
A11103 DTDBOS

NATL INST OF STANDARDS & TECH R.I.C. 4CE & TECHNOLOGY
A1 11 03090305

Deutsch, Donald R/Modeling and measureme
QC100 .U57 NO.500-, 49, 1979 C.I NBS-PUB

MODELING AND MEASUREMENT TECHNIQUES
FOR EVALUATION OF DESIGN ALTERNATIVES
IN THE IMPLEMENTATION OF DATABASE
MANAGEMENT SOFTWARE

\

NBS Special Publication 500-49

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901. The
Bureau's overall goal is to strengthen and advance the Nation's science and technology and

facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is

performed by the National Measurement Laboratory, the National Engineering Laboratory,

and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

Agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical

services to users in the public and private sectors to address national needs and to solve

national problems in the public interest; conducts research in engineering and applied science

in support of objectives in these efforts; builds and maintains competence in the necessary

disciplines required to carry out this research and technical service; develops engineering data

and measurement capabilities; provides engineering measurement traceability services;

develops test methods and proposes engineering standards and code changes; develops and

proposes new engineering practices; and develops and improves mechanisms to transfer

results of its research to the utlimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal Agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal Agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following divisions:

Systems and Software — Computer Systems Engineering — Information Technology.

'Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted;

mailing address Washington, D.C. 20234.

Some divisions within the center are located at Boulder, Colorado, 80303.

The National Bureau of Standards was reorganized, effective April 9, 1978.

JUL t 5 f}^

COMPUTER SCIENCE & TECHNOLOGY:

Modeling and Measurement Techniques

for Evaluation of Design Alternatives in the

Implementation of Database Management Software

Donald R. Deutsch

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued July 1979

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in the series should complete and return the form at the end of

this publication.

National Bureau of Standards Special Publication 500-49
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-49, 244 pages (July 1979)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 79-600088

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1979

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

Stock No. 003-003-02088-5 Price $5.50

(Add 25 percent additional for other than U.S. mailing).

PREFACE

This report is comprised of a dissertation submitted to
the Faculty of the Graduate School of the University of
Maryland in partial, fulfillment of the requirements for the
degree of Doctor of Business Administration. The degree was
conferred in December 1978 with a dual major in Management
Science and Information Systems Management, and with minors
in Accounting, Organization Theory and Management, and Mark-
eting. Members of the doctoral dissertation committee are
listed below.

Co-Chairmen: Dr. Edgar H. Sibley
Professor and Acting Chairman
Department of Information Systems Management
University of Maryland

Dr. Saul I. Gass
Professor and Chairman
Management Science
College of Business and Management
University of Maryland

Members: Dr. W. Terry Hardgrave
Assistant Professor
Department of Information Systems Management
University of Maryland

Dr. Dennis W. Fife
Chief, Applications Systems Division
Center for Programming Science and Technology
National Bureau of Standards

Dr . Rudolph P . Lamone
Professor and Dean
College of Business and Management
University of Maryland

The research described herein was performed, in part, in the
author's capacity as a Computer Scientist at the National
Bureau of Standards' Institute for Computer Sciences and
Technology and as an Instructor in the University of
Maryland's Department of Information Systems Management.
The project and related research received support in the
form of funding, personnel or other resources from both the
National Bureau of Standards and the University of Maryland.

1

-iii-

ACKNOWLEDGMENTS

I am grateful to many individuals and organizations for
assisting me in this research. At the University, I re-
ceived scholarly tutelage and direction. At the National
Bureau of Standards, I was given the environment and support
necessary for my research. And at home, I found encourage-
ment and understanding. With sincerest apologies to those
not mentioned, I express my appreciation to the following
people:

* to Ed Sibley, for introducing me to database manage-
ment and guiding my academic and professional pro-
gress;

* to Dennis Fife, for giving me guidance as well as
the time and resources that I needed for this
research;

* to Terry Hardgrave, for his friendship and the
numerous hours, countless cups of coffee, and more
than a few beers he invested in this research;

* to the other members of my dissertation committee,
Saul Gass and Rudy Lamone, and faculty members of
the Department of Information Systems Management,
for their help throughout this project;

* to those wno worked on the set processor and related
software at NBS over the years, including: Ray So-
mers. Erica Jen, Chuck Sheppard, Tony Marriott, and
Margaret Moyer;

* to my colleagues and friends at NBS for tolerating
and helping me in all phases of this work, especial-
ly Linda Ross and Barbara Peterson who typed this
document;

* and most importantly to my wife, Martha, whose pati-
ence, understanding, encouragement and love provided
me with the strength and motivation to complete this
research

.

-iv-

TABLE OF CONTENTS

Page

PROBLEM STATEMENT 1

1.1 Background and Motivation 1

1.2 Research Objectives 3

1.3 Thesis Statement 4

1.3.1 Proposition-1 4
1.3.2 Proposition-2 4
1.3.3 Proposition-3 4

1.4 Overview of Research Report 4

PREVIOUS AND RELATED RESEARCH 5

2.1 Computer Performance Evaluation 5

2.2 Models of Computer Systems 5

2.2.1 Analytic Models 6
2.2.2 Simulation Models 6

2.3 Models of Database Management Systems 7

2.3.1 Models of DBMS components and functions 7

2.3.2 DBMS modeling languages 8
2.3.3 File organization models 8

2.3.4 Generalized DBMS models 8

2.4 Research Milieu 9

PERFORMANCE PREDICTION SYSTEM OVERVIEW 11

3.1 Introduction 11

3.2 Integrated Development-Measurement-Modeling .. 11

3.2.1 Prototype DBMS implementation 13
3.2.2 Measurement and analysis system 14
3.2.3 Performance prediction model 16

3.3 Set Processor Performance Prediction System .. 18

POSITIONAL SET PROCESSOR DBMS PROTOTYPE 20

4.1 Theoretical Foundations 20

4.2 Design Concepts 21

4.2.1 Integer set processor 21
4.2.2 Mapping positional sets onto integer sets . 23
4.2.3 Storage structures 25
4.2.4 User interface 26
4.2.5 Modular high-level code 26

4.3 Capabilities: Past, Present and Future 26

4.3.1 Past capabilities 28
4.3.2 NBS enhancements: current status 28
4.3.3 Future plans 29

5. SET PROCESSOR MEASUREMENT AND ANALYSIS SYSTEM 30

5.1 Event Recorder 30

5.2 Multiple Experiment Accumulation 32

5.3 Analysis and Report Generation 32

5.3.1 Static summary 34
5.3.2 Formatted path 34
5.3.3 Dynamic summary 3 7

5.3.4 Trace event summary 37
5.3.5 Transition report 37
5.3.6 Aggregate summary 3 7

5.4 Using a Coarse Clock to Measure Fine Events .. 37

5.4.1 Pseudo time calculation 42
5.4.2 Cycle calibration 44
5.4.3 Quiescent system timing 44
5.4.4 Synchronizing processor and wall clocks ... 44

6. PERFORMANCE MODEL - CONCEPTS AND PARAMETERS 46

6.1 Introduction 46

6.2 Model Driver 46

6.3 Utility Modules 48-

6.3.1 (H)elp module 48
6.3.2 (D)isplay module 48
6.3.3 (C)hange module 49
6.3.4 (S and L) Parameter l/O module 50

6.4 SPPM Parameters 50

-vi-

6.4.1 (LOGCOM) Logical database description 50
6.4.2 (FILCOM) Elementary file description 55
6.4.3 (PHYCOM) Physical environment 62
6.4.4 (SOFCOM) DBMS software 65
6.4.5 (SPRCOM)Set processor 6 5

6.5 Size Estimation Modeler 65

6.6 Response Estimation Modeler 65

6.6.1 Query 70
6.6.2 Functional sequence selector 70
6.6.3 Set processor primitives 70
6.6.4 Response modeler utilities 72
6.6.5 (RESCOM) Response modeler common 74
6.6.6 Monte Carlo processors 80

6.7 SPPM Component Interaction 80

7. PERFORMANCE MODEL - MATHEMATICAL SUMMARY 82

7.1 Introduction 82

7.1.1 Model documentation: form and content 82
7.1.2 Parameters, indices and index functions ... 82
7.1.3 Chapter overview 83

7.2 Model Utility Routines 85

7.3 Database Size Estimation 86

7.3.1 Source database size estimation 86
7.3.2 Stored database size estimation 92

7.4 Response Estimation 104

7.4.1 Posting response estimates 105
7.4.2 l/O estimation Ill
7.4.3 Response time estimation outputs 117
7.4.4 Monte Carlo processes 121
7.4.5 Determination of set cardinalities 122

7.5 Bit-string Size Estimation 124

7.6 Parameter Functions 125

7.6.1 Intrinsic occurrence frequency functions . 126
7.6.2 Optional parameter functions 126

8. MODEL EVALUATION 129

8.1 Introduction 129

-vii-

8.2 Evaluation Phases 129

8.2.1 Verification 130
8.2.2 Validation 130
8.2.3 Problem analysis 131

8.3 Error Taxonomies 133

8.4 Acceptance Criteria 133

8.5 Computer System Model Evaluation l''3 5

8.6 SPPM Evaluation 137

8.6.1 Verification 138
8.6.2 Validation 138
8.6.3 Problem analysis 139

8.7 Summary 140

9. RESULTS 141

9.1 Research Accomplishments 141

9.2 Prototype DBMS Development 141

9.3 Measurement System Development 143

9.4 Predictive Modeling 143

9.4.1 Model development 144
9.4.2 Model evaluation 145
9.4.3 Model application 148

9.5 Generality of Results 151

9.5.1 Evaluation methodology 153
9.5.2 Applicability of software tools 153

10. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 155

10.1 Conclusions 155

10.1.1 (Proposition-1) High-level modeling 155
10.1.2 (Proposition-2) Measurement system 155
10.1.3 (Proposition-3) Integrating components ... 155

10.2 Future Research Directions 157

10.2.1 Application of
"
prediction system 157

10.2.2 Enhancement of prediction tools 158

-viii-

BIBLIOGRAPHY AND REFERENCES 159

APPENDIX A: POSITIONAL SET PROCESSOR SCRIPT 177

APPENDIX B: PERFORMANCE MODEL SCRIPT 191

-ix-

TABLE OF FIGURES

Page

3.1 Integrated Development - Measurement -

Modeling Approach 12

3.2 DBMS Environment 15

3.3 Set Processor Perfromance Prediction
System Overview 19

4.1 Quatree Compaction Technique 22

4.2 Integer Set Processor Functions 24

4.3 Positional Set Processor Table Structure 27

5.1 Positional Set Processor Measurement and
Analysis System 31

5.2 Analysis and Report Generation 33

5.3 Static Summary Report 35

5.4 Formatted Path Analysis Report 36

5.5 Dynamic Summary Report 38

5.6 Trace Event Summary Report 39

5.7 Variables for Measurement
Using a Coarse Clock 41

5.8 Distribution of PSP Procedures from
Clock Cycling .-.43

5.9 Calibration of Clock Cycling Mechanism 45

6.1 Set Processor Performance Model (SPPM) -

Functional Overview 47

6.2 Set Processor Performance Model
(SPPM) Commands 48

6.3 Summary of Common Block Definition Files
for SPPM Parameters and Results 51

6.4 LOGCOM Common Block Reference 53

-X-

6.5 Hierarchial Mapping of Information onto
Physical Storage 56

6.6 FILCOM Common Block Reference 57

6.7 Functional Taxonomy of Secondary
Storage Structures 61

6.8 PHYCOM Common Block Reference 63

6.9 SOFCOM Common Block Reference 66

6.10 SPRCOM Common Block Reference 67

6.11 ZESCOM Common Block Reference 68

6.12 Response Estimation Modeler Overview 71

6.13 Set Processor Primitives 73

6.14 RESCOM Common Block Reference 75

7.1 SPPM Index Variables and Functions 84

7.2 Source Database Summary and Detailed
Analysis Reports 87

7.3 Stored Database Summary and Detailed
Analysis Reports 93

7.4 l/O Summary and Detailed Analysis Reports 112

7.5 Response Summary and Detailed Analysis
Reports 118

7.6 Relational Entity Occurrence Indicators 127

7.7 Optional Parameter Functions 128

8.1 Validation Philosophies 132

8.2 Synthesis of Model Evaluations Terminology 134

8.3 Model Validation Costs and Benefits 136

9.1 SPPM Estimates and PSP Database Sizes 146

9.2 Preliminary Size Projection (Horizontal
Perturbations) 149

-xi-

9.3 Preliminary Size Projection (Vertical
Perturbations) 150

9.4 Preliminary Response Projection 152

-xii-

MODELING AND MEASUREMENT TECHNIQUES FOR THE
EVALUATION OF DESIGN ALTERNATIVES IN THE

IMPLEMENTATION OF DATABASE MANAGEMENT SOFTWARE

Donald R. Deutsch

The substantial costs associated with build-
ing complex hardware/ software systems make the
traditional development approach of implementation
followed by several iterations for modification
and enhancement unacceptable for building modern
database management systems. Mechanisms for deter-
mining gross feasibility prior to the commitment
of resources for major software development ef-
forts are required. An integrated approach com-
bining the development of a limited but well-
structured DBMS prototype with the use of high-
level measurement and predictive modeling tech-
niques for evaluating design alternatives

^
in the

implementation of database management software is
proposed as an alternative to the traditional
development - enhancement spiral.

Using a prototype for a set-theoretic imple-
mentation of a database management system with a
relational user interface as an object, this
research demonstrates that proposed DBMS designs
can be evaluated through the use of performance
prediction models based on prototype implementa-
tions and associated measurement systems.

Key words: Analytic models; database management;
model validation; performance evaluation;
performance measurement; predictive modeling;
set-processing; simulation; software design.

1 . PROBLEM STATEMENT

1.1 Background and Motivation

Generalized database management systems (DBMS) are be-
ing used by increasing numbers of organizations in both the
public and private sectors [IDC78]. Despite this growing
acceptance, implementations of large scale systems using
DBMS software are still limited by both technological and

-1-

economic constraints. Very large database applications may
be too costly and/or may exceed current technological limits
in many ways, including the following.

Secondary storage requirements can be excessive even
with decreasing costs and increasing capacities for
direct access media; database storage requirements
can exceed hardware capabilities or can become too
expensive relative to application benefits.

Response times can exceed those acceptable for the
application; conversely, adequate response times may
require processor capabilities that exceed curren^t
technological limits.

The complexity and power of DBMS software may mono-
polize existing machine resources; the acquisition
of additional computer capacity may be economically
unjustifiable.

Limitations inherent in DBMS products currently avail-
able are responsible, at least in part, for intensive study
and research efforts addressing database management system
design concepts in industrial, university and government la-
boratories [ASTR76, ZL0075, STON76, LIN76, CHEN76, OZKA77,
HARD76a-b] . This quest can be expected to continue until
database management systems reach a level of development
where they can be economically applied to all problems that
would benefit from their use.

Recent developments in database concepts and technology
promise DBMS designs that are radically different from those
in the marketplace today. In particular, the relational
data model proposed by Codd [CODD70, C0DD71, CODD72a-b] and
the extensions to set theory presented by Childs [CHIL68a-b,
CHIL77] and Hardgrave [HARD76a-b] have received a great deal
of attention from the academic and research communities.
While these concepts promise a substantial improvement over
existing systems, the performance potential of new DBMS
designs incorporating these ideas is not known.

Traditionally, database management software has been
developed in an ad-hoc manner; design ideas have been tested
by implementation. The resulting DBMS software has then
been iteratively tuned and often rewritten to achieve ac-
ceptable levels of performance. The possibility that under-
lying design concepts may have inherent performance limita-
tions has not been considered prior to committing resources
for software development.

-2-

The use of predictive models to evaluate and guide DBMS
design decisions is not common. When they are applied,
modeling techniques are generally used to evaluate perfor-
mance characteristics of system components. Few attempts
have been made to evaluate entire DBMS design frameworks
prior to their implementation; prominent research prototypes
for relational DBMS ' s were developed without the benefit of
mathematical evaluation of design alternatives
[STON77, DEJ079]

.

The research described herein was motivated by the con-
viction that an alternative to the traditional implementa-
tion - enhancement approach to DBMS development was needed;
the increasing costs associated with building complex
hardware/ software , systems such as DBMS preclude continued
use of the ad-hoc "build it and see if it flies" methods of
the past. Just as the airplane builder must be reasonably
certain that a new plane design will fly, the DBMS implemen-
tor should have some prior assurance that the system will
perform satisfactorily within pertinent technological and
economic constraints.

1.2 Research Objectives

A product of a continuing research project concerned
with developing a methodology for evaluating proposed DBMS
designs, this research report describes and demonstrates a
database management system design evaluation and development
approach that combines, in an integrated effort, the follow-
ing components

.

* Development of a limited prototype DBMS.

* Use of a flexible, high level measurement facility.

* Estimation of DBMS performance potential using a
predictive model.

This integrated approach is proposed as a preferable alter-
native to current practice.

A database management system design incorporating
several state-of-the-art concepts is used as an object in
this research. While addressing the questions of efficiency
and feasibility for DBMS implementations based on these
ideas, the purpose of the research is not to prove the effi-
cacy of the design concepts. The measure of success is the
ability of the proposed integrated evaluation approach to
provide insight into the performance potential for DBMS
designs. These research objectives are stated more formally
in the thesis statement and propositions below.

-3-

1.3 Thesis Statement

The major proposition addressed by this research is em-
bodied in the following thesis statement:

Proposed database management system designs can be
evaluated best through the integrated use of a
limited prototype implementation for the DBMS
design, a flexible measurement facility, and a
predictive model based on the DBMS prototype.

In the process of considering this thesis, the following
minor or supporting propositions were formulated and ad-
dressed by the research.

1.3.1 Proposition-1

.

The model can be developed at a high
level; that is, DBMS programs rather than operating system
events can be considered.

1.3.2 Proposition-2

.

A simple and flexible high-level meas-
urement system can be developed for monitoring prototype
DBMS performance.

1.3.3 Proposition-3

.

A methodology using measured prototype
performance data for understanding DBMS operation, for
deriving parameter values and calibrating the model, and for
validating model predictions can be developed.

1.4 Overview of Research Report

This report describes a research effort, that was car-
ried out over a period of several years, to develop and
demonstrate a methodology for evaluating proposed DBMS
designs. The next chapter reviews pertinent literature and
related research. Chapter 3 presents an overview of a per-
formance prediction system with three components: a proto-
type implementation for a positional set processor DBMS, a
measurement and analysis system, and a performance predic-
tion model. Chapters 4 and 5 describe the DBMS prototype
and measurement facility. Model concepts and parameters are
discussed in chapter 6; chapter 7 summarizes the mathemati-
cal relationships imbedded in the performance prediction
model. Chapter 8 considers the model evaluation problem and
reviews the status of ongoing verification, validation and
problem analysis activities. Chapters 9 and 10 present
research results and chart future research directions. Fi-
nally, Appendices containing scripts demonstrating the set
processor DBMS prototype and performance modelers follow an
alphabetical Bibliography and list of references.

-4-

2. PREVIOUS AND RELATED RESEARCH

2.1 Computer Performance Evaluation

Computer hardware/software facilities are complex and
interesting systems . Their performance is not easy to under-
stand or predict. A number of techniques are used for moni-
toring and evaluating computer system performance [LUCA71,
SVOB76], including:

* analysis of times for hardware cycles, weighted
mixes of instructions, or typical "kernel" programs;

* execution of benchmarks and synthetic programs
representing projected system load;

* performance monitoring;

* analytical modeling; and

* simulation modeling.

Time analyses emphasize raw hardware speed, and do not ade-
quately address systems software characteristics for
predicting performance. Benchmarks and synthetic programs
are useful primarily for selecting among alternative exist-
ing computer systems based on a projected system load; they
are not adequate for predicting performance of non-existent
hardware or software. Monitoring tools are used primarily
to collect data on the performance of existing hardware/
software systems for locating bottlenecks, improving perfor-
mance and guiding administrative policies. Only analytic
and simulation modeling have the power for predicting per-
formance of proposed hardware and software designs as well
as for evaluating existing computer system operations.

2.2 Models of Computer Systems

While mathematical models of computer systems were use-
ful for evaluating and predicting the performance of (single
user) serial processing machines [KLEI66], computer system
modeling increased dramatically with the advent of multi-
programming. SCHA67 and BASK71 are compendia of both ana-
lytic and simulation models for multi-user computer systems;
bibliographies appear in ANDA72 and SVOB76. Analytic and
simulation models are considered separately below.

-5-

2.2.1 Analytic Model s

.

Analytic models for computer system
performance evaluation are mathematical representations of
computing systems that are solved using the tools of
mathematics CSMIT66]. Analytic models often address perfor-
mance characteristics for particular computer system com-
ponents or functions, such as disk l/O [FIFE65] and job
scheduling [LUCA71, BASK71]. Particularly common are appli-
cations of queueing theory to time-sharing through-put
analysis [KLEI64, CHAN66, COFF67 & 68, BUZE73, BOYS75,
LIPS77]. Analytic models are generally unique to each ap-
plication. GRAH78 is a monograph that surveys the current
state-of-the-art for queueing network models of computer
system performance. High costs for analytic models and
their limited abilities for representing complex interac-
tions have motivated the development of computer system
simulation models.

2.2.2 Simulation Models. The most flexible and potentially
powerful technique for predicting computer system perfor-
mance is simulation [LUCA71]. Computer systems are usually
modeled in terms of system states and state transitions or
events occurring at discrete time intervals CFERR78]. Simu-
lators have been frequently used to evaluate the design of
particular hardware/software systems [YOUC64, KATZ67]; some
have been successfully generalized to represent computer
systems other than the original model object [NIEL67].

Powerful computer system simulators claim to be appli-
cable to broad classes of hardware and systems software that
are parametrically described in extensive factor libraries
[HUES67, IHRE67, SEAM69]. Two commercial computer simula-
tion products, SCERT (COMRESS Div. of Comten) , and CASE
(Testdata Systems), are described and compared in FERR78.
ECSS, a language for developing computer system simulations,
is described by KOSY73.

Trace driven modeling combines measurement and simula-
tion in a manner that overcomes some of the difficulties as-
sociated with validating pure simulation models that are
based on distributions and random variables. Trace driven
models use measured event sequences instead of probability
distributions to describe resource requirements CSHER76].
This special type of computer system simulation has been ap-
plied to both partial and complete hardware/software systems
[SHER73, CHEG69, NOE72, SHER72].

Computer system simulation is addressed by a growing
body of literature [FERR78, HIGH73-76] . A tutorial descrip-
tion of the construction of a basic simulation model for a
multiprogrammed computer system and an annotated bibliogra-
phy appear in MACD70.

-6-

2.3 Models of Database Management Systems

Models of database management systems are comparatively
rare and recent research tools. Focusing on analyzing the
behavior of existing systems and developing simple proba-
bilistic representations for specific functional components,
DBMS models consider the impact of changes on system perfor-
mance [BLAS75].

Senko and his colleagues were some of the first to
recognize the need for database management system models.
The landmark FOREM research produced a comprehensive collec-
tion of file organization evaluation models [SENK67, SENK70]
and a file design handbook containing guidelines for select-
ing access methods and determining secondary storage utili-
zation strategies [SENK69]. The follow-on Phase-II model
was a special purpose simulation for predicting execution
time of computer systems dedicated to database management
applications [0WEN71].

2.3.1 Models of DBMS components and functions. Database sys-
tem components and functions have been the objects of both
analytical and simulation studies. FOREM was primarily a
collection of deterministic tools for analyzing storage
structures, although simulation was used for deriving file
design guidelines. Cardenas [CARD73] and Yao [YA074, YA077]
applied analytic techniques to the evaluation and selection
of file organizations.

An objective function for minimizing secondary index
costs is presented in ANDD77. Secondary indices are
analyzed deterministically in CARD75. Others have addressed
secondary index selection and design problems using various
techniques and assumptions [LUM71, SCHK75, SHNE74].

The assignment of data collections to alternative
storage media, devices and nodes in a network has been the
object of modeling research [LUM75, BUZE74, CASE72]. A sur-
vey of physical database design techniques including model-
ing approaches appears in SCHK78.

The impact on database management system performance of
virtual storage management strategies is the focus of four
recent studies [LANG77, BRIC77, SHER76, FERN78]. In their
work, Sherman and Brice used trace driven modeling tech-
niques for studying DBMS virtual memory system interactions.

Modeling techniques have been used to investigate data-
base reorganization strategies. A performance model using
queueing analysis for studying database reorganization per-
formed concurrently with usage is presented by Sockut
[SOCK78]

.

-7-

2.3.2 DBMS modeling languages. Most database management
simulations have been implemented using high-level program-
ming languages such as FORTRAN. Two DBMS models developed
using generalized tools appear in the literature. Nakamura
et . al . describe a simulation model written using a computer
system simulation package [NAKA75]. A model for evaluating
the capability of a hardware vendor provided DBMS to handle
a particular large, real-time facility assignment and inven-
tory system was developed using the GPSS simulation language
[GRIF75]

.

2.3.3 File organization models. Severance has applied both,
analytical and simulation techniques to the study of data
and storage structures. Addressing various aspects of the
file organization Evaluation problem, this research is
recorded in numerous working papers and articles [SEVE72,
SEVE74b, SEVE75, SEVE76b] . Products of his modeling efforts
comprise a comprehensive collection of normative tools for
aiding the database designer. Specific problems addressed
include: record and file segmentation and blocking factors
[MARC76, EISN76, SEVE76a] , access path selection [SEVE77],
and search mechanism evaluation [SEVE74a] . MARC78 syn-
thesizes much of the database design research appearing in
the other references in this paragraph into a generalized
model of secondary memory management.

The evaluation of storage structures in terms of per-
formance for a given retrieval workload is addressed by
SCHE76. Scheuermann presents a development methodology and
a preliminary implementation of a simulation model for guid-
ing the selection of storage structures. His goal was to
develop a systematic methodology for designing a simulation
model to aid database administrators in selecting file or-
ganizations .

2.3.4 Generalized DBMS models. Two researchers have attempt-
ed to develop generalized models applicable to a broad range
of data base management systems. Reiter has a generalized
simulation modeling framework that is tailored to specific
object DBMS's by the addition of "'plug-in" user written FOR-
TRAN models. In what he terms an inductive approach,
Reiter' s modeling process has three stages:

* Translate - a task description specified by the user
at a high conceptual level is translated into an in-
termediate level system representation.

* Synthesize - a representation modeler maps logical
data elements into blocks of secondary storage.

-8-

* Execute - system dynamics are simulated by an execu-
tion modeler for a multiprog rammed operating system.

Called DIMUI in recent publications, Reiter's model and its
application are described in REIEa-b, REIE77a and SHNE78. A
discussion of the role of simulation in evaluating database
management systems using DIMUI for illustrative experiments
appears in [REIE77b]

.

DeLutis's Information Processing System Simulator
(IPSS) provides facilities for modeling DBMS software and
buffer management. DBMS application programs, scheduling
and resource allocation functions, and data manipulation
operations must be procedurally specified. Containing both
PL/1 and FORTRAN code, the IPSS methodology views an imple-
mentation processing system as being a hierarchy of three
types of functions:

* a database,

* services for accessing the database, and

* support facilities.

The major emphasis of the IPSS research is on the applica-
tion of macro-analysis; that is, its focus is on measuring
system performance from the user's perspective [DELU77].
Reiter's model, IPSS and the ECSS computer system simulation
language are compared and evaluated in FEDS78.

2.4 Research Milieu

The literature reviewed above provides the setting for
the research described in this document. The integrated
DBMS design evaluation approach that is described herein
utilizes performance monitoring and both analytic and simu-
lation modeling techniques. Unlike most computer system
modeling efforts, this research has as its objective the
determination of gross performance potential rather than
system tuning. This research differs also in that it
focuses on DBMS software, with the operating system and
hardware seen as comprising the processing environment.

This research is most closely related to the few past
database management system modeling endeavors. The objec-
tive of comprehensively representing DBMS performance is
similar to those described in REIE76b and DELU77. However,
neither Reiter nor DeLutis can easily or directly model the
set representation constructs used in the DBMS design that
is the object of this modeling effort; indeed, no known pre-
viously developed model could be applied to this problem.

-9-

Like the trace driven database management system per-
formance evaluations carried out by Sherman and Brice
[SHER76, BRIC77], this research relies heavily on the use of
measured performance data and event traces. While the
current model is not strictly trace driven, the sequence of
DBMS functions required to answer a query is determined.
Derived in a manner similar to the actual DBMS, this func-
tional sequence can be viewed as a pseudo-trace. The high-
level measurement and modeling employed for this project
differs from the operating system service request level used
by Sherman and Brice. Their respective levels of detail re-
flect the different purposes of the two studies; while Sher-
man and Brice address specific DBMS operating system in-
teractions, the research described herein is concerned with
predicting gross performance potential.

One difference between this and all previous research
efforts is the emphasis on validation; from the outset, the
strongest fom of predictive validity was the objective of
this effort. Predictive validation was considered in only a
few previous efforts [GRIF75, SHER76, BRIC77]. Previous
general purpose modeling efforts have attempted only much
weaker forms of validation based on relative changes and the
philosophy of rationalism described in Chapter 8.

The research described in this document addresses the
evaluation of proposed database management system designs.
This contrasts with the database design problems addressed
by Senko, Severance, Yao and others. Some of the normative
results from other research endeavors could be used in ex-
tensions of the current research; the model produced for
this study could be enhanced, for instance, by including
storage structure optimization modules to predict the best
possible performance for a given design strategy.

-10-

3. PERFORMANCE PREDICTION SYSTEM OVERVIEW

3.1 Introduction

The motivation for this research is the belief that the
substantial costs associated with building complex
hardware/ software systems preclude the development of new
database management systems using traditional techniques.
Mechanisms for determining gross feasibility of proposed
DBMS designs are needed; development should not begin on a
DBMS design concept without prior assurance that an imple-
mentation can be made to satisfy user requirements within
reasonable time and cost constraints. The traditional
software development approach of implementation followed by
several iterations for modification and enhancement to in-
crease performance and efficiency is not suitable for build-
ing modern database management systems. An alternative to
this development-enhancement spiral is presented by
Hardgrave and Sibley [HARD75d] . They propose an approach
combining the development of a limited prototype with the
use of predictive modeling for understanding critical design
factors and evaluating the feasibility of new designs.

This chapter presents an overview of a DBMS development
approach that utilizes and extends the ideas proposed by
Hardgrave and Sibley. The next section describes the use of
prototype development, measurement, and modeling in an in-
tegrated effort to predict performance and guide future im-
plementation decisions. Following a discussion of the per-
formance prediction system components, an overview of a
specific application of the proposed approach is given. The
latter section, describing the Set Processor Performance
Prediction System, provides the framework for the three sub-
sequent chapters

.

3.2 Integrated Development-Measurement-Modeling

Figure 3.1 is a graphical representation of an in-
tegrated prototype development, measurement and modeling ap-
proach for predicting performance and guiding development of
a proposed DBMS design. For a given DBMS design concept, a
performance prediction system is used to evaluate the effi-
cacy of the proposed design and to guide full-scale DBMS
product development decisions. The performance prediction
system is made up of three integrated parts.

-11-

INTEGRATED DEVELOPMENT-MEASUREMENT-MODELING APPROACH

PERFORMANCE

PREDICTION

MODEL

f _
FULL-SCALE DBMS PRODUCT IMPLEMENTATION

Figure 3.1

-12-

* A limited prototype DBMS implementation.

* A high-level measurement and analysis system.

* A performance prediction model.

When the prototype implementation is exercised, its
performance is monitored and recorded by a measurement and
analysis system. The prototype implementation and data gen-
erated by the measurement system about its performance pro-
vide the insight and understanding necessary for developing
a performance prediction model. The model can be used for
evaluating the potential of implementations using the design
concepts embedded in the prototype . The prototype DBMS and
measurement system also provide a mechanism for validating
the model. It is then possible to perturb model parameters
beyond the range of prototype DBMS capabilities to determine
if and how full-scale implementation should proceed.
Characteristics of the three performance prediction system
components are considered in the following paragraphs.

3.2.1 Prototype DBMS implementation. The heart of a DBMS
Performance Prediction System is a limited prototype imple-
mentation for the proposed design concept. Development of a
DBMS prototype is driven by some objectives that are quite
different from those guiding full-scale product implementa-
tion efforts.

* A prototype should demonstrate only the minimum set
of capabilities that are representative of the
design concept. It must be only comprehensive
enough to identify potential bottlenecks; for exam-
ple, a prototype DBMS that performs all operations
in main memory would be inadequate. This contrasts
with a full-scale implementation that must include
an entire complement of features.

* A prototype should be as simple as possible in
design and construction. A full-scale implementa-
tion may be elegant and/or complex to achieve effi-
ciencies unnecessary in a prototype.

* A prototype provides only a gross proof of techno-
logical feasibility. A full-scale DBMS must also
satisfy economic and operational feasibility re-
quirements .

* A prototype need not be well designed from a human
factors point of view. For a full-scale implementa-
tion, ease of use is extremely important.

-13-

One objective that applies to prototype and full-scale
implementations alike, is that source code should be easy to
understand, debug and modify. A DBMS, like any complex
software system, should be developed using the *best software
engineering techniques [FIFE77, BAKE75, BR0075].

For developing a limited DBMS prototype, structured
programming practices such as the following are desirable.

* Use of a high-level language.

* Well documented code; liberal use of comments and
blank lines.

* Modular design; use of multiple simple, single pur-
pose subroutines rather than large complex pro-
cedures .

* Straight-line code; minimum number of branches.

* Single entry and exit for each subroutine.

* All machine and language dependencies isolated in a
few well-marked subroutines.

In addition, good coding conventions for the specific source
language should be defined and consistently used throughout.
The use of modular design and structured coding techniques
is especially important because of the experimental purpose
for which a prototype DBMS is developed.

3.2.2 Measurement and analysis system. In order to record
and evaluate performance characteristics of the prototype
software, a measurement and analysis facility is an integral
part of a DBMS Performance Prediction System. The measure-
ment facility must be both powerful and flexible. It does
not, however, need to consider extremely fine events. A
high-level measurement capability can provide data con-
sistent with the coarse performance prediction objectives of
a prototype development, measurement, and modeling effort.

For the purpose of evaluating design concepts, a DBMS
can be viewed as a facility built on a foundation made up of
hardware and operating system components as illustrated in
Figure 3.2. While hardware and operating system resource
allocation and scheduling procedures are interesting and im-
portant determinants of performance for any software operat-
ing in the env,ironment they comprise, the focus of this
research was the evaluation of DBMS design concepts. To
achieve this objective, events can be measured and recorded
at the DBMS procedure level rather than at the operating
system service request (SVC) level.

-14-

DBMS ENVIRONMENT

Figure 3.2

-15-

High-level measurement is desirable for several rea-
sons. First, it can be implemented using a high-level
language and does not require modification of the operating
system. Consequently, the level of effort is one of man
weeks rather than months. High-level measurement does not
preclude subsequent instrumentation at the SVC level if
deemed necessary. Measuring coarse events is consistent
with the limited objectives defined above for the prototype
DBMS; it would be foolish to measure low-level indicators of
efficiency for software specifically designed without con-
cern for performance. Finally, because full-scale implemen-
tations may be installed on hardware other than that used
for the prototype, measurement should be independent of
specific hardware and operating systems.

3.2.3 Performance prediction model. The third component of
an integrated DBMS Performance Prediction System is a per-
formance model that is derived from and can be validated
against the prototype using measurement system results. The
model should be parameterized so that it not only can esti-
mate performance for the prototype DBMS, but also can con-
sider "what if" questions like the impact on predicted per-
formance of the following.

* What if database sizes were substantially larger
than those that the prototype can handle?

* What if database storage structures other than those
used by the prototype were employed?

* What if database characteristics such as redundancy
and logical complexity were changed?

* What if gross changes in the hardware/operating sys-
tem environment were made; e.g., if DBMS functions
were microcoded?

* What if DBMS functional capabilities were changed;
e.g., if new set theoretic operations were added?

While models can be either purely analytic or completely
stochastic, because of their nature and complexity, database
management systems lend themselves to hybrid (partially ana-
lytic with stochastic/simulation components) model represen-
tations .

-16-

The question of modeling approach is difficult to dis-
cuss without considering a specific DBMS object. While
there are numerous alternatives, two diametrically opposed
approaches represent extreme points of a continuum on which
others fall. One method is to develop a high-level concep-
tualization of a broad class of database management software
systems, and then to add more specificity incrementally to
the model until the performance of the prototype DBMS can be
predicted. This approach is appealing because, from the
outset, the model is applicable not just to the concepts of
in the prototype, but to a broad class of DBMS designs.
There is considerable risk, however, that such a broad con-
ceptualization will not describe the prototype DBMS closely
enough to predict its performance accurately; if this oc-
curs, the model can not be validated in even the most limit-
ed sense

.

At the other extreme is an inductive approach that
first develops a model specific to the prototype DBMS, and
then incrementally relaxes constraints to produce increas-
ingly general models. The risk associated with this ap-
proach is that a specific model may not be easily broadened
beyond the prototype system. Two advantages of the induc-
tive approach are the reasonable expectation that the model
can be validated, and the assurance that the model will at
least address the DBMS design concepts being studied.

In practice, it is unlikely that DBMS model development
will occur at either of the above extremes. The difficul-
ties associated with developing general conceptualizations
for broad classes of database management systems and the
benefits accruing from the ability to validate a prototype
specific model are strong inducements for using modeling ap-
proaches that fall toward the inductive end of the continu-
um. Inductive modeling is also required when, as was the
case for this research, there is a primary desire to address
the performance potential of concepts embedded in the proto-
type, and only secondarily to consider other DBMS designs.

-17-

3.3 Set Processor Performance Prediction System

Figure 3.3 is a graphical representation of the Set
Processor Performance Prediction System, a specific imple-
mentation of the DBMS development approach described above.
The Positional Set Processor (PSP), prototype DBMS incor-
porates several state-of-the-art capabilities and design
concepts. The measurement and analysis system is fully in-
tegrated with the prototype DBMS, with measurement capabili-
ties invoked through the DBMS user-interface grammar. Fi-
nally, the Set Processor Performance Model (SPPM) includes a
model driver and four utility modules as well as size and
response time modelers.

Components of the set processor performance prediction
system, installed on the PDP-10 computer in the National
Bureau of Standards' Experimental Computer Facility, are
described in the next four chapters. First, the Positional
Set Processor prototype DBMS that is the object of the
modeling and measurement effort is described. The measure-
ment and analysis system is the subject of the next chapter.
Chapters six and seven discuss the concepts and parameters,
and the mathematical relationships embedded in the set pro-
cessor performance model, respectively.

-18-

SET PROCESSOR PERFORMANCE PREDICTION SYSTEM OVERVIEW

PROTOTYPE DBMS IMPLEMENTATION

POSITIONAL

SET PROCESSOR

PROTOTYPE

OBSERVED
PERFORMANCE

"1

MEASUREMENT 2, ANALYSIS SYSTEM

MEASUREMENT

AND ANALYSIS

SYSTEM

EVENT

TRACE

X

STATIC &

DYNAMIC

ANALYSES

UJ
\-
o
a.

u.
o
CO
z

to I

LUi

<l

CO

v>\
tXli

Q
o9

CO
Zi
O

C < MODEL

FORMULATION

MODEL

PARAMETERS

I

< «

<> o

(sppm)

MODEL

=1=

REVISE

MODEL

PERFORMANCE

ESTIMATES

VALIDATE

PREDICTED

AGAINST

ACTUAL

PERFORMANCE

MODEL DEVELOPMENT AND ACCEPTANCE

Figure 3.3

-19-

4. POSITIONAL SET PROCESSOR DBMS PROTOTYPE

The object of the modeling and measurement effort
described herein is a prototype for a set-theoretic imple-
mentation of a database management system with a relational
user interface. The prototype system v/as conceived and ini-
tially implemented by Hardgrave using a PRIME minicomputer
at the NASA Institute for Computer Applications in Science
and Engineering (ICASE). This preliminary version of the
Positional Set Processor (PSP) was transported to the NBS
Experimental Computer Facility's PDP-10 in the summer of
1976. Described in the literature under the name SET-P
CHARD76a-b] , the initial ICASE implementation has been sub-
stantially enhanced in the NBS ECF testbed . The following
sections describe the positional set processor prototype at
a level of detail sufficient for understanding the object of
this measurement and modeling effort. Readers desiring a
more detailed description are directed to the referenced ar-
ticles and reports. After a brief discussion of the
theoretical foundations of the prototype DBMS, PSP design
and implementation concepts are considered. The last sec-
tion describes the status of the prototype when it arrived
at NBS, at the time of publication, and planned for the fu-
ture .

4.1 Theoretical Foundations

Childs proposed an extend
ing both classical sets and
tions of value-position pairs
tribution is two-fold:

ed set notation for represent-
(ordered) sequences as collec-
[CHIL68a-b, CHIL77]. His con-

* he uses a level of mathematical rigor uncommon in
database management research; the axiomatic defini-
tion of Childs' extended set notation appears in
[CHIL68b], and

* his framework supports both classical sets and n-
tuples at the same definitional level; that is, nei-
ther is defined using the other.

Positional set notation, a variation of Childs' extended set
representation, was developed by Hardgrave. It captures the
power of Childs' work in a somewhat simplified format
[HARD77]. Positional set notation can represent sets and
sequences nested at any level of complexity; that is, it
can represent sets of sequences, sets of sets of sequences,
sequences of sets of sequences, ... etc.

-20-

The PSP prototype uses positional set notation to im-
plement the relational data model introduced by Codd in 1970
[CODD70] and subsequently reformulated by Hardgrave
[HARD78]. Unlike many other relational implementations such
as INGRES [STON76], the PSP is a true set processor in that
duplicate entries can not occur in a relation. It is gen-
erally faithful to the relational data model as mathemati-
cally defined by Codd and others [CODD70, C0DD71a-b, CODD72,
DATE75].

4.2 Design Concepts

Several innovative implementation ideas are embedded in
the PSP prototype. One major objective of this research was
to evaluate the performance potential of a system using
these design concepts. Some of the most important features
of the prototype positional set processor implementation are
described briefly in the following paragraphs. Much of this
material is derived from and the reader is referred to
HARD76a-b and HARD73a containing more detailed treatments.

4.2.1 Integer set processor. The functional core of the PSP
is an Integer Set Processor (ISP). The current ISP is an
improved version of the one previously described by
Hardgrave [HARD73a] . Classical sets of positive integers
from a predefined universe are represented by compacted bit
strings. Traditional set operations (AND, OR, EXCLUSIVE OR,
and SET DIFFERENCE) can be performed on these bit strings
without uncompacting . Set operations are performed rapidly
on existing bit-string representations.

A subset S of the universe of positive integers U (lim-
ited only by the word size of the computer) is represented
by a logical bit string such that, if we denote the i-th bit
of the bit string as i, then:

i = 1 <==> i is an element of S
0 otherwise

The size of a virtual bit string is the cardinality of (i.e.
number of elements in) the universe. A compaction technique
must be employed to reduce the size of bit strings so that
they can be machine stored and manipulated. The QUATREE
compaction method illustrated in Figure 4.1 uses a multiple
level hierarchy of n-bit packets. Each bit in a packet at
level L corresponds to one n-bit packet at level L-1 . A

-21-

QUATREE COMPACTION TECHNIQUE

Set Definition and QUATREE parameters:

S = {4, 11, 25} = Integer Set

L = 16 = Number of Levels for Compaction Tree

n = 4 = Number of Bits in Compaction Packet

Linear Representation:

Bits I 1000 1000 ... 1000 1100 1010 0001 0010 00ia 1000
\

^

^

^

^

Level 1 16 15... 4 3 2 1 1 2 1

Hierarchical Representation:

Level 16 1000

Level 4 1000
I

I

Level 3 1100
/ \

/ \
Level 2 1010 0010

/ \ \

/ \ \
Level 1 0001 0010 1000

Figure 4.1

-22-

zero bit at level L indicates that all bits in the
corresponding packet at level L-1 are zero; a 1-bit at level
L indicates that at least one of the n bits in the
corresponding packet at level L-1 is set to 1. The desired
compaction is achieved by omitting all zero packets from the
actual bit-string representation.

QUATREE compacted set representations are unique and
can be operated on directly by various ISP functions includ-
ing the classical set operations and set traversal. The
latter is a function that enumerates all elements in a set
one element at a time. The ISP also provides l/O facilities
for transferring bit-string set representations from main
memory buffers to secondary storage and vice versa. Figure
4.2 is an annotated list of ISP functions.

In addition to providing the foundation for represent-
ing positional sets as described below, the ISP is used by
the secondary indexing mechanism added to the PSP in 1977.
An index may be viewed as having three components:

* an attribute reference, a;

* an ordered non-redundant list of values, V =

<vl , v2 , . . . , vn> , for attribute a; and

* a collection of tuple references or pointers for
each value vi. Pi = { pil ,

pi2 , . . . ,
pin}

.

Because pointer collections Pi are sets of integer refer-
ences, the ISP can be used to process boolean queries using
indices. Furthermore, many secondary index manipulations
can be viewed as set operations that benefit from the avai-
lability of a true set processor.

4.2.2 Mapping positional sets onto integer sets. Positional
sets are collections of value-position pairs. For the PSP
to use the ISP bit-string representation and processing
capabilities, a mapping of ordered (value, position) pairs
to integers is needed. The PSP uses a diagonal mapping
first proposed by Cauchy (1789-1857) and Cantor (1845-1918)
to demonstrate that the rational numbers were countable.
The Cauchy/ Cantor technique is reversible; that is, it is
both one-to-one and onto [HALM64]. Given integers K and L,
using the Cauchy/Cantor diagonal method we can calculate a
uniqde integer M.

(K,L) ==> M

Conversely, given M we can calculate K and L.

M ==> (K,L)

-23-

INTEGER SET PROCESSOR FUNCTIONS

FUNCTION REFERENCE OR TYPE DESCRIPTION

I4UN(IS1, IS2, IS3) IS3 ISl U IS2

I4IN(IS1, IS2, IS3) IS3 ISl 1 1 IS2

I4RC(IS1, IS2, IS3) IS3 — ISl - IS2

I4SD(IS1, IS2, IS3) IS3 (ISl U IS2) - (ISl 1 1 IS2)
exclusive union; also
symmetric difference

I4NULL(IS1) ISl 0

l40NE(k, ISl

)

ISl M
l4UNl(k, ISl

)

ISl ISl - {k}

I4C0PY(IS1, IS2) IS2 ISl

SET TRAVERSAL
I4TRVI (. . .

)

I4TRV(. . . .)

I4TRVE(. . .)

Set Traversal

BUFFER MANAGEMENT
I 4AL0C (...)
I4SAVE(. . .

)

I4DEST(. . .

)

Buffer Management

0

Figure 4.2

-24-

The PSP maps positional sets of value-position pairs to
bit-string integer set representations, performs operations
on these representations, and maps from the resulting ISP
sets back to collections of value-position pairs.

4.2.3 Storage structures. The positional set processor
stores and manipulates data using five types of files or
tables. Components in the PSP table structure are listed
below.

* ELEMENT TABLE - contains non-redundant instances of
everything known by the PSP. Fixed length entries
include position identifiers (attribute names),
atomic elements, and positional sets. The latter
are bit-string representations for sets and se-
quences including tuples (sequences of atom-position
pairs), and relations (set of tuples). Storage is
non-redundant across the entire database; that
means, for example, that the integer 90 could appear
in the source database as an age, as an address, and
even as a position identifier, but it would appear
only once in the element table.

