
NATL INST OF STANDARDS & TECH R. .C.

A111 03089744
Rosanthal Robert/The design and Implemf

Sc^M U57 NO.500-. 35, 1?78 C.2 N§S-PUB

MCE & TECHNOLOGY

THE DESIGN AND IMPLEMENTATION
OF THE NATIONAL BUREAU OF
STANDARDS' NETWORK ACCESS
MACHINE (NAM)

-35
^"'fSAU Of

NBS Special Publication 500-35
U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901. The
Bureau's overall goal is to strengthen and advance the Nation's science and technology and

facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is

performed by the National Measurement Laboratory, the National Engineering Laboratory,

and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

Agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities^ — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical

services to users in the public and private sectors to address national needs and to solve

national problems in the public interest; conducts research in engineering and applied science

in support of objectives in these efforts; builds and maintains competence in the necessary

disciplines required to carry out this research and technical service; develops engineering data

and measurement capabilities; provides engineering measurement traceabihty services;

develops test methods and proposes engineering standards and code changes; develops and

proposes new engineering practices; and develops and improves mechanisms to transfer

results of its research to the utlimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal Agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal Agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following divisions:

Systems and Software — Computer Systems Engineering — Information Technology.

'Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted;

mailing address Washington, D.C. 20234.

^Some divisions within the center are located at Boulder, Colorado, 80303.

The National Bureau of Standards was reorganized, effective April 9, 1978.

OF STANDARDS

COMPUTER SCIENCE & TECHNOLOGY:

The Design and Implementation of the

National Bureau of Standards' '

^
Network Access Machine (NAM) '

Robert Rosenthal and Bruce D. Lucas

Information Technology Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

' J. . NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued June 1978

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end

of this publication.

National Bureau of Standards Special Publication 500-35

Nat. Bur. Stand. (U.S.) Spec. Publ. 500-35, 50 pages (June 1978)

CODEN. XNBSAV

Library of Congress Catalog Card Number: 78-600055

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1978

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
Stock No. 003-003-01949-6 Price 2.20

(Add 25 percent additional for other than U.S. mailing).

TABLE OF CONTENTS

Page

1. INTRODUCTION 2

1.1 A NAM OVERVIEW 2

1.2 NAM DESIGN PHILOSOPHY 3

1.3 IMPLEMENTATION RATIONALE 4

2. NBS NAM IN THE LOOP 6

3. THE NAM PROGRAM 8

3.1 THE COMMAND INTERPRETER 8

3.2 THE MACRO EXPANDER 10

3.3 THE RESPONSE ANALYZER 10

4. MACRO FILES AND THE EXPANDER PROPER 11

4.1 EXPANSION PROCEDURES 11

4.2 EXPRESSIONS IN NAM DIRECTIVES 14

4.3 VARIABLES IN NAM EXPRESSIONS 15

4.4 NAM EXPRESSION SYNTAX 17

4.5 NAM DIRECTIVES 21

4.5.1 Break 21
4.5.2 Connect 21
4.5.3 Disconnect 22
4.5.4 Exit 22
4.5.5 Flush 22
4.5.6 Int 22
4.5.7 Match 22
4.5.8 Msg 23
4.5.9 Newdir 23
4.5.10 Output 23
4.5.11 Pipe 24
4.5.12 Printall-off 24
4.5.13 Printall-on 24
4.5.14 Remote 24
4.5.15 Rremote 25
4.5.16 Send 25

-iii-

4.5.17 Set 25
4.5.18 Status 25
4.5.19 String 26
4.5.20 Term 26
4.5.21 Tmatch 27
4.5.22 Transcr ipt-off 27
4.5.23 Transcr ipt-on 27
4.5.24 Unix 27
4.5.25 Verbose-off 28
4.5.26 Verbose-on 28
4.5.27 Wait 28

4.6 CONDITIONAL EXPANSIONS 28

4.6.1 Case 28
4.6.2 Default 28
4.6.3 Else 29
4.6.4 End 29
4.6.5 If 29
4.6.6 Switch 29
4.6.7 While 30

5. COMMON COMMAND LANGUAGES 31

6. BIBLIOGRAPHY 40

7. APPENDIX 41

7.1 More on the Response Analyzer 41

7.2 NBS NAM Physical Connection Names 43

-iv-

DISCLAIMER

Certain commercial products are identified in this special
publication in order to adequately specify the Network Access
Machine, In no case does such identification imply recommendation
or endorsement by the National Bureau of Standards, nor does it
imply that the products identified are the best available for the
purposes described.

The Design and Implementation of the
National Bureau of Standards'
Network Access Machine (NAM)

Robert Rosenthal
Bruce D. Lucas

ABSTRACT

The Network Access Machine (NAM) , a pro-
grammed minicomputer designed to assist interac-
tive on-line terminal users of computer network
services and resources, is discussed in detail.
The minicomputer allows the user to specify (or to
have specified) network command sequences for exe-
cution on a specified network and host connected
to that network. Computer responses are analyzed
to assure agreement with those anticipated for
specific commands. Experiences with the NAM and
specific examples of NAM use including a common
command language for bibliographic retrieval are
presented

.

Key words: Computer networks; Minicomputers;
Intelligent terminals; Computer access;
Communications; Protocols; Command languages.

PREFACE

This Special Publication is one of a series prepared as
part of a jointly sponsored effort by the National Bureau of
Standards and the U. S Air Force Rome Air Development Center
under contract number F 30602-77-F-0068

.

!

-1-

1. INTRODUCTION

This report discusses the design philosophy of the
National Bureau of Standards' Network Access Machine (NAM)
and augments a previous tutorial report that surveyed
current and planned work in the area of network access [ROS
76]. That report identified several projects related to
network access including work at the Rand Corporation on the
Rand Intelligent Terminal Agent (RITA) [AND 77] , and the
Massachusetts Institute of Technology's work on the
networking of interactive bibliographic retrieval systems
[MAR 76]

.

This report updates previous descriptions of the NBS
NAM from that tutorial and details the specific software
that provides access assistance functions to a wide variety
of users including sophisticated programmers, casual
timesharing users, scientists and engineers, bibliographic
search and retrieval specialists, and others who need and
use computers in the normal performance of their jobs.

This report also discusses the implementation of the
NAM software and points out how the NAM is used in specific
applications including a common command language on
heterogeneous host computers for bibliographic retrieval.

1.1 A NAM OVERVIEW

The NAM is a minicomputer system that acts as a network
access point for a user at his terminal and assists the user
through the automatic execution of access procedures. This
minicomputer facility allows the user to specify (or have
specified) his own network command sequences for execution
on a specified network and host connected to that network.
Computer responses are analyzed to assure agreement with
those anticipated for specific commands.

The facility is a PDP-11/45 minicomputer with a full
complement (128k) of core; a disk provides secondary storage
for files. Several different types of communications
equipment are used for access to a variety of computer
networks. This equipment includes a specially designed
automatic calling unit that provides access to the switched
telephone network, an interface to the ARPA Network that
provides access to ARPA Network resources, and a specially
designed interconnection patch panel that provides access to
other NBS local computer facilities.

-2-

The NAM software is written as an applications program
for the UNIX operating system [RIT 74] . The program relies
on UNIX for communications support: That is, the automatic
calling unit software, the ARPA Network Control Program
(NCP) , and local computer connection software are integral
parts of UNIX — they are UNIX drivers. These drivers
provide the NAM program with the lower level communications
support needed to establish and maintain connections.

1.2 NAM DESIGN PHILOSOPHY

The NAM software has been designed with the following
three points in mind:

Service providers (vendors) have innumerable
product offerings; there are many different
services available that meet a wide range of
user needs.

Equipment suppliers have enormous selections of
product offerings; there are many different
terminal types and communication facilities.

Users or customers have diverse needs and demands
for the services and equipment offered by
vendors; more and more, these customers require
the services and equipment provided by more than
one supplier. «r

It should be possible for a large community of users
with different terminals and communication facilities to
access a wide variety of heterogeneous host computers and
services. How does one design a NAM to meet such diverse
requirements — requirements that match user demands with
user terminals, access methods and services? One way is to
adopt a philosophy where:

A) Lower level interface connection requirements are
met directly. UNIX provides these requirements
for the switched telephone network, the ARPA
Network, and the NBS local patch panel facility.

1) Physical connections to requested services are
established and maintained. These physical
connections include host interfaces to computer
networks, hardwired connections to local
computer facilities or, when applicable, dial-

-3-

out connections to other computer service
providers

.

2) Link control protocols are satisfied so that
intelligible communication is possible.
Suitable link controls enable the NAM to request
that connections be established and broken on
behalf of the user.

