
COMPUTER SCIENCE & TECHNOLOGY:

COMPUTER PERFORMANCE
EVALUATION USERS GROUP

CPEUG
14th Meeting

NBS Special Publication 500-41

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901. The
Bureau's overall goal is to strengthen and advance the Nation's science and technology and

facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is

performed by the National Measurement Laboratory, the National Engineering Laboratory,

and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

Agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities 2 — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical

services to users in the public and private sectors to address national needs and to solve

national problems in the public interest; conducts research in engineering and applied science

in support of objectives in these efforts; builds and maintains competence in the necessary

disciplines required to carry out this research and technical service; develops engineering data

and measurement capabilities; provides engineering measurement traceability services;

develops test methods and proposes engineering standards and code changes; develops and

proposes new engineering practices; and develops and improves mechanisms to transfer

results of its research to the utlimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering 2 — Mechanical

Engineering and Process Technology 2 — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal Agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 {40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal Agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following divisions:

Systems and Software — Computer Systems Engineering — Information Technology.

'Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted;

mailing address Washington, D.C. 20234.
!Some divisions within the center are located at Boulder, Colorado, 80303.

The National Bureau of Standards was reorganized, effective April 9, 1978.

COMPUTER SCIENCE & TECHNOLOGY:

Computer Performance Evaluation

Users Group (CPEUG)

Proceedings of the Fourteenth Meeting

held at Boston, Massachusetts

October 24-27, 1978

Editor:

James E. Weatherbee

Conference Host:

General Services Administration (Region 1)

Boston, Massachusetts and

the New England FIP Executive Council

Sponsored by

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued October 1978

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end

of this publication.

National Bureau of Standards Special Publication 500-41
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-41, 353 pages(Oct. 1978)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 78-600118

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1978

For sale by the Superintendent of Documents, U.S. Government Printing Office

Washington, D.C. 20402 - Price $6

Stock No. 003-003-01985-2

Foreword

As the number of computer performance-
related conferences continues to grow, it

seems timely to reflect on the qualities
that have contributed to CPEUG's record of

success in the field.

First, the CPEUG conference has always
attempted to serve the widest possible
audience without compromising on technical
quality. At the extremes, tutorials are

provided for newcomers, managers and analysts
interested in broadening their expertise,
while experienced practitioners meet in

informal workshops to explore advanced
problems of common interest. In between,
CPEUG offers a rich and varied technical
program and a distinguished conference
proceedings. Although each conference has

its own focal point, after fourteen confer-
ences in seven years no one technique and no

one vendor line of equipment has ever domi-

nated a CPEUG program.

A second reason for CPEUG's success is

its wel 1 -deserved reputation for stressing
the practical side of performance technology.
Yesterday's theories quickly become today's
practice in performance evaluation, however,
and as this year's program attests CPEUG
always has room for promising new ideas and
methods.

Finally, CPEUG is distinguished by its
focus on the performance problems of one
specific user of computers: the Federal
Government, which, with annual ADP costs
estimated at $15 billion, is the largest
single consumer of computer power in the
world today. CPEUG was founded by the Air
Force in 1971 to help solve two chronic and
characteristic problems of Federal data
processing: competitive selection, and
sizing for standard systems at multiple

installations. Later, the National Bureau of
Standards undertook the sponsorship of CPEUG
because of its Brooks Act responsibilities
to explore the applicability of standards to

computer performance. If CPEUG has one
defining characteristic, it is this continuing
commitment to serve the most urgent require-
ments of Federal data processing.

Although Federal needs define the struc-
ture and direction of the CPEUG program, they
exclude none of the important problems facing
industry in its use of computers. Indeed the
only difference sometimes appears to be that
the Government encounters them first and lives
with them longer. Consequently, better than
half the papers and attendees at recent CPEUG
meetings have been from the private sector.

Last year's keynote speaker came to us from

the plug-compatible peripherals industry, and

this year's Program Chairman works for a

major computer manufacturer. Clearly,
Government and commercial data processors
have much to learn from each other, and over
the course of years CPEUG has become a

meeting ground for the interchange.

We welcome all of you to CPEUG 78, and

wish you an interesting and worthwhile
experience while you are here.

We would like to take special notice of the

contributions of several people whose impor-

tant services have helped to make this con-

ference and this Proceedings possible. Our

special thanks go to Pat Christoper (GSA

Region 1), Fred Cross (GAO), Donna Edqertor,

(NAVORD), Caral Giammo (DCA/CCTC), Barbara

Peterson (NBS) and Carol Zerr (FEDSIM).

Richard F. Dunlavey
Chairman, CPEUG
October, 1978

PREFACE

The technical program for CPEUG 73

extends the development of the ADP life-
cycle theme introduced at last year's con-

ference. The three fundamental life-cycle
phases of primary interest in performance
evaluation are: System Requirements, System
Acquisition, and System Operations. The
requirements phase poses the specific problem
of estimating system load. Acquisition asks

how to select the appropriate computer sys-
tem. Operations requires us to anticipate
the effect of changing loads and configura-
tion, to tune or improve system performance,
and to predict when the system will exceed
its capacity. The following diagram shows
the relationship between these major life-
cycle phases:

CPEUG regulars will notice several
differences from last year's program. In

the sessions pertaining to system acquisi-
tion, for example, there is more emphasis
this year on tools and less on the policies
and procedures of procurement. The sessions
on performance measurement, the quantitative
basis of CPE, emphasize methods for data
analysis as opposed to techniques for data
collection. New methods for predicting load,

service and utilization, and highly quanti-
tative techniques for performance improvement
are introduced. And CPE has evidently
advanced to the point that formal guidance
documents on methodology are beginning to

emerge, samples of which will be presented
here.

REQUIREMENTS

PERFORMANCE
PREDICTION

PERFORMANCE \
IMPROVEMENT ''«,,

\
CAPACITY ,„ \V V .

PLANNING ,?j OPERATIONS]
PERFORMANCE ,„.<••" StT
MANAGEMENT

'

INTERACTIVE
SYSTEM SELECTION

This diagram is a model that helps us
to define the dimensions of the computer
performance space. It is presented here

—

and at the conference— for your review,
comment, criticsm and refinement.

Despite these changes, the informal tone
of information exchange for which CPEUG is

noted has been retained this year in the form
of open post-session booths for performance
vendors, related papers and birds-of-a-feather
meetings. Finally, we have attempted to pro-
vide for the continued evolution of the con-
ference and its sustaining theme by concluding
with a workshop/forum on future directions
in CPE.

We would personally like to thank the
many people who have assisted us in making
this conference a success. In particular,
we would like to thank John Bennett and
Carol Potter for the many hours they have
contributed in organizing the post-session
booths

.

Terry W. Potter
Program Chairman

L. Arnold Johnson
Program Co-Chairman

iv

ABSTRACT

The Proceedings record the papers that were presented at the

Fourteenth Meeting of the Computer Performance Evaluation Users

Group (CPEUG) held October 24-27, 1978 in Boston, Massachusetts.

The program explored the technical and management issues of

performance technology as they relate to the three major phases of

the ADP life-cycle: Requirements, Acquisition, and Operations.

The program included state-of-the-art papers and tutorials, a

panel on the potential impact of ADP reorganization in the Federal
Government, and a workshop on the future of CPE.

Key words: ADP life cycle; computer performance evaluation;
computer performance measurement; computer performance prediction;
computer system acquisition; conference proceedings; CPEUG;
hardware monitoring, on-line system evaluation; prediction methods;
queuing models; simulation; software monitoring; workload definition.

v

CPEUG OFFICERS

CHAIRMAN Richard F. Dunlavey
National Bureau of Standards
Washington, DC

VICE-CHAIRMAN Gerald W. Findley
General Services Administration
Washington, DC

SECRETARY /TREASURER Dennis M. Gilbert
FEDSIM/NA
Washington, DC

SPONSOR John F. Wood
National Bureau of Standards
Washington, DC

vi

PROGRAM COMMITTEE

PROGRAM CHAIRMAN Terry W. Potter
Digital Equipment Corporation
Maynard, MA

PROGRAM CO-CHAIRMAN L. Arnold Johnson
Department of the Navy/FCCTS
Washington, DC

PUBLICATIONS CHAIRMAN James E. Weatherbee
FEDSIM/MV
Washington, DC

REGISTRATION CHAIRMAN Margaret Maulin
DOD Computer Institute
Washington, DC

PUBLICITY CHAIRMAN Carol Wilson
National Bureau of Standards
Washington, DC

FINANCE CHAIRMAN Harry J. Mason, Jr.

U.S. General Accounting Office
Washington, DC

ARRANGEMENTS CHAIRMAN John Bongiovanni
Air Force Data Services Center
Washington, DC

LOCAL HOST Warren Patterson
GSA Regional Office No. 1, 1CP

Boston, MA

vii

The material contained herein is the viewpoint of the authors of specific papers -

their experimental design, simulation and evaluation, and conclusions. Publication of their
papers in this volume does not necessarily constitute an endorsement by the Computer Per-
formance Evaluation Users Group (CPEUG) , or the National Bureau of Standards.

The material has been published in an effort to disseminate information and to promote
the state-of-the-art of computer performance measurement, simulation, and evaluation.

viii

TABLE OF CONTENTS

SELECTION OF INTERACTIVE SYSTEMS: METHODS AND EXPERIENCES

SESSION OVERVIEW
Paul Oliver
Department of the Navy 3

INCORPORATING REMOTE TERMINAL EMULATION INTO
THE FEDERAL ADP PROCUREMENT PROCESS
Tom Wyrick
Federal Computer Performance Evaluation and Simulation Center
Gerald Findley
General Services Administration 5

APPLICATION OF A NETWORK MONITOR TO THE SELECTION
OF A TIME SHARED COMPUTING SYSTEM
Marshall Abrams
National Bureau of Standards
H. Philip Hayden
Naval Ship R&D Center 15

BENCHMARKING IN SELECTION OF TIMESHARING SYSTEMS
D. J. M. Davies
University of Western Ontario 27

PROBLEMS IN REMOTE TERMINAL EMULATION
Vijay Trehan
Digital Equipment Corporation 37

PREDICTION PART I: METHODS 1978

SESSION OVERVIEW
Samuel Fuller
Digital Equipment Corporation 65

A FORMAL TECHNIQUE FOR ANALYZING THE
PERFORMANCE OF COMPLEX SYSTEMS
John Sanguinetti
Digital Equipment Corporation 67

PERFORMANCE EVALUATION WITH PETRI NETS
Y. W. Han
Bell Telephone Labs 83

CONTROL-THEORETIC APPROACH TO COMPUTER
SYSTEMS PERFORMANCE IMPROVEMENT
R. K. Jain
Digital Equipment Corporation 93

ix

TABLE OF CONTENTS (continued)

PREDICTION PART II: QUEUEING-BASED

AN INVESTIGATION OF SEVERAL MATHEMATICAL
MODELS OF QUEUEING SYSTEMS
Rollins Turner
Digital Equipment Corporation 103

ON THE BUSY PERIOD OF A QUEUEING NETWORK OF TWO
SERVICE STAGES WITH EXPONENTIALLY DISTRIBUTED
SERVICE TIME
R. K. Ma, and G. J. Stroebel
IBM General Systems Division 113

PREDICTION PART III: APPLICATIONS

A MARKOVIAN MODEL OF A JOB
Jeff Mohr, and A. Agrawala
University of Maryland 119

CASE STUDY IN CAPACITY PLANNING: ANALYSIS
OF AN AUTOMATED BIBLIOGRAPHIC RETRIEVAL SYSTEM
R. P. Goldberg, A. I. Levy, and H. S. Schwenk, Jr.

BGS Systems, Inc 127

PERFORMANCE IMPROVEMENT PART I: QUANTITATIVE METHODS

SESSION OVERVIEW
A. K. Jain
Bell Telephone Labs 145

HOW MULTIDIMENSIONAL DATA ANALYSIS TECHNIQUES CAN BE
OF HELP IN THE STUDY OF COMPUTER SYSTEMS
Anne Schroeder
IRIA LABORIA, France 149

AN APPLICATION OF TIME SERIES ANALYSIS
IN COMPUTER PERFORMANCE EVALUATION
Major R. W. Kulp, and Major Kenneth Melendez
Air Force Institute of Technology 167

ESTIMATION OF RUN TIMES USING SIGNATURE
TABLE ANALYSIS
S. A. Mamrak, and P. D. Amer
Ohio State University 183

SENSITIVITY ANALYSIS AND THE RESPONSE SURFACE
OF A SIMULATION MODEL OF A COMPUTER SYSTEM
Major Kenneth Melendez, and Major A. H. Linder
Air Force Institute of Technology 193

A STATISTICAL APPROACH TO RESOURCE
CONTROL IN A TIME-SHARING SYSTEM
C. A. MacKinder
University of Edinburgh 199

x

TABLE OF CONTENTS (continued)

PERFORMANCE IMPROVEMENT PART II: APPLIED STATISTICS

SESSION OVERVIEW
Colonel R. A. Lejk
Air Force, Wright-Patterson AFB 225

A STATISTICAL COMPARISON OF THE PERFORMANCE
EFFECTS OF SEVERAL CONFIGURATIONS
Madhav Marathe
Digital Equipment Corporation 227

RELIABILITY MODELING OF COMPUTER SYSTEMS
Lloyd Hasche, and Richard Grace
Offutt AFB 239

ANALYSIS OF VARIABILITY IN SYSTEM ACCOUNTING DATA
D. J. M. Davies
University of Western Ontario 243

PERFORMANCE IMPROVEMENT PART III: MEASUREMENT APPLICATIONS

SESSION OVERVIEW
Phil Howard
Applied Computer Research 257

A RELATIVE ENTROPY-LIKE MEASURE FOR
SYSTEM ORGANIZATION
Jamie Chaikin, and R. A. Orchard
Bell Telephone Labs 259

PRELIMINARY MEASUREMENT OF C.MMP UNDER
A SYNTHETIC LOAD
P. F. McGehearty, and George Rolf
Carnegie-Mellon University
Samuel Fuller
Digital Equipment Corporation 263

PERFORMANCE STUDY OF A MINICOMPUTER SYSTEM
S. K. Lee, R. B. Maguire, and L. R. Symes
University of Regina 275

TO MULTIPROCESS OR NOT TO MULTIPROCESS
M. Lieberman
Chase Manhattan Bank 285

COMPUTER PERFORMANCE MANAGEMENT

SESSION OVERVIEW
Philip J. Kiviat
SEI Computer Services 295

THE DEVELOPMENT OF A TUNING GUIDE
Barry Wallack
Command and Control Technical Center 297

xi

TABLE OF CONTENTS (continued)

GUIDANCE FOR SIZING ADP SYSTEMS
Mitch Spiegel, Dennis Gilbert, and James Mulford
Federal Computer Performance Evaluation and Simulation Center 305

HUMAN PERFORMANCE EVALUATION IN THE USE OF
FEDERAL COMPUTER SYSTEMS: RECOMMENDATIONS
Mark Underwood
Navy Personnel R&D Center 331

TUTORIALS

COMPUTER SYSTEM SELECTION
S. A, Mamrak, and P. D. Amer
Ohio State University 343

USE OF MODELS FOR CAPACITY PLANNING
Jeffrey Buzen
BGS Systems, Inc 347

THE BASICS OF COMPUTER PERFORMANCE MANAGEMENT (CPM)

Captain J. C. Toole
Air Force, Gunter AFS , 349

A NEW DIMENSION TO THE DATA PROCESSING CENTER
J. H. Garrett, Jr.

Value Computing 351

SAS - A UNIFIED LANGUAGE FOR CPE

William R. Gjertsen
SAS Institute, Inc.

Robert M. Gaddy
Duke Power Company 355

APPENDIX

CPEUG 78 PROGRAM 367

xii

SELECTION OF INTERACTIVE SYSTEMS:

METHODS AND EXPERIENCES

SELECTION OF INTERACTIVE SYSTEMS:
METHODS AND EXPERIENCES

Paul Oliver

Director
Federal COBOL Compiler Testing Service

Department of the Navy
Washington, D.C. 20376

Benchmark programs have for many years
constituted an important component of tech-

nical evaluations preceeding the selection
of data processing systems. Benchmarks
have been used with varying degrees of suc-
cess to model batch workloads, but have

been severely limited in modeling time-shar-
ing systems. Recent years have seen the

development of new methodologies which are
designed to reduce these limitations. The
papers in this session examine applications
of these methodologies to the measurement
of the performance of time-sharing systems,
new problems to be addressed, and upcoming
regulations governing the use of remote
terminal emulators in the Federal Government.

3

INCORPORATING REMOTE TERMINAL
EMULATION INTO THE FEDERAL
ADP PROCUREMENT PROCESS

Thomas F. Wyrick*

Directorate of System Evaluation
Federal Computer Performance Evaluation

and Simulation Center
Washington, DC 20330

and

Gerald W. Findley*

Office of Agency Services and Procurement
Automated Data and Telecommunications Service

General Services Administration
Washington, DC 20405

Remote terminal emulation is a benchmarking technique that can be
used to validate the performance of teleprocessing (TP) systems or ser-
vices for which it would be impractical to conduct a Live Test Demon-
stration with the total proposed network of computers, terminal devices,
and data communications facilities. A Government program, now underway,
is developing regulations and guidance documents that will (1) restrict
when and how Federal agencies can use emulation during procurement and

(2) describe the emulation benchmark capabilities that vendors must have
to be qualified to bid on certain Federal TP procurements. The program
is being conducted by the General Services Administration, Automated
Data and Telecommunications Service, with assistance from both the
Federal Computer Performance Evaluation and Simulation Center and the
National Bureau of Standards, Institute of Computer Sciences and Tech-
nology. This paper describes the Government's program to incorporate
remote terminal emulation into the Federal ADP procurement process and
presents the program's background, objectives, schedule, and current
status. Significant intermediate results, recommendations, and deci-
sions are summarized. The paper also outlines the regulations and
guidance documents to be produced. Selected technical and policy
references are cited to encourage further investigation.

Key words: Procurement; selection; performance evaluation; benchmark-
ing; remote terminal emulation; remote terminal emulators; teleprocessing.

*The views and conclusions contained in this paper are the authors' and should not be

interpreted as representing the official opinions or policies of their organizations or of

any other person(s) or agency associated with the Government. Moreover, this paper contains
the authors' summaries of official documents and, therefore, may not reflect the full intent
of those documents.

5

1. Introduction

Remote terminal emulation is a benchmark-

ing technique that uses an external "driver"

computer system to "stimulate" or impose

teleprocessing (TP) workload demands on the

ADP components, system, or service being

tested (hereafter referred to as the System
Under Test [SUT]). Many human operator and

remote device (e.g., interactive, transaction,

and batch terminals, concentrators, etc.)

characteristics and actions can be represented
precisely and in real time. Delays can be

introduced to reflect propagation, modem
turnaround, etc. The driver computer system

can exchange control and application data
transmissions with the SUT through the. SUT's

operational data communications hardware and

software. Remote terminal emulation can use

large numbers (up to several hundred) of

data communications links of the same speeds,

and with the same communications protocols,
as an operational environment. When the

remote terminal emulation technique is

properly used, the SUT cannot distinguish if

a real or emulated device is generating the

workload. A monitor external to the SUT is

a required component of the terminal emulation
technique. The monitor records on a log

file certain aspects of the interaction
between the driver and the SUT. Such log

files typically include all application data

characters transmitted or received by an
emulated device and the time each transmission
was sent or received by the driver. Data
reduction software produces various SUT

performance measures (e.g., turnaround time,

response time, etc.) from the log file after

the test. A Remote Terminal Emulator (RTE)

is a specific hardware and software implemen-
tation of such a driver system. A monitor is

usually an integral part of an RTE.

The test workload elements for a bench-
mark test using remote terminal emulation
must include descriptions of all the teleproc-
essing characteristics that are to be emu-
lated, such as (1) the numbers and types of

devices, (2) the character sets and proto-
cols, (3) the number and speeds of communica-
tions links, (4) the assignments of devices
to links, (5) all operator input, actions,

pauses, and decisions, and (6) the system
utilities, application systems, and data

files accessed. For benchmark tests during

multi-vendor procurements, these descriptions
usually are in functional, vendor-independent
terms, and are called scenarios.

RTE scripts are developed from the

types of workload descriptions described
above. Each script is a set of RTE instruc-
tions, data, and procedures that causes a

particular RTE to impose specific test

workload demands on a given SUT. The set of

scripts comprises the total test workload
imposed by the RTE during a benchmark test.

Remote terminal emulation can be used
to satisfy many performance evaluation
objectives, such as regression testing,
stress load analysis, system integration,
migration planning, procurement evaluation,
etc. Though originally developed for testing
large host systems, this technique has been
used successfully by both vendors and users
to test large and small hosts, front-end
communications processors, message switches,
intelligent terminal systems, etc. The
reader should refer to references 1 and 2 for
more detailed discussions of teleprocessing
system benchmark test objectives, techniques,
and remote terminal emulation.

In 1976, the US Government began a

joint Government-Industry project to incorpo-
rate the use of remote terminal emulation in
Federal ADP procurements. Several factors
led to the initiation of this project:

1) the increasing Government require-
ments for effective and efficient
teleprocessing support;

2) the importance that the Government
places on reducing cost risks and
mission risks by validating,
before contract award, vendor
claims of performance;

3) the limited comparability of
emulation benchmark test results
that can be caused by a lack of
functional similarity between
RTE 1

s

;

4) the possible limiting effects of
remote terminal emulation on free
and open competition; and

5) the expense, both to Government and
industry, of using RTE's for
procurement evaluation.

The project is being conducted by the
General Services Administration, Automated
Data and Telecommunications Service (GSA/
ADTS), with assistance from both the Federal
Computer Performance Evaluation and Simula-
tion Center (FEDSIM) and the National Bureau
of Standards, Institute for Computer Sciences
and Technology (NBS/ICST) . Mr Gerald W.

Findley, Director of the Special Projects
Staff in the Office of Agency Services and
Procurement, GSA/ADTS, is Project Director.
Mr Thomas F. Wyrick of the Directorate of
System Evaluation, FEDSIM, directs FEDSIM's

6

involvement. Dr Marshall D. Abrams of the

Computer Networking Section, NBS/ICST,
coordinates NBS's participation.

The project consists of a completed
feasibility and requirements study phase and
an ongoing guidance development phase.

2. Feasibility and Requirements

In April 1976, the Government began a

project phase to analyze the feasibility of,

and requirements for, using remote terminal
emulation in Government ADP procurements
[3] . A principal feature of this phase was
the close and continuing interaction with
both Government and industry. The phase
addressed both TP system and service (e.g.,
remote time-sharing service, etc.) procure-
ments, and contained six analysis tasks.
These tasks were:

1) Specification of Teleprocessing
Requirements - Future Agency Needs

Task personnel examined TP workload
definition and specification
techniques, apparent workload
trends, the impact of these trends
on future specification techniques,
and alternate methods for specify-
ing teleprocessing benchmark tests

[4].

2) Survey of Techniques for Emulating
Teleprocessing Workloads

Task personnel surveyed remote
terminal emulators, other (i.e.,
non-RTE) techniques for imposing TP
workloads during benchmark tests,
and certification and verification
issues related to each technique
[2,5].

3) GSA/NBS Workshops on Remote Terminal
Emulation

Task members conducted a RTE
workshop for Government personnel
and a workshop for both Government
and industry personnel [6,7].

4) Government ADP Procurement Projec-
tion

Task members projected the quanti-
ties and costs of TP systems and
services that the Government will

Figures in brackets indicate the

literature references at the end of this
paper.

procure into the 1980' s, the types
and quantities of remote TP devices
that will be on-line, and the types
and relative importance of the TP
applications that will be used [8].

5) Procurement Validation Case Studies

Task personnel surveyed TP procure-
ment, performance validation, and
benchmarking concepts, experiences,
and opinions of ADP professionals,
in and out of Government , to help
determine whether, and under what
circumstances, remote terminal
emulation should be used in Federal
ADP procurements [9].

6) Requirements Analysis and Develop-
ment of Recommendations

Task members consolidated the
findings and results of the other
project tasks, presented alterna-
tives for incorporating emulation
into Federal procurements, and
recommended whether or not emula-
tion should be used in future
Government procurements [10].

The principal findings of this project
phase fall into three categories and are
summarized below.

2.1 General Findings

Almost all major system and service
vendors have remote terminal emulation capa-
bilities and use these capabilities for
internal corporate studies not related to

procurement evaluation. If emulation were
regularly used in Government procurements,
then both the procuring agencies' selection
costs and vendors' proposal submission costs
(i.e., vendors' "entry fees") would be higher
than most procurements where emulation were
not used. Competition probably would be
reduced if emulation were used regularly,
because only vendors with emulation capabil-
ities would be able to bid on those Federal
procurements that would require emulation.

Vendors and Government agencies expressed
a desire for Government-wide guidance docu-
ments which suggested when and how agencies
should use remote terminal emulation and
described the functional emulation benchmark
test capabilities that vendors could be
required to provide.

2.2 System Procurement Findings

There is no technically valid, fair,

equitable and generally applicable alternative

7

to remote terminal emulation for validating,
before contract award, the performance of
vendor-proposed TP systems that support
large numbers of remote devices. The Govern-
ment will procure a significant and growing
number of such TP systems during the next
few years; it was estimated that a minimum
of 42 such systems will be procured during
Fiscal Years (FY's) 78 and 79, and that at
least 68 systems will be procured during
FY's 80 and 81 [8]. Some Government agencies
had used, and others were planning to use,
emulation for TP system procurement evalua-
tion. Several commercial organizations also
had used emulation for procurement evaluation
[11].

2.3 Service Procurement Findings

The general applicability of remote
terminal emulation for procurement evaluation
of TP services has not been clearly estab-
lished. An agency procuring services usually
does not acquire a vendor's total ADP capac-
ity, and the winning vendor usually can
change his total ADP capacity after contract
award. A multi-terminal benchmark test that
evaluates a service vendor's total ADP
capacity, therefore, is of questionable
value. Alternatives to remote terminal
emulation are available for representing the
loads imposed by small numbers of terminals.
No Government agencies were identified that
had used, or were planning to use, emulation
during TP service procurements. Only one
commercial organization was identified that
had used an RTE for procurement evaluation;
that organization used the RTE to represent
only one terminal. No commercial groups
were found that planned to use emulation
during future service procurements.

2.4 Recommendations

In October 1977, the project team
prepared a draft GSA Decision Paper that
included recommendations about the future of
remote terminal emulation in Federal ADP
procurements. For TP system procurements,
we recommended that GSA allow Federal agenc-
ies to require vendors to provide emulation
benchmark capabilities, and that GSA publish
guidance describing when and how emulation
should be used. Each agency would decide
whether or not to use remote terminal emula-
tion during each of its TP system procure-
ments, based upon its interpretations of
such factors as mission risks and procurement
preparation costs. If an agency determined
that emulation were necessary for procurement
evaluation, then the agency would disqualify
any vendors that did not provide the neces-
sary emulation benchmark test capabilities.

For TP service procurements, we recom-
mended that GSA forbid Federal agencies to

use remote terminal emulation, and that GSA
conduct a separate study of cost-effective
techniques for procurement evaluation of TP
services. GSA would consider individual
exceptions to this service procurement ban
for agencies with unusually large and complex
TP requirements.

Mr Frank J. Carr, Commissioner of
GSA/ADTS, approved all project recommenda-
tions on January 20, 1978, after many Govern-
ment and industry organizations had reviewed
and commented on the draft Decision Paper
[10]. Commissioner Carr also authorized the
preparation of Federal Procurement Regula-
tions (FPR's) to implement these recommenda-
tions, and a project to develop the remote
terminal emulation guidance [12],

3. Guidance Development

The guidance will be organized into two
documents

:

1) "Use of Remote Terminal Emulation
in Federal ADP System Procure-
ments," and

2) "Remote Terminal Emulation Specifi-
cations for Federal ADP System
Procurements .

"

The documents will be published and distrib-
uted by GSA/ADTS and will explain how to
interpret and comply with the FPR's on this
subject. They will not be part of the
Federal Information Processing Standards
Publication (FIPS PUB) series and will not
themselves be regulations. They will be
referenced by name, however, in certain
FPR's.

The document entitled "Use of Remote
Terminal Emulation in Federal ADP System
Procurements" will summarize relevant procure-
ment evaluation, benchmarking, and remote
terminal emulation concepts and terminology,
and will describe the scope and applicability
of both guidance documents. It also will:

1) present some of the factors and
criteria that agencies should
consider when deciding whether to
use remote terminal emulation;

2) outline the types of analyses that
should be made during the design
and development of emulation
benchmark tests;

8

3) suggest operational procedures for

using emulation, including the
items to be supplied and functions
to be performed by Government
agencies and system vendors;

4) define the data elements and
formats an agency should use to

describe TP workloads for emulation
benchmark tests;

5) recommend a glossary of relevant
terminology;

6) include a bibliography of signifi-
cant technical and policy materials;
and

7) cite sources of intragovernment
assistance (e.g., FEDSIM, NBS/ICST,
etc.)

This document will be as similar in structure
as possible to "Guidelines for Benchmarking
ADP Systems in the Competitive Procurement
Environment," FIPS PUB 42-1 [13], and will
use similar terminology whenever possible.
The emulation guidance document will supple-
ment, not rewrite, FIPS PUB 42-1 in the area
of remote terminal emulation benchmark
tests

.

The document entitled "Remote Terminal
Emulation Specifications for Federal ADP
System Procurements" will define functional
emulation capabilities, RTE log data reduc-
tion capabilities, and RTE log tape formats
that should be common among vendors. This
commonality will insure that TP benchmark
test results will be more comparable, fair,
and equitable than such results have been in
the past. A Government agency will be able
to require ADP system vendors to provide
RTE's and test facilities that meet the
specific portions of the specifications that
are needed by that agency for procurement
evaluation. Vendors without these capabili-
ties can be disqualified from any Federal
procurement where an agency has determined
that these capabilities are required to
validate the performance of proposed systems.
Government agencies will be prohibited,
however, from requiring vendors to provide
capabilities not included in these specifica-
tions, except under extremely unusual circum-
stances. The specifications, therefore,
will be a compromise between vendors' current
emulation capabilities and agencies' projec-
tions of future emulation benchmark test
requirements

.

In addition to developing the two
guidance documents, the project team will

also recommend mechanisms to periodically
review and revise the documents as needed.
Our goal is to produce initial versions of
the documents that are realistic, useful,
and timely. The documents should be revised
regularly to reflect changing TP technology,
as well as to incorporate additional practi-
cal experiences gained through increased
Government and industry use of emulation.

3.1 Project Schedule

Table 1 summarizes the guidance develop-
ment project schedule. The project began in
March 1978. Between April 19 and June 7,

project personnel met with most major ADP
system vendors to (1) inform them of the
objectives, structure, and schedule of the
project, (2) receive vendors' assessments of
the desirability of, and difficulty they
would have, implementing certain emulation
capabilities, and (3) discuss the vendors'
current and planned emulation capabilities.
We met with the Government Interagency
Committee on ADP (IAC/ADP) on May 9 to

describe the project and to solicit agency
opinions and requirements for emulation
benchmark test capabilities. Because the
specifications developed by this project
might force some vendors to redesign their
RTE's, we will meet again with ADP vendors
in late September to discuss the preliminary
results of our analysis of functional emula-
tion capabilities.

Table 1. Guidance Development Project
Schedule

1978

Mar 1 Project Initiation
Apr 19 Begin Initial Vendor Meetings
May 9 IAC/ADP Meeting
Jun 7 Complete Initial Vendor

Meetings
*Late Sep Second Vendor Meetings
Oct 24 Release Draft Documents
Oct 24-27 CPEUG Conference
Dec 14 Public Workshop

1979

Mar 1 Issue Final Documents
Recommend Document Maintenance
Mechanisms

(Project Completion)
Jun 1 Guidance Effective

^Tentative

9

Drafts of both guidance documents are
scheduled to be released for Government and

industry review on October 24, 1978.

Copies will be available from

Mr. Gerald W. Findley
GSA/ADTS/CDD
18th and F Sts. , NW, Rm G241B
Washington, DC 20405

Telephone (202) 566-1076

The project team also plans to distribute
copies at the Computer Performance Evaluation
Users Group (CPEUG) Conference, October 24-

27, in Boston, MA. On December 14, we will
hold a public workshop in Washington, DC, to

discuss the drafts. The documents will be

revised as necessary, based upon the comments
received, and will be issued in final form
about March 1, 1978. On March 1, we will
also recommend mechanisms for the periodic
review and revision of the documents. On

June 1, 1979, the guidance is scheduled to

take effect. At that time, agencies may
require vendors to provide the emulation
capabilities specified in the documents.

3.2 Status

At present (August 1978), the project
team is analyzing the data gathered from
Government agencies and vendors and is

developing detailed outlines for both docu-

ments. Many usage topics and functional
emulation specifications are being examined
for possible inclusion in the guidance doc-

uments, including the examples summarized
below. For more information, the reader
should refer to the draft guidance documents,
scheduled to be released at the time this

paper is published.

Currently we are examining four broad
remote terminal emulation usage topics:

1) Teleprocessing Workload Test

Descriptions,

2) RTE Verification Techniques,

3) Vendor-provided Benchmark Test
Documentation, and

4) Benchmark Test Reruns after
Installation.

The guidance documents will recommend the

data elements and formats that agencies
should use to describe and interrelate at

least four basic TP workload components:

(1) terminal operator actions (e.g., input,

output, decisions, rates, etc.); (2) SUT-
network interface characteristics (e.g.,

terminals, lines, protocols, etc.); (3) the

software with which the operators interact

(e.g., vendor-proposed text editors, Govern-

ment-supplied applications, etc.); and (4)

the data files accessed and/or created by
the operators. The general relationship of

these four components is shown in Figure 1.

We also are developing generalized RTE log

file reports. Agencies often require vendors

to provide documentation that varies from
procurement to procurement; vendors, there-

fore, expend significant resources modifying
report contents and formats to satisfy
individual agencies. Generalized RTE log

file reports will save vendor and Government
resources if the reports satisfy most agency
requirements. In addition, we are developing
realistic procedures to verify that the RTE
portions of a benchmark test proceeded
according to specifications. Verification
procedures being considered include (1)

broadcasting Government-specified messages,
at Government-selected times, from the SUT
console to all or selected emulated terminals

(2) using a data communications line monitor,
provided by vendors and/or the Government,
to display and record all transmissions over
Government-selected communications cables
between the SUT and the RTE, and (3) changing
immediately prior to benchmark test execution
the contents of selected data files accessed
by emulated terminals.

The project team is analyzing six
preliminary categories of functional
specifications

:

1) Remote Device Representations,
2) Terminal Operator Representations,
3) Data Communications Link

Representations

,

4) RTE Driver Characteristics,
5) RTE Monitor Characteristics, and
6) RTE Log Analysis.

In the category of remote device representa-
tions, we are evaluating whether to specify
the types and maximum numbers of devices
that the Government could require vendors to

emulate. These devices could be specified
by generic type (e.g., asynchronous teleprint
er, etc.) and/or by specific make and model
(e.g., Teletype Model 33, etc.); the choice
of make and model could be based upon the
large Government inventory of owned terminals
Two other possible functional specifications
under evaluation are the terminal character
sets and transmission protocols that could
be emulated for a benchmark test. The
guidance documents may specify that certain
Federal Information Processing Standards,
American National Standards Institute (ANSI)

,

and widely-used character sets and protocols
be emulated. We also are considering whether

10

1/1 1/1

SUT

SOFTWARE

T
o

i

Figure 1. TP Workload Components for Benchmark Tests

Using Remote Terminal Emulation

11

to specify the maximum number of data commu-
nications cables that the Government could

require a vendor to configure between an RTE

and the SUT. Some vendors have installed
emulation facilities that permit them to

easily configure several hundred cables;

other vendors have never configured over

forty cables, and agencies' requirements
vary widely. Vendor costs to install and

maintain hundreds of cables are often high,

but the Government needs a reasonable number
of cables to represent planned terminal and

line loads. Any specification, therefore,
will be a compromise.

4. Procurement Policy and Regulations

As of August 1978, the Government has

no formal regulations on the use of remote
terminal emulation during Federal ADP system
and service procurements. GSA/ADTS, however,

does have an interim policy and procedures
covering emulation in systems procurements
only [14]. The interim policy and procedures
were developed jointly with industry during
1976 and are summarized below.

4.1 Interim Policy

Solicitation documents shall not be
structured in such a way as to require
of ferors/bidders either to provide or to use
RTE ' s

.

Use of remote terminal emulation shall
not be made mandatory in solicitation docu-
ments for Live Test Demonstrations (LTD's)

or benchmark tests of ADP systems, unless it

has been determined that emulation is the

only practicable means of measuring teleproc-
essing performance. Under no circumstances
shall the use of vendor-supplied RTE's be
made mandatory for installation acceptance
testing.

4.2 Interim Procedures

Remote terminal emulation and alterna-
tive methods for determining acceptable
teleprocessing performance shall be consid-
ered and evaluated as to applicability to

specific situations before specifying the

use of any approach or combination of ap-
proaches in a specific ADP system procurement.

If it has been determined that there is

no acceptable alternative for measuring
teleprocessing performance other than the

use of an RTE during the LTD, an RTE may be
specified as mandatory in solicitation
documents, provided:

1) Industry is given notice 30 days
prior to release of the solicita-
tion. This advance notice shall

consist of pre-release of the

detailed LTD instructions specify-
ing the exact manner in which the

RTE is to be used; notice of

availability of these instructions
shall be published in the Commerce
Business Daily ; and

2) GSA is provided detailed justifica-
tion for use of the RTE and all
related Request for Proposals
(RFP) provisions at the time of

industry notice.

4.3 Temporary Federal Procurement
Regulation

GSA has drafted a Temporary Federal
Procurement Regulation (FPR) on the use of

emulation in both TP system and service
procurements [15]. As of August 1978, the
Temporary FPR is under final review at GSA
and probably will be issued by the time this
paper is published. (The reader can contact
GSA to obtain the latest regulations, poli-
cies, and procedures.)

For system procurements, the Temporary
FPR specifies that emulation benchmarks
shall not be made mandatory in solicitation
documents unless it has been determined that
emulation is the only practicable means of
measuring teleprocessing performance. Under
no circumstances shall the use of a vendor-
supplied RTE be made mandatory for installa-
tion acceptance testing. For service procure-
ments, the FPR specifies that, pending
further study by GSA, the mandatory use of
remote terminal emulation is prohibited with
the exception of

:

1) dedicated teleprocessing require-
ments, and

2) unusually large and complex shared
teleprocessing requirements.

The Temporary FPR further requires
Federal agencies to evaluate remote terminal
emulation and other performance evaluation
methods before specifying the use of any
approach or combination of approaches in a
specific system or service procurement. If
an agency determines that emulation is
necessary in a given system procurement,
then the agency must follow procedures
identical to the interim procedures described
above. Agencies that want to require emula-
tion in a specific service procurement must

12

identify and justify the specific exception

sought and must provide this information to

GSA.

5. Conclusion

The Government's remote terminal emula-

tion project is a significant undertaking.

The regulations and supporting guidance
documents will affect vendors' benchmark test

facilities and RTE's, and the way Government
agencies perform benchmark tests during
future TP system and service procurements.
While the results of this project will help
emulation benchmark tests to be more compara-

ble, fair, and equitable than in the past,

such tests will remain difficult and expensive

to conduct well. The references cited below
provide more information on procurement
evaluation, benchmarking, and remote terminal
emulation.

The authors thank the many ADP professionals,
in both Government and commercial organiza-
tions, who have freely shared with the
emulation project team their procurement
evaluation and benchmarking experiences.

References

[1] Wyrick, T. F. ,
Benchmarking Distributed

Systems: Objectives and Techniques,
Performance of Computer Installations ,

ed. D. Ferrari, North-Holland, New York,
1978.

[2] Watkins, S. W., and Abrams, M. D.

,

Survey of Remote Terminal Emulators,
Special Publication 500-4, National
Bureau of Standards, Washington, DC,

April 1977.

[3] General Services Administration, GSA's
Project Plan for Incorporating the Use
of Remote Terminal Emulation in the

Federal ADP Procurement Process, GSA/
ADTS, Washington, DC, April 1976.

[4] Conti, D. M. ,
Specification of Teleproc-

essing Requirements - Future Agency
Needs: Federal Agency Practice and
Needs in the Area of Teleprocessing
Workload Specification, Report CS77-2,
GSA/ADTS, Washington, DC, October 1976.

[5] Abrams, M. D., and Watkins, S. W.

,

Summary of Findings on Alternates to

Remote Terminal Emulation For Imposition
of Teleprocessing Workloads and Integrity
Confirmation Aspects of Emulating Tele-
processing Workloads, Report CS77-4,
GSA/ADTS, Washington, DC, November 1976.

[6] General Services Administration, Summary
of the NBS/GSA Government Workshop on
Remote Terminal Emulation, Report CS76-

1, GSA/ADTS, Washington, DC, June 1976.

[7] General Services Administration, Summary
of the NBS/GSA Public Workshop on Remote
Terminal Emulation, Report CS76-2,
GSA/ADTS, Washington, DC, September
1976.

[8] Wyrick, T. F., and Ball, C. G. , Govern-
ment ADP Procurement Projection, Report
CS77-1, GSA/ADTS, Washington, DC,
October 1976.

[9] Wyrick, T. F. , Procurement Validation
Case Studies: Concepts and Issues
Relevant to the Use of Remote Terminal
Emulation in Teleprocessing Procurements,
Report CS77-6, GSA/ADTS, Washington, DC,

May 1977.

[10] General Services Administration, Decision
Paper: Should The Remote Terminal
Emulation Benchmark Technique be Used in

Future Federal ADP Procurements?, GSA/
ADTS, Washington, DC, January 1978.

[11] Mukherjee, A., and Lauro, J., An Improved
Benchmark Performance Evaluation Tech-
nique for Vendor Selection Studies,
1976 CPEUG Conference Proceedings

,

Washington, DC, November 1976, pp. 192-
195.

[12] General Services Administration, Develop-
ment of Remote Terminal Emulation Guid-
ance Documents for Federal ADP System
Procurements, GSA/ADTS, Washington, DC,

January 1978.

[13] Guidelines for Benchmarking ADP Systems
in the Competitive Procurement Environ-
ment , FIPS Publication 42-1, NBS,

Washington, DC, May 1977.

[14] General Services Administration, Use of

Remote Terminal Emulation, ADTS Operating
Policies and Procedures for Procurement
and Associated Program Direction ,

GSA Handbook DTS-P-2800.1, GSA/ADTS,
Washington, DC, March, 1978, pp. 4.1-

4.5.

[15] General Services Administration, Use of

Benchmarks and Remote Terminal Emulation
for Live Test Demonstrations of ADP

Systems and Services, Draft Temporary
Federal Procurement Regulation, GSA,

Washington, DC, May 1978.

13

[16] Arthur, C. T., Remote Terminal Emulator
Development and Application Criteria,
1977 National Computer Conference , AFIPS
Conference Proceedings, Montvale, NY,

1977, pp. 733-739.

[17] McFaul, E. J., Application of Remote
Terminal Emulation in the Procurement
Process, 1977 National Computer Confer-
ence , AFIPS Conference Proceedings,
Montvale, NJ, 1977, pp. 729-732.

[18] Computer and Business Equipment Manufac-
turers Associations, Use of Remote
Terminal Emulation in ADP Procurement to

Validate the Performance of Large
Terminal Oriented Systems, Summary of

the NBS/GSA Public Workshop on Remote
Terminal Emulation, Report CS76-2,
GSA/ADTS, Washington, DC, September 1976,

pp. 177-182.

[19] Walkowicz, J., Benchmarking and Workload
Definition: A Selected Bibliography
with Abstracts, Special Publication 405,
NBS, Washington, DC, November 1974.

14

APPLICATION OF A NETWORK MONITOR
TO THE SELECTION OF A TIME SHARED COMPUTING SYSTEM

Marshall D. Abrams

Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, DC 20234

H. Philip Hayden

Advanced Systems Development Group
David W. Taylor Naval Ship Research and Development Center

Bethesda, MD 20084

This paper discusses the use of network service measurement
techniques in the evaluation of system responses as part of the
competitive selection of a multi-user time shared computing system
for David Taylor Naval Research and Development Center (DTNSRDC).
The selection of measured system responses was based on the
assumption that there would be a direct relationship between the
responses and the "quality of service" to the system's user
community.

Key words: Benchmark; computer performance evaluation; Network
Measurement System; response; service quality; selection.

1.0 INTRODUCTION

This paper conveys the authors'
experiences during the procurement of a

computer system for the David Taylor Naval
Ship Research and Development Center
(DTNSRDC). It begins with a brief summary
of the available methodologies applicable to
such an exercise, goes on to describe the
requirements of this procurement, and
terminates with a summary of the performance
exhibited by the vendor's system to which
award was made.

The complexities of modern computer

systems, along with the economic necessity

to maximize their utility, have led to the

development of new techniques with which to

evaluate computer system performance. While

computer performance evaluation (CPE)

Contribution of the U. S. Government; not

subject to copyright. Commercial products

and descriptive data are provided for

identification and exemplary purposes only.

In no case does such identification imply

recommendation, endorsement, or

representativeness; nor does it imply that

the products identified are the best

available for the purposes described.

15

techniques have always included throughput

and response time as important measures,
they have focused primarily on computer
system hardware measures such as cycle time,

instruction execution time(s), and memory
access time to provide a description of the
computational power of the computer. These

hardware-oriented measures were adequate for

first and second generation single-user,
batch processing systems. Such measures
have very little meaning when applied to

third generation multi-user, time-sharing
systems in which the direct relationship
between hardware and software is obscured by

factors such as multi-programming and

virtual memory. Modern CPE techniques have

begun to focus on measures of performance
which relate to the capability of the system

to deliver services to users, rather than on

the raw computational power of the hardware.
User service measures include throughput (a

measure of the total number of user service

requests which can be satisfied in a given

unit of time) and responsiveness (a measure

of the time required to satisfy a single

service request). Throughput is the measure
primarily applied to batch systems while
responsiveness is the measure primarily
applied to time-sharing systems.

The CPE effort described in this paper

is directed toward providing quantitative

answers to questions concerning hardware,

software, and workload. Typical questions
include

:

1 . What is the maximum number of

time-sharing users that can be supported by

a given hardware/software configuration?

2. How sensitive is computer performance to

changes in workload? Are there workload
threshold levels beyond which performance is

highly sensitive or insensitive?

3. How can scheduling parameters be

adjusted so as to provide acceptable
throughput for batch users while at the same

time providing acceptable response for

time-sharing users?

These types of questions continually
arise during the course of activities
associated with computer performance
projection, computer selection evaluation,

and computer performance optimization.

2.0 BENCHMARK COMPONENT OF A SPECIFIC

PROCUREMENT

2.1 The Benchmark Test

A benchmark test [3J was formulated as

part of the effort to select, via
competitive procurement, a conversational
processor for the DTNSRDC Advanced Computer
Facility (ACF). This test was specifically
directed toward verifying that the
conversational processors proposed would
have sufficient resources and scheduling
capabilities to satisfy the response time
requirements set forth in the ACF technical
specifications.

The benchmark scenario was carefully
constructed so as to be representative of
the workload projected for the operational
use of the conversational processor. As

used here, "representative" means that the

benchmark workload was generated to closely
represent the real workload; data were
collected from actual utilization time

periods and from real jobs that were thought
to cover a broad range of important
operating conditions. The job mix in this
projected workload consisted almost
exclusively of interactive job streams in
which job definition and decisions affecting
job processing were dynamically specified by
the users during job execution.

Response time was identified as the
primary measure to be employed in judging
the acceptability of the proposed system(s).
Two qualifications were necessary in order
to make response time a useful measure.
Response time had to be precisely defined,
and the action to which response was being
made (and measured) had to be specified, as
detailed below.

As previously identified [2], there are
many extant definitions of response time.
The definition recommended by NBS [4] is the
elapsed time from the input of the last
character (keystroke) from the
conversational terminal to the
conversational processor until the display
of the first character of meaningful output
(output indicating that the service request
has been answered) at the conversational
terminal

.

16

Response time goals were based on two

important assumptions:

1 . Acceptable response can only be

determined in terms of the reasonable
expectations of the users. The numerical
values specified were based on service
levels on the interactive system then in use

at DTNSRDC which the users identified as

satisfactory and unsatisfactory.

2. The response time for specific requests
should depend more strongly on the resources
required to service the request than on the

load on the system at the time the request
was being serviced, i.e., the response time
should be independent of the total workload
mix which the computer was processing.

The goals gave some indication as to

what may reasonably be expected from the

system. Implicit in these goals was the

desire for consistency in the responsiveness
of the system to the same set of commands.

It is also well known [5] that the
acceptability of a given response time is

dependent on the activity being performed by

the terminal user to which response is being
made. DTNSRDC identified seven types of
user activity and specified acceptable
response times for each. These activities
are described below and summarized in Table
I.

Table I. Benchmark Functions

The specific job mix that was used to
evaluate system response was explicitly
described as part of the benchmark. The
maximum response time requirements are as
follows

:

a. Motor feedback. Less than .2 seconds
response for the following:

(1) Echoing a typed character back to
the conversational terminal when
operating in full duplex mode.

(2) Positioning of the cursor to a new
line following the depression of an
end-of-message key.

(3) Performing the control function to
backspace a character.

(4) Performing the control function to
erase a line of characters.

Approximately 10$ of the logged-on users
issued motor feedback response service
requests.

b. Instantaneous Response. Less than 1

second response is required for the
following:

(1) Inquiry respecting the status of a

job

(2) Task abort

(3) Output abort

Approximately 5% of the logged-on users
issued instantaneous response service
requests

.

c. Fast Response. Less than three
seconds response is required for the
following:

(1) Inquiry respecting the names of
files currently attached to a user job.

MAXIMUM ACCEPTABLE
FUNCTION RESPONSE TIME (SEC.

)

1. Log-on 6.0

2. EOM to CR 0.2

3. Character echo 0.2

4. Character backspace 0.2

5. Line delete 0.2

6. File attach 3.0

7. Output abort 1.0

8. File status query 3-0

9. File save 3-0
10. File purge 3-0

11. Access to subsystem 3.0
12. Intra-line editing 3.0

13. Batch job submittal 3-0
14. Job status query 1.0

15. Load and execute small program 6.0
16. Load and execute medium program 20.0
17. Load and execute large program 60.0
18. Load and execute CPU-bound program 120.0

19. Task abort 1.0

20. Log-out 6.0

(2) Attaching a file to a user job.

(3) Purging a file.

(4) Save a file.

(5) Accessing a subsystem.

(6) Each individual procedure required
to log on and validate a user for
access to the system.

(7) Log out.

17

(8) Intra-line editing.

(9) Acknowledgement of the submission

of a batch job.

Approximately 55$ of the logged-on users

issued fast response service requests.

d. Quick Response. Less than six

seconds response for loading and executing a

small user program. The CPU and central

memory requirements (expressed here in terms

of CDC 6600 units which were familiar to the

people who prepared the specifications) for

executing a small user program are projected

as normal distributions with means of .

3

CPU seconds and 40K (octal) central memory

words.

Table II. Background Job Streams

The scripts which specify the

background job streams are listed herein.

The number of users per script is specified.

A. Script J.

Commands

1. "LOGON" with password "MF ,NSRDC"

.

2. Type in the following text 20 times:

"The quick and crazy red and brown fox

jumped over the little fence."

3. Type in the text "HERE" and then perform

the "LINE DELETE" function. Repeat this

exercise 6 times.

4. Type in the text "ANTIDISESTABLISHMEN-
TARIANISM" 2 times and then perform
"CHARACTER BACKSPACE" function 2 times.

5. "LOGOUT".

6. Repeat 1 through 5 as required for

continuous execution during the

benchmark test.

There shall be at least 5 users

executing this script. The time interval

between the initiation of a LOGON command
and the completion of the LOGOUT command by

each user shall not exceed 361 seconds.

B. Script 2

Commands

1. "LOGON" with password "INST, NSRDC"

.

2. "ATTACH" file whose file name is "BENCH
1".

3. Perform function to "LIST" file at user
terminal and then perform the "OUTPUT

ABORT" function.

4. "QUERY" the system for the status of

this job.

5. "LOGOUT".

6. Repeat 1 through 5 as required for
continuous execution during the

benchmark test.

There shall be at least 3 users
executing this script. The time interval
between the initiation of a LOGIN command
and the completion of the LOGOUT command by
each user shall not exceed 130 seconds.

C. Script 2

Commands

1. "LOGON" with password "FACT, NSRDC"

.

2. Enter the "Program Development"
subsystem.

3. Perform functions as required to
initiate the creation of a new "text
file".

4. Build the "text file" by entering the
FORTRAN language statements contained in
the file "BENCH 1".

5. Perform the following editing functions:
-search the "text file" for
occurrences of each arithmetic
operator (4,**)

-search, display, and change all
occurrences of the character strings
"F(" and "F=" to "G(" and "G="
respectively.

6. Execute a FORTRAN compilation of "BENCH
1".

7. "SAVE" the resultant binary file.

8. Load and execute the binary file 5

times

.

18

Table II. Background Job Stream (continued)

9. "QUERY" the system to obtain the file
names of files currently "ATTACHED" to
this job.

10. "PURGE" all files "SAVED" during
execution of this job.

11. "LOGOUT".

12. Repeat 1 thru 12 as required for
continuous execution during the
benchmark test.

There shall be at least 34 users
executing this script. The time interval
between the initiation of a LOGIN command
and the completion of the LOGOUT command by
each user shall not exceed 534 seconds.

D. Script 4

Commands

1. "LOGON" with password "MED , NSRDC"

.

2. "ATTACH" file whose file name is "BENCH
2".

3. Execute a FORTRAN compilation of "BENCH
2".

4. "SAVE" the resultant binary file.

5. Load and execute the binary file 5

times.

6. "PURGE" all files "SAVED" during the
execution of this job.

7. "LOGOUT".

8. Repeat 1 thru 7 as required for
continuous execution during the
benchmark test.

There shall be at least 4 users
executing this script. The time interval
between the initiation of a LOGIN command
and the completion of LOGOUT command by each
user shall not exceed 238 seconds.

E. Script 5.

1. "LOGON" with password "SLOW, NSRDC".

2. "ATTACH" file whose file name is "BENCH
3".

3. Execute a FORTRAN compilation of "BENCH
3".

4. "SAVE" the resultant binary file.

5. Load and execute the binary file 2

times.

6. "PURGE" all files "SAVED" during the
execution of this job.

7. "LOGOUT".

8. Repeat 1 thru 7 as required for
continuous execution during the
benchmark test.

There shall be at least 2 users
executing this script. The time interval
between the initiation of a command and the
completion of the LOGOUT command by each
user shall not exceed 238 seconds.

F. Script 6

Commands

1. "LOGON" with password "DELAY , NSRDC"

.

2. "ATTACH" file whose file name is "BENCH
4".

3. Execute a FORTRAN compilation of "BENCH
4".

4. "SAVE" the resultant binary file.

5. Load and execute the binary file.

6. "PURGE" all files "SAVED" during the

execution of this job.

7. "LOGOUT".

8. Repeat 1 thru 7 as required for

continuous execution during the

benchmark test..

There shall be at least 1 user
executing this script. The time interval
between the initiation of a command and the
completion of the LOGOUT command by each
user shall not exceed 248 seconds.

19

Approximately 15% of the logged-on users
issued quick response service requests.

e. Medium Response. Less than 20

seconds response for loading and executing a

medium sized user program. The CPU and
central memory requirements (expressed in
CDC 6600 units) for executing a medium sized
user program are projected as normal
distributions with means of 1 CPU seconds
and 40K (octal) central memory words.

Approximately 5% of the logged-on users
issued medium response service requests.

f. Slow Response. Less than 60 seconds
response for loading and executing a large
user program. The CPU and central memory
requirements (expressed in CDC 6600 units)
for executing a large user program are
projected as normal distributions with
means of 3 CPU seconds and 40K (octal)
central memory words.

Approximately 5% of the logged-on users
issued slow response service requests.

g. Delayed Response. Less than 120

seconds response for loading and executing a

CPU bound user program. The CPU and memory
requirements (expressed in CDC 6600 units)
for executing a CPU bound user program are
projected as normal distributions with
means of 9 CPU seconds and 40K (octal)
central memory words.

Approximately 2% of the logged-on users
issued delayed response service requests.

The job streams were described as a

series of conversational scripts which
specified the set of commands which were to
be executed.

Script items were described in
functional terms to avoid terminology
peculiar to any single vendor's command
language. It was necessary for the vendor
to translate script commands into the
command language provided as part of the
proposed system.

The background scripts, listed in Table
II, were to be translated and executed in
the following manner. Multiple copies of
scripts 1 through 5 and a single copy of
script 6 were to be executed concurrently.
The number of copies of each script was
based on the mix described in the above
specifications. The vendor was to begin the
execution of the 49 background scripts using
a Remote Terminal Emulator (RTE) [8],
Timing considerations included the execution

time for each script (as specified in Table
I), a think time of 12 seconds per command
(based on observed user characteristics^ and
a data transfer time of 30 characters per
second (based on the capabilities of the
RTE ' s)

.

When all 49 background jobs were being
executed, the vendor was to begin executing
the one foreground script (described in
Table III) via an interactive
keyboard/printer terminal located at the
benchmark facility. Since the foreground
script was manually executed by vendor
personnel, no requirements were established
concerning the think time or typing rate.
At the completion of the test the vendor's
standard accounting software was used to
collect, analyze and report the load imposed
by each background job stream, in terms of
CPU, central memory and I/O resources
utilized

.

In all, 50 jobs the commands were to be
entered one-at-a-time in a strict sequential
manner such that the response from the most
recent command would be received before
another command would be entered, i.e., no
type-ahead was permitted. The response time
associated with the execution of each
command in the foreground job was
electronically recorded and measured using
the Network Measurement System (NMS)
developed by the Institute for Computer
Sciences and Technology of the National
Bureau of Standards [1].

3.0 THE NBS NETWORK MEASUREMENT SYSTEM

The NBS Network Measurement System
(NMS) was developed to measure interactive
computer networks, teleprocessing systems,
and network services by focusing on the
service delivered to users rather than on
the internal operating efficiency of the
system. The tedium of attempting to collect
and analyze the same data by manual means
(when possible) is so error prone that
without such a tool, some other evaluation
approach would have to be employed. The
information obtained aids users in the
quantitative evaluation of such systems and
services. The Network Measurement System
consists of a data acquisition system and a
separate set of data analysis programs.

The data acquisition system, called the
Network Measurement Machine (NMM), is
implemented on a DEC PDP 11/20 which
features a high precision programmable clock
and a collection of communications

20

Table III. Benchmark Job Stream

1. "LOGON" with password "SAME.NSRDC".

Response time for procedure required to

log-on and validate a user for access to

the system will be tested.

2. Enter "ANTIDISESTABLISHMENTARIANISM"

.

Character echo time will be tested if

system is operating in full duplex mode.

3. Perform the "CHARACTER BACKSPACE"

function 28 times. Character backspace
time will be tested.

4. Enter text "The Quick Brown Fox Jumped
Over the Lazy Dog's Back 1234567890
Times" and delete. Line delete time

will be tested.

5. "ATTACH" file and file name "BENCH 1".

Response time for the "ATTACH" function
will be tested.

6. Perform function to "LIST" file at user
terminal and then perform the "OUTPUT

ABORT" function while file is being
listed. Response time for the output
abort function will be tested.

7. "ATTACH" the files with file names
"BENCH 2", "BENCH 3", and "BENCH 4".

8. "QUERY" the system to obtain the file
names of the files currently "ATTACHED"
to this job. Response time for the
query function will be tested.

9. Execute FORTRAN compilations for "BENCH
1", "BENCH 2", "BENCH 3", and "BENCH 4".

"SAVE" the resultant binary files.

10. "COPY" the binary files resulting from
compilations of "BENCH 1" and "BENCH 4".

11. "SAVE" the file copied from the binary
version of "BENCH 4". Response time for

the save function will be tested.

12. "PURGE" the file "SAVED" in step 11.

Response time for the purge function
i will be tested.

,

13. Enter the "Program Development"
subsystem. Time for accessing a

subsystem will be tested.

14. Create the control card records
necessary to submit the file copied from
the relocatable binary version of "BENCH
1" for execution as a batch job. Make a

deliberate error in one of the lines of
text. Use any intra-line editing
command except character backspace and
line delete to correct the typing error.

15. Exit from the "Program Development"
subsystem "SAVING" files as necessary.

16. Submit the control card records created

in Step 14 for execution as a batch job.

Response time for acknowledgment of

submission of a batch job will be

tested.

17. "QUERY" the system for the status of the

batch job submitted in Step 16.

Response time for query will be tested.

18. Load and execute the binary version of

"BENCH 1". Response time will be

tested.

19. Load and execute the binary version of

"BENCH 2". Response time will be

tested.

20. Load and execute the binary version of

"BENCH 3". Response time will be

tested.

21. Load and execute the binary version of

"BENCH 4". Response time will be

tested.

22. Load and execute the binary version of

"BENCH 4" and then perform a "TASK

ABORT" while the program is executing.

Response time for task abort function

will be tested.

23. "LOGOUT". Logout time will be tested.

21

interfaces [6]. In addition, special
hardware is provided to connect the NMM to

the network that is to be measured. This

special hardware includes portions of a

general purpose intercommunications system
as well as an automatic calling unit and

line selector system for computer-controlled
originating and answering of data calls via

common carrier communications facilities.

The basic function of the NMM is to receive
characters from both computer and user and

to record these characters along with
information as to the source of the

character, the time at which the character
occurred, and the state of the communication
line at the time the character existed.
Aside from this basic function, the most

important feature of the NMM is that it does

not perturb the network being measured.

3.1 Pre-Benchmark Test Utilization

of the Network Measurement System

DTNSRDC first verified the Network
Measurement System to their satisfaction.
The verification consisted of dialing
through the Network Measurement Machine to

two different Government owned timesharing
systems. DTNSRDC connected a strip chart
recorder to their terminal so that they
could compare the data recorded in this

manner with the data recorded by the NMM.

NBS supplied DTNSRDC with a formatted dump

of the data recording tape for this purpose.
The strip chart was, as expected, extremely
inconvenient to use even for this
verification. It would have been
prohibitively difficult to use as the data

acquisition mechanism in the live test

demonstration.

Each vendor that responded to the

solicitation was given several opportunities
to schedule test demonstrations of the NMS.

They were provided with simple instructions
for dialing the NMM and instructing it to in

turn dial their computer. The purpose of

making the NMS available for a test

demonstration was to acquaint them with the

information that would be provided to

DTNSRDC. There were two types of output.

One was a formatted dump of the data tapes

collected by the NMM (referred to ahove), and

the second was the statistical analysis of

this recorded data as produced by this data
analysis program [7]. It is believed that
the vendors performed their own timing,
which they compared with the NMS output.

3.2 Testing The Correct Operation
of the Network Measurement Machine

The utilization of the NMM in a

procurement effort requires that precise
procedures for its testing and operation be

set forth. The general areas addressed are:

activity logs, equipment validation, and

software validation.

Activity logs were of several kinds:

tape log, NMM console log, and operator's
log. The tape log specifies the tape
format, character set, density, etc. It

identifies the files on the tape and their
contents.

The NMM console log is simply the NMM
operator's console output. For procurement
efforts, however, it was considered to be

necessary to use a special version of the
NMM which was generated to support a hard
copy terminal as the operator's console.

The operator's log is on the order of a

diary, tracing all activities which
transpire during the entire session. These
activities include testing of NMM hardware
and software, including hardware diagnostics
if deemed necessary. Also included in the
operator's log is a record of any anomalies
which may have occurred during the session,
as well as steps taken to deal with these
situations.

The criteria applied to insuring the
integrity of the NMM is that of comparing
the results of the recorded data with that
of a known input. A favorable comparison is
in itself sufficient to insure that the
timing mechanism in the NMM is working
properly, and that other functions (i.e.,
recording the data on magnetic tape, etc.)
are being performed.

To achieve this comparison, the NMM is
installed in its normal configuration. A

character generator connected to the NMM
sends characters of a known rate and known
inter-character interval. The NMM, if
functioning properly, will record these
characters. A comparison between the known
rates and the recorded rates will reveal the
operability and accuracy of the measurement
machine

.

The application of the procedure used
to test the NMM requires a specially
modified ASCII code generator. This
generator uses a crystal clock for high

22

listing of
NMM and
differences.

stability. A special inter-character rate
selector switch was added. This allows the

operator to select inter-character times of

0.1, 1.0, and 10 seconds. The generator is

connected to the NMM, with its switches set

to allow the timer to trigger the character
generator which is set to increment through
the ASCII character set.

Once the data is collected, a special
program is invoked which prints the contents
of the data tape. This program produces a

each character received by the
the inter-character time
Observation will quickly

indicate if the NMM is functioning properly.
One can quickly scan the difference column
and compare it to the generator setting.
Also, each character can be quickly checked
for correct temporal sequence as the
generator produces a monotonically
increasing sequence of ASCII characters.

This testing system is designed to
convince the NMM operator that the machine
is operating correctly before an experiment
is actually run. Other uses can be made of
the timing device while the NMM is running.
The operator can monitor the generator port
as the generator sends data. If the data
from the monitored port is inconsistant , the
operator can assume that the code generator
or the NMM is malfunctioning.

The analysis routines can also make use
of the data generated by this timing device.
They can use the data from the generator
port to verify that the NMM behaved properly
for the duration of the experiment by
comparing the inter-character differences.
If the analysis routines detect any
discrepancies, the entire data collection
experiment should be suspect.

4.0 BENCHMARK TEST ON A VENDOR'S SYSTEM

This section completes the description
of the procurement selection by presenting
descriptive data on the vendor system for
which award was made.

4.1 Benchmark Test - Burroughs Corp,
B7700 System

The Burroughs Corp. began the
Benchmark test by cycling execution of the
background job streams described in Table
II. Sixteen minutes later the benchmark

Table IV. Burroughs Benchmark
Background Script Execution

SCRIPT SCRIPT REQ'D MIN. MAX. AVE.

NUMBER CLASS TIME TIME TIME TIME

1 1 6.02 5. 10 5. 30 5. 17

2 4 3.97 1

.

30 2. 80 2.20

3 3 8.90 5. 89 6. 98 6.43

4 3 8.90 6. 09 6. 94 6.42

5 3 8.90 5. 97 6. 73 6.31

6 3 8.90 6. 11 6. 65 6.34

7 3 8.90 5. 97 6. 37 6.22

8 2 2.16 0. 52 0. 67 0.57

9 1 6.02 5. 07 5. 24 5.15

10 4 3.97 1

.

28 2. 74 2.19

1

1

3 8.90 6. 16 6. 66 6.39
12 3 8.90 6. 03 6. 55 6.35

13 3 8.90 5. 96 6. 68 6.45

14 3 8.90 6. 26 6. 57 6.41

15 3 8.90 6. 14 6. 38 6.29

16 2 2.16 0. 51 0. 71 0.58

17 1 6.02 5. 06 5. 28 5. 16

18 4 3.97 1

.

00 3. 16 2.13

19 3 8.90 6. 23 6 77 6.57

20 3 8.90 6. 11 6 69 6.43

21 3 8.90 6. 19 7 21 6.46

22 3 8.90 6 17 7 02 6.41

23 3 8.90 6 17 6 76 6.38

24 3 8.90 6 10 6 62 6.27

25 1 6.02 5 05 5 32 5. 16

26 4 3.97 1 63 2 45 2.05

27 3 8.90 6 19 7 05 6.53

28 3 8.90 6 41 6 .76 6.47

29 3 8.90 6 14 6 .70 6.43

30 3 8.90 5 99 7 .20 6.60

31 3 8.90 6 .34 6 .77 6.57

32 3 8.90 6 .21 6 .75 6.51

33 1 6.02 5 .05 5 .28 5.14

34 5 3.97 1 .29 1 .94 1.67

35 3 8.90 6 .26 7 .55 6.68

36 3 8.90 6 .18 6 .96 6.57

37 3 8.90 O . Uj 6 .99 6.54

38 3 8.90 6 .35 7 .30 6.60

39 3 8.90 6 .21 7. 10 6.66

40 3 8. 90 6 .11 6 .89
C h 0
b . Mo

41 6 4.13 1 .14 2 .26 1.66

42 5 3.97 1 .28 2 . 10 1.61

43 3 8.90 6 .25 7 .37 6.75

44 3 8.90 6 .35 7 .02 6.63

45 3 8.90 6 .61 7 .02 6.81

46 3 8.90 6 .34 7 .01 6.63

47 3 8.90 6 .41 6 .81 6.67

48 3 8.90 6 .22 6 .60 6.48

49 2 2.16 0 .51 0 .71 0.66

23

window was established by initiating and

repeating ten (10) times the foreground
(Benchmark) job stream described in Table
III. (The vendors were permitted to repeat
the foreground job stream ten times and use
the average execution time as the accepted
time.) Table IV and V summarize the accepted
background and foreground execution times.

Table IV indicates that all background
scripts ran in less than the maximum
permitted time (labeled REQ'D TIME) which
was obtained by adding the component times
for think time, transfer rate, and response
time for all the commands in the script.
Table V also indicates that nineteen of the

twenty foreground functions ran in less than
the maximum accepted time. The vendor could
have failed two of the twenty functions and
have been acceptable.

Table V. Burroughs Benchmark - Foreground Functions

INTR.
FUNCTION FUNCTION MAX.ACC. MIN. MAX. AVE. DRIVER

NR. DESCR. TIME TIME TIME TIME AVE.

1 Log-on 6.0 .74 1 .65 1 .15 1 .6
2 EOM to CR 0.2 .05 .05 .05 .05
3 Char. Echo 0.2 .05 .05 .05 .05
4 Char. Backsp 0.2 . 12 24* .16 . 16

5 Line Del 0.2 .05 05 .05 .05
6 File Attach 3.0 .70 3 11* 1 .57 1 .74
7 Output Abort 1.0 .70 2 24** 1 .21*** 1 .20
8 File Status? 3.0 .80 1 46 1 .13 1 .54
9 File Save 3.0 .97 2 99 1 .64 1 .93
10 File Kill 3.0 .34 1

.

66 1 .05 2 . 17
1

1

Call Utility 3.0 .50 1

.

01 75 1 . 17
12 Edit Line 3.0 .32 1

.

44 63 .47
13 Batch LGO 3.0 .64 1

.

96 1 11 1 .51
14 Job Status? 1.0 • 32 2. 40* 59 1 .04
15 LGO pgm sm. 6.0 1.87 1 1

.

51* 3 50 5 . 14
16 LGO pgm med 20.0 2.49 1 1

.

86 5 52 8 .92
17 LGO pgm lg 60.0 4.31 12. 34 8 37 17 .80
18 LGO pgm cpu 120.0 14.04 21

.

51 19 08 28 .16
19 Task Abort 1.0 .30 99 41 .49
20 Log-out 6.0 .31 98 50 45

*-A single out-of-spec recording in 1C runs
**-Four out-of-spec recordings in 10 runs

***-The vendor was required to pass 90% of the functions

Although not employed as part of the

selection process, the vendor was permitted
to run an internal driver to produce the
background load. Of course, the internal
driver was not system resident when the RTE

was used. It is interesting to compare the

effect of using the internal driver as

compared to the RTE on the timing of the

foreground job. The average times obtained
using the internal driver are presented as

the last column in Table V.

24

5.0 CONCLUSIONS

The work reported in this paper

constitutes the first application of the NBS

Network Measurement System in a procurement

selection exercise. In addition to the

careful attention to detail which must be

part of any such exercise, this first

application was evaluated to assess the

applicability of both the NMS and the

methodology which it embodies as a

production procurement selection tool. No

difficulties were encountered. The

measurement of the service delivered to the

user at the terminal proved valid. The

response time data would have been

impossible to collect without an automated
instrument. Manual transcription and data

analysis would have been prohibitively
expensive and error-prone. The NMS has
proven to be a valid and useful
implementation of this methodology.

The NMS prototype can be re-implemented
in hardware less expensive and more portable
than the shared resources which were

employed. Following the application
described herein, NBS has developed
specifications for, and initiated
procurement of, a self-contained single user

terminal NMS, complete with report

generation capabilities.

Use of the NBS system permitted a

quantitative analysis to be made of the
"quality of service" the selected system
would provide the DTNSRDC user community.

This paper incorporates parts of an
unpublished report, "Computer Performance
Evaluation at the David Taylor Naval Ship
R&D Center," prepared by A. Hankinson, K.

Rieck, T. Small, B. Tinker, and D.

Wilshe. The cooperation of the U. S. Navy
ADP Selection Office (ADPSO) and Burroughs
Corporation is also acknowledged.

BIBLIOGRAPHY

[1] Abrams, M. D., Cotton, I. W. , Watkins,
S. W. , Rosenthal, R. , and Rippy, D.

E . , "The NBS Network Measurement
System," IEEE Transactions on
Communications , October 1977, pp. 1189
- 1198.

[2] Abrams, M.D., and Cotton, I.W., The
Service Concept Applied to Computer
Networks , NBS Technical Note 880, August
1975.

[3] Guidelines for Benchmarking ADP Systems
in the Competitive Procurement
Environment , Federal Information
Processing Standards Publication 42-1,

May 1977.

[4] Guidelines for the Measurement of
Interactive Computer Service Response
Time and Turnaround Time . Federal
Information Processing Standards
Publication 57, August 1978.

[5] Miller, R. B., "Response Time in

Man-Computer Conversational
Transactions," Proc . Fall Joint
Computer Conference

, 1968, pp. 267-277.

[6] Rosenthal, R., Rippy, D. E. and Wood,

H
. , The Network Measurement Machine — A

Data Collection Device for Measuring the

Performance and Utilization of Computer
Networks . NBS Technical Note 912, April
1976.

[7] Watkins, S.W., and Abrams, M.D.,

Interpretation of Data in the Network
Measurement System . NBS Technical Note

897, February 1976.

[8] Watkins, S. W. , and Abrams, M. D.

,

Survey p_£ Remote Terminal Emulators . NBS

Special Publication 500-4, April 1977.

25

BENCHMARKING IN SELECTION OF TIMESHARING SYSTEMS

D.J.M. Davies

Department of Computer Science
The University of Western Ontario

London, Canada N6A 5B9

This paper discusses the role of benchmark performance evaluation
tests in selecting systems for timesharing and general purpose compu-
tation. Since performance evaluations can be expensive for both
customer and vendor, and since they provide only limited information,
a methodology is required for making them economical as well as
effective. This is discussed with respect to the evaluations performed
during a recent computer selection process at The University of
Western Ontario.

The U.W.O. benchmarks were intended to be reasonably economical,

to run. Their structure and design are discussed, and their successes
and failures are analysed. Some of the problems were specific to

particular machines, others were more generalized. Some sample results
are presented to illustrate the discussion.

Key words: Benchmarking; Computer System Selection; Response Times;
Timesharing Systems.

1. Introduction

The University of Western Ontario has
recently completed the selection process to

choose a successor for the old DECsystem-
10/50. The final decision was, in fact, to

purchase a new, larger DECsystem-10.

The selection process was conducted
mainly by a selection committee, operating
under the authority of the University
Computer Council. The committee included
representatives from the user community and
from the Computing Centre. It was decided
at an early stage first to draw up a list of
requirements, then to issue a Request for
Proposals (RFP) , next to reduce the propos-
als received (if any) to a short-list of
strongest candidates, and finally to
recommend a final choice after detailed
evaluation.

Benchmarking was involved in the last
two steps of this. The RFP required the

vendor to run a very small set of programs,
to enable the committee to get an impression
of overall differences in system performance.
Then a more elaborate set of programs was

run under supervision on each of the short-

listed systems.

The benchmarks were not intended to be
overwhelmingly important in comparing dif-

ferent systems. The systems were evaluated
according to criteria outlined in the RFP,

under the headings of Price, Performance,
Flexibility, Expandability and Capacity,
Compatibility with existing system, and

Availability of system support.

2. Benchmark Design Considerations

Performance tests cannot, by themselves,

indicate what choice to make between compet-

ing general -purpose time-sharing systems.

There are many other considerations, such as

price, quality of system support (hardware

and software), range of software capabilities,

27

quality and range of language implementa-
tions, documentation, ability to meet
special requirements such as in communica-
tions equipment, and so on.

The workload in a general purpose system
is usually very variable, and future work-

loads and requirements cannot ordinarily be
predicted in detail. They will depend to

some extent on what machine is selected,
and what that machine facilitates. Measure-
ments have been made on several systems, to

characterise (at least in part) the
behaviour and demands of users [l, 2, 3].

It is apparently not uncommon for

customers (particularly government agencies)
to request vendors to create and run perfor-
mance tests to given specifications. Such
tests can sometimes cost a vendor $100,000
or more, and involve much duplicate work by
those who tender.

Naturally, such tests are regarded by
the vendors as wasteful, particularly of
their more skilful applications programmers
who are diverted from other customer support
services

.

The U.W.O. Selection Committee decided
that some performance tests would be neces-
sary, because it is difficult to describe
an expected time- sharing workload unambig-
uously. Tests would ensure that systems
proposed by vendors were compared in a

fairly objective manner instead of having
to trust all the salesmen to understand our
requirements in the same way.

In effect, the benchmark program mix
became a de_ facto definition of our expec-
ted workload. This was so because we
provided the programs and specified how
they were to be run (and monitored any
changes made for specific machines)

.

Originally, however, we prepared the
programs partly to ensure uniformity
between vendors, and partly to minimize
total costs and time by reducing repeti-
tions of program development.

The Benchmarks were to be used (i) to

judge how capable a system was of serving
60 to 90 time-sharing users, (ii) to

judge how capable a system was of being
expanded to handle 120 or 150 users simul-
taneously and what this would require in

hardware terms, and (i ii) to aid in

determining exactly what initial hardware
configuration should be considered for
purchase. They also provided an opportun-
ity for the selection committee to get some
exposure to the various operating systems

and language implementations, by observing
exactly how the original programs had to be
modified to run on them, and by using the

systems directly during benchmark runs.

3. Initial RFP Benchmarks

The RFP required running of three tests,
and invited running of a fourth.

Test Number 1 was a Fortran program
that executes a series of iterative loops
and times the speeds of certain basic com-
putations. The program measures the times
elapsed and CPU charged internally, and
prints the results. Subtests measured the
times taken for various standard functions,
fixed point operations, calling a null sub-

routine, and single and double precision
arithmetic.

This program was to run in an other-
wise empty computer. Figure 1 shows how
some of the various systems differed. The
iteration counts were set so that all sub-
tests took equally long in the DEC-10/50.
An interesting feature is that some systems
were disproportionately slow in calling a

(null) subroutine. This could influence
users' programming style. Some important
types of computation, such as character
string manipulation, were not tested, and
overall the test does not necessarily pre-
dict relative performances in real programs.

Test Number 2 was a Fortran program
that writes and reads disk files in unfor-
matted transfers, of one disk block, sector
or PRU at a time. Some of the files were
sequential, and some were written and read
randomly. Test Number 3 was a Cobol pro-
gram that writes and reads files on mag-
netic tapes, using record lengths varying
from 64 to 2040 bytes, and at 1600 and 800
bpi. Three drives were involved in all,
with disk-to-tape copies, and comparisons
between disk and tape.

The programs for tests 2 and 3 simil-
arly measured elapsed and CPU time and were
to be run on an otherwise empty system. The
program output permitted calculation, for
each subtest, of how many records were
transferred per unit of CPU and of elapsed
time. The results showed fairly clear
trends which permitted the system to be
ranked in terms of stand-alone I/O through-
put capability. (However, the performance
was sometimes different during the later
supervised benchmark.)

The first test permitted us to ensure
at least that the proposed systems had some-
what more processor power than the old

28

Figure 1. Comparative Results of Test Number 1 .

29

DEC-10/50. The second and third tests
checked that the systems could perform I/O

fairly quickly. It was to be left to the
final detailed benchmark to determine how
much of this potential 'stand-alone' power
was actually delivered to users in heavily
loaded time-sharing.

Test Number 4 was a simple synthetic
benchmark to test the ability of the system
to handle many jobs simultaneously. It was
not required to be run; a vendor could
instead report the results of an analytical
calculation or simulation. About half of
the proposals received included results from
an actual run.

The test comprised running totals of

30, 45, 60, 90 and 120 user jobs or processes
simultaneously, using four classes of jobs in

a completely synthetic workload. The jobs

were Edit-type, I/O-bound, Small compute,
and Large compute, all created from a common
Fortran program initialised with one of four
block data files respectively.

The programs all read an input line (of

10 characters, whose content is ignored),
perform some computation and possibly some

disk I/O, print an output of 40 characters,
and wait for the next input. The stimulator
was supposed to take 16 seconds to type the
10 characters of input. This rate of typing
is based on data reported from Leeds [4]
indicating that users typically type at about
1 second per character, rising to 1.9 seconds
per character for more elaborate work, so we
averaged at 1.6 seconds per character. This
is consistent also with a report [2] that
input lines average 10-12 characters and
responses about 38-46 characters mean line
length. Another similar benchmark [5]
required input to be typed at a mean rate of
1.1 characters per sedond, which allows a

little less thinking time than ours.

This fourth test required the mean
response times to be quoted for the edit-type
jobs, which composed 3/4 of the jobs. The
way the jobs were set up gave all vendors
some difficulty. First, the programs were
"normalised" for processor speed, with the
edit-type programs using 10 msec, of CPU
time per interaction irrespective of pro-
cessor power. Secondly, the programs
'touched' all of their address space in each
interaction, by scanning the memory (mostly

filled by an array) . This latter feature
was no problem for swapping type systems,

but created untypical ly heavy paging rates
on VM (demand paging) systems. This was
aggravated by the lack of 'random' varia-
tions in the activities of the program. A
tendency developed on some systems towards

synchronisation of different processes with
each other through side effects of the page
turning mechanism.

The object of this test was to examine
the response times as a function of system
load, to determine at what point the res-
ponses started to deteriorate significantly.
We hoped the 'elbow' would be at not much
less than 90 users, preferably somewhat
higher. However, with the VM/370 system in

particular, we observed only the consequence
of heavy paging, which apparently saturated
the swapping channels at a point well below
full processor utilization.

In the end little significance was
attached to the results of this last test,
but it warned us of some pitfalls to avoid
in the later 'big' benchmark.

The first three tests were designed to

finish within about 5 to 10 minutes each,

and should have been easy and economical to

perform. The results were not hard to in-

terpret for trends in relative power,
though individual subtests are not meaning-
ful in isolation. The fourth test was
expected to be harder to set up, so it was
not mandatory to run it. What results we

did obtain from it were also of questionable
value.

4. The Major Benchmark

After examination of the proposals, a

short-list was developed of systems judged

worthy"^ of a more detailed assessment.
These systems were the CDC Cyber 171, the
DEC System-10/90 and Honeywell Level 66 and
Multics system.

Later, when a more substantial time-
sharing benchmark work- load had been
developed, the short-listed vendors discov-
ered that they had underestimated our
computing requirements, and all these
systems had to be enlarged beyond the
original proposals. The Cyber-171 was
upgraded to a 172 or 173, the Level 66

proposal was dropped, and the DEC System
and Multics were expanded.

The benchmark was again a mixture of
'edit-type', I/O, and CPU-bound tasks, but

'real' programs were used instead of totally

artificial programs. The scripts were

artificial still, but used the real

Some good systems were turned down,

because of price or other factors.

30

editor and real language systems (mainly

BASIC and FORTRAN) . Actually, modified ver-

sions of the programs for the first three
tests were included, as CPU and I/O bound
scripts, alongside other scripts as well.

We used three different 'edit-type' scripts,
and five I/O-bound and four CPU-bound scripts.

The system SORT was used, and an APL script,

and a Fortran program from one committee
member's research project, among other tasks.

Again, we looked mainly at the response
times received on editing-type scripts, but
also examined other scripts to ensure they
were not completely stalled. We examined the
behaviour as a function of number of total
jobs (40, 60, 90 and 120) and with several
different machine configurations (depending
on time available and the vendor)

.

The terminal transactions for all

scripts and runs were brought back, on sev-

eral magnetic tapes for each machine.

It was intended originally to analyse
the scripts with Fortran programs on the
U.W.O. Cyber computer, but in the end I

analysed most of the data from the DEC-10/90
and Multics using the POP-10 system [6].
This permitted me to develop interactively
different approaches towards analysing the
scripts. The output from CDC runs was not
amendable to processing in POP-10, and was
analysed afterwards on the Cyber in a more
limited way.

Apart from running standard job mixes
at various levels of usage, we also attempt-
ed to explore the effect of mistaken assump-
tions about the future workload. Therefore,
at the 60 user level, we also ran "Margin"
tests with (i) more I/O, (ii) more CPU,
and (iii) more CPU and more I/O scripts,
with fewer editing scripts.

5. Results Obtained

In the end, a great deal of useful
data was obtained from the benchmarks, but
not so much as we hoped. There were various
factors that reduced the amoung of informa-
tion extracted.

5.1 Times tamps

Because most of the programs did not print
any timing information of their own, we had
to rely on 'timestamps' recorded by the
respective stimulators. These varied in
nature, and also were sometimes hard to
interpret - we were not always sure exactly
what the figures referred to. This also
meant the data analyses had to be performed
quite separately for the systems, creating

extra work. More internal metering by pro-
grams would have aided interpretation of
data on overall consumption of time.

5.2 Stimulator Output

Nevertheless, internal metering in the
programs obviously cannot determine what
response times are observed at the actual
terminal. The DEC system used an external
stimulator while Honeywell and CDC used
internal stimulators.

The output from the DEC system was very dif-
ficult to interpret, particularly in the
scripts for the editor TECO. This was
mainly because the stimulator recorded times
on a line by line basis, but TECO commands
are terminated by an escape instead of a
carriage return. We were not sure exactly
at what time an input to TECO was terminat-
ed. In addition the stimulator appeared
sometimes not to wait for the end of a

response before starting the next input,
though the interpretation of the scripts
remains unclear. However, the DEC output
showed clearly how long a job took to com-
plete one cycle of its script.

The Multics system (Honeywell) did not pro-
vide absolute timestamps, but only incremen-
tal elapsed time information. Response
times were easily extracted, but the time
to complete a whole cycle had to be obtained
by adding up the various increments, and it

turned out that in certain circumstances,
there would be elapsed time not accounted
for. The most important source of lost

time was any response involving more than
one line of output, with computation delays
between the first and last output lines.

5.3 Identifying Scripts

The CDC Cyber system did enable response
times and cycle times to be measured, but
the outputs from different scripts were all

jumbled up almost indiscriminately so a

great deal of computation was required to

find all instances of any one script. This
was aggravated by lack of a clear identifi-
cation at the start of each script cycle.

5.4 Changes In Load

Our benchmark specified running with dif-

ferent numbers of jobs. In some runs on

Multics and most runs on the Cyber, the

number of jobs was changed in mid-stream
during a single run. This was indeed the

way it had been planned. However, when it

came to analysing the data, this made it

much harder to tell how many jobs had been
running when a particular piece of script

31

output was generated. So it was complicated
to determine how response and cycle times

depended on the workload. Any one run

should be at a fixed load level, even if

this does take extra time in starting and
stopping the system.

5.5 Overloads

In the Request For Proposals, it had been
indicated that the response times seen by
editing-type jobs (highly interactive ones)

would be the most important feature of the
performance. However, it was seen as im-

portant that the less interactive jobs
should also procede at a moderate pace.

When the systems were actually loaded up,

they differed considerably in how they
reacted.

One of the systems appeared in effect to

freeze some of the jobs (particularly CPU-
bound ones) and devote attention to inter-
active jobs (and even then, selectively)

.

At 90 and 120 users, apparently identical
jobs would proceed at very different rates.

The system was, of course, being forced
into overload. In fact, we obtained no

useful data with 120 jobs, because some of
them simply did not get going.

Another system performed more smoothly under
heavy overload, in that it kept all jobs

moving even under the 120 user load. The
price it exacted was rather slower response
times to interactive jobs, particularly
when file I/O was involved. Both of these
systems appeared to have a disk I/O bottle-
neck at 60 users or above, but it manifested
itself very differently in the two cases.

The Cyber system showed the curious behav-
iour of worse response times if the central
memory was enlarged beyond 128K words.

This appeared to be an artifact of our work-
load and the scheduler, such that the
scheduler tended to hang on to compute-
bound jobs in central memory to keep the

CPU always busy. When central memory was

increased, this gave the interactive jobs

more competition and they got service less

often in our particular mix.

5.6 Synchronisation

It was mentioned earlier that some systems
suffered from synchronisation effects in

the initial Test Number 4. The scripts for

the major benchmark again showed clear
evidence of this in some cases. For

example, it turned out during analysis
that some TECO editor scripts had proceed-
ed in a kind of lock-step. (There were 23

of them on the same script at 60 user

level) . This seems to have resulted
because all scripts started off simultan-
eously, met long delays when all simultan-
eously requested file I/O, and all ran
rapidly in between I/O activities.

This happened even though we had specified
some random variations in typing speed
("thinking time") . As it was, we had only
12 different scripts in use, and even
starting off different scripts with random
delays might not have been much help. It

would appear that no single script should
be followed by more than 10-15% of the jobs.

This would, of course, increase further the
labour of creating and analysing the bench-
mark .

5.7 Typing Speed

Real typists do not type at a constant
speed of 1.1 characters per second or what-
ever. Measurements of typists' speeds
typically show a skew distribution, with
some very quick inputs, and some taking
three or more times the mean [l, 3]. The
vendors' stimulators did provide a capabil-
ity to randomly vary the think times, but
apparently only in uniform distributions
which produced neither very short nor very
long delays. This possibly aggravated the
effect of having many jobs following the
same script.

The think times are critical to the perfor-
mance of the whole benchmark - if they are
too short, the system throughput will not
increase beyond its capacity, and the

response times perceived will merely get

longer. Indeed, it was not ultimately clear
whether response times are all that meaning-
ful in isolation, and we also examined the
times required for jobs to complete a cycle
of the script. We did drive all systems
tested to their capacity, observing the
effects of doing so.

5.8 Software Environment

The point was made by the vendors, and has
also been made elsewhere [7] that bench-
marking in this way completely ignored the
effects of the software environment.
Typically, a high fraction of all computer
time used goes on a variety of activities
which are known as software development
and maintenance [8,9]. The time spent by
users at a terminal or on other programming
activities will depend very much on the
quality of the software tools provided. If

a vendor has an excellent diagnostic compil-

er which enables the user to develop his
program with only 60% the number of attempts,
then this can more than compensate for a

32

slightly slower machine.

In this vein, the quality of the stand-

ard software is (or should be) of crucial

importance. Time lost coping with problems

in the standard software is time completely
wasted. It is well established that the

use of a high-level language for systems

programming can considerably reduce its

cost and increase the reliability of the

product [9, 10]. Virtually all major ven-

dors are now moving in this direction.

6. Benchmark Evaluation

It was very difficult to know how to

compare the different performances of the
systems, given these considerations. All

vendors claimed (doubtless with justice)

that performance could be tuned in any way
that we wanted; we had asked them not to

tune the system specially. We did learn

that in each case a more powerful disk sub-

system and more memory were needed to handle
60 users well than had originally been
expected

.

In the final evaluation, the perfor-
mances of editing type jobs and the I/O

and CPU jobs were computed separately, and
then combined, with maximum weight given
to the editing-type jobs.

The results of the margin tests were
not used, because there was insufficient
data to be confident about any trends that
might have appeared. The responses were
worse, of course, for more intensive work-
loads.

In comparing response times from dif-
ferent computers, the ranking depends on
what criterion is used. Figure 2(a) shows
the frequency distributions of various res-
ponse times in a script using the approp-
riate editor, comparing the DECsystem-10
and the Multics system, at 60 users in our
standard mix.

The response time distribution in

Multics was unimodal and not very skew.
The mean and median were close together at

about 2.1 seconds for 60 users. Few res-
ponses were fast (under 0.5 seconds) but
none exceeded 7 seconds at 60 users in this
particular run. The DECsystem-10 responses
were much more varied, with a multimodal,
very skew distribution. The principal peak
was also the largest, and the median res-
ponse time was 0.14 seconds. However,
responses larger than that tended to be
very long, with the longest response being
58 seconds. Detailed study showed that the
quick responses were for commands not

involving disk I/O and the slow ones involv-
ed disk I/O. The mean response time of 5.2
seconds was very different from the median.

10% of the responses exceeded 12 seconds,
and 20% exceeded 10 seconds.

Given this performance, it is hardly
representative to use the medians for com-
parisons, because this shows nothing of the
spread in DEC-10 responses. The overall
means were therefore used for scoring.

On this particular script, the Multics
system definitely performed better than the
DECsystem-10/90. On other scripts, however,
the differences were reduced or reversed as
in Figure 2(b), and as indicated earlier,
the DECsystem-10 performed better than
Multics on the CPU-bound scripts in our
particular job mix. The earlier Test
Number 1 had shown the DEC CPU to be quite
fast; the Multics system was suffering from
a heavy burden of page faults, due to too

small a primary memory.

To compare the mean response times

(or mean cycle times) from different machines
and runs, it is necessary also to form some
estimate of 'confidence limits' on the

sample means, to know whether or not a dif-

ference is insignificant, small, or large,

having regard to variations in system per-
formance. 95% confidence intervals were
estimated for the means, and are shown
graphically on Figure 2 as 'spreads' in the
means

.

An approximation was used, since the
original responses are from a super-position
of several rather different distributions
(especially on the DEC) and are possibly not
strictly independent (because of synchron-
ization effects, etc.). The sample mean
response time is assumed to be normally
distributed (though the original responses
clearly are not) by the 'Central Limit

Theorem' [ll]; the samples involved several

hundred responses a run. The T-distribution

[12] was therefore used. For example, the

DEC responses in Figure 2(a) numbered 367

readings, with mean 5.2 and standard
deviation 12.4. The estimated standard

deviation of the mean is superficially

12.4//367 = 0.64; the 95% confidence inter-

val for the mean is e stimated as 5.2^6
where 6 = (12.4//367)* T

Q25 36&
and

T
. 025, 366 " l - 97 50 6 =

1 - 2?!

This method is less elaborate than

that described by Mamrak and DeRuyter [13],

it but shows when the differences in sample

means from different computers are statis-

33

Mean Response Times

o = Multics (QEDX)

x = DEC- 10 (TECO)

"
I

20 30 40

Response Time (sees) -*

(a) Script with Text Editor

JH—Jt

10 50 60

Mean Response Times

o = Multics

DEC-10

0 5 10

Response Time (sees) •*

(b) Script in Interactive BASIC

Figure 2. Sample Response-Time Distributions at 60 Users

34

tically significant. Having confirmed this,

ratios of mean response times were used for

scoring this aspect of system performance.

A 2-stage procedure as described in [13]

was impractical since our analysis could not

start until after the tests were complete.

The measured cycle times were always

effectively normally distributed, with a

standard deviation smaller than the mean,

for example 654s mean, standard deviation
13s, with 23 readings, from one typical run.

The same procedure was followed for estim-

ating confidence intervals. The smaller
number of samples is acceptable since the
distribution is essentially normal.

7. The Usefulness of Benchmarks

It is quite common for such benchmarks
of computer systems to cost thousands of
dollars, at least in staff costs and comput-
er resources. The results of such a per-
formance evaluation cannot show which system
is best when the eventual workload is as

unpredictable as that in a 'public' time-
sharing system. Such a performance evalua-
tion can only provide answers to relatively
specific technical questions, which pre-
sumably are considered relevant to the
overall assessment.

What we did succeed in doing was
establishing approximately how powerful a

machine and what memory size, etc. would be

needed from each vendor, in order to obtain
comparable and acceptable performances
from the various proposed systems. This
did force a revision of every proposal,
with changes in price. We only obtained a

rather limited impression, from the bench-
marks, of how ultimately expandable the
systems would be. I do not think they were
very successful at that. The margin tests
were probably not worth running.

We had not given enough thought before-
hand to the mechanics of analysing the
benchmark scripts. This was due partly to

the difficulty of finding out in advance
what the various stimulators and other
facilities would provide. It would be help-
ful if vendors could supply descriptions
and sample outputs to customer benchmark
teams at an early stage.

Despite the difficulties, however,
there is no doubt that the benchmarks were
valuable as a component of the entire sel-
ection process.

Opinions expressed in this paper are
those of the author, and do not necessarily
represent the views of the Selection

Committee, the Computing Centre, or the
University.

I am indebted to the other members of
the Selection Committee for many discussions
concerning benchmarks and computer per-
formance evaluations, and to vendor repre-
sentatives for details of the various
software and hardware systems concerned.
Mr. John McHardy, as Chief Systems Program-
mer, played a major role in creating and
supervising the benchmark programs.

References

[l] A.L. Scherr, An analysis of Time-
shared Computer Systems , MIT Press,

(1967) .

[2] J.C. Adams £j G.E. Millard, Performance
Measurement on the Edinburgh Multi-
Access System. EMAS Report #7,

University of Edinburgh (1975) .

[3] H. Rodriguez, Measuring User Charac-
termistics on the Multics System.

Laboratory for Computer Science, MIT,

Report MIT/CSC/TM-89 (1977) .

[4] R.G. Bayly, The Design of Multi-Access
Benchmarks. In Benchmarking Computer
Evaluation and Measurement (ed. N.

Brenwell), J. Wiley 5 Sons, Toronto

(1975) , p. 66.

[5] Interactive Facility RFP for Chilton,
Science Research Council (UK) (1976) .

[6] D.J.M. Davies, POP-10 User's Manual.

Report #25, Department of Computer
Science, University of Western Ontario

(1976) .

[7] R. Prendergast, Manufacturers'
Attitudes towards Benchmarking. In

Benchmarking - Computer Evaluation and

Measurement (ibid) p. 47.

[8] L.A. Belady § M.M. Lehman, Character-
istics of Large Systems. In Research
Directions in Software Technology , MIT

Press (to be published in 1978).

[9] M.V. Zelkovitz, Perspectives on Soft-

ware Engineering. ACM Computing
Surveys 10 (June 1978), 197-216.

[10] F.J. Corbato $ C.T. Clingen, A Man-

agerial view of the Multics System

Development. In Research Directions

in Software Technology (ibid) .

35

[11] W. Feller, An Introduction to Prob-
ability Theory and its Applications

,

Vol. I, 3rd Edn. , John Wiley & Sons,
NY (1968).

[12] J. E. Freund, Mathematical Statistics ,

Prentice Hall, Inc., NJ, (1962).

[13] S. A. Mamrak & P. A. DeRuyter, Statis-
tical Methods for Comparing Computer
Services. Computer (November 1977)

10, 32-39.

36

PROBLEMS IN REMOTE TERMINAL EMULATION

Vijay Trehan

Digital Equipment Corporation

RTEs are being increasingly used in performance studies.
Performance predictions based on RJE experiments usually have
greater credibility than similar predictions based on simula-
tion/analytical models. However, significant problems exist
in the areas of workload characterization, workload emulation
and subsequent data analysis. This paper discussed the prob-
lems in remote terminal emulation. Alternative approaches
for resolving these problems are suggested (including pros
and cons for each approach)

.

Key words: Benchmark; clustering; job initiation; job selec-
tion; multivariate stochastic process; multivariate regress-
ion analysis; performance measures; remote terminal emulator;
scenario; steady state; system under test; workload charac-
terization.

