>» ^
-P o
O CO
-P
O O 0)

!h +J Sh

ft Oi O
rH O

0) C
+-1 cd

•H -p VO

P cd m
cn +J Eh
0) cd Q
05 -d^

cd ft

o
>H B5
EH 5M C5
CO M« 33H O

H
0)

^
3 tn O

in P
o

H -P 3 c
ol o ^< o
o 3 -P o •H
•H !-l 4J
hO -p Cd

0 tn H o rH
rH (ti Cm tn

0) O
•H cn §
tn hO'—
>j

rH O •H "

<U 3 ft ft cd

13 Si ft J p
5 +^ 0 cd CO cd

S cn -P S Q

P ?-l rH
O O -H
t< +J <tH

ft cd

H rH I 1

t3 cn Cd -d-

o; C -H 6h
+J cd +J Q
o M a -

•H +-> OJ J-
3 -

p cd cr*

M +J (U Fh
(U cd tn 3« T3

o cc

O 1 60 •H •H
a -p

-p o •H ft to 0) o
Eh o u > H cd >HO a D-i Ch ft rH Eh •H Cd

LA 0 <u O O rH CM
>H « o c rH cn to a Cd a EH

Eh K m 0 <u o o Q^ CO s O •M H O Q •H OJ •HQ o o tn tn P -P a in -3-

O w M •H u tn cd (d U
O o EH

AS
0 m -P bO 0) COM Cd > ft 01 cd cn >3 EH o 43 ^ Q a Cm co M •H o T) 1 cd 0 o 1)

Eh Cm o c oi J t3 (J ?-

CO H •H cd O CO 0) Eh ft rH 3a O cd U '—

i

^ 3 OJ cd -p
1) e ft 0 13 O p CJ

ft cd 1) ft -p +J fn O cd

CO t3 rH td -r-l CO cd C2 S 'C' p

F i gure 6 -4

Historic Context of Data Conversion Efforts

-115-

p
c:

4!
a a
Pt o
O ft
1-4 -P
<u cd

> H
Eh

H
9

-P EH
ca Q

c
1)

a "
r-l H
O4 Eh
B O

(d

a
u
<up
!«!

<U

<M CO
O K

Oh

O <H

U ttl

O -P
m

0) a>J -p

ec >H

> aM s

o

M OW M
K X
Pd U
> M
M s:

°^
-P Eh
m '—

'

P >H

oH P
c3 aj ^
e H H
i< W O
(U c o
P cC ^
H !h O
W Eh m

0) M

C P
(L) W

0)

o o

W ^ O

P 0)

>H 05
M Eh
< COQ
O WO O

O M
Eh fe,

Q

C ^<

D OJ

P >
P G
ai 0

Cm 0
0 CO T3

0)

r-l W P
0) 1—

.

0
0)

0 d 0
S -P •H

oi Oi
OJ

0
rH T3 p
•H <U ft
ai !h 3 a c
P 0 p 0 0
0 p -H •H
Q tn 0 P CO

Figure 6-4 (continued)
Historic Context of Data Conversion Efforts

-116-

Later, Navathe proposed a methodology to accomplish these
operations using a relational normal form for the internal
representation [DT12]. Version II of the Michigan Data
Translator was designed to perform hierarchical
restructuring transformations, but the project did not
implement it. Instead, the research was directed into the
complex problem of restructuring network type data bases.
To address this problem, Deppe developed a dynamic data
model--the Relational Interface model--which simultaneously
allowed a relational and network view of the data base
[UR3]. This model formed the basis of the Version IIA
design and implementation of generalized restructuring
capabilities [LIT8,9,10]. Another component necessary for
the development of a restructurer was the formulation of a

language in which to express the source to target data
transformations. This language, termed Translation
Definition Language (TDL), evolved through each translator
version beginning with a source-to-target data item "equate
list" in the Version I Translator to the network
restructuring specifications of Version IIA. While the
initial version of the TDL was quite simplistic, the current
version, the Access Path Specification Language [DT16,R9],
provides powerful capabilities for transforming network data
bases.

i
The University of Penn syl van i a . Concurrent with the

j

work at the UniversTfy ot Michigan, Smith at the University
I

of Pennsylvania (see Figure 6-4) also took a data
description approach and developed a stored-data definition
language (SDDL) for defining storage of data on secondary
storage devices, and a translation description language

Ij (TDL) [SL2,DT2] and three levels of data base structures,
the logical, storage, and physical, are described using the

I SDDL. In order to describe the source-to-target data
mappings, a first order calculus language was used.
Following from this work, Ramirez [DT3,6j implemented a

language-driven "generative" translator which created PL/1
programs to perform the conversion. One of the first
reports on the utilization of generalized translation tools
was provided by Winters and Dickey [TAI]. Using the
translator developed by Ramirez, they installed it on their

I

system, and applied it to converting IBM 7080 files.

IBM Research , San Jose In 1973, another major data
translation research endeavor was initiated at the IBM
Research Laboratory in San Jose, California. Researchers in

j
this project--initial ly Housel , Lum, and Shu, later joined

I

by Ghosh and Tayl or- -adopted the general model as specified
i

in Figure 6-1 but made several innovations. First, in the
belief that programmers know well the structure of the data
in a buffer being passed from a DBMS to the application
program, the group concentrated its effort on designing a

-117-

data description language appropriate for describing data at
this stage. Second, regardless of the data model underlying
any DBMS, the data structure at the time it appears in the
buffer of an application program will be hierarchical. The
general architecture, methodology, and languages reflecting
these beliefs is reported in Lum et al.[DT14].

In addition, the group in San Jose felt that, while it
is desirable to have a file with homogeneous record types,
it is a fact of life that many of today's data are still in
COBOL files in which multiple record types frequently exist
within the same file. As a result, the group concentrated
on designing a data description language which can describe
not only hierarchical records (in which a relational
structure is a special case) but also most of the commonly
used sequential file structures. This language, DEFINE, is
described by Housel et al-[SL7].

The philosophy of restructuring hierarchies is further
reflected in the development of the translation definition
language CONVERT, as reported by Shu et al [R2]. This
language, algebraic in structure, consists of a dozen
operators, each of which restructures one or more
hierarchical files into another file. The language
possesses the capability of selecting records and record
components, combining data from different files, built-in
functions (e.g., SUM and COUNT), and the ability to create
fields and vary selection of the basis of a record's content
(a CASE statement) .

A symmetric process occurs at the output end of the
translation system. Sequential files are created to match
the need of the target loading facility. The specification
of this structure is again made in DEFINE.

A prototype implementation, originally called EXPRESS
but renamed XPRS, is reported in [DT15].

System De vel opmen t Corporati on Another restructuring
project reported by Shoshani [R3,4] was performed at The
System Development Corporation in 1974-1975. In order to
avoid the complexities of storage structure specification
(i.e., indexes, pointer chains, inverted tables, and the
like) they chose to use existing facilities of the systems
involved. In particular, they advocated the use of query
and load (generate) facilities of data base management
systems. However, when such facilities do not exist,
reformatters from the source (e.g., index sequential file)
to a standard form and from the standard form to same output
file had to be used. Given that data bases can be
reformatted to and from a standard form, they concentrated
on the problem of logical restructuring of hierarchical data

-118-

bases in this form.

The language used in the above project for specifying
the restructuring functions (called CDTL--Common Data
Translation Language) was designed to be conceptually
simple. For the most part, it provides functions for
specifying a mapping from a single field (or combination of
fields) of the source to a single field of the target. For
example, while a DIRECT would specify a one-to-one mapping
of source items to target items, a REPEAT would specify the
repetition of a source item for all instances of a lower
level in the target hierarchy. In both cases, only the
source and target fields need to be mentioned as parameters.
In addition, there are more global operations, such as the
INVERSION operator, which causes pa rent/ dependent record
relationships to be reversed. The system also supported
extensive field restructuring operators, where individual
field values could be manipulated according to prescribed
language specifications. Since most of these operators are
local, there is the possibility that they could be used in
combinations that do not make sense globally. Therefore, a

further component of the system was built to perform
"semantic analysis," which checks for possible
inconsistencies before proceeding to generate the target
data base.

Bell Laboratories The Bell Labs data translation system
ADAPT DAta Parsing and Transformation system), currently
under development, is a generalized translation system
driven by two high-level languages [DT17]. With the first
language one describes the physical and logical format and
structure of the data and to provide various tests and
computations while parsing the source data and generating
the target data. The second language is used to describe
the transformations which are to be applied to the source
data to produce the target data. Extensive validation
criteria can be specified to apply to the source and target
data .

Two processing paths are available within the ADAPT
i

system: a file translation path and a data base translation
' path (see Figure 6-3). A separate path for file translation

responds to real-world considerations: many types of
conversions do not require the capabilities and associated
high overhead involved in using a data base translation
path.

I

Related Work Additional research effort examines the

I
development and acceptance of a standard interchange form.

' An interchange form would increase the sharing of data bases
and provide a basis for development of generalized data
translators. The Energy Research and Development

-119-

Administration (ERDA) has been supporting the
Interl aboratory Working Group for Data Exchange (IWGDE) in
an effort to develop a proposed data interchange form. The
proposed interchange form [GG2] has been used by several
ERDA laboratories for transporting data between the
laboratories. Additional work on development of interchange
forms has been pursued by the Data Base Systems Research
Group at the University of Michigan [UT14].

Navathe [RIO] has recently reported a technique for
analyzing the logical and physical structure of data bases
with a view to facilitating the restructuring specification.
Data relationships are divided into identifying and
non i dent i f yi ng types in order to draw an explicit schema
diagram. The physical implementation of the relationships
in the schema diagram is represented by means of a schema
realization diagram. These diagrammatic representations of
the source and target data bases could prove to be very
useful to a restructuring user.

6.2.2 Application Program Conversion. So far, we have
concentrated on the data aspects of the conversion problem;
it is necessary to deal as well with the problems of
converting the application programs which operate on the
data bases. Program conversion, in general, may be
motivated by many different circumstances, such as hardware
migration, new processing requirements, or a decision to

adopt a new programming language. Considerable effort has
been devoted to special tools such as those to assist
migration among different vendor's COBOL compilers, and
general purpose "decompilers" that have been developed to
translate assembly language programs to equivalent software
in a high level language. Wnile progress has been made
developing special purpose tools for a limited program
conversion situation, little progress has been made in
obtaining a solution to the general problem of program
conversion. With this fact in mind, this section focuses on
the modifications to application programs that arise as a

consequence of data restructuring/conversion.

Probl em Statement . There are three types of data bases
which can affect application programs:

alterations to the data base physical structure, for
example, the format and encoding of data, or the
arrangement of items within records

changes to the data base logical st r uc t ur e- - e i t her

:

a. the deletion or addition of access paths to
accommodate new performance requirements, or

-120-

b. changes to the semantics of data, for example,
modification of defined relationships between record
types or the addition or deletion of items within
record s

migration to a new DBMS, perhaps encompassing a data
model and/or data manipulation language different
from the one currently in use

The actual impact of these data base changes on
application programs is a function of the amount of data
independence provided by the Data Base Management Systems.
Data independence and its relationship to the conversion
problem are discussed elsewhere [GG3]. We assume here
incomplete data independence and that therefore some degree
of program conversion is required in response to data base
schema changes. In fact, whereas most commercial data base
management systems provide application programs with
insulation from a variety of modifications to the physical
data base, protection from logical changes--part i cul arl y at
the semantic level--is minimal. Examples of semantic
changes likely to have a profound effect on application
programs i ncl ude

:

Changes in relationships between record types, such
as changing a one-to-many association to a many-to-
many association or vice-versa.

Deletion or addition of data items, record types, or
record relationships.

Changing derivable information ("virtual items") to
explicit information ("actual items") or vice-versa.

Changes in integrity, authorization or deletion
rules.

Various properties of data base application programs
greatly complicate the conversion problem. For instance,
many data base management systems do not require that the
record types of interest (or possibly even the data base of
interest) be declared at compile time in the program; rather
these names can be supplied at run time. Consequently at
the compile time, incomplete information exists about what
data the program acts on. Other troublesome problems occur
when programs implicitly use characteristics of the data
which have not been explicitly declared (e.g., a COBOL
program executes a paragraph exactly ten times because the
programmer knows that a certain repeating group only occurs
ten times in each record instance). Complexity is

introduced whenever a data manipulation language is

-121-

intricately embedded in a host language such as COBOL. The
interdependence between the semantics of the data base
accesses and the surrounding software greatly complicates
the program analysis stage of conversion. Because of these
considerations, substantial research has been devoted to
alternatives to the literal translation of programs. In

particular, some currently operational tools utilize source
program emulation or source data emulation at run time to
handle the problem of incomplete specification of semantics
and yet still yield the effects of program conversion.

