
A111D3 DflTbEl

E & TECHNOLOGY:

mmm

AN ARCHITECTURE
FOR A ROBOT
HIERARCHICAL
CONTROL SYSTEM

NBS Special Publication 500-23

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

i

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to

strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this^

end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and

technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro-i

mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute

for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the

Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist-

ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen-

tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab-

oratory Astrophysics ° — Cryogenics^ — Electromagnetics'^ — Time and Frequency

^

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure-,

ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti-

tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air'

and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of avail-

able technology; cooperates with public and private organizations in developing technological standards, codes, and test meth-

ods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of

the following divisions and centers:
I

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product;

Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Safety; Building

Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services

designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection,!

acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus wthin the exec-

utive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer

languages. The Institute consist of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process

to facilitate technological change in the private sector by examining and experimenting with Government policies and prac-

tices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede

the innovation process.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibihty of scientific informa-i

tion generated within NBS; promotes the development of the National Standard Reference Data System and a system of in-

formation analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services

to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the

following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library —
Office of International Standards — Office of International Relations.

' Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; maihng address Washington, D.C. 20234.

' Located at Boulder, Colorado 80302.

i

COMPUTER SCIENCE & TECHNOLOGY:

An Architecture for a Robot Hierarchical Control System

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued December 1977

Anthony J. Barbera

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of
computer utilization in the Federal sector, and to perform appropriate research and
development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end
of this publication.

National Bureau of Standards Special Publication 500-23

Nat. Bur. Stand. (U.S.), Spec. Publ. 500-23, 227 pages (Dec. 1977)

CODEN: XNBSAV

Library of Congress Cataloging in Publication Data

Barbara, Anthony J.

An architecture for a robot hierarchical control system.

(Computer science & technology) (NBS special publication
;

500-23)

Supt. of Docs, no.: CI 3. 10:500-23

I. Robots, Industrial. I. Title. II. Series. III. Series: United

States. National Bureau of Standards. Special publication ; 500-23.

QC100.U57 no. 500-23 [T59.4] 602Ms 629.8'92 77-17960

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: D.C.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

Price $4.25 - Stock No. 003-003-01874-1

TABLE OF CONTENTS

I. CONTROL SYSTEM ARCHITECTURE

1. INTRODUCTION 1-3

1.1 Industrial Robot Control Systems 1-4

1.2 Problem 1-4

1.3 Solution 1-5

1.4 Additional Control System Requirements 1-5

1.5 Research Control Systems 1-6

2. THE NBS ROBOT CONTROL SYSTEM 1-7

2.1 The Three Modules Of NBS Control System 1-7

2.1.1 Hierarchical Control Module (Module #1) 1-7

2.1.1-1 First Level Of The Control Hierarchy 1-9
2.1.1-2 Second Level Of The Control Hierarchy 1-15
2.1.1-3 Third Level Of The Control Hierarchy 1-19
2.1.2 Program Module (Module #2) 1-21

2.1.3 Location Table Module (Module #3) 1-21

3. THE NEXT LEVELS OF CONTROL 1-24

3.1 Fourth Level Control 1-24

3.2 Fifth Level Control 1-25

4. MODULAR DESIGN 1-28

5. NBS CONTROL SYSTEM PHILOSOPHY 1-29

6. SUMMARY 1-30

II. USER'S GUIDE

1. EXECUTING APPLICATIONS PROGRAMS (Module #1 - Control

Hierarchy) II-3

1.1 Control Hierarchy - Operator Interactions 1^-3

1.2 Initializing Program II-3

1.3 Executing Program
1.4 Interrupting Execution
1.5 Continuing After Interrupt II-6

2. ENTERING APPLICATION PROGRAMS (Module #2 - Program
Module) 11-10

2.1 Program Module - Operator Interactions 11-10
2.2 Indexed Location Name Entry 11-10
2.3 Editor Commands 11-11

iii

2.3.1 Table Of Editor Commands 11-11
2.3.2 Elemental Move Functions Il-n
2.3.3 INSERT and LOOP Commands 11-11
2.3.4 PRINT Command 11-12
2.3.5 AVOID Command 11-13
2.3.6 DELETE Command 11-13
2.3.7 RECORD Command 11-14
2.4 New Functions 11-14
2.5 Exit Program Module 11-15

3. ENTERING LOCATION POINTS (Module #3 - Location
Module) 11-17

3.1 Table Of Operator Interactions II-l?

3.2 Mode Of Entry 11-17

3.3 Array Entry If-17

3.4 Approach Path 11-19

3.5 Exit Location Module 11-21

III. CONTROL SYSTEM IMPLEMENTATION

1. CONTROL SYSTEM OPERATION III-3

1.1 Control Hierarchy (Module #1) III-3
1.2 Program Module (Module #2) III-5
1.3 Location Module (Module #3)

2. IMPLEMENTING A NEW FUNCTION III-ll

2.1 Subroutine Design III-ll
2.2 Control Hierarchy Modification III-ll
2.3 Program Module Modification III-15

3. PORTABILITY III-16

3.1 Input Channels III-16
3.1.1 Function Switch Panel III-16
3.1.2 Joystick Control Box III-16
3.1.3 Joint Position Indicator Input III-16
3.2 Output Channels III-16
3.2.1 Joint Position Command Outputs III-20
3.2.2 Brake Control Output III- 20
3.2.3 Interlock Channels III-20

4. ADVANTAGES OF HIERARCHICAL CONTROL SYSTEM III-21

REFERENCES III-24

iv

APPENDIX A

Interface Design ^"3

Comments

FIGURES

Figure # Descri ption

1 3-Level Hierarchy 1-8

2 6-Axis Manipulator I-IO
3 Transfer Task I-ll
4 Insertion Task 1-12

5 Proximity Sensors 1-13
6 Schematic of 1st Level Control 1-14
7 Chart of Transfer Times I-I6
8 Chart of Insertion Times I-17
9 Straight Line Coordinated Motion 1-18

10 3 Modules of Control System 1-20

11 5-Level Hierarchy I-23
12 Information Processing in Hierarchy 1-26

13 Array of Location Points 11-18

14 Approach Path Concept 11-20

15 Block Diagram of Control Hierarchy

16 Program Table Line III-6
17 Block Diagram of Program Module III-7
18 Block Diagram of Location Module III-9
19 Location Table Line III-IO
20 Program Modifications for New Function iii-]2

TABLES

Table 1 - Control Hierarchy - Operator Interactions II-4

Table 2 - Program Module - Operator Interactions II-7

Table 3 - Editor Commands II-8

Table 4 - Elemental Move Functions II-9

Table 5 - Location Module - Operator Interactions II-I6

Table 6 - Non-Portable Functions III-I7

Table 7 - Listing of Input Channels III-18

Table 8 - Summary of Control Systems Concepts and III-22
Advantages

V

PROGRAM DOCUMENTATION

Control Hierarchy
(Module #1)

EXPRO - Executive program to oversee entire
control system.

RDMOD ~ Reads in Program Table and Location
Table for disc.

RECORD - Stores Program Table and Location Table
on disc.

SAMPLE _ Allows operator to call up Program
or Location module.

3rd Level of Control Hierarchy

EMOVE

2nd Level of Control Hierarchy

Calls appropriate primitives for each

elemental move command.

1st Level of Control Hierarchy

SERVO - Outputs joint position commands through
ARMOUT.

ARMOUT - Output driver that sends output values
to interface.

ARMIN - Input driver that stores input values in a

buffer.

DI-2

DI-8

DI-10

DI-12

DI-16

STLINE - Generates a straight line motion. DI-24
WAIT - Suspends execution and waits for an

input signal

.

DI-30
CALD - Calculates the distance between two

location points. DI-32
POL - Calculates the delta joint values for an

interpolated trajectory. DI-36
ACC - Executes interpolated trajectory using

values from POL. DI-40
DETECT -- Uses proximity sensors to detect presence

of object. DI-A4
BAL - Uses proximity sensors to center hand over

object. DI-48
GRASP - Causes fingers to close with a defined force. DI-52
RELEAS -- Causes fingers to open completely. DI-56
PTOUCH -- Uses proximity sensors to locate top of

an object. DI-58
COOR - Transforms external coordinates into joint

coordinates and vice versa. DI-62

DI-66

DI-70

DI-71

vi

Program Module
(Module #2)

PROGS - Reads in editor commands and calls
appropriate subroutine.

Editor Commands

INSERT - Causes elemental move commands to be entered
in program table.

PRINT - Causes the program table to be printed out
as elemental move commands.

DELETE - Deletes specified lines from program table.
AVOID - Creates avoidance paths by inserting additional

location points.
LOOP - Creates the additional lines in an indexed

repeat pattern.

Additional Support Subroutines

INDEX - Codes indexed location names into their
location table pointers.

LOCPT - Codes non-indexed location names into their
location table pointers.

LINE - Codes elemental move command into a line in

program table.
PTNAME - Decodes location table pointer into its

location name.
PLINE - Prints out decoded line from program table

as elemental move commands.
NEXT - Advances through input character string to

next piece of information.
LIMIT - Decodes into integer from the lines specified

in the editor commands.
ADJUST - Verifies continuity in the specified motion

in the program.

Location Module
(Module #3)

LOCTAB - Requests data to completely specify a

location point.

ARRAY - Requests data to specify the dimensions of
the array of points to be entered.

ARRLOC - Computes the coordinate values to specify
all of the locations in the array.

JOY - Uses input values from joystick to control
robot's motions.

POS - Calls in and scales the present joint
position values.

vii

DII-2

DII-6

DII-10
DII-14

DII-18

DII-22

DII-26

DII-30

DII-34

DII-40

DII-44

DII-48

DII-52

DII-56

DIII-2

DIII-10

DIII-14

DIII-18

DIII-24

ACKNOWLEDGEMENTS

I wish to express my thanks to Drs. James Albus and John Evans for
their invaluable help, advice and suggestions. Many of the ideas
presented in this report were a result of many hours of discussion with
them.

I wish to thank Ellen Lowenfeld for her able assistance in developing
the computer programs.

I am indebted to Debbie Ingram for the uncountable hours she spent
in the typing and preparation of this report.

viii

I. CONTROL SYSTEM ARCHITECTURE

I-l

I. CONTROL SYSTEM ARCHITECTURE

1. INTRODUCTION I_3

1.1 Industrial Robot Control Systems 1-4
1.2 Problem I_4
1.3 Solution 1-5
1.4 Additional Control System Requirements 1-5
1.5 Research Control Systems 1-6

2. THE NBS ROBOT CONTROL SYSTEM I-7

2.1 The Three Modules Of NBS Control
System I_7

2.1.1 Hierarchical Control Module (Module #1) i-y
2.1.1-1 First Level Of The Control Hierarchy 1-9
2.1.1-2 Second Level Of The Control Hierarchy 1-15
2.1.1-3 Third Level Of The Control Hierarchy 1-19
2.1.2 Program Module (Module #2) I_2i
2.1.3 Location Table Module (Module #3) 1-21

3. THE NEXT LEVELS OF CONTROL 1-24

3.1 Fourth Level Control l~2U
3.2 Fifth Level Control I_25

4. MODULAR DESIGN I_28

5. NBS CONTROL SYSTEM PHILOSOPHY I_29

6. SUMMARY I_30

1-2

AN ARCHITECTURE FOR A ROBOT

HIERARCHICAL CONTROL SYSTEM

Anthony J. Barbera

ABSTRACT

Complex automation systems, such as industrial robots, require a computer-
based control system for the effective utilization of this advanced
technology. This report describes such a control system developed at

the National Bureau of Standards. The approach has been to partition

the control system into a hierarchy of different functional levels.

This has proven to be a powerful technique in obtaining sensor-controlled
robot behavior at a minimum cost of programming time and computer size.

Further, this partitioning has greatly simplified the implementation
of additional functions and sensors. This report discusses the control

system, its implementation and use, and provides a documented listing
of all of the control programs.

Keywords: Adaptive; automation; computer; control; goal-oriented;
hierarchical control; robot; sensors.

I. CONTROL SYSTEM ARCHITECTURE

1. Introduction

The National Bureau of Standards program in automation focuses NBS

resources on developing a basic understanding of the technology of
computer based automation and then develops those standards and guide-
lines that will stimulate the diffusion of this technology to enhance
productivity in both Government and industry.

Specifically this program attempts:

1) to provide standards for the interfaces between modular
components of computer-aided manufacturing systems,

2) to provide standards for the computer control languages used
to program automation systems,

3) to provide performance measures for specification and

procurement of robots and numerically controlled machine tools,
and

4) to carry out research in dynamic measurement and computer
control for computer based automation systems.

1-3

It is work in this last area, the development of dynamic sensors and
computer control techniques that has led to the control system
architecture for robots described in this report.

1.1 Industrial Robot Control Systems

Industrial robots are proving themselves to be flexible, general
purpose automation systems that will contribute significantly to the
development of automatic factories. These industrial robots utilize
essentially the same control mechanisms that were developed for
numerically controlled (NC) machine tools. That is, the motions of an

industrial robot are determined by numbers that are stored in the
memory of a computer or on a tape or some other storage device. Each
degree of freedom (each axis) of the robot has a position servo system
that drives the joints to the values commanded by the stored numbers
of the control program.

Robots have presently found use in a number of industries in such
diverse operations as removing parts from presses, spray painting,
spot welding automobile bodies and loading and unloading parts from
machine tools. All of the applications of these robots have two
characteristics in common. First, these operations involve a rather
high volume production where changes to the robots' programs do not
have to be made often. At present, industrial robots are not being
used in a batch type of environment (i.e. where parts are made in

small lots or batches and control programs must be quickly changed)
because of the time and difficulty required to program the robot to do
a new task. Second, these operations are also characterized by a

highly constrained work environment, either due to the nature of the
work (e.g. unloading work pieces from a press) or by the installation
or redesign of positioning equipment (e.g. installing very accurate
indexing transfer lines to maintain repeatability in the positioning
of automobile bodies on a spot welding assembly line). Although
present industrial robots have a high degree of positional repeatability,
they cannot in any way sense slight misalignments of parts in their
environment. This lack of sensory feedback creates the requirement
that the position of the objects they are to work with must be
accurately maintained to match the position locations stored in the
robot's program.

1.2 PROBLEM

Thus the situation can be summarized as follows:
There exists a sophisticated piece of general purpose
manufacturing hardware - the industrial robot - whose effective
and widespread use is seriously hampered by the difficulty and
amount of time necessary to communicate even simple operations to
it, and by the requirement of a tightly constrained work
environment.

1-4

1.3 SOLUTION

The solution to this problem is the development of a higher level

control system that will make it faster and easier to program the

robot and that can interact with sensory data to modify the

robot's motions in real time to cope with misalignments in its

environment.

1,4 ADDITIONAL CONTROL SYSTEM REQUIREMENTS

Several additional requirements are identified here that are felt to

be important for promoting the effective use of computer controlled
robots within the environment of developing CAD/CAM systems
(Computer-Aided Design/Computer-Aided Manufacturing).

1) the control system should be as general purpose as possible
so that each type of task does not require a different unique
control system (e.g. the control system that causes the robot
to load parts in and out of a vice on a machine tool, should
also allow a robot to spot weld automobile bodies, spray
paint bath tubs, or drill holes in an aircraft wing panel).

2) The control system should be modular and partitioned to make
higher control levels independent from specific robot
designs. This allows the same higher levels of the control
system to be universally used to direct any robot. The
system should be designed to facilitate the addition of new
modules at any level. This will enhance flexibility in new
appl i cations

.

3) The control system should allow for the creation of robot
application programs off-line. These programs should be

independent of an individual robot in much the same way that
the part program created by an APT programmer is independent
of a particular machine tool. Obviously, a robot or machine
tool with three degrees of freedom cannot execute a program
requiring six degrees of freedom; however, to the extent that
robots or machine tools are functionally equivalent, the same
application programs should be useable.

4) The control system should allow for the entry of location
points in the robot's work space from other data bases in a

computer-aided manufacturing system, such as the CLDATA file
from APT. In addition, these location points should be

defined in a relative manner so that the same set of location
points can be post-processed to specify these locations for a

particular robot. This is a specific facet of the general
requirement that the control system should be as compatible
as possible with the Integrated Computer Aided Manufacturing

concept, i.e. the use of standard interfaces between modules
of well-defined functions that can interact with common data

bases. ^ ^

1.5 Research Control Systems

A number of groups have developed control systems (1, 2, 3, 4, 5) to

solve the basic problem stated above. These higher level control
systems rely on a computer to provide the information processing
necessary for real time control of the robot in accord with its

incoming sensory feedback data. These systems have some form of a

higher level language, usually resembling a general purpose computer
language like FORTRAN. This provides a communication interface to the
robot so that the programmer can specify, off-line, a complex task
which may require the use of sensory feedback. However, none of these
control systems meets all of the additional requirements stated above.

1-6

2. THE NBS ROBOT CONTROL SYSTEM

The National Bureau of Standards (NBS), with its unique view of

standards, measurement science, numerical control machining, and

computer applications, together with input from manufacturing
industries, has developed an architecture for a hierarchical control (6, 7)

system. In carrying out this work, NBS has adopted the strategy of

modular design, well-defined interfaces, and integratabil ity into total

CAD/CAM systems. The architecture of this control system, its present
implementation, and future development are the subject of this report.

2.1 The Three Modules of the NBS Control System

The hierarchical control system for the execution of complex tasks

involving sensory feedback makes up module #1 of the complete NBS control
system shown in Figure 10.

Input to the highest level in the hierarchy of module #1 comes from
module #2. In module #2 a sequence of elemental moves ("GOTO" statements)
is produced. These commands are interpreted by module #1 as an

executable program. This program is a procedural description of a

task, and as such can be used to instruct any module #1 control hierarchy
to control a robot to carry out this specified task

Module #3, the location module, is used to record the coordinate values
for all the location names used in the program module. These are X,

Y, Z values in a standard coordinate system. This location table is

transformed by a postprocessor in module #1 to a table of coordinate
values that define these points in a particular robot's work space.

2.1.1 Hierarchical Control Module

The control system architecture (Figure 1) is based on a hierarchical
structure, where simple primitive operations are executed at the lowest
levels. A complex task command enters the hierarchy at the highest
level and results in the generation of a sequence of simple primitive
commands to the next lower level. Each primitive, in turn, produces a

sequence of a joint position commands to the lowest level to
accomplish the task. The partitioning of the control system into this
hierarchy of control levels does much to simplify the control problem
and to allow complex-looking behavior to be commanded simply and quickly
using a small computing system. Each control level uses incoming data
(both higher level commands as well as sensory feedback) to branch to
the appropriate subroutine calls of the next lower control level.
Additional primitive operations or the implementation of another type
of sensor require only the addition of a new subroutine that will
accomplish this function.

1-7

iGO TO POS 12 GRASP PROXIMITY

\
\
\
\

3RD
LEVEL

CONTROL

GRASP

HIERARCHICAL
CONTROL
STRATEGY

2ND
LEVEL

CONTROL

i

PROXIMITY AND FORCE
SENSOR FEEDBACK

'^JOINT POSITION COMMANDS

\

1ST
LEVEL

CONTROL

JOINT POSITION S

INDICATOR FEEDBACK^

DRIVE SIGNALS
V TO JOINT ACTUATORS

Figure 1

This chart shows the three levels in the control hierarchy. Each level
receives commands from the next higher level and responds by generating
ordered sequences of simpler commands to the next lower level. Sensory
feedback is used to close control loops where appropriate.

The elemental move command GOTO POSITION 12 GRASP PROXIMITY causes the
third level to generate a sequence of primitive commands (INTERPOLATE TO
POSITION 12; MOVE X, Y, Z; SEARCH (with proximity sensors); BALANCE (with
proximity sensors); GRASP). As a result of these primitive function
commands interacting with the sensory feedback, the second level generates
the correct sequence of joint position commands to the first level. The
first level servos the joints to these positions by generating the neces-
sary drive signals to the actuators.

1-8

The test bed for evaluating this control system has been a six axis

research manipulator (Figure 2) which is controlled by one of the

minicomputers in the Institute for Computer Sciences and Technology's
Experimental Computer Facility at NBS.

Two types of manipulative tasks were designed to evaluate the

performance of the different programming techniques at each level in

the hierarchy.

The first task is a simple transfer operation (Figure 3). It requires

the arm to move to a particular location, pick up an object, and place
it at another defined location.

The second task is an insertion operation (Figure 4). A peg is moved

to a hole and inserted. The diameter of the peg is 1.3 cm. The
diameter of the hole is 1.5 cm. The insertion part of this task

requires the hand to follow a straight line motion for a distance of

about 7.6 cm.

These two tasks are meant to simulate the type of transfer and simple
assembly operations performed by industrial robots.

Infrared proximity sensors (Figure 5) developed at NBS will be used to

demonstrate how the control system can interact with sensory feedback
data in real time. The sensors themselves are the subject of another
report.

2.1.1-1 First Level of the Control Hierarchy

The lowest level in the hierarchy (Figure 1) is where servo control
functions are computed. This is the level at which most industrial
robots in use today are programmed and controlled. The input commands
are joint positions which are compared to the feedback- from the joint
position indicators. If these values are different, a drive signal is

generated to move each joint until the position error is nulled.

The control system at this level is shown schematically in Figure 6.

During teaching or programming, a hand controlled unit is used that
allows the operator to control the motion of each individual" joint,
using rate control. When the joints of the robot are in a desired
configuration, the programmer presses a "record" button which stores
the positional value of all of the joints in the memory of the robot.
During playback, these position values are recalled from memory and
compared with the actual measured positions of the joints. If there
are any discrepancies, the servo system sends a command to the
actuator to move the joint until the error disappears.

Most of the robots being sold today have controls of this type. These
controls may be specially hardwired units, or they may be based on

minicomputers or microcomputers, but the control concepts are the
same. A typical robot may be able to store 100 program steps or more.

1-9

I-IO

m

<

(T
UJ
U.
cn
z
<
on

c
o

O -r-
+-> -->

CO 1 C
fO -Q -I—^ rC +->

C CO
-a O O)
C CO "O

^ O) QJ

CD
-a

o
o

^ E
00 E
03 CO
-4->

-i-

4J CO •!-

^ > +J
CO O 03
03 S- CL
•4-> Q.

S- O
0) +J

CO 4->

c e
rO •>-

o
+-> Cl

e
03 CO 03

03
s- -o
4-> (D

"O
CO S-
•r- O^ U
+-> OJ

S-

O -1-1 T3

-a
03

OJ
T3 >
O) O
S-
•1- 03
r3
a-4->
<D c
S- -1-

o
C Q.
o
•I- 03
+->

O O
E -M

CU O)
jz: >
-M O

E
CO
+j ^

E C
O) O
CO •-
OJ +->

S- fO
Q. O
O) O
S- 1—

> ' 00

O +-> E
S- C O
CL-r- -1-

O
O Q. 03

e o
C O r—
O -r-

•r- +-) "O
-M 03 C
03 £= O)
C T-
I- +-> -a
-l-J CO c
CO <D 03

o a>
CO c

O) T- -r-

x: ^ c:
-4-> +-> c
S- +J CD
OJ 03 OJ
> JD
o e

S O)
+j o -sr
c -a I—

•r- C
t-> o
03

E E
OJ O
x: s-

co
-M

CO u
•r- O)
-c: -1-3

I— J=>
o

03

Q.

s-

CD U

O +->

Q. U
CU

03 -i-O

J3
O O
+J

OJ
O) -C
> 4->

O
E 4J

o;
- 00

03 r—
Q-r—

03
CD e
C -r-
•I- 4-
4->

M- -a

o
OJ
T3
S-

o
u
OJ
$-

CU

CO
o
Q.

-a
OJ

CO "4-

+-> -r-

c: o
•>- O)
O Q.
Q. CO

I-ll

INSERTION TASK

Figure 4 - This schematic represents the motion required for an
insertion task. The hand is to move to a point over the hole,
follow a straight line path into the hole, which required
recording two additional points between the beginning of the
approach path and the destination point.

1-12

Figure 5 - Proximity Sensor affixed to a robot's gripper enables a

robot to locate and grasp objects that are not precisely positioned.
Infrared radiation, produced by light-emitting diodes and carried
by fiber-optic bundles, is projected downward in two beams. Radiation
reflected from the target enters a parallel set of fiber-optic bundles.
Strength of reflected radiation acts as a feedback signal that informs
robot how close gripper is to its target. Experimental system in

photograph is under development at the National Bureau of Standards.

1-13

QJ +->

1

—

o
•1—

5

CU

peat

^ cu
+J S-

o
4- o

o o \—
s_

1 CJ
fO E +^
<L) cu O

+J
(/) C/1 o

(/)

o to
cu

cu -C
•1

—

CT>4->
03
S- cu

o o >
+J

-o to •1—

O) s -o
t/) >1
^ o
o o +->

E -Q E
O) cu to
4J CJ) E +J
(/) c
>> •1—

to o
o Q.
fO o

o <D "D
S- 4-> T3 CU

QJ -a
c: 03 -o s-

o s- o
o >4- o CJ
O u cu

cu s-

cu CO %-

> cu
cu 03 <u

O) i- OJ

E 03
+-> +->

CO >, 1/1

s- +-> cu
ir- e to
<+- to

+-> o 03
c Q. a

CJ o cu o
a. to

Q. cu
E

+J o h-
MO

fO CO
CD

^- -M
o z. o

cu +J to
CO fO

o S-
03 CU -E

+-> a. o
o -M

s- CD
+-> zs cu *S
LO o JO. to
13 t- 4->

to
-M >> •r—

1—

1

ed
J3

"O

th

1
ve E

VD CO o O
•I

—

E
OJ +J
S- 4-> CU
13 O J3 s-

cu
•r— O O Q.
U_ s- -M O

1-14

Some controls allow branching from one set of program steps to

another, depending on external conditions. This feature is useful,

for example, in spot welding of automobile bodies, where the control

program must be changed to accommodate a mix of body styles on a

typical automobile assembly line.

Some tasks require the path of the robot hand to follow a straight
line (such as inserting a cutter into the spindle of a machine tool).

Programming a straight line motion with the rate control box is a

particularly time consuming job since most industrial robots have one

or more rotary joints that cause the hand to travel along a circular
arc instead of a straight line (Figure 9).

Thus, a simple insertion task requires the operator to continually
readjust a number of joints in order to program the hand to move along
a straight line.

The transfer and insertion tasks described above were programmed by

three different operators using a rate control box. Their times for
the first level of control are shown in Figure 7 and 8.

This first level of control does not require the use of a computer.
However, a computer is necessary to implement the second and third
levels of this hierarchical control system. These higher control
levels are required for increased capabilities in speed and ease of
programming, and for real time interaction of the robot with the
environment through the use of sensory feedback.

2.1.1-2 Second Level of the Control Hierarchy

The commands to the second level of the control system are calls to

primitive function subroutines to be executed. These low level

primitives are the basic, general purpose, operations that can be

sequenced together to accomplish more complicated tasks. They are
called, one at a time, by the different input commands such as GRASP,
or RELEASE, or MOVE X, Y, Z, etc. A command call like GRASP will,
together with whatever feedback is appropriate for this primitive,
cause the second level to generate the correct sequence of joint
position outputs to the next lower level (servo level) to accomplish
this operation.

Programming at this second level is much enhanced over the first level
since coordinate transformations are now possible with the computer.
Inputs to the robot, to move it to the desired positions and
orientations to be recorded, can now be in the form of values in an

external coordinate system. Thus, the arm can be commanded in terms
of X, Y, Z coordinate space through the use of a joystick. Moving the
joystick in a desired direction provides inputs into the computer that
are the delta X, Y, Z coordinate offsets from the present position.
This X, Y, Z command becomes the input to the second level. The

1-15

CO

CO

<
CO

Xo
CD

a

Lf3

oo
LU
00

CO

CD
^'

O
CO
I

I

ro -p
U CO

O X
?H O CO

o
E

O H
-P O

U
Ki -P H

o c
. . CD E
(1) -p (D

ft cti H
O ?-i CD

O
-P

(D

O
CD t:)

0

CD

CO

IS

o
CO

CD

-P

CD %i
bOpL,

CD •

Ct CO

t3

O
O
CD

ClO CO

•H CD

E Xi

U
U -P
bO CO

O

H
CD

!>

CD

•H

-P

o

1^

CD 0
c; CO

I -P

O
•H
-P
CO

O
•1-3 0)

_ -P
CO ;=i

£>- CD

CD

U

-P
CO

. ^
bO-H

CO CD

CO -P

O
o
CO

o

•H

T}
CD

1-16

oo
uu
CO

CO
cc

CO< CO

ID

GO LO

LO

o o

Oh H
O O
-P ?H

-P

in

o o
-p
CO 0)

?H -P
(D CO

ft f-i

o

CD -P

CD :s

to

O
s

'^^

0
B
(D

CD
CD CO

u
-p

o
CO

CD

CO

•H

-P
no
O

CO

^ .

a) ^
!> CO

CO CO

-P

O
O

0) -H
M-P
c3 0

o
o
CD
CO

M
-p

-p
CO

H
CD

>
H

^ -P
o
H (D

-P

•1-3 CO

CO

CD

--P

CD O
H o

CO

1^

CO (D

-P
CO

?H O
•H 4^

CD bO

•H
Ph CO

0
+:> CD

CO +3

1-17

Figure 9 - This figure illustrates the required coordination of a

number of joints in order to obtain a typical straight line motion of

the hand. For each incremental move along the straight line path,

joints 2 (elevation), 3 (boom), and 5 (wrist flex) must be adjusted.

1-18

coordinate transformation routine is then called to calculate all of

the joint motions required to cause the robot's hand to move along the

commanded straight line. The operator is one level removed from the
servo system and, therefore, no longer has to worry about moving the
individual joints. This is the power of a hierarchy. As higher
levels are added, the input commands become simpler and more procedure
oriented, while the sequences of the detailed operations required to

accomplish the tasks are generated by the lower levels in response to

these commands.

If the transfer and insertion tasks are programmed at the second
level, using a joystick, there is a significant reduction in programming
time (Figures 7 & 8). In addition, the programming becomes easier and

less tedious since the operator no longer has to concern himself with
what series of joint motions is required to move the arm to the new
location.

In addition, the coordinate transformation routine makes it possible
for the control system to interact with sensory data. Most sensors
provide information that will require the robot to move along vectors
in the sensor-based coordinate system, not in the joint coordinate
system of the robot.

The sensor generated commands for motions of the arm in terms of the
sensor's coordinate system are transformed into the proper joint
coordinate values. Thus, causing real time dynamic interaction of the
robot with its environment through sensor controlled movement.

2.1.1-3 Third Level of the Control Hierarchy

The third level in the control hierarchy receives its input commands
in the form of elemental move commands. The elemental move is a basic
unit building block in the description of a task. It is in the form
of a motion and an operation. Most, if not all tasks, can be broken
down into a sequence of these elemental move commands, where the hand
of the robot executes some trajectory through space to a destination
point and performs some function. Of course, the trajectory or the
function may default to a null value. These elemental moves are
programmed by the operator in the form of "GOTO" statements. An
example of an elemental move command would be "GOTO PALLET (04),
GRASP." This command, along with any appropriate sensory data, would
generate a sequence of calls to the second level to execute the
required primitive functions.

At this third level, the operator is programming in a much more task
procedural language as opposed to the robot joint position language of
the first level. The joint positions of the robot that define the
location PALLET (04) still have to be recorded in a table of points.
However, these points can be entered under joystick control or as the
X, Y, Z coordinates of the location. Once a location is stored under

1-19

MODULE 2 MODULE 3

PROGRAMMING
MODULE

LOCATION
MODULE

CONTROL
HIERARCHY

MODULE 1

Figure 10 - The three modules of the control system in their relation
to each other and the robot.

1-20

some arbitrary name (like PALLET (04)), it can be used in any number
of elemental move statements. Of course, the stored locations can be

programmed in any sequence, not just the order in which they were
entered.

Recording and programming the transfer and insertion tasks at the third
level shows a further reduction in programming time (Figure 7 & 8).

The programming is even easier for the operator to accomplish since he

is giving elemental move assignments which describe the task in much
the same way as it would be described by one person to another. Large
reductions in recording and programming time occur when arrays of

locations are used as will be explained later in the report.

2.1.2 Program Module

The application program is entered in the program module (module #2)

with the control system editor. The application program takes the form
of a sequence of GOTO statements using arbitrarily named locations
such as PALLET (04), NEUTRAL, VISE, etc. Each statement (elemental
move) may also include a list of desired functions such as GRASP,
INSERT, etc. These elemental move commands might be entered through a

computer terminal by the operator, by an APT part programmer at che

same time that he is writing the part programs for a NC tool, or
through a function button programming box on the shop floor.

Thus, the program module produces a procedural description of the tasks
to be performed in terms which are as independent as possible of the
particular robot that may perform it.

^

2.1.3 Location Table Module

' The values in the location table provide a relative description of the
positions of all of the location points. These values can be

j

postprocessed to specify the location points in the coordinate space
of any particular industrial robot that is sufficiently flexible to

carry out the task (i.e., in most cases, a six-axis robot). The
concept is to allow these relative locations to be entered by the

jj

programmer as X, Y, Z coordinate locations at the same time he is creating
I the program module, or to be processed from some data base such as a

I

CLDATA file of an APT program. The CLDATA file (the X, Y, Z and
surface normal angle data) has a certain level of machine independence
and can be postprocessed to provide the location points for a particular
robot as well as for a particular machine tool. Another source of
these location points is from a particular robot trained in its own
workspace. These specific location points can be converted into
standard coordinates for use by another robot through an inverse

i
postprocessor.

Thus, an attempt has been made to separate the description of the task
as much as possible from the particular robot that might carry out its
operation.

1-21

The control system interfaces to the particular robot through that
robot's own coordinate transformation subroutine. The coordinate
transformation routine can be used with a post processor to generate
the robot- specific location table from a robot-independent location
table. It is also used during execution of the program for real time
transformation between external or sensor-based coordinate systems an

the robot's joint coordinate system.

1-22

\ INPUT

\co™nds

SYSTEM

CONTROL

HIERARCHICAL CONTROL

Level 5 Control

FUNCTION
. controls a system of work stations (robots/tools)
. integrates with data bases and management information systems

in higher level computers

INPUT

. system task command - (e.g. 'bake a differential")

. feedback from work station - {e.g. "lathe tf3 is broken")

OUTPUT
. assign tasks to work stations -

e.g. "station #6- mill flanges on differential coverplate"
"station #2- turn input shaft"
"station cut gear If 3b"

.

etc.

WORK STATION

CONTROL

Level 4 Control

. controls a single work station (robot/tool)

. monitors sensors and handles certain error conditions

by branching to corrective procedur s.

INPUT
. work station task command - {e.g. "mill flanges")

. feedback from the work station - (e.g. "end mill broken")

OUTPUT
. sequence of elemental moves to accomplish task

e.g. "GOTO MACHINE REMOVE"
"GOTO TRASH RELEASE"
"GOTO SPARE MILL (11) GRASP PROXIMITY"
etc.

ELEMENTAL

MOVE

CONTROL

Level 3 Control

FUNCTION
. specifies trajectory segments and primitive operations
. uses sensory feedback for branching to primitives to cope

with environment

JNPUT
. elemental move corunand - (e.g. "GOTO MACHINE REMOVE")
. sensory data - (e.g. "sensors not balanced on end mill")

OUTPUT
. the sequence of primitive commands to accomplish the

elemental move
e.g. "APPROACH"

"DETECT"
"BALANCE"
"GRASP"
etc.

PRIMITIVE

FUNCTION

CONTROL

level 2 Control

. generates trajectory segments and executes primitives

. modifies trajectory on basis of sensory feedback

INPUT

. primitive command - (e.g. "BALANCE")

. sensory data - (for the "BALANCE" primitive the feedback is

voltage levels from proximity sensors)

OUTPUT
. the sequence of coordinated joint position commands to execute the

primi ti ve .
-

(for the "BALANCE" primitive - these cornnands would cause the

robot to move in the correct direction to equalize the proximity
sensor feedback signals).

SERVO

CONTROL

FEEDBACK

Level 1 Control

. controls position and velocity of individual actuator

INPUT
. the commanded joint position value
. position and velocity feedback

OUTPUT
. the proper drive signals to the actuator

Figure 11 - The 5 Level Control Hierarchy

1-23

3. THE NEXT LEVELS OF CONTROL

Ongoing work at the Bureau includes the addition of the fourth and
fifth levels of the control hierarchy (Figure 11), and the completion
of the modular design, its standard interfaces and the postprocessors
to provide the general purpose control system described above.

The next sections will discuss the basic conceptual functions of the
fourth and fifth levels of control and an overall view of the complete
control system to be integrated into the computer-aided manufacturing
operation.

3.1 Fourth Level Control

This level of control takes care of the complete operation of a robot
in its associated work station. Its input is in the form of a task to

be completed, such as "SPOT WELD A CAR BODY" or "CUT 50 GEARS OF TYPE
#36" etc. Sensory feedback data comes not only from the robot's sensors,
but also from sensors throughout the work station. These work station
sensors provide the additional feedback required to allow the robot to

cope with all of the error conditions that are within its capability
to correct. This reduces the need for external supervision and
intervention to a minimum.

The input task command, together with the sensory feedback from the

robot and the workstation, result in the fourth level sending out sequence
of elemental move commands to the third level. Different prerecorded
sequences of elemental move commands can be decided upon as a result
of the particular input task and sensory feedback.

As an example, consider the task to make a particular gear from a pallet
of gear blanks. To accomplish this task command, the fourth level

will send the sequence of elemental moves to the third level to cause
the robot to load and unload the parts from the pallet to the vise on
a machine tool table, and to change cutters in the machine tool for
the different cutting operations.

This sequence of elemental moves will be the main execution program.
In addition, a number of sequences of elemental moves can be programmed
and named to be used as subroutines. These will be sent to the third
level when certain conditions arise. For example, suppose one of the
cutters breaks while in the machine tool. A sensor on the tool or on
the robot can report this data back to the fourth level. This
condition will cause a branch to a preprogrammed sequence of elemental
moves. This sequence will command the robot to remove the broken cutter
from the tool and replace it with a new cutter. The program then
returns control to the proper point in the execution program.

Thus, the fourth level control system has the responsibility of
accomplishing tasks for an entire work station. This level receives

1-24

sufficient sensory data to cope with problems that might hinder the

execution of that task, and outputs the preprogrammed sequences of

elemental moves to correct these situations.

3.2 Fifth Level Control

The fifth level of control has the responsibility of accomplishing a

project that might involve assigning a number of tasks to a number of
different work stations; or scheduling a number of tasks to the same
work station. Its feedback might consist of one of its fourth level

control stations reporting back that a task has been completed, or
that a machine tool is inoperative. This fifth level would respond by

issuing a new task to the particular work station or rerouting
materials to another work station and assigning it the task that the

disabled station could no longer accomplish.

The fifth level interfaces to higher level computer-aided
manufacturing and management information systems' data bases to provide
them with information (processed feedback) about the work being done
on the factory floor, maintenance and repair situations, productivity,
efficiency of machine utilization, etc. Figure 12 gives an illustration
of the processing of information both up and down the hierarchy.

These five levels of control carry out the responsibility of the
actual manufacturing or production in a factory. They should integrate
into total CAD/CAM systems as well as have the capability of a stand
alone system at any level depending on the resources of the manufacturing
unit involved.

1-25

INPUT COMMAND

PREDEFINED

FUNCTION

SENSOR INPUT

raw sensor data

preprocessed sensor data

sensor data processed in

relationship to input command
(from lower levels)

(b)

Figure 12 (a) & (b)

Each level in the hierarchy has information flowing into and out of it. The
output being a function of the inputs (a).

Each level's sensory input is composed of three types (b). There is raw sensor
data such as the voltage levels from proximity sensors indicating relative reflected
intensity.

There is preprocessed sensor data such as might come from a vision system where
sophisticated data manipulation and pattern recognition is performed by some sensor
unit and its output is a sensor input to the control system.

The other sensor feedback is information from the lower levels of the hierarchy

that is a reporting of their effectiveness in completing their input task.

This takes the form of an interpretation of their sensor data in light of the

input command. These are additional outputs from each level, not as commands

to the next lower level, but as inputs to the higher levels. As with the other

outputs they are also predetermined functions.

1-26

"extra hour required to complete
set of differentials"

reroute job to work station #2

"milling station #3 cannot finish j

"end mill cutter broken"

"no object at location X Y"

proximity sensor signal level

sensor
feedback

Figure 12 (c) - Thus, each level not only generates information in a descending path
to the lower levels but also processes and reports information back up the hierarchy.
At each higher level, this reporting takes on a more and more sophisticated form such
that the fifth level may report to a management information system that an extra hour
will be required to produce a set of differentials while the original raw sensor data
to the second level might have been a proximity sensor signal level.

1-27

4. MODULAR DESIGN

Modular design offers several very important advantages. It provides
a partitioning of the system into identifiable units, each of which is

comprehensible and lends itself more easily to a solution. This
modularization also aids in the separation of the control system into

those sections that are of a general nature and therefore robot-
independent, and those sections that are specific to the individual
robot (e.g. the coordinate transformation routine, the servo system
etc.). This allows the creation of a general purpose, universal
control system that can run any robot if the robot-dependent modules
are supplied.

Modularization encourages the use of standard interfaces which aids in

the set up of the functional organization of the system and simplifies
the information links between the modules themselves, and between
these modules and the other components of the CAD/CAM system. It clearly
defines where the responsibility for each function lies, which
simplifies the writing and debugging of code.

The concept of modularization has been extended to the level of
partitioning the control system module, the program module, and the
location table module into a number of simple subroutines. In the

control system, each primitive operation (like GRASP) is a separate
subroutine which is called when the appropriate condition occurs.
Therefore, once the control system architecture is supplied, the

addition of new primitive functions is merely the addition of the new
subroutines. Interaction with sensors is handled in the same way.

A sensor subroutine is written and added into the system. Whenever
the system is commanded to interact with the sensor's feedback, a call

to its subroutine is made. This usually includes calls to the coordinate
transformation routine to provide the necessary joint position commands
to cause motion of the robot in the sensor's coordinate system. In

this way, sensors of any type can be implemented and the control system
made to interact with their feedback by the addition of simple subroutines
This makes the control system flexible and easily modifiable for new
applications.

1-28

5. NBS CONTROL SYSTEM PHILOSOPHY

This control system has been designed as a completely deterministic
hierarchy of input - output patterns. The hierarchical architecture
has provided a separation of responsibilities into different function
levels. Each level becomes a group of preprogrammed function generators
that respond to a limited set of input states with a defined set of

output states.

If a response to a certain set of input conditions is not programmed,

the control system can neither decide on the proper output nor "learn"

the correct response. All of the intelligence to cope with the
environment must come from human intervention in the form of prepro-
grammed functions. The location points and procedure must be specified
for each task. A human operator must construct the appropriate sub-

routines to recognize and respond to the input patterns.

However, within this set of defined input states, this deterministic
system exhibits goal directed, adaptive behavior, responding to sensory
feedback to modify the robot's motions in real time. In this way, the

assigned task is accomplished in spite of perturbations in the

environment.

