

COMPUTER SCIENCE & TECHNOLOGY:

National Bureau of Standards

Library, E-01 Admin. Bidg.

OCT 1 1981

19105^1

QC
/ 00

COMPUTER PERFORMANCE
EVALUATION USERS GROUP

CPEUG
13th Meeting

3-18

NBS Special Publication 500-18

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to

strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this

end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and

technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro-

mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute

for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the

Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist-

ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen-

tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry,

and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab-

oratory Astrophysics' — Cryogenics' — Electromagnetics" — Time and Frequency".

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure-

ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti-

tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and

distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air

and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of avail-

able technology; cooperates with public and private organizations in developing technological standards, codes, and test meth-

ods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of

the following divisions and centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product

Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Safety; Building

Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services

designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection,

acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus wthin the exec-

utive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer

languages. The Institute consist of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process

to facilitate technological change in the private sector by examining and experimenting with Government policies and prac-

tices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede

the innovation process.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific informa-

tion generated within NBS; promotes the development of the National Standard Reference Data System and a system of in-

formation analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services

to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the

following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library —
Office of International Standards — Office of International Relations.

' Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

2 Located at Boulder, Colorado 80302.

COMPUTER SCIENCE & TECHNOLOGY:

Computer Performance Evaluation

Users Group (CPEUG)

-6 ^pd^ioc 90b\vc<4icm

OF STANDAKD8 '

SEf'W977,i

Proceedings of the Thirteenth Meeting

held at New Orleans, Louisiana

October 11-14, 1977

Editors:

Dennis M. Conti and Josephine L. Walkowicz

Conference Host:

U.S. Department of Agriculture

New Orleans, Louisiana

Sponsored by:

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology

[J t NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued September 1977

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of

computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end

of this publication.

National Bureau of Standards Special Publication 500-18

Nat. Bur. Stand. (U.S.), Spec. Publ. 500-18,241 pages (Sept.) 1977

CODEN: XNBSAV

Library of Congress Catalog Card Number: 77-600040

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1977

For sale by the Superintendent of Documents, U.S. Government Printing OfiSoe

Washington, D.C. 20402 - Price $4

Stock No. 003-003-01839-2

Foreword

The Computer Performance Evaluation Users

Group, better known as CPEUG, needs no intro-

duction to the growing number of computer
professionals whose workaday concerns revolve
around the management of the computer re-

sources that have become indispensable to

most of today's activities. In the six years
of its existence, CPEUG has grown from its

single-agency orientation to its present
position as a national forum for active
involvement for all interests engaged in

computer performance evaluation.

The program for the Thirteenth Meeting
of CPEUG provides an excellent illustration
of the dynamic and imaginative nature of this

forum. This, plus the varied interests
represented in both the formal and informal
activities of the Conference, provides for

an effective channel for the dissemination
of current information on computer perfor-
mance evaluation, as well as for the
detection of trends in a complex and still

growing technology. The program is

reproduced in the Proceedings and serves as

the Table of Contents for the formal presen-
tations made during the four technical

sessions of the Conference. These are
identified by page numbers at the right-hand
margin to indicate their location in the
Proceedings . The remaining activities of
CPEUG 77 were informal sessions for which no

formal papers were required but which were
designed so as to provide an atmosphere
conducive to frank discussions among partici-
pants of the discoveries, problems, mistakes,
etc. associated with their experience in

computer performance evaluation. All CPEUG
activities--both formal and informal—
contribute significantly to the effective
use of the technology available for perfor-
mance management and enhancement of the
national ADP inventory.

We would like to acknowledge the
assistance of all those who helped us

prepare these Proceedings . Our special
thanks go to Mrs. Brenda Ogg for her
assistance during the editing process,
as well as to the authors for their extra
efforts in the face of tight deadlines.

Editors

:

Dennis M. Conti
Josephine L. Walkowicz

in

Preface

The theme of this year's conference

—

The ADP Life Cycle—seemed fresh enough when
it was adopted a year or so ago. Since then
Life Cycle stock has soared. You see it

every/^here--articles, books, workshops,
seminars. Instead of the commencement
platitudes for which this space is normally
reserved, therefore, I would like to explain
why the Life Cycle model continues to have a

special relevance and usefulness for those
of us who actively work to prevent improper
selection and inefficient utilization of
contemporary computer systems.

If there is one thing that can be said

for the Life Cycle idea, it is that it has

breadth. The fact that computer systems
pass through cycles frustrates the comfort-
able impulse to deal with computer perfor-
mance in a fragmentary, computerized, and
unhistorical way. It persistently reminds
us that any performance problem we are
dealing with has a past from which it is

possible to infer causes and chart
directions; and a future before which we are
obliged to be both humble and cautious in

our present certitude. Having solved one
set of performance problems in no way secures
us a solution to The Performance Problem.
Indeed the sponsoring user organization, the
ADP facility, the installed configuration,
and every component software system are each
marking out a life cycle of their own, sub-
stantially independent of the others, and
any one of them may be about to upset the
performance equilibrium we may imagine we

have created. In short, the cyclical view
of computer systems chastens us against two
of our greatest enemies: canned solutions
and absolute certainty.

The notion that computer systems have
in some sense a life of their own also has
its value in reflecting on the mission of
computer performance evaluation (CPE). The
cradle-to-grave analogy suggests somewhat
obliquely that any computer system is an
extension of the larger social and economic
life of the company or agency it serves.
Clearly, the work of the performance analyst
is incomplete, even for the present, if it
fails to account for or to communicate with
the people for whom the computing resource
exists. CPE is human in another sense as

well. As little as we may care to admit it,

even to ourselves, CPE is far from being an

exact science. Our tools are precise enough
to give that impression, but we are still
learning what they are good for and have
found no general theories to bind our most
exact observations together.

If I am correct in believing that no
other part of data processing is so alien
to narrowness of vision, ignorance, jargon,
and technical passivity as computer perfor-
mance evaluation, then the ADP Life Cycle
model will do very nicely as our model. For
further evidence of the point and of the
enduring vitality and variety of CPE, I

refer you to the papers collected inside
this volume. They represent the best of
CPEUG 77.

Richard F. Dunlavey
Chairman, CPEUG

October 1977

iv

Abstract

The Proceedi ngs record the papers that were presented at the
Thirteenth Meeting of the Computer Performance Evaluation Users
Group (CPEUG) held October 11-14, 1977 in New Orleans. The technical
presentations were organized around the three phases of the ADP p
Life Cycle: the Requirements Phase (workload definition), the Ac-
quisition Phase (computer system and service selection), and the
Operational Phase (performance measurement and prediction methods).
The program of CPEUG 77 is also included and serves as a Table of
Contents to the Proceedi ngs .

Key words: ADP life cycle; computer performance evaluation; computer
performance measurement; computer performance prediction; computer
system acquisition; conference proceedings; CPEUG; hardware monitoring,
on-line system evaluation; prediction methods; queuing models; simu-
lation; software monitoring; workload definition.

The material contained herein is the viewpoint of the authors of specific papers -

their experimental design, simulation and evaluation, and conclusions. Publication of

their papers in this volume does not necessarily constitute an endorsement by the

Computer Performance Evaluation Users Group (CPEUG) , or the National Bureau of Standards.

The material has been published in an effort to disseminate information and to

promote the state-of-the-art of computer performance measurement, simulation, and evaluation.

V

CPEUG OFFICERS

Chairman: Richard F. Dunlavey
National Bureau of Standards
Washington, DC

Vice Chairman; Gerald W. Findley
General Services Administration
Washington, DC

Secretary-Treasurer : Dennis M. Gilbert
FEDSIM
Washington, DC

Program Chairman: Dennis M. Conti

National Bureau of Standards
Washington, DC

Arrangements

:

Jules A. d'Hemecourt
U.S. Department of Agriculture
New Orleans, LA

Publ i cations

:

Josephine L. Walkowicz
National Bureau of Standards
Washington, DC

Publ icity : Caral A. Giammo
Command and Control Technical Center
The Pentagon
Washington, DC

vi

PROGRAM AND TABLE OF CONTENTS

Tuesday, October 11

Welcome

Richard F. Dunlavey
CPEUG Chairman
National Bureau of Standards
Washington, DC

Jules A. d'Hemecourt
U.S. Department of Agriculture
New Orleans, LA

Keynote Address

A. G. W. Biddle
President, Computer and Communications

Industry Association (CCIA)

Program Overview

Dennis M. Gilbert
CPEUG Secretary-Treasurer
FEDSIM/NA
Washington, DC

Dennis M. Conti

CPEUG Program Chairman
National Bureau of Standards
Washington, DC

A. Workload Definition

Chairman: Terry Potter
Bell Laboratories
Piscataway, NJ

FUNCTIONAL WORKLOAD CHARACTERISTICS AND COMPUTER RESPONSE TIME IN THE
DESIGN OF ON-LINE SYSTEMS
J. D. Williams and J. S. Swenson
Bell Laboratories
Piscataway, NJ

FUNCTIONAL WORKLOAD CHARACTERIZATION
J. E. McNeece and R. J. Sobecki
U.S. Department of Agriculture
Washington, DC

SOME RESULTS ON THE CLUSTERING APPROACH TO WORKLOAD MODELLING
A. K. Agrawala and J. M. Mohr
University of Maryland
College Park, MD

WORKLOAD CHARACTERIZATION AND PERFORMANCE MEASUREMENT FOR A CDC CYBER 74

COMPUTER SYSTEM
Captain J. R. Bear and Captain T. E. Reeves
Air Force Institute of Technology/WPAFB
Dayton, OH

vii

PROGRAM AND TABLE OF CONTENTS

Wednesday, October 12

B. Computer System Acquisition

Chairman: Norris S. Goff
U.S. Department of Agriculture
Washington, DC

SELECTION OF ADPS FOR THE AIR FORCE ACADEMY: A CASE STUDY

R. E. Waters
Air Force Acquisition Office
Hanscom Air Force Base
Bedford, MA 71

VALIDATION - ALL IMPORTANT IN BENCHMARKING
L. Arnold Johnson
Federal COBOL Compiler Testing Service
Washington, DC 75

Panel: Software Conversion in the ADP Selection Process

Chairman: Norris S. Goff

Terry Miller Joe Dal ton

Government Sales Consultants Director of Government Relations, CDC

Annandale, VA Chairman, CBEMA Committee on

Government Procurement
Owen Johnson Washington, DC

U.S. Department of Agriculture
Kansas City, MO

Harry Bennett
National Library of Medicine
Bethesda, MD

C. On-Line System Evaluation

Chairman: Thomas F. Wyrick
FEDSIM/NA
Washington, DC

DETERMINATION OF NON-STEADY STATE CONDITIONS IN PERFORMANCE MEASUREMENT RUNS
N. N. Tendolkar
IBM Corporation
Poughkeepsie, NY 87

CAPTURING TERMINAL TRAFFIC USING A HARDWARE MONITOR
T. M. Marter
Computer Sciences Corporation
Arlington, VA 95

A NEW TOOL FOR MEASURING RESPONSE TIME
G. Carlson and D. Ferreir?
Brigham Young University Goiania
Provo, UT Goias, Brazil 107

viii

PROGRAM AND TABLE OF CONTENTS

Wednesday, October 12

(continued)

Panel: Procurement of Teleprocessing Services

Chairman: Thomas F. Wyrick

A1 Gohrband
U.S. Department of Housing

and Urban Development

L. E. Johnson
President, COMNET Corporation
Washington, DC

Washington, DC

Sally Smith
Manager, Federal Sales Operation
GE Information Services
Washington, DC

D. Performance Measurement

Chairman: David F. Stevens
Lawrence Berkeley Laboratory
Berkeley, CA

COMPARATIVE STUDY OF TASK DISPATCHING ALGORITHMS IN AN IBM MVT/ASP
ENVIRONMENT
S. E. Freeman and F. C. Green
Georgetown Computer Support Project
National Oceanic and Atmospheric Administration
Washington, DC 119

COMPUTER PERFORMANCE COMPARISONS
W. D. Bennett
Navy Regional Data Automation Center
Washington, DC 137

E. Prediction Methods

Chairman: Thomas P. Giammo
Social Security Administration
Baltimore, MD

THE USE OF A VALIDATED EVENT MODEL IN A COMPREHENSIVE PERFORMANCE
EVALUATION OF AN ON-LINE MINICOMPUTER SYSTEM
S. G. Gangwere, Jr., J. R. Hosier, and L. H. Stewart
TRW
Hawthorne, CA 185

Thursday, October 13

A STUDY ON THE EFFECTIVENESS OF DATA BLOCKING IN AN MVS ENVIRONMENT
R. E. Paulhamus and G. E. Ward
AT&T
New Brunswick, NJ 143

A NEW METHODOLOGY FOR COMPUTER SYSTEM DATA GATHERING
R. A. Orchard
Be11 Laboratories
Piscataway, NJ 159

ix

PROGRAM AND TABLE OF CONTENTS

Thursday, October 13

(conti nued)

APPROXIMATE EVALUATION OF THE EFFECT OF A BUBBLE MEMORY IN A VIRTUAL

MEMORY SYSTEM
W. T. K. Lin and A. B. Tonik
Sperry Univac
Blue Bell, PA

THE USE OF MEASURED UTILIZATIONS IN QUEUING NETWORK ANALYSIS

J. Bouhana
Academic Computing Center
University of Wisconsin
Madison, WI

APPLICATIONS OF QUEUING MODELS TO ADP SYSTEM PERFORMANCE PREDICTION:

A WORKSHOP SUMMARY
M. G. Spiegel

FEDSIM/NA
Washington, DC

A SIMULATION STUDY OF INITIATOR/TERMINATOR POLICY IN OS/MVT

E. Fiegl and N. Schneidewind
Naval Postgraduate School

Monterey, CA

Business Meeting

Friday, October 14

F. Performance Opportunities In Future ADP Systems

Chairman: Philip J. Kiviat
Technical Director, FEDSIM
Washington, DC

Presentations by major mainframe manufacturers on performance implications
of future architectures, and performance evaluation aids1:hat will be

available to users.

Conference Wrap-Up

X

PROGRAM AND TABLE OF CONTENTS

Tutorials and Vendor Session

Tuesday, October 11

TUTORIAL: PERFORMANCE EVALUATION TOOLS AND TECHNIQUES FOR MINICOMPUTERS
S. G. Gangwere, Jr., J. R. Hosier, and L. H. Stewart
TRW
Hawthorne, CA

Wednesday, October 12

VENDOR SESSION: PERFORMANCE CONSULTING SERVICES
Chairman: Arthur F. Chantker

Federal Aviation Administration
Washington, DC

Presentations on commercial consulting services in performance evaluation
and computer selection.

Thursday, October 13

TUTORIAL: WORKLOAD CLASSIFICATION TECHNIQUES BASED ON CLUSTERING
P. Artis
Bell Laboratories
Piscataway, NJ

TUTORIAL: STATISTICAL APPROACHES IN COMPUTER PERFORMANCE EVALUATION
STUDIES
A. K. Jain
Bell Laboratories
Piscataway, NJ

Workshops

Tuesday, October 11

USING SOFTWARE PHYSICS AS AN AUDIT TOOL
T. Gonter and M. Morris
U.S. Government Accounting Office
Washington, DC

Wednesday, October 12

PERFORMANCE CONSIDERATIONS IN A SHARED DASD ENVIRONMENT
K. Silliman
IBM Federal Systems Division
Gai the rs burg, MD

MULTI-COMPUTER MEASUREMENTS
A. Alvarez and Ken Rash

Naval Ocean Systems Center NCR
San Diego, CA San Diego, CA

INCREASING THE EFFECTIVENESS (PRODUCTIVITY) OF COMPUTER SYSTEMS

H. Mason
U.S. Government Accounting Office
Washington, DC

xi

PROGRAM AND TABLE OF CONTENTS

Workshops
(continued;

Thursday, October 13

SELECTION OF ADP SERVICES
Chairman: Thomas F. Wyrick

FEDSIM/NA
Washington, DC

Mark' A. Underwood
Navy Personnel Research and

Development Center
San Diego, CA

Jules DuPeza
U.S. Department of Transportation
Washington, DC

WORKLOAD REPRESENTATION TECHNIQUES
L. D. Bailey
FEDSIM/NA
Washington, DC

xii

WORKLOAD DEFINITION

1

FUNCTIONAL WORKLOAD CHARACTERISTICS AND COMPUTER RESPONSE TIME
IN THE DESIGN OF ON-LINE SYSTEMS

J. D. Williams
J. S. Swenson

Bell Telephone Laboratories
6 Corporate Place

Piscataway, N. J. 08854

This paper presents two human factors studies which explored the

relationship between user performance (data entry speed and errors)
and on-line computer system response time. The studies investigated
user performance with response times of zero to 45 seconds, during
both data entry and on-line data correction types of work. The users
experienced each response time condition for about one to two hours.