Current Approaches . In this section, we discuss two
main techniques currently employed in the industry. These
techniques are commonly used but unfortunately not
documented in the form of publications.

DML Statement Substitution

The DML substitution conversion technique, which can be
considered an emulation approach, preserves the semantics of
the original code by intercepting individual DML statement
calls at execution time, and substituting new DML statement
calls which are correct for the new logical structure of the
data base. Two IBM software examples which provide this
type of conversion methodology are 1) the ISAM compatibility
interface within VSAM (this allows programs using ISAM calls
to operate on VSAM data base), and 2) the BOMP/DBOMP
emulation interface to IMS. This program conversion
approach becomes extremely complicated when the program
operates on a complex data base structure. Such a situation
may require the conversion software to evaluate each DML
operation against the source structure to determine status
values (e.g., currency) in order to perform the equivalent
DML operation on the new data base. Generalization of this
approach requires the development of emulation code for the
following cases: maintain the run time descriptions and
tables for both the original and new data base
organizations, intercept all original DML calls, and utilize
old-new data base access path mapping description (human
input) and rules to determine dynamically what set of DML
operations on the new data base are equivalent to each
specific operation on the source data base.

Although a conceptually straightforward approach, it
has several drawbacks. The drawbacks can be categorized as
degraded efficiency and restrict i veness . Efficiency is

degraded primarily because each source DML statement must be
mapped into a target emulation program, which uses the new
DBMS to achieve the same results. The increased overhead in

program size and/or processing requirements can be
significant.

-122-

The drawback of restrict!' veness comes about because the
emulation approach inhibits the utilization of the increased
capabilities of the new DBMS and/or data structure through
the modeling of the old methods. Additionally dependence
upon the old program semantics limits the sets of
permissible new data structures that must support all of the
semantics of the source program if the source program is to
continue to execute in the same manner. Note that the rules
can be quite complex, even for the limited situation of
which the data structure changes preserve semantic
equivalence. Therefore, in some instances, just the limited
task of determining if a change in data structure (given no
change in the data model) will support a set of source
programs will be an extensive task.

Bridge Program The second method in use today is
sometimes referred to as the Bridge Program Method. In this
technique, the source application program's access
requirements are supported by reconstructing from the target
data base that portion of the source data base needed. Data
reconstruction is done by means of "bridge programs." The
source program is then allowed to operate upon this
reconstructed portion of the source data base to effect the
same results that would occur if the source data base were
not modified. Of course, a reverse mapping is required to
reflect and update, and each simulated source data base
segment must be prepared before it is needed by the
application program.

This approach suffers from the same types of
disadvantages inherent in the emulation approach.
Efficiency problems for complex/extensive data bases and
programs performing extensive data accessing can make this
method prohibitively expensive for practical utilization.
This technique is generally found as a "specific software
package" developed at a computer installation rather than as
a standard vendor supplied package.

Current Research . Differing from the emulation and
bridge program approaches, current research aims towards
developing more generalized tools to automatically or semi-
automat i cal 1 y modify or rewrite application programs. The
drawbacks of the existing approaches described above can be

j
avoided by rewriting the application programs which would

I

take advantage of the new structure and semantics of a

I
converted data base and by using a general system to do the

f

conversion rather than using ad hoc emulation packages and
bridge programs.

-123-

Research on application program conversion is still in

its infancy. Consequently, very few published papers on
'

this subject exist. This section describes a handful of'
works in the order of the dates of publication. Mehl and

|

Wang [PT6] presented a method to intercept and interpret '

DL/1 statements to account for some order transformations of
j

hierarchical structures in the context of the IMS system.
Algorithms involving command substitution rules for various
structural changes have been derived to allow the correct

|

execution of the old application programs. This approach
works only for a limited number of order transformation of!
segments in a logical IMS data base. Since it is basically
an emulation approach, it has the drawbacks discussed in the
previous section.

A paper by Su [PT12] gives a general model of!
application program conversion as related to data base
changes resulting from a data base transformation. An

f

attempt was made to identify the tasks required for the
j

automatic or semi-automatic conversion of application r

programs due to data base changes. The paper stresses two I

main points: 1) the need for extensive analysis of an
application program including the analysis of program logic,

i

data variable relations, prog ram- s ub prog ram structure,
execution profile, etc.; and 2) the use of data base
translation operators to determine what program;
transformations are required to account for the effects of*;

these operators. The idea of the use of a common language
to describe the operations of source queries and the data

;

translation statements is also proposed.

An approach to the transformation of DBTG-like programs
in response to a data base restructuring was proposed by*
Schindler [PTIO]. The approach is based on the concept of
code templates, which are predefined sequences of host

^

1 anguage--DML statements (roughly analogous to assembly;
language macros). Application programs can be written as
nested code templates. The code templates are devised so
that each one corresponds to an operator in the relational

|

algebra. An application program is then mapped into a

relational expression, transformations are performed on the
expression to accommodate the data base restructuring, and a

new program is generated by mapping the transformed
expression back into code templates. This approach suggestsf
that a level of logical data independence may be achieved
through current programming technology.

The work by Su and Reynolds [PT15] studied the probleml*
of high-level sublanguage query conversion using thej
rel ati onal . model with SEQUEL [Z5] as the sublanguage, DEFINE^
[SL7] as the data description language and CONVERT [R2] as''

the translation language. Algorithms for rewriting the!

-124-

source query were derived and hand simulated. In this
study, query transformation is dictated by the data
translation operators which have been applied to the source
data base. The purpose of this work was to study the
effects of the CONVERT operators on high-level queries.
Only restricted types of SEQUEL queries were considered.
This work demonstrates that a general program conversion
system should separate the data model and schema dependent
factors from the data model and schema independent factors;
and an abstract representation of program semantics and the
semantics of data translation operators need to be sought so
that data conversions at the logic level (especially the
type which changes the data base semantics) and the DBMS
level can be attempted.

Two indpendent works carried out about the same time by
Su and Liu [PT13] and Housel [PT14] take a more general
approach to the application program conversion problem. The
former work is based on the idea that the same data
semantics (a conceptual model) can be modelled externally by
various existing data models (relational, hierarchical and
network) using different schemas. Application programs are
mapped into an abstract representation which represents
program semantics in terms of the primitive operations
(called access patterns) that can be performed on data
entities and associations. Transformation rules are then
applied on the abstract representation based on the types of
changes introduced by the data translation operators. The
transformed representation is then mapped into another
intermediate representation (called access path graphs)
which is dictated by the external model and specific schema
used for the target data base. This representation is then
modified by an optimization component and used for the
generation of target programs. This work stresses that the
semantics of both the source and target data base be made
explicit to the conversion system and be used as a basis for
application program analysis and transformation. The
conversion methodology described is for program conversion
to account for data conversion at the logical level as well
as the DBMS 1 evel .

Housel extends the work on application migration
"undertaken at the IBM San Jose Laboratory. This work uses a

common language for specifying the abstract representation
I of source programs as well as for specifying the data
'l transl ati on operations. The language is a subset of CONVERT

i

with some of Codd's relational operators [GG4]. The
operators of the language are designed to have a simple
semantics and convenient algebraic properties to facilitate

i program transformation. They are designed to handle data

ji

man i pul at i on in a general hierarchical structure called a

"form" as well as relational tables. In this system.

-125-

program transformation is dictated by the data mapping «

operations applied to the source data base. The proposed
model assumes that the inverse of these data mapping
operators exists; i.e., the source data base can be
reconstructed from the target data base by applying some
inverse operators on the target data base. More precisely,
it is assumed that M'(T) = S where S is the source data

i

base, T is the target data base, and M is the mapping
jfunction. Thus, program conversion is done by substituting
f

the inverse M'(T) into the specification language statements
(the abstract representation of the source program) for each

\

reference to the source data base. This process is followed 1:

by a simplification procedure to simplify the resulting
statements (the target abstract representation of the

i

program). The author points out that the assumption on the
existence of M'(T) restricts the scope of the conversion
problem handled by the proposed approach.

2

S

Presently, the Data Base Program Conversion Task Group t

(DPCTG) of the CODASYL Systems Committee is investigating ;

the application group conversion problem. The group is
,

looking into various aspects of the problems including
|

decompilation of COBOL application programs, semantic
|

changes of data bases and their effects on application
\

programs, program conversion techniques and methodologies,
i

etc .
J

To this date, the work on application program
i

conversion is still very much at the research stage and more >

progress has to be made before we can start actual
implementation. The problems of automatic application ;

program conversion are multitudinous and extremely complex.
:

Current research indicates that program conversion is
possible for some types of data conversion, but the

;

complexity of program conversion depends on how drastically
the data has been modified. Further research needs to be
undertaken to determine what can be done automatically, what

j

can be done semi -automati cal 1 y , and what cannot be done at
;

all. A fully automatic tool is hard to achieve. Building
i

semi-automatic systems or systems which provide aids for (

manual conversion would be a more realistic goal. :

Current Research Directions . The current research has r

uncovered several problems which need to be investigated
[

further before the implementation of a generalized
i

conversion tool can be attempted. The following issues are
,;

believed to be important for future research:
5

Semantic Descri pti on of Data Base and A p p 1 i c a t i o n ;

Programs Based on the work by Su and Liu [PTI 3] and""the
study of the DPCTG group, it is quite clear that a program
conversion system would need more information about the

-126-

semantic properties of the source and target data bases than
the information provided by the schemas of the existing
DBMS. Semantic information of the data bases is an
important source for determining the semantics of
application programs which is the real bottleneck of the
application program conversion problem. Future research
needs to be conducted to 1) model and describe the semantics
of application programs, 2) study the meaningful semantic
changes to data bases and their effect on application
programs, and 3) derive transformation rules for program
conversion which account for the meaningful changes.
Several existing works on data base semantics
[Mil , SMI , 2 , 3,DL29] may provide a good basis for future works
on this subject.

Equivalency of Source and Ta rget Programs Data
conversion may alter the semantic contents of the source
data base. A converted application program may or may not
perform the identical operation on the target data as the
source program on the source data. For example, it may not
retrieve, delete, or update the same data as the source
program because some records may be deleted and data
relations may have been changed in data conversion. It is
not clear at all how we can prove, in general, that a target
program generated by a conversion system still preserves the
original intent of the source program. Naturally, if the
source data can be reconstructed from the target data
without losing the original data relations and occurrences,
we can establish the equivalence relation between the source
and target programs based on the same effort they have on
the source and target data.

Decompi 1 at i on Program conversion via decompilation is a

technique whereby a data base application program is first
transformed into an operationally equivalent higher order

i language or an abstract representation and then returned to

j!
a usable language level in a converted form. The
transformation to a higher order language level is a

1 decompi 1 at i on process and the process of returning the

I

program to a language level appropriate to conventional
compilers is a compilation process. The underlying concept
is that the decompilation to a higher order language can
produce a functionally equivalent program that does not
contain the DBMS, data model and data dependencies that
inhibit the conversion process. That is, the decompiled
program has the same "intent" while being unrelated to the

I changed DBMS environmental conditions. The changed
ij env i ronmental conditions should be easily incorporated into
the program during the process of compiling the program back
into a form appropriate to the new system.

-127-

Some researchers think that this would be the preferred
method to effect DML/host language program conversion. It
should avoid many of the ef f i c i ency/ rest r i c t i on drawbacks
inherent in current automated methods, while being more cost
effective and less error prone than current manual methods
(e.g., program rewrite).