* ELEMENT TABLE INDEX - a fixed length table providing
rapid access to the element table. A simple form of
hash coding with a linear search end-around strategy
is used to locate pointers to element table entries.

* ALIAS TABLE - contains user defined names for re-
ferencing element table entries. Names stored in
fixed length alias table entries are bound to ele-
ment table entries by pointers.

* TEXT TABLE - contains overflow from fixed length
element and alias table entries. This table has a
variable number of variable length records.

* SECONDARY INDEX TABLES - additional tables required
for providing rapid access to stored data using
secondary indices. These tables contain the three
components described above for a secondary index:
indicators of which attributes are indexed, an or-
dered non-redundant list of instances V = <vi> for
each attribute, and a set of tuple pointers Pi =

{pij} for each attribute value vi. The latter com-
ponent is represented by one or more tables of bit-
string integer set representations that reference
element table entry numbers for tuples containing
the specified attribute values.

-25-

Figure 4.3 illustrates the positional set processor's table
structure and depicts relationships among the five com-
ponents described above.

4.2.4 User interface. The PSP prototype is an interactive
query answering system. The user carries out a dialogue
with the positional set processor input module developed us-
ing an interactive language design system, LANGPAK [HEIN75].
This generalized facility generates a runtime module that
performs required input parsing and translation functions
and allows easy modification of the language syntax. The
relational user's view is currently supported by PSP com-
mands that are consistent with the work of Rothnie [ROTH75]
and are, to some extent, similar to language interfaces for
relational systems developed in other laboratories [STON76,
CHAM76, ASTR76, CODA62].

4.2.5 Modular high-level code. The positional set processor
is made up of approximately 200 subroutines written in ANSI
FORTRAN. The measurement system and ISP functions that are
replicated by PSP subroutines add another 70 programs to
this total. Machine dependencies, notably l/O and bit mani-
pulation, are isolated in a very few subroutines. The tran-
sportability of the code has been demonstrated by its in-
stallation in three substantially different environments:
the ICASE PRIME minicomputer, the University of Maryland
UNIVAC 1108, and the NBS PDP-10.

The entire software system is highly modular and re-
flects good structured design and coding practices [FIFE77,
KERN74, MILL76]. Common block definitions are specified in
separate files that are referenced via the FORTRAN "INCLUDE"
statement by PSP subroutines. Procedures have single en-
tries and exits, are liberally commented and have an abun-
dance of white space for ease of reading. The source list-
ings for most subroutines require only one printed page.

4.3 Capabilities: Past, Present and Future

The positional set processor implementation has been
and remains a true prototype in that the desire for simpli-
city rather than for speed and/or efficiency has guided im-
plementation decisions. Care has been taken not to preclude
an efficient implementation, however. Some comments about
the capabilities of the PSP prototype in the past, at the
current time, and projected for the future follow.

-26-

POSITIONAL SET PROCESSOR TABLE STRUCTURE

VALUE REFERENCES ELEMENT TABLE NAME REFERENCES

ELEMENT

TABLE

INDEX

HASH

COOED

ENTRIES

FOR ALL

ELEMENT

TABLE

ENTRIES

SECONDARY

INPE?< TABLES

INTEGER

ATTRIBUTE

VALUE

POINTER

SETS

DIRECTORIES

ALL

ENTRIES

attribute/value

references

TUPLE

ENTRIES

POSITION IDENTIFIERS

ATOMIC ELEMENTS

POSITIONAL SETS FOR

-TUPLES

-RELATIONS

-OTHER SETS

NAMED

ENTRIES

OVERFLOW

Figure 4.3

USER DEFINED

NAMES

FOR

ELEMENT

TABLE

ENTRIES

ALIAS

TABLE

OVERFLOW

VARIABLE

LENGTH

OVERFLOW

FOR

ELEMENT AND

ALIAS TABLE

ENTRIES

TEXT

TABLE

ii.

-27-

4.3.1 Past capabilities. The positional set processor proto-
type that was transported to the NBS PDP-10 in the summer of
1976 had several limitations.

* System response was extremely slow for many opera-
tions, even for queries on very small relations.
This was caused by gross implementation inefficien-
cies and by the lack of a secondary indexing mechan-
ism .

* Databases loaded using the prototype had been limit-
ed to single relations of fewer than 20 tuples.

* Data definition was very crude, requiring reentry of
a file containing domain characteristics and format-
ting information whenever data was read in or out.

In spite of these limitations, the prototype DBMS demon-
strated the most basic level of feasibility; the implementa-
tion could store, retrieve and manipulate classical sets.

4.3.2 NBS enhancements; current status. Since its installa-
tion in the NBS ECF testbed, the PSP prototype has been sub-
stantially enhanced. Improvements include the following.

* A secondary indexing mechanism was added to allow
selection by value without having to enumerate ex-
haustively all tuples in a relation. The index fa-
cility uses the integer set processor to store, re-
trieve and manipulate sets of tuple pointers for
each value of an indexed attribute.

* System response time was improved, both by the addi-
tion of secondary indices and by correction of some
gross implementation inefficiencies. There never
was a desire to optimize system performance, but
rather to make the prototype a more useful laborato-
ry tool. Changes in the prototype were guided by
early insights and results derived from the measure-
ment and modeling efforts.

* Database sizes v^ere increased by approximately two
orders of magnitude. In addition to the original
very small (7-15) tuple database, databases of 56
and 500 tuples have been loaded. All databases use
secondary indices.

-28-

* Additional capabilities were added to the PSP to as-
sist the user and to make it a more useful experi-
mental tool. Many changes were small, but some
(e.g. commands for modifying automatic buffer allo-
cations) had substantial impact on the prototype's
flexibility and viability.

The current version of the positional set processor is
clearly improved; it runs faster, handles more data, and
does more things than the ICASE prototype from which it
evolved. It is still a limited laboratory prototype, howev-
er. Some of the most obvious deficiencies are listed below.

There still is no comprehensive data definition ca-
pability. Until one is implemented, the positional
set processor can not be considered a complete data-
base management system.

Response time could be improved further especially
for non-indexed queries.

The cost in processor and elapsed time for loading
the largest, 500 tuple database is too great. Time
for loading and building indices will have to be re-
duced before the next order of magnitude for data-
base size can be achieved.

While there are no theoretical or known practical
restrictions, the prototype still has not been used
for databases with more than one relation (multiple
relations in the current version are all derived
from a single initially loaded relation)

.

Secondary indices are static; that is, database
changes are not reflected in the indices.

A range variable capability is missing; one is need-
ed to handle multi-structure queries.

4.3.3 Future plans. It is expected that the positional set
processor will be the object of increasing study and im-
provement efforts. In addition to applying results derived
from the measurement and modeling effort, the major defi-
ciencies of the current implementation listed above will be
addressed. Two interesting possibilities for future
research are the use of hardware for selected PSP functions
and/or a major receding effort to consolidate subroutines
and to make the PSP more efficient. Decisions to pursue
these or other research directions will be made using the
set processor measurement system and performance model
described below.

-29-

5. SET PROCESSOR MEASUREMENT AND ANALYSIS SYSTEM

In order to develop a set processor model, a measure-
ment system was needed for providing insight into the opera-
tion of the prototype, and for validating model generated
performance predictions. Alternative approaches were con-
sidered including measurement of operating system service
requests (SVC's). This traditional approach to measurement
through the use of operating system level software probes
was seen as having several disadvantages and limitations for
database modeling. Measurement of database systems at ICASE,
carried out at the SVC level, required substantial levels of
effort [SHER76]. The set processor modeling project goal of
determining gross feasibility for proposed DBMS designs did
not require micro-level measurements. Finally, experiments
with the NBS PDP-10 clock indicated that it was too coarse
for low-level event measurement. Consequently, a decision
was made to measure prototype performance at a high level
consistent with the project goals, manpower and hardware
resources

.

The positional set processor measurement system in-
stalled in the NBS Experimental Computer Facility testbed is
illustrated in Figure 5.1. Written entirely in FORTRAN (as
is the PSP prototype) , the event recorder and analysis pro-
grams allow selective recording and reporting of gross per-
formance statistics. Events are defined at the FORTRAN pro-
gram level; that is, the measurement system records proces-
sor and clock times for execution of selected prototype DBMS
programs. In addition, disk l/0*s are monitored and trace
records indicating type, magnitude and specific references
for each secondary storage access can be generated. All
processor and clock times are adjusted to remove measurement
system caused perturbations.

5.1 Event Recorder

The PSP event recorder allows the user selectively to
accumulate execution times and (optionally) to record event
traces. Measurement requests can be changed at any time
during the execution of the prototype DBMS. The PSP user
interface grammar accepts measurement system commands inter-
spersed in the PSP instruction stream. Thus, the interac-
tive user can turn on the measurement system after preparing
an experiment, exercise the set processor capability or com-
ponent that is of interest, and then turn off and/or change
parameters for the event recorder without leaving the realm
of positional set processor control.

-30-

POSITIONAL SET PROCESSOR MEASUREMENT AND ANALYSIS SYSTEM

USER
INPUT

QUERIES
POSITIONAL SETl

PROCESSOR

PROTOTYPE

MEASUREMENT^

INSTRUCTIONS

EVENT

RECORDER

OPTIONAL

EVENT
TRACE

I
ANALYSIS AND

REPORT

GENERATION

I

STATIC &

DYNAMIC

ANALYSES

MULTIPLE

EXPERIMENT

ACCUMULATION

t

CROSS

EXPERIMENT

ACCUMULATED

DATA

Figure 5.1

-31-

The user of the event recorder has the flexibility of
requesting data about specific PSP programs, groups of pro-
grams determined by leading characters in program names, and
program "trees". The last option allows measuring all ac-
tivity from the time a specified program is entered until
that program is completed; data for the "tree" of all
subroutines called in the interim is thus recorded.

Two types of measurement can be requested: gross meas-
ures of total times between program entry and exit events,
and detailed recording of event trace records. Gross meas-
ures provide only static time summaries; that is, times for
a program include those for the tree of all programs called
between entry and exit of that program. Event trace records
provide the necessary detailed data required to produce mu-
tually exclusive time analyses for measured prog rains . Trace
records are tightly packed 72 bit (two word) representations
written in 128 word physical records, corresponding to the
NBS PDP-10 basic disk l/O unit (sector) size.

5.2 Multiple Experiment Accumulation

While event trace files are produced for specific ex-
perimental sessions, measured results can optionally be ag-
gregated across experiments. The multiple experiment accu-
mulation component of the measurement and analysis system
aggregates CPU and clock times in permanent secondary
storage files. Aggregation may occur over a number of ex-
periments and over an extended period or time.

5.3 Analysis and Report Generation

A comprehensive analysis and report generation facility
provides tools for processing and outputting measurement
results. Figure 5.2 lists the six reports currently pro-
duced by PSP measurement analysis programs and classifies
them as follows.

Static - gross accumulations of times between pro-
gram entry and exit events generated on the fly
without writing trace records.

Dynamic - time and event summaries derived from
trace files that recognize chronological event se-
quences and can thus determine mutually exclusive
program times

.

-32-

POSITIONAL SET PROCESSOR
MEASUREMENT AND ANALYSIS SYSTEM

ANALYSIS AND REPORT GENERATION

STATIC

SINGLE
SESSION

Static Summary

AGGREGATE

Formatted Path
DYNAMIC Dynamic Summary Aggregate Summary

Trace Event Listing
Transition Report

Figure 5 .

2

-33-

* single Session - reports representing a single posi-
tional set processor session or portion thereof.

* Aggregate - reports representing accumulation of
measurement system results across multiple position-
al set processor sessions.

Each of the six outpuj: reports is described briefly in the
paragraphs below.

5.3.1 Static summary. Figure 5.3 is an illustrative copy of
the static summary report. The report includes: replica-
tions of user query inputs; counts for calls to the measure-
ment system (referenced by the FORTRAN program name SVC400),
event trace records written, and logical and physical I /O
references; CPU and clock times between beginning and end of
measurement session for processing and for measurement (the
latter denoted ISVCPU and ISVCLK); and line items summariz-
ing activity for each measured program. Programs are list-
ed, in descending order, based on the total amount of CPU
time required. Counts for the number of program entries and
for l/o reads, writes and deletes appear for each program.
Level indicators refer to the positions within the tree of
all programs invoked during the session where the program
appeared; the lowest level (1) corresponds to the root,
while the higher the level number the closer a program was
to the "leaves" of the program tree. Totals, averages and
dispersions are presented for both CPU and clock times.
Dispersions, serving as indicators of relative variability,
are calculated by dividing standard deviations by mean
times

.

This is a static analysis because program CPU and clock
times are not mutually exclusive, but rather represent to-
tals for all activities occurring between program entry and
exit. The static summary report is produced whenever meas-
urement occurs, regardless of whether an event trace is
recorded

.

5.3.2 Formatted path. The formatted path analysis report is
illustrated in Figure 5.4. Generated from event trace
records, this report lists program names in their order of
execution. A left to right, top down indentation and line
spacing strategy indicates calling sequences and program
dependencies. l/O events appear as special records with the
format

:

<Operation> <Number of SAU's>/<File Name> /<Starting SAU>

This report is an extremely useful visual footprint path for
prototype DBMS program executions.

-34-

00

o
H

O
u
a
o
z

O M
H CO

s 0^ D
t>£

D U u U
o u
OS o; H
o E- Eh E-

S! z z Z
o o O O
z z Z z
b: b: OS o:

D D D
E-" E-" E-

w
o;
o
Eh

u
u
w

II M
OS cu

s 00 o
(9 II n

>< CO m u
Eh vJ

M > Z M
iJ [u

<
ffi

TO CE

Eh
CO

m t II Eh
o:

< CO Z
S o a u

OS u
b b II o

CO O O Q s
OS u

« cc OS a\ CQ
w U i:<S

X a CQ H
m i-l

D X D H
CA u CO z Z

in

ro
If)

ro

s U Z iH CO CO J o J
o u D Eh a Eh o O

o OS O O Cu Eh Q W M w CO

0< HH HH O Cu < C5 Cll o < M
ON ON ON ON ON ON ON ON ON ON ON ON

it: J J T 2 2 2 2
o i-H n in ro ro ro ro ro ro ro

M i-H CNJ I- in VO ro ro ro <t ro ro

E

U IS SI IS IS IS IS IS IS IS Q IS IS
D
ON
iJ|

Eh in in in in IS IS IS IS IS IS IS IS

ON
>J

Q n n n en S) I-H IS IS IS IS IS IS
OS I-H

Oi
ij

& rH t i-t IS IS ON r- S! IS IS
CO CO I-H IS VO IS 00 IS IS

n ON n IS IS ro IS IS IS IS
o ON IS (N IS IS in IS IS

S) IS iH I-H CO IS IS I-H IS IS IS IS

o iS IS iH ro iH IS in CM IS 00 IS IS

>
I-H IS CTN r- IS r-

in IS VO vO iH H* CN
vo fN fN) <N IS I-H

r~ r- ro

Eh ^ (N VO •<t in in VO IS ON 00
o IS 00 <N in VO ro 00 ro rM
Eh n iH in in (S ro

in 'I' iH IS ro ro
n I-H I-H iH

a. n IS 00 IS 00 IS in IS IS iH IS IS
CO in IS VO vO IS VO CN IS ON IS CN
M n r~ ON ON IS ro IS IS in IS IS
a <^ CJN in in 00 IS CN IS CN IS

IS IS IS IS IS IS IS IS s IS IS

o IS in CD VO IS in ^ IS t !S in

>
< I-H iH I-H ro IS CN IS ON in fO

00 in (N ro IS in l-< CN I-H

I-H ON I-H I-H VO I-H

n I-H

Eh CN) m 00 ro CM IS in CM CJN CM in

O 00 CN 00 IS IS in CN rN I-H

Eh m 00 in ON VD VO ro
00 r- VO in i-i 1—

t

Eh

Z
u CM n 00 CD I-H CN in rH in I-H CN
=»

O
o ON in I-H ro ON ro ON ON ro r- r-

a ro ON a\ r- 00 ai

tu rvi CN CN) CN CN CN CN

u
3

-35-

H K
in r-
in in

Z \ Z\
1^ Cd El w s

CM 00 (S VD Oi Cu
.-H i-H 1-) O O

J OS >J OS

< < <:
< < <

IT) IT) in in in in in in
!Z z Z Z Z z z

w <S! w iS w IS W <S Cd SI
a, CM a. <N CU CM CM Hi CM CU CM Dm CM CN O o
o o o O o O O O o M M
ai ff> 0^ <r> CT\ ON 0^

Pi J OS J hJ OS J kJ OS J

inz\
o o o o o O o O O o O

W iS)

Oj cm
M M HI H M M M M M M M O
a^ CTi <r> C^ 0^ (5^ 0^
J J J J J iJ OS

o o O O o O O O O
M M I-H M M M M M
ON G\ ff\

^ ^ biS iil tiS

w H W W H w w
ei E-i E-i Eh El

w W W W W H W ca
a O O U o O O On m ro ro n ro

<: < < < <;

Eh O
< O W a o
M O OS M

in in n Eh c^^

Z Z Z CO

H
(J Eh Eh
DS D w
cn Ci4 o
r- n

Z ri:

W J CJ CO z J tn < a
CM Eh H O Eh e£ Eh Eh O o
W W iJ [d oS WWW ta

O O >< O Eh O O OS m
* CTv (Ti CM <y\ <j\ r~ r~
* s s s 2 < 2 S S <:

u
3

i-J J w w O Z
Eh Eh Eh Q O 3

D H Cd H M Eh
O O O O CU < Oi
Z CTi ON C3^ CTi 0^ a^
Eh S 2 2 2 2 2 <

u
<c o
D OS
O &j
Z a\
Eh 2

-36-

5.3.3 Dynamic summary. The dynamic summary report, illus-
trated in Figure 5.5, has a format similar to that for the
body of the static summary described above. Program line
item entries contain mutually exclusive times in the dynamic
analysis report, however. That is, CPU and clock times for
any one program do not include processing times for other
measured subroutines.

5.3.4 Trace event summary. A portion of a trace event sum-
mary report is reproduced in Figure 5.6. This output con-
tains one line for each program entry/exit event appearing
in a trace file; l/O events are ignored. The "Entry # 'I

column contains ordinals for entry/exit event pairs within
all executions of a specific program. Pseudo times, time
increments since previous events, and elapsed times between
entries and exits are reported for both CPU and wall clocks.
Because of the large number of trace records that are gen-
erated for even a relatively limited query sequence, the
trace event summary report is generated only on occasions
when detailed incremental measurement results are required.

5.3.5 Transition report. The measurement analysis facility
notes when time changes can not be attributed to measured
programs and records these apparent anomalies on a non-zero
transition time listing. Non-zero transition time can
result from execution of procedures not selected for meas-
urement, and from measurement system malfunctions.

5.3.6 Aggregate summary. The aggregate summary report, hav-
ing a format similar to that for the single session dynamic
summary time analysis, lists accumulated CPU and clock times
for PSP programs across multiple experiments.

5.4 Using a Coarse Clock to Measure Fine Events

Virtually all modern computers provide hardware clocks
that can be accessed through system software. While these
facilities are generally adequate for controlling operating
system functions and for time accounting, they sometimes are
inadequate for monitoring the execution of even complete
procedure sequences of machine instructions [WORT76,
GENT73]. Timing difficulties can be attributed to many fac-
tors. Gentlemen and Wickman [GENT73] discuss a number of
timing problems related to the increasing use of complex
multiprogramming operating systems and multilevel storage
hierarchies

.

In a multiprogramming environment there is no simple
relationship between elapsed time on a hardware clock and
processing time for any given task. The NBS PDP-10 employs
a technique that is widely used for timing separate

< OD4DiOOQt-i|jqpqHjw

<^
1-1 >
u <: CN

w 1

Q 1 iH

PJ
1

1

1

M
1 LO
1 O

tj 1 Eh r--

CU E-i LD

u

U
1 Oi in

Eh
1 w

CO
1 M (M
1 Q

O
uH W

H
CO
>H

iJ
Q

D O n
< Cu >

U < in

2H
El

Cu <x>rsi,HLr)ncr>isr~Lnis(s?s

>HrOrHi-lS!iS)(S.HiS!?S)SlS

Eh

O

rH iH n
CN

00
vD IS M

00
rH CN

CM

nr^iDiD'^iotS'toojaisir)

QC^roir)ir)mLnc\ic5>ooir)r-~
r^'^l'C5^r^'^lS!o^l^)I^r^>H
CXD rO ^ ^ 00 rHn rH

'si' in ON

00 00

n "sj

CN CN

IT)

in

0)

)^

D
Di
-H
C>4

Eh

tS Q CN CN CN i-H in «^ rH i-H CN
Si
O

o
o rocyiir)crirHrHmcrincrir~-r^

"^CTiCTir-r-oo cs\
CN CM CN CN CN CN CN

<C
Eh

O
Eh

-38-

TRACE EVENT SUMMARY REPORT

ANALYSIS OF TIME INCREMENTS FOR FILE DEMO

o X jn, ± \j ij PROG FNTRY# CPU CPU
INC

Ht Is X Ej i\. 1 66364 0

Hj LN 1 Ej I\ M QPROr*
i 1 17 XT r\wv_- 1 66Pi61 9Q7

JCj LN ± J_j Ja. 11 -/VjEj 1 J_j
1X 66666

T Fa\7Fi^Cjr\ V Ej MQnFTT. 1X 66671 ~j

Jj LN i £j j\ rl ^KjEj i J-i O D O / O r.

T T?7\ \7T? rl^vjEj i Li Z Aft

EjJN 1 rjK MyUEj i O X ODDtDD c.D

LhAVtj \A Ck/~* TP rp oMytjEj i b 1 O

ENTER MyGETS 2.
C ^ cDDD9b rO

LEAVE MyGETS 2.
^ jj: "7 o 1bp / z i Z J

ENTER MyPiUb i DO / / D r
D

T? rn olyiycjt, 1 b J ^ if; "7 T ODO / J Z D

J-ltAVEi M Or^ TT Ciyiy(jEj i b -3 0.0111 cD

XjIN i UK M or* FT"! -DJ 001 A'i.D O / ^ O

J D D / ft 7 D
T IT A \ 71? MOD TriC 1X 001D D / D D oD

Ci LN i Ili I\ M Q a T or* 1X D O / O X o
M Q a T OP1*1 "rVijWV^ 1X 00110o o / / o X D

IjIN i Hi IN. MQPT^RMr1 ^ ir 1 rUN 1X O D / O X r:

HiLN 1 i-j I\ lu I7VJEi X O A D O /

T FA^ZF 11 Z/\J Cj 1 o X. yj

rjlN i Ej r\ X\" J.
1X O0P.(AAO O OVC rt 1 CI

T QT n 1X O D ovc/ ^

EjiN i Ej Xs. T QnPFKTIj J/ IT Ej LN
1X O O O X _) o

T TT A \ 71? X OOiX'^.QODO J ^ 0 AZ ft

LEAVE L9I0 1 o o c\tyi 1obykj i oDZ
LEAVE K9I0 1 66906 5

ENTER K9I0 2 66915 9

ENTER L9I0 2 66921 6

ENTER L90PEN 2 66926 5

LEAVE L90PEN 2 66948 22
LEAVE L9I0 2 67010 62
LEAVE K9I0 2 67015 5

ENTER K9I0 3 67025 10
ENTER L9I0 3 67030 5

ENTER L90PEN 3 67036 6

LEAVE L90PEN 3 67059 23

CPU CLK CLK CLK
ELAPSED INC ELAPSED

t^lTI 0 "XACiDliyDZDJfUc) Y)

c/Tic^ -5-7-7:;
X CS4 J b

Q

cD Dfe9r>4o /yz Qy y

D0b4 J /yy -7
1

4 b0b4jo0D -7 •7

DWb4 JoX J
7

fD b0b43oz

1

00 00

D0d43o30 y

Z 3 d0d4Jo /y 4y 4 y

b0b4 joyi 1 z

bl6'b4 Jbyo •7

rD bMb4 jyicl /
Qy Qy

bS5b4jyX4 -7
/

rD bkJb4jyzo 1 AX 4
y btyb4oyj X

5 Ad
c (71 c A "3 QA 1D la D J yft X 1 (71X Ic)

X D ^OiCiA'iOiO^DWD'ijyoD 0 AZ ft OAz t
X 0
K

X ic/ X Ic^ 1 0X KJ

KOi ^AA0iC\O X 0

5054401

5

y

50544022 7

24 50544068 46 46
92 50544172 104 157

102 50544178 6 172
50544189 11
50544199 10
50544208 9

22 50544236 28 28
89 50544339 103 140

100 50544349 10 160
50544360 11
50544369 9

50544379 10
23 50544414 35 35

Figure 5 .

6

-39-

multiprogramming tasks; a logical (software) clock runs
(i.e., is incremented) only when its associated task is be-
ing executed. Wortman [WORT75] lists several kinds of un-
desirable variability in timing information resulting from
this approach including the following.

* There may be a variable delay between the starting
and/or stopping of a task and the corresponding
posting of the logical (software) clock.

* The operating system may be sometimes arbitrary in
charging time to tasks, e.g. "short" interrupts may
be charged to the interrupted task rather than to
the task that caused the interrupt.

* A variable delay may occur between a request to the
operating system for time information and the actual
reading of the clock.

* Qiarging time for l/O operations is complex and of-
ten arbitrary.

In addition to demonstrating all of the above listed prob-
lems, the NBS PDP-10 clock has a granularity that is derived
from the cycle rate of the main power supply. Thus, clock
increments are measured in l/60th of a second units termed
JIFFIES. To further complicate matters, time is recorded as
an integer number of milliseconds; a 16 2/3 millisecond JIF-
FY must be posted as either 16 or 17 milliseconds.

A method for using a coarse timer that was attributed
to Sutcliffe and verified by Gentleman and Wickman appears
in the appendix of their note. When an event occurs, it in-
volves the use of a tight loop to inspect the clock until it
changes. Then, multiplying the number of iterations by the
time required to read the clock yields the time that elasped
between the event and the new clock time. Figure 5.7 illus-
trates the following variables associated with this method
for using a coarse timer.

t(a) = system clock reading when i-th event oc-
curs .

t(i) = actual time when i-th event occurs; this
time can not be determined directly from
the coarse system clock.

t(b) = system clock reading at next closest
tick; i.e. time immediately following
next clock change.

-40-

VARIABLES FOR MEASUREMENT USING A COARSE CLOCK

t(«)
CLOCK GRANULARITY

ONE CLOCK TICK
t(b)

Figure 5.7

-41-

w(i) = elasped time between i-th event and next
clock change; estimated by iterative
clock cycling procedure described above.

The Set Processor measurement system uses this costly
but viable clock cycling strategy. Because PSP events
correspond to subroutine entry and exit points, the measure-
ment system causes a distribution of procedures in relation
to system clock time like that illustrated in Figure 5.8.
When a subroutine is entered, the measurement systems post-
pones processing until a clock tick (change) occurs; thus,
all procedures start at the beginning of a clock interval.
When an exit event indicates that a subroutine is completed,
the measurement system again "cycles" until the system clock
changes. A substantial amount of processor time is sacri-
ficed to achieve the additional accuracy. Actual measure-
ment cost relative to processing time is a function of the
average processor time between events. Specific implementa-
tion characteristics of the PSP measurement system are
described in the following paragraphs.

5.4.1 Pseudo time calculation. Pseudo times are recorded for
positional set processor events. These times have the ef-
fect of removing gaps caused by measurement system cycling.
Pseudo times are calculated using system clock readings and
accumulated cycle times.

tw(i) = total cycle times for all events prior
to and including i

i-1

\ I

> w(j) + w(i)

L L
j=i

i

\ r
> w(j)

L L
j=i

t'(i) = pseudo time for i-th event

= t(b) - tw(i)

Pseudo times both preserve event chronology and allow calcu-
lation of times for PSP procedures with an accuracy of + 1

to + 1.25 milliseconds.

-42-

>-

O

o

O
q::
o.

a.
CO

o
o

Q::
h-
CO

a
LU
OO

UJ
>

UJ
uz
UJ
r>
o
UJ
CO

o

(_> o <:

q:: LU
LU LU >
I- t- <2 Z UJ
LLl LU '_)

cr Ln UD
LU UJ LU

UJ
oz
UJ •<: oQ aa

or q:
LU LU

LU
><

LU UJ _J

rH CSl N->;
.UJ JJJ UJ.

Ln

60

LA

UJ

=>

-43-

5.4.2 Cycle calibration. The measurement approach described
above is predicated on the assumption that the time required
to read the clock is known. If the time is not known, a
"chicken and the egg" problem arises; one must use the
coarse clock for calibrating the clock enhancement mechan-
ism. This problem exists for the NBS PDP-10. Furthermore,
it is complicated by the arbitrary posting of whole mil-
lisecond approximations for JIFFY intervals.

Calibration for the PSP measurement system was accom-
plished by exercising the cycling mechanism thousands of
times under various system loads and at all hours of the day
and night. Clock increments and numbers of calls were
recorded. Least square regression lines were then fitted to
the resulting points. Figure 5.9 is a graphical representa-
tion of the kinked relationship that resulted from this ef-
fort. The kink reflects the arbitrary integer postings when
whole 16 2/3 millisecond JIFFY intervals occur.

5.4.3 Quiescent system timing. The Sutcliffe measurement ap-
proach assumes that there is no multiprogramming. Accept-
able program time dispersion factors have been obtained us-
ing the PSP measurement facility for experiments on a mul-
tiprogrammed system. This indicates that measurements are
consistent within the experiment. However, time magnitudes
for specific procedures vary depending on system load. Con-
sequently, for determining parameter values and validating
model predictions, measurements are performed on a quiescent
system; that is, when no demands (including operating system
task scheduling) are imposed on the system other those made
by the prototype database system.

5.4.4 Synchronizing processor and wall clocks. The PSP meas-
urement and analysis system records and reports both proces-
sor and wall clock times. The cycling strategy can be ap-
plied to one clock or the other, but not to both. Experi-
ments with the NBS PDP-10 showed that both processor and
wall clocks were being incremented at (approximately) the
same time. Furthermore, because a task can lose control of
the processor at a clock tick, wall clock time may be posted
several times for a single processor time increment. Thus,
the primary clock for cycling purposes is the processor
clock; wall clock anomalies are recognized and adjusted by
the measurement system.

-44-

6. PERFORMANCE MODEL - CONCEPTS AND PARAMETERS

6.1 Introduction

The Set Processor Performance Model (SPPM) is an in-
teractive system for estimating gross indicators of perfor-
mance potential for the Positional Set Processor and other
database management systems incorporating similar design
concepts. Written in FORTRAN-10, the SPPM is installed on
the NBS Experimental Computer Facility's PDP-10 computer
with a KA10 processor and 256K 36-bit words of main memory.
Figure 6.1 presents a functional overview of the SPPM sys-
tem; this figure is described throughout this chapter. Made
up of over 200 highly modular subroutines, the Set Processor
Performance Model has two major performance prediction
modelers, four utility modules and a model driver. Model
parameters and derived values describe pertinent applica-
tion, DBMS and environmental characteristics. The following
sections address the model driver, the four utility modules,
model parameters, and conceptual foundations for size and
response time estimation modelers.

6.2 Model Driver

The model driver is an executive routine that invokes
SPPM utility modules and size and response modelers upon re-
quest from the on-line user. Except in the case of catas-
trophic error, control is always returned to the model
driver. Presence of the driver is indicated by the unique
input request prompt, M>. In response, the user enters one
of the eight single letter commands listed and described in
Figure 6.2. The HELP, DISPLAY, and CHANGE utilities are in-
voked by the letters, H, D and C respectively. The l/O
module responds to (L)oad and (S)ave commands. The letters
Z and R are used to request the SI(Z)E and (R)ESPONSE
modelers. Finally, X causes a normal termination or E(X)IT.

-46-

SET PROCESSOR PERFORMANCE MODEL (SPPM) - FUNCTIONAL OVERVIEW

ON-LINE USER

KEYBOARD

2 - 4

4

SPPM

MODEL
DRIVER

FACILITY SELECTION (1)

HELP

DISPLAY

PARAMETERS IN MAIN MEMORY

(2
PARAMETER

DISPLAY

CHANGE (3> -4

I/O

LOGICAL

DATABASE

ELEMENTARY

FILE

ENVIRONMENT

SET

PROCESSOR

(DBMS)

SIZE

ESTIMATES

SIZE
ESTIMATE
REPORTS

(2)

SIZE
MODELER 4

USER
WRITTEN
FUNCTIONS

RESPONSE

MODELER

PARAMETER
STORAGE

ON
. DISK

RESPONSE
ESTIMATE
REPORTS

(2)

<

:3
00

(1)

(2)

(3)

Control always returned to model driver.

Hard copy reports written to disk for spooling.

Preliminary implementation of change facility generates display file

for modification with editor and subsequent reentry using tabular
input facility.

FIGURE 6.1

SET PROCESSOR PERFORMANCE MODEL (SPPM) COMMANDS

SPPM COMMANDS - SELECT FROM FOLLOWING LETTERS:
H = HELP, PRINT THIS SUMMARY
L = LOAD NEW PARAMETER SET FROM DISK FILE
D = DISPLAY CURRENT PARAMETER SET
C = CHANGE PARAMETER SET
S = SAVE CURRENT PARAMETER SET ON DISK
Z = RUN SIZE ESTIMATION MODELER
R = RUN RESPONSE TIME ESTIMATION MODELER
X = EXIT, TERMINATE EXECUTION OF MODEL

M>

Figure 6.2

6.3 Utility Modules

Utility modules perform parameter manipulation and user
assistance functions that support and facilitate the use of
the size and response modelers. Each of the four utility
functions is briefly described below.

6.3.1 (H)elp module. The help module merely displays the
command letters and definitions, exactly as they appear in
Figure 6.2, at the users on-line terminal. Like the other
utility functions, the help module can be invoked whenever
the model driver has control.

6.3.2 (D)isplay module. The display module produces on-line
and hard-copy displays of SPPM parameters. When invoked,
the display facility asks the user to specify whether the
annotated parameter listing should be displayed on-line or
whether a file for subsequent output on a high-speed line
printer should be produced. In either case, listings of
parameter values are associated with FORTRAN variable names
and are preceded by brief definitions. Note that only
parameter values stored in main memory are displayed; param-
eters maintained on secondary storage and derived size

-48-

estimates are not accessible through the display facility.
Displayed values that are not actually stored as parameters,
such as INDEX occurrence counters, are flagged with an as-
terisk (*) in the parameter display. The initial SPPM im-
plementation does not, allow the user to display only a por-
tion of the entire parameter set. It also does not provide
for invoking the display module from within the performance
prediction modelers. Both of these capabilities would be
desirable enhancements.

6.3.3 (C)hange module. The purpose of the change module is
to allow the user to modify parameter sets stored in main
memory. Ideally, this would be an interactive facility for
scanning, extracting and changing parameter values. Such a
capability would require access to a modern text editor or
similar software from within the model. Because this could
not easily be done on the ECF PDP-10 under the TOPS-10
operating system, the preliminary SPPM implementation pro-
vides an alternative to interactive parameter modification.

A temporary mechanism for changing existing parameter
sets is provided through the generation of a formatted
parameter listing stored on disk that can be modified using
an on-line text editor, and then reloaded using a tabular
input processor. To use the temporary change mechanism, the
user follows this scenario:

1. from within the SPPM, generate a formatted parameter
listing

;

2. exit from SPPM control;

3. use a system provided text editor to modify the for-
matted parameter display file;

4. reenter the SPPM; and

5. load the modified parameter set using the tabular
input facility.

The parameter listing produced in Step 1 has the same format
as that generated by the SPPM (D)isplay facility described
above. The listing generator as well as the tabular input
mechanism can be invoked from within the temporary change
facility. As with the display module, only model parameters
stored in main memory are addressed by the change facility;
derived size estimates are not accessible through this func-
tion .

-49-

6.3.4 (S and L) Parameter l/o module. The parameter l/O
module provides for the storage and retrieval of both SPPM
parameters and derived size estimates on secondary storage.
The (S)ave command writes parameters and size estimates from
SPPM main memory common blocks to a user specified disk
file. The process is reversed by the (L)oad command.
Storage on disk is in the form of a simple bit stream. This
comprehensive l/O capability allows the user, after generat-
ing size estimates for a parameter set and using the save
facility, to subsequently load saved parameters and invoke
the response modeler without again having to run the size
modeler

.

6.4 SPPM Parameters

Parameters for the Set Processor Performance Model are
stored in main memory (FORTRAN) common. Figure 6.3 lists
and describes the contents of five common definition files
that are invoked by SPPM programs using the FO^^TRAN "IN-
CLUDE" capability. Each of these files defines one or more
blocks of named common storage and lists and describes vari-
able names used for referencing parameters. These five col-
lections of parameter variables and their conceptual founda-
tions are discussed in the following paragraphs.

6.4.1 (LOGCOM) Logical database description. Content and
structural characteristics of stored databases are important
determinants of DBMS performance [LOWE68, CARD73, CARD75].
The SPPM requires specification of these characteristics in
terms of the relational logical view that is assumed for the
user. Parameters describe the database; its relations, at-
tributes and domains; and the mapping of attributes onto re-
lations .

In order to minimize the number of parameter defini-
tions required to define a database and to facilitate per-
turbations of existing logical database descriptions, repli-
cation variables are provided for relations and for attri-
butes within relations. These variables allow the user to
indicate multiple occurrences of an attribute or relation
entity in the database, without having to define separate
names and characteristics for each occurrence. For in-
stance, the CLASS relation can be defined with a replication
factor of three. This does not mean that there are three
CLASS relations in the database, but rather that there are
two unnamed relations with the same redundancy, degree and
cardinality characteristics as the CLASS relation. Repli-
cated entities are used by the SPPM for estimating size and
response times, but cannot be referenced in surrogate
queries that drive the response modeler. The replication
feature is especially useful for considering the impact of

-50-

m
H

CO

•z
0 5
H

CO
H
z ce:

H
Q
!2

Q <
CO

8
ij

2!

O
s

y s
On
(h

0 CO

>; 05
O
b

•

CO •

(U •

N •

-H •

CO •

•

>1 •

u •

•p •

c •

p •

•CO c •

0) .
I-l • c

i4 • E • (0 • 0P m • c • u • •H
CO XT'

• 0 • •H • +J

C • u • (0 • cn •
rt)

05 •H • •iH • c • 0 • CO +J

di • > • 0 • (0 1-1 C
CO ft • c • -H .

J-I • Q) Q)
(0 • 0) . +J • Q) M-l CO

E • U • +J C • iH 0)
E-i (U • c • 0) (0 • D 1-1

c • CO • u • 3 • E • XJ ft
•H • <u m • (d • 4-1 • rO <u • 0 CO

rO • iH (U • !S •
l-i 0) Q) iH • Q) ^1 0 CO

05 ^ ' •H -H • +J • Q) ' fO ts] N •H • U E O< 0 • M-l U • m • U • ft H iH in • (0 +J H -H
CM •D • P • 0 • fO • CO CO ft <D -P +J

(0 >, c • to • 5 • Cn >i • CO CO CO

ca (U 0) • +J • c CQ CQ (4 • • r-l

0) C -P -P • Q) . m . •H P Q rO • 1-1 ,H 0 P
(0 0 3 CO 0 ' -P tH • u • 0 • U +J • 0 (0 cn (0
rO •H X5 C ;Q • C (0 . (0 • U3 • -P 0) -D C • > c CO +J

,Q P -H •H -H • (U CJ • > ' CO U (U 0 • 1-1 0 CO

(d (0)-) (0 >-i
• E -H • CO •

1)-i)-i E • 0 Q) u
-p M +) g +J • <U Oi •

V-(
• s • +J D 0 <D • U +J 0 o

(0 0) +J 0 +J • 0 • (d • m • H 0 +> rH • 0 c 1-1

TJ i-l fO (U 1—1
• rC • Q • X> CO CO (U •

•

CJ -H ft M

c

•

•

•

0
•H •

-p •

ft • U)

•iH • • 0
(fl • • 4-1

0 CJ • • (0

C to •H • (0 E
0 4-> • cu • H
-H Q w • +J • +J

o +J •H • n3 • CO

M Dj CQ >-l
• CO E CdH Q (U • •H •

U •p • CQ +J • 0
RI u 0) u • Q (0 • CO

10 iH (0 • fd • c
U •H u • 0) •

>-i
• 0

CO Q to •
j-i

• 0 0) ft
(0 • (0 CQ

Q m 6 : 5 • to •H • 0
Q p • Q) CO oi

(0 iH • M-l . U
rH +J (0 • 0 • 0 a

c u • CO • 0) • 0
u (U •H • cu > >H E to • CO • •H • •H
tJl <u >1 • 2 ' +J ^1 J4

0 ^ • CQ • 0) 0) 0
J w Q • CO Q •

•

a

w

2 s s • S • s
O o o • o • o O
u u ^ :

u • u U u
o fc,

• 05 CO CO

o M X • o • CM Ci3 w
H ij • CO • CO ISJ 05

-51-

database size on DBMS performance. Once a logical database
definition kernel is defined, database size can be easily-
varied by modifying relation and attribute replication fac-
tors and by changing relation cardinalities.

One type of SPPM parameter describing database contents
that has not been considered in other DBMS modeling efforts
is redundancy. Redundancy or its obverse, uniqueness, is
specified at three logical levels in the SPPM parameter set:
for the entire database, for relations, and" for attributes.
The latter is accomplished through the specification of the
number of unique values in the domains over which attributes
are defined

.

Redundancy can be loosely defined in terms of unique
instances versus possible occurrences as follows.

REDUNDANCY = 1 - # Unique Instances
Possible Occurrences

For a relation, this concept includes redundancy across as
well as within its attributes. Similarly, at the database
level, redundancy considers all relations in the database.
For certain secondary storage utilization strategies, redun-
dancy is an important determinant of database size. To the
degree that l/O impacts performance, redundancy indirectly
can effect response time as well.

Figure 6.4 is a copy of the LOGCOM common definition
file including complete annotated listings of SPPM variables
for describing logical database structure and content. This
and other parameter descriptions have the following columns.

* PARAMETER - FORTRAN variable names.

* DESCRIPTION - brief description of parameter.

* DEF - indication of storage class for parameter;
e.g. I = integer, F = floating point, A3 = 3 char-
acters alphabetic

.

* BUF SUB - ordinals for PDP-10 words indicating the
position of each variable relative to the beginning
of the common block.

XXFIL and XXSEC variables provide space for the addition of
new parameters and pad to disk sector (128 words) boun-
daries, respectively.

-52-

Q*****1c ************ ****1c*******ie*****ie***ie *************

C
C LOGCOM - COMMON BLOCK REFERENCE
C
C PARAMETERS DESCRIBING LOGICAL DB CHARACTERISTICS
C
Q***
c
C - DATABASE LEVEL PARAMETERS
C

COMMON/LDBCOM/DBNAM, DBRDN, DBNRL, DBNDM , DBNAT , DBNUA , DBFIL (1 2 2

)

C
INTEGER DBNAM , DBRDN, DBNRL, DBNDM, DBNAT, DBNUA, DBFIL

PARAMETER

DBNAM
DBRDN
DBNRL
DBNDM
DBNAT
DBNUA
DBFIL

DESCRIPTION

NAME OF DB
REDUNDANCY % OVER ALL REL
NO. OF REL DEFS IN DB
NO. OF DOMAIN DEFS IN DB
NO. OF ATTRIBUTE DEFS IN DB
NO. OF UNIQUE ATTRIBUTES IN DB
FOR FUTURE USE

DEF

A5
I

I

I

I

I

BUF SUB

1

2

3

4
5

6

7 - 128

- RELATION LEVEL PARAMETERS

COMMON/LRLCOM/RLNAM(100) ,RLRPL(100) ,RLRDN(100) ,RLDEG(100) ,

1 RLCRD(100) , RLFIL(100, 3)

,

RLSEC(96)

INTEGER RLNAM,RLRPL, RLRDN, RLDEG, RLCRD, RLFIL, RLSEC

PARAMETER

RLNAM
RLRPL
RLRDN
RLDEG
RLCRD
RLFIL
RLSEC

DESCRIPTION

NAME OF RELATION
NO. OF REPLICATIONS FOR REL
REDUNDANCY % OVER ALL ATTS.
DEGREE = NO. OF ATT IN REL
CARDINALITY = NO . OF TUPLES
FOR FUTURE USE
FILL TO SECTOR BOUNDARY

DEF

A5
I

I

I

I

BUF SUB

1 - 100
101-200
201-300
301-400
401-500
501-800
801-896

- ATTRIBUTE PARAMETERS

C0MM0N/LATC0M/ATNAM(100) ,ATDOM(100) ,ATFIL(100, 3) ,ATSEC(12)

INTEGER ATNAM,ATDOM,ATFIL, ATSEC

Figure 6.4a

-53-

c
C PARAMETER DESCRIPTION DEF BUF SUB
C
C
C ATNAM NAME OF ATTRIBUTE A5 1-100
C ATDOM NAME OF DOMAIN FOR ATTRIBUTE A5 101-200
C ATFIL FOR FUTURE USE - 201-500
C ATSEC FILL TO SECTOR BOUNDARY - 501-512
C
C - DOMAIN PARAMETERS
C

COMMON/LDMCOM/DMNAM(100) ,DMNVL(100) ,DMAVS(100) ,DMFIL(100, 3)
1 DMSEC(40)

INTEGER DMNAM , DMNVL, DMAVS , DMFIL, DMSEC
C
C PARAMETER DESCRIPTION DEF BUF SUB
C
C
C DMNAM NAME OF DOMAIN AS 1-100
C DMNVL NO. OF VALUES IN DOMAIN I 101-200
C DMAVS AVG SIZE IN BITS OF DOM INST l/*A4 201-300
C DMFIL FOR FUTURE USE 301-600
C DMSEC FILL TO SECTOR BOUNDARY - 601-640
C
C - PARAMETERS MAPPING ATTRIBUTES AND RELATIONS
C

COMMON/LRACOM/RAINM(100, 100) ,RASEC(112)
C

INTEGER RAINM,RASEC
C
C PARAMETER DESCRIPTION DEF BUf SUB
C
C
C RAINM REL/ATT INCIDENCE MATRIX I 1-10,000
C
C WHERE: RAINM { I, J) = K
C
C 1k| = NUMBER OF REPLICATIONS OF JTH ATTRIBUTE
C IN THE ITH RELATION
C
C K < 0 => JTH ATTRIBUTE IN ITH RELATION
C IS INDEXED
C
C K > 0 => JTH ATTRIBUTE IN ITH RELATION
C IS NOT INDEXED
C
C RASEC FILL TO SECTOR BOUNDARY - 10001-10112
C
C
C****END OF LOGCOM COMMON BLOCK REFERENCE**************************
C

Figure 6.4b

-54-

6.4.2 (FILCOM) Elementary file description. Another deter-
minant of DBMS performance is its utilization of secondary
storage. Among others, Senko et . al. have pursued the prob-
lem of mapping (logical) data structures onto (physical)
storage devices by identifying multiple hierarchical
abstract levels falling between logical structures and their
physical representations. Senko 's DIAM II, for example, has
a five level hierarchy [SENK73]. While there may be
disagreement about the generality of the structures employed
(Senko uses a string representation) and the number of lev-
els falling between the logical and physical extremes, the
concept of a continuum of abstractions is well established.
Figure 6.5 is a pictorial representation of the use of mul-
tiple conceptual levels for mapping information onto physi-
cal storage.