The results indicate that user performance was not degraded by long
response times. In addition, the data indicates that the type of work

that the user was doing had a much greater effect on user performance
than did the computer response time. Finally, the results indicate
that longer response times may be appropriate for certain types of work
because they reduce the time that the computer waits for the user while
potentially causing no decrease in system through-put.

Key words: Computer response time; human factors; on-line systems;
system design; task variables; workload characteristics.

1. Introduction

With the increase in the number of com-
puter-controlled information systems, there
has been an increasing interest in user-ori-
ented system engineering criteria. The two
studies we will discuss were concerned with
a prominent factor assumed to contribute to

operator performance in interactive computer
systems - i.e., computer subsystem (CSS) re-
sponse time. As used in this report, CSS re-
sponse time refers to the time lapse between
the last information input by the operator of
a time-sharing terminal and the subsequent
initiation of a typed response by the computer
at the same terminal. The designers of com-
puter systems often place a great deal of em-
phasis upon "quickness" of response to oper-
ators' commands. One basic assumption that
has created this short response time criterion
is that long response times degrade operator
performance and user attitudes towards, and

acceptance of, the system.

However, this assumption is based upon
a very small pool of data. The cost of pro-
viding such a short response time, in addi-
tion, is usually quite expensive in terms of

computer hardware and software. Therefore,
it is advantageous to determine a trade-off
between hardware and software costs and oper-
ator performance. To do this, one must first
accurately determine the effects of CSS re-
sponse time parameters on operator performance.

The available literature contains a num-
ber of relevant articles [1 , 2 , 3 ,4 , 5 , 6 , 7 ,8 ,9] ^

.

None of these authors, however, addresses the
question of human performance as measured by
speed and errors.

Figures in brackets indicate the literature
references at the end of this paper.

The studies presented here were designed

to explore the relationship between operator

performance and mean CSS response time. The

experimental tasks (functional workload char-

acteristics) 2 used in the studies were de-

signed to produce more reliable measures of

operator performance. In addition, the ap-

paratus utilized in the second study allowed

for the measurement of operator "think time"

and intercharacter typing times as well as

error rates and overall typing speeds.

2. Methodology

The two studies we conducted were similar

in that they were designed to investigate the

effects of differing response time distribu-

tions, characterized in terms of their mean

and variance ratios (the ratio of the variance

to the mean) ,
upon the typing speed and accu-

racy of operators. Because we felt that work-

load characteristics might moderate the ef-

fects of response time on operator perform-
ance, we developed two types of tasks for use

in the experiment. One task (data entry) was

confined to simple entry of random alphanu-
meric codes in a line-by-line fashion (Appen-

dix I). The second task (data correction)
required the operator to retrieve blocks of

data from the computer and correct any errors

that were found. A script provided the infor-

mation necessary to retrieve the data but did

not indicate where the errors were. The op-

erators retyped the entire line if it con-
tained an error (Appendix II)

.

As one can see from Appendices I and II,

the alphanumerics used in these two tasks were
quite different. In the data entry task the

10-character fields were composed of random-

ly ordered alphanumerics. The fields in the

data correction task were of variable length,

and were made up of either alphas or numerics
in ascending sequential order. An error was

defined as a character that was out of se-
quence. In both tasks the alphanumerics were
arranged so that each operator typed every
character an equal number of times. We shall
return to these differences in task make-up
(i.e., workload) in the discussion of results.

2.1 Procedures

Participants in the first study were 36

experienced typists. They worked alternately
on the two types of task for one day. Each
operator experienced only one of the mean re-
sponse time conditions for a period of about

By "functional workload characteristics", we
mean the workload imposed upon the operator
by the task, e.g., data entry, text editing,
etc

.

2.5 hours, under each of three variant con-

ditions .

During the second study, five operators

worked on the experimental tasks for five

days each. They experienced each of the ex-

perimental response time distributions for

periods of about Ih hours. These operators

were not experienced typists.

In the first study the operators were

given an opportunity to practice on analogues

of the experimental tasks for about an hour

before data were collected. The first h day

was devoted to practice in the second study.

2 . 2 Apparatus

The experimental tasks for the first

study were performed using an EXECUPORT 300

terminal. This terminal was connected over

phone lines to a Honeywell 6000 computer. An
interactive system simulator program performed
the following functions:

1. Acted as the computer on which the

subjects performed their tasks.

2. Delayed its own responses in accord-

ance with a predetermined distribu-
tion.

3. Recorded and time-stamped all trans-

actions between the computer and the

subject.

The equipment configuration of the sec-
ond study differed in several respects.
First, the participants interfaced with a

Digital Equipment Co. PDP8/E computer via a

Teleray 3700 CRT. This arrangement allowed
for more precise timing of the response time

distribution and for accurate timing of each
keystroke.

In the first study the response time
distributions were characterized in terms of

their means and variance ratios. There were
four mean response time conditions (5, 15,

30, and 45 seconds) and three variance ratio
conditions (.25, 1.00, and 5.00). A baseline
condition of zero mean and variance was also
experienced by each participant, before and
after the experimental session.

Response times in the second study were
characterized in terms of their means. There
were four levels: zero, low, medium, and
high (0, 4.0-7.9 sec, 16.8-17.3 sec, and
24.2-30.3 sec, respectively). Variance ratio
was not manipulated in this study.

4

3. Results

Data were analyzed using Analysis of Var-

iance. Separate analyses were performed for

each of four dependent variables: accuracy

of performance, overall typing speed of per-

formance, first-character time, and speed of

performance corrected for first-character
time. The results of each of these analyses

are presented below.

3.1 Accuracy of Performance

In both studies the analysis of perform-

ance accuracy used as a dependent variable the

number of typographical errors per character

typed by each operator. Data used for this

analysis were collected during the last third

of each experimental condition, so that the

data would reflect operator performance after

the operators had become experienced with the

response time distribution of the computer.

In the first study (Table 1) there was

no identifiable main effect of response time

variance on accuracy of performance. There

Table 1

Analysis of Variance
of Typographical Errors

cc
111

h-
o
<
CEio
<
I
o
o
O 5o
CE
LU
CL

I I
DATA ENTRY

I I
DATA CORRECTION

5 15 30 45

MEAN CSS RESPONSE TIME (SECONDS)

MEAN TYPOGRAPHICAL ERRORS PER 1000
CHARACTERS IN THE FOUR EXPERIMENTAL
GROUPS IN THE PILOT STUDY.

The second study dealt primarily with the

response times where significant effects were
found in the first study, that is, between 15

and 30 seconds. Here we found no significant
effect of response time over the range inves-

tigated (0-30 seconds). There was a signif-
icant effect of task type (F(l,4)=9.971,p<.05)

,

with the data entry task reflecting more~er-
rors than the data correction task (see Fig-

ure 2) . The analysis of variance for these
data is contained in Table 2,

SOURCE

Between Subjects

Response Time (R)

Variance Ratio (V)

V X R

Subjects (VR)

Within Subjects

Task Type T

V X T

R X T

V X R X T

df

3

2

6

24

MS

4.9634
.2611

6.6144
2.5416

.5067

2.0831
5.9645
.9362

1.9528
0.1027
2.6024*

.3045

1.2518
3.. 5844*
.5626

Subjects X T (VR) 24 1.6640

* p <.05

was a significant interaction between task
type and response time (F(6,24)=3.58,p < .05)

in the first study. A test of the simple ef-
fects of this interaction indicated that, in
the data correction task, errors increased
beyond the 15-second mean condition. The
reader is advised to keep in mind that there
were no samples interpolated between the 15-

and 30-second conditions. These data are
illustrated in Figure 1,

[1
DATA ENTRY

I I

DATA CORRECTION

MEAN CSS RESPONSE TIME
\E 2 MEAN TYPOGRAPHICAL ERRORS PER 1000

CHARACTERS IN THE DATA ENTRY AND
DATA CORRECTION TASKS FOR THE FOUR CSS
RESPONSE TIME GROUPS.

Table 2

Analysis of Variance
of Typographical Errors

for Data Entry
and Data Correction Tasks

SOURCE df MS F

Response Time (R) 3 35.1 0.8
Operators (0) 4 362.9 9 . 7**

Task Type (T) 1 421.5 9,9*
R X 0 12 41.0 1.1
R X T 3 8.7 0.1
0 X T 4 42.2 1.1

R X 0 X T 12 63.8 1.7

Reps (R X 0 X T) 80 37.0

** p < .01
* p < .05

3.2 Speed of Performance

Analysis of the overall speed of perform-
ance data generated during the first study
(Table 3) revealed a significant main effect
of task type (F(2 ,48)=20.638,p<.01) and a sig-
nificant interaction between "task type and
response time (F(6,48)=3.827,p<.01) . Overall

Table 3

Analysis of Variance of
Overall Speed of Performance -

Last Third of Experimental Sessions

SOURCE df MS F

ietween Subjects

Response Time (R) 3 .1840 .8063
Variance Ratio (V) 2 .0217 .0950
R X V 6 .0854 .3742
Subjects (RV) 24 .2282

Within Subjects

Task Type (T) 2 1.2515 20.6379**
V X T 4 .0105 .1737
R X T 6 .2321 3.8268**
V X R X T 12 .0382 .6302
Subjects X T (RV) 48 .0606

** p <.01

speed of performance is the total measured
time used by the operator from the appearance
of the prompt character on the screen to the
typing of the last character of the line by

the operator. An analysis of the simple ef-

fects of this interaction suggested that

there was no effect of response time in the

data correction task, but that as response
time increased in the data entry task, typing
speed decreased (F=3 . 35 ,p<. 05) . Figure 3

illustrates these data.

5 15 30 45

MEAN CSS RESPONSE TIME (SECONDS)

FIGURE 3 OVERALL SPEED OF PERFORMANCE (CHARACTERS PER SECOND)
IN THE DATA ENTRY AND DATA CORRECTION TASKS FOR THE
FOUR EXPERIMENTAL GROUPS IN THE PILOT STUDY.

Results of the second study were, for the

most part, congruent with those of the first.

Here we found a significant effect of response
time (F(3,12)=27.2,D<.01) , a significant dif-

ference between the typing rate in the data
entry and data correction tasks (F(l,4)=28. 4,

p<. 01), and a significant interaction of
response time and task type (F (3, 12) =23. 9

,

p<.01) (see Table 4). When this interaction

Table 4

Analysis of Variance of

Overall Speed of Performance -

for Data entry and Data Correction Tasks
Last Third of Experimental Sessions

SOURCE df MS F

Response Time (R) 3 0 3350 27 2*A

Operators (0) 4 0 9574 30 3*
Task Type (T) 1 4 0022 28.
R X 0 12 0 0123 0. 3

R X T 3 0 1614 23. 9**
0 X T 4 0 1405 4. 4**
R X 0 X T 12 0 0067 0. 2

Reps (R X 0 X T) 80 0 0315

** p <.01

was decomposed into its simple effects we
found no significant effect in the data

entry task, and a significant relationship
between overall typing rate and response time

in the data correction task (F(3,12)=23.98,

p<. 01) (see Figure 4).

Table 5

Analysis of Variance of
First Character Times for

Data Entry and Data Correction Tasks

^gOATA ENTRY

I I

DATA CORRECTIONo
o
LU
CO

LU
1- cc
< ID
tr CL

z ^

QC
<
o

^

ZERO LOW MEDIUM HIGH

MEAN CSS RESPONSE TIME

FIGURE 4 OVERALL SPEED OF PERFORMANCE (CHARACTERS PER SECONDI
IN THE DATA ENTRY AND DATA CORRECTION TASKS FOR THE
FOUR CSS RESPONSE TIME GROUPS.

3.3 First Character Time

The reader will remember that the second
study allowed us to look at the time required
to type each character and further, that one
of the major differences between the data
entry task and the data correction task was
that in the latter the line in error had to

be identified by the participant. Assuming
that the operators didn't stop in the middle
of a line they were typing to search for more
errors, but rather completed that line and
then searched, the time between the computer
prompt character and the first character typed
(called first character time in this study)

,

would represent the amount of time, in addi-
tion to the response time, that the partici-
pant needed to search for and prepare to cor-
rect the line in error. When we analyzed the
first character times, we found a significant
main effect of response time (F(3 , 12)=23. 9

,

p<. 01). Task type and the interaction between
task type and response time were significant,
(F(l,4)=42.1,p<.01 and F(3,12)=14.22,p<.01),
respectively) (see Table 5) . Analysis of
simple effects of this interaction suggested
that the response time effects were evident
in the data correction task but not in the
data entry task. A Newman-Keuls test indi-
cated that the first character times were
significantly longer in the zero condition
than in all of the others. Apparently the
operators used the system response time to
search for errors since first character times
were shorter in the low, medium, and high con-
ditions. These data are illustrated in Fig-
ure 5.

SOURCE df MS F

Response Time (R) 3 235 7 23
Operators -(0) 4 39 9 3 7**

Task Type (T) 1 1961 6 42 1**

R X 0 12 9 8 0 9

R X T 3 107 9 14 2**

0 X T 4 46 5 4 4**

R X 0 X T 12 7 5 0 7

Reps (R X 0 X T) 80 10 5

"* p < .01

LU

LU CO
I- Q
O Z
< o
< LU
XCO
o
I-
co
DC

DATA ENTRY

DATA CORRECTION

1
MEAN CSS RESPONSE TIME

FIGURE 5 MEAN FIRST CHARACTER TIMES (SECONDS) IN THE DATA
ENTRY AND DATA CORRECTION TASKS FOR THE FOUR
CSS RESPONSE TIME GROUPS.

3.4 Speed of Performance Corrected
for First Time

Realizing that the trends in the overall
typing speed data reported earlier might sim-

ply be mirroring changes in first character
time, we analyzed the typing rate data after

the first character times for each line were
removed. When these data were analyzed with-
out the early session (sessions 1-8) included,
the differences between the four response time

conditions were eliminated (F (3 , 12)=1. 25 ,£<. 25)

Task type was found to be a significant var-
iable (F(l,4)=304.5,p<.01) indicating that the

operators could key the characters for the

data correction task much faster than for the

data entry task, once they began typing (see

Table 6).

Table 6

Analysis of Variance of

Speed of Performance Corrected
for First Character Time in the Data Entry

and Data Correction Tasks

SOURCE df MS F

Response Time (R) 3 0 0710 4 2*

Operators (0) 4 1 5567 39 9**

Task Type (T) 1 21 8504 304 5 -A-*

R X 0 12 0 0168 0 4

R X T 3 0 0464 1 9

0 X T 4 0 0718 1 8

R X 0 X T 12 0 2329 0 5

Reps (R X 0 X T) 80 0 0139

** p <.01
* p <.05

4. Discussion and Results

Considering the above studies, what con-
clusions can we draw concerning the effects of
response time on operator performance? To
assist us in drawing conclusions, it is very
helpful to ascertain those aspects of the ex-
periment which account for the most experimen-
tal variance, or which are the most important
[10] . A number of authors have suggested that

the importance of an experimental variable
should be tested using strength of associa-
tion statistics [11,12]. These statistics
have been called "Utility Indices", and they
illustrate the "practical significance" as

opposed to the statistical significance of

experimental variables [13,14,15,16].