1.0 INTRODUCTION

Remote terminal emulation is an
approach to the testing and evaluation of
computer systems in which a driver is

implemented external to and independent of

the system being tested. The driver,
called the Remote Terminal Emulator (RTE),

applies a specified workload to the system
such that it appears to the System Under
Test (SUT) that it is connected to live
terminals. The objective of remote
terminal emulation is to drive an SUT in a
manner that is controllable, repeatable,
economical and realistic. Figure 1 is a

schematic of the flow of information in a
remote terminal emulation experiment.

RTEs are being increasingly used in

performance studies. Results from RTE

experiments influence decisions all the

way from the design to the sale of

computer systems. Performance predictions
based on RTE experiments usually have
greater credibility than similar results
based on simulation/ analytical models.

However, significant problems exist in the

areas of workload characterization,
workload emulation and subsequent data
analysis

.

This paper discusses the problems in

remote terminal emulation and suggests
alternative approaches for resolving these
problems (including pros and cons for each
approach). Section 2 discusses the

problems involved in defining benchmark
workloads which are "representative" of
"real" workloads. Section 3 details the

problems associated with "correctly"
generating a benchmark workload using a

RTE. Section 4 describes the problems in

analyzing performance data from RTE

experiments and deciding which of two SUTs

is "better". Section 5 outlines some

future trends in the computer industry and
the resulting impact on RTEs.

2.0 WORKLOAD CHARACTERIZATION

RTEs may be used for generating a

wide variety of workloads. Generally, the

workloads fall into the following generic
classes.

1

.

Remote batch (RB)

2. Timesharing (TS)

3. Transaction processing (TP)

4. Real time processing (RT)

37

FLOW OF INFORMATION IN

RTE EXPERIMENTS

Figure 1

WHY FUNCTIONAL FEATURE SET?

FUNCTIONAL SPECIFICATION

±
I PROGRAMMER

SOURCE PROGRAM

COMPILER

OBJECT PROGRAM

i

OPERATING SYSTEM

r
HARDWARE DEMANDS

J_
HARDWARE

Figure 2

38

There are some RTE issues which are

specific to each of the above

environments. However, most of the

problems discussed in this paper apply
across all workload types.

A majority of RTE workloads used
today are selected in an ad hoc manner.
The results of RTE experiments are very
sensitive to the workloads used. It is

possible to make one SUT look better/worse
than another SUT by simply changing the

workloads used. Thus it is not sufficient
to apply the same workload to the systems

being compared. The only meaningful way
to compare the performance of systems is

to use workloads "representative" of the

real workload environment.

One way for a RTE to drive a SUT is

by using a trace of the real workload (as

is done in trace driven simulation
models). An advantage of using a trace is

that it guarantees a high degree of

representativeness. Among the

disadvantages of using traces are that

they are system dependent and rather
voluminous. A more convenient approach is

to use an abbreviated workload or

benchmark representative of the real
workload. The workload
definition / generation capabilities
desired in a RTE are directly related to

the manner in which the benchmark workload
is defined. The rest of this section will
focus on the problems in obtaining
representative benchmark workloads.

2.1 Measurement/Analysis Of Real Workloads

In order to construct representative
benchmark workloads it is first essential
to measure and analyze the characteristics
of real workloads.

2.1.1 Selection Of A Unit Of Work

The unit of work used for
characterizing a workload may be either a
class of jobs, a job or a jobstep. A job
typically refers to a sequence of one or
more jobsteps which together perform some
function for a computer user. A jobstep
refers to a complete specification to the
computer system of a task to be performed
with no further interference from the
user. If the exact sequence of jobsteps
within a job are known a priori then it is
adequate to use individual jobs as the
unit of work for characterization purposes
(this may be true in transaction
processing environments). However,
consider the case when the characteristics
of individual jobsteps, within a job, are
not known a priori. By characterizing the
workload at the job level, information on
the characteristics of individual jobsteps
is not available when constructing the
benchmark workload and thus may be
misrepresented

.

2.1.2 Characterizing A Unit Of Work

A general model for an individual
unit of work may be represented as
follows. See reference [1].

J = (X,T,L,F) (1)

job,where, J = unit of work (e.g.
jobstep)

vector of features used
used to characterize J

(resource utilizations/
functions performed)
arrival time of J

location where J originated
(e.g. terminal number)
flag denoting the
generic environment of
J (e.g. TS, TP)

X =

T

L =

F =

The characteristics of each
job/jobstep include the programs used and
the databases accessed. Very little work
has been done in the area of
characterizing databases. Most examples
in this paper will deal with the
characterization of programs used by a

job/jobstep.

39

The feature set (X) used to

characterize J may be composed of system
dependent features (e.g. CPU time, I/O
time) or system independent features (e.g.
compiles, edits). A functional feature
set is desirable because it enables a

system independent characterization of the
workload. A feature set composed of

hardware utilizations, on the other hand,
is affected by the characteristics of the

programmer, compiler, operating system and

the hardware for a particular system (see

Figure 2). In addition, resource
utilization data includes the effect of

delays caused by the terminal operator,
the terminal and the communication
interface. In general, a feature set as

close as possible to a functional feature
set is desirable. The number and type of

features which form a necessary and

sufficient set for characterizing a

workload varies with the type of workload
and the objective of the study. Workload
dynamics (across systems) and user
adaptation to systems are areas in which
little work has been done. It is unclear
to what extent it is even possible to

characterize workloads in a system
independent manner.

If the arrival time (T) of J is not
observed then it is not possible to

accurately represent job/jobstep sequences
or inter-arrival times in benchmark
workloads. Also, if T is not observed it

is not possible to study the variation of
load over time (e.g. peak periods). In
timesharing environments it has shown that
the presence of certain commonly occuring
jobstep sequences (e.g.
edit-compile-execute) have a significant
performance impact. See reference [4].

Figure 3 is a simple example illustrating
how correlated arrival times can
significantly alter performance.

If the location (L) where J

originated is not used then the assumption
is made that the workload is homogeneous
across all terminals (i.e. all terminals
handle workloads with the same
characteristics). In a typical real
system, however, there are groups of
terminals dedicated to certain tasks. For
instance, if 50% of the terminals always
execute compute bound FORTRAN jobs and the
other 50% of the terminals always execute

I/O bound COBOL jobs then it is essential
to represent this fact in the benchmark
workload (see Figure 4A). Having all the
terminals executing a mix of 50% FORTRAN
and 50% COBOL jobs will produce erroneous
results (see Figure MB).

2.1.3 Measuring Real Workload Data

The next step is to measure the
characteristics of a real workload. The
measurement area poses several problems.
The proposed processing environment may
not exist - for instance when a SUT is
being designed for a new market. In such
cases it is necessary to extrapolate the
characteristics of the proposed workload
from some existing similar environment.
The representativeness of such projections
is hard to verify. Even when the workload
environment exists the data usually
available (e.g. accounting/log) falls far
short of what is desirable. Standard
accounting/log data provides system
dependent resource utilizations with no
information on arrival time or terminal of
origin of individual jobs/jobsteps. By
using such data it is not possible to
reconstruct the load as it was submitted
at the remote terminals.

2.1.4 Analysis Of Real Workload Data

The next step is to analyze the
measured data. In its general form the
analysis problem involves the study of the
multivariate stochastic process
(X,T,L,F) - refer to section 2.1.1. Most
current approaches decompose this problem
into several simpler problems. Typically,
the resource utilization / functional
characteristics are studied separately
from the arrival time characteristics of
the jobs/ jobsteps. Such a decomposition
assumes a stationary stochastic
process. Multivariate statistical
techniques such as clustering over the
feature space (X) have been used to study
the time independent characteristics of
the workload. Data points in the feature
space tend to form clusters and it has
been observed that functionally similar
workloads cluster in a similar fashion.

40

wHY JflB AKRIVAI TIKE?

FIGURE 3

41

WHY WORKLOAD PER TERMINAL?

Ji COMPUTE BOUND JOB

j"2 3 I/O BOUND JOB

(i)

THRUPUT

50 2 J
2

(ii)

J
2

THRUPUT

80Z J
2

20ZJ
2

(in)

COMPUTE

BOUND SUT

THRUPUT

302 Jj

702 J,

Figure 4A

THRUPUT

50 % J
2

50 % J-,

.... 502 Jj
(H)

50ZJ2

THRUPUT

50% J
2

50% J
2

(iii)
50% J

502 j

THRUPUT

50% J
2

502 J
2

Figure

42

For details of clustering techniques (e.g.

scaling, dimensionality, distance

measures, transformations, algorithms,

robustness) see reference [5]. Time

dependent characteristics may then be

analyzed for each cluster. Job/jobstep

sequences may be modelled using Markov

transition probabilities. Transition

probabilities may be specified for a level

of dependency D (i.e. the next

job/jobstep is chosen based on the

preceeding D jobs/ jobsteps) - see section

3.1.2. Recent work at the University of

Maryland and Bell Laboratories has shown

that for timesharing systems D>1 is

necessary to accurately represent the

workload. Job inter-arrival times (within

or across clusters) may be fitted to a

negative exponential or other statistical

distribution.

2.2 Developing Benchmark Workloads

Assume that the real workload has

been characterized as a set of weighted

clusters in the feature space. Jobs in

each cluster have some functional

characteristics in common. Inter-arrival

time distributions and Markov transition

probabilities are specified for each

cluster. Several approaches for

constructing benchmarks have been used in

the past such as having one benchmark job

representing the centroid of each cluster.

Benchmark workloads may be composed of

synthetic jobs or real jobs (obtained by

sampling the real workload).

Establishing the representativeness

of benchmark workloads poses several

significant problems, especially if the

real workload is non-repeatable or

non-existent (see Figure 5). It is

desirable that the representativeness of

benchmarks be verified on more than one

system to ensure that the benchmark is not

system dependent. Certain characteristics

of the benchmark workload and the real

workload will match by definition. What

additional characteristics (e.g. job

elapsed time, resource utilizations) must

match for the benchmark to be considered

representative? The example in Figure 6

shows why elapsed time of job(s) is not

enough for verification. The example in

Figure 7 shows why elapsed time of job(s)
and resource utilization(s) together are
not enough for verification. Depending on
the resource usage profile, the result of
introducing a new job may be quite
different. Clearly, comparing the

resource usage profiles of the real
workload and the benchmark workload is not
an easy task. Thus verifying the
representativeness of benchmark workloads
remains a problem.

2.3 Developing Benchmark Scenarios

Finally, after the benchmark workload
has been constructed and validated it must
be converted into a system independent

description (called a scenario). For this

it is essential to develop a system

independent scenario language. Scenario
elements will represent individual

functions. The scenario elements required
to describe timesharing workloads may be

different from those required to describe
transaction processing workloads. Some
work in this area is being done by the

government (GSA). The proposed scenario

language is plain English.

Prior to each RTE experiment the

benchmark scenario must be translated into
scripts. Although the use of scenarios
introduces additional overhead, it

promotes system independent description of
workloads.

Assuming that workloads are, to a

large extent, a characteristic of the
environment in which a computer system
operates rather than of the system itself,
it should be possible to set up a library
of representative benchmark scenarios for

performance studies.

3.0 WORKLOAD EMULATION

An RTE must represent the significant
characteristics of the benchmark workload,
the terminal operator, the terminal and

the communication interface (see Figure
8).

43

REPRESENTATIVENESS OF BENCHMARK WORKLOADS

REAL

WORKLOAD

1
SUT

CHARACTERIZATION

PROCESS

CHARACTERIZATION
DATA I

BENCHMARK

CONSTRUCTION
BENCHMARK

WORKLOAD

1
SUT

J
WHAT MUST MATCH FOR THE

BcocraiMjurc ^_ BENCHMARK TO BE CONSIDERED ^ PERFORMANCEPERFORMANCE ^ .

REPRESENTATIVE? > hat

a

DATA UA 1

A

Figure 5

WHY RESOURCE UTILIZATIONS SHOULD MATCH?

CPU

REAL

WORKLOAD

I/O -

JOB ELAPSED TIME

CPU

BENCHMARK

WORKLOAD

I/O .

JOB ELAPSED TIME

Figure 6

WHY RESOURCE USAGE PROFILE SHOULD MATCH?

CPU

REAL
(

*I) WORKLOAD
I/O -

JOB ELAPSED TIME

CPU

BENCHMARK

(il) WORKLOAD I/O

JOB ELAPSED TIME

NEW

(ill) JOB

CPU --

I/O

job elapsed time

Figure 7

44

WHAT MUST BF FMULATFD IN A RTF?

Figure 8

JOB INITIATION

SUT A Ji 1
J9

I h

SUTB LL

REPLY BASED JOB INITIATION (LOADING IS SYSTEM

DEPENDENT)

TIME

I.A.T
1 J.

I- A - T
2 J,*W

SUT A J
1

J3 • • •

SUT B h

INDEPENDENT JOB INITIATION (LOADING IS SYSTEM

INDEPENDENT)

-£> TIME

Figure 9

45

3.1 Workload Representation

Benchmark job descriptions are input
to the RTE in the form of job scripts.
Each job script is an SUT-RTE dependent
translation of a benchmark job scenario.
Scripts include message texts, job
scheduling and other control information.

3.1.1 Message Text Information

Scripts, as defined by RTE users, do
not usually include communication control
characters (these are introduced by the
RTE software) . The following are three
alternative approaches for representing
message texts in job scripts (note: all
messages originating at the RTE will be
referred to as "queries" and all messages
originating at the SUT will be referred to
as "responses").

1. Only query texts.

2. One expected response text per
query

.

3. Several possible response texts
per query.

In most prompt oriented systems the
operator waits for a prompt from the
system before proceeding with the next
query. Typically, the prompt is a special
character at the end of the last response
message from the SUT. It is essential in
an RTE to know the point in time when a

real operator would start the keying or
thinking for the next query. If the first
approach is used (i.e. RTE does not scan
response texts) and if the SUT does not
have a uniform way of informing the
terminal that it is ready for the next
query (e.g. by sending a keyboard enable
character) then the SUT operating system
must be modified to send a specific prompt
character, recognized by the RTE, when it
is ready for the next query. While the
use of special prompt characters
simplifies the "end of response" search,
it is possible for the RTE and SUT to get
out of synchronization. This occurs when
the SUT sends an unexpected response and
the RTE interprets it as a correct
response by virtue of having received a

valid prompt character.

The second approach actually scans
the response text and matches it with the
expected response text included in the
script. Recovery procedures are initiated
if the expected response is not received
within a certain time period or a certain
number of retries. The advantage of this
approach is that the SUT operating system
does not have to be modified and there is

lesser likelihood of the SUT and RTE
getting out of synchronization. A special
case of this approach is when a different
SUT prompt may be specified for each
query. The chief drawback of this
approach is that it does not provide for
systems in which several valid responses
to a query are possible or systems in
which unsolicited messages are possible.
The script preparation for this approach
is more complicated than in the first
approach.

In the third approach, several
response texts are possible for each
query. RTE actions are contingent on the

nature of the SUT response to a query.
This approach truly emulates an
interactive environment. This approach is

the hardest to implement due to the large
number of query-response combinations.
Performing scan and match operations on
all response texts greatly increases RTE
processing time per message and typically
involves the use of large tables and

considerable intelligence in the RTE. If

all SUT responses have a header which
contains response codes, then these

response codes can be used by the RTE to
make contingency decisions. The ability
to send response codes must be designed
into the SUT. Another variation of this
approach is a SUT which sends any one of a

set of valid prompts recognized by the
RTE. The RTE examines the prompt received
and makes the appropriate contingency
decisions

.

Another important feature relating to
message texts is the capability to vary
query texts for consecutive executions of
the same script. For example, if a

transaction accesses a database using as a

key the customer ID, it would be desirable
to change this ID for successive
executions of the transaction. Similarly,

46

a job doing a edit, compile and execute

sequence may use different COBOL source

files on successive passes. Text

variation may be done using values
obtained from tables/databases or using

random numbers, line numbers, terminal

numbers, response texts etc. Note that

the nature of text variation must be

outlined by the benchmark workload.

3.1.2 Job Scheduling Information

Given a set of job scripts to run on

a RTE, there are two basic problems in the
scheduling of jobs. The first deals with
the initiation of jobs and the second

deals with the selection of jobs.

Scheduling may be done on a per

terminal/per line/per SUT basis (depending

on how the workload is characterized)

.

Similar scheduling can be applied to the

jobsteps within. each job.

3.1.2.1 Job Initiation

The common method of scheduling
arrivals of jobs employs a randomized
inter-arrival time. Two alternative
mechanisms exist for deciding when to

initiate the next job script (see Figure

9).

1. Reply based job initiation.

2. Independent job initiation.

In the reply based method the RTE
initiates the timing of inter-arrival
delays only upon completion of the
preceeding job. The chief drawback of
this method is that the job initiation
depends on the SUT response time
characteristics and therefore cannot be
held constant across systems. However,
this method is useful for saturation
loading (i.e. zero inter-arrival time).

In the independent method the RTE
generates job arrivals (using randomized
inter-arrival times) without regard to
whether the previous job is still in
progress. If the previous job is still in

progress when an arrival occurs, the new

job must wait on a queue. At the
completion of the experiment queue
statistics are reported along with
response time and other statistics. This
method explicitly provides a means for
holding the load constant across SUTs

.

Script initiation on successive
terminals is usually staggered (in time),
at the start of an experiment, to avoid
any lockstep/cyclic loading.

3.1.2.2 Job Selection

In addition to deciding the
initiation time for the next job, a

specific job must be selected for
execution. Job selection mechanisms may
be broadly classified as follows.

1. Dynamic job selection.

2. Static job selection.

In the dynamic case the next job is

selected from a set of jobs (on the fly)

by one of the following methods.

1. Random - A uniform[0,1] random number
is used along with a Markov
transition probability matrix to

select the next job to be executed
(see Figure 10). The "D level
dependency" Markov transition
probability matrix is a general model
for representing random job
sequences. If there are N job types
and S possible sequences of length D,

then a SxN transition probability
matrix defines the dynamic job mix.

A commonly used special case is the
simple job mix i.e. all jobs are
independent (D=0, S=1). In

timesharing environments the use of
transition probabilities is more
meaningful at the jobstep level.
This is because there are commonly
occuring jobstep sequences (e.g.

edit-compile-execute) but successive
users of a terminal are independent.
Thus a simple mix may be specified

for the jobs in a benchmark workload

and a transition probability matrix

47

may be specified for the jobsteps
within each job.

2. Initiation control - The next job is
selected solely to maintain a job mix
(or in the general case a transition
probability matrix). See reference
[3]. No random number is used to

select the next job.

Jobs
1 2 ... N

Target
initiation mix 0.2 0.1 ... 0.15

Observed
initiation mix 0.18 0.12 .. . 0.1

Ratio
observed/target 0.9 1.2 ... 0.67

(Job with minimum ratio is selected)

The main advantage of this

method is that it has been shown to

converge to a steady state mix

faster than the random method. For
additional discussion on steady
state issues see section 4.2. A

disadvantage is that while this

method maintains the job mix it may
induce unrepresentative sequences

of jobs (e.g. cyclic initiation
patterns). This disadvantage can

be minimized if initiation control
is used along with a "D level

dependency" Markov transition
probability matrix. Then sequences
up to depth D will be represented

correctly

.

3. Profile control - In this method
the next job is selected solely to
maintain an "active job mix". See

reference [31. No random numbers
are used to select the next job.

If 20% of the terminals are always

doing compute bound FORTRAN jobs

and the remaining 80% of the

terminals are always doing I/O

bound COBOL jobs then the active

job profile of FORTRAN : COBOL will
reamin constant at 1:4. Note,

here, that the definition of

"active" includes all intervening
terminal operator delays, terminal
delays and communication delays
during the execution of a job.

Jobs
1 2 ... N

Target profile 0.1 0.2 ... 0.1

Current profile 0.1 0.18... 0.2

Ratio
current/target 1.0 0.9... 2.0

(Job with minimum ratio is selected)

The main advantage of this
method is that it converges to
steady state faster than the random
method. It is possible to run
experiments with varying numbers of
terminals without having to

reassign job scripts to individual
terminals (as long as the profile
is known). The profile is

maintained even if a line goes
down. Profile control is not
suitable where a job mix is
associated with each terminal (or

groups of terminals).

In the case of static selection the
next job is obtained from a file of job
scripts (the entire sequence of jobs is

determined a priori). Static selection
methods fall under the following
headings

.

1. Random - The same methods used in the
dynamic random case may be applied
with similar results. One of the
disadvantages of the static random
approach is the large storage
requirements for the script file.
The advantage of this approach over
the dynamic random approach is that
several features which are hard to
implement in the dynamic approach

(e.g. query text variation,
alternate response texts) can be
included in the scripts by using a

preprocessor to generate the script

48

RANDOM JOB SELECTION

• Markov transition probabilities (depth=D)

JOBS/jCESTEPS = J^, J2 J
N

D 0 SIMPLE MIX

Jl h •
• •

JM

O'l 0'2 . . O'l

Figure 10A

D - 1 TRANSITION PROBABILITIES

>v NEXT

LAST ^"v Ji J
2

.
' •

J«

0-2 0'5 . . O'O

h O'l

J
N

0'15

Figure 10B

D - 2 TRANSITION PROBABILITIES

NEXT

LAST
TWO

J
1
J
2

O'l O'l

0*15 .

J
N
J
N

O'O

Figure IOC

49

file.

2. Loop - A sequence of job scripts is

constructed by the RTE user
(typically without the aid of any
preprocessor) . This sequence of job
scripts is repeated in a loop during
the RTE experiment. Control over job

mix and sequence is limited by the

number of jobs in the loop.

3.2 Terminal Operator Representation

The principal features of the

terminal operator represented in the RTE

are the think time and the typing rate.
In most interactive environments a

majority of the duration of a terminal
session is spent in thinking and typing.

Thus the load generated by a terminal is

limited by "the speed of the terminal
operator. This only emphasizes the need
to have accurate human factors models for

these times.

There are several approaches to the

modeling of think time and typing time.

Take the example of think time. It may
be represented by a random variable.
Different statistical distributions may
be used. Think time may
also be modelled as (constant time+

random component). Think time may be

dependent on the job being performed.
Think time may be separated into

overlapped and non-overlapped think time.

Overlapped think time is that portion of
the think time which is allowed to
overlap the SUT response time. The
non-overlapped think time cannot start
until a complete response has been

received from the SUT.

3-3 Terminal Representation

The principal characteristics of an

emulated terminal represented in the RTE
are the communication interface (see next
section) and any significant delays that
occur in the terminal. Correct
representation of input delays (e.g.

card reading), output delays (e.g.

display, printing) and terminal
processing delays is critical when these
delays may limit the load generated by
the terminal or influence the response
time (as it is perceived by the
operator) . Certain special features such
as "type ahead" are usually harder to
implement in a RTE.

3-4 Communication Interface Representation

A variety of communication equipment
(e.g. lines, modems, bridges,
concentrators, multiplexors,
communication controllers, network nodes)
usually connects terminals to a host
computer system. RTE experiments must
reproduce the significant communication
delays (e.g. line contention,
transmission time including store and
forward, time to establish carrier on
modulated lines) which occur in the real
system. There are three alternative
approaches for representing communication
equipment in RTE experiments.

1. Ignore communication equipment.

2. Physically include communication
equipment between the RTE and SUT.

3. Emulate communication equipment in
the RTE software.

Omission of communication equipment in
systems that are communication bound will
result in erroneous performance data.
Physically including all communcation
equipment between the RTE and the SUT
requires a lot of hardware for large
configurations. Emulation of
communication equipment requires
complicated RTE software and increased
RTE processing time per message. Often a
combination of the above approaches is
most desirable.

Correct representation of
multidrop / multiplex mode lines is
necessary to reproduce line contention
and SUT overhead. Some typical RTE-SUT
interfaces for a multidrop line are shown
in Figure 1 1 . The communication
protocols, link types, link speeds etc.
at the SUT interface should be the same

50

COMMUNICATION INTERFACE

(5) SIN6LE CONNECTION (H) ONE CONNECTION

(ill) ONE CONNECTION

PER TERMINAL

(iff) ONE LINE PER

TERMINAL

Figure 11

51

52

as in a real system configuration (in

order to exercise the appropriate module

of the SUT communication software). For

this reason, having a single high speed
trunk between RTE and SUT is not

desirable. Having one connection between

RTE and SUT for each line in the real

system configuration is usually the most

desirable. The task of emulating

multidrop / multiplex mode lines is often

simplified by using SUT line control

software, with some modifications, in the

RTE (for this the RTE must be based on a

processor compatible with the SUT

processor) . Having one line between RTE

and SUT per terminal is easier to emulate

but requires too many communication lines

for large configurations and is not

representative of real systems which use

multidrop / multiplex mode lines. The

cost of RTE experiments is directly

related to the number of lines.

4.0 DATA ANALYSIS

How performance data from RTE

experiments is collected and analyzed

directly impacts the resulting decisions

on which of two systems is better.

Service (S) is measured in terms of the

typical performance measures such as

elapsed time, response time etc. Load

(L) is measured in terms of job thruput.

There is a minimum (or maximum) level S'

for the service to be considered

acceptable. Figure 12 schematically

shows the comparison of performance of

SUT A and SUT B.

4.1 Performance Measures

The performance measures suitable
for a particular study depend, largely,
on the nature of the user environment in

which the SUT will operate. Usually,

very little effort is put into the choice
and definition of appropriate performance
measures. environment in which the
system will operate.

To illustrate the need for clearly
defining performance measures consider
the specific case of response time.
Performing a given function on different
SUTs may result in a different number of
queries/responses (see Figure 13).

Sometimes there are several different
ways to perform a function on the same
SUT (e.g. VMS commands allow different
levels of prompting). A single query may
result in several responses (some of
which may simply be SUT acknowledgements
for receiving the user's query and not a
true response). Given all this, it is
unclear as to what constitutes response
time for a given function. A system
independent definition of reponse time is
necessary (vs. a last-bit-in to
first-bit-out type definition) . The only
definition of response time which has any
performance significance is one that
provides some measure of terminal
operator inconvenience (caused by a

delayed response). This, of course, is a
complex function of the characteristics
of the system and the terminal operator.

Assume the simple case where each
function results in one query and one
response. The response, perceived by the
terminal operator, is made up of terminal
delays, communication delays and SUT
delays (see Figure 14). In some systems
the communication delays will dominate
the response time. In such a situation
the difference in response time between
two SUTs may be due to the difference in
characteristics of the communication
interface and not the SUTs. In order to
make a fair comparison it is necessary to
use representative communication
interfaces in RTE experiments. It should
be pointed out that considerable
optimization is possible in a complex
communication interface. Communication
delays can be significantly
increased / decreased by simply
reconfiguring the communication interface
(e.g. line speeds, terminals per line).

53

DEFINITION OF RESPONSE TIME?

FUNCTION - COPY THE CONTENTS OF FILE

X- IN INTO THE FILE X'OUT

TERMINAL DEC-10 TERMINAL VAX- 11

BREAKDOWN OF RESPONSE TIME

0 = OPERATOR DELAYS

T TERMINAL DELAYS

C = COMMUNICATION DELAYS

S = SUT DELAYS

SUT A

SUT

i

'v_
T C

»l * mtm

S C T I

•—"1
0

!

i

\s

RESPONSE TIME

+* H-—

H

rr
\

T C S C T
_/

0

H • • •

-H • • •

RESPONSE TIME

TIME

54

Figure It

4.2 Steady State Issues

Typically, the performance data for
the initial T' time units (transient
state) of a RTE experiment is discarded.
This represents the warm up phase when

the values of the performances are
stabilizing. (See Figure 15). Discarding
this data results in a lower variance of

the performance measures and a shorter
overall duration of the experiment. Data
collected from T' to T" time units
(steady state) is used to obtain
statistics on performance measures.

The values and statistical

distributions of the performance measures

are very sensitive to T' and T" (unless
the experiments are run for very long

periods of time) . When comparing the

performance of different SUTs simply
comparing the mean values of performance

measures is not adequate. The
statistical distributions of performance
measures must be taken into account in

the analysis. This may be done by

considering the confidence intervals
associated with the performance
measure(s). The use of confidence
intervals makes the task of comparing
SUTs more complicated. Figure 16 shows
two SUTs with overlapping confidence
intervals. It should also be pointed out
that the confidence intervals are

primarily dependent on the number of

observations (sample size) and
statistical distribution of the
performance measures and not on the

absolute duration of the steady state
period.

load(L) and the SUT configuration(C) as
follows:

S = F(L,C) + E (2)

where, S = MxN dimensional vector
representing service
(e.g. elapsed time and
response time for each
job type)

L = N dimensional vector
representing load (e.g.

jobs per second for
each job type)

C = P dimensional vector
representing SUT
configuration (e.g.

processor type, memory
size, operating system
version, number of
disks)

E = MxN dimensional vector
representing the

experimental error

Note that the above model assumes
a stationary response surface.

Multivariate regression analysis may be

used to fit different functions(F) to the

data observed from RTE experiments. As

M,N and P get larger this problem gets
very complicated. Deciding which of two

systems performs better is a complex data
analysis problem involving the comparison
of two response surfaces F(L,C1) and
F(L,C2) where C1 and C2 are the

configuration vectors for the two

systems. The problem is made more
complex by the fact that there is a

confidence volume associated with each
point on the response surface.

4.3 Comparing The Performance Of Systems

Assume that all the performance
measures for two or more SUTs have been
measured, at different levels of loading

so that a fair comparison can be
made. In the general case there will be
N different job types and M performance
measures and P parameters describing the
configuration (hardware/software) of the
SUT. Performance(S) is represented by a
multivariate response surface which may
be modelled as a function(F) of the

Consider the simple case with a

single performance measure and two job

types. Assume that the job mix is

constant at different levels of loading.
The load-performance relationship may be

represented by two sets of curves as

shown in Figure 17. It is likely that
one jobtype will do better on SUT A and
worse on SUT B. It is not clear whether
SUT A is "better" than SUT B or
vice-versa. Some kind of objective

function needs to be defined assigning
weights to each job type - performance
measure combination. See reference [14]

for a cost-benefit approach for comparing

t

55

STEADY STATE

V T"

DURATION OF RTE EXPERIMENT

^ TIME

Figure 15

CONFIDENCE INTERVALS

Figure 16

56

57

the performance of systems. Most of the
analysis work done today ignores the

multivariate nature of the problem.

6.0 GLOSSARY

1 . BENCHMARK -A set of computer programs

and associated databases tailored to

represent some real workload

environment.

5.0 FUTURE TRENDS

So far this paper has been limited
to the study of configurations with one
RTE connected to one SUT. However,
configurations requiring multiple RTEs
may be fairly common. For instance, when
a large number of terminals are to be

emulated or when several RTEs are used
to load the different nodes of a network
(see Figure 18). There are several

problems associated with synchronizing
the load generation and data analysis for
the different RTEs involved in such an
experiment

.

The use of distributed processing,

intelligent terminals and computer
networks is likely to have a significant
impact on remote terminal emulation. It

is not practical to configure large

computer networks in a lab (just as it is

not practical to configure large numbers
of terminals). RTEs may be called on to
emulate host-to-host lines and computer
network nodes (see Figure 19).

The government is currently working
on setting up RTE guidelines. Computer
system vendors will be required to have

RTEs meeting these guidelines to be
eligible to bid on government contracts.
See references [7], [8]. In the future,

other large customers may have similar
requirments for RTEs.

The trend appears to be towards the
use of table driven RTEs which use a

uniform approach for emulating
timesharing, transaction processing,
remote batch, realtime and distributed
processing environments.

2. JOB -A sequence of one or more

jobsteps which together perform some

function for a computer user.

3. JOBSTEP -A complete specification, to

the SUT, of a task to be carried out

without further interference from the

user.

4. QUERY -A message originating at the

terminal. Communication protocol

messages are not included.

5. REALTIME PROCESSING - Characterized

by event driven data sensors
providing stimuli to (canned)

application programs which respond
with stimuli for the purpose of

controlling some realtime process.

Absolute response time constraints

are usually necessary.

6. RESPONSE -A message originating at

the SUT. Communication protocol

messages are not included.

7. REMOTE-BATCH/BATCH PROCESSING -

Characterized by the concurrent

availability to the SUT of a complete

set of input data for processing a

given job. Execution of the job is

not controlled in real time by the

user.

8. REPRESENTATIVENESS -The ability of a

benchmark workload to produce an

identical sequence of resource

demands on the SUT as the real

workload

.

9. RTE -A remote terminal emulator is a

load driver implemented external to

and independent of the SUT. It

applies a specified workload to the
SUT such that it appears to the SUT
that it is connected to live

terminals.

58

MULTIPLE RTEs

10. SCENARIO -A system independent 4 - Manochio.L. J. , "Representing Workload

description of a benchmark job. Dynamics" Draft submitted for publi-
cation at 13th meeting of CPEUG.1977.

11. SCRIPT -A SUT-RTE dependent
translation of a benchmark job used 5. Anderberg.M.R. , "Cluster Analysis for

to describe the job to the RTE. Applications" , Academic Press, New
Scripts contain message texts and York (1973).
control information.

12. SUT -System under test.

13. TIMESHARING -Characterized by
multiple interactive terminals
(typically character oriented) being
used for interactive program
development/testing, word processing
and interactive problem solving.

14. TRANSACTION PROCESSING -

Characterized by multiple interactive
terminals (typically message/forms
oriented) being used to drive
(canned) application programs

performing data entry and database
inquiry/update. Each application
program services a specific
commercial transaction.

15. WORKLOAD -The workload on a SUT may
be defined as the entire time
sequence of jobsteps entering the SUT
during some interval.

7.0 REFERENCES

1. Agrawala, A.K.
,
Mohr,J.M.,

Bryant, R.M., "An Approach to The
Workload Characterization
Problem"

,
Computer , June 1976.

2. Watkins,S.W.
, Abrams.M.D., "Survey of

Remote Terminal Emulators" , NBS
Special Publication 500-4, April
1977.

3. Hyman,B., "Stability and Workload
Definition for Timesharing
Systems" , Draft Minutes of FIPS TG13
Meeting

,
July 1975.

6. "Teleprocessing Network Simulator
(TPNS)", Program Reference Manual,
IBM SH20-1 823-2.

7. "Remote Terminal Emulation
Specification For Federal ADP Systems
Procurement", Draft GSA Guidelines,

scheduled for October 1978 release.

8. "Remote Terminal Emulation in Federal

ADP System Procurements", Draft GSA

Guidelines, scheduled for Oct 1978
release

.

9. Conti ,D. /'Workload Characterization
and Benchmarking: Problems and
Practices", Presentation at the First
Digital Performance Evaluation
Symposium, May 1978.

10. Potter ,T. ."Specification of a Load
Driver used in Benchmarking
Timesharing, Realtime and Remote Job

Entry Systems".

1 1 . Turner , R. ,Levy ,H. ."Performance

Evaluation of IAS on the PDP-11/70",
Proceedings of the International
Symposium on Computer Performance
Modeling, Measurement and Evaluation,
Cambridge, Mass., March 1976.

12. Hess, P. R. , Strauss, J. C.
, "A Simulation

Study of Timesharing
Cost-effectiveness" , SIGMETRICS/CMG
III Conference, Washington D.C.,
October 1977.

13. Wright, L.S. ,Burnette,W.A. ,"An

Approach to Evaluating Timesharing
Systems: MH-TSS, A Case Study", ACM
SIGMETRICS Performance Evaluation
Review, January 1976.

14. Jain, A. K. , Potter, T.W. , "Statistical
Modeling of Computer Performance (A

Cost-Benefit Approach)", Proceedings
of the 12th Meeting of CPEUG, 1976.

60

15. Potter, T. W. , Jain, A. K. , "Statistical

Modeling of Computer Performance

(Simple Program Mix)", Proceedings of
the 9th, 10th and 11th Meetings of
CPEUG, 1974/75.

61

PREDICTION PART I: METHODS 1978

63

PREDICTION PART I: METHODS 1978

Samuel H. Fuller

Digital Equipment Corporation
Maynard, Massachusetts

The papers in this session deal with

performance models of computer systems. The

first three papers investigate unconventional,

innovative approaches to modeling performance.

Concepts from control theory, Petri nets, and

schemas for concurrent processes are all

explored in these papers. As with any new
approach, there are many limitations and

unresolved issues in applying these tech-

niques to practical performance problems.
However, an important function of a technical

conference such as this is to provide a forum
for discussion of new approaches and methods
that require further development.

The last two papers in this section are

a review and an extension to queueing models.
While these papers dealing with queueing
models may not be as controversial as the

earlier papers, they discuss different facets
of what has been to date our most useful
analytic modeling technique.

65

A FORMAL TECHNIQUE FOR ANALYZING THE PERFORMANCE
OF COMPLEX SYSTEMS

John Sanguinetti

Digital Equipment Corporation

This paper describes a technique for modeling the temporal behavior of systems
which are composed of asynchronous, concurrent processes. The structure of the
system can be represented in a procedure-oriented modeling language, from which

an expression describing the system's state transition behavior can be derived.

The derived expression can be analyzed to yield the time required to make a

state transition. The time is typically a random variable, whose distribution
and moments can be determined. This analysis technique is presented as a

promising performance modeling method. Finally, the limitations of this method
are pointed out.

Key Words: Formal modeling; message sequence; message transfer expression;
modeling language; MTE; performance evaluation; PPML; system analysis.

1. INTRODUCTION

This paper is concerned with
analyzing complex software systems.
By complex we mean a system which
is composed of non-trivial,
interacting sub-parts which operate
with either real or apparent
concurrency. In order to analyze a

system, in general, a model of some
sort is required. This paper
describes a class of models which
can be used for system analysis.
The intent of the model often
determines its form. For example,
one might use a Petri net to model
the logical behavior of a system,
while one might use a queueing
network to model the performance
(temporal behavior) of the system.
Here we will describe a class of
models which can represent both the
logical and temporal behavior of a
system.

The modeling technique proposed
here is based on message transfer
modeling developed by Riddle [1].
This modeling technique consists of
two separate modeling languages:
Program Process Modeling Language
(PPML) and Message Transfer
Expressions (MTE) . One of the most
useful properties of these two
modeling languages is that an MTE
model can be derived from a PPML
model. A PPML model provides a
procedural description of a system
while an MTE model yields a more
abstract, behavioral description.

Here, we are primarily
concerned with MTE models and the
information which can be obtained
from them. An MTE, as its name
implies, is an expression which
describes the message transmissions

References appear at the end of
the paper.

67

which occur throughout the system
being modeled. The message
transfer expression indicates all
possible sequences of messages
which can be transmitted throughout
the system as the system's state
changes from a beginning state to
an ending state. This sequence
information is useful to determine
some of the logical properties of
the system, like whether or not a
deadlock can occur. The MTE can
also provide information about how
much time is required between any
two messages in a sequence. From
this information the total time
required for a particular sequence,
or set of sequences, can be
determined. Thus, using MTEs, we
can determine how long it will take
a system to change from one
state to another.

This paper will describe the
two modeling languages briefly,
describe the analysis techniques
available with MTEs, and discuss
the limitations of this approach to
system analysis.

2. PPML and MTEs

2.1 The Program Process Modeling

Language

The Program Process Modeling

Language, or PPML, was first
introduced by Riddle [1] as a

modeling method for systems which

are composed of independent tasks
which operate potentially in
parallel and communicate with one
another in a uniform manner. The
language provides statement types
to explicitly describe interprocess

interaction (message transmission)
but offers only abstract statement
types to describe the internal
behavior of a process (message
generation) . These abstractions
distinguish PPML from a programming

language.

The Program Process Modeling

Language assumes that the system

which is being described is made up
of sequential processes, each being
executed concurrently with, and

independently of the others. These
processes may communicate with one

another by sending and receiving

messages. The communication paths
for messages being transmitted
between program processes are
defined by special processes called
link processes, to which messages
are sent and from which messages
are received. Thus, the system
consists of two types of processes:
program processes, which generate,
send and receive messages, and link
processes which transmit messages.

In this view of a system all
processes are asynchronous and
independent of all others.
Asynchrony implies that the set of
processes which are logically ready
to proceed may be executed in any
order with any subset executing in
parallel at any speed. This
assumption implies a simple class
of schedulers for those systems in
which the number of actual
processors is arbitrary. Under
PPML modeling any scheduling
algorithm which allocates
processors to ready processes one
at a time is sufficient, so long as

no ready process is indefinitely
excluded from execution.

All processes are independent
of all other processes. The only
allowed interaction among processes
is communication by message
transmission. This restriction
implies that processes may not
share memory, in the sense of
modifiable data. It also implies
that one process may not affect the
program counter of another process.

The independence requirement is
necessary because the goal of PPML
modeling is to represent explicitly
all inter-process interaction.
Since the explicit description
mechanism deals with message
transmission, no other interaction
can be represented.

Finally, program processes
communicate with other program
processes by means of SEND and
RECEIVE operations. Since all
message transmission is
accomplished by means of link
processes, these operations are
directed at link processes. Each
program process has a "message
buffer" which is part of its
addressable memory. This location
is the implicit source and sink for

68

all SEND and RECEIVE operations
performed by the program process.

A SEND operation transfers the

contents of the memory buffer to

the link process named in the SEND

operation. A RECEIVE operation
directs a receive request at the

link process named in the RECEIVE
operation. When a program process

performs a RECEIVE operation, it

becomes logically blocked and
cannot become ready again until the

receive request is satisfied. A

link process matches messages with
receive requests. This association
can be made according to an
algorithm internal to the link
process. The link process, in the
course of a match operation,
transfers the message to the
receiving process' message buffer
and re-enables the receiving
process

.

The statement types of PPML
are as follows:

SET <message type> <time parameter>

This causes the specified
message type to be generated,
taking the specified amount of
time. Note that the time
parameter may be a random
variable.

SEND <link identified

This causes the last message
generated to be transmitted.

RECEIVE <link identified

This causes the process to wait
until the specified link process
transmits a message to it.

IF <branch parameter> THEN
00 TO <label>

This causes a conditional
branch. The branch parameter is
a binary valued random variable
of known distribution.

UNLESS <message-type> GO TO < label

>

This causes a branch to <label>
if the last received message is

not of the specified type.

GO TO <label>

This is the usual unconditional
branch. (A more elegant, GO
TO-less version of PPML is
described in [2].)

An example of a PPML model of
a 2-process, 1-1 ink system is given
in figure 1.

2.2 Message Transfer
Expressions

A Message Transfer Expression,
or MTE, describes a set of message
sequences. Each message
transmission sequence can be
generated by sequential or
concurrent system activity. The
MTE itself is quite similar to a
regular expression, and can be
derived from a PPML model in
somewhat the same way in which
regular expressions are derived
from finite state automata. We
will briefly define MTEs here. For

the interested reader, a sizable
quantity of literature concerning
MTEs has appeared. A comprehensive
bibliography appears in [2]

.

Message transfer expressions
represent possible sequences of
events, where the transmission of a

message from a program process to a
link process or from a link process
to a program process is considered
an event. The only identification
of an event is the message type of
the transmitted message. Its
origin and destination are not
represented. (Note: a message
type represents an equivalence
class of messages. Messages are
identified here by their type
only) . Since there are usually
several possible message sequences
which characterize the transition
of the system from a beginning
state to an ending state, an MTE
describes a set of sequences. As
such, an MTE can be considered to

define a language over a vocabulary
of message types.

In addition to message types,

the vocabulary of MTEs includes
special symbols called synchroni-
zation symbols. The purpose of
synchronization symbols is to
enforce sequencing constraints on

69

Program Process A Program Process B

(1) ql: RECEIVE LI; ql: RECEIVE LI;

(2) IF <pl> THEN GO TO q2 IF <p2> THEN GO

(3) SET M <tl>; SET M <t3>;

(4) GO TO q3; GO TO q3;

(5) q2: SET M <t2>; q2: SET M <t4>;

(6) q3: SEND LI; q3: SEND LI;

(7) GO TO ql; GO TO ql;

(8) END; END;

Figure 1. Two Mutually Exclusive Processes

the set of message sequences by
disallowing any message sequences
which would violate the given
constraints. Thus, the languages
formed by MTEs are "cancellation"
languages. The definition of
message transfer expressions is:

Let
M = {m | m is a message type}

T = {t I tis a time or branch
parameter

}

S = {e
i

I i=l,...,n}

S' = { <5\ I i=l,...,n}

where IS| = |S'I

V = HUTUSUS' U (A,/l

where A = the null
sequence

- the empty set of
sequences

A message transfer expression
is defined over V as:

1. any element of V is an MTE.
2. if A and B are MTEs, then so

are:

(AxB)

(AB)

(A)*

(A AB)

(A)
+

- sequence is either
A or B

- concatenation
- sequence is \ x A

x AA x AAA x ...
- sequence is A and
B concurrently

- sequence is:

/\ x A x AAA x

AaAAA x . .

.

The A (shuffle) and
(concurrent closure) operators are
the only additions over the
operators of regular expressions.
For behavioral analysis, the
shuffle operator is unnecessary,
since an equivalent expression can
be written using concatenation and
alternative (x) . For performance

70

analysis, however, this is not the
case. The shuffle operator
represents concurrent operation
which cannot be expressed as a

combination of other operators.

The _synchronization symbols

(G^) are used to require
certain parts of concurrent
subsequences to occur at the same

time. For example, A @ B A C 0 D
is equivalent to (describes the
same set of sequences as) (A a C)

(B^D)

.

MTEs have severai interesting
properties. It has been shown [2]

that the class of languages which
can be defined by MTEs is equal to
the class §f recursively enumerable
languages. it has also been shown

[2] that, without the dagger ()

operator, the class of languages
which can be defined is equal to

the class of regular languages.
Without the dagger operator , the
presence or absence of
synchronization symbols (and the
interpretation rule) makes no
difference in the power of language
definition.

One of the most interesting
properties of MTEs is the
relationship of MTEs to PPML
systems. It has been shown [1,3]

that message transfer expressions
may be derived for any system of
PPML processes subject to just one
restriction on link matching
algorithms. The method described
in [1] for deriving an MTE from a

PPML system is similar to the
Brzozowski [4] derivative method of
deriving regular expressions from
finite state automata. This
method, while theoretically
workable, is quite difficult for

complicated systems. Another
method of MTE derivation has been
suggested in [2], This one
generates an MTE quite easily, but
the MTE it generates is extremely
complicated.

In [2], the terminology is

slightly different from that used
here. There, a distinction is made
between an event expression (what

we call an MTE) and an MTE (an

event expression derived from a

PPML model). Here, we use MTE for

both cases.

The restriction on link
matching algorithms is the
following: a link may match any
receive request at the link with
any message at the link. A link
satisfying this restriction is
called a "bag link", because both
the receive requests and the
messages are unordered.

The existence of time and
branch parameters in MTEs allow the
time required by a sequence to be
determined. Because branch
parameters are random variables,
and time parameters may be random
variables, the time required by the
set of sequences described by an
MTE is a random variable. The
distribution, expected value, and

variance of this random variable
are the quantities we are
interested in.

Time parameters, as the name
implies, specify the length of time

required before the next message in

the sequence is transmitted (its

generation time) . If the total

length of time required by the
whole sequence is what is of
interest, the position of the time

parameter within the sequence is

inconsequential. That is, AtB =

tAB = ABt. A branch parameter

specifies the probability with
which its associated member of a

choice of sequences will occur. It

makes no difference where in a

concatenated sequence a branch
parameter appears, e.g., pAB = ApB
= ABp. Since branch parameters
specify the probability with which
one of two alternatives is taken,

they generally appear in pairs, p
and q = 1-p. This is how they are
generated from PPML though
subsequent manipulation may combine
or eliminate some branch
parameters.

As an example, the following
MTE:

(M((p
1

t
2

x q1
t-^) X *

(p2
t
4

x q2 t
3
))M)

corresponds to the PPML model in

figure 1, when:

71

initial state is

link 1 contains M and both
process A and B are waiting

for a message from link 1

final state is

same as initial state

3. MTE Evaluation

3.1 MTE Manipulation

The time and branch parameters

of an MTE may be combined in

straightforward ways. The
following axioms govern the

combination of these parameters:

(a,b,c,d are time parameters,

p,q=l-p are branch parameters,

A,B,C,D are message types)

E.l aAbB = (a+b) A B

E.2 aA bB = con(a,b) (A a b)

* 2
E.3 (pA) = qA x pqA x p qAA

X • • •

E.4 p,(p
2
A x q2

B) x q-^C =

PlP2
A x p1q2

B x qx
C

E.5 A A (pB x qC) = p(A A B)

X q(A A C)

E.6 aA & bB A cC & dD =

(aA A cC) (bB A dD)

= con(a,c) (A a c)

con(b,d) (B A D)

= (con(a,c)+con(b,d)

)

(A A C) (B A D)

E.7 (p(aA A bB)
)* =

*

(p con(a,b) (A A B)

)

= (p aA ©)* -6 (bB &)*

With these axioms, the intent
of the performance parameters
becomes evident. The various time
parameters of a concatenated
sequence of messages may all be
added up to give the time required

by the entire sequence. The time
parameters of two message sequences
which are shuffled cannot simply be

added due to the concurrent nature
of the operator. Instead, they are
the arguments to a function (which
we will call "con") whose value is

the total amount of time required
for the shuffled sequence. The con
function will be discussed later.
The star operator indicates
indefinite repetition. A branch
parameter associated with a message
sequence which is starred is
intended to indicate the
probability with which the sequence
will be repeated at every
iteration. Branch parameters must
always be a probability measure,
that is, the sum of the branch
probabilities of each alternative

sequence in the MTE must be one.

3.2 MTE Evaluation

An MTE is a description of the
sequence of events, and their
relationship with one another. As
such, the evaluation of an MTE is
very much like a classical job-shop
scheduling problem. The question
which is being addressed is, "how
long will this set of events (job)

take to finish?" This problem has
been addressed in that context,
though usually not in the
generality presented by MTEs. Job
shop modeling is usually concerned
only with sequenced and concurrent
activities, and not those with
alternatives.

The problem as presented by
MTEs is nearly the same as that
addressed in [5]. In that work, a

graphical representation of such
activities was presented which is
sufficient to describe the
sequences of MTEs. Along with the
graphical representation was a
method for reducing the graph to

obtain the mean time required to
traverse the graph from beginning
to ending state. The results
obtained are only for mean time
where the time parameters are given
deterministically.

In a later paper by Beizer,
Elmaghraby's results were extended
to include determination of
variance for networks which do not

72

contain concurrency [6]. These
results were reported in [7], and

are the same as the ones which will
be presented here for concatenated,
iterated, and alternative
sequences.

In Elmaghraby 1

s paper,
concurrent elements of the network
were assumed to take place strictly

in parallel. Since this is

generally an unreasonable
assumption for systems of program
processes, we will attempt to deal

with the problem of concurrent
activities which are subject to

scheduling on a given number of
processors. There are some results
from job-shop scheduling theory
which apply to this part of the
problem which we will make use of.

Finally, we will take
synchronization symbols into
consideration. Synchronization
symbols, which represent sequencing
constraints on otherwise concurrent
activities, are not unique to MTEs,
but their presence greatly
complicates the analysis of the
classical job-shop scheduling
problem.

For evaluating MTEs, the time
parameters will be taken to be
random variables with finite first
and second moments. It is
meaningless to talk about time
parameters of a sequence of events
with non-finite first moments.
Existence of a second moment is not
crucial to any of the results
concerning mean time, but,
obviously, if any time parameter in

a sequence has a non-existent or

infinite second moment, then the
sequence has a non-existent or
infinite variance. Time parameters
must also be independent of one
another. This somewhat harsh
restriction is required for
manipulating sums of time
parameters. Time parameters must
also be independent of branch
parameters.

The branch parameters, as
mentioned before, are binary-valued
random variables. We describe them
simply by their probabilities,
e.g.,

P[b=l]=p,
P[b=0]=q

The sum of the branch
parameters of each alternative in
any set of alternatives in the MTE
must be one. Branch parameters are
presumed to be static. The random
variable whose probability
distribution function gives a
branch parameter is presumed
independent from other random
variables in the MTE.

The following theorems about
the elapsed time of an MTE can be
proved. In the following, Z is the
random variable corresponding to
the time required by a sequence
described by the MTE. F

z
(z) is the

probability distribution function
of Z and f (z) is the probability
density function. For brevity, we
will omit writing the message type
elements of the MTEs, keeping only
the time and branch parameters.

Theorem 1

For the MTE (ab) the following
are true:

rrF
z
(z) =

6 { W'Y^xdy (1)

f
2
(z) = f fjxi«) f^Cz-xJdx

= f
a
(z) * f

b
(z)

If a and b are independent:

(2)

E[z] = E[a]+E[b]

Var[z] = Var[a]+Var[b]

(3)

(4)

73

Proof:

z = a+b from E.l (5)

Var[z] = E[z
2

]
- E[z]

2

= pE[aH + qE[b
Z

]
- E[z]

£

From probability theory, the

theorem results are properties of a

random variable which is the sum of
two random variables.

Theorem 2

For the MTE pa x qb where a and

b are independent and q = 1-p, the
following are true:

F
z
(a) = pF

a
(z) + qFb (z)

f_(z) = pf (z) + qf.(z)

(6)

(7)

Theorem 3

For the MTE (pa) the following
are true:

P
z
(z) = / f

z
(x)dx

f
z
(z) = L

-1

J^pT (s)
a

(15)

(16)

-1
where L [x] denotes the

inverse Laplace transform of x and
f
a
*(s) denotes the Laplace

transform of f (z)

E[z] = pE[a] + qE[b] (8)

2
Var[z] = pE[a

2
] + qE[b

2
]

- Efz]

= p(Var[a] + Eta]-) +

q(Vatfb] + E[bP) -

E[z]
Z

(9)

Proof:

Let I be the binary valued
branch parameter

Etz] = (£) E[a]

q
(17)

Var[z] =£Var [a] + p~ E [a]

q q* (18)

Under the assumptions that:

1. p is stationary, independent
of all a

2. all a are independent,
identically distributed

Proof:

P[z<Z] = P[z£a| I=1]P[I=1]
+ P[z<b|I=0]P[I=0]

= pF
a
(z) + qFb (z) (10)

by definition,

f
z
(z) =F

z
'(z)

= pf
a
(z) + qf

b
(z) (11)

Etz] = X z(P^(z) + qf
b
(z))dz

'z * a

pE[a] + qE[b] (12)

Etz
2

] = fz z
2
(pf

a
(z) +qfb (z))dz

pE[a
2

] + qEtb
2

] (13)

N
Z = Y a.

i
i=0

(19)

where a^ = a are i.i.d. N is a
random variable with density
fN

(i) = p q

f
Z
(2) = I [f^tzllp^

2
i=0

3
(20)

where f,
1
(z) is the i-fold

convolution of f (z)
a

7A

f
z
*(s) f tf *(s)iVq

1=0
a

q (21)

1-pf (s)
a

so

f
2
(2) = L

-1
(22)

l-pf
a

(s)

More generally, note that

f *(S) = T [f *(s)]
1
P[N=i]

2
i=0

a

defines the Z-transform of N,

so, f *(s) = N(f (s))
z a

E[N] = q i_ np
n=0

E [N
2

] = q E n
2
p
r

n=0

= Pd+P)

_2

(23)

(24)

(25)

VarfN] = p(l+p) - £ = L_(26)

2 2 2
q q q

E[Z] = E [E [a|N]] = E [N] E [a]

= (p/q)E[a] (27)

Var[Z] = E [Var [A|N]] +

Var[E[Z|N]]

E[N]Var[a] +

E[E[Z|N]
Z
1 -

E[E[Z|N]r

E[NlVar[a] +

E [N E [a] 1 -

E[N]^E[a]
z

E[NlVar[al +

E[N^lE[a], -

E[N]
z
E[a]^

= E[N]Var[ai +
9

E[a]
/
(E[N

Z
]

- E [N])

= E[N]Var[a] +

E[a]^/ar[N]

= £ Var [a] + £_E[a]
(28)

These theorems provide the
tools for evaluating an MTE without
concurrency. See figure 2 for an
example MTE evaluation.

Obviously, no such theorem can
be given for concurrent MTEs in the
absence of specification of the
scheduling algorithm to be used.
The number of processors in the
system will clearly affect the
length of time required for the

completion of the concurrent
sequences. Total required
processing time, of course, is
determined just as in the case of
concatenated sequences — it is
merely the sum of the time
parameters. The more interesting
problem of determining the required
real time for the behavior
represented by the MTE is more
difficult. To determine the actual
time the sequence will take
requires more information than is

contained in the MTE. That is, the
number of processors available in

the system and the scheduling
algorithm must both be known. In
addition, if the scheduling
algorithm is not sufficiently
simple, a closed form solution may
not be obtainable.

Previously, time parameters for

a shuffled (concurrent) sequence

were combined by a "con" function,

i.e., txA & t^B = con(t, ,t^) (A& B)

.

The value of the function depends

on the number of processors
available. Each parameter
represents a required amount of
processing time which can proceed

concurrently with the processing
represented by all other
parameters. Two special cases are

readily apparent. If there is but

a single processor, the time
required to complete all the

75

P (P^2 x
^i

fc

i)
x <J (P2 fc

4
x c

?2 t3
)

where p = 1 - q is the probability assiciated with the link matching a
message M with a receive request from process A. This probability will usually
be 1/ (number of possible receives) = 1/2.

E[Z] = p (pjEty + qjElt^)

+ q (p
2
E[t

4
) + q2

E[t
3
l)

Var[Z] = E[Z
2

]
- E[Z]

E[Z
2]=p (p

1
E[t

2

2
] + q^ftj

2
]) + q (p2

E [t
4

2
] + q2

E t^
2
]

)

Figure 2. Evaluating the MTE Corresponding to Figure 1

processing is the sum of the
function parameters, regardless of
the scheduling algorithm used. If
there are at least as many
processors as concurrent
activities, then the time required
to complete the sequence is simply
the maximum value of the function
parameters. This will be true for
all scheduling algorithms which
satisfy the PPML requirements for

schedulers.

For the case of a sufficient
number of processors, the following
theorems hold:

Theorem 4

For the MTE a A b = con(a,b)
the following are true if a and b
are independent:

Z = con(a,b) = max(a,b) (29)

F
z
(z) = F

ab
(z,z)

= F
a

(z) F
b
(z) (30)

f
z
(z) = f

a
(z)F

b
(z) + f

b
(z)F

a
(z)

(31)

Proof:

From the definitions of Z and
the distribution functions F and
F

a

Theorem 5

For the MTE (a)
+

the following
are true:

Z = max (a,, a-,..., a)

n a value of N
n

(32)

F
z
(z) -a

l-pF
a
(z)

(33)

(34)

(l-pF
a
(z))'

for a. independent, identically
distributed random variables

Proof:

F
zn

(z) = P[max(a
1
,...,a

n
)<z]

= Fjz) n
a

(35)

SO
F
z
(z) = Z F

zn
(z)P[N=n]

n=0

= I F (z)
n
p
n
q

n=0

= q(__l)

l-pFa (z)

(36)

76

f
z
(z) = a f

z
(z)

CO

= q H (f (z) n F (z)
n-1

)p
n

n=0
a a

= qf
a
(z) pf n P

a
(2)

n"1
Pn.1

n=i

= w f
3
(z) (37)

(1-pFjz))
2

a

For cases other than the two
special cases (1 < number of
processors < number of processes)
there are no general results,
unless the scheduling algorithm is
given. Most scheduling algorithms
are too complicated for closed form
results, but a useful result to
obtain in many cases is the minimum
possible time required. For this,
there are usable results from
job-shop scheduling theory. In
fact, McNaughton's formula provides
the minimum time required to
complete a set of concurrent tasks,
given a set of processors.

McNaughton's formula

For m processors and n concurrent
processes,

min con(t,,t
2
,...,t)

=

maxd/ms t.,ma5c(t.)) (38)

7 3 3

in the case where any processor may
be preempted from any process at
any time and process switching time
is negligible.

By preemption it is meant that
any process can be interrupted and
resumed later without losing t^e
work done before the interruption .

The requirement that preemption be
allowed for the application of
McNaughton's formula is satisfied
in PPML systems by the independence
requirement of concurrent
processes. By definition, shuffled
sequences are produced by
concurrent processes and can,
therefore, proceed in any order, in

any number of sub-operations at a
time.

There is an algorithm for
scheduling processors to processes
which will realize the optimum
time. Unfortunately, it requires a
prior knowledge of the time
required by each sequence. In
multiprocessor computing systems,

the scheduling algorithm usually
implements some sort of round-robin
scheduling where each process gets
a little bit of processor time
every so often. In the case where
each process gets an equal amount
of processor time at a time (a time
slice) , the time to complete all
the processes (complete the
sequence of the MTE) approaches the
minimum as the value of the time
slice is reduced. The minimum
would, therefore, be reached when
each processor would execute a
single instruction from each
process in turn. Unfortunately, in
doing this, the assumption of
negligible process switching time
is usually violated.

Finally, the effects of
synchronization symbols must be
analyzed. Synchronization symbols
provide sequencing constraints on
concurrent activities. That is,
they force some part of a sequence
to occur after some part of another
otherwise concurrent sequence.
Consequently, the following lemma
holds.

Lemma 1 For the MTE

(t
x
A© t

2
B) A (t

3
C & t

4
D)

the following is true:

E[Z] = E[con(t1# t
3)

+con(t
2
,t

4
)]

= E[con(tlt t3)] + E[con(t
2
,t

4
)]

(39)

Var [Z] = Vartcorft, ,t.)] +

Var[con(t:,,t
4
)] (40)

If preemption is not allowed, the

equality of McNaughton's formula
becomes greater than or equals.

77

Proof ;

The proof follows from the
definition of synchronization
symbols.

Synchronization symbols often
arise in MTEs to express a
relationship between two sequences
which are each repeated
indefinitely. In+ the sequence
(p e a A)* A (£ b B) > the intent
of the © symbol is to relate the
number of B sequences to the number
of A sequences. The dagger
operation, in addition, allows the
B sequences to proceed
concurrently, once they begin.
Graphically, this situation would
look like figure 3.

Analyzing such a sequence is

fairly difficult. The required
time again depends on the number of
processors and the scheduling
algorithm. The minimum required
time can be obtained, however, by
theorem 3. That is, the time
required to produce the iterated
sequence of a's is clearly the
minimum time of the sequence. This
minimum will only be obtained when
there are a sufficient number of

processors available to allow the A
sequence to proceed continuously
and to complete each B event before
a new B event for which there is no
available processor occurs.
Needless to say, this is not a very
general result. If the A sequence
is a short one in comparison to the
B sequences, then an approximation
to the required time is given by
con(nTA,TB

1
,...,TB

n) where n = the
number of iterations of the A-loop.
It appears that very little of a
general nature can be said about
indefinite sequences containing
synchronization symbols.

4. System Analysis Using
MTEs

The only performance result
directly available from evaluating
an MTE is time required to complete
the sequence. In theory, at least,
an MTE is available for any
beginning and ending state pair of
a system. Thus, the time required
for a system to change from one
state to another can be obtained.
Most of the standard performance
measures are derivable from the

a a a a a a
+ + + + + + etc.

Figure 3. Possible Timing for the Sequence (p @ a A) * A (& bB)
+

78

state transition time: for

instance, response time, service

time, throughput. It must be

admitted that obtaining these
measures is not especially easy

using MTEs. In fact, for a measure

like queue length at a congestion

point (a link process) , MTE

analysis gives very little help.

The response time of a system

is apparently well suited to MTE

analysis because response time is

merely the time elapsed between two

messages — a START message and a

DONE message. This value is

provided directly by evaluating the

MTE. However, the context of the

PPML system and the MTE may
complicate its determination. The

main requirement for producing an

MTE, given a PPML system satisfying

the appropriate restrictions, is

the specification of a beginning

and ending state. These two states

must be given explicitly for the

MTE to be derived. In many
applications, it is not realistic

to completely specify the beginning

and ending states. For instance,

in the case of a system with
several program processes which
represent users, the desired result

is the expected response time for

any one of the user processes
making no assumptions about the

states of the other processes. The

beginning and ending states of

interest would be the partial
states giving the process of

interest's START and DONE messages

and Other processes in arbitrary
states. From such state
descriptions, MTEs cannot be
derived. The best that could be

done is to specify all possible

states of each other process as an

alternative in the beginning and
ending states.

However, MTEs can be used to

obtain interesting interevent times

in a system by using other
knowledge about either the events,

or the system, or both. For

instance, an MTE can be derived for

the state "each process sends a

START" and "each process received a

DONE". By making appropriate
assumptions about the number of
processors, homogeneity of

processes, etc., the response time

in general may be inferred.

As an example of the use of an
MTE in system analysis, consider
the PPML system in figure 4. For
the state transition corresponding
to "both processes start" to "both
processes finish" we can write the
MTE as:

(p
x

a @
1
b &

2
)*c A

(p2
d & 3

c e. A f ^
(^1^2 X ^3*V
Again, we have left out the

message types, since our only
interest here is in evaluating the
time required. Notice also that

pi
=1_q

i-

Before evaluating this MTE, we
can point out that the action of
process S has become distributed
into the two terms. The fact that
b and c are both performed by the
same process gives rise to the
presence of the synchronization
symbols. The third term in the
MTE, consisting only of
synchronization symbols, causes
either b or c to occur, but not
both at once. It is readily
apparent that the presence of this
synchronization will complicate the
analysis. None of the previous
theorems can handle this
expression.

The measure of interest here is

response time, i.e., how long will
it be from the start of a process

until it sends the done message to

its link process. The time
required by the entire MTE is not
really of interest to this
question, since that represents the
time required for both processes to

respond. In order to determine the
response time, we really only need
to evaluate the term corresponding
to the process of interest, and the

interference effects with other
terms. For process 1 we just have

to evaluate (p^^ a <§> ^ b &
2
)*c and

the interference with process 2.

Determining the interference
between the two terms is a
non-trivial problem. If we assume
there is a single processor which
is shared, the interference can be
determined by simply evaluating
each term and increasing the
elapsed time of both terms by the
shorter of the two. This, however,

79

loop:

done:

Process 1

If <q
1
> THEN GO TO done;

SET I, <a>;

SEND L
g

;

RECEIVE L
1 ;

GO TO LOOP;

SET D
1

<c>;

SEND L^;

END;

loop:

done:

Process 2

If <q
2
> THEN GO TO done;

SET I
2

<d>;

SEND L
g

;

RECEIVE L
2 ;

GO TO LOOP;

SET D
2

<f>;

SEND 1^2?

END;

Process S

loop:

Rl

UNLESS I
1
GO TO p2;

RECEIVE L
g

;

p2:

SET C
x

;

SEND L^;

GO TO LOOP;

SET C
2

<c>;

SEND L
2

;

GO TO LOOP;

END;

Figure 4. An Example PPML System

80

is quite a restrictive assumption.
Particularly at low levels of a
system, a processor sharing
assumption is often not
appropriate.

If we assume a multiprocessor
environment, things get more
complicated yet. In fact, this

system could be represented by a

multiple-class, closed queueing
network. By assuming exponential
(or Erlang) distributions for the
time parameters, we could solve
this problem by using queueing
theory. Without those assumptions,
there is no general solution
technique.

We can make the observation
here that PPML systems bear a close
resemblence to closed queueing
networks, a fact that will not have
escaped the reader familiar with
queueing networks. However, while
the example can be translated into
a network of queues, PPML systems,
in general, include a larger class
of systems. This is because
processes (nodes) generate messages
(transactions) both in response to
messages received and
spontaneously. There is not
necessarily a one-to-one
correspondence between messages
received by a process and messages
sent by it. It should be apparent
that any queueing network, open or
closed, can be realized by an
equivalent PPML system. Therefore,
PPML systems, and MTE systems, are
a superset of systems representable
by queueing networks.

5. Limitations of MTE
Analysis

As has been shown, formal
analysis of a PPML system by MTEs
consists of three parts: deriving
the MTE, evaluating the MTE, and
relating MTE results to the
operation of the system. Each of
these three steps imposes
restrictions on the kinds of
systems that can be analyzed. In
the derivation process, several
substantial restrictions must be
imposed.

The most important restriction
placed on PPML systems for deriving
MTEs is the requirement that all
links use a random matching
algorithm (that is, each link is a
bag) . The consequences of this
requirement with respect to the
behavior of analyzable PPML systems
is a subject of current research
(see [2]). it is obvious, though,
that such a restriction may require
awkward or inelegant system models
for many systems, even though those
systems' behaviors are still
realizable under the bag
restriction.

Another important limitation of
the derivation process is the
requirement that beginning and
ending states be completely
specified. The MTE simply cannot
be derived if the two states are
not completely specified, which is
often impractical.

The final restriction on the
derivation process is the
complexity of the process itself.
It is extremely difficult to derive
MTEs and manipulate them into
useful forms. This situation is
not hopeless, however, as research
on MTE derivation continues. New
derivation techniques may be found
which will work for more and more
PPML systems.

In the evaluation phase of MTE
analysis, most of the limitations
are imposed by the probability
arguments of the theorems. The
main requirement is independence of
the random variables which
represent the performance
parameters. Depending on the level
of description of the PPML system,
this may or may not be an
unrealistic assumption. At high
levels, independence is often a

realistic assumption because the
various performance parameters
represent operations which are
fairly disjoint. At lower levels,
the performance parameters become
less independent.

For theorem 3, the looping
theorem, to hold, the time
parameters must be stationary and
independent of one another. That
is, the time required going through

81

the loop the first time cannot
affect the time required to go
through the loop subsequent times.

This is not an unrealistic
assumption, but the theorem also
requires that branching
probabilities be stationary. This

means that the probability of
exiting the loop does not change
with the number of times the loop

is repeated. In many cases this is

an unrealistic assumption.

For determining the time
required for concurrent sequences,

few tools are available. Although
McNaughton's formula gives the
minimum possible time for a set of
concurrent sequences, there are no

results which can be used to
determine the actual required time

given the scheduling algorithm.
This is precisely the question most
in need of answer for the
evaluation of many systems.

Likewise, there are few results

available for MTEs containing
synchronization symbols. If the
MTE contains simple synchron-
ization, lemma 1 may be applied,
but in the more complex cases
little help is available from the
evaluation rules. As we saw in

section 4, simple synchronization
can lead to complex evaluation
problems.

Finally, the application of MTE
results to system evaluation is not
direct. Care must be used in
determining the beginning and
ending states of interest and
ingenuity often must be applied in
relating the results to the
standard measures of performance.
Again, there is no method for
determining any of the standard
performance measures for all
systems.

6. Conclusions

The PPML and MTE modeling
techniques show considerable
promise for both the behavioral and
temporal analysis of a system. The
method, however, still requires a

good deal of development before it

becomes a useful tool. The main
areas requiring work are the
derivation of MTEs from PPML
models, which was not addressed in

this paper, and the evaluation of
MTEs. We presented several results
for evaluating MTEs, but we have
also seen the limitations of these
results when applied to real MTEs
generated from PPML models.
However, it is encouraging to note
the similarities between MTE
evaluation and other system
evaluation techniques, particularly
job-shop scheduling and queueing
network analysis. Results from
these other disciplines can be used
for MTEs.

7. References

1. Riddle, W.E., The Modeling and

Analysis of Supervisory
Systems . Ph.D. Thesis,
Stanford University, Computer
Science Department, March 1972.

2. Riddle, W.E., An Approach to
Software System Modeling,
Behavior Specification and
Analysis . RSSM/25 University
of Michigan, Department of
Computer and Communication
Sciences, July 1976. (To appear

in the Journal of Computer
Languages .

)

3. Sanguinetti, J.W. , Performance
Prediction in an Operating
System Design Methodology ,

Ph.D. Thesis, University of
Michigan, Department of
Computer and Communication
Sciences, 1977.

4. Brzozowski, J. A., Derivatives

of Regular Expressions, Journal
of the ACM, Vol. 11, No. 4, Oct.
rm:

5. Elmaghraby, S.E., An Algebra
for the Analysis of Generalized

Activity Networks, Management
Science , Vol. 10, No. 3, April
1964.

6. Beizer, B., Analytical
Techniques for the Statistical

Evaluation of Programming Time,

AFIPS Conference Proceedings ,

Vol. 37, Fall 1970.

7. Graham, R.M. , Performance
Prediction in Software
Engineering in Lecture Notes in

Computer Science , 30, Springer-
Verlaag, ly/b.

82

PERFORMANCE EVALUATION WITH PETRI NETS

Y. W. Han

Bell Telephone Laboratories
Napervi Me, I I I inois 60540

Petri net- 1 ike models depict the concurrently of a system
precisely and concisely, and are especially suitable for modeling
distributed data processing systems. After expressing a system
by a Petri net- I i ke model, this paper suggests and discusses
methods to: (I) Identify system bottlenecks, (2) Derive the

maximum subsystem utilization of every subsystem, (3) Define
quantitatively a measure for the cost-effectiveness of a system,
(4) Formulate the "peakload" of a system, and (5) Calculate the
waiting time, maximum queue length, and average queue length of

every queue in a system.

Every transition (subsystem) in this study takes a fixed
amount of time to fire (activate), and only closed system are
considered. If the activation time of a subsystem is not fixed,
then the maximum, the minimum, or the mean activation time can
be used to provide insights into system performance.

Key words: Concurrency; bottlenecks; overload; peakload; waiting
time; queue length.

I . I ntroduct ion

Evaluating performance of a digital system is

difficult because of the complexity of the
system, interfaces among subsystems, inter-
action between hardware and software, and
changing system requirements and workloads.
According to the stages of a system and the
availability of data, simulation, analysis,
and measurement are used to predict system
performance, to identify bottlenecks, to
justify design decisions, and thus to help
derive design alternatives. To facilitate
performance evaluation, various models have
been widely used for either simulation or
analysis, such as queueing models, directed
graphs, and simulation languages. Recently,
Petri net-like models have been used for both
simulation and analysis,
verifying designs.

as wel I as for

A complete and flexible Petri net- I ike model
will be discussed. It is able to represent
all systems precisely and concisely. One
unique usage of this model is to support

a widely accepted top-down, hierarchical
design methodology. The spirit of this

methodology is to decompose the development
of a large system as multiple layers, namely,
requirements specifications, system archi-
tectural design, subsystem design, coding,
laboratory testing, field testing, installa-
tion, system updating, etc. Basically, the
process is hierarchical and a layer starts
only if all previous layers have been completed
or are well understood, and only if they are
all consistent. The Petri net- I ike model can
be used as a specification tool to specify
the system hierarchically. To verify all

available layers are consistent, system
designers have to predict the performance of

a layer. After modeling a system at a layer,

this paper provides an engineering, analytic
approach to predict system performance. In

case that certain results of a system are hard

to obtain analytical ly, it is always possible

to get their results by simulating the system

which is specified by the Petri net-like

model. The combination of simulation and analy-

sis is a powerful design and evaluation tool.

P3

A Petri net is a directed graph with two

types of nodes. Conditions are represented
by circles (O) called places , and events
are represented by bars (—) called
transitions . Arrows which connect transi-
tions to places or vice versa are called

links ,
edges , or arcs . The firing rule

for a Petri net is illustrated in Figure 1.

Places pi and p£ are the input places of

transition 1, and places P3 and p^ are

the output places. In turn, t^ is the

output transition of p^ and P2,and is

the input transition of P3 and P4.
Whenever every input place of a transition
contains at least one token, the transition
is enabled to fire . The firing of a transi-

tion removes a token from each of its input

places and adds a token to each of its

output places. Figure 1(a) shows the

marking of tokens before transition 1 fires,

and Figure 1(b) shows the marking after

transition 1 fires.

It has been shown that Petri nets with

negation^, illustrated later in Figure

2(b), have the same representation power of

Turing machines, which are able to represent

all systems. We shall show that Petri nets

with imposed priorities on enabled transitions
can represent negation and therefore can

represent all systems. Figure 2(a) depicts
a Petri net in which place p inhibits
transition t^ if transition ta has

priority over tj-,. This is equivalent to

Figure 2(b) in terms of the relation
between place p and t^, which is a negation.
Thus, Petri nets with priorities can

represent all systems, and are a complete
model. Furthermore, the conciseness of

these nets make them applicable to real

system evaluation.

the current needs. Through the motion of

tokens, Petri nets or Petri net-like
models are suitable for simulating discrete
events. As queueing models, they can also
indicate system behaviors in equilibrium.
In fact, queueing theories should be extended
to Petri net-like models to overcome some of

the drawbacks of current queueing models,
such as:

• Nonequilibrium status is not considered
practically. In real-time systems there
are stringent time requirements on tasks.

A real-time system is said to be in an

overload condition with a given workload
when certain time requirements cannot be

fulfilled. An overload strategy is

the mechanism that coordinates the system
activities to resolve overload conditions
after an overload has been detected.
Overload strategies are certainly a

central issue for determining the system
capacity and are of major importance.
But we cannot use queueing theories to

evaluate an overload condition because
systems are not in equilibrium.

• A user (task) can occupy at most one

service station (hardware device).
Nevertheless, in a multiprocessor environ-
ment, several processors may simulta-
neously work on a task, e.g., Illiac IV.

5

• Every task is independent of the other

tasks in a queueing network. As a

result, some significant events in a

digital system network are not represent-
able by queueing networks, such as

the updating of multiple-copy data
distributed in different locations of a

network.

We have proposed a model which has a control

graph and a data graph. Control graphs
are Petri nets with priorities and show

precedence relationships. Data graphs show

data storage, transformation, and testing.

In a control graph, if a place has two or

more output transitions, then the transition

that is fired by a token in the place
depends on the testing result in the cor-

responding data graph. In this paper, only

control graphs are considered. Since the

distinctions between control graphs and

Petri nets do not affect the forthcoming
analysis, these terms are sometimes used

interchangeably for simplicity.

A Petri net itself is an uninterpreted
model. By adjusting to different applica-

tions, a system designer or evaluator can

flexibly interpret a token, a transition, a

place, and the firing of a transition to fit

These drawbacks can be alleviated by extend-

ing queueing theories to Petri net-like
models or by using Petri net-like simulation.

To relate Petri net-like models with queueing
networks, we interpret the physical meaning
of transitions, places, and tokens as follows:

Component

Transition

Place

Token

The number of

tokens in a place

Physical Meaning

Service station
(subsystem)

Queue

Task (or customer)

Queue length

Transition firing time Service time

84

This paper discusses some analytic results of

using a Petri not-like model for performance
evaluation. The frequency of activating a

service station, the identification of system

bottlenecks, and resource utilization are

presented in Section 2. The methods of cal-

culating waiting time, maximum queue length,

and average queue length for every queue of a

system are described and illustrated in

Section 3. To find the average queue length
we convert timed nets to state diagrams. The

conversion of nets or timed nets to state
diagrams is a way of simulating the nets.

Generalizing from the result of a Markov
chain, subsequently we propose a method to

decide the probability of a system's being in

a state of the state diagram.

2. TRANSITION FIRING FREQUENCIES, SYSTEM
BOTTLENECKS, AND RESOURCE UTILIZATION

2.1 Transition Firing Frequencies

The firing of a transition in the nets
removes a token from every transition input
place and adds a token to every transition
output place. Thus, the conservation of

tokens at a place p|<, as shown in Figure 3,

requires^

.

which limits the throughput rate of the
system. The throughput rate of a system is
the average number of tasks handled by the
system in a unit of time.

Theorem 1: Assume that is the time to

fire transition t^. Then the
bottleneck of a system with n

transitions is at transition
tj, iff fjTj = max (fiTj_,

f 2 T 2' •••> f n T n).

Proof: We shall prove it by contradiction.
Suppose fjTj = max (fjJi,

f2 T 2> '••> f nT n) and the
system bottleneck is at t^ with

f iTi < fjTj. Since ti is

the system bottleneck with a

service time T^, then by definition
transition ti can have an absolute
frequency of ±

Ti

Transition tj, therefore, has a

firing frequency of f, which

is impossible.
f • T •

'

The other direction of the proof
can be done similarly. Q.E.D.

Vk

m

i=l

where f y . and fx i

J=l J

denote respectively

the number of times the ith input transition
and jth output transition fire.

Let us call the preceding equation the con-
servation of token law in place p|<. Let fj

denote the number of times that transition j

fires relative to the other transitions.
Applying the conservation of token law to
every place of a net, we get a set of

simultaneous equations in terms of variable
fj. If a positive, nonzero solution exists
for every fj, then this solution determines
the relative transition firing frequencies.
Such a net is called consistent .

This paper is concerned only with consistent
nets. Readers interested in the details of
the the properties of consistent and incon-
sistent nets are referred to Han and Kinney.

6

2.2 System Bottlenecks

We have presented a method of determining
relative transition firing frequencies. The
following theorem identifies system bottle-
necks. A system bottleneck is a transition

For instance, the bottleneck in Figure 4 is

t£, because fj_ : f2 : - 10:7:3, and
f l Tl : f 2 T 2 : f 3 T 3 = 10:14:12. The numbers
between pj and t£, and between pi and are
respectively the probabilities that the

tokens in pj^ will fire t2 and t^.

The identification of system bottlenecks is

of central importance in improving system
performance. If only one bottleneck exists,
either parallel processing of the bottleneck
or subdividing it into subunits will remove
it and, using theorem 1 again, will identify
the transition that is the new bottleneck in

the improved system. Suppose we want to add
a new transition, t^, to a net to provide
more features in the existing net. We cer-

tainly do not want f^T^ > fjTj, or t|< becomes
a new bottleneck and reduces the throughput

2 . 3 System Utilization, Peakload, and

Cost Effectiveness

If a transition is a bottleneck, then at a

peakload this transition activates (fires)

continuously. In other words, the transition
is utilized 100 percent. Assume that tj

is the bottleneck; then the maximum utiliza-
tion of a transition, t^, is

iiji X 100%
1

J
1"

J

85

The preceding formula is true because:

• Transition fires Tifj units of time,
while the bottleneck tj fires Tjf j units
of time.

• At a peakload or overload, the bottleneck
fires continuously.

This formula leads us to derive the "peakload"
of a system. First, let us define peakload.
When the workload of a system is increased,
the throughput rate and the system utiliza-
tion will be increased until the workload
reaches the peakload (see Figure 5). In

other words, the peakload of a system is the

minimum workload it takes to reach the

maximum throughput rate or system utilization.
However, in reality, the curve of system
utilization versus the workload is only
asymptotic to the one shown in Figure 5, if

there are variances in service times and/or
there are branches in the system. In these
cases, it is almost always possible to have
a small increment in system utilization by

increasing the workload. Thus, the peakload
of a closed system is defined to be the

minimum number of tokens (tasks) which
ensures the emergence of bottlenecks
constantly. On the other hand, the turn-
around time of a system is a monotonically
nondecreasing function of the workload. For

a real-time system, there are stringent time

requirements. Therefore, it is of practical
importance to find the peakload of a given
system.

Since we already know the maximum utilization
of every transition, then the peakload is the

minimum number of tokens (load) it takes to

make every transition reach that utilization.
To activate a transition, each of its places
must have at least one token. Therefore, the

minimum number of tokens to make a transition
busy seems equal to the number of its input

places. However, a token in various places
may have different weights. As an example,
in Figure 7, a token in place p^ is equal
to a token in P2 and a token in P3. The

following method specifies how to determine
the weight of every place in a net.

If we assume that the weight of a token in

a place p-^ is Wj and that the firing of

every transition conserves the total weight
of a system, we then get a set of simulta-
neous equations in terms of Wj_. If a set

of positive integer solutions exists for

every Wj_, which is the weight of pj,
then the net is said to be invariant .

Otherwise, the net is variant . This paper
is concerned only with invariant nets.

Invariance is a dual property of consistency.

The properties of invariant nets and their
relationship to consistency are documented
in Han and Kinney.

°

Figure 7 is an example of an invariant net in

which wj=2, W2=l, and W3=l. With the

obtained weight of a token in every place and
the derived maximum resource utilization of

every transition, the peakload of a system is
expressed in terms of weighted tokens as

T
J
f
J

n

where Wj_ = z wji, and wjj is the weight of

j=l
a token in an input place of transition t^,

assuming that t-^ has n input places. Wj^,

thus, is the minimum number of weighted
tokens it takes to Tj_f^ percent of its time

in firing and is idle the rest of its time.

In a simple example (Figure 8), the peakload
is two tokens, which are enough to maximize
the utilization of all the transitions.

If c-[, the cost of using transition t^,

is known, the cost effectiveness of a

system is defined as

(zciJTjfj

This is a yardstick for measuring the cost
effectiveness of a design.

In this section, consistent and invariant
nets have been defined. The methods of

determining the existence of consistency and
invariance have been specified. By determin-
ing the consistency of a net, the relative
transition firing frequencies can be obtained
if the net is consistent. Given the obtained
relative transition firing frequencies and
the transition firing times of a net,

theorem 1 can specify the characteristics of

system bottlenecks and thus identify them.

Subsequently, the maximum utilization of a

transition can be derived. If a net is

invariant, the weight of a token in every
place of the net can be found. From the
derived maximum utilization of transi-
tions and the weights of places, the peakload
of a system is derived. Later the cost
effectiveness of a system is also defined,
based on the concept of the maximum utiliza-
tion of a transition.

86

In Section 3, we shall discuss and derive
the waiting time and the maximum and mean
queue lengths of any queue in a system.

3. WAITING TIME, MAXIMUM QUEUE LENGTH,
AND AVERAGE QUEUE LENGTH

Little 10 states that the average number of

tasks (also called "customers" or "input")
equals the average arrival rate of tasks to

that queue times the average time a task
spends in that queue. To fit our terminology,
we rephrase the statement as follows: the

number of tokens in a place equals the average
arrival rate of the tokens times the average
time a token spends in the place; that is.

Ni = Xi Ai

where Ni = the average number of tokens
in place i, or the average queue
length

Xi = the arrival rate of the tokens

Ai = the average time a token stays in

place; this is equal to the sum of
waiting time and of service time.

With Little's result, we can derive the third
variable after two out of the three variables

(Ni, Xi, and Ai) are known. In the previous
section, ways of determining relative transi-
tion firing frequencies and system bottlenecks
are described. At a peakload, the absolute
frequencies of bottlenecks are decided by

their transition firing times. In other
cases, the first absolute frequency needs to

be measured. From one absolute firing fre-
quency of a transition and from the relative
transition firing ratios (which were pre-
viously called relative firing frequencies),
the absolute transition firing frequencies
are obtained. The arrival rate of a place

Pi is obtained from the sum of the firing
frequencies of its input transitions.

To find the maximum queue length and minimum
queue length of a place in a net, we will
first simulate a net as a state diagram. A

state in the state diagram is identified by,

or partly by, the number of tokens in each
place of the net. Scanning over all the
states, we easily find the maximum queue
length and the maximum number of tokens of
each place.

However, to obtain the average queue length,
it is necessary to calculate the probability

of the system's being in every state of the
state diagram. We shall propose a way to cal-
culate the probability and thus obtain the
mean queue length. By using Little's result,
together with the obtained mean queue length
and arrival rate discussed previously, the
average time a token (task) is in a station
can be derived as well as the waiting time.

First, let us consider the states of a net
and of a timed net.

3.1 States of a Net

If a net is in a state , then the next state
depends only on the current state and is
independent of the path by which the net
comes to the current state. Given a net,
its state is expressible as the distribution
of tokens in the places. A transition can
fire if one or more tokens exist in each of
its input places. After firing a transition,
a token is removed from each input place and
added to each output place. Figure 8(b) is
a state diagram representation of Figure
8(a). In Figure 8(b), a state is expressed
as (ni, n£), where ni and n2 denote
respectively the number of tokens in pi
and p2. The details of the transformation
are given in Han,° which is a straight-
forward extension of Karp and Miller's rooted
tree. ^ From the diagram we can see the
maximum queue length is two for both places.

Firing a transition results in the occurrence
of certain actions. In reality, the firing
of a transition takes time. Throughout this
paper, for simplicity, we assume that the

firing of a transition consumes a prespec-
ified, fixed amount of time. When a transi-
tion is enabled and then decides to fire,

one token from each of its input places is

committed to the transition for that

fixed amount of time. Subsequently, the

tokens will be removed from the input places
and one token will be added to each output
place. This action of removing and adding
tokens consumes no time.

Considering transition firing times, we

observe that certain transition firing
sequences do not occur. But for the retained
firing sequences, the distribution of tokens
alone is not enough to represent the states.
A state of a timed net is expressed as the

combination of the token distribution in the

places and the times that have been spent in

each transition. As an example, Figure 8(d)

is the state diagram representation of

Figure 8(c). In Figure 8(d), a state is

denoted as (ni,n£) <mi,m2,nri3>, where ni
is the number of tokens in place i, and nij

is the time spent firing transition ti.

87

The number on an edge from node i to node j

in Figures 8(c) and (d) is the probability
that the next state will be in node j when
the current state is in node i.

For a token in a place that has two or more
transitions, as in place p^ in Figure
8(c), the transition that is fired depends
on a data test in the corresponding data
graph. 6 For simplicity, we assume that the

data test consumes a negligible amount of

time in this example. Because the data
test determines the paths of a token, two

tokens in place p in Figure 8(c) do not

guarantee that transitions t^ and t 2
will activate simultaneously. In Figure
8(d), 0+ is positioned in to indicate
that a token will fire transition t^.

3.2 Probability of Being in a State

To calculate the average length of a gueue,

we need to consider the probability of the

system's being in every state. In general
this process is quite involved. We shall

discuss the simplest case first, using the

example in Figure 4. For ease of discussion,
we have numbered the states in Figure 8(d)

and have redrawn it as Figure 8(e). In this

special example, the system stays in each
state for one unit of time, coincidentally

.

This system also has the Markov property:
the probability of being in the next state

depends only on the current state.

Let us define

tt 2 = the probability that the

system is in state i

n = the probability vector

n = ^l,Tr2» 1T 3> ir 4' 1T 5» ir 6' ir

7]
in the example. ^

m^j = the transition probability
moving from state i to state j

M = the transition probability matrix

M =
(mij]

In this example, shown in Figure 4(e),

0 0.5 0.5 0 0 0 0

0 0 0 0.5 0 0.5 0

0 0 0 0 0.5 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

It is certain that

ir i+ir 2+if 3+u 4+tt 5+ir 6+ir 7 = 1

Using the property of a Markov Chain,^
we know

n = n M

Solving the above simultaneous equations,
we obtain

ttjztt 2=113=0.2, ir 4=ir 5=ir £=tt 7 = 0.1

We shall use the example in F igure 4 to

illustrate the way to derive maximum queue
length, average queue length, and waiting
time

.

It is obvious from Figure 8(d) that the

maximum queue length (the maximum number of

tokens) in places 1 and 2 is 2.

In terms of the probability of being in a

state and the distributions of tokens in

every state, the average number of tokens in

a place is

Ni = Z nij 7T

j

where Nj = the average number of tokens in

.place i

n-jj = the number of tokens in

node i at state j

it j e the probability of being
in state j.

In the example shown in Figures 8(d) and (e)

tt2 = tt2=T3=0 . 2
,

ir^=TT5 = ir£
|

=Try = 0.1

Nj_ = 1x0.2+2x0.2+2x0.2+1x0.1+1x0.1+1x0.1+1x0.1
= 1.4

N 2 = 1x0.2+0x0.2+0x0.2+1x0.11+1x0.1+1x0.1+1x0.1
= 0.6

88

From the states in Figure 8(d), it is

observable that the system is not at a

peakload. Also, in general, the calculation

of the probability of being in a state is

not so straightforward. We therefore

generalize from the result of a discrete-time
Markov chain to get the probability.

In an ordinary Markov chain, a system not

only has the Markov property but also is

assumed to be in a state for a unit of time,

taking no time to move from one state to

another. We shall generalize from this that

a system can stay in a state for a fixed

unit of time, as formulated in the following
theorem.

Theorem 2: Given the transition probability
matrix M of a system and s^,

the unit of time a system stays
at state i whenever the system
enters the state, then the

probability of being in a state
of the system can be obtained by

solving

Using the solution for an ordinary
Markov chain and substituting in the
above equation, we still get

H = n M Q.E.D.

The example shown in Figure 10(a) illustrates
the above theorem.

Theorem 2 states that we can convert
Figure 10(a) to an equivalent state diagram,
which is shown in Figure 10(b). And
Figure 10(b) is an ordinary Markov chain,
because the system stays in each state one
unit of time whenever a system enters that

state

.

Since ttj
j_

= irj_2 anQl ^21 = w 22 = ¥ 23 ^ n

Figure 10(b), when these equations are
plugged into the probability equations of
the system shown in Figure 10(b), it is

found that the following steps are a sim-
plified way to find the probability of being
in a state of Figure 10(a).

n = n M

2s i " i
= 1

where n = tq,^, ir n ,

and s-jffj is the probability
of being in state i.

Proof: It is trivial that Zs; = 1.

We shall prove n = n M. We can
expand state i into Sj substates,
namely states il, i2, ia with
a = s^. Let the input edges to

state i in the original state
diagram be the input edges to state
il; il has a probability of 100

percent to go to state i2, and i2

has a probability of 100 percent to

go to state i2, and i2 has a prob-
ability of 100 percent to go to

state i3, etc. State ia keeps the

same output edges of state i as in

the original diagram. Figures 9(a)

and (b) show respectively state i

in the original state diagram and
the diagram after expansion. We

expand other states similarly.

The probability of being in state 1 is 2^^.

The probability of being in state 2 is 3ti 2

•

Let n = f ir 2 , tt 2~1

M =^3/4 1/4

Then

2tt 2 + 3tt 2 = 1 (1)

n = n M (2)

Solving (1) and (2), we get

2ir i = XX'
3lT2 =

11

After the expansion, the system
becomes an ordinary Markov chain,
i.e., it stays in a state for a unit

of time. Because of the way we

expand the states, obviously

Note also that theorem 2 can be extended
easily to cover the cases that require time

to traverse certain edges in a diagram.

These cases will occur for transitions whose

firing times have variances.

Til = *i2 ia

89

4. SUMMARY

We have introduced a complete Petri net-like
model suitable for specification, simulation,
and analysis of a system or a design. Based
on this model, we have discussed system
bottlenecks, resource utilization, peakload,
and cost effectiveness of a system.

We have also introduced a way of converting
a net or a timed net to a state diagram.
A method of calculating the probability of

a system's being in a state of a state
diagram has been suggested. By this method,
we can obtain the average length of any
queue in a system. The relative activat-
ing frequency of a transition in a net

depends on the topology of the net and is

calculable. Thus, if one absolute activating
frequency of a transition is known, then the

absolute frequencies of all the other
transitions are known. Hence, the arrival
rate of tokens to a place that is equal to

the sum of the absolute firing frequencies
of the input transitions becomes available.
Using Little's result with the obtained
average queue length and the arrival rate,

we get the average time a user (token)

stays in a queue (place) for each queue in

a system.

REFERENCES

1. J. D. Noe and G. J. Nutt, "Macro E-Nets
for Representation of Parallel Systems,"
IEEETC , Vol. C-22, No. 8, August 1973.

2. A. Ellis, "Consistency and Correctness
of Duplicate Data Base Systems," Proc.

6th ACM Symposium on Operating Systems
Principles, November 1977, pp 67-84.

3. Y. W. Han, "An Approach of Program
Documentation and Data Representation,"
Proc. 6th Texas Conference on Computing
Systems, November 14 and 15, 1977,

University of Texas, Austin.

4. Y. W. Han and W. L. Heimerdinger,
"Theory of Fault Tolerance," 1977 Final

Report, Contract No. N00014-75-C-0011

,

Prepared for Office of Naval Research,
Arlington, Virginia 22217,

December 1977.

5. G. Barnes, R. Brown, M. Kato, D. J.

Kuck, D. Slotnick, and R. Stokes, "The

ILLIAC IV Computer," IEEETC, Vol. C-17,

1968, pp 746-757.

6. Y. W. Han and L. L. Kinney, "Petri Net

Reduction and Verification," IEEE

Repository R77-221, 1977.

7. T. Agerwala, "Towards a Theory for the
Analysis and Synthesis of Systems Exhibiting.
Concurrency," Ph.D. Thesis, The Johns Hopkins
University, Baltimore, Maryland, 1975.

8. Y. W. Han, "Applying Graph Theory Results for
System Fault Analysis," Proc. Int. Computing
Symposium, December 27-29, 1977, Taipei,
Republic of China.

9. C. Ramchandani, "Analysis of Synchronous
Concurrent Systems by Petri Nets," MAC TR-120
Ph.D. Thesis, M.I.T., February 1974.

10. L. Kleinrock, "Queueing Systems," Vol. I:

Theory , New York, John Wiley 4 Sons, 1975.

(a) TRANSITION 1 BEFORE (b) TRANSITION 1 AFTER
FIRING FIRING

FIGURE 1 PETRI NET FIRING RULE

FIGURE 2 (a) NEGATION

PLACE p

O
JL_t,

FIGURE 2 (b) NEGATION

90

F X| f x m SYSTEM

FIGURE 3 CONSERVATION OF TOKEN LAW

FIGURE 4 AN EXAMPLE FOR THE
IDENTIFICATION OF BOTTLENECKS

FIGURE 7 WEIGHTS OF A TOKEN IN
DIFFERENT PLACES

PEAKLOAD LOAD
FIGURE 5 SYSTEM UTILIZATION VERSUS

WORKLOAD

P|

FIGURE 8 (a) A PETRI NET

(0,2)

P 2

FIGURE 8 (c) A TIMED PETRI NET

91

(1,1)

<0,0,0>

FIGURE 8 (d) STATE DIAGRAM FIGURE 10 (a) A TIMED MARKOV CHAIN
OF FIGURE 8 (c)

FIGURE 9 (a) ORIGINAL DIAGRAM FIGURE 10 (b) THE MARKOV CHAIN AFTER
EXPANSION

FIGURE 9 (b) DIAGRAM AFTER EXPANSION

92

CONTROL-THEORETIC APPROACH TO
COMPUTER SYSTEMS PERFORMANCE IMPROVEMENT

Rajendra K. Jain

Digital Equipment Corporation
Systems Performance Analysis

Maynard, MA 01 754

The paper presents arguments in favor of applying modern
control-theoretic techniques like stochastic filtering, estimation,
prediction, and time series analysis, etc., for performance
optimization. It is argued that the queueing theory, which has been the
most commonly used tool for computer systems modeling and performance
studies, is limited in its scope due to its steady-state nature.
Further improvement in performance can be obtained by dynamic
optimization. Therefore, control theory provides a promising approach
for performance improvement. A general methodology for formulation of

operating systems resource management policies using this approach is

presented. The methodology is illustrated with an example of CPU

management policy.

Key words: Control theory; CPU scheduling; memory management; modeling;
operating systems; performance; queueing theory; resource allocation.

1 . Introduction

This paper supports control theory as a

tool for dynamic optimization of computer

systems performance. In spite of a few

successful applications of control theoretic

ideas to computer systems performance

improvement, this approach has not yet

become very popular. Although many modeling

techniques have been proposed in the past,

queueing theory is probably the most

extensively used technique for evaluation

and modeling of computer systems. It is a

good design and static analysis tool.

However, it provides little run time

guidance. For dynamic (run time) guidance

we need to exploit modern control-theoretic

techniques such as state space models,

stochastic filtering and estimation, time

series analysis, etc.

The performance of a computer system is

measured jointly by that of its hardware and

its system software, i.e., operating system.

The operating system controls the allocation

and use of hardware resources such as

Central Processing Unit (CPU), main memory,

secondary storage, I/O devices, and files

etc. Thus a prerequisite to designing a

high performance system is to design high

performance resource management policies.