3) Communication control protocols are satisfied so
that the transfer of intelligible data in the
form of messages, packets, characters, or bits
is possible.

B) Higher level user protocol requirements are met
directly by the the NAM using the NAM programmed
access capabilities. That is, detailed
user/host interactions such as "login", "service
selection", "logout" and other high-level
interactions are generated and tailored for
specific computer service providers using a
procedural language that is part of the NAM
facility.

This philosophy, to provide a procedural language that
expresses user (higher) level interactions, enables the NAM
to perform complex interactions with diverse user
communities, terminal types, and host computers.

How can such a system be useful? It can be useful in
three important ways. First, it provides an experienced
user with capabilities to tailor procedures that perform
complex machine dependent dialog (interactions) for
particular user needs. Second, it provides less experienced
groups or user communities with predefined procedures
applicable across diverse services, terminal equipments, and
communication media. Third, it provides a common user level
interface so that user inputs have a common syntax and
(hopefully) semantics across service boundaries, and so that
user outputs are formatted in a consistent way even when
messages originate from different communications facilities
or service providers.

1.3 IMPLEMENTATION RATIONALE

Implementation of a device that meets these
philosophical requirements is surely an aggressive
undertaking. But, as users who demand more and more
services from different suppliers realize, the complex and
cumbersome dialog required to perform the same or similar
functional operations on different services is overwhelming.

-4-

Why for instance should simple (user) functions like
"login", "logout", or "service selection" be so different
across different services? Why should the more complex user
functions of programming, editing, compiling, and debugging
be so different across different host computers? Why should
applications packages that perform similar functions be so
different? One obvious reason is competition among the
service providers.

Encouraging competition among network service providers
can be in the user's best interest if it leads to innovation
in the amount and quality of service received and in the
reduction of costs in providing the service. But, when such
differences make access more complex and cumbersome, steps
to alleviate those differences can be taken.

The NBS NAM attacks this problem in three important
ways. First, the NAM provides user uniformity for the
simpler functions like "login", "logout", and "service
selection". Apparent user uniformity can be accomplished
earlier with a network access machine than through formal
standards procedures. Second, the NAM provides a testbed
facility for quickly implementing and testing proposed
standards at the user level of interaction. This lessens
the burden of retrofitting existing systems with new
protocols and provides a vehicle that allows user
communities to more easily adapt to standards when they
become effective. Third, early use of tested and proven
user-level protocols increases user productivity.

Other important benefits accrue to users of a NAM.
Experience with this machine indicates that communication
line utilization increases. This may indirectly increase
user productivity at the terminal. Other more tangible
benefits accrue through the use of common commands: Users
don't waste time searching in manuals for specific commands
that perform similar functions on different services.

Another potential benefit still to be explored permits
users to shop around for the best service for a particular
job. The NAM is capable of executing benchmarks on
candidate hosts, calculating and tabulating expected
response times, and presenting lists of best alternative
service providers. The NAM can even migrate user files from
one host to another should the user select an alternative to
the host where his files reside. Also to be explored is the
possibility of supporting certain help assistance functions
for the user. Automatic spelling correction is one example.

-5-

2. NBS NAM IN THE LOOP

The NBS NAM is the access point to diverse and varied
computer services for users at interactive terminals or
displays. The NAM acts as a surrogate for the user to
establish and maintain physical communications with remote
computers; and, when appropriate, the NAM maintains
connections by implementing specific communication protocols
for a host system or network. These low level communication
functions are routinely performed by the UNIX operating
system. So, a user can request that the NAM establish and
maintain communications with a wide variety of different
services

.

Having established a communications link with a remote
service, the NAM mediates user input and produces service
(host computer) dependent interactions to accomplish the
user's request. In this way, simple user input requests to
the NAM may result in multiple NAM/host interactions. Also,
host responses received by the NAM are appropriately
formatted (reformatted) and displayed to the user in a
consistent and meaningful way. Figure 1 below typifies this
exchange of requests.

As an example, consider a user request to log into a
particular host on a given network. One user request is
sufficient. The nominal response to that request is a
response indicating a successful login. To accomplish a
successful login, the NAM participates in multiple
interactions that request a host connection, provide a user
identification and password, and select a service or data
base.

USER REQUEST >

RESPONSE

NAM

Multiple
NAM/host
dependent
interactions
that accomplish
the user's request

Figure 1: Typical Exchange of Interactions

The service-dependent interactions between the NAM and
the host computer are seldom of concern to the user. The
user is (usually) only concerned with the syntax and
semantics guiding formulation of the user request and the
format and meaning of any response to that request. It thus

-6-

becomes the responsibility of the NAM to ensure that the
user sees a consistent interface to the service selected
regardless of the user terminal, communications media, or
service vendor.

The NAM program translates a user input request to
specific service interactions by interpreting a previously
prepared file of NAM directives. These prepared files are
referred to as macro files or simply macros. The NAM
interprets the directives by expanding the macro file.

Each request entered by the user has a macro file
associated with it. The contents of the macro file are
directives to the NAM that specify precisely what the remote
service interactions ought to be. A rich set of directives
that specify what to send, where to send, and when to send
is available. Directives that format (reformat) messages
both to the host and to the user are available as well as a

generalized set of looping and control directives. These
looping and control directives provide a convenient way to
conditionally expand macro files.

Also, a rich set of utility directives provide for
establishing and maintaining connections to services,
producing connection status reports, and interfacing to the
services provided by the UNIX operating system itself.
These services include editors, line printer spoolers, and
other utilities.

Users of NAM macros are seldom concerned with the
details of the macro directives. Few librarians for
instance, would care about the detailed implementation of a
common command language for bibliographic retrieval using
NAM directives; the librarian is most interested in
performing the job of finding and displaying citations in a
data base. But, an individual interested in extending such
a language or developing new common command languages for
other applications would be very interested in the directive
details

.

So the NAM has two audiences — a user of NAM commands,
and an author of NAM macro commands. The author is
interested in how to formulate sequences of service requests
for a specific user community, and the specific users of a
given community are interested in the commands built by the
author. The following sections detail the NAM from the
macro author's point of view. Then, after the directives
have been identified and explained, several examples giving
the user's point of view are presented. These examples are
from the common commands for bibliographic search and
retrieval.

-7-

3. THE NAM PROGRAM

The macro author views the NAM as three cooperating
programs: the Command Interpreter, the Macro Expander, and
the Response Analyzer. These three programs interface the
NAM user to a remote host while allowing the NAM to mediate
user/host interactions using data available in macro files.
Figure 2 illustrates the relationship that these programs
have to the user and to the host.

Figure 2 Three Major NAM Components:
Command Interpreter, Macro Expander,
and Response Analyzer

3.1 THE COMMAND INTERPRETER

The Command Interpreter accepts user input and helps
formulate the user's intended command. Once formulated, the
command is sent to either the Macro Expander when NAM
service is required, or to UNIX when the user desires local
editing or other UNIX support. For convenience, a special
mode of operation allows user input to be sent directly
through the Command Interpreter to host system connections.
(Incidentally, more than one host system connection is
possible .

)

User characters enter the Interpreter and are formed
into words. As the words are formed, they are searched for
in a keyword table. When appropriate, partially entered
keywords, identified by their unique beginning characters,
are automatically completed — their endings are
automatically formed. This completion is observed by the
user when the terminal displays the ending of the word being
searched. The user forces completion by typing the ASCII
"ESCAPE" character.

COMMAND
User INTERPRETER

RESPONSE
ANALYZER Host

MACRO
EXPANDER

Disc (macro files)

-8-

Completed user input commands are identified by a
terminating carriage return or line feed character on the
last word entered. The completed command is then sent off
to the Macro Expander or to UNIX. For the special case in
which the user directly interacts with the host system, each
character (one at a time) is stored and then forwarded
through the Interpreter to the host system. These three
paths from the Command Interpreter are illustrated in Figure
3 below.

— store- and- for ward

—

User — COMMAND
INTERPRETER

Remote
System (s)

Local UNIX

— NAM Macro Expander

Figure 3: Three Paths Through the Command Interpreter

Once the command is executed either by the Expander or
by UNIX, control reverts back to the Interpreter; the
Interpreter awaits further user input after prompting the
user with a colon ":" character. On the other hand, an
explicit return to the interpreter is required to leave (the
special case) store-and-forward operation to the remote
system. The return is accomplished by typing the ASCII
control character "US" -- Unit Separator (sometimes
represented as control shift back-arrow)

.

Several special characters assist the user in the
preparation of input lines to the Command Interpreter. The
ASCII character back-space "BS" is used to delete a typing
error; negative acknowledge "NAK" deletes the entire user
line. Also, the "up-arrow" character prefixing an input
command, directs the entire line to UNIX for execution.