The LOGCOM parameters described above address the por-
tion of the continuum labeled "data structures" in the fig-
ure. Storage structures are described by parameters in com-
mon definition file FILCOM. These SPPM parameters describe
secondary storage structures in terms of elementary files
and their logical entries.

In the landmark FOREM and follow-on PHASE-II modeling
work done by Senko, Owens and others, logical data was
mapped onto hardware devices using data sets consisting of
one or more elementary files each with its own physical
record format [SENK70, 0WEN71]. The SPPM uses the term
"elementary file" in a slightly different but related way.
An elementary file (EF) is defined as a collection of logi-
cal entry (LE) occurrences. Elementary files may contain
many logical entry types, each with different characteris-
tics; each LE type occurs in only one named EF, however.

FILCOM parameters span the secondary storage portion of
the continuum in Figure 6.5. In general, elementary file
representations are at a level above the physical represen-
tation device and l/O software specific end of the continu-
um. Physical representation aspects are addressed, however,
by parameters for LE and fixed length EF sizes, for l/O
software main memory buffer sizes, and for overhead at both
the logical entry and elementary file levels. The mappings
of data structures onto storage structures are encoded in
SPPM parameters that specify EF and LE occurrence frequen-
cies in terms of logical (LOGCOM) entries. A functional
description of secondary storage is used for classifying
logical entries. These and other concepts embodied in the
FILCOM parameters listed in Figure 6.6 are discussed below.

-55-

HIERARCHICAL MAPPING OF INFORMATION ONTO PHYSICAL STUKAbL

INFORMATION

CO
LU

ZD
I-O

I—

<
<

i

UJ
uj eno 3< I-
cr uo 3
to H-

CO

CONCEPTUALIZATION

OR

MODELING

STRUCTURED INFO

1
MAPPING

I

I

i
MAPPING

L PHYSICAL REPRESENTATION

USER S VIEW

CONTINUUM

OF

MAPPINGS

AND

ABSTRACT

LEVELS

DEVICE & I/O

SOFTWARE SPECIFIC

Figure 5.5

-56-

Q****ic ***
c
C FILCOM - COMMON BLOCK REFERENCE
C
C ELEMENTARY FILE AND RELATED PARAMETERS
C
Q**
C
C - GLOBAL FILE PARAMETERS
C

COMMON/FGFCOM/GFNEF , GFNLE , GFFIL (126)
C

INTEGER GFNEF, GFNLE, GFFIL

PARAMETER DESCRIPTION DEF BUF SUB

GFNEF

GFNLE

GFFIL

ELEMENTARY FILE PARAMETERS

NO. OF EF DEFINITIONS IN
PARAMETER SET I

NO. OF LE TYPES DEFINED FOR
ALL EE'S IN PARAMETER SET I

FOR FUTURE USE 3 - 128

COMMON/FEFCOM/EFNAM(100) ,EFLET(100) ,EFIXZ(100) ,EFFOH(100)

,

1 EFEOH(100) ,EFNOC(100) ,EFRFO(100) ,EFRFQ(100)

,

2 EFBUF(100) ,EFFIL(100, 2) ,EFSEC(52)

INTEGER EFNAM, EFLET, EFIXZ , EFFOH, EFEOH, EFNOC , EFRFO, EFRFQ,
1 EFBUF,EFFIL, EFSEC

PARAMETER DESCRIPTION DEF BUF SUB

EFNAM NAME OF EF
EFLET NO. OF LOG ENTRY TYPES IN EF
EFIXZ FIXED SIZE FOR EF (INCLUDES

ALL LE'S AND ALL OVERHEAD)
EFFOH O.H. IN BITS FOR FILE
EFEOH O.H. IN BITS FOR EACH LE
EFNOC NO. OF OCCURENCES OF EF FOR

SPECIFIED RFO AND RFQ
EFRFO REL ENTITY DET EF OCCURENCE
EFRFQ QUALIFIER FOR RFO
EFBUF I/O SOFTWARE BUFFER SIZE

IN BIOU'S
EFFIL FOR FUTURE USE
EFSEC FILL TO SECTOR BOUNDARY

A5 1 - 100
I 101 -200

I/*A4 201 -300
I/*A4 301 -400
I/*A4 401 -500

I 501 -600
A4 601 -700
A5 701 -800
I 801 -900

901-1100
1101-1152

Figure 6 . 6a

-57-

c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c*
c

- PARAMETERS FOR EF LOGICAL ENTRIES

COMMON/FLECOM/LENAM(100) ,LEFUN(100) ,LEFRF(100) ,LENOC(100) ,

1 LERFO(100) ,LERFQ(100) ,LESIZ(100) ,LEOHD(100)
3 LEFIL(100, 3) ,LESEC(52)

PARAMETER

LENAM
LEFUN
LEFRF
LENOC

LERFO
LERFQ
LESIZ
LEOHD
LEFIL
LESEC

DESCRIPTION

NAME OF LOGICAL ENTRY
FUNCTIONAL TYPE FOR LE
ELEMENTARY FILE REF
NO. OF OCCURENCES OF LE
FOR SPECIFIED RFO AND RFQ

REL ENTITY DET LE OCCURENCE
QUALIFIER FOR RFO
AVERAGE SIZE IN BITS OF LE
O.H. IN BITS FOR LE OCCURENCE
FOR FUTURE USE
FILL TO SECTOR BOUNDARY

DEF

A5
A5
A5

I

A4
A5
I/*A4
I/*A4

BUF SUB

1 - 100
101-200
201-300

301-400
401-500
501-600
601-700
701-800
801-1100
1101-1152

END OF FILCOM COMMON BLOCK REFERENCE*************************

Figure 6.6b

•58-

Parameter functions Most SPPM parameters are simple vari-
ables; that is, user provided parameter values contain all
of the information required by the model. Another class of
specification can be used for several FILCOM parameters.
Parameter functions allow the user to specify relationships
that do not lend themselves to description with simple vari-
ables. Two types of parameter functions are used by the
SPPM: intrinsic functions for describing LE and EF oc-
currence frequencies, and optional functions that provide a
mechanism for invoking special user written FORTRAN pro-
cedures that determine secondary storage characteristics.

* INTRINSIC FUNCTIONS - occurrence frequencies for
logical entries and elementary files are specified
by parameter triples of the form:

XXNOC times for each XXREO in XXREQ

where: XX = EF or LE
NOC = integer
REO = relational entity occurrence indicator
REQ = relational entity qualifier

For instance, a logical entry might be defined as
occurring

:

<2> times for each <TU>ple in relation <PEREL>

Intrinsic functions perform (sometimes complex) pro-
cedures to determine occurrence frequencies from
parameter tuples. Because relational entity oc-
currence indicators (REO's) and relational entity
qualifiers (REQ's) refer to entity types and specif-
ic entity names defined in LOGCOM parameters, in-
trinsic functions map logical data structures onto
elementary file representations for storage struc-
tures. Furthermore, this mapping means that even
when FILCOM parameters are held constant, EF and LE
occurrence frequencies can change when LOGCOM logi-
cal database descriptions change.

OPTIONAL FUNCTIONS - when simple parameter constants
are not sufficient for describing secondary storage
structures, the SPPM allows the user to invoke FOR-
TRAN procedures denoted by placing an asterisk (*)
followed by an up to four character function names
in the parameter set. The parameters for which op-
tional functions can be defined are described with a

-59-

"/*A" in the format column of the common definition
file annotation. Optional functions provide flexi-
bility and generality for representing complex
and/or unique storage structures with SPPM parame-
ters .

Functional description A useful representation of secondary
storage structures should both provide insight into the
utilization of storage resources and assist in evaluating
alternative strategies. To achieve these objectives, the
SPPM elementary file description of secondary storage re-
quires that the non-overhead portion of each logical entry
be associated with a specific secondary storage function. A
useful taxonomy for secondary storage structures must be
comprehensive 7 that is, it should describe a large portion
of existing and proposed DBMS storage utilization stra-
tegies. The four-part functional taxonomy illustrated in
figure 6.7 meets this criteria and provides the necessary
insights

.

Most existing systems do not specifically segment
secondary storage structures into four distinct components
for representing data, primary relationships, secondary re-
lationships and definition. They can be easily described,
however, in these terms. Furthermore, to the degree that
these elements are not explicitly recognized as unique and
separable, database design tradeoffs can be made without
sufficient consideration for their impact on storage and
processing costs.

Brief descriptions for each of these four functional
components of secondary storage structures follow.

* DATA - data instance storage. The size relative to
other components can vary greatly depending on the
accessing strategies employed, the definition of
atomic elements (e.g. field values vs. records), and
the handling of redundancy.

* PRIMARY (INTRINSIC) RELATIONSHIPS - relationships
among data that are derived directly from the (logi-
cal) data structure. The amount of storage required
varies from none (when all intrinsic relationships
are signified by physical contiguity) to multiples
of that required for data storage (when all intrin-
sic relationships are explicitly represented with
pointers, lists, etc.). Regardless of how they are
represented, intrinsic relationships cannot be dis-
carded; together with data, they form a complete
(although possibly inefficient for data accessing)
physical representation of the structured informa-
tion.

-60-

FUNCTIONAL TAXONOMY OF SECONDARY STORAGE STRUCTURES

SECONDARY

RELATIONSHIPS

(access aids)

PRIMARY

RELATIONSHIPS

(intrinsic)

\

DATA (instances)

Figure 6.7

-61-

* SECONDARY RELATIONSHIPS (ACCESS AIDS) - relation-
ships among data that are not derived directly from
the data structure, but are defined in order to ex-
pedite accessing of the stored data. Because of
their existence solely for increasing efficiency,
these storage structure components can be destroyed
without altering the completeness of the physical
representation

.

* DEFINITION - descriptive entries required for iden-
tifying, encoding and decoding physical representa-
tions on secondary storage. This component includes
data element descriptors such as size (number o£
bits, characters, words, fields, etc.), class (al-
phabetic, numeric, etc.), mode (integer, floating
point, etc.), and reference names and synonyms.

Many existing and proposed DBMS storage structures can be
described in terms of these four functional categories.

Overhead Usually it is not possible to attribute all of the
secondary storage required for logical entries and their
elementary files to the four functions described in the pre-
vious section. Requirements for additional, non-functional
secondary storage are considered overhead by the SPPM.
Overhead for a particular FILCOM parameter set is derived
from parameters describing four overhead classes:

* elementary file overhead,

* excess of fixed EF size over computed size for all
LE's in an EF,

* overhead associated with all LE's in a specific
named EF, and

* overhead for a specific LE type.

Overhead calculations can also be influenced by optional
functions specified for FILCOM parameters.

6.4.3 (PHYCOM) Physical environment. SPPM parameters
describing the physical environment for the object DBMS ap-
pear in the Figure 6.8 listing of the annotated PHYCOM de-
finition file. Physical environment parameters fall in
three categories: hardware characteristics, system load,
and l/O times

.

Hardware characteristics Hardware architecture is described
in terms of smallest addressable units (SAU's) and basic l/O
units (BIOU's). The term "smallest addressable unit" refers
to the amount of main memory that is generally accessed; it

-62-

PHYCOM - COMMON BLOCK REFERENCE

PHYSICAL CHARACTERISTICS

Q**** ***

c
c
c
c
c
Q***

c
- HARDWARE/ SOFTWARE ENVIRONMENT

COMMON/PENCOM/ENPPI, ENLOD, ENSAU, ENCPS, ENBIU, ENIOM,
1 ENIRA, ENIWA,ENIRT, ENIWT, ENIOP, ENICL, ENIDE, ENFIL(115)

INTEGER ENSAU, ENCPS , ENBIU , ENIOM , ENIRA, ENIWA,ENIRT, ENIWT,
1 ENIOP, ENICL, ENIDE, ENFIL

PARAMETER DESCRIPTION DEF BUF SUB

ENPPI

ENLOD

ENSAU

ENCPS
ENBIU

ENIOM

ENIRA

ENIWA

ENIRT

ENIWT

ENIOP

ENICL

ENIDE

ENFIL

PROCESSOR POWER INDICATOR F
WHERE: 1=NBS ECF PDP/l0

2=MACHINE WITH TWICE
PDP-10 PROCESSOR
POWER (SPEED)

.5=1/2 PDP-10 SPEED
COEF OF SYSTEM LOAD F
WHERE: 1=QUIESCENT SYTEM

DEDICATED TO PSP
N>1 => REAL TIME = N x

QUIESCENT SYSTEM TIME
SIZE IN BITS OF SMALLEST I

ADDRESSABLE UNIT (SAU)
NUMBER OF CHARACTERS PER SAU I

SIZE IN SAU'S OF BASIC l/O I

UNIT (BIOU)
MAX NO. OF BIOU'S TRANSFERRED I

WITH ONE ACCESS (SEEK + LATENCY)
ACCESS TIME IN MILLISECS FOR I

SECND STORAGE READ
ACCESS TIME IN MILLISECS FOR I

SECND STORAGE WRITE
TRANSFER TIME IN MILLISECS FOR I

SECND STORAGE READ
TRANSFER TIME IN MILLISECS FOR I

SECND STORAGE WRITE
TIME IN MILLISECS TO OPEN SECND I

STORAGE FILE
TIME IN MILLISECS TO CLOSE SEC I

STORAGE FILE
TIME IN MILLISECS TO DELETE I

SECONDARY STORAGE FILE
FOR FUTURE USE

4
5

6

7

8

9

10

11

12

13

14 - 128

C***END OF COMMON BLOCK REFERENCE pHYCOM****************************

Figure 6 .

8

-63-

corresponds to the byte or word size for most modern comput-
ers. SPPM parameters specify the SAU size in bits (e.g. 36
for the PDP-10) and the number of characters that can be
represented in a single SAU. A "Basic l/O Unit" is defined
to be the smallest amount of secondary storage that is
transferred for a single access; this term corresponds to
the concept of sector or segment for a rotating device such
as disk. Parameters for BIOU ' s define their size (in SAU's)
and the maximum number that can be transferred with a single
access. The latter concept refers to secondary storage al-
location mechanisms that store files in non-contiguous
groupings of BIOU's, sometimes termed "clusters". Another
PHYCOM hardware parameter is a gross indicator of processor
power. The NBS PDP-10 is used as the reference point.
Currently, no distinction is made between processing and l/O
capabilities; that is, a change in the power parameter is
applied equally to all computer functions.

System load A single PHYCOM parameter represents the impact
of other users on database performance. The simplicity of
this treatment does not indicate a lack of understanding or
appreciation for the complexity of resource allocation and
scheduling problems, but rather reflects the high-level
orientation of the SPPM modeling effort. Estimation of per-
formance in a multi-programming environment is an interest-
ing and challenging problem that has been widely addressed
in the literature [SHER76, SVOB76, SALT70, SCHW70]. The ob-
jective of the SPPM modeling effort is to evaluate DBMS
design concepts; hardware and operating system facilities
are seen as the foundation upon which the DBMS is built.

][/0 times The remaining PHYCOM parameters describe
input/output capabilities by specifying milliseconds re-
quired for various direct access l/O functions. A secondary
storage direct access read or write is viewed as being made
up of three components.

* Access - arm movement and latency (rotational delay)
for each reference sequence of a file.

* Transfer - actual transfer of data from main memory,
through the channel, onto the device (or vice ver-
sa) .

* Software Overhead - processing of DBMS, language,
and operating system l/O softv/are.

-64-

6.4.4 (SOFCOM) DBMS software. Parameters describing DBMS
software appear in the common definition file SOFCOM that is
reproduced in figure 5.9. A database management system can
be viewed as a collection of functional components . The
SPPM allows the user to define up to 100 DBMS functions and
to optionally specify processing times and modification (im-
provement or degradation) factors for each.

6.4.5 (SPRCOM)Set processor. Common definition file SPRCOM
contains parameters unique to the Positional Set Processor
prototype. Set processor parameters appear in figure 6.10.
Eventually, these parameters should be recast so that they
apply to a broader class of database management system im-
plementations; this has not yet been achieved, however.

6.5 Size Estimation Modeler

The SPPM size estimation facility is an analytic model
that is applicable to a wide range of database management
system designs using the relational logical view. The gen-
erality of the size modeler is dependent on the elementary
file representation of secondary storage and its applicabil-
ity to various DBMS storage structures. While this research
has focused on a single DBMS design, the applicability of
FILCOM parameters to various prototype and commercial sys-
tems has been considered. Many existing database management
systems appear to be describable using SPPM parameters. The
ability of the model to represent the complex and sometimes
unique secondary storage structures employed by the Posi-
tional Set Processor prototype supports claims of power and
flexibility. Model generality is enhanced by the ability to
define optional parameter functions; a number of these user
written procedures were used to describe PSP secondary
storage structures.

The model calculates size estimates for source and
stored databases. Stored database sizes are analyzed by
secondary storage functions and by elementary files and
their logical entries. Results are placed in common storage
so that they can be accessed by other SPPM modules. The
common definition file ZESCOM, which contains annotated size
modeler derived variables, is reproduced in figure 6.11.

6.6 Response Estimation Modeler

The response estimation modeler is properly viewed as a
modeling framework with utility functions necessary for a
detailed modeling effort. Within this framework, algorithms
for estimating response time for specific object DBMS
designs can be developed using the SPPM provided utility

-65-

(2* it ie * * * ie ******** ie ************* ie * * ie ******************** *

c
C SOFCOM - COMMON BLOCK REFERENCE
C
C PARAMETERS DESCRIBING THE DBMS SOFTWARE
C
Q* ** *

c
C - GLOBAL SOFTWARE PARAMETERS
C

COMMON/SGSCOM/GSNFN, GSFIL(126)

C
INTEGER GSNFN,GSFIL

C
C PARAMETER DESCRIPTION DEF BUF SUB
C
C
C GSNFN NO. OF DBMS FUNCTIONS DEFINED I 1

C GSFIL FOR FUTURE USE - 2-128
C
C - SOFTWARE FUCTIONS
C

COMMON/ SFNC0M/FNNAM(100) ,FNPRC(100) ,FNMOD(100) ,FNFIL(100, 2)
1 FNSEC(12)

C
INTEGER FNNAM,FNPRC,FNFIL,FNSEC

C
C PARAMETER DESCRIPTION DEF BUF SUB
C
C
C FNNAM NAME OF DBMS FUNCTION A 5 1-100
C FNPRC MILLISECS OF PROCESS TIME FOR I 101-200
C EACH EXECUTION OF FUNCTION
C FNMOD MODIFICATION FACTOR FOR DBMS F 201-300
C FUNCTION PROCESS TIME WHERE:
C TIME FOR I-TH FUNCTION =

C FNPRC(I)+FNMOD(l)*FNPRC(I

)

C FNPRC(I)=N0 SPECIFICATION => 0

C FNFIL FOR FUTURE USE - 301-500
C FNSEC FILL TO SECTOR BOUNDARY - 501-512
C
C***END OF COMMON BLOCK REFERENCE sOFCOM***************************
C

Figure 6 .

9

-66-

************* 1c*** ********************* *************

c
C SPRCOM - COMMON BLOCK REFERENCE
C
C PARAMETERS DESCRIBING THE SET PROCESSOR DBMS
C
Q* ***

DOUBLE PRECISION KFILE
(C

G - BIT STRING PROCESSING PARAMETERS
C

COMMON/ SBSCOM/ BSPKS , BSQLV, BSMPI , BSYNT , BSXIC , BSX2C , BSFIL (122)
C

INTEGER BSPKS, BSQLV, BSMPI, BSFIL
C
iC PARAMETER DESCRIPTION DEF BUF SUB
jC

\c

C BSPKS NO. OF BITS IN QUATREE PACKET I 1

:C BSQLV NO. OF QUATREE LEVELS I 2

\c BSMPI MAX NO. OF POSITION ID'S FOR
C FILE STRUCTURE I 3

|C

C (PARAMETERS FOR TRAVERSAL PROCESSING TIME ESTIMATION)
'iC

jC BSYNT Y INTERCEPT IN LINEAR EQUATION F 4
C BSXIC COEF FOR XI = CARDINALITY F 5

|C BSX2C COEF FOR X2 = RANGE F 6
'!c

jc BSFIL FOR FUTURE USE - 7-128
iC

l|C***END OF COMMON BLOCK REFERENCE SPRCOM****************************
C

Figure 6 . 10

-67-

"ff * * * "ft * * * * * * * * "ff * * * * "ff * * * * * * * * * * * * * "fc * * "ff * * * * * * * * * * "ft * * * "ff * ic "k

c
C ZESCOM - COMMON REFERENCE
C
C COMMON AREA FOR SIZE ESTIMATION COMPONENT OF PSPM
C
(2**
C
C - GLOBAL SIZE ESTIMATION PARAMETERS
C

COMMON/ZGZCOM/GZFIN, GZDAT(2) ,GZTIM,GZFIL(123)

C
C
C
C
C
C
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

DOUBLE PRECISION GZFIN
INTEGER GZDAT, GZTIM,GZFIL

PARAMETER

GZFIN

GZDAT
GZTIM
GZFIL

DESCRIPTION

FILE NAME FOR SIZE ESTIMATION
REPORT (FFFFFF.SIZ)

DATE OF SIZE EST (DD-MM-YY)
TIME OF SIZE EST RUN (HH:MM)
FOR FUTURE USE

DEF

(D)
A10
2A5
A5

BUF SUB

1-2
3-4
5

6 - 128

- SOURCE DATABASE SIZE ESTIMATION

COMMON/ ZSOCOM/SOTRL, SOTAT, SOTSZ , SOTIA, SOTUP, SOTRZ

,

1 SOTAR, SOATN, SOTPR, S0FIL(119)

INTEGER SOTRL, SOTAT, SOTIA, SOFIL, SOTAR, SOATN

PARAMETER

SOTRL

SOTAT

SOTSZ

SOTIA

SOTUP

SOTRZ

SOTAR

SOATN

SOTPR

SOFIL

DESCRIPTION

TOTAL NO. OF RELATIONS IN
SOURCE DBdNCL REPL REL

)

TOTAL NO. OF ATTRIBUTES IN
SOURCE DBdNCL REPL ATT)

TOTAL SIZE OF SOURCE DB IN
BITS FOR ALL RELS(W/REPL)
TOTAL NO. OF INDEXED ATT IN
ALL RELS

TOTAL NO. OF TUPLES IN ALL
RELATIONS IN DB

TOTAL SIZE IN BITS OF ALL
NAMED RELS(w/0 REPL)

TOTAL ATTRIBUTES INCLUDING
REPLICATED RELATIONS

TOTAL INDEXED ATTRIBUTES
INCL REPLICATED RELATIONS

TOTAL TUPLES INCLUDING
REPLICATED RELATIONS

FOR FUTURE USE

DEF BUF SUB

I 1

I 2

F 3

I 4

F 5

F 6

I 7

I 8

I 9
10 - 128

Figure 6 . 11a

-68-

- STORED DB SIZE ESTIMATION

common/zpscom/pstid, PSTPR, PSTSR, PSTDE, PSTFO, PSEFZ,
1 PSTLE, PSTEF,PSTSZ,PSFIL(119)

integer pstef,psfil

parameter description

PSTID

PSTPR

PSTSR

PSTDE

PSTFO

PSEFZ

PSTLE

PSTEF

PSTSZ

PSFIL

TOTAL SIZE IN BITS OF DATA
INSTANCE STORAGE

TOTAL SIZE IN BITS OF
PRIMARY RELATIONSHIPS

TOTAL SIZE IN BITS OF
SECONDARY RELATIONSHIPS

TOTAL SIZE IN BITS OF
DEFINITION

TOTAL SIZE IN BITS OF
FILE OVERHEAD
SIZE IN BITS OF ALL NAMED
EF'S(w/0 REPL)

TOTAL NO. OF LE ' S IN ALL
EF'SdNCL. REPL)

TOTAL NO. OF EE'S IN DB
(INCL. REPL)

TOTAL SIZE IN BITS OF
STORED DB(ALL EE'S W/REPL)

FOR FUTURE USE

DEF

F

F

F

F

F

F

F

I

F

BUF SUB

1

3

4

5

6

7

8

9
10-128

- SIZES AND NUMBERS OF STORED ELEMENTARY FILES AND LOGICAL ENTRIES

COMMON/ ZSNC0M/SNEF0(100) , SNFLS(100) , SNFOH(100) , SNLEO(100)

,

1 SNLES(100) , SNLEF(100) ,SNLOH(100) ,SNFIL(100, 1) ,SNSEC(96

PARAMETER DESCRIPTION DEF BUF SUB

SNEFO
SNFLS
SNFOH
SNLEO
SNLES
SNLEF

SNLOH
SNFIL
SNSEC

NO OF OCCURENCES FOR EF
TOTAL SIZE FOR ALL LE ' S IN EF
OVERHEAD FOR EF
NO OF OCCURENCES FOR LE
SIZE FOR LE (EXCLUDING OVHD)
NO OF OCCURENCES FOR ALL LE '

S

IN EF
OVERHEAD FOR LE
FOR FUTURE USE
FILL TO SECTOR BOUNDARY

F
F
F
F
F
F

C
C
c
c
c
c
c
c
C**END OF COMMON BLOCK REFERENCE zeSCOM*******************************^
C

1 - 100
101-200
201-300
301-400
401-500
501-600

601-700
701-800
801-896

Figure 6.11b

-69-

functions. Figure 6.12 is a pictorial overview of the func-
tional components of the response estimation modeler for the
SPPM . A query in the form recognized by the PSP object DBMS
is decoded and placed in a canonical form. A functional se-
quence selector determines the series of calls to set pro-
cessor primitives and response model utilities required to
estimate response time for the given query. Incremental es-
timates and activity indicators are posted to accumulators
defined in common definition file RESCOM . Response time and
l/O estimates for each query and for an entire query se-
quence are produced. Throughout the estimation process,
references are made to parameters and derived size estimates
in main memory rather than to an actual database . Monte
Carlo processes are used whenever selection among alterna-
tives can not be determined from user inputs and/or from
parameter values. Response estimation modeler components
are discussed in the following paragraphs.

6.6.1 Query

.

The SPPM accepts queries in the same format as
those processed by the Positional Set Processor DBMS that is
the object of this modeling effort. Like the PSP, the model
utilizes the LANGPAK interactive language design and front-
end parser for decoding queries. In fact, the SPPM decoder
is made up of PSP programs with few if any modifications.
The canonical form is recorded in parser arrays with complex
boolean predicates converted to post-fix format.

6.6.2 Functional sequence selector. Given a query in canoni-
cal form, a DBMS must determine the' sequence of activities
required to generate a response. The sequence selector per-
forms this function for the SPPM. Comprised of sometimes
heavily modified programs from the Positional Set Processor
object, it evaluates the query in relation to parameter
descriptions of database contents and storage strategy and
invokes a sequence of calls to utility procedures and to set
processor primitives. Estimates of time and resource re-
quirements for database functions representing events that
would be performed by the PSP are recorded in the order in
which they would be invoked. Replications of events that
would be performed iteratively are handled by a pseudo pro-
cess iteration indicator that is used as a multiplier when
requirements are posted. The PSP functions necessary to
answer a specific query are represented in the SPPM by a
series of two types of events: calls to set processor primi-
tives, and calls to response modeler utilities.

6.6.3 Set processor primitives. Set processor primitives are
subroutines invoked when, in addition to estimating time and
resource requirements, it is necessary to determine values
for deriving subsequent processing steps. This is the case,
for example, when the cardinality of a set resulting from a
query selection must be determined to estimate the cost of

-70-

RESPONSE ESTIMATION MODELER OVERVIEW

PARAMETERS AND
DERIVED VALUES

LOGCOM

FILCOM

PHYCOM

SOFCOM

SPRCOM

ZESCOM

RESCOM

QUERY IN

PSP SYNTAX

CANONICAL
FORM

FUNCTIONAL

SEQUENCE

SELECTOR

L . I

i

SET

PROCESSOR

PRIMITIVES

MOD I F I ED

OBJECT DBMS

PROCEDURES

RESPONSE MODELER

UTILITY FUNCTIONS

ON-LINE

SUMMARY

RESPONSE

ANALYSIS

Figure 6.12

-71-

set operations that follow. Set processor primitives gen-
erally call SPPM utility functions to update response esti-
mation accumulators. When there are no such processing re-
quirements, time and resource estimates are posted by the
appropriate response modeler utilities invoked directly by
sequence selector programs.

For the initial SPPM implementation, twelve set proces-
sor primitives listed and described in figure 6.13 have been
defined. This limited set of functions appears to be ade-
quate for modeling PSP query response processing. Of
course, additional experience applying the model to increas-
ingly diverse designs may provide insight that will suggest
additions to this list of primitives.

The primitive set traversal function TRVRS is used in
two ways. It is, like other set processor primitives, in-
voked by sequence selector programs when traversal is a
necessary step in the determination of an answer to a query.
It is also used as a surrogate for estimating time- and l/O
requirements for many of the other primitive functions. For
example, the cost of the operation

A UNION B ==> C

is approximated by the sum of the time and l/O requirements
for traversing the three sets A, B and C.

6.6.4 Response modeler utilities. Response modeler utility
functions are invoked by sequence selector and set processor
primitive programs. Utilities perform four types of func-
tions :

* retrieving times and/or posting model time accumula-
tors 7

* maintaining a pseudo process iteration indicator;

* clearing and displaying response modeler result ac-
cumulators;

* estimating l/O resource and time requirements; and

* estimating traversal time and l/O resource require-
ments .

With the exception of traversal, all response utilities are
general in that they operate within the context of the SPPM
but are not specific to the Positional Set Processor proto-
type and its model representation.

-72-

SET PROCESSOR PRIMITIVES

FUNCTION NAME DESCRIPTION

ALLOC Allocate buffer for set representation

DALOC
SSAVE
SDEST

Release buffer:
Save set representation on disk
Destroy set representation in buffer

UNION Union two sets

INTRS Intersect two sets

XUNSD Exclusive union two sets

RLCMP Relative complement (set difference)

SCOPY Reproduce set representation in other buffer

RGSTR Find table entry and return reference;
if not there, make table entries

SADDl Add element to set

TRVRS Enumerate (materialize) set members

Figure 6.13

-73-

Retrieve /post util ities A number of response utility func-
tions are provided for retrieving parameter times for DBMS
functions and for posting estimates to model accumulators.
These functions are invoked by user written sequence selec-
tor programs and by set processor primitives.

Pseudo process iteration Utilities allow the user to incre-
ment and reset a pseudo process iteration indicator that is
used as a multiplier when model estimates are posted to ac-
cumulators. These utilities warn the user of possible
anomalies when nested iterations are encountered and check
for consistency between indicator increments and decrements

Accumulator initial ization and display Model utilities are
provided for initializing and generating on-line and hard
copy :eports from response modeler accumulators. On-line
summary reports are generated and query level accumulators
are cleared by invoking the appropriate utilities after pro-
cessing each query. Other utilities generate detailed ana-
lyses for the entire response estimation session.

l_/0_ estimation A generalized l/O estimation facility is used
to predict and record l/O time and resource requirements.
l/O requests are stated in terms of elementary file names
appearing in FILCOM parameters, the starting SAU in the EF,
and the numbers of smallest addressable units for each re-
quest and for the total amount of data to be transferred.
The l/O estimator is patterned after the generalized direct
access l/O facility in the PSP prototype; the conversion of
l/O requests stated in terms of SAU ' s to specific BIOU
transfers is done by the high level l/O interface. The l/O
modeler is actually one level above the PSP facility in that
it can model a sequence of logical l/O requests.

Traversal estimation Traversal estimation in the initial
SPPM implementation is based on the bit-string set represen-
tations used in the PSP prototype. First, size of the bit
string required to represent the set being traversed is es-
timated. Then, processing time is estimated based on param-
eters for packet size and cost to retrieve a packet. Final-
ly, l/O costs are determined based on the size of the main
memory buffer relative to the bit string set representation.
Because of its specificity with respect to the object DBMS,
the traversal estimation facility is the only response
modeler utility that would have to be rewritten in order to
model another set processor design strategy.

6.6.5 (RESCOM) Response modeler common. Accumulators and in-
termediate variables used by the response estimation modeler
are defined in common definition file RESCOM. Figure 6.14
is a reproduction of this annptated FORTRAN common defini-
tion file.

-74-

Q***

c

C RESCOM - COMMON BLOCK REFERENCE

C COMMON AREA FOR RESPONSE MODELER COMPONENT OF PSPM
C
Q* ***

c

C - GLOBAL RESPONSE MODELER PARAMETERS
C

COMMON/RGRCOM/GRNRL, GRFIN, GRDAT (2) , GRTIM

,

1 GRTRR, GRTWR, GRTOP, GRTCL, GRTDE, GRBTR,
2 GRACC,GRTRN,GROTI,GRTIO,
3 GRRRQ , GRWRQ , GROPQ , GRCLQ , GRDEQ , GRBTQ

,

4 GRACQ,GRTNQ,GROTQ,GRTIQ,
5 GRTPQ,GRTPR,GRTIP,GRTOQ,GRTOH,
6 GRREQ,GRRES,GRPII,GRFIL(94)

DOUBLE PRECISION GRFIN
INTEGER GRNRL, GRDAT, GRTIM , GRTRR, GRTWR, GRTOP, GRTCL, GRTDE, GRBTR,

GRRRQ, GRWRQ, GROPQ, GRCLQ, GRDEQ, GRBTQ, GRPII , GRFIL

PARAMETER DESCRIPTION DEF BUF SUB

GRNRL

GRFIN

GRDAT

GRTIM

NO. OF RELATION DEFS IN DB
PARAMETER SET (INCL NEW RELS I

CREATED DURING RESPONSE EST.)
FILE NAME FOR RESPONSE EST (D)
REPORT (FFFFFF.SIZ) A10

DATE OF RESPONSE ESTIMATION RUN
(DD-MMM-YY) 2A5

TIME OF RESPONSE ESTIMATION RUN

(ARM MOVEMENT + LATENCY)
GRTRN TRANSFER TIME
GROTI OTHER l/O TIME
GRTIO TOTAL l/O TIME FOR SESSION

F
F
F

2-3
4-5

(HH:MM) A6 6

(TOTAL I/O ESTIMATES FOR SESSION, ALL E -FILES)

.

GRTRR NO. OF READ REQUESTS I 7

GRTWR NO. OF WRITE REQUESTS I 8
GRTOP NO. OF FILE OPENS I 9
GRTCL NO. OF FILE CLOSES I 10
GRTDE NO. OF FILE DELETES I 11
GRBTR NO. OF BIOU'S TRANSFERRED I 12
GRACC ACCESS TIME F 13

14
15
16

Figure 6 . 14a

-75-

C (TOTAL I/O ESTIMATES FOR QUERY, ALL E-FILES)
C
C GRRRQ NO. OF READ REQUESTS I 17
C GRWRQ NO. OF WRITE REQUESTS I 18
C GROPQ NO. OF FILE OPENS I 19
C GRCLQ NO. OF FILE CLOSES I 20
C GRDEQ NO. OF FILE DELETES I 21
C GRBTQ NO. OF BIOU'S TRANSFERRED I 22
C GRACQ ACCESS TIME F 23
C (ARM MOVEMENT + LATENCY)

|

C GRTNQ TRANSFER TIME F 24
C GROTQ OTHER l/O TIME F 25

|

C GRTIQ TOTAL l/O TIME FOR QUERY F 26 '

C
C (TOTAL I/O AND PROCESSING ESTIMATES FOR ALL FUNCTIONS)

;

C
C GRTPQ QUIESCENT SYSTEM PROCESSING F 27

\

C TIME FOR CURRENT QUERY
C GRTPR QUIESCENT SYSTEM PROCESSING F 28 '

C FOR SESSION
C GRTIP TOTAL l/O AND PROCESS TIME F 29 '

C FOR SESSION
\

C GRTOQ TOTAL SYSTEM OVERHEAD FOR QUERY F 30
C GRTOH TOTAL SYSTEM OVHD FOR SESSION F 31

*

C !

C (TOTAL RESPONSE TIME ESTIMATES - I /O AND PROCESSING
C
C GRREQ RESPONSE TIME FOR CURRENT QUERY F 32 !'

C GRRES RESPONSE TIME FOR SESSION F 33
C

j

C (PSEUDO PROCESS ITERATION INDICATOR) '

C
'

C GRPII PSEUDO PROCESS ITERATION IND I 34
C GRFIL FOR FUTURE USE I 35-128 '

C
C - WORKSPACE PARAMETERS
C

C0MM0N/RWKC0M/WKRLB(100) ,WKFIL(28)
INTEGER WKRLB,WKFIL '

C
C
C PARAMETERS DESCRIBING PSPM REPRESENTATION OF SET-P '

C IN-CORE WORKSPACE BUFFERS
C
C WKRLB(IRL) = INDICATOR OF WHETHER RELATION IRL
C IN PARAMETER SET IS IN THE MAIN

'

C MEMORY BUFFERS FOR MODELING PURPOSES
C
C =1 <==> IRL-TH RELATION IS IN WORKSPACE '

C OTHERWISE, IRL-TH RELATION NOT IN WORKSPACE
C
C WKFIL FOR FUTURE USE

Figure 6.14b

-76-

INTERNAL SET REPRESENTATION PARAMETERS

COMMON/RSRCOM/SRNAM (100) , SRCRD(100) , SRRNG(100) , SRLEN(100)

,

1 SRUSB(100) ,SRNLE(100) ,SRSAU(100) ,SRCHG(100)

,

2 SRFIL(100, 3) ,SRLIS, SRSEC(51)

INTEGER SRNAM,SRCRD, SRLEN, SRUSB, SRNLE, SRSAU, SRCHG,
1 SRFIL, SRLIS, SRSEC

PARAMETER DESCRIPTION DEF BUF SUB

SRNAM INTERNAL SET(l.S.) NAME
SRCRD I.S. CARDINALITY
SRRNG RANGE OVER WHICH I.S. DEFINED

I.E., LARGEST INTEGER
SRLEN SEC STORAGE LOGICAL ENTRY TYPE

•SC'==> MODE = SCRATCH
SRUSB USER I.S. BUFFER SIZE IN SAU '

S

SRNLE ORDINAL FOR LE W/lN ALL LE '

S

IN EF
SRSAU STARTING SAU OF PORTION OF LE

IN USER BUFFER
SRCHG IND OF WHETHER PORTION OF SET

IN BUFFER HAS BEEN CHANGED
= 0 <==> NO MODIFICATION

SRFIL FOR FUTURE USE - 801-1100

(GLOBAL INDEX TO LAST INTERNAL SET DEFINED)

SRLIS LAST INTERNAL SET DEFINED I 1101

SRSEC FILL TO SECTOR BOUNDARY I 1102-1152

SET REPRESENTATIN PARAMETER SUBSCRIPTS

COMMON/ RSSCOM/ I SSNAM, ISSCRD, ISSRNG, ISSLEN, ISSNLE , ISSFIL (1 2 3

)

PARAMETER DESCRIPTION DEF BUF SUB

A5 1 - 100
I 101-200
F 201-300

A5 301-400

I 401-500
I 501-600

I 601-700

701-800

ISSNAM SUBSCRIPT FOR SRNAM I 1

ISSCRD SUBSCRIPT FOR SRCRD I 2

ISSRNG SUBSCRIPT FOR SRRNG I 3

ISSLEN SUBSCRIPT FOR SRLEN I 4
ISSNLE SUBSCRIPT FOR SRNLE I 5

ISSFIL FOR FUTURE USE I 6-128

Figure 6 . 14c

c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

PROCESSOR UTILIZATION ESTIMATES BY SOFTWARE FUNCTION

COMMON/RPRCOM/PRNEX (100) ,PRTPR(100) ,PRTIO(100) ,PRTIP(100)

,

1 PRFIL(100, 3) , PRONX, PROPR, PROIO , PROIP , PRSEC (64

)

INTEGER PRNEX, PRONX, PRFIL, PRSEC

PARAMETER

PRNEX

PRTPR

PRTIO
PRTIP
PRFIL

DESCRIPTION

NO. OF EXECUTIONS FOR DBMS
FUNCTION

TOTAL QUIESCENT SYSTEM PRO-
CESSING TIME FOR DBMS FUNC

TOTAL I/O TIME FOR FUNCTION
TOTAL I/O AND PROCESS TIME
FOR FUTURE USE

DEF

I

F

F
F
I

BUF SUB

1 - 100

101-200

201-300
301-400
401-700

(FUNCTION 'OTHER' ACCUMULATORS)

PRONX NO OF EXECTUIONS, OTHER
PROPR QUIESCENT SYSTEM PROC TIME
PROIO I/O TIME, OTHER
PROIP TOTAL I/O AND PROCESS TIME

I

F
F
F

701
702
703
704

PRSEC FILL TO SECTOR BOUNDARY I 705-768

l/O STATISTICS BY ELEMENTARY FILE AND EF BUFFER SIZE

COMMON/RIECOM/IENRR(100) , IENWR(100) , IEBTR(100) , IEOTH(100)

,

1

REAL lETIM
IETIM(100) , IEBUF(100) , IEFIL(100, 2) , IESEC(96

PARAMETER

lENRR
lENWR
lEBTR
lEOTH

DESCRIPTION DEF

lETIM
lEBUF

lEFIL
lESEC

NO. OF READ REQUESTS I

NO. OF WRITE REQUESTS I

NO. OF BIOU'S TRANSFERRED I

NO. OF OTHER l/O REQUESTS I

(INCL. OPEN, CLOSE, DELETE)
TOTAL I/O TIME F
I/O SOFTWARE BUFFER CONTENTS: I

= 0 <==> NOT OPEN
< 0 <==> FILE OPEN BUT BUFFER

NOT FILLED FROM FILE
(I.E. NO READ OCCURRED)

> 0 <==> STARTING SAU ON FILE
FOR BUFFER CONTENTS OF
OPEN FILE

FOR FUTURE USE
FILL TO SECTOR BOUNDARY

BUF SUB

1 - 100
101-200
201-300
301-400

401-500
501-600

601-800
801-896

Figure 6 . 14d

-78-

C - RESPONSE MODELER EF AND LE INDICES
C

COMMON/ RSUCOM/ I DMAIN, lALIAS, lELMNT, lETNDX, ITXTBL, ISNDXM,
1 ISWORK, ISINVS, ISRAVI , ITEMEF, IFIL(20)

,

2 lATDEF, IREFEF, lATALI, IRLALI, ISETPI, lATPID,
3 lATOM, ITUPLE, IRELAT, lEHASH, ISPNTR, lUNVRS,
4 lAVSET, IRAVAL, IRAPTR, IRLBST, ITUBST, ITEMLE,
5 IFIL2(22)

C
C PARAMETER DESCRIPTION DEF BUF SUB
C

C
C IXXXXX INDEX FOR EF XXXXX = DMAIN I 1-10
C ALIAS
C " ELMNT
C ETNDX
C TXTBL
C SNDXM
C SWORK
C SINVS
C SRAVI
C TEMEF
C
C IFIL FOR FUTURE USE I 11-30
C
C lYYYYY INDEX FOR LE YYYYY = ATDEF I 31-48
C REDEF
C ATALI
C RLALI
C SETPI
C ATPID
C ATOM
C TUPLE
C RELAT
C EHASH
C SPNTR
C UNVRS
C AVSET
C RAVAL
C RAPTR
C RLBST
C TUBST
C TEMLE
C
C IFIL2 FOR FUTURE USE I 49-60
C
C***END COMMON BLOCK REFERENCE RESCOM*****************************

Figure 6 . 14e

-79-

6.6.6 Monte Carlo processors. Throughout the response esti-
mation process, Monte Carlo processes are used for estimat-
ing specific LE occurrences and set cardinalities that can
not be determined from user inputs and/or parameter values.
The uniform distribution is used with the PDP-10 FORTRAN-10
random number generator.

6.7 SPPM Component Interaction

Set processor performance model components interact
through parameters and derived values in common storage.
Size modeler derived values are the basis for response
modeler estimates; that is, response modeler l/O estimation
routines reference elementary file and logical entry oc-
currence frequencies and sizes determined by the size
modeler and stored in common ZESCOM

.

An analysis of the approximately 215 FORTRAN
subroutines that comprise the SPPM shows the following dis-
tribution .

SPPM COMPONENT % OF ALL PROGRAMS

Model driver and SPPM
utility modules

37%

Size modeler 23

Response modeler:
General framework
PSP specific

16%
10 26

Model utility subroutines 14

TOTAL - ENTIRE SPPM 100!

Thus, only 10% of all model subroutines are specific to the
object DBMS. The other 90% would be appropriate to modeling
other DBMS designs.

-80-

The dependency of the response modeler on existing size
model estimates is reflected in the following scenario for
applying the SPPM to an existing prototype with measurement
capabil ity

.

1. Prepare FILCOM parameters describing secondary
storage structures for the object DBMS.

2. Prepare PHYCOM and (for the PSP only) SPRCOM parame-
ters describing the hardware/software environment
and DBMS design specific characteristics.

3. Prepare one or more LOGCOM parameter sets describing
logical databases and their contents.

4. Use the SPPM size modeler to estimate database size.

5. Review and validate size estimates. Iterate on
steps 1 through 4 until satisfied with the model
representation of the DBMS.

6. Use the measurement system to provide insight into
operation of the DBMS prototype and to prepare a

preliminary SOFCOM parameter list.

7. Prepare DBMS specific decoder and sequence selector
procedures referencing defined and derived charac-
teristics for specific elementary files and logical
entries defined in step 1 and stored in common
blocks FILCOM and ZESCOM . Revise SOFCOM parameter
list as required.

8. Use the measurement system to determine parameter
values for SOFCOM parameters as revised.

9. Use the response modeler to estimate response time
and l/O resource requirements.

10. Review and validate response estimates. Iterate on
steps 6 through 8 until desired accuracy is
achieved.

11. Perturb parameters and query complexity to determine
performance beyond range of object DBMS prototype
capability and to study the impact on performance of
potential changes in DBMS design and environment.

The next chapter describes in greater detail SPPM size and
response estimation outputs and derives mathematical rela-
tionships using the parameters defined above.

-81-

7. PERFORMANCE MODEL - MATHEMATICAL SUMMARY

7.1 Introduction

This chapter presents a summary of the mathematical re-
lationships that are embedded in the SPPM programs . Like
the prototype DBMS that is the object of the modeling ef-
fort, the Set Processor Performance Model is coded entirely
in (relatively) standard FORTRAN for the DEC/PDP-10 comput-
er. Approximately 125 subroutines comprise the size estima-
tion and response modelers. Another 80 subroutines perform
the driver, help, display, change and l/O functions
described in the previous chapter. Because of the time and
difficulty associated with, reading even well structured and
documented programs such as these, essential mathematical
relationships have been extracted, recorded in a pseudo-
FORTRAN notation, and briefly annotated.

7.1.1 Model documentation; form and content. The author be-
lieves that a concise statement of mathematical relation-
ships is a necessary component of model documentation. Com-
plex computerized models such as the SPPM have both
mathematical and software characteristics. While the ques-
tions of form and content for documentation of software sys-
tems are addressed by a substantial body of literature and
practical guidelines CKRAS77, BENJ71, NBS76], procedures for
documenting large computerized models are not as well
developed [GASS79]. Thus, the format used in the following
paragraphs reflects the SPPM source language (FORTRAN) as
well as the author's ideas about the information that should
be included in a summary of mathematical relationships. It
should be noted, however, that material like that contained
in this chapter is necessary but not sufficient for describ-
ing model software. Other required supporting documents in-
clude system and program logic flow charts, source program
listings, parameter (common block) listings, operating in-
structions, and narrative descriptions for the overall model
and its components [GASS79].