Utility Indices appropriate to the de-
signs of the respective studies were calcu-
lated [14] so that the importance of each
variable could be estimated. These indices
are summarized in Table 7.

Inspection of Table 7 reveals two points
of interest. First, workload characteristics
(task type) account for considerably more
variance in this study than does any other
parameter. Second, response time does appear
to impact upon speed of performance. We will
attempt to show that this effect is in fact
a result of certain workload characteristics.

That various types of task impact on the
speed and accuracy of perfomance is, in it-
self, not surprising. Consider the differ-
ences between the data entry and data correc-
tion tasks in terms of the demands they place
on the operator. How might we explain the
differences between the typing speeds in the
data entry task and the data correction task,
once the operators have begun typing?

Table 7

Proportion of Variance Attributable to Each Independent Variable

Accuracy of

Performance
Overall Typing

Speed
First Character

Time

Typing Speed
Exclusive of

First Character

Study 1 Study 2 Study 1 Study 2 Study 1 Study 2 Study 1 Study 2

Response Time .0486 0 0 .111 NA .149 NA .0040

Variance Ratio 0 NA 0 NA NA NA NA NA

Task Type 0 .0692 .2959 .342 NA .423 NA .8296

Response Time

X Task Type
.0863 0 .128 .044 NA .965 NA .0012

Response Time
x Variance Ratio .1634* NA 0 NA NA NA NA NA

Variance Ratio
X Task Type

.0056 NA 0 "NA NA NA NA NA

Response Time
X Variance Ratio
X Task Type

0 NA 0 NA 0 NA 0 NA

*These data, indicating variance ratio effects, must be interpreted with caution
since control condition data suggest that differences may be attributable to

differences between subjects.

8

Obviously, the most significant difference
between the two sets of codes is that the
data entry codes were random while the codes
employed in the data correction task were
not. This suggests two important differences
in terms of human performance. First, while
there was no structure or meaning inherent in
the data entry codes, the data correction
codes were subsets of one of two higher level
constructs, the alphabet and the set of car-
dinal numbers. Thus, while performing the
data entry task, the operator was forced to
attend specifically to each element of the
code. Performance on the data correction
task was not so limited. The operator was
performing a much more familiar task, that is,
one with which he/she had considerable exper-
ience, e.g., counting from 1 to 7. One might
suggest that this task did not place as much
of an attentional demand on the operator. The
second difference relates to the skills the
operator might bring to bear on the two tasks.
In the data entry task all character
sequences were equiprobable . Consequently,
participants were less able to chain together
common keystroke sequences, e.g., typing in
bursts, and thereby increase their overall
typing rate as they developed this skill.

We would suggest that these data have
implications to computer system design in
terms of specification of system load. That
is, within the context of a model of time-
sharing operational efficiency set forth by
Brown and Klerer [17] , those attributes of a
task which allow greater speed of entry,
such as we found in the data correction task,
will also serve to place a greater effective
load on the system. Further, if there are
aspects of a task that provide for acquisition
of skill, this load might be expected to

increase somewhat over time.

One further implication of these studies
relates to our findings with respect to first
character time. The reader will remember that
in the data correction task the operator had
to search for errors, and that he/she had a

tendency to utilize the computer delay times
for searching, as evidenced by the increased
first character times in the zero condition.
We therefore see an attribute of the task
moderating the effects of the response time
of the system. At least one implication may
be derived from this finding. That is, in
tasks similar to the correction task we can
see that all of the computer delay may not be
lost to the total system, but rather may be
utilized by the operator in a meaningful
fashion.

5. Conclusions and Recommendations

Therefore, we would like to propose a
system design philosophy which is based par-
tially upon the results of these studies and
partially upon our own systems experience.
It has become clear that operators can use
the computer response time delays efficiently
in certain types of tasks. This means that
short response times are not always necessary.
We suggest that the computer system designers
pay close attention to the type of work that
the operators will be doing with the on-line
system. The types of tasks to be performed
should be studied and timed, so that distri-
butions of times for various task elements
(e.g., search times, keying time) can be
ascertained

.

We suggest, then, that the computer
response times for those tasks be adjusted
so that the mean response time is slightly
less than the mean time necessary for the

operators to prepare to enter the data. In
addition, the distribution of the response
times should be adjusted so that the operators
are required to wait for the computer on no
more than 10-15% of the interactions. This
procedure should start us upon the road to

building efficient systems which clearly take
into account both the characteristics of

on-line computers and the workload character-
istics of the task being performed by the
operators

.

9

References

[I] Boies, S. J., & Gould, J. D. User
performance in an interactive computer
system, Proceedings of the Fifth An-
ual Princeton Conference on Information
Sciences and Systems , (1971)

.

[2] Carbonell, J. R. , Elkind, J. I,, and
Nickerson, R. S. On the psychological
importance of time in a time sharing
system. Human Factors

, 10(2), 135-142,
(1968) .

[3] Miller, R. B. Response time in man-
computer conversational transaction,
IBM Technical Report , TR 00.1660-1,
(January 29, 1968).

[4] Nicker son, R. S. Man-computer inter-
action: A challenge for human factors
research. Ergonomics , 12^(4), 417-501,
(1969) .

[5] Parson, H. M. The scope of human fac-
tors in computer-based data processing
systems. Human Factors , 12^(2), 1965-175,
(1970) .

[6] Shackel, B. Man-computer interaction

—

the contribution of the human sciences.
Ergonomics

, 12(4), 485-499, (1969).

[7] Simon, H. A. Reflections on time shar-
ing from a user's point of view. Com-
puter Science Research Review , Carnegie
Institute of Technology, 43-51, (1966).

[8] Williams, C. M. System response time:
A study of user's tolerance, IBM Tech-
nical Report , Advanced Systems Devel-
opment Division, 17-272, (July 1973).

[9] Morefield, M. A., Weisen, R. A., Gross-
berg, M,

, Untema, D. B. Initial exper-
iments on the effects of system delay
on on-line problem solving, Lincoln
Laboratory Technical Report , (June 25,
1969)

.

[10] Chapanis, A. Theory and methods for
analyzing errors in man-machine sys-
tems . Annals of the New York Academy
of Sciences , 1179-1203, (1951).

[II] Hayes, W. L. Statistics for psycholo-
gists . New York: Holt, Rinehart and
Winston, (1965).

[12] Kirk, R. E. Experimental design: Pro-
cedures for the behavioral sciences .

Belmont, California: Brooks/Cole,
(1968).

[13] Gaebelein, J. W. & Sonderquist, D. R.

Computational Formulae for Utility
Indices . Department of Psychology,
University of North Carolina at Greens-
boro, N. C. 27412, (August 1, 1974).

[14] Gaebelein, J. W. , & Sonderquist, D. R.

The utility of within-subjects vari-
ables: Estimates of strength. Manu-
script accepted for publication: Ed-
ucation and Psychological Measurement

,

(1976).

[15] Dodd, D. H., & Schultz, R. F. , Jr.

Computational procedures for estimating
magnitude of effect for some analysis
of variance designs. Psychological Bul-
letin , 79, 391-395, (1973).

[16] Vaughn, G. M. , & Corballis, M. S. Be-
yond tests of significance: Estimating
strength of effects in selected ANOVA
designs. Psychological Bulletin , 72

204-213, (1969).

[17] Brown, T. & Klerer, M. The effect of
language design on time-sharing oper-
ational efficiency. International
Journal of Man-Machine Studies , ']_,

233-2hl, (1975).

10

APPENDIX I

START TASK V V v***

PN5ZCF50TD LjlNbUYLoH^I- OL KAyWTLBb ftD 1 VOC Vl/ CI IAblYiiL aKdU

KTL6Z7RD1U 1 VVJoYGN40E 0QYHFEC83N U3SCI JMoy4

YH0S38FNEP JVB32wIXAG 3JTAV4WH10 XF0L^oI YHVJ

LE7DGVKQ46 PC0V3SQuNI JdK0WMIBDL oWLbZbPVL4

ly 1 KKZUb/U COPTCVADCIh<:LlbXAbbi olINUhn/ I on \/i iJDMniiiivr YVlnDlN^Wz.t A

Br3XUlQ0AS 2I3EVAJGBW KP6W15Y8RT IG2BX3WAVJ

HZGR7D1KPT FMUL3RHZSV 4LC)MZK9SI7 NE4XCBSV30

7FH0UOL1M8 F9JU0DA6K7 QULXTYJG03 M81li0NO6FL

VG306E2HBR 5PDTK94RZC Q7W8JLU2M5 G8B0A6TXOH

APPENDIX II

DATA CORRECTION FILES

PRINT 01

ABCDEFG ZABCDEF 0123456789012 KLMyOPQRSTUVW

3456789 XYZABCDEFGH ABCDEFGHIJK PQRSTUVWXYZ

ABCDEFGH 23456789 OPQRSTUVWXYZ CDEFGHIJKLMN

HIJKLMNO XYZABCDRF 34567890123 GHIJKLMNOPQR

PQRSTUVWX 456789012 STUVWXYZA GHIJKLMNOPZRS

YZABCDEFG BCDEFGHIJ 3456789016^3 TUVWXYZABCD

0123456789 LMNOPQRSTU GHIJKLMNOP JKLMNOPQRS

PRINT 02

QRSTUVWXYZ EFGHIJKLMN ABCDEFGHIJ 0123456789

HAJKLMNOP KLMNOPQRSTU EFGHIJKLMNO 456789012

QRSTUKWXY VWXYZABCD PQRSTUVWXYZAB RSTUVWXYZ

567890123 MNOPQRSTUVW EFGHIJKLMNOP KLMNOPQR

ZABCDEFG 345678901234 EFGHIJKLMNOP CSEFGHIJ

HIJKLMNOPQR 56789012345 90123436789 QRSTUVW

STUVGXY 6789012345678 XYZABCDEFGHIJ KLMNOPQ

11

FUNCTIONAL WORKLOAD CHARACTERIZATION

J. E. McNeece
R. J. Sobecki

U.S. Department of Agriculture
Office of Automated Data Systems

Washington, DC 20250

This paper addresses functional workload
characterization in the benchmark process covering the:
(1) past - several early references to standard
benchmarks are reviewed and their findings summarized.,
as are two, large Federal computer procurements;
(2) present - the current state of functional workload
specification is briefly described, as is the approach
currently being taken by the U.S. Department of
Agriculture (USDA); and (3) future - the trends and
problems uncovered in the literature gained through
USDA experience, and resulting from discussions with
other Government agencies and ADP equipment manufac-
turers are identified and discussed. Finally, those
areas which need more study are outlined. These
experiences and observations are presented with a

view toward precipitating discussion. The main emphasis
in workload characterization in this paper is on
batch and on-line transaction processing utilizing
a DBMS.

Key words: Benchmarking; computer procurement;
computer selection; workload characterization.

1. Past

1.1, Review of References

The following briefly reviews
three documents which have previously
addressed various issues associated
with functional workload characteri-
zation.

1.1.1. Recommendation D-14,
Report of the Commission on Govern-
ment Procurement--December 1972:

D-14 - Develop and issue a set
of standard benchmarks to be

used as benchmarks for evalu-
ating vendor ADPE proposals.

This recommendation was later estab-
lished as an executive branch position
in May 1974 as outlined in: "Proposed
Executive Branch Pos i ti on/ Impl ementa

-

tion for Recommendation D-14 of the
Report of the Commission on Government
Procurement," March 24, 1974.

This latter report raised the issue
of functional workload characteri za-

13

tion as follows:

"A major feasibility question
relates to the problem of being
able to define workload charac-
teristics in a manner suitable
for selecting and modifying
reference benchmarks and data
to be representative of user's
requi rements .

"

Later, this paper will present an
approach to functional workload
characterization and its subsequent
translation into standard benchmark
functions or programs.

1.1.2. "Development of Standard
Benchmarks," Department of the Army
Pamphlet No. 18-10-2, Management
Information Processing Systems Ex-
change, May 1973, pp. 1-8.

The above document addressed the
advantages and disadvantages of
using standard benchmarks to
functionally characterize a work-
load in terms of a standard set of
benchmark programs. Some of the
advantages cited were:

(1) reduced preparation time
and cost for users;

(2) reduced cost and response-
time for suppliers;

(3) flexibility in use;

(4) wider base of users.

Some of the disadvantages cited were:

(1) initial development cost;

(2) n 0 n u n i V e r s a 1 i ty

;

(3) lack of user confidence.

1.1.3. Paul 01 iver , et. al . ,

"An Experiment in the Use of Syn-
thetic Programs for System Bench-
marking," Proceedings of the NCC,
1974, pp. 431-438.

The following conclusion from the
above document bears on the workload
characterization question:

"Can a workload be profiled?

We do not believe that it is

possible to arrive at a general-
ized, comprehensive, and accur-
ate model of system workloads
except in the most trivial cases.
We can certainly retrofit. That
is, we can accept a workload
definition based on the synthetic
program parameters. We also
believe that this need not impede
the use of synthetic programs in
benchmarks. In this, we strongly
support the view expressed by
J. C. Strauss. In a recent paper
on the use of natural benchmarks,
he stated that based in part on
prior experience and on the dif-
ficulties encountered, 'it was
felt more important that the
behavior of the benchmarks be
well understood and cover a broad
range of important system features
than that the complete benchmark
series be representative of the
general workload . '

"

1.2. Past Major Systems Acquisitions

Two major military procurements, the
World-Wide Military Command and Con-
trol Systems (WWMCCS) and the Mili-
tary Personnel Center (MILPERCEN)
Project 70X had very similar bench-
marking approaches and were examples
of the type of specifications which
were prevalent in the late 1960's
and early 1970's. These were a com-
bination of resource (hardware) re-
quirements and functional workload
characterization mainly developed
from historical data. The bench-
mark problems were similar in that
the vendor had to first run all
problems in a serial-mode and then
run selected problems in a multi-
programming mode. Included were
remote job entry demonstrations
and interactive terminal demonstra-
tions.

2. Present

There are at least four approaches
being taken today in the develop-
ment of workload specifications:

(1) In an open shop, one
approach is to take a particular
time-slice of a monthly work-
load (e.g., month end) and,
assuming these programs are a

true representation of the total
workload, select them as the
benchmark.

(2) Another process is to take
programs and data from existing
systems and use them as the
benchmark. The problem with
this approach is that old sys-
tems and programs may be used
which are not representative
of the new system.

(3) A third methodology is to
quantify synthetic functions
which have been identified by
the user as representative of
his ADP workload. (A file
generator is often used in con-
nection with this approach.)
This approach is currently
being employed by the U. S.

Department of Agriculture
(USDA) on current and future
major system procurements.

(4) A fourth approach consists
of some combination of the above.

Figures 1 through 4 illustrate stand-
ard forms used by USDA to implement
the third approach. The following
discussion describes each form.

Figure 1 - Illustrates a typical
list of functions, or standard pro-
grams, that might be considered in a

workload characterization effort.
The list is established in an inter-
active manner in that for a specific
workload characterization and its
resulting benchmark, some new func-
tions may need to be added and de-
fined, while some functions of a pre-
vious benchmark may be excluded due
to the nature of the processing cur-
rently being characterized. The third
column in this figure identifies which
of the eight quantification methods
shown at the bottom of the figure is
represented by the benchmark program.

Figure 2 - Depicts the input
data files, their logical organiza-
tion, and record sizes within each
file, and cross-references the bench-
mark programs to the files which they
use

.

Figure 3 - Used to quantify
events in terms of meaningful func-
tions that occur in an agency's work-
load. Each event is given a code, a

name, and also the volume per year.
In addition, a percentage per month
is given for each month for all years.

Figure 4 - As indicated in Figure
3, a code and a name are assigned to
each quantifiable event as are work-
load projections for the system's
life. Figure 4 is used to map quanti-
fiable events into the identified
functions (i.e., standard benchmark
programs). Each event is broken
down into ADP systems and, where
necessary, subsystems. Once the
events have been broken down, this
figure is used to produce quanti-
fication data. Quantification data
is produced at the system or sub-
system level, in terms of the stan-
dard functions and quantification
methods shown in Figure 1.