Command execution by UNIX is beyond the scope of this
report but is thoroughly discussed in [RIT 74] . Essentially
all of the UNIX commands are directly available to NAM users
except "login", "logout", "chdir" (change directory) and
several others directly executed by the UNIX Shell program.
Command execution by the Macro Expander is important here
and is explained below.

3.2 THE MACRO EXPANDER

User input commands passed to the Macro Expander take
on one of two forms: an explicit NAM directive, or the name
of a macro file containing NAM directives. Explicit NAM
directives are statements in the macro language of the NAM.
(A complete list of directives is in section 4.5 below.)
These directives are interpreted, and executed immediately
by the Expander. When execution of the directive is
completed, control returns to the Command Interpreter.
Thus, all of the NAM directives are directly executable by
the user

.

The second form — macro names — is more interesting.
The first word in the user input command names the macro
file to be executed. This named file is read by the
Expander so that each line in the file can be expanded,
evaluated and then interpreted. The remaining words in the
input command become parameters to the expansion. The
evaluation of the macro file requires that the parameters to
the expansion be substituted before interpretation
(execution) of the macro line occurs. Finally, the expanded
line is executed. Chapter 4 below addresses the importance
of macro files in the NAM and completely describes their use
with the Macro Expander.

This process of reading lines from the macro file,
evaluating the read line, and then interpreting (executing)
the result of that evaluation continues until an "end-of-
file" condition on the macro file is reached; then control
returns back to the Command Interpreter and the user.

3.3 THE RESPONSE ANALYZER

The Response Analyzer buffers characters received from
the remote system. As the buffer is being filled, each
character received is compared against a predefined
anticipated response. Matching the anticipated response
with the system response causes the buffer to be marked full
and named "response" for use as a string variable by macro
d irect ives

.

Three directives interface the Expander to the
Analyzer: Terminate, Match, and Send. The Terminate
directive specifies a list of anticipated responses that
cause the buffer to be marked full. This directive
optionally specifies a time-out used to force the buffer
full if no characters arrive in the specified time. The
Response Analyzer uses data from the Terminate directive for
determining when the system response is complete. The Match
directive plays a similar role; it specifies a list of

-10-

anticipated responses that identify substrings within the
completed system response. The Response Analyzer returns
condition codes to the Expander identifying the substrings
for both the matching and terminating conditions. The Send
directive causes the specified string to be sent to the
remote system initiating these terminate and match
processes

.

With that overview of the NAM program in mind,
attention now focuses on the details of macro files and
their relationship to the Macro Expander.

4. MACRO FILES AND THE EXPANDER PROPER

The implementation details of the Macro Expander
provide insight into how the NAM carries out its role in the
communications link between a user and remote system or
service provider. As mentioned earlier, the Expander reads,
evaluates, and executes directives found in macro files.
This design utilizes an interpretive approach that has
proven useful in accommodating the many extensions that
inevitably accompany experimental prototype machines
(programs) like the NAM.

4.1 EXPANSION PROCEDURES

The Expander parses the command passed to it. Special
characters within the command cause syntactically important
items to be flagged and acted upon. When the parsing
operation is complete, an ordered table of phrases called
tokens is available for use and evaluation.

This token table contains substituted formal macro
parameters for place holders in the parsed command,
substituted character values for the ASCII abbreviations of
non-printing and control characters, and verbatim copies of
quoted and escaped characters. The example below (presented
after a description of the special characters) illustrates
how the token table is built and used.

The special characters used by the parser to identify
the place holders, character values, and quoted and escaped
sequences are defined in table 1 below. Notice that place
holders are identified by a dollar sign. Also, notice that
tokens are identified by the presence of a separator. These
special characters lose their significance if escaped or
quoted

.

-11-

CHARACTER MEANING

\ Causes the next character to be escaped
so that no special meaning is given to it.

" Causes the QUOTE flag to be toggled: If
toggled on, then commas, tabs, spaces and
dollar sign have no meaning.

$ If a number follows the dollar sign:
It is used as an index into the token
table built by the previous call.
The string in the table is substituted
for the dollar sign followed by a number.

If a string name follows the dollar sign
and if that name is followed by a period:
The contents of that string are substituted
for the dollar sign followed by a string name
followed by a period.

[...] Causes the following ASCII control character
abbreviation to be substituted for its coded
(octal) equivalent, e.g. [SOH] is replaced by
the octal value 001.

space Causes the previous text to be entered into
tab the token table for this call. Leading

comma separators are ignored.

TABLE 1: Special Characters Used by the Parser

Having built the token table, the Expander examines the
first character of the first token in the table. This
character is either:

A semicolon ";" indicating that the entire input
command is a comment and should be ignored,

a period "." indicating that the command is a NAM
directive and must be further evaluated,

an asterisk "*" indicating that the command is a

NAM conditional directive and must be further
evaluated, or

a different character (none of the above)
indicating that the entire input command is the
name of another macro to be evaluated much like
a subroutine call.

-12-

As evidenced from the last item above, (a different
character), the command line can even originate from within
an expanding macro as well as from the Command Interpreter.
For this reason, the Expander was designed as a recursive
program. Each recursive call to the Macro Expander requires
three arguments: the command line for the new call, the
token table from the previous call and a pointer to the text
of the call in the macro file.

The command line for the new call is needed so that the
parser can again evaluate the input line. This evaluation
may result in still another call to the Macro Expander,
and on and on recursively until a directive or comment is
parsed. The token table from the previous call is required
so that parameter substitution based on the index of the
ordered token table can be performed during the parser's
evaluation of the new command line. Finally, a pointer to
the text of the call in the macro file is required so that
the loop beginning of the While conditional directive can be
remembered (While is defined in section 4.6.7 below). The
recursion depth is limited by the number of open files
allowed by the UNIX system since each macro is a file that
must remain open during its entire expansion. The current
UNIX system provides for up to 15 open files.

To clarify the operation of the Expander the following
example is offered. In the example, a macro file named OPEN
contains comment lines, directives, conditional directives,
and the names of other macros to execute. The example
assumes that three string variables — id, password, and
account — had previously been declared and initialized.
The example uses the dollar sign to place-hold formal
parameters either passed to the macro or passed within the
named string variables.

;this macro establishes a connection
.connect $1
*if (connect ion_made)

LOGIN $id. $password. $account.
*end

The user types the command

OPEN bbn-tenexb

to the NAM Command Interpreter; here is what happens. The

j

Interpreter recognizes that OPEN is a macro name (as opposed
' to a UNIX command) and passes the command to the Expander,

i The Expander begins parsing the command and finds that the

-13-

first token does not begin with a period, asterisk, or
semicolon: The command is the name of a macro to be
evaluated. The token OPEN becomes the zeroth element of the
token table array, and bbn-tenex becomes the first element.

The recursive expansion has begun. The first line of
OPEN is read and evaluated. A semicolon is parsed and the
comment line is ignored. The next line of OPEN is read and
a period is parsed. The $1 argument gets replaced by the
string found in the token table indexed by 1. This string
is "bbn-tenex" so the line is evaluated as

.connect bbn-tenexb

The NAM executes this directive and attempts to establish a
connection to the ARPA Network host bbn-tenexb. The
conditional directive on the next line checks that the
connection attempt was successful and if it was, LOGIN is
parsed and found to be not a directive or a comment, but
another macro name. So, another recursive call to the macro
expander is made and this time, the token table contains the
values of the string variables id, password, and account.
LOGIN eventually returns allowing OPEN to continue. In this
example, OPEN is finished and control returns back to the
Command Interpreter and the user.

One interesting aside to this particular example is
that if the user command line begins with a period, the
command itself gets executed as though it had come from a
macro file. In fact all of the NAM directives are
executable directly from the user's terminal via the Command
Interpreter

.

4.2 EXPRESSIONS IN NAM DIRECTIVES

Expressions in many of the NAM directives allow run-
time calculations to be made from executing macros. These
expressions are important in conditional expansions for
controlling the flow or sequence of directives and for
evaluating and setting variables within macros. Expressions
consist of mixed mode integer and string operations defined
by a rich set of unary and binary operators. Boolean
expressions evaluate True or False; zero is False in NAM
conditional directives.

Table 2 identifies all of the NAM expression operators
including the string and pattern operators discussed below.
The more common arithmetic and logical operators are not
discussed in detail.