7.1.2 Parameters, indices and index functions. The mathemat-
ical relationships in the following paragraphs are stated in
terms of the parameters defined in the previous chapter. In
general, these parameters are used for expressing relation-
ships in this chapter without further definition. An excep-
tion is made when parameters appear directly on output re-
ports; these parameters are defined again for completeness
and ease of understanding.

-82-

Model parameters are of two types: single valued
(scalars) and multi-valued (arrays). While the former can
be referenced directly, the latter must be referenced using
a clarifying subscript. Multi-valued parameters are associ-
ated with the seven entity classes listed below.

* Kexax-ions

AuuriDUL.es

k uomains

* Elementary Files

* Logical Entities

* Database Management Functions

* Set Representations

Special index variables, corresponding to these seven entity
classes, are used consistently throughout for clarifying
references to multi-valued parameters. In general, model
references are always by name; that is, subroutine arguments
are entity (relation, attribute, domain, elementary file,
etc.) names rather than index values. Consequently, index
functions are used to translate name references into their
corresponding subscript values. Figure 7.1 lists the seven
index variables and their associated index functions.

Residing in common (shared) main memory, these indices
can be accessed and modified by all SPPM subroutines.
Parameter indices serve as "currency" indicators; that is,
they reflect the specific entity parameters that are
currently being considered by the model. An index value is
properly viewed as an ordinal within all defined parameters
for an entity class. For brevity, however, references are
made to "relation IRL" , and "logical entry ILE" , etc. rather
than to the more precise "IRL-th relation defined in the
parameter set", or "ILE-th logical entry defined in the
parameter set", etc. throughout this document.

7.1.3 Chapter overview. The remainder of this chapter sum-
marizes SPPM mathematical relationships using an annotated
pseudo-FORTRAN notation under four major headings. First,
model utility routines are listed. The next two sections
describe size estimation model relationships and present the
mathematics for the response modeler respectively. Both the
size and response models are described in terms of variables
appearing on their respective output reports. Finally, bit
string size estimation and user defined functions for

-83-

SPPM INDEX VARIABLES AND FUNCTIONS

XjNUCjA UCjOL-KJ. ir i XvJlN r UJNU i X UIN

T PT X xxJ-io UD V XcJ-dX-XtJIl 11 dillc)

T A T" Q TTR ^ 3 -1- -f-
T-

-5 Vii tH o namo^
I

T r>M T DM Q T TR f r\m ^ir> naTno^iUl'lOUD ^ UUlUdXxl ildluc)

Ij i ciutrii L-d i y IXXc XIlClcX X CD ujd V e xemen L.d jTy xxxe ndme/

ILE Logical entry index ILESUB (logical entry name)

IFN DBMS function index IFNSUB(DBMS function name)

ISR Set representation
index

ISRSUB(set representation name)

Figure 7 .

1

-84-

determining parameter values are discussed. Mathematical
foundations for (two) major classes of functions written for
modeling the Positional Set Processor Prototype are present-
ed. A list of all currently defined parameter functions
also appears.

Despite their apparent complexity and completeness, the
mathematical definitions that follow do not fully describe
the SPPM size and response estimation facilities. While the
model is encoded in a procedural language, this chapter
presents model relationships using a non-procedural
mathematical notation. Artificial indicator variables are
defined to allow representation of conditional statements
embedded in iteration procedures. Other, more complex pro-
cedural interactions must be discovered through review of
source code for SPPM programs, however.

7.2 Model Utility Routines

A number of utility functions are used by the SPPM.
These routines are defined here so that they can be used for
representing model mathematical relationships. The func-
tions listed below are mathematical primitives that are used
throughout the size and response modelers; their meaning is
not tied to SPPM procedures or parameters.

INTUP (VALUE) = the smallest integer greater than or
equal to real VALUE.

INTDN (VALUE) = the largest integer less than or equal
to real VALUE.

IGCD(N1,N2) = the greatest common divisor for the pair
of integers, Nl and N2 ; this function
uses the Euclidean algorithm.

MAXINT(N1,N2) = the largest of two integers, Nl and N2

.

= N2 <==> N2 > Nl
Nl otherwise

MININT(N1, N2) = the smallest of two integers, Nl and N2

.

= N2 <==> N2 < Nl
Nl otherwise

-85-

7.3 Database Size Estimation

The size estimation model produces three hardcopy de-
tailed analysis reports and three on-line summaries derived
from the hardcopy output. One detailed report and one sum-
mary display contain size estimates for source databases.
Other outputs are concerned with database sizes after they
have been loaded by the DBMS that is the object of the
modeling effort. Source database size estimates provide
benchmarks for evaluating the secondary storage utilization
efficiency for the database management design being studied.
For instance, one interesting measure of a DBMS design is
its database explosion factor; that is, how much larger is a
stored database than the source from which it was loaded?
The following paragraphs consider mathematical relationships
for estimating sizes of source and stored databases.

7.3.1 Source database size estimation. Figure 7 . 2 presents
copies of the source database on-line summary and detailed
analysis reports with variable names inserted in brackets
under data entries. These variables are defined below.

Magnitudes for each relation occurrence First magnitudes for
each occurrence of relations defined for the database are
dervied. Given the following indicator variables:

INDRATdRL, lAT) = indicator of whether relation IRL con-
tains attribute lAT

= 0 <==> RAINM(IRL, lAT) = 0
1 Otherwise

IATRPL(IRL, lAT) = number of replications of attribute lAT
in relation IRL

|RAINM(IRL, lAT)

I

INDXEDdRL, lAT) = indicator of whether attribute lAT is
indexed in relation IRL

= 0 <==> RAINM(IRL, lAT) >_ 0
1 <==> RAINM(IRL, lAT) < 0

we count named, total and indexed attributes for each oc-
currence of relation IRL.

-86-

D 1—

I

J
1—1

1—

1

o: s> o:

1—I i

• tq 1

J 05 ^ < S ai r-) W 1

< Eh rH Eh IS Eh m Eh I

Eh o o • o O 1

O w w ^ w 00 W 1 w
Eh 1—J ^ 1—

1

rH 1 1 1

ALYSI

a z
w <
<

w
< Q 1—

1

1—1
1—

1

'—
1 i tsi

El u Eh S • N 1 M
Z K .-H < S D <N 05 1 w
M 2 -H Eh tS Eh n Eh I

03 o • o ^ O 1 w
u w Q w cn CO cn 1 CQ
u Q 1 1^1 1 tH 1—1 1

a m
D
O Eh

w
W

W H W 1 u
Z tH Eh I u

U O D H 1 05
M M CD w CQ 1 D
Eh Eh m bi o
M < 05 U 1 cn
Eh J Eh Cu N 1

Z W Eh p M 1

U B5 < Eh W 1

J W 1-1

< D D
Eh O M
O M 03

M 1—

1

w N N ta S) (S SI (—

1

• CO M l-l <N tsl

• < CO to IS ^ ts (0
J CO Eh

• < J 05 (N (N in (N 00 o
• Eh < Eh 00 f-H 1—

t

CO
• < Eh 1—

1

• o
TO

Q X

w
<
<
<
Q CO X Z
W Q <C

J Eh Z Eh

<C D M M
Eh CO I—

J

O M
Eh 05

Eh
Eh J r-i

< < a
Eh Cb

O 05
Eh <

Eh

J
J J 05
W J
05 U 05

05 i-i

1—

1

IS IS ts IS
ts 5) IS IS cu
IS IS ts IS

IS
IS

OT

IS IS CO
.H t-i 0^ 1—

1

<N IS (N rH

rj- (N (N m

u 1—

1

• N N IS ts IS IS 1—

1

M CO M (N N
• to Eh CO IS vD IS vD en 05

H a CO VO CTi >* &H
• a m a <N (N in CN CO O
• a k; 00 1-1 fH to
• « 1 1 1—

1

to 1—

1

z to Q IS SI S) IS IS 1—

1

O a 05 ts S) IS SI SI

TI PL LC
IS SI SI SI

S)
IS

Eh

K IS CN Si o
Eh iH rH <3^ to

u
05 1—

1

05
Q D H 1—

1

W X < SI CN in <
z Q Q M
H Z Z Eh

b^ M M O
a 1—

1

CO
o

CO

1—

I

05

a J Eh 1—

1

ij Eh < < Eh

ir' O <N <N <
03M
O Eh
Eh M

i-H
OT

05 1 1 to
Eh I I

Eh r—

1

< 05
Eh

Q f£

1—

1

Q
Eh

W s IN (N n <
S 2 s
< M Z
Z i-J M

1—

1

S
< < to >H

z z bl >J <
ij J Cu >J CLi Eh

u 05 s < o O
05 1 1 a CO to Eh Eh

03
Eh
CO

z
Eh

in <
O
CO

05
iH <
^ Eh

o
CO

05
f Eh

O
CO

-87-

INMATR(IRL) = number of named attributes for relation
IRL in source DB; does not include ei-
ther attribute or relation replications.

DBNAT
\ r

> INDRATdRL, lAT)

L L
IAT=1

ITOATR(IRL) = total number of attributes for relation
IRL in source DB; includes attribute re-
plications but does not include relation
replications.

DBNAT
^ r

> lATRPLdRL, lAT)

L L
IAT=1

INDATR(IRL) = total number of indexed attributes for
relation IRL in source DB; includes at-
tribute replications but does not in-
clude relation replications.

DBNAT
\ r

> INDXEDdRL, IAT)*IATRPL(IRL, lAT)

L L
IAT=1

Then, the number of tuples and total size for each oc-
currence of relation IRL are determined from database param-
eters and the above derivations.

RLCRD(IRL) = number of tuples in relation IRL in
source (by definition); does not include
relation replications. (Attribute re-
plications do not impact tuple count.)

-88-

RELSIZ(IRL) = total source DB size in bits for rela-
tion IRL; includes attribute replica-
tions but does not include relation re-
plications .

DBNAT
\ r

> IATRPL(IRL, lAT) *DMSCRD

L L
IAT= 1

where : DMSCRD=DMAVS (IDM) *RLCRD(IRL)
IDM=IDMSUB(ATDOM(IAT)

)

Magnitudes for all relation repl ications Given the number of
relation repl ications

:

RLRPL(IRL) = number of replications for relation IRL
(by definition)

we calculate totals for all replications of relation IRL.

ITARPL(IRL) = total number of attributes for relation
IRL in source DB including both attri-
bute and relation replications.

= ITOATR(IRL) * RLRPL(IRL)

ITANDX(IRL) = total number of indexed attributes for
relation IRL in source DB including both
attribute and relation replications.

= INDATR(IRL) * RLRPL(IRL)

TUPTOT(IRL) = total number of tuples for relation IRL
in source DB including relation replica-
tions (attribute replications do not im-
pact tuple count)

.

= RLCRD(IRL) * RLRPL(IRL)

TRLSIZ(IRL) = total size in bits for relation IRL in
source DB including both attribute and
relation replications.

= RELSIZ(IRL) * RLRPL(IRL)

-89-

IRLBIUdRL) = total size in Basic l/O Units (BIOU's)
for relation IRL in source database in-
cluding both attribute and relation re-
plications.

= INTUP(TRLSIZ(IRL)/(ENBIU*ENSAU)

)

Total s for all relations Totals for the source database size
analysis report are derived by summing the above results for
specific relations across all relations defined for the da-
tabase .

INMATD = total number of named attributes for all
relations in source DB; does not include
either attribute or relation replica-
tions. (N.B. a single named attribute
may be contained in multiple relations.)

DBNRL
\ r

= > INMATR(IRL)
/ L
IRL=1

>_ DBNAT

SOTAT = total number of attributes for all rela-
tions in source DB; includes attribute
replications but does not include rela-
tion replications.

DBNRL
\ r

.. ^ = > ITOATR(IRL)

I L
IRL=1

SOTIA = total number of indexed attributes for
all relations in source DB; includes at-
tribute replications but does not in-
clude relation replications.

DBNRL
\ r

> INDATR(IRL)
/ I

•

.
,

IRL=1

-90-

SOTUP = total number of tuples for all relations
in source DB; does not include relation
replications. (Attribute replications
do not impact tuple count.)

DBNRL
\ r

> RLCRD(IRL)

L L
IRL=1

SOTRZ = total source DB size in bits for all re-
lations; includes attribute replications
but does not include relation replica-
tions .

DBNRL
\ r

> RELSIZ(IRL)

L L
IRL=1

SOTRL = total number of relations in source DB
including relation replications.

DBNRL
\—

r

> RLRPLdRL)
L L
IRL=1

SOTAR = total number of attributes for all rela-
tions in source DB including both attri-
bute and relation replications.

DBNRL
\ r

> ITARPLdRL)
L L
IRL=1

-91-

SOATN = total number of indexed attributes for
all relations in source DB including
both attribute and relation replica-
tions .

DBNRL
\ r

> ITANDX(IRL)

L L
IRL=1

SOTPR = total number of tuples for all relations
in source DB including relation replica-
tions (attribute replications do not im-
pact tuple count)

.

DBNRL
\—

r

> TUPTOT(IRL)

L L
IRL=1

SOTSZ = total size in bits for source DB includ-
ing both attribute and relation replica-
tions.

DBNRL
\ r

> TRLSIZ(IRL)

L L
IRL=1

ISTBIU = total size in Basic l/O Units (BIOU's)
for source DB including both attribute
and relation replications.

DBNRL
\ r

> IRLBIU(IRL)

L L
IRL=1

7.3.2 Stored database size estimation. Two on-line summaries
and two hard copy analysis reports are produced by the
stored database size estimation module. Figure 7.3 contains
copies of these SPPM outputs with variable names inserted in
brackets under data entries. The stored database size esti-
mation process requires that occurrence frequencies and size
estimates be determined for all logical entries. Logical
entry statistics are accumulated by elementary file (EF) and
by secondary storage functions. To estimate storage

-92-

STORED DATABASE SUMMARY REPORTS

STORED DATABASE FILES

ENTITIES DEFINED TOTAL DB

ELEM FILES

LOG ENTRIES

10
[GFNEF]

19
[GFNLE]

16
[PSTEF]
369.00
[PSTLE]

SIZE(BITS) .34711E+06
[PSEFZ]

. 48078E+06
[PSTSZ]

STORAGE UTILIZATION

STORAGE FUNCTION SIZE (BITS)

PRIMARY RELATIONSHIPS 43487.
[PSTPR]

SECONDARY RELATIONSHIPS 22026.
[PSTSR]

DEFINITION 23040.
[PSTDE]

DATA INSTANCES 28800.
[PSTID]

FILE OVERHEAD . 36343E+06
[PSTFO]

TOTAL STORED DATABASE . 48078E+06
[PSTSZ]

Figure 7 . 3a

-93-

-
1—1 'o
O CO 1 in O
O D CN ^ in in 0^ 00 ro in IS 1 r-l w

O M O ro »H 1 rH m
^

tlj
Eh

dj H
M 1 r

Ji? ^ in 1

ft Qv IS 1 IS 1—

1

S HH
+ + + + + + 1 + O

[l] U 1 w
CM 1 ro Eh

in ^ "} 2 I 1 w
<S ® S <N rO ro ^ in 1 ro

o to CD 00 .-t ro (Nl rH 1—

I

^ 1 V0 I—

i

'—

'

i-t 1-4 1 ro
1

•

O
in

U Eh

% +
a

-
JzJ

(S 1—

1

00 1 IS D
CO N 00 1 IS M
S CO CS 1 00 Eh
M E^ 1 CD W

'—

'

1 CM Dm
1—

r

O
in
IS
+
a

1
• 1—

1

IS ^ 1 IS U
•>t 1 O

Ci^ O v£> iH 1 IS Eh
Ui N 00 1 ro CO
Q CO 1 <N Cu

w E^ t—

1

CO
<1 in
CQ IS_

h-

1

+

*i CM IS • r—

1

O ^ >t CO • <N
1 Oi

00 ro ^ ro ro 1 CM CO_
ro «—

1 in oi CN 1 IS E^w W C"* n • ro (N CN 1 CM C/0

CO 1—

>

1 fM a<
O 1 1

W in
IS_
+
K
00 1—

1

00 r~ 1 r- BJ
00 (S 1 CO Cu

VD 1 'J Eh
0^ CO •>*

1 ro CO
E-< 1 04
1—

J

1—

i

l£ vD 1—

'

IS IS 1 IS ISI

+ + + 1 + to

u 1 u Eh
1—

1

(S CD • - . vD • IS 1 00 CO
'S!

1 ^ IS IS CO 1^ ^ IS 0^ r*) ts 1 r~- &
E"* 1—1 CO CD VO IS CO li) VC (N in IS IS t I

O ^ in 00 .H .H CO 00 ^ <T> IS 1 00
E- < u VD ro 1-1 C~- IS

Eh 00 • n fO iH • •

- '—

'

1—

1

Pi P iH rH iH ro in w
&J u-l .H iH Eh

rH CO

CO
1—

1

t—

1

VO IS VO

1—

1

IS IS SI
+ + +
u u u 1—

1

rn ^ IS 00 • IS rH SI

rr IS s 00 IS • IS rH
£h CO IS CO <S) IS 00 lO in IS IS U

in CD 00 CO ^ c^ IS CO
Eh u u r- .-H r- li) ro in S ro 0-

l_) 00 iH \o • m ro iH ^ c^ • 1 1

1—1

w IS IS IS IS IS IS IS IS IS IS IS u
CO (SISISISISISISISISQ IS J

CQ ~ 12 ISISISISSIQQISISCS
U CO (S IS • • ts (Ti CO
•J t—

'

in s ^ in CM • 0<
iH ro ro VO iH ro 1—

1

fcH 1—

I

UJ CO u Q
CM <N in rH CM iH CM .H <5\ Eh

rH 63
' ^ pc^ J
Eh L—I Z

'Z? H
m t r

z W Eh X .4 E tli W M tmM < z Q CQ w a > > W <H S Z Eh Q O Z EhM s J J X Z 3 M ^ a O
1

Q < u W E-i CQ CO 1/1 tn Eh Eh

o •-{ (N n in ID r- CO a\ (s
z

631-1
iJ IS)M
J CO
< 63
Eh J
O Eh
Ehi_i

D D

O 63
J

63 Eh

n
U U
Z Z IS IS IS IS IS
D 6h IS IS IS IS

63 •<t CM IS IS IS CM
J n IS in 00 IS VC 00 in

63 Eh ro ro rH 00 CM r~- 00 <J\

1-3 1—1 vO CM rH CM in CM CM

D 1-1

U O
U J
O 63
Z

63 CO
J 1-1

63 Eh

\ m
CO Eh
Eh OM Eh
CQ l—i

Q r-i

EC X
> o
O iJ
z

63 CO
J 1-1

U Z
Z D
6h 6h
O 63
Eh J
CO 1—

J

CO
Eh I-l

M CO
ea 63— J
63 z
N CO
H I—

I

CO

(S SI
5!

SI s>
S)

SI
S> IS

^£> CN SI SI SI CM
ro S in 00 SI 00 in
CO CO rH 00 CN r- 00 CTi

lO CM iH CM in CM CM

SI SI
<S 00

6) vo
S) SI
+ +
63 63
Si in S) IS SI

S)
SI
+
63

• SI
rH S>

rH rH CO ro

in VO in 1 vo
SI SI IS 1 SI
+ + + 1 + 1-1

1

63 63 63 1 63 O 1

IS r- VD • CN 1 ff. X
• SI SI in 1 in O

00 ro t 00 <yi 1 vo Eh
IS rH rH 00 CM 1 00 o
rH • CM • 1 rH Eh

1 • 1 1

51
S)
+
63

(SS> -ISSISIISISISISS)
. . SI IS • " 'SI 'IS

IS'tCM -ISC^IVOVO -rHIS

' CM rH rH 00 ro

SI SI SI SI S2 IS S) SI tSSISSISllSISIS SI SI SI
S! s> SI s> SI SI SI SISISISISIISSISI IS SI SI
SI SI SI SI SI SI SI SI OSISISIISSISISI SI IS <S

SI El SI SI SI • IS IS SI • • • SI • SI
rH vo. SI rH . ^ . • • i-t r-{ • rH .

rH rH 00 ^O^rorOrHCororo ^

^

SI SI
SI IS
+ +
63 63

SlSlSllSSllSISISISSlSlSlSlSSIISISISSl
SIISISSIISSISIISISIS • "SI *SIS}ISSlSI

SI^COSICOSIIS • -Q
vOvOISISISSllSSlSl '^ISISS} • •0>r-(IS
r-i^cMrMCNr>)CNCMCMvOvovosivovOvOrOrHSi
ininr-r^r--r^r~r~i^ro^^ •Mroroo^00 •

SI • SI SI
(S IS VO

• Ov ro SI SI
vo 't in CM (N
ro ^ H*

fciCuftHpHMMWHMCJCJOaiCJUUMMpa
63636363o:o::Zo:o::6363632:6363630Sci::>
QQQQa4a<t-(o.aicncocoEHCocncna.cuo

S SI
S) SI
+ +
63 63

SIQISISSlOISSISISlOSISIISSlSISIISIS
ISISSIISSISISIISISIS 'SlSIISISISISISIS

SICD -SISISISI -SlSl
VOVOISSISIISSIISIS "ISOOSl ' • • ^ 'SI
r-r~CNCMfM(NfMCNCMVOvDrHSirMV0VOrHrH5)
ininr-r~r-r~r-r~r^ro'trH .r~-rorocM<j\ •

[n r-l z Z cn CO
63 b H M < <

< < M
Ph s s s 5 s 5

6< 63 Q a < < 63 63 63 63
63 J

1 1

1—

1

63 ^ 6< 6h" H H M Q 63
E Z 63 u Oi M J
a. 63 a Q < Eh Oi o
Z J Eh 63 Eh 63 Eh Eh D

1 1 < < CO < < Eh

1—

1

O 63 rH CM ro in VO 00
Z J
M

1—

1

CO IH M a J 6l<

> > > CQ 03 63

Eh CO tn J
&H CQ CQ S
«j; J D 63
K OS Eh Eh

VO
s>
+ r-l

63 C4
in M
<T> to
ro Eh
IS O
ro Eh

vo
SI
+ r-l

63 y
in Z
CO In
t- Eh
rH O
rH Eh

o
SI 63
SI iJ

. Eh
<jv O
vo Eh
ro L_J

U
3
0>

-94-

required for logical entries, elementary file size calcula-
tions consider EF overhead, number of EF occurrences, and
fixed length elementary files. Derivations for output vari-
ables, first for logical entries and then for elementary
files, appear below.

Logical entry analysis For each logical entry type, the fol-
lowing parameters for the LE number, name, elementary file
reference and storage function appear on the output report.

ILE = Index for logical entry type (by defini-
tion) .

LENAM(ILE) = name for logical entry type ILE (by de-
finition) .

LEFRF(ILE) = elementary file reference for logical
entry type ILE (by definition)

.

LEFUN(ILE) = secondary storage function for logical
entry type ILE (by definition)

.

Size, overhead, and number of occurrences for each logical
entry type, and overhead for each logical entry in an ele-
mentary file are obtained from FORTRAN functions defined
over FILCOM parameters. These functions, described further
in the "Parameter Functions" section at the end of this
chapter, provide mechanisms for invoking intrinsic and op-
tional parameter functions.

SNLES(ILE) = size in bits for each occurrence of log-
ical entry type ILE; does not include
overhead for LE, for EF logical entries,
or for EF.

= LESIZE(ILE); function defined over pa-
rameter LESIZ(ILE).

LEOVHD(ILE) = overhead in bits for each occurrence of
logical entry type ILE; does not include
overhead for EF logical entries or for
EF; function defined over parameter
LEOHD(ILE).

SNLEO(ILE) = number of occurrences for logical entry
type ILE for all elementary files.

= LEOCCR(ILE); function defined over pa-
rameters LENOC(ILE), LERFO(ILE) and
LERFQ(ILE)

.

-95-

EFLEOH(ILE) = overhead in bits for each occurrence of
logical entry type ILE in its elementary
file; does not include LE or EF over-
head .

= IEFEOH(IEF, ILE) ; function defined over
parameter EFEOH(IEF)

.

where: lEF = lEFSUB (LEFRF(ILE)

)

Using the above, overhead and total LE size for each logical
entry occurrence are calculated.

SNLOH(ILE) = overhead for each occurrence of logical
entry type ILE; includes LE and EF logi-
cal entry overhead, but does not include
overhead for EF.

= LEOVHD(ILE) + EFLEOH(ILE)

TOTBIT(ILE) = total size in bits for each occurrence
of logical entry type ILE; includes LE
and EF logical entry overhead, but does
not include EF overhead

.

= SNLES(ILE) + SNLOH(ILE)

To determine totals for all occurrences of LE types, single
occurrence sizes are extended by LE occurrence frequencies.

TLEFNC(ILE) = total size in bits for functional por-
tions of all occurrences of logical en-
try type ILE; does not include any over-
head .

= SNLES(ILE) + SNLEO(ILE)

TLEOHD(ILE) = total size in bits for overhead portions
of all occurrences of logical entry type
ILE; includes LE and EF logical entry
overhead, but does not include overhead
for EF.

= SNLOH(ILE) * SNLEO(ILE)

TLESIZ(ILE) = total size in bits for all occurrences
of logical entry type ILE; includes LE
and EF logical entry overhead, but does
not include EF overhead.

= TOTBIT(ILE) * SNLEO(ILE)

-96-

Finally, totals for all logical entries in the database are
determined by summing the results derived above for specific
LE types across all LE ' s

.

TOTLEO total number of occurrences for all log-
ical entry types.

GFNLE
\ r

> SNLEO(ILE)

L L
ILE=1

TOTFNC total size in bits for functional por-
tions of all occurrences of all logical
entry types; does not include any over-
head .

GFNLE

> TLEFNC(ILE)

L L
ILE=1

TOTOHD total size in bits for overhead portions
of all occurrences of all logical entry
types; includes LE and EF logical entry
overhead, but does not include overhead
for EE's.

GFNLE
\ r

> TLEOHD(ILE)

L L
ILE=1

TOTSIZ total size in bits for all occurrences
of all logical entry types; includes LE
and EF logical entry overhead, but does
not include overhead for EE's.

GFNLE
\ r

> TLESIZ(ILE)

L L
ILE=1

Elementary file analysis The SPPM Elementary File Analysis
output report contains line item entries for each elementary
file defined in the parameter set and totals for the entire
database. Many of the results derived during the analysis

-97-

of logical entries are used in estimating elementary file
magnitudes; these variables are not redefined in this sec-
tion .

For each defined elementary file, the parameters listed
below for the EF number, EF name and number of logical entry
types contained in the elementary file appear on the output
report

.

lEF = index for defined elementary file (by
definition)

.

EFNAM(IEF) = name for elementary file lEF (by defini-
tion) .

EFLET(IEF) = number of logical entry types appearing
in elementary file lEF (by definition)

We define the following indicator variables to facilitate
the calculation of total EF size and the allocation of
storage estimates to secondary storage functions.

INDFLE (lEF, ILE) = indicator of whether elementary file lEF
contains logical entry type ILE.

=1 <==> LEFRF(ILE) = EFNAM(IEF)
> 0 Otherwise

INDPRI(ILE) = indicator of whether logical entry type
ILE represents primary relationships.

= 1 <==> LEFUN(ILE) = "P"
0 Otherwise

INDSEC(ILE) = indicator of whether logical entry type
ILE represents secondary relationships.

= 1 <==> LEFUN(ILE) = "S"
0 Otherwise

INDEFN(ILE) = indicator of whether logical entry type
ILE represents definition.

= 1 <==> LEFUN(ILE) = "D"
0 Otherwise

INDATA(ILE) = indicator of whether logical entry type
ILE represents data instances.

= 1 <==> LEFUN(ILE) = "I"
0 Otherwise

-98-

Allocation of non-overhead portions of logical entries to
elementary files and to secondary storage functions is per-
formed in the following manner.

TSZPRF(IEF) = total bits for representing primary re-
lationships in each occurrence of ele-
mentary file lEF.

GFNLE
\ r

> INDFLEdEF, ILE)*PRIFNC(ILE)

L L
ILE=1

Where: PRIFNC (ILE)=INDPRI (ILE)

*

TLEFNC(ILE)

TSZSRF(IEF) = total bits for representing secondary
relationships in each occurrence of ele-
mentary file lEF.

GFNLE
^\ r

> INDFLEdEF, ILE) *SECFNC (ILE)

L L
ILE=1

Where: SECFNC(ILE)=INDSEC(ILE)

*

TLEFNC(ILE)

TSZDEF(IEF) = total bits for representing definition
in each occurrence of elementary file
lEF.

GFNLE
\ r

> INDFLEdEF, ILE) *DEFFNC(ILE)

L L
ILE=1

Where: DEFFNC{ ILE)=INDEFN(ILE)*
TLEFNC(ILE)

-99-

TSZIDF(IEF) = total bits for representing data in-
stances in each occurrence of elementary
file lEF.

GFNLE
^ r

> INDFLE(IEF, ILE)*DATFNC(ILE)

L L
ILE= 1

where: DATFNC (ILE) =INDATA(ILE)

*

TLEBIT(ILE)

These values are summed to yield totals for non-overhead
portions of all LE ' s in each elementary file.

SNFLS(IEF) = total size in bits for all logical en-
tries representing all functions (pri-
mary relationships, secondary relation-
ships, definition, and dat^ instances)
in elementary file lEF.

= TSZPRF(IEF) + TSZSRF(IEF)
+ TSZDEF(IEF) + TSZIDF(IEF)

= TOTFNC

A similar procedure allows counting of logical entries by
elementary file.

SNLEF(IEF) = total number of occurrences for all log-
ical entry types in elementary file lEF.

GFNLE
\ r

> INDFLEdEF, ILE)*SNLEO(ILE)

L L
ILE=1

FORTRAN functions are invoked to determine elementary file
overhead, number of EF occurrences, and EF fixed size.
These functions provide mechanisms for invoking intrinsic
and optional parameter functions; see the "Parameter Func-
tions" section at the end of this chapter.

lEFFOH(lEF) = overhead in bits for each occurrence of
elementary file lEF; does not include
overhead for specific LE types or for EF
logical entries, and does not consider
specified fixed size for elementary file
lEF; function defined over parameter
EFFOH(IEF)

.

-100-

SNEFO(ILE) = number of occurrences for elementary
file lEF.

= EFOCCR(IEF); function defined over pa-
rameters EFNOC(IEF), EFRFO(IEF), and
EFRFQ(IEF)

.

lEFIXZ(IEF) = fixed size in bits for each occurrence
of elementary file lEF; includes all
logical entries and all overhead; func-
tion defined, over parameter EFIXZ(IEF).

Using the variables defined above, total EF overhead a*nd

elementary file sizes are calculated.

SNFOH(IEF) = overhead in bits for all occurrences of
elementary file lEF; includes all LE and
EF overhead

.

= (lEFIXZ(lEF)-SNFLS(lEF)) <==>EFIXZ (lEF) =0

Otherwise:

= lEFFOH(lEF) * SNEFO(IEF) + LEFLEO(IEF)

Where:

LEFLEO(IEF) = total overhead for LE ' s in EF

GFNLE
\ r

> INDFLEdEF, ILE)*TLE0HD(ILE)

L L
ILE=1

TEFSIZ(IEF) = total size in bits for all occurrences
of elementary file lEF.

= lEFIXZ(lEF) *SNEF0(IEF) <==> EFIXZ(lEF)=0

Otherwise

:

= SNFLS(IEF) + SNFOH(IEF)

EFSIZE(IEF) = size in bits for each occurrence of ele-
mentary file lEF.

= TEFSIZ(lEF) /SNEFO(IEF)

-101-

IBIOUS(IEF) = total size in basic l/O units for all
occurrences of elementary file lEF.

= INTUP(EFSIZE(IEF) /BIUBIT) *SNEFO (lEF)

Finally, totals for the entire database are obtained by sum-
ming the results derived above for specific elementary files
across all EE's in the database.

INLETD = total number of logical entry types in
all elementary files

GFNEF
\—

r

> INLETF(IEF) = GFNLE

L L
IEF=1

PSTLE = total number of occurrences for all log-
ical entries in all elementary files.

GFNEF
\ r

> SNLEF(IEF)

L L
IEF=1

PSEFZ = total size in bits of all defined ele-
mentary files; does not include multiple
elementary files.

GFNEF
\ r

> EFSIZE(IEF)

L L
IEF=1

PSTEF = total number of elementary files in DB
including all elementary file oc-
currences .

GFNEF
\ r

> SNEFO(IEF)

L L
IEF=1

-102-

PSTSZ = total size in bits for all elementary
files including all elementary file oc-
currences in DB

.

GFNEF
\ r

> TEFSIZ(IEF)

L L
IEF=1

PSTPR = total bits for representing primary re-
lationships in all occurrences of all
elementary files in DB

.

GFNEF
\ r

> TSZPRF(IEF)

L L
IEF=1

PSTSR = total bits for representing secondary
relationships in all occurrences of all
elementary files in DB

.

GFNEF
r

> TSZSRF(IEF)

L L
IEF=1

PSTDE = total bits for representing definition
in all occurrences of all elementary
files in DB

.

GFNEF
\ r

> TSZDEF(IEF)

L L
IEF=1

PSTID = total bits for representing data in-
stances in all occurrences of all ele-
mentary files in DB

.

GFNEF
\ r

> TSZIDF(IEF)

L L
IEF= 1

-103-

PSTFO = total overhead in bits for all oc-
currences of all elementary files in DB

.

GFNEF
\—

r

> TSZOHF(IEF)

L L
IEF=1

TOTLES = total bits for all occurrences of all
logical entry types in DB; includes log-
ical entry and elementary file logical

". entry overhead, but does not include
file overhead.

GFNLE
\ r

= > TLEBIT(ILE)

L L
ILE=1

ITBIOU " \ = total size in basic l/O units for all
occurrences of all elementary files in
DB.

GFNEF
\ r

= > IBIOUS(IEF)
L L
IEF=1

7.4 Response Estimation

Unlike database size estimates that are invariant for a
given parameter set, response time predictions reflect se-
quences of pseudo queries input by the on-line SPPM user.
The response modeler must determine the event sequence
necessary for responding to specific user queries. The com-
plexities are procedural rather than mathematical; that is,
once the sequence of events is determined, it is a relative-
ly simple bookkeeping problem to accumulate processing and
l/O times for each event. Consequently, the following para-
graphs describing mathematical relationships embedded in
response time estimation programs do not consider query
analysis and event selection problems that are solved pro-
cedurally. These important and complex functions can be
determined only by a careful review of the SPPM source code.

-104-

The response time estimation modeler produces two on-
line summaries following each query, and two detailed
analysis reports covering an entire query sequence input
during a response estimation session. Hardcopy output in-
cludes reproduction of PSP pseudo query inputs and
corresponding on-line summaries as well as detailed session
analysis reports. One detailed report and one summary
display estimate response time in milliseconds. The other
two outputs are concerned with l/O activity and time re-
quirements .

Response time estimates are derived by executing se-
quences of surrogate programs corresponding to PSP routines
that would be invoked to answer an input query. Each surro-
gate program in the response modeler posts time and
input/output accumulators. It is these accumulated values
that appear on the summary and detailed analysis outputs.

The following paragraphs present mathematical relation-
ships embedded in response time estimation programs. First,
mechanisms for posting response estimates are described.
Then, estimates for l/O and total query response times are
derived in terms of model parameters and output variables.

7.4.1 Posting response estimates. Response modeler surro-
gates for PSP procedures update l/O and response time accu-
mulators. Separate update mechanisms correspond to each of
the three following types of accumulators:

* processing estimates for set processor procedures,

* l/O estimates for elementary files, and

* l/O time estimates for set processor procedures.

Throughout the response modeler, variables representing
processor power and procedure repetition are used for calcu-
lating time requirements.

POWER = coefficient of processor power

= 1/ENPPI

GRPII = pseudo process iteration indicator; ini-
tialized to 1.

where

:

GRPII > 1 ==> procedures invoked are re-
plicated GRPII times.

-105-

Using these variables, each of the three posting mechanisms
is described.

Processing estimates for set processor procedures The K-th
posting of processor time and execution counts for N execu-
tions of set processor function IFN is summarized below.

NTIMES (IFN, N, K) = total number of pseudo executions for
K-th posting for set processor function
IFN.

= N * GRPII

PRNEX(IFN) = total number of pseudo executions for
set processor function IFN (all post-
ings) .

\ r
> NTIMES (IFN, K)

L L
all K

TINIEST (IFN, K) = total estimated processor time in mil-
liseconds for K-th posting for set pro-
cessor function IFN.

' = NTIMES (IFN, K) * POWER
* (MSTIME + FNM0D(IFN)*MSTIME)

Where: MSTIME = FNPRC(IFN) parameter
value, or is specified
by posting procedure.

PRTPR(IFN) = total processor time in milliseconds for
set processor function IFN (all post-
ings) .

^ r
> TIMEST(IFN,K)

L L
all K

Processor time estimates for all functions are maintained in
accumulators GRTPQ and GRTPR. Given the following artifi-
cial variable,

QKIND(Q,K) = indicator of relationship between K-th
posting and Q-th query

= 1 <==> K-th posting is the Q-th query
0 otherwise

-106-

we define total accumulations as follows.

GRTPQ(Q) total processor time in milliseconds for
Q-th query in response estimation ses-
sion .

^ r
>

/ I

QKIND(Q,K) * TIMEST(IFN,K)

GRTPR

all K

for all IFN invoked for query Q.

total processor time in milliseconds for
entire response estimation session.

T—

r

>

L L
all Q

GRTPQ(Q)

I^/O estimates for elementary files l/O accumulators for ele-
mentary files are posted by I/O estimation routines. For
the J-th posting of l/O estimation results, the following
variables are defined

.

lEFNAM(J) = elementary file name for the J-th l/O
posting

.

lOP(J) = I/O operation for the J-th l/O posting.

= 'RD', 'WT\ 'OP', 'CL', or ' DE

'

NOP{J) = number of physical l/O requests for J-th
l/O posting.

NOBIOU(J) = number of basic l/O units transferred
for J-th l/O posting.

lOACC(J) = I/O access time for J-th l/O posting.

lOTRN(J) = I/O transfer time for J-th l/O posting.

lOOTH(J) = other l/O time for J-th l/O posting.
/

Then total access, transfer and other times and total basic
l/O units transferred are posted in the following manner.

-107-

ITOTIM(J, lEF) = total l/o time for J-th l/O posting for
elementary 'file lEF reference

(lOACC(J) + lOTRN(J) + lOOTH(J))
* POWER * GRPPI

Where: lEF = lEFSUB (IEFNAM(J)

)

lETIM(IEF) = total l/O time for elementary file lEF
(all postings)

.

\ r
> ITOTIM(J, lEF)

L L
all J

GRACQ(Q) = total l/O access time for Q-th query in
response estimation session.

—

r

> lOACC(J) * POWER * GRPPI

L L
all J

GRTNQ(Q) = total l/O transfer time for Q-th query
in response estimation session.

^ r
> lOTRAN(J) * POWER * GRPPI

L L
all J

GROTQ(Q) = total other l/O time for Q-th query in
response estimation session.

\—

r

> lOOTH(J) * POWER * GRPPI

L L
all J

GRBTQ(Q) = total basic l/o units transferred for
Q-th query in response estimation ses-
sion .

\ r
> NOBIOU(J)*GRPII

L L
all J

-108-

Numbers of physical l/O requests are accumulated for l/O
operations and for elementary files. First, the following
indicator variables are defined to simplify mathematical
representations

.

lOPRD(J) = read operation indicator for J-th l/O
posting

.

= 1 <==> lOP(J) = "RD"
0 otherwise

lOPWT(J) = write operations indicator for J-th l/O
posting

.

= 1 <==> lOP(J) = "WT"
0 otherwise

lOPOP(J) = open operation indicator for J-th l/O
posting

.

= 1 <==> lOP(J) ="0P"
0 otherwise

lOPCL(J) = close operation indicator for J-th I/O
posting

.

= 1 <==> lOP(J) = "CL"
0 otherwise

lOPDE(J) = delete operation indicator for J-th l/o
posting

.

= 1 <==> lOP(J) = "DE"
0 otherwise

IEFIO(IEF,J) = indicator for J-th posting of elementary
file lEF I/O.

= 1 <==> lEF = IEFSUB(IEFNAM(J)

)

Then, numbers of physical l/O requests are accumulated in
the following manner.

GRRRQ(Q) = total number of physical read requests
to Q-th query in response estimation
session

.

^; r
> IOPRD(J)*NOP(J)

L L
all J

-109-

lENRR(lEF) total number of physical read requests
for elementary file lEF for entire
response estimation session.

^ r
> lEFIOdEF, J)*IOPRD(J)

L I

all J

GRWRQ(Q) = total number of physical write requests
for Q-th query in response estimation
session.

T—

r

> IOPWT(J)*NOP(J)

L L
all J

lENWR(IEF) = total number of physical write requests
for elementary file lEF for entire
response estimation session.

^ r

> lEFIOdEF, J)*IOPWT(J)

L L
all J

GROPQ(Q) = total number of open requests for Q-th
query in response estimation session.

\ r
> IOPOP(J)*NOP(J)

L L
all J

GPCLQ(Q) = total number of close requests for Q-th
query in response estimation session.

\ r
> IOPCL(J)*NOP(J)

L L
all J

GRDEQ(Q) = total number of delete requests for Q-th
query in response estimation session.

\ r

> IOPDE(J)*NOP(J)
I I

-110-

IE0TH(IEF) total number of l/O requests other than
RD or WT for elementary file lEF for en-
tire response estimation session.

\ r
> lEFIOdEF, J)*I0P0TH

L L
all J

Where

:

lOPOTH = lOPOP(J) + lOPCL(J) + lOPDE(J)

I^/O estimates for set processor functions l/O time estimates
are accumulated for set processor functions requesting l/O
operations. For the I-th posting of l/O time to set proces-
sor functions the following variables are defined.

IFNAME(I) = name of set processor function for I-th
posting of l/O time.

lOTIME(l) = I/O time in milliseconds for I-th post-
ing of l/O time to set processor func-
tions .

IFNIO(IFN,I) = indicator of relationship between I-th
posting of l/O time and set processor
function IFN.

= 1 <==> IFN = IFNSUB(IFNAMEd))

0 otherwise

Then, I/O time accumulation for set processor functions is
as follows.

PRTIO(IFN) = total l/O time in milliseconds for set
processor function IFN

\ r
> IFNIO(IFN, I)*(I0TIME(I)*GRPII)

L L
all I

7.4.2 l/O estimation. Figure 7.4 contains copies of the l/O
on-line summary and detailed session analysis reports with
variable names inserted in brackets under data entries. Ac-
cumulation variables have all been defined in the preceding
section. Extensions and totals are defined below.

-Ill-

1/0 SUMMARY AND DETAILED ANALYSIS REPORTS

I/O SUMMARY

DESC

NO PHYSICAL READS

NO PHYSICAL WRITES

NO OTHER I/O 'S

OPEN

CLOSE

DELETE

NO BIOU'S TRANS

ACCESS TIME

TRANSFER TIME

OTHER I/O TIME

QUERY SESSION

[GRRRQ]
0

[GRWRQ]

0
[GROPQ]

0
[GRCLQ]

0
[GRDEQ]

10
[GRBTQ]

46.00 / 8.27%
[GRACQ]
510.00 / 91.73%
[GRTNQ]

0.00 / 0.00%
[GROTQ]

[GRTRR]
0

[GRTWR]

0

[GRTOP]
0

[GRTCL]
0

[GRTDE]
26

[GRBTR]
161.00 / 10.47%
[GRACC]

1326.00 / 86.27%
[GRTRN]
50.00 / 3.25%

[GROTI]

TOTAL TIME 556.00
[GRTIQ]

1537.00
[GRTIO]

SESSION I/O ANALYSIS BY ELEMENTARY FILE

: NO. PHYSICAL l/O REQUESTS
E-FILE :

: READ WRITE OTHER
: [lENRR] [lENWR] [lEOTH]

NO : TOTAL l/O TIME
BIOU'S :

TRAN : MS %

[lEBTR] : [lETIM]

ELMNT 6 0 0 30 1668.00 79. 69
SRAVI 1 0 0 2 150.00 7. 17
SINVS 1 0 0 2 150.00 7. 17
SWORK 1 0 0 2 125.00 5. 97

TOTAL 9 0 0 36 2093 .00 100. 00
[GRTRR] [GRTWR] [GRTDE] [GRBTR] [GRTIO]

Figure 7 .

4

-112-

I^/O summary

GRTIQ(Q)

GRACQP(Q)

= total l/O time in milliseconds for Q-th
query in response estimation session.

= GRACQ(Q) + GRTNQ(Q) + GROTQ(Q)

= access time as a percentage of total l/O
time for Q-th query in response estima-
tion session.

= GRACQ(Q)/GRTIQ(Q)

For each query level accumulator there is a corresponding
session total; session totals and percentages appearing on
the l/O summary are defined below.

GRTRR total number of read requests for ses-
sion .

\ r
>

L L
all Q

GRRRQ(Q)

GRTWR total number of write requests for ses-
sion .

T—

r

>

/ I

GRWRQ(Q)

GRTOP

all Q

total number of file opens for session.

\ r
>

/ I

GROPQ(Q)

GRTCL

all Q

total niamber of file closes for session.

\ r

L L
all Q

GRCLQ(Q)

-113-

GRTDE = total number of file deletes for
sion

.

\ 1

> GRDEQ(Q)
/ 1

all O

GRBTR = total number of BIOU's transferred
session

.

\ 1

= > GRBTQ(Q)
/ 1

all 0

GRACC = total l/O access time for session.

\ 1

= > GRACQ(Q)
/ 1

all 0

GRTRN = total I/O transfer time for session

\ 1

> GRTNQ(Q)
/ 1

all Q

GROTI = total other l/O time for session.

\ 1

.
= > GRTIQ(Q)

/ 1

/ 1

all Q

GRACCP = access time as a percentage of total l/O
time for session.

= GRACC/GRTIO

GRTRNP = transfer time as a percentage of total
l/O time for session.

= GRTRN/GRTIO

GROTIP = other l/O time as a percentage of total
l/O time for session.

= GROTI /GRTIO

-114-

Session I_/0 analysis by elementary file

name of elementary file lEF (by defini-
tion) .

total l/O time in milliseconds for ele-
mentary file lEF for entire response es-
timation session.

lENRR(IEF) + lENWR(lEF) + IE0TH(IEF)

total l/O time for elementary file lEF
as a percentage of total session l/O
time

IETIM(lEF) /GRTIO

total number of l/O requests other than
RD or WT for entire response estimation
session

GRTOP + GRTCL + GRTDE

GFNEF
\ r

> lEOTH(lEF)

L L
IEF=1

Determining I^/O estimates

The Positional Set Processor database management system that
is the object of this SPPM modeling effort performs all
direct access l/O through a single, generalized input-output
procedure. l/O requests are in terms of Smallest Address-
able Units (SAU's/e.g. words). Transfer of data to and from
secondary storage is carried out in Basic l/O units
(BlOU's/e.g. sectors). The response modeler mimics this PSP
high level l/O interface.

I/O time estimates for open, close and delete opera-
tions are simply taken from parameters ENIOP, ENICL and
ENIDE respectively. The model, like the PSP prototype, au-
tomatically "opens" a file that is to be read or written if
it is not already open.