One likely disadvantage to this method is that in order
to use it to convert existing data base application programs
the programs may have to first be manually altered to place
DML related code in a structured format. This disadvantage
is to be expected because of the ambiguity inherent in the
organization of DML/host language programs. However, the
development of structured programming templates designed for
DML related code should provide a means for creating
programs that are convertible by the decompilation method.
Structured templates might also provide the needed insight
toward the dev el opment/ sel ect i on of an appropriate high
level language into which programs can be compiled. Some
initial concepts of data base program templates have been
proposed by the University of Michigan [PTIO],

Conversi on Aids A system which provides assistance to
conversion anal yst s would seem to be a practical tool and a

feasible task. Given the information about data changes and
semantics of the data, a system can be built to analyze
application programs to 1) identify and isolate program
segments which are affected by the data changes, 2) detect
inefficient code in the programs, 3) produce a program
execution profile [GGl] which gives an estimate of the
computation time required at different parts of the program,
and 4) detect, in some cases, the program code which depends
on the programmer's assumption of data values, ordering of
records, record or file size, etc. The data obtained in 1,

together with some on-line editing and debugging aids, would
speed up the manual conversion process. The data obtained
in 2 and 3 would be useful for producing more efficient
target programs and the data obtained in 4 would help the
conversion analyst to eliminate the "implicit semantics' in

programs which makes the program conversion task (manual or
automatic) extremely difficult. A more complete cross-
referencing than that usually produced by today's compilers
can assist the conversion analysts in identifying
ramifications of changes to programs. An example of such a

product is the Data Correlation and Documentation system
produced by PSI-TRAN Corporation. One technique, sometimes
used during a conversion process that has been initiated by
a data base structure change, is to alter the names of
effected data base items in the DDL only and use errors
generated by the compiler to locate those program segments
needing changes. A more complete cross-referencing system
would be a much better tool, if it were available.

-128-

Optimi zation of Ta rget Program As the result of data
conversion, multiple access paths to the same data may
occur. This is because redundant data may be introduced or
new access paths may be added in the course of data
conversion. In this situation, a conversion system will
have the choice of selecting a path to generate the target
program. The efficiency of the program during execution
time may depend on the selection of optimized access path
during program conversion. Also, for reasons of achieving
generality, some program conversion techniques proposed
[PT13,14] convert small segments of programs or the
equivalent of DML statements separately. It is necessary to
do a global optimization or simplification to improve the
converted program. Techniques for program optimization
related to program conversion need to be investigated.

6.2.3 Prototype Conversion Systems Analysis. This section
ana 1 y ze s the state ot the art of general i zed data conversion
systems. It summarizes what has been learned in the various
prototypes. The prototypes have yielded encouraging
results, but some weak points have also emerged. A section
below lists some questions that remain to be answered and
comments on additional features that will be necessary to
enhance usability. The following section on Analysis of
Architecture analyzes some implementation issues which can
affect the cases where a generalized conversion system can
be a ppl i ed

.

Where Do W£ Stand . The prototype systems described in
SectioTi 5". 772 have been used in a few conversions. While
some of these tests were made on "toy files," a few of the
tests involved data volumes from which realistic performance
estimates can be extrapolated. This section will summarize
the major tests that were done with each of the prototypes.

The Penn Transl ator The translator developed by Ramirez
at the University of Pennsylvania [DT3,6] processes single
sequential files to produce single sequential target files.
Facilities exist for redefining the structure of source file
records, reformatting and converting accordingly.
Conversion of the file can be done selectively using user-
defined selection criteria. Block size, record size, and
character code set can be changed, and some useful data
manipulation can be included.

The translator was used in several test runs on an
IBM/370 Model 165. The DDL to generated PL/1 code expansion
ratio was 1:4, so coding time was reduced.

-129-

A further test of the Penn Translator was conducted by
Winters and Dickey [TAl]. An experiment was conducted
comparing a conventional conversion effort against the Penn
Translator (slightly modified). Two source files stored on
IBM 1301 disks under a system written for the IBM 7080 using
the AUTOCODER language were converted to two target files
suitable for loading into IMS/VS. Much of the data was
modified from one internal coding scheme to another. The
conversion required changing multiple source files to
multiple target files.

The conventional conversion took seven months versus
five months for the generalized approach, a productivity
improvement of roughly thirty percent. Time for adapting
the translator, learning the DDL, and adapting to a new
operating system is included in the five month figure.
Without these, an estimate of three months was made for the
conversion using the generalized approach.

The SDC Translator The translator described in [R3,4] I

was T¥pl emenTecI during 1 975-1 976 . The translator could
handle single, hierarchical files from any of three local
systems--TDMS , a hierarchical system which fully inverts
files; DS/2, a system which partially inverts files; and
ORBIT, a bibliographic system which maintains keys and
abstracts. Data Bases were converted from TDMS to ORBIT,
from TDMS to DS/2, and vice-versa, and from sequential files
to ORBIT. TDMS files were unloaded using an unload utility.
Target data bases were loaded by target system load
u t i 1 i t i e s .

The total effort for design and implementation was
about three man-years. The system was implemented in

assembly language on an IBM/370 Model 168, and occupied
about 40 K-bytes, not including buffer space which could be
varied. The largest file tested was on the order of 5

million characters and the total conversion time was about 1 ^

minute of CPU time per 2.5 megabytes of data. ^

The work was discontinued in 1976. ^

i

The Honeywel 1 Translator The prototype file translator 5

developed at Honeywell by Bakkom and Behymer [DTll]
\

performed file conversions (one file to one file) among
!

files from IBM, Honeywell 6000, Honeywell 2000, Honeywell
8200 sequential and indexed sequential files. Data types of

I

fields could be changed as well as field justification andf
alignment. New fields could be added to a record and fields >

could be permuted within a record. File record format!
(fixed, variable, blocked, etc.) could be changed and a'
compare utility was available for checking the consistencyf
of files with different field organizations and encodings. /

-130-

Tests of up to 10,000 records were run. Performance of 15
milliseconds per record was typical (Honeywell Series 6000
Model 6080 computer). The prototype has been used in a

conversi on/ benchmark environment but has not been offered
commerc i al 1 y

.

The Michigan Translator Version IIB, Release 1.1 of the
Michigan Translator was completed for the Defense
Communications Agency in October 1977 [UT16]. It offers
complete c on v er s i o n/ rest r uc t ur i ng facilities for users of
Honeywell sequential, ISP, or I-D-S/I files. Up to five
source data bases of any type may be merged, restructured or
otherwise reorganized into as many as five target data
bases, all within a single translation. Data Base
description is accomplished by minor extensions to existing
I-D-S DDL statements. Restructuring specification is easily
indicated via a high level language. Tests performed to
date included a conversion of a 150,000 record I-D-S/I data
base with a total elapsed time of 24 hours (500 milliseconds
per record). A given translation can be broken off at any
point to permit efficient utilization of limited resources
and also protect against system failures. The user is
provided with the capability of monitoring translation
progress in real time.

XPRS Test cases with the XPRS system have focussed on
functionally duplicating earlier real conversions done by
conventional methods. Several cases have been programmed.
Each case involved at least two input files. Generally,
there was a requirement to select some instances from one
file, match with instances in another file, eliminate some
redundant or unwanted data, and build up a new hierarchical
structure in the output. In several cases there was a need
for conditional actions based on flags within the data. In

all cases, the XPRS languages were found to be functionally
adequate to replicate the conversion. A productivity gain
of at. least fifty percent in total analysis, coding, and
debugging time was achieved. Test runs were conducted on
several thousand records. Performance was deemed adequate
in that XPRS can restructure data at least as fast as it can
be delivered from direct access storage. No detailed
performance comparisons were made comparing XPRS-generated
programs with custom written programs.

Questions Remaining To Be An swered . Given that several
prototype data translation systems are operational in a

laboratory environment, there is a little question
concerning the technical feasibility of building generalized
systems. The remaining questions pertain to the use of a

generalized system in "real world" data conversions
involving a wide variety of data structures, very large data
volumes, and significant numbers of people. Three major

-131-

questions to be resolved are:

1. Are the generalized systems functionally complete
enough to be used in real conversions, and if not,
what will it take to make them functionally
compl ete?

2. Can the people involved in data conversions use the
languages? What additional features are necessary
to enhance usability?

3. Overall, what is the productivity gain available
with the generalized approach?

Within the next year, prototype systems will be
exercised on a variety of real-world problems in data
translation, and concrete answers to these questions should
be available. The systems being further tested for cost-
effectiveness are the Michigan Data Translator, the IBM XPRS
system, and the Bell Laboratories ADAPT system.

To date, preliminary results have been promising. A
significant sample size on which to do analysis of
productivity gain should be available at the end of the year
of testing.

A number of factors must be taken into account in
measuring the cost-effectiveness of the generalized data
translator versus the conventional conversion approach.
These factors include:

ease of learning and using the higher level
languages which drive the generalized translators;

availability of functional capability to accomplish
real-world data conversion applications within the
generalized translators;

overall machine efficiency;

correctness of results from the conversion;

ability to respond in timely fashion to changes in

conversion requirements (conversion program^
"maintenance");

debugging costs;

-132-

ability to provide "bridge back" of converted data
to old applications;

ability to provide verification of correctness of
data conversion;

capabilities for detection and control of data
errors.

The languages used to drive generalized data
translators are high-level and non-procedural; they provide
a "user-friendly" interface to the translators. Since the
languages are high-level, programs written in them have a

better chance of being correct. Experience to date with
DEFINE and CONVERT, the languages which drive XPRS, has
shown that users can learn these languages within a week; it
has also shown that some practice is necessary before users
start thinking about their conversion problem in non-
procedural rather than procedural terms.

In early test cases, the languages which drive
generalized data translators have been found to be
functionally adequate for many common cases. In those cases
lacking a feature, a "user hook" facility is often provided.
However, forcing a user to revert to a programming language
"hook" defeats the purpose of the high level approach, and
interfacing the hook to the system requires at least some
knowledge of system interfaces. Thus, high level languages
must cover the vast majority of the cases in order to
succeed; otherwise, users will perceive little difference
over conventional approaches.

Facilities for detecting and controlling data errors in
the generalized systemsare very important, and most of the
prototypes do not yet do a complete job in this area.
However, the generalized packages offer an opportunity for
generalized, high level methods for dealing with data errors
during conversion, and it could well be that once these
error packages are developed, they will contribute to even
larger productivity gains than have been experienced to
date

.

The high-level language approach to driving generalized
translators should provide the ability to respond to changes
in conversion requirements with relative ease. Since large
conversions often take one or more years, it is not unusual
for the target data base design to change or for new
requirements to be placed on the conversion system. In

other words, in a large conversion effort, the programs are
not as "one shot" as is commonly believed. In large
conversions, the savings in conversion program maintenance
could be significant.

-133-

Generalized systems can also be used to map target data
back to the old source data form, assuming the original
conversion was information-preserving. This capability
provides a means for verifying the correctness of the data
conversion. In addition, this capability can be used as a

"bridge back" to allow users to continue to run programs
which have not yet been converted against the data in the
old format. Using a generalized system in this way allows
phased conversion of programs without impacting user needs
during the conversion period.

In an environment where a generalized translator is

used regularly as a tool for conversion, costs associated
with the debugging phase should be decreased. Common,
debugged functional capabilities will be utilized, whereas
it is unusual in the conventional approach for common
conversion modules to be developed. Thus, each new
conversion system requires debugging.

U s a b i 1 i t

y

The usability of generalized data translation
systems must also be evaluated. Experience to date
indicates that the languages are easy to learn and use.
However, it would be wrong to think that these prototypes
are mature software products or that they can be used in all
conversions. This section discusses some of the unanswered
questions with respect to usability of the current data
conversion systems.

One question concerns the level of users of the
generalized languages. Current prototypes have been used by
application specialists and/or members of a data base
support group. The systems have not yet been used by
programmers, and the question remains whether programmers
(as opposed to more senior application specialists and
analysts) will be able to use the systems productively.
There is no negative data on this point; the systems have
not been used widely enough.

At present, all the systems require a user to describe
explicitly the source data to be accessed by the read step
using a special data description language. These data
description languages are generally easy to learn and use;
they resemble statements in the COBOL Data Division.
However, the writing of the description is a manual process
which can be tedious because a person may have to describe a*
file with hundreds of fields. Ideally, a data conversion
system should be able to make use of an existing data
description, such as those existing in a data dictionary or
a system-COBOL macro library. As evidenced by the Michigan
Data Translator [DT16], it is reasonable to expect that such
an interface will be available as data conversion systems
evolve. Note, however, that a data dictionary or COBOL

-134-

macro library link may not necessarily solve the problem.
Data in current systems is not always fully enough defined
to be converted. This is especially true with non-data base
files. In these files, data definition often is embedded in

the record structures of the programs, and a full definition
depends on a knowledge of the procedural program logic.
Even with existing data bases, some fields and associations
may not be fully defined within the system data base
description. Thus, the user can expect a certain amount of
manual effort in developing data definitions. If existing
documentation is incomplete, this can be a time consuming
task, though it probably must be done regardless of whether
a generalized package is used or not.