-14-

Ar ithmetic

Log ical

str ing

pattern

Operator
Symbol

/
%

/ /
{}

Meaning or "read as"

plus
minus
multiply
integer divide
remainder (from integer divide)

not
and
or
greater than
less than
equal
not equal

substring extraction
string matching
concatenation

from the set of characters
extract
any character
any number of times (including 0)
the specific string
or
null at end of every string

TABLE 2: NAM Expression Operators

4.3 VARIABLES IN NAM EXPRESSIONS

Two variable types are used in expressions: integer
variables and string variables. Integer variables are
sixteen bit signed values. String variables are allocated
dynamically and are formed as variable length character
arrays. Mixed variable types within expressions are
perfectly valid; string-to-integer and integer-to-string
conversion is done where necessary.

The result after evaluating a mixed expression is typed
by the context in which it is used. For example, printing a
string formed by summing two integers causes the sum to be
evaluated as a string. Summing two strings of integers and
setting the result into an integer causes the result to be
an integer. Type string is forced when the string operators
concatenation, string matching, and string extraction are
used

.

-15-

Variables used by NAM macros are not allocated
automatically. There are specific NAM directives that
declare variable names as either string or integer; and,
these declarations are valid only for the particular
invocation of the expansion and for subroutines local to the
current invocation. Further, variables only have local
(macro) significance. This implies that the NAM Macro
Expander provides a block-structured language.

However, global significance is given to variable names
defined explicitly by the user from his keyboard through the
Command Interpreter. That is, when the user explicitly
executes the NAM directives that declare variable names from
the Command Interpreter, those names have global
significance. Name conflicts with local declarations are
resolved by giving the local name precedence over the global
name

.

The NAM has predefined variable names that already have
global significance. These predefined names and their types— integer or string — are identified in table 3 below.

TYPE NAME COMMENT

Integer

Str ing

termed
matched
connect ion_made
error
flagO
flagl
nparams

response
user 1 ine
scratch

Indicates which termination
Indicates which match
Indicates connection is made
Indicates expansion error
General purpose integer
General purpose integer
Number of parameters passed

Last remote system response
Command from the Interpreter
General purpose string

TABLE 3: Predefined Variable Names

Any of the NAM directives that require or use expressions
may utilize these predefined variable names in NAM
expressions

.

-16-

4.4 NAM EXPRESSION SYNTAX

NAM expression syntax is checked during the evaluation
of NAM expressions. The syntax is relatively straight-
forward; a terse description will suffice.

Unary operators are: plus, minus, and not.

Binary operators are:

A dig it is

:

A constant is:

A separator is:

An alpha is:

A nondigit is:

A variable is:

A term is:
(defined recursively)

An expression is:
(defined recursively)

plus, minus, multiply, integer divide,
integer remainder, and, or, greater than,
less than, equal, not equal, substring
extraction, string matching,
and concatenation.

0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

a digit or any number of digits.
Note that constants do not include the
unary operator minus.

one or more spaces, tabs, or commas.

any ASCII character other than a separator

any alpha other than a digit.

any nondigit followed by none, one, or more
alpha characters

a constant or a variable or an open
parenthesis followed by an expression
followed by a closed parenthesis, or a
unary operator followed by a separator
followed by another term.

a term or an expression followed by a
separator followed by a binary operator
followed by a separator followed by
another term.

The value of an expression is the value of the expression on
the left side of a binary operator evaluated with the term
on the right side of the binary operator. That is, the
evaluation is strictly left to right.

The syntax for string expressions requires more
deliberation. Three binary operators manipulate user
declared and NAM predefined string variables. The substring
extraction operator "@" and the string matching operator "?"

are similar operations, but produce different results; they
perform pattern matching operations similar to these of the

-17-

SNOBOL programming language [GRI 71]

.

In each case, two string operands (which can be
variables or constants) are specified. The first is the
subject of the string matching operation and the second is
the pattern that the string is to match. The "?" operator
just determines whether the string matches the pattern.
Thus the expression

STRING ? PATTERN

has the value 0 (False) if STRING does not match PATTERN and
has the value 1 (True) if it does match. The "@" operator
performs a similar pattern matching operation, but yields a
string whose characters are taken from the STRING as
specified by the PATTERN. STRING and PATTERN as used here
refer to the contents of a string variable or a string
constant as evaluated by the NAM Expander. String constants
appear between double quotes in NAM expressions.

A pattern consists of elements that are to match
characters in the string being tested, combined into lists
of consecutive elements. These elements are defined by the
following symbols:

matches any single character,
/x-y/ matches any character in the range x to y

where x and y are single characters,
' ' matches the sequence of characters

between single quotes, and
$ matches the null character at the end

of the test string.

If several elements are written consecutively in a pattern,
then the string matches the pattern if it consists of a
concatenation of strings that match each element of the
pattern, in the order in which the elements of the pattern
occur. For example, the value of the expression

"C" ? "/A-Z/"

is 1 (True) because the string "C" consists of a character
in the range /A-Z/; similarly, the pattern matching
operation

-18-

C2" ? VA-Z//0-9/

succeeds because the string "C2" consists of a character in
the range /A-Z/ followed by a character in the range /0-9/.
(Notice that because these are string constants, they appear
between double quotes). Also,

"C2" ? "./0-9/"

succeeds because the string "C2" consists of any character
(namely C) followed by a character (namely 2) in the range
/0-9/.

Note that all searches are anchored. That is, the
portion of the string matched must be the initial substring.
For example,

"abed" ? "'be'"

fails (has the value 0) because, even though the pattern
'be' is found within the string 'abed', it is not the
initial substring. However,

"abed" ? "'ab'"

succeeds, because the pattern 'ab' is an initial substring
of 'abed'. Note also that the pattern need not match the
entire string, only an initial substring, in order to
succeed. To require the pattern to match the entire string,
a "$" is required at the end of the pattern. Thus

"ab" ? "'ab'$"

has the value 1, but

"abed" ? "'ab'$"

has the value 0, because the string 'abed' does not consist
of the string 'ab' followed by the end of the string, which
is what the $ in the pattern specifies.

Alternative elements are indicated by the or "I"
operator. The pattern

-19-

Ca' I
'b')

matches either an 'a' or a 'b'; thus it is equivalent to
/a-b/. Here is another example:

" ('b' I 'br ')

(
'e' I 'ea')

"

matches 'be', 'bea', 'bre', or 'brea'.

Note that "(A|B)C", where A, B, and C are sub-patterns,
means the same thing as "AClBC".

The '*' operator, placed after the item to which it
applies, means "match 0 or more consecutive occurrences of
the preceeding item". The previous item may be a
parenthesized pattern. For example,

" ('a' I 'b') *$"

matches strings that consist entirely of the letter a and b,
including the null string. To exclude the null string, the
pattern " (

'

a
' 1'

b
')

(
'

a
'

I

'

b
'

) *
" could be used; that is, one

occurrence of 'a' or 'b' followed by 0 or more occurrences
of '

a
' or '

b
'

.

One useful application of this operator is to make the
search unanchored. For example, the pattern ".*'abc'"
matches any string with the sequence ' abc ' anywhere in it,
not just at the beginning.

The "@" operator performs the same operations as the ?

operator, but instead of returning True or False, it returns
a string of characters extracted from the subject STRING,
according to the PATTERN. Specifically, the characters
matched by those portions of the pattern between "{" and "}"

are extracted. Thus

"AbCdEf " @ " ({/A-Z/}

I

.)*$"

extracts all the capital letters from the subject STRING
producing the string ACE.

Now that the expansion procedures, expressions,
variables, and syntax have been covered, attention focuses
on the NAM directives.

-20-

4.5 NAM DIRECTIVES

Once identified as a NAM directive by the Expander, a
NAM routine responsible for interpret ively executing that
directive is called. Each directive has its own routine as
described below. The list below is ordered aphabet ically

;

no significance or transition between directives is implied
by the ordering. This provides a handy reference for the
NAM macro author. An example use of each directive is

g iven

.

£._5._1 Break . Break passes macro execution control outside
the scope of the current conditional "While" or "Switch"
directives.

. break

£.5^.2^ Connect . Connect informs the NAM to make a physical
connection to a remote host. Parameters passed to Connect
specify the physical and logical connection name, and a
possible communication medium for the connection. The first
parameter identifies the physical name of the connection.
The second optional parameter tags the connection with a
logical name for use by other NAM directives. If not
specified explicitly by the second parameter, the logical
name defaults to the physical name. The third optional
parameter specifies a particular physical communications
media to use for the connection.

The third optional parameter is meaningful only for
specific NAM installations. The NBS installation maintains
an ARPA Network host interface, an automatic calling unit
interface to the switched telephone network, and a specially
designed patch panel interface to other local NBS "hard-
wired" computer resources. The third parameter specifies a
connection on one of these media; the parameter "-n" refers
to the ARPA Network, "-p" refers to the dialout telephone
network, and "-w" refers to the local "hard-wired" NBS
network. For convenience, the default parameters are "-nwp"
in that order. More than one medium can be specified so
that in the event of a connection failure, additional
physical paths can be tried. This is useful when a host
system like the NBS PDP-10 is accessible through more than
one communications path. The NBS PDP-10 is accessible by
all three media!