In this paper we first argue why the

control-theoretic approach seems to be a

promising approach for performance

improvement and what are the limitations of

the classical queueing- theoretic approach.

We then propose a general control-theoretic

methodology to design optimum performance

resource management policies. The

methodology is illustrated with an example

of CPU management policy.

93

In order to see the usefulness of
control theoretic techniques, we need to
first see what an operating system actually
is. The two classes of analysts: the
control theorists, and the queueing
theorists view it differently. These two
views are now described.

•

2. Control-theoretic View of an
Operating System

For a control theorist, an operating
system is a set of controllers which
exercise control over the allocation of some
system resource. The goal of each
controller is to optimize system performance
while operating within the constraints of
resource availability.

Figure 1: Control- theoretic view
of an operating system

Figure 1 shows some of the components
of an operating system. The Controllers are

represented by circles. The "load
controller" controls the number of jobs
allowed to log in. The job controller (job

scheduler, or high level dispatcher)
controls the transfer of jobs from the

"submitted" queue to the "ready" queue.
This decision is based upon the availability
of resources like memory, magtapes, etc.

The CPU controller (task dispatcher, or low

level scheduler) controls the allocation of

the CPU. It selects a task from the set of
ready tasks and allows it to run. The
paging controller (page replacement
algorithm, or memory management algorithm)
controls the transfer of pages from virtual
memory (disk or drum) to primary memory, and
so on.

The control components of an operating
system are not much different from those of
other systems, except probably, in that they
are non-mechanical. Therefore, there is

much that can be gained from control theory
in the design and modeling of these
components. Unfortunately, very little
control theory has been used for this
purpose so far. Compared with the highly
developed theory of control systems, most
control algorithms used in operating systems
today are "primitive".

3. Queueing-theoretic View of an
Operating System

Most analytical models of computer
systems used today are queueing-theoretic.
From a queueing-theoretic viewpoint, each
controller of the operating system is a

server. Thus, an operating system is a

queueing network. One very popular queueing
model, called "Central Server Model", is

shown in Figure 2.

TERMINALS

|

CENTRAL SERVER.

Figure 2: A queueing-theoretic
view of an operating system

In this figure, circles represent servers
and rectangles indicate the location of

94

queues. Such queueing models have been used
to explain many phenomena occuring in

computer systems [6] . Typical questions

that have been answered using this approach
are the following :

1. What is the average throughput?
2. What is the average utilization of the

CPU, I/O devices etc.

3. What is the average response time?
4. What is the bottleneck in the system

(would a higher speed disk do better)?
5. What is the optimal degree of

multiprogramming?

A vast amount of literature has been
published to answer these and similar
questions under a variety of assumptions,
restrictions and generalizations. For
chronological surveys and bibliographies see
[15,18,11,14].

In spite of the wide applications of
queueing theory, there are some inherent
limitations to its usefulness.

4. Limitations of Queueing Theory

Queueing theory represents only average
statistics. It tries to represent a number
of jobs by the average characteristics of
the class. There may be many different
classes but still the "individuality" of a

job is ignored. In this sense, it is a

steady state analysis. It cannot
satisfactorily represent time varying
phenomena. Therefore, it is good only as a

design time tool. It cannot be used at
operation time, for which we need adaptive
techniques that can adapt to the individual
characteristics and time-varying behavior of
jobs. To give a concrete example, a
queueing model is ideal for telling whether
the disk is the bottleneck in the system or
whether a faster CPU will increase
efficiency (both design time questions),

i However, once we have acquired the proper
disk and CPU, it does not tell us which job
from a given set of jobs should be given the
CPU or the disk next. This is a dynamic
decision problem, which can only be solved
by the application of techniques from
decision and control theory.

Queueing theory is good for modeling a

j

computer system and, to a certain extent,
its subsystems. However, when we come down
to the level of a program, it cannot model
its behavior (because there are no queues to
be modeled). Given all the known

Figures in brackets illustrate the
literature references at the end of this
paper

.

information about a program, it cannot tell
what the program behavior is likely to be in
the near future. This is a prediction
problem. Again, control theory must be used
for this purpose.

Queueing theory cannot model the
interaction between the space and time
demands of a program. Since the theory
cannot model either the space demand
behavior of a program or its time demand
behavior, it certainly is inadequate for
modeling the interaction between the two.

Bad memory management may cause frequent
page faults and may degrade the performance
of an otherwise good scheduling policy.
Still, the memory and the CPU allocation
policies of most operating systems to date
are more or less independent. This is due
to a lack of clear understanding of the
interaction between them. With the

application of control theory we hope to

remedy this situation, because, given
control-theoretic models of two systems,
their joint model can be obtained by

modeling the cross-correlation between the

two.

5. Additional Expectations from
Control Theory

There are many well established
control-theoretic techniques for stability,
controllability, and parameter sensitivity
studies that could be exploited for computer
systems modeling. We hope that the
control-theoretic approach will eventually
lead to a better understanding of these
concepts as applied to computer systems.
For example, take the concept of stability.

Instability in computer systems occurs in

the form of excessive overhead caused by

frequent switching of CPU between jobs, or

by frequent oscillation of pages between
main and secondary memory. The

control-theoretic approach is especially
suitable for stability studies, e.g., for

determining the effect of sudden demand

variations, or the effect of measurement
delays. There are well established
techniques for this purpose.

Controllability studies of computer
systems could similarly help us to determine
whether it is possible to reach the optimum
performance state. Parameter sensitivity is

already a big issue even in current queueing
models. One of the major studies that

investigated the applicability of queueing
models to a real interactive system was
conducted by Moore at the University of
Michigan [17]. One conclusion of the study
was that queueing models are very sensitive

95

to parameter values which vary considerably
with time and load variations. Again,

control theory with its well established

techniques for sensitivity analysis provides
better hope.

6. Survey of Applications of Control Theory

Wilkes was probably the first to

strongly advocate the exploitation of

control theory for computer systems
modeling. In his paper [22], he presents
many arguments for applying control theory.
We do not intend to duplicate those
arguments here. To illustrate his ideas,

Wilkes proposed a general model of paging
systems

.

Adaptive policies for many components
of operating systems have been proposed.
Dynamic tuning of allocation policies to

improve throughput in multiprogramming
systems has been suggested by Wulf [23]. An

adaptive implementation of a load controller
is described in [21]. Blevins and
Ramamoorthy have investigated the

feasibility of a dynamically adaptive
operating system [5]. Two different
techniques for adaptive control of the

degree of multiprogramming have been
described in [9].

The need for a control-theoretic
approach was also stressed by Arnold and

Gagliardi [2]. They proposed a state space
formulation using resource utilization as

the state variables. Using correlation
properties of the memory demand behavior of

programs, Arnold [1] has investigated the

applicability of the Wiener filter theory to

the design of a memory management policy. A

dynamic programming approach to memory
management and scheduling problems is

described in [12,13]. A survey of some
early applications of statistical techniques
to computer systems analysis can be found in

[3].

7. A General Control-Theoretic Methodology
for Resource Management

Control systems theory and its related

disciplines like stochastic filtering,
estimation, prediction, and time series

analysis, etc., have many possible
applications to operating systems
performance modeling. One application is to

design resource management policies. We

propose the following general
control-theoretic approach to the

formulation of resource management policies

for operating systems.
1 . In order to develop a resource

management policy., model the
corresponding program behavior as a

stochastic process.

2. Using identification techniques and
empirical data, identify a suitable
model structure for the process and
estimate typical values of model
parameters

.

3. Based on the model, formulate a

prediction strategy for the stochastic
process, and hence a resource
management policy.

The policy so obtained is dynamic in
the sense that it varies the allocation of

the system resource to a user job depending
upon the recent past behavior of the job.
It, thus, provides the run time optimization
not possible with the queueing theory
approach. Also, notice that the
individuality of the job is fully exploited.
The key step in the approach is the
formulation of the stochastic process model
in such a way that the allocation problem
reduces to a prediction problem. We
illustrate the methodology by formulating a

CPU management policy. A control-theoretic
memory management policy is described in

[10]. Policies for allocation of other
shared resources (e.g., disks) can be,

similarly, formulated.

8. Example - A CPU Management Policy

The problem of CPU management is that
of deciding which task from among a set of
ready tasks be given the CPU next. In the
literature this problem is also referred to
as low level scheduling, short term
scheduling, or task dispatching. There has
been a considerable amount of work on

designing scheduling strategies for
optimizing different cost criteria, single
or multiprocessor strategies, and for
different precedence constraints among the

jobs [7]. A common underlying assumption in
all these researches is that the CPU time
required by each job is known. For example,
the simplest scheduling problem is that of
scheduling n independent tasks with known
CPU time requirements of t„ y _ *

respectively on a single processor in such a

way as to minimize average finish time for
all users. If the jobs were scheduled in
lexicographic order (i.e., 1,2,...n), the
average finish time would be

The term process is used here
exclusively in the control-theoretic sense
of stochastic process. To avoid confusion,
the term task is used to denote computer
processes e.g., we say "ready tasks" instead
of "ready processes".

96

i+1)t. (1)

i=1

A very well known solution to this
problem is due to Smith [19]. This solution
is called "SPT" or Shortest Processing Time
rule i.e., the jobs are given the CPU in the

order of non-decreasing CPU demand. This

assumes that all the tasks arrive
simultaneously and are ready for processing

at the same time. If tasks arrive
intermittently, the optimal strategy is

still basically the same. At each point in

time one makes the best selection from among

those jobs available, considering only the

remaining processing time of the job that is

currently being executed. This
generalization of SPT is called the Shortest
Remaining Processing Time (SRPT) rule [20].

In the case of Line printer scheduling,
the service time requirements can be

predicted reasonably accurately from the
size of the file to be printed or by
counting the number of linefeeds and
formfeeds if necessary. However, in the

case of the CPU, there is no known method of

predicting the future CPU time requirements
of the job. This makes SRPT and all similar
scheduling strategies unimplementable

.

In the absence of knowledge of program
behavior, the operating system designer is

left to use his own ad hoc prediction
strategy. One such strategy is to assume
that all the tasks are going to take the
same (a fixed quantum of) time. The tasks
are, therefore, given the CPU in a round
robin fashion for the fixed quantum of time,

and if a task has not completed by the end

of the quantum, it is put back on the run
queue. Clearly full-information strategies
like SRPT perform better than no-information
strategies like the fixed-quantum round
robin. In order to develop a CPU management
policy using the methodology described in
the previous section, we proceed as follows:

Step 1: Modeling:
The first step is to model the CPU demand as
a stochastic process, so that we can predict
the future demands of a job from its past
behavior. The k

th CPU burst of i
th job is

modeled as a random variable z.(k). one way
of representing a stochastic process is to
model it as the output of a control system
driven by white noise (see Figure 3).
Thus, as seen by the CPU scheduler, the
program is like a control system which
generates successive CPU demands. A general
time series model for such a stochastic
process is given by the following equation:

Noise e< I)

Figure 3: CPU demands modeled as a

stochastic process

Zi(t) = f(z
i (1),z i (2),...,zi (t-1),

e
i (1),e i (2),...,e i (t)) (2)

Where z
. (£

)

e i(t) ^"is

subscript i

indicates
related to

and not to

a class of
invariant
well known

represents t
th

CPU burst and
Thethe tth random shock,

is the job number; its presence
that the CPU demand of a job are
previous demands of the same job
that of other jobs or to that of
jobs. A linearized and time

form of the above equation is the
ARMA(p,q) model :

z
i
(t) = w

i
+au z

i
(t-1) + +apiZi (t-p) +

+e.(t)-b 1i e i (t-1)-...-bqi el (t-q) (3)

We choose this formulation to model the
CPU demand behavior of programs, because
there are well established techniques to
find such models from empirical data. Once
a suitable ARMA model is found, it is easy
to convert it to other models (e.g. , state
space model), if necessary.

Step 2: Analysis:
The second step is to identify a suitable
model for the demand process using
identification techniques and empirical
data. Therefore, we conducted an experiment
at Aiken Computation Laboratory, Harvard
University. The experiment consisted of 19

different runs spread over a month. Each
run consisted of randomly selecting a user
and watching his history for a period of

about 45 minutes. The data was later
translated to produce the CPU demand
processes of individual programs.

The identification analysis showed that

the CPU demand process is a stationary
process, and is best represented by a

non-zero mean white noise model:

z
i (t) = zi+ei (t) (4)

Where z^ ^ s the mean of the process, and

97

e.(t) is white noise. See [10] for further
details on the experiment and the analysis.

Step 3: Policy formulation:
The third step is to formulate a prediction
strategy based on the above model and hence
a resource management policy. Since, e.(t)
is uncorrelated zero mean noise, it cannot
be predicted, and the best estimate of the
future CPU demand is its mean value, i.e.,

Vt) = z
L

1 X
Where z

i = m L z
i(

k)

(5)

(6)

k=1

The problem in using the above formula is

that i. can be calculated only after all
values of ?.(t), t=1,2,...,N are known.
What we need now is an adaptive technique to
calculate z\ ancj upd ate it each time a new
observation is obtained. Some of the
possible adaptive methods are discussed
below.

1. Current Average : Average of all values
observed up to t-1.

Vt) = 7-7 £ z^k) t>1
t_l

k=l

(7)

^.(t-D + -:- Zi (t-n

H-a
t)z i (t-1) + atZi (t-1)

where a.
t t-1

Here, z.(t) denotes the current estimate of

the mean.

2. Exponentially Weighted Average :

z\(t) = (l-a)z
i
(t-1) + az^t-1) (8)

This is a specialization of case 1 above

with a taken to be a constant rather than a

variabte.

3. Average of the last n values :

n=constant

si(t) = -j £ Zi (t-k)

k=1

(9)

Regardless of which formula is used for
prediction, the scheduling algorithm
basically remains the same : the job with
the shortest predicted remaining time is
selected for CPU allocation. We call it
SPRPT (Shortest Predicted Remaining
Processing Time) algorithm.

Notice that for prediction we do not
require any extra bookkeeping other than
what is already done by the operating sys-
tem. Most operating systems record CPU time

used by programs for accounting and billing
purposes

.

In fact, it turns out that Dijkstra's
T.H.E. operating system [16] does use a
scheduling algorithm based on scheme 2 above
(exponentially weighted average). However,
the algorithm was based on the simple
argument that I/O bound program should be

given preferential CPU allocation, and that
a program should not be classified as CPU

bound simply because it took large CPU time
during the last burst. The exponential
weighted average was thought to be a better
indicator of CPU boundedness.

9. Conclusions and Directions for
Future Research

Most resource management problems are
basically prediction problems. Therefore,
we advocate the use of modern stochastic
control theory to formulate operating
systems resource management policies. In

this paper, we have proposed a general
approach to the prediction of resource
demands of a program based on its past
behavior.

We exemplified the approach by applying
it to the problem of CPU management.
Application to memory management is

described in [10], There a new page
replacement algorithm called "ARIMA" is

proposed. Even though the origin of the
algorithm lies in complex control-theoretic
ideas, its final implementation is very
simple. Moreover, it turns out that many
conventional page replacement algorithms
like the working set algorithm [8], Arnold's
Wiener filter algorithm [1] and the
independent reference model [4] are special
cases of the ARIMA algorithm. The
control-theoretic derivation of conditions
under which these algorithms are optimal is
also presented.

One interesting outcome of the research
reported here is that our control-theoretic
approach also provides an explanation for
many previously described policies that are

98

based on completely non-control-theoretic
principles.

There are many avenues along which the

research reported in this paper can be

extended. The first possibility is to

investigate the problem of joint management
of CPU and memory. Generally, CPU and

memory demands are modeled as independent
processes. Strictly speaking this is not
true; the CPU demand is affected by the
memory policy. For example, a bad memory
policy may result in frequent page faults
causing tasks to be descheduled prematurely.

The control-theoretic approach can be
extended to the management of other
resources, e.g., disks. The disk scheduling
policy can be optimized if the disk demand
behavior of programs is predicted in

advance. Also as mentioned previously,
stability and controllability studies of
computer systems require research.

The approach can also be used for the
modeling of other systems. For example, in

a database, the record access patterns can
be modeled as a stochastic process and its
prediction used to determine the optimal
organization and, hence, the reorganization
points of the database. In the case of
computer networks, the arrival patterns of
packets at a node can be modeled as a binary
stochastic process. The forecast of future
packet arrivals can then be used for flow
control or to avoid congestion in the
network

.

The essence of our philosophy in this
paper is that control-theorists have made
good use of computers to develop better and
faster modeling, estimation and prediction
techniques. It is now time for computer
scientists to use these techniques to
enhance the cost-effectiveness of computer
systems

.

REFERENCES

[1] Arnold, C. R. , A control theoretic
approach to memory management,
Proceedings Ninth Asilmar Conference
on Circuits, Systems

t and Computer .

Pacific Grove, Calif., November 1975.

[2] Arnold, C. R., and Gagliardi, U. 0., A

state-space formulation of the
resource allocation problem in
computer operating systems, in Proc

.

8th Asilmar Conf . on Circuits.
Systems, and Computers . Pacific Grove,
Calif., December 1974, pp. 713-722.

[3] Ashany, R., Application of control
theory techniques to performance
analysis of computer systems, in Proc

.

6th Asilmar Conf. on Circuits

.

Systems . and Computers . Pacific Grove,
Calif., November 1972, pp. 90-101.

[4] Aho, A. V., Denning, P. J., and
Ullman, J. D., Principles of optimal
page replacement, JACM , Vol. 18,

No. 1, January 1971, pp. 80-93.

[5] Blevins, P. R. , and
Ramamoorthy, C. V., Aspects of a

dynamically adaptive operating system,
IEEE Trans. Comput. . Vol. C-25,

No. 7, July 1976, pp. 713-725.

[6] Buzen, J. P., Queueing network models
of multiprogramming . Ph. D. Thesis,
Harvard University, Cambridge, Mass.

1971

.

[7] Coffman, E.

Scheduling
1976.

G. , Computer and Job Shop
Theory . John Wiley & Sons,

[8] Denning, P. J. , The working set model
for program behavior, CACM , Vol. 11,

No. 5, May 1968, pp. 323-333.

[9] Denning, P. J., Kahn , K. C,
Leroudier, J., Potier, D. , and
Suri , R.

,
Optimal Multiprogramming,

Acta Informatica . Vol. 7, fasc. 2,

1976, pp. 197-216.

[10] Jain, R. K. , Control- theoretic
formulation of operating systems

resource management policies . Ph. D.

Thesis, Harvard University, Cambridge,
Mass. 1978, available as Aiken

Computation Lab Report TR-10-78.

[11] Kleinrock, L. , Queueing systems .

Vol. 2: Computer Applications, ch. 4,

New York: Wiley-Interscience , 1976.

[12] Lew, A., Optimal resource allocation
and scheduling among parallel

processes, in Parallel Processing .

Tse-Yun Fung, Ed., Springer-Verlag,
Berlin, 1974.

[13] Lew, A., Optimal control of

demand-paging systems, Information
Sciences . Vol. 10, No. 4, 1976,

pp. 319-330.

[14] Lipsky, L., and Church, J. D.,

Applications of a queueing network

model for a computer system, Computing

Surveys . Vol. 9, No. 3,

99

September 1977, pp. 205-221.

[15] McKinney, J. M., A survey of
analytical time-sharing models,
Computing Surveys . Vol. 1, No. 2,

June 1969, pp. 105-116.

[16] Mckeag, R. M. , and Wilson, R. , Studies
in Operating Systems . Academic Press

1976, Chapter 4.

[17] Moore, C. G. , III, Network models for
large-scale time-sharing systems .

Ph. D. Thesis, Univ. of Michigan,
Ann Arbor, 1971.

[18] Muntz, R. R.
,

Analytic modeling of
interactive systems, Proc . IEEE .

Vol. 63, No. 6, June 1975,

pp. 946-953-

[19] Smith, W. E. , Various optimizations
for single-stage production, Naval
Res. Logist. Quart. . 3(1956)

pp. 59-66.

[20] Smith, D. R. , A new proof of the

optimality of the shortest remaining
processing time discipline, Operations
Research . Vol. 26, No. 1,

Jan-Feb 1978, pp. 1 97-1 99

-

[21] Wilkes, M. V., Automatic load
adjustment in time-sharing systems, in

Proc. ACM-SIGOPS workshop on System
Performance Evaluation . Harvard
University, Cambridge, Mass.
April 1971, pp. 308-320.

[22] Wilkes, M. V., The dynamics of paging,
Computer Journal . Vol. 16, No. 1,

February 1973, pp. 4-9.

[23] W. A. Wulf, Performance monitors for
multiprogramming systems, in Proc

.

2nd Svmp . on Operating Systems
Principles . Princeton Univ,
October 1969, pp. 175-181.

100

PREDICTION PART II: QUEU I NG-BASED

101

AN INVESTIGATION OF SEVERAL MATHEMATICAL MODELS OF QUEUEING SYSTEMS

Rollins Turner
Digital Equipment Corporation

Maynard, MA 01754

A number of simple mathematical models were used to predict
average response time of a timesharing system. The target system was a

very simple trace driven simulation model, but the workloads were trace
files obtained from a real system in normal operation. As such, the
workloads were characterized by very high coefficients of variation in

resource demands and think times. Mathematical models of the system
included independent arrival models (M/M/1 and M/G/1, closed network
models) admitting product form solutions, and a more general Markov
model. Only the final model produced reasonable accuracy.

A number of experiments were performed, in an effort to determine
what properties of the system being modeled were responsible for the
failure of all the simple mathematical models. The large variance in

CPU time and the fact that the system was a closed network were found

to be critical factors, and appeared to be the major causes for failure

of models that do not take them into account

.

1 . Preface

Both the literature and the folklore of
performance evaluation are full of contra-
dictions about the efficacy of various
methods of modeling a complex timesharing
system. One feels that there is a strong
bias in the literature toward reporting
successes and forgetting failures. In fact,
experience has shown that a good paper, with
a very positive tone can often be gleaned
from a project that was a total failure in
terms of practical value. Faced with this
lack of reliable information about the
practical benefits of various mathematical
techniques, I decided to make an independent
assessment of several of them. This paper
gives the results of that project.

2. Framework for Evaluation

The purpose of this project was to in-
vestigate various approaches to predicting
system response time mathematically, in
terms of their accuracy for realistic work-
loads. The workloads to be used as the
basis for this investigation were obtained
from measurements on a moderately large
timesharing system, taken during its normal
prime time operation over several days. I

felt that it would be asking too much of any

available mathematical models to predict the

actual system response times (which were
available on the same files as the work-
loads) , or even those of a detailed simula-

tion. Rather, I attempted to predict the

results of running these workloads through a

very simple simulation model. In addition,

I tried to obtain some insight into the ef-

fects of various properties of the workloads
on the accuracy of the mathematical models.

3. The Workload Descriptions

The workload descriptions were derived
from trace files, which were available as a

result of earlier work. Each trace file has
one record corresponding to each user inter-
action completed during the period of obser-
vation. Typically they cover 10 to 15 min-
utes of operation, including 2000 to 3000
interactions. For each interaction the
trace file contains a number of different
items of data. The only items used in this

study were:

1 . User think time

2. CPU time

3. Core memory used

4. Amount of disk I/O.

103

For most of the work reported in this
paper, only CPU time and think time are
relevant

.

Table 1 includes a summary of statis-
tics for each of the trace files.

4. The Simulation

A very simple timesharing system simu-

lation was used to provide a "target" for

the mathematical models. The model is a

closed queueing network in which all service
is first come first served. There is a

fixed number of simulated users (40). Each
time an interaction is completed for a user,
the next record is obtained from the trace
file, and the corresponding service request

is simulated.

At the start of each interaction, the
user remains idle for the specified think
time. Then he submits a request for ser-
vice, specifying a core memory amount, CPU
time, and amount of disk I/O. The request
enters a Core Assignment Queue until the
required amount of core memory is available.
Next the request enters a Swapin Queue where
it waits until the swapping device can read
in the specified amount of storage. Next
the request enters the CPU queue. Upon
receiving the specified amount of CPU time,
the request will enter the Disk I/O queue,

providing the amount of disk I/O is nonzero.
If the disk amount is zero, the interaction
is complete and a new trace record is ob-
tained for this user. If disk I/O is re-
quired, the request is handled as soon as it
reaches the head of the queue. The disk I/O
is assumed to be sequential, beginning at a

random point on the disk. Seek time, rota-
tional latency, and transfer time are simu-

lated .

The program to perform this simulation
was written in SIMULA, in a very straight-
forward manner. For future reference, the
name of the program was TIMSHR.SIM.

For the purpose of the studies reported
in this paper, all simulations were run with
a large amount of core, ensuring that users
never had to wait to be swapped in.

Also, swapping and I/O are relatively
insignificant compared to CPU time. The
output of interest for each run is average
response time — defined as the mean time
from submission of a request for service
until completion of service. The results of
the simulation runs are included in Table 1

along with the trace file statistics.

Table 1. Response times from program
• SIM , with unlimited core

and 40 users.

Trace Number Think Time CPU Time Response
ID Interactions Avg .. Var Av^; Var Time - Ave

1 2919 7.44 964 .11 1 . 96 1.43

2 2469 7.64 1154 .16 2.36 1.98

3 1171 9.94 1406 .45 109.32 13.60

4 3434 6.99 1222 .12 4.41 1.94

5 3445 6.;)3 1088 . 10 .77 1.14

6 2788 8.32 1415 .08 .31 .55

7 3153 8.65 1837 .11 2.13 1.17

8 3642 7.48 1354 .13 .88 1.25

5. Independent Arrival Models

The simplest approach to predicting re-
sponse times is to assume independent ar-
rivals according to a Poisson process. If
we assume service times are exponentially
distributed, we can use the classical
queueing theory result ([5] p. 98):

1/u

T =

1 -P (D

where T is average response time

fx is average service rate
P is utilization factor^//"

A is average arrival rate.

We may assume an arbitrary distribution for
service time if we want to include the
effect of variance in service times. In

this case we would use the Pollaczek-
Khinchin formula ([5] p. 190):

1
P(1 + C

b
2)

T = d) [1 + 2_
] (2)

" 2(1 - P)

where C
fe

is the coefficient of variation for
the service time.

To use these formulas, we compute the
mean arrival rate by dividing the number of
interactions by the total amount of time
simulated in processing a trace file. and
C^ are available directly from the trace
data. The results of these calculations on
the trace file data are given in Table 2.

The simulation results are also given for
comparison. We see that neither model pro-
vides a reasonable approximation to the
simulation results.

104

Table 2. Comparison of predictions for
M/M/1 and M/G/1 system to simula-
tion results.

Trace
ID

Arc ival CPU Time
Var

MMl
Response

P-K
Response

Simulat ion
Res pon se

1 4 510 2 \ 1

.

9 6 .218 8.935 1.43

£ 4158 1

6

2. 36 4 78 14.977 1.98

3 1699 .45 109. 32 1.911 395.605 13.60

4 4479 .12 4. 41 .259 21.523 1.94

5 4957 .10 77 .198 3.933 1.14

6 4510 .08 31 .125 1.196 .55

7 4073 .11 2. 13 .199 8.013 1.17

8 4582 .13 88 .322 5.211 1.25

Examining
might ask why

the

these
results
simple

in Table
formulas

2 , we
fail so

dramatically to predict the simulation re-
sults. The answer is clear in the case of
the M/M/1 formula. The very large variance

in CPU time has an extremely detrimental
effect on response time as compared to a
system with the same mean service require-
ment but a smaller variance. But why then
is the P-K formula off in the other direc-
tion? Evidently a workload from a finite
population is "easier" in some sense than
one from independent arrivals, when the
parameters fJ- , X , and C^ are identical. (By

"easier" I mean the same server can handle
it with a faster average response time.) We

shall examine this hypothesis again later.

The major conclusion from this section
is that the traditional "simple formulas"
are not reliable for predicting the behavior
of a system such as our simple timesharing
model — at least when the service distribu-
tion has a large coefficient of variation.

6. Modified Independent Arrival
Models

If we do not want to use the simulated

run time to compute the arrival rate, we

must get it from the number of users, think

time, and CPU time. If we kjieu. the response

time we could easily compute the average

arrival rate as

Nr Users
X = . (3)

think + response

Indeed that is effectively what we were
doing in the previous section. Implicitly,
we were using the average response time from
the simulation to compute the average arri-
val rate from which we computed our pre-
dicted response time.

So, from response time we can compute
arrival rate, and from arrival rate we can
compute response time. This suggests an
iterative approach, in which we use the
results of one calculation as input to the
other, hoping the results will converge.

Programs were written to use this
technique with both the M/M/1 and the M/G/1
formula. Results of running these programs
with the trace file data are given in Table
3. Comparison of Table 3 with Table 2 shows
that the iterative P-K predictions are con-
sistently smaller, and better, than those
done with a specified arrival rate. Unfort-
unately, they are still too far from the
correct values to be of any use.

Interestingly the iterative M/M/1 pre-
dictions are larger than the fixed M/M/1
values, which again is the right direction.
But they too are not even close to the cor-
rect values.

From the results just discussed I con-
clude that the "modified" independent arri-
val models described in this section are not
useful for the intended purpose.

One objection that arises when we think
about the preceding independent arrival
models is that they do not reflect in any
way the number of users in the timesharing
model. Another more subtle problem is that
we used the results of the simulation run in
order to compute the average arrival rate.
In some sense this seems to be cheating.
Really we would much prefer to use only
information available as input to the simu-
lation model in trying to predict its re-
sults. The "modified" independent arrival
models discussed in this section are the
result of an attempt to deal with these
problems

.

Table 3. Comparison of Iterative M/M/1 and
Iterative M/G/1 to simulation re-
sults.

Trace Avg CPU Time Iterative Iterative Simulation
ID Think Avq Var MMl HG1 Response

1 7 44 .11 1. 96 .256 5. 01 1 43

2 7 64 .16 2. 36 .690 e. 40 1 98

3 9 94 .45 109. 32 9.007 51

.

14 13 60

4 6 99 .12 4. 41 .347 8. 44 1 94

5 6 93 .10 77 . 227 2. 81 1 14

6 8 32 .08 31 .127 1. 10 55

7 8 65 .11 2. 13 .217 4 . 83 1 17

8 7 48 .13 88 .384 3. 32 1 25

105

7 . Network Model

The next attempt at predicting the
timesharing system simulation results used a
mathematical model for a closed queueing
network. Mathematical methods are available
to predict the performance of a network
similar in form to the simulation model [1].
An available program, ASQ [4], was used to
carry out these calculations. The users'
think times were modeled as a single server
with state dependent service rate. The CPU
and disk were modeled as FCFS servers with
exponentially distributed think times. The
means were set to match the corresponding
means from the trace tape. Core assignment,
swapping, and disk I/O were not considered
in the ASQ model. Core assignment did not
enter into the simulation results, as all
runs were made with unlimited core avail-
able. Swapping and disk I/O were not
significant in the simulation runs.

The results of the ASQ runs are given
in Table 4, along with the corresponding
simulation results and iterative M/M/1 re-
sults. We see that the ASQ results are very
close to the Iterative M/M/1, and that both
differ significantly from the simulation re-
sults. The obvious flaw in this model is
the assumption of exponential service dis-
tributions. Unfortunately, the mathematical
solutions do not admit other distributions
with FCFS service discipline.

Table 4. Comparison of ASQ results to
Iterative M/M/1 and Simulation
results

.

race
IP

Avg
Th ink

Ava
CPU

ASC
Response

Iterative
MM1

Simulation
Response

a 7 44 .11 .24 .256 1 .43

2 7 64 .16 .58 .690 1 98

3 9 94 .45 8.08 9.007 13 60

4 6 99 .12 .314 .347 1 94

5 6 93 .10 .213 .227 1 14

6 8 32 .08 .126 .127 55

7 8 64 .11 . 209 .217 1 17

8 7 48 .13 .36 .384] 25

8. Sensitivity Studies

At this point in the project I tried to
determine what properties of the actual
trace file cause the simple mathematical
models to fail. I had a good explanation
for the M/M/1 and ASQ models: the large
variance in CPU time, which violates major
assumptions of the mathematical models. But
what about the Iterative M/G/1? Presumably

tne Pollaczek- Khinchin formula is accurate
if its assumptions are met. What is it
about these trace files that so seriously
violates the assumptions? I formed a number
of hypotheses and tested each in turn on
relatively small amounts of data in an
attempt to answer this question.

Hypothesis 1: The synthetic trace files are
too short to reflect all the bad effects
predicted by the P-K formula. Perhaps the
simulated system does not reach equilibrium
and the average queue length is steadily in-
creasing.

Test: Run the simulation with progressively
longer trace files and see if the resultsget closer to what the model predicts
Synthetic trace files with hyperexponen-
tially distributed CPU times were generated.

n
he

nn
irst had 5000 records, the second

^u,000 - resulting in more than an hour of
simulated system operation.

Results: The simulated response times were
still significantly faster than predicted by
the Iterative P-K model. Ratios were in the
same range as the earlier tests with smaller
numbers of interactions.

Conclusion: Reject Hypothesis.

Hypothesis 2: The Iterative M/G/1 model
fails to predict the simulation results when
the pool of "thinking" users is relatively
srcall. J

Test: Run simulations with synthetic trace
tiles having various values of average CPU
time. This will result in various values of
the average number of "thinking" users. Seeif error varies accordingly.

Results: See Table 5.

Table 5. Simulation Results

Avg'
CPU

*

C
b

Avg
Think

Avg Nr
Thinking

Avg
Response

Iterative HG

1

Response

.02 13.15 10.14 39.2 .21 .10

.04 11.26 10.14 38.5 .40 .40

.08 10.33 10.14 36.5 .99 1.63

.12 10.01 10.14 34.4 1.68 3.50

.16 9.85 10. 14 32.2 2.51 5.75

Coefficient of variation for CPU ti

106

Conclusion: Cannot reject the hypothesis.
However the error seems to be growing much

faster than the average number of thinking

users is decreasing. This suggests that

some other mechanism is actually the major

factor.

Hypothesis 3: The Iterative M/G/1 model gets

worse (at predicting simulation results) as

C., the coefficient of variation of the ser-

vice time, increases. This seems almost in-

evitable since M/G/1 with a C
fe

of 1 is

equivalent to M/M/1, and we know that the

Iterative M/M/1 is accurate for a synthetic

load with exponentially distributed workload

factors.

Test: Run simulations with synthetic trace

files having various values of C
b , but all

other parameters alike. Compare results to

Iterative M/G/1 predictions.

Results: See Table 6.

Table 6. Effect of increasing C
b

on error ii

Iterative M/G/1 prediction.

Avg
CPU Cb

Avg
Think

Simulation
Response

Iterative MG1
Response

.10 1.10 7.54 .32 .207

.11 2.26 7.54 .51 .505

.12 4.32 7.54 1.00 1.399

.11 7.71 7.54 1.48 2.714

.09 12.46 6.82 1.43 4.664

Conclusion: Accept hypothesis.

Hypothesis 4: The correlation between think
time and CPU time reduces the adverse effect
of high variance in both, making the M/G/1
model overly pessimistic compared to the
simulation.

This is motivated by the observation
that the trace file records for a specific
timesharing job often consist of clusters cf
interactions with very short think times and
short CPU times. The last interaction of
the cluster has a large CPU time, and the
first interaction of the cluster has a large
think time. This means that we are less
likely to get a sequence of interactions
with short think times and large CPU times
that we would be if the two distributions
were independent.

Test: Remove the correlation between think
time and CPU time in the trace file by
"shuffling" the data among records. This
was done among groups of 100 records. One
hundred records were read into an array.

The think time field for each record was ex-
changed with that of another record selected
randomly from the array. CPU times were
similarly shuffled. Then the 100 records
were written out, and the operation was re-
peated on the next 100. (The actual corre-
lation was not computed either before or
after the shuffling.)

Result: There was no significant change in
response time from the simulation.

Conclusion: Reject hypothesis.

Hypothesis 5: Some property of the trace
file other than its mean think time, mean
CPU time, and coefficient of variation of
CPU time is responsible for the discrepancy
between the simulation results and Iterative
M/G/1 predictions.

Test: Create a synthetic trace file with
exponential think times and hyperexponential
CPU times. Compare simulation results to
Iterative M/G/1 predictions for the values
of the three parameters that actually occur
in the synthetic trace.

Result: Iterative M/G/1 prediction was too

large by more than a factor of two.

Conclusion: Reject hypothesis.

Now we have found that there is a

really fundamental flaw in the Iterative
M/G/1 model as a tool for predicting
response times of a finite population
system. This trace file met all the
explicit assumptions of the model. It was
at this point I began to think that the
problem was simply that open queueing
systems are different enough from closed
systems that it doesn't make sense to apply
the Polleczek-Khinchin formula to a closed
system (at least when the coefficient of
variation in service time is large)

.

Hypothesis 6: An open M/G/1 queueing system
with a large C^ has considerably longer
average response time than a closed system
with the same parameters.

Test: Modify TIMSHR.SIM to generate new
arrivals independently of completions. (The
modified simulation program was called
POISSO.SIM.) Run with same trace files and

same average arrival rates as the original
closed queueing system simulation.

Results: Results of the independent arrival

simulations are given in Table 7. We see

that the response times with independent

arrivals are much larger than for the closed

system. We also note that the Iterative

107

M/G/1 predictions are not very close to the
independent arrival results. The direct use
of the Pollaczek-Khinchin formula gives
somewhat better estimates, but these are not
close enough to be of much practical value.
An observation from this test was that the
average queue length with independent
arrivals often exceeded the total number of
users in the closed queueing system.

Conclusion: Accept hypothesis.

Table 7. Comparison of simulation results
for closed system and independent
arrivals. Also shown are predic-
tions of mathematical models for
parameter values of the same trace
file.

Trace Arrival TIMSHR , POIESO , Iterative P-K
ID Rate Simulation Simulation MG1 Formula

negative feedback effect significantly in-

fluences the average response time, as
compared to an open system with the same
overall average demands.

9. Markov Models

The final part of this project con-

sisted of an attempt to predict the results
of the timesharing system simulation by
means of a Markov model [5]. The Markov
model explicitly deals with the two trouble-
some features that plagued earlier models:
the finite population and the large variance
in service times.

In order to model the hyperexponential
service distribution, a two stage server was
used. Upon beginning service, one of the
two parallel stages is chosen with probabil-
ity a i j the other with probability a 2 •

Each service stage has an exponential
service time distribution. The first has an

average service rate of pi- and the second

ii^- The overall service time density
function is therefore the hyperexponential:

f(t) = ai * Pl * e
1 +a

2
* e

Values for the parameters a ,
c^, Mi

and /"
2

can be computed from the desired
parameters for the overall service time
distribution. (These values are not
uniquely determined.) If the desired mean

service time is 1/m and coefficient of var-
iation is C, then we have:

1 4 510 1.43 8.49 5 01 8 935

2 4 158 1.98 14.60 6 40 14 977

3 1 699 13.60 175.75 51 14 395 605

4 4 479 1.94 11.57 8 44 21 523

5 4 957 1.14 10.14 2 81 3 933

6 4 510 .55 1.45 1 10 1 196

7 4 073 1.17 9.25 4 83 8 013

8 4 582 1.25 8.15 3 32 5 213

1 Closed system simulation with 40 users

2 Open system with independent random
arrivals (same trace file)

8.1 Sensitivity Studies - Summary

The purpose of the work reported in

this section was to determine what proper-
ties of the trace files cause the simple
mathematical models to fail. I was partic-
ularly interested in the Iterative M/G/1
model, as I had originally believed that it

might be of practical value in real world
situations. I found that the Iterative
M/G/1 model failed not because of any exotic
properties of the trace file, but simply
because closed queueing systems are not the
same as open queueing systems. When the
coefficient of variation in service times is
large, as it is in these trace files (e.g.

12), the difference is significant enough to

make the Pollaczek-Khinchin formula com-
pletely useless. My conclusion is that any
mathematical model which is to predict the

results of the original timesharing system
simulation must explicitly account for both

the variance in CPU time and the finite pop-
ulation. The fact that the number of users
is fixed means that as the queue length
increases, the arrival rate decreases. This

1

2

= 1 -

/u, = 2 CY

V 2
= 2 a

2
m

/ C - 1

1 - /

/

\/ c + 1

(4)

(5)

(6)

(7)

108

We define the states of the system in terms
of how many users are waiting for service,
and which stage of service is in operation.

State (i,j) has j - 1 users waiting for

service, one of whom is being served at

service stage i. State (1,1) is an excep-

tion to this, being the idle state.

X . is the rate of arrival of new custo-

mers when the system is in states (1,i)and

(2,i).(i - 1 users waiting.)

In these states there are N - i + 1

users thinking, with each think time drawn

from an exponential (-*) distribution, (i.e.

avg think time = 1/A.) Hence

N - i + 1

l
i=

(N - i + 1)^ = ~Avi"think"timi (8)

The rate of completion of service in

State (i,j) is /u^. Upon completion of
service, if j > 2, the system goes to State
(i,j - 1) with probability
a
±

(i = 1,2).

Equating the net rate of entry into
each state to zero, we get 2N independent
equations in 2N + 1 unknowns. To these we
add the equation specifying that the state
probabilities must sum to 1 . The recursive
solution technique of Herzog, Woo, and
Chandy [3] was used to produce expressions
for all state probabilities in terms of the
two on the right end. Two previously unused
equations yield closed form expressions for

these in terms of known quantities. Given
the state probabilities we can compute
average arrival rate, average queue length,
and average response time.

The program HERZOG. BAS was written to
carry out all the calculations described
above. This program unfortunately had
problems with numerical accuracy. It gave
reasonable answers for values of close to

1 , but for large values the results were
obviously garbage. (e.g. Negative
probabilities.) I tried a number of tricks
in attempting to get around this problem,

including calculating negative and positive
parts of the coefficients separately. I

also recoded the program in SIMULA to run on
the DECsystem- 1 0 , with double precision
arithmetic. However none of these measures
solved the problem.

My current belief is that the problems
stem from the recursive calculation of the
coefficients from right to left. With
realistic parameter values, the right end
probabilities are very small. We go through
40 stages of calculation in computing the
left end probability coefficients from those
on the right end. It appears that there is

no way to avoid the build up of numerical
errors, using the arithmetic available in

standard programming languages. As one
check on the hypothesis about error build
up, I ran HERZOG. BAS with very large service
times, ensuring that the right end proba-
bilities would be very large compared to

those on the left end. As expected, the

program gave reasonable answers for this
case

.

An obvious cure for the problems just
described is to compute the coefficients
from left to right instead of right to left.
But, while the recursive substitution "falls
out" very easily for right to left calcula-
tion, I was unable to find any simple pro-
cedure for calculating them from left to
right. This seems to be simply an unfortu-
nate property of the system state network
topology.

The solution to this problem was a

different representation of the hyper-
exponential service. Instead of parallel
stages, a Coxian server was used. Here each
customer receives service at an initial
stage with exponential distribution of rate
m^ . Then, with probability b he leaves the
server, and with probability (1 - b) he

enters a second exponential stage with mean
servie rate .

Theoretically values of the parameters
m

1
,

nu,, and b can be chosen to produce any
desired mean and variance in service time,

but solving for the parameter values is

difficult. (Cox suggests a trial and error
approach [2].) I noticed, however, a close

correspondence between this representation
and the earlier parallel stages representa-
tions. For the system of interest (large

C
b), a

1
is very small and 1/,u., is very

large. Hence with low probability a

customer gets a very slow server. The mean

service time for the slow server is perhaps
100 times that of the fast server. In this
case, it would have made very little dif-

ference to the unfortunate customer who

109

happens to get the slow server if it had
been required to also accept one service
interval from the fas't server. Hence we can
get a good approximation to the desired
overall service distribution by simply using
the same parameters that we used for the
parallel stages. Every customer gets
service at the first stage, with mean time
of Then, with probability a. , he goes
on to the second (very slow) stage which has
a mean service time of \/u„.

1

We now describe the system states as

before. In state (i>j) there are

j - 1 customers waiting, one of whom is in

the i service stage. As before we have

state dependent arrival rates, A
i

,
propor-

tional to the number of customers not wait-

ing for service. A state diagram for this

model is shown in the figure below. This

model has the fortunate property that the

probability coefficients can be computed by

simple recursive substitution from left £0.

right.

Again following the recursive technique
of Herzog, Woo, and Chandy I expressed all
state probabilities as linear combinations
of P-|

2
an<^ P

2 2' anc* usec* two remaining
equations to solve for them. From these
values we can compute all the other state
probabilities, and then all other values of

interest. A program to carry out the compu-
tations was written in BASIC, and called
HERZG2.BAS. Happily, that program produced
reasonable answers, avoiding the numerical
problems of the preceding program. The
results from this program are given in Table
8. While the results are not extremely
close to the target values, they are much
better than those of any model considered
earlier. And they are close enough to offer
some hope that this model might be useful
for practical purposes.

Comparison of predictions of
Markov model, program HERZG2.BAS,
to simulation results.

T race
ID

CPU
Ava

Time
Var

Think
Time

Simulation
ResDonse

HERZG2
Response

1 . 11 1 .96 7 .44 1.43 1.76

2 .16 2 .36 7 .64 1.98 2.56

3 .45 109 32 9 94 13.60 9.26

4 .12 4 41 6 99 1.94 2.19

5 .10 77 6 93 . 1.14 1.31

6 .08 31 8 32 .55 .69

7 .11 2. 13 8 65 1.17 1.71

8 .13 88 7 48 1.25 1.65

10. Overall Conclusions

The purpose of this project was to

investigate the practical value of various
commonly used techniques for predicting
system performance. The study was rather
limited, and one should naturally be
cautious about drawing definite conclusions
from it. Nevertheless, it adds to the body
of evidence about what techniques we should
or should not trust. I have more confidence
in the validity of 10 to 15 minute simula-
tion runs using real life input data, as a

result of the tests made with longer runs.

The effect of correlation between think time
and CPU time might be a very bothersome
worry, and I now have reason to believe it

is not extremely important. And, in fact, I

have good reason to believe that response
time can be predicted fairly well on the
basis of only three parameters: average
think time, average CPU time, and CPU time

variance. Hence one need not worry too much
about any exotic properties of real world
trace files (at least in very simple
timesharing systems)

.

The importance of numerical accuracy
considerations was brought home to me again.

This is a lesson I have had to relearn
several times, but perhaps it will be more
permanent this time. The significance of a

large variance in service time was another
old lesson relearned in greater depth. I

knew the importance of service time variance
on the M/G/1 system, as expressed so vividly
by the Pollaczek-Khinchin formula. But
there are more subtle effects that can also

be profound. As an example, my original
Markov model (HERZOG. BAS) worked beautifully
with a variance of 1 . It was only with
larger variance that numerical accuracy
problems came up, and those problems were so

110

serious as to make the program useless for
its intended purpose. Another example is
the Iterative M/G/1 model. With variance of
1 this model (now actually an Iterative
M/M/1) is quite accurate. With a larger
variance it is useless.

Perhaps the most important conclusion is

that a closed queueing system, such as our

very simple timesharing model, is quite dif-

ferent from an open system with independent
arrivals. While this fact might seem
obvious, it is frequently ignored in the lit-

erature. And 1 am inclined to believe that

it is not widely understood among practition-
ers of performance prediction.

RFEERENCES

[1] Baskett, F.
,

Chandy, K.M., Muntz, R.R.,

and Palacios, F.G., Open, Closed and
Mixed Networks of Queues with Different
Classes of Customers, Journal of the
ACM . Vol. 22, No. 2, April 1975, pp.
248-260.

[2] Cox, D.R. and Smith, W.L., Queues
,

Chapman and Hall, London, 1961.

[3] Herzog, U., Woo, L., and Chandy, L.M.,
Solution of Queueing Problems by a

Recursive Technique, IBM Journal of Re-

search and Development , Vol. 19, No. 3,

May 1975, pp. 295-300.

[4] Keller, T.W., Towsley, D.F., Chandy,
K.M., and Browne, J.C., A Tool for
Network Design: The Automatic Analysis
of Stochastic Models of Computer
Networks, Proc. COMPCON

, 1973, p 1 5 1

.

[5] Kleinrock, L., Queueing Systems . Vol. 1,

John Wiley & Sons, New York, 1975.

Ill

ON THE BUSY PERIOD OF A QUEUEING
NETWORK OF TWO SERVICE STAGES WITH

EXPONENTIALLY DISTRIBUTED SERVICE TIME

Richard K. Ma

D940, IBM Office Product Division
Austin, Texas 78759

Gary J. Stroebel

D459, IBM General Systems Division
Rochester, Minnesota 55901

The recursive formula for the expected length of busy
periods of a queueing network is derived. The closed queueing
network consists of two queues, one being the infinite server
(IS), the other a single server, both of which have exponentially
distributed service time with the First Come First Served (FCFS)
queueing principle. The results are compared with the infinite
source queueing model with different load conditions.

Key words: queueing network; analytic modeling; computer systems;
performance evaluation.

1 . Introduction

Queueing theory results on the busy
periods have been derived for the infinite
source (Poisson arrival) queueing model
M/G/1 in Kleinrock [2]. However, since
Buzen [1] has shown that the closed
queueing network is a more realistic
representation of the real system in most
engineering disciplines and the results
from the infinite source model are often
inaccurate, an attempt is made to obtain
the busy periods of a two-server closed
queing network. Fig. 1 illustrates the
M/M/ 1 queueing model that implies an
infinite source. The finite source
queueing network is depicted in Fig. 2 in
which the first service stage is an
infinite server queue while the second
service stage is a single server queue with
FCFS queueing principle.

2. Problem and Solution

In Fig. 2 the number of customers
circulating the network equals the fixed
population of the closed system . Since
stage 1 is an infinite server, there won't

be any queueing in front of this service

station. The service times of all the

servers are exponentially distributed. The

queueing in the network is less severe than

for an open system with arrival rate nX

because of the finite population. Thus the

results of the open model M/M/1 are

inaccurate for calculating the busy period

of service stage 2 in the closed network.

Starting from n=1 , where n is the

population of the closed network, a general

scheme is used to obtain the busy period at

service stage 2. E(B) is used to denote

the expected length o? the busy period of

service stage 2 with population n in the

closed system. Obviously, E(B^) = 1/y

where u is the service rate at stage 2.

113

A- nA

Source in]—O—*-<j^Q
Figure 1. M/M/1 Queueing Model

I Service Stage 1 I Service Stage 2

&
-ii

Population - n

Figure 2. Finite Source Queueing Network

I Service Stage 1

J

H-l—r°i
1

1*

1

v—'Population

Service Stage 2

Stage 1 Stage 2

Figure 3. Closed Loop Queueing Network with Two

Stages of Service and Population 2.

114

The case of n=2 shown in Figure 3 is

now studied.

Let X = (X
1

,X
2

) be the state of the

queueing network where X^. is the number of

customers at stage I. To assign n indis-
tinguishable customers to N stations, the

number of possible combinations is C^^
11

^).
N-1

So, three possible states exist for this

system in Fig. 3: (2,0), (1,1), and (0,2).

The state transition diagram is as shown in

Figure 4.

The numbers at the sides of the arrows
refer to the probabilities of the corre-
sponding transitions. The busy period
starts at the entry to state (1,1) from
state (2,0). The expected duration of

state (1,1) is 1/y+X. When the state
changes, with probabilities X/y+X and y/y+X,

the system will move to (0,2) and (2,0)
respectively. Also, the system will stay

at (0,2) for an expected length of time 1/y
and then move. back with probability 1 to

(1,1) again. With the memoryless property
of this continuous time Markov chain, it is

true that

E(B„) = (y/y+X) (l/y+X) +
(X/y+X) [l/y+X + 1/y + E(B

2
)]

= l/y+X + (X/y+X) [1/y + E(B
2
)]

= 1/y + (X/y) EtBj

With n = 3, the state transition diagram is

shown as in Figure 5.

The busy period will start at the
entry to state (2,1) from state (3,0).
Comparing the state transition prob-
abilities and the expected length of stay
of the states to the right of the dotted
line, it is found that they are exactly the
same as those of the states to the right
and including (1,1) in Fig. 4. The reason
is that the second service stage has only
one server with service rate y.

Thus, the expected length of stay to

the right of the dotted line in Fig. 5

should be just E(B
2
). With the same

argument as used in deriving E(B
2
), the

following is true:

E(B) = (y/y+2X) (l/y+2X) +
(2X/y+2X) [l/y+2X + E(B

2
) + E(B

3
>]

= (l/y+2X) + (2X/y+2X) [E(B
2

) + E(B
3
)]

= 1/y + (2X/y) E(B
2

)

Following exactly the same pattern, it can
be shown that

E(B
4

) = 1/y + (3X/y) E(B
3
)

E(B
n+1

) = 1/y + (nX/y) E(B
n

) (1)

E
T
(2,1) = l/y+2X

E
T
(1,2) = 1/y+X

E
T
(0,3) = 1/y

y +2X

Figure 5. Transistion Diagram for a Two Stage Closed

Queueing Network With Population = 3.

115

As mentioned above, the key point in
deriving this recursive relation is that
all the state transition probabilities and
the expected lengths of stays of all states
to the right of and including the starting
state (eg, (ri-1,1)) in the case of n
customers are exactly the same as those of
the states to the right of the "next to
starting" state (eg, (n-1,2)) in the case
of (n+1) customers. Accordingly, E(B) can
be used to derive E(B_,-.)•

As n -> °°, A.->0, nX -> A (1) converges

to the formula of the M/M/1 model, ie

E(B) = 1/u + (A/u) E(B)

= 1/y . 1/(1- A/y)

3. Computational Results and Comparisons

An APL program has been written to

compute the results of the M/M/1 model and
the closed queueing network model. The
error percentage of using the M/M/1 model
under different load conditions is listed
in Table 1 . In all cases the expected busy
period for the M/M/1 model is longer than

that of the closed queueing network.

Table 1 suggests that for the analysis
of expected busy durations, the M/M/1 is an
appropriate representation of the closed
queueing model only when: (i) n is larger
and (ii) p is small.

The authors thank Dr. W. M. Chow of
IBM Research for his suggestions and Mr. D.

Ness of IBM GSD for his review.

References

[1] Buzen, J. P. and Goldberg, P. S.

,

"Guidelines for the use of infinite
source queueing models in the analysis
of computer system performance",
National Computer Conference Pro-
ceedings, 1974, P 371 - P 374.

[2] Kleinrock, L. , Queueing System , Vol.

1, Wiley Interscience, New York, 1975.

Table 1 Error Percentages of M/M/1 Model Approximation for
the Closed Network Described Above.

n\p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 11.11 25. 42.86 66.67 100 150 233 400 900
2 5.82 13.64 24.22 38.89 60 92.31 146 257 589
4 2.99 7.23 13.26 22.01 35.09 55.74 91 .47 164 389
8 1 .52 3.74 7.05 12.05 19.88 32.74 55.81 104 256

15 0.82 2.03 3.89 6.80 11.53 19.63 34.78 68.01 174
30 0.41 1 .03 1 .99 3.54 6.13 10.79 19.98 41.24 113

50 0.25 0.62 1 .21 2.16 3.79 6.80 12.96 27.91 80.74
100 0.12 0.31 0.61 1 .09 1 .94 3.55 6.99 15.90 50.11

150 0.08 0.21 0.41 0.73 1.31 2.41 4.81 11 .24 37.33
200 0.06 0.16 0.30 0.55 0.99 1 .82 3.67 8.72 30.06

116

PREDICTION PART III: APPLICATIONS

117

A MARKOVIAN MODEL OF A JOB

A. K. Agrawala
J. M. Mohr

Department of Computer Science
University of Maryland
College Park, MD 20742

A Markov model may be used to characterize a sequence of states.

In this paper we explore the use of such models for modelling the

sequence of job steps of a job. The job population is first divided

into several clusters and then a separate Markov model is created for

jobs from each cluster. The results of an experimental study con-

ducted on a large UNIVAC machine at the Computer Science Center of

the University of Maryland are presented.

Key words: workload modelling, Markov model

1. Introduction

Most of today's general purpose com-

puters are used in a multiuser, multiapplica-

tion environment handling a workload which
is a composite of all of the processing
requests made by its user community. As a

consequence the problem of characterizing or

modelling the workload of a computer system
so that all aspects of interest are captured

in the model, becomes very difficult.

The first step in creating any model is

to decide the degree of aggregation, i.e. to

identify the smallest level of detail to be

modelled. In the workload modelling context
the smallest unit of work modelled has been
called the workstep [l]. We may choose to

model the workload in terms of instructions,

subroutines, job steps, jobs, or sequences
of jobs, treating any of these as the work-
step. Clearly one's perspective of the pro-
blem changes as the level used for the work-
step is changed. If a workstep is an in-

struction we get an instruction mix descrip-

This research was supported in part by

the National Aeronautics and Space Adminis-

tration, Goddard Space Flight Center, under

Grant NASA //NAS 5-24407 and in part by the

Environmental Protection Agency under grant

R805478-01-0, to the Department of Computer

Science, University of Maryland, College

Park, Maryland.

We wish to acknowledge the support and

assistance of the University of Maryland

Computer Science Center and its personnel.

tion of the workload. By choosing a job

step as a workstep we may get a model in

terms of the various system packages, such

as compilers, available on the system. In

order to capture the processing characteris-

tics of the user a job has been used as a

workstep in several studies [2,3,4,5].

Having decided on the size of a work-

step, e.g. a job, a workload model may be

formulated to account for the characteris-

tics of the population of worksteps handled

by a system. In formulating such a model

the characteristics of a workstep are mea-

sured in terms of a set of features. For

example, we may choose to use the resources
required by a workstep as the features and

describe a workstep by a vector, each ele-

ment of which corresponds to the amount of

a particular resource that is used. We may
include as features the use of all major
system resources and quantify the require-
ments of a workstep in terms of the CPU time,

memory, and I/O to various devices etc.

A way to formulate the model of the

workload is to treat the characteristics of

a workstep as an n-dimensional random vector
x representing the workstep 's n different
resource requirements. Now the model of the

workload consists of a probability distribu-
tion for x defined in the n-dimensional
space spanned by this vector.

Due to the large variety in the pro-

cessing demands placed on the system by the

users the probability distributions p(x) are
usually very complex. A way to handle this

119

complexity has been to express p(x) as a
mixture distribution where

k

p(x) = ^ p(x/ Ci)
P(Ci) (1)

i=l

Here the population is grouped in k groups
with the ith group having the distribution
p(x/c^). Clustering has been used success-

fully to create models based on
equation (1) in a nonparametric environment.

A model of the workload expressed as
p(x), identifies a workstep in terms of a

vector x, the total resource requirements of

a job. When using the requirements placed
on resources such as CPU, memory, and I/O
devices we do not consider the time over
which these demands are placed by a workstep
or how they are placed. When using a job as

a workstep, the vector x represents the
total resource requirements of the job ob-
tained by summing up the requirements of
each individual job step. A workload model
constructed using a job as a workstep does
not, by design, have any details at the job
step level, and hence cannot be used to

infer any characteristics of the sequence of
job steps in a job.

In applications such as the design of

representative benchmarks, the workload must

be specified at the job level and at the job

step level. Only then can we construct

benchmarks consisting of several jobs where

each job is specified in terms of sequences
of job steps.

In this paper we present a Markovian
model of a job which may be used to model

the job steps. Some earlier studies [6]

indicate that a common Markovian model for

the entire population of the jobs may not be

valid. Here we model the job steps of the

jobs in each cluster, or group in terms of a

separate Markovian model.

Section II of this paper describes how
a set of jobs may be modelled as a Markov
process. In Section III the results of an

experiment are described in which a large

data set was clustered and each cluster was
modelled as a semi-Markov process. Finally,

results are presented showing the differ-
ences in the Markov processes used to model

each cluster.

2. The Model

In order to perform his processing a

user activates a sequence of processing

requests within a job. These individual

processing requests are handled separately
by the system as job steps and may consist of

functions such as compiling, linkage editing,

or the activation of a statistical package

etc. If all jobs executed the same sequence
of job steps, the problem of modelling jobs
at the job step level would have been very

easy. In practice, however, jobs having
similar resource usage profiles may have
different numbers and types of job steps.

In order to create a generative model of a

job in terms of a sequence of job steps we
need to take the sequential nature of the job

steps into account.

A way to model the sequence of job steps

is to treat this sequence as a Markovian
sequence [7]. In order to create a Markovian
model of such a sequence we need to specify

a set of states. The natural set of states

for job steps are the activities identified
as job steps in a system. Thus we may use

calls to various programs as the states of

such a Markov sequence. For the discussion
here let us assume that the set of states

has K elements in it

.

The basic assumption required for a

sequence to be Markov of order one is that

the transition to the next state depend only

on the current state and not on the past

states. In other words, a Markov sequence

has a memoryless property in which knowing

the current state, the past history may be

ignored. With this assumption, a Markov
sequence may be specified by a (k x k)

transition probability matrix, P, which
contains the probability of a transition
from state i to state j as its (i,j)th
element, P. . Clearly, since each transition

ij

probability is a probability, it must

satisfy the requirement

0 < P. . < 1 1 < i,j < k-

Further, since the process must occupy one

of K states after each transition

P = 1 i = 1,2, . . X.

Thus, we observe that all of the elements of

the transition probability matrix P have

values in the range (0,1) and each of its

rows sum to unity.

Once we model the sequence of job steps

in a job as a Markov process we may easily

derive a variety of statistics about the

process. As the transition probability mat-
rix is assumed to have constant values a

multi-step transition probability matrix may

120

easily be obtained by multiplying the matrix
P to itself the required number of times.

Before considering the state probabil-
ities, we need to decide whether we are
modelling the sequence as a transient Markov
sequence or a recurrent Markov sequence. We
recognize that each job only has a finite
sequence of job steps and starts with the

START state and ends in the END state.

The END state may be considered as a trap-
ping state for this sequence. To observe
another sequence we have to start from the

START state again. If we treat the job steps
in this way we obtain a purely transient
Markov model and many of the process' inter-
esting properties, such as its steady state
behavior, cannot be studied. We observe
that by treating the END state, such that
from there, with probability one a transition
occurs to the START state, and recognize that
a visit to the END state represents the
termination of a job which is followed by the
start of another, we can model the sequence
as the sequence obtained by executing a num-
ber of jobs sequentially. Now the model we
obtain has only recurrent states, (assuming
all of its jobs end). For such a Markov
chain we can determine the limiting state
probabilities, which may be represented as a

K vector TT where ~\[
. represents the prob-

ability of finding the process in state i

after a transition assuming the process has
been running for long enough that a start-
ing value has no effect on its current state.

Another parameter of interest is the
time (or number of steps) it takes on the
average to go from the START state to the
END state. Noting that END state is followed
by the START state we may try to determine
the first recurrence time for the START
state. The average time N (i.e. the number
of steps) is easily obtained as the inverse
of the limiting state probability of the
START state [7]. The limiting state prob-
ability vector is the eigen vector of P
corresponding to its dominant eigen value
and may be obtained by solving the eigen
value problem.

In order to estimate the values of the
elements of P and "If we can use the observed
data obtained from a source such as an
accounting log where the job step informa-
tion is recorded. The first step is to
decide on the states to be used in the model.
Then we may observe a sequence of job steps,
recognize the state corresponding to each
job step and consider the sequence of states.
The maximum likelihood estimate of P is

obtained by counting the total number of

transitions from state i to state j and
dividing that by the total number of transi-
tions in the sequence observed [9] • We
may obtain an estimate of "TT by solving the
eigen value problem or by counting the num-
ber of times the process was in each state.
We confirmed that the values of TT obtained
by both of these techniques are identical
when the sequence consists of a set of com-
plete jobs.

For a single Markov model to apply to a

set of jobs, those jobs should have similar
characteristics. It has been reported that
the jobs run on a computer operating in a

multiuser, multiapplication environment are

not homogeneous and in fact consist of a

number of identifiable groups or clusters.
As the jobs belonging to a cluster look
similar to the system, they are better
candidates for modelling as a Markov se-
quence. Therefore, to create the model of

the workload of a system we have to first
cluster the jobs and then create a Markov
model for the jobs in each cluster.

In addition to information as to the

sequence of states we may also measure the
amount of time spent in each state. The
holding time of a state is the amount of

time spent executing the program or programs
represented by the state. When these state
holding times are included in the model the

model becomes a semi-Markov model [8]. When
a Markov model is used it is assumed that

the state transitions occur at discrete
instants of time and the process is examined
just after a transition. In a semi-Markov
model the state transition probability mat-
rix P is augmented by a set of holding time
distributions, one such distribution for
each state in the Markov model.

3. An Experimental Study

In order to experimentally examine the

use of a Markov model of the jobs in a real

system's workload, we studied the workload
on the Univac 1108 at the Computer Science
Center, University of Maryland. This is one

of two large UNIVAC 1100 series machines

that are used by the students and the faculty

of the university for educational and re-

search computing activities. The system

operates under level 33 of the 1100 Series

Operating System. For the study we used

approximately 2 ^ weeks worth of accounting

log information. A total of 22,058 jobs

were executed by the system during this

period. One of the major goals of this

study was to determine how much the Markov
processes for the clusters differed.

121

3.1 Clustering 3.3 The Markov Model

The first step was to scale and cluster
the data from the log tapes. A total of
eight resource related features were chosen
for the clustering. These were:

1) CPU time

2) Executive service time

3) Number of programs executed
4) Amount of core used
5) SUP's *

6) Drum I/O

7) Disk I/O

8) Tape I/O

The scaling and clustering techniques used
are described in [l]. We obtained a total of

eleven clusters. The location of the cen-
troid of each cluster and the number of

points in each cluster is given in Figure 1.

These values are presented in terms of the
scaled variables where the 98th percentile
of the original variable has been scaled to

a value 10.0. From a comparison with re-

sults presented in [5] we note that these
clusters are very similar in their character-
istics to those found in [5].

3.2 The States of a Markov Model

In creating a Markov model for jobs in

each cluster one must first decide on the
set of states. As noted in Section 2 the
programs or job steps identified by the sys-
tem are well suited for this purpose. The
UNIVAC system at the University of Maryland
recognizes approximately 230 different
system's programs, most of which are executed
very infrequently. In addition, a large
number of user programs may also be identi-
fied. In this study all user programs were
treated as a single state and all the in-
frequently used programs were grouped into
one of five common states:

a. Compilers
b. General file utilities
c. Tape utilities
d. Data analysis packages
e. Other utilities.

As a consequence, we used a total of 25

states for this model.

* SUP's is the measure UNIVAC uses to quan-
tify a program's CPU time, executive service
times, and I/O times. In this paper all SUP

times are expressed in seconds.

A separate Markov model was postulated
for the jobs belonging to each of the clus-
ters. Based on the information available
from the log tapes used in this study we com
puted the estimates of the transition prob-
ability matrix, P^ as well the limiting
state probability vector ~7j~ for each cluster
With 25 states P is a 25 x 25 matrix. As
an example, the transition probability mat-
rix for the programs executed by the jobs
contained in cluster 1 is presented in
Figure 2. It shows that for a job from
cluster 1 a FORTRAN cimpile is followed by a

call to MAP for linkage editing with a prob-
ability of 0.518. We obtained a transition
probability matrix for each of the other 10
clusters

.

Another interesting characteristic of a

Markov model is the limiting state prob-
ability vector. For the model formulated
here it is a vector of length 25. The es-
timates of these vectors for each of the
clusters are shown in Figure 3. From the
results presented there we observe that if

we were to observe a randomly selected pro-
gram of a job from cluster 5, with prob-
ability 0.13 it would be a call to ED the
editor. Also note that while the assembler
(ASM) is not frequently used, no job in

clusters 5, 6, 9, or 10 used it at all. The
SPSS is used most frequently by jobs from
cluster 8.

A number of interesting observations
can be made from the information presented
in Figure 3 and also, from that available
from the transition probability matrices.
However, to consider quantitatively the
differences between these Markov models we
need to formulate some meaningful measures
of their differences. Let us consider the
differences based on the limiting state
probability vectors.

Two similarity measures can be used to

describe the differences between a pair of k
dimensional vectors, the Euclidean distance
between their end points or the direction
cosine between the two vectors. The direc-
tion cosine varies between 0.0 and 1.0 and
describes the differences in the direction
of the vectors as the cosine of the angle
between them. The Euclidean distance bet-
ween the endpoints of the two vectors also
captures the difference due to the relative
lengths of the vectors. The numeric values
of these measures of difference are display-
ed in Figure 4. All pairwise difference
measures are shown in that figure. The
Euclidean distance is displayed first and

122

Cluster
No.

// of jobs // of Progs SUPS Core
Blocks

CPU
Time

ER & CC
Charges

Drum
I/O

Disk
I/O

Tape
I/O

1 7694 U.J 3. 7 1.9 4.1 3. 7 3.8 0.0

2 334 7 9I.e. a ao. o 2 .

8

6.8 9.2 7.9 8.8 7.3

3 659 U . Q 5. 6 2. 6 2.9 5.2 4.7 3.8 5.4

189 6. 7 10. 4 4 . 7 9. 6 10.0 9.6 9. 7 10.2

5 2797 1.

8

A ft0. U 2.4 3.2 6.5 6.1 5.4 0.0

6 1153 0. 5 7. 3 ft iO.J 7.3 5 .

3

4.9 5.5 0.5

5 . 3 8. 0 3. 2 6.

2

8.3 8.0 7.6 0.0

o 1/7 1 .

1

7. 6 6.1 7.1 6.4 7.5 5.3 7.5

q 1A/,JU4 3. 2 7 .

4

2.2 4.0 7.8 6.6 6.8 6.5

10 310 0. 6 9. 2 4.

3

-j j 7 .

4

5. 4 4 .

9

11.

0

11 5611 0.2 2.2 1.2 0.1 2.5 1.5 0.9 0.0

Figure 1 Scaled Means for the Clusters

START FREE ACCOUN CATAIjO ED FORTRN LOAD SAVE RESUME STATUS GROUP1 GROUP3 GROUP

ASG USER ASM CTS ELT FUR PUR MAP SPSS SUSPEN TIME GROUP2 GROUP4

START .000 .209 .000 .000 .010 .001 .000 .522 .010 .090 .087 .013 .003 .001 .000 .000 .000 .000 .000 .000 .028 .000 .000 .026 .001

ASG .000 . 363 . 043 .238 .002 . 002 . 005 . 000 . 064 009 .010 .050 .004 008 . 001 084 002 .016 .005 . 004 .012 .036 .026 .014

FREE .350 .006 .621 .003 .001 .000 .002 .000 .003 .000 .000 .002 .001 .000 .000 .000 .002 .000 .008 .001 .000 .001 .000 .001 .000

USER .134 .035 .458 .104 .091 .000 .001 .000 .032 .002 .014 .018 .002 .027 .006 .000 .026 .001 .006 .002 .002 .010 .004 .009 .014

ACCOUN .127 .060 .480 .016 .052 .000 .048 .000 .032 .008 .036 .008 .036 .012 .000 .000 .004 .000 .036 .000 .024 .016 .000 .008 .000

ASM .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .077 .077 .000 .769 .000 .000 .077 .000 .000 .000 .000 .000 .000 .000 .000

CATALO .000 .207 .153 .009 .099 .000 .063 .000 .090 .009 .000 .180 .018 .000 .000 .000 .027 .009 .054 .000 .000 .045 .006 .027 .009

CTS .000 .356 .000 .000 .047 .000 .041 .000 .213 .001 .006 .046 .112 .000 .001 .000 .000 .017 .030 .001 .060 .035 .000 .030 .004

ED .001 .090 .195 .012 .014 .000 .010 .000 .275 .005 .079 .094 .012 .008 .091 .000 .006 .036 .015 .009 .012 .027 .000 .007 .003

ELT .007 .012 .044 .005 .010 .002 .000 .000 .010 .516 .308 .039 .000 .000 .015 .000 .012 .000 .000 .000 .002 .012 .000 .007 .000

FORTRN .001 .010 .023 .000 .006 .003 .000 .000 .033 .000 .346 .019 .003 .518 .006 .000 .006 .003 .000 .013 .003 .004 .000 .001 .003

FURPUR .011 .325 .156 .056 .007 .000 .027 .000 .144 .011 .020 .045 .007 .045 .002 .002 .033 .009 .022 .000 .007 .044 .005 .015 .005

LOAD .000 .060 .015 .065 .005 .005 .005 .000 .322 .000 .040 .050 .111 .010 .025 .000 .000 .040 .005 .000 .106 .121 .000 .005 .010

MAP .002 .006 .030 .623 .000 .000 .000 .000 .012 .012 .002 .274 .000 .010 .004 .000 .004 .002 .002 .000 .010 .000 .006 .000 .000

SAVE .024 .000 .161 .016 .056 .000 .000 .000 .081 .016 .210 .056 .089 .008 .065 .000 .000 .073 .016 .008 .016 .089 .000 .008 .008

SPSS .000 .000 .618 .000 .065 .000 .006 .000 .013 .006 .000 .000 .000 .000 .000 .045 .026 .000 .000 .000 .000 .000 .000 .019 .000

RESUME .000 .009 .636 .037 .047 .000 .019 .000 .075 .009 .000 .056 .000 .000 .009 .000 .019 .037 .009 .009 .000 .009 .000 .009 .009

SUSPEN .000 .277 .034 .050 .008 .008 .025 .000 .034 .042 .092 .084 .000 .017 .008 .000 .126 .025 .000 .000 .034 .000 .008 .118 .008

STATUS .000 .119 .325 .013 .033 .000 .020 .000 .119 .000 .000 .073 .007 .000 .000 .000 .007 .026 .139 .007 .000 .033 .000 .079 .000

TIME .000 .061 .273 ,000 .030 .000 .000 .000 .061 .000 .061 .000 .030 .242 .000 .000 .000 .000 .091 .121 .030 .000 .000 .000 .000

GROUP1 .034 .028 .419 .006 .067 .017 .006 .000 .022 .000 .022 .061 .011 .151 .006 .000 .017 .006 .006 .011 .095 .000 .000 .006 .011

GROUP2 .000 .046 .137 .032 .027 .000 .027 .000 .155 .027 .027 .096 .105 .000 .027 .000 .000 .014 .027 .009 .005 .224 .000 .005 .009

GROUP3 .035 .059 .635 .035 .035 .000 .000 .000 .024 .000 .000 .012 .000 .000 .000 .000 .000 .000 .024 .000 .000 .000 .129 .000 .012

GROUP4 .024 .171 .299 .071 .028 .000 .009 .000 .033 .043 .038 .038 .019 .000 .000 .000 .033 .009 .009 .000 .009 .009 .000 .156 .000

GROUP5 .071 .000 .429 .000 .029 .000 . 000 .000 .029 .000 .057 .043 .014 .057 .014 .000 .043 .014 .014 .000 .014 .029 .000 .014 .129

Figure 2 Transition Probability Matrix for Cluster 1

123

START FREE ACCOUN CATAIjO ED FORTRN LOAD SAVE RESUME STATUS GROUP1 GROUP3 GROUP

Cluster
No.

ASG USER ASM crs ELT FURPUR MAP SPSS SUSPEN TIMF, GROUP2 GROUP4

1 . Ill . 124 . 279 .067 .018 .001 .008 .058 .062 .030 .050 .039 .014 .036 .009 .011 .008 .009 .011 .002 .013 .016 .006 .015 .005

2 .015 .096 .122 .099 .010 .003 .012 .012 .130 .106 .031 .149 .006 .027 .001 .000 .035 .032 .030 .008 .012 .038 .006 .012 .008

3 .099 .091 .205 .069 .008 .001 .010 .039 .050 .019 .025 .222 .004 .020 .001 .005 .009 .009 .018 .003 .003 .015 .013 .062 .000

4 .017 .088 . 125 .158 .003 .005 .010 .008 .104 .046 .021 .215 .001 .031 .007 .000 .023 .024 .027 .008 .013 .028 .005 .013 .018

5 .045 .089 .213 073 014 .000 .009 .041 . 130 .036 .066 051 022 .035 .023 .002 .028 028 018 .005 .019 028 003 015 005

5 .111 . 166 . 261 .123 .019 . 000 .001 .030 .046 .022 .050 .050 .004 .033 .002 .017 .007 .007 .001 .005 .006 .004 .011 .014 .010

7
/ .020 .066 . 128 .105 .010 .006 .005 .018 .146 .061 .064 .085 .015 .043 .022 .002 .040 .039 .021 .008 .032 .028 .004 .023 .009

8 .067 .087 .135 .192 .012 .002 .002 .014 .043 .020 .092 .184 .006 .035 .005 .032 .018 .018 .009 .002 .002 .020 .000 .000 .003

9 .030 .093 .164 .063 .009 .000 .009 .025 .099 .082 .024 .188 .012 .021 .002 .004 .031 .028 .018 .009 .006 .037 .005 .034 .008

'

10 .139 .137 .195 .207 .000 .000 .000 .006 .002 .026 .034 .163 .000 .048 .000 .000 .000 .000 .000 .004 .008 .012 .002 .018 .000

11 .193 .100 .366 .030 .030 .001 .013 .127 .029 .006 .005 .021 .007 .003 .003 .002 .001 .001 .017 .001 .017 .016 .001 .010 .002

Figure 3 Limiting State Probabilities for the Clusters

1 234 56789 13 11

1 . 00 . 27 . 26 . 29 . 14 .08 . 25 . 23 . 24 . 19 . 15

1. 00 . 68 . 75 .66 .93 . 98 .74 . 79 . 77 .87 . 95

2 . 27 . 00 .18 .07 . 17 . 25 . 10 . 16 .09 , 22 . 39

. 68 1. 00 . 85 . 98 . 85 .73 .95 .87 .96 . 81 . 52

3 . 26 . 18 . 00 . 15 . 22 . 24 . 23 . 16 .13 . 17 . 33

.75 . 85 1. 00 . 90 . 78 .77 .76 . 89 . 93 . 89 . 69

4 . 29 . 07 . 15 . 00 . 19 . 26 .13 . 15 . 09 . 20 .40

. 66 . 98 . 90 1.00 . 82 .72 .91 .89 . 96 .85 . 51

5 .14 . 17 . 22 .19 . 00 .15 . 12 . 18 . 15 . 21 . 26

. 93 .85 . 78 .82 1. 00 .91 . 92 . 84 .88 .83 . 82

6 . 08 . 25 . 24 .26 .15 . 00 . 23 . 18 . 23 . 15 . 21

. 98 . 73 . 77 . 72 .91 1.00 . 77 . 87 . 78 . 92 .88

7 . 25 . 10 . 23 .13 . 12 . 23 . 00 . 17 . 14 . 24 . 37

. 74 .95 . 76 . 91 . 92 . 77 1.00 . 85 . 89 .76 . 57

8 . 23 . 16 . 16 . 15 . 18 . 18 . 17 . 00 . 16 .15 . 34

. 79 . 87 . 89 . 89 . 84 . 87 .85 1 .00 . 87 .92 .66

9 . 24 . 09 . 13 . 09 . 15 . 23 . 14 . 16 . 00 . 20 . 34

. 77 . 96 . 93 . 96 . 88 .78 ,.P9 . 87 1.00 . 84 . 65

U . 19 . 22 .17 . 20 . 21 .15 . 24 .15 . 20 . 00 . 29

. 87 . 81 . 89 .85 . 83 .92 . 76 .92 .84 1. 00 . 77

11 .15 . 39 . 33 . 40 . 26 . 21 . 37 . 34 . 34 . 29 . 00

. 95 . 52 . 69 . 51 .82 . 88 . 57 .66 . 65 .77 1 . 00

Figure 4 Difference Measures for the Limiting State

Probability vectors

124

the value of the direction cosine is display-

ed under it. For example, the distance bet-

ween the limiting state probability vector

for clusters 3 and 1 is 0.26 while the direc-

tion cosine value if 0.75. According to

these measures the limiting state probability

vectors for clusters 2 and 4 are most sim-

ilar and those for clusters 4 and 11 are

most dissimilar.

From the information available from the

log tapes we also measured the holding times

for each state in terms of SUP's. The mean

value of SUP's used by jobs from clusters in

each of their states is shown in Figure 5.

A significant degree of variability exists

in the average SUP's used for a state when

this state is reached by jobs from different

clusters. For example a FORTRAN compile by

a job from cluster 11 takes an average of

1.8 SUP seconds while the average for a job

from cluster 4 is 9.1 SUP seconds.

The effect of the holding times may be

taken into account by weighting each element

of the limiting state probability vectors by

the expected value of the holding time in

terms of SUP's. Note that these weighted

vectors now actually describe a semi-Markov

process. Again we may use our measures of

vector differences for these weighted vec-

tors. The Euclidean distance as well as the

direction cosines for the weighted vectors

are shown in Figure 6. For the weighted
vectors the characteristics of clusters 1

and 5 are most similar and those for clus-

ters 10 and 11 most dissimilar. A compari-

son with Figure 4 indicates that the reason

the relative values change for the weighted
vectors is due to the differences in the

average number of SUP's used for that state.

4. Concluding Remarks

In this paper we explored the use of

Marko\ irodels to represent the sequence of

programs or job steps which constitute a

job in the workload of a computer system.

The population of jobs was first divided in-

to several clusters and a separate Markov
model was created for jobs from each clus-
ter. A Markovian model is a very succinct
description of a sequence and therefore is

highly valuable as a generative model.

In the study reported here the states
for this Markov model were selected on the

basis of their frequency of use. A more
compact model may be obtained by reducing
the number of states by combining several
of them into a common state.

The data requirements for reasonable
estimates of the transition probability

matrices increase as the square of the num-
ber of states. Therefore, for some of the
smaller clusters it may become very diffi-
cult to get meaningful estimates. While the
feasibility of a Markov model of a job has
been shown, the states to be used for such
models is a topic for further investigations.

References

[l] Agrawala, A.K., Mohr, J.M. , and Bryant,
R.M., "An Approach to the Workload
Characterization Problem", Computer

,

June, pp. 18-32 (1976).

[2] Agrawala, A.K., and Mohr, J.M., "The
Relationship between the Pattern Recog-
nition Problem and the Workload Charac-
terization Problem", SIGMETRICS CMGVIII,
Nov. 29-Dec 2, 1977, Washington, D.C.

[3] Agrawala, A.K. and Mohr, J.M., "Some
Results on the Clustering Approach to

Workload Modelling", Proc. CPEUG, New
Orleans, Oct. 11-14, 1977.

[4] Agrawala, A.K., and Mohr, J.M., "Pre-
dicting the Workload of a Computer
System", Proc. CPEUG, Nov. 8-12, 1976,

pp. 150-162 (1976).

[5] Agrawala, A.K., and Mohr, J.M., "A
Comparison of the Workload on Several
Computer Systems", CMG IX, Nov. 1978,
San Francisco.

[6] Agarwal, Bhasker D. , "A Model of a Job",

M.S. Thesis, Department of Computer
Science, University of Maryland, 1976.

[7] Howard, Ronald, Dynamic Probabilistic
Systems, Vol. I . , John Wiley & Sons,

1971.

[8] Howard, Ronald, Dynamic Probabilistic
Systems , Vol. II, John Wiley & Sons,

1971.

[9] Bishop, Fienberg and Holland, "Discrete
Multivariate Analysis", M.I.T. Press,

1975.

125

START FREE ACCOUN CATALO ED FORTRN LOAD SAW, RESUME STATUS GROUP1 GROUP3 GROUP

ASG USER ASJ1 CIS ELT FURPUR MAP SPSS SUS PEN TIME GROUP2 GROUP4

1 • 3 . 0 .0 5.4 „ 5 2.

0

6.

1

4.

3

3.

3

1.4 2.

9

2. e 2.6 6.

6

2.

3

10.0 5.9 4.5 .

1

.7 7.4 1.0 8.3 3.3 5.8

2 2 .0 12.7 . 1 9. 8 9 7 4 4 3.

9

2.

0

4.2 8 4 2.7 14.

1

4.

0

14.0 8.9 4.8 .

1

.4 4.6 1. 3 18.9 12.1 4.8

3 • 3 o 0 .0 15.0 . 2 2 2 5.

7

4.

1

3 2 1.

2

4.

1

5 1 2.8 9.7 3.2 13.0 8.4 4.6 .

1

2.8 4.8 4.8 11.0 23.6 5.9

4 2 .0 73.5 2 59.

7

9.

5

4.3 5.

8

2 8 9 1 16 9 2.1 29 2 5.6 13.1 9.6 4.9 .

1

, 4 7.5 22.0 33.9 31.0 4.0

5 • 2 • 0 .0 5.

6

. 3 2.

8

11.6 4.5 3.2 1.6 3.

1

3 3 2.6 6.

6

2.4 10.7 7.3 4*7 . J .6 5.6 1.0 6.2 5.1 2.9

6 .2 .0 .0180.0 .i .0 3.5 4.2 6.0 1.4 4.9 3 8 5.6 10.4 2.0 61.3 8.8 4.7 .1 .8 91.0 3.6212.5 11.9 44.4

7 .2 .0 .0 21.4 .2 22.9 0.2 4.5 3.5 2.1 3.6 3 7 3.0 11.6 2.8 19.8 9.2 4.8 .1 .4 5.7 1.8 22.1 7.9 18.2

8 .1 .0 .0 68.6 .1 12.8 3.8 4.0 2.9 .8 3.3 S 8 3.0 20.5 3.0 54.8 11.7 4.6 .1 .6 6.6 7.8 54.6 1.9 25.0

9 .2 .0 .0 8.5 .2 3.2 6.4 4.5 3.3 2.0 3.1 8. 1 2.7 7.1 4.2 9.7 7.5 4.7 .1 .5 4.1 1.5 8.8 9.6 3.2

10 .4 .0 .0313.5 52.7 3.2 3.9 91.3 .6 3.4 28 8 3.0 17.4 .0227.6 14.7 4.1 .1 .9 14.0 5.9283.2141.2 7.4

11 .2 .0 .0 4.8 .5 2.0 3.8 4.0 2.8 1.3 1.8 1 8 1.9 2.4 2.1 2.0 4.6 4.7 .1 .8 2.2 .7 1.7 1.4 1.0

Figure 5 Holding Time in SUP's

1 2 3 4 5 6 7 8 9 10 11

1 . 00 1. 68 1. 69 9. 70 38 19. 61 1. 98 8. 74 1. 45 57. 35 46

1.00 74 64 71 87 69 82 .73 51 67 65

2 1.68 00 91 8. 32 1. 49 18. 57 1. 24 7.66 98 56. 20 1. 96

. 74 1. 00 90 89 83 72 86 . 70 88 76 32

3 1.69 91 00 8. 59 1 60 18. 84 1. 74 7. 96 94 56. 41 1. 90

.64 90 1 00 80 66 62 71 . 66 88 67 33

4 9. 713 8. 32 8 59 00 9 58 11. 26 7. 86 2. 86 9. 13 48 15 9. 96

. 71 89 80 1. 00 70 93 94 . 96 64 96 31

5 . 38 1. 49 1 60 9. 58 00 19. 56 1 84 8. 68 1. 31 57 27 66

.87 83 66 70 1 00 60 83 . 64 64 62 52

6 19.61 1« 57 18 84 11. 26 19 56 00 17 81 11.14 19 46 38 13 19 86

.69 72 62 93 60 1 00 92 . 98 36 99 30

7 1.98 1 24 I 74 7. 86 1 84 17 81 00 6.92 2 08 55 50 2 30

.82 86 71 94 83 92 1 00 . 94 53 93 35

8 8.74 7 66 7 96 2 86 8 68 11 14 6 92 . 00 8 55 48 74 9 01

.73 78 66 96 64 98 94 1. 00 44 99 31

9 1.45 98 .94 9 13 1 31 19 46 2 08 8. 55 00 57 05 1 60

.51 80 . 88 64 . 64 36 53 . 44 1 00 43 27

10 57. 35 56 20 56 .41 48 15 57 . 27 38 13 55 50 48.74 57 05 00 57 59

.67 . 76 . 67 96 .62 99 93 . 99 43 1 . 00 30

11 .46 I . 96 1 . 90 9 96 . 66 19 . 86 2 . 30 9. 01 1 . 60 57 . 59 . 00

.65 .32 . 33 .31 . 52 . 30 . 35 . 31 . 27 . 30 1 . 00

Figure 6 Difference Measures for the Weighted Limiting
State Probability Vectors

126

CASE STUDY IN CAPACITY PLANNING:
ANALYSIS OF AN AUTOMATED BIBLIOGRAPHIC RETRIEVAL SYSTEM

R.P. Goldberg, A.I. Levy,
H.S. Schwenk, Jr.

BGS Systems, Inc.
P.O. Box 128

Lincoln, MA 01773

ABSTRACT

This paper discusses a computer system capacity planning analysis
of an automated bibliographic retrieval system. A major focus of the
study was to determine the computer system requirements necessary to
support anticipated bibliographic workloads (through 1983). The paper
addresses the methodology used in obtaining performance data and the
use of an interactive capacity planning tool, BEST/l™ to assimilate
the data and predict the performance impact of the anticipated workloads.

KEY WORDS

BALLOTS; BEST/1™; bibliographic retrieval system; capacity planning;
computer performance analysis; computer system modeling; library auto-
mation; response time; throughput.

1. Introduction

BGS Systems recently performed an analy-
sis of several different automated bibliogra-
phic retrieval systems [1] . One aspect of the
study was to determine the computer system re-
quirements necessary to support the client's
bibliographic workload in both the short term
(July 1978) and the long term (1983) .

The first step In the performance study
was to define and agree upon a generic biblio-
graphic cataloging activity which each of the
bidder's system had to execute. Next, each
bidder was required to use the consensus cata-
loging activity as a guideline in preparing
computer resource consumption values for BGS
Systems' use in constructing performance

1 Figures in brackets indicate the litera-
ture references at the end of this paper.

models. One bidder provided measurements
based on performance data that had been col-

lected during routine performance monitoring
operations. A second bidder performed a

series of controlled experiments to extract
the data. A significant effort was devoted,

on the part of BGS Systems, to ensure that

the data received by each institution repre-
sented, as closely as possible, the consensus
cataloging activity.

The data obtained from each bidder was

verified and reformulated, where necessary,

to insure the similarity of the cataloging
processing activity across the bidders. In

all cases, the data was verified and agreed

upon by the institutions before being incor-

porated into performance models. A BGS Sys-
tems' proprietary software package, BEST/1

[2] , was used to assimilate the data and pre-

dict the performance impact of the anticipated

127

client's workload on each of the systems. 3. BALLOTS System Design

In this paper, we will briefly introduce
the consensus bibliographic cataloging activi-
ty that was chosen. Then we will illustrate
the study approach by focusing exclusively on

the Stanford University BALLOTS System, one
of the several sites investigated. For this
site, we will briefly summarize the relevant
hardware and software configuration informa-
tion. We will focus on the performance anal-
ysis in considerable detail.

2. The Generic Cataloging Activity

A generic activity, described in Figure 1

was agreed upon as a basis for representing
computer resource consumption attributable to

cataloging operations. Figure 1 represents
the various processing paths through a biblio-
graphic system, referred to as title destinies,
that an individual title might ultimately take.

The two major destinies agreed upon (highlighted
in the figure) represent operations for copy
and original cataloging. These two activities,
which support the process of title classifica-
tion, provided the fundamental focus of the
analysis . In the copy cataloging case, the
path through the figure is interpreted to mean
that a title, upon entering the system, is

searched against the bibliographic database and
is found to exist in an adequate enough form
to permit a copy cataloging process to occur.
In the original cataloging case, the data base
search does not retrieve the title; rather it

must be entered into the system (in an adequate
form) through an original cataloging process.

The BALLOTS Library Automation System [3]
offers on-line service in a multi-library
environment to over one hundred and thirty
library institutions. A brief overview of
BALLOTS hardware and software is presented
below.

3.1 BALLOTS Hardware Configuration

The Stanford University BALLOTS computer
hardware environment is a 4 million byte
IBM 370/168 Model 3 central processor with
IBM 2301 drums for virtual storage and oper-
ating system residence, IBM 3350 and 3330-11
direct access disk devices for data base stor-
age and a host of magnetic tape drives and
unit record peripherals. This configuration
supports a wide variety of the University's
data processing - BALLOTS contributing to
only a small proportion of the total workload.

SUBSTANDARD) MARC TITLE 1!

(ADEQUATE
^)

FIGURE 1

CONSENSUS GENERIC CATALOGING ACTIVITY

It is important to note that the consensus
cataloging activity represented by Figure 1

portrays the ultimate destiny of titles through
a bibliographic system and not their processing
flow. A title's actual processing flow is de-
picted by Figure 2. In this case, in addition
to the destiny, the time element involved in

the cataloging process is portrayed. Figure 1

assumes that a title, once entered into the
flow, completes processing without the possi-
bility of time delays and "loops". This sim-
plification, agreed to by the proposing insti-
tutions, was included in the performance anal-

ysis to avoid unnecessary complexity.

Original cataloging refers to a multitude
of activities involved in the process of
entering a title in a bibliographic catalog
for the first time. This differs from
copy cataloging which includes utilizing
a previously developed catalog entry to

support the process.

FIGURE 2

TALOGING ACTIVITY FLOW

128

3.2 BALLOTS Software Environment

BALLOTS was designed to operate within

the hardware and software environment depic-

ted in Figure 3. The major system software

components of this environment, MILTEN and

ORVYL [4], are locally developed and supported.

MILTEN provides BALLOTS with teleprocessing

control functions supporting both device-

dependent and generalized front-end (GFE)

communications. The former component provides

[

support for the ZENTEC terminals and the

PDP-11/40 interface while the latter component

supports the development of specialized de-

vice drivers.

Time-sharing services on the Stanford

system are provided through the ORVYL time-

sharing monitor. ORVYL provides BALLOTS with

a flexible time-sliced virtual memory environ-
ment and, in addition, provides a sophistica-
ted and security conscious file system . BALLOTS
executes as a reentrant subprocessor under

i ORVYL which in turn, executes within 0S/VS2 SVS

as an ordinary batch region. All operating
system requests (including paging, input/out-
put services, etc.) are handled, independently
of the operating system, by invocation of an

ORVYL interface routine which issues appropri-
ate supervisor calls to ORVYL for servicing.

j
This design permits BALLOTS to achieve a

highly efficient processing potential.

There has also been an attempt, in the

j

design of the system, to optimize the use of

main memory. First, the BALLOTS subprocessor
code is completely shareable; only one copy
is needed regardless of the number of users.

Additionally, work space for each user is

allocated only as needed and is released back
to ORVYL as soon as possible. Since ORVYL
runs in a virtual memory environment, memory
released in this manner is immediately avail-
able for subsequent use.

The BALLOTS subprocessor contains a sub-

stantial amount of software extracted from the

Stanford Public Information Retrieval System
(SPIRES). This code is used for searching
the data base files and for updating and de-
coding records. Much of the software has been
modified to provide for the unique needs of

BALLOTS. The ORVYL interface mentioned above,

and procedures to manage the updating of re-
cords and access to individual data elements

within a record retrieved by SPIRES each pro-

vide examples of modifications included.

In addition to the on-line component,

BALLOTS includes a batch component which is

invoked nightly to process requests pending
from the on-line component. All transactions
processed by thfe on-line component of BALLOTS
are queued in a temporary data set for subse-
quent processing by the batch component . This
data set, referred to as the deferred queue,

includes updates and additions to the files

and requests for the production of library
output. Nightly, the BALLOTS on-line compon-
ent is deactivated and the batch component in-

voked to service the deferred queue.

3.3 BALLOTS Files

The BALLOTS system supports several

on-line files and indexes to them (Figure 4).

MI LTEN
ON-LINE CONTROL

DEVICE
DEPENDENT 1

C FE
i

ORVYL
TIME SHARING

ACCESS SUPPORT

OS/SVS VI. 7G

IBM 370/168 MODEL 3

4 MEGABYTES

MEMOREX 12 70

COMMUNICATION
CONTROL
UNIT

"IN-HOUSE"
CHANNEL
INTERFACE

PDP
11/40

IN-HOUSE
OPERATING
SYSTEM

LOW

SPEED
TERMINALS

(HIGH
SPEED

TERMINALS

BALLOTS DATA BASE
IBM 3330/11 DISK DEVICES

FIGURE 3

BALLOTS ON-LINE HARDWARE/ SOFTWARE ENVIRONMENT

129

The major source files are the MARC, In-Process,
Catalog Data and Reference Files 3

. The MARC
file contains a complete set of bibliographic
records received from the Library of Congress
MARC tapes (since 1972) and converted to an
internal BALLOTS record format. The In-Process
File contains bibliographic and acquisition
or in-process control information for items
on order or in-process in the Stanford librar-
ies' technical processing division. The Cata-
log Data File contains bibliographic and hold-
ings information belonging to Stanford librar-
ies and other institutions contributing to-
wards shared cataloging in the BALLOTS data
base. The Reference File contains cross refer-
ences and explanatory notes to the Catalog
Data File belonging to Stanford. Records in

each of these files are fully accesible to all
users

.

Two additional files, the Standing Search
Request File and the Deferred Queue are also
maintained on-line. The former provides a

facility for standing search requests to be

processed against the MARC File^. The latter
contains the daily queue of cataloging trans-
actions for BALLOTS overnight processing.

3 The In-Process, Catalog Data and Reference
Files are physically maintained as one
SPIRES file, but are logically considered
to be three separate files.

4 A standing search request is a prestored
machine readable request to "automatically"
search incoming LC MARC records in an
attempt to locate a particular one for
purposes of copy cataloging.

Indexes to each of the files described
above are identified in Figure 4. BALLOTS
uses word and phrase indexes in addiiton to
the typical library file indexes: Library of
Congress Card Number (LCCN) , and Call Number.
For word indexes, all significant words in the
value of an indexed data element are indexed
with frequently occurring words being omitted.
For phrase indexes, of which only topical and
geographical subjects are included, an entire
subject heading is treated as a single index
term

.

BALLOTS files are physically maintained
through SPIRES [5] (in the ORVYL file system)
in two distinctly different types of structures
The first, incorporated into the Standing
Search Request, In-Process, Catalog Data and
Cross Reference files, is the SPIRES slot re-
cord structure. The second, incorporated into
the Active MARC File, Deferred Queue and all
index files, is the SPIRES B-tree organization.

The SPIRES slot record structure provides
a relatively simple file organization. Records
are maintained through an essentially fixed
length element array format based on a system
assigned monotonically increasing key (the
BALLOTS Local Identification Number). The
records are stored in a sequentially organized
residual file with the slot structure housing
each record's key and residual address.

The B-tree (or balanced tree) organization
is slightly more complex. This organization
can best be described as a Lree structure with
between k+1 and 2k+l son nodes for any given
father node. Individual records in the tree

BALLOTS
LOCAL
ID 0

INDEX

DEFERRED
QUEUE

BALLOTS ON-LINE BIBLIOGRAPHIC FILE ORGANIZATION

130

are organized so that postorder tree traversal
retrieves records in their key collating se-

quence .

In addition, Stanford is currently devel-
oping a substantial file system enhancement
called the network file design. Issues cur-
rently within the scope of network file design
include:

* Enhanced index files
* Hashed index base block organization
* Multi-level deferred queue organization
* Authority control development
* Storage schemes for multi-institutional

data

4. BALLOTS System Performance

4.1 BALLOTS Interpretation of the
Generic Cataloging Activity

in original cataloging and Figure 6 illustrates
the transactions invoked in copy cataloging
("copy adequate")

.