This use of a hierarchical system of simple deterministic functions
has demonstrated large increases in capabilities as each new level is

added. At each higher level, input patterns that correspond to more
complex task assignments and more sophisticated processed sensory
data, are used to generate sequences of simpler commands to the next

lower level. The degree of "intelligent" behavior that can eventually
be exhibited by a control system based on this concept is an important
area of continuing research and development.

1-29

6. sunmRY

The partitioning of the control system Into simple modules and the
interaction of these modules in a hierarchical fashion has proven to
be a powerful technique in obtaining sophisticated sensor-controlled
robot behavior at a minimum cost of programming time and computer
size. This architecture also provides a flexible framework for the
incorporation of additional functions and sensors.

1-30

USER'S GUIDE

II-l

USER'S GUIDE

1. EXECUTING APPLICATIONS PROGRAMS (Module #1 -

Control Hierarchy)

1.1 Control Hierarchy - Operator Interactio
1.2 Initializing Program

1.3 Executing Program
1.4 Interrupting Execution
1.5 Continuing After Interrupt

2. ENTERING APPLICATION PROGRAMS (Module #2 -

Program Module)

2.1 Program Module - Operator Interactions
2.2 Indexed Location Name Entry
2.3 Editor Commands
2.3.1 Table Of Editor Commands
2.3.2 Elemental Move Functions
2.3.3 INSERT and LOOP Commands
2.3.4 PRINT Command
2.3.5 AVOID Command
2.3.6 DELETE Command
2.3.7 RECORD Command
2.4 New Functions
2.5 Exit Program Module

3. ENTERING LOCATION POINTS (Module #3 -

Location Module)

3.1 Table Of Operator Interactions
3.2 Mode Of Entry
3.3 Array Entry
3.4 Approach Path

3.5 Exit Location Module

II-

2

II. USER'S GUIDE

1. EXECUTING APPLICATIONS PROGRAMS Ulodule #1 - Control Hierarchy)

The compiling and linking of subroutines into an executable load
module are the only operator interface to the host computer's operating
system. All other functions are maintained internally to the control
system programs.

Real time control over the execution of the different control system
modules is accomplished by a set of function switches. These switches
are polled at periodic intervals (approximately every 20 milliseconds).
Branches to different subroutine calls are made on the basis of these
switch values. Thus, the operator can interact with the control system
in real time. He can, for example, stop the arm in the middle of a

trajectory modify the application program, and/or change a location
point using either the joystick control or entering the X, Y, Z

coordinate values, and then continue the execution of the new application
program either at the point it was interrupted or at any other designated
step in the program.

1.1 Control Hierarchy - Operator Interactions

See Table 1 for a listing of the panel switches and their interactions
with the control system.

1.2 Initializing Program

Once execution begins (i.e. execution of the compiled and linked sub-
routines on the user's computer) the control system initially reads in

from the storage unit the assigned application program and location
table and prints the following messages on the terminal:

— -SW 28 UP--- INTERRUPTS RUN PROGRAM
— -SW 29 UP--- TEACH LOCATION TABLE— SW 30 UP—- ENTER PROGRAM SEQUENCE— SW 31 UP—- RECORD LOCATION TABLE ON DISC
*** TYPE [CR] *** TO CONTINUE

This identifies the functions of switches 28 thru 31. If an existing
application program and location table is available, then, by typing
in a carriage return, this application program will be initiated.
After the entry of a carriage return the next message is sent to the
terminal

:

— SW 35 DOWN-— AND
*** TYPE [CR] *** TO INITIALIZE THE SERVOS WITH THE STARTING LOCATION

This reminds the operator to be sure that switch 35 is in the down
position. This switch will start the execution of the program. When

II-3

Table 1

Control Hierarchy - Operator Interactions

Input Channel
Number Function

26 Velocity Control

28 Interrupt (abort)

29 Enter Location

30 Edit Program

31 Store on disc

Description

Voltage readings from a

potentiometer used to control
relative velocity of arm by

specifying the number of inter-
polation points to be used.

When set, immediately stops
execution and provides the
operator with the option of
editing program or location
table or recording them on disc

When set, this switch calls up

the location module to allow
entering of points in the

location table. When reset,
causes an exit from location
module.

When set, this switch calls up

the program module to allow
editing of program table. When
reset, causes an exit from pro-
gram module.

When set, causes the location
table to be stored on disc.

34 Pause Temporarily suspends all

execution so long as it is set.

When reset, execution continues

35 Start, Repeat After initialization procedure,
this switch is set to begin
execution. The program will

continue to repeat as long as

this swtich remains set. If

reset, it stops the program
after execution of last line
of program table.

II-4

"able 1 cont.

Input Channel
Number

36

Function

Straight
Velocity

Line

Descri ption

Voltage readings from a potent-

iometer used to control the

velocity of the straight line

portions of the trajectories.

11-5

the carriage return is typed in, the program sends the joint position
values of the starting location to the servo system.

TURN ON ShRVOS
---SW 35 UP— TO EXECUTE PROGRAM.
— -SW 35 REMAINS UP— FOR REPEATED EXECUTION.

'

1.3 Executing Program

The servo system can now be turned on since a known set of joint
position values has been conmanded. The program cycles here, testing
switch 35 until this switch is flipped up. When this switch is in the

up position, the application program is executed. Switch 35 will not
be polled again until after the last executable line of the application
program. If the switch is still up at this time, the application
program is repeated. If it is down, the control system cycles here,

continuously polling switch 35.

Once switch 35 is flipped to the up position, the application program
is executed without any further messages being printed on the terminal
except error conditions.

1.4 Interrupting Execution

At any time, the interrupt (abort) switch (switch 28) can be set.

This causes an immediate halt in the executing program, stopping the
arm at its present position. The following message is printed on the
terminal

:

YOU ARE AT PROGRAM STEP 11

11 GOTO B0X(03) GRASP PROXIMITY VEL(50) SEND(O) WAIT(O)— SW 29 UP— TEACH LOCATION TABLE— SW 30 UP— ENTER PROGRAM SEQUENCE
— -SW 31 UP— RECORD ON DISC
*** TYPE [CR] *** TO CONTINUE

In this instance, the control system was executing line 11 of the
application program when interrupted. The elemental move statement
(GOTO BOX (03) GRASP PROXIMITY) that is in line number 11 is also
printed out.

1.5 Continuing After Interrupt

After the desired changes have been made, a carriage return is entered
and the system responds with:

WHICH PROGRAM STEP DO YOU WANT?

The operator can respond with any program line number, and execution
will begin at that point in the program. If a zero or carriage return
is entered, the initialization phase is carried out and the system
awaits switch 35 to be set to begin executing the program.

II-6

Table 2

Program Module - Operator Interactions

Input Channel

Number

28

Function

Interrupt (abort)

Description

When set immediately
stops execution of the

program and allows the
program module to be

cal 1 ed.

30 Edit Program When set, calls up the

program modul e to

al low editing of the
program table. When
reset, causes an exit
from the program module.

II-7

Table 3

Editor Commands

Command Symbol

insert (XX)*

Print (XX-YY)

Delete (XX-YY)

Start NNN

L^oop

Finish

Name

Avoid XX ^1^2" ''^10
"^"^

Function

Specifies the program table line number
XX where new line(s) are to be inserted.

Specifies the first (XX) and last (YY)
line of the section of the program table
to be printed. Once print command given,
a minus sign will cause previous line
to be printed, a carriage return will
cause the next line to be printed.

Specifies the first (XX) and last (YY)

line of the section of the program table
to be deleted. This section will be

printed out as it is deleted.

Once the insert command has been called,
this command enters the name (NNN) of

the starting location in the program.

Specifies that all of the following
elemental move inputs between this command
and the command FINISH are to be repeated
the number of times required by the
indexed values of the location names used.

Causes the termination of the LOOP sequence

Causes the names of the indexed locations
to be printed out on terminal with the

option to change them.

Causes the insertion of up to 10 (I^^q)

additional intermediate location points
between the specified location points

XX and YY. Used to create special
trajectories using detailed path segments.

* All editor commands default to just their first letter for faster
editing.

II-8

Table 4

Elemental Move Functions

Command Symbol

Goto XX(YY-ZZ)*

G^rasp

Release

Grasp Proximity

Release P^roximity

l^nstack

Touch

Detect

Bal ance

Une

Send (XX)

Wait (XX)

* All elemental move commands
faster entry.

Function

Specifies a destination point (XX)

for this trajectory. If it is an

indexed location, the value of the
particular index (YY) is specified. If

it is used in a loop, then the range
of indexed val ues (YY-ZZ) is specified.

A grasp command - the fingers close on

an object with a predefined amount of
force.

A release command - the fingers open
compl etely

.

Center hand over object using the
proximity sensors, then pick it up.

Locate an object with proximity sensors
and place the held object on top &f~4jt^

Locate top of a stack with the proximity
sensors, then pick up the top object.

Locate the top of an object of unde-
fined height using proximity sensors.

Locate an object using the proximity
sensors

.

Center hand over an object using the

proximity sensors.

Move to the destination point through
a straight line trajectory rather
than an interpolated trajectory.

Cause channel number XX to output a

+5 vol tage 1 evel

.

Suspend execution until channel number
XX receives +5 voltage signal.

default to just their first letter for

II-9

2. ENTERING APPLICATION PROGRAMS jHodule #2 - Program Module)

If a new program is to be entered or the present one modified, then

switch 30 is set and a carriage return typed.

2.1 Program Module - Operator Interactions

See Table #2 for a summary of the operator interactions through the

switch panel

.

2.2 Indexed Location Name Entry

When the editor is called, the names that have been assigned indexed

values are printed out on the terminal.

THESE ARE THE CURRENT INDEXED LOCATIONS
BOX STACK
DO YOU WANT TO ENTER NEW INDEXED NAMES?

If the answer is yes, then the program responds with:

ENTER INDEXED NAMES
(E.G. PALLET CUTTER STACK)

As an example, consider a pallet with an array of parts to be machined
by a milling tool. The program to be entered should cause the robot
to load and unload these parts from the vise, insert the correct end
mill cutter in the tool at the beginning and remove it at the end, and
air brush off the chips after each operation. For this task, PALLET
will be set up with indexed locations corresponding to the array of
parts on the pallet. Therefore, in answer to the request for indexed
names made above, the operator enters the name PALLET:

% PALLET*

The system responds with the message:

EDITOR IS NOW AVAILABLE FOR PROGRAM ENTRY

*A11 operator entered commands will be preceded by a percent sign (%).

11-10

2.3 Editor Commands

The editor that has been written for this control system is line
oriented and has commands to insert, delete or print specified line

numbers

.

2.3.1 Table of Editor Commands

See Table #3 for summary of all of the editor commands.

2.3.2 Elemental I^ove Functions

See Table #4 for a description of all of the presently implemented
function commands for writing an application program.

2.3.3 INSERT and LOOP Commands

To enter the application program that will accomplish the machining
task described above, the following commands are typed in:

% INSERT 01

% START NEUTRAL
% GOTO ENDMILL GRASP
% GOTO TOOL RELEASE
% LOOP
% GOTO PALLET (01 - 06) GRASP PROX

% GOTO VISE RELEASE
% GOTO NEUTRAL SEND (03) WAIT (13)

% GOTO AIRHOSE GRASP
% GOTO CHIP VELOCITY (10)

% GOTO AIRHOSE RELEASE
% GOTO VISE GRASP
% GOTO PALLET (01 - 06) RELEASE
% FINISH
% GOTO TOOL GRASP
% GOTO ENDMILL RELEASE
% GOTO NEUTRAL SEND (04)

The above program, which is 14 statements long, will cause the robot
to execute the following actions - start at some initial location named
"neutral" - move from this location to the location of the end mill
cutter - pick up the end mill cutter and insert it into the spindle of
the milling tool - move over to the first work piece on the pallet,
locate it with proximity sensors, pick it up and put it in the vise -

go back to its neutral safe position -send a voltage level out on

channel three to cause the machine tool to begin cutting - wait until
the interlock signal from the machine tool on channel 13 goes high,
indicating that the machining operation is finished - go to the
location of the air hose - pick it up and blow off the chips by taking
the air hose to a position named "chip" which is above the vise -

replace the air hose - go to the vise and remove the machined part -

II-ll

return the part to the pallet - locate and pick up the next part -

repeat all of the above procedures for all six parts - then remove the
end mill cutter from the tool and replace in the tool rack - go back

to the neutral position and send out a signal on output channel four
indicating that the job is finished.

The advantage of indexing names is obvious here, where the task has to

be described only one time for one part. The "loop" command will cause
all of the statements between it and the "finish" command to be repeated,
for each of the six pallet positions.

2.3.4 PRINT Command

The edit program immediately generates the complete sequence of elemental
move commands for all of the indexed positions. Thus, if a print command
is given to display lines one thru 20, the following would occur:

% PRINT 01-20
START N*

01 GOTO E GRASP VEL(.50) SEND .0) WAIT :o)

02 GOTO T RELEASE VEL([50) SEND!:o) WAIT :o)

03 GOTO PALLET (01) GRASP PROX VEL(;50) SEND :o) WAIT .0)

04 GOTO V RELEASE VEL(:50) SENDI.0) WAIT :o)

05 GOTO N VEL(.50) SEND!.03) WAIT .13)

06 GOTO A GRASP VEL([50) SEND :o) WAIT :o)

07 GOTO C VEL(:io) SENDI:o) WAIT :o)

08 GOTO A RELEASE VEL([50) SEND :o) WAITI:o)

09 GOTO V GRASP VEL([50) SENDI:o) WAIT :o)

10 GOTO PALLET(Ol) RELEASE VEL('50) SENDI:o) WAIT :o)

11 GOTO PALLET 02 GRASP PROX VEL(50) SENDI:o) WAITI.0)
12 GOTO V RELEASE VEL(50) SENDI.0) WAITI:o)

13 GOTO N VEL(.50) SENDI.03) WAITI.13)
14 GOTO A GRASP VEL(50) SENDI:o) WAITI:o)
15 GOTO C VEL(10) SENDI:o) WAITI:o)

16 GOTO A RELEASE VEL('50) SENDI:o) WAITI 0)

17 GOlO V GRASP VEL(50) SENDI:o) WAITI:o)
18 GOTO PALLET(02) RELEASE VEL(50) SENDI 0) WAITI'0)

19 GOTO PALLET(03) GRASP PROX VEL(50 SENDI 0) WAITI.0)
20 GOTO V RELEASE VEL(50) SEND(O) WAITI 0)

As can be seen, the program has been expended to its full sequence of
elemental moves. The channel numbers for the interlocking commands
"SEND" and "WAIT" are listed for each program line. A velocity value
is also listed for each line. This is the maximum velocity that the
hand is to reach for that particular move. If it is not specified
during programming then a default value of 50 cm/sec is entered in the
program sequence.

*A11 location names other than indexed names, default to their first letter

11-12

2.3.5 AVOID Command

The program entered above is a minimum description of the task to be

completed. There might, however, be peculiarities about the work
environment that will prevent the trajectories from being executed as

described. For example, suppose there is a building support column
between the "NEUTRAL" position and the "VISE" position. To prevent

the arm from colliding with the column, the following entry can be

made:

% AVOID VISE POINT NEUTRAL

From the single entry of this one command, the entire application
program will be scanned for all instances where the trajectory to be

executed is between the vise and the neutral position. At every one

of these points in the program, the additional elemental move - "GOTO
POINT" - will be inserted. Thus, if a print out of lines three to

seven is called for:

% PRINT 03 - 07

03 GOTO PALLET (01)

04 GOTO V

05 GOTO P

06 GOTO N

07 GOTO A

2.3.6 DELETE Command

Once a program is written it can easily be modified by the "DELETE"
and "INSERT" editor commands. As an example, suppose this pallet of

parts was to go to a work station to have a number of holes drilled in

the parts. The only difference in the description of the task is that
now a drill bit instead of an end mill cutter is to be inserted into

the machine tool

.

To accomplish this program change, line one will be deleted and a new
line will be inserted. This new line will require the robot to go to

a position named "DRILL" to pick up the drill bit to be used for this
machining operation. To delete line one, the following command is

given:

% DELETE 01

01 GOTO E GRASP VEH50) SEND(O) WAIT(O)

When a delete command is given, the system deletes the specified line(s)
and prints it (them) out on the terminal. The remainder of the program
is closed up around the deleted line so that a print out of lines one

to three would look like this:

GRASP PROX VEL(50) SEND(O) WAIT(O)
RELEASE VEL(50) SEND(O) WAIT(O)

VEL(50) SEND(O) WAIT(O)
VEL(50) SEND(03) WAIT(13)

GRASP VEL 50 SEND 0) WAIT 0)

11-13

% PRINT 01-03
START NEUTRAL

01 GOTO T RELEASE VEL(50) SEND(O) WAIT(O)
02 GOTO PALLET(Ol) GRASP PROX VEL(50) SEND(O) WAIT(O)
03 GOTO V RELEASE VEL(50) SEND(O) WAIT(O)

To enter a new line, the "INSERT" command is given:

% INSERT 01

START NEUTRAL
01 GOTO T RELEASE VEL(50) SEND(O) WAIT(O)

The "INSERT" command causes the line presently at the specified line

number to be printed out. Any new line(s) inserted here will be placed
in the program in front of the displayed line. The new line can now
be entered:

% GOTO DRILL GRASP

If a print out of lines one to three is called for:

% PRINT 01 - 03

START NEUTRAL
01 GOTO D GRASP VEL(50) SEND(O) WAIT(O)
02 GOTO T RELEASE VEL(50) SEND(O) WAIT(O)
03 GOTO PALLET(Ol) GRASP PROX VEL150) SEND(O) WAIT(O)

The new line has been inserted and the other program lines moved back
to accommodate it. This change is also to be made at the end of the

program where the drill bit is removed from the machine tool and

returned to its holder.

Thus, by two "DELETE" and "INSERT" commands, the program has been
modified to cause the next machining operation to be accomplished on

this pallet of parts.

2.3.7 RECORD Command

Once the application program is written, it can be stored on disc for
future use. The editor command "RECORD" accomplishes this:

% RECORD
THE PROGRAM HAS BEEN STORED ON DISC

2.4 New Functions

If there are additional functions that are required, for example, a

special insertion technique is required to place a cutter into a

spindle, then these special motions and perhaps the use of touch or
force sensing to adjust the positioning of the cutter as it is

11-14

inserted into the spindle, can be defined in a new FORTRAN subroutine
or combination of existing subroutines. Then this subroutine(s) can

be specified by a single function call like INSERT so that a command
to insert a cutter into a tool might be programmed as:

% GOTO TOOL INSERT

The addition of these extra functions and their programming code words
is a simple modification with this control system and will be

explained in some detail in the next chapter.

2.5 Exit Program Module

To exit the program module, switch 30 is flipped down and a carriage
return is typed in. The control system responds with the following
list of options:

— SW 29 UP—- TEACH LOCATION TABLE— SW 30 UP—- ENTER PROGRAM SEQUENCE— SW 31 UP—- RECORD LOCATION TABLE ON DISC
*** TYPE [CR] *** TO CONTINUE

The operator can now set switch 29 and type a carriage return to call

up the location table module with its associated routines.

11-15

Table 5

Location Module - Operator Interactions

Input Channel

Number Function Description

28 Interrupt (abort) Stops execution of program so

location module can be called

29 Enter Location Causes location module to be

called up so location points
can be entered. Resetting this

switch causes an exit from the

location module.

31 Coordinate Printout

32 Joystick Control

34 X, Y, Z Entry

While under joystick control,
this switch causes X, Y, Z

coordinate values of the present
location of the arm to be

printed out. Resetting switch
returns control of joystick.

Causes the signals from the
joystick box to control the

motions of the arm. Resetting
this switch causes the present
location of the arm to be

stored in the location table.

Allows location point to be

entered as an X, Y, Z coordinate
position.

II-16

3. ENTERING LOCATION POINTS (Mule #3 - Location Module)

Once the program is written, it only remains that those location names
referenced in the program have their corresponding position values
stored in the location table. This section explains how the user is

to enter these location points and what data the system will request
to completely describe these points.

3«1 Location Module - Table of Operator Interactions

See Table #5 for a summary of the operator's interactions through the
function switch panel.

3.2 Mode of Entry

As in the programming module, the names of the indexed locations are
printed on the terminal and the option to change them is given.

The system then prints out the following message to indicate which
panel switches are to be used for the different modes of location
point entry:

— SW 32 UP— FOR JOYSTICK CONTROL
— -SW 34 UP— FOR XYZ ENTRY— SW 32 & 34 DOWN— FOR MANUAL ENTRY
*** TYPE +1 *** TO RECORD AN ARRAY OF INDEXED LOCATIONS
*** TYPE [CR] *** TO RECORD LOCATIONS ONE AT A TIME

3.3 Array Entry

To record the array of location points for the six positions on the
pallet in the previous example and to use the joystick to maneuver the
arm to the proper positions, requires panel switch 32 to be set and
a +1 to be typed on the terminal.

The system responds with a series of requests. The operator's responses
will exactly specify the array of locations to be recorded:

ENTER LOCATION NAME AND INDEX NUMBERS
E.G. PALLET (01-20)

The array to be specified is the six positions on the pallet as shown
in Figure 13a, so the following is entered:

% PALLET (01-06)

ENTER ARRAY DIMENSIONS
(E.G. 4,5)

The array of parts on the pallet, as shown in Figure 13a, is a 3 by 2

array therefore the entry is:

11-17

>-

CSC

cr

cn

CM

—

1

1- — — H1
— -

CM

—

^

CDO o (XI

o

O CDO

o o
CD

>-
cr
etc

a:
cc

cn

"O
OJ (O 'o
-t-J S-

c:
cn o

t_)

to J_
CD fO CU
"O +j c~

to +J
CO

• p— to cu
O) to CD

4-> r3 03
C/) o E
s_ •r-

>
^- u -o

•r- (U
CD S-^ S Z3

1— cu +->

E o
, "1

—

CL
>,
s_ CD >, to
+-> 03
c
cu "O S- cu

c 03

s_ cu

o u CO O
M- to 4->

fO CVJ

T3 (A
03 -M

o E
q to '1

—

fO S-

o CL
S- "O

O- O) E
t/) cu •1

—

O
CL) -M •1

—

-M
o fC

CT) O) CJ

E E Cl o
O (/)

a
03 CL) cu

to 4->

5- >> o
S- ft3 t/1 M-
(C O
E to
fO -a CU

to =3

to •1

—

>^ o
E u >

S O
<u to cu
•4-> E X
fO CU s- cu

c E 03 -o
s- •1

—

E
cu -o cu •1

—

+J E
+-> 03 (U

ea to to
S- +->

o •r— to

2 M- •r- cu
+-> E

CU 1—
O) l/l

x: h- CO
1— 03

-a
>,o
ra 1 Z3

CO %- O
t—l o

ra 1

O) I—

1

E
S- o CU

o +->

CJ)CO to
I—)

Li_ 03 o to

11-18

% 3,2

ENTRY X,Y,Z DELTAS (DECIMAL CM) BETWEEN ARRAY POSITIONS ALONG
FIRST DIMENSION.

The first dimension is along the sequential ascending index values
(i.e. along the row 01-02-03), therefore the delta X, Y, Z offsets
will be +10. cm in the X, 0.0 cm in the Y and 0.0 cm in the Z (given

that the pallet lies in an X-Y plane) and will be entered as:

% 10., 0,0

ENTER X,Y,Z DELTAS (DECIMAL CM) BETWEEN ARRAY POSITIONS ALONG
SECOND DIMENSION.

% 0,-15.,0

Control is now turned over to the joystick box to move the arm to the
correct position for PALLET(Ol). The following message is also sent
out to the terminal to provide further information.

TO RETURN TO THE TEACH LOCATION MODE FLIP SW 29 TO THE DOWN POSITION.
FLIP SW 31 UP TO DISPLAY XYZ VALUES.

At any time, while the arm is under joystick control, switch 31 can be

flipped up for a print out on the terminal of the the x,y,z coordinate
values of the present location of the hand. This information can be

used by the operator for future entry of locations in terms of their
X, Y, Z coordinate values. Once the arm has been positioned at the
location PALLET (01) using joystick control, switch 32 is flipped down.

This causes the system to record this position as PALLET(Ol).

The remaining five positions in the array are computed- from the position
of this location and the array dimension data supplied above.

!
As mentioned earlier in the report, it is with the recording and

programming of arrays of locations that large savings in time can be

obtained.

3.4 Approach Path

The next request from the location module is:

ENTER DELTA X,Y,Z (DECIMAL CM) TO START OF APPROACH PATH

This data is required for the specification of the approach path to be

I

used for this location. The approach path concept simplifies much of

1

the trajectory calculation. It is illustrated in Figure 14. Location
' "PALLET(Ol)" has the coordinate values X, , Y, , Z, . The direction in

11-19

o
I—

o

:

Q_
cc:

~

UJ

o
I—
UJ

cc
Q_

(X
Q_

_J
31 cr
CJO
cc •-•

ot—
cc—

.

Q_ a:
Q-O
cc---

"O

er

1/1

+-> OJ
03
Q. CO

>- •r- -M

o +->

X o
o Q.

o
CL -a

o. o
fD th cu

CM ^- 03 OJ

1

o Q. th

to sz
I/) E
+J s- 03 o
CI CL) O

+-> S- C|-

Q.
CT) CL ^—

,

OJ '1

—

03 M
CO o O)

<]

ro OJ «\

\— >-
O o <]
+j +-)

CO
CO X

-o <1
CO c:
(U n3

03 CO
-o > OJ

o CD 13

"D
4-> 03

d) o 03 >
'1—

5

u E
03 cu

X3 OJ
S- CO

O) O M-
QJ o M-
f~ 03 u O

CO +-> OJ
CO -l-> +J

03
o •1

—

o
o •>-^ •1

—

4_> Q. -a
-o s-

4J o c o
S_ c 03 o
fO O) o
f)

1

—

<L) 1—
4_> >-
CO _j
>) >-
CO >, X

o —103
o 4-5 X 4->

S- o
4-> a> CO
c 03 -a
o 03
o s- CO

-M CO 03
0) 0)

-o J-
1— O! o

+J 03 +->

03 > 03
1 s-
O O) (D
a.-i-> Q.

I—

1

er na O
OJ +-> (U
i- c: -o ^
:3 •1

—

S- +J
CJ> o

c o >>
Ll_ 03 u

11-20

which the hand approaches this point is critical. If the object shown
is sitting on top of a table, then it would be disastrous to approach
it from below.

The operator designates the delta X, delta Y, delta Z offsets from the
location point to the start of the desired approach path (for the

example in Figure 14 delta X=0, delta Y=0 delta Z=10cm). These values
are stored in the location table. During execution, the hand moves
quickly through space to the start of the approach path. It decelerates
at this point and follows a straight line path from here to the actual

location point. During this approach path maneuver, the orientation
of the hand in space is maintained.

The non-critical portion of the trajectory, from one approach path to

the other, can be executed at high speed by simple interpolation
between all the joint values without regard for close tolerances on

this motion. The use of an approach path, therefore, modularizes the

trajectory into segments that can be easily executed by simple
subroutines.

The operator's response to the above request for the delta offset
values would be:

% 0,0,10.
*** jYPE +1 *** IF HAND WILL STOP AT THIS LOCATION
*** TYPE [CR] *** IF HAND DOES NOT STOP HERE.

This information is requested to provide a flag for each location. If

the flag indicates that the hand is to stop at that location then an

acceleration profile is created for the trajectory to this point. If

the flag indicates that the hand does not stop at that location, then
no acceleration profile is created and the trajectory passes through
that point at the velocity specified in the elemental move command.

This completes the data required to totally describe a location. The
operator is now given the opportunity of entering another location
point or displaying the location table itself on the terminal for his
inspection:

*** TYPE[CR] *** FOR ANOTHER POINT
*** TYPE +1 *** TO DISPLAY TABLE

3.5 Exit Location Module

To exit from the teach-location portion of the control system, switch
29 is flipped down and a carriage return is entered.

II-

a

CONTROL SYSTEM IMPLEMENTATION

III-l

III. CONTROL SYSTEM IMPLEMENTATION

1. CONTROL SYSTEM OPERATION III-3

1.1 Control Hierarchy (Module #1) III-3
1.2 Program Module (Module #2)

1.3 Location Module (Module #3) III-8

2. IMPLEMENTING A NEW FUNCTION III-ll

2.1 Subroutine Design III-ll
2.2 Control Hierarchy Modification III-ll
2.3 Program Module Modification III-15

3. PORTABILITY III-16

3.1 Input Channels III-16
3.1.1 Function Switch Panel III-16
3.1.2 Joystick Control Box III-16
3.1.3 Joint Position Indicator Input III-16
3.2 Output Channels III-16
3.2.1 Joint Position Command Outputs III-20
3.2.2 Brake Control Output III-20
3.2.3 Interlock Channels III-20

4. ADVANTAGES OF HIERARCHICAL CONTROL SYSTEM . Ill-21

REFERENCES III-24

III-2

III. CONTROL SYSTEM IMPLEMENTATION

This chapter will concern itself with the manner in which information
is processed by the subroutines to accomplish all of the responsibilities
of the control system. Included here will also be an example of the
procedure used to incorporate a new subroutine into the control system.
The system documented here, is presently implemented on a 16 bit word
length minicomputer, running under DOS (Disc Operating System), with
32K words of core and a 1.2 million byte disk storage system. All of

the subroutines (except the I/O drivers) have been written in FORTRAN,
compiled on this computer and their object modules linked to form a

single run-time load module. If a prerecorded robot application
program and table of location points are to be used, then these two
files are assigned to the load module at run time. These files are
read in from the disc by the subroutine RDMOD.

The load module contains all of the control system modules - the
program module, the location module and the control system hierarchy
including all of the support subroutines.

The operator communicates with the control system through a CRT terminal,
the previously described switch panel and the joystick box.

1 . CONTROL SYSTEM OPERATION

The architecture of this control system is based on a non-intelligent,
deterministic system. Essentially, all data that is an input to the
control system (control flags, location table pointers, sensory data,
etc.) is treated as a form of a pointer (or address) to a file location,
subroutine call, or section of code. The control system has been
partitioned into different control levels which have been further
partitioned into simple general purpose subroutines. A high level
command input is in the form of pointers and flags which cause control
to branch to the appropriate sequences of subroutine calls. Incoming
sensory feedback data is typically tested against a threshold level.
The section of code to be executed is determined by whether the
sensory data is above or below the threshold value. Thus, this
hierarchical system executes real time control over the robot by testing
and branching to sequences of simple subroutines.

1.1 Control Hierarchy (Module #1)

The control hierarchy receives input commands as individual lines
(elemental moves) from the program table. Each line is an input to
the third level ("EMOVE") to generate the correct sequence of calls to
the second (primitive) level (see Figure 15 for a diagram of the sub-
routines in the hierarchy). The pointers to the location table address
the proper position values of the end points of the trajectories.

III-3

t

CO

> 13
0 Q.

0 +-> c:
113 •r—

O
S- >-
.0 0 0
13 +-) a.<c LJl.

(/)

S-
0

+j
=-1.

E cu C/1

O) CL CU CU 0 >-
+-> 0 > QJ
I/) CU Z>

4- LlJ

I/) Cn4- C/1 c

+-> o CU
0 E /1

1

s- 0 CU •I

—

4-> S- a
C 4- OJ +->

0 X 0
1/1 ai (/) s- CD
-D Z3

O) e c 0
x: <T3 03 1/) >—
+-> E cn U

E OJ CU
0 ^

0 0
0 VE -M

s- 0 0
0 0 +J

4- S- LU 0
-)-> 0

-0
dj S_ >) 03
c 03 CO >-
c: 0 eC U 0
0 1— 03
0 03

0 0 S-
ID +-> _J cu
+-> r3 C

0
•1

—

(/I <U
CU 1

%

CU^ ^ a +-> CD
+-> +-> 0 in

E 4- 0 _

M- (/) 0 >
0 s- c: s-

0 0 cu
-M CU </)

0 •r— +j >
SZ (C CU CU fT3

4-> 0 CJ
03 E 0 4-> E
•4-> -0 CU

-M S- 0 4->

O) 03 +-> (/)

(/) sz >>
CU 4-> +-> -t-> CO
S- 0
Q. E CU Q-r—
CU 03 Cl_ +J O
S- S- — I— 13 S-

CT) O +->

U O CU C
•r- S- .— . ^ O
+-> Q. :3 >^ 0 0
03 "D ^ -I—

E 0 0 SZ CU

E S- S s:
03 -M

0 E S- I—
CO 03 CU CU C

S- •1- > CU
CU CU cn^ CU CU

X 0
1— CU S- 4->

Q. 0 T3 CU
CU S- E JD

CU +-) 0
C U +->

cn +-> 0 CU Z3
1—1 CO 0 CO Q.

•1

—

Q. +J
(U 13 CU CU0 ^ ^ 0

q; 4-> 4->

CDQ- -0
X 03 C 4-

U- UJ 0 •.- 0 03

Trajectories are modularized into 3 path segments (Figure 14), a

critical path segment at each end of the trajectory (the approach paths)
and a non-critical segment that is the portion of the trajectory between
the two approach paths. The approach paths are executed at a

relatively slow velocity with accurate control of the path and orientation
of the hand. This is accomplished through a call to "STLINE." The
non-critical middle section of the trajectory is executed at
relatively high velocity with simple liner interpolation between the

joint values that specify the end points of the two paths. A call to

"CALD" determines the distance between these two end points. This
value is used by "POL" and "ACC" to generate the joint position commands
to move the arm through this trajectory segment at the designated
velocity.

Sensory feedback for real time control is obtained through calls to

"ARMIN" to read in the values from the A/D converter. The subroutines
that process this information use simple algorithms to generate new
position commands, in many instances requiring coordinate transformation
(a call to "COOR") to command motion in joint coordinate space in accord
with feedback in sensor coordinate space. These joint position
commands are sent to the arm by a call to "SERVO" which calls the driver
"ARMOUT" to output these values to the D/A interface which is connected
to the hardware servo system.

1.2 Program Module (Module #2)

When an elemental move command is entered by the operator, the
programming module codes these English-word-like statements into a

number of pointers and flags (see Figure 16). All of the subroutines
contained in the programming module are used to generate or edit this

table of pointers and flags which will form the input commands to the
third level of the control hierarchy.

The relationships between the subroutines of the programming modules
is shown in block diagram form in Figure 17.

The detailed workings of these subroutines are covered by the next
chapter where the functional flow charts and the documented FORTRAN
code is listed.

The functional activities of the programming routines can be
summarized in the following manner. Editor commands (INSERT, DELETE,
PRINT, AVOID, RECORD, LOOP, NAME) are decoded by a test on the ASCII
value of their first letter by the subroutine PROGS. This determines
which of the editor subroutines is to be called. Other subroutines
(LIMIT, NEXT) search the operator entered commands for the key
information symbols. The subroutines "LINE" and "LOCPT" code the English-
like elemental move commands into the proper location table pointers
and function flags. The subroutines "PLINE" and "PTNAME" decode these
pointers and flags into the English-like elemental move commands and
print them on the terminal.

III-5

i^*^ line in program table

Poi nter

for present
location

Pointer
for
destination

Velocity
indicator
in cm/sec

Interlock
channel
numbers

Optional

,

not presently
used

Function
code
number

Specific example for the elemental move coimand GOTO PALLET (03) GRASP PROX VEL0CITY(15)
SEND(03) WAIT(IO). The line in the program table would look like (assuming the present
position was neutral):

74 03 15 310* 3

The following is the corresponding function code number for
the presently implemented functions.

Function Code Number

grasp
release

grasp proximity
release proximity
detect
balance
unstack
touch
line

*The output channel number is multiplied by 100 and added to the
input channel number.

Figure 16 - The program table representation of an elemental move command,

III-6

Q
O
cr

CO

cr

O)

c_i

Cl.o
o

UJ
z:
cr

OJ
-l->

O fO
•1

—

OJ CL
c: o

S-
+-> Q.

Q.
o fO
S-
JD <D
=3
to -M

OJ O
+->

+->

to
O)

O)
O) a
3
4->

O) S-
XJ

(/) a
c

o
•1

—

+-> to
u -a
O) c:
c: 03

E
o E
o o
s- o
OJ
+-> +->

=3
Cl
C

<D • 1

—

to

4-
_
s-

O o
-l-J •

(C to
o -o

•I

—

O)
+-> Q. 03
(t5 O E
+-> E
C o
O) ^ u
CO +->

OJ 0)
to to

Q. S- (U
OJ o
S- -M

o
•r— o +->

+-> E Z5
03 u
E oo cu
OJ Xo OJ
u
to D_ o

+J
cu

1—
03

-o
o OJ
E

I—

1

E »->

OJ 03
o
s-

cn O -O
s-

Ll_ Cl to

III-7

The output from the program module (in the form of a program table)

becomes the sequence of commands to the third level of the
hierarchical control system. Each line in this table corresponds to

an elemental move command and contains six positions for pointers and

flags (Figure 16).

1.3 Location Module (Module #3)

The subroutines of the location module perform the function of

generating and storing the required information for each location
point so it can be used by the control system in the execution of the

elemental move commands. A block diagram of these subroutines is

shown in Figure 18. Translation of the location name into the correct
pointer value is accomplished by "LOCPT." When arrays of locations are

to be entered, "ARRAY" requests the necessary dimensional information
and "ARRLOC" generates the required values for each location of the

array. When joystick control is to be used, "LOCTAB" makes a call to

"JOY" which reads in the present joint position values of the arm by a

call to "POS." "JOY" also reads in the commanded x,y,z offsets from
the joystick by a call to the assembly language input driver, "ARMIN"
and generates the new joint position commands by a call to "COOR" to

perform the coordinate transformations. These joint position commands
are sent to the arm by a call to "SERVO" which outputs these values to

the hardware servos by a call to the assembly language output driver
"ARMOUT." In the present system, the location table can store information
on 86 different locations. Indexed location names are assigned pointer
values of one to 60 (three indexed names are allowed - each containing
twenty locations). One arbitrary name for each letter of the alphabet
is allowed and assigned pointer values 61 through 86. The last two
pointer locations (89 and 90) do not store position information. Instead,
the ASCII code for the complete names of the indexed locations reside
in these positions.

A pointer to the location table designates a group of four sequential
lines of seven positions each. The information stored in these four
lines is detailed in Figure 19. Two of the lines are particular for
the specific robot executing the application program. They contain
the joint indicator values that characterize the position of the arm
for that location point.

The other two lines contain information that describe the location in

an external X, Y, Z coordinate system. This information is robot-
independent in that it can be post-processed by another robot's coordinate
transformation routine into joint position values specific for that
robot. Therefore, the table of location points, stored in terms of
this external coordinate system, can reside in a central control computer
to be post processed by the specific coordinate transformation routine
of the robot that is to use this location table.

III-8

O
_J
ctr

or:

cr

or
o
o
CJ

CD
O
a_ ct:

cr

o
CD
CJ

>-
az

cr

QD

TR

CJ
CD

o
o
CJ

ct:

cr

o
"D

X
LU
CD
Z

CO
o
Q_

CE

cc:

en

CE

o eu
+J

l/l ra

CD •1

—

S-
•r- CL
+-> o

S-

o Ci
CL
n3

CO o
+->

CD
(/)

+-> CU
-c:

u
CD
d) n3

S J-

-M JD
CU a

c:
nD

d
o CO

-a
+-> c:
u ro

E
E
o

o CJ
CJ

+J
OJ Z3
-M C2.

c
'1

—

*r-

CU CO

-(->

o
M- -)->

O rn

CU
o CL
o

-M
fO CU
+->

-)->

OJ
(/) 00
CD S-
s- o
Q.-l->
<U
S- c:
o

u E
•1

—

+-> OQ
fc =3:

E 1—
O) o
-c o
u _I
to

OJ
CD

1—

-o
! o
E

CO
I—

1

c
o

CU •r—

S- +J
(T3

CD CJ
O

Li-

III-9

Pointer XX locates a set of four - 7 element-lines in the location table

(LTAB(XX, 1-4, 1-7)) to completely describe a single location point.

Line 1

JIlp J2lP ^\p J\p J5lp J6lp

Line 2
\P \P i j k

STOP FLAG

Line 3
jh

AX

AY AZ

Line 4 ^^APP ^^APP ^Vp JS^pp
^^APP

Line 1 and line 4 contain the position values of the six joints to describe the

location point and the starting point of the approach path. These two lines will

contain values unique to a particular robot's position servos.

The other 2 lines (line 2 and line 3) contain the description of the location

point in an external coordinate system system. Line 2 contains a description

of the location point in the same format as used by the CLDATA file to store

location values. These are the coordinates of (X|^, Yj^, Z|^^) the location

point and the i , j , k unit vectors to describe the direction of the hand-

wrist axis (surface normal). This provides a 5 axis description. The 6th

axis, the direction of a vector perpendicular to the hand wrist axis and

passing through the two finger tips (the hand rotation) is described by the

unit vectors i, , j, , k, in line 3. The delta X, Y, Z distances (AX, AY, AZ)

from the locatfon Poin"? to the start of the approach path are also contained

in line 3. The stop flag, to indicate if the hand comes to a stop at this

location (used to decide on acceleration-deceleration profiles) is stored

in the seventh position of line 2.

Pointer Value

1 - 20

21 - 40

41 - 60

61 - 86

Figure 19 - The

Name Description

20 pointers allocated for the first indexed location name

20 pointers allocated for the second indexed location name

20 pointers allocated for the third indexed location name
i

26 pointers allocated for 26 names each starting with

a different letter of the alphabet.

Location Table representation of a location point.

III-IO
j

2. IMPLEMENTING A NEW FUNCTION

2.1 Subroutine Design

Functions, specified by elemental move commands entered in the program
module, are executed by branches to the appropriate subroutine (or

sequence of subroutines). Therefore, a new function, such as implementing
a new operation using sensor feedback, requires the addition of the

user supplied subroutine(s) to accomplish it. In addition, modifications
have to be made to two subroutines (LINE, PEINE) in the program module
and one subroutine (EMOVE) in the control hierarchy module.

The approach in developing these subroutines that are the primitive
functions has been to make them as general as possible. This allows
them to be more easily used in sequences to perform other operations
as well. To this end, it is also advisable to limit their scope to a

very simple action. Again, using sequences of these simple actions to

perform more complex actions.

As an example, consider a user requirement to insert a part into a

vise where the part is to be pushed against a bottom plate within the
vise to properly seat it. A subroutine to accomplish this seating
action using a force sensor in the wrist would be written by the user.
It might employ a simple algorithm such as:

(a) read in the sensor value
(b) if its above a predptermined threshold value go to (e) otherwise

continue
(c) move a defined incremental distance in the -z direction
(d) go to (a)

(e) exit subroutine.

This subroutine might be called FORCE. It performs a very limited,
simple action. This action in itself is insufficient to accomplish
the actual operation (which will be called INSERT). The primitive
(RELEAS) to cause the hand to release the part must also be called.
This releasing action could have been written into the primitive FORCE
but this would have increased the complexity of its actions and
thereby narrowed its range of application to other operations.