Sometimes, the physical connection can be implied by
the connection's name. A connection name that is 7 digits
long is assumed to be a telephone number; so the automatic
dialer is used. Also, a list of names associated with
telephone numbers cause those numbers to be dialed when that
name is used. This is analogous to looking up a number in a

-21-

phone book. Similarly, ARPA Network host names
automatically cause connections on that medium as do known
NBS network "hard-wired" host names (cause connections to
the NBS local "hard-wired" resources) . An appendix
specifies the particular connections used in the NBS NAM.

.connect 5551234

.connect mit-multics

.connect nbs-10 connectionl -wpn

£.5.2 Disconnect . Disconnect closes the connection
specified by the optional logical connection name specified.
The default connection is the current logical connection.

.disconnect

.disconnect connectionl

Exit . Exit causes an unconditional return from the
macro expander at the current level of recursion. Like a
subroutine or function call, the macro returns to the
caller. The last return is back to the Command Interpreter.

.exit

£._5._5 Flush. Flush causes any accumulated input characters
from remote host connections to be cleaned out of the NAM
host input buffers.

. flush

£.^.6^ Int . Int causes the named integers to be allocated
for the duration of the macro expansion. The scope of the
integer is local; no global significance occurs unless the
integer is declared directly from the user's keyboard via
the Command Interpreter.

.int i j k anyoldinteger

£._5.2 Match. Match defines a data structure representing
strings of interest that are likely to occur in responses
from remote host connections. As the response to a stimulus
is received, the data structure is traversed. Matched, a
predefined integer variable, is set to the data structure
element contained in the response. Elements are numbered
starting from zero and correspond to their position in the
Match specification.

Because the syntax of the argument to Match is clumsy,
this directive is seldom used; an alternative syntax has not
yet been implemented and probably won't be because the
string manipulation capability that includes pattern
matching is much more powerful. The Match syntax.

-22-

informally presented through example, is only done so for
completeness.

The first parameter to Match defines a Boolean
combination of substrings that occur a given number of
times. The second optional parameter specifies the logical
name of the connection of interest. For example,

.match " 3 'hello' I 'network' & 'broken' " connectionl

is parsed by identifying the first parameter between double
quotes. A data structure is built that represents three
occurrences of hello, one occurrence (by default) of any
string containing network and broken; this match is useful
when responses occur on the logical connection named
connectionl. Notice that in the match syntax the "or"
operator is "1". Also notice the required use of single and
double quotes.

This directive and the Term directive defined below are
used by the Expander before the Send directive is executed.
The data structures defined by Match and Term must exist
prior to sending a stimulus so that the response to that
stimulus can be evaluated immediately. Once the Match and
Term data structures are built, any number of Send
directives may be executed. Additional examples of Match
are

:

.match "'user' ! '[CR](a'" tenex-bbnb

.match " 2
' [DCl] [DC3] ' & 'PROG:'"

£.5^.8^ Msg . The msg directive causes the expression to be
sent to the user terminal. The expression is evaluated and
the result is converted to type "string". For example:

.msg "five equals 1 plus 4"

.msg "five equals "
. (1 + 4)

.msg "Result "
. (scratch @ ".* {/0-9//0-9/* } .*$"

)

4.5.9 Newdir . Newdir causes the user's current working
directory to be changed to the specified new directory.

.newdir /bib/medline

4^._5.1^ Output . Output works as Msg works except the
resultant string is sent to the remote system rather than
the user terminal. Normally, Output is not used because no
conditions within the macro — termed, matched, or response— are set as with Send, Term, and Match; consequently, the
macro can not conditionally adapt to system responses that

-23-

result from the Output stimulus.

.output "520,217 [CR]

"

£•^•11 Pipe . Pipe provides a mechanism for transfering data
between remote host connections on a logical name basis.
Preconditioning of the host connections to transmit and
receive data is usually required. The preconditioning may
require macros that log in, and run predefined host programs
that transmit and receive the data. So, pipe is only a
mechanism for forwarding data received, it is not a
mechanism for initializing data transfers; other NAM
directives must be used to set up and initialize the
transfer

.

The transfer is completed when received data meets the
criteria established in the data structure specified by the
last Term directive. So, like Send, Pipe requires a Term
and Match data structure. And, like Send, the predefined
integer variables termed and matched are set accordingly.
An example is:

.pipe connectionl connection2

£._5.L2 Pr intall -of f . Printall-off causes the NAM to print,
without modification, all characters received from the
current remote system connection. The rules for verbosity
as described in Verbose-on and Verbose-off apply.

.pr intall-of

f

Pr intall-on . Printall-on causes the NAM to print all
characters received from the current remote system
connection in the following format: All control characters
are counted and displayed with that count and with there
standard ASCII abbreviations. The control characters are
displayed inside of square brackets.

. Pr intall-on

Remote . Remote causes the Command Interpreter to
enter store-and-forward mode. In this mode, all characters
typed by the user are sent (character-at-a-time) to the
remote connection specified by the logical name provided.
The default connection is the current connection.

The user must explicitly request to leave store-and-
forward mode by typing a control shift back-arrow ASCII
character

.

-24-

1

. remote

.remote connection2

^.5^._15 Rr emote . Rremote (return from remote) works almost
the same as Remote except that the character required to
return the user from store-and-forward mode back to the NAM
is specified as the parameter.

.rremote [CR] connection!

4^.5^.16^ Send . Send causes the NAM to stimulate the current
remote connection with the value of the specified expression
converted to a string. Additionally, the Response Analyzer,
using the data structures previously built by the Term and
Match directives, sets the predefined NAM integer variables
termed and matched based on the content of the received
response

.

Since control passes from the Expander to the Analyzer,
the user is "out-of-the-loop" until the Term data structure
has been successfully traversed. To keep the user "in-the-
loop" , a special store-and-forward data path through the NAM
between the user and the remote connection is established
for the duration of the Send directive. This path gives the
user control over the host even when the NAM Analyzer is
busy.

Occasionally, on initial connections, the remote system
responds with a herald message or other status message
before the NAM stimulates the host. Sending a null stimulus
is required to force the NAM to enter the Response Analyzer.
Some example Send directives follow:

.send ""

.send "/logon Rosenthal NBS-GenAcct [CR]

"

.send "Explode "
. (si @ "'MESH NO .

' { /0-9//0-9/* }
")

£._5.12 Set. Set causes the named variable to be set to the
value of the expression specified. A noise word between the
variable name and the expression is required — "to" makes a
good noise word. For example:

.set connect ion_made to 0

.set flagO to "100" + 10 / flagl

.set GETMESHNO to ".* 'MESH NO. ' { /0-9//0-9/* }

"

4^.5^.1_8 Status . Status causes the NAM to print the current
connection status on the user's terminal. An example is:

-25-

. status

£.5^.191 Str ing . String causes the named strings to be
allocated for the duration of the macro expansion. The
scope of the string is local; no global significance occurs
unless the string is declared directly from the user's
keyboard via the Command Interpreter. For example:

.string si s2 anyoldstring GETMESHNO

4^.^.20^ Term. Term (short for terminate) defines a data
structure representing strings of interest in the responses
from remote host connections. These strings are
descriptions of anticipated responses for the Command
Interpreter to match against the actual responses received.
When a match occurs, the actual response that trickled into
the NAM is buffered and stored in the NAM predefined
variable named "response". Response is available for
processing by other NAM macro directives.

So, in effect, the Term directive specifies, through
strings of anticipated responses, conditions that make a
completed response — a response that becomes a completed
buffer addressed using the NAM string "response". In
addition to string match conditions, a time-out value can be
specified. The time-out causes all previously received data
that trickled into the NAM to be buffered and made available
in the response variable just as the string match conditions
do. The condition causing the termination — either string
match or time-out — is specified in the predefined NAM
integer variable called "termed".

"Termed" is set to the data structure element matching
the substring element contained in the response. The syntax
is similar to that of the Match directive with the addition
of the time-out value. For example

.term " t30 ! 2
' [CR] [LF] '&'.'"

causes a data structure to be built representing a
termination condition of 30 seconds, or two occurrences of
the string carriage return line feed and the occurrence of
one period. The time-out value applies to time between
received characters. In the example above, 30 seconds would
have to elapse between characters received by the NAM before
the response is considered complete or terminated. And,
since the time-out specification occupies the zero position
(not the first, as numbering starts at zero), the variable
"termed" would be set to zero if the time-out occurred.