Discussions with other Federal agen-
cies, who are planning major system
procurements, indicate that they are
using, all or part of, the previously
mentioned approaches to workload
characterization. In discussions
with two agencies, the workload char-
acterization was not presented to the
vendors in the usual way. In one
case all offerors were given a set of
flow charts and data descriptions from
which the vendors program the bench-
mark problems. The benchmark is then
run using a subset of live data files.
In the other case, two vendors will
be chosen after a technical and cost
evaluation. Each vendor will then
proceed, with Government funding,
to redesign and program existing
systems. The new systems will then
be benchmarked in phases, with award
being made to the vendor with the
lowest life-cycle cost.

3. Future

Benchmarks, in both the Federal and
private sectors, seem to be evolving
into on-line interactive demonstra-
tions.

3.1. Problems

Some problems associated with the
functional workload demonstration
fall into two categories. First,
problems with the data bases and
secondly, problems with the programs.
The problems uncovered in these areas
are

:

15

Data Bases

° Manufacturers have diffi-
culty in converting data
bases to their equipment.

° Size of data bases as pre-
sented in benchmarks are
too large (e.g. 30-40 reels
of magnetic tape).

Prog rams

° Nonstandard language con-
structs make conversion
difficult on the part of
the vendors. Thus, the
major effort of the vendor's
benchmark team is sometimes
spent on conversion, rather
than on the throughput test
of the offeror's equipment.

° A major problem associated
with benchmarking in general
is that benchmark costs are
becoming too high. Vendors
are taking a careful look at
Government procurements and
their associated benchmarks
to see what the costs will be
to bid relative to the chances
of a successful conclusion.
Some ways in which benchmark
costs could be kept down are:

(1) standard synthetic
benchmark programs;

(2) use of file or data
base generators;

(3) demonstration of stan-
dard system functions
such as payroll, inven-
tory, etc.

It should be noted that
several ADP equipment manu-
facturers agree that a file
or data base generator should
be used where possible in
creation of data bases.

3.2 Functional Workload Charac-
terization

The following is an approach to func-
tional workload characterization
which appears promising:

(1) Identify quantifiable events
which represent agency functions.

These functions must be major
agency program or administrative
functions.

(2) Identify and define bench-
mark ADP operations. A bench-
mark ADP operation will be
directly and explicitly repre-
sented in the benchmark work-
load mix by a synthetic program
or some other workload category,

(3) The volume for each agency
quantifiable event identified
must be projected over the
scheduled life of the computer
system. Quantification for each
year is required for each item.

(4) Determine, by analytical
means, the relationships between
quantifiable events specified in

activity (1) above, and the bench-
mark ADP operations identified in

act i V i ty (2) .

(5) Select peak workload months.
The objective of this activity is
to identify the peak months of
computer workload. This is done
by tallying workload for each
month from workload projection
and mapping forms. Management
guidance must be obtained as to
the desired level of capability
to support peak periods and to
determine how much flattening of
peaks is appropriate.

(6) Quantify peak periods. Using
the data derived in activities (3)
and (4), calculate the aggregate
number of iterations of each bench-
mark operation required to perform
the workload during the peak
periods.

(7) Determine benchmark trans-
action characteristics. Here, a

transaction may be defined as a

coded representation of an event
which triggers one iteration of
one of the benchmark ADP opera-
tions.

(8) Determine data storage needs
and characteristics of the data
base. This activity will deter-
mine the size of the data base(s)
to be stored in the object com-
puter system, in addition to
characteristics of the major data
files. This also requires taking

16

measurements to assure that the
benchmark adequately represents
these data characteristics.

3.3. Areas Needing More Study

In general, the functional workload
characterization approach to bench-
marking needs more study by both the
ADP industry and the users.

Those areas in need of further study
are

:

(1) Identification of a suffi-
cient number of standard
synthetic benchmark functions
and programs.

(2) In adapting a benchmark
to a given system, what changes
will be allowed by the vendors?

(3) More ADP industry partici-
pation in development of stan-
dard benchmark programs and data
base generators.

(4) In developing benchmarks
for remote computing services,
what type of workload charac-
terization, synthetic or actual,
gives the most accurate repre-
sentation of an offeror's capa-
bilities? What is the best way
to test an offeror's network
capability; i.e., concentration,
lines, etc., in order to insure
that adequate services can be
provided?

(5) Distributed processing
networks are now beginning to
emerge. How can these systems
be benchmarked in order to give
meaningful results?

It is hoped that this paper will
stimulate further discussion on the
state and future of functional work-
load characterization.

!i

Category o-*" Processing

Benchmark
r 1 uy 1 am

Quantifica-
tion Method Quanti f i cati on

1. On-Line Retrievals-Serial Indexed

(by index) ORSIND 0

2. On-Line Retrievals- Indexed noMnc" VUKinUlA nU

3. On-Line Updates-Serial Indexed

(by index) OUSIND 0

4. On-Line Updates- Indexed OUNDEX 0

5. On-Line Data Entry OENTXX 0

6. On-Line Computations OCOMPU 0

7.

8.

Batched Retrievals-Serial Indexed

(by index)

Batched Updates-Serial Indexed

BRSIND

BUSIND

B

B

9. Batched Updates-Indexed
n
bS

10. Batched Updates of Multiple Files

(by index) BUMULT B

11. Batched Retrieval-Serial BRSERL S

12. Batched Updates-Serial D 1 ICCDI co

13. Batched Retrieval-Serial Indexed

(Sequentially) BRSEQU S

14. Batched Serial Edit BRSEDIT B

15. Batched Retrieval-Indexed BRNDEX R

16. Batched Computational BCOMPU I

17. Sort Vendor Software S

18. Data Base Inquiries Vendor Software D/R

19. COBOL Compilations Vendor Software P

20. FORTRAN Compilations Vendor Software P

21. Interactive Program Development
(Text Edit) Vendor Software L

22. Report Generator Vendor Software S

Quantification Methods :

0 = On-Line Transactions R = Records Retrieved via D

Multi -Index Relational
B = Batched Transactions (local and remote) Operators Technique

p

S = Records Passed on Serial Input File I = Iterations of Program

L = Lines of Code for Text Editing

Figure 1. Workload summary.

18

= Data Base
Inquiries

= Programs Com-
piled, 500
Statements
Average

Data File Logical Organization
Record
Size

Using
Programs

FILE01A Serial Indexed - Unique
Key Value

320 OUSIND
BUSIND
BRSEQUl

FILE02A, B, C Hierarchical - 3 levels 438 MIN
686 MAX

ORNDEX
BUNDEX
BUMULT

FILE02D, E, F Hierarchical - 3 levels 1 ,057 MIN
1,176 MAX

OUNDEX
BUMULT

FILE02G, H, I Hierarchical - 3 levels 960 MIN

1 ,133 MAX
BUMULT

FILE03 Indexed 3 Keys - Nonunique
Key Values

75 BRNDEX

FILE05 Serial 2,913 BRSERL

FILE06 Serial 136 BUSERL

Serial Indexed - Unique
Key Value

244 ORSIND
BRSIND
BRSEQU7

FILE08 Serial Indexed - Unique
Key Values

54 BRNDEX

Figure 2. Data base characteristics.

19

LlJ>
LU 00

o
q: I—

I

<: I—
s: o^ LU

z o
UJ C£.

UJ Q
—I <
CO o
cC _l

Li_ q;
HH O
1— 2
«a: Q
=) z

<o
00

o

Percent

Per

Month

DECl

NOV

1
OCT

SEP

AUG

JUL

JUN

MAY

I

APR

MAR

FEB

JAN

Volume

Per

Year

1982

1981

1980

1979

1978

1977

iable

Event

NAME

Quantifi

t
CODE

c
o
Ij
o
<u
•ID
o
1-

Q.

o
O

(U
S-
3

20

^^^^

--^^^

^-^^

^^^^^

ADP
Representative

and

Phone

Number

ADP

System

or
Subsystem

Code

for

Quantifiable Event

c
Q.
Q.

T3

O

o

en

21

SOME RESULTS ON THE CLUSTERING APPROACH
TO WORKLOAD MODELLING

A. K. Agrawala
J. M. Mohr

Department of Computer Science
University of Maryland
College Park, Maryland

In this paper we discuss two of the issues involved in the use of
clustering techniques to characterize a computer system's workload.
First we examine the results of clustering one data set with three
distinctly different types of feature sets. In the second half of this
paper we present results showing that the clusters that are obtained
are stable and that they represent natural groupings in the workstep
population.

Key words: Clustering; workload characterization.

1. Introduction

Performance evaluation is fast becoming
an essential part of computer system manage-
ment. However, the performance of the sys-
tem depends on the specific workload it han-
dles. It is necessary for the accurate per-
formance evaluation of a computer system to

have a good knowledge of the system's work-
load [1] ^ . The importance of the workload to
any evaluation of modelling effort is well
summarized by the following: "Blessed is he
who found his computer's workload. Let him
ask no other blessedness." [2]

A modern computer operating in a general
purpose computing environment is often shared
by a large population of users, who use it to

satisfy a wide variety of computational
needs. Conceptually, the overall computa-
tional needs of such a user population com-
Figures in brackets indicate the literature
references at the end of this paper.

This research was supported in part by the
National Aeronautics and Space Administra-
tion, Goddard Space Flight Center, under
Grant NASA #NAS 5-22878, and in part by the
National Science Foundation, Control and Au-
tomation Branch, Engineering Division, under
Grant ENG 73-04099, to the Department of Com-
puter Science, University of Maryland, Col-
lege Park, Maryland. Also the cooperation
extended by the Computer Science Center of
the University of Maryland during this work
is gratefully acknowledged.

prise the workload of an installation. Due
to the large variations in the load presented
by the diverse user community, one can hardly
use the whole workload in any system study.
Selecting a representative test workload via
a validated model offers a viable alterna-
tive.

A framework for creating workload models
with various degrees of aggregation was
recently proposed [3] . The approach taken
was to define the aggregation in terms of
"worksteps," which are the smallest element
of the workload to be used in the model. A
workstep may be a job, a program, or a trans-
action depending upon which is the most
appropriate unit for study. The characteris-
tics of a workstep are used in creating the
workload models. The basic approach sug-
gested in [3] was to describe a workstep in
terms of the system resources required to
satisfy it, the location in a network from
which the workstep originated and the time
at which the workstep was submitted. A work-
load model may then consist of a probabilis-
tic description of the workstep population.

For a centralized installation we may
choose to describe a workstep only by a vec-
tor X of resource requirements where the
jth component of x corresponds to the work-
step's usage of the jth system resource. The
workload model now consists of a probability
distribution p(x) . For any system, such a
model has to be formulated on the basis of
empirical data gathered for that system. In

23

general, p(x) is likely to be a very com-
plex distribution. A simplification pro-
posed in [3] was to treat p(x) as a mix-
ture distribution

m
p(x) = X)p(x/c.)p(c.) (1)

i=l

where the population of worksteps is divided
into m classes c. , i=l,m each having a

distribution p(x/c.). An advantage can
only be gained by such an approach if

p(x/cj^) is a "well behaved" function. For
example p(x/c-j^) may be unimodal.

In the environment of a computer system
the distribution of p(x/c^) is likely to

be non-parametric, so that in order to use

the mixture distribution approach one may
have to apply a technique such as cluster-
ing. This way the observed sample worksteps
may be grouped into classes to decompose the
multimodal p(x) into several unimodal
p(x/ci)'s . Some results on the feasibility
of the clustering approach were presented in

[3]. Clearly, the results obtained from
such an approach depend on the clustering
technique used as well as on the set of fea-
tures used (as components of the vector x)

to describe the workstep. In this paper,
we explore some questions regarding the sta-
bility of the clustering results as well as

the effect of the choice of features on the
final clustering obtained. The results pre-
sented are based on the same clustering
technique as was used in [3] . The cluster-
ing technique is briefly described in Sec-
tion 2. The effects of clustering using
different feature sets is presented in Sec-
tion 3. In Section 4, we present results of

tests on the stability of this approach.

2. Clustering Technique

Here we briefly describe the clustering
technique used. The technique used is a

variant of the k-means technique discussed
by Anderberg [4] and is described in detail
in the appendix of [3] . The following
steps are involved in this technique.

a. Transformation - It is desirable to

perform a logarithmic transformation on

several of the variables used as components
of the vector x . For example, in some
sense two jobs requiring one second and two

seconds of CPU time have the same degree of

similarity as two jobs requiring one minute
and two minutes of CPU time.

b. Scaling - As the original scale of

the components of x can vary by six orders of
magnitude, an appropriate scaling is desira-
ble. To avoid the problems caused by out-
liers, we scale the 98% percentile point to

the value 10.0.

c. Similarity Measure - To allow for the
importance of a given component of the vector
X to vary depending on the class, we use as

a similarity measure a weighted distance mea-
sure. The inverse of the variance along an
axis is used as the weighting factor. The
effect of this measure is that we get hyper-
ellipsoidal clusters, rather than the hyper-
spheroidal clusters that would have been
obtained had we used a standard Euclidean
distance.

d. Clustering Algorithm - A multipass
approach is used in which, starting from a

set of seed values (see Section 4.2 for the
effect of varying the seed values), the
points are assigned to clusters based on the
weighted distance between the points and
cluster means . Points far away from all of
the known clusters are allowed to form their
own clusters. The scheme has converged when
a complete pass is made over the data and no
sample points change their cluster assign-
ments on a given pass.

3. Feature Selection for Clustering

As mentioned earlier, a workstep is de-
scribed by a vector x, where each component
of x represents the resources of a particu-
lar type required by this workstep. There
are no inherent constraints on the dimension-
ality of X . A rather large number of
measurements are usually available for a

workstep. However, in order to make the com-
putations and data required for clustering
reasonable we have to limit the dimensionality
of X . In other words, out of all fea-
tures which may be used to describe a work-
step, we have to select a reasonable number
of them.

Pattern recognition literature has a

rather large number of papers published on
the topics of feature selection [5,6] . A
natural question to examine here is the ap-
plicability of such feature selection tech-
niques to the problem of workload modelling.
In a typical pattern recognition problem
the class membership of the samples is known
a priori . The problem facing the analyst is

to choose a set of features and a classifica-
tion approach such that the class of a sample
may be inferred from the data that has been
extracted about a sample. However, there are
no such a priori classes defined for the
workload models presented here. Instead we

24

are only trying to determine whether any
natural groupings exist in the data [9].

But, the characteristics of a workstep de-
fined by a subset of features change as we
change the subset of features. Accordingly,
the groupings are likely to change. It is

not clear whether one grouping can be
claimed to be significantly better than any
other. Each grouping is formed based on the
perspective given by the feature set. There-
fore, attempting to reduce the number of
features may depend on the type of grouping
sought. In order to verify this we con-
ducted a series of experiments whose results
are described below.

3.1. Experimental Results

In the results presented in this paper,
we used the data from the accounting log of
the Univac 1108 installation at the Computer
Science Center of the University of Mary-
land, ^ The data was obtained from a system
whose configuration is described in Figure 1

and was collected for November 11, 1976. A
job was used as a workstep and a total of
1342 jobs were used in this study.

At present our feature extraction rou-
tine extracts 64 different features about
each job on the accounting log. Of these,
we normally use 5 to 9 features for any
clustering. We manually select which of the
observed features are to be included in the
feature set for each experiment. In order
to study the effect of feature sets on clus-
tering, we selected 3 sets of features from
the data and performed three independent
clustering runs using the approach described
above. The results of the clustering for
each of three feature sets are presented in
Figures 2-5. Figures 2-4 describe, for each
feature set, the number of points contained
in each cluster, the mean feature values for
each cluster, and the standard deviation of
the feature values for each cluster. All of
the feature values presented are in the
scaled space. Recall that the scaling is
performed such that 98% of the values of
each feature lie in the range 0-10. Figure
5 contains the confusion matrices that re-
.sulted from the comparison of the output of
three clustering runs (see Section 3.2.4 for
a discussion of the confusion matrices)

.