Read and write time estimates have three components:
access time transfer time, and software time. Model parame-
ters specify read and write access and transfer times in
milliseconds. The problem is to determine coefficients for
these model variables given the following arguments describ-
ing specific l/O requirements.

EFNAM(IEF)

lETIM(IEF)

lETIMP(lEF)

IIEOTH

-115-

lOP l/O operation; RD, WT, OP, CL or DE

.

lOEF = elementary file for I /o operation.

lOTRQ = the amount of data in SAU ' s requested
for each l/O transfer; one or more phy-
sical l/O's may be required to satisfy
this requirement.

ISTART = the starting SAU in elementary file lOEF
for first I/O transfer for this require-
ment .

TOTDAT the total amount of data in SAU ' s for
all l/O transfers for this requirement.

Note that a single model request of size TOTDAT may
represent multiple sequential transfers of lOTRQ SAU '

s

starting in SAU ISTART.

The l/O estimator, like the PSP routine and I/O
software it mimics, handles various complexities.

Write requests that do not fall on BIOU beginning
and ending boundaries require preliminary reads.

Read and write requests that do not fall on BIOU
boundaries use an intermediate buffer or require
multiple l/O transfers.

l/O requests for elementary files that have not been
previously referenced are opened before they are
read or written.

Look ahead buffering is employed; physical read re-
quests fill the buffer l/O software buffers.

Calculations to determine numbers of accesses and BIOU
transfers for read and write requests are now summarized.
First, the following variables are defined.

Then, using the term "cluster" to refer to ENIOM BIOU's and
assuming that ISTART is both a buffer and a cluster starting
SAU, the number of accesses required is computed.

IDIVSR = greatest common divisor of l/O software
buffer for elementary file lEF and max-
imum number of BIOU's that can be
transferred with single access.

= IGCD(IEBUF(lEF) , ENIOM)

-116-

NBBHCB = number of buffers between hits on clus-
ter boundaries.

= eniom/idivsr

NBTRW = number of buffers to be read/written.

=• INTUP(TOTDAT/)IEFBUF(IEF))*ENBIU)

)

NCTRW = number of clusters to be read/written.

= INTUP (TOTDAT/ (ENIOM*ENBIU)

)

NCFOBB = number of clusters falling on buffer
boundaries

.

= INTUP (NBTRW/NBBHCB)

TNPA = total number of positioning actions (arm
movement and latency)

.

= NBTRW + NCTRW - NCFOBB

Finally, the number of BIOU transfers required for read
operations is determined.

NBIOUT = number of basic l/o unit transfers for
l/O requirements

= INTUP (TOTDAT/ENBIU)

Additional complexities for write requests requiring more
than one logical access are not reflected in the above equa-
tions. An iterative, augmented procedure is used when l/O
requests do not start on both cluster and buffer boundaries.

7.4.3 Response time estimation outputs. Response summary and
detail ed analysis reports appear in Figure 7.5; again, most
of the variable names inserted in brackets under data en-
tries have been previously defined. Extensions and total
definitions are as follows.

Response summary

GRTOQ(Q) = total overhead in milliseconds of re-
sponse time for Q-th query in response
estimation session.

= GRTIQ(Q) + GRTPQ(Q) * (1-ENLOD)

-117-

RESPONSE SUMMARY REPORT

RESPONSE SUMMARY

DESC
QUERY

MS %

SESSION

MS %

I/O

PROCESSING

OVERHEAD

556.00 6.15
[GRTIQ]
8478.0 93.85
[GRTPQ]
0.00000E+00 0.00
[GRREQ]

1537.0 10.47
[GRTIO]
13137. 89.53
[GRTPR]
0.00000E+00 0.00
[GRTOH]

RESPONSE 9034.0
[GRREQ]

100. 00 14674.
[GRRES]

100. 00

Figure 7 . 5a

-118-

RESPONSE DETAILED ANALYSIS REPORT

SESSION RESPONSE ANALYSIS BY DATABASE FUNCTION

DATABASE :

FUNCTION :

[FNNAM] :

NO :

EXEC :

[PRNEX]

:

TIME IN MS TOTAL TIME

PROCESS
[PRTPR]

I/O
[PRTIO]

MS
[PRTIP]

Q,
"O

SSAVE 23 184 .00 8179 .00 8363 .00 31 .13
SCOPY 20 5560 .00 0 .00 5560 .00 15 .02
UNION 10 4274 .00 0 .00 4274 .00 11 .46
RLCMP 5 2745 .00 0 .00 2745 .00 6 .86
S9PR0 3 2502 .00 0 .00 2502 .00 6 .81
RGSTR 11 451 .00 1740 .00 2191 .00 6 .47
A7SRC 11 1474 .00 0 .00 1474 .00 4 .37
ALLOC 44 352 .00 760 .00 1112 .00 4 . 20
INTRS 2 1082 .00 0 .00 1082 .00 4 .07
M9C0M 4 944 . 00 0 .00 944 .00 4 .01
SADDl 4 810 . 00 0 00 810 .00 3 50
S4IDX 8 640 .00 0 .00 640 .0-0 2 . 76
S4M0V 16 208 .00 162 . 00 370 .00 1 60
S4SUB 3 159 .00 0 .00 159 .00 0 .69
S4EVA 3 90 .00 0 .00 90 .00 0 .39
A7TRA 11 88 .00 0 .00 88 .00 0 . 38
S9PTR 3 84 .00 0 .00 84 .00 0 .36
SDEST 15 75 00 0 .00 75 .00 0 32
DALOC 10 50. 00 0 . 00 50 00 0. 22
S4CHK 3 36 .00 0 00 36 .00 0 16
M9PID 3 36 00 0. 00 36 .00 0 16
M9GTS 3 30. 00 0. 00 30 00 0. 13
M9AL0 3 27 . 00 0. 00 27. 00 0. 12
S40PR 5 25 . 00 0. 00 25 . 00 0. 11
S4BLD 5 25 . 00 0. 00 25 . 00 0. 11
S4SRC 8 24. 00 0. 00 24 00 0. 10
M9GTL 3 12 . 00 0. 00 12 00 0. 05
M9IS0 4 12 . 00 0. 00 12 . 00 0. 05

(OTHER) 0
[PRONX]

0.00
[PROPR]

0 .00
[PROIO]

0 . 00
[PROIP]

0.00

,^OTAL

bvERHEAD

243 21999.00
[GRTPR]

10841 .00
[GRTIO]

32840 .00
[GRTIP]

0 . 00
[GRTOH]

100.00

0.00

:'OTAL RESPONSE 32840.00
[GRRES]

100 .00

Figure 7.5b

-119-

GRREQ(Q) = total response time in milliseconds for
Q-th query in response estimation ses-
sion .

GRTIQP(Q)

= GRTIQ(Q) + GRTPQ(Q) + GRTOQ(Q)

= total l/O time as a percentage of total
response time for Q-th query in response
estimation session.

GRTPQP(Q)

GRTOQP(Q)

= GRTIQ(Q) / GRREQ(Q)

= total processing time as a percentage of
total response time for Q-th query in
response estimation session.

= GRTPQ(Q) / GRREQ(Q)

= total overhead as a percentage of total
response time for Q-th query in response
estimation session.

= GRTOQ(Q) / GRREQ(Q)

PRTEX total number of executions for all data-
base functions for response estimation
session

.

GSNFN
\—

r

> PRNEX(IFN)

L L
IFN=1

Finally, session accumulators and percentages corresponding
to query level variables are defined.

GRTPR = total quiescent system procession time
for session.

T—

r

> GRTPQ(Q)

L L
all Q

GRTIP = total quiescent system response time' in
milliseconds for all database functions

, . invoked during entire response estima-
tion session.

= GRTPR + GRTIO

-120-

PRTIPP(IFN) = total time for database function IFN as
a percentage of total quiescent system
response time for entire response esti-
mation session.

= PRTIP(IFN) / GRTIP

GRTOH = total system overhead for session.

r
> GRTOQ(Q)

L L
all Q

GRRES = total response time for session.

r
> GRREQ(Q)

L L
all Q

GRTIOP = l/O time as a percentage of total re-
sponse time for session.

= GRTIO/GRRES

GRTPRP = processing time as a percentage of total
response time for session.

= GRTPR/GRRES

GRTOHP = system overhead as a percentage of total
response time for session.

= GRTOH/GRRES

Session response analysis by database function

FNNAM(IFN) = name of set processor function IFN(by
definition)

.

PRTIP(IFN) = total quiescent system time in mil-
liseconds for database function IFN.

= PRTPR(IFN) + PRTIO(IFN)

7.4.4 Monte Carlo processes. Monte carlo processes are used
throughout the response modeler to determine specific quan-
tities and references not directly derivable from parameter
and query sequence inputs. While facilities have been pro-
vided for using other distributions, all Monte Carlo vari-
ables in the current SPPM implementation are selected from

-121-

the uniform distribution. Upper and lower bounds are deter-
mined from parameters, from size estimates, and from inter-
mediate model variables. Monte Carlo estimates can be gen-
erated for both integer and floating point random variables.
The model utilizes the DEC FORTRAN-10 random number genera-
tor function, RAN, for Monte Carlo calculations.

7.4.5 Determination of set cardinalities. Determination of
set cardinalities is an essential part of the response esti-
mation process. Set cardinalities are determined from
parameter inputs; from on-line user responses, and from
Monte Carlo estimation procedures. In order to discuss the
determination of set cardinalities we define the following:

ISX = set representation X; X=l,2,3 ... M.

CARD(ISX) = cardinality for set ISX; that is, the
number of elements in set ISX.

Cardinal ities for sets satisfyi ng elementary conditions A
query containing a complex predicate (e.g., in the PSP SUBX
command) can be viewed as one or more elementary conditions
connected by boolean operators. Each elementary condition
takes the form:

<SUBJECT> <RELATIVE OPERATOR> <OBJECT>

where: <SUBJECT> = attribute name

<RELATIVE OPERATOR> = EQ, NE , GT , GE , LT , or LE

.

<OBJECT> = value or attribute name

The current version of the SPPM limits elementary conditions
to those susceptible to solution using secondary indices.
Currently, secondary indices are not used for answering PSP
queries when elementary condition <OBJECT> entries are at-
tribute names. Thus, only simple conditions with <OBJECT> =

VALUE have been considered in the preliminary SPPM implemen-
tation. Cardinalities for sets satisfying elementary condi-
tions are specified by on-line users or optionally are
determined by the model. In either case, upper and lower
bounds are determined as follows: Given elementary condi-
tion ,

RELNAM. ATTNAM OPERATOR <VALUE>

we determine boundaries for the cardinality of the solution
set in the following manner.

-122-

IRL = IRLSUB(RELNAM)

lAT = IATSUB(ATTNAM)

UNIVAL(IRL, lAT) = number of unique instances of attribute
lAT in relation IRL.

= RLCRD(IRL) <==> DMNVL(iDM) > RLCRD(IRL)
DMNVL(IDM) otherwise

where: IDM = IDMSUB (ATDOM(lAT)

)

MINCRD(C) = minimum cardinality for solution set for
elementary condition C.

= 0 <==> OPR f EQ and NE
(UNIVALdRL, lAT) - 1) otherwise

MAXCRD(C) = maximum cardinality for solution set for
elementary condition C.

= RLCRD(IRL) <==> OPR 7^ EQ and NE
(RLCRD(IRL)- (UnivaK IRL, IAT)-1) otherwise

On-line users may provide set cardinalities within
these boundaries. Model determination of cardinalities is
through Monte Carlo techniques using a uniform distribution
within the boundaries defined above for conditions with
operators LT, LE, GT or GE

.

CRDEST(C) = estimated cardinality of solution set
for elementary condition C.

MINCRD(C) <^ CRDEST(C)=f (U) <_ MAXCRD(C)

For operators EQ and NE, the average instance frequency is
used to estimate solution set cardinalities.

AVGPTRdRL, lAT) = average number of instances for attri-
bute lAT in relation IRL; also, the car-
dinality of the average secondary index
pointer for attribute lAT in relation
IRL.

= RLCRD(IRL)/UNIVAL(IRL, lAT)

CRDEST(C) = RLCRD(IRL) -AVGPTRdRL, IAT) <==> OPR = NE

AVGPTRdRL, lAT) <==> OPR = EQ

-123-

Cardinal ities for sets resulting from boolean operations
Cardinalities for sets resulting from boolean operations are
determined by Monte Carlo processes using the uniform dis-
tribution. Minimum (MINCRD) and maximum (MAXCRD) cardinali-
ty boundaries for sets resulting from each of the four
boolean operators are defined in the following manner.

* UNIONdSl, IS2, IS3) ==> IS3 = ISl U IS2

MINCRD(IS3) = MAXINT (CARDdSl) , CARD(IS2))

MAXCRD(IS3) = CARD(ISl) + CARD(IS2)

* INTRSdSl, IS2, IS3) ==> IS3 = ISl fl IS2

MINCRD(IS3) = 0

MAXCRD(IS3) = MININT(CARD(IS1) ,CARD(IS2))

* XUNSDdSl, IS2, IS3) ==> IS3 = (ISl U IS2) -

(ISl n IS2)

MINCRD(IS3) = ICARD(ISI) - CARD(IS2)|
MAXCRDd S3) = CARDdSl) + CARD(IS2)

* RLCMPdSl, IS2, IS3) ==> IS3 = ISl - IS2

MINCRD(IS3) = O <==> CARD(IS2) >_ CARD(ISI)
CARDdSl) - CARD(IS2) otherwise

MAXCRD(IS3) = CARDdSl)

7.5 Bit-string Size Estimation

The Positional Set Processor prototype represents sets
as compacted bit strings. The Quatree compaction algorithm
described by Hardgrave [HARD73a, HARD76a] represents sets as
a multi- leveled tree of n-bit packets. Both size and
response modelers must estimate sizes for bit-string
representations of sets.

An estimate of the size of bit-string set representa-
tion ISR is determined using model parameters BSPKS and
BSQLV, for the packet size and the number of Quatree levels
respectively, and the following arguments.

SRCRD(ISR) = cardinality of set representation ISE;
that is, the number of elements in the
set.

SRNGE(ISR) = range over which set representation ISR
is defined; that is the ordinal of the
largest possible "on" bit in the logical
bit string set representation.

-124-

Then the number of tree levels required for the specified
range is determined.

NLEVL = INTUP(L0G(SRNGE(ISR)) /LOG(BSPKS)

)

For each level LL the number of packets for the given range
is determined.

SUBPK(LL) = total number of packets at level LL for
range where levels are numbered starting
with one at the root.

= INTUP(SRNGE(ISR)/(BSPKS**LL)

)

Then, assuming that set elements are evenly distributed
throughout the range, the following are calculated.

MAXPK = maximum number of packets for subtree
required to represent set for given car-
dinality, range, and packet size.

NLEVL
r

> MININT(SRCRD(ISR) , SUBPK(LL)

)

L L
LL=1

BSBITS = number of bits required to represent set
of given cardinality and range for
specified packet size and number of lev-
els.

= (MAXPK + BSQLV - NLEVL) *BSPKS

7.6 Parameter Functions

The SPPM utilizes two types of parameter functions: in-
trinsic functions that define elementary file and logical
entry occurrence frequencies, and optional functions that
can be specified for other parameters describing secondary
storage utilization. These two function classes are dis-
cussed in the following paragraphs.

-125-

7.6.1 Intrinsic occurrence frequency functions. Occurrence
frequencies for elementary files and logical entities are
determined from parameter tuples. For instance, the number
of occurrences for elementary file lEF would be:

<EFNOC(IEF)> times for each <EFREO(IEF)> in <EFREQ(IEF)>

Where: EFNOC(IEF) = integer number of occurrences
EFREO(IEF) = character string selected from

list appearing in Figure 7.6.
EFREQ(IEF) = reference to relational entities

defined in parameter set.

e.g., <2> times for each <AT>tribute in relation <PERSN>

7.6.2 Optional parameter functions. The SPPPM allows the
user to invoke complex functions in the form of FORTRAN pro-
cedures when simple parameter constants are not sufficient
for describing an object database management system. Op-
tional parameter functions are represented in the parameter
set by an asterisk (*) followed by (up to) four characters.
FORTRAN function subroutines that recognize and invoke de-
fined parameter functions must be modified when new func-
tions are defined (FORTRAN requires that all program refer-
ences be defined at load time). Figure 7.7 lists all param-
eters that can be functionally specified, their correspond-
ing FORTRAN function subroutines, and all functions defined
for the preliminary SPPM implementation.

-126-

RELATIONAL ENTITY OCCURRENCE INDICATORS

DESCRIPTION

<null> occurence specified in parameter
where : XX = EF or LE

XXNOC (I XX

)

RL relation

RLX indexed relation

mTTTU tuple

DM domain -

A rn
I\ 1 attribute

indexed attribute

a T attribute instance

AID attribute instance unique within DB

AIR attribute instance unique within relation

AIA attribute instance unique within attribute

AIX instance of an indexed attribute

AIXA instance of an indexed attribute
within attribute

unique

LE logical entry

EF elementary file

Figure 7 .

6

-127-

>1
D u CP
< 03 4J c
CO (U C •H

c >; 03 c
03 •f-i 03 n] •H c

i-H 0) V4 4J rH 4J 03

^ CO 03 o ^ <o (0 c 03

,c u c H 4-) U-l u 03 03

0 II 4-1 03 03 J -H *4-l W •H 03 V4

tP 03 a
u m s in 0 V4 0)

o 0))-i (U p o c rH a V4 +J
M u 03 c 03
Eh ^ 0) 0 0 4-' 14 U 03 CP ^1 0 C7> 03

U (C m >-< •tJ ^ 4-1 4J 4-1 10 - C •H c
+J +J •H +) C -H C 03 D rl CP 4-' •H U 03

D u 0) u 03 <: U C (0 »H 03 C
Cn C (0 >i > • w 4J -H rH 4-> 4J •H

cc
03 (U 0 > <u >H rH rH 03 03 V4 03 03 c «44

(0 c l-l 4-1 (0 fa (0 • 4J U •H CJ

w 03 0 c O W CJ -H 00 4-> 03 4J 0
Eh 0) T) 03 -H M -H CM •r4)H •H a<
W (0 ^ iH 0) CJi CP iH £! 4-1 0 ^3 >i

g •H X f-l 0 <U 0 - •H 14H X rH
(S iH -P 3 •4-1 -H 03 (0 - rH iH .H 03 03 4J
Cm 0 -rH C 4h U •H - H-l CU 4-) 0^ '0 C
<:)h •H >-l M-l ^ D 0 W CU 03 CO c 03

0) 0 <; CP 0 4-1 r=i CU W 03 M •rl U
0) -0 CP 4-1 C w 0 M-l >! CP W <l) M U

Q M 0 (0 IT) f-l)-l C rH rH >1 D
W •H 0 •a lO <1> Dj V4 U (0 U U CJ

21 03 C <U lO 03 CO x; rO 4J rH CO -H 0 0 03 0 (0
H Q) > (13)-l CN u 03 C «N 4-1 UH «H U 1*4 03

lii O (0 ,C QJ -H «3 ^ 0 -H .-H 03 c C
u <U 0))h fO 0) V4 E 03 D 03 03 > 03 0 0
D X M-l -0 0 fO 0) 03 X E N tJ -H o •H

-H (U C > Q) <+4 > rH -H MH H •H C •H 03 4J

0 0 0 \J Q) H-l (J iD 03 03 3 03 03 CJ

c
" 3

l)H

a: 03 Eh 03 CO
w O J CQ OQ 0
<d > X CQ »; H c

< fa M
* * * * * *

.—

~

•z , . ^—, ^—

^

,—

,

o fa fa fa fa fa faM fa fa iJ
Eh M M M M M M
u * *

p <
fa fa fa fa fa fa
u fd J
N X IS!

Eh x; O o M
H fa fa CO o

O fa fa fa fa fa
fa W fa J

M M M M M

Oh fa "fa hH 1*4

W w W fa J
Eh M M H M H
W

£C N Q
X o o H tcH fa fa CO O

-a: fa fa fa fa fa
w fa

-128-

8. MODEL EVALUATION

8.1 Introduction

The term operations research (OR) was coined during
World War II to refer to an interdisciplinary, scientific
approach for solving the very real problems of managing mil-
itary operations. Today, numerous synonyms for operations
research, including the currently favored management sci-
ence, are commonly used to describe a scientific approach
to problem solving for executive management [WAGN69 ppl-31].
While military problems no longer dominate the field, the
practical problem solving orientation of operations research
remains. Today, industrial and administrative as well as
military decision making are addressed by operations
research practitioners.

Because of the practical orientation that h^s been part
of operations research since its inception, one would expect
that the determination of the goodness of decision models
would be an important and well developed part of OR pro-
cedures. But this aspect of modeling that we term (for lack
of something better) model evaluation surprisingly is ig-
nored by many textbooks and is given only cursory, philo-
sophical treatment by others. This chapter considers
several dimensions of the model evaluation problem, presents
some specific thoughts on computer system models, and
describes evaluation procedures for the set processor per-
formance model

.

8.2 Evaluation Phases

Model evaluation is a complex and multi-faceted process
that is generally viewed as having several phases. Fishman
and Kiviat [FISH67] identify three evaluation phases that
are mentioned throughout the literature.

* Verification - insuring that the model behaves as
the experimenter intends,

* Validation - testing the agreement between the
behavior of the model and that of the real world
system, and

* Problem Analysis - analyzing and interpreting data
generated by experiments using the model.

Each of these phases is discussed briefly below.

-129-

8.2.1 Verification. All but the most trivial models today
are realized in the form of algorithms (i.e., programs) for
execution on high-speed digital computers. Verification is
concerned with assuring the correctness of program realiza-
tions of models. This debugging, as it is called by comput-
er scientists, is itself a complex and time consuming pro-
cess. Program testing and correction procedures are still
largely ad hoc; with the exception of extremely simple algo-
rithms, we can not prove the correctness of a piece of com-
puter source code [FIFE77, ELSP72, HANT76]. Recognizing
the difficulty and magnitude of the verification task, it is
not considered further here.

8.2.2 Validation. Model validation is concerned with deter-
mining how well important characteristics of a real world
system are reflected in a model surrogate. Frequently the
term validation is used to refer to the entire evaluation
process. In the more limited sense in which it is used
here, validation presupposes that verification of correct-
ness for the program realization of the model has been ac-
complished .

Types of Validity Several aspects of the validation problem
are addressed by the literature. Zeigler [ZEIG76] identi-
fies three types of validity: replicative, predictive, and
structural. A model is repl icatively valid when its
behavior matches data already acquired from the real system.
Predictive validity is a stronger condition that exists when
model data is derived before data from the real system con-
firms model predictions. The strongest form of validity de-
fined by Zeigler is concerned with isomorphism between the
model and the real system. Structural validity occurs when
a model not only reproduces the real system behavior, but
also reflects the manner in which the real system operates.
Shannon [SHAN75] addresses the question of whether a model
should be an isomorphic reflection of a real world system;
he concludes that the question has been debated for years
and is still unanswered today.

Validation Philosophies Shannon prefers to view validation
as merely one aspect of scientific enquiry as suggested by
Churchman [CHUR68]. In this context, he defines three ex-
treme approaches to model development and validation.

* Rationalism - this modeling approach is based on the
existence of premises of unquestionable truth that
need not be explicitly proven. Acceptance of the
premises and of the logic with which they are con-
nected implies acceptance of the validity of the
model . The most notable modern day examples of the
rationalist approach are the urban and world models
of Forrester [FORR69^ F0RR71].

-130-

* Empiricism - this modeling approach requires that
all model components must be based on premises or
assumptions that can be independently verified by
experiment or analysis of empirical data.

* Absolute pragmatism - this modeling approach sees
validation as being concerned with whether a model
achieves the purpose for which it was developed.
Thus, usefulness rather than truth determines vali-
dity.

Multi- stage util itarian approach In practice, however, few
modeling efforts reflect one of the philosophical extremes
described above. Most often, a validation approach that
combines aspects of all three philosophies is employed.
Termed by Shannon the utilitarian approach, Naylor and
Finger [NAYL67] describe a multi-stage validation process
that represents such a philosophical compromise, falling in
the middle of the pure philosophies as illustrated in Figure
8.1.

* STAGE 1 - determine that model building block com-
ponents have face validity; that is, assure that
basic components are reasonable and that assumptions
make sense. This stage is a modified rationalist
approach.

* STAGE 2 - empirical testing of model components and
relationships; this is a modified empiricist ap-
proach, using statistical techniques such as tests
of hypotheses, for testing assumptions, parameters
and relationships.

* STAGE 3- matching model predictions to the behavior
of the real world system; the ability of the model
to predict is viewed as the most important indicator
that the model satisfies the absolute pragmatist
criteria of usefulness.

These three stages are applied iteratively throughout the
model development and application process. Thus, a continu-
ing spiral of modified rationalism and empiricism followed
by absolute pragmatism occurs until an acceptable level of
validation is achieved. The question of how much validation
is enough is addressed in a subsequent section.

8.2.3 Problem analysis. The third part of the evaluation
process is concerned with analyzing and correctly interpret-
ing data produced by the model. Like verification, this
evaluation phase is complex, and is itself the subject of
study and entire treatises. A model that has been verified
and validated can still result in bad decisions if model

-131-

VALIDATION PHILOSOPHIES

EXPERIMENTAL

OR

EMPIRICAL

PROOF

EMPIRICISM

STAGE

UTILITARIAN

MULTI-STAGE

STAGE 1 STAGE

RATIONALISM
ABSOLUTE
PRAGMATISM

USEFULNESS

Figure 8.1

-132-

produced data are misunderstood or improperly used . Problem
analysis must, therefore, be recognized as an important and
integral part of the evaluation process.

8.3 Error Taxonomies

Errors uncovered by the model evaluation process can
take several forms . Error taxonomies appear throughout the
literature. Ferrari [FERR78 ppl34-139] identifies three
classes of inaccuracies:

* formulation errors - caused by a model that does not
represent the real world system correctly or in suf-
ficient detail,

* solution errors - caused by applying incorrect solu-
tion techniques to the model representation, and

* parameter errors - caused by the use of incorrect
parameter values.

Shannon [SHAN75] lists five classes of errors that can lead
to erroneous conclusions.

* Design errors

* Programming errors

* Data errors

* Procedural (model usage) errors, and

* Interpretation errors.

Within the framework of the three evaluation phases and the
multi-stage utilitarian validation approach described above.
Figure 8.2 is a synthesis of these error taxonomies and of
Zeigler's validity classification. It is clear from this
tabular analysis that these classifications differ in scope
and emphasis; each views model evaluation from a slightly
different perspective.

8.4 Acceptance Criteria

Model validity is often thought of as a binary charac-
teristic, either the model is valid or it is not. This is
an unfortunate misconception; proof of absolute validity may
be neither theoretically nor economically feasible. The
multi-stage utilitarian view of validation recognizes the
concept of relative validity, with additional iterations

-133-

c
0
1-1

•p
10 (fl

4J U
0) 0
u u
a, u
u w
<u

•p

c

(0 0

en u
0 u
u
04

C (0

CP u
•H o
(fl S-l

<LI U
a a

tiiii

c
0
•-H to

4J U
3 0

o u

0)

3

H
fa

> >i

01

>
•rH

(fl

H C -H
r-l 10 .-H

a; Oj

4J

10

e

10

i-i

<D

+J

D

-134-

providing greater assurance at increased cost to the user.
Anshoff and Hayes [ANSH72] suggest that relative costs and
benefits resulting from increasing degrees of validation are
related in the manner depicted in figure 8.3. This graph,
which is also reproduced in Shannon, shows the benefit to
cost ratio peaking at something less than perfect validity.

In discussing the maximum tolerable error that can be
accepted in a computer system simulation model, Ferrari
[FERR78 pl37] states:

In studies which involve comparisons between dif-
ferent systems or between different versions of
the same system, what usually matters is not the
exact values of performance indices but their sen-
sitivity to the types of changes being considered.

Thus, he argues that relatively low levels of replicative
and predictive validity can be tolerated if the model reacts
in the same way as the real world system to pertinent
changes. Ferrari sees this sensitivity validity as an ac-
ceptable but not preferable surrogate for the ideal of
predictive validity:

Having models which also accurately reproduce the
values of the (performance) index is certainly
sufficient but by no means necessary . .

.

We conclude that, like the evaluation process itself,
acceptance criteria are determined -based upon the objectives
of the modeling effort. Furthermore, these criteria are
continually reviewed throughout the model development and
implementation project.

8.5 Computer System Model Evaluation

Computer system modeling is unique in that, unlike many
real world systems, computers can be measured and often con-
trolled by the modeler. This provides an opportunity for
validation that is uncommon with other modeling objects.
Seven years ago, Reitman [REIT71 p339] wrote:

The best examples of verification of simulation
predictions with actual experience should come
from the computer system designers. They have
well documented existing computer systems, input
data, and the advantage of having the computer.
In spite of these advantages, the verification of
simulations of complete computer systems is quite
rare

.

-135-

MODEL VALIDATION COSTS AND BENEFITS

MODEL

USEFULNESS

0 MODEL VALIDITY 1.0

Source: Ansoff, H.I., and R.L. Hayes, "Role of Models in Corporate Decision Making," Proceedings
of IFORS Sixth International Conference , Dublin, Ireland, August 1972.

Reprinted in:

Shannon, R.E., Systems Simulation, The Art and Science , Prentice-Hall, Englewood Cliffs,
NJ, 1975, p. 209.

Figure 8.3

-136-

Some progress has been made since this somewhat discouraging
assessment. Conferences [HIGH73-76, BEIL77] and books
CFERR78] address computer system performance modeling and
evaluation issues including model evaluation. Trace driven
modeling [SHER72-73, NOE72] was developed in large part to
overcome some of the complexities associated with validating
stochastic computer system models through the use of event
traces rather than random numbers and random variables for
determining process sequences. Clearly, more evaluation of
computer system models is attempted today. Nevertheless,
many computer system models are still not validated experi-
mentally or empirically.

The research described in this document is concerned
with database management system modeling. How many DBMS
models have been evaluated for accuracy and correctness?
Literature reviews and personal discussions with many of
those working in this field lead to the conclusion that lit-
tle has been accomplished in this area. Validation general-
ly follows the philosophy of rationalism; validity is im-
plied from the acceptance of model representations for basic
system components and their relationships. Models of data-
base design concepts have rarely been built prior to their
implementation. Thus, there is virtually no precedent for
the approach taken in the set processor modeling effort
described herein. From the outset, the ability to validate
model predictions was a major objective in implementing the
integrated prototype - measurement system - SPPM components
of the set processor performance prediction system. The
next section describes SPPM evaluation procedures using the
concepts and terminology presented above.

8.6 SPPM Evaluation

Evaluation of the set processor performance model has
begun. A process that will continue throughout the model
life cycle, SPPM evaluation has as its objective assurance
of the strongest forms of isomorphism and predictive validi-
ty. As described above, the SPPM actually contains two
models: the size estimation modeler, and the response esti-
mation modeler. These two models are built on a foundation
of partially overlapping sets of components and shared
storage for parameters and derived values. Consequently,
verification and validation of SPPM components may contri-
bute to the evaluation of both size and response modelers.
Because the size model has been available for a longer
period of time, the evaluation process has progressed furth-
er for it than for the response modeler. Some progress has

-137-

been made, "however, in the initial evaluation steps for the
response model. SPPM evaluation progress and plans are
described in the remaining paragraphs in this chapter in
terms of the multi-phase utilitarian approach.

8.6.1 Verification. All model components have been reviewed
to determine that they faithfully carry out the model
design. This does not mean that SPPM subroutines are error
free, but rather that a comprehensive debugging effort has
been completed. Various techniques were employed to assist
and guide the verification task.

* Careful selection of test parameters and query loads
to exercise model capabilities fully within time and
computer processing resource constraints.

* Use of an interactive debugging facility to monitor
execution of model subroutines; because of the com-
plexity of the SPPM, some type of debugging aid is
almost essential for finding errors such as incon-
sistent subroutine arguments in calling and called
programs, untested program paths, and logical design
and coding errors.

* Review of virtually all SPPM procedures; this was
done in order to prepare the pseudo FORTRAN state-
ments appearing in Chapter 7 of this document. A
number of previously undetected errors were found
through this review. Indeed, verification was prob-
ably the most valuable contribution from this tedi-
ous and time consuming endeavor.

Beyond these initial verification activities, other
evaluation phases have uncovered errors in model program
realizations; thus, several iterations of verification have
already been completed. Of course, as evaluation continues
more verification steps are certain to be required.

8.6.2 Validation. The multi-stage utilitarian validation ap-
proach described above is applicable to the SPPM modeling
effort. Model design and development has attempted to
achieve structural validity; that is, there is isomorphism
between model and prototype DBMS operation. This is espe-
cially true for the response modeler that uses modified PSP
programs to determine the sequence of DBMS functions re-
quired to answer a query. Over and above structural validi-
ty, an ongoing effort to achieve replicative and predictive
validity using all three philosophical stages is underway.
While all model components have achieved some degree of
validation, the iterative multi-stage evaluation process is
expected to continue

.

-138-

STAGE 1^ - Rationalism All SPPM components have rational
bases in the operation of the PSP prototype and stand up to
careful scrutiny for reasonableness. Other database . manage-
ment system modeling efforts have not gone beyond this step
in their validation. Because of the availability of meas-
urement data and the Positional Set Processor prototype,
other stages of validation can be considered for the SPPM as
well

.

STAGE 2_ - Empiricism Major SPPM components have been the
subject of validation experiments. Using the prototype DBMS
and measurement system, modules such as the following have
been calibrated against corresponding PSP facilities.

* Model representation of l/0 buffer manipulation by
operating system and (FORTRAN) language software was
tested against, and ultimately changed because of,
experimental results derived from the PSP on a

quiescent system.

* The use of traversal as a surrogate process for
classical set operations was tested and confirmed
through analysis of PSP measurements and traversal
experiments

.

* The collection of database functions was confirmed
and modified based on accumulated measurements of
multiple PSP sessions showing selected functions as
significant in relation to both total resource re-
quirements and other functions.

Empirical and/or experimental validation of component
processes does not consider their interaction. Consequent-
ly, a still stronger validation stage 3 is desired.

STAGE 3_ - Absolute pragmatism The true test of the integrat-
ed prototype - measurement - modeling approach employed in
this research is whether the SPPM can predict the perfor-
mance of the PSP prototype. We seek first replicative and
then predictive validity. When performance indices can not
be replicated, we recognize (but are not necessarily satis-
fied with) the relative sensitivity validity described pre-
viously. Current status and future validation plans for the
two SPPM models are described in the next chapter.

8.6.3 Problem analysis. The SPPM is just now beginning to be
used. Consequently, there have been few opportunities to
interpret and use model results. Some initial model results
did provide the insight necessary to guide modifications in
the PSP prototype that greatly enhanced its usefulness as a
research and demonstration tool. The success of these
modifications attests to the correctness of the analysis and

-139-

interpretation of results. Early size model estimates have
shown considerably larger portions of secondary storage used
for overhead than had been thought, with a resulting greater
media space requirement. These and other model results will
be carefully considered before implementation and design de-
cisions are made.

8 . 7 Summary

This chapter has reviewed some of the literature and
terminology in the area of model evaluation. A consensus
approach comprised of three phases - verification, valida-
tion, and problem analysis - was adopted. Validation was
seen as an iterative, multi-stage process falling in the
middle of the philosophical extremes of rationalism, empiri-
cism and absolute pragmatism. Finally, the current evalua-
tion status of the SPPM size and response models was re-
viewed; the continuing evaluation process is well underway
in both cases, with the size model having already demon-
strated a strong form of repl icative/predictive validity.

-140-

9. RESULTS

9.1 Research Accomplishments

This research has included activities in the following
areas

.

* Prototype DBMS Development

* Measurement System Development

* Predictive Modeling
- Model development
- Model evaluation
- Model application

* Research Generalization

Accomplishments in each of these areas are summarized in the
following sections.

9.2 Prototype DBMS Development

The heart of the integrated evaluation approach that
was developed and demonstrated in this project effort is a
limited prototype implementation -for the proposed DBMS
design. This research included transporting the initial Po-
sitional Set Processor prototype implementation to the NBS
testbed and substantially enhancing its capabilities. Im-
provements made during this project are outlined in section
4.3.2; together, they significantly increased the usefulness
of the prototype DBMS as a research tool.

Database management systems, even in prototype form,
are complex and sophisticated software tools; DBMS develop-
ment and enhancement are, therefore, difficult and challeng-
ing endeavors. Because of the uniqueness of the design con-
cepts imbedded in the prototype, much of the PSP software is
without precedent. The secondary indexing mechanism that
was built using a true set processor is just one example.

In addition to accomplishments that are specific to
the Positional Set Processor prototype, this research in-
volved the use of methodologies and tools that can be ap-
plied to developing other DBMS prototype software. Objec-
tives and procedures for implementing DBMS prototypes are
described in section 3.2.1. Developing and enhancing the
PSP also provided insight into the determination of features

-141-

that should be incorporated into a limited DBMS prototype.
These include:

* basic database loading, accessing and updating capa-
bilities ;

* a secondary storage utilization strategy (i.e., a
representative DBMS can not run entirely in main
memory)

;

* a primitive user interface; and

* features necessary to demonstrate and test design
characteristics (e.g., a prototype for a design
utilizing abstract data types should include in-
tegrity features that might be ignored in other pro-
totypes) .

Because of the proprietary nature of DBMS products, it
is difficult to find statistics describing development costs
for database management software systems. Individuals par-
ticipating in the early stages of its development estimate
that one widely used commercial database management system
required over twenty-five (25) man-years of development ef-
fort [PERS78]. On the other hand, the approach proposed in
this research was predicated on the belief that a limited
DBMS prototype can be developed with approximately 10% of
the resources and time required for the complete system.
Actual personnel time for all prototype software development
as well as enhancement under this project is estimated to be
about thirty (30) man-months. Because many of the high-
level software tools developed for the Positional Set Pro-
cessor can be used, the development of other DBMS prototypes
should require even fewer resources.

While a prototype is not intended as an operational
software product, it can provide the foundation for an
iterative development process leading to a full-scale imple-
mentation. The early availability of the prototype for ob-
servation and modeling is, of course, one of its most impor-
tant characteristics. The integrated design evaluation ap-
proach focuses on the questions of whether and how full-
scale implementation should be carried out; if the prototype
and model predictions indicate that the design is not vi-
able, the cost is only a fraction of that for an abortive
complete development effort.

-142-

9.3 Measurement System Development

The integrated design evaluation approach calls for the
use of a measurement system for observing prototype DBMS
per fonnance . Measured results provide insight into proto-
type operations and are used for calibrating the model and
deriving parameters. Measured performance indicators are
compared to model predictions for validating the model. The
measurement system developed for this project is described
in chapter 5; it is both flexible and simple to use. Four
characteristics differentiate it from previous measurement
efforts

.

* Written in a high-level language (FORTRAN), the sys-
tem is both transportable and easy to understand

.

* The system is designed for measuring procedure-level
events; that is, subroutine entries and exits are
recorded. This contrasts with the machine and sys-
tems software dependent approach of measuring
operating system service requests.

* Accurate measurements can be obtained even with a
coarse and unpredictable system clock facility.

* The object software is viewed as a hierarchical col-
lection of procedures. The flexible user interface
allows measurement of specific procedures, groups of
procedures, and trees within the software hierarchy.

The measurement and analysis system is sufficiently general
to be applicable to other DBMS design evaluation projects
with little modification.

9.4 Predictive Modeling

Using the PSP prototype and measured observations of
its performance as an object, this research concentrated on
developing models for predicting gross indicators of perfor-
mance for database management systems using PSP design con-
cepts. Few models of DBMS software have been built previ-
ously. Past efforts have concentrated on specific DBMS com-
ponents and/or on designing databases rather than on design-
ing database management systems . No existing models were
capable of representing the PSP's compacted bit-string en-
coding and processing of sets. Accomplishments in three as-
pects of predictive modeling are discussed in the following
paragraphs

.

9.4.1 Model development. The Set Processor Performance Model
is not just a modeling concept, but has been implemented
fully. Described in chapters 5 through 7, the SPPM is made
up of two major predictive components: the analytic size es-
timation modeler, and the stochastic response time simula-
tor. Each of the two modelers represents a separate contri-
bution.

Si ze modeler The size modeler is a general, analytic tool
for predicting secondary storage utilization for a given
DBMS design strategy. It incorporates several concepts that
differentiate it from other storage structure models.

* It has sufficient power and flexibility to handle
the complex and unique PSP table structure.

* At the same time, it is general enough to represent
other DBMS storage utilization strategies.

* The elementary file representation framework for
describing secondary storage structures is a major
improvement over the modeling of Senko and Owens.

* The functional taxonomy for storage structures pro-
vides a framework for evaluating secondary storage
utilization strategies not previously available.

* Finally, logical and elementary file parameters pro-
vide a comprehensive summary of database charac-
teristics that determine secondary storage require-
ments and influence response characteristics.

Response modeler The response time estimation component of
the SPPM is a PSP prototype specific, stochastic model that
has both analytic and simulation components. It differs
from the few other response time estimation DBMS models in
several ways

.

It is tailored to Positional Set Processor design
concepts that can not be represented using other
modeling tools.

It is built on a framework of set processor primi-
tives and DBMS model utility functions that can be
applied to increasingly broad classes of set proces-
sors and database management systems. respectively.

Intermediate model results can be specified by the
user or, optionally, can be estimated by Monte Carlo
processes within model determined feasible ranges.

-144-

* The model, like the DBMS object, is query driven;
the user merely formulates commands in the same syn-
tax as that used by the prototype system.

* The response modeler has a "piggy back" relationship
with the size estimation model. Parameters for and
results generated by the size modesler are used in
the response estimation process.

9.4.2 Model evaluation. From the outset, the SPPM modeling
effort has had as an objective the validation of model pred-
ictions against measured prototype DBMS performance indica-
tors. There is virtually no database management system
modeling precedent for this strong validation orientation.
The continuing SPPM evaluation process has as its ultimate
objective the strongest forms of isomorphism and predictive
validity. Oiapter 8 presents a multi-phase utilitarian ap-
proach to model evaluation and describes SPPM evaluation ac-
tivities. Specific SPPM validation achievements are summar-
ized below.

Size modeler status The size modeler is an analytic model
that predicts stored database size based on parametric
descriptions for database content and logical structure, and
secondary storage utilization strategy. Model predictions
were matched against the only existing databases for the PSP
prototype. Figure 9.1 shows the close relationship between
predicted (marked with an X) and actual database secondary
storage requirements for the three PSP databases. The pred-
iction error for the three databases ranged between -2% and
+.4%, with the error decreasing as a percentage of database
size for increasingly large databases.

This high correlation between predicted and actual da-
tabase sizes indicates a high degree of replicative validi-
ty. Furthermore, because actual PSP database sizes were in
no way known to the model, the size modeler demonstrates a
certain amount of predictive validity. Two additional steps
to determine predictive validity are planned:

* size modeler estimates will be derived for new PSP
databases before they are actually loaded, and

* the size modeler will be used for database manage-
ment secondary storage strategies other than that
used by the PSP prototype.

-145-

SPPM ESTIMATES AND PSP DATABASE SIZES

1 2 3
database
cardinality

(orders of magnitude)

X =* MODEL estimate

.
= ACTUAL NBS ECF SECONDARY

storage requirement

Figure 9.1
'

-146-

Regardless of the outcome of future tests for even
stronger predictive validity, the SPPM size modeler has pro-
ven itself to be a very accurate predictor of PSP stored da-
tabase size. The remaining validation questions pertain to
the range over which predictions are accurate, and the scope
of the model vis-a-vis other database design concepts and
implementation strategies.

Response modeler status Response modeler validation has not
progressed as far as that for the size model. The primary
reason for this lag is the fact that the response modeler is
dependent on an operational size estimation facility. By
necessity, the size modeler was substantially completed a
full six months before the first operational version of the
response estimation model. Evaluation activities for the
size modeler were then carried out in parallel with response
model development. Nevertheless, some determinations per-
taining to the validity of the response modeler have already
been made and others will result from the continuing evalua-
tion process.

First model predictions of response time were off by a
factor of two 7 that is, actual response time was approxi-
mately twice the amount predicted by the SPPM. Analysis of
model results along with additional STAGE-2 experiments with
the PSP prototype indicated that most of the error could be
attributed to the l/0 estimation module and the manner in
which it is invoked. The installation of a new operating
system may be responsible for l/O estimation problems en-
countered in early validation attempts. Work is currently
underway to recalibrate the l/0 module.

While the 50% error rate precludes any claims of strong
replicative or predictive validity, some degree of sensi-
tivity validity has been demonstrated. Predicted and actual
response times move in the same direction by approximately
the same amounts (relative to their respective beginning
values) when query loads and database parameters are
changed

.

j

Even if predicted response exactly matched actual sys-
i

tem times, only replicative validity could currently be
\ claimed. This is because of the manner in which times for

database function parameters are being determined . In order
to estimate response for a specific query and database, da-

j

tabase function times are derived by exercising the PSP pro-
f totype with the same query and database. Thus, model inputs

may represent prior knowledge of system performance. Future
i plans call for incrementally relaxing this close relation-
P ship between model load and the PSP load used for deriving

parameters. Eventually, it is hoped that parameters can be

I

derived by accumulating measured results from a query set

-147-

representing a typical interactive session that is applied
to a wide range of databases. At least three increasingly-
general parameter extraction phases will be used.

Parameter extraction using the same query and data-
base as that Used for response estimation runs.

Parameter extraction using several queries of the
same command type on the same database as that used
for response estimation runs.

Parameter extraction using several queries contain-
ing various command types comprising a representa-
tive query set on a typical database.

9.4.3 Model application. Regardless of other contributions
resulting from this research, the SPPM must be used to
evaluate potential PSP performance. While the evaluations
of the prototype are not directly related to the research
objectives, they will be important determinants of future
implementation strategies for the PSP. Questions of poten-
tial performance will be answered by perturbing model param-
eters and query loads beyond those for the prototype DBMS
implementation. Preliminary experiments have been carried
out using the SPPM size and response modelers. Predictions
representing approximately 120 computer runs are summarized
below.

Size modeler projections Preliminary experiments using the
size modeler have projected both horizontal and vertical da-
tabase dimensions several orders of magnitude beyond those
actually loaded using the PSP prototype. The results of
these initial projections, while not totally unexpected, do
provide new insights into PSP secondary storage utilization
strategies. Model predictions were generated in the form of
source and stored database summary and detailed analysis re-
ports illustrated in Figures 7.2 and 7.3.

Horizontal dimensions (attributes and relations) were
perturbed by four orders of magnitude beyond the largest ac-
tual PSP database. Stored database size estimates grew pro-
portionally with source database size. These results are
graphically illustrated in Figure 9.2.

Size estimates were also derived for vertical (tuple)
dimension perturbations covering six orders of magnitude
beyond existing PSP databases. The kinked relationship
between source database size and estimated database storage
requirements is illustrated in Figure 9.3; this is common
behavior for a DBMS. Initial growth for stored databases
was estimated to be at a much slower rate than increases in
source database size. Even after the upward turn in the

-148-

PRELIMINARY SIZE PROJECTION

(Horizontal Perturbations)

DATABASE
SIZE

(BIOUS)

ORDERS
OF

MAGNITUDE
a SOURCE

database
(# relations)

Figure 9.2

-149-

PRELIMINARY SIZE PROJECTION

(Vertical Perturbations)

DATABASE
SIZE

(bious)

ORDERS
OF

MAGNITUDE

SOURCE
database

(# tuples)

Figure 9.3

-150-

graph, PSP databases were estimated to grow only directly
with source database size. This contrasts with many commer-
cial systems; one widely used DBMS product demonstrated an
explosion factor of 7 to 8 times in recent NBS tests

.