4.1.1 Original Cataloging

A "typical" BALLOTS original cataloging
activity (Figure 5) consists of the following
series of interactions:

FIND CARD# - An attempt is made to locate
the subject item by Library of Congress
Card Number. Since this scenario is orig-
inal cataloging, the FIND is presumed to

fail.

FIND OTHER - An Attempt is made to locate
the subject item by using one or more of the

BALLOTS indexes. The terminal operator can
be counted on to issue the command that is

the easiest to enter, and yet has the de-
sired precision.

Stanford University personnel provided
an interpretation of how the generic catalog-
ing activities would be performed using BALLOTS.
Figure 5 illustrates the transactions invoked

c FIND CARD//) (.025; 5)

c FIND OTHER

c

c

J.

(.066; 12)

(SCREEN) (-°22 '

(screen)
(- 022 -°>

(.022;0)

022;0)

THINK TIME

AVG CPU SECONDS AVG I/O OPERATIONS
(EXCLUDING SYSTEM OVERHEAD ~ 50%)

FIGURE 5

BALLOTS ORIGINAL CATALOGING ACTIVITY

(. 066 ; 12)

(.022 ; 1)

(.022; 1)

INPUT SCREEN l(.022;0)

(.022;0)

(.059;7)

FIGURE 6

BALLOTS COPY CATALOGING ACTIVITY

131

At this point it is determined that an origin-
al cataloging activity must be undertaken. The

information for this activity must be obtained.
When the information is available (some time
later), the terminal operator may continue pro-
cessing the subject item.

BC1 Format - This format is used to record
miscellaneous control information about the
item being cataloged that does not consti-
tute "bibliographic description" per se. All
of the data element mnemonics possible on
the BC1 format are supplied by the system;

the user needs only to fill in the data,
which in many cases consists of a brief code.

BI1 Format - This format is used to record
the bibliographic description, (main entry
through size) of the item being cataloged.
All of the data element mnemonics possible
on the BI1 format are supplied by the system.

BI2 Format - This format is used to record
the remainder of the bibliographic descrip-
tion from series notes through tracing, as
well as to indicate any additional catalog
cards to be printed and their specific
headings. No element mnemonics are prompted
on this format by the system; the user keys
both the desired mnemonics and the informa-
tion following them.

HOL Format - This format is used to record
the call number, shelving location,
copy and volume numbers for an item being
cataloged, and to instruct the system to

print catalog cards and/or magnetic tape
output. This is the final (required) format
in the cataloging sequence. It contains a

combination of input fields labeled with
their data element mnemonics by the system
and input fields into which the user keys
both the mnemonics and the value of data
elements wanted in the record.

ENTER - Enter the title into the appropriate
catalog data file and create all necessary
index entries. Since the design does not

update these files during interactive use,

the predominant work executed on behalf of

this command is actually delayed until batch
update processing later in the day (see below).

Consequently, the primary work performed by

this command, during daytime, interactive
use, is the establishment of a deferred queue

update request element for later processing.

4.1.2 Copy Cataloging

A "typical" BALLOTS copy cataloging
activity (Figure 6) consists of the follow-
ing series of interactions:

FIND CARDtt - An attempt is made to locate

the subject item by Library of Congress
Card Number. Since this scenario is

copy cataloging, the FIND will very oftenbe
successful. If it is successful, the ter-
minal proceeds to requesting worksheet pre-
paration. If it fails, a FIND OTHER is

issued

.

FIND OTHER - An attempt is made to locate
the subject item by using one or more of the
BALLOTS indexes (see original cataloging,
above) . Since this is the scenario for copy
cataloging, any item that has not been found
via LCCN will be found using this request.

DISPLAY (twice) - A successful FIND OTHER
locates several candidate items. On the
average, past statistics indicate that two

of them must be displayed to uniquely iden-
tify the item of interest.

WORKSHEET - Production of a worksheet is

requested. The actual printing of the work-
sheet is performed as a batch activity.

At this point, the copy cataloging activity is

underway. The worksheet includes information
to be verified as well as new information to

be obtained. When the information is available
(some time later), the terminal operator may
continue processing the subject item.

FIND ID# - The existing entry, which is the

subject of copy cataloging, is (efficiently)
located using a unique identifier which was
printed on the worksheet.

INPUT SCREEN - One of the input screen for-
mats (e.g., BC1, BI1, BI2) is used to add

or modify information. (See original cata-
log ing , above)

.

HOL Format - See orginal cataloging, above.

ENTER - See original cataloging, above.

4.1.3 Overnight Update and
Worksheet Preparation

The "typical" BALLOTS original cataloging
and copy cataloging activities generate some

batch processing work to be performed. The

batch processing is not explicitly requested

by the terminal operator but rather is impli-

citly produced by BALLOTS interactive components.

Original cataloging generates a batch
request to enter the new bibliographic item

into the appropriate catalog data file and

update the BALLOTS indexes accordingly. In

addition to this activity, copy cataloging
will have produced (sometime earlier) a cata-
loging worksheet.

Neither scenario includes catalog card

preparation.

132

4.1.4 Measurement Environment

Stanford University personnel chose to

provide performance data taken from the actual

BALLOTS production environment. Special exper-

iments of controlled usage of BALLOTS were not

necessary since there already existed a sub-

stantial amount of performance management in-

formation available. This information was

available both as extensive raw data and in

management summary form.

The measurement environment was the

Stanford University IBM 370/168 computing
facility described previously. The software

included 0S/VS2 SVS, WYLBUR, ORVYL, MILTEN,

SPIRES, and BALLOTS. While the (interactive)

BALLOTS measurements were being taken, a var-

iety of other jobs, completely independent

of BALLOTS (ORVYL, WYLBUR and batch processing),

were executing concurrently.

4.2 BALLOTS Resource Consumption

Stanford University personnel provided
both summarized and raw resource usage measure-
ment for several different aspects of the

BALLOTS system:

* BALLOTS Interactive Commands
* BALLOTS Batch Processing
* System Overhead
* BALLOTS File Organization

Each of these aspects is discussed below in

detail. Finally, the data is combined to

produce a coherent BALLOTS resource usage
value

.

4.2.1 BALLOTS Interactive Commands

Figure 7 provides the results of measure-
ments of BALLOTS typical resource usage. Thus,
for example, during the ten hours of BALLOTS
use FIND OTHER was called 3446 different times
causing an average of 12 I/O oeprations and
.066 seconds of CPU time per use. These values
do not include system overhead.

Stanford University personnel then applied
these usage values to the commands employed in

the typical original cataloging and copy cata-
loging scenarios presented above. Referring
back to Figures 5 and 6, we see the CPU time
and I/O operation count per command. These
values are based on Stanford Personnel's re-
view of a number of different sets of raw
data. Once again, these values do not include
system overhead.

BALLOTS STATISTICS

NUMBER NUMBER I/O'S CPU SEC ELAPSED COMMANDS
cortuKO OF OF CPU ELAPSED PER PER TIME PER PER

CALLS I/O'S SECONDS TIME COMMiNO COMMAND C0W11KT HOUR

ENTER 1504 11367 88

.

96S 01 19 54 7 0.059 00:00:03 148.9
FIKD 10 1414 3539 17. 053 00 09 50 2 0.012 00:00:00 140.0

FIK> CRD 1312 6870 33. 921 oo 28 40 5 0.025 00:00:01 129.9
FIND OTHER 3446 43863 229. 358 01 51 54 12 0.066 00:00:01 341.2

RECOVER 1 1 0. 000 00 00 00 1 0.000 00:00:00 0.1

REMOVE SSR 15 99 0. 327 00 00 oa 6 0.021 00:00:00 1.5

REMOVE F33 33 213 0. 741 00 00 21 6 0.022 00:00:00 3.3

DISPLAY 6242 973S 133. 264 09 35 24 1 o.o?.? 00:00:05 618.0
CREATE 450
CANCEL 124

OTHER TIME 260.973 SECOt.T)S

TOTAL CPU TIME 769.605 SECCK-0S

0T>E» I. 0

TOTAL I- 0 7a'7*>

nutbes of SESSIONS: 340

MiXlMUM KV3 E R OF USERS LCZ3E0 OH: 35

SLSPRCCESSCP ACTIVE FOP 10: 10:56

CONTROL FLAGS: TIMEPICN). CC'PLETE REC CP 3

FUNCTIONS: ALL

FIGURE 7

BALLOTS RESOURCE UTILIZATION

133

4.2.2 BALLOTS Batch Processing

Figure 8 provides the result of direct
measurements of BALLOTS batch processing.
Stanford University personnel judged this
batch to be typical.

Referring to Figure 8, we see that 1815
titles resulted in adds/modifies to the data
base (1001 + 814 = 1815) . These were pro-
cessed via the overnight update program
FRMSUA03 which required 11.827 minutes of CPU
time and utilized 109,012 I/O operations. This
processing corresponds to .390 seconds of CPU
time and 60.06 I/O operations per title. As
before, the CPU value does not include system
overhead

.

However, it does include several compon-
ents which generate considerable resource
usage . Sufficient checkpointing is done by
BALLOTS to insure restorab il ity without human
intervention should the run be interrupted
due to hardware or software failure. Also

included in these statistics is the activity
which accrues from the dynamic local rebalanc-
ing of trees. BALLOTS intention is to
reorganize the data base in process rather
than to perform periodic massive reorganiza-
tion.

Again referring to Figure 8, we see that
program FRMSUA08 (catalog data slips, i.e.,
worksheets) consumed .150 minutes of CPU
time and 2080 I/O operations. Stanford per-
sonnel were able to estimate that this corres-
ponded to approximately 1000 reuqests of .009
seconds of CPU time and (approximately) 2 I/O
operations per worksheet. The CPU value does
not include system overhead.

5 Some of this resource usage has been re-
duced by implementing system modifications
which were identified during this study.
See section "Modified BALLOTS Resource
Consumption"

.

BALLOTS CENTER

Batch Statistics

Acquisitions (IPF Records Added/Modified) 814

Titles Catalogued (CDF REcords Added) 1,001
Catalog Cards Produced 5,811
Standing Search Requests Added 105

frogram ID Wall Time I/O's CPU Min. Lines Pr

FRMSUA01 (DEFQ Archive) 00 02 :49 3,013 .10 295

FRMSUA02 (Formatting) 00 07 :32 5,415 1.671 2,320
FRMSUA03 (Overnite Update) 01 10 :50 109,012 11.827 270

FRMSUA04 (Stanford Cards) 00 02 :21 2,027 .100 22,452
FRMSUA05 (Purchase Orders) 00 01 :00 662 .040 6,242
FRMSUA06 (Spine Labels) 00 00 :31 25 .010 1,757

FRMSUA07 (File Slips) 00 01 :14 593 .050 8,111
FRMSUA08 (Cat Data Slips) 00 02 :13 2,080 .150 31,669
FRMSUA09 (Batch Network 00 00 :16 .010 112

Termination)

OVERNITE SUMMARY :

Adds/Modifies to REC9 : 814 + 1001 = 1815

CPU per Add/Modify: .390 sec.

I/O's per Add /Modify: 60. P<-.

FIGURE 8

BALLOTS BATCH STATISTICS

134

4.2.3 System Overhead

Figure 9 provides the results of direct

measurement of the ORVYL environment during

BALLOTS interactive processing. It was asser-

ted by Stanford University personnel that

these measured values are typical and stable.

Referring to Figure 9, we see (from the

top several lines of the figure) that while
477.031 seconds total CPU time was attributed

to ORVYL users (such as BALLOTS), an addition-
al system overhead for OS EXCP time (56.247
seconds) and ORVYL OVERHEAD (194.814) was
not. Thus, for all ORVYL users such as
BALLOTS the reported ORVYL CPU time must be
multiplied by a factor equal to approximately
1 plus (56.247 + 194.814) /477.031 or about
1.5. Stanford University personnel have con-
curred with this estimate.

STATISTICS FROM JOB ORVYL

EUPSEO TIME = 21:33:15
CHARGED TIME=477.03i SEC. t EXEC : 281 . 393 SEC . »5VC '• 75 . 309 SEC . . I/O : 120 . 244 SEC.) 65;

OS EXCP TIME=56.247 SEC. ,(PAGE- 34. 300 SEC . .FILE : 21 . 897 SEC. .KEY : 0 . 049 SEC. > TA
ORVYL 0VEPHEAD=194.814 SEC. . < POLL : 1 31 . 305 SEC. . PFLT : 37 . 811 SIC.) 26*
MEMORY CHARGES=107S0809S PAGE-SECCNOS.

0ISPATCHING: <.125 - .250 - .500 - 1.0 - 2.0 - 4.0 - 8.0 - >16.Q
PAGE FAULT 427705 43645 35326 26104 14977 6818 2554 651
USES WAIT 864840 272231 358962 138794 70066 22336 8213 3604
INTERRUPT 57361 20?57 31013 39436 38332 34436 19920 7304
TIME SLICE 15930 7523 11067 15609 9012 7933 5052 4295

PAGING : 256 PAGE FRAMES 3229 EXTERNAL PAGES (USE: JJ7 C'JPR, 2239 MAX)

'I
X 10

DEN EXCPS
1 703241 79:<

2 133013 15Z
3 36C34 <*;:

4 10156 IX

PAGES AVG:1.26
703241 62*
266026 ty/.

1D8IC2 r/.

40624 W.

34638 BLOCKS AVAILACLE. 736230 TOTAL
52846 DATA WSITES, 355525 DATA READS 23700 IXR WRITES. 58397 IXR READS
7357t>3 I '5 RESJUESTtO. 677371 ALREADY IN VIRTUAL MEMORY 92.06/C
•.1 532 IX? SLOTS STOLEN, 64S9 REQUIRED W?ITE 15Z
TOTAL FILE 1/0'S: S23-.68. MAXIMUM CONCURRENT FILES ATTACHED '• 460

5E WAITS
8 0

2 0

2 0

I/O QUEUE: TYFE REQUESTS I

FILE 495308
PiTrl 255599
Kit 2664

t-vm PAGES AVG. TIME
3 67754 50

6296 74 13
3851 34 14

3 355J1 21.

DISK I/O CC'JMT AVG. rirE

0 e4<.24 3?

1 92 32 35

2 28152 36

3 46764 36
4 50S33 39

5 56236 34

6 126091 31

7 121986 33

KEY I/O COUNT AVG. TIME
0 1327 100
1 5 126

ORVYL WAIT: 1604104 6919.265 SEC. 11102.151 SEC.
polled 4227595 twes. searcmeo 145j24j users
maximum run slfeue size -

- 12

BATCH CCS: 1601822 6901.232 SEC. 11182.136 SEC.

PATH TRANSACTION STATISTICS
COUNT TOTAL BYTES

TTILTEN
XACTS S»NT 292966 27S23723

AVG . LENGTH

93

FIGURE 9

ORVYL JOB STATISTICS

135

4.2.4 BALLOTS File Organization

Figure 10 provides the results of direct
measurements on the files which make up the
BALLOTS data base. It is the file organiza-
tion and size which affects the number of I/O

operations per BALLOTS command and batch update.

Referring to the BMRC record type of Figure 10,

we see that an average of 3.981 accesses per
record is required for the 632,081 records of

the MARC file. Stanford personnel have asser-
ted that the number of accesses is a parameter
whose value has increased very slightly in

several years. This is not surprising with
the B-tree file structure.

A first order analysis shows that the
average degree of branching for a tree of

depth 3.981 is 28.65 per level. Even if the

MARC file increases by an order of magnitude
to 6,000,000 records, the number of accesses

will just increase to approximately 4.65. Thus,

a 900% increase in the size of the MARC file
causes a 17% increase in the number of acces-
ses. Since the top level index remains main
memory resident, the number of I/O operations
might increase by approximately 22% when the
MARC file grows 900%.

4.2.5 BALLOTS Directly Measured
Resource Consumption

Referring back to the usage values repor-
ted in Figure 5, we see that the interactive
component of original cataloging requires a

total of 238 msec of direct BALLOTS CPU time
and a total of 24 I/O operations. Since the

capture ratio is 1.5 for both the interactive
and batch workload, the total CPU time (inclu-
ding overhead) for original cataloging is .357

seconds

.

STATUS RECORD OF FILE BP. FIL . BALLOTS

RECORO BLOCKS SPACE NUMBER ACCESSES*" TREE DATE

TYPE USED UTILIZED RECORDS / RECORD DEPTH

Br?c 5695 87 984 632051 3 .961 3 01/09/73

BSSR - SLOT 204 95 616 59038 2 000 0 01/07/73

REC3 11870 63 523 581360 2 194 4 01/07/78

REC4 6930 72 624 1S3326 3 828 5 01/07/78

REC5 185a 72 830 83004 1 399 4 01/07/78

REC6 16 68 496 1838 2 o33 2 01/07/78

REC7 8081 72 176 249050 1 430 4 01/07/73

REC8 9761 71 056 443797 1 488 4 01/07/73

REC9 - SLOT 2263 99 616 544 946 2 000 0 01/07/78

SPEC4 80S1 72 176 248906 1 903 4 01/C7/78

S3 ECS 9761 71 056 443397 1 84 3 4 01/07/78

SPEC6 1858 72 8E3 82902 1 818 4 01/07/78

SPEC7 11370 68 5:s 579S10 1 106 * 01/07/78

SPEC8 0 01/07/73

ESICJAL 377731 83 840 1410870 0 000 0 01/24/76

ACTIVITY PECCP3 OF FILE EP. FIL. BALLOTS

RECCED BASE l .ozy S ADOS DELETES UFDATES MAX R EC

TTPE BLCCK USED - Z 3 LENGTH

er-Pt 0 6552- 1 640144 8063 152322 1959

ESSS -SLOT 0 206- 2 15910 43123 413 133

;ec3 92 12C12- 3 599395 1 3035 176198 12114

p E ;4 1905 7C64- 4 201550 13524 391183 3-72

PECS 99 1637- 5 37936 4932 1316773 204C9

REC6 4 16- 6 2693 £55 246619 12273

FEC7 108 8135- 7 255241 6191 1187944 17749

re:? 99 9337- 8 462766 18969 4256930 12042

BEC9 -SLOT 0 2278- 9 574241 2929J 510507 10726

SPEC4 2322 ccra - 7 249102 196 140186 12039

SPECS 1442 C0.-3 - 8 <*43358 •.61 ^83653 120*6

SRECo 727 C0^3 - 5 83034 132 155937 12129

SPEC7 49*9 CCr3 - J 580904 1094 65654 222

SPECS 4320 CC.-3 - 4 0 0 0

f ESI3UAL 2 37778a 1427977 17107 6582<»5» 20411

* Subtract one for non-slot

FIGURE 10

BALLOiS RFS0 ,: ICE STATISTICS

136

Referring back to the usage values repor-

ted in Figure 6, we can derive the resource
usage for the interactive component of copy
cataloging. User behavior measurements on the

current BALLOTS system indicate that 90% of

the adequate cataloging is the result of a

successful FIND CARD# command while only 10%

is the result of a successful FIND OTHER com-
mand. If these "branching probabilities" for

copy cataloging user behavior are employed, we

see that the interactive component of copy
cataloging requires a total of 144 msec of

direct BALLOTS CPU time and a total of 18 I/O
operations. Since the capture ratio is 1.5,

the total CPU time (including overhead) for

copy cataloging is .216 seconds.

Batch processing resource usage must also
be adjusted by the capture ratio. Thus, the

batch update CPU usage of .390 seconds becomes
.585 seconds. This value was computed as .591

seconds in other sets of measurements and .591

was the value agreed to. In addition, the

value of 60.06 I/O operations was adjusted up

to 62 I/O operations by reference to other sets
of batch statistics.

Batch worksheet preparation was adjusted
up to .015 seconds and 2 1/0 operations.

This data is summarized in Table 1 below:

TABLE 1

ORIGINAL CATALOGING COPY CATALOGING

CPU I/O
SECONDS OPERATIONS

CPU I/O
SECONDS OPERATIONS

Interactive .357 24 .216 18

Batch to enter
In Data Base .591 62 .519 62

Batch Worksheet
Preparation .015 2

TOTAL .948 86 .822 8?

4.2.6 Modified BALLOTS
Resource Consumption

In addition to the directly measured
BALLOTS resource usage just presented, two

other sets of values were estimated. These
values are the anticipated result of both
immediate and longer term modifications to

BALLOTS

.

In the course of the BALLOTS performance
analysis, Stanford University personnel iden-
tified a short term opportunity to tune the
batch file update program. This effort, con-
sidered relatively minor could significantly
affect batch resource consumption. The tuning
is being performed by restructuring the SPIRES
overnight processor modules. Currently there

are two large modular portions. One part is

the file service routines which provide means
for accessing and replacing or adding records.
The other portion is a general processor which
develops indexes from records and performs
general utility processing. Adding a pointer
to an index record involves reading in the
index record, reconstructing it with the poin-
ter added, and then updating the index record.
The current implementation utilizes both the
file service module and the general processor.
Since the general processor is unaware that
the index tree has already been traversed by
the file service module, an extra and unneces-
sary tree traversal is performed in the update
operat ion

.

By eliminating this extra tree traversal,
Stanford personnel believe that batch resource
usage will be reduced significantly. The esti-

mated impact could reduce (total) batch CPU
time from .591 seconds to approximately .473

seconds and batch I/O operations from 62 to

approximately 45. This tuning is currently
in test and is scheduled to go into production ^.

The "tuned" resource usage is summarized
in Table 2.

TABLE 2

ORIGINAL CATALOGING COPY CATALOGING

CPU I/O
SECONDS OPERATIONS

CPU 1/0
SECONDS OPERATIONS

Interactive .357 24 .216 18

Batch to enter
in Data Base

.473 45 .473 45

Batch Worksheet
Preparation

.015 2

TOTAL .830 69 .704 65

The Network File Design, discussed pre-
viously is a longer term system modification
predicted to have a dramatic impact on BALLOTS
performance. The major performance improve-
ment promises to come from the structure of

the Network File Design which eliminates the
need for multiple records when two or more
libraries catalog the same work. Thus, index-
ing need not be done in copy cataloging or in

cataloging a new edition of a previously cata-
loged work.

Based upon the physical structure of the

Network File Design, the anticipated batch
processing requirements, minor changes to

6 The modification has been made and measure-

ments corroborate the estimates.

137

several of the interactive commands, and a

modification of the file structure for defer-
red queue request, Stanford University person-
nel estimated and substantiated new resource
usage values. These are presented in

Table 3.

TABLE 3

ORIGINAL CATALOGING COPY CATALOGING

CPU I/O
SECONDS OPERATIONS

CPU I/O
SECONDS OPERATIONS

Interactive .327 21 .186 15

Batch to enter
in Data Base

.500 42 .150 14

Batch Worksheet
Preparation

.015 2

TOTAL .827 63 .351 11

* 4 million bytes of main memory

* 12 input/output channels

* IBM 2835 fixed head controller with
2 IBM 2305-2 fixed head storage devices.
These devices will provide swap space for
BALLOTS users whose work spaces are writ-
ten out of main memory

* 12 spindles of IBM 3330-11 disks - The
BALLOTS data base will use 6 of these
disks, i.e., 1.2 billion bytes.

4.3.1 BEST/1 BALLOTS Interactive Model

The BEST/1 9 model for BALLOTS interactive
processing required several other input para-
meters to be specified. These included values
to describe the utilization of main memory,
the drum swapping behavior, and the file access
behavior

.

It was assumed that in a dedicated BALLOTS
environment, SVS, 0RVYL, MILTEN, SPIRES, and
BALLOTS would always be main memory resident
and work areas associated with terminal oper-
ators would be swapped in and out of main mem-
ory as needed. SVS, BALLOTS, et al require
approximately 1.3 megabytes of main memory.
A BALLOTS user work area varies from 20K bytes
to 120K bytes. In the absence of detailed mea-
surements of the memory size distribution, the

mean value was estimated by Stanford Universi-

ty personnel to be 80K bytes. Thus, in a 2M

byte main memory, 9 users can fit into main
memory concurrently; in a 3M byte machine 21

users can fit and in a 4M byte machine 34

users can fit.

The drum swapping behavior also had to

be specified. Existing BALLOTS user behavior
measurements indicated that a terminal opera-

tor typically requires at least 45 seconds

("think time") between BALLOTS commands. Under

these circumstances, if the system is heavily

loaded, all main memory pages associated with
this user will have been reassigned. This

All except one of these estimates is directly
relatable to the direct measurements taken on
the current system modified to reflect minor
changes. The estimate which is most difficult
to verify is the CPU and 1/0 copy cataloging
resource consumption for batch entry into

the data base, since it is based on a com-
pletely new design.

4.3 BALLOTS Response Time Analysis

A BEST/1^ model was developed in order
to predict the BALLOTS central system inter-
active and batch performance on a particular
hardware configuration under a number of dif-
ferent workloads. Stanford University desig-
nated a proposed dedicated BALLOTS hardware
configuration to be modeled in the BEST/1
performance analysis. The most important
components of their proposed central system
configuration are:

* Amdahl 470/V-5 central processor - This
is compatible with the current IBM

370/168 and is (as per agreement, by
Stanford University personnel) approxi-
mately the same speed.

7 BEST/1 is a proprietary interactive soft-
ware package of BGS Systems, Inc.

8 In addition to the cataloging workload
described in this analysis, the dedicated
hardware configuration was assumed to be
capable of supporting non-interfering,
lower priority work that could (if desired)
utilize some of the systems' residual
capacity. The characterization of this
low priority work and the consequent per-
formance implications were not part of
this study.

9 Note that BEST/1 can be utilized to model
computer systems much more complex than the
one presented here. While the subject sys-
tem has a single workload (transaction pro-
cessing) , a single CPU, and a total of only
eight drums and disks, BEST/1 can model
many concurrent workloads (transaction pro-
cessing, timesharing, batch including multi-
ple different classes of each), multiple
CPUs and hundreds of DASDs. In addition,
BEST/1 directly supports the priority sched-
uling disciplines which are common in opera-
ting systems such as 0S/VS2 MVS.

138

implies that each interaction will require all
user pages to be swapped in. In the absence
of detailed measurements, Stanford University
personnel estimated that each swap in will re-
quire half of the currently resident pages to

be swapped out due to modification. Thus,
each of the seven interactions of original
cataloging will require a total of 30 I/O oper-
ations on the 4K-byte pages. It was assumed
that pages are routinely distributed across
the two drums and the drums are lightly util-
ized.

Finally, the file accessing behavior had
to be specified. It was assumed that all I/O
operations are randomly distributed across all
spindles, i.e., 6, containing BALLOTS files.

BEST/1 input parameters were then develop-
ed from the resource usage values (previously
collected), the designated configuration, and
the modeled behavior. These parameters for
the direct measured current system software
for original and copy cataloging are shown in
Table 4.

TABLE 4

BALLOTS INTERACTIVE PROCESSING MODEL

DEVICE ORIGINAL CATALOGING COPY -ADEQUATE

CPU - V-5 357 msec 216 msec

DRUM! - 2305 809 msec 728 msec

DRUM2 - 2305 809 msec 728 msec

DISK1 - 3330-11 132 msec 99 msec

DISK2 - 3330-11 132 msec 99 msec

DISK 3 - 3330-11 132 msec 99 msec

DISK4 - 3330-11 132 msec 99 msec

DISK5 - 3330-11 132 msec 99 msec

DISK 6 - 3330-11 132 msec 99 msec

A set of interactive BEST/1 runs was made
in which the transaction arrival rate and the
amount of memory was varied. Sample dialog
and output from one such run is shown in
Figure 11. In this run, BEST/1 modeled a
configuration with a 2M byte main memory,
e.g., maximum MPL (multiprogramming level)
of 9.0, serving titles arriving from terminal
operators at the rate of 2000 per hour. Even
at this arrival rate, it was determined that
2M byte would provide sufficient main memory
and so this value was used for the further
analysis. Also, it was observed that the in-
teractive portion of original cataloging con-
sumes more resources than copy cataloging does.
Consequently, the performance of BALLOTS hand-
ling a 100% original cataloging workload
would serve as an upper bound on how a mixed
original/copy cataloging workload would

actually behave in practice.

FIGURE 11

SAMPLE BEST/1 MODEL

The results of the BEST/1 model for the
interactive portion of original cataloging
using parameters based on measured values from
the current system are shown in Table 5

.

TABLE 5

ARRIVAL RATE
(Titles per hour) X CPU UTILIZATION

TOTAL RESPONSE TIME
(Sum of 7 Interact lona)

500 5. OX 3.0 sec

1000 9.9X 3.3 sec

1500 14. 9% 3.69 sec

2000 19.8% 4.24 sec

BEST'1>
LIST

WORKLOAD 1 DESCR I PTORS-

SERVER

TRANS PRIX
WORKLOAD TYPE
ARRIVAL RATE <TRANS'HR>
MUX IMUM MPL

WKL 1

1 CPU 357.0
2 DRUM 1 8119.0
3 DRUM 2 3 0 9. 0
4 DISK 1 132.

o

5 DISK 2 132.

0

6 DISK 3 132.0
7 DISK 4 132.

0

3 DISK 5 i3£.o
9 DISK 6 132.

o

BEST/1>
50

*** PRINCIPAL RESULTS **

WORK LOAD RESPONSE TIME THROUGHPUT % CPU

TRANS PROC 4.24 2Q00. PEP HP. 19.3 V.

BEST/1>
RP

RESPONSE TIME PROFILE BY WORKLOAD
< IN MSEO

0 MEMORY 13
1 CPU 445
£ DRUM 1 1462 5
3 DRUM 2 1462 5
4 DISK. 1 142 4
5 DISK 2 142 4
6 DISK 3 142 4
7 DISK 4 142 4
3 DISK 5 142 4
9 DISK 6 142 4

TAL RESPONSE TIME 4243

139

Since there are approximately 2000 hours per
year 10 , the client's 1978 workload is 200

titles per hour and the client's 1983 work-
load is projected to be 400 titles per hour.
Thus, even by 1983, the client will consume
less than 5% of the prime shift CPU. Original
cataloging total response time from the cen-
tral system will be less than 3 seconds with
an average response time of less than 0.43
seconds for each of the 7 interactions.

If other non-client BALLOTS users push
the total arrival rate to 2000 titles per
hour, which is compatible with BALLOTS plan-
ning activities, the prime shift CPU utiliza-
tion will still be only 19.8% with total res-
ponse time of 4.24 seconds.

Since these numbers are so low and also
represent an upper bound on the BALLOTS cen-
tral system interactive performance, other
interactive processing models, for example
the Network File Design, were not run.

4.3.2 BEST/1 BALLOTS Batch Model

By dividing title processing into an
interactive and a batch component, BALLOTS is

able to transfer the larger portion of the
processing load to the non-prime shift. As
can be seen from the BEST/1 interactive model,
this leads to an extremely large effective
capacity during prime shift. However, it does
lead to a significant batch load which must
be cleared each night.

A BEST/1 model of the BALLOTS batch file
update processing was developed to determine
performance as a function of load. BALLOTS
batch was modeled as 1 a single workload on the
dedicated machine, locked into main memory
(i.e., no swapping) and processing file re-
quests which were randomly distributed over
the six disk spindles.

Four different resource usages (current,
tuned, Network File Design original and Net-
work File Design copy) for BALLOTS batch up-
date were identified and discussed at length
above. The BEST/1 input parameter values to

which they correspond are shown in Table 6.

Currently, BALLOTS batch is processed
single thread, i.e., multiprogramming level
of one. This will still be the case when the
tuned batch update program gdes into produc-
tion. BALLOTS planning for the Network File
Design is also oriented around single thread

10 Based on 8 hours per day, 5 days per week

and 50 weeks per year.

TABLE 6

BATCH CURRENT TUNED NFD NFD-COPY

CPU time
(in seconds) .591 .473 .500 .150

Total II of

I/O's* 62 45 42 14

DISK1 time
(in seconds) .341 .248 .231 .077

DISK2 time
(in seconds) .341 .248 .231 .077

DISK 6 time
(in seconds) .341 .248 .231 .077

* Assumption that each 2K-byte I/O requires 33 msec of

disk service time; also I/O's are randomly distributed
over 6 disks.

processing since this design simplifies the
software recovery logic. Stanford personnel
have stated that when the Network File Design
is operational, total elapsed time for update
processing will not be a problem. However, on
a contingency basis, they would consider re-
structuring batch update to be multi-thread in

the unlikely event that it should become neces
sary

.

The results of the BEST/1 batch model
support Stanford's position. Table 7 presents
the results of 24 different BEST/1 batch model
runs. The throughput (in titles processed by

batch per hour) and CPU utilization are shown

for multiprogramming levels one through six,

for each of current batch, tuned batch, Net-
work File Design original cataloging, and Net-
work File Design copy cataloging.

TABLE 7

BALLOTS
BATCH 1 2

CPU

3 4 5 6

CURRENT 22.1 39 0 51.6 61. 4 69.2 75. 4

TUNED 24.1 41 8 55.1 65. u 73.3 79. 6

NFD 26.5 45 7 59.9 70. 6 78.6 84. 7

NFD-COPY 24.5 42 4 55.9 66 3 74.3 80. 5

BALLOTS
BATCH 1 2

THROUGHPUT

3 4 5 6

CURRENT 1365 2373 3141 3740 4214 4594

TUNED 1835 3180 4194 4975 5582 6058

NFD 1909 3290 4314 5082 5661 6097

NFD-COPY 5882 10185 13423 15905 17827 19322

As can be seen, even with the single

thread tuned batch, the 1978 client workload

of 1600 titles per day (200 titles per hour

times eight hours) can be processed in less

than one hour while the 1983 client workload

140

of 3200 titles per day can be processed in

less than two hours.

However, Stanford's plan is to move to

single thread in the Network File Design in

order to substantially reduce batch resource

usage. Under these circumstances, if the

client workload were 75% copy cataloging and

25% original, the 1978 client batch update
would take less than 25 minutes while the 1983

client batch update would take less than 50

minutes

.

If the total daily BALLOTS workload grew
to 10,000 titles (compatible with Stanford
planning) and only 75% represented copy cata-
loging, the entire batch update could still

be cleared with single thread in about 2 1/2

h6urs. If Stanford went to multi-thread
update, higher throughputs with shorter
elapsed times are achievable. However, the

multi-thread throughput values shown in

Table 7 are estimates since multi-thread pro-
cessing may necessitate some software redesign.

5. Conclusion

The overall performance analysis metho-
dology described above was applied to the

other bids received by the client. Utilizing
the agreed upon generic cataloging activity,
we were able to derive both the resources con-
sumed (per title) and the response time charac-
teristics under the prescribed (short-term and
long-term) loads. This information provided
important quantitative input to the client
during the evaluation process.

References

1. BGS Systems, Inc., "System Design and Per-
formance Study of Proposals for an Automa-
ted Bibliographic System", Lincoln, MA,

March 1978.

2. Buzen, J. P. et al., "BEST/1 - Design of a

tool for computer system capacity planning
Proc. AFIPS Conf. 47 (1978 NCC) , 447-455.

3. BALLOTS Network Reference Manual, BALLOTS
Center, Stanford, CA, December 1976.

4. ORVYL/370 The Stanford Timesharing System

-

Functional Description, Stanford Center
for Information Processing, Stanford, CA,

October 1977.

5. Design of SPIRES II, Volumes I & II,

Stanford Center for Information Processing
Stanford, CA, July 1973.

The authors would like to thank the many
individuals who participated in the Automated
Bibliographic Retrieval System Study. Partic-
ular thanks are due to John R. Schroeder and
Hanan S. Bell of Stanford University for
their assistance in obtaining the data which
is reported on in this paper.

141

ERFORMANCE IMPROVEMENT PART I

QUANTITATIVE METHODS

143

PERFORMANCE IMPROVEMENT - PART I: QUANTITATIVE METHODS

Andaman K. Jain

Bell Laboratories
Holmdel , NJ 07733

1 . Introduction

Computer Performance Evaluation (CPE)

is concerned with measurement, analysis and
evaluation of computer systems. The CPE
studies are based on one or more of the
following approaches:

(i) Analytical
(ii) Discrete Simulation

(iii) Empirical

.

The analytic approach consists of de-
scribing the functioning of a computer sys-
tem or one of its components as a mathemat-
ical model. Much of the analytic modeling
has concentrated on exact solutions for
modest models which are gross simplifications.
Queuing theory and other branches of prob-
ability are used in the analytic approach.

The discrete simulation approach is

used in lieu of an analytical study when the
computer system is too complicated for an
analytical study. One paper [1] in this
session is on the application of discrete
event computer simulation.

The empirical approach consists of (i)

design of a study, (ii) collection of data,
(iii) analysis of data, and (iv) interpreta-
tion of the results. Most of the empirical
studies in the literature concentrate on the
collection of data with very little emphasis
on the analysis of the data and interpreta-
tion of the results. Therefore, very
limited benefit has been derived from these
empirical studies. Unfortunately, the data
collection phase in most empirical studies
does not use the techniques of design of
experiments and consequently the data collec-
tion is very ineffective. Similarly, the
data analysis phase in most empirical studies
does not go far enough and it could benefit
from the use of proper statistical methods.

The CPE studies in the literature gen-
erally lack the formulation of an objective

function (necessary for evaluation) as well
as the proper use of quantitative methods.
This session attempts to encourage CPE
analysts to use quantitative methods for
evaluation and improvement of computer per-
formance. Four papers [2,3,4,5] in this
session are concerned with the empirical
approach. The use of quantitative techniques
discussed in these papers will enhance the
val ue of CPE studies

.

2. Review of Past Empirical Studies

In order to examine the strengths and
weaknesses of past empirical CPE studies, it

is useful to review some of these. The re-
view in this section is based on a tutorial

[6] presented at the last meeting of the
Computer Performance Evaluation Users Group
(CPEUG). This review is divided into two
parts: (i) studies deficient in the use of
statistical techniques, and (ii) studies
which made good use of statistical techniques.

2.1 Studies Deficient in the Use
of Statistical Techniques

A majority of the empirical CPE studies
emphasize the collection of data, with very
little emphasis on their analysis and inter-
pretation. A few papers presented at the
12th meeting of CPEUG in San Diego [7] are
reviewed

.

"A Performance Study of the Multipro-
cessor Transition in a Large Computer System"

[7] was concerned with the effect of upgrading
a single CPU system to a dual CPU system.
The average throughputs for single CPU and

dual CPU were compared without any consider-
ation of the inherent variability in the
process. The analysis of variance technique
(discussed in Section 4.4) could have been
applied to estimate the components of vari-

ability due to CPU types as well as the week-
to-week variability under the same CPU type.
This study ignored the effects of (i) add-
itional disk units and (ii) growing workload.

145

It is claimed that these effects are small.
But, these effects could have been easily
estimated through fitting of regression
models. It is better to first estimate
effects and ignore them only if they are
found to be small

.

"Honeywell Time Sharing Experiments on

a CPU Bound System" [7] reported on the

effects of (i) increased workload and (ii)

certain parameter changes. The results con-
sisted of average response times without any
considerations of inherent random variability.
By comparing the average response times it is

claimed that the lengthening of the time slice

(given by TSS to its subsystems) improves the
response. Had a proper statistical analysis
been done by fitting a regression model , and

asking "whether the fitted regression co-
efficient associated with the length of time
slice might be merely an estimate of zero",

the answer would probably have been "yes".

Why? Even though the raw data are not avail-
able for such regression modeling, an exam-
ination of the following averages (read off

a figure from the reviewed paper) supports
the above inference regarding the regression
coefficient associated with the length of
time slice:

Time Slice Average Response Time

Experiment No. (Mill i seconds) (Seconds)

12 25 20.2
14 25 19.2
15 15 20.8

20 35 18.4

The experiments 12 and 14 are identical. The

average response times for these two experi-

ments differ only because of random vari-

ability. This random variability can account
for the observed differences between the 25

milliseconds time slice experiments and the

other two experiments with time slices of 15

and 35 milliseconds respectively, which would
indicate that the length of time slice has no

effect on response time. Thus, it is not

sufficient to consider just the averages
without their associated variabilities.

"A Simulation of TSO" [7] discussed a

simulation system designed to estimate the
effects of increasing use of TSO. This paper

gave a detailed description of the process of
data acquisition and pointed out an important
fact: "Accurate identification, acquisition
and organization of the data is the most
critical and time consuming phase of a pro-

ject". This paper presented the average
responses for both the previous parameters
and the recommended parameters which showed
the advantage of the recommended parameters.
It would have been useful to do the follow-

ing: (i) to estimate the inherent variabil-
ity, (ii) to fit smooth curves for each set
of parameters, and (iii) to judge the
improvement for the recommended set in light
of the inherent variability. Here again, a

more thorough statistical analysis may have
changed some of the conclusions reached in

this paper.

2.2 Studies Which Made Good Use of
Statistical Techniques

There are several studies in the liter-
ature which have made good use of statistical
techniques. Some of these studies are re-
viewed below.

Schneidewind [8] discusses a study of
correlation between performance and resource
usage variables and then development of re-
gression models. He also used a linear pro-
gramming model to select an optimum job mix.

First, he analyzed the correlation matrices
to identify important variables for regres-
sion. The multiple correlation coefficient,
residual mean square and an examination of
residuals were used in measuring the adequacy
of the fitted regression models.

Schatzoff and Bryant [9] discuss two
examples of regression in performance eval-
uation. In addition to developing the re-

gression models, they discuss problems which
may arise and appropriate corrective measures.
For example, they point out the problem of

correlated workload variables which makes it

difficult to interpret any single regression
coefficient. However, they could have carried
out a better analysis of residuals by making
plots and examining them.

Yeh [10] describes a method for iden-

tifying proper descriptor variables which
may be used in fitting regression equations.
Physical interpretation is provided for the

fitted equations. The following possible
applications of the fitted model are dis-
cussed: (i) calibration of workload and

environments through regression equations,
and (ii) study of abnormal or unusual system
conditions which may be indicated by outliers.

Tsao and Margolin [11] present the sta-

tistical methodology applied in their analysis
of a multi-factor paging experiment. They
statistically designed an experiment to study
the effect of four factors (main memory size,

problem program, deck arrangement and re-
placement algorithm) upon the paging pro-

cess. All 81 possible combinations (3

levels of each factor) of the four factors
were observed. The preliminary step in the

analysis of data was the computation and

plotting of summary statistics. For the

146

response variable, number of page swaps (PS),

the range of 81 responses was about eight

times their average. This prompted the re-

scaling to logarithms. Regression models

were fitted and the technique of analysis of

variance was employed to decompose the vari-

ability of the response into components
attributable to various factors. This decom-

position permitted an examination of the

relative importance of the effects of the

various factors in the modeling of the re-

sponse.

The paper by Tsao and Margolin [11] is

quite exhastive in coverage of the statis-

tical methodology for their multi-factor
paging experiments. I recommend it for your
study.

3. Papers in This Session

As indicated earlier, papers in this

session are concerned with the use of quanti-
tative methods for evaluation and improvement
of computer performance. The topics covered
in this session include the following: (i)

multidimensional data analysis, (ii) time
series, (iii) interval estimation, (iv) dis-
crete simulation, and (v) resource control.
Applicability of certain quantitative tech-

niques to the problems of evaluation and

improvement of computer performance is

illustrated through examples.

Schroeder [2] describes some techniques
of multidimensional data analysis, which are
applicable to measurements of computer sys-

tems. Application of the techniques of
clustering and geometric representation to

the following problems is illustrated: (i)

workload characterization, (ii) program
addressing, (iii) program restructuring, and
(iv) data base allocation. This paper is

effective in indicating some practical prob-
lems encountered in the analysis of real data
and how to cope with some of these problems.

Kulp and Melendez [3] describe an

application of time series analysis to com-
puter performance evaluation. The following
time series models are discussed: (i) auto-
regressive, (ii) moving average, and (iii)

autoregressive-moving average. Data from
two computer systems are used to fit models
and to forecast workload for future planning.
A good feature of this paper is the exam-
ination of residuals for testing the adequacy
of the fitted model

.

Mamrak and Amer [4] discuss interval
estimation of job run times as an alterna-
tive to point estimates. They use the
signature table method, which is a technique
for recognition of binary patterns. A good

feature of this paper is the inclusion of a

detailed example on a run time prediction
problem for the U.S. Army.

Melendez and Linder [1] describe the
analysis of a discrete event digital com-
puter simulation of a computer. They char-
acterize the computer workload in terms of
five job parameters and three system para-
meters and develop a discrete event simula-
tion model using SIMSCRIPT U.S. A high-
light of this paper is the discussion of the
sensitivity analysis of the response surface
with respect to job I/O time and job CPU
time.

Mackinder [5] discusses a statistical
approach to resource control in a large time
sharing system. A gamma probability distri-
bution was found to be a good fit to computer
usage. The proposed approach allows machine
capacity to be managed as a whole and dispen-
ses with the rationing system, which was in

use earlier. A major advantage of this
approach is its flexibility to cope with
sudden changes in the number of computers jobs.

References

[1] Melendez, K. , and Linder, A. H., "Sen-
sitivity Analysis and the Response Sur-
face of Simulation Model", Proceedings
of the 14th CPEUG Meeting, 1978.

[2] Schroeder, A., "Multidimensional Data
Analysis as a Tool for the Study of a

Computer System", Proceedings of the

14th CPEUG Meeting, 1978.

[3] Kulp, R. W., and Melendez, K. , "An Appli-
cation of Time Series Analysis in Com-
puter Performance Evaluation", Proceed-
ings of the 14th CPEUG Meeting, 1978.

[4] Mamrak, S. A., and Amer, P. D., "Estima-
tion of Run Times Using Signature Table
Analysis", Proceedings of the 14th CPEUG
Meeting, 1978.

[5] Mackinder, C. A., "A Statistical Approach

to Resource Control in A Time-Sharing
System", Proceedings of the 14th CPEUG

Meeting, 1978.

[6] Jain, A. K., "Statistical Approaches in

Computer Performance Evaluation Studies:

A Tutorial", presented at the 13th CPEUG

Meeting, 1977.

[7] Proceedings of the 12th CPEUG Meeting,
1976.

147

[8] Schneidewind , N. F. , "Analysis of Com-

puter Performance in Mul ti programmed
Processing", 9th-llth CPEUG Meetings,
1974-75.

[9] Schatzoff, M. , and Bryant, P., "Regres-
sion Methods in Performance Evaluation:
Some Comments on the State of the Art",
Proceedings of Computer Science and

Statistics: 7th Annual Interface, 1973.

[10] Yeh, A. C, "An Application of Statisti-
cal Methodology in the Study of Computer
System Performance", Proceedings of a

Conference on Statistical Computer Per-

formance Evaluation, edited by

W. Freiberger, 1971

.

[11] Tsao, R. F., and Margolin, B. H., "A

Mul ti -Factor Paging Experiment: II.

Statistical Methodology", Proceedings
of a conference on Statistical Computer
Performance Evaluation, edited by W.

Freiberger, 1971

.

148

HOW MULTIDIMENSIONAL DATA ANALYSIS TECHNIQUES CAN BE OF

HELP IN THE STUDY OF COMPUTER SYSTEMS

Anne Schroeder

IRIA Laboria
BP 105

78150 Le Chesnay
France

Various measurements of computing systems have some common

features: the phenomenon to be observed depends on several factors the

influences of which cannot be considered individually and also the samples
can be very large. The purpose of this paper is to give general ideas

on Multidimensional Data Analysis methods which are able to process
such samples. They are descriptive statistical techniques dealing with
multidimensional samples which ensure their ability to take multiple
factors into account. Some applications in the field of computer
systems analysis illustrate the use that can be made of those methods:
program behaviour, workload characterization, data base organization.

Key words: Clustering; Correspondence Analysis; data base organization;
Multidimensional Data Analysis; Principal Components Analysis; Workload
Characterization.

1. Introduction

Collecting measurements and processing
them is a crucial step in the study of com-
puter systems. In performance evaluation
for instance, when techniques such as model-
ing and simulation are used, data are needed
to calibrate and validate the models or the
simulators. To compare allocation strategies
in a data base management system, performance
indicators have to be defined and measured.
To manage a computer centre efficiently, it

is important to have a precise knowledge of
the workload and of its fluctuations. In

such studies, once measurements are collect-
ed, their processing requires the use of
statistical tools. Various measurements of
computing systems have some common features.
Generally, the phenomenon to be observed may
depend on many factors the individual influ-
ences of which cannot be considered separate-
ly. Also, the samples can be very large; the
behaviour of a program, for instance, can be
described by a reference string of several
millions observations.

In this paper, we describe Multidimen-
sional Data Analysis (MDA) techniques which

are able to process samples presenting the

above features. They are descriptive statis-

tical techniques dealing with multidimension-
al samples; this ensures their ability to

take multiple factors into account. Though
the basic principles of these tools have been

known for some time, their recent development
is based on the availability of powerful com-

putation means. The techniques require nu-

merical algorithms for matrix diagonal isation

and inversion which are executable only by
computers as soon as the dimensions of the

matrices are larger than two or three.

In section 2, we present the multidimen-
sional point of view with the help of some

examples taken from the field of computer
systems analysis. Section 3 provides a tech-

nical introduction to a wide family of multi-

dimensional data analytic methods. Applica-
tions of these methods to the problems stated

in section 2 are presented in section 4.

Those applications indicate some of the prac-

149

tical problems that arise when analysing real

data. Section 5 presents some concluding re-

marks.

2. The Multidimensional Aspect of Some

Problems Arising in Computer Systems
Analysis

We give here some examples of practical prob-
lems for which the multidimensional point of

view has been proven to be useful.

2.1 Example 1 - Workload
Characterization

As pointed out by D. Ferrari [Fer72],

the problem of describing precisely and of

characterizing the workload of a system (or

of a whole computer centre) is an important
step in the fields of both management and
performance evaluation. It consists of
understanding better what kinds of resource
needs correspond to different parts of the
workload. This understanding is necessary
to approach several practical problems: for
instance, building benchmarks that are repre-
sentative of a given workload; finding dis-

criminant parameters to schedule programs
according to their requirements; improving
both system efficiency and user's satisfac-
tion, and so on.

Measurements of workloads are generally
performed as follows: during some represen-
tative period of activity, for each job (or

step) information is collected about its

nature and its various requirements in time,

space, peripherals, etc... Thus are built

as many statistical samples as observed
variables. Classical works on workload
characterization consists of the isolated
study of those samples; at most, regression
analysis has been used to examine the influ-
ence of a set of parameters on one privileged
variable. On an other hand, the multidimen-
sional approach permits consideration of all

possible interactions between parameters by

characterizing each step by a set of vari-
ables such as: i tn step = (arrival time, CPU

time used, core required, core used, number
of disk I/O, number of tapes mounted).

This sequence consists of heterogeneous
information which can be coded as some vector
of real numbers. We shall discuss the coding
problem specifically in § 4. The workload
can then be considered as a set of vectors
in some space of high dimensionality. Multi-
dimensional Data Analysis is then able to

identify clusters of steps (or step types)

with similar resource needs. Such analyses
are presented in section 4.

2.2 Example 2 - Program
Addressing Behaviour

The presence of "localities" [Den68] is

an interesting feature of the memory refer-
encing behaviour of most programs. It means

that the execution time may be divided into
distinct phases during which the program
references are concentrated in some favoured
set of addresses. The concept of locality
of memory references is of great importance
to the design of virtual memory systems, and
it has been used explicitly in various memory
management policies implemented in such sys-
tems. Despite its intuitive simplicity, the
concept of locality is hard to quantify
because of its relativeness: for a same pro-
gram, there may be different locality struc-
tures when different levels of detail are
considered. Several a priori models have
been proposed [ShT72, BaS76, FrG75] ; but if
one wants to approach locality a posteriori
as a physical observation of a program be-
haviour, two questions can be asked: (1)
Having observed executions of a program, how
many and which localities does it run through?
(2) Knowing the localities liable to be en-
countered by a given program, identify which
one is being crossed at a given instant during
the execution?

In a previous paper [Sch77b], we pro-
posed a tool to determine the localities that
also provided an easy method to identify them
afterwards. It was based on the multidimen-
sional description of the "working-set string"
of the program. Based on the notion of "work-
ing set" [Den68], it is the sequence of the
characteristic functions of the successive
working-sets sampled with some given sampling
period. Each sampled working-set is repre-
sented in the following way: i

tn working-
set: (xil, x-f 2 » • •

»

> x i*n) wnere N is the num-
ber of pages in the program virtual space and
x-jj equals 1 if the j

tn page is referenced in

the i
tn working-set and zero otherwise. Thus,

the dynamic behaviour of a program can be
represented as a sequence of vectors in {0,
1}N. Detecting localities or stationary
regimes during the execution of a program can
be stated as detecting classes of short time
intervals during which the program continues
to use the same portions of its address space.
This can be done by clustering those similar
working-set vectors.

2.3 Example 3 - Program Restructuring

The purpose of program restructuring
techniques is to improve the efficiency of
paging mechanisms by an adequate display of
the program in a virtual memory. In order
to do that, programs are first cut up into

150

several blocks; these blocks are determined

by the programmer, and therefore they are

generally logical modules composing the pro-

gram. Thus, the problem is to map those

blocks into the virtual pages in order to

optimize a performance index (for example,

to minimize the number of page faults occur-

ing during the execution), this implies that

blocks that are frequently accessed one after

the other are assigned the same pages. Many

restructuring methods have been presented in

the literature [Fer76, MaS74, HaG71 , AcB77].

They have in common the fact that they deal

with a similarity (or dissimilarity) matrix
between the blocks. That is, each block is

characterized by the vector of its similarity
indices to all the others and the information

needed for restructuring is contained in that

whole vector. The restructuring problem can

then be stated in terms of clustering the

blocks with respect to their similarity
indices. This is possible with the help of

multidimensional techniques.

2.4 Example 4 - Data Base Allocation
or Reorganization

In large data bases implemented on

storage hierarchies, it is important to dis-
tribute records into groups so that each
transaction requires retrieval of as few of
those groups as possible. In order to do

that, clusters of records that are frequent-
ly referenced by the same transactions have
to be identified for being clustered togeth-
er. To know how user's transactions refer-
ence records, one may collect those records
retrieved by each transaction during some
representative activity period. A record
can then be represented by the following
vector: i

tn record = (x-ji, xi2 , • • • ,
x

-j m) where
x-h equals 1 if the j

tn transaction uses the
itn record and zero otherwise, with M being
the total number of sampled transactions.
This representation follows the same pattern
as that introduced in the Example 2: the
addressing units are records on one hand and
pages on the other, while the elementary
activity units are transactions on one hand
and working-sets on the other. In the same
way, the problem of data base reorganization
can be stated in terms of clustering record
vectors.

On the other hand, it can also be inter-
esting to study the behaviour of the differ-
ent transactions with respect to the records
they use. For this purpose, one can repre-
sent the jth transactions as a vector (x]j,

X2j,...,xNj) if N is the total number of
records and xij are the same as above.
Clusters of transactions can be used to re-
structure commonly used programs on the data

base.

These few examples, chosen from the
field of computer systems analysis, show how
the multidimensional approach can be used in
various applications. The following section
will discuss multidimensional data analysis
techniques which are applicable to such
examples.

3. Descriptive Methods in

Multidimensional Data Analysis (MDA)

The examples presented above have shown
how several practical problems can be address-
ed by their representation as a finite set of
high dimension vectors. Let us denote by RP

the Euclidean p-dimensional space, that is

the set of all p-vectors of real numbers. Let
n be the number of vectors (or points) of RP

in the sample. If p equals 1 or 2, that is

if one or two variables are observed, many
well known classical techniques can give a

description of the sample: histograms, good-
ness-of-fit tests with some presumed distri-
bution, correlation computation and signifi-
cance tests, regression analysis of one vari-
able on the other. In regression analysis,
the sample is represented as points in R?,
with each coordinate axis representing one of
the two variables; then the general structure
of the sample is visible on a plane graph:
clusters may be observed or a linear depen-
dence between the two variables suggested.
When the number of variables is greater than
two, such a direct indication of relationship
is much more difficult. The general purpose
of the methods we shall present is to provide
a synthetic representation of multidimension-
al sets.

Section 3.1 introduces notation as well
as one of the basic concepts in MDA: simil-
arity (or dissimilarity) between vectors.
Then the different methods are presented
according to the way they represent a multi-
dimensional data set: first, description by
geometrical plane representations (or by pro-
jection); the description by clustering, and
eventually description by graphs.

3.1 Distance and Similarity Measures

From now on, the basic information we
shall use is the data table (traditionally
called an "observation-parameter" table),
denoted by X.

151

X = x il

X
lj

hp

the data table itself, is a measure of simil-
arity (or dissimilarity) between observations;
any method will have to represent the observa-
tions according to their mutual resemblances.
It is of primary importance to determine
exactly what we mean by "these two observa-
tions are close to one another" or by "this

observation looks more like this one than
like this other one." This requirement may
be fulfilled by the choice of a distance d or

a similarity measure on the space of observa-
tions (here, RP).

where each element x-jj

x-jj is the value of the

the jth parameter.

number and
i*-

n observation of

Let us denote

x lj

column j by : y_j
= x^.

il

and row i by: >y
=

IP

So, vj is the vector in Rn representing
the n-sampie of the jth parameter, and xj is

the vector in RP representing the p values
of the parameters measured at the i^h obser-
vation.

The set we want to describe is E =

{xj/i = l,...,n}. We may immediately note

that "observations" and "parameters" formal-
ly play symmetrical parts. Any method deal-
ing with a n-sample of points in RP may of

course be applied to a p-sample of points in

Rn . The methods we shall present will there-

fore be able to describe the set E =

{xj / i = 1, ... , n} of the observations as

welT as that of the parameters, F =

{Vj / j = 1 , ... , p}.

In order to analyze a multidimensional
data set, the first thing needed, besides

Let us recall that a distance function
d on the set E takes as its arguments two
vectors of E, say xj and Xn , and produces a

non-negative real number d(xj , xj,) such that:

t) d(xj, xji) = 0 ~-> Xj = x^

ii) Vi , m, d (x-j, x^) = d (xj>, x-j)

iii) Vi , V2, , Vm, d (x_j , x^) d (x-j , x^) +

d (*m> xji)

A function d which only satisfies (i) and
(ii) will be called a "dissimilarity measure."
Hereafter a dissimilarity measure has to be

chosen or given, and this choice is funda-
mental. Results obtained by the same tech-

nique and from the same data may be complete-
ly different for different definitions of

"closeness
.

"

3.2 Description by Geometrical
Representations

These methods consist in choosing in the

p-dimensional space of the data a subspace of

low dimension (generally 2, 3, etc..) such
that the projection of the data set on this
subspace keeps as much information as poss-
ible about the original p-dimensional set.

There are as many projection methods as

notions of "good" representation. In the

following, we shall present a classical one:

Principal Components Analysis (PCA) and one

of its fruitful extensions: Correspondence
Analysis (CA). These two methods assume that
a projection is good if the projected points

are as close as possible to the original ones
in terms of the chosen distance measure on
RP. Thus the projection subspaces will be

found by minimizing dispersion. Other notions
of a good projection can also be considered:

The Projection Pursuit Algorithm [FrT74]

satisfies some trade-off between a good repre-

sentation of the global dispersion and that

of local clusters; Discriminant Analysis
([And58], for instance) gives a representation
in which given clusters of the sample are as

well separated as possible. Let us also note
the various techniques of Proximity Analysis

152

and Multidimensional Scaling [She62, Kru64]

which attempt to give a low-dimensional re-

presentation such that the distance table of

the represented set is as close as possible

to the original one.

3.2.1 Principal Components
Analysis (PCA)

Let X be the data table, and E =

{Xj/i = l,...,n} the set of n points in RP

to be analyzed. The space RP is assumed to

have a Euclidean distance function d^, that
is a distance that verifies Pythagoras'
theorem. Let us assume that weights p-j are

assigned to the n observations. (If there

is no prior information on the sample, these

Pi may be taken all equal. However, it may
happen that natural weights arise. This is

the case for instance when there are several

identical observations of the variables.
They can then be represented by only one of

them the weight of which is proportional to

their number)

.

Then, the problem of Principal Component
Analysis (PCA) is to find a subspace of RP

of low dimension such that the projection of

E on this subspace is a "good" representation
of E. Generally, we shall look for 2, 3, 4

and 5-dimensional subspaces and observe them
in their various plane cross sections.

More precisely, the problem of PCA can
be stated in the following way:

Find a subspace E^ e R^ (dim (E^) =

k << p) such that

E P-jd^ (X|> E^) is minimum.

_i=l,n

(Let us recall that the distance between a

point and a subspace is the distance between
that point and its M-orthogonal projection
on the subspace).

Details on PCA techniques and on the
validity of the low dimension representations
obtained may be found in [And58]. Once the

set E of observations have been represented,
the set F of parameters may also be repre-
sented by performing another PCA on the data
table X', the transposition of X. Generally,
there is no analytical relationship between
the two representations so they must be

interpreted independently. In the next
section we present a particular version of
PCA which allows simultaneous interpretation
of the two representations.

3.2.2 Correspondence Analysis (CA)

Due to J. P. Benzecri [Ben73], Corre-
spondence Analysis (CA) is a particular PCA.

We have seen that, besides the data table,
PCA requires two more inputs from the user:

a weighting system {p-j/i = l,...,n} and a

distance, associated with a matrix M, on R^.

In CA, those two inputs are chosen so that
the two PCA dealing respectively with the two
sets E and F of observations and of parame-
ters, may be easily deduced from one another
and simultaneously interpreted.

For this purpose, the chosen distance is

a classical statistical distance, called x^-
distance, on E as well as on F [And58, Ben73].
The weights in each set are the marginal fre-
quencies obtained by summing rows and columns
in the data table. With those choices, the

two representations of E and F are related by

simple analytical relations. This relation-
ship has two practical consequences:

- the description of the two sets E and F

requires only one anlaysis. The other
one can then be easily deduced from the
first.

- the two representations can be interpreted
simultaneously. The structure of the set
of observations can thus be explained in

terms of the parameters and vice-versa.

The benefits of using and interpreting
Correspondence Analysis will be illustrated
in the examples of Section 4.

3.3 Description of Clustering

Up to now, the methods we have seen des-
cribe multidimensional data sets by means of
geometrical representations, illustrating
visually some properties of the observed
populations. In this paragraph, we shall

present methods that partition the data set.

To make precise the notion of a "good" par-
tition, it is necessary to introduce a cri-

terion function on all possible partitions
of the set E of observations. The different
clustering methods differ from one another
either by the quality criterion satisfied
by their solution, or by the procedure lead-

ing to a solution satisfying a given cri-

terion.

Given the data set E in Rp and some
distance d on RP, the most frequently used
criteria are based on the dispersions of the

classes of the partition. For example, a

common criterion of quality for the partition
P = (Pi, ... , P^) in k classes of E (i.e.;

E =
i

11

,,
i,P«, and the P^ are disjoint) is the

3.4 Description by Graphs

What we called "geometrical" represen-

tation in § 3.2 were graphical representa-
tions which were to be read and interpreted
as maps: both individual and global notions
of closeness were reasonable. In this sec-

tion, we present representations by graphs

where the notions of nodes, edges and paths

are used to interpret the structure of the

data.

All the methods in this section work on

distance tables D, (i.e., the set E to be

anlayzed is characterized by all distances
between pairs of its elements). Whether
these distances are the actual data or they
have been obtained from some representation
or using some particular distance does not

matter.

Thus these methods do not use directly
the multidimensional representation of the

set to analyze as a set of points in a p-

dimensional space. It is the distance struc-
ture of this set which is explicitly taken
into account. The multidimensional point of
view underl ies the distance based methods and,

in most applications, both approaches are

taken jointly.

3.4.1 Hierarchical Clustering

Hierarchical clustering is a representa-
tion of the data by a hierarchical tree (or

dendrogram). It also provides homogeneous
nested partitions of the data; this is why it

is called "hierarchical clustering." At the
lower level of the tree all the points to be

analyzed are represented. Then the tree is

built by aggregating those points or previous-

ly formed clusters that are the closest to

each other. Each level of the tree repre-
sents a partition of the set E. An extensive
study of hierarchical clustering methods is

made in [SnS73].

3.4.2 Graph Partitioning Methods

The knowledge of the distance table D

permits one to assign a graph structure to the which follows

set E of objects to analyze. It can be con-
sidered as a complete graph with edge lengths

given by the distances, possibly weighted as

well. Then E is the set of nodes and for all

i and i in E, there is an edge (i ,&) the

tree (i.e. connex and having all the points
of E as nodes), and among all spanning trees,

its length is minimum. It has the following
property: the distance d-j £ between any points

i and I of E is at least as great as the

longest edge in the unique path joining i and
£ in the MST.

- Methods for reducing the sizes of both
sets of nodes and edges of the initial
complete graph on E [MiD77] . The number
of nodes is reduced by aggregating those
points in E that are strongly related in
the initial graph; the number of edges is
then reduced by techniques similar to that
of the MST.

In any case, once the set of E is repre-
sented as a graph, graph partitioning methods
can be applied to partition E. In [Ker71],
Kernighan proposes an algorithm to find a min-
imum cost partition of the nodes into given
size classes. This partition is optimum for
a given order of the nodes. In [GoR69], a

clustering method based on the MST is given:
by partitioning the set of the nodes of the
MST by suppressing its longest edge and by
iterating this process inside each class
obtained, one gets a sequence of nested par-
titions of E. (This sequence is proved to be
the same as that given by hierarchical clus-
tering when all the distances in D are differ-
ent [Ben73]).

4. Applications of MDA to
Practical Examples

In the previous section we have presented
some techniques in multidimensional data anal-
ysis. Of course, their ulilization has to be
preceeded by a thorough anlaysis of the prob-
lem in order to be able to describe it pre-
cisely, to choose a sampling strategy and to
select important parameters. The tools pre-
sented take a data table X as a starting point
and the work involved in acquiring such a data
table for some practical context should not be
underestimated. Some of the problems that
can arise during this preliminary work are
mentioned in the presentation of applications

4.1 Workload Characterization

length of which is d-j^. If E is very large,
there are methods for building an incomplete
graph on E such that the existing edges bring
as much information as possible on the com-
plete distance graph. Two such methods are:

The construction of the Minimum Spanning
Tree (MST) of E [Zah71]: it is a spanning

A workload can be described in terms of
clusters of worksteps characterized by sever-
al variables. Agrawala et al . set up the
problem in that way [AgM76]; the worksteps
are characterized by eight parameters (CPU
time, number of I/O on different devices, num-

ber of steps executed, executive charges,
etc...); they are clustered by using a vari-
ant of the "k-means" algorithm (cf. § 3.3.iii)
and eventually the clusters are interpreted

154

with the help of their Kiviat graphs [KoK73]

on the eight variables. In a complementary
paper [AgM77], Agrawala and Mohr give further
results on the influence of the set of vari-

ables selected on the clustering obtained.

Different sets of variables lead to complete-
ly different clusters; this could be expected
since it is different multidimensional sets

which are clustered: this emphasizes the

importance of the choice of variables. This
difficulty can be partially alleviated by

"feature selection" procedures that help de-

termine a relevant set of parameters to des-
cribe a workload [MaA77]. In such procedures,
known jobs are initially classified into dis-

tinct groups. The feature selection methods
then give those parameters which are suffi-
cient to describe adequately those groups. A

similar approach in the characterization is

presented by H. P. Artis [Art76]. He gives
a description of a job step by a "resource
vector," thus characterizing the steps of

the workload by their physical resources re-

quirements. The steps are then clustered
with the help of the ISODATA algorithm (cf.

§ 3.3. iii).

Workload analyses using MDA techniques
have been recently conducted in France. Since
a few of these studies have been published
[Bio78, Car77, Duc78, Kem76] we shall indicate
briefly their common features and the kind of
results they yield. Different workloads are
studied: either the whole load of a given
computer or its batch processing load or the
load of a whole computer center. Also, dif-
ferent elementary activity units are consid-
ered as "observations" in our statistical
vocabulary: either steps, or jobs, or custo-
mers. In any case, the parameters measured
are the requirements for the same main re-

sources: CPU, core memory, different types
of disks, tapes, etc.. All authors come to

a data table as that described in § 2.1 the
columns of which are heterogeneous variables
(e.g. a processing time, a number of disk
accesses per minute, a number of cards
punched, . .

.
)

.

To transform this kind of mixed infor-
mation into a data table manageable by MDA
techniques, the approach which has been
adopted in the above given references is to
transform each continuous variable into sev-
eral binary variables by subdividing its
range into significant classes (such classes
must be as equiprobable as possible and must
also take into account any characteristic
feature of the histogram like isolated peaks).
In [Bio78] for instance, the CPU time range
is divided into the following six intervals:

I
1

•
• — I— • • • 1—

0 Isec. lOsec. 30sec.

—I 1

60sec. 300sec.

Then the continuous variable "CPU time"
is represented by six binary variables: I],

*2> I3 j l4> l5> 16- Each observation takes
the values "1" for one and only one of those
six variables and the value "0" for the
others. For instance, to one step which re-
quired 1.6 seconds of CPU time, there will
correspond the six-tuple of CPU time vari-
ables: (0, 1, 0, 0, 0, 0). Once such a

coding has been performed for all the param-
eters, the data table is a large binary table
that can be analyzed by some of the MDA tech-
niques presented above. In the three studies
mentioned above, Correspondence Analysis
(cf. § 3.2.2) has been applied and though
the definitions of the parameters differ from
one another, the main results are the same.
As an example, we give on figure 1 the repre-
sentation of the parameters obtained by

J. Biondi [Bio78].

Along the first principal axis are
ordered the binary variables representing
CPU time and main core requirements in in-

creasing order. This shows the preponderous
importance of those two parameters as well
as the fact that they are related to each
other. At the same time, the representation
of the steps (not given here) gives a gener-
al scaling of the steps (or jobs) from
"small" (short and with small core memory
requirement) to "big" (long and requiring
much core space). This seems to be a gener-
al feature in the workloads analyzed in those
studies. The remaining principal axes point
out various influences as that of fast or
slow disk 1/0, that of tapes, and so on. A

careful interpretation of these graphs gives
a picture of the load and of its character-
istic features. To go further and acquire
a precise classification of the steps (or

jobs, or customers) according to their uses
and requirements, clustering methods can be

applied. In [Bio78] and [Car77], iterative

155

fol lowing:

J. L

where cj^ is the centre of gravity of the 1

class Pj, of the partition, i.e.:

& =
Card (Pj" x_ieP£ -i

The criterion W(P) is to be minimized,
resulting in a situation in which points
which are "close" to each other are in the

same class of the partition.

Different combinations of these disper-
sions, with various weights for instance,

may also be used as criteria for good parti-
tions. Other criteria may be defined that
take into account the presence of "gaps"

between groups of points, or the shapes of

these groups, for example.

Let us give two examples where "natural"
partitions seem to arise while they behave
quite differently in terms of dispersions:

Example 2

Example 1 shows a partition into 2 classes

(Pi, P2) which is a "good" partition for the
dispersion criterion defined above. The
example 2 shows a "natural" partition into 4

classes though the criterion it optimizes
would be quite difficult to define.

Detailed studies of various criteria and
of clustering techniques can be found in

[Rub67, FrR67, Mar76, Dor71]. The first
method that may come to mind for finding the
partition P of E into k classes which opti-
mizes a given criterion function W is to com-
pute W(P) for all P, and choose the best one
Of course, this method is inordinately expen-
sive. Other methods avoid this complete
enumeration by introducing some a priori in-

formation or by yielding solutions which are
only locally optimal. Clustering techniques
can be roughly classified into three families

i) "Threshold" methods: these methods gen-
erally take into account the data sequen
tially and build clusters progressively
while introducing them. Thresholds are
used to limit either the maximum (or

minimum) volume of the clusters or their
("nearest-neighbour" procedures). We
will not go into further details on

those methods since we are not aware of
any application in the area of computer
systems. For more details, see [Bon64,
CoH67, Dor71].

ii) Manipulations on the distance (or simil-
arity) matrix: given the similarity
matrix between all the items to be clus-
tered, a "good" clustering should be

such that the reordered similarity ma-
trix (after the clustering) is as close
as possible to a semi-block diagonal
form. Starting from this simple obser-
vation, McCormick et al [McS72] have
developed the "Bond Energy Algorithm."
This algorithm is an efficient method
for permuting the rows and columns of
the similarity matrix until a satisfac-
tory diagonal form is obtained.

iii) Iterative methods: these are methods in

which initial classes are drawn at ran-
dom and iteratively improved. This im-

provement is achieved by aggregating
the clusters around some characteristic
"centroid." The techniques differ from
each other by the notion of centroid
they use: it may be the centre of grav-
ity (ISODATA [BaH67]) , or some subset
of the class (Dynamic Clusters [Did72,
DiS74]; k-means [McQ67]; for a complete
review, see [Cor71 , Dor71]). All these
methods lead to local optima of the
criterion.

156

\

clustering techniques such as those described

in § 3.3. iii have been used to get classes of

characteristic jobs, while hierarchical clus-

tering (cf. § 3.4.1) has been applied to the

set of the variables in [Bio78]. In practice,

hierarchical methods cannot be used for sets

as large as those of the jobs, while iterative

methods can deal with such sets. It is also

possible to pass from a clustering of the

variables (smaller set) to a clustering of

the steps (which can be a very large set)

with the help of the transition formulae of

Correspondence Analysis (cf. § 3.2.2) [Bio78].

In [Bio78], the classification obtained and

its characteristic parameters have been used

to construct synthetic jobs that could be used

as benchmarks. In [Car77], the results have

been used to study the evolution of the work-

load and similar analyses have been carried

out and compared month after month. Customer
profiles have also been defined.

4.2 Program Addressing Behaviour

Detailed analyses of working-sets tables

such as those presented in § 2.2 have been

thoroughly described in [Sch77b]. We shall

briefly review one of them here in order to

illustrate the practice of MDA. Let us re-

call that a "working-set" [Den68] is the set
of pages referenced by a program during a

given virtual time interval. The working-set
strings we consider are obtained by sampling
working-sets on intervals of fixed length,
expressed as a number of references and known

as the "window size." The working-set string
considered here is that of a FORTRAN compiler.
It has been extracted at the University of
Rennes on a 10070 CI I Computer [BuL76]. The
window size is 5000 references and the inter-

val between two successive sampled working-
sets is 50,000 references; the corresponding
data table is given on figure 2.

On this data table, we first carried
out a Correspondence Analysis (see § 3.2.2).

Figures 3 and 4 show the representations of

the set of the working-sets in the first two

principal planes (axes 1 and 2 and axes 1 and

3). The parts of information carried by the

three first axes are: 21%, 15%, 10%.

On the first principal plane (Fig. 3),

four groups obviously appear which correspond
to the four phases that are encountered two
times by the program and that were distin-
guishable on the initial string of figure 2.

When observing the second plane (Fig. 4), one
notes that the three phases 2, 3, 4 are still

clustered together while the phase 1 is split
into two subphases, one of which is very close
to the phase 4. These subphases can also be

distinguished in the initial string. Event-
ually the representation of the working-sets

in a 3-dimensional space indicates clearly
the existence of four different phases through
which the program runs twice. Figure 5 shows
the representation of the pages on the first
principal plane. This is the symmetrical
analysis of the previous one.

I!!!

' liii.i:

19

25

29
3*1

I

50

59
(a

II I It tl
IT t It It

Jl 1 I II

Mil

Iii!

Imi:! I 'ill I

Hill! I til I

liili till!
t;.t I imi til
jlljl IIIMtfl II

iiiiiVIIiiii *i
I:m i nut II

liiiii :

nr. i i::t:m
lit! II 111
imi I r::: tt
tin I i. in it

I'n I 'tin li
lull Jiu.-JM

Iii!' '!,!"
,

tut t: ni
i: m irittir n

I l.t
I 'i 1

I'M''

>

ittiiT

l.nil

iiiiii

II!

1"

.11

;i cm
tt utti
ill inm inn

iili Hi:!

lili,! Hi!
1 1 ii ii t in

jiiiniiil

II I

"

Figure 2

Each line represents a working-set, each
column a page, the working-sets are numbered
from top to bottom in chronological order
(the "0's" of the table have replaced by
blanks).

When observing figure 5 and figure 3

simultaneously, one can make the following
observations. On figure 5, the most fre-
quently referenced pages are gathered. They
are accessed throughout the execution and do

not characterize any phase. The others are
clustered according to a pattern similar to

the one displayed on figure 3. One can then
observe which are the groups of pages which
characterize the above determined phases and
which are those that are intermediate between
two of them. For instance, pages 33, 34, 37,

39, 40, 41, 42 are characteristic of phase

2; pages 45, 46, 47, 48 of phase 3 and pages

6, 49 of phase 4 while pages 50, 17, 35, 44
may as well appear in any of the three
phases 2, 3, 4. From the representation of

the pages on their second principal plane
(not given here), it is also possible to see
which page references differ in the two sub-
phases la and lb.

After the Correspondence Analysis has

been interpreted, a simultaneous clustering
on the two sets related by the data table
[Gov77] has been performed. The clustering
of the set of working-sets is the same as the

one deduced from Correspondence Analysis:

157

five classes la, lb, 2, 3, 4. The clustering
of the pages gives the following six classes:

Class a: 18, 19, 20, 21, 22, 23, 24, 26, 29,

30, 64, 65, 67, 69

Class b: 33, 34, 35, 36, 37, 39, 40, 41, 42

Class c: 45, 46, 47, 48

Class d: 6, 10, 44, 49, 62, 63, 70

Class e: 8, 14, 15, 27, 28, 52, 71

Class f: 2, 3, 4, 7, 9, 11, 12, 13, 17, 50,

51, 72, 73, 74, 75

This clustering is included in the one

deduced from Correspondence Analysis and is

consistent with it. The mutual relationships
between the two sets are summarized in the

following table:

a b c d e f

This table is deduced from the initial

data table by regrouping lines and columns
according to the clustering obtained and with:

more than 80% of "1" in the cell

Y77A ^om 40 to 60% of "1"

fcyvl ^om 10 to 30% of "1"

{ |
empty cell

Percentages between 60 and 80%, 30 and

40%, 0 and 10% have not been observed.

The interpretation of this table is

immediate; for instance, phase 1 is charac-
terized by the use of the pages belonging to

classes a, d and e; a is very frequently used
during the whole phase and though d and e are
less frequently referenced, it is their use

which discriminates between the two subphases
la and lb.

The multidimensional aspect of a string
of working-sets which has been indicated
above gives a very convenient tool for char-
acterizing localities. We have seen how the
sampled working-sets may be considered as

vectors, how they can be compared to one
another by using a distance measure (here
the x 2 distance), and how a locality can be

defined in terms of simultaneous clustering
of those vectors and of the set of pages.
Thus a new sampled working-set may be identi-
fied as belonging to one of the detected
localities by measuring its distance to the
different clusters of working-sets and assign-
ing it to the closest one.

Another use of the multidimensional
aspect of working-set strings is mentioned
by Freiberger et al . [FrG75]. They present
a model of program behaviour based on the
notion of "regimes." Their assumption is

that a program runs through different inde-
pendent stationary regimes which are charac-
terized by their vectors of page reference
frequencies. In order to partition regimes
in page reference strings they identify the
current regime on some time interval by cal-
culating the page reference frequencies on

this interval; then, passing to a following
interval, it will be said to be in the same
regime or in another one according to whether
the distance (usual Euclidean distance) be-
tween the two page frequencies vectors in

small or large. This example shows the util-
ity of the geometrical and multidimensional
points of view in studying such problems.

4.3 Program Restructuring

As presented in § 2.3, the problem of
restructuring programs can be stated in terms

of clustering the blocks of the program.

This clustering has two main characteristics:

- it is based on a distance (or a simi-

larity) measure between the blocks,

- it has to take into account con-

straints of size for the clusters.
This is because the program has to

be displayed in pages of the virtual

memory which are of some fixed size.

Authors dealing with the restructuring
have chosen various measures of proximity
between the blocks. In [HaG71], the simi-

larity between two blocks is exactly the

number of times one of the blocks has refer-

enced the other one during one execution

(number of transfers). In [MaS74], two

blocks are closer the more often they have

been referenced together in some given time

interval of the execution of the program.

158

In [AcB77], the similarity between two

blocks is also based on the number of trans-

fers from one to the other, but it is some-

how refined by dividing this number by the

total number of transfers; this "relative"

number of transfers seems to give a more

precise idea of how close two blocks are.

D. Ferrari [Fer76] has proposed several simi-

larity measures, which are based on the no-

tion of "critical" references: a critical

reference is a reference which may give rise

to a page fault depending on the layout

chosen for the program. The problem is thus

stated in terms of clustering blocks related

to one another by a distance (or similarity)

matrix. Moreover, this clustering must

satisfy a size constraint (the page size).

The clustering techniques that we have

presented in § 3.3 and § 3.4 (hierarchical

and non-hierarchical clustering) do not take

any constraint into account; so, they have

to be modified to solve restructuring prob-

lems. Since there does not exist any opti-

mal clustering method under size constraints,

the restructuring algorithms make use of

heuristic variants of known clustering algo-

rithms. In [AcB77] for instance, the hier-

archical clustering (cf. § 3.4.1) is used,

but the respect of the size constraint is to

be ensured at each step of the aggregation.

The same clustering method is used in

[MaS74] but the size constraint is only

taken into account a posteriori at the end

of the algorithm. Among the different vari-

ants of clustering algorithms he proposes,

D. Ferrari suggests a simple stepwise

aggregation method with a size threshold;
this technique is close to the clustering
threshold methods mentioned in § 3.3.i.

4.4 Data Base Reorganization

To improve data base reorganization as
stated in § 2.4, S. Gorenstein and G. Galati
[GoG74] propose to cluster the records of
the base on the basis of the data table
"record x transactions" defined in § 2.4.
The results they present have been obtained
by using a modified descending hierarchical
clustering algorithm (cf. § 3.4.1). The
criterion used for splitting is the disper-
sion of the clusters. The improvement in
the performance of the system after the
clustering of the records seems significant
and encouraging. In the same paper, the
authors show how a variant of the "k-means"
methods (cf. § 3.3.iii) could also be used
and give better results at a reasonable
price.

In [HoS75], J. A. Hoffer and D.G.
Severance set the problem of determining
"an efficient segmentation for a data base
which is shared by a community of users."
Such a segmentation is an organization of
the data base into subfiles containing only
classes of records and classes of attributes.
Thus, their purpose is to find those classes
of records and attributes thay may consti-
tute efficient subfiles. In [HoS75], they
present the step of the clustering of at-

tributes. In order to do that, they define
an attribute similarity measure. The simi-
larity between two attributes is based on

the frequency of co-accesses to the two

attributes in a set of sampled requests.
Various weightings allow consideration of
the user's priority and the value encoding
length of each attribute. Eventually, once
the attribute similarity table is built, the

Bond Energy Algorithm (see § 3.3.ii and
[McS72]) is applied to it, yielding groups
of similar attributes. Then performance
measurements have been made on several con-

trol runs in which the attributes were
assigned to subfiles according to the re-

sults of the clustering. The results show
the limits of the efficiency of the reorgan-
ization which are mainly related to the num-

ber of groups being considered. Efficiency
is also sensitive to the choice of the

weighting parameters in the attribute
similarity definition.

On a lower level of data base problems,
the same kind of techniques can be applied
to the physical allocation of data to disks.
In [F1G78], for instance, a variant of the

Dynamic Clusters method (see § 3.3.iii) is

used to improve the response time of a

moving-head-disk. In a given file, those
records that are frequently used in the same

requests are clustered together on the basis
of a sample of observed requests. Then,

each cluster is assigned to a given cylinder.

5. Concluding Remarks

The purpose of this paper has been to

present some descriptive multidimensional
statistical tools. Emphasis has been put on

applications in the area of computer systems

analysis. Those applications cover a range

of problems which are quite wide and the

advantages of using Multidimensional Data

Analysis Techniques.

Research is still open in directions of

both methods and applications. Its success

depends on the development of relationships
between statisticians and computer system

evaluators. In the use of MDA, like in any

159

statistical application, the part played by

the practicioner is substantial. He has to

be involved at each step of the analysis;
first, to state his practical problem in

terms of descriptions of some finite set of
data items; then to characterize these data
items by relevant and manageable variables
and to define the meaning of "closeness" or

"similarity" between data items; finally,
to choose some MDA technique and possibly
adapt it to the problem. One could have

noted in the applications presented that,

most often, it is a "variant" of a known
method which is used. Actually, there are
no universal methods and each application
raises specific problems which must be

solved in its particular context. Eventu-
ally, the practitioner has to interpret the

results obtained and can give the statisti-
cian hints for further work. We hope that

this paper will encourage collaboration be-

tween statisticians and computer scientists

References

[AcB77] Achard, M.S., Babonneau, J.Y. and
Morisset, G., Automatic and General
Solution to the Adaptation of Pro-
grams in the Paging Environment,
Sixth ACM Symposium on Operating
Systems Principles , Purdue Univer-
sity, November 1977 (or Research
Report IRIA-Laboria No. 196).

[AgM76] Agrawala, A.K., Mohr, J.M. and
Bryant, R.M., An Approach to the
Workload Characterization Problem,
Computer , June 1976, pp. 18-32.

[AgM77] Agrawala, A.K. and Mohr, J.M.,
Some Results on the Clustering
Approach to Workload Modelling ,

Technical Report TR-521, Computer
Science Technical Report Series,
University of Maryland, April 1977
(or in the Proceedings of CPEUG 77).

[And58] Anderson, T.W., Introduction to

Multivariate Statistical Analysis ,

Wiley, New York, 1958.

[Art76] Artis, H.P., A Technique for Deter-
mining the Capacity of a Computer
System, Proceedings of CPEUG 76 ,

November 1976, pp. 150-162.

[BaH67] Ball, G.H. and Hall, D.J., A Cluster-
ing Technique for Summarizing Multi-
variate Data, Behavioral Sciences ,

Vol. 12, No. 2, 1967, pp. 153-155.

[BaS76] Baer, J.L. and Sager, G.R., Dynamic
Improvement of Locality in Virtual
Memory Systems, IEEE Trans, on

Software Engineering , Vol. SE-2

,

No. 1 , March 1 976, pp. 54-62.

[Ben69] Benzecri, J. P., Statistical Analysis
as a Tool to Make Patterns Emerge
from Data, in Methodologies of
Pattern Recognition , Watanabe, S.

(Ed.), Academic Press, New York,

1969, pp. 35-60.

[Ben73] Benzecri, J. P., et al . , L'Analyse
des Donnees , Vol. 2, Dunod, Paris,
1 973.

[Bio78] Biondi, J., Description de la Charge
d'un Syst&me Informatique et Applica-
tion a 1' Evaluation des Performances,
to appear in Revue Francaise d'Auto-
matigue Informatique Recherche
Operationnel 1

e

(Paris), Serie B,

Informatique, 1978.

[Bon64] Bonner, R.E., On Some Clustering
Techniques, IBM Journal of Research
and Development , Vol. 8, No. 1, 1964,

pp. 22-32.

[BuL76] Burgevin, P. and Leroudier, J.,

Characteristics and Models of Pro-

gram Behavior, National Conference
of the ACM 76

, Houston, October
1976, pp. 344-350.

[Car77] Carreiro, S., Utilisation de
1 'Analyse des Dpnne'es Pour la Ges-
tion d'un Centre de Calcul Etude
de la Charge de 1

' Ordinateur ,

These 3&me Cycle, Laboratoire de

Statistique Mathematique, Univer-
sity Paris VI, France, October
1 977.

[CoH76] Cover, T.M. and Hart, P.E.,

Nearest-Neighbor Pattern Classifi-
cation, IEEE Trans, on Information
Theory , Vol. IT-13, No. 1, 1967,

pp. 21-27.

[Cor71] Cormack, R.M., A Review of Classi-
fication, J. Roy. Statistical
Society , Series A. Vol. 134, Part 3,

1971 , pp. 321-353.

[Den68] Denning, P., The Working-Set Model

for Program Behavior, Communications
of the ACM , Vol. 11, May 1968,

pp. 323-333.

160

[Did72] Diday, E., An Introduction to the

Dynamic Clusters Method, METRA ,

Vol. XI, No. 3, 1972, pp. 505-519.

[DiS74] Diday, E., Schroeder, A. and Ok, Y.,

The Dynamic Clusters Method in

Pattern Recognition, Information

Processing 74 (Proc. IFIP Congress

1974), North-Holland Publishing

Company, 1974, pp. 691-697.

[Dor71] Dorofeyuk, A. A., Automatic Classi-

fication Algorithms (Review), Auto -

mation and Remote Control , Vol. 32,

No. 12, Part V, December 1971,

pp. 1928-1958.

[Duc78] Duclos, A., Mesures des Performances
et Analyse de la Charge d'un Calcu~
lateur Mul tj programme" , Th&se de

Docteur-Inge"nieur , Conservatoire

National des Arts et Metiers, Paris,

June 1978.

[Fer72] Ferrari, D., Workload Characteriza-

tion and Selection in Computer Per-

formance Measurement, Computer ,

July/August 1972, pp. 18-24.

[Fer76] Ferrari, D., The Improvement of Pro-
gram Behavior, Computer , November
1976, pp. 39-47.

[F1G78] Flory, A., Gunther, J. and

Kouloumdjian, J., Data Base Re-

organization by Clustering Methods,
Information Sciences , Vol. 3,

Pergamon Press, 1978, pp. 59-62.

[FrG75] Freiberger, W.F., Grenander, U.,
Sampson, P.D., Patterns in Program
References, IBM Journal of Research
and Development , May 1975, pp.
230-243.

[FrR67] Friedman, H.P. and Rubin, J., On
Some Invariant Criteria for Group-
ing Data, Journal of American
Statistical Assn . , Vol. 62, Decem-
ber 1967, pp. 1159-1178.

[FrT74] Friedman, J.H. and Tukey, J.W.,
A Projection Pursuit Algorithm for
Exploratory Data Analysis, IEEE
Trans, on Computers , Vol. C-23,
No. 9, September 1974, pp. 881-890.

[GoG74] Gorenstein, S. and Galati, G.,
Data Base Reorganization for a

Storage Hierarchy , IBM Research
Report No. RC5063, Yorktown Heights,
October 1974.

[GoR69] Gower, J.C. and Ross, G.J.S.,
Minimum Spanning Trees and Single
Linkage Cluster Analysis, Appl ied

Statistics , Vol. 18, No. 1 , 1969,

pp. 54-64.

[Gov77] Govaert, G., Algorithme de Classifi-
cation d'un Tableau de Contingence,
in Analyse de Donnees et Infor -

matique
, Colloque IRIA, Rocquencourt,

France, 1977, pp. 487-500.

[HaG71] Hatfield, D.J. and Gerald, J.,
Program Restructuring in Virtual
Memory, IBM Systems Journal , Vol. 10,
No. 3, 1971, pp. 168-192.

[Har72] Hartignan, J. A., Direct Clustering
of a Data Matrix, Journal of Ameri-
can Statistical Assn ., Vol. 67TT972,
pp. 123-129.

[Har75] Hartignan, J. A., Clustering Algo-
rithms , J. Wiley, New York, 1975.

[Hi 1 74] Hill, M.O., Correspondence Analysis:
A Neglected Multivariate Method,
Applied Statistics , Vol. 23, No. 3,
1974, pp. 340-354.

[HoS75] Hoffer, J. A. and Severance, D.G.,
The Use of Cluster Analysis in

Physical Data Base Design, Proceed-
ings of the Very Large Data Base
Conference , D.S. Kerr (Ed.), 1975,
pp. 69-86.

[Kem76] Kempf, J.B., Application de l'Analyse
Mul tidimensionnel 1 e a des Travaux
Soumis au Calculateur de Clamart,
in La Statistique: Outil d'Analyse
des Syst&mes Informatiques , D. Potier
and A. Schroeder (Eds.), French
Chapter of the ACM, 1976.

[Ker71] Kernighan, B.W., Optimal Sequential
Partitions of Graphs, Journal of the
ACM , Vol. 18, No. 1, January 1971

,

pp. 34-40.

[KoK73] Kolence, K.W. and Kiviat, P.J.,
Software Unit Profiles and Kiviat
Figures, Performance Evaluation
Review , Vol. 2, No. 3, September
1973, pp. 2-12.

[Kru64] Kruskal, J.B., Non Metric Multi-
dimensional Scaling: A Numerical
Method, Psychometrika , Vol. 29,
1964.

161

[LaW65] Lance, G.N. and Williams, W.T.,

Computer Programs for Monothetic
Classification—Association Analy-
sis, Computer Journal , 1965,

pp. 246-249.

[LeS75] Leroudier, J. and Schroeder, A.,

A Statistical Approach to the Esti-

mation of Service Times Distribu-
tions for Operating Systems

Modelling, International Computing

Symposium 75 , E. Gelenbe and

D. Potier (Eds.), 1975, pp. 171-184.

[MaA77] Mamrak, S.A. and Amer, P.D., A

Feature Selection Tool for Workload
Characterization - International

Conference on Computer Performance
Modelling, Measurement and Manage-
ment , SIGMETRICS/CMG VIII,
November 1977.

[MaB76] Madison, A.W. and Batson, A. P.,

Characteristics of Program Locali-

ties, Communications of the ACM ,

Vol. 19, No. 1 , May 1974,

pp. 285-294.

[MaS74] Masuda, T., Shiota, H., Ngughi, K.

and Ohki, T., Optimization of Pro-

gram Organization by Cluster
Analysis, in Information Processing
74 (Proceedings of IFIP Congress
74), North-Holland Publishing
Company, 1974, pp. 261-265.

[McQ67] McQueen, J., Some Methods for Clas-
sification and Analysis of Multi-
variate Observations, Fi fth

Berkeley Symposium on Mathematics ,

Statistics and Probability , Vol. 1

,

No. 1, 1967, pp. 281-297.

[McS72] McCormick, W.T., Schweitzer, P.J.

and White, T.W., Problem Decomposi-
tion and Data Reorganization by a

Clustering Technique, Operations
Research , Vol. 20, No. 5, September
1972, pp. 993-1009.

[MiD77] Milgram, M., Dubuisson, B. and
Vachon, B., A Computationally
Efficient Clustering Algorithm,
IEEE Trans, on Systems, Man and

Cybernetics , Vol. SMC-7, No. 2,

February 1977, pp. 99-104.

[Rub67] Rubin, J., Optimal Classification
Into Groups: An Approach for Solv-
ing the Taxonomy Problem, J. Theoret ,

Biol., Vol. 15, 1967, pp. 103-144.

[Sch76] Schroeder, A., Analyse d'un Melange
de Distributions de Probability de
Meme Type, Revue de Statistique
Appliguge , (Paris), Vol. XXIV,
No. 1, 1976, pp. 39-62.

[Sch77a] Schroeder, A., Estimating Input for
Operating Systems Models, in Recent
Developments in Statistics , Barra
et al . (Eds.), North-Holland Pub-
lishing Company, 1977, pp. 721-728.

[Sch77b] Schroeder, A., A Statistical Approach
to the Study of Program Behavior via

Reference Strings Analysis, in Com-
puter Performance , Chandy and Reiser
(Eds.), North-Holland Publishing
Company, 1977, pp. 381-396 (or

Research Report IRIA-Laboria No. 240)

[She62] Shepard, R.N., The Analysis of Prox-

imities, Psychometrika , Vol. 27,

1962.

[SnS73] Sneath, P.H.A., Sokal , R.R.,

Numerical Taxonomy , W.H. Freeman
and Company, 1973.

[SoS63] Sokal, R.R. and Sneath, P.H.A.,

Principles of Numerical Taxonomy ,

Addison Wesley, 1963.

[Zah71] Zahn, C.T., Graph Theoretical

Methods for Determining and De-

scribing Gestalt Clusters, IEEE

Trans, on Computers , Vol. C-20,

No. 1 , 1971 , pp. 68-86.

162

2
nd

axis (11%)

Figure 1 (from [Bio78])

Description of the variables :

- CPU time: variables CPU1 to CPU6 corresponding to t < 1 s, 1 <_ t < 10 s,

10 s <_ t < 30 s, 30 ^ t < 60 s, 60 <_ t < 300 s, t > 300 s.

- Core memory used: variables CM1 to CM5 corresponding to c <_ 68 k, 60 < c <^ 136 k,

136 < c <_ 256 K, 256 < c < 400 K and c > 400 K.

- Tape 1/0: variables I0T1 to I0T5 representing the number of 1/0 per second of
CPU time, cut up into the following intervals: N=0, 0<N<10, 0<N<_ 100,
100 < N <_ 100, N > 1000.

- Disk 1/0 0L IBM disks 2316: variables SDl to SD5, same definition as for
the tape 1/0.

- Disk 1/0 on IBM disk 3336: variables FDl to FD5, id.

- Cards and printer 1/0: variables CP! to CP6, where the range of the number N

of 1/0 per second of CPU time is cut up into the following intervals: N=0,

0 < N < 1 , 1 < N < 10, 10 < N < 100, 100 < N < 500, N > 500.

The percentages on each axis represent the part of information they carry.

163

2
a
d&iensioa (J 57)

Figure 3

18

17
it

0*3 38

49 i?

12 44

47 33

<2;z>

46

S IS

P

13

i5 ' d
43

* L
kO

45
39

d)'meii8i.on (107.)

26

60
28

63
30
29

65

21

24
5
5o

SO
2$

2

T7 5T

54
S
fe 53

19

Figure 4

164

2
U

i!i^ien3ion (I5Z)

B 10 IS IE 28 2 1 "22V 5!

23 2

G4 6

G 27 73 2j
K30 s if'-',

5 6? 7t ' •
'•

69

'^33*34 36 37 39

4041 42

•
7<l-:>-77U

i'-&3 7 50

49 :

••

3i

17

44

43 45

U6 47.

—rrrz)

Figure 5

165

AN APPLICATION OF TIME SERIES ANALYSIS
IN COMPUTER PERFORMANCE EVALUATION

Major Richard W. Kulp
Major Kenneth Melendez

Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433

One of the major roles of computer performance evaluation (CPE) in
the life cycle is to predict the performance of a computer system.
During any stage of the operating phase of a computer system it is

possible to model the computer system as a time series and use that
model to predict future performance. As an example, accurate predic-
tion of when the computer system will transition to an overutilization
or a saturation state will enable management to begin the life cycle of
a follow-on system well before reaching system saturation on the current
system. In this paper we show how the Box-Jenkins method of time series
model building can be applied to measures of computer workload to pro-
vide predictions of future utilization. This technique is applicable to

many measures of computer performance/workload. For this paper we have
selected Computer Resource Units as a measure of performance. Actual
data from a computer system that operates two computers, a CDC 6600 and

a Cyber 74, has been analyzed and modeled using the Box-Jenkins method.
The time series models developed are described and we demonstrate the
use of these models in prediction.

1. Introduction

The singularly most important aspect of

a computer system is its value to its user.
Value to the user can be measured by the
performance of the system and dollar cost
per unit of time. By performance we mean
how well a system performs the assigned
tasks. We are assuming that the system per-
forms correctly and we shall not discuss
dollar cost but will focus our effort on a

discussion of performance.

There are several methods of measuring
the performance of a computer system such as

throughput, central processor time used per
day, and others. However, all of these
measures of work have a common attribute.
For each measure of performance, the observa-
tions of this measure are not independent
from each other but, rather, form a sequence
of dependent observations called a time
series. Whereas many statistical procedures

require independent observations, time

series analysis procedures turn this depend-
ence from a liability into an asset to cap-

ture the essence of the underlying process.

The method we propose to apply to

Computer Performance Evaluation (CPE) prob-

lems is that advanced by Box and Jenkins [21 .