Let us analyze these results.

3.2. Analysis of Results

Three separate sets of features were
extracted from the raw data set and used to
cluster the worksteps. Let us consider the

The accuracy of the accounting log data was
ascertained first [7,8].

results obtained for each of these feature
sets

.

3.2.1 Resource Consumption Feature Set

This set consisted of 6 features:

1) number of 512-word core blocks;
2) amount of CPU time;

3) executive request & control card
charges (ER&CC charges);

4) amount of DRUM I/O;

5) amount of DISK I/O;

6) amount of TAPE I/O.

The ER&CC charges record the amount of
service in 200-Msec units that the user job
requested of the operating system. The user
is charged for the processing of each con-
trol card and for certain functions, such as

I/O that must be performed by the system.
The unit used for the I/O charges is words,
where the number of words charged to the
user for an I/O operation is the number of
words actually transferred plus rhe number
of words that could have been transferred in
an amount of time equal to the latency time
plus the seek time of the device being used.

All I/O to temporary files is charged as

DRUM I/O while all I/O to catalogued files
is charged as DISK I/O.

This feature set distinguishes between
jobs solely on the basis of the total
amount of hardware resources used. There-
fore, we obtained clusters based upon re-
source usage alone. The mean and standard
deviations of these clusters are presented
in Figure 2. Since the data was collected in
a university environment, we found a cluster
of "small student" type jobs (#1) . The jobs
in this cluster used a relatively small

amount of resources and were distinguished
in that they did no TAPE I/O and virtually
no DISK I/O. This cluster also contained
some jobs submitted by more advanced users.

These jobs typically did some trivial opera-
tion such as inquire about the status of

some process, or list the contents of a file

and then terminate. We also found a variety
of clusters consisting of research users or
students in advanced courses. These jobs
used a moderate to heavy amount of all re-

sources and consisted of repeated edits,

compilations, link edits, and executions of

user programs (#2, #6). Since a relatively
small number of users perform TAPE I/O, we
observed pairs of clusters that were dif-

ferentiated only by the presence or absence
of TAPE I/O (#9, #11). We also observed
clusters made up of the same group of users,

typically timesharing users, in which the
basic difference between the jobs in the two

25

clusters was that the jobs in one cluster
used approximately twice as much of every

resource, except core blocks, as the jobs in

the other cluster (#8, #3). The use of the

various resources is similar for the two

clusters and an examination of the log en-

tries for the job entries in the two clus-

ters reveal that the users were basically
doing similar types of cycles, such as a

edit, compile, link edit, execute cycle or a

data preparation, execute, data analysis

cycle; the basic difference between the two

clusters being the number of times through

the cycle or whether the user signed on and

was active for a two-hour or a four-hour
session. We also found a cluster of jobs

(#10) that consumed large amounts of all

resources. Members of this cluster would
include members of the system staff genera-

ting a new version of the EXEC or a very
large research user whose job was active
most of the day.

3.2.2 Percentage of Program Types Feature Set

This feature set contained five fea-

tures. For the purposes of this experiment,

we divided all of the programs into four

categories. The five features used were the

number of files assigned and the percentage
of the programs in each job that came from
each category. The four categories were:

1) program development;

2) data analysis programs from the
system libraries;

3) general overhead programs;

4) executions of user written programs.

The program development category in-

cluded all calls to the text editor, any
compiler, and the linkage editor. The data
analysis programs from the system libraries

would include processors such as SPSS or

BMD. General overhead programs would be
that group of programs needed to maintain
files; inquire about the status of the sys-
tem, files, runs, or accounts; and to gen-

erally enable the user to do program devel-
opment or data analysis . The final category
included any program run by the user that

was not found in any of the system libraries.

The programs in these categories were termed

Type 1, Type 2, Type 3, and Type 4 programs.

The types of clusters obtained using this

feature set was markedly different from the

clusterings obtained using the hardware

resource consumption feature set. If a job

cycled through some sequence of programs,

the clusterings based upon the "resource
consumption feature set" would assign the

job to one of several clusters, based upon
the number of times the job cycled through
the sequence of programs, while the cluster-

ings based on the "percentage of program type
feature set" would assign the job to the same
cluster regardless of the number of cycles
executed. The results of clustering using
this latter feature are presented in figure
3.

We found four clusters (//8,#7,//3,//6)

each of which had one of the four types of
programs as its dominant member. This domi-
nant program type accounted for at least 70%
(#8) of the program executions and in some
cases accounted for 95% (#3, #6, #7) or more
of the program executions in that cluster.
Most clusters showed a relatively large
percentage of Type 3 or general overhead
programs. This is due to the fact that no
matter which of the other three types of
programs dominates the cluster, certain over-
head functions , such as assigning files, must
be performed.

We observed a negative correlation be-
tween the occurrence of Type 2 and Type 4

programs in most clusters. This is reason-
able in that the user of SPSS or a similar
package is unlikely to execute user written
programs. We also observed a program devel-
opment cluster (#8) that consisted of
roughly 70% Type 1 programs and 22% Type 4

pro grams , r es pec tively

.

The clusters obtained using this feature
set reveal a great deal of information about
the users of the systems and the types of
operations they perform.

3.2.3. Rate of Resource Consumption
Feature Set

This feature set consisted of five
features:

1) CPU time/SUP;
2) ER&CC charges/SUP;
3) DRUM I/O/SUP;
4) DISK I/O/SUP;
5) TAPE 1/0/ SUP.

Univac defines the processing time of a
job in Standard Units of Processing (SUP's)
as the amount of time that it would have
taken to run the job on a monoprogrammed,
uniprocessing system with no overlap between
CPU use and I/O. The SUP charges for a run
are equal to the sum of its charges for CPU
use, ER&CC 's, DRUM I/O, DISK I/O, and TAPE
I/O. The SUP is the basic unit of charge-
able time on Univac 1100 series operating
systems [7,8]. The feature CPU time/SUP
would be the percentage of the run's
chargeable time that was spent using the
processor

.

26

While the value of the features for CPU

time/SUP and ER&CC's/SUP corresponds to the

percentage of the run's chargeable time that

was attributable to these sources, this is

not quite true for the I/O counts. This is

due to the fact that the I/O counts are
stored on the log tapes as the number of

words transferred and are converted to times

for the purposes of the SUP calculation. We

would have multiplied the number of words

transferred by the transfer rate of the de-

vice, viiich would have made the three I/O

related features correspond to percentages

of chargeable time. This was not done, as

it would have no effect on the final clus-

terings obtained (this operation would only
entail a linear transformation of the data
which would have been totally reversed by
the scaling routines) . The results of clus-
tering using this feature set are presented
in figure 4.

The features in this feature set in no

way measured the gross amount of resources
used and are similar to the features in the

"program type feature set" in that if two

programs differed only in the number of

times they cycled through a given sequence
of programs, they would both appear in the

same cluster. We found several types of

clusters. First, we found distinct clusters
for I/O bound (#5,#6,y/l), CPU bound (#4),

and balanced jobs (//2) . Second, in the
clusters for the I/O bound jobs, we found
clusters dominated by each of the three I/O

device types (//5,#6,#1). Several clusters
appeared with a given balance between CPU
and I/O use, but these clusters were dis-
tinguished by the relative amounts of

chargeable I/O to the various types of I/O

devices

.

This feature set can be used to produce
a workload model that could be used for a

performance improvement study, as this type
of study is usually most concerned with the
utilization rates of each of the system
resources

.

3.2.4 Confusion Matrices

In a confusion matrix the value at
location (i,j) represents the number of

samples assigned to cluster i when the data

was clustered using the first feature set

and that was assigned to cluster j when the

data was clustered using the second feature

set. Note that no correspondence between

cluster numbers could be expected in inde-

pendent clustering runs.

The pairwise confusion matrices for the

three feature sets are presented in figure 5.

From these confusion matrices it can be
observed that as the feature set changes the
number of clusters may change and the mem-
bership of each cluster may change. While
at times a significant number of samples from
one cluster run become members of the same
cluster on the second cluster run, in many
cases the members of one cluster are assigned
to a wide variety of clusters on the second
cluster run. This is not merely the result
of clusters merging and splitting, but rather
this phenomenon is the result of fundamental
differences in the relative similarity be-
tween points because of the differences in
the feature set.

From the confusion matrices of figure 5,

we conclude that the clusterings based upon
these three feature sets represent different
groupings in the population. The type of
grouping desirable for a particular study has
to be the deciding factor in selecting a fea-
ture set. While the three feature sets dis-
cussed above were disjoint, we do not mean to

imply that one could not or should not com-
bine features from any two or even all three
of the feature sets described above. How-
ever, some care should be taken in the selec-
tion of the feature set to insure its

appropriateness to the study being conducted.

On each clustering run, we have been as-
suming that the clusters found represent
natural groupings in the population. Before
this may be assumed we must analyze the
stability of the clustering approach used.

We next present some results regarding the

stability of our approach.

4. Stability of Clustering Results

When clustering techniques are used to

group points in a multidimensional space,
one has to verify that the classes or groups
found by the clustering technique represent
natural groupings in the data. The first
step in this direction is to have enough sam-
ples to avoid certain dimensionality and
sample size problems [5,6]

.

For the stability tests reported in this

section, we used the resource consumption
feature set. The clustering technique re-
sulted in 11 clusters whose basic parameters
are presented in figure 2. Several aspects
of these clustering results were examined.

4.1. Unimodality of p(x/c_j^)

An implicit assumption in the mixture
distribution approach has been that p(x/c^)
will yield a unimodal distribution. After
clustering we get a set of samples belonging

27

to a cluster defined in an 11-dimensional
space. We would like to ascertain that its

popluation has a unimodal distribution. It

should be pointed out that if the parameters

of the clustering technique are not adjusted

properly, multimodal p(x/ci)'s are quite

likely.

To test the uniraodality of the cluster

population, we plotted the histograms of the

sample point distances to the mean on a

scale which would yield a horizontal straight

line for a uniform distribution of sample

points. One of these histograms for the

clusters of the November 11, 1976, data is

presented in figure 6. We note that the

histogram shows a monotonically decreasing
function which is what we would expect to

observe if the population distribution was
unimodal.

4.2. Effect of Seed Values

The clustering technique starts with a

set of initial seed values for forming its

clusters. If clear groupings exist, then

the final clusters observed should not de-

pend on the initial seed values. In an ef-

fort to confirm this, we made several runs

on the same data with different seeds. The

results of two such runs are summarized in

the form of confusion matrices in figure 7.

From the results presented in figure

7, we note that less than 5% of the points

changed their assignments due to different

seed values. Such a difference can be ex-

plained in terms of very minor readjustments

of the cluster parameters. It should be

noted that this confusion matrix shows a

marked contrast to the confusion matrices

presented in figure 5.

Figure 8 shows the components of the

individual cluster means and the distances

between corresponding means for one feature
set. Similar results were obtained for the

other two feature sets. We note that the

effect of starting the clustering routines
with different seed values has almost no

effect on the final clusters obtained. A
change in seed points will however change

the number of the cluster the points are
assigned to.

4.3. Convergence

Normally we terminate a clustering run

when less than 5% of the sample points
change their cluster assignment from one

pass to the next. Usually this process does

not take more than 10 passes. To see what

would happen if we let it run for many more

passes, we let several runs go for up to 20

passes or until no sample points changed
their cluster assignments. We observed that
the number of points which changed decreased
consistently, and typically after 15 to 19

passes absolute convergence was reached (when
no points changed their assignements in

successive runs)

.

4.4. Independent Test Set

All the results reported so far were
based on tests performed on the same data as
that used for the creation of the clusters,

i.e., the training data set. If the results
of the clustering were natural groupings,
they should exist in data observed at other
times, i.e., an independent test set of data.
To confirm this, we used the data from Novem-
ber 12-13, 1976, as the independent test data.
The changes in the workload from day to day
are substantial enough that the workloads in
any two non-overlapping intervals may be
considered independent, they being indepen-
dent samples from the same population. It
should be pointed out that while the popula-
tion characteristics change over a semester,
they are not expected to change substantially
on consecutive days. That is why in our ex-
periments we used data from Nov. 11 for
training and that from Nov. 12 and 13 for

testing. Using the clusters observed from the
training set as seeds, we made a pass at the
test set. The results are summarized in
figure 9. These results show that only a
very small number of points fell outside of
any of the clusters from the training set and
that the means of the training set clusters
moved an insignificant distance.

From the results presented in this sec-
tion, we conclude that the data has natural
groupings which are being uncovered by the
clustering technique used and that the re-
sults are reliable and stable. Of course,
an additional test to be put to the observed
clusters is to check if such a grouping makes
sense. Taking into account more detailed
information about the sample points than that
available in the vector x , we have been
able to assign a meaningful description to
virtually all of the clusters rather easily.

5. Concluding Remarks

In this paper, we have examined two as-
pects of the application of clustering tech-
niques to the workload characterization pro-
blem. We have presented results of experi-
ments that show that the clusters obtained
from the log tape data reflect natural
groupings of the sample populations and that
they appear to be quite stable and reliable.

28

The stability of the clusters is certainly
sufficient to allow their use in a workload
characterization study.

In this paper we also presented the

results of an experiment in which the same

data was clustered using three disjoint
feature sets. The results showed that

three very different sets of clusters were
obtained. Each of these cliisterings repre-
sented the natural groupings in the multi-
dimensional space from which they were
drawn. The actual feature set used in a

study, therefore, should be determined on
the basis of the type of grouping desired.
A better understanding of the relationship
between the features and the groupings ob-

tained may be desirable.

References

[1] Svobodova, L., Computer Performance
Measurement and Evaluation Methods:
Analysis and Applications, Elsevier
Publishing Co., Inc., New York, 19 76.

[2] Ferrari, D., Workload Characterization
and Selection in Computer Performance
Measurement, Computer, July/August 1972,

pp. 18-24.

[3] Agrawala, A. K., Mohr, J. M. and Bryant,

R. M., An Approach to the Workload
Characterization Problem, Computer,
June 19 76, pp. 18-32.

[4] Anderberg, M. R., Cluster Analysis for
Applications, Academic Press, New York,

1973.

[5] Kanal, L. N., Patterns in Pattern
Recognition: 1968-1974, IEEE Trans, on
Information Theory, Vol. IT-20, No. 6,

November 1974, pp. 697-722.

[6] Agrawala, A. K., Machine Recognition

of Patterns, IEEE Press, New York,

1977.

[7] Mohr, J. M., Agrawala, A. K., Flanagan,
J. F., The EXEC-8 Log System, Part I -

Description, Computer Science Techni-
cal Report Series, TR-434, University
of Maryland, January 1976.

[8] Mohr, J. M., Agrawala, A. K., Flanagan,
J. F., The EXEC-8 Log System, Part II-
Error Analysis, Computer Science Tech-
nical Report Series, TR-473, University
of Maryland, August 1976.

[9] Agrawala, A. K., Mohr, J. M., The Re-
lationship Between the Pattern Recogni-

tion Problem and the Workload Charai

terization Problem, accepted for

publication in Proceedings of 1977

SIGMETRICS/CMG VIII, Washington, D.

29

262K WORDS MEMORY

UNIVAC 1108
CENTRAL
PROCESSOR

UNIVAC llOl
SUPPORT
PROCESSOR

FHil32 DRUM (6)
FH-1782 DRUM (2)
842^1 DISC (8)
8424 DISC (8)
UNISERVO 16 TAPE (4)
UNISERVO Vine 9 TRACK TAPE (8)
UNISERVO Vine 7 TRACK TAPE (3)
DIGITIZER SCANNER
CTMC
CTMC 1 UNIVAC 9300 - UMBO— UNIVAC 9300 - ENGIN— UNIVAC 9300 - BPA— UNIVAC 9300 - MPSEL UNIVAC 9300 READER-PUNCH-PRINTER

UNIVAC 1004 PRINTER
CSP
CRT CONSOLE

Configuration of the University of Maryland
Univac IIO8.