Response modeler projections Because the response modeler is
still in the early stages of evaluation, with only weak sen-
sitivity validity demonstrated, response projections must be
viewed as extremely tentative. Nevertheless, response esti-
mates were derived for a single simple equality condition on
an indexed attribute applied to three databases of exponen-
tially increasing size. Response estimates were obtained
for solution sets with a cardinality of 2, and for solution
sets with the maximum cardinalities for the attributes and
databases being queried. Figure 9.4 summarizes these tenta-
tive results extracted for l/O and response summary and de-
tailed analysis reports illustrated in Figures 7.4 and 7.5.
Response time is shown as being related primarily to solu-
tion set cardinality. Furthermore, an analysis of estimated
times for specific database functions shows a single activi-
ty, adding an element to a set, requiring 99% of total time
for queries with large solution sets.

These results were not anticipated. Should subsequent
experiments confirm these tentative findings, they will be
important in determining where technology could be applied
to improve prototype performance; for instance, these prel-
iminary findings are strong arguments for considering the
use of special purpose hardware to dramatically improve the
set building process. The SPPM will be used to further ex-
amine this and other potential implementation approaches.

9.5 Generality of Results

The purpose of this research was the development of a
DBMS design evaluation methodology. The development of this
methodology focused on the design concepts imbedded in the
Positional Set Processor prototype implementation. From the
PSP evaluation effort, both methodological and software
tools were developed; many of these tools can be applied
also to other DBMS design evaluation efforts. The following
sections discuss these tools and their generality.

-151-

PRELIMINARY RESPONSE PROJECTION

(Simple Equality Condition on Indexed Attribute)

RESPONSE

SIZE
MAGNITUDE TUPLES)

Figure 9.4

-152-

9.5.1 Evaluation methodology. The integrated approach that
Ts successfully being used to evaluate PSP design concepts,
could be applied to other proposed DBMS designs as well.
Starting with a set of design specifications for a database
management software/hardware facility, the steps below would
be followed.

1. Develop, Using a high-level language, a well struc-
tured prototype incorporating only essential
features for the proposed DBMS design. Prototype
implementation should follow the guidelines outlined
in section 3.2.1.

2. Exercise the prototype to assure the efficacy of the
DBMS design approach; that is, use the prototype im-
plementation to prove gross technological feasibili-
ty for the underlying design concepts.

3. Instrument the prototype DBMS; that is, insert meas-
urement system "hooks" or probes. For the PSP meas-
urement facility, probes take the form of CALLS to
measurement program SVC400 that are inserted in DBMS
procedures. Of course, these probes can be inserted
at the time prototype subroutines are written. The
measurement system developed for this research can
be used on any system supporting a FORTRAN compiler.
Its use requires that the prototype DBMS be written
in a language that has a FORTRAN linkage facility.
Part of the instrumentation, task is to calibrate the
measurement facility to overcome limitations in sys-
tem provided hardware/software clocks.

4. Develop and use a model based on the SPPM to examine
the performance potential of the proposed design
concepts. Section 6.7 outlines eleven steps to be
followed in an iterative model development and im-
plementation process.

9.5.2 Applicability of software tools. A major portion of
the software developed for this research could be used for
other DBMS design evaluation projects as well as for data-
base design studies. The applicability of software tools in
each of the major performance evaluation system components
to other evaluation projects is described below.

-153-

Positional set processor prototype The PSP prototype is not
generally applicable to other DBMS design evaluation ef-
forts. In developing the Positional Set Processor, however,
a number of general utilities were required. A substantial
library of FORTRAN subroutines and functions necessary for
implementing a DBMS in a high-level language is available.
The routines range from bit and character manipulation util-
ities, to sophisticated generalized programs for performing
non-standard direct access l/O. Approximately 10% of the
over 200 PSP subroutines are of this general nature that
could be applied to other DBMS implementations. Some are
even being used at NBS in software other than database
management systems

.

Measurement and analysis system Virtually the entire meas-
urement facility could be used for evaluating other DBMS
designs. As stated above, the prototype must be coded in a
language that provides a FORTRAN linkage. In addition, the
measurement system must be calibrated and a table of program
reference numbers must be prepared in order to use the meas-
urement facility. In a system with a clock that has suffi-
ciently fine granularity, the cycling mechanism may not be
required; because of the modular subroutine structure, this
facility can be easily deactivated.

Set processor performance model Section 5.7 shows that ap-
proximately 90% of the 215 programs in the SPPM would be ap-
plicable to other DBMS design evaluation endeavors. The
remaining 10% comprise the sequence selector module that
must be coded for each object database management system.

-154-

10. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

10.1 Conclusions

The major proposition considered by this research was
whether proposed database management system designs could be
evaluated through an integrated prototype DBMS development,
measurement and modeling approach. The Set Processor Per-
formance Prediction System demonstrates the efficacy of this
approach; that is, the tools and techniques developed in
this research do provide a feasible mechanism for evaluating
the performance potential of the design concepts embodied in
the Positional Set Processor prototype. In the process of
developing the performance prediction system, the three sup-
porting propositions stated in the opening chapter were also
proved through demonstration.

10.1.1 (Proposition-1)High-level modeling. Both ' measurement
and performance modeler components of the Set Processor Per-
formance Prediction System consider program level events
rather than operating system service requests. The result-
ing high-level performance measurements and predictions are
sufficiently detailed and sensitive to changes in parameters
describing DBMS software, load and environmental factors.
The impact of operating system scheduling and resource allo-
cation procedures on measured DBMS performance is neutral-
ized by exercising the prototype on a quiescent system.
High-level measurement and modeling is consistent with the
objectives of evaluating gross performance potential for da-
tabase design concepts, and with the fact that most DBMS are
built on an existing operating system foundation.

10.1.2 (Proposition-2)Measurement system. Closely related to
Proposition-1 was the claim that a relatively simple and
flexible system could be developed to monitor and record
performance data for the prototype DBMS implementation. The
Set Processor Measurement and Analysis System accomplishes
this objective despite the complexities of a coarse and
unpredictable system clock facility.

10.1.3 (Proposition-3) Integrating components. The last pro-
position dealt with using the prototype DBMS, measurement
system, and performance model components in an integrated
performance evaluation effort. Each of the following uses
for the measured prototype data were mentioned in the propo-
sition; all were applied in the set processor evaluation
project.

-155-

Understanding DBMS operation Measurement system static and
dynamic outputs facilitated investigation of the operation
of the DBMS prototype at different levels of detail and from
various perspectives. A great deal was learned from simply
observing PSP prototype performance. As a result of early
measurement system outputs, minor changes were made to the
prototype that improved its capabilities and usefulness as a
research tool. Furthermore, measurement data identified im-
portant procedures for modeling purposes, and (through the
formatted path analysis) provided easy to follow graphical
explanations of prototype procedure interactions.

Deriving parameter values Measurement data provides parame-
ter values for Set Processor Performance Model executions.
The flexible capability for specifying programs to be moni-
tored allowed definition of functions at various levels
within the "tree" of programs comprising the Positional Set
Processor prototype. Furthermore, investigation and cali-
bration of primitive operations such as packet manipulation
and set traversal were accomplished using the measurement
facil ity

.

Model validation The use of measured prototype performance
to validate model predictions is described in the preceding
chapter. Model evaluation, defined previously to be an
iterative process including validation, is continuing for
the SPPM . Progress so far has shown that the tools provided
by the performance evaluation system are sufficient to
achieve a high degree of correlation between actual and
predicted performance indices.

This research has achieved its objective of developing
and demonstrating a methodology for evaluating proposed DBMS
design concepts. Initial steps have been taken toward using
the Set Processor Performance Model for predicting potential
performance for the design concepts imbedded in the Posi-
tional Set Processor Prototype. Furthermore, both the
methodology and a substantial portion of the software
developed for this project could be applied to the evalua-
tion of other database management system design ideas.

-156-

10.2 Future Research Directions

This project is merely a beginning; building on this
research, future work should address tasks in two broad
areas

:

* application of the Performance Prediction System and
Methodology, and

* extension and enhancement of performance prediction
system capabilities.

Research tasks in each of these areas are discussed in the
following sections.

10.2.1 Application of prediction system. Because the focus
of this research was on the development of methodological
and software tools for evaluating database designs as op-
posed to actual performance evaluation results, a great deal
remains to be done in applying the performance prediction
system. Potential future research activities in this area
include the following.

* Continuation of the iterative evaluation process un-
til response modeler predictions achieve a high lev-
el of replicative and predictive validity with
respect to the Positional Set Processor prototype.
This on-going endeavor is essential for certifying
the accuracy of predictions that will be generated
in subsequent steps.

* Use of the performance prediction system in a vi-
gorous effort to evaluate the performance potential
of the PSP design concepts. This is the single most
important future activity; if the performance pred-
iction system and methodology are not used, much of
the effort will have only pedagogical benefits. In
addition to investigating potential performance lim-
its for the prototype design under various database
and query loads, the research should consider the
impact of implementation changes such as using
hardware for selected set processing primitive func-
tions, and applying different buffer management
strategies.

* Application of the SPPM size modeler to database
designs other than the positional set processor. In
particular, the representation of storage strategies
for existing DBMS such as System 2000 would provide
a test of the claimed generality and allow further
validation of the size modeler.

-157-

* Application of the methodology and tools developed
for this research to other proposed database manage-
ment system designs. While a piecemeal application
of separate components like the measurement system
or size modeler should be encouraged, of greater in-
terest would be the use of all pertinent performance
prediction tools in an integrated evaluation effort.

10.2.2 Enhancement of prediction tools. As with any
research, many compromises were made in order to accomplish
the project objectives. These compromises invariably called
for simplicity rather than elegance and limited rather than
complete features. There are, therefore, a number of im-
provements that could be made in the performance prediction
system. In addition to adding capabilities that were (for
the sake of expediency) knowingly omitted, enhancements
could address limitations that became evident only during
prolonged use of the prediction system. Three future
research projects to extend prediction capabilities are
listed below.

* Enhance the SPPM response estimation modeler to han-
dle the entire positional set processor command syn-
tax. This would allow modeling complete PSP query
sessions.

* Integrate normative analytic solutions for database
storage utilization sub-problems into the SPPM size
and response modelers. In particular, the work of
Severance [SEVE75] should be considered for inclu-
sion in the SPPM.

* Address the impact of multiprogramming and other
operating system complexities. These problems were
largely ignored in this research. One possible ap-
proach would be to use the SPPM as a front-end for
modeling tools that emphasize hardware/ software
resource allocation and utilization aspects of com-
puter system performance. Another possibility would
be to provide an interface between the SPPM and da-
tabase oriented modelers such as those developed by
Reiter [REIE76a-b] and Delutis [DELU77].

-158-

BIBLIOGRAPHY AND REFERENCES

(Note: * indicates references appearing in the text.)

AGRA75 Agrawala, A. K. and R. M. Bryant, Models of Memory
Scheduling, Computer Science Technical Report
TR-392, University of Maryland, July 1975, 22 p.

*ANDA72 Anderson, H. A. Jr., and R. G. Sargent, "Bibliog-
raphy 31: Modeling, Evaluation and Performance
Measurements of Time-Sharing Computing Systems,"
Computing Reviews of the ACM, Vol. 13, No. 12, De-
cember 1972, pp. 603-608.

*ANDD77 Anderson, Henry D. and P. B. Berra, "Minimum Cost
Selection of Secondary Indices for Formatted
Files", ACM Transactions on Database Systems , Vol.
2, No. 1, March 1977, pp. 68-90.

*ANSH72 Anshoff, H. I. and R. L. Hayes, "Role of Models in
Corporate Decision Making", Proceedings of IFORS
gixth International Conference , Dublin, Ireland,
August 1972.

ARIS74 Aris, John B. B., "Quantifying the Costs and Bene-
fits of Computer Projects", Economics of
Informatics , A. B. Frielink, Ed., American El-
sevier Publishing Company, Inc., New York, 1974,
pp. 15-24.

ASH68 Ash, William and Edgar H. Sibley "TRAMP: A Rela-
tional Memory With an Associative Base",
University of Michigan Technical Report 5^, Ann Ar-
bor, May 1968.

*ASTR76 Astrahan, M. M., et. al., "System R: Relational
Approach to Database Management" , ACM Transactions
on Database Systems , Vol. 1, No. 2, June 1976, pp.
97-137.

-159-

BACH72 Bachman, Charles W. , "The Evolution of Storage
Structures" Communications of the ACM, Vol. 15,
No. 7, July 1972, pp. 628-634.

*BAKE7 5 Baker, F.T., "Structured Programming in a Produc-
tion Programming Environment," Proceedings of the
International Conference on Reliable Software ,

21-23 April 1975, Los Angeles, ppl72-185, IEEE
Computer Society, Long Beach, California.

BARD73 Bard, Y. , "Experimental Evaluation of System Per-
formance", IBM Systems Journal , No. 3, 1973, pp.
302-314.

*BASK71 Baskett, Forest, III, Mathematical Models of
Multi-programmed Computer Systems , doctoral
dissertation. Computation Center, University of
Texas at Austin, January 1971, 78 p.

*BEIL77 Beilner, H. and E. Gelenbe, Eds., Modeling and
Performance Evaluation of Computer Systems,
North-Holland, Amsterdam, 1977, 515 p.

BEIT74 Beitz, Henry E., "A Set-theoretic View of Data-
Base Representation", ACM : S IGF I PET Workshop on
Data Description , Access and Control , May 1974,
pp. 477-494.

*BENJ71 Benjamin, Robert I., Control of the Information
System Development Cycle , Wiley-Interscience, New
York, 1971, 94 p.

*BLAS75 Blaser, A. and H. Schmutz, Database Research: A
Survey , Technical Report 75.10.009, Heidelberg
Scientific Center, IBM Germany, November 1975,
91pp.

*BOYS75 Boyse, J. W. and D. R.Warn, "A Straightforward
Model for Computer Performance Prediction"

,

Computing Surveys of the ACM, Vol. 7, No. 2, June
1975, pp. 73-94.

*BRIC77 Brice, Richard S. and S. Sherman, "An Extension of
the Performance of a Database Manager in a Virtual
Memory System Using Partially Locked Virtual
Buffers", ACM Transactions on Database Systems ,

Vol. 2, No. 2, June 1977, pp. 196-207.

-160-

Brooks, F. P., Jr., The Mythical Man-Month ; Essays
on Software Engineering , Addison-Wesley Publishing
Co., Reading, Mass., 1975, p. 195.

Browne, James C, K. M. Chandy et. al., "Hierar-
chial Techniques for the Development of Realistic
Models of Complex Computer Systems", Proceedings
of the IEEE , Vol. 63, No. 6, June 1975, pp.
966-975.

Buzen, J. P. , "Computational Algorithms for Closed
Queuing Networks with Exponential Servers",
Communications of the ACM, Vol. 16, No. 9, Sep-
tember 1973, pp. 527-539.

Buzen, J. P. and P. Chen, "Optimal Load Balancing
in Memory Hierarchies" , Information Processing 74 ,

North-Holland, Amsterdam, 1974, pp. 271-275.

Cardenas, Alfonso F., "Evaluation and Selection of
File Organization - A Model and System",
Communications of the ACM, Vol. 16, No. 9, Sep-
tember 1973, pp. 540-548.

Cardenas, Alfonso F., "Analysis and Performance of
Inverted Data Base Structures", Communications of
the ACM, Vol. 18, No. 5, May 1975, pp. 253-263.

Casey, R. G., "Allocations of Copies of a File in
an Information Network" , Proceedings of AFIPS SJCC
1972 , Vol. 40, 1972, pp. 617-225.

Catania, Salvatore C, "Computer System Models",
Computers and Automation , March 1972, pp.
14-16, 18.

Chamberlin, D. D. , M. M. Astrahan, et. al., "SEQU-
EL 2 : A Unified Approach to Data Definition, Mani-
pulation, and Control", IBM Journal of Research
and Development, November 1976, pp. 560-757.

Chang, W. , "A Queueing Model of a Simple Case of
Time-Sharing, IBM Systems Journal , No. 5, 1966,
pp. 115-125.

Cheng, P. S., "Trace-Driven System Modeling", IBM
Systems Journal, Vol. 8, No. 4, 1969, pp. 280-289.

-161-

*CHEN76a

CHEN76b

*CHIL68a

*CHIL68b

*CHIL77

*CHUR68

CODA62

*CODD70

*C0DD71

*CODD72a

Chen, Peter Pin-shan, "The Entity-Relationship
Model—Toward a Unified View of Data", ACM
Transactions on Database Systems , Vol. 1, No. 1,
March 1976, pp. 9-36.

Chen, Peter Pin-shan, and M. Franklin, Eds.,
Proceedings of the International Symposium on
Computer Performance Modeling , Measurement , and
Evaluation , sponsored by ACM / SIGMETRICS and IFIP
Working Group 7.3, March 1976, Cambridge, Mass.,
326 p

.

Childs, D. L. , Feasibility of a set-theoretic data
structure: a general structure based on a recon-
structed definition of relation. IFIP Congress
1968, North Holland, Amsterdam, 1968, pp. 420-430.

Childs, D. L., Description of a set-theoretic data
structure. AFIPS Conf. Proc . , Vol . 33 , Part 1^,

AFIPS Press, Montvale, NJ 1968, pp. 557-564.

Childs, D. L., "Extended Set Theory: A Formalism
for the Design, Implementation, and Operation of
Information Systems", Volume IV, Current Trends on
Programming Methodology , edited by R. T. Yeh,
Prentice Hall, expected publication in early 1977.

Churchman, C. W. , Challenge to Reason, McGraw-Hill
Book Co., New York, 1968.

CODASYL Development Committee, "An Information
Algebra" , Phase 1 Report - Language Structure
Group, Communications of the ACM, Vol. 5, No. 4,
April 1962, pp. 190-204.

Codd, E. F., "A Relational Model of Data for Large
Shared Data Bases", Communications of the ACM,
Vol. 13, No. 6, June 1970, pp. 377-387.

Codd, E. F., "A Data Base Sublanguage Founded on
the Relational Calculus", IBM Research Report , RJ
893 (#15716), July 26, 1971, p. 48.

Codd, E. F., "Further Normalization of the Data
Base Relational Model", Data Base Systems ;

Courant Computer Science Symposium 6_, Prentice
Hall (1972) ; also published as IBM Research
Report, RJ 909 (#15857), August 31, 1971, p. 33.

-162-

*CODD72b

*COFF67

Codd, E. F., "Relational Completeness of Data Base
Sublanguages", Data Base System s ; Courant
Computer
(1972);
987

Science Symposium 6_, Prentice Hall
also published as IBM Research Report, RJ

(#17041) , March 6, 1972, p. 36.

Coffman, E. G., "Studying Multiprogramming Systems
With the Queueing Theory", Datamation , Vol. 13,
No. 6, June 1967, pp. 47-54.

*COFF68 Coffman, E. G. and L. Kleinrock, "Feedback Queue-
ing Models for Time-Shared Systems", Journal of
the ACM , Vol. 15, No. 4, October 1968, pp.
549-576.

DAHL73 Dahle, Ole Johnny and Jo Piene, "Evaluation of
Computer Systems Through Simulation" , Management
Informatics , Vol. 2, No. 6, 1973, pp. 279-283.

*DATE75 Date, C. J. , An Introduction to Data-Base Systems,
Addison-Wesley , Reading, Mass., 1975.

DEAN72 Dean, James Elliott, Jr. and C. V. Ramamoorthy, A
Hueristic Integer Programming Approach to Certain
Types of Computer System Design Trade-Of

f

Decisions , Technical Report No. 128, Information
Systems Laboratory, Electronics Research Center,
The University of Texas at Austin, Austin, Texas,
June 15, 1972.

*DELU77 Delutis, Thomas G., A Methodology for the

*DENN68

*DEJ079

*EISN76

Performance Evaluation of Information Systems , Re-
port to the National Science Foundation under
grant no. GN 36622, March 1977, 183 p.

Denning, P. J., "The Working Set Model for Program
Behavior", Communication of the ACM, Vol. 11, No.
5, May 1968, pp. 323-333.

deJong, S. P., Informal seminar at IBM Yorktown
Heights, on "Query-by-Exapmly ,

" January 1979.

Eisner, Mark J. and D. G. Severance, "Mathematical
Techniques for Efficient Record Segmentation in
Large Shared Databases", Journal of the ACM, Vol.
23, No. 4, October 1976, pp. 619-635.

-163-

*ELSP72 Elspas, B., K. N. Levitt, et. al., "An Assessment
of Techniques for Proving Program Correctness",
Computing Surveys of the ACM , June 1977, Vol. 4,
No. 2, pp. 97-147.

*FEDS78 FEDSIM, Evaluation of
for

DBMS Modeling Approaches ,

Army Computer Systems
Computer Per-

Report prepared for U.S.
Command, Ft. Belvoir, Va . , Federal
formance Evaluation and Simulation Center, Febru-
ary 1978, 141 p.

*FERN78 Fernandez, E. B., T. Lang, and C. Wood, "Effect of
Replacement Algorithms on a Paged Buffer Database
System, " IBM Journal of Research and Development ,

Vol. 22, No. 2, March 1978, pp. 185-196.

*FERR78 Ferrari, Damenico, Computer Systems Performance
Evaluation , Prentice Hall, Englewood Cliffs, N.J.,
1978, 554 p.

*FIFE65

*FIFE77

*FISH67

Fife, D. W. and J. L. Smith, "Transmission Capaci-
ty of Disc Storage Systems with Concurrent Arm Po-
sitioning", IEEE Transactions on Electronic
Computers, EC-14, 1965, pp. 575-582.

Fife, D, Computer Software Management
Primer for Proj ect Management and Quality Control ,

NBS Special Publication 500-11, 1977, 58 p.

Fishman, G. S. and P. J. Kiviat, "The Analysis of
Simulation-Generated Time Series", Management
Science, Vol. 13, No. 7, March 1967.

FORR68 Forrester, Jay W., Principles of Systems , 2nd
Preliminary Edition Wright-Allen Press Inc., Cam-
bridge, Mass., 1968.

*FORR69 Forrester, Jay W., Urban Dynamics , MIT Press, Cam-
bridge, Mass., 1969.

*F0RR71 Forrester, Jay W., World Dynamics, Wright-Allen
Press, Cambridge Mass., 1971.

FREI72 Freiberger, Walter (Ed.) Statistical Computer
Performance Evaluation , Academic Press, New York,
1972, p. 514.

-164-

FRIE74 Frielink, A. B., Ed., Economics of Informatics
(Proceedings of the IBI - ICC International
Symposium) , Mainz, September 1974, American El-
sevier Publishing Company, Inc., New York, p. 469.

*GASS79 Gass, Saul I., Computer Model Documentation ; A
Review and an Approach, NBS Special Publication
500-39, 1979, 89p.

*GENT73 Gentleman, W. M. and B. A. Wickman, "Timing on
Computers", SIGARCH Quarterly Newsletter , Vol. 2,
No. 3, October 1973, pp. 20-23.

GHOS74 Ghosh, S. P. and M. E. Senko, "String Path Search
Procedures for Data Base Systems", IBM Journal of
Research and Development , September, 1974, pp.
408-422

.

*GRAH78 Graham, G. S., Guest Ed., "Special Issue: Queue-
ing Network Models of Computer System Perfor-
mance", Computing Surveys of the ACM, Vol. 10, No.
3, September 1978, pp. 219-362.

*GRIF75 Griffith, W. G., D. Ingerman and C. Price, "A
Simulation Model of UNIVAC's DMS-1100—More Than
Just a Performance Evaluation Tool", Proceedings
of Symposium on the Simulation of Computer
Systems , Boulder, Co., ACM/SIGSIM, August 1975,
pp. 90-98.

*HALM64 Halmos, Paul R. , Naive Set Theory , D. Van Nostrand
Co., New York, 1964, 104p., (See Section 24,
pp. 94-98, "Cardinal Arithmetic").

*HANT76 Hantler, Sidney L. and J. C.King, "An Introduction
to Proving the Correctness of Programs", Computing
Surveys of the ACM, Vol. 8, No. 3, September 1976,
pp. 331-353.

HARD73a Hardgrave, W. T., "The Prospects for Large Capaci-
ty Set Support Systems Imbedded Within Generalized
Data Management Systems", International Computing
Symposium , Davos, Switzerland, September 1973.

HARD73b Hardgrave, W. T., "Using the Canchy/Cantor Diago-
nal Method to Implement Concepts From Extended Set
Theory", ICASE Report , No. 75-23, Hampton, Vir-
ginia, November 1973, p. 24.

-165-

HARD7 3C

HARD75a

HARD7 5b

HARD? 5c

*HARD75d

*HARD76a

Hardgrave, W. T., "The Prospects for Large Capaci-
ty Set Support Systems Embedded Within Generalized
Data Management Systems", presented at the Inter-
national Computing Symposium 1973, Davos, Switzer-
land, September 1973.

Hardgrave, W. T., "A Technique for Implementing a
Set Processor" , Technical Report No . 3^, Department
of Information Systems Management, University of
Maryland, December 1975, p. 18.

Hardgrave, W. T., "Accessing Technical Data Bases
Using STDS : A Collection of Scenarios", ICASE
Report , No. 75-8, April 1975, p. 84.

Hardgrave, W. T., "Set Processing in a Network En-
vironment", ICASE Report , No. 75-7, March 1975.

Hardgrave, W. T. and E. H. Sibley, "Database
Research: Some comments on Future Directions", FDT
Bulletin of ACM-SIGMOD , Vol. 7, NO. 3-4, 1975,
pp44-48.

Hardgrave, W. T., "A Technique for Implementing a
Set Processor" , Conference on Data: Abstraction
Definition and Structure , ACM, N.Y.
8-94.

1976, pp

*HARD76b Hardgrave, W. T., "Set Processing: A Tool for
Data Management" , Fifteenth Annual Technical
Symposium : Directions and Challenges , June 1976,
ACM, N.Y. , pp. 71-80.

*HARD77 Hardgrave, W. T., The Relational Model: A
Re formulation of Some Mathematical Aspects , IFSM
Technical Report No. 25, Department of Information
Systems Management, University of Maryland, Col-
lege Park, June 1977.

*HARD7

8

Hardgrave, W.
Reformulation

T., The Relational Model

:

of some Mathematical Aspects Using
Positional Set Notation, IFSM Technical Report No.
25 , Version 2, Department of Information Systems
Management, University of Maryland, College Park,
March 1978, 39 p.

-166-

*HEIN75

*HIGH73

*HIGH74

*HIGH75

*HIGH76

Heindel, and J. T. Roberto, LANG-PAK: An
Interactive Language Design System , American El-
sevier Pub. Co., N.Y., 1975, 184pp.

Highland, H. J., Ed., Proceedings of Symposium on
Simulation of Computer Systems , National Bureau of
Standards, Gaithersburg , Md . , June 1973, 288 p.

Highland, H. J. , Ed . , Proceedings of Symposium on
Simulation of Computer Systems , National Bureau of
Standards, Gaithersburg, Md . , June 1974, 210 p.

Highland , H . J . , Ed . , Proceedings of Symposium on
Simulation of Computer Systems , National Bureau of
Standards, Boulder, Co., August 1975, 264 p.

Highland , H . J . , Ed . , Proceedings of Symposium on
Simulation of Computer Systems , National Bureau of
Standards, Boulder, Co., August 1976, 222 p.

HELD75 Held, G. D. , M . R. Stonebacker, and E. Wong,
"INGRES - A Relational Data Base /System", NCC,
1975, pp. 409-416.

HSIA70 Hsiao, David and Frank Harary, "A Formal System
for Information Retrieval from Files",
Communications of the ACM , Vol. 13, No. 2, Febru-
ary 1970, pp. 67-73.

*HUES67 Huesmann, L.R. and R. P. Goldberg, "Evaluating
Computer Systems Through Simulation," Computer
Journal, Vol. 10, No. 2, August 1967, pp. 150-155.

*IDC78 IDC, Implementation of Data Base Management
Systems , A Research Report Prepared for IDC Infor-
mation Systems Planning Service Clients, Interna-
tional Data Corporation, June 1978, 221 p.

*IHRE67 Ihrer, Fred C, "Computer Performance Projected
Through Simulation" , Computers and Automation ,

April 1967, pp. 22-27.

*KATZ67 Katz, J. H., "An Experimental Model of the Sys-
tem/360," Comm. of the ACM , Vol. 10, No. 11, No-
vember 1967, pp. 694-702.

-167-

*KERN74 Kernighan, B.W. and Plauger, P. J., The Elements
of Programming Style , McGraw-Hill Book Company,
New York, 1974, 147 p.

*KERN76 Kernighan, B. W. and P. J. Plauger, Software
Tools , Addison-Wesley Publishing Co., Reading,
Mass . , 1976, 338 p

.

KIMB72a Kimbleton, Stephen R. , "Performance Evluation - A
Structured Approach" , Proceedings AFIPS 1972
Spring Joint Computer Conference , pp. 411-416.

KIMB72b Kimbleton, Stephen R. , "The Role of Computer Sys-
tem Models in Performance Evaluation",
Communications of the ACM, Vol. 15, No. 7, July
1972, pp. 586-590.

*KLEI64 Kleinrock, L. , "Analysis of a Time-Shared Proces-
sor," Naval Research Logistics Quarterly , No. 11,
1964, pp. 59-73.

*KLEI66 Kleinrock, L. , "Sequential Processing Machines
(SSPM) Analyzed with a Queueing Theory Model,"
Journal of the ACM, Vol. 13, No. 2, April 1966,
pp. 179-193.

*KOSY73

*KRAS77

KRIE66

Kosy, D. W. , "An Interim Empirical Evaluation of
ECSS for Computer System Simulation Development,"
Proc . of ACM SIGSIM Symposium on the Simulation of
Computer Systems , June 1973, pp. 79-90.

Krasny, Mitchell A., Ed., Documentation of Computer
Programs and Automated Data Systems , NBS Special
Publication 500-15, 1977, 66 p.

Kriebel, Charles H., "Operations Research in the
Design of Management Information Systems",
Operations Research in the Design of Management
Information Systems , John F. Peice, Jr., Ed.,
1966, pp. 375-390.

*LANG77 Lang, Thomas, C. Wood and J. B. Fernandez, "Data-
base Buffer Pin Virtual Storage Systems", ACM
Transactions on Database Systems , Vol. 2, No. 4,
December 1977, pp. 339-351.

-168-

*LIN76 Lin, Chynan Shiun, D. C. P. Smith and J. M. Smith,
"The Design of a Rotating Associative Memory for
Relational Database Applications" , ACM
Transactions on Database Systems , Vol. 1, No. 1,

March 1976, pp. 53-65.

*LIPS77 Lipsky, L., and J. D. Church, "Applications of a
Queueing Network Model for a Computer System,

"

Computing Surveys of the ACM, Vol. 9, No. 3, Sep-
tember 1977, pp.. 205-221.

*LOWE68 Lowe, T. C, "The Influence of Data Base Charac-
teristics and Usage on Direct Access File Organi-
zation," J. ACM, Vol. 15, No. 4, Oct. 1968, pp.
535-548.

*LUCA71 Lucas, Henry C, "Performance Evaluation and Moni-
toring," Computing Surveys of the ACM, Vol. 3, No.
3, September 1971, pp. 79-91.

*LUM71 Lum, V. Y. , and H. Ling, "An Optimization Problem
on the Selection of Secondary Keys" , Proceedings
of the 1971 ACM National Conference , Vol. 26, pp.
349-356.

*LUM75 Lum, V. Y. , M. E. Senko et . al., "A Cost Oriented
Algorithm for Data Set Allocation in Storage
Hierarchies", Communications of the ACM, Vol. 18,
No. , 1975, pp. 318-322.

LYON 7

4

*MACD70

Model for testing storage
for on-line disks. Graduate

Lyons, Norman R. A
allocation policies
school of Business and Public Administration, Cor-
nell University, Itaca, New York, April 1974, 28

P-

MacDongal, M. H., "Computer System Simulation: An
Introduction," Computing Surveys of the ACM, Vol.
2, No. 3, September 1970, pp. 191-209"; (Bibliog-
raphy

)

*MARC76 March, Salvatore T. and D. G. Severance, The
Determination of Efficient Record Segmentation and
Blocking Factors for Shared Data Files , MISRC-
TR-77-04, Report delivered to David Taylor Naval
Ship, R&D Center, October 1976, 31 p.

-169-

MARC77 March, Salvatore T. and D. G. Severance, "The
Determination of Efficient Record Segmentation and
Blocking Factors for Shared Data Files", ACM
Transactions on Database Systems , Vol. 2, No. 3,

September 1977, pp. 279-296.

*MARC78

*MCKI69

*MILL76

March, Salvatore T., Jr., Models of Storage
Structures and the Design of Database Records

UserBased Upon a Characterization, doctoral
dissertation, Cornell University, May 1978, 290 p.

McKinney, J. M., "A Survey of Analytical Time-
Sharing Models," Computing Survey of ACM , Vol. 1,
No. 2, June 1969, pp. 105-116. (Bibliography)

Mills, Harlan, "Software Development," IEEE
Transactions on Software Engineering , December
1976, pp. 265-273.

*NAKA75 Nakamura, F., J. Yoshida and H. Kando, "A Simula-
tion Model for Data Base System Performance
Evaluation" , Proceedings of the 1975 AFIPS NCC,
Vol. 44, 1975, pp. 459-463.

*NAYL67 Naylor, T. H., and J. M. Finger, "Verification of
Computer Simulation Models" , Management Science ,

Vol. 14, No. 2, October 1967.

*NBS76 NBS, Guidelines for Documentation of Computer
Programs and
formation

Automated Data Systems , Federal In-
Processing Standards Publication 38,

1976 February 15, 55 p.

*NIEL67 Nielsen, Norman R. , "The Simulation of Time-
Sharing Systems," Comm. of the ACM, Vol. 10, No.
7, July 1967, pp. 397-412.

*NOE72 Noe, J. D. and G. J. Nutt, "Validation of a
Trace-Driven CDC 6400 Simulation" , Proceedings of
40th Spring Joint Computer Conference , AFIPS,
1972, pp. 749-757.

*0WEN71 Owens, P. J., "Phase II: A Data Base Management
Modeling System", IFIP CONGRES 1971 , August 1971,
pp. TA22-26.

-170-

*OZKA77 Ozkarahan, E. A., S. A. Schuster and K. C. Sevcik,
"Performance Evaluation of a Relational Associa-
tive Processor" , ACM Transactions on Database
Systems , Vol. 2, No. 2, June 1977, pp. 175-195.

*PERS78 Personal communication with commercial DBMS ven-
dor's software development staff. Proprietary na-
ture of information precludes specific reference.

PROW74 Prowse, P. H., "Efficiency of Logical Design of
Data Structures", Economics of Informatics , A. B.
Frieluit, Ed., American Elsevier Publishing Co.,
Inc., N.Y., 1974, pp. 324-329.

*REIE76a Reiter, Allen and B. Finkel, "Simulating a Virtual
Data Machine" , NTIS Document No . AD-A027 894 , May
1976, 55 p.

*REIE76b Reiter, Allen, On Performance Modelling Of Data
Base Management Systems - An Inductive Approach ,

MRC Technical Report #1648, University of Wiscon-
sin, Madison, July 1976, 42 p.

*REIE77a Reiter, Allen, DIMUI - IDMS User Manual, Version
1_.2^, Technical Report No
Technology, June 1977.

101, Israel Institute of

*REIE77b Reiter, Allen, and E. Sibley, Simulation and Data
Administration , IFSM Technical Report No. 22, In-
formation Systems Management Department, Universi-
ty of Maryland, College Park, July 1977, 27 p.

*REIT71 Reitman, Julian, Computer Simulation Applications ,

Discrete Event Simulation for Synthesis and
Analysis of Computer Systems , Wiley Inter science

,

1971, 422 p.

ROTH72 Rothnie, James B., Jr., The Design of Generalized
Data Management Systems , Dissertation, Civil En-
gineering, MIT, September 1972.

ROTH74 Rothnie, James B., Jr., "An Approach To Implement-
ing a Relational Data Management System",
ACM-SIGFIDET Workshop on Data Description , Access
and Control, May 1974, pp. 277-294.

-171-

*ROTH75 Rothnie, James B., Jr., "Evaluating Inter-Entry
Retrieval Expressions in a Database Management
System" , Proceedings of AFIPS National Computer
Conference, AFIPS Press, Vol. 44, 1975.

*SALT70

*SCHA67

Saltzer, Jerome H
strumentation of

and John W. Guitell, "The In-
Multics" , Communications of the

ACM, Vol: 13, No. 8, August 1970, pp. 495-500.

Scherr, A. L. , An Analysis of Time-Shared Computer
Systems, MIT Press, Cambridge, Mass., 1967.

*SCHE76 Scheuermann, Peter, A Simulation Model for Data
Base Systems , Doctoral dissertation, State Univer-
sity of New York at Stony Brook, 1976, 186 p.

*SCHK75 Schkolnick, M., "Secondary Index Optimization",
Proceedings of ACM SIGMOD 1975, International
Conference on the Management of Data,
1975 .

San Jose,

*SCHK78 Schkolnick, Mario, "A Survey of Physical Database
Design Methodology and Techniques," Proceedings of
Fourth International Conference on Very Large
Databases, West Berlin, Germany, 1978, pp474-487.

*SCHW70 Schwetman, Herbert D. Jr.,
Utilization and Performance

A Study of Resource
Evaluation of

Large-scale Computer Systems , doctoral disserta-
tion. Computation Center, University of Texas at
Austin, August 1970, 115 p.

*SEAM69 Seaman, P. H. and R. C. Sancy, "Simulating Opera-
tions Systems," IBM Systems Journal , Vol. 8, No.
4, 1969, pp. 264-279.

*SENK67 Senko, M. E., et. al.. Formatted File Organization
Techniques ; Final Report , Submitted to Rome Air
Development Center under contract AF 30 (602) -4088

,

IBM Corp., Yorktown Heights, N.Y. , May 1967.

*SENK69 Senko M. E., H. R. Meadow, et. al.. File Design
Handbook: Final Report, Submitted to Rome Air
Development Center under contract AF
30602-69-C-0100, IBM Corp., San Jose, CA. , No-
vember 1969.

-172-

*SENK70 Senko, M. E., Formatted File Organization Tech-
niques: Final Report, IBM Research Report , San
Jose, CA, March 1970, Sections VI-VII.

*SENK73 Senko, M. E., E. B. Altman, et . al., "Data Struc-
tures and Accessing in Data-Base Systems," IBM
Systems Journal , Vol. 12, No. 1, 1973, pp30-93

.

*SEVE72 Severance, D. G. and A. G. Merten, "Performance
Evaluation of File Organizations Through Model-
ing", Proceedings of ACM National Conference , Au-
gust 1972, Boston, pp. 1061-1072.

*SEVE74a Severance, D. G., "Identifier Search Mechanisms:
A Survey and Generalized Model", Computing Surveys
of the ACM, Vol 6., No. 3, September 1974, pp.
175-194.

*SEVE74b Severance, D. G. , "The Evaluation of Data Struc-
tures in Data Base System Design" , Proceedings of
1974 IEEE International Conference, March 1974.

*SEVE75 Severance, D. G. , "A Parametric Model of Alterna-
tive File Structures", Information Systems , Vol.
1, Pergamon Press, Great Britain, 1975, pp. 51-55.

*SEVE76a Severance, D. G. , "Differential Files: Their Ap-
plication to the Maintenance of Large Databases"

,

ACM Transactions on Database Systems , Vol. 1, No.
3, September 1976, pp. 256-267.

*SEVE76b Severance, D. G. and R. Duhne , "A Practitioners
Guide to Addressing Algorithms" , Communications of
the ACM, Vol. 19, No. 6, June 1976, pp. 314-326.

*SEVE77 Severance, D. G. and J. V. Carlis, "A Practical
Approach to Selecting Record Access Paths",
Computing Surveys , Vol. 9, No. 4, December 1977,
pp. 259-272.

*SHAN75 Shannon, Robert E., Systems Simulation , The Art
and Science , Prentice Hall, Englewood Cliffs,
N.J. , 1975, 387 p.

*SHER72 Sherman, S., F. Baskett III and J. C. Browne,
"Trace Driven Modeling and Analysis of CPU
Scheduling in a Multiprogramming System",
Communications of the ACM, Vol. 15, No. 12, De-
cember 1972, pp. 1063-1069.

-173-

*SHER73 Sherman, S. W. and J. C. Browne, "Trace-Driven
Modeling: Review and Overview", Proc. of^ the
Symposium on the Simulation of Computer Systems ,

ACM-SIGSIM, N.Y., 1973, pp201-207.

*SHER76 Sherman, Stephen W. , "Trace Driven Modeling: An
Update," Proc . of ACM SIGSIM Symposium on the
Simulation of Computer Systems , August 1976, pp.
87-91

.

*SHNE74

*SHNE78

SIBL73a

Shneiderman, B., "A Model for Optimizing Indexed
File Structures", IJCIS 3, 1974, pp. 93-103.

Shneiderman, Ben Ed., Data Bases: Improving
Usabil ity and Effectiveness , Academic Press, 1978.

Sibley, Edgar H. and Robert W. Taylor, "A data
definition and mapping language" , Communications
of the ACM, Vol. 16, No. 12, December 1973, pp.
750-759.

SIBL73b Sibley, Edgar H. , and Alan G. Merton, "Implemen-
tation of a generalized data base management sys-
tem within an organization" , Management
Informatics , Vol. 2, No. 1, 1973, pp. 21-31.

SIBL74a Sibley, Edgar H., "A system specification
language" , Commercial Language Systems Infotech
State of the Art Report 1

9

, Infotech Information,
1974, pp. 475-503.

SIBL74b Sibley, Edgar H., and Jan A. Turner, "Data Base
Management: A Framework For Effective Use", In-
vited paper. The Second Jerusalem Conference on
Information Technology, Jerusalem, July 29-August
1, 1974.

SIBL74C Sibley, Edgar H., and Hasan H. Sayani , "Data Ele-
ment Dictionaries for the Information Systems In-
terface" , Management of Data Elements in
Information Processing , First National Symposium,
National Bureau of Standards, January 1974, pp.
285-304.

SIBL74d Sibley, Edgar H. The Data Base Future ; System
Continuity and Networking , IFSM Technical Report
No. , Information Systems Management Department,
University of Maryland, College Park, December
1974, 46 p.

-174-

SIBL76

SIBL77

SILE76

Sibley, Edgar H., Guest Editor, ACM Computing
Surveys , Special Issue on Database Management
Systems , Vol. 8, No. 1, March 1976, 151 pT

Sibley, Edgar H., "Standardization and Database
Systems", Proceedings of Third International
Conference on Very Large Data Bases , Tokyo, Japan,
October 1977, pp. 144-155.

Siler, Kenneth F., "A Stochastic Evaluation Model
for Database Organizations in Data Retrieval Sys-
tems", Communications of the ACM, Vol. 19, No. 2,

February 1976, pp. 84-95.

SKOL57 Skolem, T., "Two Remarks on Set Theory",
Scand . , No. 5, 1957, pp. 40-46.

Math.

*SMIT66 Smith, J. L. , "An Analysis of Time-Sharing Comput-
er Systems Using Markov Models," Proc . AFIPS 1 966
SJCC, Vol. 28, Spartan Books, N.Y. , pp. 87-95.

*SOCK78 Sockut, G. H. , "A Performance Model for Computer
Data-base Reorganization Performed Concurrently
with Usage," Operations Research , Vol. 26 No. 5,

Sept. -Oct. 1978, pp. 789-804.

*STON76 Stonebraker, M., E. Wong, et. al., "The Design and
Implementation of INGRES" , ACM Transactions on
Database Systems , Vol. 1, No. 3, September 1976,
pp. 189-222.

*STON77 Stonebraker, M., Informal seminar presented at the
Institute for Computer Sciences and Technology,
National Bureau of Standards, Summer 1977, on "The
Construction of Ingres"

.

SUND73 Sundgren, Bo An Infological Approach to Data
Bases , (Urval nr 7) , National Central Bureau of
Statistics, Sweden, and University of Stockholm,
Department of Administrative Information Process-
ing, Stockholm, 1973, 478 p.

*SVOB76 Svobodova, L Computer Per fromance Measurement
and Evaluation Methods ; Analysis and Applications ,

American Elsevier Pub. Co., N.Y. , 1976, 146pp.

-175-

*WAGN69 Wagner, Harvey M., Principles of Operations
Research , with Applications to Managerial
Decisions , Prentice-Hall, Englewood Cliffs, N.J.,
1969, 1062 p.

*WORT76 Wortman, David B., "A Study of High-Resolution
Timing", Correspondence in IEEE Transactions on
Software Engineering , June 1976, VolTi SE-2 , No . 2V
pp. 135-137.

*YA074 Yao, S. B., Evaluation and Optimization of File
Organization through Analytic Modeling , doctoral
dissertation. University of Michigan, 1974.

*YA077 Yao, S. B., "An Attribute Based Model For Database
Access Cost Analysis," ACM Transactions of
Database Systems , Vol. 12, No.
pp45-67.

1, March 1977,

*YOUC64 Youchah, M. I., et. al., "The Data Processing Sys-
tem Simulator (DPSS), Proc . of AFIPS 1964 FJCC ,

Vol. 26, p2.1, Spartan Books, N.Y. pp. 251-276.

YUE75a Yue, P. C. and C. K. Wong, "Storage Cost Con-
siderations in Secondary Index Selection",
International Journal of Computer and Information
Sciences , Vol. 4, No. 4, 1975, pp. 307-327.

YUE75b Yue, P. C. and C. K. Wong, "Near-Optimal Heuris-
tics for an Assignment Problem in Mass Storage",
International Journal of Computer and Information
Sciences, Vol. 4, No. 4, 1975, pp, 281-294.

*ZEIG76 Zeigler, Bernard P. , Theory of Modeling and
Simulation , Wiley-Interscience, 1976, 435 p.

ZL0075 Zloof, M. M., "Query by Example", Proceedings of
AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale,
N.J. , pp. 431-437.

-176-

APPENDIX A: POSITIONAL SET PROCESSOR SCRIPT

This appendix contains a script demonstrating the capa-
bilities of the Positional Set Processor prototype DBMS as
of April 1979. Line items starting with a dot "." are com-
mands to the TOPS-10 operating system on the NBS Experimen-
tal Computer Facility's PDP-10. User inputs are preceded by
the DBMS prompt "C>" or by a question requiring a response
from the user. All other line items are produced either by
the prototype or the operating system.