-26-

On the other hand, if two carriage return line feed
sequences and one period occur before 30 seconds elapse
between characters, then the termination of the response is
complete and the variable "termed" is set to one.

To be useful in identifying responses to stimuli, the
NAM Response Analyzer must have both a match data structure
and a term data structure predefined by the Match and Term
directives. These data structure definitions must occur
before the stimulus so that the response can be analyzed in
real time (as the response happens on a charac ter-at-a-t ime
basis) . The following examples illustrate typical sequences
of Term, Match, and Send directives. Notice that once the
data structures are built, they remain for the duration of
the session unless changed by another Term or Match
directive.

.term " t30 ! ' [CR] [LF] @' "

.match " 'TENEX' "

.send " [ETX]

"

.send "login Rosenthal [CR]

"

.term " 2'*'
I t60 "

£.5.2]^ Tmatch . Tmatch produces a data structure for both
T^m and Match using the same Boolean combination of
str ings

.

.tmatch " t5 I '
.

' ! '
:

' ! '@
'

"

£.5^.22^ Tr anscr ipt-of

f

. Tr anscr ipt-of f causes the file
opened by Tr anscr ipt-on , to be closed.

. tr anscr ipt-of

f

£.5^.2_3 Transcr ipt-on . Tr anscr ipt-on causes a file named
"transcript" to be created in the user's current working
directory. This file contains all of the characters
received by the NAM from the remote system connection.
Thus, a transcript is maintained. Transcr ipt-of f closes
this file so that other UNIX commands can manipulate the
transcript data.

. transcr ipt-on

4^._5.24^ Unix . The Unix directive provides an interface to
the UNIX operating system from NAM macros. Any UNIX command
may be specified with the exception of those commands
interpreted directly by the UNIX Shell such as "login",
"logout", "chdir" (change directory), and "newgrp".

-27-

.Unix Ipr transcript

.Unix banner "hurray"

.Unix /mntl/rmr/myprogram

4^._5.^ Verbose- of f . Verbose-off causes characters received
by the NAM from remote host connections to be only sent to
the Response Analyzer. For example:

.verbose-off

4^._5.^ Verbose-on . Verbose-on causes characters received by
the NAM from remote host connections to be sent to the user
terminal as well as to the Response Analyzer. This
capability allows the user to watch the expansion of a macro
as it generates and sends stimulus to remote connections.
For example:

.verbose-on

£.5^._27 Wait . Wait suspends execution of a NAM macro for the
number of seconds specified. For example:

.wait 5

%
4.6 CONDITIONAL EXPANSIONS

Execution of NAM Macro directives proceeds sequentially
through a macro until an "end-of-f ile" condition is reached.
Conditional directives alter the sequential flow by
evaluating expressions for their Boolean significance —
False is 0 and True is 1. Three constructs provide for the
conditional expansion of macros: If-then-else , While, and
Switch. The conditional directives are distinguished from
other directives by the presents of an asterisk proceeding
the directive name.

^"S'l Case . Case identifies an alternative branch within a
Switch directive. Case requires an expression that
identifies the alternative. For example:

*case 2

*case "connection established"

£.6^.2^ Default . Default identifies the alternative branch
within a Switch directive not covered by a particular Case
directive. For Example:

*defaul

t

-28-

4^.6^.2 Else . Else identifies the Else alternative of an If-
then-else construct. For example:

*else

£.6^.4^ End. End delimits the scope of an If-then-else , a
Switch, or a While conditional directive. Nested
conditional directives require specific End directives. For
Example

:

*end

4^.6^.5^ lf_. If identifies the beginning of an If-then-else
construct. The expression specified is evaluated and tested
for True or False. If the expression is True, the Then
portion is expanded; and, if the expression is False, the
Else portion is expanded. The keyword Then is never used,
but when the optional Else clause exists, *else must be
present. An End directive is required to delimit the scope
of the If-then-else construct. For example:

if (
*" connection_made)

.connect mit-multics hostl -n
*end

if (response ? ".
('net busy'

I
'net trouble') "

)

.disconnect hostl

.msg response

.exit
*else

.term " t5 ! '
.

'

"

.send "where rmr [CR]

"

*end

4^.6^.6^ Switch . Switch identifies the begining of a Switch
construct that optionally contains Case and Default
directives. The Switch expression is evaluated and compared
against the evaluated expressions in the Case directives.
When the two expressions are equal, directives within the
scope of the Case are expanded. If no Case expression
evaluates to the expression of the Switch, the directives
following the Default directive are expanded. The Break NAM
directive is useful for transfering control outside the
scope of the Switch construct. Without Break, all Case
directives would be evaluated. For example:

*switch key
*case " ("

*case ")

"

-29-

*case "or"
*case "and"
*case "not"

.set result to result . " " . key

.break
*case ""

. break
*default

. flush

.send "select " . key . " [CR]

"

.set ssno to response @ ssnopat

.set result to result . " " . ssno

.break
*end

4^.6^.2 Wh i 1 e . While identifies the beginning of the While
construct. The directives between the While and the
delimiting End are expanded repeatedly as long as the While
expression is TRUE. The expression is checked before the
directives are expanded. For example:

;while the string s is not null
*while s #

""

.set key to s @ next

.set s to s @ rest

*switch key
*case " ("

*case ")

"

*case "or"
*case "and"
*case "not"

.set result to result . " "
. key

.break
*case ""

. break
default

. flush

.send "select "
. key . " [CR]

"

.set ssno to response @ ssnopat

.set result to result . " " . ssno

. break
*end

*end

The previous examples include many NAM directives used to
implement several of the common commands presented below.

-30-

5. COMMON COMMAND LANGUAGES

The NAM has been successfully used in a number of
experiments including common command language development
for bibliographic retrieval. The purpose of this section is
to emphasize the applicability of the NAM through example
macros; no pretense is made to describe or justify
bibliographic search and retrieval. In particular, the
details of host system interactions are not compared and
contrasted — there ar"e obvious differences in the syntax
and semantics used by the hosts involved and it is beyond
the scope of this report to address these differences.
While this section only addresses a common command language
for bibliographic retrieval, other NAM experiments are
currently underway that deal with common commands languages
for file manipulation and job execution [FIT 78]

.

The bibliographic retrieval community sparks excitement
among NAM experimenters because of the diversity and
background of users interested in performing searches and
because of the diversity of the services provided. Data
bases are often so large that more than one or two seldom
fit on one machine and consequently users are forced to
learn and manipulate data with more than one command
language through different communications media -- a perfect
test bed to try out the kinds of access assistance
techniques proposed by the NBS NAM.

For this experiment five target services were chosen
and attention focused on a small, but "relevant" and
"doable", subset of commands or operations. The five
services are MEDLINE, ORBIT, RECON, DIALOG, and BASIS.
Table 4 briefly overviews the scope of this experiment; only
the more important operations are listed with their user
syntax. Complete documentation and motivation for this work
is provided in [TRE 78]

.

-31-

OPERATION EXAMPLE USER SYNTAX

— medline

connect connect to system -
— orbit— recon— dialog— basis

d isplay
I
— file names

display -I — terms related to <search term>
I
— <n> citations

I
— <file name>

access access file -|

I
— <file number>

find find <search statement>

stop stop session

TABLE 4: PORTIONS OF A COMMON COMMAND LANGUAGE
FOR BIBLIOGRAPHIC RETRIEVAL

The actual NAM macros that implement this user language are
organized in the UNIX tree structured file system under
directories named according to the host system. Figure 4

diagrams this file structure. The diagram shows a parent
directory named "bib" that contains a macro file named
connect and the other directory entries.

-32-

I

I
— directory: bib— file: connect

— directory;

— directory

•- directory:

— directory: recon

— directory: basis

orbit
1— file: connect
1
— £ J. ± e . a 1 fapi ay

1
— E lie

:

acce ss
1 L i J. tr .

f 1 nHL JL IIU

1
— r 1 ± e

:

stop

d ialog
1— file: connect
1
— r lie

:

a ispi ay
1— file: access
1— file: find
|~ file: stop

medl ine

FIGURE 4: DIAGRAM OF UNIX TREE STRUCTURED FILE
SYSTEM CONTAINING NAM MACRO FILES

The macro file "connect" in directory "bib" checks the
syntax of the user's input command and then, using the
".newdir" directive, switches to the new directory named as
the object of the "connect to system" common command. This
is easy to accomplish using NAM directives as in the
following specification of the bib/connect macro:

.set si to ".*{ 'medl ine '

I

' orbit '

I

' recon '

I

' dialog '

I

' basis '}

"

.set name to userline @ si

*if (name = ""
)

.msg "connect to system <name>"

.msg "<name> := medline
I
orbit

I
recon

|
dialog

I
basis"

.exit
*end

.newdir $name.
connect

-33-

After executing the .newdir directive, the user's current
working directory becomes the directory named; and, when the
final line "connect" is executed as a macro file name, the

connect file in that subdirectory is executed.