30

Cluster # # Points Core Blocks CPU Time ER&CC Charges DRUM I/O TAPE I/O DISK I/O

1 243 0.662 0.061 2.426 1.509 0.017 0.245
(0.554) (0.109) (1.700) (1.274) (0.157) (0.548)

2 74 3.013 4.482 7.876 7.769 6.366 6.650
(0.967) (1.173) (0.744) (1.224) (1.618) (0.926)

3 215 3.086 3.793 6.817 5.922 0.025 6.072
(1.796) (2.410) (0.972) (1.881) (0.159) (1.976)

4 38 3.789 4.042 6.380 3.852 5.501 6.326
(\ 791 \

\\J JO) (2.204) (1.997)

5 117 4.151 3.567 4.208 7.005 0.009 1.951
(1.119) (2.357) (0.691) (0.513) (0.0976) (1.26 7)

6 114 1.918 1.077 5.422 4.028 5.665 3.524

(0.540) (0.723) (1.142) (1.510) (2.029) (1.693)

7 29 2.662 6.142 9.048 8.120 9.954 7.675
(0.666) (1.139) (0.999) (1.282) (1.441) (1.571)

8 348 4.781 1.586 3.805 2.458 0.006 4.401
(3.340) (1.666) (1.117) (1.550) (0.0775) (1.352)

9 60 3.312 7.430 9.178 9.049 0.099 8.338
(1.349) (1.922) (0.853) (0.998) (0.335) (1.205)

10 18 4.479 9.432 9.646 9.907 8.782 8.571
(1.316) (1.440) (1.395) (1.022) (2.633) (1.746)

11 31 2.874 7.056 9.421 8.515 5.223 8.764
(1.302) (1.594) (0.722) (1.369) (1.548) (1.059)

Figiire 2. Cluster Means and (Standard Deviations) for the Resource
Consumption Feature Set.

31

Cluster # # of Points # of Files % of TYPE 1 % of TYPE 2 % of TYPE 3 % of TYPE 4

1 86 0.038 0.0 0 .0 0.0 0.0
(0.126) (0.0) (0 0) (0.0) (0.0)

2 88 2.015 0.231 2 .888 6.839 0.056
(1.120) (0.584) (0 .584) (0.641) (0.240)

3 239 0.882 0.005 0 010 9.952 0.008
(0.573) (0.0491) (0.0867) (0.0141) (0.0661)

4 63 1.928 3.908 1 .008 4.983 0.743
(1.078) (1.181) (0 .994) (0.812) (0.647)

5 86 3.314 4.383 2 .652 2.347 1.339
(1.892) (1.194) (1 133) (0.824) (0.716)

6 34 1.026 0.0 0 013 0.150 9.812
(1.25 3) (0.0) (0 0766) (0.450) (0.465)

7 129 0.557 0.0 9 .936 0.039 0.0
(0.347) (0.0) (0 .235) (0.235) (0.0)

8 142 0.512 8.497 0 080 0.652 2.194
(0.397) (1.729) (0 358) (0.999) (1.259)

9 123 1.610 0.049 5 .217 4.497 0.219
(1.217) (0.270) (0 939) (0.957) (0.592)

10 28 7.464 0.12 3 0 728 8.972 0.173
(4.392) (0.318) (0 741) (1.034) (0.376)

11 75 • 5.743 2.034 1.577 5.315 1.395
(2.154) (0.723) (0 834) (0.842) (1.074)

12 10 13.746 2.348 2 224 4.497 1.455
(1.491) (1.641) (0 905) (1.579) (0.688)

13 180 1.685 0.008 1 283 4.564 4.121
(1.047) (0.0788) (1 625) (1.577) (1.422)

14 51 2.927 0.558 0.832 7.970 0.710
(1.269) (0.815) (0.625) (0.530) (0.7 31)

Figure 3. Cluster Means and (Standard Deviations) for Percentage
of Program Type Feature Set.

32

Cluster # // of Points CPU TIME /SUP DRUM 10 /SUP TAPE lO/SUP DISK lO/SUP ER&CC/SUP

1 319 1.396 0.349 0.044 5.623 5.392
(1.055) (0.344) (0.167) (2.928) (1.915)

2 124 4.745 2.246 0.076 2.798 3.949
(1.458) (1.920) (0.264) (1.901) (0.887)

3 87 1.148 3.750 0.377 0.944 7.803
(0.561) (1.301) (0.787) (0.527) (0.575)

4 73 9.113 0.510 0.095 0.974 1.372
(2.047) (0.652) (0.354) (1.145) (0.789)

5 123 2.789 7.896 0.105 0.763 5.688

(0.562) (2.106) (0.418) (0,779) (0.594)

6 120 0.932 0.768 6.309 1.293 7.724

(0.589) (0.501) (8.231) (0.761) (1.038)

7 80 1.183 2.177 0.737 2.512 7.144

(0.485) (0.717) (1.001) (0.877) (0.446)

8 374 0.144 0.562 0.115 0.389 9.572

(0.174) (0.485) (0.445) (0.547) (0.400)

9 33 2.801 2.978 2.054 2.906 5.285

(1.001) (1.301) (2.061) (0.907) (0.816)

Figure 4. Cluster Means and (Standard Deviations) for Rate of

Resource Consumption Feature Set.

33

Rate of Resource Consumption

1 2 3 4 5 6 7 8 9

1 4 0 4 0 0 0 U O Q/ 3 J U

2 2 3 16 0 9 11 lo 1 1 Q

3 65 26 33 16 o
0 13 Z /

O Qli

4 14 3 0 3 0 12 1 1 U

5 0 15 2 13 87 0 0 0 0

6 2 1 5 0 2 65 8 31 0

7 2 0 1 0 0 9 8 0 6

8 211 40 15 27 8 10 4 83 0

9 7 22 6 6 7 0 9 0 3

10 1 6 1 4 0 0 0 0 6

U 10 8 4 1 2 0 5 0 1

Percentage of Programs of Each Type

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 186 2 123 6 1 2 0 1 14 1 0 0 7 u

9 nu 2 1 1 nJ-U 22 0 4 4 3 18 0 4 4

3 0 21 20 28 22 5 4 7 16 9 9 0 47 27

4 0 3 0 0 0 1 1 0 17 0 0 0 13 3

5 0 0 1 0 5 0 3 106 1 0 0 0 1 0

6 0 34 20 6 7 1 1 2 30 8 1 0 8 6

7 0 1 0 3 6 0 0 0 0 1 10 3 3 1

8 0 22 84 5 1 23 117 16 38 0 0 0 87 5

9 0 2 0 4 12 1 0 4 1 4 25 1 2 3

10 0 0 0 1 7 0 0 1 1 0 2 3 2 0

11 0 0 0 0 3 0 0 1 1 1 10 3 6 2

Percentajys. of Programs of Each Type

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 15 60 5 0 13 86 2 31 5 4 0 84 9

2 0 4 5 11 12 2 25 19 7 2 10 3 15 8

3 1 7 2 16 16 1 1 12 7 1 12 1 4 5

4 0 2 7 4 6 12 14 12 3 0 3 0 9 1

5 0 1 0 5 11 0 0 93 2 0 9 0 1 1

6 0 27 5 5 4 1 2 1 35 5 8 2 20 5

7 0 12 4 5 15 1 0 0 6 5 19 2 7 4

8 85 18 156 9 4 4 0 3 28 9 3 0 39 15
0 0 0 0 2 18 0 0 0 1 0 7 2 0 3

Figure 5. Confusion Matrices for Clusterings Based on
Three Feature Sets.

34

Distance # Points

1. .03319 33 *********************************

2. .06639 18 ******************

3. .09958 12 ************

4. .13277 11 ***********

5. .16597 5 *****

6. .19916 5 *****

7. .23236 2 **

8. .26555 2 **

9. .29894 1 *

10. .33194 1 *

11. .36513 0

12. .39832 0

13. .43152 1 *

14. .46471 1 *

15. .49790 1 *

16. .53110 0

17. .56429 1 *

18. .59739 1 *

19. .63068 0

20. .66387 0

21. .69707 0

22. .73026 0

23. .76345 0

24. .79665 0

25. .82984 0

26. .86304 1 *

27. .89623 1 *

28. .92942 0

29. .96262 0

30. .99581 0

31. 1.2900 0

32. 1.06220 0

33. 1.09539 0

34. 1.12858 1 *

35. 1.16178 0

36. 1.19497 0

37. 1.22817 0

38. 1.26136 0

39. 1.29455 0

40. 1.32775 0

41. 1.36095 0

42. 1.39413 0

43. 1.42733 0

44. 1.46052 0

45. 1.49371 0

46. 1.52691 0

47. 1.56010 0

48. 1.59330 0

49. 1.62649 0

50. 1.65968 1 *

Figure 6. Histogram of Weighted Distances Between Cluster Points
and the Cluster Mean.

35

Cluster Number from Run 2

1 2 3 4 5 6 7 8 9 10 11

1 243 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 71 1 0 1 1

3 0 0 0 0 0 0 0 213 0 0

4 0 0 0 8 0 1 0 29 0 0 0

5 0 0 10 7 0 0 0 0 0 10 0 0

6 0 0 0 114 0 0 0 0 0 0 0

7 0 0 0 0 0 28 1 0 0 0 0

8 5 0 0 0 384 0 0 0 9 0 0

9 0 51 0 0 0 0 0 0 9 0 0

10 0 0 0 0 0 2 0 0 0 15 1

11 0 0 0 0 0 0 0 0 0 4 27

Figure 7. Confusion Matrix for Runs with Different Seed Values.

36

Cluster 1

(250 points)

0.673
0.065
2.471
1.5 36

0.017
0.300

Distance

Cluster 3

(107 points)

4.093
3.583
3.140
6.968
0.000
1.717

Dis tance

Cluster 5

(384 points)

4.817
1.526
3.795
2.428
0.006
4.397

Distance

Cluster 7

(72 points)

3.026
4.466
7.849
7.773
6.434
6.527

Distance

Cluster 9

(241 points)

3.308
3.958
6.706
6.043
0.026
6.088

Distance

Cluster 1

(243 points)

0.662
0.061
2.426
1.509
0.017
0.245

0.0059

Cluster 5

(117 points)

4.151
3.567
4.208
7.005
0.009
1.951

0.0645

Cluster 8

(348 points)

4.781
1.586
3.805
2.458
0.006
4.401

0.0024

Cluster 2

(74 points)

3.013
4.482
7.876
7.769
6.366
6.560

0.0069

Cluster 3

(215 points)

3,086
3.793
6.817
5.922
0.025
6.072

0.1037

Cluster 11

(29 points)

2.951
7.086
9.427
8.551
5.302
8.641

Distance

Cluster 2

(51 points)

3.115

7.555
9.380
9.070
0.116
8.443

Distance

Cluster 4

(122 points)

1.928
1.204
5.485
4.043
5.816
3.667

Distance

Cluster 6

(31 points)

2.559
6.342
9.022
8.186

10.067
7.797

Distance

Cluster 8

(30 points)

4.290
4.366
6.469
3.703
3.703
4.678

Distance

Cluster 10

(20 points)

4.924
8.662
9.504
9.624
7.792
8.602

Distance

Cluster 11

(31 points)

2.874
7.056
9.421
8.515
5.223
8.764

= 0.1482

Cluster 9

(60 points)

3.312
7.430
9.178
9.049
0.099
8.338

0.1804

Cluster 6

(114 points)

1.918
1.077
5.422
4.028
5.665
3.524

0.0637

Cluster 7

(29 points)

2.662
6.142
9.048
8.120
9.954
7.675

0.0822

Cluster 4

(38 points)

3.789

4.042
6.380
3.852
5.501
6.326

1.087

Cluster 10

(18 points)

4.479
9.432
9.646
9.907
8.782
8.571

1.872

Figure 8. Means and Distances Between Corresponding Clusters
Obtained Using Different Seed Values.

37

Core CPU ER&CC Distance Moved
Cluster # # Points Blocks Time Charges Drum I/O Disk I/O Tape I/O Weighted Euclidean

1 592 0.651 0.066 2.608 1,540 0.016 0.328 0.0345 0.0620

2 166 2.580 4.365 7.674 7.692 6.129 6.390 0.255 0.0745

3 555 3.127 4.251 6.807 6.035 0.018 6.103 0.0597 0.0612

4 86 3.354 3.935 6.296 3.941 5.643 6.022 0.197 0.0740

5 342 3,783 4.029 4.295 6.952 0.006 2.031 0.0926 0.0780

6 278 1.588 0,970 5.310 3.714 5.374 3.306 0.259 0.0780

7 82 2.475 6.146 8.991 8.344 9.767 7.745 0.154 0.0466

8 950 4.263 1.611 3.791 2.396 0.002 4.220 0.0637 0.0714

9 122 2.947 7.438 9.280 9.139 0.086 8.392 0.113 0.0508

10 35 3.976 9.097 9.629 10.085 9.737 8.809 0.352 0,1510

11 71 2,556 6,755 9.300 8,478 5,202 8,750 0,185 0,0589

Number outside of all clusters = 8, Number of samples = 3287

Figure 9, Results of Using Training Set Clusters on the Test Data.

38

WORKLOAD CHARACTERIZATION AND PERFORMANCE MEASUREMENT FOR
A CDC CYBER 74 COMPUTER SYSTEM

Captain Jonathan R. Bear
Captain Thomas E, Reeves

Air Force Institute of Technology
Wright-Patterson AFB OH 45433

Characterizing the workload of a computer system is directly rela-
ted to interest in evaluating and predicting the performance of a compu-
ter system. Developing an accurate description of the workload is a

major requirement which should precede the performance evaluation of a

computer system.

This paper reports on research aimed at using existing data col-

lected by an operating system for accounting purposes to characterize
the workload of the system. The workloads presented in this paper are
for a Control Data Corporation CYBER 74 computer system located at
Wright-Patterson Air Force Base, Ohio,

The observed workloads obtained from the accounting data are sub-
jected to numerical derivations using cubic spline computer subroutines
in generating cumulative frequency distributions and continuous prob-
ability density functions. Tables and graphs are presented for the

derived functions. Four performance measures are given for the CYBER
74 system. The measures are total jobs executed per day, CPU utiliza-
tion, an economic measure called computer resource unit (CRU) and

turnaround time for jobs. Histograms, tables, and graphs are used to

illustrate these performance measures,

Key words: Accounting data; computer performance; computer resource

unit; probability density function; statistics; turnaround; workload.

1. Introduction

Measurement and evaluation of computer
performance is an area which is growing
rapidly due to the economic necessity to de-
rive maximum utilization from computer faci-
lities [1, 25]^. Applications of perfor-
mance evaluation in the computer science
field are many and diverse. For example.

the evaluation of computer performance could
be involved with the selection of new compu-
ter systems, with the design of applications
and equipment, and with the examination and
improvement of existing systems [5, 20]. The
choice of a specific evaluation approach will

depend upon the objectives of a particular

Figures in brackets indicate the literature references at the end of this paper,

39

study, but, basically, the methodology for a

computer performance evaluation involves the

observation and measurement of a computer
system model while a set of jobs, or work-
load, is being processed. Computer perfor-
mance evaluation, then, can be divided into

two focal points, the computer system and its

workload.

There are various definitions of work-

load. The term workload as used in this pa^
per refers to the specific computer pro-

grams which must be processed by the compu-
ter system in order to satisfy user requests

CI 3]. Workload may be contrasted to other
software programs, such as compilers and
operating system alogrithms, which are consid-
ered to be part of the system overhead.

The computer system is defined as the physi-
cal machine itself, all associated peripheral
equipment, the workload, overhead, and the

man-machine interface.

Due to the expense and time involved in

measuring the workload of an existing compu-^

ter system, several authors, such as Watson,

Sreenivasan, and Esposito, have suggested a

cost-effective approach to this problem C2,

27, 12]. Such an approach would involve
using computer system accounting data, the

information which is collected about resource
usage in order to charge cost to users.