There are at least two reasons for using

this procedure:

(1) It provides a systematic

method for identifying the type of model,

estimating the parameters of the model and

then performing diagnostic checks to deter-

mine the adequacy of the model.

(2) There are several computer

packages available which calculate the re-

quired statistics

.

Figures in brackets indicate the lit-

erature references at the end of this paper.

167

Section 2 gives a mathematical formula-
tion of the types of models which might
prove useful in predicting workload (or some
other factor, if desired) and gives some

possible applications. It is not the pur-
pose of this paper to derive or prove any

mathematical results but to show that these
models are "plausible" (see [1] and [2] for

proofs) . In Section 3 we analyze data from
an existing computer system to demonstrate
the method. A brief summary is given in

Section 4.

2. Mathematical Formulation of Models

The models which we consider in this

section assume that the underlying process
is stationary in the sense that the joint

probability distribution of the k observa-
tion (X >X

t+1
, . . . >

x
t+ jc

) depends only on the

value. of k and not the value of t. An
immediate consequence of this requirement
is that the covariance between observations

and X^ . is a function only of the time
t t+j 1

difference, j, between X^ and X . not theJ
t t + j

actual time values t and t+j . In order for
this to be true there can be no trends
(such as grovvth) in the data that is used
for the model. We will see that this is

usually not a serious problem as several
techniques are available to "de-trend" the
data. After "de-trending" the data is

analyzed and a model fitted. Then the trend
is put back into the model in order to carry
out the prediction. The most common method
of "de-trending" the observations is by
"differencing", which is discussed later.

2.1. The Autoregressive Model (AR(p))

The autoregressive model of order p
(AR(p)) describes the current observation of
a time series as a weighted sum of p previous
observations of the series plus a random
perturbation which is independent of all
previous observations. Mathematically, this
is expressed as

j=l

6-X . + Z ,

3 t-j V (2.1)

where {Z^.} is a sequence of independent,

identically distributed (i.i.d.) random vari-
2

ables with zero mean and variance a < °°.

2.2. The Moving Average Model (MA(q))

Although aesthetically not very satis-
fying, it is often easier to model the
current observation of a time series as a

current perturbation plus a weighted sum of
previous perturbations rather than a weighted
sum of previous observations and a current
perturbation. Such a model is called a
moving average of order q where q is the
number of previous perturbations in the
weighted sum. Mathematically, this can be
expressed as

X
t

= Z
t I a

k
Z
t _ k , (2.2)

k=l

where {Z^} is a sequence of i.i.d. random

variables with zero mean and variance

< ».

2.3. The Autoregressive-Moving Average
Model (ARMA(p,q)

)

Often to adequately model a stationary
time series one needs to combine both the
AR(p) and MA(q) models mentioned above.
In the resulting time series, the current

observation is a weighted sum of both
previous observations and perturbations
plus a current shock. (At this juncture
one might well exclaim, "Why bother?". The
saving grace to all this is that one can
usually get a "good" fit of the data with
relatively small values of p and/or q, say

0, 1, or 2.)

Mathematically, the ARMA(p,q) model is

written

X
t

= I 6.X +
I a Z (2.3)

1
j= i

J t-J
k=o

k t k

where the sequence of Z's are again i.i.d.

2
with zero-mean, common variance a < °°, and

2.4. Detrending

a
Q

= l.

All of the models above assume that the

time series is stationary so that it behaves
as random fluctuations about a common mean
value. Obviously, this may not be realistic,
especially if the workload is growing towards
saturation and/or the activity of the system
shows periodic behavior. Although there are

many types of nonstationary behavior, the
two types we will consider, polynomial or

linear growth/decay trend or periodic trend,
can often be taken out by differencing the

observed series (possibly several times)

.

For example, suppose the observed sequence
{X^} displayed a general linear growth when

plotted in time as in Fig. 1. By forming

168

the differenced series {Y = X - X ^} of

length one less than {X } we transform the

series into one like that in Fig. 2. When
differencing is necessary, the model is

called the Autoregressive-Integrated -Moving
Average Model (ARIMA(p ,d ,q)) . Here p is the
order of the autoregression, d is the number
of times the series is differenced, and q is

the order of the moving average part. Note
that the AR(p) is exactly an ARIMA(p,0,0)
and the MA(q) is just the ARIMA(0,0,q)

.

2.5. The Seasonal Model
(ARIMA(P,D,Q)x(p,d,q)

s
)

Often we find that the data will follow
a seasonal pattern. This could easily arise
if the computer center has a production
cycle--say weekly, monthly or quarterly.
When this happens it is natural to expect
that observations may be dependent not only
on the immediate past but also on observa-
tions taken s units of time ago where s is

the length of the cycle. For example, the
daily workload of a computer center that
has a monthly production cycle may depend on
the amount of work for the past day or two
and also the amount of work on the same day
for the previous month or two.

In order to analyze this type of
behavior it is necessary to remove the
seasonal component and then analyze the

resulting sequence. In removing trends or

nonstationary behavior in nonseasonal time
series we "differenced" the series X^_ by

forming the series Y^ = X , - X , t =
t t+1 t

1 , 2 ,3 , . . . ,n-l to get a new series of length
n-1. In a similar manner we remove the
seasonal trend by differencing by the length
of the period, i.e., if the data is monthly
and there is a quarterly cycle then we dif-
ference by 3 and form the series
Y. = X. „ - X. , t = l,2,...,n-3 of length
t t+3 t' 6

n-3. The resulting series is denoted by
Y = ? X where s is the period. This
t s t r

series is then analyzed in terms of shocks
s units apart in a manner similar to the

ARIMA(p,d,q) models above except that now
the shocks W may not be independent

(usually they are not independent). Thus
we have

When we do this we get what is called a multi-
plicative seasonal model ARIMA(P , D ,Q)

x

(P,d,q)
s

.

2.6. Model Identification

Since a time series is a sequence of
dependent observations one might expect that
the correlation between observations in the
sequence would play an important role. It
turns out that in a stationary time series
it is the autocovariance and autocorrelation
functions which describe the behavior of the
series and lead us to the identification of
plausible models. Before proceeding, we

need to define autocovariance and autocorre-
lation .

If X and Y are two random variables then
recall that cov(X,Y) = E ((X-E (X)) (Y-E (Y))

.

If we were to substitute X for X and X
,

t t+h
for Y in the above definition we have the
definition of the covariance of the sequence
X^. with itself for times separated by h

units; i.e., the autocovariance of X at

"lag h", denoted by Y(h). Thus

Y(h) = E((X
t
-E(x

t
))(X

t+h
-E(X

t
». (2.5)

(Since {X } is stationary, the. actual value

of t is not important but rather the distance
between successive observations, or lag, is

important. Moreover, stationarity implies
that E(X^ ,) = E(X^) = u for otherwise there

v t+lr v
t x

would be some form of growth or decay)

.

Using the Y(h) notation we see that the vari-
ance of X is just

Var(X
t

) E(VV = Y(0) (2.6)

In order to place everything on the same

footing, the autocovariance function is

usually divided by the variance of X, y(0)

,

to get the autocorrelation function, .

The autocorrelation function behaves as any

correlation function in that
|

|
< 1 with

2.7. Estimation of y(k) and

The least squares estimators of y(k) and

p^ when the residual sequence {Z^Jhas finite

variance is given by

V X^
s t

y A.y x t . + » + y b.w . (2.
1-1 J S t " 1 t

j=l J t-3
4)

which is denoted by ARIMA(P,D,Q) . To

adjust for the dependence of the W we write

the W
t

sequence as an ARIMA(p,d,q) model

169

c
k
=i Y (X

t
-X)(X

t+k
-X) (2.7)

N

(2.8)

I 1 1 1 1 1
1

.00 5.00 10.00 15.00 20.00 25.00 30

HYPOTHETICAL DETRENDED SERIES

FIGURE 2.

170

Hence r, = c. /c„ is the estimator for p. . In
k k 0 k

the following paragraphs we will explain,

briefly, how the same acf, r^, is used to

identify tentative models for further con-

sideration.

Nonstationary behavior is characterized

by an acf which does not die out or dies out

very slowly. If the nonstationarity is

seasonal it will be manifested by peaks in

the acf occurring s units apart where s is

the period of the seasonal fluctuation. The

AR(p) model is characterized by an acf which

dies out exponentially or as a damped sine

wave whereas for the MA(q) model the acf

cuts off abruptly after lag q. The mixed

model, ARMA(p,q), is identified by an acf

which becomes a damped exponential and/or

damped sine wave after q-p lags.

Considerably more is involved in identi-

fying, fitting, and checking a model than

simply examining the sample autocorrelation
function for behavior described above, but

one must begin with the acf.

2.8. Applications

A brief word on applications is in

order here. In any computer system, the
throughput, computer resource units consumed,
I/O requests handled, etc. are not constant
but fluctuate in an apparent random manner
about some unknown level which is usually
estimated by averaging the observations of
the variable over some period of time. What
we propose when we attempt to model some
factor of a computer system (such as

"workload") is that the random process which
we observe has some unknown probability
structure and that we can gain some knowl-
edge about that structure (by estimating
parameters, testing hypotheses, etc.) that
will allow us to better predict the perform-
ance of the system. For example, by properly
selecting the factors observed early during
the operational phase one could predict the
time at which the system would become satu-
rated .

3. Analysis of Computer Systems

The Aeronautical Systems Division (ASD)
at Wright-Patterson AFB . Ohio, has a computer
center which, in addition to other systems,
operates a CDC 6600 and a CDC Cyber 74 which
we will identify as systems A and B, respec-
tively. In order to demonstrate the methods
previously described we analyzed the workload
of both systems using computer resource units
(CRU's) as the measurement unit. In order
to reduce the variance and to avoid i 1 1

-

conditioning problems we actually analyzed
the natural logarithms of CRU's. This trans-
formation preserves the relationships between
successive days but makes the numerical
values more manageable.

The time series that we analyzed for

each computer system is CRU's for successive
days of operation. Days for which there was

no data because the system was not operating
were deleted. There were some days in which
both systems were down (holidays, etc.) and

days in which only one system was down.

Because we assume stationarity (which in

this case is a very reasonable assumption)

and are concerned with the structure of the

underlying process, we are freed from tying

a particular observation to a particular
calendar day and can consider consecutive
days of operation. There are 336 nonzero
days in the System A time series and 332 non-

zero days for System B. The June 18, 1977,

day file for System A was destroyed. In

this case of missing data one can choose to

do one of four things

:

(1) ignore the missing data,

(2) replace the data with an

average of adjacent observations,

(3) replace the data with the

ensemble average, or

(4) forecast ahead (or behind)

using the data on hand to predict the actual

value and use the forecast to replace the

missing data.

We chose to replace the missing observation

with the average of the adjacent observations.
In this case it was very close to the

ensemble average (11.29186 inserted,

X = 11.21825 without inserted point).

3.1. Analysis of System B (CDC Cyber 74)

We will present the analysis of System B

first since the analysis was somewhat easier.

Table I contains the sample mean and variance

for System B as well as the sample acf for

both the undifferenced series X and the

series V^X . Figures 3-5 are plots of the

data and the sample acf's for both undiffer-

enced and differenced series. An examination

of the acf for X shows peaks near lags of 7

and 14. This indicates the possibility of a

seven day cycle. After taking the seasonal

difference of period 7 we see that all of

the sample autocorrelations are near zero

except for lag 7. This indicates the model

is of the form

171

Table 1

Estimated Autocorrelations of Undi f ferenced and

Differenced Logged CYBER Data

(X = 11 . 1236 s
2

= .106)

Lags Autocorrelations

X 1 -7 .1579 .0849 •- . 0447 . 0259 . 0489 .1680 .1914
8 -14 .0361 •-.0258 - . 0819 .0910 . 0836 .1999 . 1277

15 -21 .0402 •-.0041 - . 0342 . 0834 . 0946 .1243 . 0621
22 -25 -.0599 •-.0287 -- . 0024 .0178

7
X 1 -7 . 0403 .0497 •- . 0103 .0153 -- . 0479 .0192 - .4318

8 -14 .0444 - . 0237 - . 0576 . 0349 . 0055 .0711 .0138
15 -21 . 0454 .0115 . 0027 . 0332 .0603 -

. 0015 .0121
22 -25 .0385 •-.0026 •-.0147 •- . 0232

oo
CM-,

CO

o
CO

ccP 1 1
' '

0.00 80.00 160.00 240.00 320.00

DAYS

Figure 3. Logged CYBER Data

172

1 i , 1 . M f f

Z/JH "
i A

1 '

10.00 It. 00 14.00 10.00
LM CRU CYBER UG(MYS)

10.00 M.OO ft. 00 14.00

Autocorrelation Function for Logged CYBER Data

1 I j_L

0.00 2.00 4.00 0.00 10.00 12.00 14.00 10.00 10.00 to. 00 ft. 00 t4.00 to.o

LN CRU CYBER 07 LWOAYS)

Figure 5. Autocorrelation Function for Differenced Logged CYBER Data

173

X, = X
t _ y

+ Z
t

- 0Z
t _ ?

(3.1)

which is a seasonal model with P = 0, Q = 1,

D = 1, p = 0, q = 0, d = 0, s = 7.

Using a search method to minimize the

sums of squares function on the residuals

{Z
t

> we estimated & as © = 0.6144. It

should be pointed out that in many cases the

sums of squares surface is rather flat near

& and small changes in © may make very
little difference in the total sums of

squares. Hence the model will still provide
relatively good forecasts even if the algo-
rithm is stopped before attaining the actual

minimum. The variance of & is approximately

-l r 's
2

N VI- © so for the sample size 325 (remem-
ber 7 were lost in differencing) and

Q = .6144 we get Var(@) % .0019 and the

standard error for © is approximately .0438.

Hence an approximate 95% confidence interval

for 0 is © ± 2 S.E.(@) = .6144 ± .0875.

3.2. Diagnostic Checks

It is not sufficient to simply identify
a plausible model and then estimate the
parameters of the model. One must perform
diagnostic checks on the estimated residuals

{Z^}. It can be shown that if the model is

adequate then

Z
t

= Z
t

+ 0(1//N) (3.2)

so that as the sample size gets large the
residuals approach the white noise sequence
(z

t
>.

In order to test the adequacy of the
model we will use the fact that for any
ARIMA(p,d,q) process

K
7 „

Q = N I r
Z
(Z) (3.3)

k=l
K

has approximately a chi -square distribution
with K-p-q degrees of freedom, and large
values of Q indicate lack of fit.

We calculated Q = 21.59 for K = 30 and
as we have proposed the ARIMA(0,1 ,!)_ model,

only one parameter was estimated so that Q
has approximately a chi-square distribution

with 29 d.f. The .25 quantile for a x (29)
is 23.6 so there is no evidence of lack of
fit.

For seasonal models there is one more
diagnostic check on the residuals which must
be made. Since the seasonal model is peri-
odic, it is possible for the model to pass
the chi-square lack of fit test but still
have unexplained periodic behavior. The cum-
ulative periodogram check is designed to
detect the power spectrum for a true white

2
noise constant 2o^ over the frequency domain

0 - 0.5 cycles (frequency = 1/period)

.

Consequently the cumulative spectrum P(f)

for white noise is a straight line from (0,0)

2 2
to (0.5, a) so that P(f)/o"

z
, is a straight

line from (0,0) to (0.5, 1) for white noise.

The normalized cumulative periodogram
2

is an estimate of P(f)/a formed by adding

up correlations of Z with sine and cosine

waves at the frequencies i/N, i = 1,2,..., N/2
where N is the number of data points, and

2 2
then dividing by NS where S is the sample
variance of the residuals. If there are un-
explained periodic components they will be

identified by large departures of the nor-

malized cumulative periodogram from the

straight line between (0,0) and (0.5, 1).

A Kolmogorov goodness of fit test was used
to determine if departures from the straight

line are significant. The easiest way to

accomplish this test is to plot the cumula-

tive periodogram along with 5% bands about

the perfect straight line from (0,0) to

(0.5, 1). This was done and is shown in

Figure 6. No evidence of lack of fit is

found

.

Hence we conclude that the model

X
t

= X
t _ y

+ Z
t

- 0.6144Z
t _ 7

(3.4)

is an adequate model for the logged Daily
Computer Resource Units used data of the
Cyber 74.

3.3. Analysis of System A (CDC 6600)

Before forecasting the expected observa-
tion for System B we will repeat the analysis
for System A. The sample autocorrelation
function for the data from System A is shown

in Table 2 and plotted in Figures 8-9. As

before we see that observations at lags 2, 7,

and 13 are somewhat larger than at other lags

indicative of a seasonal model. After differ-
encing by 7 we see that all autocorrelations
except for 2, 6, 7, and 13 are nearly zero

and that the autocorrelation at lag 7 is much
larger than the others. This suggests a model
from one of the following forms:

174

FREQUENCY

CUMULATIVE PERIODOGRAM
SYSTEM B (CDC CYBER 74)

Figure 6

.

MODEL III: X - X = Z

" 0i Z
t -7-

(3 - 7)

Model II was discarded after preliminary
estimation procedures showed that 9 7

was

essentially zero ($
2

= .0029). Model I

was entertained somewhat further. A search
was made in the (0^} plane to locate

(numerically) the minimum of the sums of
squares of the residuals. In this case the
least squares estimate for 9 was also very

nearly zero ($ = .0050). Finally we turned

to Model III which is the same form as that
for System B. The least squares estimate for

is = .69 with standard error of

0.0399 so that an approximate 95% confidence

interval for © is .69 t 0.0798. The X

goodness of fit test for this model yielded
2

a test statistic value x =24.26 which when
2

compared to a x with 29 d.f. shows excellent
fit (approximate level of significance is

70%) . We also computed the cumulative period-
ogram for the residuals which is plotted in

Figure 10. The straight line running from

(0,0) to (0.5, 1) represents the cumulative
spectrum for white noise and the upper and

lower lines are the 5% bounds for the

Kolmogorov goodness of fit test.

,3.4. Forecasts

Because both of our models are moving
average models in the seasonal difference
operator we will have forecasts for the first

seven days past the end of the data based

175

Table 2

E st imat ed Autocorrelations of Und ifferenced and

Differenced Logged CYBER Data

(X = 11.2185 s
2

= 0.1014)

a)

Lags

1-7
8-14
15-21
22-25

Autocorrelations

0430
0454
0146
0275

1998
0317
0640
0372

0358
0274
0372
0402

0197
0207
0622
0199

. 0888

.0250

.0225

0196
1226
0713

.1996

. 0688

.0040

(b) V
?
X 1-7

8-14
15-21
22-25

0795
0716
0516
0598

1340
0944
0381
0159

0050
0154
0147
0164

0106
0160
0632
0634

0141
0549
0037

.1376

.1208

.0195

.3901

. 0307

. 0601

176

8

!

7ITH

T f ¥ » ¥ T . T T « T »

* « * 1 * \ ' * 1

s
I

fG. 00 2.00 4.00 0.00 0.00 10.00 12.00 14.00 10.00 10.00 20.00 tf.OO 24.00 20.00
LN CRU 6600 LAG(OAVS)

Figure 8. Autocorrelation Function for Looped 66D0 T)xta

a .

8
_ _ _ _ _ _

.

^ ^

~0.0O 2.00 4.00 0.00 0.00 10.00 12.00 14.00 10.00 10.00 20.00 22.00 24.00 20.00

LN CRU 6600 07 LAG(DMS)

Figure 9. Autocorrelation Function for Differenced Logged 6600 Data

177

FREQUENCY
CUMULATIVE PERIODOGRAM
SYSTEM A (CDC 6600)

Figure 1 0

.

upon the values and shocks on the last 7 days

of data. The forecasts will then repeat
themselves as the expected value of a shock

is zero so that

E<W = E(X
t + £-7

+ Z
t + £ " 0lW

- ^Wy) + 0
" 0 r°

E(X
t + £-7 3 (3 ' 8)

Additionally this type model has the charac-

teristic that once a forecast is too high
(low) it tends to remain too high (low)

.

Thus if the forecast observations are "close"'

to the actual observations and the pattern is

faithfully reproduced then the model can be

considered "correct". In this case the best

procedure would be to adjust future forecasts

for the deviation between the actual obtained

and the forecast. This procedure of updating
forecasts is explained in Chapter 5 of Box

and Jenkins [2]

.

The forecast and actual values for the

first 21 days of operation in 1978 for the

CYBER (System B) and the CDC 6600 (System A)

are shown in Tables 3 and 4 and are plotted

in Figures 11 and 12, respectively. An
examination of Table 3 and Figure 11 shows
that the pattern in the actual values obtained
in 1978 is faithfully reproduced and that
except for one point (19 Jan 78) the forecast
value exceeds the actual value. Moreover all
but two of the forecasts lie within the 2

standard error band. On the other hand, the
fitted model for the CDC 6600 is not nearly
as good. The pattern is not reproduced and

178

Table 3. Forecast Value vs Actual Value for Transformed
Cyber 74 CRU's - 3 Jan 78 to 23 Jan 78

Date Forecast Actual Difference ±2S . E

.

3 Jan 78 x U .

Q 7 A 7 X u .
8 7 6 Q . 0973 .6991

4 Jan 78 1 1
A "7 7 1 1 1

X 1 . \J J L \J .5815 .6991

5 Jan 78 1 1 u j y l i n1 u Q 4 ^ ^J H O J . 1156 .6991

6 Jan 78 1 1
n i q l 1 1

1 1 A ft X \O J J .4548 .6991

7 Jan 78 i 1
A 7 Q O4 o o Z

1 1X 1 ^. V J o .1389 .6991

8 Jan 78 1 1
7 7 £ 7Z ZD /

i n1 u 3 J O 1 . 2310 .6991

9 J an 78 1 U y s u i X u o o o o .1216 .6991

10 Jan 78 1 U n "7 /i 7y / 4 z i n1 u seenO O Z) u .1192 .7792

1

1

J an 78 1 i A 7 7 1 i i1 X 6 10 6 . 0625 .7792

1 2 Jan 78 1 1 u o y i i n Q 8 ^ flJ O <J \J . 0741 .7792

13 Jan 78 1 1
Ql O 1
y i o i

1 1
1 X 4 14 7H X H / .5034 .7792

14 Jan 78 1 1 4 5 o Z X X ? 7 4 ? .1640 .7792

15 Jan 78 1 1
0 7 £ 7Z ZD / x u O U ^7 O .4172 .7792

l o J an 78 1 0 9801 10 7679 .2122 .7792

*17 J an 78 10 . 9742 9 8217 1 .1525 .8518

18 Jan 78 11 .6731 1

1

. 0783 .5948 , sbio

19 J an 78 11 . 0591 1

1

.1241 - . 0650 .8518

*20 Jan 78 11 .9181 11 .0001 .9180 .8518

21 J an 78 11 . 4382 10 .9427 .4955 .8518

22 Jan 78 1

1

.2267 10 .7210 .5057 .8518

23 Jan 78 10 .9801 10 .9012 . 0789 .8518

*0utside ±2S.E. band.

Table 4. Forecast Value vs Actual Value for Transformed
CDC 6600 CRU's - 3 Jan 78 to 23 Jan 78

Date Forecast Actual Difference ±2S . E .

3 Jan 78 10 9875 11 1419 - .1544 .6847
4 Jan 78 12 0013 11 4692 .5321 .6847
5 J an 78 10 8084 1

1

1663 - . 3579 .6847
6 Jan 78 10 6237 11 1802 - .5565 .6847
7 Jan 78 11 .8162 11 4779 .3383 .6847
8 Jan 78 1

1

0079 1

1

0771 - . 0692 .6847
9 Jan 78 1

1

3677 10 8000 . 5677 .6847
10 Jan 78 10 9875 11 1877 - .2002 .7169

*11 J an 78 12 0013 11 1103 .8910 .7169
12 Jan 78 10 8084 11 3636 - .5552 .7169
13 Jan 78 10 6237 1

1

1006 - . 4769 .7169
*14 J an 78 11 8162 1

1

0840 .7322 .7169
15 Jan 78 11 0079 10 5350 .4729 .7169
16 Jan 78 11 3677 10 9417 .4260 .7169

*17 Jan 78 10 9875 10 0912 .8963 .7478
*18 Jan 78 12 0013 10 8127 1.1886 .7478
19 Jan 78 10 8084 10 2624 .5460 .7478
20 Jan 78 10 6237 10 7909 - . 1672 .7478

*21 Jan 78 11 8162 10 9160 . 9002 .7478
22 J an 78 1

1

0079 10 7589 . 2490 .7478
23 J an 78 1

1

3677 11 0128 .3549 .7478

*0utside +2S.E. band.

179

i
I ~

I I I I

1 1 1 1 r

3 5 7 9 1 1 13 15 17 19 21 23

Days

Figure 12. Forecast vs Actual CDC 6600 CRU Data for 1979

180

there is greater deviation between forecast

and actual value. In order to explain the

poor fit we decided to look at how each system

was utilized.

The CDC 6600, which is used by ASD organ-

izations, has a very heavy management oriented

workload while the CYBER 74 is used mostly by

the Air Force Wright Aeronautical Laboratories

and the Air Force Institute of Technology.

As a result of these differences it turns out

that day of the week (Monday, Tuesday, etc.)

is an important factor on the CDC 6600,

because of the large amount of production

which is keyed to the day of the week (i.e.,

management documents due on Monday, say)

.

Thus it does not suffice to forecast succes-

sive days of operation for System A when the

computer center is closed for an extended

period as was the case for our analysis.

(The last data point in 1977 was 24 December

and the first data point for 1978 was

3 January). To handle this, we forecast

ahead for the days that the center was closed

and picked up the actual data on the proper
day of the week in January 1978. Table 4 and

Figure 12 do not reflect the days the center
was closed. It is clear that the forecasts
for the CYBER 74 (System B) are much better

than those for the CDC 6600 (System A) . It

is not at all clear why this is so except for,

possibly, the roles that the systems play are

much different. External factors that might

have played a role were two snow storms in

the period from 14 January to 17 January (two

inches on 14-15 January and 5 inches on 16-17

January)

.

4 . Summary

We have seen that it is possible to
model a measure of workload for a computer
system and then use the model to forecast
workload for future planning purposes. We
have not considered the subject of adaptive
forecasts where the forecast is updated as

additional data is collected but such a pro-
cedure is not only possible, but desirable.
We have also seen that one must consider
external factors such as production cycle
keyed to day of week or month in order to
properly forecast workload when those factors
are significant.

References

[1] Anderson, T. W., The Statistical Analysis
of Time Series , Wiley, New York, 1971.

[2] Box, G. E. P. and Jenkins, G. M., Time
Series Analysis Forecasting and Control ,

Holden-Day, San Francisco, 1970.

181

ESTIMATION OF RUN TIMES USING SIGNATURE TABLE ANALYSIS

S. A. Mamrak and P. D. Amer

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210

Algorithms for managing jobstreams in a complex computer
environment often rely on various estimates of job run times.
Due to wide variability of run times from one execution of a job
to another, point estimations of run times are fairly unreliable.
An alternate approach to using point estimations is to use intervals
which span the range of possible run time values. In an interval
approach run times can be predicted with respect to membership in

one of a limited set of run time intervals, with relatively high
confidence. This paper presents a formal methodology for run time
estimation based on an interval approach. The estimation is done
using signature table analysis and is accompanied by a statement of
statistical confidence in the results.

Key words: Interval estimation; point estimation; run time prediction;
signature table analysis.

1. Introduction

Algorithms for managing jobstreams in

a complex computer environment often rely
on various estimates of job run times.
Typical run times of interest include
response time, processing time, turnaround
time and so on. For example, scheduling
algorithms which tend to minimize average
job turnaround time based on the shortest-
processing-time principle often rely on a

prediction of what the job processing time
will be. In systems which have a large
degree of multiprogramming, run times for a

particular job vary widely from one
execution to another, depending upon the

number and kinds of jobs that are simulta-
neously contending for resources. Prediction
of run times, therefore, although fairly
accurate "on the average," tends to be
unreliable in any single instance because of
the inherent complexity of the processing
environment.

An alternate approach to using point
estimations of run times, with their
inevitably large variability and low con-
fidence, is to use intervals which span the

range of possible run time values. In an
interval approach, run times are predicted
with respect to projected membership in one
of a limited set of run time intervals. The

This research was supported by the U.S. Army
Research Office under grant number DAAG29-
77-G00185.

potential advantages of this technique are
that in some environments prediction can be

done based on very little knowledge about a

job, and the confidence of predicting mem-
bership in the correct interval can be very
high. The usefulness of this interval
approach has long been recognized in the

computer community and several ad hoc imple-
mentations exist. The classification of jobs
in IBM's job preprocessor called HASP, for
example, has been achieved in some instal-
lations by placing jobs in classes A, B, C

and so on, based on user supplied estimates
of resource requirements. Essentially,
these classes represent predicted run time
intervals for their respective members.

This paper presents a formal methodology
for run time estimation based on an interval

approach. The estimation is done using sig-

nature table analysis and is accompanied by

a statement of statistical confidence in the

results. It may be true that for very com-

plex systems, subjective (or even random)

estimation is the best method. This paper
discusses the improvement possible on sub-

jective "guesstimates."

2. General Background:
Signature Table Analysis

Run time estimation for single computer

systems is an important performance question

which can be formulated in the following way:

given a specified computer hardware and soft-

ware configuration, and a workload which is

composed of a series of jobs to be run on

183

that system, what characteristics of the jobs
can best be used to predict their respective
run times. More specifically, let a computer
system workload, W, consist of a series of
n jobs, P-j

,
i=l, n, and assume there

exists a set of m descriptors d\
,
d?, ,,,,

dm for each P-j which characterize that job's
behavior. Then, the question of interest is

which subset(s) of these descriptors can be

best used to predict an additional or "key"
descriptor, namely run time, and what is the
particular function of the critical descrip-
tors which yields this prediction.

The nature of the run time prediction
problem and the motivation for developing
certain kinds of methodologies for its

solution can be illustrated by placing the
problem in the context of a large, pro-
duction-oriented computer system. In this
case, a certain number of production jobs
are being run on a regular basis -- daily,
weekly, monthly, and so on. These pro-
duction jobs often consist of several
different programs (for example, payroll
runs which include not only the relevant
salary calculations, but also check-
writing routines and summary report routines),
and require a variety of system resources.
Further, due to security and deadline con-
straints, they are often run on a dedicated
system. The production jobs are completely
specified and their characteristics with
respect to development, maintenance and run-
time behavior, dls d 2 ,

...,dm> can be de-

termined in most instances. Now if a new
production job,P

n+i, is proposed for imple-
mentation on the existing system, the speci-
fication of its required turnaround time
becomes a critical factor upon which to

base the decision to allow or disallow it.

Some subset of the projected behavior
characteristics of Pn +\ may be known, and
resources may be available to investigate
others, in order to estimate the job's
turnaround time. The questions of which
characteristics are most important in pre-

diction what form the predictor should take,

and with what confidence the prediction can

be made, must then be addressed.

The computer run time prediction pro-

blem can be formulated in terminology that

makes the application of a pattern recog-

nition technique called signature table
analysis appear extremely appropriate.
In essence, this technique deals with
manipulating a set of data which
possesses a finite number of discrete
features, as well as a "key" feature.

Analyses are performed on a "training
sample" for which values of all the features,
including the key feature, are known, Pre-

diction of the key feature is explored, by
means of the specification of a derived (com-
bined) feature set which approximates the
key feature on the training data. The de-
rived feature set can then be applied to
other sets of data for which the key feature
must be predicted.

Typically, in a run time prediction
environment, a training sample or set of
data is collected which consists of a finite
number of workload characteristics, like CPU,
I/O and core resource requirements, along with
the known turnaround time of already existing
production jobs. Turnaround time prediction
may then be conceptualized as the problem of

identifying the significant "features" among
the d-j which best describes a job's turn-
around time "pattern".

The signature table method of pattern
recognition suggested by Samuel [SAM67] for
use in machine learning problems, and further
developed by Page [PAG75] is a hierarchical
approach for the recognition of patterns
which are described in terms of many features.
The method provides a means by which features
are exhaustively analyzed in subsets, each of

which provides a derived feature. The de-

rived features are combined to result in

higher derived features which depend in a

nonlinear manner on all of the original
features. An example of the tabular structure
which may result from applying the method to

four features is shown in Figure 1. (Figure

1 is discussed in more detail below.)

The major advantages of the signature

table method over other prediction tech-

niques, and those that render it especially
applicable to the run time prediction pro-

blem are:

1) the quality of prediction is

improved as more independent features or

descriptors are used (this is in contrast
to some techniques possessing the counter-

intuitive property that for a finite-sized

training sample there is an optimal number

of features)

,

2) it provides a natural way to deal

with missing data,

3) it allows the analyst to introduce
personal knowledge and intuition about the

system into the calculation process (this

capability may greatly reduce the amount of

computation required; it is comparable to

the analyst's capability in the design of

fractional factorial experiments to indicate

which variable interactions are important

and which are not)

,

184

Figure 1. Signature Tables for One Combination of Four Binary Features

Table D
12

Table D
34

Table D
1234

d
l

d
2

Derived

°12

0 0 0

0 1 f
12
-*-l

1 0 1

1 1 1

d
3

d
4

Derived
D
34

0 0 1

0 1 f34-*^ 0

1 0 1

1 1 1

D
12

D
34

Derived
D
1234

0 0 0

0 1 f
1234

1

1 0 1

1 1 0

D
12 = d

l
+ d

2

D
34 "

d
3
+ d

4

D
1234

= d
l
d
2
d
3
+W4 + d

l
d
3
d
4
+ d

2
d
3
d
4

4) in many cases it provides better

prediction than multiple regression, at

less cost; this is true in part due to the

use of an interyal estimate approach rather

than a point estimate approach as previously

discussed, and

5) it is applicable to data in all

formats; numeric, symbolic, ordinal and

graphical

.

The heuristics developed by Page to

implement this technique have been specified

for binary (i.e., two-valued) feature values,

and therefore for the recognition of binary

patterns. Essentially, the methodology

requires the following steps; First,

1) Determine the appropriate predictor

features.

2) Determine the appropriate cutpoint

of each feature, using measures of minimum

entropy (information loss) and maximum pre^

diction. Cut-points are needed to dis-

cretize continuous features and to manipu-

late the allowed number of discrete values

of each feature.

Then, iteratively, at each

(derived) feature level, until a single

derived feature is obtained,

3) Determine feature subsets or "sig-

nature types" upon which derived features

are to be based. In Figure 1, for example,

features di and d? are combined to derive

feature Dio, and features d3 and d4 are

combined to derive feature D34. But various

other combinations are possible.

4) Define the derived feature resulting

from the respective combined features, using

an appropriate quantization method. This

method is symbolized by the f-j's in Figure 1.

Finally,

5) Extract the relationship between

the original features and the derived feature

as Boolean expressions which describe, with

some known probability, relations inherent in

the data. This process is illustrated in

Figure 1 for the derived feature Di234 •
Tne

potential usefulness of such an expression

in run time prediction becomes apparent

when one observes that only any three of the

four feature values need be obtained to

185

calculate the D103A value. Hence, the sig-

nature table method is a way of using the
data to evolve switching functions which
discriminate between members of various
classes (or binary values of the key feature
in Page' s work)

.

3. A Sample Application

The signature table analysis approach
was used to solve a run time prediction pro-

blem for the U. S. Army. A description of
the application of the method to the Army
data will serve to demonstrate its basic
simplicity and its effectiveness in achieving
the objective of interval estimation of run
time with a relatively high degree of con-
fidence.

The purpose of the Army study was to

develop a predictor for the total turn-
around (TA) time of a proposed application
(production) job, based on a set of projected
job resource requirements. Data for the

development of the predictor consisted of

412 observations on currently running pro-

duction jobs. A single observation was
provided in the form of a 5-tuple, V =

(CPU time, turnaround time, punch I/O,

tape I/O, disk I/O). The data were divided
into a training sample of 284 observations
and a test sample of 128 observations.

The experiment was broken up into 4

steps: 1) division of the key feature
(turnaround time) into intervals, 2) cutpoint
specification for predictor features, 3)

computation of derived features and 4)

analysis of the results. These steps are
discussed in turn below.

3.1, Division of the
Key Features into Intervals

The key feature, turnaround time, was
divided into three intervals: less than 10
minutes, 10-20 minutes and more than 20
minutes. These intervals appeared to be

natural divisions in the data and were not

chosen based on any statistical considera-
tions of appropriateness. Also, they
seemed to be reasonable intervals for use
in the decision making process which would
follow turnaround time prediction--namely

,

whether or not to allow the proposed job

to be developed and supported.

The three intervals were defined by

two outpoints, 600 seconds (10 minutes)
and 1200 seconds (20 minutes). For experi-
mental purposes each of these outpoints was
investigated in a separate stage. First,
boolean functions were derived to estimate

if a job's run time would be less than or
greater than 600 seconds. Then another set
of functions was derived to estimate if a

job's run time would be less than or greater
than 1200 seconds. The functions which pre-
dicted with the highest accuracy from each
set, based on the training sample data, were
then combined to derive a single function.
As will be described later in the analysis of
the results, this single function was used
to predict into which of the three intervals
a job's turnaround time fell.

3.2. Cutpoint Specification

for Predictor Features

Each of the predictor features was dis-
cretized into two ranges for each of the two
experimental stages, a "low" and a "high"
range. All of the predictor features were
positively correlated with the key feature
in that a low predictor feature value 'pre-

dicted' a low turnaround time and a high

predictor feature value 'predicted' a high

turnaround time. Given a particular key

feature cutpoint, the predictor feature cut-
points were chosen so as to minimize the
total number of incorrect key feature pre-
dictions. Outpoints were determined using
the Statistical Package for the Social

Sciences (SPSS) [NIE75], Basically, fre-

quency tables of the form shown in Figure 2

were computed for different possible predic-

tor feature cutpoints. The value for which
(b+c) was minimized was selected as the cut-
point value. Table 1 contains the cutpoints
which were computed for the two stages of

the experiment. Also tabulated are the

number and percentage of the 284 training
sample observations which were incorrectly
predicted using each cutpoint. Note that
even the best cutpoint value in certain cases

resulted in a large percentage of incorrect

key feature predictions. This is due to a

predictor feature's inability to single-
handedly forecast the pattern of job turna-

round time.

3.3. Computation of

Derived Features

The computation of derived features has

been described and analyzed in [PAG75] . A

description of the steps followed in this

study will be provided here. In general,

predictor features are combined to produce
second level derived features. These in

turn are combined to produce higher level

features. The process terminates when
enough of the original predictor features
have been used to produce higher level

features which can predict the key feature's
interval value with a high degree of accuracy.

186

Figure 2. Derivation of Predictor Feature Cutpoints

Predictor
Feature

low

high

Table 1. Predictor Feature Cutpoint Values

TA Time Cutpoint:
600 Seconds

TA Time Cutpoint:
1200 Seconds

Feature
Feature
Cutpoint

Number of

Incorrect
Predictions

%

Incorrectly
Predicted

Feature
Cutpoint

Number of

Incorrect
Predictions

%

Incorrectly
Predicted

VI CPU Time 60.0 25 8.8% 160.0 44 15.5%

V3 Punch I/O 1.0 123 43.3% 20.0 108 38.0%

V4 Tape I/O 400.0 53 18.7% 3110.0 57 20.1%

V5 Disk I/O 1.0 28 9.9% 1600.0 128 45.1%

Predictor features were combined in

pairs. Since each feature had been divided
into a low and high range by a feature cut-

point, there were four possible combi-
nations: lowrlow, lowrhigh, high:low and
high: high. For purposes of computational
ease, low was represented by 0 and high by

1. Once again using SPSS, frequency tables

were computed to determine how many high

and low key feature values existed in the
training sample for each combination. For
each combination the proportion of high
values of the key feature,

Phigfo,
was

compared to the proportion of nigh values
of the key feature in the entire training
sample. If the first proportion was larger,
then it was judged that that combination

predicted a high key feature value; other-

wise, a low key feature value was predicted.

Two examples of derived features, one for

the turnaround time cutpoint of 600 seconds

and one for the turnaround time cutpoint of

1200 seconds, are provided in Table 2, It

can be seen that a derived feature can be

expressed as a boolean function or combi-

nation of the two features from which it was

derived. In Table 2a, both Tape I/O and Disk

I/O had to be 1 (high) for the derived feature

to be 1. Consequently, the derived feature

is equivalent to the boolean expression Tape

I/O A Disk I/O, or more conveniently,

V4 A V5. Likewise the boolean expression

derived in Table 2b is CPU time, or simply VI.

187

Table 2. Examples of Derived Features

a. Turnaround time outpoint is 600 seconds, p = .845
high

Tape I/O
V4

Disk I/O
V5

No. of observations
with low TA time
(< 600)

No. of observations
with high TA time
(> 600)

i— — —

P h$gh

Derived
Feature

0 0 10 1 .091 0

0 1 18 36 .666 0

1 0 3 0 .000 0

1 1 13 203 .898 1

Boolean Expression: V4 A V5

b. Turnaround time outpoint is 1200 seconds, p, . ,
= .447r ni on

CPU Time
VI

Disk I/O
V5

No. of observations
with low TA time
(< 1200)

No. of observations
with high TA time
(> 1200) P high

Derived
Feature

0 0 81 14 .147 0

0 1 54 8 .129 0

1 0 4 34 .895 1

1 1 18 71 .798 1

Boolean Expression: VI

The process for combining features was
then repeated, this time combining the
derived features. Eventaully, several final
boolean expressions for both turnaround time
outpoints were determined, all of which were
derived from at least three of the four
original predictor features.

3.4. Analysis of Results

The final boolean expressions derived
for each turnaround time cutpoint are pre-
sented in Table 3. For each expression, the
number and percentage of correct and in-
correct predictions have been tabulated.

Based on the accuracy of prediction for the
training sample, it was concluded that the
variable Vi (CPU time) was the best pre-
dictor of turnaround time for both outpoints.
It should be remembered that the variable
Vl used to predict below-above 10 minutes is

slightly different from the variable VI used
to predict below-above 20 minutes inasmuch
as different predictor feature cutpoints
were calculated for each. The labels VI500
and VI120O are employed below to differentiate
between the two,

The variables V1600 and VI1200 were
combined to derive a predictor of all three

188

turnaround time intervals. This predictor

is a set of boolean expressions based on

four variable values:

1. vieoo
" CPU time >60 seconds

2. vi600 - CPU time < 60 seconds

3. V11200
+CPU time >160 seconds

4. vi 1?co ->CPU time<16u seconds

These variables were combined to form the

turnaround time predictions:

V1600 A vh200 "^A less than 10 minutes

V1600
A V1 1200 TA between 10 and 20 mins.

VI5QQ a VI1200 * ^A greater than 20 mins,

V1600 A Vli200 n0 Prediction

Th e last combination is contradictory since

VI500 implies CPU time less than 60 seconds

and VI1200 implies CPU time greater than or

equal to 160 seconds. This combination was

defined to be an automatic incorrect predic-

tion. (As it turned out, none of the test

or training sample data had this combination,
an indication of the consistency of the
separately derived expressions.)

Finally the accuracy of the predictor
was estimated using the set of test data.
Since turnaround times were available for
the test data, it was possible to get an

estimate of Paccuracy tne Proportion of

accurate predictions using the predictor.
A summary of the actual turnaround times
versus the predicted turnaround times is

presented in Table 4. The left-to-right
diagonal cells represent correct prediction
since the predicted interval is the same as

the actual interval. Other cells represent
incorrect predictions.

Of the 128 test values, 101 observations
were correctly predicted, thereby providing
an estimate of the overall predictor accu-
racy, Paccuracy °f -789. An approximate
95% confidence interval for Paccuracy was
calculated, using a normal approximation,
to be (.718, .860).' In almost all cases
(98.4% of the time), the prediction was
either correct or within one interval. That
is, seldom did the predictor predict less

than 10 minutes when the actual turnaround
time was greater than 20 minutes, and vice

versa.

Table 3. Accuracy of Final Boolean Expressions on Training Sample

Boolean Expression

Correct

High Low Total

Incorrect

High Low Total

TA Time Cutpoint: 10 minutes

VI

VI A V4 A V5

233 28 261

97.1% 63.6% 91.9%

201 32 233

83.7% 72.7% 82.0%

7 16 23

2.9% 36.4% 8.1%

39 12 51

16.3% 17.3% 18.0%

TA Time Cutpoint: 20 minutes

VI

V4

105 135 240

82.6% 86.0% 84.5%

91 136 227

71.7% 86.6% 79.9%

I

22 22 44

17.4% 14.0% 15.5%

36 21 . 57

1 28.3% 13.4% 20.1%

1

189

Table 4. Estimated Accuracy of the Predictor

Actual TA Time (seconds)

Predicted
TA Time
(seconds)

0-600 600-1200 1200 + Row Total

13 2 1 16

0-600
81.3

86.7

12.5

4.7

6.3

1.4

600-1200
1

2.0

34

68.0

15

30.0

50

6.7 79.1 21.4

1 7 54 62

1200 + 1.6 11.3 87.1

6.7 16.3 77.1

Column 15 43 70 128
Total

Legend Interval
I

Interval
J

a: No. of TA values predicted to fall into
interval J which had actual TA values
in interval I

b: % of all J interval predictions which
fell into interval I

% of actual interval I values which
were predicted to be in interval J

190

4. Conclusions

Due to the large variability in job
run times from one execution to another,

point estimates of run times are unreli-
able, Interval estimation of run times is

a reasonable approach to obtaining run time

predictions in which a higher confidence
can be placed, The application of signature
table analysis to the prediction of turna-
round time in one particular environment
has yielded a predictor that was simple to

develop, is simple to use, and is accurate
about 80% of the time in predicting member-
ship in one of three turnaround time classes,
Although this interval approach technique
will not provide sufficient predictive power
for all applications^ it is appropriate for
some application objectives and should be

considered as a desirable alternative to

less statistically sound approaches.

References

[NIE75J Nie, N. , C, H. Hull, J. G. Jenkins,
K. Steinbrenner, and D. H, Bent,

Statistical Package for the Social

Sciences', 2nd edition, McGraw-Hill

,

Inc., New York, 1975,

IPAG75I Page, C, V,, "Heuristics for Sig-
nature Table Analysis as a Pattern
Recognition Technique," Computer
Science Department, Michigan State
University, 1975.

ISAM67] Samuel, A, L, , "Some Studies in

Machine Learning Using the Game of
Checkers II Recent Progress,"
IBM Journal of Research and
Development ," Vol '/ 6, November 1967,

pp; 601^617.

191

SENSITIVITY ANALYSIS AND THE RESPONSE SURFACE OF
A SIMULATION MODEL OF A COMPUTER SYSTEM

Kenneth Melendez, Major, USAF
Alfred H. Linder, 2nd Lt , USAF

Air Force Institute of Technology
Wright -Patterson Air Force Base, Ohio 45433

Prior to experimenting using a simulation model, a sensitivity
analysis of the model is necessary. The response of the model to
perturbations in the input must be determined. Without a sensitivity
analysis of the model, the analyst can not determine what is an accept-
able level of error for input parameters, nor can the degree of confi-
dence on the responses be established. In this paper a simulation
model of an IBM 370/155 is analyzed by constructing the local response
surface for the two primary measures of performance used in the model,
CPU Utilization and Gain Factor. The computer system modeled is an

operational system, however, sensitivity analysis can and should be a

part of the validation of any simulation model of a computer system in

any phase of the system life cycle.

1. Introduction

The application of discrete event
digital computer simulation to the simula-
tion of computer systems has been steadily
gaining acceptance. This acceptance is due
mainly to the complexity of the problem of
analyzing a computer system. The lack of
analytic tools whereby analysts can build
models with which to study the behavior of
existing or conceptual computer systems has
contributed to the increased reliance upon
simulation

.

This increased use of simulation to
study computer systems has not automatically
yielded a keener insight into the behavior
of the system. The technique of simulation
has by its own nature precipitated a host of
new problems which must be dealt with in a

rigorous fashion.

A thorough understanding of the system
which will be simulated is a necessity.
Once the preliminary understanding has been
accomplished and the objective of the simu-
lation established the experiment must be

designed. Upon completing these preliminary
tasks, the task of constructing and vali-

dating the model is at hand. Not only must

the simulation be coded correctly and void

of unwanted features it must also be a valid
model of the system.

The concept of validity as it pertains

to the experiments which will be run is the

general area towards which this paper is

directed. Specifically, the sensitivity of

the model to fluctuations in the input will

be discussed. The response surface associ-
ated with the model is the subject of the
following discussion. Without a sensitivity
analysis of the model, the analyst can not
determine what is an acceptable level of error
for input parameters, nor can the degree of
confidence on the output response be estab-
lished.

A discrete event digital computer simu-
lation of an IBM 370/155 has been constructed
and is analyzed with respect to its sensitiv-
ity to variations in the input parameters.
Section 2 contains a brief description of the

system that was simulated. In Section 3 the

193

sensitivity analysis performed is discussed
and the characteristics of the response
surface is presented. The last section,

Section 4 presents the conclusions of this

experiment and some recommendations on the

role of sensitivity analysis in simulation.

2. The Simulated System

The Air Force Systems Command (AFSC) at

Wright-Patterson AFB uses the System 2000

database management system which runs on an

IBM 370 model 155 computer. AFSC uses this

system to store contracts as they are devel-
oped from the conception phase through the

completion phase, as well as during the pur-

chasing phase of the acquired system. There

are approximately 75 terminals used at

several locations across the United States

which provide data to the system.

This system, the Acquisition Management
Information System (AMIS) , was implemented

to support contract administration and

disbursement activities. One of the major
objectives is to implement Source Data
Automation at the buying activities, Air
Force Plant Representative Offices, and the
Air Force Contract Management Divisions;
thus, providing them with an interactive
capability to update and query the central
database

.

AFSC is interested in results obtained
from batch-interactive-mix analysis per-
formed on AMIS jobs run on the IBM 370.
The AMIS jobs account for 90% of the work-
load on the IBM 370/155.

An analysis of the workload was accom-
plished and the workload was characterized
using the following job workload parameters:

Total CPU time
Number of 1/0 requests
CPU service time per request
I/O service time per request
Priority

and the system parameters,

• Interarrival time for jobs
by class

• Maximum number of simultaneous
terminal users

• Maximum number of jobs in
the system.

A detailed discrete event simulation
model of the job processing and scheduling
was developed using SIMSCRIPT II. 5. The
internal input-output to disk, etc. was not
modeled; however, the effect of such an

operation was included in the model. Thus,
the model consists basically of the central
processor and the data input terminals.

The two measures of system performance
selected for use in this model are the gain
factor and the CPU utilization . The gain
factor is determined by finding the time
needed to execute a set of jobs under multi-
programming divided by the total system
time needed to execute the same jobs sequen-
tially without the capability of multipro-
gramming .

Using this model of the AMIS workload
and the IBM 370/155 a sensitivity analysis
was performed and is described in the next
section.

3. Sensitivity Analysis of the Model

The base line for the system was estab-
lished assuming 28 batch jobs are scheduled
during a 4 hour period and 40 interactive
jobs are run during this same time. For

this base line the model reflected a CPU
utilization of 87% with a gain factor of
2.3684. This compares favorably with the

85% CPU utilization of the real system. The
transient warm-up errors were reduced by
determining when steady state conditions
were achieved for the CPU utilization. This
occurs approximately 5 3/4 minutes into sim-

ulation. Henceforth, statistics for all

subsequent simulation runs were not accumu-
lated until after the 5 3/4 minutes warm-up
period

.

Although any input parameter can be
analyzed with respect to sensitivity analysis,
job I/O time and job CPU time were selected
for sensitivity analysis. These were the
primary job workload characterization para-
meters subject to error. Thus, our analysis
was concentrated on determining the model's
response, CPU utilization and gain factor,
to variations in these two input parameters.

Job I/O Time

Job CPU Time

Input
>

Simulation
Model

Response
>

CPU Ut

Gain Factor

ilization \

actor '

A total of 21 runs of the simulation
model were made to determine the effect of
I/O time and CPU time on the cumulative CPU
utilization and gain factor. The results of
these runs are tabulated in Tables 1 and 2.

Figure 1 is a diagonal cross section graph of
the data in Tables 1 and 2 from lower left to

194

Table 1

t-

o

SaO

C

% CPU Utilization as a Response

to % Change in Job CPU and I/O Time

30 h 64.92

20

10

0

10

20

•3 0 \ 3.2.7 0

_L

59.98 67.57 72.99

76.19 86.42 88.73

80.25 85.49 86.67 89.46 84.18

85.18 88.61 82.81

70.60 88.37 87.76

-30 -20 -10 0

% Change CPU Time

10 20

78 . 05

89 .22
1

30

Table 2

e
•H
H

c

u

30

20

10

0

10

20

30

- 3.57

Gain Factor as a Response to

% Change in Job CPU and I/O Time

2 . 27

4.33

1 . 86

2.39

3.10

2.51

2.37

2 .80

2 . 63

2 .37

2.10

2.19

2.72

2 . 08

3.32

2 .42

2 . 53

2 .09

30 -20 -10 0 10

% Change CPU Time

20

3.81

1 . 94

30

195

upper right. Figure 2 is a diagonal cross

section graph of the data in Tables 1 and 2

from lower right to upper left. Of interest
is the effect on the output response to

changes in just one input parameter.

S

8 h

66.67 89 .'•6

8U.18

1.8585

2.36*

CPU VAfllATICHS

WITO A CONSTANT 0% CHANCE IN I/O

CPU utilization of about 1.4 to 5%. We could

conclude that the CPU response is relatively
insensitive to variations in job CPU time in

neighborhoods of the base line. Variations
of 10% in job CPU time yields approximately
5.9% to 12.2% change in gain factor in the

local area of the base line. Hence, we con-

clude that the model is sensitive with respect

to gain factor when variations in job CPU time

occur. The above sensitivity data was com-

puted by using Figure 3 where a 0% change in

I/O time is assumed and only CPU time changes

occur

.

By considering Figure 4 where the CPU

time is held constant and the I/O time is

varied, an analysis of output sensitivity
with respect to job I/O time was accomplished.

Figure 2.

Figure 3 is a plot of the response when
the I/O time is held constant at 0% and the
CPU time is varied. We can see that in the
local area of the base line if CPU time is

increased by 10% there will be a corresponding
increase of 3% in CPU utilization. If CPU
time is decreased by 10% the CPU utilization
will decrease by 1.4%. Thus, in the local
area of the base line 10% variations in job
CPU time will only yield modest changes in

89.22
87.76

+30/-3C *20/-20 +10/-10 0 -1Q/+10

Jt CHANCE (CPu/l/0)

Figure 4.

-20/+20 -30/+30

196

Table 3

Sensitivity

Job CPU Variations

% Change CPU Utilization

% Change Gain Factor

% Change CPU Utilization

% Change Gain Factor

10 + 10

1.4% 3.2%

5.9% 12.2%

Job I/O Variations

10 + 10

1.9%

11%

.25%

11%

Average
Sensitivity
Ratio

.23

.91

Average
Sensitivity
Ratio

. 108

1.10

Table 3 summarizes the sensitivity analysis

for job CPU time variations and job I/O time

variations. The sensitivity ratio is defined
as the absolute value of the % variation in

response divided by % variation in input.

The average sensitivity ratio given in Table

3 is the mean of the sensitivity ratio for a

-10% and a 10% change in input.

used to identify sensitive input parameter
and output response combinations. Due to

the nature of the response surface, only

local analysis may be performed using this

technique. However, when the base line is

changed a new analysis should be performed in

order to determine the characteristics of the

response surface at the new location.

4. Conclusions

By analyzing the local response surface

near the base line point the analyst can
determine the relative sensitivity of the

model to errors or variations in the input

parameters. The sensitivity ratio as defined

in the previous section will yield an indica-

tion of the relative sensitivity and can be

197

A STATISTICAL APPROACH TO RESOURCE CONTROL
IN A TIME-SHARING SYSTEM

C A Mackinder

University of Edinburgh,
Edinburgh Regional Computing Centre

Scotland

'Sed fugit interea , fugit inreparabile tempus'
Meanwhile time is flying - never to return

Virgil, Georgics III, 284

The Edinburgh DECsystem-10 Installation provides
interactive computing facilities for some 200 individuals
in 44 geographically dispersed groups with a wide range of
research projects in science and engineering. In addition
to managing resources in the sense of the instantaneous or
transient demand on the machine eg: balancing the number
of job slots made available and the maximum permitted job
size, with the response times experienced by users, there
is a need to measure and control usage over a period, say
4 weeks, both for ensuring an equitable sharing of
capacity and to prevent overload. A conventional
rationing system was in use but whilst it could limit the
usage of the groups individually it could not be used to
manage the load on the machine as a whole. A study showed
that usage conforms to a gamma probability density
function and is highly predictable. This has allowed the
determination of an "upper limit" of usage beneath which
groups are free to compute as they wish in any 4 week
period, within the limit of their project's overall
allocation. Groups are inhibited only if overload is
threatened. The rationing system has been dispensed with.
It is likely that all time-sharing systems will show
similar usage characteristics and the resource control
method used at Edinburgh could be applied elsewhere.

Key words: Time-sharing resource control; statistical
approach to management; usage patterns; probability of
size of usage; management of resources; rationing.

199

1 . Introduction

This study arose from a desire
to design a means of resource control
on a large interactive time-sharing
installation which would prevent the
machine from being overloaded, whilst
allowing users freedom of access
except when overload is threatened.
The method now in use has allowed a

conventional rationing system to be
dispensed with.

2. Background

The Edinburgh DECsystem-10
Installation is part of the Science
Research Council's (SRC) Interactive
Computing Facility (ICF). This
includes a long-distance network run
under DECNET protocols which at
present connects three DEC host
processors and 11 nodes. The
Installation is run by the Edinburgh
Regional Computing Centre, University
of Edinburgh on a contract with the
SRC. The Installation's equipment
belongs to the SRC; the
Installation's staff are employees of
the University. The present
configuration of the machine is given
in Table 1 , but the model of the
machine's capacity used in the study
was based on an earlier, slightly
smaller configuration. The capacity
of the machine as it is now is under
review

.

Table 1 .

Edinburgh DECsystem-10
Configuration (1070)

Control and direction of the
Installation comes from the SRC's
Network Management (of the ICF), but
day to day running is the
responsibility of the Installation
management. The Installation was set
up in December 1976, although it had
had an earlier existence as a central
facility for several research
projects

.

2.1 The User Community

Users of the machine are mainly
SRC funded research groups and do not
pay for the resources they use.
Other users pay at a 'full cost' rate
if government funded (other research
councils, etc) and there is a little
work for which a 'commercial' rate is
charged. The University itself
purchases a very small amount of time
at a concessional rate. In addition
there are a few individuals or very
small groups experimenting with
interactive computing with a view to
making use of the machine for
potential research projects. Their
usage is not paid for and for the
purposes of this study it was lumped,
together with some other casual and
miscellaneous usage with systems
usage. At the start of the period
used in the study there were about
120 users in 29 groups. There are
now about 210 users in 44 groups.
Groups vary in size from one to about
25. While most are in Edinburgh,
users may be up to 450 miles away,
and the number of geographically
remote users is increasing.

2.2 Type of Work

In the early stages its work was
almost entirely that of its existing
community of Artificial Intelligence
(list processing) and Computer Aided
Design (graphics) research projects.
Since being taken into the SRC ICF
network it has taken on a more
general population of SRC Engineering
Board research projects (packages)
and this element of its work will
continue to expand.

2.3 Control of Access and Usage

All access, and the broad
control of usage, is retained by the
SRC. The Installation management has
a very limited discretion in allowing
small occasional accesses.
Allocations are made to groups by the

KI10 CPU
256K words main memory
350 Mbyte disk store
512K words fixed disk
(swapping

)

2xMT drives
Synchronous & asynchronous

communications processors
(PDP 1 1/15 & 11 /40)

Fast drum plotter
Various slow peripherals
4 Nodes connecting remote users
70 TTYs/VDUs contending for 32
job slots

200

SRC in Allocation Units (AUs). This
is an arbitrary unit which may be

considered to be a week's worth of
computing for one person. As will be

explained later, the allocation is

consumed in the form of computing
resource units (CRUs) which are
common units of four resources (CPU
time, etc). Although AUs are used
throughout this paper they can be
regarded as any convenient unit (eg
pounds sterling, or dollars) because
the relationships between the four
resources measured and AUs are
linear

.

Groups may be running one or
more research projects. Projects
last from one to three years and each
has its own allocation of resources,
not transferable between projects.
The allocation is therefore an
estimate of the computing resources
needed by a group for a particular
research project for up to three
years ahead. It is the intention
that the various "Subject Committees"
of the SRC will each have a quota of
AUs from which to make allocations of
computing resources to groups at the
same time as giving a group the
funding which activates the research
project. Since the committees work
independently there is an inherent
difficulty in achieving a more or
less level loading of the machine in
terms of allocations made. However,
the ICF Network management advises
the committees and acts as a

coordinator in this respect.

For reasons of SRC grant
administration the allocation is
given a notional money value and
forms part of the grant award. The
allocation once made cannot be
readily increased. It is therefore a

fairly firm limitation on a group's
computing activity, and because it
cannot be easily adjusted there is a

tendency to set it high rather than
low. However, the main cause of
disparity between allocation and
subsequent actual usage over the life
of the project is the difficulty in
making a good estimate of the
computing needs of a research group
over a forecast period of up to three
years. There is an even greater
difficulty, if not an actual
impossibility, in trying to make a

sensible forecast of the profile of
their usage, ie , in AUs per month .

The need for this will be brought out

later in discussing rationing (see
Annexure A).

Although in general, the larger
the group the larger the allocation,
the allocation reflects the computing
requirements of the project rather
than the size. One of the largest
allocations is held by a very small
group

.

Usage of resources is measured
by the following algorithm which is
derived from the theoretical model of
the machine when optimally loaded,
and gives a weighted sum of the CRUs
used .

CRUs = C/0.7 + T/25 + K/28 + B/240

where

C = CPU time in hours

T = terminal connect(ion) time
in hours

K = core occupancy in kilo
word-hours
(= conventional DEC kilo core
sees (in thousands) /3 • 6

)

B = disk I/O transfers in kilo
blocks

CRUs are charged against a

group's allocation according to the
time band in which usage occurs,
there being a premium on Peak time,
of course.
Thus

1 CRU in Peak time = 1.38AUs
1 " " Standard time = 0.69AUs
1 " " Discount time = 0.276AUs
The time bands are given in Table 2.

Table 2.

Time Bands for Differential Charging

1 000-
1400-

1200
1 800 Peak Time V

1 200-
1 800-

1 400
2200 Standard Time/Mon-Fri

2200- 1000 Discount Time I

1 000- 1000 Discount Time Sat&Sun

A group can therefore get
times as much computing out of its
allocation if it works in Discount

201

time only, than if it works in Peak
time alone. Since groups inevitably
work in all three bands, forecasting
the profile of their usage in AUs
from month to month, which is
difficult enough, entails
forecasting separately how much they
will use in Peak, Standard, or
Discount time, which is clearly
impracticable

.

Obviously, Peak time is the most
popular time, but the demand in
Standard and Discount time is such
that there is no need for any
restriction on usage in these bands
from the point of view of overload or
of sharing resources equitably. This
study therefore was concerned only
with controlling usage in Peak time,
but its principles could just as
easily be applied, separately, to
Standard time, or to Discount, in
parallel systems.

2 . 4 Priorities

All groups have equal priority
of access (ie, for job slots) and no
group has special privileges within
the machine in job queues, etc. The
scheduler is set to handle all work
purely in terms of job size, or time
in queue.

2.5 The Job Mix

Practically all work generated
at the terminals is interactive and
only an insignificant amount is done,
at present, as batch work. Batch
jobs run only when the machine is
idle and therefore make little
progress during the day.

2.6 Records and Accounting

Accounting is by 4-weekly
statistical periods (SPs) which were
introduced some years before purely
for their value in producing
comparable information. There are
thus 13 SPs to the year; they start
at midnight Sun/Mon and are numbered
sequentially, hence SP7809 is the 9th
SP of 1978. SP7801 started on 2 Jan
78. A calendar for three years is
given in Table 3 for reference but it
is not important in this paper.
Basic usage data in hours, kilo
core-sees, etc., is accumulated by a

standard DEC accounting program FACT,
and checked weekly for completeness
and consistency. At the end of each

SP, the data is totalled by
individuals and projects within time
bands and converted to CRUs and AUs.
Management summaries of user activity
are produced M-weekly and usage for
the machine as a whole cannot be
obtained readily between times.
However, at log-out each user's
activity is converted to AUs and
added to running totals for the
project so that, at log-in, the
machine can check usage to date
against total allocation or any other
control figure (previously the
project's SP resource quota). Users
can access these files for their own
information, and also receive
detailed 4-weekly summaries of
activity for each project. It is not
known whether users like statistical
period accounting - but they have
never voiced any objection.

3. Resource Control

Before discussing a statistical
approach , it is worth making some
general points about resource control
and about a rationing system which
was in use in the Installation , in
order to explain the philosophy
behind the new approach. Since much
of the detail of the rationing system
is not of immediate importance it has
been relegated to Appendix A and can
be referred to if support of the
general statements, made below, is
sought

.

Some sort of resource control is
inevitable in any large and hence
expensive interactive installation.

Since it will be costly to run
it should be fully utilised so this
at least calls for resource control
in its very broadest terms
balancing the present and known
future load against some measure of
the machine's capacity. Other
resource control may be concerned
with relieving transient or
short-term shortages of CPU time or
disk space.

The resource control system of
the Edinburgh Installation grew out
of a rationing system which, although
adopted with the best of intentions,
was beginning to be used for an
aspect of resource control (the
control of the total loading on the
machine), for which it was not
designed. As a result of the

202

Table 3

Edinburgh DECsystem-10
Statistical Periods (SPs)

In 1976, 1977 and 1978

author's study of this he is now of
the opinion that unless a rationing
system can be dynamic, that is,

constantly forecasting future
requirement against planned capacity
and adjusting the "rations"
accordingly, then a rationing system,
especially a cautious one, is likely
to hold back spare capacity rather
than make it available - and in a

time-sharing system, time-based
resources like CPU time if held back
are obviously lost forever. This is
of course a generalisation, but the
author has particularly in mind the
kind of systems where "rations" are
based on a month, or a week, or even
a day, because as is shown in
Annexure A the ration may be some
permitted maximum and the total of
all the permitted maxima is related
to the theoretical or actual
capacity. The permitted maximum and
the actual usage are independent
variables except that the former may
limit the latter. Therefore it is
the sum of the present or forecast
actual usages which must be balanced
against the total capacity in order
to assess spare capacity, and the
spare capacity must be made available
on demand, if it is not to be wasted.

There are of course, control
measures concerned with the
instantaneous or transient load - the
first of these is the number of job
slots made available; then the
machine might be said to be
self-controlling by virtue of the
deterioration of response time as
demand increases. Priorities or
privileges set into the scheduler are
resource controls often concerned
with favouring one user rather than
another. This class of resource
control is outside the scope of this
paper which is concerned with control
over a significant period of time,
typically 4 weeks, possibly down to 1

week as a practical proposition.

3.1 The Edinburgh Rationing System
(for more detail see Annexure A)

The rationing system was
introduced originally to allay a fear
that a research group (or groups)
would, unintentionally or otherwise,
under-use its bulk allocation and
then make excessive demands on
resources at some time possibly later
in the project; or that there might
be a coincidence of large demands
from several projects. This
overlooked the fact that some
research projects might reasonably

1976

7601 5 Jan - 1 Feb
02 2 Feb - 29 Feb
03 1 Mar - 28 Mar
04 29 Mar - 25 Apr
05 26 Apr - 23 May
06 24 May - 20 Jun
07 21 Jun - 18 Jul
08 1 9 Jul -• 15 Aug
09 1 6 Aug -• 12 Sep
10 13 Sep - 10 Oct
1 1 1 1 Oct -• 7 Nov
12 8 Nov - 5 Dec
13 6 Dec • 2 Jan

1977

7701 3 Jan -• 30 Jan
02 31 Jan -• 27 Feb
03 28 Feb - 27 Mar
04 28 Mar - 24 Apr
05 25 Apr -• 22 May
06 23 May -

1 9 Jun
07 20 Jun -- 17 Jul
08 1 8 Jul 14 Aug
09 15 Aug •- 1 1 Sep
10 12 Sep - 9 Oct
1 1 1 0 Oct -- 6 Nov
1 2 7 Nov -- 4 Dec
13 5 Dec - 1 Jan

1978

7801 2 Jan -• 29 Jan
02 30 Jan - 26 Feb
03 27 Feb 26 Mar
04 27 Mar •- 23 Apr
05 24 Apr -- 21 May
06 22 May 18 Jun
07 19 Jun - 16 Jul
08 17 Jul • 13 Aug
09 14 Aug • 10 Sep
10 1 1 Sep - 8 Oct
1 1 9 Oct •• 5 Nov
12 6 Nov -- 3 Dec
13 4 Dec •- 31 Dec

203

have a humped or ramp usage profile
in the computing activity of their
project. Some actual profiles at
Peak time usage to a common scale are
given in Annexure A. At the time,
the machine was under- loaded, even
in Peak time, so the rationing system
was a control for future
eventualities

.

Since there was no data on the
usage patterns which might be
expected with the four resources
being measured, the system adopted
was that each project started the SP
with a resource quota determined by
its total allocation plus a carry
forward from the unused parts of
previous quotas, the carry forward
decaying exponentially. On log-in by
any user the total usage made by the
whole group up to that time, in Peak,
Standard and Discount time, was
compared with the resource quota ,

and if the quota had been exceeded
the whole group was barred from
access in Peak time (only) until the
next SP brought a new quota. A group
had to have some unused total
allocation in order to get a fresh
resource quota for each SP.

Algebraically

:

A = aA' + 0 a (for A ' > 0)

A = (3a (where A ' < 0)

where

A was the resource quota at the
start of the SP

A' was the carry forward
remaining at the end of the preceding
SP

a was the SP ration :

= total allocation in AUs
No of SPs in project

a was the shaping constant for
the exponential decay of carry
forward and was intended to be set
between 0 and 0.5, being nearer to 0

for a large project where the
overlapping demands of the
individuals within it would tend to
reduce the variability of its total
demand

.

P was the SP ration multiplier
allowing higher than SP ration
accesses to be made. It was usually
set between 1 and 2, being larger for
small allocations to allow for a

higher variability in the activity of
small groups.

The constants a and (3 catered
for the circumstances that larger
groups are less variable in their
demand on the machine, while small
groups may be more so (as a
percentage of their mean activity).
By definition, a rationing system
involves some pro-rata spread of a

total allocation over the SPs in a

project, usually an even one. This
might be called the "intended average
rate of consumption" but clearly it
is unrealistic to expect a group to
work strictly at a level rate and it
must therefore be allowed higher than
average usages or it will not achieve
the intended average over the life of
its project - and may therefore be
prevented from using the whole of its
allocation

.

The carry forward was intended
to allow groups to gain some benefit
from making a below average demand.
The combined effect of a and P

allowed a maximum resource quota of
about 4 times the SP ration. A study
on the machine in its
pre-Installation days had shown that
groups seldom demanded more than 3

times their SP ration.

Further detail of the system is
not important here and it is
sufficient to point out some of its
shortcomings. The SP ration was the
"intended average rate" of working.
It was based on the project
allocation and after 12 SPs it was
found that the ratio:

intended average rate
actual average rate

which ideally should have been about
1, was anything from 1 to 30, and
generally high, so that most groups
were working well below their
resource quota each SP. This is not
so much a criticism of this
particular scheme as an illustration
of a fundamental weakness in any
rationing scheme based on the
estimation of long term requirements
("long term" being relative to this
context) .

204

The system potentially denied
access to resources without regard to
what was available. Although it was
intended that the total of
allocations made should have some
relationship to the capacity of the
machine, the machine was under-loaded
at the time, yet a project could be
barred from Peak time working for
part of an SP simply because its
resource quota was exhausted.

Of course groups could, and did,
appeal to the Installation staff for
their bar to be lifted but the staff
had two major inhibitions in doing
this :

(1) The immediate one was that the
machine had to be given a fresh
quota to match against the
group's activity. The staff
could give a group a generous or
a miserly addition - in other
words the Installation staff
could assist or hinder the
progress of research work
insofar as this is determined by
the computing resources made
available. The Installation
staff were not competent to make
such decisions.

(2) The second one was of the
future. If the eventual filling
of the machine's capacity was
pre-supposed the Installation
staff could not know from day to
day when a request was made,
whether there was indeed any
spare capacity to give away, and
daily outputs from the
accounting files were out of the
question

.

The rationing system was not
popular with the users, not because
they wanted to be profligate but
because its purpose was to smooth
their activity levels, or at least
prevent excessive 'lumps' appearing
and this threatened to restrict them
"just when they wanted to get some
work done".

Lastly, in theory the constants
a and 0 would eventually be used to
regulate the total use of the machine
and keep this in balance with the
total capacity. Annexure A shows
that this cannot be realised. A load
can only be regulated by observing
actual usage because actual usage is
a variable independent of resource
quota - unless the system is so

repressive that every group hits its
maximum all the time.

4. A Statistical Approach
to Resource Control

Thus in designing a new system
the following considerations were
either important or desirable:

(1) All groups to have equal
priority of access (a helpful
point) .

(2) The actual usage a group might
make next (or in any) SP could
not be forecast from its
allocation therefore the system
had to ignore allocations.

(3) The actual usage a group might
make could not be forecast
without an unrealistic effort in
continuous detailed study of the
activity of 30 (and rising)
separate groups

(4) Given that the capacity of the
machine could be quantified, the
system had to be able to give
away any spare capacity this SP,
without prejudicing the
management's ability to provide
for the exingencies of next SP.

(5) Although user groups disliked
the limitation of a rationing
scheme it was probable they
would accept the notion of
limitation "because the machine
is full" provided they were
convinced that reasonable
parameters were in use - and
they were given complete
freedom, albeit in competition
with each other, until overload
was threatened.

This meant that the starting
point of the control calculations had
to be the capacity of the machine and
the actual usage being made - from
which spare capacity could be
deduced. Also, since neither the
allocations, nor the size of the
group could be used for forecasting

,

the aim must be to manage the
behaviour of the population as a

whole

.

It is necessary now to discuss
the usage of the machine in terms of
"accesses" which are defined for this
paper as "the total usage made by all

205

the users in any one project, in

Peak, Standard or Discount time as
specified, in any one SP. (In DEC
terms - the total usage made by all
the project-programmer numbers (PPNs)
in any project in one SP), This is
introduced for simplicity and to
divorce the size of a group, or its
allocation, from the size of the
actual usage it might make in any one
SP.

Table 4 shows a frequency
analysis of Peak time accesses by
size and SP, for the first year (13
SPs) of the Installation. The total
frequencies are shown as a histogram
in Figure 1 . Two striking features
are apparent:

(1) The great majority of accesses
account for a minor part of the
total usage, and

(2) The observed frequency
distribution is remarkably
smooth

.

The first gives scope for a

"Pareto" approach to the management
of resources; the second suggests
that a probability method can be
used. It was fortunate that during
the period under review, the
rationing system had seldom limited a

group, and when it had, the
under-loading of the machine allowed
the bar to be lifted. Thus the
distribution is a random one
reflecting only the accidents of life
of the machine itself and the groups
using it.

4.1 The "Pareto" Approach

Because the distribution is
heavily skewed, the actual usage
accounted for by each size of access
had to be calculated from original
data - and not from the histogram.
However, 67% of the accesses were in
the < 5 AUs range and accounted for
only 16$ of the usage - while only
3 3% (those > 5 AUs) accounted for 84%
of the usage. Using the "Pareto"
approach the great majority of
accesses could be ignored, and
provided the 33% making "large
accesses" (ie ^5 AUs/SP)were somehow
kept in check, overload could be
prevented.

4.2 The gamma probability
density function

It is well known that the
distribution of the length of local
telephone calls conforms to a

negative exponential distribution -

and in considering interactive
computer usage we have an obvious
similarity in terminal connect time,
except that the calls will tend to go
on much longer. Since CPU usage and
core occupancy are also time-based it
is likely that they will have a

similar distribution of size, and
fortunately, disk I/O transfers show
the same characteristics. Of course
different kinds of work produce
different proportions of connect
time, CPU time etc. However, in the
size of accesses we are therefore
looking not at the distribution of a

single variable but at the sum of
several exponentially distributed
contributing variables and the gamma
probability density function (pdf)
defines such a distribution. A gamma
pdf is shown fitted to the histogram
in Figure 1

.

Table 5 and Figure 2 show the
same information for a later year SPs
7707-7806 (20 Jun 77 - 18 Jun 78)
which overlaps the first by 6 SPs.
The number of projects on the machine
has risen to 44 and the sample of
accesses has lost 218 of the original
observations and gained 297 giving a

total of 490, so that about 2/3 are
new observations. The usage of the
machine by research projects has
risen by about 25%. It is
interesting to note that the mean
size of access has not changed (in
the intervening moving years it has
varied only between 5.94 and 6.22
AUs). In round figures, the usage
accounted for by small accesses has
hardly changed - 66% of accesses;
14% of usage.

Since these frequency
distributions are the outcome of from
120 to 220 users in 30 to 44 groups
making 10,000-15,000 log-ins over a

year it is a reasonable assumption
that they are stable and can be used
for forecasting based on probability.

206

207

z
o
H

<
H
Z

O
tu
Q

O
OS

Z3
CO

Z
5

t < <

00

c
cs

2 oo

Ix

« I IX
II

" 5 o

* £ S

O go co O
- '5b £ H ,

° " >> »;

.3-° g £
32 a- q
<" 3 £ £
u Ou. CO

. JJ~ C

E°

CO o
o j= a

5
o
Z

o

(Xousnbsij) S3SS3D3V JO ON

I 5
00 <u

00 >

u 2

ol
N c

1^

o

tJ3

CO

>,
X)

3
X>

o
d

SS33DV 30 3ZIS 30 AiniHVeOtfd

208

1-3

O
c+
P

Co
VI

-J
VI

I

—5
O

I

on
VI

I

ON vi
O

I I

-p-

vi
I

-p-

O
I

ro
vi

i

roo
i

o
I

VI
I

no

NO

ro oo ro vi

o
i

no

H
CO

00
ro

00
H

H
H -P- ON NO

H H ON

00
00

00
VI

oo
00

roH H -p" oo i—1

ro H oo ro -p*

H ro ro vi -P-

-p-
-p-

-p-
-p-

VI

-p-
-p-

.p-

NO
o

00 H 00 vo

ro ro h f\) ct\ co

00 H Co Co

-P" H NO CO

h ro ro ro -f m

oo
00 H

ro oo oo jr-

Co .p" \o no

oo
ON 00
—5 -J

—1
—5
O

—5
—JO

>
o
o co
co o h>

cn n>

0)
0)

CO

—J

—

^

H-1

—

J

CD

o
VD

•

-J >
BH s po

O H
E

«<!

cn

0) H»
-J cn

-J
H o O
H i-ij

?> •n
o CD

-J o f»

—J 01 WH U) td
rv> cn «<! i-3

n>

CO CO
H- fl)

H» N
—j 0 a> >H O
00 CO 8° o

c+ CD

t» o cn

c+ p cn

^1 H- CD

Co 01 fD cn

^1
CO
o
ro

—

q

oo
o
oo

Co
O

-A
CO
O
VI

CO
o
ON

CD

op

h3
O

PH

O
3

WP
H'

Cf=)

3"

O
WO
cn

IHO

209

2
O
H

* < <

<
H
Z

Q
X
o
a:

CQ

Z
5

o

BO

o

>>

a

.t: v>— m

.o oo

.go
2 >>

•O 00
a c

O

o
00

r-o
r-
r-
VI

•a
o

\ (Xouanbsjj) S3SS333V JO ON
N

- ^ , , r-

3
<

1/3

o
<
u.
o
UJ
N

CO

0)
o
o

E

3

3
60

SS3DDV jo hzis jo Ainiaveo^d

210

5. Applying the Method

Given that the machine has a

quantified capcity for the time-band
in question, Peak time in this case,
the frequency distribution of
accesses can be used to set an "upper
limit" such that only a predicted
number of groups will approach it,

and if held at it the machine will
not be overloaded. All other
accesses can be ignored - in other
words only those groups whose demand
threatens to overload the machine are
controlled and the threat is measured
only by the actual usage patterns of
the population as a whole and not by
any individual characteristics of
groups

.

The dividing line between an
under- and over-loaded machine is not
a sharp one, but there must be some
measure of capacity if only for
general management purposes and the
figure used can be refined in the
light of experience.

In the Edinburgh Installation
the "upper limit" is calculated
immediately at the end of each SP,
but the frequency required depends of
course upon the nature of the
installation and the characteristics
of its usage.

5.1 Method of Calculation

The method of calculation is
given with explanatory notes in Table
6 and is illustrated in Figure 3.

Note that the "upper limit" is
set for all projects because it is
not known which projcts will reach it

only that 5 are likely to do so,
and even if all 5 do, the machine
will not be overloaded. Subsequently
the"upper limit" is set in the
accounting program and the total
usage to date in the SP, of each
project, at the time of log-in by any
member of the group, is checked
against it.

To avoid minor and frequent
fluctuations in the limit as
published and applied, the
calculated limit is rounded to 5 AU
steps and only changed when shifts
greater than this are calculated.
Figure 4 shows the movement of the
"upper limit" at Edinburgh as the
number of research projects on the

machine increased and the
relationship of the limit to the
largest accesses.

In counting the frequencies of
accesses, SP by SP, it is important
to remember that zero access by a

project is a countable event,
provided the project has definitely
"started" by making some use of the
machine in a preceding period. Since
projects may or may not continue
making accesses until their calendar
expiry date, they are not deemed to
have "finished" until the expiry date
has been reached even though they may
be making zero accesses towards the
end. For accounting purposes, all
allocation periods start at the
beginning of an SP and finish at the
end of an SP regardless of the actual
calendar date when projects actually
leave or join the machine.

In the Edinburgh installation,
moving annual figures are used for
historical data for forecasting, to
remove seasonal effects, but any
convenient method of making good
forecasts can be used for determining
the spare capacity. It is best
however, when using statistical
method in a practical application, to
avoid pursuing accuracy for its own
sake. The starting point - the
capacity of the machine is a doubtful
quantity anyway. Clearly an
unnecessarily low "upper limit"
results from over-estimating the
maximum likely demands and a slight
under-estimate is probably better
unless a cautious limit is desired.
However, some precision is worthwhile
in calculating the area under the
curve because sharing spare capacity
between 6 projects, say, instead of 4

can make a considerable difference in
the "upper limit" thus produced.

Although this approach does not
use project allocations in its
calculations as a means of
controlling the usage of resources,
and indeed preaches more or less
complete freedom for groups to take
what is available beneath the upper
limit, it may well still be
desirable, if not essential, for
groups to have some overall
allocation or budget imposed for
purposes of project or expenditure
control, but this would be a measure
external to the control of the

211

Table 6. Calculating the Upper Limit

Representative figures from the year to SP 7806 are used

AUs

Planned Peak time capacity 662.4

Deduct maximum likely demand next SP of:
systems and miscellaneous 69.2
research projects 254.3
special reservations
of capacity nil 323.5

Hence spare Peak time capacity is

Large accesses (>5AUs) will be made by
33$ of the groups using the machine

33$ of 44 = 14

Large accesses will consume 86$
of the research project load

86$ of 254.3 = 218.7

Hence the average consumption of each
large access will be

218.7 / 14 =

But some large accesses will rise above
the average

12$ of 44 = 5

Hence share the spare capacity between them
323.5 / 5 =

Thus the "upper limit" for all groups is
or say 85 AUs

338.9

Notes

(a)

(b)

(c)

(d)

(e)

15.6

(f)

67.8

83.4

Notes

:

(a) The standard capacity of the
machine can be adjusted for known
events, eg it would be reduced by 50$
if it were known that it was going to
be down for 2 weeks in the next SP.

(b) These figures are determined from
past actuals, using any suitable
forecasting method eg, moving means;
Holt's method etc, with suitable
adjustments for projects
finishing/starting; seasonal
variations; public holidays or, for
example unusual systems activity.

(c) If a group is known to require a

slice of capacity larger than the
"upper limit" which must be
satisfied, it should be reserved here
and the group not checked against the
"upper limit" at log-ins during the
SP. Special reservations reduce the
"upper limit" for other groups and
should be made carefully or spare

capacity may be held back needlessly
if the reservation is not fully used.

(d) The percentage is given by the
area under the pdf curve from 5 AUs
to the right. The number of projects
is that known to be on the machine
next SP. Usually new projects
starting up, even though known about,
can be ignored as being almost
certain to fall into the < 5 AUs
class. We cannot forecast which 14

projects will make accesses > 5 AUs -

it is sufficient to know that 14 (in
this example) are likely to do so.

(e) This percentage is calculated
from observation of past activity
(moving annual or shorter term totals
of research group activity) and how
much of this is used in accesses > 5

AUs

.

(cont on next page)

212

Installation itself. In Edinburgh,
groups may only compute at all
provided that they have some unused
project allocation. As with the
previous rationing system, projects
barred by the "upper limit" in Peak
time can continue in Standard or
Discount time, with the foregoing
proviso

.

6. Advantages and Limitations

The advantages of the method as
against individual rationing are:

(1) it is easier to forecast the
behaviour of the population as a

whole, than that of its
individual elements.

(2) its nature is to make spare
capacity available in full, at
the time, to all projects on the
machine (or embraced by the
control system) leaving them
only to the constraints of
contention for job slots and
what response time is tolerable
by them.

(3) it allows machine capacity to be
managed as a whole and avoids
the need to tinker with
individual rations.

(4) it is flexible and can cater for
a sudden increase or decrease in
the number of projects on a

machine, or in the AUs available
on the machine.

(5) it provides the information from
which management can consider
exceptions. For example: if,
later in the SP, a group reaches
the "upper limit", and there has

been a shortfall in the
predicted number of large
accesses, the management could
view a request for more
resources sympathetically. Of
course, earlier in the SP the
management would have to assume
that the predicted number of
groups will reach the "upper
limit" and the request would
have to be refused.

It has the limitations that:

(1) it uses a notional capacity, but
this is common to most
management systems, and it can
be refined with experience.

(2) it makes probability assumptions
about the number of groups
likely to make accesses of
particular sizes - but according
to the characteristics of the
user population these
probabilities may indeed be
highly predictable.

(3) it uses historical data for
forecasting - but then all
systems must. The only problem
is to get an adequacy of data
without it becoming too sluggish
or out of date. All
calculations must be tempered by
local management knowledge.

7. Applicability to
Other Installations

The usage analysis described
here has been applied retrospectively
to the final year of the Edinburgh
Installation in its smaller KA10
configuration, when there were fewer
groups on the machine and statistics

(cont from previous page)

(f) Again this is determined by the
area under the pdf curve to the right
of the calculated mean size of large
accesses (those > 5 AUs). Using the
curve gives a better forecast of the
number of groups likely to make
"greater than" accesses due to
varying raggedness in successive
histograms. Also, since the mean size
of large accesses is usually not a

whole number, the probability can only
be calculated or measured from an

actual curve. Since here and in (d)
above, multiplying the probability of
accesses of > 5 AUs, or > 15.6 AUs,
by the number of projects on the
machine again seldom produces a whole
number, and since the numbers in this
example are small, it is better to
round down if the "upper limit" is to
be kept as high as possible. If
cautious "upper limits" are desired
it is better to allow for this by a

slight over-estimate of the maximum
likely demand.

213

Breakdown of forecast activity

Special requirements

'

(zero in this case)

SPARE CAPACITY - 338.9 AUs

RESEARCH PROJECTS - 254.3 AUs

SYSTEMS - 69.2 AUs

-Total capacity

is 662.4 AUs

86% required

for large

accesses

(218.7 AUs)

Five accesses-Forecast number
exceeding mean level of large

accesses and sharing spare capacity

338.9

UPPER LIMIT IS

67.8

+ 15.6

84.4 AUs

= 67.8 AUs each

9 Accesses below
the mean

15.6 AUs. Forecast

mean level of

large accesses

(> 5 AUs)

_ 218.7

15

Figure 3. Calculating the Upper Limit

214

SlD3fOyd JO ON

z
o

<
-J
-J

<
f-
v:
Z

UJ

Q

O

Q
UJ

00
HO
UJ

o
a-

UJ

>
H

/

!S

00 _
Q —
O
s
uj o

<

on

H
< 00HO
on

o

1
o

o

UJ

z
X
<

z
o
Q
<
O
-J

UJ
s
p
us
<
UJ
a.

<
H
OH
U.
O
X
H
£
O
as
O

H
I

as
UJ

5

1/5 ,
-•

go-
o 00

O O Oo o o
CI <N —

.

(«nv) aovsn

<« 2 S

215

were totalled by groups, and not by
separate projects. For comparison,
the resource usages were converted to

AUs by the same algorithm. The
combined outcome being fewer accesses
of a larger size. The usage figures
of a recent year on the Manchester
DECsystem-10 Installation of the ICF
network have been reviewed also.
There they have a slightly larger
number of groups making accesses of
about half the size of those in
Edinburgh. In both cases the same
distribution of size of access
appeared and quite usable results
were obtained

.

It therefore seems likely that
any time-sharing installation
providing general services for a

significant number of users,
organised in groups or not, will find
that the characteristics of user
activity can be described by a gamma
pdf, whether the activity is measured
in one or more computing resources.
The larger the user community, and
hence the larger the machine, the
more predictable the usage pattern is
likely to be - but also the larger
the potential for waste of spare
capacity if control is based on
setting maxima for individuals or
groups without trying to forecast the
actual usage pattern and relating
this to the size of the machine.

This is not to say that there is
no place for setting maxima at all.
In, say, a student population
carrying out exercises, the computing
content of which is fairly well
known, individual control limits, or
rations, may well be necessary to
protect a teaching department's
allocation or budget from waste
through ignorance, error, or
irresponsibility. Such rationing
should be a protection applied at the
request of the department, and is
harmless if the department can use
the saved allocation in some other
way. But where rations exceed 10%
of nominal capacity there is a danger
of resources being wasted through
being held back and lost in time.

In an installation with a large
batch content it may be necessary to
extract batch work patterns in order
to detect the time-sharing
characteristics, and it may be
necessary to have separate control
systems

.

Annexure A

The Rationing System

Figures A1 and A2 show the usage
profiles of 18 projects selected for
comparability. They are arranged
from top down (from A1 to A2) in
ascending order of size of
a 1 1 o c a t i on , a n d hence of minimum
resource quota. Projects 1-5 have
the same size of allocation, as do,
separately, 10 & 11; 12 & 13 and 15
& 16. Forecasting such profiles over
a 3 year period for each project
separately is clearly impracticable -

but it is of course the sum of each
of these in each SP which is the
theoretical load on the machine.

Figure A3 illustrates the
rationing system. Most projects at
Edinburgh were running with an of
0 . 3 and of 1.3.

Figure A4 shows the mean, max
and min access of the same 18

projects over a year from SP 7613- SP
7712 (15 Dec 76 - 13 Dec 77) in
relation to their Minimum Resource
Quota. Their maximum Resource Quota
would include the carry forward
element which varies for each project
from SP to SP and can only be
represented as on Project 15. Even
without their 'carry forwards' most
projects were working comfortably
within their ration. The rations are
derived from the total allocation and
it is difficult to pitch these just
right. Many projects need, ideally, a

profiled allocation so that their
Resource Quota is not just a flat
rate throughout the life of the
project - but see Figures A1 and A2.

Figure A5 shows the usage in
Peak Time of each of these 18

projects in one particular SP (7710).
The sum of their minimum resource
quotas was 463 AUs (and remember that
this is ignoring their carry
forwards) but their total usage was
163 AUs. Of course they will have
made use of the machine in Standard
and Discount time - but they are not
obliged to do so. if, therefore, each
group's minimum resource quota was
regarded as a reservation of capacity
and if, for a moment, the machine is
considered to have been fully
allocated or loaded at 463 AUs, it

216

was only 35$ utilised in this SP

65$ of the machine's capacity was
wasted. Clearly allocations, or
their derivatives, (SP rations)
cannot be used as predictors of usage
or measures of loading - because
actual usage and resource quotas are
independent variables.

The large project in the 2nd
column of Figure A5 appears to have
reached its limit (in fact its carry

I
forward saw it through) - but had it
asked for more resources to keep it

going the answer, theoretically, would
have had to be no, because it could
not be known until the SP had
finished how many, or few, projects
were going to consume all their
ration. Obviously, a machine can be
allocated on the assumption (gamble)
that not all the projects will take
their ration. But there is nothing
in the total of the allocations to
say when the over-allocating has to
stop,- this can only be decided by
observation of actual usage.

217

Project

No.

1.

Projects are arranged, from top, in ascending size of minimum resource quota, to common scale of AUs.
Projects 1 - 5 have equal quotas (5.01 AUs); 10 & 1 1 have 20 AUs; 12 & 13 (Figure A2) have 25 AUs.

3.

4.

5.

6.

1
\-

i—

r

1 r

£Z1
AUs 7.

30-

20-

10-

o-

10.

I 1

ii.

12. i r

76 77 77 77 STATISTICAL PERIODS 77 77 78 78
13 01 02 03 04 05 06 07 08 09 10 11 12 13 01 02

Figure Al. Typical Peak Time Usage Profiles (AUs) - 18 Research
Projects on Edinburgh DECsystem-10

(cont in Figure A2)

218

See Figure Al for explanatory detail. Projects 13 & 1 2 (Figure Al) have same allocation (25 Alls), as do
Projects 15 & 16 (50 AUs). Project 1 7 has 70 AUs, and Project 18 90 AUs.

Project

No.

13.

14.

15.

AUs

80
n

70-

60. 16.

50-

40 ^

30-

20.

10.

5-

0-

17.

18.

76
13

77

01

77

02

77

03 04 05

STATISTICAL PERIODS
06 07 08 09 10 11

77

12

77

13

78

01

78

02

Figure A2. Typical Peak Time Usage Profiles (AUs) - 18 Research
Projects on Edinburgh DECsystem-10

(cont from Figure Al)

219

.. o a ns°-
a> 3 c r- x ii n

S.S3 - i Bta.

^
« oU tu <l

: os a n «

L_

O o
B o
« =
>- fl

w o
H
n

I. *" u
o
o o-

Z

<

-S «
•ti o

o
3a

3 -J 1/5 —
S ™ n OS

-

00

O II M

o
3a

£^ o 9

2 £
g 53 u-i g <l

o
u.

o

— O <u

* •0 "
SS S 3
3 0~ S
O ~ ' <U

-
ii as «

on

1-2.1 fl

O Ha

220

viono nosHa

Ou
to

VI o<

=1
<
o
ON

c

>• <
OS OS
< o

4—1

'—

H

u
in
c
I
o
as

so
z
E
in

o
IX

dS 3d SIIMfl NOUVDOTIV

221

18 Research Projects in SP7710

Cumulated Carry Forwards

(18 Projects)

Actual

Usage

Figure A5. Minimum Resource Quotas (Loading) and
Peak Time Usage on Edinburgh DECsystem-10

222

PERFORMANCE IMPROVEMENT PART II

APPLIED STATISTICS

223

PERFORMANCE IMPROVEMENT PART II: APPLIED STATISTICS

Richard A. Lejk, Colonel, USAF

Deputy Assistant for Logistics Management Systems
Headquarters Air Force Logistics Command
Wright-Patterson Air Force Base, Ohio 45433

This sesson will cover three topics which are

different in substance and nature but rely on

statistical analysis to support their conclusions.

The authors of these papers have provided a

sound basis for practical statistical application in

measurement evaluation and prediction

technology.

In the first paper, "Variability in System
Accounting Data," Davies presents the results of

a study of the variations in execution times of

CPU-bound programs. The author acknowledges
two sources of variation— one which would
occur even in a non-multiprogrammed system or

environment and the second which is non-

repeatable and is based on the system "charging"

algorithm. The author points out clearly that

these variations must be recognized and
considered by the performance analysts when
conducting various studies. Lack of recognition

results in time wasted obtaining unattainable

accuracy. Davis uses simple and compound
Poisson's as the basic distributions for the

analysis. Data recorded include total elapsed

and CPU times, and the mean, standard
deviation, and maximum of the CPU times for

the individual executions of the test code. The
author uses histograms, scatter plots, and
regression plots to present the results.

The second paper, "A Statistical Comparison
of the System Performance of Several

Configurations," describes the study and results

of comparing four configurations of a system.
Marathe, the author, uses two factors at two
different levels to provide the four different

configurations. These factors are main memory
size (large and small) and the type of disk (Type
1 and Type 2). Through the use of standard t-

tests and analysis of variance, the author
concludes that all of the factors and their

interactions are statistically significant, which
leads, in turn, to the use of regression analysis to

complete the study. Marathe's use of
"dilation"— the ratio of the elapsed time of a
command in a multiprogrammed system to the

elapsed time of the same command when only
one user is running on the system— is

interesting. This paper likewise uses data plots

to present the basic results of the dilation

analysis.

Hasche and Grace, in their paper,

"Reliability Modeling of Computer Systems,"
develop a presentation technique so that

management is better able to understand
computer reliability in order to do effective

planning and control. The authors gathered data
on ten systems representing four different lines

and manufacturers. The data were collected

over a 12-month period when no significant

changes occurred in the operating environment.
Various statistics were computed, such as mean,
median, standard deviation, range, skewness,
kurtosis, and coefficient of variation for each of

the systems. With the test for goodness-of-fit

satisfying the assumption of exponential

distributions, the probabilities for

Times-to—Failure were computed. Using the

fifty percentiles, the Mean-Times-to-Failure
were computed for each of the ten systems. The
authors conclude their paper with the results of

validating the model to actual failure history.

In all three papers, the discussions are

succinct, the conclusions are encouraging, and
the challenges for further studies are issued.

The papers will be presented in the same
order as above, with a brief question and answer
period to follow. After this general discussion,

the presenters will sit as a panel to answer
further questions and to discuss the conclusions

from the other two papers and their impact on

the third paper. Thus, should Marathe be

concerned about the variability of timing results

validated by Davies? What effect, if any, does

MTTF have on Marathe's configuration analysis

or Davies analysis of system accounting data?

All will be asked to participate in an attempt to

resolve these issues and to raise others.

225

A STATISTICAL COMPARISON OF THE
SYSTEM PERFORMANCE OF SEVERAL CONFIGURATIONS

Madhav Marathe

Systems Performance Analysis
Digital Equipment Corporation

Maynard, Mass 01754

This paper describes a study comparing the perfor-
mance of four configurations of a system. The four con-
figurations were obtained by selecting 2 levels for each
of the two factors under study (main memory size and the
type of the disk) . Standard statistical techniques like
the t-test, ANOVA and regression analysis were used to
detect and to quantify the differences in the perfor-
mance of the four configurations. A program development
type workload generated using a remote terminal emulator
was used for the comparison. The criterion variable was
the elapsed time for certain non-trivial commands in the
wor kload

.

It was observed that one configuration performs signifi-
cantly better than the others. The ANOVA procedure
showed that all the factors and their interactions are
significant in determining the value of the elapsed
time. A regression analysis for each combination of the
factors was therefore performed. The analysis was used
to quantify the additional number of users that can be
supported using the better configuration for the same
level of user perceived performance. The confidence in-
terval around this value of the additional number of
users was also calculated.