The UNIX file structure allows files of the same name

to appear in different directories. This provides a

convenient method that allows the same user NAM command name
to generate completely different sequences for different
remote systems. The connect macro in directory bib/orbit is
completely different from the connect macro in bib/dialog.
So, for instance, if the user types:

connect to system orbit

then the current working directory is changed to orbit and
the macro named connect in directory orbit is executed. The
orbit connect macro is listed below.

Again, keep in mind that the connect macros in the
dialog, medline, recon, and basis directories are different— they generate different NAM-host interactions — but all
of these connect macros ultimately result in the physical
establishment of a connection to the host with the user
"logged in" and ready to use the service — the msg
directive .msg "login successful" appears in each connect
macro. Here is the orbit connect macro. (The user
identifiers and passwords have been changed to protect the
integrity of real accounts.)

-34-

.set connect ion_made = 0

.connect tymnet orbit -p

*if " connect ion_made
.msg "sorry, please try again"
. newd ir .

.

. ex it
*end

.term "t30 1 'identifier' ! ':' ! ';' !
'|'"

.match "
•

. '

"

.send ""

if (response ? " . '
|

' "
)

.msg "remote connection er ror [CR] [LF]

"

.msg "no response, please try again"

.d isconnect

.newdir .

.

.exit
*end

if (response ? ".' identifier '

")

.send "e"
*end

if (response ? ".
('name'

I
'log in') "

)

.send "mylogname [CR]

"

*else
.msg "remote connection sequence error"
.msg "please try again"
.d isconnect
.newdir .

.

. ex it
*end

.send "mylogpassword [CR] "

.term "t60 I 'USER: '

"

.send "/login myname[CR]"

if (response ? ". 'USER:'")

.send "n[CR]

"

.msg "Login successful [CR] [LF]

"

. exit
*end

.msg "Problem logging into ORBIT [CR] [LF]

"

.msg response

.d isconnect

.newdir .

.

-35-

While the connect macros for the other host systems generate
completely different sequences to the host, the messages to
the user are the same regardless of the host. In this way
the common command language provides consistent user
response messages for anomalies that may be encountered
while attempting to "connect"; anomalies like busy signals
on telephone calls, busy ports on front-end concentrators,
and other contingencies that may or may not be uncommon. In
addition, responses to nominal host behavior — messages
like "login successful" — reassures the user that progress
is being made.

Once connected to a remote host (service) the user may
display the names of files or data bases supported by the
host. The display macro for MEDLINE is representative of
the display macros for the other systems. First, using NAM
directives, the macro determines if the user typed "display
file names", "display terms related to <name>", or "display
<n> citations"; each case is handled differently. The
medline display macro is:

.string s

. int i

.term "t60 ! 'user:[cr If dc3 dc3 del]'"

.match "
'

: •

"

if (userline ? ".
('database names'

I
'file names') "

)

.send "

.exit
*end

if (userline ? ".
('terms'

I
'words')")

.set s to userline @ ".* 'related to '{.*} ' [LF] '

"

.send "

.send "0[CR]"

.exit
*end

if (userline ? ". 'citation'")

.set i to userline @ ".* {/0-9//0-9/* } ' citation'"

.send "\"prt "
. i . "\" [CR]

"

.exit
*end

.msg "display <object>"

.msg "<object> := file names
I
database names

I
terms related

.msg " words related to
I
<number of> citations"

.msg "<number of> := a number"

The access file macro is also straight forward; the example

-36-

for ORBIT is given below:

.term "t60 ! ' user : [CR] [LF] ' ! 'USER: [CR] [LF]

'

.match " '
:

.send "

.msg response @ ".* 'PROG:' {.*} 'SS ' /0-9/ "

The find command for DIALOG is completely different
from the other find commands which are relatively straight
forward; and, special treatment is given to this example.
The find strategy used by DIALOG is to first select the key
words that represent "hits" against words in the data base.
Having selected the key words, a DIALOG combine command is
formulated using the sequence numbers of the selected words.
So, in this example, the NAM must extract the search
statement number from the response and use that extracted
number in the formulation of a new command to the host
system.

-37-

.term "t40 !
'?

.match "•?"'

.string s result key next rest ssno ssnopat hits hitspat

.set s to userline @ "'find' {.*} '[LF]'$"

.set next to "
' '*

({ /a-z//a-z/* }
(

' 'l'('l')'l$) I {'('I')'})
"

i

.set rest to "' '*
((/a-z//a-z/*) (

' '
I
{'{'!')'}

I $) I ('('I')')) {.*}!?'

.set ssnopat to " . *
' [CR] '

.
* { /0-9//0-9/* }

'

"'

.set hitspat to " . *
' [CR] '

. */0-9/ . *
' ' {/0-9//0-9/* }

'

"'

.set result to ""

*while s # ""
j

.set key to s @ next ;

.set s to s @ rest ,

*switch key 1

*case " ("
I

*case ") "
i

*case "or" '

*case "and"
*case "not"

.set result to result . " "
. key

. break
*case ""

.break
*default

.flush

.send "select "
. key . " [CR]

"

.set ssno to response @ ssnopat

.set result to result . " "
. ssno

.break
*end

*end
.send "combine" . result . " [CR]

"

.msg (response @ hitspat) . " hits on "
. (userline @ "' find '{.*}$

"

.msg "Enter next search (# "
. { response @ ssnopat) .

")"

.set flagO to ({ response @ ssnopat) - 1)

A few observations about this macro are worth making.
First, the macro allows for the bibliographic search
statement to contain the Boolean search primitives "or",
"and" ,and "not". Further, the parenthetical juxtaposition
of the input user command is maintained so that only the
default words — those that are keys for the search -- get
selected

.

The resultant combine command is dynamically formed
from the previous select command by concatenating the string
variable named result. Finally, after exhausting the user
input string, the combine command is transmitted to the host

-38-

and the common user message that displays "hits" gets sent
to the user.

The stop session command is typical for all systems.
Here, the raedline example is presented.

.term "t30 ! ' [DCl] '

"

.match "
' [DCl] '

"

.send "

.term "t20 ! 'good-bye!' ! 'GOOD-BYEI'"

.match "
'
good-bye ! '

"

.send "yes [CR]

"

.wait 3

.disconnect medline _

.newd ir .

.

-39-

6. BIBLIOGRAPHY

[AND 77] Anderson, R. H. , Gallegos, M. , Gillogly, J.
J., Greenberg, R. , Villanueva, R. , RITA Reference Manual , A
report prepared for the Defense Advanced Research Projects
Agency (ARPA order No.: 189-1, 7P10 Information Processing
Techniques) Sept., 1977, 68p.

[FIT 78] Fitzgerald, M. L. , Common Command Language for
File Manipulation and Network Job Execution NBS Special
Publication, To be published.

[GRI 71] Griswold, R.E., Poage, J.F., and Polonsky,
I. P., The SNOBOL 4^ Programming Language , Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1971, 256 p.

[MAR 76] Marcus, R.S., Reintjes, F.J. , The Networking
of Interactive Bibl iographic Retr ieval Systems MIT Report
ESL-R-656, Massachusetts Institute of Technology,
Electronic Systems Laboratory, Cambridge, Massachusetts,
March 31, 1976. 164p.

[RIT 74] Ritchie, D. M. , and K. Thompson, "The UNIX
Time-Sharing System," Comm. ACM 17 , 7, July 1974, pp.
365-375.

[ROS 76] Rosenthal, Robert, A Review of Network Access
Techniques with a Case Study ; The Network Access Machine ,

NBS Technical Note 917, July 1976, 36p.

[TRE 78] Treu, Siegfried, A Testbed for Providing
Uniformity to User -Computer Interaction Languages NBS
Special Publication, To be published.

-40-

7. APPENDIX

7.1 More on the Response Analyzer

A key problem in building the Response Analyzer is
knowing when the system response is completed. Two criteria
are used to make this decision: a timeout, and string match— both criteria are specified by the NAM macro author. The
specification is made using the Term directive. Here is an
example Term directive:

.term " t5 ! '[CRlfLFj^' • 3'.' & '

*

This directive specifies that the system response is
complete when five seconds elapses between the receipt of
host characters or when the string carriage return line feed
at sign is received or when three occurences of a period and
an asterisk is received. The string match can be any
Boolean combination of substrings as defined in the Term
directive in section 4.5.21.

To provide the capability to terminate on any string, a
special read operation is performed on the interface used to
connect the NAM to the remote host. This read operation is
performed in "raw" mode on UNIX. Each character one-at-a-
time is read, and buffered; each time a character arrives
from the host, NAM software compares the accumulating
buffered characters against each substring in the term
directive until a match occurs.