Analysis of such data could be a valuable
tool in assessing computer performance.
Since the data is already available, this

approach also offers the advantage of being
relatively inexpensive [29],

2, CDC CYBER 74 Computer System

The CYBER 74 computer used in this study
is structured as a part of a larger computer
network, the Aeronautical Systems Division
(ASD) computer system, which also contains a

CDC 6600 computer. At selected times, the
CYBER 74 can process a portion of the work^
load from the CDC 6600, and vice versa, In

addition to the central site facilities,
the ASD computer system has the capability
for interactive access by 40 teletype ter-
minals and 9 remote batch terminals.

The organizations which can directly
access the CYBER 74 computer system are
listed below:

(1) Air Force Institute of Technology
(AFIT)

(2) Air Force Flight Dynamics Labora-
tory (AFFDL)

(3) Air Force Avionics Laboratory
CAFAL)

(4) Aeromedical Research Laboratory (AMRL)

(5) Air Force Wright Aeronautical Laboratory
(AFWAL)

(6) Air Force Human Reliability Laboratory
(AFHRL).

The CYBER 74 normally operates continu-
ously with all its remote batch and teletype
terminals; however, an occasional backlog of
jobs at the batch terminals has forced the
Computer Center to disconnect the teletype
terminals for short periods. In an attempt
to provide adequate turnaround time for small-
er jobs, the policy of the Computer Center is

to limit the central memory field length to

120,000 octal words between the hours of 0800
to 1630 [2]. In addition, the interactive
terminals and remote batch terminals are not
operative from 2400 to 0800.

The CYBER 74 computer, a more recent
variety of the earlier CDC 6600 series, is

a multi programmed file-oriented machine
which can be divided into three parts: a

single central processor (CPU), 20 peripheral
processors [16, 9, 1411, and a central memory
of 131K 60-bit words. The CPU has a high
speed arithmetic and control unit which
fetches, decodes and executes instructions
sequentially. The average execution time
for each instruction (major cycle) is one
microsecond [10].

2.1 CYBER 74 Operating System

The Network Operating System/Batch En-
vironment (NOS/BE) monitors the CYBER 74

computer system. A variety of modes of ser-

vice is supported: batch, interactive, and
graphics

.

A system monitor, JANUS, which is loca-

ted in one of the PPUs, schedules the total

operation of the system, including CPU and

PPU requests. Since there are no hardware
interrupts in the system, this PPU schedules
all requests for system resources. The
remaining PPUs are assigned a variety of
tasks in executing system and user jobs [7],

For example, INTERCOM, which controls the

scheduling of all interactive terminal

requests, is another system program located
in a PPU,

In order to provide a multiprogramming
capability, the CYBER 74 can simultaneously
store 15 jobs in central memory. These jobs
reside in 15 variable length partitions, or

control points; the size of a control point
is called its central memory field length
CS],

40

Although a maximum of 15 active control

points are available at any one time, fewer
points are actually available for user jobs

since a number of system support programs
occupy several control points. JANUS occu-
pies one control point, INTERCOM occupies two,

graphics one, and two control points are
occasionally used for communication with
other computer systems.

The 15 jobs holding control points can

compete for the use of the CPU, although
only one job can actually be executed by the
CPU at any one time. A control point may be

in one of five states: Cl) executing with
the CPU, (2) waiting for the CPU, (3) wait-
ing for a PPU activity to complete, (4) wait-
ing for some operator action, or (5) rolled
out [7].

The priority given a job depends upon
what state of processing it is in. Initially,
a job receives a priority depending upon its

type. Batch is the lowest in the hierarchy
with a priority of 1000. All interactive
job commands and requests for execution have
a 3000 priority. Graphics has the highest
priority which is 6000; an exception is that
operator assigned priorities may range as
high as 7000. Once a job enters the CYBER
74, it passes through several stages before
execution is completed; at each state, prior-
ities are increased by an "aging factor"
which is based upon the amount of time spent
waiting. In this way, lower priority jobs
can eventually compete on an equal basis for
execution with jobs of the same type.

It is interesting to note that although
INTERCOM and graphics hold only three of the
ten available control points for jobs, they
could use significantly more than 30 per
cent of the CPU's time, since they have a

higher priority than batch, As a result,
interactive and graphic requests can and do

affect the performance of batch jobs,

3. Data Collection System

A software program, Dayfile, which is

maintained during normal processing by the
Network Operating System/Batch Environment
(NOS/BE) operating system collects the

accounting information for the CYBER 74 com-
puter system resources, This program is

primarily used to charge users for computer
resources, but the measurements obtained
may also be helpful in assessing computer
system performance and workload measurement.
The Dayfile data are saved on magnetic tapes
and stored on a regular basis as a record of
each day's activities. Unlike most software
monitors which are active for only short

41

periods of time, the Dayfile program is exe-
cuted continuously by the operating system
[29]. Three categories for the data are:

(1) Identification data which includes
the job name, name of person sub-
mitting the job, origin of the job
and account number.

(2) Computer system resource requests
and usage which include CPU time,
PPU time, number of tape drives
requested and used, I/O time, CPU's
generated, and rollout time.

(3) Initiation and termination time
which include time of day a job
entered and exited a control point,
and time a job entered the input
queue.

3.1. CLARA

The Computer Load and Resource Analysis
(CLARA) System is a software orogram which
extracts specific information from the Day-
file data to a much smaller data base. These
data are stored on magnetic tapes and may be

processed to obtain additional information.
Data from the CLARA tape are well suited for
use in constructing a workload characteriza-
tion and in evaluating the performance of
the CDC CYBER 74 in that a wide range of
parameters are available.

In order to be valid, the CLARA data
must be analyzed carefully so that such prob-
lems as large numbers of system initializa-
tions and erroneous data are eliminated to

avoid distorting the results, The time
period investigated must be long enough to

take into consideration the stability of
the workload and operating system. Boeing
Computer Service which supports CLARA, re-

commends a statistical base of about one
month in order that the Dayfile data pro-

vide an adequate representation of system
and job characteristics. The days and weeks
of the time period under investigation may
be analyzed individually once a base of
sufficient time length has been obtained.

3,2, Statistical Package for
the Social Sciences

The Statistical Package for the Social
Sciences, a validated and tested computer
program, was selected to calculate the work-
load statistics presented in this paper.
The SPSS system of computer programs repre-
sents more than ten years of designing and
programming, and has been valuable to social
scientists, statisticians, and computer
specialists [21]. Use of this package

offers the advantage of reducing the amount
of coding effort needed to process the CLARA
parameters.

4. Workload Characterization

A variety of techniques may be used to

evaluate the performance of a computer sys^
tem. Such techniques include analytical

modeling, simulation, and experiments on

the existing system. For these techniques

the representative^ workload should he

stable and reproducible in order to maintain
consistency during performance evaluation;
it should be flexible in order that the

characteristics of the representative work-^

load may be varied [263, This ts necessary
since there can be a wide variation in

actual workloads CS]. In addition, it may
be necessary to represent the wide varia-
tions in the actual workload by separating
it into different classes based upon speci-

fic workload characteristics. A potential
pitfall, however, in simulating the actual
workload is that the representative work-
load may not adequately represent the actual

workload; it may not be possible to design
certain characteristics of the actual workT^

load into the representative workload £3011,

An alternate method that can be used

in separating the workload into different
classes is to use the clustering techniques
described by Agrawala and Mohr [2]. This

approach generates joint probability den-

sity functions. Thus, workload parameters
such as CPU, I/O, and memory used would
give a joint probability density function
where the parameters are considered simulrv

taneously.

In this paper several workload classes
are characterized by the type and amount

of resources which are used by a computer
system to satisfy requests from users '~ pro-
grams [2811. For example, some workload
characteristics are central processor unit
(CPU) time, input/output {I/O) and memory
requirements. The values of these job
parameters can be used to quantify the

representative workload by analyzing the

distribution of demands upon individual
system resources,

4.1. Workload Characteristics

The methodology for characterizing
the CYBER 74 workload uses statistical
techniques to measure and categorize the
accounting data by type and amount of
resources. A two step approach is used in

this paper.

First, each day of accounting data is

characterized by resource usage; a number
of variables are selected from the account-
ing data as representative of the actual

workload. These variables^ reflecting the
suggestions of several authors, appear
appropriate for a workload characterization
[12, 27]. The parameters in table 1 were
used to characterize the workload.

Table 1, Parameters Used in Workload
Characterization (All measure-
ments of time are in seconds)

Name Description

CPTIME The central processor time needed
to process a job.

PPTIME The peripheral processor time
needed to process a job,

TIMEIO The total input/output time needed
to process a job.

TOTCOST The total job cost in terms of
Computer Resource Units (CRU's).

KWS The memory usage in kilo-word
seconds

.

CPOT The total control point occupancy
time which is the time a job enters
a control point until it leaves a

control point for the last time.

CMLOC The number of central memory loca-
tions occupied by all jobs includ-
ing this job at the time this job
left a control point.

CPLOC The number of control points
occupied by all jobs including
this job at the time this job left
a control point.

^A representative workload should faithfully represent the real workload.

^The variables used depend on the objective of the study being done.

42

ROLLOUT The total time that a batch job
was rolled out for processing
magnetic tapes,

LATIME The total time between this batch
job and the last batch job to

arrive into the Input Queue.

INQTIME The time a batch job spends in

the Input Queue.

TAPEREQ/ The number of tapes requested/
TAPEUSED used per job.

Second, the variations in the workload
among the different days are categorized
by separating the days of data into two

classes based upon CPU time and memory
usage. Although other classes could be

formed, this paper focuses upon these two

classes as an initial effort to charcterize
the CYBER 74 workload.

Graphical plots are used to consoli-
date data in an easily readable fashion.
Frequency histograms are used to illustrate
the usage pattern of a variable or its

frequency of occurrence over a range of
values. In addition, a timeT>series pattern
is plotted in order to display variable
usage through time, The time series plots

are used as an indication of an increase
or decrease in the components of the work^
load.

0. Performance Measurements

Measuring the effect of workload varia-
tions upon the performance of a computer
system is a complex task because there is

no generally accepted measure of perfor-
mance. The main difficulty can be traced
to the absence of acceptable criteria upon

which the performance can be optimized tl93,

One approach to selecting an appropriate
measure of performance involves investigate?

ing the mission of operational objectives
of an organization [411. An effort should
be made to select a performance measure
consistent with those objectives, However,
a problem exists when goals of the organi-
zation are broad and not specifically stated;
finding a performance measurement which is

universally acceptable may be difficult or
impossible.

The overall mission of the Aerospace
Systems Division CASD) computer center is

stated below.

43

(1) To provide centralized computer support
to the AFSC/AFIT organizations.

(2) To develop improved computer techniques
and procedures.

(3) To program and operate the general pur-
pose digital, analog, and hybrid compu-
ters.

(4) To act as the ASD focal point for compu-
ter support, acquisition, and utiliza-
tion.

The ASD mission as stated above is rela-
tively broad, and it would be exceedingly dif
ficult to select a single adequate measure of
performance. Therefore, turnaround time and

an economic measure called Computer Resource
Unit were selected as performance measures
for CYBER 74.

5.1. Turnaround

Turnaround has been defined as the time

from when a batch job enters the computer
system to the time when output from the job
is received [17, 25]. This measure in-

cludes the man-machine interaction, which is

outside the scope of this paper. Therefore,
in this paper, turnaround time will represent
the machine turnaround time, which is the
time between a batch job entry into the input
queue and the last time the job leaves a con-

trol point,

5.2. Economic Performance

A measure of economic performance can

be derived from the Computer Resource Utili-
zation (CRU) algorithm. The ASD Computer
Center uses a measure of resource usage, the
CRU, to charge usage since it is a weighted
measure of CPU time, I/O time, and central

memory occupancy time. The total cost of a

job is calculated by charging $0.06 for each
CRU generated by a user's program. A more
general description of economic and account-
ing measures is discussed in Reference 16.

The Computer Center algorithm for compu-

ting CRU's is described in an ASD letter

dated 14 June 1976, "Charges for Use of the

ASD Computer Center's CDC 6600 and CYBER 74

Computers." The algorithm is as follows:

Number of CRUs = a^CPTIME + ag TIMEIO

n

+ a3
^

(CPTIME^. + TIMEIO.)CM

where CPTIME = the total CPU time needed to
process the job in seconds.

TIMEIO = the total I/O time used by
the job to include total tape
channel and disk access time
in seconds,

CPTIME. = the CPU time during the ith
stage of processing,

TIMEIO. = I/O time during the ith
stage of processing,

CM. = number of central memory
locations (octal) required
during the ith stage of pro-
cessing,

n = number of stages of process-
ing.

ai = CPTIME cost percentage ratio
per second = .3598/sec,

32 = TIMEIO cost percentage ratio
per second = .5418/sec,

33 = CM percentage cost ratio per
100,000 (octal)-word
second = . 3936/1 OOK- word sec,

6. CYBER Workload Trend Analysis

The available CLARA accounting data en-
compassed more than six months of background
information which was recorded on magnetic
tape. This historical data was the base for
an investigation for workload and perfor-
mance trends on both a long term (days) and
short term (hours) basis. The results of
the trend** data were then used to select a

time period and specific days for further
investigation.

Four performance measures were examined
for a six month investigation period which
included normal weekdays only. These per-
formance measures, total jobs executed per
day, CPU utilization per day, machine turn-
around time per day, and average CPU's per
hour for each day were selected because they
were representative of the available account-
ing data. Weekdays were selected since a

majority of the complaints about slow re-
sponse time and turnaround time occurred
then.

The following schematic diagram shows
one way of viewing the relationships between
the four performance measures that were
examined,

COST (CRU)

t

LOAD Cno, of Jobs) ^ COMPUTER ^ SERVICE
FACILITY (Turn-

^ around)

UTILIZATION
(CPU)

The observations below were made from
figures 1-4; table 2 lists the days which
were used in the trend analysis,

(1) The total jobs executed per day
(fig 1) ranged from 850 to 1700.
Since the INTERCOM jobs were rela-
tively constant, the total number
appeared to be a function of the
number of batch jobs.

(2) The CPU utilization (fig 2) showed
an overall increasing trend which
began on the 37th day (23 June
1976) of the investigation and con-
tinued until the 95th day (15 Sep-
tember 1976). Utilization ranged
from 41 per cent to 88 per cent,

(3) The machine turnaround time, the
time from job entry into the input
queue to the final exit from the
control point (fig 3), varied from
a daily average of 0.25 (9 July) to

1,70 hours per job (7 October),

(4) The average CPU's per active hour
(fig 4) ranged from zero to 1200
CPU's per hour for INTERCOM jobs.
Batch jobs, more variable in pro-
duction, ranged from 2600 to 5500
CPU's per hour. In order to nor-
malize the measure, CRU's produced
per hour were measured rather than
CRU's produced per day.

Further, trend analysis over longer
periods of time may also confirm weekly,
monthly, and quarterly cycles; the trend data
appears to be periodic. For example, the
workload upon the computer system appears to
be heavier at the beginning of a week. On a

quarterly basis, the number of jobs tends to

"^Trend is used here as a tendency in the data to increase or decrease over time and not as a
functional trend or as statistical trend analysis.