Another area where a user may have to expend effort is
in the unload step of the data conversion process. The data
description languages used to drive the read step have a

limited ability to deal with data at a level close to the
hardware (e.g., pointers, storage allocation bit maps,
etc.). Generally one assumes that a system utility program
can be used to unload source data and remove the more
complex internal structures. Another alternative is to run
the read step on top of an existing access method or data
base management system with the accessing software removing
the more complex, machine dependent structures. While
acceptable alternatives in a great many environments,
including most COBOL environments, some cases may exist
where neither approach will work. For example, a

load/unload utility may not exist, or a file with embedded
pointers which was accessed directly by an assembly language
program might not be under the control of an access method.
For these cases, the user is faced with complexity during
the unload step. The complexity associated with accessing
the data would appear to be a factor for either the
conventional methods or for the generalized approach.
However, in cases such as those above, some special purpose
software may have to be developed. Note that some research
[SL8] has examined the difficulty of extending data
description languages to deal directly with these more
complex cases and has concluded that providing the data
description language with capabilities to deal with more

i complex data structures greatly complicates the
impletnentation and has an adverse affect on usability.

jThus, special purpose unload programs will continue to be
required to deal with some files.

I Analysis of Architectures . This section discusses some
!
of the different approaches that have been taken in

i impl ement i ng the prototype data conversion systems. The
[objective is to analyze some of the performance and
usability issues raised by the prototypes.

-135-

Two approaches have been used in the prototypes--a
generative approach in the Penn Translator and XPRS, and an
interpretive approach in the Michigan Data Translator. In

the generative approach, a description of the input files,
output files, and restructuring operations is fed to a

program generator. From these descriptions, special purpose
programs are generated to accomplish the described
conversion. In both the Penn Translator and XPRS, PL/1 is
the target language for the generator. The generated PL/1
programs are then compiled and run. In the interpretive
approach, tables are built from the data and/or
restructuring description. These tables are then
interpreted to carry out the data conversion.

In data conversion systems, as in other software, an
implementation based on interpretation can be expected to
run considerably more slowly than one based on generation
and compilation. Initial experience with prototype data
translators has shown that there is much repetitive work,
strategies for which can be decided at program
compi 1 ati on/ generat i on time. Also, there is a good deal of
low level data handling, such as item type conversions.
Thus, those implementations based largely on an interpretive
approach run more slowly, and the ability to vary bindings
at run time does not appear to be necessary. Interpretation
was chosen in the prototypes for ease of implementation, and
in the future it can be expected that a compilation-based
approach or a mixture of compilation with interpretation
will be the dominant implementation architecture. However,
for medium scale data bases, the machine requirements of the
interpretive data conversion prototypes are not
unreasonable, and overall productivity gains are still
possi bl e

.

Performance measurements with conversion systems based
on the generative approach indicate that generalized systems
can be quite competitive with customized programs. In one
case, the program generated by the data conversion system
ran slightly faster than a "customized" program which had
been written to do the same job. However, this example
could well be the exception and it would be naive to expect
this in general. The reason generalized packages can be
competitive is that they often have internal algorithms
which can plan access strategies to minimize I/O transfer
and/or multiple passes over the source data. "Customized"
conversion programs written in a conventional programming
language often are not carefully optimized, since the
expectation is that the programs will be discarded when the
conversion is done.

-136-

A second architectural difference involves the use of
an underlying DBMS or not. In both the Penn Translator and
XPRS, the generated PL/1 program, then executing, accesses
sequential files, performs the restructuring, and writes
sequential files. On the other hand, the Michigan Data
Translator functions as an application program running on a

network structured data base management system. Thus, the
interpreter makes calls to the underlying DBMS to retrieve
data during restructuring and puts restructured data into
the new data base.

The two approaches offer different tradeoffs. For
example, the Michigan Data Translator can make use of the
existing extraction capabilities of a DBMS and perform
partial translations easily. In addition, since it operates
directly within the network data model, a user does not have
to think of "unloading" data to a file model and then
reloading it back; rather, the user describes a network to
network restructuring much more directly.

On the other hand, when converting non-data base data
to a data base, the use of an underlying DBMS as part of a

data translator implies a second order data conversion
problem--the non-data base data must be converted into the
DBMS of the data conversion system, which may or may not be
difficult. It can be difficult, for example, when the data
imodel of the data being converted differs significantly from
|the data model of the DBMS upon which the conversion system
|is based. Also, the use of an underlying DBMS may also
^require more on-line storage, whereas the file oriented
conversion systems can be made to run tape-to-tape. This
Ijcan be important in very large data base conversions.

In the future, one can expect that data conversion
systems will offer a variety of interfaces to accommodate
various kinds of conversion situations. For example, it is
jpossible to interface the " f i 1 e- ori ented " conversion systems
|to run as application programs on top of existing data base
management systems. It is also possible to develop "reader
programs" to load non-data base data into conversion systems
Ibased on a DBMS. In addition, more automated interfaces to
Idata dictionary packages can be expected in order to improve
usability and obviate the need for multiple data
|d e f i n i t i 0 n s .

ji
One possible performance problem with generalized

[conversion systems lies in the unload phase. For reasons of
jiusability, generalized conversion systems usually rely on an
lunload utility program to access the source data, thus
isolating the conversion package from highly system specific
data. A potential problem with this approach is that the
iunload package may not make good use of existing access

-137-

paths or may tend to access the source data in a fashion
which assumes that the data has recently been reorganized
(with respect to overflow areas, etc.)* In cases where the
data is badly disorganized, a customized unload program
which accessed the data at a lower level might run
considerably faster, and for very large data bases might be
the only feasible way to unload the data. It is not clear
how common this case is, and one can usually make the
argument that the "special" unload software could be
interfaced to the generalized package. However, from a

practical standpoint, the unloading phase on a very large,
badly disorganized data base is a performance unknown, and
more sophisticated unload utilities may have to be developed
as part of the generalized packages.

Summary Detailed performance and productivity figures
for major conversions should be available in about one year.
Expectations are that machine efficiency of the generalized
packages based on a generation/compilation approach will be
acceptable (no worse than a factor of 2) when compared with
conventional conversion programs. Additional enhancements
to improve usability can be expected, especially in the
areas of data error detection and control and interfaces to
data dictionary software. If the savings in conversion
program analysis and coding times--often fifty percent or
more--are confirmed, then the generalized conversion systems
will be ready for extensive use."

6.3 OTHER FACTORS AFFECTING CONVERSION

In this section we look at the conversion problem from
two aspects. First, we address the que st i on- -What can we do
today to lessen the impact of a future conversion? Second,
we look to the future to see what effects future technology
and standards will have on the conversion process.

6 . 3 . 1 Le s sen i ng the Conversion Effort. In order to identify
guidelines for both reducing the need for conversion and for
s i mpl i f yi ng conversions which are required, one must
consider the entire application software development cycle
because poor application design, poor logical data base
design, inadequate use of and inappropriate DBMS selection
could each lead to an environment which may prematurely
require an application upgrade or redesign. This redesign
could, in many cases, require a major data base conversion
ef f 0 rt

,

-138"

The set of guidelines specified below is not intended
as a panacea. Instead, it is meant to make designers aware
of strategies which make intelligent use of current
technology. It is doubtful that all conversions could be
avoided if a project adhered strictly to these proposed
guideliines. However, adherence to the principles set forth
by these guidelines could certainly reduce the probability
of conversion and, more importantly, simplify the
conversions that are required.

With respect to application design and implementation,
the more the application is shielded from system software
and hardware implementation details, the easier it becomes
for a conversion to take place. For example, a good
sequential access method hides the difference between tapes,
disks, and drums from the application programs which use the
access method.

The logical data base design should be specified with a

clear understanding of the information environment. A good
logical data base design reduces the need to restructure
because it actually models the environment it is meant to
serve. Introduction of data dependencies in the data
structure should, if possible, be kept to a minimum. An
analysis of the tradeoffs between system performance and
likelihood of conversion should definitely be made.

Selecting the wrong or non-optimal data base management
system, given the application requirements, is also a key
problem which can lead to unnecessary and large conversion
efforts. The prospective user of a DBMS should, for
example, carefully evaluate the data independence
characteristics of a proposed DBMS.

The underlying principle of the guidelines which follow
is that decisions can be made at the system design and
implementation stages which are crucial to the stability of
theap plications.

Appl i cat i on Design G u i d e 1 i n e s .

Requirements Analysis Many of the decisions made during
the requirements anal ysi s stage of system development affect
the long-term effectiveness of the application system (data
base design as well as application programs). Questions
such as what functions does the application require, who
will the data base serve and how will they use the data
base, what are the possible future uses of the data, and
what dre the performance constraints of the application are
answered at this stage. It is essential that the designer
understand the information environment as much as possible
at the outset in order to lessen the probability that

-139-

frequent conversions will be necessary.

Requirements analysis should focus on information needs
and should minimize constraints being imposed by the
physical environment since it can distort the designer's
view of the application system's true objectives. The
influence of the physical environment should be considered
secondarily, in order that the designer be fully aware of
the resulting compromises to the logical requirements. This
is not intended to imply that consideration of the physical
environment is unimportant. Indeed, if the physical
environment is ignored, the effect could be development of a

set of requirements that are impossible to meet within
existing physical and cost constraints.

Program Design G u i d e 1 i n e s Three underlying principles
motivate this discussion o7 application program design.
They are:

design for maintainability

design for the application

data independence

Keeping sight Of all of
application program will
rendering the application as
consi derat i ons .

these during the design of the
lessen conversion effects by
free as possible from physical

Designing for maintainability implies that the
application should be written in a high-level language with
a syntax that permits good program structure. Structured
programming techniques such as top-down program design and
implementation should be used throughout. The system should
be modular with relatively small, functionally oriented
programs. The programs should all be well commented and
organized for readability. Design reviews and program
walkthroughs also help to expose errors in the overall
design and "holes" in the application logic at an early
stage. It has been well documented that these steps help
ease making program modifications.

One error which is often made in designing programs in
a DBMS environment is to let the capabilities of the DBMS
drive the design rather than the application. This design
error can yield programs which are unnecessarily dependent
upon the features of a specific DBMS. For example, in
System 2000 one can use a tree to represent a many-to-many
relationship instead of using the LINK feature. The
parent/child dichotomy that results is an efficient but

-140-

arbitrary contrivance that cannot easily be undone later on.
The key principle here is to concentrate on what results are
desired rather than on the implementation details of
achieving these results. Simplicity and generalization of
the design will provide a very high level of interface to
the application programmer which will, in turn, minimize the
total amount of software, provide the greatest degree of
portability, maintainability, devide independence, and data
i ndependence

.

Of extreme importance in program design is the notion
of data independence; i.e., insulating the application
program from the way the data is physically stored.

Layered Design

In the area of application design, the motivating
factor for mitigating the effects of a conversion is to
insulate logical operations from physical operations. One
of the concepts applied to achieve this is layered design.
That is, designing the application as a series of layers,
each of which communicates with the system at a different
level of abstraction. One can visualize this as an "onion,"
with hardware as its core and layers of successively more
sophisticated software at the outer layers. The user
interacts with the outermost skin of the onion, at the
highest level of abstraction.

If application programs are written at the outermost
layers of the onion, then these programs are smaller, easier
to understand and, therefore, easier to modify or convert
than programs written at lower layers. For example,
introduction of a new mainframe will require conversion of
the software which references the particulars of the
mainframe. However, since the layers are constructed so
that physical machine and device independence is realized
above some level, only the software below that level is
subject to modification. To the extent that application
programs stay at the outermost layers (i.e., above the
critical layer) reduced conversion effects can be achieved.

We can thus summarize the goal of program design as
f ol 1 ows

:

to provide the highest possible application
interface to the program

to maximize program independence from the
characteristics of the mainframe, peripherals, and
data base organization

-141-

to maximize portability of the application program
through the use of high-level languages

to maintain a clean program/data interface

Prog rammi ng Techn i ques

The previous sections of this chapter have focused on
the design decisions which should be made to alleviate the
conversion problem. However, regardless of how noble these
goals are, poor implementation decisions can go a long way
towards diminishing the returns of a good design. Equally
important to intelligent design is a set of programming
techniques and standards which prohibit programmers from
introducing dependencies in code. For example, a "clever"
programmer may introduce a word size dependency in a program
by using right and left shifts to effect multiplication and
division. Of course, there are no hard and fast safeguards
against using tricky coding techniques; an effort must be
made to make the programmer conscious of the consequences of
this kind of coding. In particular, a programmer should not
be allowed to jump across layers of the onion, such as using
an access method to read or write directly data bases.