-177-

.EX/REL @SIMXPM
LINK: Loading
[LNKXCT PSMAIN Execution]
SETP - POSITIONAL SET PROCESSOR - NBS ECF

ENTER DATA BASE ID AND MODE (NEW/OLD)
VGH5 OL
177 UNUSED WORDS IN LEXICON

C>
LIST ALL;

WORKSPACE:

ALIAS TABLE NAMES FOR EXTENDED SETS:

VGH DATA BASE 7

CLYDE 4

C>
TYPE RE VGH DATA BASE;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

VGH DATA BASE

T S F# G NAME IAS Q ALT P ACC

139 399 3 1 MONGOLIAN 93. 55 39. 11 3777. 33 1913. 57 0. 53
139 399 3 1 KOREAN AIR 99. 37 33. 97 3779. 17 1913. 15 -0 . 53
139 399 3 1 JAPAN AIR Ill . 59 35. 57 3779. 17 1913. 15 -0. 53
139 399 3 1 AIR FRANCE Ill . 97 35. 75 3771 . 11 1913. 71 -0. 55
139 399 3 1 BRITISH Ill . 19 35. 91 3731. 91 1917. 57 0. 59
139 399 3 1 TWA Ill . 97 35. 75 3771 . 11 1913. 71 -0. 55
139 399 3 1 TWA Ill . 19 35. 91 3731

.

91 1917. 57 0.59
c>
SUBX *CC=VGH DATA BASE (X . (ALL) : . NOT . X . ACC . LE . - . 53)

;

C>
LIST WORK;

WORKSPACE:

VGH DATA BASE 7

*CC 3

-178-

jC>

TYPE RE *CC;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

VGH DATA BASE

F# G

399
399
399

NAME

MONGOLIAN
BRITISH
TWA

IAS

93
111
111

55
19
19

39.11
35.91
35.91

ALT

3777. 33
3731 . 91
3731.91

ACC

139
139
139

C>
SUBX *DD=VGH DATA BASE (X . (NAME , IAS , Q): X . NAME . EQ . TWA . OR .

$

X. IAS. LE. Ill . 59. AND. X.Q.NE. 35.91)

;

C>
TYPE RE *DD;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

1913
1917
1917

57
57
57

53
59
59

VGH DATA BASE

T S F# G NAME IAS Q ALT P ACC

1

MONGOLIAN 93.55 39.11
ij KOREAN AIR 99.37 3 3.97
'i JAPAN AIR 111 . 59 3 5. 57

! TWA 111.97 35.75
i

, TWA 111.19 35.91
i jo
' jSUBX *EE=VGH DATA BASE (X .(*):. NOT . X . NAME . EQ . TWA .AND ..

$

' NOT.X.NAME.EQ. BRITISH)

;

''SUBX *FF=VGH DATA BASE (X .(*):[. NOT . X . NAME . EQ . TWA] . AND ..

$

!nOT. X. NAME. EQ. BRITISH)

;

|c>

TYPE RE *EE;
[ENTER FILE NAME FOR DOMAIN DEFINITION
[VGHDOM

VGH DATA BASE
i:

T S F# G NAME IAS Q ALT P ACC

139 399 3 1 MONGOLIAN 93. 55 39. 11 3777. 33 1913. 57 0.53
139 399 3 1 KOREAN AIR 9Si. 37 33. 97 3779. 17 1913. 15 -0.53
139 399 3 1 JAPAN AIR Ill . 59 35. 57 3779. 17 1913. 15 -0. 53
139 399 3 1 AIR FRANCE 111. 97 35. 75 3771 . 11 1913. 71 -0. 55
139 399 3 1 BRITISH Ill

.

19 35. 91 3731 . 91 1917. 57 0. 59

-179-

c>
TYPE RE *FF7
ENTER FILE NAME FOR DOMAIN DEFINITION
VGHDOM

VGH DATA BASE

T S F# G NAME IAS Q ALT P ACC

139 399 3 1 MONGOLIAN 93.55 39.11 3777.33 1913.57 0.53
139 399 3 1 KOREAN AIR 99.37 33.97 3779.17 1913.15 -0.53
139 399 3 1 JAPAN AIR 111.59 35.57 3779.17 1913.15 -0.53
139 399 3 1 AIR FRANCE 111.97 35.75 3771.11 1913.71 -0.55

LIST ALL;
,

WORKSPACE:

VGH DATA BASE 7

*CC 3

*DD 5

*EE 5

*FF 4

ALIAS TABLE NAMES FOR EXTENDED SETS:

VGH DATA BASE 7

CLYDE 4

C>
FREE *CC;
C>
FREE *DD;
C>
FREE *EE;
C>
SAVE *FF(CLYDE);

-180-

c>
LIST ALL;

WORKSPACE:

VGH DATA BASE 7

CC 3

DD 5

EE 5

FF 4

ALIAS TABLE NAMES FOR EXTENDED SETS:

VGH DATA BASE 7

CLYDE 4

C>
TYPE XSET VGH DATA BASE;

SET 7 ELEMENTS 39 PACKETS ITH POSITION
DO YOU WANT A LIST OF M,K,L — YES OR N0?
YES

.2780000000D+03 K = 22 L = 1

.4670000000D+03 K = 29 L = 1

.5970000000D+03 K = 33 L = 1

.8630000000D+03 K = 40 L = 1

.1178000000D+04 K = 47 L = 1

.1277000000D+04 K = 49 L = 1

.1328000000D+04 K = 50 L = 1

DO YOU WANT TO SEE HEX DUMP OF PACKETS (YES
YES

888888888 8C7944448 244484412 C34241188 211

C>
SUBX *A=VGH DATA BASE (X .

(*) : X . NAME . EQ . TWA)

;

C>
SUBX *B=VGH DATA BASE (X .

(*) : X . IAS . EQ . 11 1 . 19)

;

C>
LET *AINB=*A. IN.*B;
C>
LET *AUNB=*A.UN.*B;
C>
LET *AXUNB=*A.XUN.*B;
C>
LET *ADIFB=*A-*B;

-181-

c>
LET *BDIFA=*B-*A;
C>
LIST WORK;

WORKSPACE:

*ADIFB 1

*BDIFA 1

DD 5

EE 5

FF 4
*A 2

*B 2

*AINB 1

*AUNB 3

*AXUNB 2

C>
TYPE RE *A;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

VGH DATA BASE

T S F# G NAME IAS Q ALT P ACC

139 399 3 1 TWA 111.97 35.75 3771.11 1913.71 -0.55
139 399 3 1 TWA 111.19 35.91 3731.91 1917.57 0.59

C>
TYPE RE *B;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

VGH DATA BASE

T S F# G NAME IAS Q ALT P ACC

139 399 3 1 BRITISH 111.19 35.91 3731.91 1917.57 0.59
139 399 3 1 TWA 111.19 35.91 3731.91 1917.57 0.59

C>
TYPE RE *AINB;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

VGH DATA BASE

T S F# G NAME IAS Q ALT P ACC

139 399 3 1 TWA 111.19 35.91 3731.91 1917.57 0.59

I

-182-

c>
TYPE RE *AUNB7
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

VGH DATA BASE

F# G NAME IAS

139 399 3 1 BRITISH 111.19
139 399 3 1 TWA 111.97
139 399 3 1 TWA 111.19

C>
TYPE RE *AXUNB;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

ALT ACC

35.91 3731.91 1917.57 0.59
35.75 3771.11 1913.71 -0.55
35.91 3731.91 1917.57 0.59

VGH DATA BASE

T S F# G NAME IAS

139 399 3 1 BRITISH 111.19
139 399 3 1 TWA 111.97

C>
TYPE RE *ADIFB;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

35.91
35.75

ALT

3731.91
3771 .11

P ACC

1917.57 0.59
1913.71 -0.55

VGH DATA BASE

S F# G NAME

3 1 TWA

IAS

111.97139 399
C>
TYPE RE *BDIFA7
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

Q ALT P ACC

35.75 3771.11 1913.71 -0.55

VGH DATA BASE

S F# G NAME IAS Q

3 1 BRITISH 111.19 35.91139 399
C>
SUBX *PROJ=VGH DATA BASE (X .(T , IAS , NAME): X . NAME . EQ . TWA)

;

ALT P ACC

3731.91 1917.57 0.59

-183-

c>
TYPE RE *PROJ;
ENTER FILE NAME FOR DOMAIN DEFINITION
DOMAIN

VGH DATA BASE

T S F# G NAME IAS Q ALT P ACC

139 TWA 111.97
139 TWA 111.19

C>
LET *AUNPROJ=*A.UN.*PROJ;
C>
TYPE RE *AUNPROJ USING DOMAIN;

VGH DATA BASE

T S F# G NAME IAS Q ALT P ACC

139 399 3 1 TWA 111.97 35.75 3771.11 1913.71 -0.55
139 399 3 1 TWA 111.19 35.91 3731.91 1917.57 0.59
139 TWA 111.97
139 TWA 111.19

C>
SUBX *REALSET=VGH DATA BASE (X . (T , S , IAS) : X . IAS . EQ . 1 1 1 . 19)

;

C>
TYPE RE *REALSET USING DOMAIN;

VGH DATA BASE

S F# G NAME

139 399
C>
LIST ALL;

WORKSPACE:

*ADIFB
*BDIFA
*PROJ
*AUNPROJ
*REALSET
*A
*B
*AINB
*AUNB
*AXUNB

IAS

111.19

ALT ACC

1

1

2

4
1

2

2

1

3

2

-184-

ALIAS TABLE NAMES FOR EXTENDED SETS:

VGH DATA BASE
CLYDE

7

4

C>
DUMP ALIAS INTO ALIAS;
C>
DUMP ELEMENT INTO ELMT;
C>
DUMP INDEX INTO INDEX;
C>
EXIT;
STOP

END OF EXECUTION
CPU TIME: 5:0.26 ELAPSED TIME: 14:54.08
EXIT

.TYPE ALIAS.DAT
ALIAS TABLE

HEADER: A7HLEN A7FILE A7NEXT A7WPE

5 VGH57A 22 20

ENTRIES: NCHS ELPTR TXPTR
1 13 2 0
2 12 0
3 13 3 0
4 13 0
5 13 4 0
6 2 4 0
7 14 5 0
8 15 0
9 4 6 0

10 18 7 0
11 3 7 0
12 15 8 0
13 18 0
14 17 9 0
15 3 9 0
16 15 10 0
17 1 10 0
18 12 11 0
19 3 11 0
20 13 51 0
21 5 57 0

NAME
AIRCRAFT TYPE
T
SERIAL NUMBER
S
FLIGHT NUMBER
F#
GUST INDICATOR
G
NAME
INDICATED AIRSPEED
IAS
IMPACT PRESSURE
Q
PRESSURE ALTITUDE
ALT
STATIC PRESSURE
P
ACCELERATION
ACC
VGH DATA BASE
CLYDE

-185-

.TYPE ELMT.DAT

ELEMENT TABLE

N7HLEN N7FILE N7NEXT N7WPE N7CPE N7PPE

5 VGH57E 78 20 25 45

fT# CAT SECT NCH TXPT CARD NPAC DOMS ENTRY

1 AT CH 1 0 0 0 0 #

2 AT CH 13 0 0 0 0 AIRCRAFT TYPE
3 AT CH 13 0 0 0 0 SERIAL NUMBER
4 AT CH 13 0 0 0 0 FLIGHT NUMBER
5 AT CH 14 0 0 0 0 GUST INDICATOR
6 AT CH 4 0 0 0 0 NAME
7 AT CH 18 0 0 0 0 INDICATED AIRSPEED
8 AT CH 15 0 . 0 0 0 IMPACT PRESSURE
9 AT CH 17 0 0 0 0 PRESSURE ALTITUDE II

10 AT CH 15 0 0 0 0 STATIC PRESSURE
11 AT CH 12 0 0 0 0 ACCELERATION
12 AT RL 5 0 0 0 0 139 . 000000
13 AT RL 5 0 0 0 0 399 . 000000
14 AT RL 5 0 0 0 0 3 . 000000
15 AT RL 5 0 0 0 0 1 . 000000
16 AT CH 9 0 0 0 0 MONGOLIAN
17 AT RL 5 0 0 0 0 93 . 550000
18 AT RL 5 0 0 0 0 39. 110000
19 AT RL 5 0 0 0 0 3777. 329990
20 AT RL 5 0 0 0 0 1913. 570010
21 AT RL 5 0 0 0 0 0 . 530000

j

22 XS TU 0 6 10 43 0 8888888888 8E7221A211 1441F98181
2414114218 421

23 AT CH 10 0 0 0 0 KOREAN AIR
24 AT RL 5 0 0 0 0 99. 370000

i

25 AT RL 5 0 0 0 0 33 . 970000
1

26 AT RL 5 0 0 0 0 3779 .170010
27 AT RL 5 0 0 0 0 1913 . 149990
28 AT RL 5 0 0 0 0 -0 . 530000
29 XS TU 0 31 10 45 0 8888888888 8F7221A211 1441312414

j

1D12411182 48441
30 AT CH 9 0 0 0 0 JAPAN AIR
31 AT RL 5 0 0 0 0 111 . 590000
32 AT RL 5 0 0 0 0 35. 570000
33 XS TU 0 56 10 42 0 8888888888 8B7221A211 1441711128

8A24188541 18
34 AT CH 10 0 0 0 0 AIR FRANCE
35 AT RL 5 0 0 0 0 111 .970000
36 AT RL 5 0 0 0 0 35.750000
37 AT RL 5 0 0 0 0 3771 . 109990
38 AT RL 5 0 0 0 0 1913. 710010

-186-

39 AT RL 5 0 0 0 0 -0 . 550000
40 XS TU 0 81 10 46 0 8888888888 C97221A211

2242C68822 82884
1441B12

41 AT CH 7 0 0 0 0 BRITISH
42 AT RL 5 0 0 0 0 111 . 190000
43 AT RL 5 0 0 0 0 35.910000
44 AT RL 5 0 0 0 0 3731.910000
45 AT RL 5 0 0 0 0 1917 . 570010
46 AT RL 5 0 0 0 0 0. 590000
47 XS TU 0 107 10 46 0 8888888888 C87221A211

88A142288A 81288
1441E52

48 AT CH 3 0 0 0 0 TWA
49 XS TU 0 133 10 46 0 8888888888 C97221A211

2C68822829 84248
1441381

50 XS TU 0 159 10 46 0 8888888888 C87221A211
142288481A 81288

1441E14

51 XS RE 0 185 7 39 0 8888888888 C794444824
241188211

4484412

52 XS TU 0 210 3 21 0 8888888888 84C9818124 1

53 XS TU 0 233 3 23 0 8888888888 8631241418 124
54 XS TU 0 256 3 23 0 8888888888 8332882188 118
55 XS TU 0 279 3 24 0 8888888888 C1381224'24 1481
56 XS TU 0 302 3 23 0 8888888888 4C14889142 481
57 XS 0 325 4 27 0 8888888888 8794444824 4484412
58 XS TU 0 348 3 25 0 8888888888 C942212812 41481
59 XS TU 0 371 3 25 0 8888888888 C84221C148 81481
60 XS TU 0 394 3 24 0 8888888888 C862218218 1488
61 AT RL 5 0 0 0 0 100.000000
62 AT RL 5 0 0 0 0 3779.000000
63 AT CH 13 0 0 0 0 VGH DATA BASE
64 AT CH 7 0 0 0 0 EASTERN
65 AT RL 5 0 0 0 0 0.000000
66 AT RL 5 0 0 0 0 3775 .000000
67 AT RL 5 0 0 0 0 1915.000000
68 XS TU 0 417 3 23 0 8888888888 86C8812418 421
69 XS TU 0 440 3 24 0 8888888888 8721248124 8441
70 XS TU 0 463 3 22 0 8888888888 8322888541 18
71 XS TU 0 486 3 24 0 8888888888 C191222424 8842
72 XS TU 0 509 3 24 0 8888888888 4E42128142 2888
73 XS TU 0 532 3 24 0 8888888888 C112424984 2481
74 XS TU 0 555 3 23 0 8888888888 4691424812 888
75 AT RL 5 0 0 0 0 4844.870000
76 AT RL 5 0 0 0 0 1537. 380010
77 AT CH 0 0 0 0 0

-187-

.TYPE INDEX.DAT
INDEX FILE FOR ELEMENT TABLE

N5HLEN N5FILE N5NENT N5FULL

6 VGH55E 3080 77

POSITION POINTER

19 51
217 1

321 34
339 22
345 12
353 16
417 7

425 61
465 61
585 6
617 41
783 54
881 11
905 3

921 31
1017 9
1075 33
1091 60
1145 27
1169 28
1171 58
1177 2

1185 23
1321 36
1391 59
1433 4
1457 44

complete table not displayed for brevity

2985 35
3017 13
3018 30

-188-

.RUN SIMDMP

ENTER DATA BASE ID
5

RELATION NUMBER
51

ATTRIBUTE NUMBERS
2

6

7

8
11

STOP

END OF EXECUTION
CPU TIME: 0.82 ELAPSED TIME: 2.2 7

EXIT

.RUN PTRDMP

ENTER DATA BASE ID
5

ENTER DOMAIN DEFINITION FILENAME
DOMAIN
WHERE DO YOU WANT THE FILE TO BE DUMPED ?

ENTER (TTY OR FILE)
> >

TTY

ATTRIBUTE NUMBER
1

VALUE POINTER
139.0000 2

ATTRIBUTE NUMBER
2

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

16

23

30

34

41

48

POINTER
130

POINTER
642

POINTER
1154

POINTER
1538

POINTER
2050

POINTER
2562

OCCURENCE SET
22, 29, 33, 40,
47, 49, 50, 0,

OCCURENCE SET
22,

OCCURENCE SET
29,

OCCURENCE SET
33,

OCCURENCE SET
40,

OCCURENCE SET
47,

OCCURENCE SET
49, 50,

-189-

ATTRIBUTE NUMBER
3

VALUE
93. 5500

VALUE
99. 3700

VALUE
111.1900
VALUE
111 . 5900
VALUE
111.9700

POINTER
258

POINTER
770

POINTER
2178

POINTER
1282

POINTER
1666

OCCURENCE SET
22,

OCCURENCE SET
29,

OCCURENCE SET
47, 50,

OCCURENCE SET
33,

OCCURENCE SET
40, 49,

ATTRIBUTE NUMBER
4

VALUE
33.9700

VALUE
35. 5700

VALUE
35. 7500

VALUE
35.9100

VALUE
39.1100

POINTER
898

POINTER
1410

POINTER
1794

POINTER
2306

POINTER
386

OCCURENCE SET
29,

OCCURENCE SET
33,

OCCURENCE SET
40, 49,

OCCURENCE SET
47, 50,

OCCURENCE SET
22,

ATTRIBUTE NUMBER
5

VALUE POINTER
-0.5500 1922

VALUE POINTER
-0.5300 1026

VALUE POINTER
0.5300 514

VALUE POINTER
0.5900 2434

OCCURENCE SET
40, 49,

OCCURENCE SET
29, 33,

OCCURENCE SET
22,

OCCURENCE SET
47, 50,

STOP

END OF EXECUTION
CPU TIME: 15.79 ELAPSED TIME;
EXIT

1: 33.97

-190-

APPENDIX' B: PERFORMANCE MODEL SCRIPT

This appendix contains a script demonstrating the capa-
bilities of the Set Processor Performance Model as of Febru-
ary, 1979. Line items starting with a single or double dot
"." are commands to the TOPS-10 operating system on the NBS
Experimental Computer Facility's PDP-10. User inputs are
preceded by prompts of the form X>, where 'X' is a letter
denoting the model driver or functional module requesting
user input.

-191-

.RUN PSPMOD

POSITIONAL SET PROCESSOR

PERFORMANCE ESTIMATION MODEL

- S P P M -

SPPM COMMANDS - SELECT FROM FOLLOWING LETTERS:
H = HELP, PRINT THIS SUMMARY
L = LOAD NEW PARAMETER SET FROM DISK FILE
D = DISPLAY CURRENT PARAMETER SET
C = CHANGE PARAMETER SET
S = SAVE CURRENT PARAMETER SET ON DISK
Z = RUN SIZE ESTIMATION MODELER
R = RUN RESPONSE TIME ESTIMATION MODELER
X = EXIT, TERMINATE EXECUTION OF MODEL

M>
C

SPPM - PARAMETER CHANGE FACILITY

THIS PRELIMINARY SPPM IMPLEMENTATION DOES NOT SUPPORT
INTERACTIVE MODIFICATION OF MODEL PARAMETERS. A
TEMPORARY MECHANISM FOR CHANGING EXISTING PARAMETERS
IS PROVIDED THROUGH THE GENERATION OF A FORMATTED
PARAMETER LISTING STORED ON DISK THAT CAN BE CHANGED
USING AN ON-LINE TEXT EDITOR AND THEN LOADED WITH
A TABULAR INPUT PROCESSOR. THE PARAMETER LISTING
HAS THE SAME FORMAT AS THAT PRODUCED BY THE SPPM
DISPLAY(D) FACILITY. THE LISTING GENERATOR AS WELL
AS THE TABULAR INPUT MECHANISM CAN BE INVOKED
FROM WITHIN THIS CHANGE FACILITY.

INDICATE TABULAR LOAD OR DISPLAY:
D = GENERATE FORMATTED PARAMETER DISPLAY DISK FILE
T = INPUT TABULAR PARAMETER DISPLAY FROM DISK

*>

T

ENTER NAME FOR PARAMETER FILE DISPLAY LISTING
ZLFNEW
PARAMETER FILE <==> ZLFNEW. DIS

-192-

M>
D

SPPM - PARAMETER DISPLAY FACILITY

SPECIFY LOCATION FOR FORMATTED PARAMETER DISPLAY:
O = DISPLAY AT ON-LINE TERMINAL
P = GENERATE FILE FOR HIGH-SPEED LINE PRINTER

*>

O

DATABASE LEVEL PARAMETERS

DBNAM = NAME OF DB
DBRDN = REDUNDANCY % OVER ALL RELATIONS
DBNRL = NO. OF RELATION DEFINITIONS IN DB
DBNDM = NO. OF DOMAIN DEFS IN DB
DBNAT = NO. OF ATTRIBUTE DEFINITIONS IN DB
DBNUA = NO. OF UNIQUE ATTRIBUTES IN DB

DBNAM DBRDN DBNRL DBNDM DBNAT DBNUA

ZLOOF 64 4 7 8 8

-193-

RELATION LEVEL PARAMETERS

RLNAM = NAME OF RELATION
RLRPL = NO. OF REPLICATIONS FOR RELATION
RLRDN = REDUNDANCY % OVER ALL ATTRIBUTES
RLDEG = DEGREE: NO. OF ATTRIBUTES IN RELATION
RLCRD = CARDINALITY: NO. OF TUPLES IN RELATION

INDEX* RLNAM RLRPL RLRDN RLDEG RLCRD

1 EMP 1 45 4 10
2 SALES 1 54 2 12
3 SUPLY 1 50 2 10
4 TYPE 1 52 3 9

ATTRIBUTE PARAMETERS

ATNAM = NAME OF ATTRIBUTE
ATDOM = NAME OF DOMAIN FOR ATTRIBUTE

INDEX* ATNAM ATDOM

1 NAME NAMDM
2 SALRY SALDM
3 MGR NAMDM
4 DEPT DEPDM
5 ITEM ITMDM
6 SUPPL SUPDM
7 COLOR CLRDM
8 SIZE SIZDM

DOMAIN PARAMETERS

DMNAM = NAME OF DOMAIN
DMNVL = NO. OF VALUES IN DOMAIN
DMAVS = AVG SIZE IN BITS OF DOMAIN INSTANCES

-194-

nMNr\7T.\JV\\S V Xj DM A^7c;

1 NAMDM 11 360
2 SALDM 11 36
3 DEPDM 5 72
4 ITMDM 6 36
5 SUPDM 4 720
6 CLRDM 4 72
71 C T "7 r»Mo J. /i jjiyi

o

MAPPING ATTRIBUTES ONTO RELATIONS

ATNAM # OF REPL J.LN LTjAJIiU

EMP NAME 1 Y
EMP SALRY 1 N
EMP MGR 1 N

DEPT 1 vX

SALES DEPT 1 N
c a T T? c ITEM 1 JN

SUPLY ITEM 1 Y
CITDT V SUPPL 1 vX

TYPE ITEM 1 Y
TYPE COLOR 1 N
TYPF SIZE 1 NT

GLOBAL FILE PARAMETERS

GFNEF = NO. OF EF DEFINITIONS IN PARAMETER SET
GFNLE = NO. OF LE TYPES DEFINED FOR ALL EE'S IN PARAMETER SET

GFNEF GFNLE

10 19

-195-

o

a

o
Ci4

U-i

Q fa
fa

fa

a U
fa fa o
> pi IZi

o fa
Q fa

<
<

o Pi E
Q fa o O
IZi Pi W
< <: fa

fa Q u fa
fa H

M
H
Q

IN LE
GIF M CO

w W --'-^ o
fa cu o a H O
< w fa fa PQ fa

Pi Pi fa
Tt , Pi —

z

fa
TtT fa o M

fa
UD

fa
fa fa Pi

u w fa
w J fa iz; M ISI

J U fa W fa MH 2; a: Pi M CO IS]

Cm M u fa D J X
Mfa < o u <: Pi

fa fa U D fa fa
fa in O O fa fa

fa fa oi Pi fa fa
o o u fa fa D

iz; fa fa 12 J J CQ
w O fa M M
u fa w w Pi fa fa w
M El WPi Eh
o fa M M U J J <: fa

W
LO

ISI

M
CQ CQ

OC < <^
13 Z E-

FL

fa w :z O O fa fa
O fa M M fa HMO
o Q o Eh E-i CO

W fa <: <
• X a: J J o

< o M d fa w-\ fa
!Zi IZi fa o o Pi Pi M fa

*
X
fa
Q

inLninLnincNicNCNicNir)

X X

®O<S(SiS(SCQ03®tS

X X
fa fa
* *

00 OD rH OD m en O
r-l 1—I CN iH >

*

CO v£>

00 00

CNCNLn,HfMnH(Nr-lfNI>H

'Z CO
M <C

S iai CO M fa
CQ X Pi > > fa

H Q O a < S
X z :s M Pi fa

<;wwE-«cocococoE-"

.H(Nro^in>i)r^oo(y>tS!

-196-

CO
w
M

!Z

U
H
o
o
J
fa
w

o
fa

a;
fa
Eh

fa

o
fa
OS

Q

Q
X
o
fa

IS]

M 1 vo v£» (S S) 00 CO s CO 1^ E-i S!
CO 1 CN CN CN CM CM CM (N CO IS CQ m CO CO CO CO

fa 1
in in r- r-- a; M m CQ

M
*

M
* * *

o
fa

fa

O
fa o

fa

Q fa

fa
H Pi fa
fa o J
H Eh

U
fa u
cx< M O u
CO Q fa fa o

u z
M ^ z fa

o fa

fa fa fa fa oi

U U fa D
2i fa Z M u

fa fa fa fa u
J M o

fa fa O J fa

fa o u <: fa fa

o fa O ID fa J
fa fa CO O O J

fa a;

fa fa u fa fa fa o
J J o fa z

U >H H fa M M
H E-1 fa Oi fa fa CO CO fa

o DW Eh Eh fa

o >^ U J J H H ij

J < U < < CQ

< O z z
fa O Eh o o z z
o H fa H H H M

E-" fa O Eh Eh

H U <: < fa Z
21 fa • J tS] fa

<: D o fa fa H •

fa fa Pi Di CO o
II II II II II 11 II II

*
Z u O O csl Q X
D o fa fa M X fa
fa fa z 0i CO o Q

fa fa fa fa fa fa fa fa Z
J J J M

CO CN cs
in in

Eh

z
s
fa

J Eh J
<; Pi <c Pi

CM

p p
Eh H D
< <: Eh

X X M
Pi <

M M J

ZZCOCOEH^E^EHEnXSt^iiiicOHHjJfaMH<:<:zzzzzpxpiPi>>>cQoQfa<t;<:HM2222SZPOOZ<<EHEHS:SS^qjJJJjJEnZIS^HOiC^XXW
PP<:<:WWH[x|Cl1El1C0C0C0C0C0C0EhEhEh

fafafafaHMCOMMCJ u u Oi u O U H
WWWWDiPiZPiPifa fa fa 2 fa fa fa Pi Pi >
PPPPD^Cl^M&^Cl^CO CO CO Eh CO CO CO cu o. o

fafaHMHP faEHK Pi CO fa Eh Pi tn Eh WHWJiJCUHSJ^CO Eh Pi J fa <: H CO CO (J
pp<:<;e^&^odmj<; Z 2 CO > oa 2
EHfaEHjfaEHEHDfalS cu Pi > < p fa

<:pi<;pico<:<i:EHPifa CO D 12 <: Pi Pi Pi Eh Eh

rHCMco'<^invx)r~oo<yi!S} iH CN CO in 00 0^
iH rH rH r-t rH rH nH nH

-197-

OS

<:

w

O
Pi

w

IS

o
CO

w
<

Pi

<

fa 1 Q
Q
M 1

z 1 n
fa

1-3 1 LD
CO U t (N
CO M

z
fa

U
< 1

IT)

o 1 CN
H

w z
O Q Eh fa

H < M
OiM Q Eh Eh

1

CO < M Oi s fa 1 <S)

Oi W J M 1 iH

<: Pi s w w w J M z
O o M fa fa

<: M fa
< Eh C5 C5 Pi fa W Eh i iH
CO M < O O w C5 Oi 1 in
-

—

s Oi Pi Eh ^« w c:) < H
o O CO CO CJ? < Oi Z

Q Q Eh Eh < Oi O fa
M H CO CO >H >H oi o Eh

Pi Oi Pi o Eh CO <: 1 s
Pi >H >H <: Eh CO 1

(Ti

u p W Pi Oi Q Q CO >H H
w o f< <: z z Oi z

M CO Q Q O O >H Pi <C fa
w PQ PQ z z 12 u u Pi <: Q
PQ < o o ly w < o Z <; 1 n
!z; CO oi u u CO CO Q Z o oi 1 CN

CO Eh Eh W w Z o u H
II w H CO CO Oi oi o CJ fa z

12 w O o u w CO w
rH Q D D 03 Oi Oi fa fa CO
Q < o o CO fa 2 1 in
<; CO O Z CO CO fa Eh o

oi u U Z CO fa M
o E-< Pi CJ CO CO w w W o J z

CO lil u u CO CO Cm W fa
< u Eh W Ixl H H O u Q
U M < CO CO ij J D CO
M CO tC M H O o O M <N
Q < Ph <I Eh J M M Eh Eh Eh 03 rH

PQ 2 Z
M CO E-I CO H M CO CO CO fa

U - S Z Z U u u
O M M W w w CO in

W O Ph o z Z CO CO CO Dj
<1 CO M H M w W H M M u

o CO E 03 2 J z
Oi E-i U D W w M M J faM < s Eh Eh M M M
Pi 03 Cm CO O M M 2 2 2 D <^

o o Eh Eh Oi Oi <C ro
w Z 2; W W Z Z Z CO
CO H Pi M O CO CO fa M H M z

Z CO CO CO CO fa
U W 03 w w w z z W fa fa

o ISl >< u u 2 2 2 Q
Oh M D M <i u u M M M O
a. CO z CO s < < Eh Eh Eh Eh Eh J •

z
II II II II II II II II II II II II fa

M O CO D 2 < < Eh Eh Cm fa M
Dn <: oi M O Pi [2 Pi S O U Q cu
04 CO o CQ M M M M M M M M CM •

z z Z z Z z Z z z rH

W w w w w w W fa fa fa

o
CD

Q
fa
Z
H
fa
w
Q
CO
z
o
H
Eh

u
z
D
fa z

fa
CO z
2 CO
PQ o
Q
fa
O

•

o
z
II

z
fa
z
CO

-198

SOFTWARE FUNCTION PARAMETERS

FNNAM = NAME OF DBMS FUNCTION
FNPRC = MILLISECS OF PROCESS TIME FOR EACH EXECUTION OF FUNCTION
FNMOD = MODIFICATION FACTOR FOR DBMS FUNCTION PROCESSOR TIME

INDEX FNNAM FNPRC FNMOD

1 M9C0M 10 0 . 00
2 S9PR0 10 0 . 00
3 M9PID 10 0 . 00
4 M9IS0 10 0 . 00
5 M9GTL 10 0.00
6 M9GTS 10 0 . 00
7 M9GTR 10 0 . 00
8 A7TRA 10 0.00
9 A7SRC 10 0 .00

10 ALLOC 10 0 .00
11 DALOC 10 0.00
12 SSAVE 10 0.00
13 SDEST 10 0 . 00
14 UNION 10 0 . 00
15 INTRS 10 0.00
16 XUNSD 10 0 . 00
17 RLCMP 10 0 . 00
18 SCOPY 10 0 . 00
19 RGSTR 10 0.00
20 SADDl 10 0 . 00
21 S9PTR 10 0 . 00
22 M9AL0 10 0.00
2.6 S4CnK 10 0 . 00
24 S4SUB 10 0 . 00
25 S4EVA 10 0.00
26 S4M0V 10 0.00
27 S4SRC 10 0.00
28 S4IDX 10 0 . 00
29 S4BLD 10 0 . 00
30 S40PR 10 0.00
31 GPTPK 10 0.00
32 TRVRS 10 0.00
33 K9I0 10 0.00

-199-

BIT STRING PROCESSING PARAMETERS

BSPKS = NO. OF BITS IN QUATREE PACKET
BSQLV = NO. OF QUATREE LEVELS
BSMPI = MAX NO. OF POSITION ID'S FOR FILE STRUCTURE
BSYNT = Y INTERCEPT FOR TRAVERSAL ESTIMATION
BSXIC = XI COEF FOR TRAVERSAL SET CARDINALITY
BSX2C = X2 COEF FOR TRAVERSAL SET RANGE

BSPKS BSQLV BSMPI BSYNT BSXIC BSX2C

4 16 9

SPPM - SIZE ESTIMATION MODEL

CALCULATING STORAGE REQUIREMENTS FOR DB ZLOOF
WITH GROSS PARAMETERS:

* 4 DEFINED RELATIONS
* 7 DOMAIN DEFINITIONS
* 8 ATTRIBUTE DEFINITIONS
* 10 ELEMENTARY FILES DEFINED
* 19 LOGICAL ENTRY TYPES DEFINED

ENTER FILE NAME FOR SIZE ESTIMATION REPORT
ZLFNEW
OUTPUT WILL APPEAR IN FILE - ZLFNEW. SIZ

M>
Z

SOURCE DATABASE

ENTITIES DEFINED TOTAL DB

RELATIONS
ATTRIBUTES
TUPLES

4
11

41 .000

4
11

41 .000

SIZE(BITS) 18432. 18432.

-200-

STORED DATABASE FILES

ENTITIES DEFINED TOTAL DB

ELEM FILES 10
LOG ENTRIES 19

16
369.00

SIZE(BITS) .34711E+06 .48078E+0C

STORAGE UTILIZATION

STORAGE FUNCTION SIZE(BITS)

PRIMARY RELATIONSHIPS
SECONDARY RELATIONSHIPS
DEFINITION
DATA INSTANCES
FILE OVERHEAD

43487.
22026.
23040.
28800.
. 36343E+06

TOTAL STORED DATABASE . 48078E+06

M>
H

SPPM COMMANDS - SELECT FROM FOLLOWING LETTERS
H = HELP, PRINT THIS SUMMARY
L = LOAD NEW PARAMETER SET FROM DISK FILE
D = DISPLAY CURRENT' PARAMETER SET
C = CHANGE PARAMETER SET
S = SAVE CURRENT PARAMETER SET ON DISK
Z = RUN SIZE ESTIMATION MODELER
R = RUN RESPONSE TIME ESTIMATION MODELER
X = EXIT, TERMINATE EXECUTION OF MODEL

M>
S

SPPM - PARAMETER STORAGE FACILITY

ENTER NAME FOR PARAMETER FILE
ZLFNEW
PARAMETER FILE <==> ZLFNEW. PAR

-201-

M>
R

SPPM - RESPONSE TIME ESTIMATION MODELER

GROSS PARAMETERS FOR MODELING QUERIES ON DB ZLOOF

:

* 4 DEFINED RELATIONS
* 7 DOMAIN DEFINITIONS
* 8 ATTRIBUTE DEFINITIONS
* 10 ELEMENTARY FILES DEFINED
* 19 LOGICAL ENTRY TYPES DEFINED
* 33 DBMS FUNCTIONS DEFINED
* 1.00 SYSTEM LOAD FACTOR
* 1.00 PROCESSOR POWER INDICATOR

ENTER FILE NAME FOR RESPONSE TIME ESTIMATION REPORT
ZLFNEW
OUTPUT WILL APPEAR IN FILE - ZLFNEW. RES

READY TO ACCEPT SPP QUERIES FOR ZLOOF RELATIONS:

RELATION NAME NO ATTS NO TUPLES

EMP 4 10
SALES 2 12
SUPLY 2 10
TYPE 3 9

USE SPP QUERY FORMAT: EXIT RETURNS TO MODEL DRIVER

C>
SUBX *A=EMP{X. (*) :X.NAME.EQ. JONES)

7

S9PTRB MODELING SUBX PREDICATE EVALUATION:
ENTER INTEGER NUMBER OF 10 TUPLES IN RELATION EMP
THAT SATISFY EACH ELEMENTARY CONDITION, OR
ENTER "?" FOR MODEL DETERMINATION

** 1-ST COND: NAME .EQ. JONES...

RGSTR MODELING REGISTRATION OF ATOM:
**IS STRING JONES... IN DB? ENTER (Y OR N).

: >

Y
ENTER NO IN RANGE 0 TO 1 , OR ENTER "?" >

1

-202-

RESPONSE SUMMARY

QUERY SESSION

: MS % MS %

I/O 981 .00 56. 35 981 .00 56. 35
PROCESSING 760.00 43. 65 760.00 43 . 65
OVERHEAD 0 . 00000E+00 0. 00 0.00000E+00 0. 00

RESPONSE 1741.0 100. 00 1741 .0 100. 00

I/O SUMMARY

QUERYDESC SESSION

NO PHYSICAL READS
NO PHYSICAL WRITES
NO OTHER I/O'S

OPEN
CLOSE
DELETE

NO BIOU'S TRANS
ACCESS TIME
TRANSFER TIME
OTHER I/O TIME

115
816
50

00
00
00

5

0

0
0
0

16

/

/

/

11
83
5

72%
18%
10%

115.00
816.00
50.00

5

0

0
0
0

16
/

/

/

11
83
5

72%
18%
10%

TOTAL TIME 981 .00 981 .00

C>
SUBX *B=SUPLY(X. (*): X . ITEM . GT . 200)

;

S9PTRB MODELING SUBX PREDICATE EVALUATION:
ENTER INTEGER NUMBER OF 10 TUPLES IN RELATION SUPLY
THAT SATISFY EACH ELEMENTARY CONDITION, OR
ENTER "?" FOR MODEL DETERMINATION

** 1-ST COND: ITEM .GT. 200.0

RGSTR MODELING REGISTRATION OF ATOM:
**IS VALUE 200.0 IN DB? ENTER (Y OR N).

: >

Y

-203-

ENTER NO IN RANGE
7

0 TO 10 OR ENTER

RESPONSE SUMMARY

QUERY
DESC

MS

SESSION

MS

I/O
PROCESSING
OVERHEAD

0.00000E+00 0.00
13480. 100.00

0.00000E+00 0.00

981.00 6.45
14240. 93.55

0.00000E+00 0.00

RESPONSE 13480. 100 .00 15221. 100.00

I/O SUMMARY

QUERYDESC SESSION

NO PHYSICAL READS 0
NO PHYSICAL WRITES 0
NO OTHER I/O'S

OPEN 0
CLOSE 0
DELETE 0

NO BIOU'S TRANS 0
ACCESS TIME 0. 00 / 0 .00%
TRANSFER TIME 0. 00 / 0 .00%
OTHER I/O TIME 0. 00 / 0 .00%

TOTAL TIME 0. 00

115.00
816.00
50.00

5

0

0
0
0

16
/

/

/

11.72%
83.18%
5.10%

981 .00

C>
EXIT;

-204-

M>
H

SPPM COMMANDS - SELECT FROM FOLLOWING LETTERS:
H = HELP, PRINT THIS SUMMARY
L = LOAD NEW PARAMETER SET FROM DISK FILE
D = DISPLAY CURRENT PARAMETER SET
C = CHANGE PARAMETER SET
S = SAVE CURRENT PARAMETER SET ON DISK
Z = RUN SIZE ESTIMATION MODELER
R = RUN RESPONSE TIME ESTIMATION MODELER
X = EXIT, TERMINATE EXECUTION OF MODEL

M>
L

SPPM - PARAMETER LOAD FACILITY

ENTER NAME FOR PARAMETER FILE
VB5NEW
PARAMETER FILE <==> VB5NEW.PAR

M>
D

SPPM - PARAMETER DISPLAY FACILITY

SPECIFY LOCATION FOR FORMATTED PARAMETER DISPLAY:
O = DISPLAY AT ON-LINE TERMINAL
P = GENERATE FILE FOR HIGH-SPEED LINE PRINTER

*>

P

ENTER FILE NAME FOR PARAMETER DISPLAY REPORT
VB5NEW
OUTPUT WILL APPEAR IN FILE - VB5NEW.DIS

-205-

M>
D

SPPM - PARAMETER DISPLAY FACILITY

SPECIFY LOCATION FOR FORMATTED PARAMETER DISPLAY:
O = DISPLAY AT ON-LINE TERMINAL
P = GENERATE FILE FOR HIGH-SPEED LINE PRINTER

*>

O

DATABASE LEVEL PARAMETERS

DBNAM = NAME OF DB
DBRDN = REDUNDANCY % OVER ALL RELATIONS
DBNRL = NO. OF RELATION DEFINITIONS IN DB
DBNDM = NO. OF DOMAIN DEFS IN DB
DBNAT = NO. OF ATTRIBUTE DEFINITIONS IN DB
DBNUA = NO. OF UNIQUE ATTRIBUTES IN DB

DBNAM DBRDN DBNRL DBNDM DBNAT DBNUA

VGH5 54 1 10 10 10

RELATION LEVEL PARAMETERS

RLNAM = NAME OF RELATION
RLRPL = NO. OF REPLICATIONS FOR RELATION
RLRDN = REDUNDANCY % OVER ALL ATTRIBUTES
RLDEG = DEGREE: NO. OF ATTRIBUTES IN RELATION
RLCRD = CARDINALITY: NO. OF TUPLES IN RELATION

INDEX* RLNAM RLRPL RLRDN RLDEG RLCRD

1 REL5 1 54 10 7

-206-

ATTRIBUTE PARAMETERS

ATNAM = NAME OF ATTRIBUTE
ATDOM = NAME OF DOMAIN FOR ATTRIBUTE

INDEX* ATNAM ATDOM

1 T TDM
2 S SDM
3 F# F#DM
4 G GDM
5 NAME NAMDM
6 IAS lASDM
7 Q QDM
8 ALT ALTDM
9 P PDM

10 ACC ACCDM

DOMAIN PARAMETERS

DMNAM = NAME OF DOMAIN
DMNVL = NO. OF VALUES IN DOMAIN
DMAVS = AVG SIZE IN BITS OF DOMAIN INSTANCES

INDEX* DMNAM DMNVL DMAVS

1 TDM 1 36
2 SDM 1 36
3 F#DM 1 36
4 GDM 1 36
5 NAMDM 6 72
6 IASDM 5 36
7 QDM 5 36
8 ALTDM 4 36
9 PDM 4 36

10 ACCDM 4 36

-207-

MAPPING ATTRIBUTES ONTO RELATIONS

RLNAM ATNAM # OF REPL INDEXED

fT ETRELd mT 1 Y
S i XTN
r ff 1 KT

IN

REL5 G 1 N
REL5 NAME 1 Y
REL5 IAS 1 Y
REL5 Q 1 Y
REL5 ALT 1 N
REL5 P 1 N
REL5 ACC 1 Y

GLOBAL FILE PARAMETERS

GFNEF = NO. OF EF DEFINITIONS IN PARAMETER SET
GFNLE = NO. OF LE TYPES DEFINED FOR ALL EF ' S IN PARAMETER

GFNEF GFNLE

10 19

-208-

<
a*

H

Eh

Q

>
O
J
<
a

H J
CO

W

>^
Pi

<
!2i

2

H
fa
O

CO

W
Q
D
•J
U
z
H
w

fa
w «
o

Oi fa
o
fa CO

Eh

W H

a
fa

Q
<
O
fa

Q
W
M
fa
M
U
w

fa cu

W CO

o
fa

OS
o
Eh

<
U
H
Q
H CO

D
O

O O H
fa fa 03
Pi Pi

fa
J

u
<
fa

CO

Pi w
o u
fa z

fa
CO Pi
Eh D
H U
pa u

fa Pi

u fa fa

Z M
W fa
Pi H
D ^
u <:
CJ D
O O fa

fa
W fa P
J J P3

IS)

H
CO

Pi
fa

fa fa

CO Z Z

^ O
z z

Q
W •

H •

fa O

fa
o

• O
o z

o
H
Eh

fa fa
Pi Pi

II II II II II II

Eh tSJ

. fa X
Z H

O
fa fa
o o

O O fa
fa fa p
Pi Pi CQ

fafafafafafafafafa
fafafafafafafafafa

fa
P
PQ
fa

fa

fa
w

fa
fa

u
o
z
fa
fa

tl!

o
fa
fa
fa

X
o
fa
fa
fa

tSJ

X
H
fa
fa

Eh

fa

fa
fa

i
fa

fa

*
X
fa
Q
Z

LnmininmcNcMCNCNLn

X X
J Eh

Pi <:

SOtStStQOPnCQSO
X X
fa fa

CXD CO rH CO ro 00 O
rH iH CM rH >

<

00
CO 00

cn

(NCNinrHCNrHfSlrHCNiH

<
Q

Eh X
Z Q
2 Z

Eh

fa fa

J 2 bli CO M
pq X Pi > >
Eh Q O Z <<

X z :s M Pi
Eh CO CO CQ CO

iHCNro"5i'inv£)r^co(yits

-209-

CO
m
H

uH
o
o
a

o

»

a

p
!zi

O ^
fa o
Pi fa

Q ^
W
O
<
U
M
Q
IZ

o
fa fa

u
o fa

fa fa fa fa o; o;

u U fa D
2; W IZi M u

w fa ij fa fa u
05 05 M o
w fa D J

Eh 05 fa o u < fa
O w U D fa
fa »5 W O O J

fa o;
w fa U fa fa fa o
a, J 2 J J o fa

u >^ H fa M M
H Eh fa 05 fa fa W w
o DW Eh Eh
o >^ U J J M M

<: 05 O <: <; OQ CQ
<:

fa o Eh o o z
o H fa M M M M

Eh w O Eh Eh
w u < <c m

fa • J J IS!