2.2 Control Hierarchy Modification

To implement this new subroutine requires a modification in the control
hierarchy's third level (EMOVE) to test for its function code number
in the elemental move command input and to branch to its calling
statement. Figure 16 shows that code numbers 1 through 9 are
presently being used. Therefore, this INSERT operation could be assigned
number 10. The value of the function code number is used to control
two multiple "GOTO" statements in EMOVE. In this way, the function
number acts much as an address to the location of code to execute it.

Figure 20 shows how the relevant code is to be modified for this example.

III-ll

I
EMOVE before modifications (changes handwritten in)

C

FUN=1+£LE(6J
GaTOC20»20,20,3#a,20,20»7,8,20)FUN

C

C IF THERE IS AM APPROACH PATH, IT IS GENtRATEO AND EXECUTED «Y

C THIS CALL TO ' STLINE '
,

C

20 CALL STLINE(-LTA3CELEC2),3,a),-LTA8(ELE(2),3,!5),-LTABCELE(2),3,6),l}
IF (EAeORT,LT,-2000)GOTO HO
CALL WAIT(3a) ^/

C

C THIS MULTIPLE 'GOTO' STATEMENT CAUSE^THE BRANCHING TO THE APPROPRIATE
C COUt TO CARRY OUT THE FUNC T I ON/^PEC I F I ED ,^ ,0 Call Force.

C

GOTQ(110,l,2,3,a,5,6,7,8,110)FUN
C

C THIS IS THE CODE FOR A 'GRASP PROXIMITY' FUNCTION. THE HAND IS

(Call <?ele3seCc>
^ ^ V

A Call 5-ii''<^'^C-off0)rO<rC2)^-0ff(3)^i)

<_ GOTO ¥3S'

I
EMOVE after modifications

C

FUN=1+ELE (6)
GOTO(?0,20,20,3,4,20,20,7,6,20,203FUN

C

C IF THERE IS AN APPROACH PATH, IT IS GENtRATED AMD EXECUTED BY
C THIS CALL TO 'STLINE '

,

C

20 CALL 5TLlNEC-LTAb(ELE(2),3,a3,-LTAB(ELE(2),3,5),-LTABCELE(2),3,6),n
IF CEAbORT.LT,-2000)GOTO UC
CALL i^'AlT(3a)

C

C THIS MULTIPLE 'GOTO' STATEMENT CAUSES THE BRANCHING TO THE APPROPRIATE
C CODE TO CARRY OUT THE FUNCTION SPECIFIED,
C

GOTG(t\0,l,2/3,u,5,6,7,8,110,lO)FUN
10 CALL FORCE

CALL RELtASCO;
CALL ST LI NEC -OFF (1), -OFF (2), -OFF C 3),

n

GOTO ^435

C

C THIS IS THE CODE FOR A 'GRASP PROXIMITY" FUNCTION. THE HAND IS

Figure 20 (a) - Shows the section of code in "EMOVE" before and

after the modifications required for the addition of a new function.
In this example, the new function code number (10) plus one gives
the value of the variable "FUN" used to specify the section of code
to be executed through a multiple "GOTO" statement. The code required
to execute the "INSERT" function is, first, a call to the user written
"FORCE" subroutine to seat the part, a call to "RELEAS" to let go of the

part, a call to "STLINE" to move back the distance covered during the
"FORCE" subroutine and to branch to statement 435 to test for interlock
signal s.

III-12

^ LINE before modifications

C

C

bU

C

C

C

65

• TOUCH'

C

C

IF(CS(PN) ,NE,8276)G0T0 65
PR0G(PLN,6)=8
GOTO 81

'LINE'

IF (CS (PN) ,NE, 8268) GOTO (85
PR0G(PL'^/6)39
GOTO 81

ASCLL Code fo- f<lc

PROG (P^ N
,

<i>) / O
Qoro 81

TEST FOR A 'VELOCITY' COMMAND, IF THERE IS ONE THEN DECODE THE
ASCII FORM OF THE SPECIFIED VELOCITY (CM/SEC) BY A

LINE after modifications

w

C 'TOUCH'
C

6« IF(CS(PN) .NE,8276)G0T0 65
PR0G(PLN,ft;=8
GOTO 81

C

C 'LINE'
C

65 IF(CSCPN) ,NE,8266)G0T0 66
PROGCPLN, 6)=9
GOTO 81

i

^

C 'INSERT'

' 66 IF(CS(PN) .NE.e265)G0T0 85
PHOG(PLN, 6)510
GOTO 81

C

, C TEST FOR A 'VELOCITY' COMMAND, IF THERE IS ONE THEN DECODE THE
i _C ASCII FORM OF THE SPECIFIED VELOCITY CCM/SEC) BY A

Figure 20 (b) - Shows section of code in "LINE" before and after
I modifications to code and store the new function command in program
I table. The additional code is a test for the first letter ("I") of

the new function command (INSERT). If an "I" is detected then the
appropriate function code number (here, it is a 10) is stored in the
sixth position of the present line of the program table.

III-13

1
PLINE before modifications

C 0 M M 0 N / C M D / C S (5 01j_PNi_^^LJi

DIMENSION FNC6,(1^3
DATA FN/6*
2 •GR' ,

' AS »
' P ,3* '

' f

3 ' R£ •
I 'LE • AS , 'E ,2*' ',

a 'GR' , 'AS " P , 'PR , 'OX' , '
'

5 'R£' (
' LE t ' AS , 'E , ' PR

'
,

' OX

'

6 'OE •
,

' TE 1
' CT » 3* '

IF THE FIRST LIME OF THE PROGRAM MODULE IS TO BE PRINTED OUT,

PLINE after modifications

CC^^MON/C^^D/CS (50) , PN, PLM
D1^^ENSI0N FrJC6,U)
DATA FN/6*' ',

? 'GR 1
' AS 1 P ,3* '

' ,

3 'RE • LE 'AS , 'E ,2* '

a 'GR t •AS ' P , 'PR , 'OX •

,
1

5 'RE • LE 'AS , 'E , 'PR' ,
• OX

6 'OE ' TE 'CT ,3*' ' ,

7 ' BA t 'LA / ' NC , 'E »2* '

8 ' UN t
' ST ' AC , 'K ,2* '

' f

9 ' TO ' UC • H ,3* '
' ,

I 'LI • NE a*

'

' ,

1 'IN t ' SE ' RT # 3* '
' /

IF THE FIRST LI^E OF THE PROGkAf^ MODULE IS TO BE PRINTED OUT,

Figure 20 (c) - Shows section of code in "PLINE" before and after
modifications to cause a print out of the new function name. The

array that contc^ins all of the possible function names is enlarged
by one line and the letters to be printed out are stored.

7

8

9

BA
UN
TO
LI

3*

III-U

2.3 Program Module Modification

Two subroutines (LINE, PLINE) in the program module are to be altered
so that the new function command, INSERT, can be recognized and coded
into its function number (LINE), and decoded and printed on the
terminal (PLINE) by the editor PRINT command. The modifications for
this example are illustrated in Figure 20.

s.

III-13

3. PORTABILITY

The partitioning of the entire control system into a number of modules
with well-defined interfaces to the rest of the system results in a

large number of the modules being independent of both the robot they
are controlling and the computer system they are running on. Those
instances where the control system must interface to either the host
computer system or to a particular robot can be contained in a limited
number of modules. These modules have been identified and it is only
these modules that require alteration for portability of the control

system (Table 6)

.

3.1 Input Channels

As mentioned before, the operator communicates with the control system
through a terminal, a switch panel, and a joystick control box. The
values of the switches and the joystick control box are read into an

input buffer through a call to the assembly language driver ARMIN.
Thus subroutine reads in 64 channels through a 14 bit A/D (Analog to

Digital) converter and stores these values in the common variable
INBUF(64)= This call takes approximately 4 milliseconds to execute
(the maximum conversion frequency of the A/D unit is 20 kilohertz).
Table 7 provides a summary of the functions of the 64 input channels.

3.1.1 Function Switch Panel

The switch panel consists of eight switches which can be set to +5.0
volts or reset to 0.0 volts. These values are read into the computer
through the D/A converter with a value -4000 corresponding to a +5.0
volts and zero corresponding to 0.0 volts.

3.1.2 Joystick Control Box

The joystick control box uses a joystick in two dimensions actuating
two potentiometers to provide the delta offsets in the X and Y direction.
The Z motion is provided by two buttons, one for up and one for down.
Push buttons also provide control of the wrist roll, wrist flex, hand
roll and opening and closing of the fingers. A detailed listing is

provided in Table 7.

3.1.3 Joint Position Indicator Input
|

The joint position indicators are also read in through the A/D converter
and range from +10 to -10 volts resulting in values of -8383 to +8383
into the computer.

3.2 Output Channels

A call to the output driver ARHOUT will cause the values in the first
16 locations in the common variable 0UTBUF(64) to be sent to the interface.i
The system allows 64 output channels but only 16 are presently implemented;

III-16

Table 6

Non-Portable Functions

These are the subroutines whose functions are tailored to either the

host computer's system or the particular robot, and must be modified
to allow the control system to be implemented with a different computer
or robot.

Subroutine Name Function

RDMOD

RECORD

ARMIN

ARMOUT

COOR

Used to interface control system to

host computer's file accessing method.

Causes the previously recorded
location table and program table to be

read from host computer's mass storage
into the control system's programs.

Causes the program table and location
table to be written into the host
computer's mass storage system.

An assembly language input driver
to read the input values from the
system interface and store in a

input buffer to be accessed by the

control system subroutines.

An assembly language output driver
that sends the values stored in an

output buffer to the system interface.

This is the coordinate transformation
routine that allows conversion of

X, Y, Z coordinate values into the

corresponding joint coordinate
values and vice versa for a particular
robot. As provided here, only a three
axis (two shoulder rotational and a

boom prismatic joint) coordinate
transformation is done, with the
remaining 3 wrist joints pantographing
the shoulder moves. This was all

that was required for the demonstration
using workpieces on a bench top.

However, the complete 6 axis coordinate
transformation routine is being
implemented and is required for complete
general purpose programming of the robot,

III-17

Table 7

Listing of the input channels read into the command variable "INBUF(64)"
by the call to ARMIN.

INPUT
CHANNEL
NUMBER

1

2

3

4

5

6

7

8
9

10

ir
12

13

14

15

16

17

18

19

20

21
22

23
24

25
26*

27*
23**
29**
30**
31**

32**

33**

34**

35**

FUNCTION

INPUT
VOLTAGE
RANGE

CORRESPONDING
COMPUTER
VALUES

joint #6 position

joint #2 position

joint #3 position

joint #4 position

joint #5 position

joint #1 position

joint #7 position

trajectory velocity
control

finger grasp-release
interrupt-abort
enter location
edit program
store on disc, or

display XYZ values
joystick control

pause, or enter
location with XYZ

val ues

start, repeat

•10 to +10

•10 to +10

10 to +10

10 to +10

10 to +10

10 to +10

10 to +10

2.7 to 4.0

0, 4.6

0, 4.6
0, 4.6

0, 4.6
0, 4.6

0, 4.6

0, 4.6

0, 4.6

8191 to -8191

8191 to -8191

8191 to -8191

8191 to -8191

8191 to -8191

8191 to -8191

8191 to -8191

-2160 to -3160

0, -3700

0, -3700

0, -3700

0, -3700

0, -3700

0, -3700

0, -3700

0, -3700

III-18

Table 7 cont.

INPUT
CHANNEL
NUMBER FUNCTION

36

37*

38*
39*

40*
41*
42*

43

44
45

46

47

48
49

50

straight line
velocity control

wrist roll

wrist flex
hand roll

X motion
Y motion
Z motion

proximity sensor
proximity sensor

not used

64

* Joystick Box Input Channels
** Switch Panel Input Channels

INPUT
VOLTAGE
RANGE

CORRESPONDING
COMPUTER
VALUES

0, 4.6

0, 4.6

0, 4.6

0,

.9

.9

4.6
to 1.9

to 1.9

0, 4.6

0, -3700

0, -3700

0, -3700

0, -3700
-730 to -1450
-730 to -1450

0, -3700

0 to -lOv
0 to -lOv

0 to 8191
0 to 8191

III-19

3.2.1 Joint Position Command Outputs

The position command output values to the six joints and the fingers
of the robot are sent on the first seven output channels. These channels
in the interface unit (see Appendix A for a detailed description of

the interface unit) are connected to a digital to analog converter to

provide analog signals to the hardware servo system. Output values
from the computer range from 0 to 32767 corresponding to the range of
+10 volts to -10 volts respectively (with 16383 corresponding to zero
volts).

3.2.2 Brake Control Output

Output channel number 8 is used as a digital output for individual
control of the seven sets of brakes (one for each joint and one for
the fingers). A fifteen bit word is sent out on channel 8 with the
first seven bits used as switch values for setting the brakes. With
all of the bits equal to one (i.e. the value of the word's 32767), the

brakes are released. To set the brake on the fingers, the seventh bit
is set to zero. This requires the number 32703 (i.e. 32767-64) to be

sent.

3.2.3 Interlock Channels

There are eight additional output channels (numbers 9 thru 16) that
can be used either as digital or analog outputs to control other
devices or send interlocking signals on. The "SEND" command presently
outputs a value(8192) on the specified channel number that results in

an analog signal level of +5 volts.

III-20

4. ADVANTAGES OF HIERARCHICAL CONTROL SYSTEM

A summary listing of the advantages afforded by the hierarchical
control system architecture described in this report is given in Table
8.

III-21

Table 8

Summary of Control System

(1) The system has been modularized, resulting in :

(a) easily defineable functional specifications, interfaces, and
communications requirements;

(b) the defining and isolation of those parts of the control
system that are specific to the host computer and particular
robot;

(c) relative independence of the robot programs and their standard
coordinate location tables from the particular robot, thereby
allowing off-line programming as well as location table
generating from other data bases such as CLDATA files;

(d) a control system compatable with the addition or deletion of
extra functions, sensors etc. (accomplished with addition
or deletion of subroutines along with minor modifications to

the existing system);

(e) quick and simple control system code generation and debugging.

(2) The system has been structured as a deterministic hierarchy of
functional levels resulting in :

(a) sophisticated programming techniques using simple higher level

language commands to ease and speed program entry, where the

hierarchy provides amplification of a single command into the
large sequences of detailed steps required to accomplish it;

(b) minimal information processing and transfer within and between
levels due to the deterministic feature where only a limited

set of states are allowed; the hierarchy that provides a

fast and efficient method of chosing between these states based

on simple tests of input information flags;

(c) the ability for real time sensor control of a multiaxis robot
on a small computing system; this is due to the simplicity
of information processing (described above) which requires
a relatively small number of computations allowing the tra-

jectories to be modified in real time in accord with the sensory
feedback.

m-22

(3) The control system has been written in FORTRAN IV resulting in :

(a) relative portability of the system to other host computers
(where the computer-dependent modules have been identified);

(b) an ease in understanding of the code due to the simplicity of
FORTRAN and its universal use;

(c) the ability of the user to add additional features easily by

writing his own FORTRAN subroutines;

(d) the ability to implement the control system in assembly
language on microprocessor or minicomputers since it is a

rather straight forward task to cross code FORTRAN statements
into assembly language.

Ill- 23

REFERENCES

1. R. Finkel, et. al
. , AL, A Programming System for Automation,

Stanford Artificial Intelligence Laboratory Memo. AIM-243,
STAN-CS-74-456, Stanford University, November, 1974.

2. P. M. Will and D, D. Grossman, An Experimental System for Computer
Controlled Mechanical Assembly, IEEE Trans, on Computers, Vol.

C-24, No. 9, 879-888, September, 1975.

3. J. Nevins, et. al . , Exploratory Research in Industrial Modular
Assembly, C. S. Draper Lab Report No. R-921, August, 1975.

4. C. Rosen, et. al . , Exploratory Research in Advanced Automation,
First Semi-Annual Report, SRI Project 2591, Stanford Research
Institute, Menlo Park, California, December, 1973.

5. R. M. Spencer, High Level Control of Reprogrammable Automatic
Assembly Machines, Master's Thesis, Electrical Engineering

'- Department, Massachusetts Institute of Technology, 1975.

6. J. S. Albus, and J. M. Evans, Jr., Robot Systems, Scientific
American, Vol. 234, No. 2, pp 76-86b, February, 1976.

7. J. S. Albus, Data Storage in the Cerebellar Model Articulation
Controller (CMAC), Journal of Dynamic Systems, Measurement, and
Control Trans. ASME, Series G, Vol. 97, No. 3, pp 228-233,
September, 1975.

III-24

APPENDIX A

A-1

I

1

APPENDIX A

Interface Design

Data transfer between the laboratory hardware and the PDP-n/45 mini-
computer is handled via a DRll-C interface card in the computer. This
card has 16 data input lines, 16 data output lines, two interrupt
lines and two sync lines, one (data transmitted) for input synchroni-
zation, and one (data present) for output synchronization.

The DRll-C is connected to the laboratory interface by forty parallel
wires powered by 7406 line drivers. These are open collector circuits
with resistors connected to the power supply voltage at the receiving
end.

The laboratory interface hardware consists of two parts: an input section
and an output section.

Input:

A sixty four channel analog multiplexer followed by a 14 bit analog to

digital converter forms the heart of the input section. This unit has
a range -10 volts to +10 volts. Negative voltages are converted to

2's complement form.

Output from the A/D converter is carried to the computer on the 16

data input lines. Since the A/D converter has only a 14 bit output,
the most significant (sign) bit is connected to the three most
significant computer input lines. This causes the computer to read the
correct values for both positive and negative (2's complement) numbers.

Data transfer between the A/D converter and the computer is signaled
by a pulse on the data transmitted line. This pulse, initiated by the
computer, indicates that the data lines have been sampled. This
data transmitted pulse is used to step the analog multiplexer to the
next input and to initiate the analog to digital conversion cycle on
the new input input voltage. The input software is timed to sample
the input data at a rate slower than the conversion rate of the A/D
system. Thus, a "conversion completed" signed is not required by the
computer, and only one control line is needed to advance the converter
to the next channel

.

The multiplexer is operated in a sequential mode. It is reset to the
zeroth channel by a reset pulse derived from the output section. Each
data transmitted pulse steps the multiplexer to the next sequential
channel. The input section is therefore completely under computer
control

.

A-3

Output:

A sixteen channel digital demultiplexer routes output signals from the
DRll-C to sixteen holding registers. These provide either digital
output directly, or are connected to digital to analog converter so as

to provide analog voltages. Data transfer between the DRll-C and the
output section is initiated by a pulse on the data present line. The
data present pulse occurs simultaneously with the appearance of data
on the DRll-C output lines. This pulse is delayed in the laboratory
interface hardware for two microseconds before actuating the digital
demultiplexer so as to allow the data lines time to settle. The
delayed data present pulse gates the output data into the selected
holding register and then steps the address counter to the
next address.

The most significant (sign) bit of the output is decoded as a reset
signal and is used to set the demultiplexer address counter to Channel
1 as well as to reset the analog multiplexer address in the input
section.

Using the sign bit for control means that only 15 bits of output are
available for data. Numerical output is restricted to the range 0 to

32,767. The digital to analog converters are adjusted such that numerica
0 corresponds to +10 volts; 16,384 corresponds to zero volts, and
32,767 corresponds to -10 volts.

A-4

Comments

This report describes an architecture for a control system. Its

emphasis has been on the partitioning of the control system into a

hierarchy of functional levels. This approach provides a way of thinkin
about the problem that has been very instructive to us. Of course,
the decomposition of a problem or task into sequences of simpler
actions is a very old technique. Indeed, it is an implicit
fundamental method used by human beings in almost all things they do.

So, in that sense, the use of a hierarchical design for a robot
control system is hardly a novel idea.

However, instead of the hierarchy being implicit in our approach we
have made it the explicit starting frame work. The benefits that we
feel have derived from this are many and several have been discussed
in the report.

The control system actually implemented in this report is a minimum
configuration for a robot performing simple manipulative tasks. It is

provided here as an example of how to construct a sensory

interactive, goal directed control system when one uses a hierarchical
framework to structure the problem. It also demonstrates the ease of
greatly increasing control capabilities by the addition of higher
levels in the hierarchy while retaining the already developed lower
levels. Thus, the system is upwards compatible to almost any degree
of complexity of behavior.

Increases in complexity of behavior will usually require increasingly
complex sensory data processing such as might occur with force or low
level vision. We view the sensory processing required occuring in an

ascending hierarchy parallel to the descending control hierarchy with
the exchange of differing degrees of processed information between
these two hierarchies at all levels. Thus, the control hierarchy will
continue to make simple tests on sensory feedback input and branch to
appropriate programmed responses regardless of the complexity of the
sensory data processing.

This sensory data processing will be occuring in the sensor feedback
hierarchy not in the control hierarchy.

USE OF MICROPROCESSORS

One of the major points of this approach has been the partitioning of
a sensory interactive control system into a number of functional '

levels. Implicit in this, is the idea that each of these function
modules is an independent system, operating all the time, communicating
to other control or sensory modules through standard interfaces
anytime it needs to receive or send information. The use of a single
computer severely restricts this type of system.

These modules can be made to appear to be independent and parallel
through complex software manipulation such as real time multi-tasking
operating systems on a serial computer. But even a fast computer soon
runs out of time to perform all the functions as the requirements of
the control system increase.

The obvious solution is for each level of the hierarchies to reside in

an inexpensive microprocessor. Information to be exchanged would be

placed in common memory. Several levels might be combined into one
microprocessor depending on the simplicity of and number of functions
to be handled. A separate microprocessor could be allocated for the

coordinate transformation routine and one for safety and error
checking routines. Future development work will address the use of

microprocessors in these hierarchical network structures.

PROGRAMMING STRATEGY

This report presents not only a philosophical approach to the design
of a control system but also the documented FORTRAN programs that
implement a minimum configuration sensory interactive control system.
This has been done to provide both a concrete example of a

hierarchical control system and a starting point for anyone wishing to

pursue robot control system development.

Both the programs and techniques of data handling can be improved and

will be. The programming approach has been to make the system as

table driven as possible, to make the applications programs as totally
separate from the data as possible. We are updating the system in an

attempt to realize these goals.

As new levels, functions, and sensors are added and programming
techniques are improved, additional reports will be written and
distributed.

A-6

Control Hierarchy
(Module #1)

EXPRO - Executive program to oversee entire
control system.

RDMOD - Reads in Program Table and Location
Table for disc.

RECORD - Stores Program Table and Location Table
on disc.

SAMPLE - Allows operator to call up Program
or Location module.

3rd Level of Control Hierarchy

EMOVE - Calls appropriate primitives for each
elemental move command.

DI-2

DI-8

DI-10

DI-12

DI-16

2nd Level of Control Hierarchy

STLINE -- Generates a straight line motion. DI-24
WAIT - Suspends execution and waits for an

input si qnal

.

DI-30
CALD - Calculates the distance between two

location points. DI-32
POL - Calculates the delta joint values for an

interpolated trajectory. DI-36
ACC - Executes interpolated trajectory using

values from POL. DI-40
DETECT -- Uses proximity sensors to detect presence

of object. DI-44
BAL - Uses proximity sensors to center hand over

object. DI-48
GRASP -- Causes fingers to close with a defined force. DI-32
RELEAS - Causes fingers to open completely. DI-56
PTOUCH -- Uses proximity sensors to locate top of an

object. DI-58
COOR - Transforms external coordinates into joint

coordinates and vice versa. DI-62

1st Level of Control Hierarchy

SERVO - Outputs joint position commands through
ARMOUT.

ARMOUT - Output driver that sends output values
to interface.

ARMIN - Input driver that stores input values in a

buffer.

DI-66

DI-70

DI-71

DI-1

DI-2

C PROGRAM : EXPRO
C

C ARGUMENTS :

C

C CALLED BY :

C
C CALLS SUBROUTINES : RDMOD SAMPLE ARMIN SERVO EMOVE WAIT
C

C INPUT DATA : LTAB(90,3,6) = THE PRESENT LOCATION TABLE MODULE
C THAT IS EITHER READ IN FROM THE DISC
C BY 'RDMOD' OR IS UPDATED BY A CALL TO
C 'SAMPLE'.
C PROG(105,6) = THE PRESENT PROGRAM MODULE THAT
C IS EITHER READ IN FROM THE DISC BY
C 'RDMOD' OR IS UPDATED BY A CALL TO
C 'SAMPLE'.
C SW-35 = INPUT SWITCH -35- WHOSE VALUE IS EITHER
C 0 OR -4000 (0 TO +5 VOLTS). THIS SWITCH
C IS USED TO HOLD THE PROGRAM IN AN INITIAL
C STATE UNTIL EXECUTION WHICH IS SIGNALED
C BY FLIPPING THIS SWITCH TO THE UP POSITION
C THIS SWITCH IS ALSO USED TO INDICATE
C WHETHER THE PROGRAM IS TO BE EXECUTED
C ONCE OR REPEATEDLY.
C SW-28 = THE VALUE OF THIS SWITCH IS SET EQUAL TO
C THE VARIABLE 'EABORT' AND IS USED AS AN
C ABORT SWITCH WHICH STOPS THE EXECUTION
C OF THE PROGRAM AND CALLS 'SAMPLE'. THIS
C ALLOWS THE MODIFICATION OF THE PROGRAM
C MODULE, THE LOCATION TABLE MODULE, THE
G STORING OF THESE TWO MODULES ON DISC,
C AND THE RETURN TO EXECUTION OF THE
C PROGRAM AT ANY SPECIFIED LINE IN THE
C PROGRAM MODULE.
C LL = THE SPECIFIED LINE OF THE PROGRAM
C MODULE TO BE EXECUTED NEXT [F ROM ' SAMPLE ']

.

C KK = FLAG RETURNED FROM A CALL TO 'SAMPLE'
C TO INDICATE IF A RE-ENTRY TO A

C PARTICULAR LINE IS DESIRED.
C

C OUTPUT DATA : ELE(6) = THE VALUES OF THE LOCATION TABLE.
C POINTERS AND THE FUNCTION FLAGS FOR
C LINE 'LL' OF THE PROGRAM MODULE (AN
C 'ELEMENTAL MOVE' COMMAND).
C KK = FLAG USED TO INDICATE WHETHER THE
C CALL TO 'EMOVE' IS FOR THE EXECUTION
C OF A LINE IN THE PROGRAM MODULE (KK=0),
C OR THAT EXECUTION IS TO BEGIN AT
C • AT LINE 'LL' IN THE PROGRAM MODULE
C WITH THE ARM STARTING AT SOME ARBITRARY
C LOCATION. COMES FROM THE CALL TO 'SAMPLE
C WHERE RE-ENTRY INTO THE EXECUTION OF THE
C PROGRAM MODULE IS SPECIFIED TO BE AT
C LINE 'LL' AND THE PRESENT LOCATION
C OF THE ARM MIGHT BE ANYWHERE IN ITS
C WORKING SPACE. (KK=1).

DI-3

c

C FUNCTION: SUPPLIES THE THIRD LEVEL OF THE HIERARCHY WITH
C AN ELEMENTAL MOVE COMMAND, IE. REQUESTS THE
G EXECUTION OF A SINGLE LINE OF THE PROGRAM MODULE.
"C ALSO, ALLOWS THE ENTERING OF NEW PROGRAM LINES AND
C .. LOCATION POINTS, AND INITIALIZING THE SYSTEM TO
G BEGIN EXECUTION.
G

IMPLICIT INTEGER (B-Z)
COMMON/ARMBUF/INBUF(64) , OUTBUF(64

)

COMMON/STEP/LL
C0MMON/LMOD/LTAB(90 , 4, 7) ,PRES ,DEST
COMMON/PMOD/PROG(105 ,6) , ENDP , BRNCH (6) ,M
C0MM0N/0UT/JP0S(8)
COMMON/EM/ELE (6

)

EQUIVALENCE(EAB0RT,INBUF(28)

)

C
C INITIALIZE THE FLAG 'KK'.
C

KK = 0

C

C THIS SUBROUTINE (' RDMOD ') READS THE PROGRAM MODULE AND THE LOCATION
C. TABLE MODULE FROM THE DISC AND STORES THEM IN THE MATRICES
g' PR0G(105,6) AND LT AB (9 0 , 3 , 6)

.

G

CALL RDMODC 1 ,0)
C

C THIS ROUTINE ALLOWS THE ENTRY OF NEW PROGRAM LINES
C AND LOCATION POINTS, AND ALLOWS A RE-ENTRY INTO THE EXECUTION OF
C THE PROGRAM AT A SPECIFIED LINE 'LL'.
G

CALL SAMPLE(I)
GOTO 4000

3400 CALL SAMPLE(O)
IF(LL.LE.O)GOTO 4000
KK= 1

GOTO 301
G

C A REQUEST IS MADE FOR THE OPERATOR TO FLIP SW-35 TO THE DOWN
C POSITION SO THAT THE STARTING LOCATION JOINT POSITION
G VALUES CAN BE SENT TO THE SERVOS.
G

4000 WRITE(6 , 400 1

)

4001 F0RMAT(8X' SW 35 DOWN AND',/
1 8X'»»»TYPE [CR]«»»TO INITIALIZE THE SERVOS WITH THE ',/
1 24X'STARTING LOCATION.')
READ(6 , 5000)FHH

5000 F0RMAT(I3)
C

C THE INPUTS ARE READ INTO THE COMPUTER AND SW-28 (THE 'ABORT'
C SWITCH IS CHECKED TO SEE IF IT HAS BEEN SET. IF IT HAS,
G THEN RETURN TO THE ROUTINE 'SAMPLE' TO DETERMINE WHAT ACTION
G SHOULD BE TAKEN.
G

CALL ARMIN
IF(EABORT.LT.-2000)GOTO 3400

DI-4

c

C INSTRUCT THE OPERATOR TO NOW TURN ON THE SERVOS, AND THAT
C SW-35 IS TO BE FLIPPED UP TO BEGIN EXECUTION OF THE PROGRAM.
C

WRITE(6

,

H002)

4002 F0RMAT(8X'TURN ON SERVOS,',/
1 8X' SW 35 UP TO EXECUTE PROGRAM.',/
1 8X'LEAVE SW 35 UP FOR REPEATED EXECUTION.')

C

C SET THE VARIABLE 'M' EQUAL TO THE NUMBER OF EXECUTABLE LINES IN THE
C PROGRAM.

C SET THE VARIABLE 'FR' EQUAL TO THE LOCATION TABLE POINTER
C FOR THE STARTING LOCATION OF THE PROGRAM. SEND OUT THE
C JOINT POSITION VALUES FOR THIS LOCATION TO THE SERVOS, AND
C WAIT UNTIL SW-35 IS FLIPPED UP BEFORE CONTINUING WITH
C THE EXECUTION OF THE PROGRAM.
C

FR=PROG(1 , 1

)

DO 200 FRR= 1 , 6

200 JPOS(FRR)=LTAB(FR, 1 ,FRR)
CALL SERVO(O)
CALL ARMIN
IF(EAB0RT.LT.-2000)G0T0 3^00
CALL WAIT(35)

C

C PLACE THE VALUES (LOCATION TABLE POINTERS AND FUNCTON FLAGS)
C OF THE PROGRAM LINE 'LL' INTO THE MATRIX 'ELE(6)'. THIS IS AN
e 'ELEMENTAL MOVE' THAT WILL BE USED AS A COMMAND TO THE THIRD
C LEVEL OF THE CONTROL SYSTEM BY A CALL TO 'EMOVE'.
C

305 LL=1
301 DO 202 J = 1 , 6

202 ELE(J)=PROG(LL, J)
C

C TEST TO ASCERTAIN THAT BOTH A PRESENT LOCATION (ELE(1)) AND A

C DESTINATION (ELE(2)) POINTER ARE AVAILABLE. IF NOT, THEN
C PRINT OUT AN ERROR MESSAGE ON THE TERMINAL AND RETURN TO
C THE SUBROUTINE 'SAMPLE' TO DETERMINE WHAT IS TO BE DONE NEXT.
C

IF(LTAB(ELE(1) , 1 , 1) .EQ.OGOTO 100
IF(LTAB(ELE(2) ,1,1).NE.0)G0T0 300

100 WRITE(6,101)
101 FORMAKBX'PROGRAM HAS NO LOCATION VALUE ',/

1 2X ' «»»»»»*»»«»»»«PROGRAM ABORTED»»»»»»»*»»»»»»»» '

)

GOTO 3400
C

C THIS SUBROUTINE CALL CAUSES THE EXECUTION OF A SINGLE PROGRAM
C MODULE LINE ('ELEMENTAL MOVE' COMMAND).
C

300 CALL EMOVE(KK)
KK = 0

C

C THE INTERRUPT SWITCH 28 ('EABORT') IS CHECKED TO
C SEE IF IT IS SET.

DI-5

c

IF(EABORT.LT.-2000)GOTO 3^00
C

C THE PROGRAM LINE COUNTER ('LL') IS INCREMENTED. IF THIS VALUE DOES
C NOT EXCEED THE LAST EXECUTABLE LINE, THEN JUMP BACK TO
C STATEMENT 301 TO CARRY OUT ITS EXECUTION.
C

LL=LL+1
IF(PR0G(LL,2) .NE.O)GOTO 301

C

C ONCE THE ENTIRE PROGRAM HAS BEEN EXECUTED, THEN TEST SWITCH 35. IF
C IT IS UP THEN REPEAT THE PROGRAM. IF IT IS DOWN, THEN SIT
C HERE AND CONTINUE MONITORING IT.
C

CALL WAIT(35)
C

C BRANCH BACK TO STATEMENT 305 TO BEGIN EXECUTION.
C

GOTO 305
.END

DI-6

DI-8

C SUBROUTINE : RDMOD
C

C ARGUMENTS : LTM = IF LTM=1 READ THE LOCATION TABLE MODULE
C OFF THE DISC AND STORE IN THE
C MATRIX • LTAB(90 , 4 , 7) ' .

C IF LTMrO DO NOT READ IN THE LOCATION
C TABLE MODULE FROM THE DISC.
C PM = IF PM=1 READ THE PROGRAM MODULE IN
C FROM THE DISC AND STORE IN THE
C MATRIX ' PROG(105,6)'.
C IF PM=0 DO NOT READ IN THE PROGRAM
C MODULE FROM THE DISC.
C

C CALLED BY : EXPRO
C

C CALLS SUBROUTINES :

C

C INPUT DATA : THE PROGRAM MODULE ASSIGNED TO DEVICE NUMBER 7,
C AND THE LOCATION TABLE MODULE ASSIGNED TO DEVICE
C NUMBER 4.
C

C OUTPUT DATA : PROG(105,6) = THE MATRIX CONTAINING THE
C PROGRAM MODULE.
C NTAB(90,4,7) = THE MATRIX CONTAINING THE
C LOCATION TABLE MODULE.
C ENDP = THE PROGRAM MODULE LINE NUMBER
C OF THE LAST ELEMENTAL MOVE
C

C FUNCTION: READS IN THE PROGRAM MODULE AND THE LOCATION
C TABLE MODULE FROM THE DISC AND STORES THEM
C IN THEIR PROPER MATRICES IN THE COMMON BLOCK.
C

SUBROUTINE RDMOD (LTM , PM

)

IMPLICIT INTEGER (B-R),(U-Z)
COMMON /LMOD/LTAB(9 0,4,7) ,PRES,DEST
COMMON /PMOD /PROG (105,6), ENDP , BRNCH(6) ,M

C

C TEST IF 'PM' SET EQUAL TO ONE. IF IT IS, THEN READ IN
C THE PROGRAM MODULE ASSIGNED TO DEVICE NUMBER 7 FROM THE
C DISC.
C

IF(PM.NE. 1)GOTO 400
DO 15 JK = 1 , 105
READ (7 , 15,END=100) (PROG(JK, J) , J=1 ,6)

15 F0RMAT(6(2X,I6))

100 CONTINUE
C

C TEST IF 'LTM' SET EQUAL TO ONE. IF IT IS, THEN READ IN
C THE LOCATION TABLE MODULE ASSIGNED TO DEVICE NUMBER 4

C FROM THE DISC.
C

400 IF(LTM. NE. 1)GOTO 40
DO 14 JB=1,90
DO 14 JC=1 ,4
READ(4, 14, END = 40) (LTAB (JB , JC , J) , J=1 ,7)

14 F0RMAT(7(2X,I6)

)

40 RETURN
END

DI-9

DI-10

C SUBROUTINE : RECORD
C

C ARGUMENTS : LTM = IF LTM=1 STORE THE LOCATION TABLE MODULE
C (LTAB(90,4,7)) ON THE DISC UNDER
C THE NAME ASSIGNED TO DEVICE 2.
C IF LTM=0 DO NOT STORE THE LOCATION TABLE
C ON THE DISC.
C PM = IF PM=1 STORE THE PROGRAM MODULE
C (PROG(1 05 , 6)) ON THE DISC UNDER
C THE NAME ASSIGNED TO DEVICE 3-
C PM=0 DO NOT STORE THE PROGRAM MODULE ON
C ' THE DISC.
C

C CALLED BY : PROGS SAMPLE
C

C CALLS SUBROUTINES :

C
C INPUT DATA : NTAB(90,4,7) = THE MATRIX CONTAINING THE LOCATION
C TABLE MODULE.
C PROG(105,6) = THE MATRIX CONTAINING THE PROGRAM
C MODULE.
C

C OUTPUT DATA : THE LOCATION TABLE MODULE STORED ON DISC UNDER
C THE NAME ASSIGNED TO DEVICE 2.
C THE PROGRAM MODULE STORED ON THE DISC UNDER THE
C NAME ASSIGNED TO DEVICE 3-
C

C FUNCTION: STORES THE LOCATION TABLE MODULE (LTAB (9 0 , 4 , 7)) AND
C THE PROGRAM MODULE (PROG (1 05 , 6)) ON DISC UNDER
C ASSIGNED NAMES.
C

SUBROUTINE RECORD (LTM , PM

)

IMPLICIT INTEGER(B-Z)
COMMON /LMOD /LTAB (90, 4,7) ,PRES,DEST
COMMON /PMOD /PROG (105, 6) , ENDP , BRNCH (6) ,M

C
C TEST IF 'PM' SET EQUAL TO ONE. IF IT IS, THEN WRITE THE
C PROGRAM MODULE ONTO THE DISC.
C

IF(PM.NE. 1)GOTO 400
DO 15 JK=1,105
WRITE(3, 15) (PROG (JK, J) ,J=1 ,6)

15 F0RMAT(6(2X,I6)

)

END FILE 3

C

C TEST IF 'LTM' SET EQUAL TO ONE. IF IT IS, THEN WRITE THE
C LOCATION TABLE MODULE ONTO THE DISC.
C

400 IF(LTM.NE. 1)GOTO 40
DO 14 JB=1 ,90
DO 14 JC=1 ,4

WRITE(2, 14) (LTAB(JB, JC, J) , J=1 ,7)
14 F0RMAT(7(2X,I6)

)

END FILE 2

MO RETURN
END

DI-11

DI-12

C SUBROUTINE : SAMPLE
C

C ARGUMENTS : KG = USED AS A FLAG TO CHOOSE THE MESSAGES TO BE
C PRINTED OUT ON THE TERMINAL.
C

C CALLED BY : EXPRO
C

C CALLS SUBROUTINES : ARMIN LOCTAB PROGS RECORD PLINE
C

C — - INPUT DATA : LL = THE PRESENT PROGRAM LINE NUMBER THAT IS
C BEING EXECUTED.
C INBUF(28) = THE ABORT SWITCH VALUE.
C INBUF(29) = THE VALUE OF THE SWITCH THAT IS USED FOR
C CALLING UP THE TEACH LOCATION POINT
C PROGRAMS.
C INBUF(30) = THE VALUE OF THE SWITCH THAT IS USED FOR
C CALLING UP THE ROUTINES FOR ENTERING
C A PROGRAM.
C INBUF(31) = THE VALUE OF THE SWITCH USED TO
C INDICATE IF THE PROGRAM MODULE AND THE
C LOCATION TABLE MODULE ARE TO BE STORED ON
C DISC.
C

C OUTPUT DATA : LL = THE NUMBER .OF THE PROGRAM LINE TO BE
C EXECUTED NEXT.
C

C FUNCTION: THIS PROGRAM IS CALLED BY THE ABORT SWITCH AND ALLOWS
C THE ENTRY OF NEW OR MODIFIED LOCATION VALUES, THE
C EDITING OF THE PROGRAM MODULE, THE STORING OF THE NEW
C LOCATION TABLE MODULE AND PROGRAM MODULE ON DISC, AND
C THE ABILITY TO RETURN TO THE EXECUTION PROGRAM
C AT ANY LINE IN THE PROGRAM MODULE.
C

SUBROUTINE SAMPLE(KG)
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) , OUTBUF(64

)

COMMON /PMOD /PROG (105, 6) ,ENDP,BRNCH(6),M
C0MMON/IND/IN(30) ,FL(6) ,NAME(3) ,NPT(3,20)
COMMON/STEP/LL
EQUIVALENCE(EABORT,INBUF(28)

)

C

C TEST ARGUMENT 'KG', IF EQUAL TO ZERO, THEN SKIP NEXT MESSAGE.
C

5000 IF(KG. EQ. OGOTO 6000
WRITE(6 , 6240)

6240 F0RMAT(8X' SW 28 UP INTERRUPTS RUN PROGRAM')
GOTO 6235

C

C PRINT OUT PRESENT PROGRAM LINE NUMBER AND PRINT OUT THE ENGLISH
C TEXT OF THIS LINE AS THE ORIGINAL 'GOTO' STATEMENT.
C

6000 WRITE(6 , 6200)LL
6200 F0RMAT(8X • YOU ARE AT PROGRAM STEP', 14)

IF(LL.EQ.O)GOTO 425
MR = 0

DO 204 J=101 , 105

DO 204 L= 1 ,

6

MR=MR+1
.204 IN(MR)=PROG(J,L)

CALL INDEXC 1

)

CALL PLINE(LL)
C

C PRINTS OUT ON TERMINAL THE VARIOUS OPERATIONS AVAILABLE TO THE USER.
C

425 WRITE(6 , 6201

)

6201 F0RMAT(8X'---SW 28 UP RETURNS PROGRAM TO BEGINNING')
6235 WRITE(6 , 6225)
6225 F0RMAT(8X' SW 29 UP TEACH LOCATION',/

1 8X' SW 30 UP RECORD PROGRAM SEQUENCE',/
1 8X' SW 31 UP STORE LOCATION TABLE ON DISC',/
1 8X'»»»TYPE (CR)»»» TO CONTINUE')
READ(6 , 6001)TR

6001 F0RMAT(I4)
C

C READS IN THE SWITCH VALUES TO DETERMINE WHICH IS THE PROPER SUBROUTINE
C TO BRANCH TO.
C

CALL ARMIN
DO 6203 J= 1 ,

4

K = 27 + J

CHKV=IABS(INBUF(K)

)

IF(CHKV.GT.2000)G0T0(45,11,12,13)J
6203 CONTINUE

GOTO 45
11 CALL LOCTAB

GOTO 5000
12 CALL PROGS

GOTO 5000
13 CALL RECORD(1 ,0)

WRITE(6 ,225)
225 F0RMAT(2X ' LOCATION TABLE STORED')

GOTO 5000
45 IF(KG.EQ. 1)GOTO 40

WRITE(6,6220)
6220 F0RMAT(8X 'WHICH PROGRAM STEP DO YOU WANT?')