When the condition for termination is met — either
time out or string match — the buffer of accumulated
characters is made available in the string variable named
"response". Because of buffer space limitations, "response"
only accumulates the last 4096 characters of the system
response

.

The time out field and each substring field in the Term
directive are numbered from left to right starting at zero.
In the example above, the time out field is numbered zero,
the field with the carriage return is numbered one, and on
and on. The number of the field that caused the termination
of the system response is made available in the integer
variable called "termed".

Before the string manipulation directives were
implemented, the Match directive played an important role.
NAM macro authors defined substrings that identified
possible patterns within terminated system responses. Using
the same numbering scheme for fields within the Match

-41-

directive, authors could identify a particular anticipated
string within a terminated response. The integer variable
"matched" contains the field number. However, since the
powerful string manipulation operators were implemented, the
Match directive is seldom used.

One additional point is worth mentioning. The Send
directive causes the NAM to output a stimulus message to the
remote system. Control within the NAM is then passed to the
Response Analyzer. The Analyzer does not return control to
the Macro Expander until a termination condition is met. In
this way, message flow between the NAM and the remote host
is controlled. In particular, only one Send directive can
be executed at one time.

-42-

7.2 NBS NAM Physical Connection Names

The NAM minicomputer is part of an experimental
computer facility at the NBS. It is connected as a host on
the ARPA Network and to other less publicized local NBS
Networks. Additionally, through an automatic calling unit,
the NBS NAM can place direct dial telephone calls to any
remote access service. The following table represents the
current names given to many of the commonly accessed
resources by the everyday users of the facility.

COMMUNICATIONS,
MEDIA

PHYSICAL NAME LOCAL PORT

Switched Telephone
Network Names

dialog
hotl ine
nbs-10
tip
tymnet
univac
unix451
unix453

<any phone number>

automatically
allocated
by the automatic
calling unit
software

Local NBS NBS Tip DH - 8

Facil ities NBS Tip DH - 9

NBS Unix 1 DH - 10
NBS PDP-10 DH - 11
Dial out DH - 12
Dial out DH - 13
Dial out DH - 14
Dial out DH - 15

ARPA Network Standard ARPA ARPA Network
Network Host Host Interface
Name table entries (IMP-11)

-43-

NBS-114A (REV. 1 1-77)

U.S. DEPT. OF COMM.], PUBLICATION OR REPORT NO. 2. Gov't Accession
BIBLIOGRAPHIC DATA No,

SHEET NBS SP 500-35

3. Recipient's Accession No.

4. TITLE AND SUBTITLE COMPUTER SCIENCE & TECHNOLOGY

The Design dnd Impleinentation of the National Bureau of
Standards' Network Access Machine (NAM)

5. Publication Date

June 1978
6. Performing Organization Code

7. AUTHOR(S)

Robert Rosenthal and Bruce D. Lucas
8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

65Q2129
11. Contract/Grant No. i

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as 9,

13. Type of Report & Period
Covered

Interim
June 1977 - Present

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less (actual summary of most si^ilicant information. If document includes a significant

bibliography or literature survey, mention it here.)

The Network Access Machine (NAM), a programmed minicomputer designed to
;i«;<;i<;t intprartivp nn-linp fprminal ii«;pr<^ nf rnmoutpr network services

and resources, is discussed in detail. The minicomputer allows the user

to specify (or to have specified) network command sequences for execution

on a specified network and host connected to that network. Computer

responses are analyzed to assure agreement with those anticipated for

specific commands. Experience with the NAM and specific examples of NAM

use including a common command language for bibliographic retrieval are

presented.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons) J

Command languages; communications; computer access; computer networks; 1

intelligent terminals; minicomputers; protocols. 1

18. AVAILABILITY Unlimited

1 ;

For Official Distribution. Do Not Release to NTIS

1 !
Order From Sup. of Doc, U.S. Government Printing Office
Washineton. D.C. 20402. SD Stock No. SN003r003

1 1
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCL ASSIFIED

21. NO. OF PAGES.'

50

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

I22. Price

$2.20

USCOMM-DC 6603S-P7e

O U. S. GOVERNMENT PRINTING OFFICE :

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research

of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and

engineering sciences in which the Bureau is active. These

include physics, chemistry, engineering, mathematics, and

computer sciences. Papers cover a broad range of subjects,

with major emphasis on measurement methodology, and

the basic technology underlying standardization. Also in-

cluded from time to time are survey articles on topics closely

related to the Bureau's technical and scientific programs. As
a special service to subscribers each issue contains complete

citations to all recent NBS publications in NBS and non-

NBS media. Issued six times a year. Annual subscription:

domestic $17.00; foreign $21.25. Single copy, $3.00 domestic;

$3.75 foreign.

Note: The Journal was formerly published in two sections:

Section A "Physics and Chemistry" and Section B "Mathe-

matical Sciences."

DIMENSIONS/NBS
This monthly magazine is published to inform scientists,

engineers, businessmen, industry, teachers, students, and

consumers of the latest advances in science and technology,

with primary emphasis on the work at NBS. The magazine
highlights and reviews such issues as energy research, fire

protection, building technology, metric conversion, pollution

abatement, health and safety, and consumer product per-

formance. In addition, it reports the results of Bureau pro-

grams in measurement standards and techniques, properties

of matter and materials, engineering standards and services,

instrumentation, and automatic data processing.

Annual subscription: Domestic, $12.50; Foreign $15.65.

NONPERIODICALS
Monographs—Majo: contributions to the technical liter-

ature on various subjects related to the Bureau's scientific

and technical activities.

Handbooks—Recommended codes of engineering and indus-

trial practice (including safety codes) developed in coopera-

tion with interested industries, professional organizations,

and regulatory bodies.

Special Publications—Include proceedings of conferences

sponsored by NBS, NBS annual reports, and other special

publications appropriate to this grouping such as wall charts,

pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engineers,

chemists, biologists, mathematicians, computer programmers,
and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quanti-

tative data on the physical and chemical properties of

materials, compiled from the world's literature and critically

evaluated. Developed under a world-wide program co-

ordinated by NBS. Program under authority of National
Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these

data is the Journal of Physical and Chemical Reference

Data (JPC'RD) published quarterly for NBS by the Ameri-
can Chemical Society (ACS) and the American Institute of

Physics (AIP). Subscriptions, reprints, and supplements

available from ACS, 1155 Sixteenth St. N.W., Wash., D.C.
20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research

results, test methods, and performance criteria related to the

structural and environmental functions and the durability

and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in

themselves but restrictive in their treatment of a subject.

Analogous to monographs but not so comprehensive in

scope or definitive in treatment of the subject area. Often

serve as a vehicle for final reports of work performed at

NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10,

Title 15, of the Code of Federal Regulations. The purpose

of the standards is to establish nationally recognized require-

ments for products, and to provide all concerned interests

with a basis for common understanding of the characteristics

of the products. NBS administers this program as a supple-

ment to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based

on NBS research and experience, covering areas of interest

to the consumer. Easily understandable language and
illustrations provide useful background knowledge for shop-

ping in today's technological marketplace.

Order above NBS publications from: Superintendent of

Documents, Government Printing Office, Washington, D.C.
20402.

Order following NBS publications—NBSIR's and FIPS from
the National Technical Information Services, Springfield,

Va. 22161.

Federal Information Processing Standards Publicati<His

(FIPS PUB)—Publications in this series collectively consti-

tute the Federal Information Processing Standards Register.

Register serves as the official source of information in the

Federal Government regarding standards issued by NBS
pursuant to the Federal Property and Administrative Serv-

ices Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717
(38 FR 12315, dated May 11, 1973) and Part 6 of Title 15

CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-government).

In general, initial distribution is handled by the sponsor;

public distribution is by the National Technical Information
Services (Springfield, Va. 22161) in paper copy or microfiche

form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

ITie following current-awareness and literature-survey bibli-

ographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service. A litera-

ture survey issued biweekly. Annual subscription: Domes-
tic, $25.00; Foreign, $30.00.

Liquified Natural Gas. A literature survey issued quarterly.

Annual subscription: $20.00.

Superconducting Devices and Materials. A literature survey

issued quarterly. Annual subscription: $30.00. Send subscrip-

tion orders and remittances for the preceding bibliographic

services to National Bureau of Standards, Cryogenic Data

Center (275.02) Boulder, Colorado 80302.

U.S. DEPARTMEMIT OF COMMERCE
National Bureau of Standards
Washington, D C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215
U.S.I

i

SPECIAL FOURTH-CLASS RATE
BOOK