Data Base Design . Perhaps the most costly mistake a

designer can make is an error in the data base design
because it has a direct effect on the information that is
derivable and the application programs that are created.
Incorrect or unanticipated requirements can lead either to
information deficient data bases or overly complex and
general design. An inadequate logical design has the
potential for complex user interfaces or extremely long
access time. A poor physical design can lead to high
maintenace and performance costs. Unfortunately, data base
design is still an art at the present time. Two surveys
report the results in the area to date. Novak and Fry
[DL26] survey the current logical data base design
methodology and Chen and Yao [DL34] review data base design
in general. The work of Bubenko [DL31] in the development
of the CADIS system and the abstraction and generalization
techniques of Smith and Smith [DL29,30] show promise.

An accurate logical design can still be unnecessarily
data dependent. Dependencies are inadvertently or
deliberately introduced in the interest of improving system
performance. In essence, "purity" is compromised to gain
processing efficiences. Since optimization is a worthwhile
goal, insisting on absolute purity may be unreasonable.
However, the data base designer should at least be aware of
contrivances and, therefore, be in a position to evaluate
the relative effects a design decision may have. Designers
should become sensitive to their decisions by asking: "How

-142-

will the data model be affected by a future change in
performance requirements? Have I done a reasonable job in
insulating applications from data structure elements that
are motivated strictly by performance considerations?"

Some examples of induced data dependencies in logical
data base design which may impact upon conversion are:

The use of owner-coupled sets in DBTG to implement
performance-oriented index structures or orderings
on records.

Storing physical pointers (or data base keys) in an
information field of a record

Combining segment types (in DL/1) to reduce the
amount of I/O required to traverse a data base.

DBMS Ut i 1 i za t i on and Selection . Selection of a DBMS
can have a major impact on conversion requirements. Of
importance in evaluating a DBMS is to consider products
exhibiting the highest level user interface.

A high level DBMS is characterized by both a powerful
set of functions and a high degree of data independence from
the point of view of the application. With respect to
functions, that is, the DML, the distinction between "high
level" and "low level" has traditionally centered on whether
the DBMS provides user operations on sets of records
(select, retrieve, update, or summarize a 1

1

the records or
tuples which satisfy some conditions) or whether one is
restricted to record-at-a-time processing ("navigation").
The DBMS with the "high-level" set operation approach is
significantly more desirable than the navigational record-
by-record approach.

DBMS prospects should evaluate the data independence
1 characteristics of a proposed product. Systems are
! preferred which support an "external schema" or "subschema"
I

feature which permits the record image in the application
program (the user work area) to differ significantly from
the data base format. However, the subschema concept is

,

only one aspect of data independence. In general, it is

necessary to determine in what ways and to what extent the
application interface is insulated from performance or

j
internal format options. For instance, will programs have

I

to be modified if:

-143-

lii

a decision is made to add or delete an index?

the amount of space allocated to an item is

increased or decreased?

chains are replaced by pointer arrays?

Other conversion related questions about DBMS products
include the following:

Are there adequate performance and formatting
alternatives? Are there too many (i.e.,
unproductive or incomprehensible) tuning options?
Are there adequate performance measurement
techniques and tools to guide the exercise of these
choices?

Does the system automatically convert a populated
data base when a new format option is selected?

Aside from tuning, does the DBMS gracefully
accommodate at least simple external changes such as
adding or deleting a record or item type?

Are there other useful high level facilities
associated with or based on the DBMS, such as a

report writer, query processor, data dictionary,
transaction monitor, accounting system, payroll
system, etc.?

Is there a utility for translating the data base
into an "interchange form;" i.e., a machine
independent, serial stream of characters?

Is the vendor committed to maintaining the product
across new operating system and hardware
releases/upgrades? Conversely, is the vendor
prepared to support the product in order released of
the operating system, so the user will not be forced
to upgrade?

What hardware environments are currently supported
and what is the vendor's policy regarding conversion
to another manufacturer's mainframe?

What programming language interfaces are available?
Can the same DBMS features be used if there is a

migration, say, from COBOL to PL/1?

-144-

How intelligent is the system's technique for
organizing data on the media? Specifically, will
performance deteriorate at an inordinate rate as
updating proceeds? How often will reorganization
(cleanup) be required? Does the DBMS have a built-
in reorganization utility? How does the user
determine the optimal time to reorganize?

Are the language facilities and data modeling
facilities of DBMS adequate for the anticipated long
term requirements of the enterprise? What is the
risk of having to convert to a new DBMS?

Likewise, are the performance characteristics and
internal storage structure limitations adequate to
meet the long term requirements (response times,
data base sizes) of the enterprise?

Are there facilities to assist the user in
converting data from a non-DBMS environment or from
another DBMS? For instance, can a data base be
loaded from one or more user defined files?

6.3.2 Future Technologies/Standards Impact.

In this section we discuss trends in computer hardware
technologies, DBMS software directions, and standards
development, and consider their impact on data and program
conversion. We intend to make the reader aware of what to
expect in terms of conversion problems rather than give a

complete assessment of future technologies. Therefore, we
discuss only technologies and standards that will impact
conversion problems.

The first three parts discuss the areas of hardware,
software, and standards and their impact on conversion in

some detail. The last part summarizes the major points of
our assessment without going into detailed reasoning.

Ha rdwa re and Archi tect ural Technologies . The cost and
performance of processor 1 og i c and memory continue to
improve at a fast rate. As a result, overhead costs are
more acceptable, especially when such costs save people's
time and work, and provide user oriented functions that do
not require a computer expert. In particular, one can now
think about using generalized conversion tools not only when
it is required as a result of hardware or software changes,
but also as a result of a changing application that requires
a new more efficient data base organization. What could
have been a prohibitive cost for a data base conversion in
the past, may not be a major factor in the future.

-145-

At the same time, the cost/ performance improvement
contributes to the proliferation of data bases and therefore
accentuates the need of generalized conversion tools. The
more cost effective is the process of accessing and
maintaining data, the more data is collected on computers.
Improvements in hardware (as well as software) technologies
create more need for data and program conversion. In
addition, the emergence of new technologies, such as
communication networks, add another level of sophistication
to the way that data can be organized and used. Distributed
data bases, where multiple data bases (or subsets of data
bases) may reside on different machines, require tools for
the integration and the correlation of data. Invariably,
data will need to move from system to system dynamically,
possibly moving between different hardwa re/ softwa re systems.
In this environment, generalized tools for dynamic
conversion will become a necessity.

In recent years, two promising approaches to data
management hardware technologies have been pursued. One is
the specialized data management machine and the other is the
backend data management machine. As will be explained next,
both approaches can help simplify the conversion problem.

The specialized data management hardware is based on
the idea of using some kind of an associative memory device,
a device that can perform a parallel access to the data
based on its content. Such a device eliminates the
necessity for organizing the internal structure of a data
base using indexes, hash tables, pointer structures , ^etc .

,

which are primarily used for fast access. As a result, the
data can be essentially stored in its external logical form,
and the data management system can use a high level language
based on the logical data structure only. The conversion
process is simplified since data is readily available in its
logical organization. Referring to the terminology used in

previous sections, the functions of unloading and loading of
the data base can be greatly simplified. Also, no
restructuring will be required because of a change in data
base use, since the physical data base organization can be
to a large degree independent of its intended use. In

addition, the program conversion problem is simplified as a

result of the program interfacing to the DBMS using a high
level logical language.

Similar benefits can be achieved if backend machines
are used. A backend machine is a special processor
dedicated to managing storage and data base on behalf of a

host computer. The primary motive for the backend machine
is to off-load the data management function from the host to
a specialized machine that can execute this function at much
lower cost. From a conversion standpoint, the separation of

-146-

data management functions from the host promotes the need
for a high level logical interface that provides the
advantages discussed above. Another advantage is that it is

possible to migrate from one host machine to another without
affecting the data bases and their management, alleviating
the need for data conversion if the same backend machine is
used with the new host.

Mass storage devices, such as the video disks, make
storing very large data bases, in the order of 10 to the
10th power characters, cost effective. Converting large
data bases of this size compounds the cost considerations
merely by the processing of this large amount of data. As a

result, such data bases will tend to stay in the same
environment for longer periods of time. The use of
specialized data management machines or dedicated backend
machines in conjunction with these mass storage devices can
help postpone the need for data base conversion.

Finally, we should mention the growing use of
minicomputers in supporting data management functions.
DBMSs now exist on many minicomputers, with more
forthcoming. The proliferation of minicomputers which
support data bases can only increase the needs for
generalized conversion tools.

Softwa re Devel opment Trends . Much of the work over the
last years in the data management area has concentrated on
techniques that clearly separate the logical structure of
the data base from its physical organization. This concept,
called "data independence" was introduced to emphasize that
users need not be exposed to the details of the physical
organizations of the data base, but only to its logical
relationships. This led to the development of data access
and manipulation languages that depend on the logical data
model only. The effect of this trend is similar to that of
using specialized data management machines and backend
machines discussed previously; namely, the simplification of
the unload and load functions since the interface to the
DBMS is provided at the logical level only, and the
simplification in program conversion for similar reasons.

At the user end of the spectrum, it seems reasonable to
I assume that the diversity of data models (network,

relational, hierarchies and other views that may be

I developed in the future) will be required for many more
decades. This is especially true since there are problem
areas that seem to map more naturally into a certain model.
Furthermore, it is often the case that users do not agree on

i

the same model for a given problem area. Obviously, this

I

state of affairs only accentuates the need to generalize
1 conversion tools that can restructure data bases from one

-147-

model to another. Even with the development of large scale
associative memories, data structures will likely provide
economic rationales for their contrived use. Another
possibility is the use of a common underlying data model
that can accommodate any of the user views. However, this
approach will still require some type of a dynamic
conversion process between the common view and each of the
possible user views.

Standards Devel opment . There is much work and
controversy in developing standards for DBMS. Standards
that are oriented to determine the nature of the DBMS are
hard to bring about even in a highly controlled environment
because of previous investment in application software and
data base development, and because of disagreement. For
example, there is still much controversy whether the network
model proposed by the CODASYL committee is a proper one. It

seems reasonable to assume that there will always be non-
standard DBMSs. Further, even if such a standard can be
adopted, different DBMS implementations will still exist,
resulting in different physical data bases for the same
logical data base. In addition, one can safely assume that
restructuring because of application needs will still be
necessary, and that changes in the standard itself may
require conversion.

A standard that is more likely to be accepted is one
that affects only the way of interfacing to a DBMS. In

particular, from a conversion standpoint, a standard
interchange data form (SIDF) will be most useful. A SIDF is
a format not unlike a load format for DBMSs. Any advanced
DBMS has a load utility that requires sequential data stream
in a pre- spec i fi ed format. If a standard for this format
can be agreed upon, and if all DBMSs can load and unload
from and to this format, then the need for reformatting (as
described earlier) is eliminated. The conversion process
can be reduced to essentially restructuring only, given that
unload and load are part of the DBMS function. A

preliminary proposal for such a standard was developed by
the ERDA Inter-Working Group on Data Exchange (IWGDE) [GG2].
However, it is only designed to accommodate hierarchical
structures. Consideration is now being given to the
extension of the standard to accommodate more general
structures (i.e., networks and relations). We believe that
there are no technical barriers to the development of a

SiDF, and that putting such a standard to use would
alleviate a major part of the data conversion process.

Summary . The rationale for the points summarized below
appear in the previous parts of this section. We will only
state here our assessment of the impact on conversion
pr ob 1 ems

.

-148-

Hardware development will increase the need for
generalized conversion tools (in particular,
proliferation of minicomputers, computer networks,
and mass storage devices).

The reduction in hardware costs will make conversion
costs more acceptable.

Special hardware DBMS machines will simplify the
conversion process (in particular, for load, unload
functions, and program conversion) because they
promote interfacing at the logical level.

Software advances will not eliminate the need for
conversion but can simplify the conversion process
in a way similar to DBMS machines.

Multiplicity of logical models is likely to exist,
thus adding to the need of conversion tools between
model s

.

Standards will not eliminate the conversion problem.
Even with a standard, the implementations would be
different and non-standard DBMS will likely exist.

Standards can greatly simplify the conversion
problem. In particular, a standard for interchange
data form will simplify load and unload function and
eliminate reformatting.