Key Words: ANOVA; regression; statistical comparison;
system performance; t-test

227

1.0 Introduction

In the study of computer system
performance, many times one faces a

task of comparing the overall system
performance for a number of different
configurations. Such a study is
needed to quantify the advantages of
a configuration over some other con-
figuration (s) in order to do a cost
benefit analysis. Some of the com-
monly used performance parameters in
these systems are the elapsed times
for specific benchmarks, the response
times for short time-sharing com-
mands, the CPU utilization and
"dilation' which is defined as the
ratio of the elapsed time of a com-
mand in a multiprogramming system to
the elapsed time of the same command
when only one user is running on the
system. The task is complicated in a
complex multiprogramming or time-
sharing system, since the value of a
performance parameter chosen for com-
parison is not constant, but depends
on the interactions of many factors
in the system. For example, the
elapsed time of a command in a multi-
programming system depends on many
uncontrolled factors such as the
workload presented by the other users
during the execution of this command,
the free space in the main memory and
the seek and rotational latency times
of the moving head disks in the sys-
tem. A comparison of the two elapsed
times has to take into account the
inherent randomness in each of the
elapsed times.

This paper describes a successful ap-
plication of standard statistical
techniques for comparing elapsed
times and for making quantitative
statements regarding them. The same
techniques can be used for other per-
formance criteria as well. Moreover,
even though this paper presents an
evaluation using only one kind of
workload, statistical techniques
exist for comparisons involving many
wor kloads

.

2.0 Goals of the Project

1. To determine if there is a sta-
tistically significant decrease
in the elapsed time for
non-trivial commands in a

multi-user program development
type system when using a Type 2

disk instead of a Type 1 disk.

2. Assuming that the type of the
disk, the amount of main memory
and the number of users are the
only factors affecting the
elapsed times, to determine the
factors and factor interactions
which have a statistically sig-
nificant effect on the elapsed
time for non-trivial commands.

3. To determine, if possible, the
additional number of terminals
that can be supported for the
same level of service by using
a Type 2 disk instead of a Type
1 disk.

3.0 Analysis Methodology

3.1 Overall Approach

If an overall model (simulation or
analytical) of the behavior of our
systems were available in sufficient
detail along with a characterization
of the desired workload, there will
not be any need to perform studies of
this type. For example, we will be
able to predict the effects of using
the two types of disks by suitably
altering the disk parameters.
Measurements will then be needed only
to verify the predictions of the
model. In the absence of such a sys-
tem level model, we are forced to in-
vestigate the effects of different
configurations by performing actual
exper iments

.

Since the elapsed time for
non-trivial commands is the most im-
portant criterion for a multi-user
system, we decided to directly com-
pare the elapsed times for such com-
mands. If a time-sharing system was
under investigation, we would have
had to consider the response time for
small trivial commands as well. We
decided to measure the elapsed time
on each of the four configurations
obtained by selecting 2 levels each
for the main memory size and the disk
type. We also decided to use a re-

228

mote terminal emulator (RTE) system
to simulate the activities of the
users since that is the only conveni-
ent and reproducible way to generate
identical load for the two parts of
the experiment. Turner and Levy [1]

describe a similar application of an
RTE .

3.2 Statistical Analysis

Because of the inherent randomness in
the value of an elapsed time for a

command, we decided to use simple
statistical techniques for determin-
ing if there is a significant differ-
ence in the user perceived perfor-
mance for the four configurations.
Since we found out that there is sta-
tistically significant difference
between the systems, we decided to
determine which factors and factor
interactions affect the elapsed
times. We also constructed a regres-
sion model relating the elapsed time
(actually dilation: a parameter
derived from the elapsed time) to the
number of users on the system. With
the help of the regression model, we
determined the additional number of
users that can be supported for the
same user perceived performance level
by replacing a Type 1 disk with a
Type 2 disk.

4.0 Factors Considered in our Study

It is clear that in a general study
of the elapsed times, we have to con-
sider a large number of factors.
However, in order to complete the
study in a reasonable time, we res-
tricted ourselves to the following 3

factors and levels:

1. The number of users executing a

fixed script (1, X, 2X , 3X . .

.

users) .

2. The amount of main memory on
the system (small, large).

3. The type of disk (Type 1 and
Type 2)

Other factors which could have been
considered include the operating sys-
tem, the type of commands, the pro-
cessor and the type of communication

line equipment used.

5.0 Details of the Experiment

5.1 Operation of the SCRIPT system

The SCRIPT system simulates the ac-
tivities of the users by sending out
characters from a script file over
the specified number of terminals.
For simplicity, we used the same
script file for all our terminals.
The SCRIPT system staggers the start
of activity on successive terminals
to reduce the synchronization prob-
lems caused by using the same script
file for all the terminals.

The SCRIPT system allows specifica-
tion of user "think time' between
successive command lines in the
script file. In our experiments,
SCRIPT was directed to introduce a
delay of 5 to 7 seconds between re-
ceiving the termination prompt for
one command and sending the next com-
mand .

5.2 Measurement of the Elapsed Time

The SCRIPT system maintains time
using the line frequency clock of
16.6 millisecond resolution. Each
input and output line of text is re-
corded in a log file along with a

time stamp and the number of the ter-
minal initiating or receiving the
line. The log file was therefore
used to determine the elapsed time
for the selected non-trivial com-
mands .

Because the start of the activity on
the terminals is staggered, steady
state is not reached until all termi-
nals become active. We assumed that
the system was in the steady state
from the time the last terminal in
the particular run became active by
sending a "HELLO" command. The con-
tents of the log file until the log-
ging of this "HELLO" command were ig-
nored.

The execution of the selected com-
mands can sometimes terminate due to

229

some hardware error (e.g. parity,
odd address). In such cases, the
elapsed time was not calculated.

Since it is tedious to scan the log
file by hand, a small BASIC program
was written to scan the log file and
to calculate the elapsed times from
it. The elapsed times from all the
runs were combined to produce two
data files for input to SPSS. The
first file was for performing the
t-test. It consisted of 865 records
where each record contained a pair of
elapsed times using the Type 1 and
the Type 2 disk along with the iden-
tifying information like the command
number, the terminal number and the
number of users in the system. The
second file was for input to the re-
gression analysis program. It con-
sisted of 1730 records where each re-
cord identified the level of each of
the three factors under study and
gave the elapsed time corresponding
to this combination.

6.0 The Statistical Analysis
Techniques

6.1 The t-test

Given the randomness in the values of
the elapsed times, the question be-
comes: is the overall elapsed time
behavior of one system significantly
better than another system? There is
a statistical test (called the paired
t-test) which can be used to analyze
the differences between the elapsed
times for the same commands on the
two systems and to determine if the
difference is statistically signifi-
cant at any specified significance
level (see [2] or any other standard
Statistical text for details) .

In our analysis, t is calculated as

follows: Let Xl be the elapsed time
for a command in a system with a

Type 1 disk and let X2 be the corre-
sponding elapsed time in a system
with a Type 2 disk. We are inter-
ested in the difference between such
oairs XI and X2.

Let D = XI - X2.

Assume that D is normally distributed
with mean d. This is a safe assump-
tion since a large number of pairs
are being compared. If the sample
mean of the D's is Dl and the sample
variance is (SD1)~2,

t = (Dl - d) / (SD1*SQRT (N)

)

where N is the number of pairs.
There are N-l degrees of freedom as-
sociated with this value of t.

6.1.1 Hypothesis Testing

The null hypothesis and the alternate
hypothesis in our case are

HO: "d = 0"

HI: "d > 0"

that is, if the null hypothesis is
true, there is no significant differ-
ence between the two disks. On the
other hand, if the alternate hypo-
thesis is true, the Type 2 disk is
significantly better than the Type 1

disk. We selected a significance
level of 1 percent which means that
we agree to accept a probability of 1

percent of rejecting the null hypo-
thesis when in fact it is true.

Assuming that the null hypothesis is
true, we can calculate

t = D1/(SD1*SQRT (N)

)

and read off from the standard sta-
tistical tables the probability of
exceeding this value due to experi-
mental errors. If this probability
is smaller than the selected signifi-
cance level of 1 percent, the null
hypothesis is rejected and if it is
greater than 1 percent, the null hy-
pothesis is not rejected.

6.1.2 Results of the t-test

Our experimental design allows us to
perform several t-tests. The overall
t-test considers all the pairs of
elapsed times. Since the overall
t-test was found to be significant (t
= 9.82. Probability of exceeding
this value < 0.001), we decided to
perform a t-test for all the pairs
from systems with a small main memory
size. This test showed that the

230

value of t is negative implying that
a one-tailed test should not be made
in this case. The probability of
exceeding a t value of 0.54 is gre-
ater than 0.5. Evidently, there is
no significant difference at the 1

percent level between the elapsed
times in the two small main memory
systems, one with the Type 1 disk and
the other with the Type 2 disk.
Table 1 summarizes the results of the
t-tests

.

6.2 Dilation

Since the elapsed times for the dif-
ferent commands differ widely, they
are not suitable for an overall ana-
lysis involving all the commands. We
therefore used another parameter
called ^dilation' which is the ratio
of an elapsed time to the elapsed
time for the same command in a single
user system using the Type 1 disk and
small main memory. In other words,
dilation represents the

x

stretch fac-
tor' for a given configurations (am-
ount of memory, type of disk) and for
a given number of users with respect
to the basic single user Type 1 disk
configuration. The commands fell
into three broad groups with respect
to their dilation. The groups can be
roughly identified as small Fortran
compilations, large Fortran compila-
tions and the

v

other' (assemblies and
loads) . We therefore decided to per-
form our analysis separately for each
of the three groups. This helped re-
duce the standard error of estimation
in our regression analysis.

6.3 The Analysis of Variance

There is another statistical proce-
dure called the analysis of variance
procedure (ANOVA for short) which can
also be applied to analyze the
elapsed time data. This procedure
analyzes the effects of the factors
(the type of disk, the number of
users and the amount of main memory)
to determine which factors and factor
combinations (interactions) affect
the elapsed time significantly. If
the effects of factor interactions
are significant, each factor combina-
tion has to be considered separately

in the subsequent regression study.

We used the following model for the
elapsed time of a command in our
ANOVA procedure:

E 1 (i,j,k,l)
= E0 + U(i) + M(j) + D(k)

+ UM(i,j) + MD(j,k) + DU(k,i)
+ UMD(i,j,k) + error (i,j ,k,l)

Where

,

i (1=< i =<5) gives the number of
users (1,X,2X,3X,4X)

,

j (1=< j =<2) gives the memory size
(small and large)

,

k (1=< k =<2) gives the disk type
(Type 1 and Type 2)

,

1 (1=< 1 =<L) gives the observation
number in case there
are L repeated
observations of this
particular combina-
tion of (i , j , k)

and
E'(i,j,k,l) is an observed dilation

value

,

E0 is a constant term,
U(i) is the effect of the i th number

of users,
M(j) is the effect of the j th memory

size

,

D(k) is the effect of the k th disk
type,

UM (i , j) is the effect of the combina-
tion of the i th number of
users and the j th memory
size,

MD(j,k) is the effect of the combina-
tion of the j th memory size
and the k th disk type,

DU(k,i) is the effect of the combina-
tion of the k th disk type
and the i th number of users,

UMD(i,j,k) is the effect (i,j,k) th
combination of the three,

er ror (i , j , k , 1) is the experimental
random error in the 1 th
observation of the dilation
corresponding to (i,j,k).

The error term is assumed to be nor-
mally and independently distributed
with zero mean and a variance = s~2.

The ANOVA procedure analyses the data
to determine which of these effects
are significant. This information is
used in the next phase to determine
how regression analysis is to be per-
formed on the data. The regression
analysis quantifies the effects of
the various factors pointed out as
significant by the ANOVA procedure.

231

6.3.1 Results of ANOVA

Table 2 presents the results of the
ANOVA procedure for the three groups
of commands. Note that the effects
of all the factors and their interac-
tions are significant when all the
data is considered. However, the ef-
fects of the type of the disk and
size of the main memory become insig-
nificant if all the data points for
the large main memory size/ Type 2

disk case are excluded. This shows
that the effects of the disk type are
not significant at small memory sizes
and the effects of the memory size
are not significant when a Type 1

disk is used. The former of these
results was also established by the
t-test

.

Since all the main effects and their
interactions were found to be signi-
ficant, we cannot quantify the effect
of any one factor independent of
other factors. A separate regression
between dilation and the number of
users for each combination of the
levels of the other two factors is
therefore necessary. Another use of
an ANOVA test is to help in the de-
sign of future experiments by point-
ing out the sources of large vari-
ances so that more effort can be de-
voted to their study. However, in
our case, all our factors are fixed,
that is, the levels selected for each
factor are not chosen at random from
a large selection of levels. Our
ANOVA test is therefore not too help-
ful to us for designing future exper-
iments of this type.

6.4 Regression Analysis

A linear regression model relating
the dilation to the number of users
was built. Since our experiment in-
volved only two main memory sizes, we
cannot build a model relating the di-
lation to the memory size. Since the
ANOVA procedure showed that the ef-
fects of factor interactions are sig-
nificant, it was necessary to develop
four regression models corresponding
to the four combinations of the two
factors (disk type and memory size) .

Table 3 displays the regression equa-
tions and the errors associated with

their predictions for these four com-
binations across the three groups of
commands. The value of R-square in-
dicates the closeness of fit of the
straight line to the experimentally
measured data. Table 3 shows that
all but one of the values are close
to 1 indicating a very good fit.

The additional number of users that
can be supported at the same level of
user perceived performance by replac-
ing an RS04 with an RSOX in a 512
Kbytes RSX11M system can be calculat-
ed from the regression equations.
However, it should be noted that we
are assuming that the users perceive
the same performance if the average
dilation of two systems is the same.
The standard error of estimate of Y
is used to calculate the standard
error around the point on the X-axis
corresponding to a given value of an
average dilation (Y-axis) as
follows

:

The regression equation is
Y = a + b*X

For a given value of Y = YO, the cor-
responding value of X is

XO = (YO - a)/b.

The standard error of this estimate
is given by

sx = (standard error of estimate of Y)

*sqrt(l/n + x~2/sum (x~2)) /b
where

,

n = number of samples used in
the regression line,

x = XO - mean value of X
sum(x~2) = sum of squares of x

In terms of the values supplied by
SPSS,

sum (x~2)
= ((standard error of B)/

(standard error of estimate)

)

"2

It follows that if X01 and X02 are
the values on the X-axis for disk
types 1 and 2 corresponding to the
same value of dilation (Y-axis)

,

and if sxl and sx2 are their standard
errors

,

the additional number of users
supported by using a type 2 disk
instead of a type 1 disk

=X02 - X01

the standard error of this estimate

232

= sqrt(sxl~2 + sx2~2)

The values of the additional number
of users and the standard error of
these estimates are displayed in
table 4.

Figures 1-3 display the dilation
as a function of the number of users
for the three groups of commands.
Each graph contains the four combina-
tions of the disk type and memory
size. The observed average dilation
points are plotted. The standard de-
viation at each point is indicated by
drawing a vertical line between the
average dilation +- the standard de-
viation. The regression equation is
used to draw the straight lines. It
is immediately obvious that the stan-
dard regression assumption of homo-
geneous variances acrosss the X-axis
is not valid. In fact, we discovered
that the standard deviation was pro-
portional to the average dilation.
In this situation, researchers tend
to use a log transformation to equal-
ize the variances or give smaller
weights to the points having a large
variance. We did not do this for twc
reasons: first, the relationship
between log (dilation) and the number
of users was found to be non-linear.
Second, because by not transforming
we are effectively giving more weight
to the variance observed at larger
values of the number of users. This
is desirable since we are really in-
terested in the behavior of our sys-
tem when the number of users is
large

.

7.0 Conclusions and Further Research

The analysis shows that the type 2

disk performs significantly better
than the type 1 disk if a large am-
ount of main memory is used.
Moreover, it does not show a signifi-
cant difference for small amounts of
main memory between the two disks.

We have also demonstrated the utility
of simple statistical techniques for
comparisons among different configu-
rations. The techniques applied here
can be directly useful to computer
installation managers since they can
concern themselves only with a small
set of workloads specific to their

installation. More work is needed to
extend the use of statistical models
for analyzing the effects of the con-
figurations under study across sever-
al workloads. One way of handling
the variation across workloads has
been described by Marathe [3] in his
analysis of the instruction mixes
across several application areas and
programs

.

A statistical model described in this
paper is the first step towards a
system level cost benefit analysis
model. The greatest utility of sta-
tistical models lies in the fact that
they constitute the scientific basis
on which other models can be built.
Jain and Potter [4] describe an ap-
plication of statistical modelling in
a cost-benefit study. Other applica-
tions of statistical analysis of com-
puter performance can be found in a

collection of papers edited by Frie-
berger [5]

.

Appreciation is due to Terry Potter
for his encouragement and help
throughout this study. I also wish
to thank Neil Rich for reviewing sev-
eral drafts of this paper and for
suggesting many improvements.

References

[1] Turner R. and Levy H.
"Performance Evaluation of IAS
on the PDP 11/70" Sigmetrics
Symposium Proceeding, Harvard
University, 1976.

[2] Snedecor G. and Cochran W.
"Statistical Methods" The Iowa
State University Press, Ames,
Iowa, 1967.

[3] Marathe M. PhD Thesis, Computer
Science Dept. , Carnegie-Mellon
University, 1977.

[4] Jain A and Potter T.
"Statistical Modelling of Com-
puter Performance (A
Cost-Benefit Approach) " Proceed-
ings of the 12 th meeting of
CPEUG, 1976.

[5] Frieberger W. Editor "Statisti-
cal Computer Performance Evalua-
tion" Academic Press, New York
1972.

233

Table 1. The t-tests

Numbe r Mean . I Mean 1 Mean 1 Percent t 1 S ign i f icant

1

of elapsed I elapsed 1 improve 1 improve- value 1 at 1 % 1

pairs time 1 time 1 ment 1 ment
with 1 with I with 1 with

Type 1 1 Type 2 1 Type 2 I Type 2

disk I disk 1 disk I disk :

I C1CKS]

|

I C1CKS) |
(CICKSJ

1

1 1 512 11110 I 11079 I
-30 -0.30 -0.54

|

no
I

1 2 865 8747
I 10576 I 1828 I

18 9.821 yes 1

Legend

:

t-test 1: Main memory = small
of users = X, 2X f 3X, 4X
of commands = 18

t-test 2: Main memory = small and large
of users = X, 2X, 3X, 4X
of commands = 18

Table 2. ANOVA Output

1 Source of Degrees All data 1 "Large main
1 variation of 1 memory/Type 2

freedom 1 disk " exclued
1 F Signi- 1 F Signi-

ficant ficant
at 1% at 1%

1 Command Group 1

1 users 4 1 373 4 yes 1 347. 3 I yes
I memory 1 1 67 6 yes 1 3. 7 I no
1 disks 1 1 32 9 yes 1 0. 0 1 no
1 users, memory 4 1 8 9 yes ! 0. 8 1 no
1 memory, disks 1 1 39 4 yes
1 disks, users 4 1 12 2 yes 1 0. 8 1 no
1 all three 4 1 10 4 yes

1 Command Group 2

1 users 4 1 1286 9 yes 1 1132. 9 1 yes
I memory 1 1 196 2 yes 1 0. 6 1 no

I disks 1
I
121 2 yes 1 1. 2 1 no

1 users, memory 4 1 20 8 yes 1 2. 9 1 no
1 memory, disks 1 1 172 2 yes
1 disks, users 4

I
16 9 yes 1

0. 7 I no
1 all three 4 1 31 3 yes

1 Command Group 3

I users 4 11922 4 yes 11592. 3 1 yes
1 memory 1 1 45 4 yes 1 70. 1 I yes
I disks 1 1 507 4 yes 1 4. 4 1 no
1 users, memory 4 1 34 0 yes 1 85. 1 I yes
1 memory, disks 1 1 461 7 yes
1 disks, users 4 1 135 2 yes 1 0. 6 1 no
1 all three 4 1 113 5 yes

Note: "-" denotes values which cannot be calculated because one set of
data points are excluded.

234

Table 3.

Dilation vs Number of users

I
Command 1

1
group 1

1 number
I

Memory
si ze

Disk
type

slope inter-
cept

R
square

Standard
1

error of I

estimation
I

1 1

1 1 1 small 1 0 618 -0 786 0 838 1 693 I

1
2 0 620 -0 853 0 843 1 649

|

large 1 0 608 -1 127 0 755 2 137
|

j

2 0 287 0 824 0 513 1 777
|

2 small 1 0 947 -0 619 0 933 1 627 |

2 0 994 -0 945 0 901 2 129
|

large 1 1 002 -1 169 0 900 1 968
|

2 0 545 0 314 0 855 1 557
|

1 3 I small 1 0 906 -0 964 0 932 1 571
|

2 0 868 -0 823 0 892 1 979
|

large 1 1 293 -4 113 0 738 4 834
|

2 0 487 0 083 0 829 1 479
|

Table 4.

Additional Users with the Type 2 disk and large memory

1 Group of Dilation # of users 1 # of users
I
Additional 1

1 commands level with Type 1
| with Type 2

1 # of users 1

disk

,

large 1 disk

,

large
1
with Type 2

I

ma in memory 1 main memory 1 disk !

1 s. E . | # 1 s. E . I # 1 S.E.I

1 1. Short 5 10 .07 1 0. 39
|

14 . 55 1 o. 33
|

4 . 48 1 0 . 51
|

1 Fortran 10 18 . 3 1 0. 80
|

31 . 97 1 2. 20
|

13 . 67
1
2.34|

1 compile

1 2. Large 5 6 . 16 1 0. 23
1

8 . 59 1 0 . 15
|

2 . 44 1 0 . 27
|

1 Fortran 10 11 . 15 1 0 . 31 1
17 . 77 1 o. 31

1
6 . 62

1
0.441

1 compile

1 3. Others 5 7 .05 1 o. 30
|

10 .01
1 o. 06

|
3 .05 1 0 . 30

|

10 10 . 91 1 0

.

53
|

20 . 36 1 o. 27
|

9 .45 1 0.59
1

235

NUMBER OF USERS

Figure 1. Command Group 1

236

ii

Figure 2. Command Group 2

237

NUMBER OF USERS

FIGURE 3. Command Group 3

238

RELIABILITY MODELING OF COMPUTER SYSTEMS

Lloyd R. Hasche
and

Richard A. Grace

Deputy Chief of Staff/Data Systems
Headquarters Strategic Air Command

Offutt Air Force Base, Nebraska 68113

Accomplishment of the Strategic Air Command mission is directly
dependent on having reliable computer system support. By having an
accurate picture of the expected behavior of each computer system in

terms of the probable elapsed time to failure, management can apply
the appropriate control to assure a satisfactory level (greater than
98%) of computer system availability. This is accomplished by use
of a model that predicts the Mean-Time-To-Failure (MTTF) for a com-
puter system. This paper describes the application of this relia-
bility engineering statistical modeling technique to computer system
performance, reviews the mathematical function used, and compares
the resulting computer system models to the actual behavior of ten
large scale computer systems. The use of this modeling technique
has enhanced computer reliability information presentations and con-
tributed to the decisions made on resource allocation to assure com-
puter system reliability.

Key words: Computer system reliability; Mean-Time-To-Failure; relia-
bility engineering; service level management presentations; statis-
tics .

1 . Background

Computer System Reliability is a per-
formance factor that management must be
able to understand in order to plan and con-

trol. A common measure of reliability is
needed that is meaningful to the user and
sensitive to changes in computer resource
allocation. Reliability as a performance
characteristic has been developed for elec-
trical systems, mechanical devices, weapon
systems and communication systems by measur-
ing the failure-free performance of the
total system. Current computer reliability
statistics focus on performance of hardware
components and software for monitoring of
contractual commitments or determining
detailed indicators of efficiency. The
means to analyze and engineer the reliabil-
ity of the total computer system has not
been fully developed. The Mean-Time-To-

Failure (MTTF) statistic and model provide a

way to represent current total system per-
formance and predict the impact of resources
allocated in improving reliability. In addi-

tion, this statistic because of its use in

systems engineering can provide the common
understanding needed.

The definition of reliability used
within the context of this paper is one

adapted by the Electronic Industries Associ-
ation as follows: "Reliability is the prob-
ability of a device performing its purpose
adequately for the period of time intended
under the operating conditions encountered"

[1] 1, It is assumed that a computer sys-

tem behaves like a device.

figures in brackets indicate the lit-

erature references at the end of this paper.

239

The failure of the computer system is

the unexpected stop in computer service to

all users.

The time between failures is that
elapsed time from the start of one failure

to the start of the next failure.

The Mean-Time-To-Failure is derived
from a model of computer system performance.

The application of the Mean-Time-To-Failure
statistic has enhanced the analysis of

reliability performance of ten large scale

computer systems at Headquarters Strategic
Air Command. This model has been applied
to assess the impact of resource allocation

decisions to improve reliability and to pro-
vide a standard for comparison of current
performance.

2. Statistical Technique

The collection of data, analysis of the
distribution of data, application of the
cumulative probability function and develop-
ment of supporting graphics used the aid of

a desktop minicomputer and supporting statis-
tical programs ^ 2 J. No description of these

programs is attempted. These supporting
capabilities should be readily available.
Of interest is the application to computer
system Mean-Time-To-Failure (MTTF) statis-
tics.

A history of the time of each fail-

ure has been collected for ten computer sys-

tems (6 Honeywell 6080s, UNIVAC 1106, IBM

360/85, IBM 370/168 and ADAGE 50 to be

referred to as CS1, CS2 , ... CS10) . An

agreement was reached with operations manage-
ment to determine and report failures based
upon the definitions given in paragraph 1.

It is assumed that the Time-To-Failure (TTF)

is a random variable independent of each
occurrence. In addition, length of failure

does not affect the rate of failure. The

TTF data sample for each computer system was

collected over a time period of one year or

when no significant changes in operating
environment occurred (i.e., changes to hard-
ware, software, operating procedures) . The

number of failures for each sample ranged
from 28 to 181 and contained an average of

69 entries.

The basic statistics were calculated
for each data sample. The normal mean,

median, variance, standard deviations, range,

skewness and kurtosis was determined, (see

table 1 for results) . These statistics indi-

cated that the data contained a wide range of

values, with a median value 42% less than

mean value and with a distribution that is

apparently skewed to right. The kurtosis
also indicated a distribution other than
normal

.

Table 1. Basic Statistics of Time-To-Failure
(Based on a Normal Distribution)

COMPL'TER SYSTEMS (CS)
' '

CSI CS2 CS3 CS4 CS S CSS CS7 CS S CS 9 CS1Q

j
KZAS (np.S) 2:5 137 47 242 87 321 200 102 99 360

MEDIAN lHRS) 128 67 23 169 70 174 130 24 59 204

573. DSV 262 137 65 347 8a 373 238 179 123 444

RANGE JKRS) 1335 644 360 '1767' 481 1288 888 647 543 1961

SKE~.CX.-S_ 2.30 Z.01 2.71 2.98 1.68 1.39 1.51 2.53; 2.01 2.18

' XUjtTOSIS 9.64 7.34 11.1 13.2 6.8 3.78 4.79 9.2 7.03 7.80

COEFFICIENT 1.16 1.28 1.39 1.43 1.01 1.16 1.03 1.76 1.25 1.23
OF VARIATION

1 : :

A histogram of each data sample was con-

structed to observe the distribution. A
greater frequence of TTF within short inter-
vals was found to be the case for all ten
computer systems. A further indicator that
the distribution of data was not normally
or uniformly distributed was tested by plot-
ting the data against probability plot grids
for the normal and uniform distribution [3].

The difference in locus of points supported

a rejection of the normal and uniform hypoth-

esis. When the data was plotted against an
exponential grid, no rejection of this dis-
tribution assumption was indicated.

If the operating environment is kept
constant and the system has entered a stable
performance state, a constant hazard rate

and the exponential distribution can be used
to describe the reliability of the system [4l
All of the computer systems had been opera-

tional for more than a year since installa-
tion; therefore, it was assumed they had

entered a state of stable performance. In

addition, in complex systems, the exponen-
tial distribution is most likely to apply

[5]. The analysis continued with the assump-
tion that an exponential distribution could

be applied. The exponential probability
cumulative distribution function was gene-

rated on the TTF data sample for each system.

Figure 1 is a representative display of this
function.

240

1 /
"i 7

201 '
-' -

EXPC-.^XTIAL
CUMULATIVE DISTS IBUTION
FUNCTION

lie
A

TtM-W-FttLWM (HOU«)

Figure 1. Cumulative Probability as a
Function of Time-To-Failure

The Kolomogovov-Smirnov test for goodness of
fit indicated that this function was satis-
factory to use as a model of reliability for
all ten systems [6]. Table 2 displays the
TTF for each computer system at the fifty
percentile which is the standard Mean-Time-
To-Failure (MTTF)

.

Table 2. Mean-Time-To-Failure Results

C'-l CS2 C3)

TZST 1 501 77?: 15

61 2C3 UK

The graphic of the model has also
proven useful as a practical visual display
for management to observe the reliability per-
formance of a computer system.

3 . MTTF Model Performance

The actual performance of the computer
systems has been compared to the modeled per-
formance of MTTF. The first test compared
models based upon six months performance to
actual performance over a three month time
span. This test was repeated for a model
based upon a nine month history. Table 2

displays the results. The results of these
two tests established our confidence in the
MTTF statistics as being characteristic of
overall performance reliability behavior of
the computer system.

4. MTTF Application

The MTTF models were used to demonstrate
the impact of elimination of types of computer
failure (e.g., hardware failure, software fail-
ure) . The model of a computer system was
regenerated after censoring all the time inter-
vals dependent on a type of failure. The mar-
ginal improvement in the resulting MTTF is an
indicator of the expected improvement (see
Figure 2)

.

•EiBlriesI CC?

I.-Vi

HI
rir <

!

T!.'i=-to-faili;3z (hoj:*s)

Figure 2. MTTF Model Comparison

A better understanding of the weekly
computer system performance results from hav-
ing established that the distribution of TTF
is not a normal or uniform distribution. A
suspected trend in decreasing reliability can
be confirmed by development of a new model.
The resulting MTTF provides a measure of
decrease in service. The size of the MTTF can

be used to determine the magnitude of the
effort to research, analyze, and correct the
cause in change in performance.

Finally, when presenting reliability
performance to management, the model and use
of the term 'Mean-Time-To-Failure' has had
wide acceptability. It was readily understood

by the general staff during a presentation of

the status of computer support.

5. MTTF Future Application

With the MTTF, a means to specify the
performance of a total computer system is

available. When the replacement or conver-
sions to a new hardware or software system is

planned, contractual specification of overall
reliability performance can now be delineated.

This performance can be demonstrated and docu-

mented at the end of a designated performance
period.

241

As computer communication networks
become more integrated, the overall reliabil-
ity planning can be enhanced. The computer
component can now be modeled and incorporated
into the network model for planning of alter-
nate support paths.

6. Conclusion

With the MTTF model, a means to dis-
play and predict the reliability of a compu-
ter system is available. MTTF is sensitive
to changes in operating environment. MTTF
provides a measure of impact of allocation of

resources to improve computer system reliabil-
ity. It also provides a measure of the value
of additional information that would be gained

by further research into cause and types of

computer failures. It has potential for fut-
ure applications in specifying and modeling
computer system performance as a total sys-
tem or as a component of a computer communi-
cation network. Finally, this statistic can
contribute to the users' understanding of the
reliability service of the supporting compu-
ter system.

References

[1] CALABRO, S. R. , Reliability Principles
and Practices McGraw-Hill Book Co.

,

New York, New York 1962

[2] TEKTRONIX USERS MANUAL, PLOT 50

STATISTICS VOL , 1975

[3] CHORAFAS, D. M. , Statistical Process
and Reliability Engineering , D. Van Nostrand
Co. , Princeton, New Jersey 1960

[4] SHOOMAN, M. L. , Probabilistic Reliability:

An Engineering Approach , McGraw-Hill Book Co.

New York, New York 1968

[5] BARLOW , R . E . , Mathematical Theory of

Reliability , John Wiley & Sons, Inc.,

New York, New York 1965

[6] WINKLER, R. L. , HAYES, W. L. , Statistics
Probability, Inference and Decision , Holt,

Rinehart and Winston, New York, New York 1975

242

ANALYSIS OF VARIABILITY IN SYSTEM ACCOUNTING DATA

D. Julian M. Davies

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A 5B9

Results are reported from a study of variations in program
execution times, as reported by the operating system of a DECsystem-
10/50 time-sharing system. The execution times reported for appar-
ently identical runs of the same (CPU-bound) program vary
significantly from run to run. It is shown in particular that the
reported CPU consumption rises with increasing system load, and
correlations between different measures of program and system per-
formance are analysed.

Two models are proposed for the nature of variations in CPU
charges: a simple Poisson, and a compound Poisson model. The
empirical results are shown to be reasonably compatible with the
simple Poisson model.

This study is of significance particularly to computer users
who wish to use program performance metering tools to decide, for

example, where effort is justified in 'tuning' a program. Awareness
of the nature of variations in execution times permits guidelines to

be drawn up to provent a waste of effort by striving for unattainable
'accuracy'

.

Key words: Accounting/Computer charges; CPU time, Elapsed time;

Metering; System Performance; Tuning Programs; Varying workloads;

Variations in CPU charges.

1. Introduction

It is important to be able to measure
accurately the time taken by a processor in

executing selected sequences of instructions
or subroutines. All major operating systems
for computers provide facilities for deter-
mining how much CPU time is being consumed
by a particular process. Such a facility
may be based on a continuously running,
hardware time-of-day clock, or on an inter-
val timer. The resolutions of such clocks
typically vary from 1 microsecond to about
16 milliseconds (a power frequency period) .

When a computer is being multi-
programmed or time-shared or has a multi-

level storage system, the time taken to

execute a particular sequence of instruc-
tions will vary, even if no I/O activity
is involved for the process. The variabil
ity, as seen through the operating system

timing facility, arises from two different
types of cause.

First there is 'true' variation,
which would be observed even on a non-

mult i -programmed system. This arises from

variations between runs in cache perform-

ance, in paging behaviour in paged systems

in memory access speed if processing is

overlapped with "cycle-stealing" I/O, and

so on.

243

The other source of variation in

reported time consumption is non-repeatabil-
ity in how the system 'charges' the elapse
of time to the various user processes, to
system overheads, and to the idle state.
Each user process will have a 'virtual

clock' which records the consumption of
'virtual CPU time' by the process. Varia-
tions can arise here, particularly in a

multi-programming system, for several
reasons. There may be delays in stopping
and starting 'virtual clocks' at context
switches, and the system may not be totally
'honest' in dealing with 'short' interrupts.
I/O operations and interrupts will likely
vary in CPU requirements from run to run,

and systems vary in whether these are
charged to system overhead, to the process
initiating the I/O operation, or to some
other process which just happened to be

running at the time ('cheating' at inter-
rupts) .

These types of variations have been
observed by Bell [l] and Wortman [2].
Wortman was able to compare the magnitude
of the "true" hardware variations on a

particular task with the variations in

times reported by the operating system
(OS/360MVT running on an IBM 370/165) . It

was established that 'hardware time' had a

much smaller standard deviation than did the

"system time", by three orders of magnitude
when timing the same piece of CPU-bound
code. Runs of from about 30 us. to 30 ms.

were used, with the clock resolution being
about 1 ys.

Bell [l] considered the question of
timing variability from the perspective of
comparing different systems' charging rates
in order to choose the most economical one
to compute on. In stand-alone runs of a

benchmark, the accounted times showed only
small variations on several systems, but

with mult i -programmed runs there were sub-

stantial variations. The variations
showed both random and biasing components.
The reasons for these variations were as
listed earlier: 'biases' or systematic
variations particularly arise from 'dis-

honesty' in time accounting.

Since most users of large-scale systems
do not have the privilege of stand-alone
access, it is important to appreciate the
magnitude and nature of variations in

'system' virtual time consumption.
Experimental results and their analysis are
reported below for timing information on a

DECsystem-10/50.

The management of this particular
system have chosen to make the system

'dishonest' in charging for I/O interrupts
- they are charged to whichever user process
was interrupted rather than to system over-
head. This decision, not an uncommon one,
is said to have been motivated by a desire
not to have the system accounting summaries
show a large 'overhead' component. In con-
sequence, however, virtual CPU times repor-
ted by the system can vary enormously
between runs. Bell mentions a case of one
(production) program which when run twice
gave CPU charges in the ratio of 1:2. This
author has had the same annoying experience.

2. Effects on Program Metering

When conducting timing runs, for

example in connection with program or

system timing, the effects of these varia-
tions must be considered. In many experi-
mental situations where a reading or

measurement is subject to experimental
errors, the errors can be reduced by taking

N repeated measurements and averaging. It

is well-known that under fairly general
conditions, this procedure will give the

mean a standard deviation approximately
reduced by /N.

However, in the case of computer program
metering, this improvement will not necessar-
ily be obtained by repeating the experiment.
This is because the experimental data (vir-
tual time reports from the OS) contain system-
atic errors as well as random variations.
The reported times tend to rise as the system
load (particularly interrupt load) increases,
and the repeated runs may not therefore be
taking place in equivalent conditions.

Up to a point, repeated runs of a pro-
gram will improve the estimate of how much
time the program 'intrinsically' uses.
Beyond that point, however, further runs will
only display variations in the magnitude of
the system's load as reflected in the system-
atic errors. It is of practical and econ-
omic importance to identify where that point
lies for the particular system.

3. A Model of Timing Variations

This discussion is directed at CPU-
bound units of program that have to be
timed, but can be extended to accommodate
I/0-bound programs. The virtual CPU charge
for a program execution can be regarded as
the sum of two components. There is the
'physical' CPU time involved in executing
the requisite user instructions, and there
is system-time - time charged to the user
process but stolen at context switches and
at interrupts.

The physical time is subject to
random variations, as discussed earlier, but

244

these are probably negligibly small com-

pared with 'stolen' time variations in most

systems. (The only likely exception is a

system with very heavy I/O traffic creating

a lot of memory contention, but then one

would usually also expect a correspondingly
' high degree of time 'stolen' at I/O

interrupts)

.

3.1. Simple Poisson Distribution

The 'stolen' time will comprise the
'stealing' of small fragments of CPU time

irregularly, but at a rate whose mean
increases with system load (degree of multi-

j

programming, and amount of I/O traffic)

.

The simplest assumption is that CPU time

is stolen according to a poisson process,

such that a unit of P seconds duration
of 'physical* time will be inflated by 11

(stolen) units of length s, on average
every t seconds.

The measured time M will amount to

M = P + ns (1)

where n_ is an integer-valued random
variable fitting the Poisson probability
distribution [3].

p(n, P/x) = exp(-P/i)(P/T)
n
/n! (2)

Both the mean and variance of n will be
k = P/t , according to this model. Assum-
ing that the variance in P is negligible
compared with the effect of the variance in

n_, we have a distribution for the measured
time M with

mean = P(l x+s/t) = P+sk (3)

2 n 2. 2
a = P s /x = s k (4)

We assume that t decreases as the
system load increases - time is 'stolen* at
interrupts, etc. more frequently in a busy
system. This leads to increases in both
mean and variance of the measured time for
program execution.

3.2. Compound Poisson Distribution

The principal approximation made in

this model is to assume that all 'stolen'

intervals are equally long. In reality

they vary, perhaps approximated by another
Poisson distribution, which means a

Compound Poisson Distribution might be a

better fit.

In this case, s_ is also a random
variable. If it takes_values 0,s , 2s ,

3Sq, etc. with mean s = Xs^ and

variance Xs^ , then the distribution for

M will have parameters [3]:

mean = P+Xs
q
k (5)

2 2
a = Xs k(1+k) (6)

This displays similar behaviour, as x

drops, to the simple Poisson case.

4. Experimental Data

A program was run repeatedly on the
DECsystem-10, in normal time-sharing under
a wide variety of system load conditions.
Each run of the program executed a test code
50 times. The test code itself comprised a

certain number of iterations of an arith-
metic computation: 20, 100, 300 or 1000

repetitions of a computation taking about

1.4 ms. The program recorded the measured
vitual CPU time for each repetition of the

test code, and also the elapsed and virtual

CPU times for all 50 repetitions.

For each set of 50 repetitions of the

test code, the program recorded in a data
file the total elapsed and CPU times, and
the mean, standard deviation and maximum of

the CPU times for the individual executions
of the test code. These quantities are
known respectively as ELAPSE, TCPU, MEAN,

STDEV and MAX. In some cases, a histogram
was also plotted for the observed times,

along with other statistics.

The program structure is shown in

Figure 1, and a typical histogram of

individual CPU times in Figure 2.

The data from different runs varied
according to the length of the test run, and

depended on the random variations in system
loading. The 'raw' measurements are not
independent of each other, and the co-

variances and correlation coefficients have

been analysed. Also, 'scatter graphs' have

been plotted, to show the correlations
graphically. Figures 4 to 9 show some of

these plots. On the plots, the data fall

into four groups, corresponding to the four

lengths of the test code used.

245

VARS NUMBER#OF#SAMPLES; 50->NUMBER#0F#SAMPLES;

FUNCTION TIMERUN NUMBER#OF# HERAT IONS;
VARS OLD#CLOCK I J;

RESETSUMS(); SETSTART(); \for ELAPSE, TCPU
FORALL I 1 1 NUMBER#OF#SAMPLES

NUMBER#OF#ITERATIONS-> J;
SYSRUNTIME()->OLD#CLOCK; \for mean ,stdev, max
UNTIL J=0 THEN J-1->J;
C0PIES#0F#TEXT \macro inserts copies

CLOSE;
ACCUM(SYSRUNTIME()-0LD#CL0CK)

;

CLOSE;
PRDAYTIMEO; \output readings to file
PRRES();

END;

Figure 1 . Structure of Timing Program

th.
0 o lis 6 ! hi nn-n

Figure 2. Distribution of CPU
times (50 samples)

Figure 3. Distribution of STRETCH factors

It was discovered, after collecting
some data, that the program was being given
inaccurate virtual CPU figures by the oper-
ating system. The RUNTIM Monitor call (SVC)

was discovered to return the time used as at

the start of the current time quantum, not
the up-to-date time. The program was then
modified to force a brief 'swap-out 1 just
before calling each RUNTIM, to make the
system update the accounting meters for the
process. The resolution of the RUNTIM clock
is 1 ms. The data reported here were col-

lected after that change.

5. Discussion of Scatter Plots

The most direct measure of system load

during a run of the program is the total

elapsed time for the run. Another measure
is the "stretch" factor - ratio of elapsed
to CPU time. These are naturally strongly
correlated with each other: correlation
coefficient 0.98 to 0.99. Table 1 shows all

the correlation coefficients. If the CPU
times were constant, then the elapsed time
and stretch would be exactly proportional.
Observed stretch factors ranged from 1.2 to

34 in various runs, with an average of about

3.4 and standard deviation about 3. A
typical distribution is shown in Figure 3.

It was hypothesised and observed that

the measured CPU times will rise with
increasing load. Figure 4 shows the total

246

Table 1. Correlation Coefficients and Moments

20 Iterations per cycle
ELAPSE TCPU MEAN STDEV

.984 .772 .740 .465
.806 .778 .507

.981 .781

.852

100 Iterations per cycle
.992 .874 .862 .645

.900 .890 .667

.996 .821

.846

300 Iterations per cycle
.995 .842 .845 .710

.859 .863 .714
.999 .897

.903

1000 Iterations per cycle
.996 .873 .872 .663

.880 .880 .655

.99996 .774

.776

MAX MFANI J Uu . De vn

.361 STRETCH 3.52 3 .20

.393 ELAPSE 10.16 s 12 .87 s

.702 TCPU 2.56 s 0 48 s

.774 MEAN 39.0 ms 7 .3 ms

.976 STDEV 16.8 ms 16 .6 ms
MAX 134.6 ms 103 .5 ms

.537 STRETCH 3.37 2 45

.542 ELAPSE 31.63 s 29 45 s

.727 TCPU 8.60 s 1 26 s

.750 MEAN 158.3 ms 22 9 ms

.943 STDEV 32.0 ms 25 .2 ms
MAX 310.6 ms 135 7 ms

.621 STRETCH 3.33 •

2 96

.619 ELAPSE 86.76 s 97 66 s

.832 TCPU 23.57 s 3 4 s

.833 MEAN 455.4 ms 65 3 ms

.956 STDEV 60.2 ms 38. 1 ms
MAX 697.3 ms 189 7 ms

.824 STRETCH 3.27 2 55

.824 ELAPSE 271.15 s 268. 91 s

.964 TCPU 75.51 s 11. 33 s

.965 MEAN 1494 ms 223 ms

.850 STDEV 113 ms 74 ms
MAX 1881 ms 440 ms

STRETCH = ELAPSE/TCPU MEAN = Mean CPU Time per Cycle A run
ELAPSE = Overall Elapsed Time STDEV = Deviation in Time per Cycle performs
TCPU = Overall CPU Time MAX = Maximum Time per Cycle fifty

cycles

CPU time in a run plotted against the total

elapsed time. The best straight-line fits

to the sets of data are approximately par-
allel, which suggests that the increases in

CPU and elapsed time from increasing load
are proportional to each other over any
length of program run. The slope is about

0.05, so the CPU time rises (on average) by
1 second for every 20 seconds of elapsed
time. The correlation coefficient is only

about 0.8 to 0.9 on these runs. (The CPU
times are not quite in the ratios 20:100:300
:1000 because of fixed overheads not sub-
tracted). See also Section 7 below.

The plot of CPU time against stretch
factor is shown in Figure 5. The lines are
no longer parallel, and the correlation coef-
ficients are all slightly worse, as can be
seen from Table 1

.

The variations in CPU time (for one
cycle) and the maximum individual CPU time
both rise with increasing system load.
These parameters turned out to be fairly
well correlated with each other for the most
part, but not so well correlated with the
stretch factor or total elapsed time. Fig-
ure 6 shows a plot of STDEV against MAX, and
Figure 7 is STDEV against MEAN. These show
obvious interrelations. Figure 8 shows
STDEV against ELAPSE, demonstrating the poor
correlation. This lack of correlation is

attributed to STDEV and MAX depending on
short-term variations in system load, which
do not correlate well with the 'smoothed
out' loading seen by ELAPSE and STRETCH.
The program did not record elapsed times
for the individual executions of the test

code; it is expected that if these had been
collected, they would have correlated

247

strongly with the STDEV and MAX statistics.

Figure 2 shows a histogram of the CPU
times for the executions of the test code in
a particular run. This histogram is typical,
in having most values at the lower end, and
a scattering of longer ones. As described
earlier, the longer CPU times are attributed
to the 'stealing' of time by the system.
Figure 7 can be compared with the equations

(3) and (4), or (5) and (6), with P constant
for each set of data and variations in x

or k (the rate of CPU-stealing) resulting in

different data points.

For the simple Poisson case, we can
derive

a = se (7)

where e = mean - P, the excess mean CPU
time

.

For the compound Poisson case, we can

derive

a = (e +se)/A . (8)

2
A plot of E against STDEV (Figure

9) is fitted fairly well by a common straight
line, with slope s=95 ms. The random varia-
tions from this straight-line fit to the
sample data are not small enough to permit
discrimination between equations (7) and

(8), and (7) is the simpler hypothesis.

6. Analysis of Correlations

Table 1 shows the correlation coef-
ficients and variances of the sample para-
meters for each of the four run lengths.

The correlation coefficients can be analysed
by finding the eigenvalues and eigenvectors
of their matrix (which is symmetric and
positive definite) . Table 2(a) shows a

typical set of eigenvectors, for the 100

cycle runs. The longest eigenvector is

typically 3 to 5 times longer than the next
longest, and is contributed to by the
original data components in roughly equal

amounts. This means that none of the data
measurements (stretch, elapse, etc.) is

much better than the others for judging
system loading, and all vary up and down
together, which has already been observed.

The matrices of covariances have been
analysed similarly (cf. [4]), and the results
are shown in Table 2(b). For this analysis,
the ELAPSE and TCPU data were first scaled

to ms per run, to make them compatible with
MEAN, etc. Most of the variance in the
system (the longest eigenvector) is contri-
buted predominantly by ELAPSE, and the next
longest is due mainly to MAX. This confirms
that the individual variations in the long
and short-term timings are largely independ-
ent (p = 0. 542) .

7. How to Determine 'True' CPU Times

Figure 4 provides a clue to a good way
to estimate the 'true' CPU time required by
a program. The method is to run the program
several times, and record both CPU and
Elapsed times. Then calculate the least-
squares straight-line fit to the data, and
determine where this intersects the line
given by CPU=ELAPSE. That will estimate the
CPU time that would be required if the
computer imposed no extra overheads. Note
that the result of this procedure will be an
approximate lower bound on the CPU time from
a typical run, not the expected time from a

run (which will be estimated best by simply
averaging the observed times)

.

Figures 4 and 5 do show some curvature
in the upper plots, displaying 'elbows' in

the region of stretch=2. Thus a linear
relationship between TCPU and ELAPSE is not
exactly correct over the whole range of loads
In practical metering, it may be advisable
to reject data from runs with a stretch
factor greater than 2, on this system, if

there are sufficient readings available to

permit that.

Corresponding 'elbows' are also visible
near the bottom of Figure 9. The signifi-
cance appears to be that s is smaller on a

lightly loaded system than on a busy one,

so the simple Poisson model needs some
modification

.

Figure 4 suggests that if the slope of
the CPU vs. ELAPSE line is known, then only
one program run would be necessary to form
an estimate of the 'base' CPU time. How-
ever, since there are sizable variations
around the best linear fits, in addition
to the elbows, a single reading should not
be relied upon for accuracy. It does appear
that. runs with low STRETCH also show less

variance in CPU time.

8. Optimum Length of Run

The data for ELAPSE, TCPU and MEAN for

each sample were divided by the number of
iterations in the test code, to get the

averaged MEAN for 1 execution of the basic
arithmetic computation. This normalises the
data, except that the means differ because

248

Table 2. Eigenvectors of Correlations and Covariances

stretch elapse tcpu mean stdev max
1 1.000 0.992 0 .874 0.862 0 .645 0 .537
2 0.992 1 .000 0 . 900 0.890 0 . 667 0 . 542
3 0.874 0 . 900 1.000 0.996 0 . 821 0.727
4 0.862 0 .890 0 . 996 1 . 000 0 .846 0.750
5 0.645 0.667 0.821 0 .846 1 .000 0.943
6 0.537 0.542 0.727 0 .750 0 .943 . 1.000

EIGEN VALUES
0.003 0.005 0.045 0 .141 0.792 5.014

EIGENVECTORS
1 -0.046 0.032 0.681 -0 .723 0 .096 -0.037
2 0.639 -0 .744 0 .085 0.028 0.113 -0.129
3 -0.104 0.109 -0 .180 -0.026 0.764 -0 .600
4 0.469 0.285 -0.547 -0.532 0.125 0 .317
5 -0.443 -0.430 -0.090 -0.046 0.468 0 .624
6 -0.402 -0 .409 -0 .435 -0.437 -0.399 -0.363

(a) CORRELATION COEFFICIENTS

stretch elapse tcpu mean stdev max
1 5.852 1392.59 52 .578 47. 127 38.815 173 . 640
2 1392.590 337019.01 12994 .492 11674 . 361 9626.969 42100 . 468
3 52.578 12994.49 619 .113 560 . 177 507 .785 2420 . 638
4 47.127 11674.36 560 .177 510 . 937 475.645 2266 . 222
5 38.815 9626.97 507 .785 475 . 645 618.058 3134. 253
6 173.640 42100.47 2420 .638 2266. 222 3134.253 17891 . 034

EIGEN VALUES
0.068 1.509 40 .631 125.297 12800.714 343695.77

EIGENVECTORS
1 1.000 -0 .005 -0 .003 0. 018 0.013 -0 . 003
2 0.014 -0.001 0 .650 -0 . 753 0 .098 -0 . 008
3 -0.011 0.002 -0 .268 -0 . 107 0 .949 -0 . 122
4 0.014 0 .041 -0 .707 -0. 645 -0 .257 0 . 126
5 0.001 0.136 -0 .058 -0 . 060 -0.149 -0. 976
6 -0.004 -0 .990 -0 .039 -0. 035 -0.029 -0 . 129

(b) COVARIANCES

249

timing overheads have not been subtracted.

The means and standard deviations are shown

in Table 3.

Table 3. Normalised MEAN data

Number of Iterations 20 100 300 1000

Normalised Mean 1.95 1.58 1.52 1.49 ms.

Standard Deviation 0.37 0.23 0.22 0.22 ms.

This shows that the 'quality' of the
averaged CPU-per-executive was improved when
timing 100 executions at a time, rather than
20 at a time: a total of 5,000 executions
rather than 1,000. However, timing longer
sequences of executions than that did not

improve the variance further. This residual
variance is thought to result from varia-
tions in system load. (The same phenomenon
appears if the ELAPSE or TCPU figures for

the runs are normalised similarly)

.

By applying the correction described
earlier to each of the CPU times (1/20 of
excess elapsed time) and renormal ising, the
variances are reduced but still show the
phenomenon, as displayed in Table 4.

Table 4. Normalised Means adjusted
for Excess ELAPSE

Number of Iterations 20 100 300 1000

Normalised Adjusted Mean 1.66 1.37 1.31 1.30

Standard Deviation 0.30 0.12 0.16 0.13

On this particular computer, therefore,

a metering run should include at least 5 to

10 seconds CPU in the code being timed, but

iterations beyond that cannot be expected to

improve the final estimate of CPU time for

one execution. (If the unit to be tested
itself runs for 1 second or more, it should

be run at least 3-5 times anyway if a re-

liable estimate is needed. Recall that even
long programs can show up to 2:1 variations
in time charged on some systems, though such
extremes are rare) .

9 . Summary

Measurements of program execution time

rise with increasing system load. All

measures of CPU and elapsed time are
positively correlated with each other, and no
one of them appears to be a 'best' statistic
to use to infer system load. However, longer

and shorter term measurements are but poorly
correlated in contributing to total system
variance

.

Changes in observed CPU and Elapsed
times for a program are approximately
proportional to one another. This forms
the basis of a method proposed for estimat-
ing the 'true' CPU time requirement of a
program being metered. It is observed (on

this DECsystem-10) that metering runs should
accumulate (optimally) 5 to 10 seconds of
CPU time. Shorter runs result in a larger
standard deviation in the estimated CPU
time, through having too few data. However,
longer runs do not subsequently improve the
sample variance because of imperfect cor-

rections for variations in system load.

The observed CPU time variations are
consistent with a model in which the system
'steals' CPU time from the user job

according to a Poisson process, with
individual 'stolen' increments of about
95 ms. each. This is a crude model but a

good first approximation to the observations.

'Stolen' time is CPU time charged to the

user, but used by interrupts and other
system overheads. A compound Poisson model

was also analysed but not fitted to the

data.

It would be interesting to compare
these data with results from other operating
systems. The results reported in (1) and

(2) support similar conclusions with
respect to the limits of accuracy obtain-
able in program metering.

This work was supported in part by an
operating research grant from the Natural
Research Council of Canada.

References

[1] T.E. Bell, Computer Performance Var-
iability. Proc. Nat. Computer Conf.,

1974, pp. 761-766, (AFIPS Press).

[2] D.B. Wortman, A Study of High Resolu-
tion Timing. IEEE Trans. Software
Engin. SE-2 (June 1976), pp. 135-137.

[3] W. Feller, An Introduction to Prob-
ability Theory and its Applications
3rd Edn. Vol. I, John Wiley & Sons,
N.Y. (1968).

[4] C. Gonzalez, Using Covariance Analysis
as an Aid to Interpret Results of a

Performance Measurement. Proc. Int.

Symp. Computer Performance Modelling,
Measurement and Evaluation, Harvard
1976, pp. 179-186.

250

500
ELAPSE (sees)

Figure 4. TCPU vs. ELAPSE

STRETCH FACTOR

Figure 5. TCPU vs. STRETCH

251

252

UJ
-J
<u
CO

u
I—

I

2

X 0 3.1; Y 0 2.5

m I I I I $ I I I I $ I I I I $ I I I I 0 I I I I $ | | | | 0 I

at
<
o oJ o

>mQ
£-
co o

0

@@ @

@@ @ " c
#

B
5

* * T I

* + +
* +

* +T+ *

* *

4

v i i i i $ i i i i o i i i i $ i i i i o i i i i $ i i i i $ -|0

1 10 100 1000
ELAPSE (sees) [LOGARITHMIC SCALE]

Figure 8. STDEV vs. ELAPSE

5 I I I i Q I

* V / #
> • y «

P V / e /

+

*/ / .. /
#

gH
"9

I | | | 0 I I #f I $ I I I

@
l • 1°

1000 2000

Mean (ms)

Figure 9. STDEV
2

vs. MEAN

253

PERFORMANCE IMPROVEMENT PART III

MEASUREMENT APPLICATIONS

255

3

i

]

s

PERFORMANCE IMPROVEMENT MEASUREMENT APPLICATIONS
PART III

Phillip C. Howard

Applied Computer Research
Phoenix, Ariz.

This session will cover a wide range
of techniques and methods for the measure-
ment and tuning of information systems. The
types of systems addressed range from mini-
computers to large scale multiprocessors,
the techniques from traditional measurement
to classical industrial engineering methods.
Collectively, the papers illustrate the many
alternatives and possibilities that exist

for analyzing and tuning computer systems.

Chaikin and Orchard define and analyze
a measure of system organization and dis-
organization, a candidate for a well-defined,
single valued indicator of improvement in

system performance. The measure is called
the System Organization Measure and shares
several properties with the Shannon relative
entropy function. Potential applications
are suggested in the areas of subsystem
balance, general system investigation, and
system planning.

The paper by Fuller, McGehearty, and
Rolf discusses the performance of C.mmp a

multiprocessor system consisting of five
DEC PDP 11/20' s and three PDP 11/40' s. In

this case, the authors use remote terminal
emulation to impose a synthetic load on the

system, comparing measured average response
times with those predicted by an analytical

model. The experiments enabled the authors
to refine the model by incorporating addi-
tional factors, and to put heavier inter-
active loads on the system than were expe-
rienced under normal situations.

At the University of Regina, a mini-
computer system, the DEC PDP 11/34, is used
in an undergraduate Computer Science Labo-
ratory. In their paper, Lee, Maguire, and
Symes describe a study carried out to meas-
ure the performance of this time-shared
system. An internally driven measurement
package creates a number of pseudo terminal
users and an event trace of all activities
is recorded. The study indicated how to

expand the system from its current thirty to

forty or more terminals through software
modifications and minor hardware expansion.

The final paper, by Lieberman, employs
classical industrial engineering techniques
such as availability modeling and the

machine interference model to assist in

deciding whether or not to configure a

multiprocessor from two individual CPU's.

The factors considered in the decision
framework include the impact on availability,
the impact on throughput, and the impact on

cost.

257

A Relative Entropy-Like Measure for System Organization

Jamie A. Chaikin

Robert A. Orchard

Bell Laboratories

Piscataway, New Jersey 08854

ABSTRACT

A measure of system organization and disorganization is denned and analyzed. Its poten-

tial role in computer system performance tuning and planning studies is indicated.

In the area of computer system performance and tuning studies, one frequently

encounters situations in which component workload processing rates (i.e., component utili-

zations) must be changed in order to remove bottlenecks or increase the work throughput of

the system. In some cases a more equal distribution of workload processing over subsys-

tems of the system is desired, while in other cases a predilection for a particular subsystem

may be indicated. It has always been difficult to point to some well-defined single valued

indicator of improvement in system performance. The system organization measure (index)

introduced in this paper may be a candidate for such a performance improvement index.

1. INTRODUCTION

The analysis and design of complex systems

involves, in general, the formulation and solu-

tion of problems involving many variables.

Comparisons between two distinct settings of

system variables is often difficult to carry out.

What is desired is some sort of an index or

function through which the variable values can

be transformed into a single number and the

comparison then made.

For example, in the area of computer system

performance and tuning studies, one frequently

encounters situations in which component work-

load processing rates (i.e., component utiliza-

tions) must be changed in order to remove
bottlenecks or increase the work throughput of

the system. In some cases a more equal distri-

bution of workload processing over subsystems

of the system is desired, while in other cases a

predilection for a particular subsystem may be

indicated. It has always been difficult to point to

some well-defined single valued indicator of

improvement in system performance. The sys-

tem organization measure (index) introduced in

this paper may be a candidate for such a perfor-

mance improvement index.

A typical situation in which this index may
be used might be a three component subsystem

of a computer system (e.g., channels). If

U^Uj.U^ are average channel utilizations

observed during one period of time and
U lt U2.U} are average channel utilizations

observed during a different period of time, is

there any meaningful way of characterizing the

relative merits of these two sets of utilizations?

As we will see, there is.

The entropy measure developed in this paper

is shown to be a potentially useful tool in the

study of complex systems from the points of

view of both planning and analytic investigation.

It also appears that further study in using

entropy measures as system wide indicators of

performance and service may be fruitful.

2. SYSTEM ORGANIZATION MEASURE

In recent years there have been many
attempts to apply the Shannon relative entropy

function, [1],

//=-£p,log PJlog n, £/>=l

to areas which are, strictly speaking, outside of

communication theory. Shannon himself expli-

citly dissociated himself from those who inter-

preted his measure of information as a measure

of meaning or semantic content.

259

In an attempt to apply H as a measure of

organization and disorganization of a system, the

logarithmic nonlinear behavior of H makes it

difficult to come up with an interpretation of

what a differential increment, AH, in H means
in terms of a change in the organization of the

system. The needed interpretation sought can

be expressed from the point of view of workload

processing if the entropy measure is generalized.

When a measure is introduced, one is com-
pelled to give a complete quantitative interpreta-

tion of its application so that a loose formulation

of an initially intuitive concept is not promul-

gated. With this in mind, a measure (index)

was sought which would have similar properties

as entropy with respect to measuring deviation

from an equally likely or equidistributed system

state. In addition it should interpret a

differential increment in the index directly in

terms of the organization of the system.

Let 5,, . . . , S„ be n components of a sys-

tem S and let u\ , w„ be the observed com-
ponent utilizations over an interval of time At.

u. = —— where
At

L=component i active time in the interval At.

The relative utilization, w,, of component i over

the period At is defined as

n

if Mj^O for some i

u
'

=
0 otherwise

The balance factor b, of the system S is defined

as

id
b=

0 otherwise
(2)

where / is the utilization criteria for balance on

component i and I is an indexing set.

In this paper we choose a particular b as fol-

lows,

/ = l/n, 5>, = 1, Jj, = 1 (2a)

and

/ = {/|m,>-M (2b)

so that

b = T (« - 1) for n > 1 and / ^ (f>

h = 0 for n = 1 or I = <f> (2c)

b may be interpreted as the fraction of total

component utilization which must be

redistributed over the components in order to

satisfy the utilization criteria for system balance.

We note that the assumptions (2a) and (2b) in

Eq. (2) have established this criteria as equal
;

"loading" of components. Other criteria may be

used.

The system organization index, B, is now
defined as

d(\ n(\—b)—l
«„)

= : (3)
n—l

from which we note

b = —(1-5) (4)
n

Since B is taken with respect to an interval of

time At, the average organization measure, B
over total time T is then

B = ^yfl,A/„£A/, = T (5)

where B, is the measure in the interval At,.

2.1 Properties of the System Organization Measure

The system organization measure B shares

the following properties in common with the

Shannon relative entropy function:

1. Both H and B achieve their maximum value

of unity when u, = l/n for all i.

2. Both H and B achieve their minimum value

of zero when w, = 1 for some i and

In addition, if AB is an incremental change in

the measure of the system organization then its

"organizational significance" can be interpreted

through Eq. (4), i.e.,

Ab = ^-{\-\AB\)
n

Ab is the fraction of total component utilization

(power, work rate) which has been redistributed

over the components of the system. If AB is

positive, this will tend towards uniform loading

of the components (disorganization or system

balance). If AB is negative this will tend

towards selective or biased loading of the com-

ponents (organization or system imbalance).

A system is said to be totally disorganized if

the system organization index B is at its max-

imum value of unity and totally organized if the

index is at its minimum value of zero. NOTE
that organization or disorganization do not carry

positive or negative meaning, per se. Whether

one desires a system to be organized or disor-

ganized depends on the function the system is to

perform. The change in the organization of a

system over time may be taken as a measure of

the change in performance of the system, with

respect to its function, over time.

One further characteristic of B as it relates to

the organization of a system is the following. It

is easily proven that any function induces a

natural partitioning of its domain into disjoint

equivalence classes. Given the n components of

260

a system S, one can define the state of the sys-

tem S as the n-tuple of relative utilizations,

<« 1(... ,"„>. The relative utilization (power,

work rate) state space is then

5 = {<!/, «„>IL«, = i)

(=1

which is the domain of the organization measure

B. Two states will be in the same equivalence

class if they both yield the same index value.

Hence B discriminates states only with respect to

the total amount of utilization (power, work

rate) which must be redistributed for equal com-

ponent loading. For example, in a three com-

ponent system, <.4,.3,.3> and <.4,.32,.28>

would both yield the same measure, B= .9.

3. APPLICATION AREAS

We indicate several potential application

areas where the measure might be applied. The

examples that follow are not to be considered an

exhaustion ofpotential application areas.

3.1 System Performance and Tuning

The Measure B May Be Used As An Index of

Subsystem Balance

Let the system S consist of three disjoint log-

ical channels. Logical channel 5) consisting of

physical channels si1.S12.S13; Si consisting of

s2 \,s2 2\ and S3 consisting of S3j.S32.S33.

Suppose system monitoring (or prediction by

other means) indicates the following observed

physical channel utilizations.

"11 = -3 "21 = -4 "3i = -1

"12 = -2 "22 = -1 "32 = 05

u,' 3
= .05 W33 = .05

and hence the following logical channel utiliza-

tions u\ = .55, « 2
= .5, w

3
= .2. The relative

logical channel utilizations are calculated using

Eq. (1).

Uj = .44 u 2
= .40 u3

= .16

The balance factor is calculated using Eq. (2),

b = (.44-1/3) + (.4-1/3)= .17

The organization index B, using Eq. (3), is then

3(1—.17)—

1

2

or B= .74. Hence the system shows some bias

or organization in its use of the logical channels.

Seventeen percent of the total logical channel

load could be redistributed.

If one were to measure the organization of

the physical channels rather than the logical

channels, (i.e., eight components), one would

find

b= .345

B= .25

indicating a higher degree of organization with

34.5% of the total channel load candidate for

potential redistribution.

If one were to measure the organization of

the individual logical channels one would find

for Sj b = .24

B= .64

for s2 b = .3

B= .4

for s
3
b = .17

B= .74

indicating imbalance because of higher utiliza-

tion of primary physical channels.

One valuable application of the measure is to

show, quantitatively, improvements made in a sys-

tem as a result ofperformance tuning efforts. Dev-

ice banks could have been chosen in this example.

3.2 General System Investigation

The measure be used as an investigative tool

for general system study. Suppose memory is

partitioned into n regions. Calculating relative

memory utilizations and then b and B may give

insight into memory performance in a black box

environment. Low B values may indicate some

kind of priority handling or memory affinity is

present.

Suppose a multiprocessor system is being

studied and some attribute which can be associ-

ated with processors is chosen (e.g., CPU utili-

zation in a given mode). Calculating relative

processor utilizations in this mode and the

corresponding values of b and B may again indi-

cate some affinity for certain processors in that

mode.

It is not our intent in this paper to compile a

potential application list since the list depends to

a great degree on the system studied. We do

point out the importance of random sampling

and its potential use in any application of the

system organization index (see Ref. 2).

3.3 System Planning

Recent advances in computer system model-

ing have indicated that hardware/software utili-

zation measurements may be predicted (derived)

from functional relationships which depend on

such parameters as:

1. the job attributes of jobs running on the

system,

261

2. operating system module attributes,

3. hardware configuration parameters,

4. operating system philosophy as embodied in

the operating system logic.

If we represent the first jthree sets of parameters

indicated by n-tuples XUX2
,X

} , a component

relative utilization can then be represented by

«, = F
i
(X

i
,X2,X3)

The Fj's are algebraically formulated using the

operating system logic and indicate how the

operating system logic affects the component
utilizations. Hence any system organization

index representable as a function of component

utilization, is now parameterized to factors con-

trollable to some extent by the planning process;

i.e., B(u
x ,_. ._. ,«,,)

=
B(F

l
(XuX2 ,Xi) F^X^XM). For exam-

ple, the effect of changes in operating system

parameters could be quantified more easily. The
use of predictive modeling tools in conjunction

with the organization index may be of value in

the system planning process.

2. R. A. Orchard, "A New Methodology
for Computer System Data Gathering",

Proceedings of Thirteenth Meeting of
CPEUG, 159-182, (October 11-14,

1977).

4. REMARKS ON FURTHER EXTENSION

The system organization measure has been

defined using a particular criteria for the f in

the definition of b, Eq. (2) in Section 2.

1. It would be of interest to study B from a

more general perspective of organization

using other criteria for total disorganization

other than uniform loading of power (utili-

zation) across components.

2. It was noted that the change in the organi-

zation of a system over time may be taken

as a measure of the performance of the sys-

tem with respect to its function over time.

The definition of system performance meas-

ures based on the system organization

measure approach appears to be a

potentially fruitful path for further investi-

gation.

3. The integration of the organization measure
into current measurement system profiles

should be investigated.

4. The role of the organization measure as one

of the objective functions to be considered

in capacity planning of systems should be

considered.

REFERENCES

1. C. E. Shannon, "A Mathematical

Theory of Communication", Bell Sys-

tem Technical Journal, Vol. VII, July

1948.

262

PRELIMINARY MEASURE OF C.mmp
UNDER A SYNTHETIC LOAD*

Samuel H. Fuller**, Patrick F. McGehearty, and
George Rolf

Carnegie-Mellon University
Pittsburgh, Pennsylvania 51213

This paper discusses the performance of C.mmp,
a multiprocessor, under a synthetic load imposed by
a remote terminal emulator (RTE). The primary mea-
sure of performance is average response time to an
interactive request for service. An analytic model
is used to predict response time. The model is
modified as a function of load and the number of
available processors. The actual measurements of
C.mmp agreed, to within experimental error, with a

simple central server model once three factors were
incorporated in the model: (1) 210 milliseconds of
operating system overhead for each request for ser-
vice, (2) Bandwidth limitations in the link between
C.mmp and the RTE, and (3) Precise details of the
processor scheduling algorithm. Future work will
consider using more complete synthetic jobs to
better stress primary memory management, secondary
storage scheduling, and operating system facilities

1 Introduction

In this study, we explore
possible performance
bottlenecks and overheads in
the Hydra Operating System on
C.mmp. Since a multiprocessor
such as C.mmp allows more
opportunities for parallel
execution than the traditional
uniprocessor and thus has a

potential for more complex
interaction between processes,
it is not unreasonable to
assume that performance
problems might be harder to
detect and understand properly.
To aid our understanding, we
take an incremental approach to
studying the system. We
develop a simple, easy to
understand model of C.mmp as an
interactive system. An
artificial load, tailored to

match the model as closely as
possible, is imposed on C.mmp.
We compare the model
predictions with actual
performance and look for
discrepancies. Simple
configurations are studied
first to ease the task of
identifying the causes of the
discrepancies. The model is
modified to include these
causes and other configurations
are examined. As further
discrepancies are found, their
causes are also identified and
included. In this preliminary
study, we only examined the
process scheduling behavior of
the system. Program memory
size was minimal as was use of
operating system facilities.

263

2. SYSTEM DESCRIPTION

Figure 1 shows a PMS
diagram of C.mmp at the time
this study was done, April
1 976. Five PDP 11/20's and
three PDP 11/40's were in
operation (as of March 1977, a
full sixteen processor
configuration was operational).
Each 1/0 device was attached to
an individual processor. For
example, Pc [0], an 11/20, had
a moving-head disk controller,
a line clock and console
teletype. The link to the
front end processor (FE-link)
on Pcl 1*] was time multiplexed
among up to 20 terminal lines
and has a maximum capacity of
60 characters per second. To
impose a controlled, repeatable_
load, the normal front-end
terminal handler was replaced
by a Remote Terminal Emulator
(RTE). RTEs have been used
previously for similar studies
on other systems. [Turner &

Levy, Lassitere and Scherrj.
The RTE allowed from 1 to 28
terminals to be simulated by
means of a script. Although
all terminals followed the same
script, each terminal might be
at a different place in the
script. The RTE also had the
capability for measuring time
intervals between actions on a

line.

Before measurements began,
each virtual terminal on the
RTE logged in and started a

synthetic process which was
told which set of processors to
execute on. During the
measurement phase, the
following loop was executed on
each terminal:

A. A think interval was
drawn from the think time
distribution. During
this interval, the
terminal was idle.

B. Next, a compute request
was drawn from the
compute time
distribution. The
request was sent to the
synthetic process for
that terminal. Timing

began immediately after
the sending of the
carriage return was
initiated.

C. When the RTE received the
prompt indicating that
the synthetic process had
completed the requested
computation, the delay
was computed and
recorded. This time
interval is defined to be
the response time.

The measurements continued
until a preselected number of
responses were recorded over
the whole system. Internal
timings of the RTE were also
made to ensure that internal
overheads did not distort
results. After the measurement
run completed, summary results
were calculated and printed.

On C.mmp, a complex series
of actions occurred for each
compute request. To explain
these actions, parts of the
operating system will be
described in detail. The Hydra
kernel contains a round robin
scheduler for allocating
"feasible" user processes to
the various processors. To be
feasible, a process had to be
allocated primary memory by a

"Policy Module". The policy
module used for these
measurements merely allocated
memory to requesting processes
on a strict first come first
served basis. It used two
processes to carry out its
task, WSTOP and PAGER. WSTOP
received process-related event
messages from the kernel in
order to maintain its
process-state tables, which it

shared with PAGER. Whenever
possible, PAGER scheduled
processes to be swapped into
primary memory. Another
process, known as the terminal
subsystem, provided
communication between the
processes and terminals. It

passed messages between the
individual processes and the
FE-link

.

264

Mp(15)

Mp(14) —

V

Mp<13)

o

o

o

S.mp

MP<0) A S"

Dmap

Pc(0)

1 1/20

Mlocal

KiO

_ M^(UP03)

_ M-.(»P03)

Kinterval

Ttty

Dmap

Pc(2)

1 1/40

Mlocal

K(inter-bus)

Dmap

Pc(4)

1 1/20

Dmap Dmap Dmap

Mlocal

Mpaging

L(fron(-

end)

Pc(6)

11/40

Mlocal

i— Mpaging

(((inter Pc

interrupts)

levels 4,6,7

Kclock

• Kibi Kibi Kibi Kibi Kibi Kibi Kibi Kibi

Pc(8)

11/20

Mlocal

Dmap Dmap

Pc(10)

11/40

Mlocal — Mlocal

Pc(14)

11/20

Pc(15)

1 1/20

Mlocal

K(halt,starl,con«)

Figure 1. The eight processor configuration of C.mmp

265

Figure 2 gives a graphic
representation of a single
interaction. First', the kernel
received the characters from
the RTE over the FE-link (1).
The characters are buffered
until a "break" character such
as a carriage return is
received. Then they are
bundled in a message and passed
to the port system in the
kernel. WSTOP was notified by
the kernel that a process
requested service (2). WSTOP
recorded the relevent
information and notified PAGER
that a change in the set of
runnable processes had occurred
(3). PAGER then placed the
synthetic process in the
feasible list (4) . The
synthetic process was swapped
in core if necessary, and
scheduled on a processor by the
kernel (5) . The synthetic
process received the message
from the port system, read it
and acknowledged it (6,7). The
requested computation was
performed by executing a small
compute loop a specified number
of times (b,9). Table 1 shows

the length of time a single
computer loop would take on the
various Pes used in these
measurements. After the
synthetic process finished its
compute request, it sent a
prompt to the terminal system
(10). The terminal subsystem
passed the prompt to the kernel
to send to the FE-link (11,12).
Meanwhile, the synthetic
process checked for more
messages from the terminal.
Since none were available, it
blocked waiting for input (13).
WSTOP is then notified of the
new condition of the synthetic
process by the kernel (14) and
the. interaction is complete.
Obviously, a significant degree
of overlap among the various
processes occurs
processors are
However, if the
heavily 1 oaded

,

would not be
immediately upon
the various processes
sequentially.

if several
available

.

system were
processors
available

request and
would run

Front-End

Interrupts

WSTOP

PAGER

Synthetic

Process

Terminal

System

k4

1

100 Msecs

5 6 8

12

14

Computing

9 10 13

11

Time

Figure 2. Trace of one interaction with synthetic job

266

3. PERFORMANCE CRITERIA

Since C.mmp/Hydra is
intended to be used as a

general purpose computer
system, no single measure
adequately captures the
performance of the system.
However, in this paper we
concentrate on the interactive
performance of the C.mmp/Hydra
system and leave to other
reports the consideration of
other factors in the overall
performance of C.mmp/Hydra
[Fuller, 1976; Fuller and
Oleinick 1976; McCracken 1977;
Robertson and Newell, 1975;
Fuller, Swan and Vlulf, 1 9 7 3 J -

Given our interest here in
interactive performance, we
will be using response time as
our principle measure. In
fact, in this preliminary
study, we restrict ourselves to
considering the average
response time. Vie have a

number of reasons for
considering only average
response time here:

A. In this study we are
attempting to identify
the primary performance
characteristics of
C.mmp/Hydra. As we
consider variations in
interactive load and
number of processors, we
will be using average
response time as an
indicator to identify
when a performance
problem occurs in the
system.

B. We are using an analytic
model as the standard
against which to compare
the actual performance
and other measures of
responsiveness (e.g.,
variance in response
time, 9 0% point in
response time, etc.; are
more difficult to extract
from an analytic model.

C. Average response time has
often been used in the
past and we would like to

be able to compare our
measures from C.mmp/Hydra
with measurements from
other time-sharing
systems

.

4. PRELIMINARY MEASUREMENTS

Before detailed response
time measurements were made,
some preliminary data was
collected. Hydra has a trace
facility for recording internal
events such as process
scheduling and kernel calls
(similar to monitor calls in
other systems). Using this
facility, it was found that a

"null" interaction consisting
of receiving a request for zero
computation and replying to it
required approximately 210
milliseconds of 11/40 processor
activity (See Figure 2). Since
some of this activity could
occur in parallel, and some
occurred after a response is
made, the minimum response time
when three 11/40 processors
were available was around 100
milliseconds. The measurement
process imposes an overhead
that is allowed for to some
degree in the numbers mentioned
above, but an error of +/- 10
milliseconds is still possible.

Several input parameters
were fixed for all runs to
reduce sources of noise. All
runs had a least 625
interactions per run to provide
acceptable confidence
intervals, based on our pilot
runs. The 90% confidence
intervals are marked on the
accompanying figures. All runs
used the same samples from
distributions chosen so that
the mean think time was 5

seconds and (for all except the
minimum load runs) the mean
compute time was equivalent to
2.1 seconds on a PDP 11/40 or
5.2 seconds on a PDP 11/20.
The preceding numbers were
chosen to impose a moderate
load on the tested
configuration. Since we were
limited by Hydra internal table
sizes to 20 terminals, we used

267

the relatively short think time
of 5 seconds instead of the
more usual 30 to 35 seconds
[Lassitere and SherrJ in order
to provide a higher interaction
rate. To minimize effects of
the terminal properties, the
characters for the compute
request were started 0.3
seconds before the end of the
think time. In this way,
processing could begin
immediately after the carriage
return was sent

.

5. MODELS and MEASUREMENTS

Figure 3 shows our initial
model of the C.mmp system.
Since the number of terminals
equals the number of processes
in the system, there is no
queueing at the RTE . The model
includes the fact that the
different processors run at
different rates. It is assumed
that processes are scheduled on

the faster processors (i.e.,
the PDP-11/40) if they are
available. If all service
times are exponential,
Jackson's Theorem LKleinrock
Vol. 1; Buzen 1973] yields
convenient solutions of the
analytic model. Note that the
model does not explicitly
represent the various stages of
computation on C.mmp. In
particular, the model does not
allow for parallel processing.
When the system is lightly
loaded, most system processing
occurs in parallel to user
processing,. Therefore, the
model should predict slightly
longer response times than
those measured in the system
under light loads. We did not
conisder this discrepancy to be
serious for two reasons.
First, the maximum overlap is
on the order of 10$ for the
loads which we examined.
Second, we are primarily
interested in system overheads
and bottlenecks when the system
is near saturation.

Next, we want to impose a

load on the system that matches
the model as closely as
possible. Note that the model

assumes exponential service
times for the terminals and
C.mmp. As was pointed out
previously, the minimum compute
time is significantly greater
than zero. This characteristic
prevents any sequence of
compute requests made by the
RTE from having an exponential
distribution. However, we
approximated an exponential
distribution by choosing either
a compute request of zero with
a probability of x or a compute
request from an exponential
distribution that has a mean of
y with a probability of 1-x.
These compute requests are in
addition to the minimum compute
time, t. To achieve a

distribution with a mean and
standard deviation of z from
the combined distribution, x

and y must be as determined by
eqns (1) , (2) and (3)

.

x = p(2-p) (1)

y = z(1-p) / p(2-p) (2)

wner e
,

p = t/z (3)

Note that as p goes to 0, x
goes to p and y goes to z.
When p is 0.1 as is true in our
case, x and y are very close to
p and z

.

5.1 Case 1: Negligible
Compute Load

To find out what delays
would occur in a load with
light compute requests, runs
were made with zero compute
requests (The results are shown
in Figure 4). The non-zero
response time for one terminal
can be attributed to the
overhead for handling a compute
request. Note that the initial
model predicted no significant
increase in response time as
the number of terminals
increases while the system
showed a noticeable increase.

The dominant cause of this
discrepancy was the Front-End
(FE) link bottleneck. This
link was at 65% of capacity

268

Terminals Processors

Figure 3. Initial Model of C.mmp/ Hydra

Response Time

Measured data point

with confidence interval

Model with FE-link delay

4
Model without FE-link delay

8 10

Number of Terminals

12 14 16 18 20

Figure 4. Five PDP-11 /20s with no compute load

269

when each of 20 terminals was
interacting once every five
seconds. (I.e., a combined
rate of 4 interactions/second).
To incorporate this factor, we

developed a second, more
detailed model which included
the FE link as a server (see
Figure 5). The results of this
second model are also shown in

Figure 4. This model was a

much better predictor of
response time. The cause of

the remaining slight
discrepancies cannot be

determined because the
potential error in the input

the model is large relative
the discrepancies observed.

to

to

5.2 Case II: Uniprocessor
configuration
C.mmp/ Hydra

of

Next, we attempted to
measure C.mmp as a

uniprocessor. The results are
shown in Figure 6. The
synthetic processes were
restricted to one 11/40.
Unfortunately, the 11/20s could

not be configured out of the

system and the operating system
processes continued to use them
for their computation.
Although the model does not
include this inaccuracy, the
predictions are within the 90%
confidence intervals of those
data points measured. Since
the 11/40 was completely
saturated with 4 terminals, no

further measurements were made
for this configuration.

5.3 Case 111: The five
PDP-11/20 configuration

Since no modifications to
the model were necessary from
the uniprocessor case, we moved
on to a multiprocessor system.
The configuration of five
11/20s and no 11/40s was chosen
to study Hydra when processor
speeds were relatively uniform.
Figure 7 shows the results of
the measurements. All model
predictions are within the 90%
confidence intervals of the
measured data. There is a

slight trend for the model to
underestimate as the number of
terminals increase, but the
error factor in the measurement
process makes such trends
difficult to interpret.

5.4 Case IV: The eight
processor configuration

The final configuration of
this study was the maximum
system at the time of
measurements, five PDP-11/20s
and three PDP-11/40s. When
11/40s and 11/20s were both
available, a process was
scheduled on an 11/40 at
dispatch time,
model
underestimates
response t ime

The analytic
significantly
the measured

(see Figure b) .

Further investigation of the
scheduling policy revealed that
if a process is running on an
11/20 and an 11/40 becomes
available, the process is not

Terminals Front-End Link Processors

Figure 5. Detailed Model of C.mmp/ Hydra

270

Response Time

A

6-t

4 __

1 2 3 4 5

Number of Terminals

Figure 6. One PDP 11/40 with normal compute load

>onse Time

6 8 10 12 14 16 18

Number of Terminals

2C

Figure 7. Five PDP 11/20$ with normal compute load

271

Response Time

Model without preemption

(as in real system)
t It H

Model with premption

8 12

Number of Terminals

14 16 18 20

Figure 8. Eight processors with normal compute load

transferred to
analytic model
is . Another

the 11/40. The
assumes that it

Markovian model
LW. Corwin] that reflects the
actual scheduling policy was
developed and plotted on Figure
9 (labeled without preemption
Model). Since the time of
these measurements, the
scheduling policy has been
revised so that an idle 11/40
will preempt an 11/20. Even
the nopreemption model
underestimates the response
time. No single cause of this
remaining discrpancy has been
identified at this time. We
intend to instrument
C.mmp/Hydra in more detail in
order to make intelligent
hypotheses as to its cause(s).
Then we will devise experiments
to test these hypotheses.

6. CONCLUSIONS AND COMMENTS

The main value of the RTE
measurements reported here were
to confirm that C.mmp/Hydra, in

its early stages of operation,
does in fact handle a simple
interactive work load without
experiencing any major
performance anomolies. In
fact, while it is difficult to
quantify, one of the major
values of the RTE emulator has
been to repeatedly put heavier
interactive loads on
C.mmp/Hydra than are
experienced under operational
situations and hence uncover
bugs and performance problems
before they become a serious
problem to the user community.
Our future goals for the RTE
reported on here is to extend
its capabilities so that its
synthetic load makes much more
extensive use of Hydra's
facilities, primary memory, and
secondary storage so that it

can better detect remaining
performance problems in the
C.mmp/Hydra system.

With relatively simple
models and simple synthetic
jobs, we identified several

272

performance discrepancies.
These discrepancies in turn
lead to a better understanding
of Hydra. Indeed, the
scheduler has been improved
since the time of these
measurements to recognize idle
11/40s and move processes onto
them from 11/20s. It should be

noted that the synthetic load
was much heavier than normal
user loads and thus was more
prone to cause synchronization
bugs to surface. Several
elusive bugs were tracked down
because the RTE was able to
replicate the conditions
causing them.

One must not accept the
results of any such system
without critically studying all
assumptions underlying the
model. In this study, memory
contention and memory
scheduling were explicitly
avoided. The syntnetic jobs
did not use the I/O systen, the
File system or the operating
system tables as much as real
user programs are expected to
use these facilties

.

Measurements of users of
C.mmp/Hydra are needed to find

realistic distributions of

think and compute time. The

system might also be studied
under the stress of many more

processes. A simulation model

is being developed to more
accurately reflect the internal
workings of Hydra to see what
other factors affect system
performance. The possible
causes of the remaining
discrepancies between actual
and predicted response times
will be investigated and

studied

.

References

Fuller
.

01 e i ni k ,

measurements
programs

S . H . , and P.N.
"initial

of parallel
of a

multiprocessor," l^th IEEE
Computer So c. 1 n t .__ C_0_D_f

,

Washington

,

1 976.
D . C . Sept

Fuller , S . H . ,

"Price/performance
comparison of C.mmp and the
PDP-10", IEEE/ACM Symp. on
Computer Architecture, pp.
195-202, Jan. 1976.

Klemrock, L.
Systems, Volume JL

Queueing
Theory

,

Wiley
1 975.

& Sons New York

McCraken, D., "A production
system version of the
Hearsay 11 speech
understanding system", PhD
Dissertation, Dept. of
Computer Science,
Carnegie-Mellon University,
Pittsburgh, PA 15213, 1977.

* This work was supported by
the Advanced Research Projects
Agency of the Office of the
Secretary of Defense (contract
F44620-75-C-007 1*) and is
monitored by the Air Force
Office of Scientific Research.-

* * S.H. Fuller is now at
Digital Equipment Corp., 1925
Andover Street, Tewksbury,
Massachusetts 01676

273

\

j

PERFORMANCE STUDY OF A MINICOMPUTER SYSTEM

S. K. Lee
R. B. Maguire
L. R. Symes

Department of Computer Science
University of Regina

Regina, Saskatchewan S4S 0A2

The paper describes a study carried out to measure the performance
of a time-shared minicomputer system. The system is a PDP-11/34 based
RSTS/E system used in an undergraduate Computer Science laboratory.
Results of the study have shown that in such an environment a relatively
inexpensive minicomputer facility can support a large number of on-line
users. Specifically, the study indicated how to expand the system from
its current thirty to forty or more terminals through software modifica-
tions and minor hardware expansion.

The measurement package is internally driven, thus eliminating the

need for human intervention or a front-end computer. The measurement
system creates a number of pseudo terminal users. Activities of these

pseudo users are controlled on an individual basis and an event trace of

all activity is recorded. The technique used requires no external
resources and permits the type of load to be varied conveniently. The
measurement system incurs little system overhead, thereby giving an

accurate characterization of system performance.

Key words: Minicomputer system; performance measurement; response time;

time-sharing; workload.

1. Motivation

Our usage of a time shared general
purpose system in an undergraduate Computer
Science laboratory has been steadily increas-
ing during the past several years. The
PDP 11/34 minicomputer system is used during
the school year by approximately four hundred
students, most of them in their first and
second year of university with little or no
programming experience. The reason for
assigning these students to such a system
instead of the large central computer at the

University is to provide direct exposure to

hardware. Although the system is satisfac-
torily handling the current load, it was
uncertain how much the load could be increased
before response time became intolerable.
Consequently a study was initiated to deter-
mine the performance characteristics of the

system and to provide information on how to

bring about improvement in the most cost
effective way.

2. System Configuration

The system is a PDP 11/34 running the

RSTS/E version 6B time sharing system with
124K 16-bit words of semiconductor memory,
three RK05 moving head disks (2.5 MB each), a

dual drive floppy disk and a mixture of

thirty terminals.

3 . Measurment

A software measurement package was
developed to perform the functions of system
stimulation, measure response time and
collect system statistics. The package was
driven internally by a number of pseudo

275

terminal users, each from a different pseudo
keyboard (a special and often very useful
feature available on RSTS/E V06B) . A pseudo
keyboard is a non-physical device that has
the characteristics of a terminal and is

treated by the rest of the system in the same
way as a real terminal. The workload imposed
by each user and the characteristics of each
user (e.g. think time between commands and
typing speed) are built into the prepared
scripts. A set of such scripts was constructed
following an observation period in which
typical users of the system were timed and
their output collected. Programs contained
in the scripts were selected from those
obtained during the observation period. Com-
binations of these scripts were used to

represent various types of workloads. A
sample script is given in Figure 1.

The number of pseudo users (i.e. scripts)

is specified at the beginning of each measure-
ment session. This allows the load level and
user mix to be varied conveniently. Start-
ing time, as well as the duration of each
measurement run, can be preset to a particular
hour of the day. Since no more operator
intervention is required after the initial
dialogue, automatic initiation can be preset
to occur during unmanned hours. This avoids
interference with, and from, normal operation
and facilitates sleep.

To ensure that the scripts matched the

real workload, the package was used to collect
statistics during normal operation. These
results were compared to the results obtained
running the scripts. The differences were
minimal

.

During a measurement run, activities of

each pseudo user are controlled on an indivi-
dual basis. A time-event trace of all or

selective terminal users is kept in a log file

and response time is recorded for each trans-
action. While this is in progress, a set of

statistics collection routines is invoked
periodically to monitor system activities
such as CPU utilization and disk status.

The measurement package written in

BASIC-PLUS consists of two parts. The first
part is a multi-pseudo terminal driver. In

order to minimize the amount of code in memory
at any one time, this part is subdivided into
two routines (R-l, R-2) . The first routine
(R-l) is responsible for initiating dialogue
during start-up, initializing run parameters,
processing script files and creating a virtual
array for storage of the script lines. When
the execution of this routine is completed,
it "chains" to the second routine (R-2) to

start the measurement run. By "chaining",
the code for the first routine is swapped out

of main memory and the code for the second
routine is brought in. Thus, only the code
needed for the current phase is in memory.
R-2 controls the activities at each of the

pseudo terminals. It determines when and
what to input to the system. It monitors the

output from the system, determines if it is a

response or just an echo, maintains a time-
event trace and records the response time for

each input line. To keep the response time
measurement accurate to within 1 second, each
terminal in the wait-for-response state is

polled at the beginning of every second for

system output. During each polling cycle,
R-2 is locked in memory, thus preventing it

from being swapped out. At the end of the run
period all pseudo users are logged off the
system, files are closed and R-2 removes
itself from the system job list.

The other part of the package is made up

of a set of programs to collect, compile and
summarize data on system component activities.
Once activated, routines are invoked periodi-
cally to take snap shots of the system. A
report summarizing the statistics on CPU
usage, disk usage, run time statistics, file
processor status, etc. is produced at the end
of the measurement run.

4. Measurement Results

As mentioned above, a set of scripts each
representing typical workloads from students
with varying degrees of programming experience
was prepared. Some scripts contain frequently
used commands for login, logoff, file build-
ing, simple editing and running small BASIC
programs, tutorials and games. Others make
greater use of the Fortran compiler, linker,
editor, file manipulator, macro assembler and !

larger programs. With these scripts, the

workload can be made to match different run-
ning environments. Four distinct types of

workloads were created to simulate observed
situations

:

(1) mixed-user type - This represents an

open laboratory environment, that

is, lab usage during unscheduled
hours for course assignments. In
those hours, the user group is a mix
of the students described in 2 below,

j

(2) single-user type - This represents
scheduled laboratory usage by
students in a particular class.
This type can be further divided
into three subclasses: introduc-
tory and advanced programming lab-
oratory periods and laboratory per-
iods running only tutorials. In
this paper, only the results for

the advanced programming labora-
tories are presented because they

276

!C ADVANCED USER SCRIPT
'. C This script simulates the workload of a 300 student.
!C F300A.FOR,F300B.FOR and F300C.FOR are routines to be
'. C linked together to form an electronic calculator program.
!C

IC The following explains the use of script directives :

IC IC comment.
!C !P enter system output into log file.

!C INP discard system output.
!C '.LOOP n repeat the script lines up to next '.ENDLOOP

! C n times

.

IC !ENDLOOP end of loop.
IC ITHINK m,n user think time for the following commands
IC lies between m sec and n sec.

IC IPASSWD pj.pg substitute this line with the password
'.C for account [pj,pg].
!C

! THINK 2,5
150/50
IPASSWD 50,50
OC
'.LOOP 2

'.P

'.THINK 5,30
EDIT F300A.FOR
10AL
INP

EX
OC
PIP F300A.BAK/DE
'.THINK 5,10
FORT F300A,KB:=F300A
FORT F300B=F300B
FORT F300C=F300C
IP

LINK CAL=F300A,F300B,F300C/F
RUN CAL
l+(2.2*(3.3-4.4)/5.5)=
5.6*102.3/22=
INP

C

DIR
IP

RUN$PIP
INP

KB:=F300C.FOR
D.FOR=F300A.FOR
D . F0R/DE
OC
'.THINK 5,20
EDIT F300B.FOR
I

C COMMENT
OJ

L-AK
EX
OC
'.ENDLOOP

ITHINK 2,5
PIP F300B .BAK/DE
OCCC
BYEF
'.END

Figure 1 A Sample Script

277

represent the worst case among all
the user groups

.

(3) A group of users all running highly
I/O bound jobs.

(4) A group of users all running highly
compute bound jobs.

The last two are extreme cases, very
unlikely to happen during normal operation.
They are included only for comparison purposes.

Results obtained for the mixed-user type
situation are summarized in Figures 2 to 6

inclusive. Figure 2 shows the average
response time for 14 listed commands with the

number of simulated on-line users ranging from
5 to 28. While response to most commands
(including others often used but not shown in

Figure 2) remained reasonably small over the

entire range, a few increased drastically
beyond the 15-user level. For example , Fortran
users (see FORT, LINK, PIP and EDIT commands)
find the response time unreasonable above the
15 user mark.

Figure 3 displays the average response time
for all commands in the mixed-user environ-
ment, broken down by user type. It shows that
even with the presence of some advanced users,
introductory Basic and tutorial users are
relatively unaffected by the load increase.
But degradation was felt much sooner by
advanced users. Owing to this we must
restrict laboratory section sizes for classes
using Fortran and limit the number of s tudents
using the laboratory for Fortran assignments.
Consequently we have kept one of our multi-
section Fortran classes on the University's
computing facility.

Figures 4, 5 and 6 summarize the statis-
tics collected. Figure 4 reveals that the

degradation was caused mainly by the rapid
increase in time lost waiting for I/O. Time
lost means time when the CPU is available but
must wait for the completion of disk I/O. As a

result, the net amount of useful work done
remained unchanged beyond the 15 user point.
Beyond this point the system is I/O limited.
Figures 5 and 6 further identify swapping as

the major factor causing the increased I/O wait
time. This implies that unless the amount of

swapping can be decreased and/or the swapping
rate can be increased, response cannot be
improved significantly.

Results from the other three workload
types confirm the above finding. A test
simulating a group of advanced students
(Figure 7) showed that the system was satur-
ated by only a small number of these users.
It was again limited by time lost in I/O wait.

In a heavily I/O bound environment
(scripts continuously requesting disk file
transfers) system saturation occurs even
earlier (Figure 8) . The compute bound envir-
onment tested the maximum capacity of the CPU
when not limited by I/O wait. The scripts
continuously computed complicated arithmetic
expressions without intervening I/O. In this

case the time lost due to I/O wait is insigni-
ficant. Compare figures 6, 7, 9 and 10. As

a result, almost 95% of the CPU was allocated
to the execution of user code

.

5. Analysis

Having identified the major bottle necks in

the system, we then considered a number of possible

alternatives for upgrading the system to meet
an increased demand. One way was to invest in a

completely new, faster and more powerful
machine like the PDP 11/70. The disadvantage
of this course was the high cost. Another
way was to acquire another PDP 11/34. The two
machines could share most of the slower I/O
devices as well as the workload. The third
and probably the least expensive alternative
was to optimize/upgrade the present system so

that it could perform at its maximum capacity
for the intended application. With this

alternative, there are again a number of hard-
ware and software options. Some of the hard-
ware options are as follows:

(1) addition of a fixed head disk for
swapping.

(2) an even faster swapping device such
as a semiconductor fixed head disk
replacement

,

(3) a hardware memory cache, or

(4) a hardware floating point unit to

improve computation time.

The system performance can fur ther be enhanced
by software tuning. An example of such
'tuning' is setting an optimum value for

system parameters such as the number of small
buffers (used for terminal I/O) , the amount
of software cache, (temporary storage for disk

directories recently used - therefore most
likely to be used in the near future) , maximum
job size etc.

.

The options that were readily available
to us were to (1) install a fixed head disk
and (2) allocate more buffer (cache) space to

disk directories. With the fixed head disk
installed, the system was measured again with
the mixed-user environment. The results are

summarized in Figures 11 to 15. These can be
compared with the results shown in Figures
2-6 respectively. As expected, the system
response greatly improved. At the maximum
load the average response decreased by almost

278

50% (Figure 12 vs Figure 3) . Response time
for most of the worst case commands shown in
Figure 2 dropped by as much as 75% (Figure 11).
The improvement was the result of a significant
increase in the block transfer rate during
swapping, thus reducing the amount of disk
wait (Figure 13-15). Useful work done by the
CPU was increased by more than 60% (Figures
4 and 13)

.