READ(6 , 6221)LL
6221 F0RMAT(I4)
40 RETURN

END

LlJ^02_J1-

DI-16

C SUBROUTINE : EMOVE
C

C ARGUMENTS : KK = IF KK=1 THEN THE STRAIGHT LINE DISTANCE
C FROM THE PRESENT LOCATION OF THE
C ARM WHICH MIGHT BE POSITIONED
C ANYWHERE IN THE WORK SPACE, TO THE
C DESTINATION SPECIFIED IN THE GIVEN
C- LINE OF THE PROGRAM MODULE IS CALCULATED
C AND USED AS THE TRAJECTORY FOR THIS
C COMMANDED 'ELEMENTAL MOVE*.
C IF KK=0 THE TRAJECTORY IS ASSUMED TO BE BETWEEN
C THE TWO LOCATION TABLE POINTERS SPECIFIED
C BY THE 'ELEMENTAL MOVE' COMMAND (ELE(6)),
C IE. THE ACTUAL LOCATION OF THE ARM IS
C CONSIDERED TC BE THE SAME AS THAT DEFINED
C BY THE JOINT POSITION VALUES OF
C THE 'PRESENT LOCATION ' POINTER
C IN THIS ELEMENTAL MOVE COMMAND.
C

C CALLED BY : RUNPRO
C

C CALLS SUBROUTINES : STLINE WAIT GRASP POS POL DETECT
C BAL RELEAS PTOUCH COOR SERVO CALD ACC
C

C INPUT DATA : KK = THE FLAG THAT INDICATES WHETHER OR
C NOT THE ACTUAL LOCATION OF THE ARM
C IS AT THE LOCATION SPECIFIED BY THE
C 'PRESENT LOCATION' POINTER (ELE(1))
C FROM THE ELEMENTAL MOVE COMMAND.
C SW-28 = THE ABORT SWITCH ('EABORT') USED TO
C BRANCH THE CONTROL SYSTEM BACK TO
C THE SUBROUTINE 'SAMPLE' TO ALLOW
C MODIFICATION OF THE PROGRAM OR
C LOCATION TABLE MODULES AND RE-ENTRY INTO
C THE PROGRAM AT A SPECIFIED LINE.
C ELE(6) = THE MATRIX THAT CONTAINS A SINGLE
C 'ELEMENTAL MOVE' COMMAND, IE. THE LOCATION
C TABLE POINTERS FOR THE 'PRESENT LOCATION',
C THE 'DESTINATION', THE VALUE OF THE
C VELOCITY INDICATOR, AND THE VARIOUS
C FUNCTION FLAGS.
C

C OUTPUT DATA : THE PROPER SEQUENCE OF CALLS TO THE NECESSARY
C SUBROUTINES ('PRIMITIVES') TO CARRY OUT THE
C 'ELEMENTAL MOVE' COMMAND.
C

C FUNCTION: FROM THE INFORMATION CONTAINED IN A SINGLE LINE
C FROM THE PROGRAM MODULE, THIS SUBROUTINE,
C WHICH IS THE THIRD LEVEL OF THE CONTROL HIERARCHY,
C CALLS THE SUBROUTINES (PRIMITIVES) TO GENERATE A

C TRAJECTORY BETWEEN THE TWO LOCATIONS SPECIFIED,
C CAUSES THE ARM TO MOVE ALONG THIS TRAJECTORY AT A

C GIVEN VELOCITY, AND TESTS ON THE FUNCTION
C FLAGS AND CALLS SUBROUTINES IN ACCORD WITH
C THE VALUES DETECTED.
C

DI-17

SUBROUTINE EMOVE(KK)
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) , OUTBUF(64)
COMMON/GRIP/HAND
COMMON/LMOD/LTAB(90,4,7) ,PRES,DEST
C0MM0N/0UT/JP0S(8)
COMMON/EM/ELE (6)

COMMON/DIS/ADIST
C0MM0N/0FFS/0FF(3)
COMMON / CORT/ AC(6) , AXE P, A YEP, AZEP
COMMON/END/PNT
EQUIVALENCE(NPO,INBUF(33))

EQUI VALENCE (EABORT,INBUF(28)

)

C

C A CALL TO 'SERVO(-I)' IS MADE TO RESET ALL OF THE OUTPUT CHANNEL
C LEVELS TO ZERO.
C

CALL SERV0(-1

)

C

C THE COORDINATE OFFSET VALUES THAT ARE USED IN THE SENSOR
C SUBROUTINE CALLS ARE SET EQUAL TO ZERO,
C

DO 70 J=1 ,

3

70 OFF(J)=0
C

C TESTS ON THE FLAG 'KK' AND IF SET, JUMPS THE APPROACH PATH CALCULATION
C

IF(KK. EQ. 1)GOTO 220
C

C TESTS THE FLAG TO SEE IF THE ARM STOPPED AT THE PRESENT LOCATION
C IF IT DID (LTAB(ELE(1) ,2,7)=1) , THEN CONTINUE. IF IT DID
C NOT STOP(LTAB(ELE(1) ,2,7)=0) , THEN JUMP OVER THE APPROACH PATH
C CALCULATION (IT IS ASSUMED THAT THERE IS NO APPROACH PATH FOR
C THOSE LOCATIONS THAT THE ARM DOES NOT STOP AT).
C

IF(LTAB{ELE(1) ,2,7) .EQ.OGOTO 220
C

C THE FOLLOWING SUBROUTINE ('STLINE') GENERATES A STRAIGHT LINE PATH
C FROM ITS PRESENT LOCATION TO A POINT A DELTA X, DELTA Y, DELTA Z

C DISTANCE AWAY (THE DELTAS ARE LISTED AS ARGUMENTS). HERE IT IS
C USED TO GENERATE THE SPECIFIED APPROACH PATH FOR THE 'PRESENT
C LOCATION' POINT.
C

CALL STLINE (LTAB(ELE(1) , 3 , 4) ,LTAB(ELE(1) , 3 , 5) ,LTAB(ELE(1) , 3, 6) , 1)

C

C 'EABORT' IS THE EQUIVALENT VALUE OF SWITCH 28 WHICH IS USED TO
C ABORT THE EXECUTION OF THE PROGRAM AND RETURN TO THE SUBROUTINE
C 'SAMPLE'. THIS VALUE IS CHECKED CONSTANTLY IN THE SUBROUTINE
C 'SERVO' AND AFTER EVERY SUBROUTINE CALL THAT RESULTS IN A CALL
C TO 'SERVO' (IE. EVERY TIME THE ARM IS COMMANDED TO MOVE)>
C

IF(EAB0RT.LT.-2000)G0T0 40
C

C THE FUNCTON FLAG IS CHECKED TO SEE IF IT IS A 'GRASP PROXIMITY'
C (ELE(6)=3). IF IT IS, THEN CALL 'GRASP' TO CLOSE THE FINGERS
C FOR A SEARCH.

DI-18

c

220 IF(ELE(6) .NE.3)G0T0 230
CALL GRASP(I)

C

C IF THE FUNCTION 'STRAIGHT LINE' IS CALLED FOR (ELE(6)=9), THEN
C BRANCH TO THE SUBROUTINE CALLS 'POS' AND 'STLINE'.
C

230 IF(ELE(6) .EQ. 9)G0T0 301
C

C THE ARGUMENT 'KK' IS CHECKED TO SEE IF THE TRAJECTORY IS TO BE
C A STRAIGHT LINE FROM THE PRESENT LOCATION OF THE ARM
C TO THE DESTINATION CALLED FOR IN PROGRAM LINE 'LL' (KK=1),
C OR IF IT IS TO BE LINEAR INTERPOLATION PATH BETWEEN
C THE TWO LOCATIONS SPECIFIED IN THE PROGRAM LINE 'LL' (KK=0).
C

IF(KK. NE. 1)GOTO 300
C

C TO GENERATE A STRAIGHT LINE TRAJECTORY FROM THE PRESENT LOCATION
C OF THE ARM, THE SUBROUTINE 'POS' IS CALLED TO READ IN THE PRESENT
C JOINT POSITION VALUES TO BE USED BY 'STLINE'.
C

301 CALL POS
C

C THIS SUBROUTINE (' STLINE (DX , DY , DZ , I)') GENERATES AND EXECUTES A
C STRAIGHT LINE TRAJECTORY BETWEEN TWO LOCATION POINTS.
C IF THE ARGUMENT 'I' IS SET EQUAL TO ZERO, THEN THE STRAIGHT LINE
C IS GENERATED BETWEEN THE PRESENT LOCATION OF THE ARM (WHICH MAY OR
C MAY NOT BE DEFINED IN THE 'LOCATION TABLE MODULE') AND THE
C START OF THE APPROACH PATH OF THE 'DESTINATION' POINT LISTED
C IN THE 'ELEMENTAL MOVE' COMMAND (LINE 'LL' OF THE PROGRAM
C MODULE). IF 'I' IS SET EQUAL TO ONE, THEN THE STRAIGHT LINE
C TRAJECTORY IS FROM THE PRESENT LOCATION OF THE ARM TO A
C LOCATION POINT 'DX', 'DY', 'DZ' AWAY.
C

CALL STLINE(0 ,0,0,0)
C

C IF A STRAIGHT LINE TRAJECTORY HAS BEEN USED THEN THE
C INTERPOLATION CALCULATION IS SKIPPED.
C

GOTO 325
C

C IF A STRAIGHT LINE IS NOT GENERATED, THEN THE INTERPOLATION
C ROUTINE IS USED. HERE, 'CALD' IS CALLED TO CALCULATE
C THE STRAIGHT LINE DISTANCE (IN CENTIMETERS) BETWEEN THE PRESENT
C LOCATION OF THE ARM AND THE START OF THE APPROACH PATH
C FOR THE DESTINATION POINT. 'POL' IS THEN CALLED TO CALCULATE
C THE CORRECT DELTAS FOR EACH JOINT TO BE USED BY 'ACC TO CAUSE
C THE JOINT POSITION COMMANDS TO BE INCREMENTED BY THESE
C DELTAS AT PERIODIC TIMES TO GENERATE THE SPECIFIED VELOCITY
C AND ACCELERATION AND DECCELERATION WHERE REQUIRED.
C

300 CALL CALD
CALL POL
CALL ACC

C

C THIS SWITCH IS EXPLAINED ABOVE.

DI-19

c

325 IF(EABORT.LT.-2000)GOTO 40
C

C AT THIS POINT IN THE EXECUTION, THE ARM HAS ALREADY ACCOMPLISHED ITS
C TRAJECTORY MOTION BY THE ABOVE SUBROUTINE CALLS.
C IT NOW REMAINS TO MOVE THROUGH THE FINAL APPROACH PATH IF ONE IS
C CALLED FOR, AND TO DETERMINE WHAT FUNCTIONS ARE TO BE
C ACCOMPLISHED. FIRST, IT IS DETERMINED IF THE ARM
C WILL STOP AT THE END OF THIS TRAJECTORY (LTAB (ELE (2) , 2 , 1) = 1)

.

C . IF NOT, THEN RETURN TO THE CALLING PROGRAM.
C

400 IF(LTAB(ELE(2) ,2,7) .EQ.OGOTO 40
C

C THE COMMON VARIABLE 'PNT' IS SET EQUAL TO ONE. THIS FLAG IS
C USED BY THE SUBROUTINE 'SERVO'. WHEN IT IS SET TO ONE,
C 'SERVO' WILL MAINTAIN CONTROL UNTIL THE POSITION OF ALL OF THE
C JOINTS IS WITHIN SOME SPECIFIED MINIMUM DISTANCE OF THE
C COMMANDED POSITION. THEREFORE, THE CONTROL PROGRAM DOES NOT
C INITIATE THE NEXT STEP UNTIL THE ARM HAS ARRIVED AT THIS
C END POINT OF THE TRAJECTORY.
C

PNT = 1

• CALL SERVO(O)
C

C THE VARIABLE 'FUN' IS SET EQUAL TO THE VALUE OF THE FUNCTION FLAG
C ('ELE(6)') PLUS ONE, TO BE USED TO COMMAND A MULTIPLE 'GOTO'
C

.
STATEMENT TO THE APPROPRIATF CODE TO CARRY OUT THE SPECIFIED

C FUNCTION. (•FUN'=1,N0 FUNCTION; =2 'GRASP' =3 'RELEASE'
C =4 'GRASP PROXIMITY' =5 'RELEASE PROXIMITY' =6 'DETECT'
C =7 'BALANCE' =8 'UNSTACK' =9 'PTOUCH').
C

FUN=1+ELE(6)
GOTO (20 ,20,20,3,4,20,20,7,8,20,20)FUN

C

C IF THERE IS AN APPROACH PATH, IT IS GENERATED AND EXECUTED BY
C THIS CALL TO 'STLINE '

.

C

20 CALL STLINE(-LTAB(ELE (2) ,3,4) , -L TAB (ELE (2) ,3,5) , -L TAB (ELE (2) ,3,6) , 1

)

IF(EABORT.LT.-2000)GOTO 40
C

C THIS MULTIPLE 'GOTO' STATEMENT CAUSES THE BRANCHING TO THE APPROPRIATE
C CODE TO CARRY OUT THE FUNCTION SPECIFIED.
C

GOTOd 10,1,2,3,4,5,6,7,8,110, 10) FUN
C

C THIS IS THE' CODE FOR A 'GRASP PROXIMITY' FUNCTION. THE HAND IS
C MOVED DOWN THE APPROACH PATH TO WITHIN SIX CENTIMETERS OF THE
C DESTINATION POINT BY A CALL TO 'STLINE'. IT HAS TO FIRST
C STOP ABOVE THE OBJECT TO USE ITS PROXIMITY SENSORS TO DETECT IT.
C IT DETERMINES THAT THE OBJECT IS UNDER, AT LEAST, ONE OF
C THE SENSORS BY A CALL TO 'DETECT' WHICH MOVES THE HAND
C UNTIL ONE OF THE SENSORS REACHES A THRESHOLD VALUE. THE HAND IS
C THEN MOVED IN THE DIRECTION TO EQUALIZE THE TWO SENSOR INPUTS BY
C A CALL TO 'BAL'. NOW THAT THE HAND IS CENTERED OVER THE OBJECT,
C THE FINGERS ARE OPENED BY A CALL TO 'RELEAS'. THE HAND DESCENDS
C THE REMAINING SIX CENTIMETERS BY A CALL TO 'STLINE', AND THE

DI-20

C FINGERS ARE CLOSED ON THE OBJECT BY A CALL TO 'GRASP'. IF THE
C FINGER POSITION INDICATOR ('HAND') IS LESS THAN 7200, THEN THE
C FINGERS ARE CLOSED TOO FAR. TO BE HOLDING AN OBJECT. IF THIS IS
C THE CASE THEN THE HAND IS RAISED BACK UP SIX CENTIMETERS
C BY A CALL TO 'STLINE' AND THE SEARCH BEGUN AGAIN.
C

3 NZ=600-LTAB(ELE(2) ,3,6)
CALL STLINE(-LTAB(ELE(2) ,3,4) , -LTAB (ELE (2) ,3,5) ,NZ, 1)

480 IF(EABORT.LT.-2000)GOTO 40
CALL DETECT
IF(EABORT.LT.-2000)GOTO 40
CALL BAL
IF(EABORT.LT.-2000)GOTO 40
CALL RELEAS(O)
IF(EABORT.LT.-2000)GOTO 40
CALL STLINE(0,0,-600, 1)

IF(EABORT.LT.-2000)GOTO 40
CALL GRASP(O)
IF(EABORT.LT.-2000)GOTO 40
IF(HAND.GT.7200)G0T0 110
CALL STLINE(0 , 0 , 600 , 1

)

GOTO 480
C

C THE FOLLOWING CODE PERFORMS THE 'RELEASE PROXIMITY' FUNCTION.
C FIRST, THE HAND IS MOVED TO A POSITION ONE CENTIMETER ABOVE
C AND FIVE CENTIMETERS TO THE SIDE (SINCE THE PROXIMITY SENSORS
C ARE LOCATED ON THE OUTSIDE OF RATHER THICK FINGERS, THIS SIDEWAYS
C MOTION IS NECESSARY TO BRING ONE OF THE SENSORS TO A POSITION
C WHERE IT WOULD BE OVER THE EXPECTED LOCATION OF THE UNDERLYING
C OBJECT) OF THE DESTINATION POINT BY A CALL TO 'STLINE'. THE
C HAND IS MOVED SIDEWAYS UNTIL ONE OF THE SENSORS HAS REACHED THE
C THRESHOLD LEVEL BY A CALL TO 'DETECT'. THE CALL TO 'BAL' CAUSES
C THE HAND TO MOVE IN THE DIRECTION OF THE SENSOR THAT WAS AT
C THRESHOLD UNTIL THE SENSOR VALUE DECREASES BELOW A CERTAIN
C VALUE, INDICATING THAT THE EDGE OF THE UNDERLYING
C OBJECT HAS BEEN REACHED. THE HAND IS THEN MOVED THE ADDITIONAL
C DISTANCE OF THE THICKNESS OF THE FINGER TO CAUSE THE SIDE OF THE
C OBJECT IN THE HAND TO LINE UP FLUSH WITH THE SIDE OF THE
C UNDERLYING OBJECT. THE CALL TO 'STLINE' CAUSES THE HAND TO
C MOVE DOWN THE REMAINING ONE CENTIMETER AND THE FINGERS ARE

j
C OPENED AND THE OBJECT RELEASED BY THE CALL TO 'RELEAS'.
C

4 NZ=100-LTAB(ELE(2) ,3,6)
NY= 500 -LTAB (ELE (2) ,3,5)
CALL STLINE (-LTAB (ELE (2) ,3,4),NY,NZ,1)
IF(EABORT.LT.-2000)GOTO 40
CALL DETECT
IF(EABORT.LT.-2000)GOTO 40
CALL BAL
IF(EABORT .LT. -2000)G0T0 40
CALL STLINE(0,0,-100, 1

)

IF(EABORT.LT.-2000)GOTO 40
CALL RELEAS(O)
GOTO 110

C

C THE 'GRASP' FUNCTON IS ACCOMPLISHED BY A CALL TO 'GRASP'.

DI-21

c

c

c

10

740

CALL GRASP(O)
GOTO 110

THE 'RELEASE' FUNCTION IS ACCOMPLISHED BY A CALL TO 'RELEAS'.

CALL RELEAS(O)
GOTO 110

THE 'DETECT' FUNCTION IS ACCOMPLISHED BY A CALL TO 'DETECT'.

CALL DETECT
GOTO 110

THE 'BALANCE' FUNCTION IS ACCOMPLISHED BY A CALL TO 'BAL'.

CALL BAL
GOTO 110

THE FOLLOWING CODE IS USED TO GENERATE THE 'UNSTACK' FUNCTION.
THE FINGERS ARE CLOSED BY A CALL TO 'GRASP' TO MAKE CERTAIN
THAT THE SENSOR TO DETECT THE TOP OF THE STACK IS OVER THE
EXPECTED LOCATION OF THE STACK. THE CALL TO 'PTOUCH' CAUSES
THE HAND TO DESCEND WHILE CONSTANTLY MONITORING THE SENSOR
INPUT TO SEE IF THE THRESHOLD VALUE HAS BEEN REACHED. WHEN
THE THRESHOLD IS REACHED THE HAND STOPS. THE CALL TO 'STLINE'
IS USED TO MOVE THE HAND BACK UP ONE CENTIMETER TO MAKE
CERTAIN THAT THE HAND DOES NOT COLLIDE WITH THE TOP OF THE
STACK DURING THE SEARCH OPERATION. THE HAND IS CENTERED OVER
THE TOP OF THE STACK BY A CALL TO 'BAL'. THE CALL TO 'RELEAS'
OPENS THE FINGERS AND THE CALL TO 'STLINE' CAUSES THE HAND
TO DESCEND AROUND THE OBJECT. THE FINGERS CLOSE ON THE OBJECT
DUE TO THE CALL TO 'GRASP'. THE HAND IS RETURNED TO ITS INITIAL
STARTING POINT BY A CALL TO 'STLINE' .

CALL GRASP(O)
IF(EABORT.LT.-2000)GOTO 40
CALL PTOUCH
IF(EABORT.LT.-2000)GOTO 40
CALL BAL
IF(EABORT.LT.-2000)GOTO 40
CALL RELEAS(O)
IF(EABORT.LT.-2000)GOTO 40
CALL STLINE(0 , 0 , -600 , 1)

IF(EABORT.LT.-2000)GOTO 40
CALL GRASP(O)
IF(EABORT.LT.-2000)GOTO 40
OFF(3)=OFF(3)-600
CALL STLINE (-OFF (1) ,-0FF(2) ,-0FF(3) , 1)

GOTO 435

THE 'EDGE' COMMAND

RP= 1

CALL EDGE(O)
CALL WAIT(32)

DI-22

IF(RP.NE.2)G0T0 738
OFF(2)=OFF(2)-INBUF(3 6)
CALL STLINE(0,0,-INBUF(36) , 1)

738 CALL EDGE(RP)
CALL STLINE(0 , 0 , 500 , 1)

OFF(3)=OFF(3)+500
CALL STLINE(-OFF(1) ,-0FF(2) ,-0FF(3) , 1)

IF(INBUF(31) .GT.-2000)GOTO 435
IF(RP. EQ. 2)G0T0 435
RP = 2

GOTO 740
C

C THE 'TOUCH' FUNCTION IS ACCOMPLISHED BY A CALL TO 'PTOUCH'.
C

8 CALL PTOUCH
110 IF(EABORT.LT.-2000)GOTO 40
C

C THE FOLLOWING CODE RE-DEFINES THE 'DESTINATION' OF THE ELEMENTAL
C MOVE' COMMAND AS THE PRESENT LOCATION OF THE ARM AND ENTERS
C THE PRESENT JOINT POSITION VALUES INTO THE LOCATION
C TABLE UNDER THIS (ELE(2)) DESTINATION NAME.
C

DO 420 J=1 ,

6

AC(J)=JPOS(J)
420 LTAB(ELE(2) , 1 , J)=JPOS(J)
C

C THE START OF THE APPROACH PATH MUST BE CALCULATED FROM THIS RE-DEFINED
C LOCATION AND ITS JOINT POSITION VALUES ENTERED UNDER THIS LOCATION
C NAME IN THE LOCATION TABLE.
C

AX = LTAB(ELE(2) ,3, 4) /I 00.
AY=LTAB(ELE(2) ,3,5)/100.
AZ=LTAB(ELE(2) ,3, 6) /I 00.
CALL COOR(AX,AY,AZ,0,0)
DO 430 J=1 ,

6

LTAB(ELE(2) , 4 , J) = JPOS (J

)

430 JPOS(J)=LTAB(ELE(2) , 1 , J)
C

C IF A VOLTAGE LEVEL IS TO BE SENT OUT ON A SPECIFIED CHANNEL (THIS
C ALLOWS THE ARM TO BE INTERLOCKED WITH AN EXTERNAL DEVICE) THEN
C THE CHANNEL NUMBER IS DECODED AND A SIGNAL SENT OUT.
C

I

435 SEN=ELE(4)/100
IF(SEN . EQ. 0)GOTO 440
CALL SERVO(SEN)

C

C IF THE ARM IS TO WAIT AT ITS PRESENT LOCATION UNTIL AN INPUT CHANNEL
C RECEIVES A VOLTAGE LEVEL (THIS ALLOWS THE ARM TO BE SYNCHRONIZED
C WITH AN EXTERNAL DEVICE) THEN THE INPUT CHANNEL NUMBER IS DECODED
C AND THE CONTROL SYSTEM WAITS UNTIL THIS CHANNEL RECEIVES A
C VOLTAGE LEVEL BEFORE CONTINUING.

; C

i

440 WA=ELE(4)-SEN«100
IF(WA. EQ. 0)GOTO 40
CALL WAIT(WA)

40 RETURN

DI-23

DI-24

C SUBROUTINE : STLINE
C

C ARGUMENTS : DX,DY,DZ = A STRAIGHT LINE TRAJECTORY IS TO BE
C GENERATED FROM THE PRESENT LOCATION OF
C THE ARM TO A POSITION A DELTA 'X'CDX),
C DELTA 'Y' (DY), DELTA 'Z' (DZ) DISTANCE
C AWAY.
C I IF(I=0) THEN THE STRAIGHT LINE IS TO BE
C GENERATED FROM THE PRESENT LOCATION
C TO THE DESTINATION POINT (ELE(2))
C ' SPECIFIED IN THE 'ELEMENTAL MOVE'
C COMMAND.
C IF(I=1) THEN THE STRAIGHT LINE TRAJECTORY
C IS TO BE GENERATED FROM THE PRESENT
C POSITION OF THE ARM TO A POINT 'DX',
C 'DY', 'DZ' DISTANCE AWAY AS SPECIFIED
C BY THE ARGUMENTS OF THE SUBROUTINE
C CALL.
C

C CALLED BY : EMOVE
C

C CALLS SUBROUTINES : COOR SQRT SERVO
C

C INPUT DATA : DX,DY,DZ,I = THE ARGUMENTS AS DESCRIBED ABOVE.
C JP0S(1-6) = THE VALUE OF THE JOINT POSITION
C INDICATORS.
C ELE(2) = THE DESTINATION POINTER VALUE FOR
C THE PRESENT 'ELEMENTAL MOVE'
C COMMAND.
C INBUF(36) = THE VALUE OF A POTENTIOMETER
C WHICH IS USED TO CONTROL THE SPEED
C OF THE STRAIGHT LINE TRAJECTORY.
C

C OUTPUT DATA : JP0S(1-6) = THE JOINT POSITION COMMAND VALUES
C SENT TO 'SERVO' TO CAUSE THE HAND
C TO MOVE ALONG THE CALCULATED STRAIGHT
C LINE TRAJECTORY.
C

C FUNCTION: TO GENERATE A STRAIGHT LINE TRAJECTORY FROM THE PRESENT
C POSITION OF THE HAND TO A SPECIFIED LOCATION.
C

SUBROUTINE STLINE (DX , DY , DZ , I

)

IMPLICIT INTEGER(B-R)
C0MM0N/ARMBUF/INBUF(6i») ,OUTBUF(64)
COMMON/LMOD/LTAB(90,4,7) ,PRES,DEST
C0MM0N/0UT/JP0S(8)
COMMON/CORT/AC(6) , AXEP , AYEP , AZEP
C0MM0N/EM/ELE(6)
EQUIVALENCE (EABORT , INBUF(28))

DIMENSION ADD(6) ,COTAB(50,6)
C

C PLACE THE CURRENT JOINT POSITION VALUES IN THE COMMON VARIABLE
C 'AC(1-6)'. THE POSITION OF THE ARM DESCRIBED BY THESE
C VALUES WILL BE USED AS THE STARTING POINT OF THE
C TRAJECTORY. THE SUBROUTINE 'COOR' WILL CALCULATE
C THE CORRECT JOINT POSITION VALUES OF NEW POSITIONS THAT

DI-25

C • ARE SPECIFIED BY DELTA 'X', 'Y', 'Z' DISTANCES
C AWAY FROM THIS REFERENCE POSITION ('AC(1-6)').
C

DO 15 J=1 , 6

15 AC(J)=JPOS(J)
C

C THE ARGUMENT 'I' IS TESTED IN ORDER TO BRANCH TO THE PROPER
C CODE.
C

IFd.EQ.OGOTO 10

C

C FOR (1=1), THE END POINT OF THIS STRAIGHT LINE TRAJECTORY IS DEFINED
C AS A POINT 'DX', 'DY', 'DZ' DISTANCE FROM THE PRESENT POSITION.
C THESE DELTA DISTANCES ARE CONVERTED TO CENTIMETERS BY DIVIDING BY
C 100 AND THEN STORED IN THE VARIABLES 'AX', 'AY', 'AZ'.
C

AX=DX/100.
AY=DY/100

.

AZ=DZ/ 1 GO

.

C
C ONCE THE VALUES 'AX', 'AY', 'AZ' HAVE BEEN DETERMINED, THEN BRANCH
C TO STATEMENT 20.
C

GOTO 20
C

C FOR (1=0), THE END POINT OF THIS STRAIGHT LINE TRAJECTORY IS DEFINED
C BY THE DESTINATION POINTER ('ELE(2)') FOR THE PRESENT 'ELEMENTAL
C MOVE' COMMAND. THE DELTA 'X', 'Y', 'Z' DISTANCE OF THIS
C DESTINATION FROM THE PRESENT LOCATION IS CALCULATED BY, FIRST,
C CALCULATING THE •X,Y,Z' COORDINATES OF THE PRESENT LOCATION BY
C A CALL TO 'COOR'. THE 'X,Y,Z' COORDINATES OF THE BEGINNING OF
C THE APPROACH PATH ARE OBTAINED FROM THE LOCATION TABLE MODULE
C (IE. THE COORDINATES (LTAB (ELE (2) , 2 ,

1 -3)) OF THE END POINT OF THE
C DESTINATION ARE ADDED TO THE DELTA OFFSETS (LTAB (ELE (2) , 3 , 4-6))

C OF THE START OF THE APPROACH PATH FROM THIS END POINT,
C THUS, OBTAINING THE COORDINATES 'X,Y,Z' OF THE START OF THE
C APPROACH PATH). THE DIFFERENCE BETWEEN THESE VALUES AND THE
C' COORDINATES FOR THE PRESENT LOCATION ARE STORED IN 'AX',
C 'AY' , ' AZ •

.

C

10 CALL COOR(0. ,0. ,0. ,0, 1)

AX= (LTAB(ELE (2) , 2 , 1) +LTAB (ELE (2) ,3,4))/100 .-AXEP
AY=(LTAB(ELE(2) , 2 , 2) +LTAB (ELE (2) ,3,5))/100.-AYEP
AZ=(LTAB(ELE(2) , 2 , 3) +LTAB (ELE (2) ,3,6))/100.-AZEP

C

C THE DISTANCE OF THE STRAIGHT LINE PATH IS CALCULATED.
C

20 DV=SQRT(AX»»2+AY»»2+AZ»«2)
C
C IF THE DISTANCE OF THE TRAJECTORY IS ZERO, THEN NO FURTHER
C COMPUTATIONS ARE MADE AND THE CONTROL IS RETURNED TO THE
C CALLING PROGRAM.
C

IF(DV. EQ. 0)GOTO 40

0 THE STRAIGHT LINE TRAJECTORY IS TO BE 'DV CENTIMETERS LONG. THIS

DI-26

TRAJECTORY WILL BE GENERATED BY FIRST, CALCULATING A NUMBER OF
INTERMEDIATE LOCATIONS THAT LIE ALONG THIS STRAIGHT LINE AND THEN
CALCULATING THE ADDITIONAL POINTS BY INTERPOLATING BETWEEN THESE
INTERMEDIATE LOCATIONS. THE INTERMEDIATE LOCATIONS WILL LIE
APPROXIMATELY TWO CENTIMETERS APART ALONG THE STRAIGHT LINE.
THE NUMBER OF THESE INTERMEDIATE LOCATIONS IS CALCULATED BY
DIVIDING THE LENGTH OF THE TRAJECTORY ('DV') BY TWO. THIS VALUE
IS INCREMENTED BY ONE TO MAKE CERTAIN THAT THE NUMBER OF POINTS IS
A NON-ZERO VALUE IF THE TRAJECTORY IS LESS THAN TWO CENTIMETERS
LONG.

NDV=DV/2+1

THE DELTA 'X.Y.Z' COORDINATE VALUES BETWEEN EACH OF THE INTERMEDIATE
LOCATIONS IS CALCULATED AND STORED IN 'ANX', 'ANY', 'ANZ'.

ANX=AX/NDV
ANY=AY/NDV
ANZ=AZ/NDV

THE JOINT POSITION VALUES OF THE INTERMEDIATE LOCATIONS ARE CALCULATED
BY CALLS TO 'COOR' AND ARE STORED IN SEQUENCE IN THE TABLE
'COTAB(50,6) •

.

KD=NDV+1
DO 1 1 0 J= 1 , KD
KLL=J-1
ATX=KLL»ANX
ATY=KLL»ANY
ATZ=KLL»ANZ
CALL COOR(ATX,ATY,ATZ,0,0)
DO 110 KB= 1 ,

6

) COTAB(J,KB)=JPOS(KB)

THE VALUE OF THE POTENTIOMETER (INBUF(36)) IS READ IN AND USED TO
DEFINE THE NUMBER OF ADDITIONAL INTERPOLATION POINTS ('PC') TO BE
CALCULATED BETWEEN EACH PAIR OF INTERMEDIATE LOCATIONS.

PC=10-INBUF(36) /30
ASP=PC

A LOOP IS SET UP TO PROVIDE THE INTERPOLATED JOINT POSITION COMMANDS
FOR ALL 'NDV OF THE INTERMEDIATE LOCATIONS.

DO 150 P=1,NDV

FOR EACH INTERMEDIATE LOCATION, THE DELTA JOINT VALUES FOR THE
SPECIFIED NUMBER ('ASP') OF INTERPOLATION POINTS IS CALCULATED
AND STORED IN 'ADD(1-6)'.

DO 140 MP=1 ,

6

jl40 ADD(MP) = (C0TAB(P+1 , MP) -COTAB (P , MP)) /ASP

jC THIS LOOP CAUSES THE ARM TO MOVE FROM ONE INTERMEDIATE LOCATION TO
C THE NEXT BY INCREMENTING THE JOINT POSITION COMMANDS BY THE
C PROPER DELTA INTERPOLATION VALUE ('ADD(1-6)') EACH TIME.

DI-27

DO 150 LM=1,PC
DO 160 JB=1,6
JPOS(JB) =COTAB(P, JB)+LM«ADD(JB)
CALL SERVO(O)
IF(EAB0RT.LT.-2000)G0T0 40
CONTINUE
RETURN
END

DI-28

DI-30

C SUBROUTINE : WAIT
C

C ARGUMENTS : CH = THE INPUT CHANNEL NUMBER THAT IS TO
C SAMPLED FOR A VOLTAGE LEVEL.
C

C CALLED BY : EXPRO EMOVE
C

C CALLS SUBROUTINES : ARMIN
C

C INPUT DATA : CH = THE ARGUMENT AS EXPLAINED ABOVE.
C

C OUTPUT DATA :

C

C FUNCTION: SUSPENDS OPERATION OF THE CONTROL SYSTEM UNTIL A
C SPECIFIED INPUT CHANNEL DROPS TO A ZERO VOLTAGE
C LEVEL OR THE ABORT SWITCH IS THROWN.
C

SUBROUTINE WAIT(CH)
IMPLICIT INTEGER(B-Z)
COMMON /ARMBUF/INBUF(64) , 0UTBUF(64)
EQUI VALENCE (EAB0RT,INBUF(28)

)

C

C THE INPUT CHANNELS ARE READ IN, AND THE VALUE OF THE SPECIFIED
C CHANNEL ('CH') IS TESTED TO SEE IF IT IS A POSITIVE OR NEGATIVE
C VALUE, INDICATING THAT THE PROGRAM IS TO WAIT UNTIL THE
C SPECIFIED INPUT CHANNEL RECEIVES A HIGH
C OR A ZERO VOLTAGE LEVEL, RESPECTIVELY.
C

20 CALL ARMIN
IF(EABORT .LT. -2000)GOTO 40
IF(CH.LT.O)GOTO 25

C

C THE VALUE OF THE SPECIFIED INPUT
C CHANNEL IS TESTED. AS LONG AS THERE IS ZERO V-OLTAGE ON THIS
C CHANNEL, THE SUBROUTINE WILL CONTINUE SAMPLING IT. WHEN THE
C VOLTAGE LEVEL GOES ABOVE ZERO, CONTROL IS RETURNED TO THE CALLING
C PROGRAM.
C

IF(INBUF(CH) .GT.-2000)G0T0 20
GOTO 40

C

C THE VALUE OF THE SPECIFIED INPUT
C CHANNEL IS TESTED. AS LONG AS THERE IS A VOLTAGE LEVEL ON THIS
C CHANNEL, THE SUBROUTINE WILL CONTINUE SAMPLING IT. WHEN THE
C VOLTAGE LEVEL DROPS TO ZERO, CONTROL IS RETURNED TO THE CALLING
C PROGRAM.
C

25 IF(INBUF(-CH) .LT.-2000)GOTO 20
40 RETURN

END

DI-31

DI-32

C SUBROUTINE : CALD
C

C ARGUMENTS :

C

C CALLED BY : EMOVE
C

C CALLS SUBROUTINES : COOR SQRT
C

C INPUT DATA : JP0S(1-6) = THE PRESENT JOINT POSITION VALUES.
C ELE(2) = THE VALUE OF THE DESTINATON POINTER
C TO THE LOCATION TABLE.
C AXEP = THE 'X' COORDINATE VALUE FOR THE HAND
C FOR THE SPECIFIED JOINT VALUES (AC(1-6))
C [FROM 'COOR'].
C AYEP = THE 'Y' COORDINATE VALUE FOR THE HAND
C FOR THE SPECIFIED JOINT VALUES (AC(1-6))
C [FROM 'COOR'].
C AZEP = THE 'Z' COORDINATE VALUE FOR THE HAND
C FOR THE SPECIFIED JOINT VALUES (AC(1-6))
C [FROM 'COOR'].
C

C OUTPUT DATA : AC(1-6) = THE JOINT POSITION VALUES TO BE USED
C BY THE COORDINATE TRANSFORMATION
C ROUTINE ('COOR').
C ADIST = THE DISTANCE IN CENTIMETERS BETWEEN
C THE PRESENT LOCATION OF THE ARM AND
C THE SPECIFIED DESTINATION
C POINT (ELE(2)).
C

C FUNCTION: CALCULATES THE DISTANCE (IN CENTIMETERS) FROM THE PRESENT
C LOCATION OF THE END POINT OF THE HAND TO ITS POSITION
C AT THE DESTINATION POSITION.
C

SUBROUTINE CALD
IMPLICIT INTEGER(B-R)
COMMON/LMOD/LTAB(90,4,7) ,PRES,DEST
C0MM0N/0UT/JP0S(8)
C0MM0N/EM/ELE(6)
COMMON/DIST/ADIST
C0MM0N/C0RT/AC(6) , AXEP , AYEP , AZEP

C

C STORE THE JOINT POSITION VALUES IN THE VARIABLE (AC(1-6))
C SO THAT THE 'X', 'Y', 'Z' VALUES FOR THIS POINT CAN BE
C CALCULATED BY THE COORDINATE TRANSFORMATION ROUTINE.
C

DO 20 J = 1 ,6
20 AC(J)=JPOS(J)
C

C THE CALL TO • COOR (X , Y , Z , D , J
)

' IS MADE WITH 'J' = 1 TO INDICATE
,C THAT ONLY THE 'X'.'Y'.'Z' VALUES ARE TO BE RETURNED (IE. THE
C JOINT VALUES ARE NOT TO BE CALCULATED).
C

CALL COOR (0 . , 0 . , 0 .
, 0 , 1)

C

C THE 'X.Y.Z' VALUES OF THE PRESENT LOCATION OF THE ARM ARE STORED
C IN THE VARIABLES 'APX', 'APY', AND 'APZ'.

DI-33

c

APX=AXEP
APY=AYEP
APZ=AZEP

C

C CALCULATE THE 'X,Y,Z' VALUES OF THE DESTINATION POINT (ELE(2)) BY
C PLACING ITS JOINT POSITION VALUES IN THE COMMON VARIABLE
C AC(1-6) AND CALLING 'COOR'.
C

DO 21 J = 1 , 6

21 AC(J)=LTAB(ELE(2) ,1, J)
CALL COOR (0 . , 0. , 0. , 0 , 1

)

C

C THE DISTANCE BETWEEN THESE TWO POINTS IS CALCULATED AND STORED IN
C THE COMMON VARIABLE 'ADIST'.
C

ADX=APX-AXEP
ADY=APY-AYEP
ADZ=APZ-AZEP
ADIST=SQRT{ADX««2+ADY»»2+ADZ*»2)

40 RETURN
END

DI-34

DI-36

C SUBROUTINE : POL
C

C ARGUMENTS :

C

C CALLED BY : EMOVE
C

C CALLS SUBROUTINES : ARMIN
C

C INPUT DATA : INBUF(26) = THE VALUE OF A POTENTIOMETER USED TO
C SPECIFY THE VELOCITY OF THIS TRAJECTORY
C BY DEFINING THE NUMBER OF INTERPOLATION
C POINTS TO BE USED PER UNIT DISTANCE.
C ADIST = THE DISTANCE BETWEEN THE TWO END POINTS
C OF THE TRAJECTORY IN CENTIMETERS
C [FROM 'CALD'].
C ELE(1) = THE LOCATION TABLE POINTER FOR THE
C PRESENT POSITION OF THE ARM.
C ELE(2) = THE LOCATION TABLE POINTER FOR THE
C DESTINATION OF THIS TRAJECTORY.
C JP0S(1-6) = THE JOINT POSITION VALUES OF THE
C LOCATION OF THE ARM.
C LTAB(ELE(2) ,4, 1-6)= THE JOINT POSITION VALUES OF THE
C START OF THE APPROACH PATH FOR THE
C SPECIFIED DESTINATION POINT.
C LTAB(ELE(1) ,2,7)= THE FLAG THAT INDICATES IF THE ARM
C HAS STOPPED AT THE PRESENT LOCATION.
C LTABCELE (2) , 2 , 7) = THE FLAG THAT INDICATES IF THE ARM
C IS TO STOP AT THE DESTINATION POINT.
C

C OUTPUT DATA : NACV = THIS IS THE NUMBER OF COMMANDED
C JOINT POSITION OUTPUTS FOR THE
C ACCELERATION (OR DECCELERATION) PORTION
C OF THE TRAJECTORY.
C NVPT = THIS IS THE NUMBER OF COMMANDED JOINT
C POSITION OUTPUTS FOR THE CONSTANT
C VELOCITY PORTION OF THE TRAJECTORY.
C KJ = A FLAG THAT CODES THE INFORMATION OF
C WHETHER AN ACCELERATION OR DECCELERATION
C PROFILE IS TO BE USED.
C ACDIF(1-6) = THE DELTA JOINT POSITION VALUES THAT
C WOULD CAUSE THE ARM TO MOVE 1/400 OF
C A CENTIMETER ALONG THE INTERPOLATED
C TRAJECTORY. USED AS THE ACCELERATION
C FACTOR FOR THE ACCELERATION PORTION OF
C THE TRAJECTORY.
C AVDIF(1-6) = THE DELTA JOINT POSITION VALUES THAT
C WOULD CAUSE THE ARM TO MOVE 'NACV
C TIMES 1/400 CENTIMETERS ALONG THE
C CONSTANT VELOCITY PORTION OF THE
C TRAJECTORY. THUS, PROVIDING THE PROPER
C SIZE STEP REQUIRED FOR THE ARM TO MOVE
C AT THE SPECIFIED VELOCITY.
C

C FUNCTION: GENERATES THE DELTA JOINT POSITION VALUES AND SPECIFIES
C THE NUMBER OF THEM REQUIRED TO CAUSE THE ARM TO MOVE
C THROUGH THE TRAJECTORY AT THE CORRECT VELOCITY. THE

DI-37

C ACTUAL EXECUTION IS ACCOMPLISHED BY THE SUBROUTINE 'ACC
C WHICH USES THIS INFORMATION FROM 'POL'.
C

SUBROUTINE POL
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) ,OUTBUF(64)
COMMON /LMOD/LTAB(9 0,4,7) ,PRES,DEST
C0MM0N/0UT/JP0S(8)
COMMON/INT/NACV ,NVPT , KJ
C0MM0N/DELT/ACDIF(6) ,AVDIF(6)
COMMON/DIST/ADIST
C0MM0N/EM/ELE(6)
EQUI VALENCE (EABORT,INBUF(28)

)

C

C THE POTENTIOMETER VALUE THAT WILL CONTROL THE VELOCITY IS READ
C IN ON 'INBUF(26)'. IT IS NORMALIZED TO A VALUE BETWEEN
C ONE AND TEN AND MULTIPLIED BY THE SPECIFIED VELOCITY 'ELE(3)'
C FOR THIS PARTICULAR TRAJECTORY. THE VALUE 'NACV IS SET
C EQUAL TO THIS NUMBER DIVIDED BY 5. THIS NUMBER SPECIFIES HOW
C MANY INCREMENTAL STEPS (' ACDIF (1 -6)

') ARE TO BE SENT OUT
C AT A TIME TO THE SERVOS IN ORDER TO CAUSE THE ARM TO MOVE AT THE
C CORRECT VELOCITY.
C

CALL ARMIN
NACVr ((-INBUF(26)-2 100)/100+1)«ELE(3)
NACV=NACV/10

C

C THE VALUE 'ANTRJP' IS SET EQUAL TO 100 TIMES THE TOTAL DISTANCE OF
C THE TRAJECTORY IN CENTIMETERS. THE DIFFERENTIAL JOINT VALUES FROM
C THE PRESENT LOCATION TO THE DESTINATION (' LTAB (ELE (2) , 4 ,

1 -6)
'

)

C ARE DIVIDE BY 'ANTRJP'. THIS CREATES THE DELTA JOINT VALUES THAT
C THAT WOULD CAUSE A MOVEMENT OF THE ARM OF 1/100 OF A CENTIMETER.
C

ANTRJP=ADIST»100

.