What can we expect in the next five years and beyond in

I

the data base conversion area? The state of the art has
1

advanced enough to give hope for generalized tools. Within
the next five years we can expect more generalized
conversion systems to become operational but some additional
work would be required for moving them from one environment
to another. We can expect to have a standard form developed
and agreed upon. It will probably take longer before
manufacturers will see the benefit of adopting a standard

I

form and provide load and unload facilities using it.

j

However, we can expect them to provide some conversion tools
to convert data bases from other systems to their own. It
will probably take as much as ten years before the
commercial availability of a generalized converter and the
adherence of manufacturers to a standard interchange form.
Another area of concern is the application program
conversion resulting from a data base conversion. We cannot
expect th^t a generalized solution for this problem will be
achieved within the next five years. However, this problem
will be simplified to a large extent as hardware and
software development trends promote interfacing at the

j|
1 ogi cal 1 evel .

-149-

BIBL lOGRAPHY

(DL) LOGICAL DATA BASE DESIGN

DL26 NOVAK, D. and FRY, J., "The State of the Art of
Logical Data base Design," Proceedings of the Fifth
Texas Conference on Compu ti ng Sy s tem s , IEEE, Lonq
Beach, 1 976 , pp. T^-TT.

DL29 SMITH, J. M., and SMITH, D. C. P., "Data Base
Abstractions: Aggregation and Generalization," ACM
Trans act ions on Data Base Systems 2 , 2 (1 977): 105-1 33 .

DL30 SMITH, J. M., and SMITH, D. C. P., "Data Base
Abstractions: Aggregation," Communications of the
ACM 20 ,6 (1 977) :405-1 3 .

^

DL31 BUBENKO, J. A., "lAM: An Inferential Abstract
Modeling Approach to Design of Conceptual Schema,"
Proceedings of the ACM - S I GMOD International
Conference on Management of Data, ACM, N.Y., 1977,
pp. 62-74.

'

DL34 CHEN, P. P., and YAO, S. B., "Design and Performance
Tools for Data Base Systems," Proceedings of the
T h i r d International Conference on Ve ry Large Data
Bases .

ACM, N.Y., 1977, pp. 3-1^7

(DT) DATA TRANSLATION

DTI FRY, J. P., FRANK, R. L., HERSHEY, E. A., Ill, "A
Developmental Model for Translation," P roc . 1 972 ACM
S I GF I DET Work shop on Data Description , Access and
Control , A. L. Dean CeaTT, ACM, N. Y.

, pp. /7-lT!i6T

DT2 SMITH, D. C. P., "A Method for Data Translation Using
the Stored Data and Definition Task Group
Languages," Proc . ojf the 1 972 ACM SIGFIDET Work shop
on Data Description , Access and Control , ACM , N . Y .

,

pp ."TUT-IY^:

DT3 RAMIREZ, J. A., "Automatic Generation of Data
Conversion Programs Using a Data Description
Language (DDL)," Ph.D. dissertation. University of
Pennsylvania, 1973.

DT4 MERTEN, A. G., and FRY, J. P., "A Data Description
Approach to File Translation," Proc . 1 974 ACM SIGMOD
Work shop on Data Description , Access and Control ,

ACM, N.Y.
,
ppT~T91 -205 .

-150-

DT5 HOUSEL, B., LUM, V., and SHU, N., "Architecture to an
Interactive Migration Systems (AIMS)," P roc . 1974
ACM S I GF I PET Workshop on Data Description , Access
and Control , ACM

,
N.Y., ppT~T57-1 69

.

DT6 RAMERIZ, J. A., RIN, N. A., and PRYWES, N. S.,
"Automatic Conversion of Data Conversion Programs
Using a Data Description Language," P roc . 1 974 ACM
S I GF I DET Work shop on Data Description , Access and
Control , ACM, N.Y., ppT~?07-22 5 .

DT7 FRANK, R. L., and Yamaguchi, K., "A Model for a

Generalized Data Access Method," P r oc . of the 1974
National Computer Conference , AFIPS Press, Mon tval e ,

N. J
. , pp . 437-444.

DT8 TAYLOR, R. W., "Generalized Data Structures for Data
Translation," P r oc . T h i r d Texas Conference o

n

Computing Systems, Austin, Texas, 1974, pp.~6-3-l
TT.

'~

DT9 UNIVAC, UNIVAC 1100 Series Data File Converter,
Programmer Reference UP-8070, Sperry Rand
Corporation, March, 1974.

DTIO YAMAGUCHI, K., "An Approach to Data Compatibility, A

Generalized Access Method," Ph.D. dissertation. The
University of Michigan, 1975.

DTll BAKKOM, D. E., and BEHYMER, J. A., "Implementation of
a Prototype Generalized File Translator," P roc . 1975
ACM S I GMO D International C o n

f

. on Ma n ageme n t of
Data , W. F. King (ed.), ATMT^N.TT, pp. ^99-110.

DT12 NAVATHE, S. B., and MERTEN, A. B., "Investigations
into the Application of the Relation Model of Data
to Data Translation," Proc . 1 975 ACM SIGMOD
International C o n f . on Ma n ageme n t o f Data , W . F .

King (ed .) , ACM ,
N.Y., pp. 123-1 38 .

DT13 BIRSS, E. W., and FRY, J. P., "Generalized Software
for Translating Data," Proc . of the 1976 National
Computer Conference , Vol. 45, AFIPS Press, Montvale,
N . J

. , pp . 889-899.

DT14 LUM, V. Y., SHU, N. C, and HOUSEL, B. C, "A General
Methodology for Data Conversion and Restructuring,"
IBM R & P' journal , Vol. 20, No. 5, 1976, pp.
483-497 .

DT15 HOUSEL, B. C, et al .
,

"Express: A Data Extraction,
Processing, and Restructuring System," Transactions

-151-

on Data Base Systems
, 2,2, ACM, N.Y., 1977, pp.

134TTT4 .

DT16 SWARTWOUT, D. E., DEPPE, M. E., and FRY, J. P.,
"Operational Software for Restructuring Network Data
Bases," P r PC . of the 1977 National Computer
Conference , VoTT TFT AF I PS Press, Montvale, N.J.,
pp. 499-508 .

DT17 GOGUEN, N. H., and KAPLEN, M. M., "An Approach to
Generalized Data Translation: The ADAPT System,"
Bell Telephone Laboratories Internal Report, October
5, 1977.

(GG) GENERAL

GGl INGALS, D., "The Execution Time Profile as a

Programming Tool in Design and Optimization of
Compilers, ed. by R. Rustin, Prentice Hall, 1972",

pp. 108-128.

GG2 ERDA I nterl abora tory Working Group for Data Exchange
(IWGDE) Annual Report for Fiscal Year 1976, NTIS
LBL-5329.

GG3 DATE, C. J., An Introduction Data Base System,
Addi son - Wesl ey , 1975. GG4 CODD, E. F.,
"Relational Completeness of Data Base Sublanguage,"
In Data Base Systems, Caurant Computer Science
Symposia Series, Vol. 6, Prentice Hall, 1972.

(M) MODELS-THEORY

Mil CHEN, P.P.S., "The Entity-Relationship Model - Towards
a Unified View of Data," Transactions on Data Base
Systems 1 , 1 (1976) :9-36 .

(PT) PROGRAM TRANSLATION

PTl SHARE AD-HOC COMMITTEE ON UNIVERSAL LANGUAGES, "The
Problem of Programming Communication with Changing
Machines: A Proposed Solution," Comm . ACM , Aug.,
1958, pp. 12-18.

PT2 SHARE AD-HOC COMMITTEE ON UNIVERSAL LANGUAGES, "The
Problem of Programming Communication with Changing
Machines: A Proposed Solution, Part 2," Comm. ACM ,

Sept. , 1958, pp. 9-16.

-152-

PT3 SIBLEY, E. H., and MERTEN, A. G., "Transferability and
Translation of Programs and Data," I nf orma ti on
Systems, COINS IV, Plenum Press, N.Y., 1972, pp.
291-301

.

PT4 YAMAGUCHI, K., and MERTEN, A. G., "Methodology for
Transferring Programs and Data," P roc 1974
ACM - S I GF I PET Work shop on Data Description , Access
and Control ,

ACM, N.Y., ppT~T41-l 56

.

PT5 HOUSEL, B. C, LUM, V. Y., and SHU, N., "Architecture
to an Interactive Migration System (AIMS)," P r oc .

1 974 ACM - SIGFIDET Work shop on Data Description
,

Access and Control
,
ACM, N.Y., pp. 157-170.

PT6 MEHL, J. W., and WANG, C. P., "A Study of Order
Transformation of Hierarchical Structures in IMS
Data Bases," Proc . 1 974 ACM - SIGFIDET Workshop oji

Data Description, Access and Control , ACM , RTY
. , pp.

TT^lTD"

PT7 HOUSEL, B. C, and HALSTEAD, M. H., "A Methodology for
Machine Language Decompilation," Proc . of the 1974
ACM Annual Conference , ACM, N.Y., pp. 254-260 .

PT8 HONEYWELL INFORMATION SYSTEMS, "Functional
Specification Task 609 Data Base Interface Package,"
Defense Communications Agency Contract DCA
100-73-C-0055.

PT9 KINTZER, E., "Translating Data Base Procedures," Proc .

1975 ACM National Conference , ACM, N.Y., pp. 359-62.

PTIO SCHINDLER, S., "An Approach to Data Base Application
Restructuring," Working Paper 76 ST 2.3, Data Base
Systems Research Group, The University of Michigan,
Ann Arbor, Mich. 1976.

PTll DALE, A. G., and DALE, N. B., "Schema and Occurrence
Structure Transformation in Hierarchical Systems,"
Proc . 1 976 International Conference on Ma nagemen t of
Da ta , pp. 1 57-168 .

PT12 SU, STANLEY Y. W., "Application Program Conversion Due
to Data Base Changes," Proc . of the 2nd
International Conference on VL DB , Brussels, Sept.
8-10, 1976, pp. 143-157.

PT13 SU, S. Y. W., and LIU, B. J., "A Methodology of

Application Program Analysis and Conversion Based on
Data Base Semantics," Proceedings of the
International Conference on Ma nagemen

t

of Data
,

-153-

1977, pp. 75-87.

PT14 HOUSEL, B. C, "A Unified Approach to Program and Data
Conversion," Proceedings of the Third International
Conference on Ve ry Large Data Bases , ACM , N . Y . ,

1977, pp.

PT15 SU, S. Y. W., and REYNOLDS, M. J., "Conversion of
High-Level Sublanguage Queries to Account for Data
Base Changes," Proc . o_f NCC_, 1978 , pp. 857-875 .

(R) RESTRUCTURING

Rl FRY, J. P., and JERIS, D., "Towards a Formulation of
Data Reorganization," Proc . 1974 ACM / SIGMOD Workshop
on Data Description , Access and Control , ed. by R.

Rusti n
,
ACM, N.Y., pp. 83-10liT~

R2 SHU, N. C, HOUSEL, B. C, and LUM, V. Y., "CONVERT: A

High-Level Translation Definition Language for Data
Conversion," Comm . ACM 18,10, 1975, pp. 557-567.

R3 SHOSHANI, A., "A L o g i c a 1 -L e v e 1 Approach to Data Base
Conversion," Proc . 1 975 ACM / SIGMOD International
Conf . on Management of Data ,

ACM, N.Y., pp. 112-122.

R4 SHOSHANI, A., and BRANDON, K., "On the Implementation
of a Logical Data Base Converter," Proc .

International Conference on Very Large Data Bases ,

ACM, N.Y. , 1 975 , pp. 529-531 .

R5 HOUSEL, B. C, and SHU, N. C, "A High-Level Data
Manipulation Language for Heirarchical Data
Structures," Proc . of the 1976 Conference on Data
Abstraction , Definition and Structure , ^1 1 Lake
City, Utah, pp. 155-169.

R6 NAVATHE, S. B., and FRY, J. P., "Restructuring for
Large Data Bases: Three Levels of Abstraction," ACM
Transactions on Data Base Systems, 1,2, ACM, N.Y.,
1 976

, pp. 138^5F:

R7 NAVATHE, S. B., "A Methodology for Generalized Data
Base Restructuring," Ph.D. dissertation. The
University of Michigan, 1976.

R8 GERRITSEN; rob, and MORGAN, HOWARD, "Dynamic
Restructuring of Data Bases With Generation Data
Structures," Proc . of the 1 976 ACM Conference , ACM,
N. Y . , pp . 281^2M.

-154-

R9 SWARTWOUT, D., "An Access Path Specification Language
for Restructuring Network Data Bases," P r oc . of the
1 977 SIGMOD Conference, ACM, N.Y., pp. MTTOl .

RIO NAVATHE, S. B., "Schema Analysis for Data Base
Restructuring," P r oc 3rd International Conference
on Very Large Data Bases , ACM, N.Y., 197T: To
appear i n TODS

.