A test was performed to study the effect
of software cache on the system by disabling
the cache (normally enabled) during an open
laboratory period with about 15 real users on
the system. Soon after the cache was
disabled, system response became signifi-
cantly slower than before (see Table 16 for
the comparison) . Activities at the terminals
suddenly dropped owing to more wait time.
Users, none of them having knowledge of the

test, became very impatient. The test
showed that the presence of the cache indeed
has a significant effect on system response.
(The size of the cache can be varied only by
system regeneration. The effect of this is

currently being investigated.)

6. Conclusion

The study demonstrates the effectiveness
of internally driven measuring techniques.
They have proven to be very flexible and
convenient to use and require no external
resources such as human involvement or a

front-end computer. The overhead incurred
was reasonably small, making it a very useful
tool in system characterization. The study
also showed that a relatively inexpensive
time sharing facility can adequately accommo-
date large numbers of introductory and
tutorial users, but only limited numbers of
advanced users.

The work was supported in part by
National Research Council Grant A-7912.

Figure 4. Run Time Statistics in Figure 5. File Processor (FIP) Statistics in
Mixed-User Environment Mixed-User Environment

Note: Disk Wait - FIP waiting for disk file data
SAT Wait - FIP waiting for disk Storage

Allocation Table.

280

10

uj SO

LOST

EXEC

USER

No. cf Users

Figure 8. Run Time Statistics in
Heavily I/O Bound Environment

—

i

5

I 40

/5 ?0

A/a of Users

Figure 9. Run Time Statistics in

Heavily Compute Bound Environment

281

282

TABLE 1

Comparison between no cache and with cache

Cache/FIP statistics =

% hits
Cache CPU usage
FIP desired
FIP waiting

With Cache

75.82%
1.29%

21.35%
18.37%

Without Cache

0.00%
63.13%
60.03%

CPU status =

user job
CPU idle
Monitor
Fast I/O

15.58%
67.22%
11.74%
4.93%

25.95%
56.50%
12.60%
4.87%

Disk Status =

user data
directory
swapping

BLK/sec xfer/sec
2.44, 0.83

2.36, 2.36
21.70, 0.90

2.62, 1.16

8.45, 8.45
19.45, .91

283

TO MULTIPROCESS OR NOT TO
MULTIPROCESS

Melvin Lieberman

Manager of Computer System Measurement
Chase Manhattan Bank

1 New York Plaza
New York, N.Y. 10015

A methodology is provided for deciding whether or
not to combine two individual central processors as a

multiprocessor. This methodology is sensitive to the
following

:

1. Number of terminals in network
2. Hardware availability
3. Software availability
4. Thruput differences
5. Staffing impact
6. Cost differences

Analysis of a typical configuration reveals that
from a hardware point of view a multiprocessor can be
expected to offer improved availability; but software
availability is lower in the multiprocessor. The ex-
pectation of improved thruput that could not have been
obtained from two individual processors does not appear
justified. This occurs because the primary thruput bene-
fit of a multiprocessor, reduction in segmentation of
CPU and I/O capacity, is reduced at moderate utilization
levels and the coupling loss resulting from CPU/CPU inter-
ferance for shared resources increases. Staffing patterns
are not particularly sensitive to CPU population, there-
fore, changes resulting from implementation of a multi-
processor are not large.

In summary, the pre-tax, current value, cost differ-
ences did not, in this typical case, justify investing
in the equipment to convert two individual processors to

a multiprocessor.

Key words: Hardware availability; multiprocessing; present
discounted value; software availability; technological matrix
thruput

.

285

Presented here is an analysis
employing classical industrial engi-
neering techniques such as availabi-
lity modeling and the machine inter-
ference model to assist in deciding
whether or not to build a multi-
processor from two individual CPU's.
Three factors are considered in the
decision frame-work:

1. Impact on availability

2. Impact on site thruput

3. Impact on cost

Availability Overview

Multiprocessors (MP's), it is
claimed, offer improved availability
of the computing facility because one
processor can take over for the other
if it fails. This is a difficult
benefit to establish. For the most
part, commercial users are more con-
cerned with delivering output at
specified deadlines. A good measure-
ment attribute for the ability to
function well in such an environment
would be the confidence in timely
delivery. MP's don't give deliver-
ability much of a boost. They func-
tion so as to give you part of your
output by the deadline and the rest
later. The remaining uniprocessor
(UP) of a two UP installation would
have done the same with a slight
time-lag. Our methodology enables
commercial users to assign a finan-
cial return to the availability
improvement aspects of an MP.

Site Thruput Overview

MP's, it is felt, enchance site
thruput. They may, but in very limit-
ed circumstances. Our analysis indi-
cates that the value of an MP, in

terms of increased thruput, is high-
est when it is least likely to be bene

-ficial, i.e., when system utilization
is low. Systems that have reduced
thruput as a result of CPU vs. I/O
segmentation should be tuned prior to
examining the MP/UP decision. In
either case, as CPU utilization rises,

during peaks or across time, the prob-

ability of increased thruput declines,
and eventually at 60% to 70% CPU
utilization depending on coupling
losses, the MP becomes less product-
ive, in a thruput sense, than two
UP' s.

Cost Overview

It costs more money for a multi-
processor, generally speaking, than
for the two individual processors
which comprise it. This is a result
of the requirement for an interconnect
box which some vendors explicitly mar-
ket or the interconnection circuitry
distributed throughout the architec-
ture of other vendor offerings. An
explicit marketing approach is quite
equitable, only those who want an MP
need pay for it. Other vendors charge
for it, whether or not it is used.

With regard to financial benefits,
an MP may cost somewhat less money to
operate than two UP's because fewer
operators are required. It will re-
duce losses associated with terminal
operator salaries which continue to
accumulate when the host CPU programs
are out of service because of hard-
ware failure; however, the effects of
software failure have a tendency to
negate this cost reduction. Also,
some core and disk savings are poss-
ible .

The techniques described in this
paper enable users to prepare models
that, in effect, allow them to finan-
cially test the usefullness of equip-
ment without having to assume the risks
of implementation.

Availability Details

Five system elements should be
analyzed to estimate the impact of
availability on the financial results
of building an MP (component availabi-
lity interrelationships are shown in
Chart I)

.

1. Terminal Environment

2 . CPU '

s

286

3. Operating System Terminal Environment

4. MP Interconnecting Box 0ur model i- s based on an average
of 200 operational terminals during a

5. System Support Disks 4000 hour work vear consisting of 250,
sixteen hour days. Each terminal
operator is valued at $10.00 per hour.

CPU A

OP. SYS
A

CPU B

MTBF=200
MTTR=2
MRT=.

5

OP. SYS
B

MTBF=200
MTTR=0
MRT= . 2 5

CPU A CPU B

MTBF=200
MTTR= 2

MRT=0

OP. SYS

MP BOX

MTBF=90.1
MTTR=0
MRT= . 2 5

MTBF=1000
MTTR=2
MRT=1

RES .DISK

A
I

RES. DISK
B

MTBF=3000
MTTR=2
MRT=.5

RES. DISK
1

MTBF=3000
MTTR=2
MRT=.

5

RES .DISK
2A

RES. DISK
2B

MTBF=3000
MTTR=2
MRT=.5

RES. DISK MTBF=3000
2 MTTR=2

MRT=.

5

RES. DISK
3

MTBF=3000
MTTR=2
MRT=.5

Dual UP Availability Network MP Availability Network

CHART I

287

CPU'

s

Each CPU is charcterized by a

mean time between failures (MTBF) of
200 hours and mean time to repair (M

TTR) of two hours. Thus, we would
expect failures to occur as follows:

1. CPU (A) or CPU (B) or both -

Once every 100 hours.

2. CPU (A) or CPU (B) but not
both - Once every 101 hours.

3. CPU (A) and CPU (B) - Once
every 10,000 hours.

Simultaneous CPU failure is not
of interest because it has an identi-
cal impact on both environments. The
above results were obtained by solv-
ing for the combined availability of
2 CPU's and then the mean time between
simultaneous failures which was sub-
tracted from the total failure rate
of .01 per hour yielding a mean time
between partial failures of 101 hours.
Division of 4000 operational hours by
a 101 hour MTBF indicates that we
should expect 39.6 failures per year
each affecting 50% of a dual UP faci-
lity. If no recovery were possible
on the adjacent CPU, 79.2 hours per
year would be lost. An average re-
covery time of 30 minutes, which is

more realistic, yields 19.8 annual
lost hours that would not occur on
an MP. We would save $19,800.00 per
year if we had a MP.

Operating System

Operating System software fail-
ures have a tendency to offset MP
benefits. To illustrate, we have
divided them into four categories:

1. Stopped both elements of
a MP

2. Stopped one element of a MP

3. Stopped one UP

4. Stopped both UP'

s

Categories 1 and 3 deserve seri-
ous consideration, 2 and 4 are highly
improbable, although type 4 failures
occasionally result from bungled sys-
tems programming efforts. Another
important point is that software fail-
ure rates are tightly correlated to
workload level, given software of
identical quality and complexity.
This means that MP software should be
expected to fail at least as frequent-
ly as the combined rate of two UP's.
As a matter of fact, MP rates could
easily be a little higher because of
increased environmental complexity.
Note, however, that when MP software
fails, the entire site is out, not
just half the site as in a UP software
failure. If the mean time between UP
software failures is 200 hours then
we can expect the MP to fail once
every 100 hours.

Simultaneous independent UP soft-
ware failures are extremely improbable.
Assuming 15 minutes to recover from
an individual CPU software problem,
we can expect to lose 2000 terminal
hours on the MP and 1000 on the two
UP's. This occurs because each UP
failure brings down only 50% of the
terminals. Our loss would be $10,000.
00 Dollars per year. To account for
increased complexity, we should add
10% to the MP failure rate, these
extra failures would not occur in a

UP. Thus we have an additional $2000.
00 per year in software offsets to
hardware availability benefits.

MP Interconnection Box

Interconnection Box failures are
not possible in a dual UP environment
because such a component is not part
of that configuration. They would
also tend to offset the MP's CPU
availability benefit.

We can assume that the MP box is

very reliable, it is probably 20% as
complex as the CPU so its mean time
between failures should be approxi
mately 1000 hours. We can thus expect
4 failures per year during on-line
operation. At worst, the MP would

283

have to be split in such circumst-
ances, a process again requiring 30
minutes for software recovery. in
this case, however, the whole site
would be inoperable, resulting in 400
lost terminal hours or $4000.00 per
year.

System Support Disks

Failure of this component will
stop both halves of an MP but only
50% of a UP. Our configuration show
2 disks for each UP and a total of 3

on the MP. Each UP will experience
a disk failure once every 1500 hours
with an MRT of 30 minutes resulting
in an annual loss of $5333.00. The
MP will experience a failure of all
terminals once every thousand hours
resulting in an annual loss of $4000.
00. Thus, we have a net gain in the
disk area of $1333.00 per year.

Net Availability Impact

As a whole, availability has the

following financial impact:
Saves

1. CPU $19,800.00

2. Operating Costs
System $12,000.00

3. MP Intercon- Costs
nection Box $ 4,000.00

4. System Support Saves
Disks $ 1,333.00

NET ANNUAL SAVINGS $ 5,133.00

Thruput Details

Two factors are at work, in oppo-
site directions, influencing thruput.
Multiprocessor configurations have a

tendency towards higher thruput be-
cause CPU vs input/output segmentat-
ion is reduced. In other words, MP's
reduce the probability of a total I/O
wait on CPU A while two programs are
ready for CPU B. In opposition to

this, is the coupling loss resulting
from two machines in an MP contending
for memory accesses to table entries

or instruction locations. These los-
ses range from averages of 10 to 25%.
Our analysis indicates that both fac-
tors, reduced segmentation and coupl-
ing losses, are sensitive to CPU load-
ing in opposite directions. When CPU
load rises the probability of a seg-
mentation problem in a pair of UP's
is reduced and, the probability of
memory access conflict increases in a

MP.

Thus, we feel that MP thruput is

theoretically superior at low utiliz-
ation and UP thruput is superior at
high utilization. Unless we are faced
with a utilization reduction caused
by CPU vs. I/O segmentation, addition-
al thruput at low utilization (which
now must be a result of low demand)
is not meaningful.

To illustrate these results, we
have prepared Chart II, which is

slightly optimistic about MP thruput
at high utilization and pessimistic
at low use levels. Table entries
compare thruput of an MP to that of a

pair of UP's at various levels of UP
utilization and MP coupling loss fac-

tors. Table entry values were comp-
uted by solving a queueing algorithm
based on a fully cooperative service
facility serving a finite number of
customers for actual use of the cen-
tral server. CPU utilization levels
were converted to thruput and the

thruput of a MP was divided by that

of two UP's. Average elapsed time

per job in the UP at a particular
utilization level was neld constant
for the thruput comparison at each
coupling loss level. Our curves are
not smooth as we go across utiliz-
ation levels because average elapsed
time could not be held perfectly con-
stant in the queueing algorithm which
works with integer mix sizes. It can
be seen that at 70% utilization, a

likely operating point, we can expect
a slight decrease in the thruput of
an MP compared to two UP's. If our
shop had an average daily utilization
of 70% we would expect to see quite a

few moderately high volume days with
average utilizations of 80% and a few

239

at 85 to 90%.

On those high volume days we
would discover that the shop's thru-
put is a little lower than we comput-
ed it to be, based on data taken from
low and average volume days. Perhaps
we have discovered some relativistic
effects which should be taken into
account by software physicists.

If, on the other hand, we are
dealing with low utilization result-
ing from CPU vs. I/O segmentation,
the system should be tuned prior to
studying the MP problem. After all
non-CPU constraints are released,
thruput will be limited by available

.

workload or very stringent elapsed
time requirements. Objective analy-
sis of MP vs. UP thruput can now be
performed as described above.

Cost Analysis

Implementation of an MP will im-
pact the following types of cost:

1. CPU operator salaries

2. Systems programming salaries

3. Maintenance costs

4. Terminal operator costs

5. Equipment cost

To determine operations staff
changes that would result from imple-
menting an MP we consult the techno-
logical matrix that relates our site
staffing requirement to workload and
enviromental complexity. Our inputs
are one fewer CPU's, a more complex
environment, and everything else the
same as before. The output would
probably be a recommendation to re-
duce staffing by one console operator
on each shift and to add a Systems
Programmer to the first shift. Oper-
ator salaries, including benefits
range from $20,000.00 to $25,000.00
per year. Systems programmers earn,
including benefits, $27,000.00 to
$36,000.00 per year. These salaries

should be affected by inflation to
different degrees with a somewhat
larger effect expected for Systems
programmers. This minor reduction in
personnel occurs because personnel is

to a much larger extent a function of
workload than CPU population.

Additional maintenance will cost
approximately $10,000.00 per year and
will inflate at a rate equal to that
of System Programmers. Terminal
operator cost reductions were calcu-
lated to be approximately $5133.00
per year in a 200 terminal environ-
ment. These will inflate at the same
rate as that expected for console
operator salaries.

An MP requires core storage for
one, instead of two operating systems
and reduces disk storage necessary to
contain the operating system. We
estimate that$12,000 Dollars per year
can be saved in disk area. Reduced
core utilization would result in a

$15,000 per year savings. In total
these hardware reductions would ac-
count for a $2700.00 per year mainte-
nance reduction.

From a costing viewpoint, we are
being asked whether a capital invest-
ment in an MP box would have a suffi-
ciently high return to be warranted.
An initial investment of $400,000.00
is required and a reasonable internal
rate of return would be 12%. We can
expect a series of cash flows in fut-
ure years as shown in Chart III.

The present discounted value of
the savings resulting from implement-
ing a MP would be $243,380.00, clear-
ly to low to justify spending $400,
000.00. These results are relatively
insensitive to terminal operator
population because each additional
200 operators increase the return by
only $5000,00 in year one. It appears
that more research in the area of
additional benefits will be required
before this MP can be rationally

(

justified in an average commercial
environment. However, one should not
underestimate the ability of Indust-

290

rial Engineers to uncover more hidden
costs associated with MP operation.

CHART II

MP/UP THRUPUT RATIOS FOR EQUIVALENT TIMELINESS FACTORS

MP COUPLING
LOSS FACTOR

UNIPROCESSOR UTILIZATION LEVELS
50% 60% 70% 75% 80% 85% 90%

1.6/2 .92 .87 .89 .89 .89 .86 .84

1.7/2 1.05 .98 .97 .96 .98 .91 .89

1.8/2 1.17 1.03 1.04 1.03 1 .98 .95

CHART III

ANNUAL CASH FLOW

Cost Area
Year 1

DF=.9448

Year 2

DF=.8435

Year 3

DF=.753

Year 4

DF=.67 2

Year 5

DF=.60

Infla-

tion

Factor

CPU

Operator +65672. +62172. +58855. +55697. +52734. .065

Sys.

Proqrammer -30858 -29617. -28424. -27271. -26177 .075

Maintenance -9796 -9402. -9024. -8657. -8310. .075

Maintenance +2645 +2539. +2436. +2337. +2244. .075

Term.

Operator +4994. +4727. +4476. +4236. +4012. .065

Disk

and Core +25510. +22775. +20331. +18144. +16200. 0

Annual

Savings 58167. 53194. 48350. 42966. 40703.

291

COMPUTER PERFORMANCE MANAGEMENT

293

COMPUTER PERFORMANCE MANAGEMENT

Philip J. Kiviat

SEI Computer Services
Washington, D.C.

CPE has only recently emerged as a

full-fledged technical/management activity
in most computer organizations. With a

history going back scarcely more than ten
years, CPE has more ahead of it than behind
it in the way of tradition, standard
practices or discipline.

In keeping with its emergence as a

necessary computer management activity, CPE
is filling in the gaps in its architecture.
Formerly preoccupied with "tools" such as

hardware monitors, CPE practitioners are

now spending their time understanding what
needs to be done, and how that might be
done, rather than learning the fine points
of particular measurement techniques.

There is a shift from the specific to the

general as more systematic approaches are

being developed and applied to the analysis
of computer systems.

In keeping with the trend, this session
contains three papers that extend and
codify the practice of CPE. Two papers
provide a formal structure for two core CPE
tasks - system tuning and system sizing.

They are both the product of work ddne at

the Federal Computer Performance Evaluation
and Simulation Center for Federal agencies
that felt the need to formalize preferred"!

approaches to these tasks. A third paper
extends the measurement process into the
realm of human performance, and shows how
human performance variables can be
incorporated along with conventional
hardware/software measurements as part of

the systems procurement and systems
evaluation phases of Federal ADP progrcns.

This session thus both extends the

realm of CPE into areas that concern
themselves with human behavior, and narrows
it by presenting structured approaches to

CPE tasks that are now done with a great

deal of individualism in many places.

295

THE DEVELOPMENT OF A TUNING GUIDE

Barry M. Wallack

Command and Control Technical Center
Computer Performance Evaluation Office

The Pentagon Washington, DC 20301

The Federal Computer Performance Evaluation and Simulation
Center under contract to the Command and Control Technical Center
has developed a document for Worldwide Military Command and Con-
trol Systems that can be used by site personnel to analyze the
performance characteristics of their Honeywell 6000 computer
systems. This document, called an H-6000 Tuning Guide, incorporates
detailed analysis procedures that guide the analyst in applying
specific techniques to improve system performance.

Key words: Computer; Honeywell 6000; performance evaluation;
response time; tuning; turnaround time; WWMCCS

.

1. Introduction

The Office of the Joint Chiefs of Staff
(JCS) has directed that the Command and Con-
trol Technical Center (CCTC) develop a com-
puter performance analysis capability to

support the World Wide Military Command and
Control System (WWMCCS)

.

CCTC, acting at the direction of the

JCS, has specified that WWMCCS ADP managers
are to apply various computer performance
evaluation (CPE) tools and techniques to the

systems now running at their sites. CCTC
has also defined the need to instruct WWMCCS
technical personnel in the selection and
application of the CPE tools and techniques
appropriate to individual WWMCCS ADP sites.

CCTC asked FEDSIM to plan and implement
a document that could be employed by WWMCCS
ADP personnel to diagnose problems and pro-
pose changes that would improve the perfor-
mance of WWMCCS ADP systems.

The objective of the resulting FEDSIM
project was to provide all WWMCCS installa-
tions with a document that could be used by
staff personnel to analyze the performance
characteristics of their ADP systems. This
document, called an H-6000 Tuning Guide , was
to contain sets of analysis procedures to

improve system performance. The Guide pre-
sents a precisely structured system of pro-

cedures for the analysis of WWMCCS computer
services and systems. While the Guide is

precisely structured to the H-6000 and
employs tools directly available only to

WWMCCS sites, the importance of this project
lies not in the procedures themselves, but
in the concept and structure of the Guide.

For the first time, the techniques and
methodology of performance evaluation (i.e.

tuning) are described in a detailed, step-
by-step, cook-book document. Performance
evaluation is no longer a black-magic art.

There is a logical set of steps and proce-
dures that can be followed when analyzing a

computer system. It is no longer a matter
of collecting reams of data, and then not

knowing what to do with that data. There is

a structure to the thing called Performance
Evaluation. It is a science not an art.

While the Tuning Guide accomplishes the

above for the H-6000 it is the hope of CCTC

that this idea will spread to other vendors

and that Performance Evaluation will enter

the world of science and leave the world of

Black Magic.

2. Scope of Computer Performance Tuning

In one way or another, the performance

of a computer system is influenced by nearly

every facet of the data processing function.

297

The following examples illustrate the scope
of the computer performance tuning process.

2.1 System Design

Computer application system design and
development can be the starting point for
performance degradation. Errors in original
design with respect to I/O media selection,
file structures, frequency of run, etc. may
result in less than optimal performance for
as long as an application is in existence.

2.2 Programming

A programmer's proficiency and the
availability of program optimization tools,
for example, will influence program design
and coding, and affect system performance.

2.3 Hardware Configuration

Specific components of a computer
system may be mismatched to the system as a

whole, causing major subsystems (or the

entire configuration) to operate at a re-

duced performance level. Even if the per-
formance capabilities of the individual sub-
systems are reasonably well matched, the
system may be poorly configured for the

site's workload, resulting in poor perfor-
mance .

2.4 System Software

The software supplied by the mainframe
vendor may be inappropriately parametrized
to fit the site workload, or may be a source
of high overhead or bottlenecks to

efficient workload processing.

2.5 Operations

An operations staff schedules the work-
load, provides job assembly (and library)
services, and operates the system through
the console. All of these functions are
vital to the proper operation of the system.
Mistakes, insufficient training, poor docu-
mentation, and a variety of other reasons
may contribute to operational problems
which substantially decrease system perfor-
mance.

2.6 Communications Hardware and
Software

A communications network, its inter-
face to a central system, and the software
used to control the on-line applications
may have a significant impact on the system's
overall performance.

3. Tuning Procedure

The process of analyzing and appropri-
ately adjusting computer system performance
variables is known as computer system per-
formance tuning. The following termonology
is used throughout the guide.

3.1 WWMCCS Services

Within the context of the Guide,
WWMCCS system services are: (1) batch job
services and (2) GCOS Time Sharing System
services. The service time for batch work-
load service is called batch turnaround time
and the service time for TSS service is

called TSS response time.

3 . 2 Turnaround Time

This is the total elapsed time taken

by a job (or set of jobs) submitted to a

WWMCCS site for batch processing. Batch
turnaround time is comprised of computer
system processing and physical input and
output handling in the machine room, both
before and after system processing. A
job's turnaround time therefore includes all
processing and waiting points through which
the job must pass from submission until re-
turn to a user. The Guide's structured
batch turnaround time analysis examines
these processes and waiting points.

3.3 TSS Response Time

A time-related structure similar to

batch processing turnaround time can be
conceived for TSS service. The Guide's TSS
response time analysis defines TSS Response
Time as the elapsed time between an on-line
user's request for service from the system
and the system's request for further input
from the user. The TSS analysis procedures
of the Tuning Guide devide response time

into processes and waiting points associated
with: (1) CPU service, (2) disk I/O, (3)

memory, (4) terminal I/O, and (5) special
system processes.

3.4 Service/Resource Link

Guide analysis procedures use
measures of system resources to analyze
performance degradation. The Guide uses
these resource measures (1) to isolate the

processes or queue points that are major
contributors to a particular elapsed ser-
vice time, (2) to hypothesize causes of the

elongation of these processes, and (3) to

test the validity of the hypotheses, con-

firming the source of performance degrada-
tion. For example, the batch turnaround
time analysis directs investigation to the

298

GCOS process that is exhibiting the longest
elapsed time of all GCOS system processes.
This process (e.g., Core Allocation) require;
system resources (i.e., core) to perform its
service. A lack of these resources elon-
gates the service (i.e., core allocation) to

batch jobs.

3.5 Hypothesis Confirmation

The tests that the analyst is directed
to conduct are used to confirm specific
hypotheses as causes of the service elonga-
tion. These confirmations involve examining
specific system software or performance data
reports

.

Particular resource bottlenecks may be
confirmed as elongating turnaround or re-
sponse time. The Guide's analytical struc-
ture proposes specific solutions to correct
or improve the degraded system performance.
Several solutions can usually be applied to

remove a particular bottleneck. In general,
the Guide procedures provide up to four
kinds of solutions to remove identified
bottlenecks

:

a. Scheduling Solutions . These solu-
tions change the way that either batch or
TSS workloads are scheduled for processing.
They shift particular workloads to more
evenly distribute system resources across
the workload.

b. Parameter Solutions . These changes
involve adjustments to system or subsystem
functions. Examples include: (1) changes
to the parameters of the GCOS Dispatcher or

(2) a change in the placement of GCOS
libraries. A solution may include specific
changes to GCOS code, made through autho-
rized software patch procedures.

c. Programming Solutions . These
changes can involve modification of one or
more application jobs running in the system.
For example, Guide procedures are provided
to investigate a program's execution
characteristics in order to determine where
it spends most of its execution time. This
assists the programmer in examining the

code. At a simpler level, Guide recommen-
dations are made to speed application jobs
by changing particular file locations dis-
covered as delaying the job.

d. Sizing Solutions . These types of
system change involve an increase (or a

decrease) in the system's hardware configu-
ration.

The Guide solutions are presented in a

sequence that makes them easiest or least
expensive to implement. Guide procedures
direct the analyst to solutions that involve
additions of new equipment only after other
techniques have been tried.

Figure 1 is a flow chart of the

analysis process used throughout the Guide.

The analysis process is comprised of two

phases: (1) a Problem Definition Phase and

(2) a Problem Analysis Phase. The activi-
ties of the Problem Definition Phase are

directed toward determining whether a batch
turnaround time or TSS response time problem
actually exists. The activities of the

Problem Analysis Phase are directed toward
revealing causes of the identified turnaround
time or response time problem.

The Guide batch turnaround time model
(see Figure 2) is a conceptualization of the
WWMCCS system components of batch turnaround
time. The model defines the processes and
phases through which batch jobs pass as they
are being processed by a WWMCCS system. Note
from Figure 2 that the batch turnaround time
model uses a three-level structure to assist
in the search for batch turnaround time
bottlenecks. Jobs, are classed as Local
Batch, Remote Batch "A", or Remote Batch "B",

depending on their source and the type of
output they produce. Batch turnaround time

is divided into three phases: Pre-Processing
(before the job is entered into the WWMCCS
system), System Processing, and Post Pro-
cessing (after the WWMCCS system has finished
the job) . Each phase is divided into pro-
cesses. System Processing is divided into
the seven processes shown in Figure 2. Pre-

processing and Post Processing vary from
site to site and their processes must be

defined locally.

The TSS response time model is similar
to the batch turnaround time model in that

it divides elapsed time for a user request

into several different categories. The TSS

response time model divides the time spent

by a user at a terminal into waits and
services associated with CPU Time, Disk I/O

Time, Memory Wait Time, and Special Waits.
The model further subdivides each of these
categories into two or more subcategories.
The amount of response time associated with
each category and subcategory guides
further investigation into improving
response time. Again, choice of a particu-
lar category for further investigation
depends on the amount of response time

associated with that category.

Figure 3 provides a graphic descrip-
tion of the TSS Response Time Model.

299

DIRECT
REQUEST

INTERNAL
REVIEW

EXTERNAL
INPUT

PROBLEM
DEFINITION

AND
VERIFICATION

INITIAL
PROBLEM
STATEMENT

UNDERSTAND
ENVIRONMENT

*
UNDERSTAND
INSTALLATION
OBJECTIVES &

PRIORITIES

PHASE

>
j

SPECIFY
CURRENT
TUNING

OBJECTIVE

PROBLEM
DEFINITION

REPORT
ADEQUATELY

DEFINED
PROBLI

REPORT
INADEQUATELY

DEFINED
PROBLB

Figure 1. Flow Chart of Tuning Process

300

9
MAJOR
MODEL

DETERMINED

BATCH
TURNAROUND TIME

MODEL

TSS

RESPONSE TIME
MODEL

PROBLEM
ANALYSIS

PHASE

RUN THE
APPROPRIATE
TRACE TOOL

EVALUATE
TRACE TOOL

OUTPUT

FOLLOW
TUNING GUIDE
PROCEDURES

IMPLEMENT
TUNING GUIDE

RECOMMENDATIONS

YES
REPORT
EFFORT
SUCCESS

REPORT
EFFORT

DISCONTINUED

TERMINATE

Figure 1. Flow Chart of Tuning Process (Cont'd)

301

BATCH
TURNAROUND

MODEL

JOB MACHINE
RECEIPT ROOM FILE
TABLE TABLE LIBRARY

A L_

HYPOTHESES OUTSIDE THE SCOPE
OP THE TUNING GUIDE. THESE
ARE SUGGESTED EXAMPLES FOR
ILLUSTRATION ONLY. THIS AREA
MUST BE EXPANDED AND/OR DEFINED
BY THE INDIVIDUAL FACILITIES.

SYSTEM SYSTEM
INPUT SCHEDUL-

ING

PERIPHERAL CORE ACTIVITY
ALLOCA- ALLOCA- EXECU-

TION TION TION

TERMI- SYSOUT
NATION

^COLL^IOk"™"'
T 1

1

HYPOTHESES OUTSIDE THE SCOPE
OF THE TUNING GUIDE. THESE
ARE SUGGESTED EXAMPLES FOR

ILLUSTRATION ONLY. THIS AREA
MUST BE EXPANDED AND/OR DEFINED
BY THE INDIVIDUAL FACILITIES.

Figure 2. Summary of Batch Turnaround Time Model Structure

TSS RESPONSE
TIME MODEL

NORMAL SON-

OUTPUT TSS
PROCESS

Figure 3. Summary of TSS Response Time Model Structure

302

The two Guide models employ special
software to determine where a user spends

the largest amount of elapsed time in their
respective processes.

The Tuning Guide then provides instruc-
tions for evaluating initial analyzer out-

puts. These instructions guide the analyst
to specific test procedures. For both
analyses, the instructions are implemented
through a form that is filled in by the

analyst. This form directs the type and se-

quence of tests to be conducted during the

search.

A Guide test procedure contains a

series of analytical steps that are directed
toward a diagnostic objective. For example,

one of the procedures under the CPU
Execution Characteristics Test in the batch
turnaround time analysis has the following
objective: "... to determine the dominant
CPU user." The steps of these procedures
involve: (1) examining specific reports to

obtain performance data, (2) entering se-
lected metric values on a form, (3) calculat-
ing ratios or percentages from these entry
values, and (4) making certain tuning de-
cisions (and subsequent recommendations) from
the calculated values.

Analysts should determine whether tuning
objectives have been met after each imple-
mentation of a tuning step. Even if a

tuning objective is not met at any particu-
lar iteration of tests and tuning step, an

analyst may observe an improvement in turn-
around time or TSS response time. This
improvement will act as a checkpoint,
indicating that the overall analysis is pro-
ceeding in the right direction. If it

appears difficult to reach a tuning objec-
tive after several attempts, it is possible
that the original tuning objective may have
been over stated. In this case the analyst
may want to reformulate the tuning objec-
tives .

This paper has briefly described the

structure and philosophy of the H-6000
Tuning Guide. The specific tests and a

detailed description of the evaluation
tools has been left out so as not to re-

strict this technique to the H-6000. It is

believed that this approach is applicable to

all computer systems and could result in a

greater understanding and appreciation of

what Performance Evaluation really is.

In some Guide test procedures, several
CPE tools may be used to gather data. If

this is the case, it is the analyst's respon-
sibility to provide synchronized data (i.e.,

reports produced from multiple sources that

are measuring the systems over a common
elapsed time)

.

The development of this guide required

many long hours of work and dedication from

FEDSIM personnel, especially Dr. John

Peterson and Mr. Hal Stout. Sections of

this paper have been extracted from the

H-6000 Tuning Guide.

Each test procedure uses a form on which
the significant measurement values are

entered. The form helps clarify the proce-
dures; use of the form documents the tuning
effort for later management and analyst
reference.

A ratio analysis technique is used to

compute values which are quantities compared
with tuning decision criteria. As an example,
one of the procedure tests results in the

calculation of an Activity CPU Ratio and a

GCOS CPU Ratio. These ratios are then
employed in a decision step to further direct
the test. All computations required in each
test are made directly on the appropriate
test form under the direction of a procedure
step.

The analyst is directed during or at the

end of each test to a series of tuning
recommendations. These recommendations in-

corporate generally accepted system tuning

practices as applied directly to the WWMCCS
system.

303

GUIDANCE FOR SIZING ADP SYSTEMS (ADPS'S)

Dennis M. Gilbert
James 0. Mulford

Mitchell G. Spiegel

Federal Computer Performance
Evaluation and Simulation Center

Washington, DC 20330

This paper provides a structured methodology to assist a sizing
team in making a thorough definition and analysis of new requirements,
ADPS alternative selections, and workload impact. Suggested sizing
tools and techniques are presented, and guidance is included to aid a
sizing team in obtaining accurate and timely results. While this paper
is not a complete text on sizing, it can be used as a basic guide for
requirements identification, feasibility, and impact studies, and
should be enhanced with a sizing team's expertise, consultation from
sources with sizing experience, and reference to other sizing literature.

1. Introduction

Numerous Federal Regulations establish a

comprehensive method for managing ADPS and
ADPS elements from the initial statement of
requirements to completion of the ADPS life
cycle. Such documentation as Requirements,
Project Plans, Request For Proposals (RFP's),
and ADPS Specifications and Test Plans, must

Federal Management Circular 74-5,
"Management, Acquisition and Utilization of
ADP"; Office of Management and Budget (0MB)
Circular A-ll, "Preparation and Submission of
Annual Budget Estimates"; 0MB Circular A-109,
"Major System Acquisition"; Federal Property
Management Regulation (FPMR) 101-32.11, "ADP
Communications Support for ADP Systems";
FPMR 101-32.15, "Future Plans for ADP and
Telecommunications Systems"; Federal Procure-
ment Regulation (FPR) Subpart 1-4.11, "Govern-
ment-Wide Automated Data Processing Equipment,
Software, Maintenance Services and Supplies";
and Air Force Regulation 300-12, Volume I.

be provided at key decision points in the

ADPS life cycle (e.g., concept certification,
requirements review, design certification,
solicitation, testing, and final operational
review). Documentation is essential in
evaluating, planning, programming, and
budgeting new requirements. The informa-
tion contained in these documents must be
thorough, accurate, and timely.

Sizing studies can greatly assist
analysts who identify, gather, analyze, and
interpret information to support preparation
of the above documents. Sizing is a process
for (1) analyzing requirements, specifying
alternative solutions, evaluating workloads,
and (2) estimating the amounts and location
of people, hardware, software, and communica-
tions resources necessary to process that
workload within predefined operational
constraints. It combines (1) a sound method-
ology, (2) proven tools and techniques, and

(3) functional and ADP expertise, in project-
ing ADPS needs.

The paper is directed toward those

levels of management and technical staff

that are involved in an ADPS life cycle

305

study and the application of its results.
Sections 1 and 2 are directed toward upper
and middle management. Sections 3 and 4

are written for those personnel who either
conduct, review, or use sizing studies, ADPS
and user management. Section 5 provides a
sizing team with references for methodology
and guidance. The objective of this paper
is to guide a sizing team toward accurate,
timely, and thorough information in sizing
studies, through consistent application of a
sizing methodology.

The reader must keep two basic princi-
ples in mind while reading and using the
described sizing methodology and guidance.
One is that the methodology and guidance
are descriptions of good practices for most
sizing studies. They do not cover, nor are
they applicable in, all situations. The
second is that the methodology and guidance
stress reasonableness in all practices and
procedures. The user is responsible for
determining the exact sizing approach taken,
conducting the sizing study, and extrapola-
ting the results to support the requirement.
Any question of sizing procedure or tech-
nique should be evaluated in this context.

The sizing methodology steps usually
cannot be followed as a "recipe" with
successful results. Instead, this report
represents good practices associated with
areas of concern. In this sense, the paper
is useful as a checklist and, to some
degree, identifies areas where special
competence, expertise, or particular atten-
tion may be required.

2. Sizing Methodology Overview

2.1 Sizing and the Computer System
Life Cycle

Personnel involved in decisions affect-
ing a computer system must be aware that
sizing studies can support decision making
throughout^ a computer system's life cycle.
Table 2.1 illustrates seven phases in an
ADPS life cycle. In each phase, sizing
studies can provide information required to

make effective and efficient decisions.
Because of this, a sizing study conducted
for a new requirement should not only

Portions paraphrased from "Guidelines
for Benchmarking ADP Systems in the Compe-
titive Procurement Environment," FIPS PUB
42-1 (Washington, DC: May 1977), p. 5.

3nGuideline on Computer Performance
Management: An Introduction," FIPS PUB 49

(Washington, DC: May 1977), p. 9.

satisfy the sizing objective (primary) but
also provide a foundation for future studies
in the ADPS life cycle (secondary).

The following elements are desired in a
sizing study:

(1) A clear statement of a study's
obj ective (s) , including time and funds
available for a study

(2) A methodology to characterize and
analyze the workload, design sizing
experiments, identify sizing alterna-
tives, conduct sizing experiments,
analyze findings, and present sizing
results

(3) Calibrated tools and techniques
which can provide information (in

appropriate units of measure) needed to

satisfy the sizing objective

(4) A team of knowledgeable functional
and ADP analysts

(5) Assistance from (a) centers with
sizing expertise and (b) available
sizing literature

(6) Management interest and partic-
ipation

2.2 Management's Role

For a sizing study to provide good
decision-making information, full partic-
ipation by ADPS, user, middle and upper
management is required. At a minimum,
management must select the sizing team
members, provide guidance for designing the

sizing study, allocate funds and allot time

to complete a study, guide and track a

study's progress toward a successful satis-
faction of the sizing objective, and under-
stand the uncertainties associated with the

use of sizing study results.

2.2.1 Selecting the Team

The sizing team leader should be an

ADP/Communication/Software specialist (as

opposed to a functional specialist) , since
it is Data Processing's responsibility to

select the most cost effective ADPS alter-
native (s) that will meet the user require-
ments. Ideally, the team is composed of

(1) functional analysts familiar with the

user requirements to be automated, (2)

sizing specialists (in-house, contractors,
or others) familiar with sizing method-
ologies, tools, and techniques, and (3)

systems analysts familiar with both user
requirements and the organization's ADP
objectives. Depending upon the scope of a

306

Table 2.1. Sizing Study Support in Computer System Life Cycle

ADP System Life Cycle Phase Possible Uses of Sizing

(1) Requirements Analysis Provide Information for Feasi-
bility Study

(2) General System Design Evaluate Alternative Organiza-
tion, Hardware, Software, and
Communications Architectures

(3) Requirements Specifi-
cation and Request for
Proposals (RFP)

Provide Performance and Work-
load Information for Specifi-
cations and RFP

(4) Vendor Evaluation and
Selection

Assist in Evaluating Proposals'
Performance

(5) System Delivery, Instal-
lAf""inn Arppntflnpp

Detailed Design

Identify Required Configuration
r>f Ar>P<?(J l mJr o

(6) System Operation Identify Potential Bottlenecks
in Future Processing

(7) System Enhancements Predict Performance of System
for Enhancement Alternatives

study, the team size may range from two
to several members. Initially, a small
group (two to five people) should be identi-
fied to assist management in defining the
sizing objective and the effort required to

complete a study. Based upon this group's
recommendation, management can then assign
additional personnel to the study.

2.2.2 Designing the Study

The initial group of analysts selected
for a study is tasked with defining its
scope. Objectives, constraints, assumptions,
an initial list of alternatives, information
needed, and known sources of data are in-
cluded in the sizing study definition.
During this task, management frequently
interacts with the team members. Once the
scope of the study is determined, it is

management's responsibility to review the
definition and ensure that it will satisfy
their information needs. During this
review, management should check that the
definition does not constrain or limit the
sizing alternatives. The sizing study must
be oriented toward alternative analysis and
not toward the justification of a specific
alternative.

2.2.3 Allocating Funds and
Allotting Time

Management must carefully review a

study's objective and scope to determine
the estimated funding and required time
for the study's completion. This is a

very crucial part of a study that requires
analysis of a study's benefits versus the
required time and cost.

2.2.4 Guiding and Tracking the

Study's Progress

As in any study, it is management's
responsibility to carefully track a sizing
study's progress. Figure 2.1 outlines the

steps of a sizing methodology and key
management review points. Management should

guide a study toward satisfaction of the

sizing study objectives, and not toward the

selection of a particular alternative. In
order to provide quantitative data for
decision making, a study must be as free of
subjective considerations as possible.

307

STUDY

REQUIREMENT

IWiAGEMENT FEVIEW

STUDY
RESULTS

<a > (b) (c) (4) (e) (f)

STUDY PHASES
| | | | | |

DEFINITION DESIGN DEVELOPMENT/ ANALYSIS INTERPRETATION
DATA COLLECTION

FIGURE 2.1. SIZING

2.2.5 Using the Sizing
Results

The results of a sizing study are ADPS
size estimates with some degree of uncer-
tainty. Uncertainty can enter into the
results from assumptions and constraints,
tools and techniques, data collection, work-
load projections, subjective interpretation,
and team error. Most likely, all factors
will affect the accuracy of the results.
Because of this, users of the sizing results
must understand what these uncertainties
are and what impact the uncertainties have
upon the accuracy of results. Management
must insist that the impact of these
uncertainties be identified in the final
documentation.

3. Sizing Methodology and Guidance

3.1 Introduction

STUDY METHODOLOGY

and intermediate results as the study
progresses. Good documentation signifi-
cantly reduces the time required to report
the results at a study's conclusion, and
provides an excellent reference for the
sizing team. Second, return to previous
steps in the methodology and review all
completed work if significant aspects of

the sizing change. Where applicable, redo
all work affected by the changes. Assump-
tions, constraints, or objectives must
sometimes be modified as additional infor-
mation becomes available. When this
occurs, identify the impact of these
changes in the sizing study. If time and
funding permit, incorporate these changes
into the study by redoing the appropriate
steps. If this is not feasible, then, at

a minimum, document the changes, the parts
of the study the changes affect, and, if

possible, the relative impact the changes
have on the sizing results.

This section is subdivided into the
logical steps of the problem solving method-
ology, so that any sizing study will roughly
parallel this section's flow. The intent of
this methodology is to guide sizing studies
toward a thorough analysis and a timely and
accurate assessment of ADPS alternatives.
It can be supplemented by other sizing
information and individual expertise.

Two very important principles apply to
the use of this methodology. First, docu-
ment assumptions, observations, procedures,

3.2 Define the Scope of the
Sizing Study

3.2.1 Attributes of the Sizing
Study Definition

It is essential that the scope of each
sizing study be clearly defined. This
definition must convey the study's objec-
tive, constraints, and desired results. For
example, the statement,

308

"Determine the best ADPS to auto-
mate the inventory function"

provides little information. A better study
definition would be:

"The objective of the sizing
study is to (1) provide an estimate of
the ADP workload that will be imposed
by the implementation of the require-
ment for an automated inventory and
(2) evaluate alternative methods of
processing that workload. The study
will provide size and cost estimates
for the requirement's feasibility
study, and results must be available by
December 31, 19XX.

The study will provide estimates
of processing, I/O, storage, and
unique resource requirements of the
proposed workload and will then size
those estimates to at least the follow-
ing alternatives:

(a) Implement the proposed workload on
the existing ADPS, upgrading the staff,
hardware, software, and communications,
as required, or ...

(b) Obtain a second ADPS for process-
ing only the proposed workload, or ...

(d) Obtain a second ADPS, and imple-
ment one of several possible mixes of
current and proposed workload.

Size estimates and their asso-
ciated cost estimates will be provided
for alternative analysis. In addition,
confidence in the results will be
quantitatively expressed and potential
workload variance impacts will be
provided. The Functional Description
Document for an automated inventory and
draft Requirement Document are the
primary reference documents for work-
load and requirements definition."

The importance of a clearly stated
sizing study definition, structured to convey
the correct information to the appropriate
personnel, cannot be overemphasized. First,
the identification of why a study is required
and what results are needed should be sepa-
rately stated and highlighted (e.g., first
paragraph of objective statement). Second,
constraints and information relevant to the
study should be summarized in the objective
statement and detailed in documents readily
available to the sizing team. (The defini-
tion of a sizing study is the appropriate
point to present information that is cur-
rently available and relevant to the

study.) Third, the definition should be
stated using terminology that is under-
stood by management, functional analysts,
ADP systems analysts, and sizing team
members. Finally, the definition should
be structured such that the progress and
success in fulfilling the objective can be
measured. Time, cost, and manpower con-
straints, as well as a statement of the
nature and accuracy of required sizing
results, should be included for this
purpose.

3.2.2 Sizing Study Definition
Considerations

Any sizing study definition includes

(1) planning, programming, and budgeting
(PPB) and (2) system capability considera-
tions. PPB considerations often dominate a

sizing study in the early stages of an ADPS
(through the design phase and release of
acquisition documents) , and system capa-
bility considerations are usually emphasized
thereafter. Table 3.1 lists some typical
considerations of a sizing study definition.
The sizing team should insure that the
definition contains at least a subset of

these considerations, since their presence
identifies known constraints and clarifies
desired results of the study (e.g., Are
response time constraints a factor?; Is the
desired result an estimate of total ADPS
cost, or a detailed description of the

configuration?)

.

3.3 Perform Macro-Analysis

Available sizing data should be sub-

mitted to a macro-analysis prior to initia-
tion of the detailed sizing study. This

analysis should provide for an understanding
and expansion of the sizing study definition.
The thoroughness, accuracy, and timeliness
of a sizing study are highly dependent upon
the sizing team's treatment of the considera-
tions listed.

3.3.1 Understand Sizing Objective

The foundation for the macro-analysis
is a knowledge of what information must be

provided by the sizing study and what accu-
racy in the sizing results must be obtained.
Each sizing team member should state in

his/her own words the information and

accuracy needs.

3.3.2 Determine Sizing Alternatives

The initial list of sizing alternatives
should be reviewed, modified, and expanded
to develop a complete list of viable alter-

natives. Alternatives that appear to be

309

technically feasible, but which are not
viable due to other considerations, should
be documented along with the reasons for
elimination from the list of alternatives.
Factors to consider in determining alter-
natives include: Existing ADPS long-range
plans, functional-user requirements,
policy (functional, ADP, procurement),
facilities, organizational structure,
manning, and management guidance.

Sizing Alternatives).

3.3.5 Select Tools and Techniques

a. Types of Tools . The three major
categories of tools required for a

sizing study are (1) data collection,

(2) data analysis, and (3) sizing. The
data collection tools and techniques
assist the sizing team in defining the

Table 3.1. Sizing Study Considerations

Programming, Planning, Budgeting (PPB)

1. Cost 4. Facilities
2. Implementation Phasing 5. Manpower
3. Software Conversion 6. Risk Assessment

System Capabilities

1. Response Time 4. Utilization of System Components
2. Throughput 5. Configuration Characteristics
3. Growth Potential 6. Technical Feasibility

3.3.3 List Known Assumptions
and Constraints

It is the sizing team's responsibility
to identify the relevant assumptions and
constraints for the study. Since a sizing
study includes an estimation of future work-
loads it is normal to have several assumptions
and constraints. An initial list of

assumptions and constraints must exist at
the completion of the Macro-analysis.

3.3.4 Identify Required Data and
Sources of Information

Based on the sizing objective and
sizing alternatives, an initial list of data
elements required to conduct the sizing
should be developed. For each data element,
the list should include the element's use
(describe workload, describe hardware char-
acteristic of an alternative, etc.) and
potential sources for collection. It is

important to identify the major data elements
during the macro-analysis, since it must be
determined (1) if the data is available and

(2) if tools/techniques can be found to

collect the data. Further discussion on data
elements is provided in Section 3.3.5 (Select
Tools/Techniques), Section 3.6 (Define Work-
load To Be Sized), and Section 3.7 (Describe

workload, human factors, and alternative
hardware, software, and communication
characteristics. They include hardware
monitors, software monitors, accounting
packages, documentation, interviews, and

questionnaires. Data analysis tools

allow the team to screen the raw data
and establish relationships among
variables. They include statistical
techniques, display tools, and data
reduction methods. The sizing tools

provide the team with an aid for
translating workload requirements
into sized ADPS alternatives. The

two major types of sizing tools are

abstract models [analytic, static,
and simulation] and workload models
[benchmarks (synthetic and actual)].

The following paragraphs provide
an overview of the various tools and

techniques available for sizing
studies. The sizing team should
consult available references for
additional information.

b . Data Collection Tools and

Techniques

(1) Measurement Tools . Detailed
data on an existing ADPS can be

310

collected using hardware monitors,
software monitors, communication
line monitors, remote terminal
emulators, and accounting packages.
Examples of data available from
these tools include system compo-
nent utilizations, resource usage
per application work unit (job,

transaction, interaction, step,
etc.), frequency of occurrence of
work units, system overhead (re-
source usage by system software),
and workload variances across
time. These data can be collected
for sizing studies to define
existing workloads, current ADPS
characteristics and performance
(for upgrade alternatives), and
trends or workload characteristics
that can be used to predict future
workloads.

From the macro-analysis, the
sizing team has a good under-
standing of what, if any, data
measurements will be necessary.
This understanding, and consulta-
tion with people who have exper-
ience with the available measure-
ment tools, leads the sizing team
to a proper selection of measure-
ment tools for the study. Specific
guidance for this selection
process is as follows:

(a) Check with other sources
(operations, systems, and
higher management personnel)
to identify what required
data might already have been
collected. Measurement by
the sizing team may not be
necessary.

(b) Check with knowledgeable
sources (vendor, operations,
systems, higher management,
and CPE personnel) to identify
the strengths and weaknesses
of available measurement
tools. For each tool, areas
to address include accessi-
bility, difficulty of use,

associated overhead, accuracy
of collected data, flexibility
(how much can the amount of

data collected and level of

detail be varied) , and the
amount of expertise that can
be provided to the sizing
team.

(c) For each measurement
tool, evaluate the amount of

data validation and reduction
that will be necessary to

obtain the required informa-
tion for the study. Insure
that the time required for
measurement, data validation,
and reduction will not delay
study results.

(2) Documentation . The sizing
team should obtain and study all
documents that affect the sizing
study. Often data required for a

sizing study is already documented
and considerable time can be saved
if it is made available to the
sizing team. Items that may
already be documented include (a)

existing and future workload
characteristics; (b) human fac-
tors, hardware, software, and
communication component character-
istics; (c) operational perform-
ance constraints (response times,
turnaround times, security, avail-
ability, reliability, mobility,
etc.); (d) growth projections; (e)

cost/ benefit analysis; (f) assump-
tions for the study; and (g)

additional ADPS alternatives.

Table 3.2 lists potential
sources of documents. The sizing
team should contact or obtain
these sources (as well as others
identified by the sizing team) to

identify and collect documentation
that is applicable to the sizing
study. Table 3.3 lists several
types of documents that often
contain information which the

sizing team can use in the study.
A library of selected documents
should be created for the study.

(3) Team-Generated Techniques .

Usually, data obtained from
measurements and documents will
not fully satisfy the study's data
requirements. Other commonly used
techniques are interviews and

questionnaires. Both techniques
provide a mechanism for collecting
data from knowledgeable sources in
various areas of the study (see
Table 3.2 for a list of sources.)
Interviews establish a direct two-
way exchange of information and
a point of contact. Questionnaires
reach people unavailable for inter-
views and allow time to research
answers, but are subject to

311

Table 3.2 Sources of Documents for a Sizing Study

Functional areas Application systems groups

Computer and network operations CoTnnnt"PT And rommiiTii ratifinQ QVQf~PTnQ

Higher management
groups

Software development centers
ADP performance evaluation groups

Vendors
ADP procurement agencies

Table 3.3 Types of Documents Used in a Sizing Study

Feasibility studies

Program listings

ADPS management reports

Computer operation logs

Periodic ADPS performance
listings

Periodic workload summary
listings
Previous sizing studies

Previous measurement studies

Policy documents

Requirements documents

Functional area regulations

Technology forecasts
(e.g., COMPUTERWORLD article)

Vendor literature

System software manuals

Auerbach Reports (Auerbach
Publishers , Inc .

)

Datapro Reports (Datapro Research
Corp.

)

Letters, memos

misinterpretation, absence of inter-
action, slow turnaround, and comple-
tion at the last possible moment,
if at all. If possible use a

combination of both techniques.

The following guidelines
apply to interviews and question-
naires which are developed to

support a sizing study:

(a) The sizing team should
structure the interviews and
questionnaires in terminology
familiar to the people being
questioned. Unfamiliar
terminology should be avoided
or adequately defined.

(b) People's degree of

confidence in their answers
should be obtained and
quantified, if possible.

(c) The interview or ques-
tionnaire should be designed
to minimize the effort re-
quired by the people being
questioned. In most cases,
their participation in a

312

study is not part of their
normal duty.

(d) The people being ques-
tioned should be informed of
how their answers will be
used. This will usually
provide a more open exchange
of information.

c. Data Reduction and Analysis Tools
and Techniques . The data collected for

a sizing study must often be processed
before it can be used. Data reduction
tasks are necessary to report workload
characteristics and to provide input
for the selected sizing tool(s).

In selecting the data reduction
tools and techniques, the following
guidance should be used:

(1) When possible, existing data
reduction packages should be used
in lieu of team-developed ones.

The team must trade off the

absence of some desired reduction
features in an existing package
against the time, cost, and pos-
sibility of error inherent in

package modification or a new
development

.

(2) The selected tools or tech-
niques should be understood by the
sizing team. Many useful and
highly effective data reduction
packages are available, but "blind
application" of these packages can
cause large errors in the sizing
study. Inputs, procedures, and
outputs of a package must be
understood by the sizing team, and
the accuracy of its results must
be determined. Documentation of a

data reduction technique or pack-
age sometimes provides the infor-
mation for this understanding.

Statistical techniques can be used
to analyze the workload data. Analysis
of workload variances, ratios, repre-
sentativeness and trends is necessary
to assure data accuracy and consistency.
Many data analysis techniques can be
found in statistics textbooks, and
these texts should be referenced for
selecting the appropriate techniques.
Guidance for selecting data analysis
techniques includes:

(1) For measured data, analysis
of data should include an analysis
of the variance of data elements
among periods of measurement, a

determination of the ratios of
data elements and ratio variances
among periods of measurement, and
a checking procedure for deter-
mining data consistency and repre-
sentativeness of the sample.

(2) For predicted data, analysis
of data should include a comparison
of projected trends with historical
trends, an analysis of the variance
of data elements among projections,
and a checking procedure for
determining data consistency.

(3) The techniques used should be
selected with two purposes: (a)

assuring that data to be used in
the sizing is valid and (b)

providing a quantitative assess-
ment of the data accuracy.

d . Sizing Tools and Techniques

(1) Models . Sizing models are
used to predict the ADPS required
to support a defined workload.
Three types of sizing models which
can be used are static, analytic
and simulation.

(a) Static . Static models
usually include a handbook or
guide that describes a series
of calculations for deter-
mining hardware, software,
and communication components
for a defined workload. This
guide may be available prior
to a sizing study or may be
developed by the sizing team
for their particular study.
Formulas and factors used in

these models are usually
based on measured or docu-
mented ADPS characteristics,
historical data on system
performance, and several
assumptions about the work-
load to be sized.

(b) Analytic . Analytic
models differ from static
models in that more rigorous
mathematical techniques are
used to develop, verify, and
validate the analytic formulae
Also, methods for represent-
ing the dynamics of an ADPS'
processing of a defined
workload are available. This
includes representation and
prediction of multiprogramming
multiprocessing, processor-
1/0 overlap, priority struc-
tures, and resource queuing
effects. Analytic models
rely heavily on queuing
theory and approximation
techniques to represent
system dynamics. Because of

the numerous and complex
calculations involved, these
models are typically imple-
mented as computer programs.

(c) Simulation . Two major
types of simulation tools are
available for sizing: pack-
age simulators and discrete-
event simulation languages.
A package simulator is a set

of vendor-supplied computer
programs that models one or

more computer systems with
analytic algorithms, discrete
techniques, a library of ADPS
characteristics (or factors)

,

and automatic (generated from
measurement data) and/or
user-defined system activity
in a workload definition
language. A discrete-event
simulation language is a

high-level programming
language that allows the user

313

to control the structure of
the sizing model to whatever
extent necessary through the
use of specialized simulation
programming statements and
control mechanisms. Pre-
programmed models of hardware
and software functions are
available. Both types have
been used extensively, and
simulation models that repre-
sent many different ADPS have
been developed.

(2) Benchmarks . A benchmark is a

compromise to total production
operation and is an experimental
process of selecting and executing
a workload model which approximates
the real environment. Benchmarking
may be accomplished using the
current operational system or a
proposed system. Because bench-
marking can be expensive, the
expected cost and values of the
results should be compared before
implementation begins. Based on
the sizing objectives, one or more
testable hypotheses are developed.
The benchmark may use live users,
actual software, a subset of those
users of software, or a synthetic
representation of software and/or
workload.

(a) Actual Users and
Software . "The most accurate
and probably most costly
method of analyzing and
predicting (an ADPS size) is

to run the actual system under
normal production load and
assess its performance. For
future planning purposes,
current loads can be increased
to projected levels and the
system^performance evalu-
ated." Obviously, the method
is limited to studies where
the software, workload and
ADPS are available for con-
ducting benchmarking experi-
ments. This situation is

rare in the early stages of

new requirements.

Air Force Regulation 300-12, Volume I,

Attachment 14, p. 43.

(b) Synthetic Representation .

A frequently used method
to augment benchmarking
is the development of

synthetic workload repre-
sentations. In this
method the ADPS alterna-
tive that is being sized
must be available, but
all or portions of the
application software and
its workload are synthetically
represented. This
involves creating model
jobs, data, and system
loads that represent
portions of the current
and/or the future work-
load, a process that
requires analysis of the
software and workload to

be represented. Some
synthetic benchmark
program generators are
available from vendors
and government organi-
zations. Remote- terminal
emulators, that can
generate various on-line
network loads for testing
on-line systems, are
also available from
vendors for most ADPS's.

(3) Relative Guidance for
Sizing Tool Selection .

A relative guide is provided
below for tool selection
based on six factors considered
in the macro-analysis. Static
models apply to each factor's
first attribute, whereas each
factor's second attribute applies
to benchmarks. Other tools fall
between each factor's attribute
range. Data Availability :

Lacking in detail, estimated as

a total; Or, detailed information
available on system; Assumptions /

Constraints : Numerous, broad,

high-level; Or, few, detailed,
specific; Timing/Funding ;

Short study, limited funding;
Or, lengthy, costly; Tool
Availability : Quickly developed
or obtained; Or, may require
extensive software development:
Accuracy Requirements . Gross
approximation of PPB elements

(+25%); Or, detailed estimate of

each alternative (+5%);

Desired Results: Estimates of

314

alternate costs; Or, estimate of
performance for each alternative.
In addition to these six factors
the sizing tool may be selected
based on the tool experience of
the team, especially if no one
tool or technique dominates the
listed factors.

3.3.6 Determine Feasibility of
Sizing Study

Prior to planning the details of the
study, the sizing team must insure that the
study can be completed within the fund and
time limitations. This determination is
based on the results of the previous analysis
(sizing objective requirements, list of
alternatives, data availability, assumptions
and constraints, and selected tools/tech-
niques) and the use of a skeleton model of
the sizing approach. The results of this
feasibility analysis must be reviewed by
management before the sizing team proceeds
with the study. Any sizing team concerns
about time, fund, or data constraints should
be voiced at this time.

3.4 Plan Detailed Sizing Approach

The information gathered to this point
is used to prepare a schedule of sizing tasks
and their sequence. At least the following
elements must be included in the schedule:

1. Documentation from the previous tasks
stating the sizing objectives, data require-
ments and availability, assumptions and
constraints, time limitations, funding
constraints, sizing alternatives, desired
results, and selected tools and techniques.

2. A description of the sizing experiments
needed to size each alternative and achieve
the desired results. The experimental design
must detail the data sources, analysis
procedures, type of desired results (data),
and expected accuracy. This is an extremely
important element that must be well developed
in the sizing approach.

3. A description of each task and subtask to

be performed. The tasks and subtasks will
fall into one of five categories: (a)

obtaining or developing sizing tools and
techniques; (b) obtaining data for workload
definition; (c) describing sizing alterna-
tives; (d) performing sizing experiments and

analysis; and (e) interpreting, validating,
and reporting results. (These five catego-
ries comprise the remaining steps of the
methodology - see Sections 3.5, 3.6, 3.7,

3.8, and 3.9.) Each task or subtask descrip-
tion should include: (a) required input for

task and source of input; (b) required output
from task and destination (follow-on task) of
output; (c) procedure (s) , tool(s), and tech-
nique (s) to be used; (d) time schedule; and
(e) personnel assignments and responsibil-
ities .

4. A set of criteria for evaluating the
sized alternatives. This set of criteria
should be based on the sizing objective. To
the extent possible, the criteria should be
quantifiable (cost, performance characteris-
tics, variances, etc.). It may be necessary
to weight (quantify or qualify) the criteria
based upon their degree of importance. Table
3.4 lists some criteria that might be used in
evaluating sized alternatives. At the
completion of this step, management should
review the sizing approach for consistency
with the sizing objective.

3.5 Obtain and/or Develop Sizing
Tools and Techniques

The sizing team may need to obtain,
develop, modify, enhance or define procedures
for use of the selected sizing tools and

techniques before performing the sizing
experiments. This step can be very time
consuming and should be accomplished in

parallel with the workload data collection
(Section 3.6) and description of alternatives
(Section 3.7) tasks. Guidance for this phase
can usually be obtained from documentation,
vendors, developers, or users of the selected
tools and techniques.

The sizing team may also have to verify
and calibrate the selected tools and tech-

niques. Verification ensures that a devel-
oped method behaves as the sizing team
intends, while calibration tests and recti-
fies the accuracy of the method results with
empirical data. A typical calibration
includes generating sample data (similar to

that being collected for the sizing exper-
iments) ,

conducting a sizing experiment with

that data, observing the method and the

accuracy of obtained results, and modifying
or changing the method if it will not meet

the sizing objective. Calibration requires

the comparison of an existing workload 's

performance on an existing ADPS with the

method's ability to predict the size and

performance of that ADPS, given a description

(input data) of the existing workload 's

characteristics. The extent of calibration

that can be performed, of course, is depend-

ent on the availability of an existing work-
load and ADPS.

315

Table 3.4 Examples of Criteria for Evaluation

(1) Sized system can process all functional systems and satisfy
required turnaround or response times.

(2) Sized system's capacity is expandable for projected future
growth.

(3) Sized system can handle unique processing requirements (stand-
alone, classified, contingency, specific scheduling constraints).

(4) Sized system can satisfy reliability/redundancy constraints.

(5) Sized system is within cost boundaries (comparative: comparison
of alternatives; or absolute: funding constraint).

3.6 Define Workload To Be Sized

3.6.1 Workload Data Elements

The data elements used to describe the
workload should be grouped according to a

scheme (e.g., by functional area and proc-
essing category) . Functional area groupings
separate the workload by ADP user applica-
tions (personnel, civil engineering, opera-
tions, maintenance, word processing, etc.);
these are the groupings used to predict
future workload growth. Processing category
groupings identify the workload' s mode(s) of
processing (e.g., on-line, batch, remote job
entry, time-sharing, message-switching);
each of these groupings requires a different
set of data elements to describe its work-
load. Usually, both groupings will be used
in describing the workload. For example,
within a functional grouping may be sub-
groupings of on-line inquiry and batch.

Within each grouping, two types of data
elements are needed: load descriptors and
workload characteristics. The number of
data elements required for each of these is

dependent upon the study's level of detail,
desired results, and selected sizing tools
and techniques. Table 3.5 provides examples
of data elements (and their sources) that

might be used to describe three processing
categories' loads and characteristics. In

selecting data elements for describing a

workload, the following guidance should be
used:

a. The set of characteristics used to

describe a grouping should be independ-
ent of a specific ADPS. For example,
the amount and characteristics of data
to be stored should be specified, and
not the number and/or capacity of disk
drives. There may be studies, however,
where it is more expedient to use
certain device-dependent characteris-
tics. This can be done when validated
conversion factors are available for

translating characteristics across all
specific sizing alternatives. If

device-dependent characteristics are
used, the sizing team must ensure that

erroneous conclusions are not made
based on the workload characteristics
(e.g., "CPU processing times on system
A are twice as long as system B for all

groupings; therefore, system B can
process twice the load of system A,"
would be an erroneous conclusion)

.

Also, conversion factors must account
for pertinent differences in alternative
ADPS (e.g., system B may have a process-
ing cycle time that is twice as fast as

system A, but system B may devote a

much larger portion of its processing
to system overhead)

.

b. The selected groupings should
facilitate prediction of future work-
loads and their characteristics.
Predictions can be made by (1) identi-
fying additional groupings and the

expected date of their implementation
or (2) identifying changes in loads of

316

CO 60
1 C

o s-l !-i H CO

rl 01 1 01 S-l S-l

4-1 4-1 X> CO CO CU X) 01

CJ c 3 £3 6 0) 4J
/—

N

cO H CO CO •rl B a
CO U 1—1 CO 1 H 3 c CO CO c
EH CU CU EH 0) CO o 01 S-i o
'—

^

4-1 01 pa. B 4-1 c •rl 6 CO •rl

c 6 o •H •H o 4J CO S-l 'rl X. 4-1

O H H 4-1 1

—
1 H C C_> o CU O H u CJ

Z H CO C CO n) N e CO

M S iH cu CO S-i •rl 01 0) >4-l S-i

PS o 4-1 •H o U CU 01 co a cj o 01

a •rl CO T3 S-l 01 o 4-1 c J-J

tn u C C 01 o S-l P-i S-i c -O CU S-l c
CO 01 p O T3 60 01 3 H O O T3 01 H

1 •H -H 01 CO o I-) -H -c

g M 4-> > 4J B J3 CO S-l CO B 1-4

a p 0) CJ -H 03 3 O CU 01 CO CO CU 3 0)
1—

1

Ph CO XI u Z I-) PS P-I H H PS z Ph
H 1 1 1 1 1 1

I—

1

T3
& 01 cO 01 0)

o pa c 60 1u O O co 3
m >, 4J -H CO CO CO

H Ul ctj C 4-1 p c 4-1

< •H a •rl O o 0) c
O C c 01 r—

*

u N 3
P CO XI 3 o CO rl o

o 01 PM S-l CU CO CO <_>

z S-t O X) 3 •H CU

M 0) rl CO O S-4 o s
CO Ph > 3 CO o S-l o n3 CO O
CO •H O CU 60 3 S-l r-l I")

W EC CO 01 13 -H PS 01 o 60 S-l

a U XI a X S-l 4J CO S-l o 0) S-i

o EH 0 •H 3 CO S-i cO 01 0) S-i > 0)

PS <C t—
3 H CO > o O PS P-I O Ph

Ph pq 1 1 1 1

iH S-l

CO 4-> 01

u C 3 -O Pk
CO o O a. 1 B U S-i

Ph C 01 4-1 •rl S-i 4-1 CO 3 CU

S-i co pa c 4-1 01 3 C z P<
to CU Sh •rl CJ p- O CO '

'
CO

c Ph H C |—

i

a S-i c n
0 .— co X) 3 CO CO o u H G • 0
•H (U a 0) pH 0) •H CO 3 •H CJ •H
4J B X> •H o 4-1 x: Sh •H U 4-> 4-1

O •H CO co •rl CO S-l CJ c_> 01 CO CJ CU CJ

w cO H c c > 3 O 1—

1

CO P-i c CO 3 CO

Z to •rl O •rl 0 60 CO 4-1 0 cu S-i CO

i—

i

C 4J E -H 13 •rl <u c 3 S-l -rl CJ 4-> OJ n
hJ ci3 •H S-I 4-1 42 S-i 4J CO CO a, CO 4-1 o W E cO

1 Sh 01 CJ 3 CO CO •H S-i c X: cj S-i 13 •H S-i

Z EH p H CO CO > O o H i—

i

C_3 CO Pk H H EH
O 1 1 I 1

CO

CU

c •H
o 4—1 CO CO

•H •H S-i S-i

4-1 t—

1

0 o CO 1

CO cO •rl 4-1 4-1 GO 3
01 4-1 CJ •H •rl o 01

CO u CO d CO c c B
w •H CO C cu Ph 0 o 3
o co ctj oo o | 60 CJ

Pi C 0 -H 3 M c 0
P 0) C J 4-1 CJ CU 0) •H Q
o CO H o CO O •rl S-i !-i 4-1 C
CO w > •H B > Q 4-1 CO cfl c B o

u Sh 4-1 CU S-l CX 3 3 01 "rl

o PS 0) CO 4-1 0) S-t •rl T5 4-> O 4J 4-1

1—

\

1—

'

1
* cu CO CO CU j_i C+-I o CO CO

< o a 3 !>. X CO a CO o CJ >, 4->

CO H O* CO O P CO 00 <C CO

H
Z

w
w

PS 1

PS< O
H w

< Ph H
uQ o z 1—

I

o U
w PS

pi

1—

1

w a 13 u
OS

H
Ph w aj co CO

<D W o H
H W hJ Q 3 o

317

existing groupings and when those
changes will likely occur or (3) pro-
ducing predictions of ADPS required to
support major variations in expected
workload (sensitivity analysis) and
reporting the ADPS workload boundaries
at fixed performance levels. For
example, a future workload at some date
may consist of two new functional area
groupings and a 10% increase in trans-
action volume for all existing on-line
groupings; or, future workloads may be
uncertain.

c. An alternative method of grouping
existing workload by similarity in
characteristics is cluster analysis. It
can be effectively used if little is
known about the workflow, functional
areas or processing categories, or if
the category groupings do not define a
stable set of characteristics (e.g., no
single set of characteristic values or
functions adequately describe the
grouping). If cluster analysis is used,
the sizing team must not only identify
the workload groupings, but must also
analyze the groupings and explain the
composition of each. This analysis will
assist in predicting future loads for
each grouping, due to future requirements
and growth.

d. Composite measures (e.g., of com-
puter resource usage) should be used
with care in describing workload charac-
teristics. These can create problems in
describing new requirement workloads,
determining alternative system capa-
cities, relating the composite measures
across alternative systems, and iden-
tifying configuration requirements of

each alternative that will process the
defined workload. Section 4.5 provides
an example of the problems that occur
when composite measures are used for
sizing

.

3.6.2 Application Software
Characteristics

The sizing team must do more than just
identify the workload for all application
programs. Several software characteristics
affect when, how, and under what conditions
portions of the workload are processed. The
major characteristics are as follows:

a. Scheduling . Certain programs can
only be processed at certain times or only
when certain conditions have been
met. These constraints must be repre-
sented in the sizing.

b. Dependencies . Often a program
cannot be run until one or more other
programs have executed. If this occurs
frequently and/or the study requires a

detailed analysis of sizing alterna-
tives' performance, these dependencies
will have to be accounted for in the
sizing.

c. Restrictions . Certain programs may
require restricted processing because of
security, priority, or reliability
considerations. These restrictions may
require stand-alone processing or other
constraints which must be considered in
sizing.

d. Maintenance . Many programs use data
files that are maintained on regularly
scheduled intervals. Maintenance often
includes changes in storage media and
the organization of the file. These and
other actions affect the start time and
use of system resources of programs that
access these data files.

3.6.3 Communications Load

Communication loads can be described at

various levels of detail and should be
consistent with the ADP workload definitions.
Communication loads might be stated in terms

of transactions, messages, packets, charac-
ters, or bits of information transmitted
within a network. Important characteristics
of a communications load include sources,
destinations, terminal type, rates, and

transmission constraints.

3.6.4 Data Collection

The data elements that were selected for

representing the workload and its charac-
teristics are now collected for each defined
grouping using the previously selected data
collection tools (see Section 3.3.5.b).
This collection may include measurement,
research, and estimation of the required
data. If measurement of existing loads and

characteristics is necessary, the following
sampling should be applied:

a. The length of each measurement
period should be determined by an

analysis of the category of workload,
the cycles of the workload (i.e., how
often does all or a portion of the

workload repeat itself) , and the sizing

study's level of detail. Table 3.6

provides general guidance based on

common workload categories and cycles.

318

WORKLOAD CATEGORY

Total*

Batch-Cyclic

Batch-Random

On-Line

Time-Sharing

Table 3.6 Length of Measurement Period (1 Cycle)

MINIMUM TYPICAL MAXIMUM

1 day 1 month Available
history

Dependent upon cycle occurrence and length

1 day - 1 week 1 month8 hours
(1 shift)

3-4 hours

3-4 hours

1 day - 1 week

1 day - 1 week

1 month

1 month

*No distinction among processing categories is made for sizing.

b. The number and kind of measurement
periods depends on the stability of the

workload, the defined level of detail,
accuracy requirements, alternate sources,
available time and funds, and the

number of workload groups. The sizing
team should understand the workload to

be measured, so that a minimum number
of periods are needed to collect a

workload description. It is the team's
responsibility to select an adequate
number of periods in order to meet the

sizing objective, and then to carefully
conduct the required data collection.
For example, if a maximum on-line
response time is specified, the measure-
ment of on-line workload must be at a

peak period. If, however, no critical
performance constraints exist, measure-
ment during or near an average level of

activity should suffice.

Guidance for future workload data
collection includes:

a. Future workload should be estimated
in the same terms (load descriptors,
characteristics) as the current work-
load (if one exists). The total work-
load requirements can then be sized
using a single set of sizing tools and

techniques

.

b. Groupings for the current workload
should be carefully examined for simi-
larities with future workload estimates.

When possible, future workload should

be estimated in terms of current work-

load groupings. For example, a new on-

line system's workload might be esti-

mated as having the same characteristics
of an existing on-line system, but with

80% of the existing system's trans-

action volume.

The information necessary to describe

the application software characteristics is

best obtained from functional analysts,

programmers and program documentation. It

is the sizing team's responsibility to

obtain this information through interviews,
questionnaires, or existing documentation.

Some communications load characteristics
can be extracted directly from the workload
definition and user requirements. Trans-
action volumes, sizes, and responses should
be identified; additionally, sources of

remote activity should be stated for the
communication sizing. Unique terminal
requirements (hard copy, optical-character
read, hand-held data entry, etc.) must also
be collected. Besides extracting this data
from the workload definition, the sizing team
can also gather information from functional
users (through interviews and questionnaires)

.

3.6.5 Workload Representation

Often it is necessary for the sizing
team to reduce, structure, combine, sum-

marize, extrapolate or reformat portions of

the collected data. This is necessary to

provide a manageable, but representative,
description of the workload to be sized.

This process, called "window analysis"
scales the workload through a "window",

i.e., reduces the workload to one that is

feasible and practical to model or benchmark
and that nonetheless represents the larger
original workload.

In representing the workload,

following guidance should be used:

the

a. The workload representation must be

consistent with the study objective and

constraints. If a portion of the total

workload has a time or resource con-

straint, then it must be represented.

If the study is to determine a required
capability for all workload, then peak
processing periods should not be solely
represented (nor should low processing
periods)

.

319

b. The sizing team should document
their total description of the workload.
The procedures, assumptions, and results
of this process should be readily avail-
able for review. A report on the feasi-
bility of processing new requirements
must document the workload to be proc-
essed. Workload documentation quantita-
tively expresses (1) new requirements,
(2) summaries of functional and process-
ing category requirements, (3) the level
of detail at which workload data was
obtained, and (4) the accuracy and
possible variances in the collected
data. The workload representation is,
of course, key to the success of the
sizing effort.

3.7 Describe Sizing Alternatives

A detailed description of the sizing
alternatives must be developed for the
sizing experiments. This description may be
a set of hardware, system software, and
communication component characteristics, or
an actual benchmark configuration. The exact
method of describing each alternative depends
upon the sizing tool(s) being used in the
study.

3.7.1 Hardware

a. Data Elements . Hardware character-
istics for each alternative should be
stated in terms of device speeds,
capacities, and connectivity. It is not
recommended that the sizing team decribe
hardware characteristics using perfor-
mance measures (composite measures, jobs
processed per hour, transactions proc-
essed per second, etc.). While it
simplifies the sizing technique to

describe the hardware characteristics as
workload rates (e.g., jobs processed per
hour) , it is almost impossible to show
that the workload units equate to the
hardware rates (e.g., the workload'

s

jobs do not necessarily equate to

hardware's job processing rate).

b. Collection . Vendor literature and
various other documents on ADPE should
provide the sizing team with the re-
quired hardware characteristics. Impor-
tant elements which the team must col-
lect for each hardware alternative
include device types, device speeds,
device capacities, configuration ranges
(min, max) , device connectivity, and
limitations

.

c. Representation . The hardware,
software, and communication component
characteristics are used to represent

ADPS alternatives. The characteristics
of one component affecting the charac-
teristics of another (e.g., system
software overhead can reduce the speed
and capacities of hardware) must be
included in each ADPS alternative
description. Two approaches can be
taken to describe each alternative's
characteristics. The first approach is
that the sizing team can use a system
with which they are familiar. A better
definition of the component charac-
teristics can thus be provided. An
advantage is that sizing can then
be costed on the basis of known vendor
price schedules. Assuming that vendors
are competitive, this sizing should
represent the approximate dollars that
will be expended, and general perfor-
mance of the sized ADPS. The results of
this sizing approach should be used
primarily for programming, planning, and
budgeting. One disadvantage of this
approach is that the sizing can easily
bias procurement actions in favor of the
vendor used in the sizing. A second
disadvantage is that vendors may, in

general, be competitive, but the unique
aspects of a workload may be well suited
to a particular ADPS other than the one
used for the sizing.

The second approach is to describe
characteristics of representative
components that satisfy sizing alter-
natives. This approach makes it possible
to "fine tune" the characteristics of

the ADPS needed to support the defined
workload. The disadvantages are in

describing the characteristics and in

accurately costing the sized ADPS.
Although the characteristics of the

sized ADPS may be well defined with this

approach, it is often difficult to

relate these pseudo-characteristics to

available systems.

It is generally best to use the

first approach when PPB considerations
or system capacity considerations are of

prime interest and to use the second

when portraying a size without any bias
toward a specific vendor is most impor-

tant.

3.7.2 System Software

a. Data Elements . ADPS alternatives
must include consideration of system
software and its impact on the total

320

ADPS performance. At a minimum, the
overhead (resource usage) imposed by the
system software must be included in each
sizing. As more detail is added to the
study and more information on each
alternative's performance is required,
the system software's features and logic
must be represented in the sizing tools
and techniques. Major features which
might be analyzed include: (1) I/O
handling; (2) user resource request
handling; (3) job scheduling, initia-
tion, and termination; (4) job execution
management (task switching, queuing,
swapping, etc.); (5) data management;
(6) network management; and (7) special
features (sort packages, resource
accounting, etc.).

b. Collection . The information that is
needed to describe alternative system
software must come from sizing con-
straints, assumptions, vendor litera-
ture, texts on system software, instru-
mented benchmarks, software monitors,
and application systems' requirements.
The sizing team should list the minimum
features which will satisfy the sizing
constraints, assumptions, and applica-
tion system requirements. Vendor
literature and texts on system software
can then be used to select the features
and ensure that the required set of
features is available.

c Representation . A representative
set of system software (representing no
particular vendor's software) or a
specific vendor's system software can be
used in describing ADPS alternatives.
The description of system software
alternatives obviously depends on the
selected sizing technique (model or
benchmark). Section 3.7.1.C provides
further guidance on which representation
to use.

3.7.3 Communication Components

a. Data Elements . The hardware and
software needed to handle data trans-
mission between a remote user and
central computer site or multiple
central computer sites comprise the
communications network. Communication
devices include lines, terminals,
modems, concentrators, bridges, com-
munication front-ends, and multiplexors.
Communication software includes packages
for network control, accounting, error
detection and correction, code con-
version, recovery, and security.

b. Collection . The communication
device characteristics can best be
collected from vendor literature, and
selected texts. The characteristics
should be stated as basic capabilities:
speed, capacity, connectivity, relia-
bility, queuing discipline, etc. As
stated in Section 3.7.1.C, either
specific vendor device characteristics
or representative characteristics can be
identified for each alternative.
Communication software procedures are
similar to those of system software
(Section 3.7.2.b). Human factors are
obtained by interviews and observation,
operator documentation, or prototyping.

c. Representation . The communication
devices must be described such that
their characteristics can be input into
the sizing tools and a communications
network identified. If extensive
communication requirements must be
identified and sized, a communications
engineer should be a sizing team member.
Line speeds, terminal characteristics,
and other device characteristics can be
obtained from literature surveys, but
representing the networking of these
devices requires additional expertise.
Communication software representation,
like system software representation,
depends heavily on the sizing technique
(Section 3.7.2.c).

3.8 Perform Sizing and Analysis

The sizing experiments consist of

applying the developed sizing tools and

techniques (Section 3.5), using the defined
workload, software, hardware, and communica-
tions data (Sections 3.6 and 3.7). The
number of sizing experiments that are per-
formed depends upon the time available,
resources, desired results and required
degree of accuracy. Before and during these

sizing experiments, the following guidance

should be applied:

1. Prior to conducting the first sizing
experiment, the sizing team should review the

data from all previous steps. This review
should last anywhere from two days to several

weeks, depending upon the study's level of

detail and should address the following

activities

:

a. Review the sizing objective and

ensure that experiment results will

satisfy that objective.

b. Review each alternative and ensure
that it is still viable.

321

c. Review all identified assumptions
and constraints; identify where they
are considered in each sizing exper-
iment; ensure that they are being
considered correctly.

d. Review the calibration and veri-
fication tests that were performed for
the sizing tools and techniques.
Ensure that the tools behave as desired
and identify the confidence that can be
placed in the tools' results. (Review
calibration results.)

e. Review all data collected to define
the workload, software, hardware, and
communications. Ensure that the required
input data for the sizing are available.
Ensure that data element definitions
are consistent (e.g., make sure that
transactions defined in the ADPS work-
load are equivalent to transactions
defined in the communications workload)

.

f. Make a final review of the sizing
procedures that will be used during
each experiment. Clarify any mis-
understandings among team members.

2. The evaluation criteria that were
developed during the detailing of the sizing
approach (Section 3.4) must be used in
selecting the best ADPS. Each sized ADPS
should be evaluated against each criterion.
If possible, quantitative measures should be
used in this evaluation. Some measures such
as costs, response times, and resource
utilization levels are straightforward,
while others such as level of security,
satisfaction of user requirements, and ease
of software conversion may require the
sizing team's subjective weighting of each
alternative. The sizing team must use the
results of this evaluation to first identify
which alternatives satisfy all criteria and
then, from that subset, to select the
alternative which best satisfies all cri-
teria. The approach and results of this
evaluation should be well documented.

3.9 Interpret, Validate and
Report Results

After the sizing experiments are com-
pleted, the sizing team must carefully
review, interpret, and validate their
results. The team must consider the sizing
obj ective(s)

, assumptions, and constraints
when reviewing the results. Sensitivity of
input data (workload, descriptions of
alternatives), assumptions, and constraints
should be carefully analyzed. Because of

the uncertainties that are inherent in
sizing studies, the team must interpret the

results with care. Once the results have
been reviewed and interpreted, the sizing
team must validate that their interpretation
is consistent and accurate. Any unknowns or
uncertainties must be recorded for the users
of the sizing results.

Documentation of the study results and
the sizing techniques must receive con-
siderable attention. It is the final
documentation which will be used in future
decisions and actions regarding the selected
ADPS and its estimated size. The following
guidance should be used in preparing this
documentation

:

1. Report the results in terms of the
sizing objective. Do not increase the
document size by reporting additional
results that do not support or relate to the
sizing objective. Supplementary information
to support the sizing results should also be
provided. Any other information from the

sizing study should be retained in case
further results or details on the sizing are
required

.

2. Report the sizing team's confidence in

the results, and identify how uncertainties
in the study might affect the results.
Five areas of uncertainty which should be

addressed are (1) assumptions and constraints

(2) collected data for study, (3) tool/

technique accuracy, (4) workload projec-
tions, and (5) subjective interpretation.

3. Structure the sizing report to briefly
cover all steps in the sizing process.

Highlight those sections which specifically
satisfy the sizing objective. Provide
results in figures, graphs, and charts, when
possible. Excessive words only detract from

the sizing results. Table 3.7 presents an

outline which can be used in structuring the

sizing report.

4. Sizing Problems/Examples

4.1 Learning From Past Studies

Sizing studies are certainly not new.

Government and Industry have conducted many

sizing studies to estimate the feasibility,

cost, and performance of proposed new or

enhanced ADPS. However, it is often dif-

ficult (if not impossible) to obtain the

details of studies that are similar to a new

sizing requirement. This can lead to dupli-

cation of effort and the recurrence of

sizing mistakes. To reduce this duplica-

tion, this section discusses selected sizing

studies and some of the major problems that

have arisen. Section 5 provides references

for other sizing studies that have been

conducted.

322

Table 3.7. Example Outline for Sizing Report

i ABSTRACT
Summary of sizing objective, sizing

results, and study recommendations.

ii TABLE OF CONTENTS

iii LIST OF

I. INTRODUCTION (MACRO-ANALYSIS)

A. SIZING STUDY OBJECTIVE

B. ASSUMPTIONS/CONSTRAINTS

C. STUDY DATA AND SOURCES

D. LIST OF ALTERNATIVES

FIGURES AND TABLES

II. SIZING APPROACH

A. TEAM AND TASK DESCRIPTIONS

B. DESIGN OF SIZING EXPERIMENTS

C. TOOL/ TECHNIQUE DESCRIPTIONS
1. Selection
2. Verification/Validation

III. SIZING RECOMMENDATION

A. WORKLOAD SUMMARY

B. RECOMMENDED ADPS DESCRIPTION
1. Software
2. Hardware
3. Communications

D. WORKLOAD DEFINITION
1. Sources
2. Approach

E. SOFTWARE, HARDWARE, COMMUNICATION
DEFINITION
1. Sources
2. Approach

C. SPECIAL CONSIDERATIONS
1. Impact of Changing Assumptions/

Constraints
2. Impact of Workload Variance
3. Confidence in Sizing Tools/

Techniques

F. CONDUCT OF SIZING EXPERIMENTS

ALTERNATIVE ANALYSIS

A. EVALUATION CRITERIA

B. EVALUATION APPROACH

C. ANALYSIS RESULTS

APPENDICES

A. DETAILED WORKLOAD DEFINITION
Tables, graphs, figures, and narrative descriptions

should detail the workload and its characteristics.
Functional area and processing category groupings should
be described.

B. ALTERNATIVE SIZINGS
For each alternative, provide a detailed description

(commensurate with sizing level of detail) of the sizing
results. Report the analysis of variances for each
alternative (impact of changing assumptions/constraints,
impact of workload variances, etc.).

323

4.2 Constraining Sizing
Alternatives

Predetermining the viable alternatives
is one of the common mistakes made in sizing
studies. Although a complete set of alter-
natives must be identified, such identifica-
tion should occur within the normal flow of
the sizing methodology (see Section 3)

.

Early determination of which alternatives
are viable often directs the sizing study
toward justifying a particular sizing alter-
native, rather than toward evaluating all
the alternatives that might satisfy the
sizing objective, assumptions, and con-
straints. A recent technical evaluation of

a sizing requirement concluded, for example,
that:

"Not all reasonable alternatives have
been identified. The approach and
methodology used to evaluate the system
alternatives are inadequate. Alterna-
tives have been discarded without
proper study and analysis. Statements
about capabilities and capacity are
made without supporting analysis. No
feasibility studies or detailed infor-
mation of the identified alternatives
exist."

5

The sizing team's premature selection of the
"best" alternative led to an unsatisfactory
study. Had the sizing team carefully treated
each alternative equally and analyzed all
alternative sizings, the study would have
provided the information necessary for the
decision makers.

An alternative that appears to be the

best for the sizing organization may be
unacceptable because of constraints iden-

tified during the review cycle. If the team
"justifies" only one alternative, instead of

evaluating several, the sizing will probably
have to be repeated. Just that happened in

the study mentioned above. The study attempted
to justify a sole-source procurement (a most
difficult task for any sizing team) and not

all viable alternatives were evaluated

equally. The study's conclusion that the

sole-source procurement had "the greatest
assurance of providing a comprehensive
solution to the problems identified in terms

of operational timing, technical risk,

mission support, compatibility, and cost"

was not justified by an analysis of sizing
alternatives

.

4.3 Poor Workload Definition

Two essential elements of a sizing study
are (1) adequate workload definition and (2)

a statement of workload variance. Adequate
workload definition requires that the sizing
team be able to identify the workload to be
sized, collect it, analyze it, and represent
it in a form comparable to the sizing method.
Stating the workload variance identifies the
confidence the sizing team has in the work-
load definition and forms the basis for
sensitivity analysis.

Both adequate workload definition and a

statement of variance have sometimes been
neglected in past studies. The former is

essential no matter what type of sizing is

to be performed. For example, the study

evaluation mentioned in Section 4.2 main-

tained that

:

"No comprehensive workload definition
or system sizing studies have been per-

formed. Agency personnel stated that

requesting prototype equipment for

evaluation negated the requirement that

workload definition and sizing studies

be conducted. Agency position is that

the studies would be developed during

the prototype evaluation period as

necessary. The workload definition

and sizing studies should be the

foundation for the entire evaluation .

A detailed prototype evaluation plan is

mandatory before the acquisition or

installation of any system. Without

such a plan, no objective evaluation is

possible; indeed, it is highly likely

that an unorganized test will mislead

if it reacts to occurrences as they

happen rather than a predefined plan."

This sizing study defined existing

workloads at a very high level (e.g., wall

clock hours, "average" transaction activi-

ties) but did not address such key data as

desired transaction response times, output

transaction volumes (by type) , and differ-

entiation between transaction types. The

study's methodologies and data collection

techniques were undocumented, and no work-

load variance estimates were reported or

analyzed for alternative sensitivities. All

this made the review cycle of the study

difficult and slow. Several iterations of

reworking the study were necessary to improve

its sizing approach.

Technical Evaluation of Reference Study

#1 (Referenced studies will not be specifically

named, since that would add little to this

discussion)

.

324

4.4 Inappropriate Level of Detail

Sizing studies are frequently either
much too detailed or not nearly detailed
enough, and either extreme slows the imple-
mentation of new requirements. An insuffi-
ciently detailed sizing study normally
requires that additional information be
provided before decisions on future ADPS can
be made. Unnecessary detail will slow the
sizing effort and review of sizing results.

An example of lack of detail in a sizing
to support a requirement was recently docu-
mented. The study requested upgrading CPUs
at two sites and attempted to justify the
upgrades with a workload analysis that showed
increasing CPU processing times at both
sites. The study did not, however, analyze
the alternatives (no change, upgrade periph-
erals, upgrade CPU and associated peripherals)
and their abilities to process the workload.
As a result, the reviewing authority respond-
ed by stating that:

"Our review . . . has disclosed a

lack of detail surrounding the

definition of the specific problem
at Site 1 and Site 2 and, given
that, the specific alternative (s)

available for the solution of the

problem. The study states that
systems at both sites are CPU bound
but fails to adeguately justify
this assertion."

bids. Excessive detail will cause misunder-
standings among the vendors and make the

conduct of fair tests very difficult.
Further guidance in preparing an LTD at the

appropriate level is provided in FIPS PUB
42:1 (see Section 5).

4.5 Improper Tool Selection

More than one set of sizing tools can

usually be applied in any sizing study.

Using the guidance provided in Section
3.3.5 (Select Tools/Techniques) may lead to

the selection of different sets of tools for

similar studies. However, the sizing team

must always guard against selecting a tool

not suitable for the sizing study.

One example of a potentially inappro-

priate sizing technique is analyzing com-

posite measures (e.g., computer resource

units [CRU's], standard units of processing

[SUP's] etc.). Although composite measures
describe various jobs' uses of computer

resources and provide a vehicle for costing a

job equitably, such measures are usually not

ideal candidates for sizing studies. Poten-

tial problem areas with using composite

measures in a sizing analysis include:

(1) Describing new workload require-

ments

(2) Determining alternative system

capacities

It was recommended that workload analysis
and sizing studies should be performed at

both sites. As a result, approval of the

study was delayed.

Excessive detail often results from
using sizing methods appropriate for well-
defined, existing workloads to size ill-

defined future workloads. An attempt to

increase the sizing accuracy simply by using
precise techniques can introduce an undesirabl
level of detail and obscure potential work-

load variances. It is better to clearly and

quickly report large variances in the sizing

results than to dwell on sophisticated
approaches that lend nothing to the desired

sizing objective.

An appropriate level of detail is

extremely important for preparing a Live Test

Demonstration (LTD) . Too little detail in

the LTD will lead to incomplete testing of

Response to Reference Study #2.

(3) Statistically relating composite

measures across different alternative

systems

(4) Identifying the required config-

uration for each alternative to process

the workload

(5) Instability of a composite measure

over the time of the study.

All these problem areas are illustrated in

the following example.

A recent sizing study^ was based on an

analysis of composite units. An estimate of

outyear workloads (in terms of composite

results) was compared to calculated composite

unit capacities for the study alternatives,

but the study documented no assumptions,

constraints, or estimates of error. This

approach had several deficiencies.

Reference Study #3.

325

(1) The workload was defined by deter-
mining the average job composite Unit/Hr
rate for the existing workload. That
rate was then multiplied by user esti-
mates of occupancy hours for each out-
year. This assumed (a) that the average
composite rate would not change over
time, (b) that the composite rate was a

good measure of workload, (c) that the
user could accurately estimate occupancy
hours, and (d) that the composite rate
was configuration independent. The
first assumption, which was equivalent
to assuming that average job resource
requirements would not change, should
not have been made without some analysis
of the future workload' s characteris-
tics. The second assumption did not
consider the effect of different work-
load characteristics. For example, two
outyear projections of workload could
have identical composite rates, but be
significantly different. The first
might consist of CPU-bound jobs with
very little I/O activity, and the
second might be comprised of I/O-bound
jobs with low CPU activity. Although
the systems sized to support these two
workloads might be quite different, the
composite measure of workload would not
identify such a difference. The third
assumption could lead to large variances
that should be recognized and studied
through sensitivity analysis. Although
requesting estimates of future require-
ments is necessary, it can lead to large
errors. These errors are compounded by
estimates based on such an aggregate
measure as occupancy hours. The fourth
assumption gives undue credibility to

composite measures as absolute gauges of

workload, ignoring hardware and software
constraints.

(2) The calculation of composite capa-
cities for the study alternatives
assumed a balanced use of all system
resources. Maximum composite factors
were calculated for the CPU, core, tape,

disk, and mass storage. An efficiency
factor was then multiplied by the total
of the composite factors to identify
each alternative's maximum capacity in

composite limits. An analysis of

existing systems showed that, because a

sustained balance of resource usage was
not possible, it could not be expected
that the sum of these maximum composite
rates would ever be achieved. A per-
centage factor was applied to the sum of

the maximum composite rates to account
for this fact. That factor, however,
was based upon an existing workload and
did not account for the effect of future
workloads on the system's balance.

(3) In order to evaluate alternatives,
the total workload demand in composite
units were compared to each alternative
system's composite unit capacity. This
approach does not necessarily alleviate
a saturation condition. For example, a

system with a "capacity" of 450 Units/Hr
could be increased to a "capacity" of

1500 Units/Hr by adding core and a

faster CPU. If the workload required
800 Units/Hr, the new system should be
able to process the workload (on the
basis of a composite unit analysis)

.

However, the workload could be heavily
I/O bound and have its throughput
seriously degraded by a lack of I/O
channels and devices.

Sizing tools that define the work-
load and system alternatives in basic
ADP resource units and that analyze
alternatives at the component level
usually provide more meaningful and more
accurate sizings. Even when only gross
estimates of workload are available,
these approaches can lead to a better
understanding of requirements and the
effect of variances on the estimates. A
static or analytic sizing would have
been more appropriate than composite unit
analysis for the sizing just discussed.
Such a study could have analyzed each
alternative at the component level and
provided variances about the estimates.

4.6 Poor Presentation of Results

Poorly documented results can make an

excellent sizing study ineffective. Besides
following good report writing procedures, the

sizing report should include at least:

(1) A concise summary that presents
sizing objectives, assumptions, con-

straints, data sources, approaches,

alternatives, and results

(2) A firm recommendation supported by

the study

(3) An appendix that details the study

and is formatted like the sizing method-
ology in Section 3

The inadequately p
one study undermined an

thorough workload analy
analysis, the proper us

and a detailed evaluati
natives. The study's r

concisely summarized
the study stated that,
time indicates that the

resented results in

excellent and

sis, a good saturation

e of existing tools,

on of various alter-
esults were not
The opening section of

"The amount of direct
system is close to

326

saturation
, andgthe situation is close to

being critical. The study added that
"saturation may be reached in the very near
future." The objective stated that "this
request is to relieve the approaching satura-
tion condition before it significantly
affects support capabilities to all func-
tional users . Under present circumstances,
the desired objectives can only be obtained
through . . . the installation of another
system at the central site. This will
definitely relieve the pressure of the
present workload and eliminate the eventual
saturation as a result of workloads projected
for the future."

The wording of this summary left many
questions in the minds of the reviewing
authority and required a follow-up letter
that more explicitly stated future workload,
sizing results, and when the new workload
impacts would occur. The summary's wording
immediately raised questions such as: (1)

What is saturation? (2) When will saturation
occur? (3) What workloads will be added to
cause saturation? (4) Why does the objec-
tive statement also provide a solution? (5)

What functional user support capabilities
will be affected?

The sizing team should always try to

minimize such questions by reporting the
results clearly, thoroughly, and accurately.

This section has discussed only a few of
the many problems which can occur in a sizing
study. Many more have been experienced, and
sizing teams should seek out these problem
areas prior to experiencing them in their own
studies. Section 5 provides a list of ref-
erences that can assist sizing teams in
identifying other problem areas. An inten-
sive example, illustrating most of the
techniques described, is available by
writing to the authors.

5. Sizing References

5.1 General

All tools, techniques, previous appli-
cations, guidelines, and approaches to sizing
are far too numerous to document here. The
sizing team must complement the methodology
and guidance presented in this document with
reference to other sizing-related documents
and assistance from centers that have exper-
ience in sizing. This section lists major
references for additional sizing information.

1. AFR 300-12, Volume I, Chapters
2,4,5,7,8, and 9 and Attachments 1,2,3,
15,17,24,25, and 27.

2. Bronner, L. Capacity Planning, An
Introduction . Washington, D.C.: IBM
Systems Center, January 1977.

3. "Computer Performance Planning and
Control." Ideas for Management , 1974,

pp. 60-66.