DO 20 H= 1 ,

6

20 ACDIF(H)=(LTAB(ELE(2) , 4 , H) - JPOS (H)) /ANTRJP
C

C THE POSITION LTAB(J,2,7), CARRIES A FLAG THAT INDICATES IF THE ARM
.0 IS TO STOP AT THAT LOCATION. IF IT IS A ONE THEN THE ARM STOPS,
C THEREFORE, AN ACCELERATION PROFILE IS NEEDED FOR THAT POINT.
C IF IT IS ZERO, IT DOES NOT STOP AND NO ACCELERATION PROFILE IS
C TO BE USED. THE VALUE 'KJ' IS SET EQUAL TO THE SUM OF THE FLAGS
C OF THE PRESENT LOCATION AND THE DESTINATION PLUS ONE. THE
C VALUE 'KJ' IS THEN USED TO POINT TO THE APPROPRIATE CODE
C FOR THE CORRECT ACCELERATION PROFILES.
C

KJ = 2»LTAB(ELE(2) ,2,7)+LTAB(ELE(1) ,2,7) + 1

GOTO (1 10 , 1 1 1 , 1 1 1 , 1 12)KJ
C

C THIS IS THE CONDITION FOR NO ACCELERATION OR DECCELERATION PROFILES.
C

110 NACCP=0
GOTO 115

C

C THIS IS THE CONDITION FOR EITHER AN ACCELERATION OR A DECCELERATION
C PROFILE. 'NACCP' IS THE TOTAL NUMBER OF INCREMENTAL STEPS

DI-38

C (• ACDIF(1 -6) ') THAT THE ARM WILL MOVE THROUGH DURING THE
C ACCELERATION OR DECCELER ATION . THEREFORE, 'NACCP' IS A MEASURE
C OF HOW MUCH OF THE TRAJECTORY WILL BE USED FOR THE ACCELERATION OR
C DECCELERATION REGION.
C

111 NACCP= (NACV««2+NACV)/2
GOTO 115

C

C THIS IS THE CONDITION FOR BOTH AN ACCELERATION AND A DECCELERATION
C REGION FOR THIS TRAJECTORY, THEREFORE, THERE WILL BE TWICE AS MANY
C INCREMENTAL STEPS (' ACDIF (1 -6)

•) INVOLVED IN THESE REGIONS.
C

112 NACCP=NACV»»2+NACV
C

C THE NUMBER OF INCREMENTAL STEPS USED IN THE ACCELERATION-DECCELERATION
C PROFILES IS SUBTRACTED FROM THE TOTAL NUMBER OF STEPS IN THE
C TRAJECTORY TO YIELD THE VALUE 'ANVELP'. THIS NUMBER IS DIVIDED BY
C 'NACV (THE NUMBER OF STEPS TO BE SENT TO THE SERVOS AT ONE
C TIME IN ORDER TO CAUSE THE ARM TO MOVE AT THE CORRECT VELOCITY)
C TO GIVE THE NUMBER 'NVPT' (THE NUMBER OF TIMES THAT THE DELTAS
C 'AVDIFd-S)' ARE TO BE SENT TO THE SERVOS FOR THE CONSTANT
C VELOCITY PORTION OF THE TRAJECTORY.
C

115 ANVELP=ANTRJP-NACCP
NVPT=ANVELP/NACV
IF(NVPT.NE.0)GOTO 4?
NVPT=

1

47 AMV=ANVELP/NVPT
DO 200 J = 1 , 6

200 AVDIF(J)=ACDIF(J)«AMV
C WRITE(8, 320) NACV, NACCP, ANTRJP , ANVELP , AMV
320 F0RMAT(2X,2(1X,I6) ,3(1X,F10.M))
C WRITE(6 , 321) ADIST , ELE (3) ,INBUF(26)
321 FORMAT(2X,F10.4,2J(,I5,2X,I6)
40 RETURN

END

DI-39

DI-40

C SUBROUTINE : ACC
C

C ARGUMENTS :

C

C CALLED BY : EMOVE
C

C CALLS SUBROUTINES : SERVO
C

C INPUT DATA : NACV = THIS IS THE NUMBER OF COMMANDED
C JOINT POSITION OUTPUTS FOR THE
C ACCELERATION (OR DECCELERATION) PORTION
C OF THE TRAJECTORY.
C NVPT = THIS IS THE NUMBER OF COMMANDED JOINT
C POSITION OUTPUTS FOR THE CONSTANT
C VELOCITY PORTION OF THE TRAJECTORY.
C KJ = A FLAG THAT CODES THE INFORMATION OF
C WHETHER AN ACCELERATION OR DECCELERATION
C PROFILE IS TO BE USED.
C ACDIF(1-6) = THE DELTA JOINT POSITION VALUES THAT
C WOULD CAUSE THE ARM TO MOVE 1/200 OF
C A CENTIMETER ALONG THE INTERPOLATED
C TRAJECTORY. USED AS THE ACCELERATION
C FACTOR FOR THE ACCELERATION PORTION OF
C THE TRAJECTORY.
C AVDIF(1-6) = THE DELTA JOINT POSITION VALUES THAT
C WOULD CAUSE THE ARM TO MOVE 'NACV
C TIMES 1/200 CENTIMETERS ALONG THE
C CONSTANT VELOCITY PORTION OF THE
C TRAJECTORY. THUS, PROVIDING THE PROPER
C SIZE STEP REQUIRED FOR THE ARM TO MOVE
C AT THE SPECIFIED VELOCITY.
C

C OUTPUT DATA : JP0S(1-6) = THE COMMANDED JOINT POSITION VALUES
C TO THE SERVOS THAT WILL MOVE THE
C ARM THROUGH THE PROPER TRAJECTORY IN
C SPACE.
C

C FUNCTION: CALCULATES AND OUTPUTS TO 'SERVO' THE CORRECT JOINT
C POSITION COMMANDS TO CAUSE THE ARM TO MOVE THROUGH ITS
C SPECIFIED TRAJECTORY USING ACCELERATION AND DECELERATION
C ROUTINES WHERE NECESSARY.
C

SUBROUTINE ACC
IMPLICIT INTEGER(B-Z)
C0MM0N/EM/ELE(6

)

COMMON /LMOD/LTAB(9 0,4,7) ,PRES,DEST
COMMON /ARMBUF/INBUF(64) ,OUTBUF(64)
C0MM0N/0UT/JP0S(8)
C0MM0N/INT/NACV,NVPT,KJ
COMMON/DELT/ACDIF(6) ,AVDIF(6)
EQUI VALENCE (EABORT,INBUF(28)

)

DIMENSION AJP0S(6)
C

C THE JOINT POSITION VALUES ARE CONVERTED TO FLOATING POINT VALUES,
C SO THAT THEY CAN BE INCREMENTED BY VALUES LESS THAN ONE IF
C NECESSARY.

DI-41

c

DO 10 K=1 ,

6

10 AJPOS(K)=JPOS(K)
C

C THE FLAG 'KJ' (WHOSE VALUE IS DETERMINED BY WHETHER OR NOT
C ACCELERATION AND/OR DECCELERATION PROFILES ARE TO BE USED)
C IS USED TO POINT TO THE APPROPRIATE CODE TO BE EXECUTED.
C

GOTO (11,12,11, 12)KJ
C

C THIS IS THE CODE THAT CAUSES AN ACCELERATION TO BE PROVIDED AT THE
C BEGINNING OF THE TRAJECTORY. THE ACCELERATION LASTS FOR 'NACV
C OUTPUTS TO THE SERVOS. EACH TIME THE JOINT POSITION COMMANDED
C OUTPUT IS INCREMENTED BY A DELTA THAT IS 'ACDIF(J)' LARGER THAN
C THE LAST ONE, THEREBY PROVIDING AN ACCELERATION UP TO
C THE SPECIFIED VELOCITY.
C

12 DO 400 LD=1 ,NACV
DO 401 J=1 ,

6

AJPOS(J)=AJPOS(J)+LD»ACDIF(J)
401 JPOS(J)=AJPOS(J)

CALL SERVO(O)
IF(EABORT.LT.-2000)GOTO 40

400 CONTINUE
C

C THIS IS THE SECTION OF THE CODE THAT PROVIDES THE CONSTANT
C VELOCITY PORTION OF THE TRAJECTORY. THE JOINT POSITION COMMANDED
C VALUES ARE INCREMENTED BY THE DELTA VALUES 'AVDIF(1-6)' FOR
C 'NVPT' TIMES TO CAUSE THE ARM TO MOVE AT A CONSTANT VELOCITY
C THROUGH THIS PORTION OF THE TRAJECTORY.
C

1 1 DO 500 LD= 1 , NVPT
DO 501 J=1 ,

6

AJPOS(J)=AJPOS(J)+AVDIF(J)
501 JPOS(J)=AJPOS(J)

CALL SERVO(O)
IF(EAB0RT.LT.-2000)GOTO 40

500 CONTINUE
C

C THE FLAG 'KJ' IS USED TO RETURN TO THE CALLING PROGRAM ('EMOVE') IF
C NO DECCELERATION IS TO BE USED OR EXECUTE THE NEXT SECTION OF CODE
C IF A DECCELERATION IS CALLED FOR.
C

GOTO (40,40, 13, 13)KJ
C

C THIS SECTION OF CODE CREATES A DECCELERATION PROFILE. THE
C DECCELERATION LASTS FOR 'NACV OUTPUTS TO THE SERVOS.
C FOR EACH OUTPUT, THE JOINT POSITION COMMANDED VALUES ARE
C INCREMENTED BY A DELTA THAT IS 'ACDIF(J)' SMALLER THAN THE LAST
C ONE UNTIL THE DESTINATION POSITION HAS BEEN REACHED.
C

13 DO 600 LD=1 ,NACV
LLD=NACV+1 -LD
DO 601 J=1 ,

6

AJPOS(J)=AJPOS(J)+LLD»ACDIF(J)
601 JPOS(J)=AJPOS(J)

DI-42

CALL SERVO(O)
IF(EABORT.LT.-2000)GOTO 40

600 CONTINUE
C47 WRITE (6, 48) (LTAB(ELE(2) ,4,J),J=1,6) , (JPOS(H) ,H=1 ,6)
48 F0RMAT(2X, 6(2X,I6)

)

40 RETURN
END

DI-43

DI-44

C SUBROUTINE : DETECT
C

C ARGUMENTS :

C

C CALLED BY : EMOVE
C

C CALLS SUBROUTINES : COOR ARMIN SERVO
C

C INPUT DATA : JP0S(7) = THE PRESENT JOINT POSITION VALUES
C PI = THE PRESENT VALUE OF THE SIGNAL
C FROM THE PROXIMITY SENSOR ON
C ONE OF THE FINGERS [FROM 'ARMIN'
C ON INPUT CHANNEL NUMBER 49].
C P2 = THE PRESENT VALUE OF THE SIGNAL

i C FROM THE PROXIMITY SENSOR ON
C THE OTHER FINGER [FROM 'ARMIN'
C ON INPUT CHANNEL NUMBER 48].
C

C OUTPUT DATA : JP0S{7) = THE COMMANDED JOINT POSITION VALUES
C THAT WILL CAUSE THE ARM TO MOVE
C ALONG A SEARCH PATH IN THE 'Y'
C DIRECTION [FROM 'COOR'].
C

C FUNCTION: TESTS THE PROXIMITY SENSORS FEEDBACK FOR A LARGE ENOUGH
C SIGNAL TO INDICATE THAT THERE IS AN OBJECT IN FRONT OF
C AT LEAST ONE OF THE SENSORS. IF THIS THRESHOLD SIGNAL
C IS NOT DETECTED BY EITHER SENSOR, THEN THE HAND

I

C IS MOVED IN A SEARCH PATTERN UNTIL THE THRESHOLD
I

C LEVEL IS DETECTED.
i C

c

SUBROUTINE DETECT
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) ,OUTBUF(64)
C0MM0N/0UT/JP0S(8)
C0MM0N/C0RT/AC(6) , AXEP , AYEP , AZEF
C0MM0N/0FFS/0FF(3

)

EQUIVALENCE(EAB0RT,INBUF(28)

)

EQUIVALENCE(P1 ,INBUF(49)) , (P2,INBUF(48)

)

CALL ARMIN
C

C PLACE THE PRESENT JOINT POSITION VALUES IN THE MATRIX AC(6) TO BE
Ij

C USED BY THE COORDINATE TRANSFORMATION {'COOR') CALL.
I C

DO 51 JJ=1 ,

6

51 AC(JJ) rJPOS (JJ

)

C

C SET THE COUNTER FOR MOVEMENT IN THE 'Y' DIRECTION EQUAL TO ZERO.
C

AY = 0.
C

I

C ZERO THE FLAG ('MIN') USED TO INDICATE THAT THE HAND SHOULD BE
I C MOVING IN THE MINUS 'Y' DIRECTION.

C

60 MIN=0
C

DI-45

C TEST EACH PROXIMITY SENSOR FOR THE THRESHOLD VALUE AND RETURN
C TO THE CALLING PROGRAM ('EMOVE') IF THIS VALUE IS DETECTED.
C

20 IF(P1 .GT.20G0)GOTO 45
IF(P2.GT.2000)GOTO 45

C

C IF MOVING IN THE '-Y' DIRECTION, THEN BRANCH TO THE SECTION OF
C CODE TO DECREMENT THE DELTA 'Y' COUNTER ('AY').
C

IF(MIN.EQ. 1)GOTO 30
C

C ONCE THE HAND HAS MOVED 15 CENTIMETERS IN THE PLUS DIRECTION,
C THEN BRANCH TO THE CODE TO MOVE THE HAND IN THE MINUS
C DIRECTION.
C

IF(AY.GT. 15.)GOTO 31
C

C THIS SECTION OF CODE ASSIGNS THE DELTA MOTION ('AYSIGN') AS
C A POSITIVE .2 CENTIMETER.
C

25 MIN=0
AYSIGN=.2
GOTO 50

C

C IF THE HAND HAS MOVED 15 CENTIMETERS IN THE MINUS DIRECTION FROM
C THE INITIAL LOCATION, THEN BRANCH TO THAT CODE TO REVERSE
C THE DIRECTION OF MOTION TO THE '+Y' DIRECTION.
C

30 IF(AY.LT.-15.)GOTO 25
C

C THIS SECTION OF CODE ASSIGNS THE DELTA MOTION ('AYSIGN') AS
C A NEGATIVE .2 CENTIMETER. THE FLAG ('MIN') INDICATING
C MOVEMENT IN THE NEGATIVE 'Y' DIRECTION IS SET EQUAL TO ONE.
C

31 MIN=1
AYSIGN=-.2

C

C HERE, THE DELTA MOTION IN THE 'Y' DIRECTION ('AYSIGN') IS ADDED
C TO THE TOTAL DELTA 'Y' ('AY') FROM THE ORIGINAL STARTING POINT
C TO DETERMINE WHAT THE NEW DELTA IS.
C

50 AY=AY+AYSIGN
C

C THIS DELTA 'Y' OFFSET FROM THE STARTING POINT IS TRANSFORMED
C INTO THE PROPER JOINT POSITION VALUES BY A CALL TO
C 'COOR'. THESE JOINT POSITION VALUES ARE THEN
C SENT TO THE SERVOS TO BE EXECUTED BY A CALL TO 'SERVO'. IN
C THIS WAY THE HAND MOVES IN THE 'Y' DIRECTION ALONG A PATH
C THAT EXTENDS 15 CENTIMETERS ON EITHER SIDE OF THE STARTING
C POINT MOVING IN INCREMENTS OF .2 CENTIMETERS AND CHECKING FOR
C THE THRESHOLD LEVEL FROM THE SENSORS.
C

CALL COOR(0. ,AY,0. ,0,0)
CALL SERVO(O)
IF(EABORT.GT.-2000)GOTO 20

DI-46

0FF(2)=0FF(2)+100»AY
40 RETURN

END

DI-47

DI-48

C SUBROUTINE : BAL
C

C ARGUMENTS :

C

C CALLED BY : EMOVE
C

C CALLS SUBROUTINES : COOR ARMIN SERVO
C

C INPUT DATA : JP0S(7) = THE PRESENT JOINT POSITION VALUES
C PI = THE PRESENT VALUE OF THE SIGNAL
C FROM THE PROXIMITY SENSOR ON
C ONE OF THE FINGERS [FROM 'ARMIN'
C ON INPUT CHANNEL NUMBER 49].
C P2 = THE PRESENT VALUE OF THE SIGNAL
C FROM THE PROXIMITY SENSOR ON
C THE OTHER FINGER [FROM 'ARMIN'
C ON INPUT CHANNEL NUMBER 48].
C

C OUTPUT DATA : JP0S(7) = THE COMMANDED JOINT POSITION VALUES
C THAT WILL CAUSE THE ARM TO MOVE
C ALONG A SEARCH PATH IN THE 'Y'
C DIRECTION [FROM 'COOR'].
C

C FUNCTION: ASSUMES THAT AT LEAST ONE OF THE PROXIMITY SENSORS
C IS ABOVE THE THRESHOLD VALUE, IE. AN OBJECT HAS BEEN
C DETECTED). THIS ROUTINE THEN INCREMENTS THE HAND'S
C MOTION IN THE DIRECTION SO AS TO CAUSE THE TWO PROXIMITY
C SIGNALS TO BE EQUAL. IF BOTH SENSORS DO NOT REACH
C THE THRESHOLD VALUE, THIS ROUTINE CAUSES THE
C HAND TO MOVE UNTIL THE OBJECT DETECTED IS
C WITHIN THE GRASP OF THE HAND (IE. IT ALIGNS THE INSIDE
C EDGE OF ONE FINGER WITH THE OUTSIDE EDGE OF THE DETECTED
C OBJECT),
C

SUBROUTINE BAL
IMPLICIT INTEGER{B-Z)
COMMON/ARMBUF/INBUF(64) , OUTBUF(64)
C0MM0N/0UT/JP0S(8)
C0MM0N/C0RT/AC(6) , AXEP , AYEP , AZEP
C0MM0N/0FFS/0FF(3)
EQUI VALENCE (EABORT,INBUF(28))

EQUIVALENCE (P 1 ,INBUF (49)), (P2,INBUF(48)

)

CALL ARMIN
C

C PLACE THE PRESENT JOINT POSITION VALUES IN THE MATRIX AC(6) TO BE
C USED BY THE COORDINATE TRANSFORMATION ('COOR') CALL.
C

DO 51 JJ=1 ,6
51 AC(JJ)=JPOS(JJ)
C

C SET THE COUNTER FOR MOVEMENT IN THE 'Y' DIRECTION EQUAL TO ZERO.
C

AY = 0 .

C

C THE FLAGS ('M' AND 'P') TO INDICATE IF THE HAND IS BEING MOVED
C IN A MINUS OR PLUS 'Y' DIRECTION DURING THE BALANCE FUNCTION,

DI-49

C ARE SET EQUAL TO ZERO.
C

M = 0

P = 0
C

C THE DIFFERENCE BETWEEN THE VALUES OF THE TWO PROXIMITY SENSORS IS
C CALCULATED AND STORED IN 'DS'.
C

30 DS=P1-P2
C

C THE ALGEBRAIC SIGN OF 'DS' IS AN INDICATION OF WHICH OF THE TWO
C SIGNALS IS THE LARGER AND IS USED TO DETERMINE WHICH
C CODE SHOULD NOW BE EXECUTED.
C

IF(DS.GT.O)GOTO 20
C

C IF 'P2' IS THE LARGER SIGNAL, THEN THE HAND SHOULD MOVE IN THE
C '-Y' DIRECTION, THEREFORE, THE DELTA 'Y' MOTION VALUE ('AYSIGN')
C IS ASSIGNED THE VALUE OF -.05 CENTIMETERS. THE MINUS 'Y'

C DIRECTION FLAG ('M') IS SET EQUAL TO ONE.
C

AYSIGN=- . 05
M=1

C

C THE PLUS 'Y' DIRECTION FLAG ('P') IS TESTED. IF IT IS EQUAL TO
C ONE, THIS MEANS THAT THE HAND WAS MOVING IN THE PLUS 'Y'

C DIRECTION AND NOW THE SENSORS INDICATE IT SHOULD MOVE IN THE
C MINUS 'Y' DIRECTION. FOR THIS SITUATION TO OCCUR, THE
C SENSORS MUST HAVE PAST THROUGH A BALANCE POINT (IE. 'PI' WAS
C THE LARGER, NOW 'P2' IS THE LARGER. BETWEEN THESE TWO
C CONDITIONS, 'PI' MUST HAVE EQUALED 'P2'), THEREFORE, RETURN TO
C THE CALLING PROGRAM (' EMOVE ') BECAUSE THE BALANCE POINT HAS BEEN
C OBTAINED.
C

IF(P. EQ. 1)GOTO 45
C

C IF THE CONDITION OCCURS THAT 'P2' STARTS DECREASING
C IN VALUE BEFORE THE 'BALANCE' CONDITION IS REACHED, THEN
C BRANCH TO THE SECTION OF CODE THE 'EDGE' DETECTION. SINCE 'P2'
C WAS ABOVE THE THRESHOLD LEVEL AND IS NOW DECREASING, THE SENSOR
G MUST BE PASSING ACROSS THE EDGE OF THE UNDERLYING OBJECT.
C

IF(P2.LT. 1500)G0T0 75
GOTO 50

C

C IF 'PI' IS THE LARGER SIGNAL, THEN MOVE IN THE PLUS 'Y' DIRECTION
C BY ASSIGNING A VALUE OF +.05 CENTIMETERS TO 'AYSIGN'.
C

20 AYSIGN=.05
C

C THE SAME TYPE OF TESTS MADE FOR THE MINUS 'Y' MOTION ABOVE
C ARE ALSO MADE HERE FOR THE PLUS 'Y' MOTION.
C

P= 1

IF(M. EQ. 1)GOTO 45
IF(P1 .LT. 1500)GOTO 80

DI-50

c

C THE ACTUAL COMMANDED MOTION OF THE ARM IS CALCULATED BY THE
C FOLLOWING CODE. FIRST 'AY', THE TOTAL DELTA 'Y' MOTION FROM
C THE STARTING POINT IS CALCULATED USING THE DELTA 'Y' VALUE
C ASSIGNED ABOVE. THEN A CALL TO 'COOR', THE COORDINATE
C TRANSFORMATION ROUTINE, CALCULATES THE CORRECT JOINT POSITION
C VALUES FOR THE LOCATION 'AY' DISTANCE AWAY FROM THE STARTING
C POINT. THEN A CALL TO 'SERVO' SENDS THESE VALUES OUT TO THE SERVO
C SYSTEM OF THE ARM. 'ARMIN' IS CALLED TO BRING IN THE CURRENT
C VALUES OF THE PROXIMITY SENSORS FOR ANOTHER TEST, STARTING
C BACK AT STATEMENT 30.
C

50 AY=AY+AYSIGN
CALL COOR(0. ,AY,0. ,0,0)
CALL SERVO(O)
IF(EABORT.LT.-2000)GOTO 40
GOTO 30

C

C IF AN EDGE IS DETECTED BY 'P2', THEN THE FOLLOWING CODE ADVANCES
C THE HAND AN ADDITIONAL DISTANCE IN THE '-Y' DIRECTION (WHICH
C DISTANCE IS EQUAL TO THE THICKNESS OF THE FINGER THAT THE
C SENSOR 'P2' IS ATTACHED TO) TO PLACE THE INSIDE SURFACE OF
C THE FINGER FLUSH WITH THE UNDERLYING DETECTED EDGE.
C

75 DO 77 GT= 1 , 48
AY=AY- . 05
CALL COORCO. ,AY,0. ,0,0)

77 CALL SERVO(O)
GOTO 45

C

C IF 'PI' DETECTS AN EDGE, THIS CODE MOVES THE HAND IN THE '+Y'
C DIRECTION BY AN AMOUNT EQUAL TO THE THICKNESS OF THE FINGER AS
C ABOVE.
C

80 DO 81 GGT= 1 , 40
AY=AY+.05
CALL COORCO. ,AY,0. ,0,0)

81 CALL SERVO(O)
45 0FF(2)=0FF(2)+100«AY
40 RETURN

END

DI-51

DI-52

C SUBROUTINE : GRASP
C

C ARGUMENTS : D IF D=0 THIS IS THE QUICK CLOSE COMMAND.
C THE POSITION VALUE OF THE FINGERS IN
C THE CLOSED POSITION IS SENT TO THE
C SERVOS. CONTROL IS IMMEDIATELY
C RETURNED TO THE CALLING PROGRAM
C WITHOUT WAITING FOR THE FINGERS TO
C COMPLETE THE CLOSING OPERATION.
C IF D=1 HERE, THE FINGERS ARE CLOSED AN
C INCREMENT AT A TIME UNTIL A DIFFERENCE
C IS DETECTED BETWEEN THE COMMANDED
C POSITION AND THE ACTUAL POSITION AS
C READ IN FROM THE POSITION INDICATOR.
C

C CALLED BY : EMOVE
C

C CALLS SUBROUTINES : ARMIN SERVO
C

C INPUT DATA : INBUF(19) = THE INPUT CHANNEL THAT CONTAINS
C THE PRESENT VALUE OF THE POSITION
C INDICATOR FOR THE FINGERS.
C

C OUTPUT DATA : JP0S(7) - THE COMMANDED OUTPUT POSITION VALUE
C FOR THE FINGERS.
C JP0S(8) = THE DIGITAL (16 BITS) OUTPUT CHANNEL
C THAT CONTROLS THE SETTING
C OF THE BRAKES ON ALL OF THE JOINTS.
C

C FUNCTION: CAUSES THE FINGERS TO CLOSE UNTIL THEY EXERT A PREDEFINED
C FORCE ON AN OBJECT, THEN IT SETS THE BRAKE ON THE
C FINGERS (D=0). OR SENDS OUT THE POSITION COMMAND THAT
C WILL RESULT IN THE FINGERS CLOSING ALL OF THE WAY (D=1).
C

SUBROUTINE GRASP(D)
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) ,OUTBUF(64)
C0MM0N/0UT/JP0S(8)
EQUI VALENCE (EABORT,INBUF(28))

COMMON/GRIP/HAND
C

C READ IN THE PRESENT POSITION OF THE FINGERS AND SET THE OUTPUT
C POSITION COMMAND FOR THE FINGERS (JP0S(7)) EQUAL TO THIS
C VALUE.
C

CALL ARMIN
JP0S(7)=2»INBUF(19)+16383

C

C SEND OUT THE PROPER CODE NUMBER TO SET UP THE BIT PATTERN
C ON OUTPUT CHANNEL 8 (JP0S(8)) TO RELEASE THE BRAKE ON THE
C FINGERS.
C

JP0S(8)=32767
CALL SERVO(O)

C

C TEST 'D'. IF D=1, THEN SEND THE POSITION VALUE OF 6600 TO THE

DI-53

C FINGER SERVO (THIS IS USED TO CLOSE THE FINGERS
C SO THAT THE SENSORS CAN BE USED IN SOME OF THE SEARCH ROUTINES.
C THE OUTPUTTING OF THIS VALUE TO THE SERVOS CAUSES THE FINGERS TO
C CLOSE COMPLETELY, HOWEVER, THIS ROUTINE
C DOES NOT WAIT FOR THIS ACTION TO BE FINISHED BEFORE RETURNING TO
C THE CALLING PROGRAM. AS A RESULT, THE FINGERS WILL STILL BE IN
C MOTION WHILE THE OTHER SUBROUTINES OF THE CONTROL SYSTEM ARE
C IN EXECUTION.). IF D=0 THEN BRANCH TO STATEMENT 20.
0

IF(D.NE. 1)GOTO 20
JP0S(7)=6600
CALL SERVO(O)
GOTO 40

C

C THE COUNTER 'KB' WHICH IS USED IN THE DETECTION OF THE GRIPPING FORCE
C OF THE FINGERS IS SET EQUAL TO ZERO.
C

20 KB=0
C

C THE JOINT POSITION COMMAND FOR THE FINGERS (JP0S(7)) IS DECREMENTED
C WHICH WILL CAUSE AN INCREMENTAL CLOSING WHEN SENT TO THE SERVO.
C

JPOS(7)=JPOS(7)-100
100 CALL SERVO(O)
C

C THE INPUT CHANNELS ARE SAMPLED TO DETERMINE IF AN ABORT HAS BEEN
C CALLED, AND TO DETERMINE THE PRESENT VALUE OF THE POSITION
G OF THE FINGERS ('FINGER').
C

IF(EABORT.LT.-2000)GOTO 40
FINGER=2»INBUF(1 9)+1 6383

C

C THE DIFFERENCE BETWEEN THE PRESENT POSITION ('FINGER') OF THE
C FINGERS AND THE COMMANDED (JP0S(7)) POSITION OF THE FINGERS
C IS CALCULATED AND STORED IN TST.
C

TST=FINGER-JPOS (7

)

C

C AS LONG AS THIS DIFFERENCE ('TST') IS LESS THAN 800, THEN
C WE CONTINUE TO DECREMENT THE COMMANDED POSITION VALUE, THUS
C CONTINUING TO CLOSE THE FINGERS. IF, HOWEVER, THE DIFFERENCE
C BECOMES GREATER THAN 800, WE THEN USE 'KB' AS A COUNTER AND
e SAMPLE THE PRESENT POSITION FOR .2 SEC (KB=50) TO MAKE CERTAIN
C THAT THE FINGERS ARE NO LONGER CLOSING. THIS INDICATES THAT
C THE FINGERS HAVE GRASPED AN OBJECT WITH A CERTAIN FORCE.
C

IF(TST.LT.800)GOTO 20
KB=KB+1
IF(KB.LT.50)G0T0 100

C

C ONCE AN OBJECT IS GRASPED, THE BRAKE ON THE FINGERS IS SET BY
C SETTING THE OUTPUT CHANNEL 8 (rP0S(8)) EQUAL TO 32703.
C

310 JP0S(8)=32703
CALL SERVO(O)

C

DI-54

C THE PRESENT POSITION VALUE OF THE FINGERS IS READ IN AND THE
C COMMANDED POSITION VALUE (JP0S(7)) OF THE FINGERS SET EQUAL
C TO IT, THIS ZEROS THE SERVO ERROR, THEREFORE, THE
C ACTUATOR IS NO LONGER DRIVING THE FINGERS TO CLOSE, SINCE THE
C BRAKE WILL NOW HOLD THE FINGERS CLOSED ON THE OBJECT.
C

CALL ARMIN
JP0S(7)=2»INBUF(19)+16383

C

C THE ACTUAL POSITION VALUE OF THE FINGERS IS STORED IN THE COMMON
C VARIABLE 'HAND* SO THAT IT CAN BE ACCESSED BY OTHER SUBROUTINES
C IF NECESSARY.
C

HANDzJPOS (7

)

CALL SERVO(O)
40 RETURN

END

DI-55

DI-56

C SUBROUTINE : RELEAS
C

C ARGUMENTS :

C

C CALLED BY : EMOVE
C

C --- CALLS SUBROUTINES : ARMIN SERVO
C

C INPUT DATA : INBUF(19) = THE INPUT CHANNEL THAT CONTAINS
C THE PRESENT VALUE OF THE POSITION
C INDICATOR FOR THE FINGERS.
C

C --- OUTPUT DATA : JP0S(7) = THE COMMANDED OUTPUT POSITION VALUE
C FOR THE FINGERS.
C JP0S(8) = THE DIGITAL (16 BITS) OUTPUT CHANNEL
C THAT CONTROLS THE SETTING
C OF THE BRAKES ON ALL OF THE JOINTS.
C

C FUNCTION: CAUSES THE FINGERS OF THE HAND TO FULLY OPEN.
C

SUBROUTINE RELEAS
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) ,OUTBUF(64)
C0MM0N/0UT/JP0S(8)
EQUIVALENCE(EAB0RT,INBUF(28)

)

C

C SEND OUT THE PROPER CODE NUMBER TO SET UP THE BIT PATTERN
C ON OUTPUT CHANNEL 8 (JP0S(8)) TO RELEASE THE BRAKE ON THE
C FINGERS.
C

JPOS(8)=32767
C

C SEND THE POSITION VALUE OF 31000 TO THE SERVO. WHEN THE FINGERS
C ARE SERVOED TO THIS POSITION THEY WILL BE FULLY OPENED.
C

JPOS(7)=31000
CALL SERVO(O)

C

C

C THE INPUT CHANNELS ARE SAMPLED TO DETERMINE IF AN ABORT HAS BEEN
C CALLED, AND TO DETERMINE THE PRESENT VALUE OF THE POSITION
C OF THE FINGERS ('FINGER').
C

100 CALL ARMIN
IF(EABORT.LT.-2000)GOTO 40
FINGER=2*INBUF(19)+16383

C

C IF THE FINGERS HAVE NOT YET REACHED THE FULLY OPENED POSITION
C THEN CONTINUING SAMPLING THEIR POSITION (GOTO STATEMENT 100).
C

IF(FINGER.LT.30400)GOTO 100
C

C ONCE THE HAND IS FULLY OPENED, SET THE BRAKE (JP0S(8)), AND
C SET THE COMMANDED POSITION VALUE OF THE FINGERS EQUAL TO
C THEIR PRESENT POSITION.
C

JPOS(8)=32703
JP0S(7) =FINGER
CALL SERVO(O)

40 RETURN
END DI-57

DI-58

C SUBROUTINE : PTOUCH
C

C ARGUMENTS :

C

C CALLED BY : EMOVE
C

C CALLS SUBROUTINES : ARMIN SERVO COOR
C

C INPUT DATA : INBUF(48) = 'P2' THE VALUE OF ONE OF THE PROXIMITY
C SENSORS.
C JP0S(1-7) = THE JOINT POSITION VALUES AT THE
C BEGINNING OF THE ROUTINE.
C JP0S(1-7) = THE JOINT POSITION COMMANDS NECESSARY
C TO MOVE THE ARM TO THE POSITION
C DELTA 'Z' FROM THE STARTING POINT [FROM
C 'COOR'].
C

C OUTPUT DATA : ADY = THE PRESENT DELTA 'Y' OFFSET VALUE FROM
C THE INITIAL POSITION OF THE ARM.
C ADZ = THE PRESENT DELTA 'Z' OFFSET VALUE FROM
C THE INITIAL POSITION OF THE ARM.
C JP0S(1-7) = THE JOINT POSITION COMMANDS TO BE
C SENT TO THE SERVOS.
C 0FF(1-3) = THE TOTAL OFFSET IN THE X.THE Y,

C AND THE Z DIRECTIONS FROM THE ORIGINAL
C STARTING LOCATION.
C

C FUNCTION: CAUSES THE HAND TO DESCEND IN A STRAIGHT LINE IN THE 'Z'
C DIRECTION WHILE TESTING THE VALUE OF THE SENSOR
C FOR A THRESHOLD LEVEL EVERY .2 CENTIMETER. WHEN THE
C THRESHOLD LEVEL IS DETECTED, THE HAND IS
C STOPPED AT THAT LOCATION AND CONTROL IS RETURNED TO THE
C CALLING PROGRAM.
C

SUBROUTINE PTOUCH
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) .OUTBUF(64)
C0MM0N/0FFS/0FF(3)
C0MM0N/0UT/JP0S(8)
C0MM0N/C0RT/AC(6) , AXEP , AYEP , AZEP
EQUIVALENCE(EAB0RT,INBUF(28)

)

EQUIVALENCE(P1 ,INBUF(49)) . (P 2 , INBUF (4 8)

)

C

C SET THE DELTA 'Y' (ADY) AND THE DELTA 'Z' VALUE EQUAL TO ZERO.
C

ADY=0.
ADZ=0

.

C

C PLACE THE PRESENT JOINT POSITION VALUES IN THE COMMON
C VARIABLE 'AC(1-6)' FOR USE BY 'COOR'.
C

DO 20 J= 1 ,

6

20 AC(J)=JPOS(J)
C

C MOVE THE HAND 3-0 CENTIMETERS IN THE '+Y' DIRECTION TO
C POSITION THE SENSOR ON THE OUTSIDE EDGE OF THE FINGER

DI-59

C OVER THE EXPECTED CENTER OF THE STACK.
C

DO 30 J = 1 , 12

ADY=ADY+.25
CALL COOR(0. ,ADY,0. ,0,0)

30 CALL SERVO(O)
C

C TEST THE VALUE OF THE PROXIMITY SENSOR TO DETERMINE IF THE TOP OF
C THE STACK HAS BEEN DETECTED.
C

50 IF(P2.GT. 1500)G0T0 35
C

C MOVE THE HAND ANOTHER .2 CENTIMETERS IN THE '-Z' DIRECTION, THEN
C TEST THE SENSOR VALUE AGAIN.
C

ADZ=ADZ- .

2

36 CALL COOR (0 . , ADY , ADZ , 0 , 0)
CALL SERVO(O)
IF(EABORT.LT.-2000)GOTO 40
GOTO 50

C

C ONCE THE TOP OF THE STACK HAS BEEN DETECTED, MOVE THE HAND DOWN
C SLOWLY UNTIL THE THRESHOLD LEVEL IS DETECTED.
C

35 ADZ=ADZ-.03
IF(P2.GT.4000)GOTO 45
GOTO 36

C

C UPDATE THE TOTAL OFFSET VALUES BY THE AMOUNTS MOVED DURING THIS
C SUBROUTINE CALL.
C

45 0FF(2)=100»ADY+0FF(2)
OFF(3)=100»ADZ+OFF(3)

40 RETURN
END

DI-60

C SUBROUTINE : COOR
C

C ARGUMENTS : AX = THE 'X' COORDINATE VALUE
C AY = THE 'Y' COORDINATE VALUE.
C AZ = THE 'Z' COORDINATE VALUE.
C DA = THE FLAG TO INDICATE WHETHER THE
C 'AX.AY.AZ' VALUES ARE ABSOLUTE COORDINATE
C POSITIONS (DA=1), OR DELTA COORDINATE OFFSETS
C FROM THE PRESENT POSITION OF THE ARM (DA=0).
C NA = THE FLAG TO INDICATE WHETHER THE JOINT
C COORDINATE VALUES ARE TO BE CALCULATED (NA=0),
C OR NOT (NA=1).
C

C CALLED BY : JOY LOCTAB ARRLOC EMOVE STLINE CALD DETECT
C BAL PTOUCH
C

C CALLS SUBROUTINES :

C

C INPUT DATA : AX , AY , AZ , D A , NA AS EXPLAINED ABOVE
C AC(1-6) = THE VALUES OF THE SIX JOINT COORDINATES
C USED AS A REFERENCE POINT FOR THIS
C TRANSFORMATION.
C A04,A05,A06 = THE VALUES OF THE OFFSETS FOR THE FOURTH,
C FIFTH, AND SIXTH JOINTS (FROM 'JOY').
C

C OUTPUT DATA : AXEP , AYEP , AZEP = THE NEW •X,Y,Z' COORDINATE POSITION
C CALCULATED FROM THE REFERENCE
C POINT (AC(1-6)) AND THE INPUT 'X,Y,Z'
C VALUES (AX,AY,AZ).
C JP0S(1-6) = THE JOINT POSITION VALUES THAT
C ARE CALCULATED FROM THE REFERENCE
C POINT (AC(1-6)) AND THE INPUT •X,Y,Z'
C VALUES (AX,AY,AZ).
C

C FUNCTION: TRANSFORMS THE •X,Y,Z' COORDINATE VALUES FOR A POSITION
C IN SPACE INTO THE CORRESPONDING JOINT COORDINATE VALUES,
C AND VISE VERSA. (THIS IS ONLY A THREE AXIS TRANSFORMATION,
C NOT THE ENTIRE SIX AXIS TRANSFORMATION. THE FOURTH,
C FIFTH AND SIXTH AXIS PLANOGRAPH THE MOTIONS
C OF THE FIRST THREE.)
C

SUBROUTINE COOR (AX , A Y , AZ , DA , NA

)

IMPLICIT INTEGER(D-R)
COMMON /XYZ0/A04 , A05 , A06
C0MM0N/C0RT/AC(6) , AXEP , AYEP , AZEP
C0MM0N/0UT/JP0S(8

)

COMMON/ARMBUF/INBUF(64) , OUTBUF(64)
DIMENSION A0M(6)

C

C TEST IF AX,AY,AZ ARE TO BE DELTA OR ABSOLUTE COORDINATES.
C

IF(DA)5,5,6
C

C IF ABSOLUTE, SET ' AXEP ',' AYEP ',' AZEP ' EQUAL TO THEM AND BRANCH
C TO STATEMENT 10 TO CALCULATE THE CORRESPONDING JOINT POSITION
C VALUES.