< O W fa M
fa

II

w 2 o; 05 CO o
II II II II II II

U O O N
II

Q
<: D O fa fa H X

fa fa 2; 05 05 w o
w W fa fa fa w w fa

J J J J

Q
K
O
W

N
H
CO

w

O
fa
05

W

U
O
13
M

fa
W

Z
D
fa
fa

5Z
fa
.J

*
X
fa
Q
Z

in IT)

v£)v£)iS<S<S)iS!®lS>QvD(X)C0S)C0vOvOEHEH(S
r-t^fNCNCNCNCMCNCsirOSCQ CQCOCOCOCO

05 Q
Eh Eh J
<; OS < 05

(N

Eh

is

Q Q XX
Eh M D J fa J J
<; < Eh o; J 05 05 < < 05

H iH rH iH iH rH

M H

Q P

CO CO

< <M M

<: <:

Eh Eh Eh Eh

13 2; 2 Z
S S S 2
J J J J Eh

X 2
P X
Z P

fc< t4 CO
05 05 > >
o o :zi <5
5 ^ M

CQ
Eh

WWWfafaWCOCOCOCOCOCO

J fa
CQ fa
Eh 2

X X fa
Eh Eh

fafafafaHHCOMMUUUO^UUUMHK
WWfaH05o5Zo;o5faWWSWWWO505>
ppppcucuMCua4CococoEHCocococucuo

fa fa
fa fa
p p
Eh W
< 05

HHPM
K^l cu

< < ir>

Eh J fa

<c o; CO

fa

O 04
Eh Eh D
< < Eh

Eh K
<; CO

•-^ ^
fa K
o; w CO D

05 CO
Eh 05

fa 05 Eh Eh
Eh C/5 CO
04 CQ CQ

< J D
o; 05 E^

r^c^J^O"s)«l^)v£)r^CXDO^^^IHC^Jn<;I'lr)vDt^00O^

-210-

w

<

Eh

O
Pi

w

Eh

o
W

Oi
<:

H
<

CO
CO

U
U

II II II II II II II II

H D CO
CU < Cl4

CU CO u
o

<
IS

Z Z Z 21 z z z

l-M 1 IS
p 1 rH
H 1

<z 1 ro

w
1 LT)

u 1 (N
H

W
Cu 1 LO

O 1 CN
H

1

w 1 (S
M 1 I—

1

)—

1

2;
W

w PhU '
1 rH

CO
1 lO

o W
CO 1 Q

1 CTi

M
Oh

Q
1 CO

o Oh 1 CN
)--|

w
CO w
w 1 LD
U ' o
w 1—

1

w w
Q

1 00
o t—

1

1 CN
C-i
1_ ' 00 f~l

CO w
w CO
CO dl
1—

1

I—I

ID

<: m
Z CO
1—

1

w
Q

H o Q
Eh •

z rH

II w
H IS

Q 04
M CU
z z rH

w

Q
Z
M
fa

CO w
Q

Eh CO

z
o
H
Eh

< U
CU z

D
w fa z
Oi fa
< CO z

2 CO
03 C5
Q

o
CO fa

O
< •

CQ o
O z
J
O II

z
fa
z
CO
o

-211-

SOFTWARE FUNCTION PARAMETERS

FNNAM = NAME OF DBMS FUNCTION
FNPRC = MILLISECS OF PROCESS TIME FOR EACH EXECUTION OF FUNCTION
FNMOD = MODIFICATION FACTOR FOR DBMS FUNCTION PROCESSOR TIME

INDEX FNNAM FNPRC FNMOD

1 M9C0M 236 XJ • XJ XJ

2 S9PR0 834 0 . 00XJ • XJ XJ

3 M9PID 12 0-00XJ • XJ XJ

4 M9IS0 3 0 . 00
5 M9GTL 4 0 . 00
6 M9GTS 10 0 dpI

7 M9GTR)C • xJVJ

8 A7TRA Qo (A C\C\

9 J. O 't (A C\C\xJ • KJ\0

10 ALLOC' * III IV /\ .
Q

xJ • TUYj

ii DALOC c;
-J (A (AC\

12 SSAVF.V JLj
Qo XJ • xJxJ

13 SDEST 5 xJ • xJxJ

14 UNION 0 XJ • XJXJ

15 INTRS 0 0 00XJ • XJ XJ

16 XUNSD 0 0 . 00
17 RLCMP 0 0 . 00
18 SCOPY 0 0 . 00
19 RGSTR 41 0 . 00
20 SADDl 116 0 . 00
21 S9PTR 28 0 . 00
22 M9AL0 9 0 . 00
23 S4CHK 12 0 . 00
O A24 S4SUB 53 0 . 00
25 S4EVA 30 0.00
26 S4M0V 13 0 . 00
27 S4SRC 3 0.00
28 S4IDX 80 0.00
29 S4BLD 5 0 . 00
30 S40PR 5 0.00
31 GPTPK 8 0.00
32 TRVRS 7 0 . 00
33 K9I0 12 0 .00

-212-

BIT STRING PROCESSING PARAMETERS

BSPKS = NO. OF BITS IN QUATREE PACKET
BSQLV = NO. OF QUATREE LEVELS
BSMPI = MAX NO. OF POSITION ID'S FOR FILE STRUCTURE
BSYNT = Y INTERCEPT FOR TJIAVERSAL ESTIMATION
BSXIC = XI COEF FOR TRAVERSAL SET CARDINALITY
BSX2C = X2 COEF FOR TRAVERSAL SET RANGE

BSPKS BSQLV BSMPI BSYNT BSXIC BSX2C

4 16 9

M>
R

SPPM - RESPONSE TIME ESTIMATION MODELER

GROSS PARAMETERS FOR MODELING QUERIES ON DB VGH5 :

* 1 DEFINED RELATIONS
* 10 DOMAIN DEFINITIONS
* 10 ATTRIBUTE DEFINITIONS
* 10 ELEMENTARY FILES DEFINED
* 19 LOGICAL ENTRY TYPES DEFINED
* 33 DBMS FUNCTIONS DEFINED
* 1.00 SYSTEM LOAD FACTOR
* 1.00 PROCESSOR POWER INDICATOR

ENTER FILE NAME FOR RESPONSE TIME ESTIMATION REPORT
VB5NEW
OUTPUT WILL APPEAR IN FILE - VB5NEW.RES

-213-

READY TO ACCEPT SPP QUERIES FOR VGH5 RELATIONS:

RELATION NAME NO ATTS NO TUPLES

REL5 10 7

USE SPP QUERY FORMAT: EXIT RETURNS TO MODEL DRIVER

C>
SUBX *A=REL5(X. (*) :X . NAME . EQ . TWA . AND . X . IAS . GT . 222 . 22)

r

S9PTRB MODELING SUBX PREDICATE EVALUATION:
ENTER INTEGER NUMBER OF 7 TUPLES IN RELATION REL5
THAT SATISFY EACH ELEMENTARY CONDITION, OR
ENTER "?" FOR MODEL DETERMINATION

** 1-ST COND: NAME .EQ. TWA ...

RGSTR MODELING REGISTRATION OF ATOM:
**IS STRING TWA ...IN DB? ENTER (Y OR N)

.

: >

Y
ENTER NO IN RANGE 0 TO 2 , OR ENTER "?" >

2
** 2-ND COND: IAS . GT . 222.2

RGSTR MODELING REGISTRATION OF ATOM:
**IS VALUE 222.2 IN DB? ENTER (Y OR N)

.

:>

Y
ENTER NO IN RANGE 0 TO 7 , OR ENTER "?" >

5

-214-

RESPONSE SUMMARY

DESC
: QUERY SESSION

: MS % MS %

I/O
PROCESSING
OVERHEAD

981 .00
4659 .

0

0 . 00000E+00

17.
82 .

0.

39
61
00

981 .00
4659 .

0

0 . 00000E+00

17.
82 .

0.

39
61
00

RESPONSE 5640.0 100. 00 5640.0 100. 00

I/O SUMMARY

QUERYDESC SESSION

NO PHYSICAL READS
NO PHYSICAL WRITES
NO OTHER I/O'S

OPEN
CLOSE
DELETE

NO BIOU'S TRANS
ACCESS TIME
TRANSFER TIME
OTHER I/O TIME

115.00
816.00
50.00

5
0

0
0
0

16

/

/

/

11.72%
83. 18%
5.10%

115.00
816.00
50.00

5

0

0
0
0

16

/

/

/

11.72%
83. 18%
5.10%

TOTAL TIME 981 .00 981 .00

-215-

c>
SUBX *B=REL5 (X .

(
*) : X . NAME . EQ . CLYDE . OR . X . IAS . LT . 1 2 . 0 . AND . X . Q . GT . 2 3)

;

S9PTRB MODELING SUBX PREDICATE EVALUATION:
ENTER INTEGER NUMBER OF 7 TUPLES IN RELATION RE'L5
THAT SATISFY EACH ELEMENTARY CONDITION, OR
ENTER "?" FOR MODEL DETERMINATION

** 1-ST COND: NAME .EQ. CLYDE...

RGSTR MODELING REGISTRATION OF ATOM:
**IS STRING CLYDE... IN DB? ENTER (Y OR N).

Y
ENTER NO IN RANGE 0 TO 2 , OR ENTER "?" >

1
** 2-ND COND: IAS .LT. 12.00

RGSTR MODELING REGISTRATION OF ATOM:
**IS VALUE 12.00 IN DB? ENTER (Y OR N)

.

: >

Y
ENTER NO IN RANGE 0 TO 7 , OR ENTER "?" >

4
** 3-RD COND: Q . GT . 23.00

RGSTR MODELING REGISTRATION OF ATOM:
**IS VALUE 23.00 IN DB? ENTER (Y OR N).

: >

Y
ENTER NO IN RANGE 0 TO 7 , OR ENTER "?" >

7

-216-

RESPONSE SUMMARY

DESC
: QUERY SESSION

: MS % MS %

I/O

OVERHEAD

556.00

0.00000E+00

6.
.

0.

15

00

1537.0
iJu / .

0 . 00000E+00

10
O Ok

0

.47

. D J

.00

RESPONSE 9034.0 100. 00 14674. 100 .00

I/O SUMMARY

DESC QUERY SESSION

NO PHYSICAL READS 2 7

NO PHYSICAL WRITES 0 0
NO OTHER I/O'S

OPEN 0 0
CLOSE 0 0
DELETE 0 0

NO BIOU'S TRANS 10 26
ACCESS TIME 46. 00 / 8. 27% 161 .00 / 10. 47%
TRANSFER TIME 510. 00 / 91

.

73% 1326 .00 / 86. 27%
OTHER I/O TIME 0. 00 / 0. 00% 50 .00 / 3. 25%

TOTAL TIME 556. 00 1537.00

-217-

c>
SUBX *C=REL5(X. (*) :X. IAS . LT . 22 . 22 . OR.X . Q . GT . 20 . 0 . OR. X . NAME . EQ. DON)

S9PTRB MODELING SUBX PREDICATE EVALUATION:
ENTER INTEGER NUMBER OF 7 TUPLES IN RELATION REL5
THAT SATISFY EACH ELEMENTARY CONDITION, OR
ENTER "?" FOR MODEL DETERMINATION

** 1-ST COND: IAS . LT . 22.22

RGSTR MODELING REGISTRATION OF ATOM:
**IS VALUE 22.22 IN DB? ENTER (Y OR N)

.

: >

Y
ENTER NO IN RANGE 0 TO 7 , OR ENTER "?" >

3
** 2-ND COND: Q . GT . 20.00

RGSTR MODELING REGISTRATION OF ATOM:
**IS VALUE 20.00 IN DB? ENTER (Y OR N).

: >

Y
ENTER NO IN RANGE 0 TO 7 , OR ENTER "?" >

5
** 3-RD COND: NAME .EQ. DON ...

RGSTR MODELING REGISTRATION OF ATOM:
**IS STRING DON ...IN DB? ENTER (Y OR N).

: >

Y
ENTER NO IN RANGE 0 TO 2 , OR ENTER "?" >

1

-218-

RESPONSE SUMMARY

DESC
: QUERY SESSION

: MS % MS %

I/O
PROCESSING
OVERHEAD

556.00
7918.

0

0.00000E+00

6.
9'3

.

0.

56
44
00

2093 .0
21055

.

0.00000E+00

9.
90

.

0.

04
96
00

RESPONSE 8474.0 100. 00 23148. 100. 00

I/O SUMMARY

DESC QUERY SESSION

NO PHYSICAL READS
NO PHYSICAL WRITES
NO OTHER I/O'S

OPEN
CLOSE
DELETE

NO BIOU'S TRANS
ACCESS TIME
TRANSFER TIME
OTHER I/O TIME

46.00
510.00

0.00

2

0

0
0
0

10

/

/

/

8
91
0

27%
73%
00%

207.00
1836.00

50.00

9
0

0
0
0

36
/

/

/

9
87
2

89%
72%
39%

TOTAL TIME 556.00 2093.00

C>
EXIT;

M>
X
STOP

END OF EXECUTION
CPU TIME: 58.53 ELAPSED TIME: 2:6.98
EXIT

-219-

r-l

a
o Eh

s <
tn

o
r~

1 >^

XI
0) <

o Hh Z
1 <

H W
ft- SI

2 M
O

o
w <; Q w
w W w
Cd z H <:
U o CD

o M <
a; E-i W
ft- < z <

S w Q
M o
E-i w

w fa u
W o Di

J o D
< W O

N IS] W
o M
H w m
E- Q
M
w oi
o o
cu

CO

s

CO H
Eh
CO
a

Eh

1 1 ^ tn
< D 1 1 < D
Eh O I 1 E-* O <N in in ON 00

n

in SI 1 in

O H 1 O H rH (N ro rH
1 rH

Eh m v£l 1 1 E-< CO 1 rH

1

1 1
• Q l£l in in in i^j in

1 lO
w 1 I

• < s Si SI SI SI SI 1 SI
Cd N 1 1

• Cd -1- + -t- -1- -1- -1-
1 -^

W H Si SI • 1 1
• Cd Cd Cd Cd Cd Cd 1 Cd

< w CM 1 I
• CK s SI in CO rH cs 1 ro

m IS SI iXl CO I Cd • r~ in IS in SI 1 ^
< J CO 0^ 1 > s SI Si CN ro ro in 1 ro
Eh <C (N O) in (N CO 1 1

* o 00 CO rH n CM rH rH 1 10
cf Eh CO .-H r~- •-H 1 1 f~< 1 ro
Q O 1 1 z

Eh 1 o
1 1 I-H

1 1 Eh < in

1 1 U Eh S!
1 1 z < +
1 1 D Q Cd
1 1 Cu Si
1 1 Eh CO 1 SI

cn Sl K! 1 ta 1 1 Cd to OO 1 Si
H S SI SI 1 tS 1 1 O Z CN 1 00
ij S S) K) s 1 S) I

! S M 1 00
B< SJ • 1 1 K 1 CN

D S (N SI 1 -H 1 1 o
Eh .-H tH rH

1 1 1 Eh
1 t 1 m in
1 1 1 SI
1 1 1 >H -t-

1 1 1 CQ Cd
1 1 1 S) 1

•

w Q CN 5) (N rH 1 LD 1 1 Cd SI 1 SI
H 1 1 1 tsl z 1 1

< W X 1 1 CO 1 M Cn 1 ^ rH 1 SI
M Q 1 1 M 1 w Cd CO 1 ro

< Eh Z 1 1 CT) I Q 1 CN
D H

1 1 >^ 1 Cd

< m 1 1 1 C/3

a M 1 1 < 1 < in
a; 1 I 1 CQ SI
Eh

1 t < 1 < -1-

< Eh J <N CM CO 1 1—t 1 1 Eh Cd Cd
Eh < (f 1 i-l 1 1 < OS CM S •

1
•

o Eh
1 1 1 Q CO • CM CM 1 'S)

Eh O 1 1 M 1 Z 00 ro '^1' ro ro 1 (N
Eh 1 t t^ 1 D u m rH in (N CM 1 SI

1 1 1 Cd Cd n • ro CM CM 1 CN
1 1 >^ 1 a CO 1 CN
1 1 1 o
1 1 < 1 Eh

1 1 1 t/3 in

J J 1—t rH .-(1 1 1
* Si

W ftn 1 1 1
• +

a; H 1 1 1
• Cd Cd

DS 1 1 1 OS 00
1 1 J 1

• 00 1

1 1 w 1
• s CD S! 1 00

1 1 1
• M n 1

1 1 1 1
• OS 1 ro

1 1 1
•

1

1 1 w 1

1 1 ESI I

1 1 1-H 1 vD SJ 1 vO
1 1 w 1 S S) SI 1 SI

H 1 1 I
-1- + -^

1 +
ISl s s S SI 1 • 1 w 1 Cu Cd Cd Cd 1 u
M W 1 1 to 1 1-1 Cd S! • CO . . ixi SI 1 00
W E-H SI v£l 1 m 1 < 1 < SI SI 00 1^ "* SI CN SI 1

M C^^ 1 1 1 Eh SI CO SI CO ^0 (N in SI 1 SI
J CQ (M (N in (N

1 CO 1 < 1 O 1 ^ in CXD I-H rH CO 00 * CTi S) 1 00
H — 00 ^ 1 1 r-H 1 1 Eh < 1 VD r~ rH ro rH Si 1

=!•

1 1 < 1 00 \o . n ro rH •
1

•

1 t Q 1

1 1 1 J
: 1 Q 1 6-1 04 f-H rH rH rH rH m in rH 1 lO
i

I W 1 Cd Cd 1 rH
1 1 a; t Ctf

1 1 o I

1 1 1

1 W 1

w S !S Si 1 1 1

O Cd SI S! Si SI SJ 1 1

M J SI Si SI SI tS) 1 1 SI \Q

E- 0^ SI • 1 1 S) SI 1 Si
< p SI CN Si i—H 1 1 Cd -f + 1 ¥
J Eh 1—1 rH r-H (Tv 1 1 ISl Cd Cd 1 Cd
Id 1 1 J M Si • CO ^ SI rH

VC) 1 < CO SI SI CO ^ Si CM SI rH
1 1 Eh S) CO 10 SI CO lO ^ in SI SI r-

a Q 1 1 o Dh in CO rH rH CO 00 lO cyi SI
u X (N S! <N i-H in 1 1 Eh Cd rH ro in SI ro

2 Q 1 1 CO rH KD • m m rH ^ • •

Z 1 1

M 1 1

H 1 1

Q 1 1

1 1

Cd iJ 1 1

Eh < t 1 OS SI S SI SI SI S) S) s S) SI Si
D Eh (N (N «—

1 I 1 Cd W s> S) SI SI S> Si S> Si S) SI SI
m o »-H 1 1 CQ - SI S! Si SJ S (S SI SJ s>

1 1 S Cd SI Si • SI CTi

oi 1 1 D in SI in • • rH CM lO
Eh 1 1 Z (N ro ^ ro rH ro
Eh 1 1

< 1 1 Cd CO
1 1 a Cd CM (N in rH CM ,-{ i>i ,-< CN rH

Q 1 1 Oj rH

Cd CN —
1 1 1 o >H

S rH 1 1 z Eh

t 1

z 1 1 to
1 1 Cd z CO Eh X J S X to M Ct4

1 1 Cd < Z Q 03 X OS > > Cd <
1 1 J < M S Z Eh a oz s Eh

W >H 1 1 M Z s J Eh X Z S M Cd o
z Cd Cd < 1 1 Cn Q < Cd Cd Eh CO CO to to Eh Eh

a< Oh E-t I 1 1

2 < >H O I 1 Cd o CM fO in li) r~ CO a\ SI
Cd cn CO Eh E-t

' z

-220-

(S
Si (S (S
+ + + +

w w
S> • o IS IS s • O in IS IS IS • IS in

. ts) IS • o • CN IS CO • IS
'^t fN • IS IS (N ts ^ ro IS CN vD vD vD in IS ro

ro IS tr> 00 00 in CO 00 CT» 00 IS ^ 1—

1

,—1 in <N IS S)
o ro fO 1—

1

00 00 0^ 00 ro ro IS f~t I— CO IS CO
(NJ ,—1 CN CNl (N CN • i-H n CO

in in
ts ts (S
+ + + +

Q W u
\£) - <N
IS IS in in

o 00 00 <T^ V£)

IS 00 CN 00
w .-1 CN •

•J

- IStSS • -SIS - SSISStSISISS

n®inootSv£>cOirioooocO'<J'EifOrHnH«5ns

vorMiHCNr-irir-)<N<Nni-(n •oirHi-ioon

ISBlSJ'SllSlSl'SSJ'SQlSQSlSQlSllSSltS)

• la .lass • -s -sss • • -s 'S
.VO • • 'S-H • • •iH^rH -i-l .

s s
s s
+ +

sssssssssssssssssssSSSSSSSSSS * 'S 'SSSSSS^fCOSOOSS • 'Sv^vOSSSSSSS '.^SSS • 'C^rHS
r-r-<Nr-)CMrMCNCN(N^£>v£ivDSvO\0vDmrHS

s S S
s S

ON n s s
VD in CM fN
n r- r-

QaQQ(ii(i<i-iB<Q<wwmE-icnwwcuCL40

Gl S
S S
+ +

sssssssssssssssssssSSSSSSSSSS 'SSSSSSSS
sa3 «ssss -ssi£)>i)SSSSSSS 'SOOS • • 'ON - s

r-r~rMr-)(N<N(NCMCMvD>aiHS(Nv£)vOr-(r-(S

i<rt:a2i2i!azQXtt:t«>>>cno3tdhmSSSSSZQOOZ^^EhBS
b 2
b3 M H
OS

Q Q

M M Q U
W o< H s

Q Q < Eh a< o Cli

Eh U J U Eh Eh D
< a; < 03 < < Eh

in r- 00

J < a
td X a<

H J a; Eh Eh wJ cq «j: Eh W W J
2 W > CQ DQ S

" D W
Eh Eh

a; > <c <£ J
^ < o2 cd OS

-221-

.TYPE ZLFNEW.RES

SPPM - POSITIONAL SET PROCESSOR PERFORMANCE MODEL

RESPONSE TIME ESTIMATION

ESTIMATES FOR DB ZLOOF GENERATED ON 14-Feb-79 AT 10:57

SUBX *A=EMP(X. (*) :X. NAME. EQ. JONES)

;

RESPONSE SUMMARY

QUERY SESSION

MS % MS :

DESC

I/O 981.00 56.35 981.00 56.35
PROCESSING 760.00 43.65 760.00 43.65
OVERHEAD 0 . 00000E+00 0.00 0.00000E'+00 0.00

RESPONSE 1741.0 100.00 1741.0 100.00

I/O SUMMARY

DESC QUERY SESSION

NO PHYSICAL READS 5 5

NO PHYSICAL WRITES 0 0
NO OTHER I/O'S

OPEN 0 0
CLOSE 0 0
DELETE ^ 0 0

NO BIOU'S TRANS 16 16

ACCESS TIME 115.00 / 11. 72% 115 .00 / 11. 72%
TRANSFER TIME 816.00 / 83. 18% 816 .00 / 83. 18%
OTHER I/O TIME 50.00 / 5. 10% 50 .00 / 5. 10%

TOTAL TIME 981 .00 981 .00

-222-

SUBX *B=SUPLY(X. {*) : X . ITEM . GT . 200)

;

RESPONSE SUMMARY

DESC
: QUERY SESSION

: MS % MS %

I/O
PROCESSING
OVERHEAD

0 . 00000E+00
13480.

0.00000E+00

0
100

0

.00

.00

.00

981 .00
14240.

0 . 00000E+00

6.
93.
0.

45
55
00

RESPONSE 13480. 100 .00 15221. 100. 00

I/O SUMMARY

DESC QUERY SESSION

NO PHYSICAL READS 0 5

NO PHYSICAL WRITES 0 0
NO OTHER I/O'S

OPEN 0 0
CLOSE 0 0
DELETE 0 0

NO BIOU'S TRANS 0 16

ACCESS TIME 0.00 / 0.00% 115.00 / 11.72%
TRANSFER TIME 0.00 / 0.00% 816.00 / 83.18%
OTHER I/O TIME 0.00 / 0.00% 50.00 / 5.10%

TOTAL TIME 0.00 981.00

EXIT;

-223-

SESSION RESPONSE ANALYSIS BY DATABASE FUNCTION

DATABASE :

FUNCTION :

NO :

EXEC :

TIME IN MS TOTAL TIME

PROCESS I/O MS '

SADDl 9 11050. 00 0 . 00 11050 00 57 . 88
SSAVE 4 40 .00 1692 . 00 1732 .00 11 38
SCOPY 3 1140 00 0 00 1140 .00 7 . 49
RLCMP 1 820 00 0

.

00 820 .00 5 . 39
ALLOC 10 100 00 590 . 00 690 .00 4

.

53
RGSTR 4 40 00 576 . 00 616 .00 4 . 05
UNION 1 570. 00 0 00 570 .00 3

.

74
S4M0V 4 40 .00 320 . 00 360 .00 2 37
M9IS0 9 90. 00 0

.

00 90 .00 0

.

59
A7SRC 4 40. 00 0

.

00 40 00 0

.

26
A7TRA 4 40 00 0 . 00 40 .00 0

.

26
M9C0M 3 30 00 0 00 30 .00 0

.

20
S4IDX 2 20. 00 0 00 20 .00 0

.

13
S4SRC 2 20 .00 0 . 00 20 .00 0 . 13
S4EVA 2 20 .00 0 . 00 20 .00 0 . 13
S4SUB 2 20 .00 0 . 00 20 .00 0 . 1

3

S4CHK 2 20 .00 0 . 00 20 .00 0 . 13
M9AL0 2 . VJVJ 0 . 00 20 .00 0 . 13
S9PTR 2 20 .00 0 . 00 20 .00 0 . 13
SDEST 2 0 . 00 z.yj . XjXJ 0 . 13
DALOC 2 20 .00 0 .00 20 .00 0 .13
M9GTS 2 20 .00 0 .00 ^ XJ 0. 13
M9GTL 2 20 .00 0 .00 20 .00 0 13
M9PID 2 20 .00 0 .00 20 .00 0 .13

S9PR0 2 20 .00 0 .00 20 .00 0 13
S4BLD 1 10 .00 0 . 00 10 .00 0 .07

(OTHER) 0 0 .00 0 .00 0 .00 0 .00

TOTAL
OVERHEAD

83 14270 .00 3178 .00 17448
0
.00
.00

100
0

.00

.00

TOTAL RESPONSE 17448.00 100.00

-224-

- z
O 3 <
Z O 06

ca

w
E-i Cd
w
w

O
o
u

o
W

H Eh

J
M
03

<: S
u
H

Q
d H
z 03

u
Q
o EH

00 ON 0^ •* 1 IS 1 s
ifl (N (N IS 1

M
^0 1/1 in (N 1 IS 1 u (TV H
in .H t-H rH 1 IS 1 U)

1 r-\ 1 1 >H

£1 iJ
0) <

o Ph z
w 1 <

S <S) S IS IS 1 u
Si S S IS IS 1 (A rH [d

N
vo IS IS in rH 1 Z M
in in in f\t 1 00 1 03 < o W
in iH rH fH 1 o z

M < Q [d
w U W

z Eh <
1 u o OQ
1 o H S <

03 Eh (d Eh

j & < Z <
1 S Id Q
1 Eh H CI

IS O) (N (N 1 u Eh Cd
rH rH 1 w W U

u in ce:

ij E
< Cd O
z ISl > W
O M
M w m
Eh Q
H

IS IS IS s S) 1 (0 03
o O

in

CO
w

s Eh

H
IS IS IS IS IS 1 Eh

cn
H

<N ^ rH ^ in 1

1 N
1 HI
1 w

Eh tH w J 1 3
Z > > 03 < 1 w
S eC Z O El 1 Z
J o2 M s O 1 in

td U3 W W Eh I CQ

J CO
<C D
Eh O
O M
Eh oa

Cd
[d N
CO M IS
ri^ CO
03 CN

Eh <
<C Eh Cs)

Q O
Eh

CO tS) IS
Cd S) IS

J <S) 1 IS)

Cd IS 1 IS)

CO
1

03

<
Eh

<
Q

Q in 1 LD

J Cd
ft CO X

Cd O
o Eh Z
Eh D i-H

03
M
03
Eh

SI 1 o
< < 1 nH

Eh

O
Eh

J J ,—1
1

1—

1

Cd dt
03 Cd

03

Cd
tS3 •—

-

1 Si
H CO
CO Eh O) 1 CN

t-t r>- 1

J 03 1

Cd ^ (N 1 CM
03

w
z
o CO IS
M Cd Si
J Si Si

< Ci<

J p
Cd Eh

03

Q
(d Q

><; ID lo
M Q
Ph zM
Q
J CO
J Cd tJ
a Eh fi,

D Eh s> IS
03 O ,—1 <—

1

M Eh
03
Eh
Eh

<
Q
Cd IS SI

rH rH

AM J
Z in

>J
td w o
03 a: Eh

-225-

Eh o ID CN in

O M 1 fS CTv (N <N CO CM (N rH 51 \ CO
Eh CQ

vD in in in
1

IS Si IS)
1 (S

+ ^.
I ^

• SO tS CO
ro

1 CO
Q IS (S ro

Q CO iH in
1 o>

t-H • in •
1 CN

«. +

1 la
- -

1 roO
M

S 1 CN

E""

CO
IS
+

CQ

pj 1
iH

i VD
*Z lO

iH
1 ^

rn lO *

U

CQ
1—

1

SI, •

CO 0^ CN
1 00

fO ro
1 kO

CO in
"^ CM 1 (2j

rn
1

U!l

+
w
CO
>^

in fO
H "1 ro

1 IS)

0^
1

rH

'

"^D

Si ta
+ ^.

-

MW * • CO IS) ro

S) GO • ^ CN ^
vO O IS) in Q

o 0^ 1—

1

3
Eh < ro (N VO ro

ro • ro ^ *

rH r-t ^ in rH
u w rH

+
w

• 00 ^ ro

O CO * ^ • ro
\0 o o

o ro 0^ r-H CO a\ (Si (N
Eh 1X4 fO in (N \£) in ta ro

ClI CO • cr« •

_
tS)

_ _
ro ro ro ro

w rn ro ro ro ro ro

ts
s (a Gl la . - (a

1 .-H rH CM • ta
(N in in CO rH CM CM rH <N

U
w CM in rH CN rH CN CN iH 0^

rH

o >^

CO
Is t X J s M ^ 1

3 O CO X q; > > u
.J < < M Eh Q O Eh
M J Eh X a s M O

Q <: u w W w W E-t

1

w o fO in vD CO (T» la
z .H

(S 51
5! 51

w + + 1 +
td [d 1 pq

(S • IS la 51 51 IS IS IS 51 51 • 51 SI 51 51
51 S IS la Si 51 IS 00 IS 51 (S

< s Si 51 CO 51 \0 • CT^ IS 1 ^
i5

51 Si Si 51 m^QISr^^Ov^'^ 51
Q r- C0vov£ilS>iiiriiniscN 51
Eh in \n rH CN rH ^ ^

in
1 ^0

(S 1 ta
+ 1- +

51 • 51
51 If) CN 51 ! in

Q • a •<* 51 1 ^
(N 51

I ^m ^ • r~ in

a 51
5) S!
+ +

o w
IS 51 51 51 IS IS 51 51 51 IS SI SI IS SI

IS s IS 51 IS . . 51 51 • 51 SI SI IS
IS ro 00 • 51 ffi •

ro ro ro IS fo IS CO 51 lyi vo ro
r- CO VO rH IS in in CO rH 51 ro

J in in rH CN in rH ^ rH • CN r- rH rH

s s 51 ta la 51 51 IS 51 51 51 IS IS 51 (S SI ro

(S IS IS 51 la la IS IS 51 51 51 IS 51 Q 51 IS 51 ro

o SI S IS IS la IS 51 IS IS IS 51 IS 51 Sl 51 51 TO 1

IS • IS Si 51 51 • 51 51 51 • • • 51 51 TO 1 fTN

w IS ro CN • rH rH * ro
(N CO ^ rH in r-i rH CN CN CN rH

IS (S
51 51
+ +

w H
J IS 5) IS 5) 51 51 IS OISIS511SISISIS5151 51

IS IS 51 51 51 51 IS 51 51 . . 51 • 51 51 tS 51 51
CO 51 Tj- CO 51 00 51 IS •

_
\0 IS ro ro ro 51 • 51 S SI • • ^ TO
r- (N nj fN \D '•O ^ 51 kO vD 51 CO TO

CQ ID r- ro • ^ fO ro ON CO

Q
51 • 51 SI
51 in ON

Q • (y\ CO 51 51
CN CN

w n 1^ r~

t)

Q CO M U U U a u u U H M
Eh H W U Oi U U U 2 H H H OS OS
CO C Q Q 0^ Ot 04 WWW Eh W W W CU

IS 51
CO IS) 51

+ +
M a a
CQ IS IS IS Si 51 51 51 (S IS51IS5151ISIS51IS SI

IS IS 51 Si 51 SI S 51 51 'ISISISISISISIS 51
51 00 • S • IS IS •

vX) IS 51 ~ ro IS • 51 CO 51 CTN . TO

CN (N CN ^ VO rH 51 rH kO kO 00
in r~ CO rH rH m ro rH

z W Eh Eh Eh Eh Eh ><; s w M M J
n^

M < < z Q X OS OS > > > CQ CQ
P-i M M SI 2 Q O oz a, <, h< Eh S

^ 1 J JEhZSSmBJOSXXM
Q Q < < a CdWWWWWWEnEH Eh

w

CO
w (u M M M Q (a a: OS w W Eh J Oi tr< {r> a

u a J 04 M s < w Eh a; J Cd < H W W J <
<: Q a < Eh CU o Oj <z > ti; w > a< 03 CQ X Eh

Eh a Eh W Eh D a X Cu Z Oi > < O a O
< « < CO < Eh OS W W D 3 < 05 2 OS Eh Eh Eh

o in [~- 00 IS rH CN CO in 00 ff\

,-1 ,-i r-i rH rH rH rH rH rH rH

-226

.TYPE VB5NEW.RES

SPPM - POSITIONAL SET PROCESSOR PERFORMANCE MODEL

RESPONSE TIME ESTIMATION

ESTIMATES FOR DB VGH5 GENERATED ON 14-Feb-79 AT 10:58

SUBX *A=REL5(X. {*) : X . NAME . EQ . TWA. AND . X . IAS . GT . 222 . 22)

;

RESPONSE SUMMARY

DESC
: QUERY SESSION

: MS % MS o
"o

I/O
PROCESSING
OVERHEAD

981 .00
4659.0

0.00000E+00

17.
82 .

0.

39
61
00

981 .00
4659.0

0 .00000E+00

17 .

82 .

0.

39
61
00

RESPONSE 5640.0 100. 00 5640.0 100. 00

I/O SUMMARY

DESC QUERY SESSION

NO PHYSICAL READS 5 5

NO PHYSICAL WRITES 0 0
NO OTHER I/O'S

OPEN 0 0
CLOSE 0 0
DELETE 0 0

NO BIOU'S TRANS 16 16

ACCESS TIME 115. 00 / 11 . 72% 115. 00 / 11

.

72%
TRANSFER TIME 816. 00 / 83 .18% 816. 00 / 83. 18%
OTHER I/O TIME 50. 00 / 5 .10% 50. 00 / 5 . 10%

TOTAL TIME 981

.

00 981

.

00

-227-

SUBX *B=REL5 (X .
(
*) : X . NAME . EQ . CLYDE . OR . X . IAS . LT . 1 2 . 0 . AND . X . Q . GT . 2 3)

;

RESPONSE SUMMARY

DESC
QUERY

MS

SESSION

MS

I/O
PROCESSING
OVERHEAD

556.00 6.15
8478.0 93.85

0.00000E+00 0.00

1537.0 10.47
13137. 89.53

0.00000E+00 0.00

RESPONSE 9034.0 100.00 14674. 100.00

I/O SUMMARY

DESC QUERY SESSION

NO PHYSICAL READS 2 7

NO PHYSICAL WRITES 0 0
NO OTHER I/O'S

OPEN 0 0

CLOSE 0 0
DELETE 0 0

NO BIOU'S TRANS 10 26

ACCESS TIME 46. 00 / 8. 27% 161 .00 / 10. 47%
TRANSFER TIME 510 00 / 91 73% 1326 .00 / 86 27%
OTHER I/O TIME 0 .00 / 0 00% 50 .00 / 3 25%

TOTAL TIME 556. 00 15 37. 00

-228-

SUBX *C=REL5 (X .

(
*) : X . IAS . LT . 22 . 2 2 . OR . X . Q . GT . 20 . 0 . OR . X . NAME . EQ . DON

)

RESPONSE SUMMARY

DESC
: QUERY SESSION

: MS % MS %

I/O
PROCESSING
OVERHEAD

556.00
7918.0

0.00000E+00

6.
93.
0.

56
44
00

2093.0
21055.

0 . 00000E+00

9.
90.
0.

04
96
00

RESPONSE 8474.0 100. 00 23148. 100. 00

I/O SUMMARY

DESC QUERY SESSION

NO PHYSICAL READS 2 9

NO PHYSICAL WRITES 0 0
NO OTHER I/O'S

OPEN 0 0
CLOSE 0 0
DELETE 0 0

NO BIOU'S TRANS 10 36

ACCESS TIME
TRANSFER TIME
OTHER I/O TIME

46
510

0

.00 /

.00 /

.00 /

8.
91

.

0.

27%
73%
00%

207
1836

50

.00

.00

.00

/ 9.

/ 87.

/ 2.

89%
72%
39%

TOTAL TIME 556. 00 2093.00

EXIT;

-229-

SESSION RESPONSE ANALYSIS BY DATABASE FUNCTION

DATABASE : NO : TIME IN MS TOTAL TIME

FUNCTION : EXEC : PROCESS I/O MS %

SSAVE 23 184 .00 8179 00 8363 .00 31

.

13
SCOPY 20 5560 .00 0 00 5560 .00 15 02
UNION 10 4274 .00 0 . 00 4274 .00 11

.

46
RLCMP 5 2745 .00 0 00 2745 .00 6 . 86
S9PR0 3 2502 .00 0 . 00 2502 .00 6 81
RGSTR 1

1

^ -L. 451 .00 1 740 . 00 2141 .00 5. 47
A7SRC 1474 .00 0 00 1474 .00 4. 37
ALLOC 44 352 .00 760 . 00 1112 .00 4 10
INTRS 2 1082 .00 0 . 00 1082 .00 4 07
M9C0M 4 944 .00 0 00 944 .00 4. 01
SADDl 4 810 .00 0 .00 810 .00 3

.

50
S4IDX 8 640 .00 0 00 640 .00 2

.

76
S4M0V 16 208 .00 162 00 370 .00 1

.

60
S4SUB 3 159 .00 0 . 00 159 .00 0 69
S4EVA 3 90 .00 0 . 00 90 .00 0 . 39
A7TRA 1

1

88 .00 0 . 00 88 .00 0 , 38
S9PTR 3 84 .00 0 . 00 84 .00 0 . 36
SDEST 1

5

75 .00 0 . 00 75 .00 0 . 32
DALOC 10 50 .00 0 . 00 50 .00 0 .22

S4CHK 3 36 .00 0 . 00 36 .00 0 .16

M9PID 3 36 .00 0 . 00 36 .00 0 .16
M9GTS 3 30 .00 0 .00 30 .00 0 . 13
M9AL0 3 27 . 00 0 . 00 27 .00 0 .12
S40PR 5 25 .00 0 .00 25 .00 0 .11

S4BLD 5 25 .00 0 . 00 25 .00 0 .11

S4SRC 8 24 .00 0 .00 24 .00 0 .10
M9GTL 3 12 .00 0 .00 12 .00 0 05
M9IS0 4 12 .00 0 .00 12 .00 0. 05

(OTHER) 0 0 .00 0 . 00 0 .00 0 00

TOTAL 243 21999 .00 20841 .00 32840 .00 100. 00
OVERHEAD 0 .00 0 00

TOTAL RESPONSE 32840 .00 100 00

-230-

SESSION I/O ANALYSIS BY ELEMENTARY FILE

: NO. PHYSICAL l/O REQUESTS : NO : TOTAL I /O TIME
-FILE : : BIOU'S :

: READ WRITE OTHER : TRAN : MS %

LmNT 6 0 0 30 1668.00 79.69
iRAVI 1 0 0 2 150.00 7.17
INVS 1 0 0 2 150.00 7.17
WORK 1 0 0 2 125.00 5.97
I

pTAL 9 0 0 36 2093.00 100.00

li

-231-
ii- U5. GOVERNMENT PRINTING OmCE: 1979 O—281-067 (165)

NBS-114A (REV. 8-76)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

SP 500-49

4. TITLE AND SUBTITLE

MODELING AND MEASUREMENT TECHNIQUES FOR EVALUATION
OF DESIGN ALTERNATIVES IN THE IMPLEMENTATION
OF DATABASE MANAGEMENT SOFTWARE

5. PuDiication Date

July 1979

7. AUTHOR(S)

Donald R. Deutsch

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, DC 20234

N.... .,.\,^\..^.. s.

11. Contract/Grant No.

12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS fStreef, City, siaie, ziP)

Same as Item #9

13. Type of Report & Period Covered

Final

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number;
I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

79-600088

16. ABSTRACT (A 200-word or leas factual aummary of most significant information. If document includes a significant bibliography or

literature survey, mention it here.)

The substantial costs associated with building complex hardware/software systems
make the traditional development approach of implementation followed by several
iterations for modification and enhancement unacceptable for building modern
database management systems. Mechanisms for determining gross feasibility prior
to the commitment of resources for major software development efforts are required.
An integrated approach combining the development of a limited but well-structured
DBMS prototype with the use of high-level measurement and predictive modeling
techniques for evaluating design alternatives in the implementation of database
management software is proposed as an alternative to the traditional development-
enhancement spiral.

Using a prototype for a set-theoretic implementation of a database
management system with a relational user interface as an object, this research
demonstrated that proposed DBMS designs can be evaluated through the use of
performance prediction models based on prototype implementations and associated
measurement systems.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name;

separated by semicolons)

Analytic models; database management; model validation; performance evaluation;
performance measurement; predictive modeling; set-processing; simulation; software
design

.

18. AVAILABILITY gjUnlimited

1 1
For Official Distribution. Do Not Release to NTIS

^pT] Order From Sup. of Doc, U.S. Government Printing Office, Washington, DC
20402, SO Stock No. SN003-003- 0208»-:5

1 1
Order From National Technical Information Service (NTIS), Springfield,

VA. 22161

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

21. NO. OF
PRINTED PAGES

244

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

22. Price

$5.50

USCOMM-DC

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington. D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

Cily Slate Zip Code

(Notification key N-503)

!

li

i

i

1

I

There's
anew
look
to...

. . . the monthly
magazine of the Nation-

al Bureau of Standards.

Still featured are special ar-

ticles of general interest on
current topics such as consum-
er product safety and building

technology. In addition, new sec-

tions are designed to . . . PROVIDE
SCIENTISTS with illustrated discussions

of recent technical developments and
work in progress . . . INFORM INDUSTRIAL

MANAGERS of technology transfer activities in

Federal and private labs. . . DESCRIBE TO MAN-
UFACTURERS advances in the field of voluntary and

mandatory standards. The new DIMENSIONS/NBS also

carries complete listings of upcoming conferences to be
held at NBS and reports on all the latest NBS publications,

with information on how to order. Finally, each issue carries

a page of News Briefs, aimed at keeping scientist and consum-
alike up to date on major developments at the Nation's physi-

cal sciences and measurement laboratory.

(please detach here)

SUBSCRIPTION ORDER FORM

Enter my Subscription To DIMEN'SIONS/NBS at $11,00. Add S2.75 for foreign mailing. No additional

postage is required for mailing within the United States or its possessions. Domestic remittances

should be made either by postal money order, express money order, or check. Foreign remittances

should be made either by international money order, draft on an American bank, or by UNESCO
coupons.

Send Subscription to:

NAME-FIRST, LAST

I I I I I I 1 I I I I I I I I I I I I

O Remittance Enclosed

(Make checks payable

to Superintendent of

Documents)

D Charge to my Deposit
AccoLint No.

COMPANY NAME OR ADDITIONAL ADDRESS LINE

II I I I I I I

U.
STREET ADDRESS

I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I

ZIP CODE

MAIL ORDER FORM TO:

Superintendent of Documents
Government Printing Office

Washington, D.C. 20402

PLEASE PRINT

I

I

!

I

\

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research

of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and
engineering sciences in which the Bureau is active. These

include physics, chemistry, engineering, mathematics, and

computer sciences. Papers cover a broad range of subjects,

with major emphasis on measurement methodology, and

the basic technology underlying standardization. Also in-

cluded from time to time are survey articles on topics closely

related to the Bureau's technical and scientific programs. As
a special service to subscribers each issue contains complete

citations to all recent NBS publications in NBS and non-

NBS media. Issued six times a year. Annual subscription:

domestic $17.00; foreign $21.25. Single copy, $3.00 domestic;

$3.75 foreign.

"

Note: The Journal was formerly published in two sections:

Section A "Physics and Chemistry" and Section B "Mathe-
matical Sciences."

DIMENSIONS/NBS
This monthly magazine is published to inform scientists,

engineers, businessmen, industry, teachers, students, and
consumers of the latest advances in science and technology,

with primary emphasis on the work at NBS. The magazine
highlights and reviews such issues as energy research, fire

protection, building technology, metric conversion, pollution

abatement, health and safety, and consumer product per-

formance. In addition, it reports the results of Bureau pro-

grams in measurement standards and techniques, properties

of matter and materials, engineering standards and services,

instrumentation, and automatic data processing.

Annual subscription: Domestic, $1 1.00; Foreign $13.75

NONPERIODICALS
Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scientific

and technical activities.

Handbooks—Recommended codes of engineering and indus-

trial practice (including safety codes) developed in coopera-

tion with interested industries, professional organizations,

and regulatory bodies.

Special Publications—Include proceedings of conferences

sponsored by NBS, NBS annual reports, and other special

publications appropriate to this grouping such as wall charts,

pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engineers,

chemists, biologists, mathematicians, computer programmers,
and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quanti-

tative data on the physical and chemical properties of

materials, compiled from the world's literature and critically

evaluated. Developed under a world-wide program co-

ordinated by NBS. Program under authority of National

Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these

data is the Journal of Physical and Chemical Reference

Data (JPCRD) published quarterly for NBS by the Ameri-
can Chemical Society (ACS) and the American Institute of

Physics (AIP). Subscriptions, reprints, and supplements

available from ACS, 1155 Sixteenth St. N.W., Wash., D.C.
20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research

results, test methods, and performance criteria related to the

structural and environmental functions and the durability

and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in

themselves but restrictive in their treatment of a subject.

Analogous to monographs but not so comprehensive in

scope or definitive in treatment of the subject area. Often
serve as a vehicle for final reports of work performed at

NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10,

Title 15, of the Code of Federal Regulations. The purpose

of the standards is to establish nationally recognized require-

ments for products, and to provide all concerned interests

with a basis for common understanding of the characteristics

of the products. NBS administers this program as a supple-

ment to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based

on NBS research and experience, covering areas of interest

to the consumer. Easily understandable language and
illustrations provide useful background knowledge for shop-

ping in today's technological marketplace.

Order above NBS publications front: Superintendent of
Documents, Government Printing Office, Washington, D.C.
20402.

Order following NBS publications—NBSIR's and FIPS from
the National Technical Information Services, Springfield,

Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUB)—Publications in this series collectively consti-

tute the Federal Information Processing Standards Register.

Register serves as the official source of information in the

Federal Government regarding standards issued by NBS
pursuant to the Federal Property and Administrative Serv-

ices Act of 1949 as amended, Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717
(38 FR 12315, dated May 11, 1973) and Part 6 of Tide 15

CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-government).
In general, initial distribution is handled by the sponsor;

public distribution is by the National Technical Information
Services (Springfield, "Va. 22161) in paper copy or microfiche

form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibli-

ographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A litera-

ture survey issued biweekly. Annual subscription: Domes-
tic, $25.00; Foreign, $30.00.

Liquefied Natural Gas. A literature survey issued quarterly.

Annual subscription: $20.00.

Superconducting Devices and Materials. A literature survey

issued quarterly. Annual subscription: $30.00. Send subscrip-

tion orders and remittances for the preceding bibliographic

services to National Bureau of Standards, Cryogenic Data

Center (275.02) Boulder, Colorado 80302.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, D C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-2 1 5
U.S.MAIL

SPECIAL FOURTH-CLASS RATE
BOOK