4. Cooley, B. "Documenting Simulation
Studies for Management Use." Winter
Simulation Conference , Volume 2, 1977,

pp. 742-746.

5. DeMarco, T. "Breaking the Language
Barrier, Part I" COMPUTERWORLD

,

August 7, 1978, pp. 19-27.

6 . Management Guidance for Developing
and Installing an ADP Performance
Management Program . Washington, D.C.:

General Services Administration, July
1977.

7. "Predicting the Effects of Hardware
Changes." EDP Performance Review ,

February 1974.

8. Timmreck, E. M. "Computer Selection
Methodology." Computing Surveys ,

Volume 5, No. 4, December 1973, pp. 199-

221.

5.2 Sizing Tools/Techniques

The selection of proper sizing tools and

techniques requires a thorough review of the

many available references. The following
list is a sampling of available sizing tool

and technique references:

5.2.1 Data Collection

a. Carlson, G. "A Guide to the Use

of Hardware Monitors." EDP Perfor-
mance Review ,

September 1976, pp. 1-8;

October 1976, pp. 1-7.

b. Deese, D. R. "Experiences with
Measurement as an Aid to Simulation."
SHARE , December 1973, pp. 361-374.

c. Desiderio, L. ; Saloky, D.; and

Wasserman, A. Measuring Computer
Performance for Improvement and

Savings . Coopers and Lybrand, 1974.

Sizing references that can assist the d> Drummond, M. E. , Jr. Evaluation
sizing team in preparing and conducting a and Measurement Techniques for Digital
sizing study include: Computer Systems . Prentice-Hall, Inc.,

1974 .

g
Reference Study #4.

327

e. "Evaluation and Comparison of Soft-
ware Monitors." EDP Performance
Review

, February 1976, pp. 1-9.

f. Gemar, W. . "Improved Performance
for Less Cost." Data Processing

,

Volume 16, July-August 1974, pp. 225-
228.

g. Morris, J. A. "Hardware Measurement -

Past, Present, and Future." SHARE
,

December 1973, pp. 308-332.

h. Nutt, G. J. Computer System Monitor-

ing Techniques . NTIS, February 1973.

i. Svobodova, L. Computer Performance
Measurement and Evaluation Methods :

Analysis and Application , American
Elsevier, 1976.

5.2.2 Models

a. Analysis of Some Queuing Models in
Real Time Systems . IBM Journal GF20-
0007-1, September 1971.

b. Allen, A. 0. ""Performance Analysis
and Capacity Planning." Presentation
Notes at SHARE 50, Session C113, March
1978.

c. Bell, T. E. "Objectives and Prob-
lems in Simulating Computers." Proceed-
ings of FJCC, 1972, pp. 287-297.

d. Clark, C. T. and Schkade, L. L.

Statistical Methods for Business Deci-
sions . Southwestern Publishing Co.

,

1969.

e. Daniel, C. Applications of Statis-
tics to Industrial Experimentation .

John Wiley & Sons, Inc. , 1976.

f. Emshoff, J. R. and Sisson, R. L.

Design and Use of Computer Simulation
Models . The MacMillan Co., 1970.

g. Feller, W. An Introduction to

Probability Theory and Its Applications .

John Wiley & Sons, Inc., 1950.

h. Fishman, G. S. Concepts and Methods
in Discrete Event Digital Simulation .

John Wiley & Sons, Inc., 1973.

i. Freiberger, W. (ed.). Statistica l

Computer Performance Evaluation . Aca-
demic Press, 1972.

j. Hillier, F. S. and Lieberman, G. K.

Operations Research . Holden-Day, Inc.

,

1974.

k. House, W. C. Operations Research .

Auerbach Publishers, Inc., 1972.

1. Jain, A. K. "Statistical Approach,
in Computer Performance Evaluation
Studies: A Tutorial" Supplementary
Proceeding of CPEUG Meeting 14, 1977.

m. Karplus, W. J. "The Spectrum of
Mathematical Modeling and Systems
Simulation." Mathematics and Com-
puters in Simulation XIX , 1977, pp.
3-10.

n. Kershenbaum, A. and Chou, W. "A
Unified Algorithm for Designing Multi-
drop Teleprocessing Networks," IEEE
Transactions on Communications , Volume
22, No. 11, November 1974.

o. Kiviat, P.. J.; Villanueva, R. ; and
Markowitz, H. M. SIMSCRIPT II. 5 Pro-

gramming Language . CACI , Inc., 1973.

p. Kleinrock, L. Queuing Systems ,

Vol. 2: Applications . John Wiley &

Sons, Inc., 1976.

q. Kosy, D. W. The ECSS II Language
for Simulating Computers Systems .

The Rand Corporation, R-1895-GSA,
December 1975.

r. Martin, F. F. Computer Modeling
and Simulation . John Wiley & Sons,

Inc., 1974.

s. Pritsker, A. B. The GASP IV
Simulation Language . John Wiley &

Sons, Inc., 1974.

t. Reiser, M. "Interactive Modeling
of Computer Systems." IBM Systems
Journal , No. 4, 1976, pp. 309-327.

u. Shannon, R. E. Systems Simulation :

The Art and Science, Prentice-Hall
Inc. 1975.

v. Schriber, T. J. Simulation Using
GPSS . John Wiley & Sones, Inc. 1974.

w. Wagner, H. M. Principles of

Operations Research . Prentice-Hall,
Inc., 1969.

x. Wyatt, J. B. "Computer Systems:
Simulation." The Information Systems
Handbook . Chapter 19. Dow-Jones-
Irwin, Inc . , 1975

.

328

5.2.3 Benchmarks

a. AFR 300-12, Volume I, Attachment 15.

b. Benwell, N. (ed.). Benchmarking
,

Computer Evaluation and Measurement .

Washington, D.C.: Hemisphere Publish-
ing Corp. , 1975.

c. "DPSC Interim Benchmark Project
Report." Naval Facilities Engineer-
ing Command, Facilities Systems Office,
April 1975.

d . Guidelines for Benchmarking ADP
Systems in the Procurement Environ-
ment , FIPS PUB 42-1. Washington, D.C.:
National Bureau of Standards, May 1977.

e. General Services Administration.
Summary of the NBS/GSA Government
Workshop on Remote Terminal Emulation

,

Report CS76-1, Washington, D.C. : GSA/
DJS, June 1976.

f . Handbook for Preparation of Vendor
Benchmark Instructions . Department of

the Navy, ADPS Selection Office,
October 1976.

g. Joslin, E. Computer Selection ,

Addison-Wesley , 1968.

h. Watkins, S. W. and Abrams, M. D.

Survey of Remote Terminal Emulators .

NBS Special Publications 500-4, April
1977.

i. Walkowicz, J. L. Benchmarking and

Workload Definition: A Selection
Bibliography with Abstracts .

Washington, D.C. : Government Printing
Office, November 1974.

j. Walters, R. E. "Benchmark Tech-

niques: A Constructive Approach."
Computer Journal , February 1976, pp.
50-55.

k. Wyrick, T. F. and Findley, G. W.

Incorporating Remote Terminal Emula-
tion into the Federal ADP Procurement

Process, Proceedings of CPEUG, this
issue

.

5.3 Workload Definition

References that can assist the sizing

team in conducting the workload definition
step (discussed in Section 3.F) include:

a. Agrawala, A. D. and Mohr, J. M. "A

Model for Workload Characteristics."
Symposium on the Simulation of Com-
puter Systems III, August 12-14, 1975

pp. 9-18.

b. Crothers, C. G. "Workload Determi-
nation and Representation for On-Line
Computer Systems." MITRE Tech Report
TR-2682, June 1974.

c. Ehrenberg, A. S. C. Data Reduction .

John Wiley & Sons, Inc., 1975.

d. Ferrari, D. "Workload Characteri-
zation and Selection in Computer Per-
formance Management." Computer 5:4,
July-August 1972, pp. 18-24.

e. Gudes, E. and Sechler, C. "Measures
for Workload and the Relation to Per-
formance Evaluation." Proceedings of

Computer Performance Evaluation Users
Group, September 23-26, 1975, pp.
115-221.

f. Johnson, R. R. "On the Generation
of a Demand and Batch Workload Model."
MITRE Tech Report MTR-4561, August
1973.

g. Sreenivasan, U. and Kleinman, A. J.

"On the Construction of Representative
Synthetic Workloads." MITRE Tech

Report MTR-143, March 1973.

5.4 Describe Sizing Alternatives

References that can assist the sizing

team in conducting the software, hardware,

and communication definition step (dis-

cussed in Section 3.G) include:

a. Auerbach Computer Technology

Reports, Auerbach Publishers, Inc.,

1977.

b. Datapro 70 ,
Datapro Research

Corporation, Delren, N.J., 1977.

c. Datapro Reports on Minicomputers ,

Datapro Research Corporation, Delren,

N.J., 1977.

d. Datapro Reports on Data Communica-

tions , Datapro Research Corporation,

Delren, N.J. , 1977.

e. Datapro Directory Software , Datapro

Research Corporation, Delren, N.J.,

1977.

329

f. Doll, D. R. Facilities, Networks
and Systems Design , John Wiley & Sons,
1978.

g. EDP Performance Review
, Applied

Computer Research Publishers, Volumes
1-6, 1973-1978.

h. Ferrari, D. (ed.). Proceedings of
the Performance of Computer Installa-
tions: Evaluation and Management ,

North-Holland Publishing Co., 1978.

i. Ferrari, D. (ed.). Computer
Systems Performance Evaluation ,

Prentice-Hall, Inc., 1978.

j . General Services Administration.
User's Guide , Supplement #2 to Tele-
processing Services Program special
notice. 1978.

k. Green, P. and Lucky, R. (eds.).
Computer Communications , IEEE Press,
1974.

1. Martin, J. Systems Analysis for
Data Transmission

,
Prentice-Hall, Inc.,

1972.

m. Proceedings of the Computer Per-
formance Evaluation Users Group , Na-
tional Bureau of Standards Publication,
Meetings 1-15, 1971-1978.

n. Proceedings of the Computer
Measurement Group (formerly BBUG)

,

Volumes 1-9, 1968-1978

o . Proceedings of the European
Computing Conference on Computer
Performance Evaluation , London, 1972,

1974, 1976, On-Line Conferences Ltd.,
Uxbridge, U.K.

p. Schwartz, M. Computer-Communica-
tion Network Design and Analysis ,

Prentice-Hall, Inc., 1977.

q . SHARE Computer Measurement and

Evaluation Newsletter No. 1-44, 1969-

1978.

r. SIGMETRICS (ACM) Performance
Evaluation Review Newsletter, Vol 1-7

1972-1978.

s. Stimler, S. Data Processing
Systems: Their Performance, Evalua-
tion, Measurement and Improvement ,

Motivational Learning Programs, Inc.,

1974.

330

HUMAN PERFORMANCE EVALUATION IN THE USE OF FEDERAL COMPUTER
SYSTEMS: RECOMMENDATIONS

Mark A. Underwood*

Navy Personnel Research and Development Center
Code P204 - Bldg. 330

San Diego, CA 92152

There has been increased awareness in recent years of the high
cost of non-hardware items in the Federal ADP budget in contrast
with decreasing costs for much of the hardware. More attention is
being given to software development costs, systems design practices,
automatic program testing, and the like. Particular commercial and
military systems effectiveness and life cycle costs now take into
consideration such factors as part of the planning process. It is

suggested that not enough attention has been given to measurement of
human performance variables as part of the systems procurement and
systems evaluation phases of Federal ADP programs. Recommendations
are made for the incorporation of such measures along with conven-
tional hardware/software performance measurement.

Key words: Computer performance; federal systems evaluations;
human performance measurements; psychology of computer systems usage.

1. Introduction

Proliferation of low-cost computer sys-
tems in the Federal Government may well re-
duce or hold the line on overall computer
hardware costs. This turn of events will
draw attention to a steady increase in per-
sonnel costs associated with the operation,
maintenance, programming, and use of compu-
ter systems. Accordingly, there has been
some research in the field of the cognitive
and human factors involved in programming.
Some of the outgrowths of this research have
been "software science" (Halstead), "software
physics" (Kolence) and the field of struc-
tured design. The popularization of struc-
tured programming was spurred, seemingly, by
a realization that the sophistication of

machines being manufactured exceeded human
capabilities to utilize them efficiently.

The Federal Government, some have main-
tained, has been a stimulus for growth in the
area of computer performance evaluation (CPE)

because of the role that CPE can play in im-

proving utilization of existing computer sys-
tems, and the role it can play in Federal ac-

quisition actions. Most of the effort which
has been publicly documented has dealt with
performance evaluation of hardware configura-
tions, and with software as a system interact-
ing with a collection of hardware resources.
Human resources played an indirect role in

such measurements: they produced the soft-
ware, or they were consumers of the hardware-
software configuration (generated n_ transac-
tions per minute, etc.). As a recent review
article indicated [l] 1

, even the study of

*The opinions and assertations contained
herein are those of the writer and are not
to be construed as official or reflecting figures in brackets illustrate the lit-

the views of the Navy Department. erature references at the end of this paper.

331

software science is limited to measures which
can be computed automatically from a computer
program (e.g., during compilation), which by
its very nature limits the human factors
which can be measured. This emphasis upon
"programmer behavior" as opposed to "user be-
havior" is a prevalent distinction— software
development rather than software usage costs
receive most of the attention. However, as

the user community broadens in scope and
size, and as dependence upon systems soft-
ware, documentation and maintenance aids
grows, it can be expected that a more elastic
notion of measuring the effective utility of
a computer system (or a network of them) must
be adopted. To carry this argument to its

extreme, one can imagine a computer system
whose hardware and software have been well-
designed, well-implemented, are highly com-
plementary in terms of their net measurable
hardware utilization, yet which requires
enormous cost to use effectively because of
deficiencies in the user-machine interface.
In short, a more comprehensive notion of a

computer system as a utility must be used:
to include space, power [2], maintainability,
training for users, programmers and mainte-
nance technicians, organizational impact,
and cost for documentation of programs, sys-
tems software, and electronic and mechanical
items

.

The emphasis of this discussion is to

broaden the notion of computer system per-
formance measurement. This can be accom-
plished by drawing attention to differences
between off-the-shelf software products which
directly affect user productivity, and by
discussing some obvious enhancements to sys-
tems which can increase user productivity.
However, the primary intention is to stimu-
late the use of at least some human perfor-
mance measures in the competitive procure-
ment of computer hardware and software in

the Federal Government. Such measures would
be part of the more general use of perfor-
mance measurement technology in procurement
actions. This is not to imply that human
performance measures are less important in

improving the use of existing systems, but
it reflects the belief that change can be
most readily and dramatically effected at

the initial stages of systems development.

2. Some Human Factors in Computer Systems Use

Even a seemingly superficial cataloging
of human factors in the use of computer sys-
tems reveals a general lack of consideration
given to them in the systems acquisitions
process. An attempt will be made to explain
the importance of these oft-ignored fac-
tors—which do not have glaringly obvious
price tags attached to them. Minimal atten-

tion will be given to the most-researched
factors--i ,e. , factors relating to programmer
performance in the use of computer systems.
For such discussions, the reader is referred
to [3].

2.1 Error Reporting

The most common experience, perhaps, for
computer users of all skill levels, is having
the system fail to perform a requested func-
tion, or to perform a different, unwanted
function instead. A facetious observer might
suggest that error messages were designed as

though error detection and correction was to

be a riddle to be solved by the user. Error
reporting, whether system-caused, or user-
caused, is an unwanted system perturbation
which results in reduced efficiency at the

human-machine interface. In the worst cases,
the user is thrown back to a shelf of loose
leaf notebooks or put into the expert's con-
sultation queue before she can proceed with
the work at hand. An example of this is the

cryptic, "FAC REJECTED 400100001", from which
the user is to infer that a file could not be

found in system directories. Error reporting
can also be excessive in its detail—users
who are familiar with a system must put up
with lengthy error diagnostics for errors
perhaps caused by typo's. Nor should an at-

tempt be made to "reach a happy medium"; there
is no happy medium in the typical heterogene-
ous user environment. Multiple levels of de-

tail should be available upon request. Ref-

erences to specific pages of written materials
should be made at some level of depth if nec-
essary. At the highest level, only the most
necessary and self-explanatory information
should be given. Various levels of error re-

porting could be turned off at the beginning
of sessions, or turned off and on by the user
at will.

The relationship between user actions
and system reactions can be obscure. The
user will frequently find herself saying,
"now what does that message real ly mean?".
And how frustrating to receive the consul-
tant's answer, "Well, you left off a period
on your file name; therefore the diagnostic
has no meaning." Little wonder that new
users remain bewildered as to how finite-state
machines can appear to behave so illogically.
There are instances of true ambiguity, of
course, but the point is that there are far
more than there need to be.

2.2 Systems Software Documentation

Most of the sources of problems with
error reporting can be traced to systems
software documentation practices. The pur-
pose here is not to deal specifically with

332

systems software design, but rather with its

effect upon users. The extremely dynamic na-
ture of systems software (changing several
times a year in version if not more often)
requires close monitoring of the relationship
between new versions of software with new
versions of documentation on that software.
Because of the intrinsic interdependence of
much software, simple replacement of pages
here and there is not enough. The format of
most systems documentation is also subject
to criticism because of a clumsy organization
which is based upon the internal software
structure instead of the user perception (s)

of system functions. Indexes are rarely ade-

quate or complete, and are especially weak in

terms of cross-references to related topics.
Some ingenuity must be spent in the develop-
ment of documentation benchmarks; e.g., take
a naive user and ask her to perform a parti-
cular function "cold", with only the docu-
mentation available. Measurement of this
time-to-criterion would obtain some reveal-
ing information about the design of the doc-
umentation. The documentation which would
be measured should be based upon a represen-
tative job mix of the type of user and pro-
grammer behavior which is expected on the

system. Normally, a broad spectrum of users
would be required for a general -purpose sys-
tem (general-purpose systems seems to get

the most scrutiny).

Some industry standardization, perhaps
using CODASYL as a prototype, regarding doc-
umentation would be highly desirable. The

programmer or user who is required to move
from system to system performing various
functions in terms of access to data or soft-
ware development or systems design is hard
pressed to keep straight both differences
and common capabilities. Transfer to train-
ing is most negative, unfortunately. Nota-
bly lacking are between-manual references
(e.g., between the manuals for a compiler
and operating system manuals), and annotated
runstreams. The idea of "learning from ex-

ample" is especially helpful in improving
productivity in the "use of a system; there
is much to be said for the idea of getting
the job done using a model, and then figuring
out the conventions and the protocol later.
Annotated runstreams appear in some training
manuals, but for some reason, the managers
of documentation staffs seem to be suffering
from the delusion that reference manuals are
novels or textbooks to be read chapter by
chapter in a predetermined order, and exam-
ples play a secondary role in such exposi-
tion. Like the error reporting functions,
documentation must be available at various
depths of detail and theory. When one is

looking for the fast answer to an acute pro-
blem, that is no time to discover, for in-

stance, the theory behind the generalized syn
tax analyzer for the operating system's com-
mand processor.

Along these lines, there should be more
effort to put together sections of documenta-
tion that are functionally related— not just
theoretically or alphabetically related. For
instance, when a cryptic message tells a user
that she has used up all the disk space she
allocated for a file, she wants to know what
she can do about it, not all the theory be-
hind how the granules, cylinders, tracks, sec
tors were estimated in the original alloca-
tion. Some of these interrelationships can

be discerned from the error messages which
the system issues, others from the common se-

quences of commands seen in annotated run-
streams. Another example is the sequence of
EDIT-COMPI LE-LINK EDIT-EXECUTE-READ DATA-RE-
PEAT. The reader of the EDITOR manual is not
told how to compile a file created by the

EDITOR. The reader of the compiler manual
may not be told how to create a relocatable
program. The reader of the LINKEDITOR manual
may not be told how to execute a program whic
has been loaded, or how to associate files
with the program that has just been created.
A common structure for editor documentation
would be a tremendous improvement.

2.3 Data Communications Facilities

The Teletype Model 33 user who is taken

into the computer room and sees the systems

console operating at 19.2 kbs may be prompted
to say, astonished: "Hey, the computer is_

fast, after all!" For some of the functions

involved in computer system use, higher baud
rates (especially above 2400 bps) are highly
desirable. While there may be some argument

as to whether higher baud rates result in

less "think time" for users and hence result

in inefficient system use, most anyone would
agree that, all other things being equal,

higher baud rates are desirable.

Yet the matter of data communications de

sign is not given a central role in systems

design and implementation of a computer site.

Perhaps much of the trend toward decentrali-

zation of computer facilities, toward smaller
machines, is caused as much by the inability

to get hard-wired high speed data communica-

tions service to larger, host computers as

any other single reason. One might argue

that to not have fast baud rates is to be

cheated of the speed of the computer system,

since the result that might have been com-

puted in microseconds takes many seconds or

minutes to be displayed on the screen. Simi-

larly, adept, typewriter-wise users are frus-

trated by the inability of the computer to

keep up with their nimble fingers darting to

333

the "RETURN" or "TRANSMIT" key. Insufficient
thought has been given to whether dedicated,
conventional TTY (seemingly the most common
based on CRT sales) or poll-and-select pro-
tocol is the most desirable, and what the
trade-offs might be for a particular mix of
users. Another example is the need to be
able to utilize the editing features of the

terminals available on the market today, and
thereby reduce the editing load on the host
system; i.e., line-by-line vs. screen-by-
screen terminal-host transactions.

User needs and requirements, not ter-
minal manufacturer or host default protocols
should determine the type of data communica-
tions service to be used for any given case.

Planning for diversity in the data communi-
cations environment of a large site seems to

be the exception rather than the rule. There
is an unfortunate temptation to standardize
upon a protocol or two and then demand that
the community of users conform to this ar-

bitrarily determined standard.

2.4 Software Development Aids

There is scarcely a manufacturer who
does not claim to have exceptional program
development tools—debuggers, dump analyzers,
subscript checkers, etc. These tools, and
other software amenities, such as user pro-
gram libraries (e.g., Programmer's Workbench
under UNIX) become a necessity for large-
scale software development projects. How-
ever, standardization of the functions or
documentation of these programs has not oc-

cured, and therefore inadequate attention
may be given to identifying what the neces-
sary features of these programs may be for
competitively selected systems. A careful
examination of the system user mix and the

past behavior of software development per-
sonnel would be the most reliable sources of
information regarding such requirements.

In general, however, not a great deal

of thought has gone into the development of
such amenities, unless they were deemed nec-
essary in the development of the operating
system and the compilers (and then subse-
quently released to the public). For exam-
ple, in spite of the encouragement of struc-
tured programming constructs, the user must
keep track of "procedures" and individual
routines within a physical "file", due to

the rigid relationship between files and the
utilities (such as the compiler itself) which
must operate upon a single file—not a col-

lection of files containing many procedures.
Documentation for programs such as this, ex-

pect so far as they are self-documenting
(and such a thing does not yet exist in a

complete sense) must be developed and main-

tained totally external to the code itself,
or else must comment within/among the code.
Typical of the lack of understanding of the
relationship between the process of program
development and the operation of systems pro-
grams, is the term "pretty-print". This term
implies that "pretty-printing", which refers
to the indentation (and other "display" func-
tions) of sections of code which are embedded
within outer control loops, is a nicety, an
amenity, rather than a necessity without which
inefficient system use is inevitable.

The advent of protected fields, parti-
tioned-screen editing, highlighting, blinking,
etc., provides the hardware tools for imple-
menting the capability to document programs
while writing them, and subsequently, for doc-
umenting the use of these programs for their
ultimate consumers, (at different levels of
detail). As previously stated, the purpose
here is not to discuss research into possible
documentation standards, but to establish
their relevance to human performance in the
use of a computer system.

Other aids which may be considered as

essential are structured programming "prepro-
cessors" or compiler enhancements (e.g.,

Harris Corp.'s and UNIVAC's additions to

FORTRAN) to support structured programming,
and indirectly, structured design (which is

even more critical). Some monitoring of the

user's own behavior in system use— using many
of the same software/hardware tools that are

the stock in trade of the computer performance
evaluator—would also provide much-needed
feedback to users regarding resource utiliza-
tion, optimization of code, and the confor-
mance with design objectives.

2.5 Systems Software

The systems software, as commonality of

parts become increasingly prevalent through
the inroads made by OEM manufacturers, and as

systems costs go down somewhat, will become
the most important part of any computer sys-

tem. Therefore, the human factors component
of the systems software is the most important
single aspect of the computer system. To

fully discuss the human factors aspects of
systems software would require more time and
space than can be allotted here. Some areas
indicative of the needs can be pointed out,

however:

a. Common utility of systems software
among all the compilers

b. Accessibility of systems utilities
at the CALL level from all higher-level lan-

guages

334

c. Ability to make best use of hardware
available (e.g., multileaved memory, cache
memory, character or string manipulation
hardware, etc.]

d. Software which tells the user what
is going on (^transparent to the user) if
there is a need to know

e. Software's handling of contingen-
cies, and user's control over how the contin-
gencies are to be handled in different pro-
gram environments

f. Simplicity of the job control lan-
guage Gas evidenced, e.g., by the ability of
a user to "guess" which command performs a

given function)

g. Generality of the JCL, i.e., the
capability of the software to handle a varie-
ty of conditions, such as many file struc-
tures with the same processing logic while
still remaining within a consistent frame-
work of command structures and syntax

h. Language of the systems commands:
how well they relate to their functions (do

they actually do what they sound like they
should do), how easily can they be remem-
bered, how easily can they be associated with
other commands which comprise part of a com-
mon logical sequence

i. System behavior when it aborts and
recovers

j. "System memory" for events— e.g.,
remembering what the user has done, recovery
of previous versions of files or programs,
"undoing" changes to edited files, etc.

k. Capability to quickly create and
intelligently examine "printouts" and data
files on disk without waiting for listings
to be printed, as part of test and evaluation
phase of software development

1. Capabilities for applications-ori-
ented software (commonly a need for transac-
tional-oriented capabilities, for example)

m. Performance monitoring capability
available to the user to aid in software de-

velopment or in making intelligent use of
systems or applications software (applicable
to naive as well as sophisticated users if

properly implemented)

n. Manipulation of "pieces" of data
and programs rather than just entire physi-
cal files

o. Study of how long it takes to type

in commands to get work done

p. Capability of creating files compa-
tible with other machines

2.6 Accounting System

In the past, accounting for computer
system utilization was regarded largely as a

necessary evil. Today, in the "era of lim-
its", accounting is more than a necessary
function--it is a matter of survival to be
accountable. Accountability and performance
evaluation, fortunately, go hand in hand.
However, particularly on smaller systems, and
particularly when it comes to disk storage
accounting, many computer systems are defi-
cient in the accounting system which is pro-
vided. The accounting system needs to be
well enough integrated into the system itself
to: provide on-line, up-to-date accounting
for usage within a timeframe of a given shift
(less than 8 hours and preferably more often),
and to account for usage across all resource
dimensions by which systems and user software
is utilized to do the computing. The oft-
stated maxim that the most frequently used
software should get the most attention in

terms of optimization and documentation is a

fine utterance, hut this cannot be identified
without the proper accounting software.

More importantly than this, however, is

the fact that the accounting system for the
computer utility in an organization is the
most sensitive interface between the organi-
zation and the system. The accounting system
can be the greatest source of annoyance to

managers to contend with, the most distasteful
software for the systems programmer to write
or modify, the most dynamic data base on the

system, an area sensitive to system crashes,
and the most important in providing feedback
to the user regarding efficiency of system
use.

Ironically, it is this interface between
the computer system and the organization
which provides the greatest opportunity for
performance evaluation in general. It repre-
sents the greatest source of control of user
behavior on the system, while measuring sys-

tem performance in terms of the organization's
objectives— i.e., project-by-project account-
ing. Through the application of actual costs

and weights in the cost algorithms, based upon
true costs of the computer utility in the or-

ganization, one would expect a changing algor-

ithm as capital equipment costs were recovered
and ongoing communications, personnel, space,

supplies, maintenance and power costs com-

prised an increased proportion of operating
costs. However, because of the frequently
very indirect relationship between actual

335

systems support/use costs in the organization
and the systems billing algorithm, the ac-
counting system becomes a static entity, un-
responsible to the organization and unrespon-
sive to the recommendations derived from data
which would be collected by systems perfor-
mance analysts. Convention seems to dictate
which systems parameters are assessed and
which are not. The sensitive interrelation-
ship between connect time, disk and tape
storage, and channel utilization is disre-
garded in favor of facile algorithms which
do not take into account the sequence of
events which determine user behavior, the
sequence of motions through which users go

to accomplish typical tasks.

The general criticism may be made that
the parameters utilized in most accounting
systems are based upon the hardware costs/
resources, rather than including software
and labor costs. This is the reverse of the
cost trends in computing.

2.7 Customization Capabilities

Programmers who design software systems
whose primary consumers are naive users have
special requirements of the systems software.
In particular, they must present a hospitable
facade to the user. The capability should
exist which would permit "respectable" re-
covery from unexpected contingencies, which
shields the naive user from distracting or
meaningless system messages and acknowledge-
ment, and which in particular permits the
building of sophisticated command files or
"runstreams". For some systems, it is de-
sirable for the programmer to request ac-
counting or performance information from the
operating system at various stages of per-
forming user-requested functions, in order
to inform the user about potential or accu-
mulated costs, or to assess the efficiency
of the program's own techniques for process-
ing. A typical application requiring such
service is an on-line DBMS environment, with
a generalized user language presenting the
primary user-system interface. Another need
arises from the desire to impose a consisten-
cy and a "sensibility" upon command struc-
tures and interactive dialog sequences which
may not be present in the operating system's
design. Once again, the structure of an

operating system's interface to the usage
consists of a myriad of undifferentiated
elements which hang together only when viewed
from the systems programmer's perspective
upon them. Hence, only the capability for
executing user programs to issue commands in

the normal operating system format (s) can
overcome some shortcomings.

2.8 Maintenance

Maintenance is a topic that also deserves
a paper unto itself. The dearth of mainte-
nance and maintainability performance evalua-
tion at previous CPEUG conferences is reflec-
tive of the general attitude of the industry
toward maintenance. Maintenance is viewed as

a necessary evil. Technological developments
(LSI) have been depended upon to achieve what
common sense and a considerable body of lit-
erature on the subject has not achieved [4],
Some of the more neglected aspects of main-
tenance performance evaluation will be treat-
ed here; certainly a more exhaustive treatment
is warranted.

a . Maintenance accountability . The
process by which maintenance is undertaken
remains largely understood except within cer-
tain academic and military applications cir-
cles. Federal contracts call for accounting
for hours and parts involved in maintenance
of Federal equipment, with penalties some-
times associated with not meeting minimum
"up-time" requirements, but this is obviously
a superficial treatment of a difficult sub-
ject. It would be a pleasant alternative,
from the Government's standpoint, if all

maintenance problems could be left to the

vendors for solution, but this has not hap-
pened, and the Government's lead, with its

huge investment in ADPE and enormous recurring
costs for software and equipment maintenance,
would be a much-needed stimulus.

One solution is to make more attractive
the preferences given in procurement actions
and contract negotiations to more maintaina-
ble equipment. At present, it would be dif-
ficult to establish that vendors in general
even differ significantly from their mainte-
nance records. Everyone seems to accept that
disk and tape units require the most mainte-
nance, followed by unit record and printing
equipment, and the adoption of industry stan-
dard interfaces in some areas and the common
use of components by the large OEM suppliers
(Pertec, CDC, Calcomp, EMM, Memorex, Wangco,

etc.) may have contributed to a homogeneous
maintenance environment. However, even these
hypotheses may be questioned, since access to

data on software reliability and maintenance
practices across vendors is also not readily
forthcoming, and some Government initiative
in that area as well seems called for.

b. Public knowledge of maintenance
needs. The notion of maintenance as a be-

hind-the-scenes necessary evil is a negative
factor so far as user's understanding of po-
tential problem areas and causes for failure
is concerned. Some knowledge about the

causes of failures and areas needing greatest

336

maintenance could be mutually beneficial for
users and maintenance technicians in reducing
usage in troublesome areas where possible,
and increasing sensitivity to intermittent
failures which may be more difficult to track
down. Clues to subtle systems problems may
be shrugged off by users unaware of the sit-
uation.

c. Cost-effectiveness assessment of
maintenance practice . The Government (or

any other large-scale user for that matter)
is faced with the troublesome problem of
deciding whether on-call, dedicated, or re-
dundant-component maintenance practices are
required for a particular installation. The
costs of these various alternatives can vary
greatly, given the maintenance history of
the system, the current cost of labor, and
the cost of the most-likely-to-fail or most-
catastrophic-if-fai led components. Some
attendance to the details of maintenance
practices and costs could result in more in-
formed decision-making about the most appro-
priate plan for providing repairs and re-
placements.

"

d . Logging of component histories . As
board-level replacement and repair at the
factory by unknown remote technicians and
third party maintenance becomes more preva-
lent due to changing technology and design
practices, automation of logging of compo-
nent periodic maintenance and failure his-
tories becomes essential. Manually kept
logs are inadequate because automatic and
timely component statistics are not availa-
ble.

e. Automation of diagnosis and treat-
ment procedures . Some of the procedures for
diagnosis and treatment of computer system
(hardware and software) problems are common-
ly known by better technicians, but even the

best technician can easily overlook a logi-

cal possibility for system fault due to the
complexity of the problem. Some automation
of the diagnosis and treatment as well as

intervening test and evaluation processes
could be instigated even more than has been
begun by some of the manufacturers such as

DEC and BTI. For further research on this,

see [5]

.

f . Life cycle costs for software/hard-
ware maintenance . Increased attention in

recent years to life cycle costs in ADPE
have concentrated upon software maintenance
costs more than hardware maintenance costs,

and a more balanced perspective is needed.
Also, the reduced cost of equipment causes
the replacement with-new-machine option to

become more attractive earlier in the life
cycle. Then the problem is one of continu-

ity between short-lived hardware systems.
Five years is not a very long time for a pro-
ject to exist, and for a considerable library
of software to be accumulated, yet the hard-
ware may be obsoleted and not supportable at
the end of such a time. Such considerations
affect the type of maintenance contracts or
in-house capabilities the Government must
provide.

g. Source code for mini and micro-
computers . A deplorable practice exists in
some ADP procurements-- those in which the

Government does not receive the source code
for systems routines. Certain critical rou-
tines are necessary for the Government's
avowed multi-vendor system program. E.g., to

interface some intelligent terminals with
page printers of different manufacture, ex-
plicit knowledge and sometimes modification
of the firmware controlling the serial print-
er interface are required. The increased use
of firmware in computer systems, coupled with
the longevity of much systems software which
will be in use in the 1980's implies that
greater attention be given to the matter.

h. Levels of detail for technicians .

Some of the faults of systems documentation
which were previously discussed hold true for
the hardware documentation for computer sys-
tems. The effect is devastating when the
technician is forced to muddle through
schematics and theory of operation in order
to search for the one small piece of infor-
mation which she needs for troubleshooting.
In order to solve this, some companies (such

as Dustin Associates) have developed systems
encompassing multiple levels of detail— so

that all the same information remains avail-
able, but only at the relevant point in time
in the diagnosis treatment or training pro-
cess. Review of maintenance documentation in

procurement, with "benchmarking" is required,

with adoption of more stringent MILSTD regu-

lations for major commercial procurements
perhaps advisable. It is obvious that the

vendors cannot be left to their own instincts
on this matter, as the author's experience
with 11 different manufacturers of terminals

can attest. (Yet those writing procurement
specifications may lack the technician's
background needed to include such require-

ments.)

i . Accessibility and mechanical design

factors. Despite some attention given to

human factors in electronics systems in the

human factors literature, there are unfor-

tunate conditions which many technicians know

exist. Components cannot be tested in place,

and card extenders may not exist for them.

Subassemblies may be mounted in backwards or

upside down so that even cursory examination

337

of cards cannot be performed without lengthly
dismantling. A maze of interconnecting ca-
bling may obscure components which must be
troubleshooted. Inadequate cooling or mechan-
ical factors may make working on some devices
risky in terms of the damage which might ac-

cidently be done to the equipment. When
parts fail and must be serviced, such fac-
tors should be brought to the attention of
the contract monitor and/or supervisor for
inclusion into maintenance documentation for
the system component. Many of the factors
discussed in a joint services study [6] have
simply been ignored.

j . Federal Government-wide collection
of failure data by component . An enormous
untapped data base on MTBF and MTTR for com-
puter components and sub-systems exists in

the Government, which, if it were pooled,
would be a tremendous asset to individuals
responsible for planning new systems and
evaluating potential equipment by vendors.
This data base currently does not exist, nor
is there a mechanism to facilitate or encour-
age the centralization of such information
(except for a few large-scale military sys-
tems). This might be true, for instance, in

the case of PDP 11 's even though the number
of PDP 11 systems in the Federal inventory
may be in the thousands. Sharing of mainte-
nance expertise within the Government, espe-
cially on off-the-shelf commercial equipment
is also not facilitated though badly needed,
especially in the design of distributed com-

puting networks involving multiple systems of
the same manufacture or configuration of com-
ponents.

Related to this is the problem of non-
standard nomenclatures for IC's and various
electronic components, making it extremely
difficult for Government technicians to
cross-reference vendor-specific part numbers
with industry- standard parts which the Go-
vernment might stock in its own inventory.
One spin-off of such a centralization of
functions would be a Federal stocking system
which would reflect the evidenced failures
and the demand for spares. This demand cur-
rently is not visible because of the high
percentage of contract maintenance, and the
practice of obtaining parts and services from
the immediate vendor rather than (in some
cases) even the first manufacturer of the
component who supplied the part(s) to the
vendor.

k. Standardized procurement of mainte-
nance aids § routines . Procurements of les-
ser dollar volume which are not part of larg-
er systems typically do not include procure-
ment of the necessary card extenders, spares,
exercisers, and special alignment or test

equipment which is associated with the equip-
ment. The availability of such items to the
vendor alone makes it impossible for the Gov-
ernment to work on the equipment itself—ei-
ther to effect improvement, modifications or
to permit interfacing with other equipment,
and it makes it difficult to handle transi-
tions from one maintenance contractor to an-
other— should the original vendor no longer
be awarded the contract for maintenance of
the equipment. Commonplace delays in the Fed-
eral ordering process can be caused by waiting
for maintenance aids, parts or technical data
from the manufacturer, even though the items
in question might have a nominal cost. Manda-
tory procurement of such items required for
maintenance seems more than just a good idea.

2.9 Training Effectiveness

The matter of the training and educa-
tional materials made available to the user
is one of considerable concern as turnover of
personnel and increased travel and labor costs
make training a major Government expense. To
some extent, training materials should over-
lap with actual system documentation, but this
appears not to be the case for reasons al-
ready discussed in connection with systems
software documentation. Management of the

computer utility includes certainly, some
control over the training of new staff of new
users, especially as the user population ex-
pands to include a greater number and diver-
sity of people. Training effectiveness and
its measurement is a speciality of my agency
for the Navy, and therefore I know enough to

say that this, too, is a subject deserving of
separate study. But several areas of defi-
ciency are blatant enough to justify some
superficial criticism.

Until recently, many of the training
classes held by the major manufacturers did
not even include hands-on or even terminal-
oriented exposure to systems. Rather, the
emphasis has been upon theory of operation,
with concentration upon the language and con-
vention of the manufacturers' product line,

rather than using some industry-wide language
or concepts to explain system-specific no-
tions. There has been little use of indivi-
dualized instruction or even much involvement
of professional educators or educational psy-
chologists in the design of training programs
or curricula for commercial computer systems.
Certainly the presence or absence of such
factors should make a difference in the ac-

quisition process of evaluating vendor pro-
posals .

Unfortunately, training is viewed as a

one-time cost associated with initial system
procurement, rather than an ongoing require-

338

ment which as much as any other single factor
may determine system efficiency--poorly
trained users presumably make inefficient use
of computer and, indirectly, organizational
resources. Training must keep abreast of new
releases of operating systems, compilers and
utilities, and the like. In other words,
training, to be effective, must be contem-
poraneous with the system's state of the art,

and must be available on an individualized
basis. In the computer industry at least,

the opportunity seems to exist, and also the
economic incentive, (because of the system
investment already made in training materiel
support) to develop computer-assisted or com-
puter-managed instructional modules to pro-
vide various levels of training assistance to
the customer. Such features should become
ranking factors in procurement decisions.

3. Incorporation of specifications into
RFP's and technical evaluations

In order to implement some of these rec-
ommendations, it will be necessary to make
some changes in existing procurement prac-
tices, especially as they relate to "bench-
marking", "life cycle costing", and charac-
terization of the "typical" job mix composi-
tion. This is a practicable suggestion which
can be implemented, on a small scale at least,

at the level of the technical individual re-

sponsible for writing specifications, and the

contracting officer responsible for ultimate-
ly consummating a contract. However, for
Federal Supply Schedule 74, 66 and 70 con-

tracts, considerable negotiation will have
already taken place; the incorporation of
factors such as these insofar as they relate
to ongoing support and provision of technical
and maintenance information, must be done at

that time and at that level, by GSA.

Encouragement of the inclusion of spe-

cifications such as those mentioned here can

be facilitated by explicit mention of them in

the various Federal regulations concerning
the justification required for ADPE and data

communications acquisition. More critical

than this, however, for computer performance
analysts that are the prime audience for this

discussion, is the systematic inclusion of

these variables in the assessment of compu-

ter system performance. This encompasses a

theoretical as well as a practical domain in

which user behavior in response to system
hardware and software features is part of a

feedback loop of events which ultimately,
taken together, determine systems performance.

Recommendations based upon isolated analysis

of hardware or software alone will not nec-
essarily result in increased systems effi-

ciency if human factors in the use of compu-

ter systems are disregarded. This important

area can also generate a host of stimulating
new needs for systems software, documentation,
hardware characteristics, and maintainability
of systems which in a vacuum of systems model-
ing and simulation without user variables
might never be considered. And, perhaps more
importantly, the newly acquired broad popula-
tion of computer users may be expected to be-
come impatient with computer systems which
were designed to be used most effectively by
an imaginary, mid-level programmer with a

clear understanding of how the system works;
this is especially true since the system only
begrudgingly yields clues as to how it can be
used with the least amount of effort. Pro-
fessionals in the computing industry may be
forced to face the fact that the user view of
computer systems as seemingly stubborn puzzles
is a definite liability and an embarassment
rather than an insider's source of amusement.

Re ferences

[1] Fitzsimmons, A. and Love, T. , A Review
and Evaluation of Software Science, ACM
Computing Surveys, Vol. 10, No. 1, March
1978, pp. 3-18.

[2] Held, G., The Hidden Cost: Power, Data
Communications

,
May 1978, pp. 41-52.

[3] Love, T. , An Experimental Investigation
of Program Structure on Program Under-
standing, in Wortman, D.B., ed. Proc.
of ACM Conf. on Design for Reliable Soft-
ware, Raleigh, N.C., March 28-30, 1977.

[4] Van Cott, H.P. £ Kinkade, R.G., Eds.,
Human Engineering Guide To Equipment
Design ,

Washington, D.C.: U.S. Govt.

Printing Office, 1972.

[5] Electronics Test , debut issue, July/Aug
1978 (105Q Commonwealth Ave., Boston, MA
02215).

[6] Joint Services Symposium in reference 4.

339

TUTORIALS

341

COMPUTER SYSTEM SELECTION

WORKSHOP

S.A. Mamrak and P.D. Amer

The Ohio State University
Columbus, Ohio 43210

This workshop addresses the comparison
and selection of computer systems. A method-
ology is presented which relies principally
on the statistical analysis of measurement
data obtained from the computer systems
under study. One of the most important pro-
perties of the suggested methodology is that
it incorporates confidence statements about
the probability of having made correct deci-
sions in the process of selecting the best
computer. The workshop is divided into four
sections

:

1. Presentation of a Computer Selection
Model

2. Brief Overview of Computer Compari-
son Experiments

3. Presentation of Ranking and Selec-
tion Procedures for Data Collection
and Analysis

4. Example Application of the Selection
Methodology

1. A COMPUTER SELECTION MODEL

An informal model of the computer selec-
tion process will focus the main components
of the process and provide a framework for

this workshop. The model is presented in

Figure 1. It shows three phases of the se-

lection process that lead progressively from
the set of all computer systems under consid-
eration to the isolation of the best one.

Each phase involves the evaluation of the

systems with respect to certain kinds of per-
formance criteria. At each phase, those
systems which fail to satisfy the respective
criteria are eliminated. The kinds of per-
formance criteria that are applicable are

the topics of this section of the workshop.

2. COMPUTER COMPARISON EXPERIMENTS

Some phases of the computer selection
process involve running a representative work-
load on all of the alternative systems and
collecting performance measurements on each
system while it processes the test workload.
The performance measurements are then analyz-
ed and used as the basis for the selection of
the best system. The measures generally
chosen for comparison, and the constraint that
the test workload be representative of the

real workload, affect the type of experiment-
al design and consequent data analysis that
can be used.

The statistical properties of the data
collected in computer selection experiments
and their impact on experimental design are

discussed in this section. The limitations
on experimantal design introduced because of

the representativeness requirement for test
workloads are also discussed.

3. RANKING AND SELECTION PROCEDURES (GIB77)

A good experimental design is a critical

component of any comparison methodology , since

the erficiency of the data collection process
and the validity of the data analysis depend

on it. Statistical ranking and selection
procedures provide an appropriate foundation
on which to base computer selection experi-
mental design. These procedures can be rough-
ly characterized as following three lines of

development: one set of procedures ranks
systems by comparing sample means, one by com-
paring sample percentiles and one by compar-
ing sample proportions. In all three cases,

the procedures specify the number of data

343

Figure 1. Model of the Computer Selection Process

344

points which must be collected from each sys-
tem in a comparison study in order to guaran-
tee that the probability of a correct selec-
tion be greater than or equal to a predeter-
mined value.

3.1 Selection Of Systems Better Than A
Standard (AME78a,b)

Phase II of the computer selection pro-
cess (see Figure 1) involves selecting those

computer systems or systems which are better
than a standard. An experimental design is

required which leads to an analysis of the

data that answers the question "Which ser-
vices are at least as good as a prespecified
standard?". The ranking and selection tech-
niques which have been developed for selec-
tion better than a standard are not appro-
priate for computer selection when performance
measurements are being compared at their mean
or percentile values. These procedures make
assumptions about the data that are clearly
not justified in computer selection experi-
ments. But, an appropriate procedure which
does not require any assumption about the
underlying form of the data's distribution
does exist when proportions are the basis
for the selection.

References

AME78a Amer, P.D., "Experimental Design in

Computer Comparison and Selection," Ph.D.
Dissertation, Department of Computer and
Information Science, The Ohio State Uni-
versity, December 1978.

AME78b Amer, P.D. and S.A. lamrak, "Statis-
tical Methods in Computer Performance
Evaluation: A Binomial Approach to the

Comparison Problem," Proceedings Computer
Science and Statistics: Eleventh Annual
Symposium on the Interface , Institute of

Statistics, North Caroline State Univer-
sity, March 1978, pp. 314-319.

GIB77 Gibbons, J.D., I. Olkin and M. Sobel,

Selecting and Ordering Populations: A

New Statistical Methodology , John Wiley
and Sons, New York, 1977.

MAM77 Mamrak, S.A. and P. A. DeRuyter, "Sta-

tistical Methods for Comparison of Com-
puter Services," Computer , Vol. 10, No.

11, November 1977, pp. 32-39.

MAM78 Mamrak, S.A. and P.D. Amer, A Method-
ology for the Selection of Interactive
Computer Services , National Bureau of

Standards Special Publication, in prepar-
ation, 1978.

3.2 Selection Of The Best System (AME77b,

MAM77)

Phase III of the computer selection pro-
cess (see Figure 1) involves selecting the

best computer system or service. An experi-
mental design is required which leads to an

analysis of the data that answers the ques-
tion "Which system is the best one?". A

full range of ranking and selection tech-

niques exist for the selection of the best
system when performance measurements are

being compared at their mean, percentile or

proportion values. The task of integrating
the information provided by the methodology,
if multiple performance criteria are the

basis for selection, is discussed.

4.0 EXAMPLE APPLICATION (MAM78)

A large scale feasibility case study

was done to evaluate the time and cost re-

quired to apply the computer selection meth-
odology in an actual procurement environment.

Four heterogeneous remote access time sharing

systems were compared. The specifications

for the case study and the experimental re-

sults are discussed in this section of the

workshop

.

345

I

I

USE OF MODELS FOR CAPACITY PLANNING

J. P. BUZEN

BGS Systems, Inc.

Lincoln, Mass. 01773

1. Capacity Planning And Performance
Calculation

Capacity planning problems usually arise
as a result of some change in a system's ex-
ternal environment. For example, a telepro-
cessing workload may be growing at a rate of

3% per month, a new on-line application may
be planned for the next fiscal year, or there
may be plans to consolidate several data
centers as part of a cost reduction effort.

In such cases the installation manager
is faced with a number of options. He can:

take no action and see if his system absorbs
the new load; alter some aspect of his con-
figuration (CPU, memory, I/O, etc.); alter
some aspect of his software (dispatching pri-
orities, mix of jobs in memory, etc.).

In order to deal with capacity planning
problems, it is necessary to evaluate the

impact of each of these options. That is,

the installation manager must be able to

determine how his system will perform in

each case. To do this, it is necessary to

solve the "performance calculation problem."

Essentially, the performance calcula-
tion problem can be stated as follows:
given a description of a system's hardware,
software and workloads, determine how the
system will perform. Specifically, determine
the systems 's throughputs, response times,
utilizations, and so on.

2. Benchmarking

There are two basic approaches to solv-
ing the performance calculation problem.
The first approach is to run benchmark exper-
ments and measure system performance. That
is, an actual workload is run on an actual
system, and performance is measured directly.

Benchmarking may appear to be the ideal
solution to the performance calculation pro-
blem, but it has a number of drawbacks when
used in a capacity planning context. Note
that the primary objective in this case is

to determine how an actual system will per-
form under an actual workload. Usually they
are a small sample (10 - 50 programs) from
a workload that may contain hundreds of

programs. The question is: is this sample
truly representative, in the sense that the

performance observed in the benchmark exper-
iment will be comparable to the performance
observed in the real system.

A subtle but equally important issue
concerns the data being processed by the

benchmark programs. The primary concern
here is the distribution of the data across
the various I/O devices in the configuration.
The author has seen many cases where this

distribution was grossly different from that

in the real configuration, with respect to

both the balance of loads across different
devices and the distribution of seek times

within individual devices.

Other problems associated with the use
of benchmarks include the availability of

the correct hardware configuration (sometimes
an impossibility in capacity planning prob-
lems) , the availability of application pro-

grams that have not yet been written, the
appropriate representation of on-line work-
loads, and the handling of end effects.

3. Modeling

Models represent an alternative tech-
nique for dealing with the performance cal-

culation problem. Essentially, a model is a

computer program that receives, as input, a

description of a system's hardware, software
and workload. On the basis of this data, the

model calculates what the performance of the

system will be. Thus, a model is function-

347

ally similar to a benchmark, but quite dif-
ferent internally.

Most of the difficulties cited previous-
ly in the case of benchmarking are eliminated
when a model is used. However, models raise
a number of other concerns. The primary one
is validity: does the model correctly calcu-
late system performance, given that the des-
cription of the workload is accurate? Other
issues in modeling concern the level of ef-
fort required to develop a model, the level
of detail to include in a model, the avail-
ability of data to drive the model, and the

choice of modeling technique (trace driven,
stochastic simulation, analytic)

.

4. Forecasting

The performance calculation problem as-
sumes that the analyst begins with a descrip-
tion of a system's hardware, software and
workload. In capacity planning, the work-
load being investigated is often a future
workload. Thus, workload forecasting repre-
sents a separate step that must be carried
out before performance calculation can begin.

In most cases the load on a computer
system is determined by external factors

within the organization that the computer
serves. These factors include the number of

employees in the organization, the budget of

the organization, the number of new projects
started by the organization, the success of

the organization's products and services,
and so on.

These factors are clearly beyond the
purview of the computer performance analyst.
They should rightfully be supplied to the

analyst by the management of the organiza-
tion. However, it is then very important
for the analyst to be able to translate
these external factors into demands for the
internal resources within the computer sys-
tem. Techniques such as clustering and
regression are particularly useful in this
regard.

348

THE BASICS OF COMPUTER PERFORMANCE MANAGEMENT (CPM)

Capt. John C. Toole
AF Data Systems Design Center

This tutorial will provide participants
with an overview of the terminology, techni-
ques, concepts, and resource requirements
which are necessary to successfully apply
performance measures and systems. Limited
experience in the field is assumed, and the

tutorial is recommended for those just learn-
ing about Computer Performance Management
(CPM) or people who have specialized in only
one area. This tutorial will cover terminol-
ogy, the tools and techniques of CPM, person-
nel requirements and training , and how to

succeed with ADP management.

The tools and techniques discussed will
include such topics as system accounting
data, hardware and software monitoring, and

prediction techniques (which includes model-
ing, simulation and benchmarking) . Analysis
techniques discussed include workload charac
terization and statistical methods. Within
personnel requirements the CPM Team concept
will be discussed.

349

A NEW DIMENSION TO THE DATA PROCESSING CENTER

Jame H. Garrett, Jr.

Value Computing Inc.

Cherry Hill, N.J. 08002

1. Introduction

The requirement for production control and
scheduling of data processing data centers
has expanded quite rapidly over the past sev-
eral years.

This expanded requirement to apply better pro-
duction control and scheduling techniques to
the data processing operations area is a by-
product of several factors.

* The primary factor is the continued growth
in the number of new automated application
systems which are being developed and im-
plemented to service corporations' infor-
mation needs.

* Secondarily, the continued growth of the
transaction volume of existing applications
has also contributed to the requirement for

better production planning, scheduling and
control

.

* Questions concerning the types and capac-
ities of equipment required, the number of
work stations, the potential of distribut-
ing the workload and many other "what if"

questions have also contributed to require-
ments for more sophisticated production
planning and scheduling techniques.

The availability of more sophisticated equip-
ment with larger, faster computing capabili-
ties has made it possible for data process-
ing management to better service the corporate
information needs.

* With this more sophisticated, faster, and

better configured equipment, the manage-
ments have had the ability to automate more
of the existing applications by extending
further into the user department's input

and output streams. At the same time this

new equipment has resulted in improving the
data processing environment itself by util-
izing more sophisticated on-line input and
output oriented systems.

* This new, more sophisticated equipment has
also facilitated the automation of appli-
cation areas which previously were not
considered to be cost effective or were
marginal as far as their adaptability to

previous data processing equipment.

The more sophisticated equipment, with ex-
panded capabilities and a higher degree of
service capability to the corporation and its

end users, has brought with it potentially
higher operating costs. Of equal importance,
data processing has now extended itself, in

many cases, into the main stream of the cor-
poration ' s production of its goods and ser-
vices. In many cases, computers control the

entire production function.

2. Establishing Some Parameters

The first step in reviewing the requirements
for Production Control within the data center
is to establish a series of parameters from
which the requirement may be examined.

Production control concepts are well estab-
lished and have been refined to improve the

control of many production functions. The

classic functional breakdown of production
control divides it into four major sub-
functions. These are routing, scheduling,
dispatching and follow up. Let's continue

by further defining these terms.

* ROUTING - In the routing phase, a job or

task is broken down into its manageable
units that can be performed by a person

351

or machine. Each of the tasks is defined
in detail and the order in which the tasks
are to be performed is set down.

* SCHEDULING - The second phase of production
control is the scheduling phase. In this
phase, the element of time is imposed onto
the work defined in the routing phase.
First, work days within a calendar scheme
are considered so that work can be sched-
uled by days in enough time to complete
the product on time. After the work has
been organized by day, more detailed time
schedules are developed to give an hourly
time dimension to tasks within idividual
work centers or departments, to insure an

organized work plan through the entire pro
duction process . By combining the layout
of work in the routing phase with the or-
ganization of the work by day and time in

the scheduling phase, a fundamental organ-
ization of the work is accomplished so the
work can then be dispatched and follow up
performed

.

* DISPATCHING - With the work now scheduled
through the individual work centers, the
work can now be dispatched. Dispatching
is the third phase of production control
and consists of the movement of the work
from one scheduled area to another with
instructions at each work center provided
to insure that the proper steps are per-
formed to complete the task.

* FOLLOW UP - The final phase of production
control consists of follow up. In the

follow up phase, the work is monitored to
insure that the tasks follow the prescribed
routing and scheduling plans. Further his-
torical records are kept and acutal per-
formance over time is compared to schedules
so that new and improved schedules can be
developed.

These four phases of production control have
been existent in data processing operations
and data centers for a number of years.

They have appeared in varying degrees pred-
icated on their requirements within a spe-
cific organization and its particular posit-
ion along a time line relating to level of

sophistication of the equipment installed,
the volume of work to be processed and the

variables affecting the work to be processed.

These techniques, when examined, form the

basis for beginning to establish a produc-
tion environment which is built around the
scheduling system.

3. The "Key" Production Control
Function-Scheduling

Any one who has ever had actual experience
with production control knows that the heart
of the production control system lies in the
proper scheduling of the work. What value
if the proper routing, dispatching or
follow up if the work has been scheduled on
the wrong day or in a haphazard fashion
through work centers with little regard to

the resources that can be applied at each
work center?

In order to perform the scheduling function
within the production control process,
several factors are key.

* Considerable amounts of historical infor-
mation are required concerning various
jobs and job mixes.

* The sequence in which jobs are to be pro-
cessed is also a very key factor.

* A thorough understanding, statement and
examination of the resources available
to process the work must also be prepared.

These three elements can vary quite radically
from day to day, or hour to hour, within a

data center operation.

As a result, specific techniques must be
applied when dealing with the data process-
ing evironment and the production control
function

.

The data processing management has been pro-
vided, through the operating system facili-
ties, some very unique production control
facilities. These facilities are not read-
ily available on the part of other manage-
ments required to manage and plan production.

One of the facilities of the type we are re-
ferring to is the ability to vary the number
of initiators which can process work. This
is the equivalent of varying the number of

machine tools available to a production
manager in a manufacturing facility.

The manufacturing management very rarely has

the ability to change the numbers of machine

tools. At the same time, with the flexi-
bility offered within the operating system,

we can also vary the capacities of each one

of our initiators or equivalent machine tools

We can, by expanding or contracting core or

assigning faster or slower input/output
devices, change the amount of production

352

which can occur or the amount of time it it
takes to produce a certain quantity of work.

Again, conventional manufacturing production
management does not have this alternative of
varying their particular productive capacit-
ies without a considerable amount of activ-
ity and, in some cases, large investments
in new equipment.

We, of course, through the operating system
facilities and conventions, have another
facility which is to change job class and/or
priority as it relates to our processing
streams on a dynmaic basis.

These combinations of facilties can be
viewed either as an asset or a liability
relating to the production function.

They become an asset or liability based on
the level of scheduling expertise which is

available.

With the ability to schedule the resources
and make adjustments to this schedule on a

dynamic basis, we can leverage in an optimum
manner the flexibility of the equipment re-
sources, operating system and support organ-
izations available.

Of course, the optimum schedule may not be
met at all times. However, in the actual
operating environment, the degree of attain-
ment of the optimum schedule is going to be
based on the amount of flexibility that is
offered in the scheduling technique or al-
gorithm which is utilized.

The scheduling algorithm is required to pro-
vide management the ability to examine and
consider the effects of multiple configura-
tions or production processes given a cer-
tain level of work to be accomplished and a

certain level of resource; i.e., input/out-
put devices, core, numbers of initiators, etc.

The potential value of the entire production
control planning process is significantly
reduced if this facility to derive answers
to the "what if" questions is not available.

The "what if" production control planning
process is most frequently built around a

scheduling formula or algorithm.

This scheduling algorithm provides manage-
ment facilities to develop a series of
iterations by varying the production ele-
ments and workload in the algorithm. The
result is management can examine the effect
and optimize its plans.

4. The Value Computing Automated
Production Control System

4.1 General

Since 1969, Value Computing has been
developing an automated production con-
trol and scheduling system for the data
center operations. Value Computing's
actual experience in developing auto-
mated data center production control
systems for many data center installa-
tions has led to the establishment
of the shceduling algorithm as the
cornerstone of the data center produc-
tion planning process.

Value's scheduling algorithms are Phase
II of the classic production control
process and produce detailed but totally
realistic schedules and standards of
performance

.

The Value Computing Production Control
and Scheduling System has been applied
to single and multiple machine environ-
ments. The system has significantly
contributed to improving MP type operat-
ing environments.

The system has been developed over a nine
year period of time to accomodate the
wide variety of work stations and environ
ments found in various types of data
centers

.

4.2 The Elements of the System

Value's system mirrors the traditional
production control process and has been
implemented with the following components

1. The Data Base - It is in the Value
data base that the individual jobs

are arrayed into networks that thread
themselves on machines as well as
between individual work centers. It

is, therefore, in the data base that

the routing phase of production con-
trol takes place.

2. The Scheduling System - The Value

Data Center Scheduling System is the

vehicle used to produce the hour by
hour work plans for each work center
in the data center . The algorithms
in the scheduling system perform the

scheduling phase of the traditional
production control.

3. JCL Input Sybsystem - After the work
plan for the computers has been devel
oped by the scheduling system, the

APOLLO JCL Input Subsystem is

353

activated to submit the JCL and con-
trol cards to the CPU in plan sequence.
This process eliminates the handling
of cards altogether and also allows
temporary changes to be made on line.
APOLLO performs the dispatching phase
of production control

.

4. Status and Revision Subsystem - The
crucial function of followup which
is the fourth element of production
control, is performed by the Status
and Revision Subsystem. This module
reports in a real-time manner job and
network status and monitors job
sequenced produced by the scheduling
system. When jobs are run out of
sequence, work center personnel are
advised on-line so corrective action
can be taken.

4.3 Dynamic Job Release

Total machine control is provided in the
system by linking the APOLLO and STARS
systems together in such a way that
APOLLO will automatically release jobs
for execution on the CPU without manual
intervention.

Thus, for the first time total data center
production control with dynmaic job re-
lease is provided to computer operations
so operators are no longer required to
perform many clerical functions but, in
fact, are freed to monitor for the excep-
tions in processing.

5. Summary

With the VCI Automated Production Control
System, realistic plans for the data center
are provided along with on-line JCL submission
and job tracking. The system fully implements
the four basic elements of production control;
routing, scheduling, dispatching and follow up.

354

SAS - A UNIFIED LANGUAGE FOR CPE

William R. Gjertsen
SAS Institute, Inc.

Robert M. Gaddy
Duke Power Company

The Statistical Analysis System (SAS) is a unified system for

data analysis. Within a single job step, the user can retrieve
and manage performance data; generate plots, charts and summary
tables; do statistical modelling and forecasting; and produce
custom-formatted reports. SAS combines the power of a file manage-
ment and retrieval system with the simplicity of one-statement calls
to analysis procedures. It can be used for reducing data from soft-

ware monitors, hardware monitors, data base log tapes, job accounting
and security information systems, and many others.

The tutorial will first sketch how SAS can be a vital component
in any implementation of a Performance Management System (PMS)

.

Secondly, we will illustrate its flexibility, power and ease-of-use
as a higher level programming language. Lastly, we will examine some
current performance areas of interest at Duke Power Company and
indicate the utility of SAS in a corporate setting.

1. Introduction

A PMS can be broadly defined as the imple-
mentation of management and control over the
essential performance data bases within an orga-
nization. Control is needed to identify problems
while they are still manageable, allow for timely
resolution of those problems and give management
the opportunity to direct rather than react.

Because raw performance data is voluminous,
dispersed and awkward to process, an efficient
method to retrieve, manipulate, store, archive,
report and analyze the data is essential. To
accomplish these PMS-oriented goals a Computer
Performance Evaluation and Control (CPEC) system
can be realized with SAS. The concept has been
described by Korino* and implemented with SAS
code by Merrill. 2 »3 a CPEC as depicted by Morino
is shown in Figure 1.

This set of data sources could be expanded
to include more of the PMS concept by incorpo-r

rating additional measurement data on hardware
and media reliability, data base management sys-
tem activity, communication activity and security
information as additional inputs tc SAS. The
CPEC would:

o Provide management with short-term con-

trol (daily).

355

o Report on system availability, service,
load, peak loads, and effectiveness of
the TSO-Batch environment.

o Apply "Control Interval" analysis for
assessing how pre-determined objectives
are being attained or missed.

o Employ "Exception Reporting" to high-
light and identify incidents requiring
action.

o Generate "overview" management control
reports.

o Provide generalized "Ad Hoc" reporting to

supplement and support the control re-
ports and problem resolution process.

2. An Exception Report

One type of report that management can act
upon is an exception report. SAS has the nec-
essary tools to extract selected record types,
read many internal formats (EBCDIC, binary,
packed decimal, date and time formats etc.) and
handle repeated and variably positioned fields
that so often occur in SMF and RMF records. Here
is the complete code to extract and produce an
exception report from SMF type 4 records:

// EXEC SAS

//SAS . SMFTAPE DD DSN=SYS1.MANX,DISP=0LD

//SAS.SYSIN DD *

DATA; INFILE SMFTAPE!
INPUT @2 REC_TYPE PIB1.@; IF REC_TYPE=4;

INPUT @55 PGM_NAME $8. 0103 DEVLEN PIB2

.

@103 +DEVLEN +1 CPUTIME PIB3.2;

PROC CHART;
HBAR PGM_NAME / SUMVAR=CPUTIME TYPE=MEAN;

TITLE MEAN CPUTIME (SECONDS) BY PROGRAM NAME;

3-. SMF-RMF Reduction

Data reduction on RMF (SMF-MF1 records, RMFL.

RMF2) records is easily handled by SAS. An out-

line of code together with a specific plot of

type 72 workload records is given below. We are

indebted to Terry Flynn for supplying the code for

this example. The overlay plot for TSO response

time (PGN=2) vs. time of day for different ser-

vice unit types is given in Figure 2.

// EXEC SAS

//INP DD DSN= SYS1.MANX,DISP=SHR
//SYS1N DD*

DATA S70 (KEEP= CPU time field variables)
571 (KEEP= Paging variables)
572 (KEEP=DATE TIME DURATION PGN PERIOD TRANS

ACTIVE TRANSERV ELAPSED RESIDENT RESPONSE)
573 (KEEP= Channel Record variables)
574 (KEEP= Device information variables) ;

INFILE INP; INPUT @2 REC_ID PIB1. (?;

IF REC_ID=70 THEN GOTO _70;
IF REC_ID=71 THEN GOTO _71;
IF REC_ID=72 THEN GOTO _72;
IF REC_ID=73 THEN GOTO _73;
IF REC_ID=74 THEN GOTO _74;

DONE: DELETE;

_70: <T.VPUT Type 70 Records^

_71: <INPUT Type 71 Records >

_72: *INPUT TYPE 72 RECORDS; P0INTER=15;
INPUT <S POINTER C0M_SIZE PIB2. TIME PD4.

DATE PD4. DURATION PD4.3 +2 PGN PIB2.@;
IF PGN = 1 & PGN -.=2 THEN GO TO DONE;
DURATION=60*FLOOR(DURATION/100)+MOD(DURATION,100)

;

TIME=3600*FLOOR(TIME/10000)+
60*MOD(FLOOR(TIME/100) ,100)+
MOD (TIME, 100);

DATE=DATEJUL(DATE); POINTER=POINTER + C0M_SIZE;
INPUT @ POINTER WC_SIZE PIB2. N0_PG PIB2.

PG_SIZE PIB2. +2 IPS $8. @;

P0INTER=P0 INTER + WC_SIZE;
PERI0D=1;

_72_1: INPUT @ POINTFR TRANS PIB4. ACTIVE PIB4.
TRANSERV PIB4. ELAPSED PIB4.

+16 RESIDENT PIB4. @;

ACTIVE=ACTIVE * 1024/1000000;
ELAPSED=ELAPSED* 1024/1000000;
RESIDENT=RESIDENT*1024/1C00000;
IF TRANS -. =0 THEN RESPONSE=ELAPS ED /TRANS;
OUTPUT S72; IF N0_PG=PERI0D THEN GO TO DONE;
PERI0D=PERI0D+1

;
POINTER=POINTER+PG_S IZE

;

GO TO _72_1;

_73: <INPUT Type 73 Records>

_74: <INPUT Type 74 Records>

<Annlyses for Type 70 & 71 Records>

* *

* *

* TYPE 72 WORKLOAD ANALYSES*
* *
* •

PROC SORT DATA=S72; BY DATE PGN;
PROC PLOT; BY DATE PGN;

PLOT RESP0NSE*TIME=PERI0D/VREF=4 16 256 1024
HAXIS=0 21600 43200 64800 86400
VAXIS=0 16 256 4096
HREF=2800 57600;

FORMAT DATE MMDDYY8. TIME TIME.;

<Further Type 72 Record Analyses>

<Analyses for Type 73 & 74 Records>

* *

* *

* ANALYSIS OF MERGED RMF RECORDS *

* *
* •

DATA ALL; MERGE S70 S71 S72 S73 S74; BY DATE TIME;

<Selection of Records, Creation of new variables>

<Analyses on the merged RMF Records^

Figure 3 shows the generated workload plots.
As this and the previous example illustrate, SAS
differs from other CPE package programs in that
the user defines the reports and graphs he needs
by selecting the variables, SAS procedures, and
combinations of data sets that are relevant to the
task at hand. It is in this sense that SAS is a
versatile language for CPE.

356

MEAN CPUTIME (SECONDS) BY PROGRAM NAME 1

19:57 MONDAY, APRIL 3, 1978

BAR CHART OF MEANS

PGM naml FREQ CPUTIME

i

MEAN

ft C KA r* ft w u
1

|
***** Q0 1 v Z . / / 1 Z

AZ 0 y 10 1 13 A i *
1

1
1 1 S3 . 4 / MB

i *
1

11 1

1

fit a fit a
. B y B B

AZ 0 y 10 1 10D j
********* 1 1 O B 01 1 01 01.BIBB

LUoi 1 U Kb |
******* Z i jy . OB DB

Ub I A I Lb 1 *
1 1 zo 0 (A (A (A

• Z 0 B B
PHD
r UK |

* * * 1

z

DO £ 0 Q *3.0/8 J
UU TV CMC i *

1 z i V C £ (1 01
. 5 D B B

t c o r*r\n v1 fcbLUr

I

i *
1 4 lb

I btibLNLK i

1

A A44 c Q /I "3 £
• 0 4 J 0

lbr bKl

4

i

1 J /
a o i 4

• B z 1 4

1 Ln iubUr 1 Z 4
Tpur tct

1
* 0Z 0 1 "3 £ 01 01

• J 0 B 0
T U" u r>D /'"i/'"* M I *

1

1 £10 1 0i y Deal

1 LKKLUo 0 i

1

Q £ 0 7

T PMT i

1 z /
01 "3 7£

• BOZO
TPPPDPDfl1 r L LKt r

w

1 * *
1
» » 1 71 z 1 oJo 7 oi /* a

. / 0 B 0
tu r c n 1? ft r*IMAbFZ AP 1 1 .8500
NjooIoRA

1 9 .6300
N38 8 1 8RB 1

* 19 .9750
N38818RD 2 79 .6200
NjboloRE |

* # # * * l ac1Mb 1 1 01 ot
. 1 1 B B

M C A 7 DC DJO 4 1 rob |

******************************* 624 ~> c n*.3600
N 0 4 1 0 lbT |

** JO O £ 01 01
. 0000

N5560OB |
**************** 323 . 34 50

PGM=* . DD 1

* 12 12 .3158
TMSAUDIT 1

1 1 2 .0800
TMSBINQ 1 1 1 .8500
mil it* t n k kiTMSCLEAN 1

* zl 01 £ 01 01
. B 0 B B

1
** 38 .8400

TMSCTLG 1
* * 32 .8700

TMSCYCLE 1

** 33 .5300
TMSEXPDT 1* 11 .1400
TMSRPT2A 1* 29 .8400
WBD501FA 1 4 . 2867
WBD501FB 1 0 .8900
WBD505NA 1* 26 .7967
WBD505QA 1 8 .4800
WBD505RA 1

*** 53 .8800
WBD505SA 1

* ** 57 .7100
WBD505TA 1*** 55 .1800
WCCATUPD 1

***** 108 .4300
WS06730A 1 0 . 5000
WS0720PZ 1

********** 190 .7300
XLFF 1 0 .2933

-+——+ + + +——+-
100 200 300 400 500 600

CPUTIME MEAN

Figure 2. An Exception Report

357

l«

I

I J)

4 I

rlAij

I <JiJ t

TJ.*I

I

4

«Q

O

(V

EH
di

8
0] 3
> Z
<u a
01 3
c o
o u
o. CJ
oi

iu HI

OS u
co

CO
H

o
VM
o

<4-l

h
QJ

01 Ph
4J
o >-.

«
r-l

M
V

«§

3
00

358

4. Kiviat Star Charts

Another type of report currently in vogue is

the Kiviat graph which attempts to highlight
"good" and "bad" system usage values on alternate
axes of a star chart.

Suppose we have stored daily utilization
data for the months of July through December, and
suppose as part of a year-end recap report, man-
agement requires an ad-hoc look at the system's
utilization profile by month by showing KIVIAT
charts of each month's mean profile statistics.
This job first requires reducing daily utiliza-
tion to overall monthly utilization and then pro-

ducing the star charts. The SAS code and a plot
of July's utilization follow.

// EXEC SAS

//M DD DSN=SYSUTILZ .MONTHLY , D I SP=SHR

//SYSIN DD *

DATA (KEEP=ANYCHBUS CPUWAIT CPUBUSY SPVST

PROBST CPUONLY CPUCHOV CHANONLY MONTH);

SET M.JUL M.AUG M.SEP M.OCT M.NOV M.DEC;

PROC SORT; BY MONTH;
PROC MEANS NOPRINT MEAN; BY MONTH; OUTPUT OUT=ONE

MEAN=MCHBUSY MWAIT MBUSY MSPVST
MPROBST MONLY MCHOV MCHONLY;

PROC FORMAT; *SET UP VALUE LABELS;
VALUE KIV
l-'ANY CHAN BUSY'

3-' CPU ACTIVE'
5-' PROBLEM STATE'
7-' CPU CHAN OVLAP'

DATA TWO; SET ONE;

Ol; X-MCHBUSY ; OUTPUT
C=2; X-MWAIT ; OUTPUT
C«=3; X=MBUSY ; OUTPUT
C«4; X=MSPVST ; OUTPUT
C=5; X-MPROBST ; OUTPUT
C=6; X-MONLY ; OUTPUT
C-7; X=MCHOV ; OUTPUT
C=8; X-MCHONLY ; OUTPUT
FORMAT C KIV.

PROC CHART; BY MONTH;
STAR C/SUMVAR=X TYPE-SUM DISCRETE AXIS-0

2-' CPU WAITING'
4-'SUPERVIS STATE'
6- 'CPU ONLY'
8- 'CHANNEL ONLY'

;

*SET UP A SEPARATE OBS
*FOR EACH POINT;
*0F THE STAR;

1;

SUPEaV IS STATE**
0.2 **

**

CkJ active
0.7 ***********************
**** ****

**** ***

**
**CWU WAITING

0.3

Pk03i.E!» STATE * * • • '* *AKY CHAN bUsv

°-& * .. *0.V

-

*
**

t **
**

CPU ONLY „**b
NNkL 0:JLV

L " 4 **

**** ***

**** ***

*********** ***********

CHU CHAN OVLAH*
0.3

SUm STArf CHAHT Oh X OUT SI OS"

I

' GKOUFED bY C

Figure 4. A Kiviat Star Chart

359

5. SAS in a Corporate Setting

Duke Power Company is a large electric uti-
lity company serving the Carolinas. Among public
utilities nationally it ranks twelfth in overall
assets and tenth in 3977 net income.* Although
SAS is used there for load projection, environ-
mental and biological analyses, and as a system
utility for job accounting, this paper only
addresses the aspect of performance tuning at
Duke Power. This paper should be viewed as ex-
pository and should not be interpretted as re-
commendation or testimonial for SAS by Duke Power.

Duke Power has at its disposal an Amdahl
V6-2 with 6 Meg, an IBM 370/165 with 3 Meg and
an IBM 370/158 with 3 Meg. There are 14 tape
drives and 56 Itel 7300-11 disk drives. The disks
are shared between all three systems. At present
MVT is the production operating system on all
three machines and MVS is being tested on the
158. Cut-over to MVS is planned for the fall of
1978.

In addition, for performance analysis under
MVT, Duke Power uses a COMTEN 8016 hardware mon-
itor, Boole and Baggage's TSA and PPE products,
SUPERMON, and a TS0 Trace data reduction program.
Morino Associate's TS0/M0N is also currently
being evaluated.

Current evaluation concerns are:

1. How can disks, channels, and channel con-
trollers be tuned for optimum CPU utiliza-
tion, TS0 response time and batch turnaround?

2. What will be the impact on utilization and
response time (TS0 and batch) in migrating
from MVT to MVS?

6. Tukey Schematic Plots

After the very first look at the DASD pro-
blem, it was conjectured that channel 3 was too
heavily loaded. It was decided to first take a

look at the percentage of the time channel 3 is

busy (CH3BUSY) vs the percentage of the time the
CPU is busy (CPUBUSY). But when you do a scatter
plot on thousands of observations you are left
with a useless cloud of points.

Another approach is to use an exploratory data
analysis technique proposed by Tukey^ for large
batches of data (like typical raw performance
data). One such schematic SPL01 or bar-and-
whisker plot is depicted in Figure 5.

If you group CPUBUSY percentage into 10%

ranges and do schematic plots of CH3BUSY within
each CPUBUSY grouping you get a coherent picture
of what's going on. In fact, Figure 6 shows that
no matter how busy the CPU is, CH3BUSY puts out
a maximum mean of 47%, a median of 50% and a

maximum midrange of about 38 to 58% and this
occurs whenever the CPU is 40 to 90% busy. Also
when CPUBUSY is 90% or better CH3BUSY dips down
to a mean of 34%. Since CPUBUSY is the response
variable of interest it was decided to plot the

dual of Figure 6 in Figure 7 (namely schematic
plots of CPUBUSY within each 10% grouping of
CH3BUSY). From Figure 7 we notice that CPU
utilization peaks when the demands on CH3BUSY are
60 to 70% and thereafter diminishes as channel 3

gets busier. Since Figure 6 tells us that we are
above this range about 11% of the time for a

wide range of CPUBUSY (20 to 100%) it made sense
to take some of the load off channel 3 and bring
CH3BUSY out of the land of diminishing returns.

The vary-path command was in fact used to
take some load off channel 3 and an increase i-
CPU utilization was noted. In fact, the way to
distribute the load is to minimize the time that
any of the channels taken in unison are in their
region of diminishing returns. One-way SPLOTS
or adjacent SPLOTS as in Figure 6 and 7 can provide
directions and insights for tuning and are a val-
uable aid in "picturing" large batches of perfor-
mance data.

FAROUT OR DETACHED VALUES (1/200 IN NORMAL)

OUTSIDE VALUES (5% IN NORMAL CASE)

/
UPPER HINGE (3RD QUARTILE)

MEAN

MEDIAN

MIDDLE

HALF

OF THE

DATA

*Fortune Magazine, May 1978

"""^LOWER HINGE (1ST QUARTILE)

"WHISKERS"

Figure 5. A Schematic Plot (SPLOT)

The schematic plots shown in Figures 6 and 7

on 10,073 observations can each be generated in
less than 3 minutes by using SAS under TSO. Here
are the statements for Figure 7.

00010 DATA; SET SASSPACE. S410 (KEEP-C9 Cll)

;

00020 TITLE SPLOT OF CPU BUSY VS CHANNEL 3 BUSY
00030 OPTIONS TLS=130;
00040 IF Cll-100 THEN Cll-99.9;
00050 C11-10*INT(C11/10) ; *GR0UP C11-CH3BUSY;
00060 PROC SORT; BY Cll;
00070 PROC SPLOT; CLASSES Cll; VAR C9;
00080 RUN;

Figure 6 is produced with the same code just
interchanging C9 and Cll and changing the title
statement. The raw data for this example was a

week's worth of 5 second interval data measured by
the COMTEN hardware monitor and put on tape. SAS
then extracted the data from the tape, reduced
the percentage to minute intervals, and created
SAS data set S410 prior to producing the schematic
plots.

7. Stepwise Regression

We can only hint at approaches to the initial
tuning problems that will arise in the MVT to MVS
migration. However, one technique that should
prove valuable for detective work is partial cor-
relation or equivalently stepwise regression.
This is a variable selection technique which can
give answers to questions like "What variables
are affecting TSO response time?" This is a use-
ful question to ask, especially if there are some
dissapointing surprises after a migration or system
configuration change. Using TS0/M0N records

360

SPLOT OF CHANNEL 3 BUS! IS CPU BUST

0.0

Cf

CI

+

0.0

to.o 30.0

NOTE: 3AS INSTITUTE INC., P.O. BOX 10066, RALEI6N, N.C. 27405

REM*

0

0

0

0

0

40.0 60.0 eo.t

30.

0

90.

»

Figure 6. Schematic Plots of Percent Channel 3 Busy

By Percent CPU Busy in 10% Bands

361

SPLOI OF CPU IUST VS CHANNEL) IUSY

101.

•

—

0.0

CM
CM

—
0.0 20.0 40.0 40. 0 10.0

10.0 30.0 50.0 70.0 90.0

Figure 7. Schematic Plots of Percent CPU Busy
By Percent Channel 3 Busy in 10% Bands

362

merged with RMF the SAS user could create a data
set with appropriate TSO system and command infor-
mation, CPU workload, paging, channel and device
information. If concurrent batch activity is
needed, SMF could also be included. After creat-
ing the data set of fields merged by time, you
could do stepwise regression with a statement
such as:

PROC STEPWISE; MODEL Y=X1-X30/MAXR STOP-6
INCLUDE=3;

Where Y= Total Response Time (Average of all re-
sponse events)

.

Xl= Time period (The interval of activity)

.

X2= Max Users (The maximum if of users logged
on)

.

X3«= Perf Group (The TSO Performance Group
Number)

.

X4» Swap Count (The number of swap outs done
during the interval)

.

X5= SIO Count (The number of successful start
I/O's).

X6= VIO Page (Available VIO local Page Data
Set Slots).

<Any set of possibly good regressora>

X30

The MAXR option selects variables in a

forward stepwise manner, but chooses from a

larger selection of possible regressions than
does the standard stepwise selection procedure.

"

The STOP-6 option tells SAS to select the best
6 and then stop and INCLUDE-3 forces the first
three regressors into the model.

References

1. Morino, M.M. , "SAS - The Necessary Utility
for Computer Performance Evaluation and Con-
trol (CPEC),"
Proceedings of the Third Annual Conference o f

the SAS Users Group International ,

SAS Institute Inc., Raleigh, (1978).

2. Merrill H. W., "Statistical Analysis of SMF
Performance Data," SHARE Proceedings ,

Share Inc., New York (1974).

3. Merrill H. W. , "Using SAS to Tune MVS,"
Proceedings of the Third Annual Conference of

the SAS Users Group International ,

SAS Institute Inc., Raleigh (1978).

4. Tukey J. W. , Exploratory Data Analysis ,

Addison-Wesley , Reading, Massachusetts (1977).

5. Barr.A. J., Goodnight J. H. , Sail J. P. and
Helwig J. T. , A Users Guide to SAS76 ,

Raleigh, North Carolina (1976).

363

APPENDIX

365

CPEUG 78 PROGRAM
TRACK A

Tuesday, October 24

WELCOME

Richard F. Dunlavey
CPEUG Chairman
National Bureau of Standards
Washington, DC

Robert W. Martin
Regional Commissioner
GSA/ADTS Region No. 1

Boston, MA

KEYNOTE ADDRESS

Frank J. Carr
Commissioner Automated Data and
Telecommunications Service (ADTS)

General Services Administration
Washington, DC

PROGRAM OVERVIEW

Terry W. Potter
CPEUG Program Chairman
Digital Equipment Corporation
Maynard , MA

Arnold Johnson
CPEUG Co-Chairman
Department of the Navy/FCCTS
Washington, DC

TECHNICAL ORIENTATION

FRAMEWORK FOR COMPUTER SYSTEM STUDY
R. A. Orchard
Bell Telephone Labs.
Piscataway, NJ

SELECTION OF INTERACTIVE SYSTEMS: METHODS AND EXPERIENCES

Chairperson: Paul Oliver
Department of the Navy
Washington, DC

INCORPORATING REMOTE TERMINAL EMULATION INTO THE FEDERAL
ADP PROCUREMENT PROCESS
Tom Wyrick
FEDSIM/NA
Washington, DC

Gerald Findley
General Services Administration
Washington, DC

367

CPEUG 78 PROGRAM

Tuesday, October 24 (continued)

CPE TECHNIQUES APPLIED TO THE SELECTION OF A TIME-SHARING
COMPUTER SYSTEM
Marshall Abrams
National Bureau of Standards
Washington, DC

H. Philip Hayden
Naval Ship R&D Center
Bethesda, MD

BENCHMARKING IN SELECTION OF TIME-SHARING SYSTEMS
D. J. M. Davies
University of Western Ontario
London, Ontario

OVERVIEW OF PROBLEMS IN REMOTE TERMINAL EMULATION
Vijay Trehan
Digital Equipment Corporation
Maynard , MA

Wednesday, October 25

PREDICTION PART I: METHODS 1978

Chairperson: Sam Fuller
Digital Equipment Corporation
Maynard, MA

A FORMAL TECHNIQUE FOR ANALYZING THE PERFORMANCE OF
CONCURRENT SYSTEMS
John Sanguinetti
Digital Equipment Corporation
Maynard , MA

A METHOD FOR EVALUATING DIGITAL SYSTEM DESIGN ALTERNATIVES
Taylor L. Booth
University of Connecticut
Storrs, CT

PERFORMANCE EVALUATION OF A DIGITAL SYSTEM
USING A PETRI NET-LIKE APPROACH
Y. W. Han
Bell Telephone Labs.
Naperville, IL

CONTROL THEORETIC APPROACH TO COMPUTER
SYSTEM PERFORMANCE IMPROVEMENT
R. K. Jain
Digital Equipment Corporation
Maynard, MA

368

CPEUG 78 PROGRAM

Wednesday, October 25 (continued)

PREDICTION PART II: QUEUEING-BASED

AN INVESTIGATION OF SEVERAL MATHEMATICAL
MODELS OF QUEUEING SYSTEMS
Rollins Turner
Digital Equipment Corporation
Maynard , MA

ON THE BUSY PERIOD OF A QUEUEING NETWORK OF TWO SERVICE
STAGES WITH EXPONENTIALLY DISTRIBUTED SERVICE TIME
R. K. Ma, and G. J. Stroebel
IBM General Systems Division
Rochester, MN

PREDICTION PART III: APPLICATIONS

Chairperson: A. Agrawala
University of Maryland
College Park, MD

MARKOVIAN MODEL OF A JOB
Jeff Mohr, and A. Agrawala
University of Maryland
College Park, MD

FORECASTING COMPUTER UTILIZATION
H. Pat Artis
Bell Telephone Labs.
Piscataway, NJ

CASE STUDY IN CAPACITY PLANNING - ANALYSIS OF AN
AUTOMATED BIBLIOGRAPHIC RETRIEVAL SYSTEM
R. P. Goldberg, A. I. Levy, and H. S. Schwerk, Jr.

BGS Systems, Inc.

Lincoln, MA

Thursday, October 26

PERFORMANCE IMPROVEMENT PART I: QUANTITATIVE METHODS

Chairperson: A. K. Jain
Bell Telephone Labs.

Holmdel, NJ

MULTIDIMENSIONAL DATA ANALYSIS AS A TOOL FOR THE
STUDY OF COMPUTER SYSTEMS
Anne Schroeder
IRIA LABORIA
France

AN APPLICATION OF TIME-SERIES ANALYSIS IN COMPUTER
PERFORMANCE EVALUATION
Major R. W. Kulp, and Major Kenneth Melendez
Air Force Institute of Technology
Dayton, OH

369

CPEUG 78 PROGRAM

Thursday, October 26 (continued)

ESTIMATION OF RUN TIMES USING SIGNATURE
TABLE ANALYSIS
S. A. Mamrak, and P. K. Amer
Ohio State University
Columbus, OH

SENSITIVITY ANALYSIS AND THE RESPONSE
SURFACE OF A SIMULATION MODEL
Major Kenneth Melendez, and Major A. H. Linder
Air Force Institute of Technology
Dayton, OH

A STATISTICAL APPROACH TO RESOURCE CONTROL
IN A TIME-SHARING SYSTEM
C. A. MacKinder
University of Edinburgh
Edinburgh, Scotland

PERFORMANCE IMPROVEMENT PART II: APPLIED STATISTICS

Chairperson: Colonel R. A. Lejk
Air Force
Wright-Patterson AFB, OH

A STATISTICAL COMPARISON OF THE PERFORMANCE
EFFECTS OF TWO CONFIGURATIONS
Madhav Marathe
Digital Equipment Corporation
Maynard , MA

RELIABILITY MODELING OF COMPUTER SYSTEMS
Lloyd R. Hasche, and Richard A. Grace
Offutt AFB, NB

ANALYSIS OF VARIABILITY IN SYSTEM ACCOUNTING DATA
D. J. M. Davies
University of Western Ontario
London, Ontario

PERFORMANCE IMPROVEMENT PART III: MEASUREMENT APPLICATIONS

Chairperson: Phil Howard
Applied Computer Research
Phoenix, AZ

A RELATIVE ENTROPY-LIKE MEASURE FOR
SYSTEM ORGANIZATION
Jamie Chaikin, and R. A. Orchard
Bell Telephone Labs.
Piscataway, NJ

370

CPEUG 78 PROGRAM

Thursday, October 26 (continued)

PRELIMINARY MEASUREMENT OF C.MMP UNDER A SYNTHETIC LOAD
P. F. McGehearty, and George Rolf
Carnegie-Mellon University
Pittsburgh, PA

Sam Fuller
Digital Equipment Corporation
Maynard , MA

PERFORMANCE STUDY OF A MINICOMPUTER SYSTEM
S. K. Lee, R. M. Maguire, and L. R. Symes
University of Regina
Regina, Canada

TO MP OR NOT TO MP
M. Lieberman
Chase Manhattan Bank
New York, NY

Friday, October 27

PANEL: IMPACT OF PRESIDENTIAL REORGANIZATION PROJECT
RECOMMENDATIONS ON THE ADP LIFE CYCLE

Chairperson: Roxann Williams
Department of Agriculture
Washington, DC

Representatives of Government and Industry will discuss
recommendations of the Presidential Reorganization Project
and the impact they may nave on the federal ADP community.
The Director of the Project, Mr. Walter W. Haase of the
Office of Management and Budget, will be the introductory
speaker. He will be followed by panel members discussing
the potential effect of the recommendations on ADP opera-
tions, management, and procurement.

CONFERENCE WRAP-UP

371

CPEUG 78 PROGRAM
TRACK B

TUTORIALS

Tutorial Coordinator: John Bennett
Digital Equipment Corporation
Maynard , MA

Tuesday, October 24

A REVIEW OF WORKLOAD CHARACTERIZATION
A. Agrawala
University of Maryland
College Park, MD

COMPUTER SYSTEM SELECTION
S. A. Mamrak, and R. D. Amer
Ohio State University
Columbus , OH

Wednesday, October 25

USE OF MODELS FOR CAPACITY PLANNING
Jeffrey Buzen
BGS Systems, Inc.

Lincoln, MA

CAPACITY PLANNING
H. Pat Artis
Bell Telephone Labs.
Piscataway, NJ

IMPLEMENTATION OF THE CAPACITY PLANNING PROCESS
LeeRoy Bronner
IBM Systems Capacity Planning Department
Gaithersburg, MD

Thursday, October 26

COMPUTER PERFORMANCE MANAGEMENT

Chairperson: Philip J. Kiviat
SEI Computer Services
Washington, DC

DEVELOPMENT OF A TUNING GUIDE
Barry Wallack
Command and Control Technical Center
Washington, DC

GUIDANCE FOR SIZING ADP SYSTEMS
Mitch Spiegel, Dennis Gilbert, and James Mulford
FEDSIM
Washington, DC

372

CPEUG 78 PROGRAM

Thursday, October 26 (continued)

HUMAN PERFORMANCE EVALUATION IN THE USE OF FEDERAL
COMPUTER SYSTEMS: RECOMMENDATIONS
Mark Underwood
Navy Personnel R&D Center
San Diego, CA

TUTORIALS

THE BASICS OF COMPUTER PERFORMANCE MANAGEMENT
Captain J. C. Toole
Air Force
Gunter AFS , AL

A DATA CENTER PRODUCTION CONTROL SYSTEM
J. H. Garrett, Jr.

Value Computing
Merchantville , NJ

USING SAS AS A UNIFIED LANGUAGE FOR RETRIEVAL MANAGEMENT
AND STATISTICAL ANALYSIS OF COMPUTER PERFORMANCE DATA
Bill Gjiertsen
SAS Institute
Raleigh, NC

PROBLEMS IN REMOTE TERMINAL EMULATION
Vijay Trehan
Digital Equipment Corporation
Maynard , MA

Friday, October 27

WORKSHOP: PERFORMANCE STATE-OF-THE-ART AND THE ADP LIFE CYCLE

Chairperson: Dennis Conti
National Bureau of Standards
Washington, DC

This workshop will begin with an introduction to the ADP
life cycle. Attendees will break into subgroups with
predefined objectives to address. Subgroups will later
regroup and discuss results. This workshop provides
the attendees with both an opportunity to influence next
year's conference and to identify unsolved problems on

which performance research and development should be

focusing.

373

NBS-114A (REV. 11-77)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS SP-500-41

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE
COMPUTER SCIENCE & TECHNOLOGY

Computer Performance Evaluation Users Group
CPEUG

I4tn Meeting

5. Publication Date

6. Performing Organization Code

7. AUTHOR(S)
Editor: James e. Weatnerbee

8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as No. 9.

13. Type of Report & Period
Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or leas factual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.)

The Proceedings record the papers that were presented at the Fourteenth Meeting of the
Computer Performance Evaluation Users Group (CPEUG) held October 24-27, 1978 in

Boston. The technical presentations were organized around the three phases of the
ADP Life Cycle: the Requirements Phase (workload definition), the Acquisition Phase
(computer system and service selection), and the Operational Phase (performance)
measurement and prediction methods). The program of CPEUG 78 is also included and

serves as an Applendix to the Proceedings .

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons) ADP life cycle; computer performance evaluation; computer per-

formance measurement; computer performance prediction; computer system acquisition;
conference proceedings; CPEUG; hardware monitoring; on-line system evaluation;

18. AVAILABILITY [X 1

Unlimited

|
I For Official Distribution. Do Not Release to NTIS

| x !
Order From Sup. of Doc, U.S. Government Printing Office
Washington. D.C. 20402. SD Stock No. SNOOJ-003

| |
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

21. NO. OF PAGES

353

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

'22. Price

$6.00

USCOMM-DC B803B-P7S

o U. S. GOVERNMENT PRINTING OFFICE : 1978 261-238/254

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research

of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and
engineering sciences in which the Bureau is active. These

include physics, chemistry, engineering, mathematics, and
computer sciences. Papers cover a broad range of subjects,

with major emphasis on measurement methodology, and

the basic technology underlying standardization. Also in-

cluded from time to time are survey articles on topics closely

related to the Bureau's technical and scientific programs. As
a special service to subscribers each issue contains complete

citations to all recent NBS publications in NBS and non-

NBS media. Issued six times a year. Annual subscription:

domestic $17.00; foreign $21.25. Single copy, $3.00 domestic;

$3.75 foreign.

Note: The Journal was formerly published in two sections:

Section A "Physics and Chemistry" and Section B "Mathe-
matical Sciences."

DEMENSIONS/NBS
This monthly magazine is published to inform scientists,

engineers, businessmen, industry, teachers, students, and
consumers of the latest advances in science and technology,

with primary emphasis on the work at NBS. The magazine
highlights and reviews such issues as energy research, fire

protection, building technology, metric conversion, pollution

abatement, health and safety, and consumer product per-

formance. In addition, it reports the results of Bureau pro-

grams in measurement standards and techniques, properties

of matter and materials, engineering standards and services,

instrumentation, and automatic data processing.

Annual subscription: Domestic, $11.00; Foreign $13.75

NONPERIODICALS
Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scientific

and technical activities.

Handbooks—Recommended codes of engineering and indus-

trial practice (including safety codes) developed in coopera-

tion with interested industries, professional organizations,

and regulatory bodies.

Special Publications—Include proceedings of conferences

sponsored by NBS, NBS annual reports, and other special

publications appropriate to this grouping such as wall charts,

pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engineers,

chemists, biologists, mathematicians, computer programmers,

and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quanti-

tative data on the physical and chemical properties of

materials, compiled from the world's literature and critically

evaluated. Developed under a world-wide program co-

ordinated by NBS. Program under authority of National

Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these

data is the Journal of Physical and Chemical Reference

Data (JPCRD) published quarterly for NBS by the Ameri-
can Chemical Society (ACS) and the American Institute of

Physics (AIP). Subscriptions, reprints, and supplements
available from ACS, 1155 Sixteenth St. N.W., Wash., D.C.
20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research

results, test methods, and performance criteria related to the

structural and environmental functions and the durability

and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in

themselves but restrictive in their treatment of a subject.

Analogous to monographs but not so comprehensive in

scope or definitive in treatment of the subject area. Often
serve as a vehicle for final reports of work performed at

NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10,

Title 15, of the Code of Federal Regulations. The purpose

of the standards is to establish nationally recognized require-

ments for products, and to provide all concerned interests

with a basis for common understanding of the characteristics

of the products. NBS administers this program as a supple-

ment to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based

on NBS research and experience, covering areas of interest

to the consumer. Easily understandable language and
illustrations provide useful background knowledge for shop-

ping in today's technological marketplace.

Order above NBS publications from: Superintendent of

Documents, Government Printing Office, Washington, D.C.
20402.

Order following NBS publications—NBSIR's and FIPS from
the National Technical Information Services, Springfield,

Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUB)—Publications in this series collectively consti-

tute the Federal Information Processing Standards Register.

Register serves as the official source of information in the

Federal Government regarding standards issued by NBS
pursuant to the Federal Property and Administrative Serv-

ices Act of 1949 as amended, Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717

(38 FR 12315, dated May 11, 1973) and Part 6 of Title 15

CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-government).

In general, initial distribution is handled by the sponsor;

public distribution is by the National Technical Information

Services (Springfield, Va. 22161) in paper copy or microfiche

form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibli-

ographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A litera-

ture survey issued biweekly. Annual subscription: Domes-
tic, $25.00; Foreign, $30.00.

Liquified Natural Gas. A literature survey issued quarterly.

Annual subscriplion: $20.00.

Superconducting Devices and Materials. A literature survey

issued quarterly. Annual subscription: $30.00. Send subscrip-

tion orders and remittances for the preceding bibliographic

services to National Bureau of Standards, Cryogenic Data

Center (275.02) Boulder, Colorado 80302.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D.C. 20234

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

Penalty for Private Use. $300

SPECIAL FOURTH-CLASS RATE
BOOK