Rll EDELMAN, J. A., JONES, E. E., LIAW, Y. S., NAZIF, Z.

A., and SCHEIDT, D. L., "REORG - A Data Base
Reorgani ze r

,

" Bell Laboratories Internal Technical
Report ,

Apr i 1 , 1 976 .

(SL) STORED-DATA DEFINITION

SLl STORAGE STRUCTURE DEFINITION LANGUAGE TASK GROUP
(SSDLTG) OF CODASYL SYSTEMS COMMITTEE, "Introduction
to Storage Structure Definition" (by J. P. Fry);
"Informal Definitions for the Development of a

Storage Structure Definition Language" (by W. C.

McGee); "A Procedural Approach to File Translation"
(by J. W. Young, Jr.); "Preliminary Discussion of a

General Data to Storage Structure Mapping Languaae"
(by E. H. Sibley and R. W. Taylor), Proc . 1970
ACM - S I GF I PET Work shop on Data Description , Access
and Control, ed. by E. F. Codd, Houston, Tex., Nov.
TT70, pp. 368-80

.

SL2 SMITH, D. C. P., "An Approach to Data Description and
Conversion," Ph.D. dissertation, Moore School Report
72-20, University of Pennsylvania, Philadelphia,
Pa., 1972.

SL3 TAYLOR, R. W., "Generalized Data Base Management
System Data Structures and Their Mapping to Physical
Storage," Ph.D. dissertation. The University of
Michigan, Ann Arbor, Mich., 1971.

SL4 FRY, J. P., SMITH, D. C. P., and TAYLOR, R. W., "An
Approach to Stored-Data Definition and Translation,"
Proc . 1 972 ACM - SIGFIDET Work shop on Data
Description , Access and Control , ed. by A. L. Dean,
Denver, Colo., Nov. TW72

, pp. 13-55.

SL5 BACHMAN, C. W., "The Evolution of Storage Structures,"
Comm . ACM 15,7 (July 1972), pp. 628-34.

SL6 SIBLEY, E. H. and TAYLOR, R. W., "A Data Definition
and Mapping Language," Comm. ACM 16,12 (Dec. 1973),
pp. 750-59.

-155-

SL7 HOUSEL, B., SMITH, D., SHU, N., and LUM, V., "Define:
A Non-Procedural Data Description Language for
Defining Information Easily," P roc . ojf 1 975 ACM
Pacific Conference , San Francisco, CA, April 1975,
pp. 62-7ir

SL8 The Stored-Data Definition and Translation Task Group,
"Stored-Data Description and Data Translation: A
Model and Language," Information Systems 2,3
(1 977) : 95- 148'.

(SM) DATA SEMANTICS

SMI SCHMID, H. A., and SWENSON, J. R., "On the Semantics
of the Relational Model," Proc . , ACM - SIGMOD 1975
Conference , May 1 975

, pp. 21 1 -233 .

SM2 ROUSSOPOULOS , H., and MYLOPOULOS, J., "Using Semantic
Networks for Data Base Management," Proc . Very Large
Data Base Conference

,
Framingham, Mass., Sept. 1 975

,

pp. 144-172.

SM3 SU, STANLEY Y. W., and LO, D. H., "A Multi-level
Semantic Data Model," CAASM Project, Technical
Report No. 9, Electrical Engineering Dept.,
University of Florida, June 1976, pp. 1-29.

(TA) TRANSLATION APPLICATIONS

TAl WINTERS, E. W., and DICKEY, A. F., "A Business
Application of Data Translation," Proceedings of the
1 976 S I GMOD International Conference on Ma n ageme n

t

of Data , Ed . by J . B"^^ RoThnie, Washington, D.C.,
June~T977, pp. 189-196.

(UR) UM RESTRUCTURING

URl LEWIS, K., DRIVER, B., and DEPPE, M., "A Translation
Definition Language for the Version II Translator,"
Working Paper 809, Data Translation Project, The
University of Michigan, Ann Arbor, Michigan, 1975.

UR2 LEWIS, K., and FRY, J., "A Comparison of Three
Translation Definition Languages," Working Paper DT
5.1, Data Translation Project, The University of
Michigan, Ann Arbor, Michigan, 1975.

UR3 DEPPE, M. E., "A Relational Interface Model for Data
Base Restructuring," Technical Report 76 DT 3, Data

-156-

Translation Project, The University of Michigan, Ann
Arbor, Michigan, 1976.

UR4 DEPPE, M. E., LEWIS, K. H., and SWARTWOUT, D. E.,
"Restructuring Network Data Bases: An Overview,"
Data Translation Project, Technical Report 76 DT 5,
The University of Michigan, Ann Arbor, Michigan,
1976 .

UR5 DEPPE, M. E., and LEWIS, K. H., "Data Translation
Definition Language Reference Manual for Version IIA
Release 1," Data Translation Project, Working Paper
76 DT 5.2, The University of Michigan, Ann Arbor,
Michigan, 1976.

UR6 SWARTWOUT, D. E., MARINE, A. M., and BAKKOM, D. E.,
"Partial Restructuring Approach to Data
Translation," Data Translation Project, Working
Paper 76 DT 8.1, The University of Michigan, Ann
Arbor, Michigan, 1976.

UR7 SWARTWOUT, D. E., WOLFE, G. J., and BURPEE, C. E.,
"Translation Definition Language Reference Manual
for Version IIA Translator, Release 3," Data
Translation Project, Working Paper 77 DT 5.3, The
University of Michigan, Ann Arbor, Michigan, 1977.

(US) UM STORED-DATA DEFINITION

USl DATA TRANSLATION PROJECT, "Stored-Data Definition
Language Reference Manual," The University of
Michigan, Ann Arbor, Michigan, 1972.

US2 DATA TRANSLATION PROJECT, "Revised Stored-Data
Definition Language Reference Manual," The
University of Michigan, Ann Arbor, Michigan, 1974.

US3 DATA TRANSLATION PROJECT, "University of Michigan
Stored-Data Definition Language Reference Manual for
Version II Translator," The University of Michigan,
Ann Arbor, Michigan, 1975.

US4 BIRSS, E. W., and FRY, J. P., "A Comparison of Two
Languages for Describing Stored Data," Data
Translation Project, Technical Report 76 DTI, The
University of Michigan, Ann Arbor, Michigan, 1976.

(UT) UM TRANSLATION

-157-

UTl "Functional Design Requirements for a Prototype Data
Translator," Data Translation Project, The
University of Michigan, Ann Arbor, Michigan, 1972.

UT2 "Design Specifications of a Prototype Data
Translator," Data Translation Project, The
University of Michigan, Ann Arbor, Michigan, 1972.

UT3 "Program Logic Manual for the University of Michigan
Prototype Data Translator," Data Translation
Project, The University of Michigan, Ann Arbor,
Michigan, 1973.

UT4 "Users Manuals for the University of Michigan
Prototype Data Translator," Data Translation
Project, The University of Michigan, Ann Arbor,
Michigan, 1973.

UTS "Functional Design Reauirements of the Version I

Translator," Data Translation Project, The
University of Michigan, Ann Arbor, Michigan, 1973.

UT6 "Program Logic Manual for the University of Michigan
Version I Data Translator," Working Paper 306, Data
Translation Project, The University of Michigan, Ann
Arbor, Michigan, 1974.

UT7 "Design Specifications: Version II Data Translator,"
Working Paper 307, Data Translation Project, The
University of Michigan, Ann Arbor, Michigan, 1975.

UTS BIRSS, E., DEPPE, M., and FRY, J., "Research and Data
Reorganization Capabilities for the Version IIA Data
Translator," Data Translation Project, The
University of Michigan, Ann Arbor, Michigan, 1975.

UT9 BIRSS, E., et al., "Program Logic Manual for the
Version IIA Data Translator," Working Paper 76 DT
3.1, Data Translation Projects, The University of
Michigan, Ann Arbor, Michigan, 1976.

UTIO BODWIN, J., et al . , "Data Translator Version IIA
Release 1 User Manual," Working Paper 76 DT 3.2,
Data Translation Project, The University of
Michigan, Ann Arbor, Michigan, 1976.

UTll BODWIN, J., et al
. , "Data Translator Version IIA

Release 2 User Manual," Working Paper 76 DT 3.4,
Data Base Systems Research Group, The University of
Michigan, Ann Arbor, Michigan, 1976.

UT12 KINTZER, E., et al
. , "Michigan Data Translator Version

-158-

IIB Release 1 User Manual," Technical Paper 77 DT 8,
Data Base Systems Research Group, The University of
Michigan, Ann Arbor, Michigan, 1977.

UT13 BURPEE, C. E., et al
. , "Michigan Translator Program

Logic Manual Version IIB Release 1," Working Paper
77 DT 3.7, Data Base Systems Research Group, The
University of Michigan, Ann Arbor, Michigan, 1977.

UT14 BAKKOM, D., et al
. ,

"Speci f ications -f or a Generalized
Reader and Interchange Form," Working Paper 77 DT
6.2, Data Base Systems Research Group, The
University of Michigan, Ann Arbor, Michigan, 1977.

UT15 DeSMITH, D., and HUTCHINS, L., "Michigan Data
Translator Design Specifications Version IIB,"
Working Paper 77 DT 3.8, Data Base Systems Research
Group, The University of Michigan, Ann Arbor,
Michigan, 1977.

UT16 KINTZER, E., et al
. ,

"Michigan Data Translator Version
IIB Release 1.1 User Manual," Technical Paper 77 DT
8.1, Data Base Systems Research Group, The
University of Michigan, Ann Arbor, Michigan, 1977.

UT17 BAKKOM, D. E., and Schindler, S. J., "Operational
Capabilities for Data Base Conversion and
Restructuring," Technical Report 77 DT 6, Data Base
Systems Research Group, The University of Michigan,
Ann Arbor, Mich., 1977.

(Z) RELATIONAL SYSTEM

Z5 CHAMBERLAIN, D. C. and BOYCE, R. F., "SEQUEL: A

Structured English Query Language," Proceedings of
the ACM - S I GMOD Workshop on Data Descn pti on , Access
TrTa" Control

, ACM, N. Y. , T^lT.

i

-159-

7. PARTICIPANTS

The following is a list of attendees, participants
and contributors to the workshop.

Edward Arvel
Conversion Experiences

Data Sciences Group
890 National Press Building
Washington^ D.C. 20045

Marty Aronoff
Management Objectives

National Bureau of Standards
Tech B258
Washington, D.C. 20234

Robert Bemer
Standards

Honeywell Information Systems
P.O. Box 6000
Phoenix, AZ 8 5 CO

5

John Berg
Proceed inqs Editor

National Bureau of Standards
Tech A259
Washington, D.C. 20234

Edwa rd Bi r ss

Conversion Technology
Hewlett Packard
General Systems Division
5303 Stevens Creek Blvd.
Bldg. 498-3
Santa Clara, CA 95050

Don Branch
Standards

Advisory Bureau for Computing
Room 828, Lord Elgin Plaza
66 Slatter Street
Ottawa, Ontario KIA 0T5
CANADA

Jean Bryce
Standards

M. Bryce & Associates, Inc
1248 Springfield Pike
Cincinnati, OH 45215

-161-

Milt Bryc e

Chairman, Standards

Jim Burrows
Chairman, Conversion
Experiences

Richard G. Canning
Management Objectives

Lt. Michael Carter
Conversion Experiences

Joseph Collica
Conversion Experiences

Elizabeth Courte
Conversion Experiences

Ahron Davidi
Conversion Experiences

Peter Dressen
Conversion Technology

Ruth F. Dyke
Conversion Experiences

Larry Espe
Management Objectives

M. Bryce & Associates, Inc.
1248 Springfield Pike
Cincinnati, OH 45215

Director, Institute for Computer
Sciences and Technology
National Bureau of Standards
Administration Bldg., Room A200
Washington, D. C. 20234

Canning Publications, Inc.
925 Anza Avenue
Vista, CA 92083

Air Force Data Systems Design Ctr.
AFDSDC/SDDA, Building 857
Gunter AFB, AL 36114

National Bureau of Standards
Tech. A254
Washington, D. C. 20234

Bell Laboratories
3B210 Six Corporate Plaza
Piscataway, NJ 08854

Blue Cross of Massachusetts
100 Summer Street, 12th Floor
Boston, Massachusetts 02106

Honeywell Inforamtion Systems
P. 0. Box 6000
Phoenix, Arizona 85005

U.S. Civil Service Commission
1900 E Street, N. W., Room 6410
Washington, D. C. 20415

Nolan, Norton and Company
One Forbes Road
Lexington, Massachusetts 02173

I

i

f

i

I

-162-

Gordon Everest
Management Objectives

University of Minnesota
271 19 Avenue South
Minneapolis, MN 55455

Elizabeth Fong
Standards

National Bureau of Standards
Tech B212
Washington, D.C. 20234

James P. Fry
Chairman, Conversion
Technol ogy

276 Business Administration
University of Michigan
Ann Arbor, MI 48109

Al Gaboriault
Standards

Sperry Univac
P.O. Box 500
Mail Station ClNW-12
Blue Bell. PA 1 9424

Mr. Rob Gerritsen
Management Objectives

Wharton School
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Richard Godlove
Management Objectives

Monsanto Company
800 North Lindbergh Boulevard
St. Louis, Missouri 63166

Nancy Goguen
Conversion Technology

Bell Laboratories
6 Corporate PI ace
Piscataway, NJ 088 54

Seymour Jeffery
Host

Director, Center for Programming
Science and Technology

National Bureau of Standards
Tech A247
Washington, D.C. 20234

Samuel C. Kahn
Management Objectives

Information System Dep.
E. I. duPont de Nemours
Wilmington, Delaware 19899

Planning
Co .