DI-63

c

6 AXEP=AX
AYEP=AY
AZEP=AZ
GOTO 10

C

C IF AX,AY,AZ ARE DELTA COORDINATE OFFSETS, CALCULATE COORDINATES
C OF PRESENT POSITION (PRESENT POSITION JOINT INDICATOR
C VALUES ARE IN 'AC(1-6)').
C

5 AR=(34552.-AC(3))/358.7
AT1=(15018.-AC(6))/5l82.
AT2=(17821 .-AC(2))/5190.
ARR=AR»COS (AT2

)

AB=SQRT(275 .56+ARR»»2)
AA=ATAN(ARR/16.6)
AG=AT1+AA-1 . 5708

AAZ=AR«SIN (AT2

)

AAX=AB»COS (AG)
AAY=AB»SIN (AG)

C

C ADD PRESENT POSITION X,Y,Z COORDINATE VALUES TO THE COMMANDED
C DELTA COORDINATE OFFSET VALUES.
C

AXEP=AAX+AX
AYEP=AAY+AY
AZEP=AAZ+AZ

C

C IF JOINT POSITIONS NOT TO BE CALCULATED (NA=1), THEN RETURN TO THE
C CALLING PROGRAM.
C

IF(NA. EQ. 1)GOTO 40

C

C CALCULATE THE JOINT POSITION VALUES THAT CORRESPOND TO THE POSITION
C IN SPACE DESIGNATED BY THE COORDINATES ' AXEP '

, • A YEP
• , ' AZEP '

.

C

-10 ARRPS = AXEP»»2+AYEP»»2-275 .56
IF(ARRPS) 1323, 1323, 1324

1323 WRITE(6 , 1325)ARRPS
1325 F0RMAT(2X'ERR0R»» ARR PS =

' , F 1 0 . 3

)

READ(6 , 1 326)KKR
1326 F0RMAT(I3)
1324 ARRP=SQRT(ARRPS)

IF(AXEP)202 ,201 ,200
202 IF(AYEP)203 , 204 , 204
203 AT1P=ATAN(AYEP/AXEP)-1 . 570 8-ATAN (ARRP/ 1 6 . 6

)

GOTO 205
204 AT1P=ATAN(AYEP/AXEP)-1 .5708-ATAN(ARRP/l6.6)

IF(AT1P.GT.-1 . 60)GOTO 205
AT1P=ATAN(AYEP/AXEP)+4.7124-ATAN(ARRP/16. 6)
IF(AT1P.LT.2.54)GOTO 205
WRITE(6,220)

220 F0RMAT(2X • THIS IS FORBIDDEN!!')

DI-64

GOTO 40
201 AXEP=.0001
20 0 AT1P=ATAN(AYEP/AXEP)+1 . 570 8-ATAN (ARRP/ 1 6 . 6

)

205 ARP=SQRT(ARRPS+AZEP»«2)
AT2P=ATAN(AZEP/ARRP)

1000 A0M(6) = 15018.-(AT1P»5182.)

A0M(2) = 1782 1 . -(AT2P»5 1 90 .)

A0M(3)=345 52 .-(ARP»358.7)
AOM(4)=17437.+A04
A0M(5)=1 .202«A0M(2)- 16461 .+A05
AOM(1)=- . 8837*A0M(6)+35 380 .+A06

C

C TEST TO MAKE CERTAIN THAT ALL THE NEW JOINT VALUES
C (JP0S(1-6)) ARE WITHIN THEIR ALLOWABLE LIMITS.
C

720 DO 265 JB=1 , 6

IF(A0M(JB) .GT. 30000 .)G0T0 266
IF(A0M(JB) .LT. 2000 .)G0T0 267
JP0S(JB) =A0M(JB)
GOTO 265

266 JPOS(JB) =30000
GOTO 265

267 JPOS(JB)=2000
265 CONTINUE
40 RETURN

END

!'

I

DI-65

SUBROUTINE

ARGUMENTS

SERVO

SD IF SD=-1

IF SD=0

SD =

ZERO THE EIGHT OUTPUT CHANNELS
FOR THE 'SEND' FUNCTION COMMAND.
SEND OUT TO THE SERVOS, THE SEVEN
JOINT POSITION COMMANDS AND THE VALUE
IN JP0S(8) FOR CONTROLLING THE BRAKES.
IF 'SD' IS A NON-ZERO VALUE, IT IS THE
OUTPUT CHANNEL NUMBER ON WHICH A VOLTAGE
LEVEL IS TO BE SENT AS REQUESTED BY THE
•SEND' FUNCTION.

CALLED BY EMOVE RELEAS GRASP STLINE BAL DETECT
PTOUCH ACC JOY

CALLS SUBROUTINES ARMOUT ARMIN

•- INPUT DATA SD
PNT

THE ARGUMENT AS EXPLAINED ABOVE.
THE FLAG IN COMMON MEMORY THAT IF
IT IS SET EQUAL TO ONE CAUSES THIS
SUBROUTINE 'SERVO' TO MAINTAIN CONTROL
UNTIL THE ACTUAL POSITION OF THE JOINTS
IS WITHIN SOME MINIMUM DISTANCE OF THE
COMMANDED JOINT POSITIONS.

OUTPUT DATA : OUTBUF (1
) -OUTBUF (8) =

0UTBUF(9)-OUTBUF(16)

THE SEVEN COMMANDED JOINT
POSITION VALUES, AND THE
15-BIT DIGITAL CHANNEL FOR
CONTROLLING THE BRAKES.
THE EIGHT OUTPUT CHANNELS THAT
CAN BE USED BY THE 'SEND'
FUNCTION COMMAND. THIS IS USED
FOR THE INTERLOCKING OF THE ARM
EXTERNAL DEVICES.

•- FUNCTION: USES THE ARGUMENT TO DETERMINE WHICH OUTPUTS SHOULD BE
SENT TO THE ROBOT WORK STATION. ALL OUTPUTS FROM
THE CONTROL SYSTEM ARE MADE THROUGH THIS CALL. THESE
INCLUDE THE JOINT POSITION COMMANDS, THE CONTROL OF
ALL OF THE JOINT BRAKES, AND THE VOLTAGE LEVEL SIGNALS
ON THE SPECIFIED OUTPUT CHANNELS.

SUBROUTINE SERVO(SD)
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) ,OUTBUF(64)
COMMON/END/PNT
C0MM0N/0UT/JP0S(8)
DIMENSION ERRT(12) ,ERR(6) ,INP(6)
EQUIVALENCE(EAB0RT,INBUF(28)

)

DATA ERRT/700, 700, 1500, 700, 1000, 700, 200, 100, 360, 200, 280, 100/

THE FLAG 'PNT' IS TESTED TO SEE WHICH GROUP OF DELTA JOINT VALUES
FROM 'ERRT' IS TO BE USED. IF 'PNT' IS EQUAL TO ZERO, THEN
THE ONLY REQUIREMENT ON THE ACTUAL POSITION OF ALL
OF THE JOINTS IS THAT DIFFERENCE BETWEEN THEIR PRESENT POSITION
AND THEIR NEXT COMMANDED POSITION NOT BE GREATER THAN THE

DI-67

C DISTANCE THAT THEY CAN MOVE IN THAT NEXT INCREMENT. IF 'PNT' IS
C EQUAL TO ONE, THEN THIS SUBROUTINE WILL LOOP, SENDING THE SAME
C COMMANDED POSITION VALUES UNTIL THE ACTUAL POSITION OF
C THE JOINTS IS WITHIN SOME MINIMUM DISTANCE OF THESE VALUES
C (THESE MINIMUM VALUES ARE IN ' ERRT (

7 - 1 2)
•)

.

C

KS = 0

IF(PNT.EQ.O)GOTO 55
PNT = 0

KS = 6

55 CALL ARMIN
KP = 0

C
C WHEN THE ACTUAL POSITION VALUES OF THE JOINTS ARE READ IN,
C A CORRECTION FACTOR IS USED TO COMPENSATE FOR THE ERRORS
C INTRODUCED IN THE CONVERSION ELECTRONICS IN THE INTERFACE
C AND THE HARDWARE SERVO SYSTEM.
C

INP(1)=INBUF(5)»2.+ 16361
INP(2)=INBUF(8)»1 .975 8+16394
INP(3)=INBUF(1 1)»2.0 0 2+l6 369
INP(4)=INBUF(13)*2. 033+16370
INP(5)=INBUF(15)* 1 .9808+16270
INP(6)=INBUF(17)»1 .994+16349
DO 710 KKK= 1 , 6

ERR (KKK)=INP (KKK)-OUTBUF(KKK)
KM=KS+KKK
IF(ERR(KKK) .GT.ERRT(KM))GOTO 58
IF(ERR(KKK) .LT.-ERRT(KM))GOTO 58

710 CONTINUE
GOTO 77

58 KP=1
77 IF(EABORT.LT.-2000)GOTO 40
C

C A CALL IS MADE TO 'ARMIN' FOR SWITCH 34. IF THIS SWITCH IS
C UP, THE ARM WILL STOP AT ITS PRESENT POSITION AND REMAIN
C THERE UNTIL THE SWITCH IS FLIPPED DOWN.

IF(INBUF(34) .LT.-2000)GOTO 55
C

C THE VARIABLE 'SD' IS USED TO BRANCH TO THE APPROPRIATE CODE
C

IF(SD) 1 0 , 20 , 30
C

C FOR 'SD':-!, ZERO ALL OF THE OUTPUT CHANNELS USED BY THE 'SEND'
C FUNCTION COMMAND.
C

10 DO 1 5 K = 9 ,16
15 0UTBUF(K)=16383

GOTO 35
C
C FOR 'SD'=0, OUTPUT THE SEVEN JOINT POSITION COMMANDS AND
C THE VALUE (JP0S(8)) FOR CONTROLLING THE BRAKES.
C

20 DO 25 JK=1,8
25 OUTBUF(JK)=JPOS(JK)

CALL ARM0UT(8)

DI-68

GOTO 45
C

C FOR 'SD'r SOME NUMBER BETWEEN ONE AND EIGHT, SET 'CH' EQUAL TO THIS
C NUMBER PLUS EIGHT AND OUTPUT A +5 VOLT SIGNAL ON THIS CHANNEL.
C HERE, THE NUMBER 'SD' WILL HAVE BEEN SPECIFIED BY THE
C 'SEND' FUNCTION COMMAND.
C

30 CH=8+SD
0UTBUF(CH)=8192

35 CALL ARM0UT(16)
45 IF(KP.NE.O)GOTO 55
40 RETURN

END

DI-69

.TITLE ARMOUT FOR LOW LEVEL ARM OUTPUT

.IDENT /RMR01/

CALLING SEQUENCE IS:

CALL ARMOUT(COUNT, [BUFFER])

WHERE [BUFFER] IS OPTIONAL
IF NOT THERE, OUTBUF IS USED.

GLOBL VAL ;THE 11/45 IS TOO FAST, ARMIN AND
;ARMOUT MUST SLOW DOWN, VAL IS A

iWORD TO HELP US DO THAT.
ARMOUT:

1$:

2$:

MOV
MOVB

MOV

MOV

DEC
BEQ

MOV
MOV
MOV
DEC
BPL
MOV
MOV
DEC

BGT
MOV

RTS

VAL, RO
@R5 , R4

R3@2(R5)

#0UTBUF,R2

R4
1$

4(R5) ,R2
#167772, R4
#-1 ,@R4
RO
2$
VAL, RO
(R2)+,@R4
R3

2$
#-1

R5

§R4

GET THE NUMBER OF ARGUMENTS
IN THE CALLING SEQUENCE
GET THE NUMBER OF POINTS TO
SEND TO THE ARM.
ASSUME OUTBUF IS USED
FOR ARM OUTPUT

THE NUMBER OF ARGUMENTS WAS ONE
SO USE OUTBUF, OTHERWISE
USE THE ARRAY SPECIFIED.
POINT TO THE ARM INTERFACE
AND RESET IT

11/45 IS TOO FAST, SO, TIMEOUT
OUTPUT FROM THE BUFFER
COUNT DOWN ON NUMBER OF POINTS
TO SEND TO THE ARM
THEN SEND THEM
RESET AFTER
THE WRITE (6-MAY-74)
THIS CAUSES LESS CURRENT
DRAIN ON THE POWER SUPPLIES IN THE
D/A CONVERTER
THEN GO HOME

IMPLICIT INTEGER(A-Z)
COMMON/ARMBUF/INBUF(64) , OUTBUF (64

)

.CSECT ARMBUF
INBUF=

.

OUTBUFr .+200
. = . +400

. CSECT

. END

DI-70

.TITLE ARMIN FOR LOW LEVEL ARM INPUT
•IDENT /RMR01/

ARMIN AND ARMOUT HAVE SIMILAR DOCUMENTATION. THE TWO PROGRAMS
SHOULD BE READ TOGETHER AS SOME DOCUMENTATION EXISTS IN
ONE AND NOT THE OTHER.

. CSECT

THE ARM IS CONTROLLED BY A DR11-C INTERFACE TO THE PDP-11/45
UNIBUS. ALTHOUGH ALL THE INTERRUPT FACILITY AVAILABLE WITH
THE DR11-C IS INTACT, NO INTERRUPTS ARE USED WITH THIS VERSION
OF THE ARM SOFTWARE. THE GENERAL PHILOSOPHY OF THE SOFTWARE
IS SUCH THAT DATA TRANSFER TO AND FROM THE ARM WILL OCCURE
WHENEVER A PROGRAM WANTS AND/OR HAS THE TIME.

THE DR11-C HAS A UNIBUS ADDRESS OF 167770
THIS IS THE CONTROL REGISTER. 167772 IS THE TRANSMIT REGISTER
AND 167774 IS THE RECEIVE REGISTER. THE A/D CONVERTER
IS RESET WHENEVER IT SEES BIT 15 SET. AT LOCATION 24, THE A/D CONVERTER
IS RESET.

ALL 64 CHANNELS ARE READ INTO THE COMMON BLOCK NAMED ARMBUF
THIS IS FORTRAN COMPATIBLE COMMON. ALSO THE SUBROUTINE LINKAGE
IS COMPATIBLE .

VAL:

ARMIN;

.WORD 25 TIME OUT VALUE
IS SET AT 10 WHICH CAUSES THIS
ROUTINE TO WAIT (SEE LOOP 1$)
LONG ENOUGH FOR THE A/D CONVERTER
TO SETTLE DOWN BETWEEN READS.

MOV VAL, RO ; THE 1 1 /45 RUNS TOO FAST
;S0 WE WILL USE RO TO
;TIMEOUT BETWEEN READS.

MOV #167772 , R2 ;LOAD THE CSR OUTPUT REG
MOV #-1 , (R2)+ ;WITH A RESET AND POINT

;T0 THE INPUT SIDE
MOV #64. , R4 ;COUNT UP TO 64 POINTS
MOV #INBUF,R3 ;POINT TO THE FIRST WORD
DEC RO ;COUNT DOWN FOR 11/45 TIMEOUT
BPL 1$
MOV VAL, RO
MOV §R2, (R3)+ ;LOAD THE INBUF WITH 64 POINTS
DEC R4
BGT 1$
RTS R5 ;THEN RETURN

IMPLICIT INTEGER(A-Z)
COMMON /ARMBUF/INBUF(64) ,OUTBUF(64)

WHEN USED WITH FORTRN, COMPILE WITH THE /ON SWITCH
.CSECT ARMBUF

INBUF=

.

OUTBUF= . +200
. = .+400

.CSECT

. END

DI-71

Program Module
(Module #2)

PROGS

Editor Commands

Reads in editor commands and calls
appropriate subroutine. DII-2

INSERT -- Causes elemental move commands to be entered
in program table. DII--6

PRINT -- Causes the program table to be printed out
as elemental move commands. DII--10

DELETE - Deletes specified lines from program table. DII--14

AVOID -- Creates avoidance paths by inserting additional
location points. DII--18

LOOP Creates the additional lines in an indexed
repeat pattern. DII--22

Additional Support Subroutines

INDEX - Codes indexed location names into their
location table pointers. DII-26

LOCPT - Codes non-indexed location names into their
location table pointers. DII-30

LINE - Codes elemental move command into a line in

program table. DII-34

PTNAME - Decodes location table pointer into its

location name. DII-40

PLINE - Prints out decoded line from program table
as elemental move commands. DII-44

NEXT - Advances through input character string to

next piece of information. DII-48

LIMIT - Decodes into integer from the lines specified
in the editor commands. DII-52

ADJUST - Verifies continuity in the specified motion
in the program. DII-56

DII-1

DII-2

C SUBROUTINE : PROGS
C

C ARGUMENTS :

C

C CALLED BY : OPRO
C

C CALLS SUBROUTINES : INDEX INSERT DELETE PRINT RECORD
C AVOID ARMIN
C

C INPUT DATA : PROG(105,6)= THE PROGRAM MODULE THAT IS TO BE MODIFIED
C CS(50) = THE ASCII CHARACTER STRING THAT CONTAINS
C THE 'EDITOR' COMMANDS.
C

C OUTPUT DATA : PROG(105,6)= THE EDITED PROGRAM MODULE.
C

C FUNCTION: EDITS AN OLD PROGRAM FROM THE DISC, OR ENTERS A

C NEW PROGRAM THROUGH THE USE OF THE PROPER
C EDITOR COMMANDS.
C

SUBROUTINE PROGS
IMPLICIT INTEGER(B-Z)
COMMON /PMOD /PROG (10 5, 6) , ENDP , BRNCH (6) ,M
COMMON/IND/IN(30) ,FL(6) ,NAME(3) ,NPT(3,20)
COMMON/CMD/CS(50) ,PN,PLN
C0MM0N/ARMBUF/INBUF(6iO , OUTBUF(64

)

EQUIVALENCE (RET, INBUF(30)

)

C

C THE SPECIFIED PROGRAM MODULE IS READ IN FROM THE DISC BY THE CALL
C TO 'RDMOD' IN 'EXPRO'. THE INDEXED NAMES ARE STORED IN THE
C CHARACTER STRING IN(30).
C

500 M=0
DO 204 J=101 , 105
DO 204 L= 1 ,

6

M = M+1
204 IN(M)=PROG(J,L)

PLN = 1

C

C THE CALL TO 'INDEX' PRINTS THE PRESENT INDEXED LOCATION NAMES
C AND ALLOWS THE ENTERING OF NEW INDEXED NAMES.
C

CALL INDEX(O)
WRITE(6 , 125

)

125 F0RMAT(8X ' EDITOR IS NOW AVAILABLE FOR PROGRAM ENTRY',/)
C

C THE CURRENT INDEXED NAMES ARE STORED IN THE LAST
C FIVE LINES OF THE PROGRAM MODULE.
C

M = 0

DO 210 J=101 , 105
DO 210 L= 1 ,

6

M = M+1
210 PROG(J,L)=IN(M)
C

C THE COMMAND FROM THE TERMINAL IS READ INTO THE
C CHARACTER STRING CS(50) AND TESTED TO SEE IF THE FIRST

DII-3

C LETTER IS THE ASCII CODE NUMBER FOR I (INSERT), D (DELETE), P (PRINT)

,

C R(RECORD),OR A(AVOID). THE PROPER SUBROUTINE IS CALLED FOR
C THE IDENTIFIED CODE LETTER. IF NO VALID LETTER IS FOUND,
C THE MESSAGE 'ILLEGAL COMMAND" IS PRINTED AND THE PROGRAM WAITS
C FOR THE NEXT COMMAND.
C

99 READ(6,200) (CS(N) ,N=1 ,50)
200 F0RMAT(50 (A1)

)

CALL ARMIN
IF(RET.GT.-2000)GOTO 40
PN= 1

77 IF(CS(PN) .NE.8265)GOTO 220
CALL INSERT

220 IF(CS(PN) .NE.8260)G0T0 221
CALL DELETE
GOTO 99

221 IF(CS(PN) .NE.8272)G0T0 222
CALL PRINT
GOTO 77

222 IF(CS(PN) .NE.827M)G0T0 223
CALL RECORD (0 , 1

)

GOTO 405
223 IF(CS(PN) .NE.8270)GOTO 224

GOTO 500
224 IF(CS(PN) .NE.8257)GOTO 255

CALL AVOID
GOTO 99

255 IF(RET.GT.-2000)GOTO 40
100 WRITE(6,101)
101 F0RMAT(8X' ILLEGAL COMMAND')

GOTO 99
405 WRITE(6,225)
225 F0RMAT(8X, 'PROGRAM HAS BEEN STORED ON DISC)

GOTO 99
40 RETURN

END

DII-4

C SUBROUTINE : INSERT
C

C ARGUMENTS :

C

C CALLED BY : PROGS
C

C CALLS SUBROUTINES : NEXT LIMIT PLINE LOOP LOCPT LINE ADJUST
C

C INPUT DATA : CS(50) = THE CHARACTER STRING THAT CONTAINS THE
C INPUT COMMAND STATEMENT.
C BEG = THE LINE NUMBER IN THE PROGRAM MODULE
C WHERE THE INSERTION OCCURS [LIMIT].
C PLN = THE PRESENT PROGRAM LINE NUMBER,
C HERE, SET EQUAL TO 'BEG'.
C BN = THE LOCATION TABLE POINTER FOR THE
C FIRST LOCATION IN THE PROGRAM MODULE,
C ENTERED BY 'START' COMMAND [LOCPT].
C PR0G(PLN,6)= THE DECODED NEW LINE IN THE PROGRAM
C MODULE [LINE].
C

C OUTPUT DATA : PROG(105,6) = THE UPDATED PROGRAM MODULE

\

^

I
C FUNCTION: TO INSERT NEW LINES AT THE SPECIFIED PROGRAM LINE,
C SLIDING BACK THE REST OF THE PROGRAM TO
C ACCOMMODATE THESE ADDITIONAL LINES.
C

SUBROUTINE INSERT
IMPLICIT INTEGER(B-Z)
COMMON /PMOD /PROG (105, 6) , ENDP , BRNCH (6) ,M
COMMON/PTN/BN, EN

^ COMMON/BED/BEG, FIN, DIF, ERR
COMMON/CMD/CS(50) ,PN,PLN
DIMENSION TEMP(100,6)
ERR = 0

C

C STORE PRESENT PROGRAM MODULE (PROG (1 05 , 6)) IN A TEMPORARY MATRIX
C CALLED TEMP(100 , 6) .

C

DO 50 K=1 , 100
DO 50 F = 1 , 6

50 TEMP(K,F)=PROG(K,F)
C

C IDENTIFY AND DECODE THE PROGRAM LINE NUMBER WHERE THE
C INSERTION IS TO OCCUR.
C

500 CALL NEXT
IF(PN.GT.50)G0T0 27
CALL LIMIT
IF(ERR.EQ. DGOTO 100
PLNrBEG

27 STAR=PLN
GOTO 160

C

C ERROR MESSAGE TO BE PRINTED OUT IF A INCORRECT COMMAND IS
C ENTERED IN THIS SUBROUTINE.
C

DII-7

100 WRITE(6,101)
101 F0RMAT(8X, • ILLEGAL FORMAT FOR »»» INSERT (J) «»»')

GOTO 40
C

C PRINT OUT ON THE TERMINAL THE PRESENT PROGRAM LINE (PLN).
C

160 CALL PLINE(PLN)
C

C READ IN A NEW LINE (CS(50)) AND TEST ON THE FIRST CHARACTER,
C RETURN TO CALLING PROGRAM IF IT IS AN EDITOR COMMAND (INSERT,
•C NAME, AVOID, DELETE, PRINT, OR RECORD).
170 READ(6 , 171) (CS(L) ,L=1 , 50)
171 F0RMAT(50(A1))

PN = 1

IF(CS(PN) .EQ.8265)G0T0 400
IF(CS(PN) .EQ.8270)GOTO 400
IF(CS(PN) .EQ.8257)GOTO 400
IF(CS(PN) .EQ.8260)G0T0 400
IF(CS(PN) .EQ.8272)G0T0 400
IF(CS(PN) .EQ.8274)G0T0 400

C

C TEST FOR A 'LOOP' COMMAND.
C

IF(CS(PN) .NE.8268)GOTO 182
CALL LOOP
PLN=PLN+1
GOTO 170

0
C TEST FOR A 'START' COMMAND, IE. THE ENTERING OF THE FIRST
C LOCATION POINT IN THE PROGRAM MODULE.
C

182 IF(CS(PN) .NE.8275)GOTO 183
CALL NEXT
CALL LOCPT(1)

PROG (1,1) =BN
STAR=1
PLN=1
GOTO 170

C

C TEST FOR A 'GOTO' ELEMENTAL MOVE COMMAND, CALL 'LINE' TO
C RECORD AND DECODE THE CORRECT VALUES FOR THE PROGRAM MODULE.
C

183 IF(CS(PN) .NE.8263)G0T0 100
CALL LINE
PLN=PLN+1
GOTO 170

C

C PUSH BACK THE REST OF THE PROGRAM LINES TO ACCOMMODATE THE
C NEWLY INSERTED LINES, AND STORE UPDATED PROGRAM IN THE
C PROGRAM MODULE PROG(105,6).
C

400 IF(PLN.NE. 1)GOTO 401
GOTO 40

401 END=PLN-STAR
PT=101-PLN
IF(PLN.NE. 1)GOTO 60

DII-8

PROGd , 2)=TEMP(1 , 1)

END= 1

PT = 99
60 DO 450 MB=1 ,PT

FD=101-MB
DIF=FD-END
DO 450 MT=1,6

450 PROG(FD,MT)=TEMP(DIF,MT)
451 CALL ADJUST

PLN=STAR
40 RETURN

END

DII-9

DII-10

C SUBROUTINE : PRINT
C

C ARGUMENTS :

C

C CALLED BY : PROGS
C

C CALLS SUBROUTINES : NEXT LIMIT PLINE
C

C INPUT DATA : CS(50) = CHARACTER STRING THAT CONTAINS THE
C EDITOR COMMAND TO PRINT A LINE(S)
C PLN = THE NUMBER OF THE PRESENT PROGRAM LINE
C (MAY NOT BE THE LINE SPECIFIED IN THE
C 'PRINT' COMMAND).
C BEG = THE NUMBER (IF SPECIFIED IN THE PRINT
C COMMAND) OF THE FIRST LINE TO BE
C PRINTED [FROM 'LIMIT'].
C DIF = THE NUMBER OF LINES TO BE PRINTED STARTING
C FROM LINE 'BEG' (IF MORE THAN ONE LINE
C HAS BEEN SPECIFIED IN THE COMMAND).
C

C OUTPUT DATA : PLN = THE NUMBER OF THE PROGRAM LINE TO BE
C PRINTED OUT ON THE TERMINAL (SENT
C TO THE SUBROUTINE 'PLINE').
C

C FUNCTION: DECODES THE PRINT COMMAND TO DETERMINE HOW MANY LINES ARE
C TO BE PRINTED AND WHAT ARE TH"IR LINE NUMBERS IN THE
C PROGRAM MODULE.
C

SUBROUTINE PRINT
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) ,OUTBUF(64)
COMMON /BED /BEG, FIN , DIF , ERR
COMMON/CMD/CS(50) , PN , PLN
ERR = 0

C

C TEST TO SEE IF THE LINES HAVE BEEN SPECIFIED IN THE 'PRINT'
C COMMAND (IE. IS THEIR ANY CHARACTERS AFTER THE WORD
C 'PRINT' IN THE CHARACTER STRING CS(50)). IF SO, THEN
C GO TO STATEMENT 20.
C

60 CALL NEXT
IF(PN.LT.51)GOTO 20

C

C IF NO LINE NUMBERS ARE SPECIFIED IN THE 'PRINT'
C COMMAND THEN THE NUMBER OF LINES TO BE PRINTED (DIF) IS SET
C EQUAL TO ONE .

C

PLN=PLN-1
DIF=1
GOTO 70

C

C THIS IS THE ERROR MESSAGE DISPLAYED ON THE TERMINAL IF AN INCORRECT
C FORMAT IS USED.
C

100 WRITE(6,101)
101 F0RMAT(8X'F0RMAT ERROR IN »*» PRINT (J-K) «»» STATEMENT')

DII-11

GOTO 40
C

C IF LINES ARE SPECIFIED IN THE 'PRINT' COMMAND SET PLN EQUAL
C TO THE FIRST LINE TO BE PRINTED

,
(IE. SET PLN EQUAL TO

C BEG FROM 'LIMIT') AND CALCULATE THE NUMBER OF LINES TO BE
C PRINTED 'DIF' [FROM 'LIMIT'].
C

20 CALL LIMIT
IF(ERR.EQ. 1)GOTO 100
PLN=BEG-1

C

C EACH TIME THROUGH THIS LOOP A LINE FROM THE PROGRAM MODULE IS
C PRINTED OUT (BY A CALL TO 'PLINE') AND THE LINE NUMBER 'PLN'
C IS INCREMENTED.
C

70 DO 50 K=1 ,DIF
PLN=PLN+1

50 CALL PLINE(PLN)
C

C THE NEXT COMMAND IS READ INTO CS(50) FROM THE TERMINAL AND THE
C FIRST LETTER OF THE COMMAND WORD TESTED TO SEE IF IT IS
C A D(DELETE), I(INSERT), N(NAME), P(PRINT), R(RECORD),
C A(AVOID). IF ONE OF THESE EDITOR COMMANDS, THEN
C RETURN TO THE CALLING PROGRAM 'PROGS'.
C

65 READ(6 , 66) (CS(RN) , RN=1 , 50)
66 F0RMAT(50(A1)

)

C

C IF THE CALLING SWITCH (SWITCH 30) IS RESET, THEN RETURN TO
C CALLING PROGRAM.
C

CALL ARMIN
IF(INBUF(30) .GT.-2000)GOTO 40
PN = 1

IF(CS(PN) .EQ.8260)GOTO 40
IF(CS(PN) .EQ. 8265)GOTO 40
IF(CS(PN) .EQ.8270)G0T0 40
IF(CS(PN) .EQ.8272)GOTO 40
IF(CS(PN) .EQ.8274)GOTO 40
IF(CS(PN) .EQ.8257)GOTO 40

C

C TEST IF A MINUS SIGN WAS ENTERED INDICATING THE PREVIOUS LINE IS
C TO BE PRINTED. THIS IS DONE BY SUBTRACTING ONE FROM THE
C PRESENT LINE NUMBER PLN.
C

IF(CS(PN) .NE.8237)GOTO 51
PLN=PLN-1
GOTO 31

C
C TEST TO SEE IF ONLY A CARRIAGE RETURN WAS ENTERED INDICATING THAT
C THE NEXT LINE OF THE PROGRAM MODULE IS TO BE PRINTED. THIS
C IS DONE BY ADDING ONE TO THE PRESENT PROGRAM LINE NUMBER AND
C CALLING 'PLINE'.
C

51 IF(CS(PN) .NE.8224)G0T0 100
PLN=PLN+1

DII-12

CALL PLINE(PLN)
GOTO 65
RETURN
END

DII-13

DII-14

-- SUBROUTINE : DELETE

-- ARGUMENTS :

- CALLED BY : PR-GS

- CALLS SUBROUTI^ES :

C

C

C

C

C

C

C

C

C INPUT DATA

NEXT LIMIT PLINE ADJUST

Pi?OG(105,6):
CSf50)

BEG

DIF

FIN

PN

THE PRESENT PROGRAM MODULE
THE CHARACTER STRING THAT CONTAINS
THE 'DELETE' COMMAND.
THE NUMBER OF THE FIRST LINE TO BE
DELETED [FROM 'LIMIT'].
THE NUMBER OF LINES TO BE DELETED AS
SPECIFIED IN THE 'DELETE' COMMAND [FROM
'LIMIT ']

.

THE NUMBER OF THE LAST LINE TO BE DELETED
[FROM 'LIMIT'].
A POINTER THAT INDICATES THE POSITION
IN THE CHARACTER STRING CS(50) OF THE NEXT
PIECE OF INFORMATION [FROM NEXT].

OUTPUT DATA : PROG(105,6) =

PLN

THE MODIFIED PROGRAM MODULE AFTER
THE SPECIFIED LINES HAVE BEEN DELETED
AND THE REST OF THE PROGRAM CLOSED
UP AROUND THE DELETED LINES.
THE POINTER TO THE PRESENT PROGRAM
LINE .

FUNCTION: DELETES THE SPECIFIED LINES FROM THE PROGRAM, PRINTS
OUT THE DELETED LINES ON THE TERMINAL, AND CLOSES
UP THE PROGRAM MODULE AROUND THE DELETED LINES.

C

C

C

C

100
101

C

C

C

SUBROUTINE DELETE
IMPLICIT INTEGER(B-Z)
COMMON /PMOD /PROG (105, 6) , ENDP , BRNCH (6) ,M

COMMON /BED /BEG, FIN , DIF , ERR
C0MM0N/CMD/CS(50) , PN , PLN
ERR = 0

ADVANCE THROUGH THE CHARACTER STRING CS(50) UNTIL THE NUMBER OF THE
FIRST LINE OF THE PROGRAM TO BE DELETED IS REACHED BY
CALLING 'NEXT'.

CALL NEXT
IF(PN.LT.51)GOTO 20

ERROR MESSAGE THAT IS PRINTED OUT IF AN INCORRECT
FORMAT IS DETECTED IN THE 'DELETE' COMMAND.

WRITE(6 , 101)

F0RMAT(8X'F0RMAT ERROR IN »»• DELETE (J-K)»»» STATEMENT')
GOTO 40

THE FIRST LINE SPECIFIED TO BE DELETED IS DECODED BY A CALL TO
'LIMIT' AND RETURNED IN THE VARIABLE 'BEG'. THE NUMBER

DII-15

C OF LINES TO BE DELETED IS ALSO DETERMINED BY 'LIMIT' AND
C RETURNED IN THE VARIABLE 'DIP'.
C

20 CALL LIMIT
IF (ERR . EQ. 1)GOTO 100

C

C AN INTERMEDIATE VARIABLE 'NEN' IS CREATED TO BE USED IN
C THE CLOSING UP PROCEDURE WHERE THE REMAINDER OF THE PROGRAM
C LINES ARE SLID FORWARD TO CLOSE THE GAP CREATED BY THE
C DELETION OF THE SPECIFIED LINES.
C

NEN= 1 00-DIF
IF(BEG.NE. 1)GOTO 70

C

C THE STARTING LOCATION OF THE PROGRAM IS SAVED IN THE VARIABLE 'TEM'
C TO BE REINSERTED IN THE PROGRAM MODULE AFTER ALL OF
C THE ADJUSTMENTS HAVE BEEN MADE.
C

TEM = PROG (1 , 1)

C

C THE FOLLOWING 'DO LOOP' DELETES THE SPECIFIED LINES AND CLOSES
C UP THE PROGRAM AT THE SAME TIME BY MOVING ALL OF THE PROGRAM
C LINES FORWARD 'DIF' NUMBER OF LINES, STARTING WITH LINE
C NUMBER 'BEG' + 'DIF'.
C

70 DO 50 K=BEG,NEN
JMP=K+DIF
IF(K.GT.FIN)GOTO 30
PLN = K

C

C EACH LINE, AS IT IS DELETED, IS PRINTED OUT ON THE TERMINAL
C BY A CALL TO 'PLINE ' .

C

CALL PLINE(PLN)
30 DO 50 F = 1 , 6

50 PROG(K,F)=PROG(JMP,F)
IF(BEG.NE. 1)GOTO 71
PROG(1 , 1) =TEM

C

C ANY INCOMPLETE LINES THAT MIGHT HAVE BEEN CREATED ARE
C ELIMINATED BY THE SUBROUTINE 'ADJUST'.
C

71 CALL ADJUST
MO RETURN

END

DII-16

i

I

DII-18

C SUBROUTINE : AVOID
C

C ARGUMENTS :

C

C CALLED BY : PROGS
C

C CALLS SUBROUTINES : NEXT LOCPT ADJUST
C

C INPUT DATA : PROG(105,6) = THE PRESENT PROGRAM MODULE.
C CS(50) = THE CHARACTER STRING THAT CONTAINS
C THE PROPER SEQUENCE OF LOCATIONS TO
C BE USED IN THE AVOIDANCE PATH.
C BN = THE LOCATION TABLE POINTER FOR
C EACH LOCATION SPECIFIED IN THE
C CHARACTER STRING CS(50) [FROM 'LOCPT'].
C OUTPUT DATA : PROG(105,6) = THE MODIFIED PROGRAM MODULE WITH
C ALL OF THE ADDITIONAL LINES REQUIRED
C TO CREATE THE AVOIDANCE PATHS THROUGH
C THE SPECIFIED LOCATIONS.
C

C FUNCTION: IF A TRAJECTORY FROM LOCATION 'A' TO LOCATION'S'
C IS TO PASS THROUGH ADDITIONAL INTERMEDIATE LOCATIONS,
C THIS SUBROUTINE INSERTS THOSE ADDITIONAL LOCATIONS IN
C THE CORRECT SEQUENCE FOR EVERY OCCURRENCE OF 'A-B' OR
C 'B-A' IN THE PROGRAM MODULE BY MEANS OF A SINGLE
C 'AVOID' COMMAND.
C

SUBROUTINE AVOID
IMPLICIT INTEGER(B-Z)
COMMON/PMOD/PROG(105 , 6) , ENDP , BRNCH (6) ,M

COMMON/PTN/BN,EN
COMMON/CMD/CS(50) ,PN,PLN
COMMON/TEMPOR/TEMPdOO ,6) ,DET(10) ,NDET(10)

C

C A FLAG ('REV') IS SET EQUAL TO ZERO. IT WILL BE USED TO
C INDICATE IF THE PROGRAM MODULE HAS BEEN CORRECTED
C FOR THE AVOIDANCE PATH IN THE REVERSE SEQUENCE ALSO.
C

REV = 0

C

C THE FOLLOWING LOOP DETERMINES THE NUMBER OF LOCATION POINTS IN THE
C AVOIDANCE PATH (AS SPECIFIED IN THE CHARACTER STRING CS(50))
C AND DECODES THEM INTO THEIR PROPER LOCATION TABLE POINTERS
C BY CALLING 'LOCPT '

.

C

DO 30 JK=1 , 10
CALL NEXT
IF(PN.GT.50)G0T0 20
CALL LOCPT(1

)

30 DET(JK)=BN
GOTO 77

20 JK=JK-1
C

C THE FOLLOWING LOOP SEQUENTIALLY TESTS EVERY LINE IN THE PROGRAM
C MODULE FOR THE PRESENCE OF BOTH OF THE END POINTS OF
C THE AVOIDANCE PATH. IF BOTH IN THE SAME LINE, THEN BRANCH

DII-19

C TO CODE TO INSERT ADDITIONAL LINES.
C

77 DO 25 JB=1 , 100
IF(PROG(JB, 1) .EQ.DET(1))GOTO 22
GOTO 25

22 IF(PROG (JB , 2) . EQ.DET (JK))GOTO 50
25 CONTINUE

GOTO 35
C

C THE FOLLOWING LOOP STORES THE PROGRAM MODULE IN A TEMPORARY
C TABLE WHICH ACTS AS A SCRATCH PAD UNTIL ALL OF THE REQUIRED
C MODIFICATIONS HAVE BEEN MADE.
C

50 DO 75 K=1 , 100
DO 75 F=1 ,

6

75 TEMP(K,F)=PROG(K,F)
C

C THIS LOOP INSERTS THE ADDITIONAL LINES FOR THE AVOIDANCE PATH,
C ZEROS THE FUNCTION FLAGS FOR THESE INTERMEDIATE LOCATIONS AND
C SETS THE VELOCITY (PR0G(NV,3)) EQUAL TO 50 CM/SEC.
C

VE=PR0G(JB,3)
DO 76 FT=2,JK
NV=JB+FT-2
DO 79 RD=3,6
PROG(NV, RD) =0

79 PROG(NV, 3)=VE
76 PR0G(NV,2)=DET(FT)
C

C THE REMAINDER OF THE PROGRAM IS NOW ADDED ON TO THE NEWLY INSERTED
C LINES.
C

END=NV-JB
PT=101-NV
DO 450 MB=

1
, PT

FD=101-MB
DIF=FD-END
DO 450 MT=1 ,

6

450 PROG(FD,MT)=TEMP(DIF,MT)
C

C THE SUBROUTINE 'ADJUST' IS CALLED TO INSURE THAT
C ALL OF THE LOCATIONS ARE IN THE PROPER SEQUENCE.
C

CALL ADJUST
C

C RETURN TO THE LOOP TO CONTINUE TESTING THE PROGRAM MODULE
C FOR ANY OTHER PLACES WHERE THE AVOIDANCE PATH IS TO BE USED.
C

GOTO 77
C

C IF THE REVERSE FLAG ('REV') HAS NOT BEEN SET EQUAL TO ONE, THEN
C SET IT EQUAL TO ONE AND REVERSE THE SEQUENCE OF THE LOCATION
C POINTS IN THE AVOIDANCE PATH (DET(10)>, AND GO BACK AND
C TEST THE PROGRAM MODULE FOR ANY PLACES WHERE THE REVERSE
C PATH IS TO BE USED. AFTER ALL OF THESE MODIFICATIONS
C HAVE BEEN DONE, THE REVERSE FLAG WILL BE TESTED AGAIN,

DII-20

C FOUND EQUAL TO ONE AND CONTROL WILL RETURN TO THE CALLING
C PROGRAM.
C

35 IF(REV. EQ. 1)GOTO 40
REV= 1

DO 60 LL= 1 , JK
60 NDET(LL)=DET(LL)

DO 61 LL=1,JK
0L=JK+1 -LL

61 DET(LL)=NDET(OL)
GOTO 77

UO RETURN
END

DII-21

E
truit— X
O—» OQOS

a _] CO UJ UJ a:
IQ CD UJ 113:0=:

(XcrrDujt—
I— _jar ,

UJ CEO*— OD^

era: —ujo^
aiancli iri
UJCbzoujcEjt:zo •-• t— q:>
UJOrCQ o
OCL.ID UJ

Sis

_ c^^-z.
. coz I •— 2:

^OZUJUJUJ
—*ujz3c)a:
,
,QCJ_JUJO
^zcocrai—
'J.-.cr^ CO

tr, ,coo.

DO" 3:cr
^r^JUJ""

DII-22

C SUBROUTINE : LOOP
C

C ARGUMENTS :

C

C --^ CALLED BY : INSERT
C

C CALLS SUBROUTINES : LINE
C

C INPUT DATA : CS(50) = THE CHARACTER STRING THAT CONTAINS
C AN ELEMENTAL MOVE ('GOTO') COMMAND.
C PLN = THE NUMBER OF THE PRESENT LINE IN THE
C PROGRAM MODULE.
C BN = LOCATION TABLE POINTER FOR AN ENTERED
C LOCATION (IF INDEXED NAME THIS IS
C THE FIRST POINTER OF THE INDEXED
C SEQUENCE [FROM LINE].
C EN = THE LOCATION TABLE POINTER FOR THE LAST
C LOCATION SPECIFIED BY THE INDEXED
C SEQUENCE [FROM LINE].
C PROG(105,6) = THE PROGRAM MODULE.
n
\^

C OUTPUT DATA : PROG(105,6) = THE MODIFIED PROGRAM MODULE
C WITH THE ADDITIONAL LINES GENERATED
C BY THE 'LOOP' COMMAND.
C PLN c THE NUMBER OF THE LAST LINE ENTERED
C IN THE PROGRAM MODULE BY THE 'LOOP'
C COMMAND.
C

C FUNCTION: TO ALLOW ENTRY OF A REPEATED SEQUENCE OF ELEMENTAL
C MOVES WHERE ONLY THE LOCATIONS ARE
C DIFFERENT AND ARE DESIGNATED BY INDEXED NAMES.
C

SUBROUTINE LOOP
IMPLICIT INTEGER (B-Z)
COMMON/PMOD/PROG (1 05 , 6) , ENDP , BRNCH (6) ,M

COMMON/PTN/BN , EN
C0MM0N/CMD/CS(50) ,PN,PLN
DIMENSION STR(50)
K=1

C

C ZERO THE ARRAY STR(50)
C

DO 55 H=1,50
55 STR(H)=0
C

C STORE THE FIRST PROGRAM LINE NUMBER OF THE 'LOOP' SEQUENCE
C IN THE VARIABLE 'BEGIN'.
C

BEGIN=PLN
C

C READ IN A COMMAND FROM THE TERMINAL.
C

99 READ(6,90) (CS(J) , J=1 ,50)
90 FORMAT(50(A1)

)

PN = 1

C

DII-23

C IF THE COMMAND IS A 'FINISH' STATEMENT THEN BRANCH TO
C STATEMENT 20 TO GENERATE THE ADDITIONAL REPEATED LINES.
C

IF(CS(PN) .EQ. 8262)G0T0 20
C

C IF THE COMMAND IS A 'GOTO' STATEMENT, THEN BRANCH TO STATEMENT
C 30 TO DECODE IT.
C

IF(CS(PN) .EQ.8263)GOTO 30
C

C IF THE COMMAND IS NEITHER OF THE ABOVE, THEN PRINT OUT THE
C FOLLOWING ERROR MESSAGE ON THE TERMINAL AND RETURN TO THE
C CALLING PROGRAM.
C

100 WRITE(6,101)
101 F0RMAT(8X'ERR0R IN «»»L00P»»» INSTRUCTION')

PLNzBEGIN
GOTO 40

C

C CALL THE SUBROUTINE 'LINE' TO DECODE THE 'GOTO' STATEMENT INTO
C THE CORRECT LOCATION TABLE POINTERS AND FUNCTION FLAGS
C AND STORE THEM IN THE PROPER LINE IN THE PROGRAM
C MODULE.
C

30 CALL LINE
C

C IF A RANGE OF INDEXED LOCATIONS WAS NOT GIVEN FOR THIS 'GOTO'
C STATEMENT (IE. ONLY ONE LOCATION WAS SPECIFIED, RESULTING
C IN 'BN' BEING EQUAL TO 'EN') THEN BRANCH TO STATEMENT
C 31 WHICH WILL HAVE THE EFFECT OF SETTING THE CORRESPONDING
C VALUE OF THIS LINE IN 'STR(50)' EQUAL TO ZERO.
G

IF(EN.EQ.BN)GOTO 31
C

C IF A RANGE OF INDEXED LOCATIONS WAS GIVEN, THEN THE LOCATION
C TABLE POINTERS FOR THE STARTING (BN) AND ENDING (EN) INDEX
C SPECIFIED ARE USED TO CALCULATE THE NUMBER OF REPEATS THROUGH
C THE LOOP 'SDIF=EN-BN'

.

C

SDIF=EN-BN
DIFrlABS (SDIF)

C

C THE SIGN OF THE DIRECTION THROUGH THE INDEXED NAME (IE. IS THE INDEX
C INCREASING OR DECREASING) IS STORED AT THE APPROPRIATE POSITION
C IN THE MATRIX •STR(50'.
C

STR(K) =SDIF/DIF
C

C THE PROGRAM MODULE LINE INDICATOR (PLN) IS INCREMENTED. THEN
C BRANCH TO STATEMENT 99 TO READ IN ANOTHER COMMAND.
C

31 K=K+1
PLN=PLN+1
GOTO 99

C

C THIS SECTION OF CODE GENERATES THE ADDITIONAL REPEATED LINES,

DII-24

C INCREMENTING (OR DECREMENTING) THE INDEXED LOCATIONS FOR
C EACH REPEAT.
C

C CALCULATE THE NUMBER OF LINES TO BE REPEATED AND STORE IN 'LINES'.
C

20 LINES=PLN-BEGIN
C

C REPEAT THE NUMBER OF LINES (' L INES ') IN THE REPEATING GROUP 'DIF'
C TIMES, INCREMENTING THE INDEXED VALUES BY THE APPROPRIATE AMOUNT
C (STR(KM)»LB) EACH TIME.
C

DO 21 LB=1 ,DIF
DO 21 KM=1 , LINES
0RIG=BEGIN+KM-1
NXT=BEGIN+LINES»LB+KM-1
DO 22 JK= 1 ,

6

22 PROGCNXT, JK)=PROG(ORIG, JK)
21 PR0G(NXT,2)=PR0G(NXT,2)+STR(KM)»LB
C

C SET THE PROGRAM LINE INDICATOR (' PLN ') TO THE LAST LINE ENTERED IN
C THE 'LOOP' SEQUENCE AND RETURN TO THE CALLING PROGRAM.
C

PLN=NXT
40 RETURN

END

DII-25

DII-26

C SUBROUTINE : INDEX
C

C ARGUMENTS : I = IF 1=1 DO NOT PRINT OUT INDEXED NAMES ON
C TERMINAL AND DO NOT ALLOW THE ENTRY
C OF NEW INDEXED NAMES.
C IF 1=0 PRINT OUT INDEXED NAMES ON THE
C TERMINAL AND ALLOW THE ENTRY OF
C NEW INDEXED NAMES.
C

C CALLED BY : PROGS LOCTAB
C

C CALLS SUBROUTINES :

C

C INPUT DATA : IN(30) = THE CHARACTER STRING THAT CONTAINS THE
C ASCII FORMATTED INDEXED LOCATION NAMES.
C

C OUTPUT DATA : NPT(3,20) = THE ARRAY THAT CONTAINS THE LOCATION
C TABLE POINTERS FOR ALL OF THE POSSIBLE
C INDEXED NAME LOCATIONS.
C FL(6) = THE POSITION IN THE STRING IN(30)
C OF THE FIRST AND LAST LETTER OF EACH
C INDEXED NAME.
C NAME(3) = THE FIRST LETTER OF EACH INDEXED NAME.
C

C FUNCTION: INITIALIZES THE ARRAY NPT(3,20) WHICH IS USED TO DECODE
C AN INDEXED NAME AND ITS INDEX INTO ITS CORRECT LOCATION
C TABLE POINTER. STORES THE INDEXED NAMES IN THE STRING
C IN(30) AS WELL AS DECODING PERTINENT INFORMATION INTO
C VARIABLES IN A COMMON BLOCK FOR USE BY OTHER PROGRAMS
C FOR IDENTIFICATION PURPOSES.
C

c

SUBROUTINE INDEX(I)
IMPLICIT INTEGER(B-Z)
C0MM0N/IND/IN(30) ,FL(6) ,NAME(3) ,NPT(3,20)

C

C INITIALIZE THE ARRAY NPT(3,20) SO THAT IT CONTAINS ALL OF THE
C CORRECT LOCATION TABLE POINTERS FOR ALL POSSIBLE
C INDEXED NAMES.
C

DO 10 G=1 ,20
NPT(1 ,G)=G
NPT(2 ,G)=G+20

10 NPT(3,G)=G+40
C

C TEST FLAG (I), IF 1=0 THEN PRINT OUT THE INDEXED NAMES FROM IN(30),
C AND REQUEST IF NEW INDEXED NAMES ARE TO BE ENTERED.
C

IFd.EQ. 1)GOTO 120
300 WRITE(6,199)
199 F0RMAT(8X 'THESE ARE THE CURRENT INDEXED LOCATIONS')

WRITE(6 , 200) (IN(J) ,J=1 ,30)
200 F0RMAT(2X, 30(A1))

WRITE(6,201)

201 F0RMAT(8X'D0 YOU WANT TO ENTER NEW INDEXED NAMES ?')

READ(6 ,202) JA

DII-27

202 FORMAT(AI)
IF(JA.EQ. 1HY)G0T0 70
IF(JA.EQ. 1HN)G0T0 120
WRITE(6,125)

125 F0RMAT(8X ' YOU DID NOT ANSWER THE QUESTION, PLEASE TRY AGAIN',//)
GOTO 300

C
C IF NEW INDEXED NAMES ARE TO BE ENTERED, READ THEM INTO IN(30).
C

70 WRITE(6,100)
100 F0RMAT(8X'ENTER INDEXED NAMES',/

1 8X'EG. PALLET CUTTER STACK')
READ(6, 102)(IN(J) ,J=1 ,30)

102 FORMAT(30 (A1)

)

120 J=0
K = 0

C

C ADVANCE THROUGH THE STRING IN(30), NOTING THE POSITION IN THE
C STRING WHERE EACH INDEXED NAME BEGINS AND ENDS AND STORING
C THESE POSITION VALUES IN FL(6). ALSO, STORE THE
C FIRST LETTER OF EACH INDEXED NAME IN NAME(3).
C

20 J=J+1
IF(J.GT. 30)G0T0 40
IF(IN(J) .EQ.8224)G0T0 20
K = K+1
FL(K)=J
D=(K+1)/2
NAME(D)=IN(J)

15 J=J+1
IF(J.GT.30)G0T0 40
IF(IN(J) .NE.8224)G0T0 15

K = K + 1

FL(K)=J-1
GOTO 20

40 RETURN
END

DII-28

DII-30

I

C SUBROUTINE : LOCPT
C

C ARGUMENTS : D = FLAG USED TO INDICATE IF A LOCATION NAME
C IS TO BE ENTERED FROM THE TERMINAL (D=0),
C OR IF THE LOCATION NAME IS COMING FROM
C THE CALLING PROGRAM (D=1)>
C

C CALLED BY : AVOID LIMIT LINE NWTAB
C

C CALLS SUBROUTINES :

C

C INPUT DATA : CS(50) = THE CHARACTER STRING THAT CONTAINS THE
C ASCII FORMAT OF THE LOCATION NAME.
C PN = THE POSITION IN THE ABOVE CHARACTER
C STRING OF THE FIRST LETTER OF THE
C LOCATION NAME.
C IN(30) = THE CHARACTER STRING THAT CONTAINS THE
C ENGLISH NAMES (IN ASCII FORMAT) OF THE
C INDEXED LOCATION POINTS.
C NAME(3) = THE FIRST LETTER OF THE INDEXED
C NAMES.
C NPT(3,20) = THE MATRIX THAT CONTAINS THE LOCATION
C TABLE POINTERS FOR ALL OF THE
C INDEXED POSITIONS.
C

C OUTPUT DATA : BN = THE LOCATION TABLE POINTER DECODED FROM
C THE ASCII FORMAT ENGLISH NAME OF THE
C LOCATION POINT.
C EN = THE LOCATION TABLE POINTER FOR THE
C LAST INDEXED POSITION IF A SEQUENCE OF
C INDEXED LOCATIONS HAS BEEN ENTERED.
C

C FUNCTION: TO DECODE THE ENGLISH NAME OF A LOCATION INTO ITS
C CORRECT LOCATION TABLE POINTER. IF A SEQUENCE OF
C INDEXED LOCATIONS IS TO BE DECODED, THIS ROUTINE
C RETURNS THE LOCATION TABLE POINTERS OF
C THE FIRST AND LAST LOCATIONS IN THE SEQUENCE. THIS
C ROUTINE CAN ALSO BE USED TO DECODE AN ASCII FORMAT
C NUMBER FROM 1-100 INTO ITS INTEGER VALUES.
C

SUBROUTINE LOCPT(D)
IMPLICIT INTEGER (B-Z)
COMMON/IND/IN(30) ,FL(6) ,NAME(3) ,NPT(3,20)
COMMON/PTN/BN, EN
COMMON/CMD/CS{50) , PN , PLN
BN = 0

EN = 0

C

C TEST FLAG TO SEE IF LOCATION NAME TO BE ENTERED THROUGH
C TERMINAL.

IF(D. EQ. 1)GOTO 75
C

i

C ACCEPT LOCATION NAME FROM TERMINAL.
C

500 WRITE(6,300)
300 F0RMAT(2X'ENTER TRAJECTORY NAME')

DII-31

READ(6,200)(CS(J) ,J=1 ,50)
200 FORMAT(50(A1)

)

J = 0

10 J=J+1
IF(CS(J) .EQ.8224)G0T0 10
PN = J

75 J=PN
C

C TEST TO SEE IF FIRST CHARACTER IS A LETTER OR A NUMBER. IF A
C LETTER BRANCH TO TEST IF INDEXED NAME.
C

ONE=CS(J)
IF(0NE.GT.8256)G0T0 50

C

C DECODE ASCII FORMAT NUMBERS INTO TWO DIGIT INTEGERS.
C

TW0=CS(J+1

)

BN= (10»(ONE-82'40)+TWO-82 40)+90
J = J + 2

GOTO 41

50 J=J+1
IF(J.GT.50)G0T0 60
IF(CS(J) .NE.8224)G0T0 35

37 J=J+1
C

C IF LETTERED NAME DOES NOT HAVE ANY INDEXING NUMBERS, BRANCH TO
C STATEMENT 60.
C

IF(J.GT.50)G0T0 60
IF(CS(J) .EQ. 8224)G0T0 37
IF(CS(J) .NE.8232)G0T0 60

35 IF(CS(J) .NE.8232)G0T0 50
C

C IF A OPEN PARENS IS DETECTED (INDICATING THE INDEXING NUMBERS),
C THEN DECODE THE INDEXED NAME USED.
C

DO 20 K=1,3
20 IFCONE . EQ. NAME(K))G0T0 7

100 WRITE(6,101)
101 F0RMAT(2X'INDEXED NAME ERROR')

GOTO 40
7 J=J+1

IF(J.LT.51)GOTO 33
102 WRITE(6,103)
103 F0RMAT(2X'INC0RRECT NAME')

GOTO 40
C

C DECODE THE INDEXING NUMBER USED WITH THE INDEXED NAME.
C

33 IF(CS(J) .EQ.8224)G0T0 7

0NE = CS(J)

TW0=CS(J+1

)

F=(0NE-82 40)»10+TW0-82 40
BN=NPT{K,F)
J = J+2

80 IF(CS(J) .EQ.8237)G0T0 82

DII-32

IF(CS(J) .NE.8233)GOTO 100
EN=BN
GOTO 41

C

C IF A SEQUENCE OF INDEXING NUMBERS FOR A PARTICULAR INDEXED
C NAME IS GIVEN, DECODE THE LAST INDEXING NUMBER IN THE
C SEQUENCE.
C

82 J=J+3
ONE=CS(J-2)
TWO=CS(J-1

)

F= (ONE-82 40) » 10+TWO-8240
C

C LOOK UP THE LOCATION TABLE POINTER FOR THE
C LAST INDEXING NUMBER FOR THE SPECIFIED INDEXED NAME. EG. FOR
C THE INDEXED NAME AND SEQUENCE NUMBERS - BOX(13-17) - THE
C INDEXED NAME IS 'BOX', THE FIRST INDEXING NUMBER IS '13', THE
C LAST INDEXING NUMBER IS '1?'. IF 'BOX' WAS THE SECOND
C INDEXED NAME STORED IN 'IN(30)' THEN THE FIRST LOCATION TABLE
C POINTER WOULD BE FOUND AT 'NPT(2,13)', AND THE LAST LOCATION TABLE
C POINTER WOULD BE FOUND AT 'NPT(2,17)'.
C

EN=NPT(K,F)
GOTO 41

C

C DECODE THE NON-INDEXED LETTERED NAME INTO THE CORRECT LOCATION
C TABLE POINTER.
C

60 BN=0NE-8196
EN = BN
J = J-1

41 PN=J
IF(BN.LE.0)GOTO 102
IF(BN.GT. 190)G0T0 102

40 RETURN
END

DII-33

UJQ- co^ _

a:ocD
3:i-CE
otoi—

LUCDO-

—I '^1-0,.
a:

DII-34

SUBROUTINE : LINE

ARGUMENTS

CALLED BY : INSERT LOOP

CALLS SUBR'OUTINES

INPUT DATA : CS(50)

PLN

BN

NEXT LOCPT

OUTPUT DATA : PR0G(PLN,6)

THE CHARACTER STRING THAT CONTAINS THE
ELEMENTAL MOVE ('GOTO' STATEMENT) COMMAND,
THE NUMBER OF THE LINE IN THE PROGRAM
MODULE THAT THE ABOVE STATEMENT WILL BE
CODED INTO.

THE INTEGER REPRESENTATION OF AN ASCII
CODED NUMBER IN THE CHARACTER STRING
CS(50), USED TO GENERATE LOCATION
TABLE POINTERS, VELOCITY VALUES, AND
CHANNELS FOR INTERLOCK (SEND AND WAIT)
SIGNALS [FROM 'LOCPT'].
= THE NEW LINE OF THE PROGRAM MODULE

THAT THE ELEMENTAL MOVE HAS BEEN
CODED INTO.

FUNCTION;

C

C

C

C

25
125

C

C

C

C

C

C

C

C

100
101

TAKES THE ENGLISH TEXT ELEMENTAL MOVE STATEMENT
TYPED INTO THE TERMINAL, CODES IT INTO THE CORRECT
POINTERS AND FLAGS, AND STORES THEM IN THEIR PROPER
POSITIONS IN THE SPECIFIED LINE IN THE
PROGRAM MODULE.

SUBROUTINE LINE
IMPLICIT INTEGER(B-Z)
COMMON/PMOD/PROG(105 ,6) , ENDP , BRN CH (6) ,M
COMMON/PTN/BN, EN
C0MM0N/CMD/CS(50) ,PN,PLN
COMMON /BED/BEG, FIN , DIF , ERR

ZERO ALL OF THE VALUES IN LINE PLN, SET THE VELOCITY INDICATOR
EQUAL TO 50 CM/SEC AS A DEFAULT VALUE.

DO 125 J=2,6
PROG(PLN, J)=0
PROG(PLN , 3) =50

ADVANCE THROUGH THE CHARACTER STRING UNTIL THE DESTINATION NAME
IS REACHED(BY A CALL TO 'NEXT').

CALL NEXT
IF(PN.LT.51)GOTO 41

THIS IS THE ERROR MESSAGE PRINTED IF ANY MISTAKE IN FORMAT
IS DETECTED.

WRITE(6 , 101

)

F0RMAT(8X'ERR0R IN »»» GOTO »»«STATEMENT '

)

GOTO 42

DII-35

C THE ASCII REPRESENTATION OF THE DESTINATION IS DECODED
C INTO THE CORRECT LOCATION TABLE POINTER BY A CALL TO 'LOCPT'.
C THIS POINTER IS THEN STORED IN THE PROGRAM MODULE.
C

Ml CALL LOCPT(I)
PROG (PLN , 2) =BN
BBN=BN
EEN=EN

C

C ADVANCE THROUGH THE ASCII CHARACTER STRING UNTIL A FUNCTION
C COMMAND IS FOUND (BY A CALL TO 'NEXT').
C

15 CALL NEXT
IF(PN.GT.50)GOTO 42

C

C THIS IS A SERIES OF TESTS ON THE ASCII FORM OF THE FIRST LETTER OF THE
C FUNCTION COMMAND TO DETERMINE IF IT IS A G (GRASP), R (RELEASE)

,

C P(PROXIMITY),D(DETECT) ,B(BALANCE) ,U(UNSTACK) ,T(TOUCH)
,

C L(LINE) ,E(EDGE)

.

C

C

C 'GRASP'
C

IF(CS(PN) .NE.8263)GOTO 60
PR0G(PLN,6)=1
GOTO 80

C

C 'RELEASE'
C

60 IF(CS(PN) .NE.8274)G0T0 61

PROG(PLN , 6) =2
80 PN=PN+1
C

C 'PROXIMITY'
C

IF(CS(PN) .NE.8272)GOTO 81

82 PROG(PLN , 6) =PROG(PLN , 6)+2
81 CALL NEXT

IF(PN.GT.50)G0T0 42
C

C 'PROXIMITY'
C

IF(CS(PN) .NE.8272)G0T0 85
GOTO 82

C

C 'DETECT'
C

61 IF(CS(PN) .NE.8260)GOTO 62
PROG(PLN,6)=5
GOTO 81

C

C 'BALANCE'
C

62 IF(CS(PN) .NE.8258)GOTO 63
PROG(PLN,6)=6
GOTO 81

DIl-36

c

C 'UNSTACK'
C

63 IF(CS(PN) .NE.8277)GOTO 6H
PROG(PLN , 6) =7
GOTO 81

C

C 'TOUCH'
C

64 IF(CS(PN) .NE.8276)GOTO 65
PROG(PLN, 6)=8
GOTO 81

C

C 'LINE'
C

65 IF(CS(PN) .NE.8268)GOTO 66
PROG(PLN, 6)=9
GOTO 81

C

C 'EDGE'
C

66 IF(CS(PN) .NE.8261)GOTO 85
PR0G(PLN,6)=10
CALL NEXT
CALL LIMIT
PR0G(PLN,5)=BEG
GOTO 81

C

C TEST FOR A 'VELOCITY' COMMAND, IF THERE IS ONE THEN DECODE THE
C ASCII FORM OF THE SPECIFIED VELOCITY (CM/SEC) BY A

C CALL TO 'LOCPT'. MULTIPLY THIS INTEGER NUMBER BY 10 AND STORE
C AT POSITION 3 IN THE LINE IN THE PROGRAM MODULE.
C

85 IF(CS(PN) .NE. 8278)GOTO 90
CALL NEXT
IF(PN.GT.50)GOTO 100
CALL LOCPT(1

)

PROG(PLN,3)=(BN-90)
CALL NEXT
IF(PN.GT.50)G0T0 12

C

C TEST FOR A 'SEND' COMMAND. IF THERE IS ONE, DECODE
C THE ASCII FORM OF THE OUTPUT CHANNEL NUMBER THAT IS TO
C BE SET HIGH, MULTIPLY THIS INTEGER BY 100 AND STORE
C IN POSITION 4 OF THE SPECIFIED LINE OF THE PROGRAM
C MODULE.
C

90 IF(CS(PN) .NE.8275)G0T0 91
CALL NEXT
IF(PN.GT.50)GOTO 100
CALL LOCPT(I)
PROG(PLN, 4)=(BN-90)«100
CALL NEXT
IF(PN.GT.50)G0TO 42

C

C TEST FOR A 'WAIT' COMMAND. IF THERE IS ONE, STORE THE NUMBER

DII-37

C OF THE INPUT CHANNEL THAT MUST GO HIGH FOR THE PROGRAM
C TO CONTINUE.
C

91 IF(CS(PN) .NE.8279)GOTO 100
CALL NEXT
IF(PN .GT.50)G0T0 100
CALL L0CPT(1

)

PROGCPLN , n) =PROG(PLN , 4)+BN-90
CALL NEXT
IF(PN.LT.51)GOTO 100

42 BNrBBN
EN=EEN

40 RETURN
END

DII-38

a:
ui

:UJUD

;f; f-zz:

0002

:o_iQ;a:

CO
LU
>-

_JU.cc:"
a: uj^
>xi—

O'-.U.O
UJU.W_QO—

uji— a:!±:"2'

iarcr

DII-40

C SUBROUTINE : PTNAME
C

C ARGUMENTS : NU = A LOCATION TABLE POINTER SPECIFIED BY
C THE CALLING PROGRAM.
C

C CALLED BY : PLINE
C

C CALLS SUBROUTINES :

C

C --- INPUT DATA : FL(6)
C

C

C NAME(3)
C

C NPT(3,20)
C

C

C OUTPUT DATA : NM(15)
C

C

C

C

C

C FUNCTION: DECODES THE LOCATION TABLE POINTER 'NU' INTO THE
C CORRESPONDING ASCII FORMATED NAME.
C

SUBROUTINE PTNAME(NU)
IMPLICIT INTEGER(B-Z)
COMMON/NAM/NM(1 5

)

COMMON/IND/IN(30) ,FL(6) ,NAME(3) ,NPT(3,20)
C

C FILL THE CHARACTER STRING NM(15) WITH BLANKS.
C

DO 10 J = 1 , 15
10 NM(J)=822U
C

C TEST IF POINTER 'NU' IS A SINGLE LETTERED NAME OR
C AN INDEXED LOCATION NAME. IF INDEXED NAME THEN BRANCH TO
C STATEMENT NUMBER 60.
C

IF(NU.LT.61)GOTO 60
C

C DECODE THE LETTERED NAME LOCATION TABLE POINTER INTO ITS
C APPROPRIATE ASCII FORMAT LETTER. STORE THIS VALUE IN T«E STRING
C NM(30) AND RETURN TO THE CALLING PROGRAM.
C

NM(1)=NU+8196
GOTO 40

C

C SEPARATE OUT THE TEN'S DIGIT AND THE UNIT'S DIGIT FROM
C THE POINTER 'NU' FOR THE INDEXED NAME.
C

60 DO 31 K=1,7
TEN=K-1
UNIT=NU-10«TEN
IF(UNIT.LT. 10)GOTO 80

= THE LOCATIONS IN THE CHARACTER STRING
IN(30) OF THE FIRST AND LAST LETTER
OF THE INDEXED LOCATION NAMES.

= THE FIRST LETTERS OF THE INDEXED
LOCATION NAMES.

= THE ARRAY OF VALUES FOR THE POINTERS
FOR THE INDEXED LOCATION NAMES.

= THE CHARACTER STRING THAT CONTAINS
THE SEQUENCE OF LETTERS (IN ASCII
FORMAT) THAT MAKES UP THE NAME THAT
CORRESPONDS TO THE LOCATION TABLE
POINTER 'NU'.

DII-41

31 CONTINUE
C

C THIS SECTION DECODES THE LOCATIONS IN THE STRING IN(30) OF THE
C FIRST AND LAST LETTER OF THE INDEXED NAME SPECIFED BY THE
C POINTER 'NU'. THEN STORES THE LETTERS OF THIS INDEXED NAME
C IN THE STRING NM(1 5)

.

C
80 J=2»((NU-1)/20)+1

BE=FL(J)
EN=FL(J+1

)

DO 82 LJ=1 , 15
NN=BE+LJ-1
IF(NN.GT.EN)GOTO 83

82 NM(LJ)=IN(NN)
C

C AN OPEN PARENS IS NOW INSERTED IN THE STRING NM(15) AFTER THE
C INDEXED NAME.
C

83 NM(LJ)=8232
C

C THE CORRECT INDEX NUMBER IS DECODED AND STORED IN NM(15).
C

NTEN=((TEN+1)»2)/(J+1)-1

IF(TEN.NE. (J+1))GOTO 85
NTEN=2

85 NM(LJ+1)=NTEN+8240
NM(LJ+2)=UNIT+8240

C

C A CLOSE PARENS (IE THE ASCII FORMAT VALUE FOR A CLOSE PARENS) IS
C PLACED AFTER THE INDEX NUMBER IN NM(15) AND CONTROL RETURNS TO
C THE CALLING PROGRAM.
C

NM(LJ+3) =8233
40 RETURN

END

DII-42

DII-44

SUBROUTINE : PLINE

ARGUMENTS : LN = THE NUMBER OF THE PARTICULAR LINE
IN THE PROGRAM MODULE TO BE
PRINTED OUT.

- CALLED BY : INSERT DELETE PRINT SAMPLE

- CALLS SUBROUTINES : PTNAME

- INPUT DATA

OUTPUT DATA

PROG(105,6) = THE PROGRAM MODULE.
NM(15) = THE ASCII FORMATTED

CHARACTER STRING THAT CONTAINS THE
NAME OF THE LOCATION 'NU' [FROM 'PTNAME']

: THE DECODED LINE FROM THE PROGRAM MODULE PRINTED
OUT ON THE. TERMINAL.

FUNCTION

200
C

C

C

C

10

DECODES A SPECIFIED LINE FROM THE PROGRAM MODULE
INTO THE ENGLISH LANGUAGE CHARACTER STRING ORIGINALLY
USED TO ENTER IT, AND DISPLAYS IT ON A TERMINAL.

SUBROUTINE PLINE(LN)
IMPLICIT INTEGER(B-Z)
COMMON /PMOD /PROG (105, 6) , ENDP , BRNCH (6) ,M

COMMON/NAM/NM(1 5

)

C0MM0N/CMD/CS(50) ,PN,PLN
DIMENSION FN(6 , 1 1

)

DATA FN/6»' 1

»

2 'GR
'

,
' AS

•

,
' P ' ,3*' t

>

3 'RE' , 'LE' ,
• AS' , 'E '

4 'GR','AS' , 'P •
, 'PR' ,''0X','' ',

5 'RE'.'LE' ,
' AS' , 'E •

, ' PR ' , ' OX' ,

6 'DE'.'TE' ,
' CT ' ,3»' t

>

7 'BA' , 'LA' ,
' NC •

, 'E '

» »

8 'UN •
, ' ST

'

,
• AC '

, 'K '

1 ^ »

9 'TO' , 'UC , 'H • ,3»' •

1

1 'LI • , 'NE' ,4»' t

>

1 'ED' , 'GE' ,4»' •/

IF THE FIRST LINE OF THE PROGRAM MODULE IS TO BE PRINTED OUT,
THEN DECODE THE STARTING LOCATION BY A CALL TO 'PTNAME'
WHICH RETURNS THE ASCII FORMATTED NAME IN THE STRING 'NM(15)'
THIS NAME IS THEN PRINTED OUT WITH THE WORD 'START'.

IF(LN.NE. 1)GOTO 10
NU=PROG(1 , 1

)

IF(NU.EQ.0)GOTO HO
CALL PTNAME(NU)
WRITE (6, 200) (NM(J) , J=1 , 15)
FORMAT (6X, 'START ',1X,15(A1))

THE DESTINATION POINTER 'NU' IS DECODED BY 'PTNAME' AND RETURNED
IN 'NM(15)'.

NU=PR0G(LN,2)

Dll-45

IF(NU.EQ.O)GOTO 40
CALL PTNAME(NU)

C

C THE FLAG 'F' IS CALCULATED FROM THE FUNCTION FLAG OF THE
C OF THE PROGRAM LINE AND IS USED TO SPECIFY THE PROPER LINE
C OF THE MATRIX 'FN(6,11)' IN ORDER TO PRINT OUT THAT FUNCTION
C NAME.
C

F=PROG(LN, 6)+1
C
C IF AN OUTPUT SIGNAL IS TO BE SENT OUT ON A CHANNEL, THEN THE
C CHANNEL NUMBER IS DECODED AND STORED IN 'SEN'.
C

SEN=PROG(LN,4)/100
C

C IF THE PROGRAM IS TO WAIT FOR A SIGNAL ON AN INPUT CHANNEL, THEN
C THE INPUT CHANNEL NUMBER IS DECODED AND STORED IN ' WA '

.

C

WA=PROG(LN, 4)-SEN»100
C
C THE VELOCITY VALUE IN CM/SEC IS DECODED AND STORED IN 'VEL'.
C

c VEL=PROG(LN, 3)
C

C THE DECODED PROGRAM LINE IS NOW PRINTED OUT ON THE TERMINAL.
C

IF(PR0G(LN,5) .EQ.OGOTO 140
LE=PROG(LN, 5)
WRITE(6 , 300)LN, (NM(L),L=1,15),(FN{E,F),E=1,6) , LE , VEL , SEN , WA

300 FORMAT(' + '15, • GOTO ' , 1 5 (A 1) , 1 X , 6 (A2) , T34 , 12 , T4 1
,

' VELOC IT Y (
' , 1 3

,

1 ') SEND(',I2,') WAIT(' ,12, •) '
)

GOTO 40
140 WRITE (6 , 301)LN, (NM(L) ,L=1 , 15) , (FN(E,F) ,E=1 , 6) , VEL, SEN,WA
301 FORMATC • + • ,15, ' GOTO • , 1 5 (A 1) , 1 X , 6 (A2)

,
' VELOC IT Y (

' , 1 3

,

1 •) SEND(',I2,') WAIT('
,12, ') ')

40 RETURN
END

%

DII-46

3

I

DII-48

C SUBROUTINE : NEXT
C

C ARGUMENTS :

C

C CALLED BY : PRINT INSERT DELETE LINE
C

C CALLS SUBROUTINES :

C

C INPUT DATA : CS(50) = THE CHARACTER STRING THAT CONTAINS THE
C ASCII CODED INPUT INFORMATION.
C PN = THE INDICATOR DESIGNATING THE PRESENT
C POSITION IN THE CHARACTER STRING
C CS(50).
C

C OUTPUT DATA : PN = THE POSITION INDICATOR IN THE STRING
C CS(50) THAT INDICATES THE BEGINNING OF
C THE NEXT PIECE OF INFORMATION.
C

C FUNCTION: ADVANCES THE POSITION INDICATOR 'PN' UNTIL REACHES
C THE BEGINNING OF THE NEXT PIECE OF INFORMATION IN THE
C CHARACTER STRING CS(50).
C

SUBROUTINE NEXT
IMPLICIT INTEGER(B-Z)
COMMON /CMD/CS(50) , PN , PLN
GOTO 21

48 PN=PN+1
21 IF(PN . GT . 50)G0T0 40
C

C THIS (PN) POSITION IN THE CHARACTER STRING IS CHECKED TO SEE IF
C IT IS A BLANK, AN OPEN PARENS, OR A CLOSE PARENS.
C

IF(CS(PN) . EQ. 8224)GOTO 41

IF(CS(PN) .EQ.8232)GOTO 50
IF(CS(PN) .EQ.8233)GOTO 50

C

C IF THE PRESENT CHARACTER IS NONE OF THE ABOVE THEN CYCLE
C BACK TO STATEMENT 48, STEP TO THE NEXT CHARACTER
C IN THE STRING AND TEST AGAIN.
C

GOTO 48
C

C ONCE A BLANK IS DETECTED, BRANCH TO THIS SECTION OF CODE AND
C CONTINUE STEPPING THROUGH THE CHARACTER STRING TESTING
C FOR BLANKS, OPEN PARENS, OR CLOSE PARENS.
C

41 PN=PN+1
IF(PN.GT.50)GOTO 40
IF(CS(PN) .EQ.8224)GOTO 41

IF(CS(PN) .EQ. 8232)GOTO 50
C

C IF A CHARACTER IS DETECTED THAT IS NOT A BLANK, OPEN PARENS,
C OR A CLOSE PARENS THEN IT IS ASSUMED THAT THIS IS THE
C BEGINNING OF THE NEXT PIECE OF INFORMATION AND RETURNS
C TO THE CALLING PROGRAM.
C

DII-49

IF(CS(PN) .NE.8233)GOTO 40

EITHER A OPEN OR CLOSE PARENS IS DETECTED THEN ADVANCE TO THE
NEXT CHARACTER AND TEST FOR A BLANK.

PN=PN+1
IF(PN .GT . 50)G0T0 40

A BLANK IS FOUND, CONTINUE STEPPING THROUGH THE STRING
UNTIL THE FIRST NON-BLANK CHARACTER IS DETECTED THEN RETURN
TO THE CALLING PROGRAM.

IF(CS(PN) .EQ.8224)G0T0 50
RETURN
END

DII-50

I

,
QLU

OCT * 2

DII-52

c SUBROUTINE • LIMIT
c

c ARGUMENTS :

c

c CALLED BY : INSERT DELETE PRINT
c

c

c

CALLS SUBROUTINES : LOCPT NEXT

c INPUT DATA : CS(50) — THE CHARACTER STRING THAT CONTAINS A

c NUMBER OR A RANGE OF NUMBERS TO BE
c DECODED FROM ASCII INTO INTEGER FORM.
c PN - THE POSITION IN THE STRING CS(50) OF
c THE FIRST LINE NUMBER TO BE DECODED.
c BN THE INTEGER VALUE OF THE LINE NUMBER
c DECODE FROM THE ASCII FORMAT BY A CALL
c

c

TO THE SUBROUTINE 'LOCPT'.

c OUTPUT DATA : BEG = THE VARIABLE IN THE COMMON BLOCK THAT
c RETURNS THE INTEGER VALUE OF THE FIRST
c PROGRAM MODULE LINE NUMBER SPECIFIED
c IN THE EDITOR COMMAND.
c FIN = THE VARIABLE IN THE COMMON BLOCK THAT
c RETURNS THE INTEGER VALUE OF ^HE LAST
c PROGRAM MODULE LINE NUMBER SPECIFIED
c IN THE EDITOR COMMAND.
c DIF = THE DIFFERENCE (THE NUMBER OF LINES)
c BETWEEN 'BEG' AND 'FIN'.
c

c FUNCTION: TO RETURN THE BEGINNING AND ENDING PROGRAM MODULE LINE
c NUMBERS THAT THE PARTICULAR EDITOR COMMAND SPECIFIES
c

c

FOR ITS OPERATION

SUBROUTINE LIMIT
IMPLICIT INTEGER(B-Z)
COMMON/PTN/BN, EN
COMMON /BED /BEG, FIN , DIF, ERR
C0MM0N/CMD/CS(50) ,PN,PLN
ERR = 0

C

C TRANSLATE THE ASCII FORMAT BEGINNING LINE NUMBER INTO AN
C INTEGER FORMAT AND STORE IN 'BEG' BY A CALL TO
C 'LOCPT'.
C

CALL LOCPTC 1

)

BEG=BN-90
IF(BEG. LE . 0)GOTO 100
IF(BEG.GT. lOOGOTO 100

C

C TEST FOR A DASH(-), CLOSE PARENSO), OR A BLANK() AND BRANCH
C TO THE APPROPRIATE STATEMENT.
C

IF(CS(PN) .EQ.8237)GOTO 30
IF(CS(PN) .EQ.8233)GOTO 45
IF(CS(PN) .EQ.8224)G0T0 45

100 WRITE(6,101)
101 F0RMAT(8X'F0RMAT ERROR IN PROGRAM MODULE LINE NUMBER')

DII-53

ERR= 1

GOTO 40
C

C IF A CLOSE PARENS WAS DETECTED THEN THIS INDICATES ONLY ONE LINE
C WAS SPECIFIED THEREFORE SET 'FIN' EQUAL TO 'BEG' .

C

45 FIN=BEG
GOTO 60

C

C IF A DASH WAS DETECTED, THIS INDICATES THAT AN ENDING
C NUMBER IS ALSO SPECIFIED THEREFORE ADVANCE TO THE NEXT NUMBER
C IN THE STRING CSC50) (BY A CALL TO 'NEXT') AND TRANSLATE IT INTO
C THE INTEGER FORMAT AND STORE IN 'FIN' (BY A CALL TO 'LOCPT')
C

30 PN=PN+1
IF(CS(PN) .NE.8224)G0T0 31
CALL NEXT

31 CALL LOCPT(I)
FIN=BN-90

C

C TEST TO MAKE CERTAIN THAT THE LINE NUMBERS ARE WITHIN THE
C ALLOWABLE RANGE.
C

60 IF(FIN.LE.0)GOTO 100
IFCFIN.GT. 100)GOTO 100

C

C CALCULATE THE NUMBER OF LINES SPECIFIED AND STORE IN THE
C COMMON VARIABLE 'DIF'.
C

DIF=FIN-BEG+1
40 RETURN

END

DII-54

I

DIl-56

C SUBROUTINE : ADJUST
C

C ARGUMENTS :

C

C CALLED BY : INSERT DELETE AVOID
C

C CALLS SUBROUTINES :

C

C INPUT DATA : PROG(105,6) = THE PRESENT PROGRAM MODULE.
C

C OUTPUT DATA : PROG(105,6) = THE VERIFIED PROGRAM MODULE.
C

C FUNCTION: MAKES CERTAIN THAT FOR EVERY LINE IN THE PROGRAM
C MODULE, THE PRESENT LOCATION POINTER IS THE SAME
C AS THE DESTINATION POINTER OF THE PREVIOUS LINE
C THEREBY ASSURING CONTINUITY IN THE COMMANDED
C POINT-TO-POINT MOTION.
C

SUBROUTINE ADJUST
IMPLICIT INTEGER(B-Z)
COMMON/PMOD/PROG (1 05 , 6) , ENDP , BRNCH (6) ,M

C

C LOOP THROUGH THE PROGRAM MODULE, TESTING TO DETERMINE IF
C EACH PROGRAM LINE HAS A DESTINATION POINTER. IF IT
C DOES, THEN SET THAT LINE'S PRESENT LOCATION POINTER EQUAL
C TO THE PREVIOUS LINE'S DESTINATION POINTER. IF THE PROGRAM
C LINE DOES NOT HAVE A DESTINATION POINTER, THEN ZERO ITS
C PRESENT LOCATION POINTER AND BRANCH TO STATEMENT 207.
C

200 DO 201 M=2 , 100
IF(PR0G(M,2) .NE.0)GOTO 201
PROGCM, 1)=0
GOTO 207

201 PROG(M, 1)=PR0G(M-1 ,2)
C

C THIS LOOP ZEROS OUT THE REMAINDER OF THE PROGRAM MODULE TO ELIMINATE
C ANY EXTRANEOUS DATA.
C

207 DO 208 RM=M, 100
DO 208 MM= 1 ,

6

208 PROG(RM,MM) =0
40 RETURN

END

DII-57

Location Module
(Module #3)

LOCTAB - Requests data to completely specify a

location point.
ARRAY - Requests data to specify the dimensions of

the array of points to be entered.
ARRLOC - Computes the coordinate values to specify

all of the locations in the array.

JOY - Uses input values from joystick to control

robot's motions.
POS - Calls in and scales the present joint

position values.

DIII-2

DIII-10

DI11-14

DIII-18

DIII-24

DIII-1

DIII-2

C SUBROUTINE : LOCTAB
C

C ARGUMENTS :

C

C CALLED BY : SAMPLE
C

C CALLS SUBROUTINES : ARMIN INDEX LOCPT ARRAY ARRLOC JOY POS
C COOR
C

C INPUT DATA : INBUF(28) = WHEN THIS SWITCH IS UP, CAUSES THE
C PROGRAM TO JUMP BACK TO THE PREVIOUS
C ' DATA ENTRY REQUEST.
C INBUF(29) = WHEN THIS SWITCH IS DOWN, CAUSES THE
C CONTROL TO RETURN TO THE CALLING
C PROGRAM. .