I M i k e Kaplan
iConversion Technology

Bell Laboratories
8 Corporate Place
Piscataway, NJ 08854

-163-

Anthony Kl ug
Standards

Coirputer Sciences Department
University of Wisconsin
Madison, Wisconsin 537 06

Henry Lefkovits
Sta ndards

H. C. Lefkovits & Associates, Inc
P.O. Box 297
Harvard, MA 01451

H, Eugene Lockhart
Management Objectives

Nolan, Norton & Company
One Forbes Road
Lexington. Massachusetts 02173

Thomas Lowe
Host

Chief
Operations Engineering Division
Center for Programming

Science and technology
K^ational Bureau of Standards
Tech A265
Washinaton. D.C. 20234

Gene Lowenthal
Conversion Technology

MR I Systems Corporation
P.O. Box 9968
Austin, Texas 78766

Vincent Lum
Conversion Technology

Mr . John Lyo n

Management Objectives

Halaine Maccabee
Conversion Experiences

William Madison
Contributor

IBM Research Corp.
5600 Cottle Road
San Jose, CA 95103

K55/282

Colonial Penn Group Data Corporatiof
5 Penn Center Plaza

!

Philadelphia, PA 19103

Northeastern Illinois Plan. Comm.
400 West Madison St.
Chicaqo, Illinois 60606

Universal Systems, Inc.
2341 Jefferson Davis Highway
Arlinqton, Virginia 22202

-164-

Daniel B. Magraw
General Chairman

State of Minnesota
Department of Administration
208 State Administration Building
St. Paul , m\ 55155

Robert Marion
Conversion Technology

Defense Communications Agency
11440 Issac Newton Square. North
Reston. VA 22090

Steven Merritt
Conversion Experiences

GAO, FGMS-ADP
411 G Street ,

Washinqton, D

Room 6011
N. W.

C. 20548

Jack Minker
ACM Liaison

Cha i rma n

Department of
University of
Coll ege Park

,

Computer
Maryl and
Ma ry 1 and

Science

20742

Thomas E. Murray
Management Objectives

Delmonte Corp
P.O. Box 3575
San Francisco CA 94119

Shamkant Navathe
Conversion Technology

New York University
Grad. School of Business
600 Ti sch Hal 1

40 West 4th Street
New York , New York 10003

Mr. Jack Newcomb
Management Objectives

Department of Finance & Admin
326 Andrew Jackson State Off.
Nashvil le. TN 37219

Bl dq

Richard Nolan
Chairman^ Management
Objecti ves

Nolan, Norton and Company
One Forbes Road
Lexington. Massachusetts 02173

T. Wil 1 iem 01 1 e

Management Objectives
Consultant
27 Blackwood
West Byfleet
Surrey, KT14

Close

6PP ENGLAND

Mayford Roark
Keynoter

Ford Motor Company
The American Road
Dearborn, MI 48121

-165-

i

C. H. Rutledge
Standards

Marathon Oil Company
539 South Main Street
Findley, OH 45840

Mr. Michael J. Samek
Management Objectives

Celanese Corporation
1211 Avenue of the Americas
New York , NY 10036

Steve Schindler
Management Objectives
and Conversion
Tec hnol ogy

Mr. Richard D. Sec rest
Management Objectives

University of Michigan
276 Business Administration
Ann Arbor, MI 48109

Standard Oil Company (Indiana)
P.O. Box 591
Tulsa, OK 74102

Philip Shew
Standards

IBM Corporation
555 Bailey Avenue
San Jose, CA 95150

Aric Shoshani
Conversion Technology

Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Edgar Sibley
Management Objectives

Dept . of Info
University of
Col 1 eae Park,

Systems
Ma ry 1 and
MD 20742

Mgmt

.

Prof. Diane Smith
Conversion Technology

University of Utah
Merrill Enaineering Blda
Salt Lake City, UT~84112

Alfred Sorkowitz
Conversion Experiences

Department of
451 7 Street,
Washington, D

Housing & Urban
S. W. , Room 4152
C. 20410

Prof. Stanley Su
Conversion Technology

Electrical Engineering
University of Florida
Gai nesvil 1 e . FL 3261 1

-166-

Donald Swartwout
Conversion Technology

276 Business Administration
University of Michigan
Ann Arbor, Ml 48109

Robert W. Taylor
Conversion Technology

IBM Corporation
IBM Research, K55/282
5600 Cottle Road
San Jose, CA 95193

Jay Thomas
Standards

Allied Van Lines
2501 West Roosevel t Road
Broadview, IL 60153

Ewart Willey
Standards

Prudential Assurance Co
142 Holborn Bars
London ECIN 2NH
ENGLAND

Major Jerry Winkler
Standards

U.S.A.F. -AFDSC/GKD
Room 3A153, Pentagon
Washington, D.C. 20030

Beatrice Yormark
Conversion Technology

Interactive Systems Corporation
1526 Cloverfield Blvd.
Santa Monica, CA 90404

A Contributor is one
submitted a paper
manner that deserves

who could not attend but either
or added to the Workshop in a

our acknowledgement and thanks.

-167-

*U S GOVERNMENT PRINTING OFFICE: 1980 328-117/6522

NBS-114A (REV. 9-78)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBS SP 500-64

l.Gov*L Acfcesslon No.

4. TITLE AND SUBTITLE

DATA BASE DIRECTIONS - THE CONVERSION PROBLEM
Proceedings of a Workhop held In Ft. Lauderdale, FL,

Nov. 1-3, 1977

Publication Date

September 1980

S.PerferjRingOfganJzation Cwtej

7. AUTHOR(S)

John L. Berg, Editor

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, DC 20234

11. Contract/Grant No.

12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS ("Sfreef, City, State, ZIP)

National Bureau of Standards
Department of Commerce
Washington, DC 20234

Assoc. for Computing Machi
1133 Ave. of Americas
New York, NY 10036

13. Type of Report & Period Covei]

Final

14. ^nsoring Agaicy Code

15. SUPPLEMENTARY NOTES

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

16. ABSTRACT (A 200~word or Iea3 (actual summary of most significant information. If document includes a significant bibliography or

literature survey, mention it here.)

What information can help a manager assess the impact a conversion will have

on a data base system, and of what aid will a data base system be during a conver-

sion? At a workshop on the data base conversion problem held in November 1977

under the sponsorship of the National Bureau of Standards and the Association for

Computing Machinery, approximately seventy-five participants provided the decision

makers with useful data.

Patterned after the earlier Data Base Directions Workshop, this workshop. Data
Base Directions - the Conversion Problem ,

explores data base conversion from four
perspectives: management, previous experience, standards, and system technology.

Each perspective was covered by a workshop panel that produced a report included her
The management panel gave specific direction on such topics as planning for dat

base conversions. Impacts on the EDP organization and applications, and minimizing
the impact of the present and future conversions. The conversion experience panel

drew upon ten conversion experiences to compile their report and prepared specific

checklists of "do's and don'ts" for managers. The standards panel provided comments

on standards needed to support or facilitate conversions and the system technology
panel reports comprehensively on the systems and tools needed with strong recommend-
ations on future research.

UK

Ml

n

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name;

separated by semicolons)

Conversion; data base; data-description; data-dictionary; data-directory;

data-manipulation; DBMS: languages; query

18. AVAILABILITY ^^Unlimited

I I
For Official Distribution. Do Not Release to NTIS

Order From Sup. of Doc, U.S. Government Printing Office, Washington, DC
20402

I I

Order From National Technical Information Service (NTIS), Springfield,

VA. 22161

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF
PRINTED PA

178

22. Price

$5,50

USCOMM-DC

JMEGK
rHEMm
do those automated checkout counters, gas pumps,

it offices, and banl<ing facilities work? What every

|5umer should know about the modern electronic sys-
•. now used in everyday transactions is explained in

'-page booklet published by the Commerce Depart-

t's National Bureau of Standards.

imation in the Marketplace (NBS Consumer Informa-

Series No. 10) is for sale by the Superintendent of

jments, U.S. Government Printing Office, Washington,
20402. Price: 90 cents. Stock No. 003-003-01969-1.

(please detach

"AUTOMATION IN THE MARKETPLACE"
A Consumer's Guide

D/H CAKE MIX .83
WALNUTS CAN .59
JELLO PUDDING .30

UNIVERSAL PRODUCT CODE see booklet

1 GREEN PEPPER .34
LASER SCANNER see bklt
CHRRY TOMATO .79

ELECTRONIC CASH REGISTER see bklt

1 CUCUMBERS .34

HANDLING OF UNCODED ITEMS see bklt

ELECTRONIC SCALES see bklt

GREETING CARD .60

WEIGHTS & MEASURES ENFORCEM'T see bklt

DELICATESSEN 1.35
2.19b @49/bBR0CC0 1.07

SPECIAL FEATURES OF COMPUTER CHECKOUT
SYSTEMS see bklt

DRUG 4.49 T

BANK TELLER MACHINES see bklt

COMPUTER TERMINALS see bklt

CONSUMER ISSUES see bklt

THANK YOU BE INFORMED see bklt

along dotted line)

^DER FORM
I'aSE send me COPIES OF
ij

pmation in the Marketplace

lii90 per copy.

fiStock No. 003-003-01969-1

lie type or print)

jl

I enclose $

Deposit Account No.

Total amount $

(check, or money order) or charge my

Make check or money order payable to Superintendent of Documents.

MAIL ORDER FORM
WITH PAYMENT TO

Superintendent of Documents
U.S. Government Printing Office or any U.S. Department of

Washington, D.C. 20402 Commerce district office

;ESS

ZIP CODE

FOR USE OF SUPT. DOCS.

Enclosed

To be mailed

-later

Refund

Coupon refund

Postage

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription; domestic

$13; foreign $16.25. Single copy, %} domestic; $3.75 foreign.

NOTE: The Journal was formerly published in two sections; Sec-

tion A "Physics and Chemistry" and Section B "Mathematical

Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and

technology, with primary emphasis on work at NBS. The magazine

highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement

standards and techniques, properties of matter and materials,

i engineering standards and services, instrumentation, and

j

automatic data processing. Annual subscription; domestic $11;

1 foreign $13.75.

' NONPERIODICALS

I

Monographs— Major contributions to the technical literature on
I various subjects related to the Bureau's scientific and technical ac-

tivities.

i
Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

I

bibliographies.

!i Applied Mathematics Series— Mathematical tables, manuals, and
1 studies of special interest to physicists, engineers, chemists,

j

biologists, mathematicians, computer programmers, and others

I

engaged in scientific and technical work.

{
National Standard Reference Data Series— Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

t|
the authority of the National Standard Data Act (Public Law

I
90-396).

NOTE; The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards— Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FlPS and NBSlR's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 1 1 7 1 7 (38 FR 1 23 i 5, dated May 1 1 , 1 973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)~A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies

are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature sur-

vey issued biweekly. Annual subscription; domestic $35; foreign

$45.

Liquefied Natural Gas. A literature survey issued quarterly. Annual
subscription; $30.

Superconducting Devices and Materials. A literature survey issued

quarterly. Annual subscription; $45. Please send subscription or-

ders and remittances for the preceding bibliographic services to the

National Bureau of Standards, Cryogenic Data Center (736)

Boulder, CO 80303.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-21S

SPECIAL FOURTH-CLASS RATE
BOOK