C INBUF(32) = WHEN THIS SWITCH IS UP, THE ARM IS
C UNDER JOYSTICK CONTROL.
C INBUF(34) = WHEN THIS SWITCH IS UP, THE LOCATION IS
C TO BE ENTERED AS AN •X,Y,Z' COORDINATE
C POSITION.
C

C OUTPUT DATA : LTAB(90,^,7) = THE UPDATED LOCATION TABLE MODULE.
C

C FUNCTION: USES A QUESTION AND ANSWER SYSTEM TO OBTAIN THE
C NECESSARY INFORMATION FOR THE DESCRIPTION OF A

C LOCATION AND THE CONSTRUCTION OF THE LOCATION TABLE
C MODULE.
C

SUBROUTINE LOCTAB
IMPLICIT INTEGER(B-R)
IMPLICIT INTEGER(T-Z)
COMMON/ARMBUF/INBUF(64) ,OUTBUF(64)
COMMON/LMOD/LTAB(90 ,4,7) ,PRES,DEST
C0MM0N/0UT/JP0S(8)
COMMON /ARR/B1 ,E1,J1,J2,AD1(3) ,AD2(3) ,DA
C0MM0N/IND/IN(30) ,FL(6) ,NAME(3) ,NPT(3,20)
COMMON/PTN/BN, EN
C0MM0N/C0RT/AC(6) , AXEP , AYEP , AZEP
EQUIVALENCE (EABORT ,INBUF(28))

E QUI VALENCE (NRE,INBUF(29)) , (JSTK , INBUF (32)) , (XYZ , INBUF (3 4)

)

CALL ARMIN
C

C MONITOR SWITCH 29 ('NRE') TO DETERMINE WHEN CONTROL SHOULD BE
C RETURNED TO CALLING PROGRAM.
C

500 IF(NRE .GT .-2000)G0T0 40
C

C INITIALIZE THE FLAG 'DA' AT ZERO. USED TO INDICATE WHEN AN ARRAY
C OF LOCATION POINTS ARE TO BE STORED.
r
\^

DA = 0

C

C THE FOLLOWING CODE READS THE PRESENT INDEXED NAMES OUT OF THE
C LOCATION TABLE MODULE, AND BY A CALL TO 'INDEX', PRINTS
C THESE INDEXED NAMES ON THE TERMINAL AND PROVIDES THE OPERATOR
C THE OPPORTUNITY TO CHANGE THESE NAMES.

DIII-3

M = 0

DO 104 J=89,90
DO 104 K= 1 ,

4

DO 104 L= 1 ,

7

M=M+1
IF(M. EQ. 31)GOTO 98

104 IN(M)=LTAB(J,K,L)
98 CALL INDEX(O)
C

C THE FOLLOWING CODE PRINTS OUT THE FUNCTIONS OF THE VARIOUS CONTROL
C SWITCHES AND ASKS THE OPERATOR IF A SINGLE LOCATION OR AN ARRAY
C OF LOCATIONS IS TO BE ENTERED.
C

303 WRITE(6,300)
300 F0RMAT(8X' SW 32 UP FOR JOYSTICK CONTROL',/

1 8X' SW 34 UP FOR XYZ ENTRY',/
1 8X' SW 32 & 34 DOWN FOR MANUAL ENTRY',//)
WRITE(6,201

)

201 F0RMAT(8X ' »»»TYPE +1»«» TO RECORD AN ARRAY OF INDEXED LOCATIONS',/
1 8X'»«»TYPE [CR]»«« TO RECORD LOCATIONS ONE AT A TIME')
READ(6 , 202)DA

202 F0RMAT(I3)
CALL ARMIN
IF(NRE.GT.-2000)GOTO 40
IF(EABORT.LT.-2000)GOTO 500

C

C THE OPERATORS RESPONSE IS TESTED AND IF AN ARRAY OF POINTS IS
C TO BE ENTERED, THEN THE SUBROUTINE 'ARRAY' IS CALLED.
C

IF(DA. EQ. 0)GOTO 275
CALL ARRAY

C

C THE LOCATION TABLE POINTER FOR THE FIRST LOCATION TO BE ENTERED
C IS STORED IN THE VARIABLE 'BN' ('B1' IS THE FIRST LOCATION OF
C THE ARRAY DECODED AND RETURNED FROM THE CALL TO 'ARRAY').
C

BN=B1
GOTO 321

C

C IF ONLY A SINGLE LOCATION IS TO BE ENTERED, THEN THE VALUE OF ITS
C LOCATION TABLE POINTER IS DECODED BY A CALL TO 'LOCPT',
C RETURNED IN THE VARIABLE 'BN' AND STORED IN BOTH
C 'B1' AND 'El', THE VARIABLES THAT ARE THE FIRST AND LAST
C LOCATIONS TO BE ENTERED.
C

275 CALL LOCPT(O)
B1=BN
E 1 =BN

C

C THE VALUE OF THE SWITCH FOR JOYSTICK CONTROL IS CHECKED AND IF UP,
C THE SUBROUTINE 'JOY' IS CALLED TO TRANSFER CONTROL TO THE
C JOYSTICK BOX.
C

321 IF(JSTK.GT.-2000)GOTO 400
CALL JOY

DIII-4

GOTO 401
C

C THE VALUE OF THE SWITCH FOR 'X,Y,Z« ENTRY IS CHECKED AND IF UP, THEN
C THE 'X.Y.Z' COORDINATE VALUES FOR THE LOCATION ARE
C REQUESTED.
C

400 IF(XYZ.GT.-2000)GOTO 401
765 WRlTE(6,304)
304 F0RMAT(8X'ENTER X,Y,Z VALUES (DECIMAL CENTIMETERS)',/

1 8X'0F THE LOCATION TO BE RECORDED')
READ(6,305)A1X,A1Y,A1Z

305 F0RMAT(3 (F10 . 3)

)

CALL ARMIN
IF(EAB0RT.LT.-2000)G0T0 303

C

C THE OPERATOR IS NOW ASKED IF THESE COORDINATES ARE ABSOLUTE
C VALUES OR DELTA OFFSETS FROM THE PREVIOUS VALUES FOR
C THE PRESENT LOCATION OR FROM ANOTHER PREVIOUSLY ENTERED
C LOCATION.
C

766 WRITE(6,306)
306 F0RMAT(8X ' «»«TYPE +1»»»IF THESE ARE ABSOLUTE VALUES',/

1 8X'»»»TYPE [CR]«»»IF OFFSETTING PRESENT LOCATION BY THESE AMOUNTS',/
1 8X'»»»TYPE .1«»»IF THESE ARE OFFSETS FROM ANOTHER LOCATION')
READ(6,307)RAD

307 F0RMAT(I3)
CALL ARMIN
IF(EABORT.LT.-2000)GOTO 765
DDrRAD
IF(RAD.NE.-1)GOTO 176

C

C IF OFFSET FROM ANOTHER PREVIOUSLY RECORDED LOCATION, HERE, THAT
C LOCATION NAME IS ENTERED.
C

WRITE(6 , 308)
308 F0RMAT(8X ' WHAT IS THE OTHER LOCATION YOU ARE OFFSETTING FROM ?')

RAD=0

.

MNN=BN
C

C THIS OTHER LOCATION NAME IS IDENTIFIED BY A CALL TO 'LOCPT',
C AND THE VALUE OF ITS LOCATION TABLE POINTER RETURNED IN THE
C COMMON VARIABLE 'BN'.
C

CALL LOCPT(O)
C

C THE VALUE OF THE JOINT POSITIONS FOR THIS OTHER POINT ('BN') ARE
C STORED IN THE COMMON VARIABLE 'AC(1-6)' TO BE USED BY THE
C COORDINATE TRANSFORMATION ROUTINE 'COOR' AS THE REFERENCE POINT
C FROM WHICH TO OFFSET THE NEW LOCATION BY THE DELTA COORDINATE
C VALUES ('A1X' , 'A1Y' , 'A1Z')

.

C

176 DO 402 JX=1 ,

6

402 AC(JX)=LTAB(BN, 1 , JX)
CALL COOR(A1X,A1Y,A1Z,RAD,0)
IF(DD.NE.-1)GOTO 479
BN=MNN

DIII-5

GOTO H79
C

C THE PRESENT VALUES OF THE JOINT
C POSITION INDICATORS ARE ENTERED AS THE JOINT POSITION VALUES
C FOR THIS DESIGNATED LOCATION BY A CALL TO 'POS' TO READ IN
C THESE VALUES.
C

401 CALL POS
IF(EABORT.LT.-2000)GOTO 500

C
C THE PRESENT JOINT POSITION INDICATOR VALUES FROM THE CALL TO 'POS'
C ARE ENTERED IN THE LOCATION TABLE FOR THIS
C DESIGNATED LOCATION.
C

479 DO 415 JX=1,6
AC(JX)=JPOS(JX)

415 LTAB(BN, 1 , JX)=JPOS(JX)
IF(DA.NE. 1)GOTO 71

1

DA = 0

CALL ARRLOC
C

C IF THE START OF THE APPROACH PATH IS TO BE A DELTA X,Y,Z AWAY
C FROM THE END POINT, THOSE DELTA VALUES ARE ENTERED HERE.
C

711 WRITE(6,521)
521 F0RMAT(8X«ENTER DELTA X,Y,Z (DECIMAL CM) TO START OF APPROACH PATH')

READ(6 , 522)ADX, ADY, ADZ
522 FORMATO (F7 . 3))

CALL ARMIN
IF(EABORT.LT.-2000)GOTO 303
HX=ADX»100
HY=ADY*100
HZ = ADZ» 1 GO

C

C THE OPERATOR NOW SUPPLIES THE INFORMATION AS TO WHETHER THE HAND COMES
C TO A STOP AT THIS LOCATION (FX=1) OR IT DOES NOT STOP
C HERE (FX=0).
C

630 WRITE(6,109)
109 F0RMAT(8X ' »»»TYPE +1«»«IF HAND WILL STOP AT THIS LOCATION',/

1 8X ' »»»TYPE[CR]»»«IF HAND DOES NOT STOP HERE')
READ(6 , 1 10)FX

110 F0RMAT(I3)
CALL ARMIN
IF(NRE .GT . -2000)GOTO 40
IF(EABORT .LT. -2000)GOTO 303
DO 620 J=B1,E1
LTAB(J, 2,7)=FX
LTAB(J,3,4)=HX
LTAB(J, 3,5)=HY

620 LTAB(J,3,6)=HZ
C

C THE OPERATOR IS GIVEN THE OPTION OF DISPLAYING THE LOCATION
C TABLE ON THE TERMINAL OR ENTERING A NEW LOCATION IN THE
C TABLE.
C

DIII-6

WRITE(5 , 111)
111 F0RMAT(8X»»»»TYPE [CR]»»» FOR ANOTHER POINT',/

1 8X'»»»TYPE TO DISPLAY TABLE THEN RETURN TO BEGINNING')
READ(6 , 1 12)HH

112 FORMATdS)
CALL ARMIN
IF(EABORT.LT.-2000)GOTO 303
M = 0

C

C THESE NEXT LOOPS SCAN THE LOCATION TABLE AND IF A DELTA OFFSET IS
C GIVEN TO THE START OF AN APPROACH PATH, THEN THE
C JOINT POSITION VALUES OF THE START OF THIS APPROACH PATH
C IS CALCULATED BY A CALL TO 'COOR' AND THESE VALUES
C ENTERED IN THE TABLE (' LT AB (J ,

i<
, 1 -6) '

) . IF THERE IS NO
C APPROACH PATH, THEN THE JOINT POSITION VALUES OF
C THE END POINT ARE ALSO STORED IN ' LTAB (J , 4 , 1 -6) .

C THE NAMES OF THE INDEXED LOCATIONS ARE STORED IN THE LAST TWO
C POSITONS IN THE LOCATION TABLE.
C

DO 850 J=1,86
IF(LTAB(J, 1 , 1) .EQ. OGOTO 850
AX=LTAB(J, 3,4)7100.
AY = LTAB(J , 3 , 5) /I 00 .

AZ=LTAB(J, 3,6)/100.
DO 830 JB = 1 , 6

830 AC(JB)=LTAB(J, 1 , JB)
CALL COOR (0 . , 0 . , 0 . , 0 , 1)

LTAB(J, 2, 1)=AXEP»100
LTAB(J,2,2)=AYEP*100
LTAB(J,2, 3)=AZEP»100
IF(AX.NE.O.)GOTO 2500
IF(AY.NE.O.)GOTO 2500
IF(AZ.NE.O.)GOTO 2500
DO 2400 KBL= 1 ,

6

2400 LTAB(J,4,KBL)=LTAB(J, 1 ,KBL) >

GOTO 850
2500 CALL COOR(AX,AY,AZ,0,0)

DO 820 JA=1,6
820 LTAB(J,4, JA)=JPOS(JA)
850 CONTINUE
C

C HERE THE NAMES OF THE INDEXED LOCATIONS ARE STORED IN THE LAST
C TWO POSITIONS OF THE TABLE.
C

772 DO 704 J=89,90
DO 704 K=1 , 4

DO 704 L = 1 , 7

M = M+1
IF(M. EQ. 31)GOTO 798

704 LTAB(J,K,L)=IN(M)
C

C IF 'HH' EQUAL TO ZERO (IE. A CARRIAGE RETURN WAS ENTERED), THEN
C RETURN TO BEGINNING OF PROGRAM TO ENTER ANOTHER LOCATION.
C IF 'HH'=1, THEN PRINT THE LOCATION TABLE OUT ON THE
C TERMINAL.
C

1

piII-7

798 IF(NRE.GT.-2000)GOTO 40
IFCHH.NE. 1)GOTO 303
DO 120 KL=1 , 90
CALL ARMIN
IF(EABORT.LT.-2000)GOTO 500
DO 120 NK= 1

,

4

WRITE(6 , 120 1)KL, (LTAB (KL , NK , J) , J=1 ,7)

40

1201
120

F0RMAT(8 (2X , I6)

)

CONTINUE
GOTO 500
RETURN
END

Dlll-d

DIII-10

C SUBROUTINE : ARRAY
C

C ARGUMENTS :

C

C CALLED BY : LOCTAB
C

C CALLS SUBROUTINES :

C

C INPUT DATA : PA(30) = THE CHARACTER STRING FROM THE TERMINAL
C THAT CONTAINS THE INDEXED NAME AND THE
C - STARTING AND ENDING INDEXED LOCATION
C VALUE FOR THIS PARTICULAR ARRAY [FROM
C THE TERMINAL].
C J1,J2 r THE DIMENSIONS OF THE ARRAY [FROM THE
C TERMINAL].
C AD1(3) = THE DELTA 'X,Y,Z' DISTANCES (IN
C CENTIMETERS) BETWEEN THE LOCATION
C POINTS ALONG THE FIRST DIMENSION ('J1')
C OF THE ARRAY [FROM THE TERMINAL].
C AD2(3) = THE DELTA 'X,Y,Z' DISTANCES BETWEEN THE
C LOCATION POINTS ALONG THE SECOND
C DIMENSION OF THE ARRAY [FROM THE
C TERMINAL].
C

C OUTPUT DATA : J1,J2 = AS DESCRIBED ABOVE.
C ADU3) = AS DESCRIBED ABOVE.
C AD2(3) = AS DESCRIBED ABOVE.
C B1 = THE LOCATION TABLE POINTER FOR THE
C FIRST INDEXED LOCATION SPECIFIED
C IN THE ARRAY.
C El ' = THE LOCATION TABLE POINTER FOR THE
C LAST INDEXED LOCATION SPECIFIED IN
C THE ARRAY.
C DA = A'FLAG SET EQUAL TO ONE TO INDICATE
C THAT AN ARRAY OF LOCATION POINTS
C HAS BEEN ENTERED.
C

C FUNCTION: TO READ IN FROM THE TERMINAL THE NECCESARY INFORMATION
C TO CONSTRUCT THE CORRECT LOCATION TABLE VALUES FOR THE
C ARRAY OF LOCATIONS SPECIFIED. THE ACTUAL ENTERING
C OF THE VALUES INTO THE TABLE WILL BE DONE BY THE
C SUBROUTINE 'ARRPT'.
C

SUBROUTINE ARRAY
IMPLICIT INTEGER(B-Z)
COMMON/ARMBUF/INBUF(64) ,0UTBUF{6il)
COMMON /ARR/B1 ,E1,J1,J2,AD1(3),AD2(3),DA
COMM0N/IND/IN(30) ,FL(6) ,NAME(3) ,NPT(3,20)
E QUI VALENCE(E ABORT , INBUF(28))

DIMENSION PA(30)
C

C READ IN FROM THE TERMINAL, THE INDEXED NAME AND THE RANGE OF
C LOCATIONS, THE DIMENSIONS OF THE ARRAY, AND THE DELTA COORDINATE
C OFFSETS ALONG EACH DIMENSION.
C

500 WRITE(6,200)

DIII-11

200 F0RMAT(2X 'ENTER LOCATION NAME AND INDEX NUMBERS',/
1 2X'EG. PALLET(0 1 -20)

'

)

READ (6 ,201)(PA(J),J=1,30)"
201 F0RMAT(30(A1)

)

WRITE(6,202)
202 F0RMAT(2X 'ENTER ARRAY DIMENSIONS',/

1 2X' (EG. 4,5)
'

)

READ(6 ,203) J1 , J2
203 F0RMAT(2 (13)

)

WRITE(6,20M)
204 F0RMAT(2X 'ENTER X,Y,Z DELTAS (DECIMAL CM) BETWEEN ',/

1 2X' ARRAY POSITIONS ALONG FIRST DIMENSION.')
READ(6 , 205) (AD1 (J) ,J=1 ,3)

205 F0RMAT(3 (FY . 3)

)

WRITE(6,214)
214 F0RMAT(2X ' ENTER X,Y,Z DELTAS (DECIMAL CM) BETWEEN ',/

1 2X' ARRAY POSITIONS ALONG SECOND DIMENSION.')
READ(6 ,215) (AD2(J) , J= 1 , 3)

215 F0RMAT(3 (FY . 3)

)

C

C DECODE THE NAME AND THE SPECIFIED INDICES INTO THE CORRECT LOCATION
C TABLE POINTERS.
C

J = 0

10 J=J+1
IF(J.EQ.31)G0T0 40
IF(PA(J) .EQ.8224)G0T0 10

DO 20 K= 1 ,

3

20 IF(PA(J) .EQ.NAME(K))G0T0 Y

WRITE(6,120)PA(J) ,NAME(1) , NAME (2) ,NAME(3)
120 F0RMAT(4(A1)

)

WRITE(6, 100)
100 F0RMAT(2X'CANN0T FIND THIS NAME,',/

1 2X'«»»TYPE +1»»» TO RE-ENTER NAME',/
1 2X'»»» TYPE [CR]»»« TO ABORT.')
READ(6 , 206)BOR

206 F0RMAT(I3)
IF(B0R . EQ. 1)G0T0 500
GOTO 40

C

C DETERMINE WHAT THE FIRST SPECIFIED INDEX VALUE IS.
C

7 J=J+1
IF(J . EQ. 31)G0T0 40
IF(PA(J) .NE.8232)G0T0 Y

8 J=J+1
IF(J.EQ. 31)G0T0 40
IF(PA(J) .EQ.8224)G0T0 8

0NE=PA(J)
TWO=PA(J+1

)

F= (10«(0NE-8240))+(TWO-8240)
J = J + 1

IF(J.EQ. 31)G0T0 40
C

C DETERMINE WHAT THE LAST SPECIFIED INDEX VALUE IS.
C

DIII-12

17 J=J+1
IF(J . EQ. 31)GOTO 40
IF(PA(J) .EQ.8224)G0T0 1?
IF(PA(J) .EQ.8237)G0T0 17
ONE=PA(J)
TWO=PA(J+1

)

L= (10»(0NE-82 40)) + (TW0-82 40)
C

C DECODE THE FIRST AND LAST INDEX NUMBERS INTO THEIR CORRESPONDING
C LOCATION TABLE POINTERS AND STORE IN THE COMMON VARIABLES 'BT AND
C 'El •

.

C

B1=NPT(K,F)
E1=NPT(K,L)
DA = 1

40 RETURN
END

DIII-13

DIII-14

C SUBROUTINE : ARRLOC
C

C ARGUMENTS :

C

C CALLED BY : LOCTAB
C

C CALLS SUBROUTINES : COOR
C

C INPUT DATA : J1,J2 = THE DIMENSIONS OF THE ARRAY.
C AD1(3) = THE DELTA 'X,Y,Z' DISTANCES (IN
C CENTIMETERS) BETWEEN THE LOCATION
C POINTS ALONG THE FIRST DIMENSION ('J1')
C OF THE ARRAY.
C AD2(3) = THE DELTA 'X,Y,Z' DISTANCES BETWEEN THE
C LOCATION POINTS ALONG THE SECOND
C DIMENSION OF THE ARRAY.
C B1 = THE LOCATION TABLE POINTER FOR THE
C FIRST INDEXED LOCATION SPECIFIED
C IN THE ARRAY.
C El = THE LOCATION TABLE POINTER FOR THE
C LAST INDEXED LOCATION SPECIFIED IN
C THE ARRAY.
C DA = A FLAG SET EQUAL TO ONE TO INDICATE
C THAT AN ARRAY OF LOCATION POINTS
C HAS BEEN ENTERED.
C

C OUTPUT DATA : JP0S(1-6) = THE JOINT POSITION VALUES FOR EACH OF
C THE LOCATIONS IN THE SPECIFIED ARRAY.
C AC(-|-6) = THE JOINT POSITION VALUES THAT
C CHARACTERIZE THE REFERENCE POINT USED
C BY THE COORDINATE TRANSFORMATION
C ROUTINE.
C

C FUNCTION: TO GENERATE AND STORE IN THE LOCATION TABLE, ALL OF THE
C JOINT POSITION VALUES FOR THE LOCATIONS OF THE SPECIFIED
C ARRAY.
C

SUBROUTINE ARRLOC
IMPLICIT INTEGER(B-Z)
C0MM0N/ARMBUF/INBUF(6i|) ,0UTBUF(64)
COMMON/LMOD/LTAB(90 , 4 , 7) , PRES , DEST
C0MM0N/0UT/JP0S(8

)

COMMON / COR T/AC(6) , AXE P , A YE P , AZ EP
COMMON /ARR/B1 ,E1,J1,J2,AD1(3) ,AD2(3) ,DA
EQUIVALENCE(EAB0RT,INBUF(28)

)

DIMENSION AY2(3) ,AXY(3)
C

C STORE THE LOCATION TABLE POINTER FOR THE FIRST INDEXED LOCATION
C IN THE VARIABLE 'PAA'.
C

PPA=B1
C

C PLACE THE JOINT POSITION VALUES OF THIS FIRST INDEXED LOCATION IN THE
C COMMON VARIABLE 'ACd-S)' WHICH WILL BE USED AS A REFERENCE POINT
C BY THE COORDINATE TRANSFORMATION ROUTINE 'COOR'.
C

DIII-15

DO 15 J=1 , 6

15 AC(J)=LTAB(B1 , 1 , J)
C

C THESE LOOPS GENERATE THE CORRECT JOINT POSITION VALUES FOR ALL OF THE
C LOCATIONS IN THE ARRAY. THIS IS DONE BY SPECIFYING THE
C DELTA COORDINATE OFFSETS FOR EACH LOCATION IN THE ARRAY FROM
C THE FIRST SPECIFIED REFERENCE LOCATION ('AC(1-6)') AND OBTAINING
C FROM THE COORDINATE TRANSFORMATION ROUTINE THE CORRESPONDING JOINT
C POSITION VALUES, THEN STORING THESE VALUES IN THE CORRECT
C PLACE IN THE LOCATION TABLE.
C

DO 110 J22= 1 , J2
JS=J22-1
DO 1 1 7 J4= 1 ,

3

117 AY2(J4)=JS»AD2(J4)
DO 1 10 J1 1 = 1 , J1

JR=J1 1-1

DO 120 JA=1,3
120 AXY(JA)=JR«AD1 (JA)+AY2(JA)

CALL C00R(AXY(1) ,AXY(2) ,AXY(3) ,0,0)
C

C HERE THE JOINT POSITION VALUES ARE STORED IN THE LOCATION
C TABLE UNDER THE CORRECT POINTER VALUE FOR THIS PARTICULAR NAME
C AND INDEX NUMBER.
C

DO 115 K=1 ,6
115 LTAB(PPA, 1 ,K)=JPOS(K)
110 PPA=PPA+1

RETURN
END

DIII-16

DIII-18

C SUBROUTINE : JOY
C

C ARGUMENTS :

C

C CALLED BY : LOCTAB
C

C CALLS SUBROUTINES : ARMIN COOR SERVO POS
C

C INPUT DATA : JP0S(1-6) = THE VALUE OF ALL OF THE JOINT POSITION
C INDICATORS AT THE BEGINNING OF THIS
C ROUTINE.
C INBUF(26) = THE CHANNEL THAT CONTROLS THE VELOCITY
C OF THE ARM WHILE UNDER JOYSTICK CONTROL.
C INBUF(27) = THE CHANNEL THAT CONTROLS THE 'GRASP* AND
C 'RELEASE'.
C INBUF(31) = THE CHANNEL THAT CALLS FOR A PRINT OUT ON
C THE TERMINAL OF THE PRESENT 'X,Y,Z'
C VALUES.
C INBUF(32) = THE CHANNEL USED TO RETURN CONTROL TO THE
C CALLING PROGRAM ('LOCTAB').
C INBUF(37) = THE CHANNEL THAT CONTROLS THE WRIST
C ROLL.
C INBUF(38) = THE CHANNEL THAT CONTROLS THE i^RIST
C FLEX.
C INBUF(39) = THE CHANNEL THAT CONTROLS THE HAND
C ROLL.
C INBUF(UO) = THE CHANNEL THAT CONTROLS THE 'X' MOTION
C OF THE HAND.
C INBUF(41) = THE CHANNEL THAT CONTROLS THE 'Y' MOTION
C OF THE HAND.
C INBUF(42) = THE CHANNEL THAT CONTROLS THE 'Z' MOTION
C OF THE HAND.
C

C OUTPUT DATA : AC(1-6) = THE STARTING JOINT POSITION VALUES
C THAT ARE USED AS A REFERENCE POINT
C FOR THE COORDINATE TRANSFORMATION
C CALCULATIONS.
C JP0S(1-8) = THE JOINT POSITION VALUES THAT ARE
C THE COMMANDED OUTPUT VALUES TO THE
C SERVOS THAT WILL CAUSE THE HAND
C TO MOVE IN THE DIRECTION INDICATED
C BY THE JOYSTICK.
C

C FUNCTION: READS IN THE VALUES OF THE JOYSTICK POTENTIOMETERS,
C CALCULATES THE PROPER JOINT POSITION VALUES
C TO ACCOMPLISH THE COMMANDED MOVES AND OUTPUTS THESE
C JOINT POSITION VALUES TO THE SERVOS.
C

SUBROUTINE JOY
IMPLICIT INTEGER (D-R)
COMMON/ARMBUF/INBUF(64) ,OUTBUF(64)
C0MM0N/0UT/JP0S(8)
COMMON /CORT/AC(6) , AXEP , AYEP , AZEP
EQUIVALENCE (EABORT,INBUF(28)

)

COMMON/XYZO/AOI , A05 , A06
DIMENSION KIN(5) ,KBN(5) ,KMD(3)

DIII-19

DATA KIN/37, 38, 39,27,42/
C

C THE FLAG 'PTC IS SET EQUAL TO ZERO. THIS FLAG IS USED IN THE GRASP
C AND RELEASE FUNCTIONS TO CONTROL THE SETTING OF THE HAND BRAKE.
C

PTC = 0

C

C THE DELTA COORDINATE OFFSETS (• AX ' , ' AY '
, ' AZ ') AND THE DELTA

C ROTATIONAL OFFSETS (• A04 ' , ' A05 ' , ' A06 ') FOR THE WRIST AND HAND
C ARE INITIALIZED TO ZERO.
C

AX = 0.
AY = 0.
AZ = 0 .

A04=0.
A05 = 0 .

A06=0

.

C

C THE PRESENT JOINT POSITION VALUES ARE READ IN AND STORED IN THE
C COMMON VARIABLE 'AC(1-6)' TO BE USED AS THE REFEREJICE
C POINT FOR ALL OF THE COORDINATE TRANSFORMATION CALCULATIONS
C TO BE DONE BY ' COOR •

.

C

CALL POS
DO 525 J J= 1 , 6

525 AC(JJ)=JPOS(JJ)
C

C THE MESSAGE THAT TELLS WHICH SWITCHES CONTROL WHICH FUNCTIONS
C IS SENT TO THE TERMINAL.
C

WRITE(6 , 526)
526 F0RMAT(3X'T0 RETURN TO THE TEACH TRAJECTORY MODE,',/

1 3X'FLIP SWITCH 32 TO THE DOWN POSITION.'/
1 3X'FLIP SW 31 UP TO DISPLAY X Y Z VALUES.')

C

C THE VALUES OF ALL OF THE INPUTS FROM THE JOYSTICK BOX ARE
C READ IN.
C

20 CALL ARMIN
C

C THE VARIABLE 'RT' CONTAINS THE VALUE OF THE SWITCH USED TO
C RETURN TO THE CALLING PROGRAM ('LOCTAB').
C

RT=-INBUF(32)
IF(RT-2000)40,527,527

C

C THE INPUT VALUES FOR THE 'X' AND 'Y' MOTION ARE STORED IN THE
C VARIABLES 'IX' AND 'lY'.
C

527 IX=-INBUF(40)
IY=-INBUF(4 1

)

C

C THE THREE ROTATIONAL ANGLES OF THE HAND-WRIST, THE FINGER CLOSING,
C AND THE 'Z' MOTION INDICATOR ARE DECODED INTO THE NUMBER '2'

C FOR POSITIVE MOTION, OR THE NUMBER '-2' FOR NEGATIVE MOTION,
C OR THE NUMBER '0' FOR NO MOTION. THESE CODED NUMBERS FOR

DIII-20

C EACH OF THESE FIVE MOTIONS ARE STORED IN THE VARIABLE 'KBN(1-5)'.
C

DO ICQ KL=1 ,

5

FLL=KIN(KL)
ICQ KBN(KL)= ((INBUF(FLL)+l850)/1000)*(-2)
C

C THE VALUE OF THE POTENTIOMETER ON CHANNEL 26 IS READ IN AND USED AS
C A CONTROL FOR THE SIZE OF THE COMMANDED MOVE FOR EACH OUTPUT,
C THEREBY CONTROLING THE VELOCITY. THIS CONTROL VALUE
C IS STORED IN THE VARIABLE 'SPD'.
C

SPD=((-INBUF(26)-2150)/10)+1
C

C A VELOCITY FACTOR FOR EACH OF THE THREE ROTATIONAL ANGLES OF THE
C HAND-WRIST IS GENERATED BY MULTIPYING THE VELOCITY CONTROL
C VALUE ('SPD') BY THE PARTICULAR JOINT'S MOTION INDICATOR
C NUMBER ('KBN(1 -3)

')

.

C

DO 200 J= 1 , 3

200 KMD(J)=KBN(J)»SPD
C

C EACH OF THE THREE ANGLES IS OFFSET BY ITS CORRESPONDING VELOCITY
C FACTOR ('KMD(1-3) ') .

C

A04 = A04+KMD(1)

A05=A05+KMD(2)
A06=A06+KMD(3

)

C

C THE FINGER MOTION INDICATOR IS CHECKED TO DETERMINE IFTHE
C FINGERS ARE TO BE OPENED OR CLOSED. IF NEITHER,
C THEN BRANCH TO STATEMENT 300.
C

IF(KBN(4) .EQ.OGOTO 300
C

C THE FLAG 'PTC IS SET EQUAL TO ONE, AND WILL BE USED TO SET THE BRAKE
C ON THE FINGERS AFTER THIS FINGER MOTION IS FINISHED.
C

IF(PTC . EQ. 1)GOTO 75
PTC=1

C

C THE CORRECT VALUE IS SET IN 'JP0S(8)' TO RELEASE THE BRAKE ON THE
C FINGERS.
C

JPOS(8)=32767
CALL SERVO(O)

75 IF(KBN(4) .EQ.2)G0T0 301
C

C HERE, THE COMMANDED JOINT POSITION VALUE TO THE FINGERS IS
C INCREMENTED FOR EACH OUTPUT TO CAUSE THE FINGERS TO OPEN.
C

IF(JPOS(7)-30 0 00)305, 310 ,310
305 JPOS (7) =JPOS (7)+200

GOTO 310
C

C HERE, THE COMMANDED JOINT POSITION VALUE TO THE FINGERS IS

C DECREMENTED FOR EACH OUTPUT TO CAUSE THE FINGERS TO CLOSE.

DIII-ZL

c

301 IF(JP0S(7)-3500)310 , 308 , 308
308 JPOS(7)=JP0S(7)-200
310 CALL SERVO(O)

GOTO 20
C

C THE BRAKE FLAG IS CHECKED TO SEE IF IT IS SET ('FTC'rl). IF IT IS,
C THEN THE PROPER NUMBER IS PLACED IN 'JP0S(8) TO CAUSE THE
C BRAKE ON THE FINGERS TO BE SET. THE FLAG IS ALSO RESET TO
C ZERO.
C

300 IF(PTC.EQ.0)GOTO 720
PTC = 0

JP0S(8) =32703
CALL SERVO(O)

C

C A FLOATING POINT VARIABLE 'ASP' IS DEFINED AS THE VELOCITY FACTOR
C 'SPD' MULTIPLIED BY 1/300 OF A CENTIMETER. THE NUMBER OF
C THESE DELTA INCREMENTS TO BE MOVED IN THE 'X', 'Y', AND 'Z'
C DIRECTIONS IS DETERMINED BY MULTIPLYING THIS DELTA STEP BY
C A DECODED VALUE FROM THE INPUT CHANNEL FOR EACH COORDINATE AXIS.
C

720 ASP=SPD/300.
MX= (IX-1 070) /75
BX=MX»ASP
AX=AX+BX
MY=(1070-IY)/75
BY=MY»ASP
AY=AY+BY
BZ=KBN(5)»ASP
AZ=AZ+BZ

C

C ONCE THE DELTA MOTIONS IN EACH OF THE THREE COORDINATE AXES HAS BEEN
C CALCULATED, THEN THESE DELTA 'X', 'Y', 'Z' VALUES ARE GIVEN TO THE
C COORDINATE TRANSFORMATION ROUTINE SO THAT THE JOINT POSITIONS
C FOR THESE MOTIONS CAN BE CALCULATED.
C

CALL COOR(AX,AY,AZ,0,0)
C

C THESE CALCULATED JOINT POSITION VALUES ARE THEN OUTPUTED TO
C THE SERVOS.
C

CALL SERVO(O)
C

C IF SWITCH 31 IS SET THEN THE ABSOLUTE 'X', 'Y', 'Z' COORDINATE
C POSITIONS ARE PRINTED OUT ON THE TERMINAL.
C

OHH=INBUF(3 1

)

IF(OHH.GT.-2000)GOTO 20
WRITE(6 , 591)AXEP, AYEP, AZEP

591 FORMAT (2X 'X=
' ,F10.2,/,2X'Y=',F10.2,/,2X'Z=',F10.2)

425 CALL ARMIN
OHH=INBUF(3 1

)

IF(OHH.LT.-2000)GOTO 425
GOTO 20

40 RETURN

END

DIII-22

DIII-,'24

- SUBROUTINE : POS

- ARGUMENTS :

- CALLED BY : EMOVE LOCTAB JOY

- CALLS SUBROUTINES : ARMIN

- INPUT DATA : INBUF (5 , 8 , 1 1 , 1 3 , 1 5 , 1 7) = THE PRESENT VALUES OF THE
SIX JOINT POSITION INDICATORS.

- OUTPUT DATA : JP0S(1-6) = THE SCALED VALUES OF THE SIX JOINT
POSITON INDICATORS AS CALCULATED IN
THIS SUBROUTINE.

- FUNCTION: SCALES THE JOINT POSITION INDICATOR VALUES INTO
A RANGE OF 0 TO 32767.

SUBROUTINE POS
IMPLICIT INTEGER(A-Z)
COMMON /ARMBUF/INBUF(64) ,OUTBUF(64)
C0MM0N/0UT/JP0S(8

)

A CALL TO THE SUBROUTINE 'ARMIN' IS MADE TO READ IN THE VALUES
OF THE JOINT POSITION INDICATORS.

CALL ARMIN

THE FOLLOWING TWO 'DO LOOPS' ARE USED TO
GENERATE THE CORRECT INPUT CHANNEL NUMBERS
(5,8,11,13,15,17,19) FOR THE SEVEN JOINT
POTENTIOMETERS.

JPOSd)=INBUF(5)»2+16383
JP0S(2)=INBUF(8)»2+163 83
K = 9

DO 51 1=3,6
K = K + 2

JP0S(I)=INBUF(K)»2+16383
CONTINUE
JPOSd) = (JP0S(1)»1 .)-22.
JP0S(2)= (JP0S(2)» .9879) +210

.

JPOS(3)=(JPOS(3)*1 .001) -30.
JP0S(4)=(JP0S(4)»1 .Ol65)-283.
JP0S(5)= (JP0S(5)« .990 4)+H5

.

JP0S(6) = (JP0S(6)»
. 997) + 15

0UTBUF(7)= (0UTBUF(7)*1 . 0227) -40 0.

RETURN
END

Din- 25

NBS-IMA (REV. 7-73)

II c np'DT r\ u r" r\KJi KAU.b. Ut.t-'l, (jr i^wMivi.

BIBLIOGRAPHIC DATA
SHEET

1. PUBLICATION OR REPORT NO.

NBS SP 500-23

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

COMPUTER SCIENCE & TECHNOLOGY:

AN ARCHITECTURE FOR A ROBOT HIERARCHICAL CONTROL SYSTEM

5. Publication Date

December 1977
6. Performing Organization Code

7. AUTHOR(S)
Anthony J. Barbara 8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as item 9.

13. Type of Report & Period
Covered

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 77-17960

16. ABSTRACT (A 200-word or /ess (actual summary of most signilicant information. If document includes a significant

bibliography or literature survey, mention it here.)

Complex automation systems, such as industrial robots, require a computer-
based control system for the effective utilization of this advanced technology.
This report describes such a control system developed at the National Bureau of
Standards. The approach has been to partition the control system into a hierarchy
of different functional levels. This has proven to be a powerful technique in

obtaining sensor-controlled robot behavior at a minimum cost of programming
time and computer size. Further, this partitioning has greatly simplified
the implementation of additional functions and sensors. This report discusses
the control system, its implementation and use, and provides a documented
listing of all of the control programs.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons

)

Adaptive; automation; computer; control; goal -oriented;
hierarchical control; robot; sensors

18. AVAILABILITY Unlimited

1
For Official Distribution. Do Not Release to NTIS

1 y Order From Sup. of Doc, U.S. Government Printing Office
Washington. D.C. 20402. SD Cat. No. Cli .^1 0- '^00-9'^

\
!
Order From National Technical Information Service (NTIS)
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

21. NO. OF PAGES

227

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

22. Price $4.25

USCOMM-OC ^9042-P74

<r U. S. GOVERNMENT PRINTING OFFICE :1 977--261 -238/1*24

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name
;

Company

Address

City State Zip Code

(Notification key N-503)

NBS TECHNICAL PUBLICATIONS

! PERIODICALS

1 JOURNAL OF RESEARCH—The Journal of Research

of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and
engineering sciences in which the Bureau is active. These

include physics, chemistry, engineering, mathematics, and

computer sciences. Papers cover a broad range of subjects,

with major emphasis on measurement methodology, and

the basic technology underlying standardization. Also in-

cluded from time to time are survey articles on topics closely

related to the Bureau's technical and scientific programs. As
a special service to subscribers each issue contains complete

,
citations to all recent NBS publications in NBS and non-

NBS media. Issued six times a year. Annual subscription:

domestic $17.00; foreign $21.25. Single copy, $3.00 domestic;

$3.75 foreign.

Note: The Journal was formerly published in two sections:

Section A "Physics and Chemistry" and Section B "Mathe-

matical Sciences."

DIMENSIONS/NBS (formerly Technical News Bulletin)—

This monthly magazine is published to inform scientists,

,

engineers, businessmen, industry, teachers, students, and

j

consumers of the latest advances in science and technology,

with primary emphasis on the work at NBS. The magazine

highlights and reviews such issues as energy research, fire

i

protection, building technology, metric conversion, pollution

abatement, health and safety, and consumer product per-

formance. In addition, it reports the results of Bureau pro-

grams in measurement standards and techniques, properties

of matter and materials, engineering standards and services,

instrumentation, and automatic data processing.

. Annual subscription: Domestic, $12.50; Foreign $15.65.

NONPERIODICALS

I

Monographs—Major contributions to the technical liter-

! ature on various subjects related to the Bureau's scientific

I

and technical activities.

I

Handbooks—Recommended codes of engineering and indus-

trial practice (including safety codes) developed in coopera-

tion with interested industries, professional organizations,

' and regulatory bodies.

I Special Publications—Include proceedings of conferences
' sponsored by NBS, NBS annual reports, and other special

publications appropriate to this grouping such as wall charts,

j

pocket cards, and bibliographies.

Applied Matiiematics Scries—Mathematical tables, man-

I
uals, and studies of special interest to physicists, engineers,

j
chemists, biologists, mathematicians, computer programmers,

I
and others engaged in scientific and technical work,

'j National Standard Reference Data Series—Provides quanti-

' tative data on the physical and chemical properties of

! materials, compiled from the world's literature and critically

evaluated. Developed under a world-wide program co-

ordinated by NBS. Program under authority of National

Standard Data Act (Public Law 90-396).

1

j

The following current-awareness and literature-survey bibli-

ographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A litera-

ture survey issued biweekly. Annual subscription: Domes-

,
tic, $25.00; Foreign, $30.00.

i| Liquified Natural Gas. A literature survey issued quarterly.

Annual subscription: $20.00.

NOTE: At present the principal publication outlet for these

data is the Journal of Physical and Chemical Reference

Data (JPCRD) published quarterly for NBS by the Ameri-
can Chemical Society (ACS) and the American Institute of

Physics (AIP). Subscriptions, reprints, and supplements

available from ACS, 1155 Sixteenth St. N.W., Wash., D.C.
20056.

Building Science Scries—Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research

results, test methods, and performance criteria related to the

structural and environmental functions and the durability

and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in

themselves but restrictive in their treatment of a subject.

Analogous to monographs but not so comprehensive in

scope or definitive in treatment of the subject area. Often

serve as a vehicle for final reports of work performed at

NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10,

Title 15, of the Code of Federal Regulations. The purpose

of the standards is to establish nationally recognized require-

ments for products, and to provide all concerned interests

with a basis for common understanding of the characteristics

of the products. NBS administers this program as a supple-

ment to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based

on NBS research and experience, covering areas of interest

to the consumer. Easily understandable language and
illustrations provide useful background knowledge for shop-

ping in today's technological marketplace.

Order above NBS publications from: Superintendent of

Documents, Government Printing Office, Washington, D.C.

20402.

Order following NBS publications—NBSIR's and FIPS from
the National Technical Information Services, Springfield,

Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUB)—Publications in this series collectively consti-

tute the Federal Information Processing Standards Register.

Register serves as the official source of information in the

Federal Government regarding standards issued by NBS
pursuant to the Federal Property and Administrative Serv-

ices Act of 1949 as amended. Public Law 89-306 (79 Stat.

1127), and as implemented by Executive Order 11717

(38 FR 12315, dated May 11, 1973) and Part 6 of Title 15

CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-government).

In general, initial distribution is handled by the sponsor;

public distribution is by the National Technical Information

.Services (Springfield, Va. 22161) in paper copy or microfiche

form.

Superconducting Devices and Materials. A literature survey

issued quarterly. Annual subscription: $30.00. Send subscrip-

tion orders and remittances for the preceding bibliographic

services to National Bureau of Standards, Cryogenic Data

Center (275.02) Boulder, Colorado 80302.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use. S300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-21S

SPECIAL FOURTH-CLASS RATE
BOOK