44

o Xo
3O O o (0
UJ q: a: r-X u. 0)
UJ t-

M ^ (O ec
CD o UJo St: Ol CO
-> UJ o

Ul 1-
-1 3C o
tr a o

oe z:
o UJ »•«

t- Q. cn

o

[-~ >-
CE

UJ
>

lA tiJ

zou

>1

T3

I.
(U
Q.

O

O
(->

>>
I

—

c
<o

•a
c
<u
s-

0)

D1

45

46

47

48

Table 2. Trend Analysis Days and Dates

Days Dates Days Dates

1-5 1 to 5 May 64-68 2 to 6 Aug

6-10 10 to 14 69-73 9 to 13

11-15 17 to 21 74-78 16 to 20

16-20 24 to 28 79-83 23 to 27

21-24 1 to 4 Jun 84-85 30 to 31

25-29 7 to 11 86-88 1 to 3 Sep

30-34 14 to 18 89-92 7 to 10

35-39 21 to 25 93-97 13 to 17

40-42 28 to 30 98-102 20 to 24

43-44 1 to 2 Jul 103-106 27 to 30

45-48 6 to 9 107 1 Oct

49-53 12 to 16 108-112 4 to 8

54-58 19 to 23 113-116 12 to 15

59-63 26 to 30 117-121 18 to 22

122-126 25 to 29

Table 3. Days Scheduled for Investigation

Day Date Day Date

1 27 September 10 18 October

2 28 September 11 19 October

3 29 September 12 20 October

4 30 September 13 21 October

5 7 October 14 22 October*

6 11 October 15 25 October

7 12 October 16 26 October

8 13 October 17 27 October

9 14 October 18 28 October*

Excluded from further investigation as non-representative.

49

increase and decrease as the (academic) quar-
ter begins and ends at the Air Force Insti-
tute of Technology (fig 1).

Several days were selected for further
investigation as seen in Table 3. The num-

ber of days was limited to 18 due to the

amount of data to be processed. The days

were selected to be representative of average
performance^ as well as extremes in perfor-
mance. In order to minimize the effects of

changes in the computer system, such as

changes in the operating procedures and com-

puter center personnel the days were gener-

ally grouped within a 30-day period. The
investigation period ranged from the 103rd
day (27 September 1976) through the 125th

day (28 October 1976),

It should be noted that the variation
in the INTERCOM CRU's generated from the 96th

through the 125th day in figure 4 was
caused by a change in the accounting method
for this parameter rather than by a change
in the performance measurement of the CRU's
per hour.

In order to eliminate nonrepresentative
data, the criterion was established that a

day would not be included in the investiga-
tion if malfunctions of the central computer
site resulted in idle time for that day which
comprised four per cent or greater of total

active time; none of the days were excluded
due to the extremely low number of jobs
recorded on the CLARA tape. The remaining
16 days were used as a data base for the

investigation.

During the period of exploratory inves-
tigation, the entire 24-hour day was studied;
however, it was necessary to narrow this

time period because the maintenance of the
computer system, which is periodically

scheduled at midnight for several hours, was
biasing the results obtained. For example,
the number of CRU's generated per day varied
widely depending upon the number of active
hours. A second approach was attempted which
focused upon the 0800 to 2400 time period,

Several problems were encountered, and it

was decided to reduce the period of study to

a more specific workload, the hours from 0800
to 1600, for the following reasons;

(1) The largest number of users are
active on the CYBER 74 during nor-
mal working hours from 0800 to

1600.

(2) Since the INTERCOM activity is re-

latively constant during the day
and tends to be reduced in the
evening, the daytime period is more
appropriate for measurement of the
CYBER 74 multiprogramming mode,
including batch and INTERCOM.

(3) In an attempt to give the smaller
user a faster response and turn-
around time during the day, the
ASD central site withholds until

1600 each day, those jobs requiring
a large number of system resources.

(4) The majority of complaints from
users occur during the 0800 to 1600
time period, and relate to slow
turnaround and response times.

Unless stated otherwise, the remaining
discussion of the results will refer to the
0800 to 1600 time period for the 16 investi-
gation days.

7, Workload Characteristics

For the investigation days, the account-
ing data was grouped on low, medium, and high
days. The workload characterizations were
separated into two job classes based on CPU
time and memory used. The results of this

separation are summarized in tables 4 and 5.

Figures 5 and 6 illustrate sample prob-
ability density functions for the two job
classes, A general observation for the two
job classes is that the workload for the
CYBER 74 generally is distributed bimodally.^

One group, which comprises approximately 80
per cent of the jobs has small KWS requested
or small CPU time, The other group is com-
posed of about 20 per cent of the jobs and
consists of larger jobs which consume large
amounts of CPU time or memory.

The memory term, kilo-word seconds (KWS),

is calculated from the central memory term
(CM) and the constant (ag) given in the costing

^Determining average performance is not a simple problem, It is really a multivariate prob-

lem. Average performance here was taken from observations of the trend data,

^The intervals chosen for the probability density function may have caused the appearance
of a bi -modal distribution.

50

I

Table 4. KWS Workload Characterization

WORKLOAD
PARAMETERS
(AVG VALUE
PER JOB)

25 OCT

Low KWS

Days

14 OCT 1 y UL

1

Medium KWS
Days

27 OCT

High KWS

Days

29 SEP 13 OCT

CPTIME
PPTIME
TIMEIO

24.28
78.36
13.95

22.60
62,36
15.49

23.12
34.53
22.95

23,26
68,21
23.53

35, 17

95,72
1397.72

34. 10

73!83
17.13

TOTCOST
KWS

CPOT

24.08
648.56
1045.16

29.96
701.93
777.24

31.43
888.88
863.50

33.40
1022,81

1234.32

43.55
1397.78
1158.486

35.81

1187.30
1176.29

CMLOC
CPLOC
ROLLOUT

191314
90.32
22.13

124030
94.85
17.37

129792
97.25
27.50

76375
95.27
16.83

202640
92.19
61,29

129083
91.95
41 .82

lATIME
INOTIMF

TAPEREQ
TAPEUSED

40.06
1?Q 74

.052

.052

44.50

.062

.058

49.52
1310.99

.048

.047

42.22
645.79

.050

.050

49.92
799.85

.078

.076

41.49
345.60

.074

.071

Table 5. CPU Workload Characterization

WORKLOAD
PARAMETERS
(AVG VALUE
PER JOB)

11 OCT

Low CPU
Days

20 OCT 7 OCT

Medium CPU
Days

21 OCT

High CPU
Days

29 SEP 27 SEP

CPTIME
PPTIME
TIMEIO

21.67
38.36
17.98

22.13
48.45
24.02

29.31

98.03
881. OS

29.68
72.02
16.34

35.17
95.72

1397.72

35.53
56.62

808.17

TOTCOST
KWS

CPOT

26.75
767.43
903.66

31.00
834.04
1080.86

31 .46

881.25
804.03

29.44
826.16
964.20

43.55
1397.78
1158.486

27.66
816.16
760.25

CMLOC
CPLOC
ROLLOUT

142858
88.20
21.00

187128

95.44
22.33

149777
61.21

22.46

146110

96.42
16.17

202640
92.19
61.29

166231

67.57
16.19

lATIME
INQTIME
TAPEREQ
TAPEUSED

47.28
598.58

.060

.053

46.04
1651.24

.057

.053

65.35
808.29

.059

.055

50.23
831.63

.056

.053

49.92
799.85

,078
.076

44.88
322.38

.073

.067

51

2A3
FUNCTION13 8 PROBABILITY DENSITY

233
228 I CLASS PROB CLASS PROB.

Z23 I 1 • C 7 7 • 11 • 01 16
21 8 I 2 i ft 7 9 1 2 • 0078
213 I 3 . 05«<3 1 3 • 00 39
?08 I <«-

n T "y c
• 0 33d 1 f « 01 U J

20 3 T 5 t 0 233 4 Clb rt n c o

I b « 0 258 lb • Oluo
I 7 • u 1 h2 17 .0129

188 I B . 0 Zo• 18 . 0 065
18 3 X 9 « 0 loo 19 .0013
178 I 10 • 0129 20 . Slt+O
17 3 T

1
**'

1^8 I
T

136 1 I

T

1 ? ftX u t>
TX

123 I

11 8i X o I

X X T

10 ftX V w TX

103 I

98 TX

J o TX

u o TX

ft TX TX

f o TX TX

c O T1 TX

O 0 TX TX
DO TX TX

7 O TX TX
T TX

ti. Ato T
1

TX
a 1 TX TX

oo T TX TX
33 I I 1
28 I I I
C V TX 1 TX I
18 I I 1 I I r I

13 I I I I I I I I

8 1 I I I I I III I I I 11
3 I I I I I I III I III I I I I I

CLASS 2 4 & 8 10 12 If 16 18

EACH CIASS REPRESENTS AN INTERVAL OF 25.0 KWS

Figure 5. Distribution of KWS for 13 October.

52

212
207
202
197
192
187
182
177
172
167
162
157
152
1<»7

ikZ
137
132
127

CO 122
§117
^ 112
& 107

I 97

I 92
» 87

82
77
72
67
62
57
52
k7
i»2

37
32
27
22
17
12
7
2

PROBABILITY DENSITY FUNCTION

CLASS PROB. CLASS PROB.

1 .4109 11 . oigtf

2 . 0 988 12 . 0136

3 • 0(»2& 13 • 0076

k .0368 Ik • 0039

5 • 0329 15 • 00 97

6 .017'» 16 • 0116

7 • 0 233 17 • 0136

8 .0116 18 , 0039

9 • 0136 19 . 0097

10 • 0136 20 . 2035

I

III
III I

I I I I I

I I I I I

I I I I

I I I I I I I I I I I I

CLASS 2 k 6 8 10 12 m 16 18 20

EACH CLASS REPHESENTS .AN INTERVAL OF 2.0 SECONDS

Figure 6. Distribution of CPU time for 29 September.

53

algorithm in section 5.5. It is a good
representation of memory used by job requests,

8. Obtaining Continuous Probability Functions

A technique for taking a series of ob-

servations and obtaining probability density
functions from the observations is presented,

The customary way of organizing data

derived from observations is to display them

as a frequency distribution, which shows the

number of times the variable falls in dif-
ferent intervals. Table 6 on next page is

an example of this technique. The data used

in this section is for 13 October 1976,

which was the day having the highest CRU^s
generated.

A series of straight line segments

drawn through the points in the frequency
table (fig 7) can be taken as an approxima-
tion to the cumulative distribution function.

as a French curve or by forcing a flexible
elastic bar to pass through the desired
points. The mathematical analog of this
flexible elastic bar is the cubic spline
function. A cubic spline with knots Xq.Xi,
...Xp is a piecewise cubic function with
values f(x-j) specified at the knots and such
that first and second derivatives of the
spline are continuous on [xgjXn]. The natu-
ral cubic spline is a cubic spline with the
additional conditions that the second deriva-

tives vanish at Xg and Xp.

The subroutine DCSEVU also from the IMSL
package will evaluate the first derivative
of the cubic spline function. Using the
values of table 6 as the given set of data
points, the subroutines ICSSCU and DCSEVU
were called in succession. The plot of the
derived probability density function is given
in figure 8.

ID.DD

KNB
^D.DD

Figure 7. Cumulative distribution function

The respective probability function can

be derived by plotting the slope of the

cumulative distribution function. The com-

puter subroutine package called International
Mathematical and Statistical Libraries (IMSL)

was used to derive the probability density
functions. The subroutine ICSSCU from the
IMSL package will give a smooth cubic spline
function along a given set of data points,

A smoother interpolating function can
usually be produced by mechanical means such

.DD ID.DD

KNB
ED.DO

Figure 8. Probability density function

The first observation that can be made
from the two graphs is the occurrence of a

hump in the data at the end point interval,
which contains all occurrences greater than

20 KWS.

The first analysis consisted of making
tests to see if the large requests for KWS
occurred during certain time periods. The
results of the tests indicated that large
requests were not made during any specific
time period other than those occurring ran-
domly during the 0800-1600 time period.

The next analysis consisted of breaking
the information according to the amount of
KWS required into two sections. Table 7

gives the intervals for the frequency dis-
tribution when divided into two sections.
Figure 9 shows the cumulative distribution
graphs.

54

Table 6. Frequency distribution for KMS of memory used

MEMORY NUMBER RELATIVE PROBABILITY CUMULATIVE

(KWS) OF JOBS FREQUENCY DENSITY DISTRIBUTION

0 149 .3253 .3253 .3253

1 57 . 1245 . 1245 .4498

2 30 .0655 .0655 .5153

3 18 .0393 .0393 .5546

4 12 .0262 .0262 .5803

5 14 .0306 .0306 .6114

6 6 .0131 .0131 .6245
7 10 .0213 .0213 .6463

8 7 .0153 .0153 .6616

9 3 .0066 .0066 .6681

10 1 .0022 .0022 .6703

11 2 .0044 .0044 .6747

12 7 .0153 .0153 .6900

13 7 .0153 .0153 .7052
14 8 .0175 .0175 .7227
15 3 .0066 .0066 .7293

16 5 .0109 .0109 .7402
17 5 .0109 .0109 .7511

18 2 .0044 .0044 .7555
19 112 .2445 .2445 1.0000

55

Table 7. Frequency distribution for KWS of memory used when separated into two sections

ikjifii/iAn uMEnURY NUMdLk n CI AT T \/ rrRLLA 1 1 Vh nnnDADTi ttvRKUbAtSlLi 1 Y
r\ iMi II A T T \/rLUMULA 1 1 Vh

(KWS

)

OF JOBb rREmJENCY nCMC T TVUENbl 1

Y

ntCTDTDIITTAM

0
i\ ocn

. 4^:Dy /I OCQ /I OCQ
, 4«:by

1 b/ , 1 0 J J , 1 b J J con"?
, byuo

2
OA30 nocn

. OooO nocn
. UobU C7CO

J
1 o
lo

nc 1
, Ub 1 0 nc 1 a

, Ub 1 b 707 T
, I CI 0

/I 1 o
. Uj44 . Uo44 , lOCC.

r
0 1 /I

1

4

. U4U 1

n/im
, U4U 1

r
0 D m 70 m 70 PI QC
"7

1
1 n
1 U noo7 nOD7

, o4o 1

oO 7 nom nom
, UiiU 1

QCQO
, 0X30C.

y
0o nn nnoc

, UUJb , o/bo
1 U 1

nnoQ
, UUiiy nnoo

, uUiiy , c/y/

1 1

o
<:

nnn 7
, UUb/ nnc 7

. UUb/ , oob4
1 C 7 nom

, UdU 1

nom
. U^lU 1 , yub4

1 i
7 nom

, UiiU 1

nom
, U^iU 1 t y^ibb

14 8 ,0229 .0229 .9434

15 3 .0036 .0036 .9570

1 D
r
b

m /I 0
, U 1 4o m /I Q

. U 1 4o 071 "3

, y / 1 o

1 / b m /I
"3

, U 1 4o m /I Q
, U 1 4o , yob /

1 O
lo

o nnc 7
, UUb/ nnc 7

. UUb / , yy 1

4

1 y 6 , UUoD nn'3c
, UUob 1 r\f\c\r\

1 , UUUU

on "3/1J4 "3110
, o 11 y

"3110
, 0 1 1 y •3110

/I n 07LI 0/177 0,1 77
, DOaD

bU 1 O . 1 bb 1

1 <;ci
, 1 bb 1

70/1 Q
. / d4o

onoU Q no7c;
. \jc 1 b 7t;o "3

, loco

1 UU b 7QQ0
oo n7 o/i

. U/ o4 n7 "j/i
. U/o4 Q71 C

, o/ 1 b
1 /I n
1 4(J

o moo
, U 1 o J m 0*3

, U 1 oo , ooyy
Ten no7c no7C

. U(i/b Q1 7/1
, y 1 /4

T on
1

nnno
, uuy^:

nnno
, uuy<: . y^ibb

onn 0 m 0*3
, U 1 oo m Q '3

. U 1 oo Q/l cn
. y4bu

oon
1

nnoo
, uuy^:

nnoo
. UUy;: . yb4

1

0/1 n 0
d.

m D T
. U 1 oo m D Q70C

, y /lib

ocn U nnnn
, uuuu nnnn

. UUUU Q70C
, y /£b

oon
1

nnoo
, uuy^ nnoo

, uuy^ QQl 7
. yo 1 /

1
1

0009
, yyuo

320 0 ,0000 .0000 .9908
340 0 .0000 ,0000 ,9908
360 0 .0000 . 0000 .9908
380 0 ,0000 .0000 .9908
400 1 .0092 .0092 1 , 0000

56

Figure 9. Cumulative distribution functions separated

Figure 10. Probability density functions separated

57

Figure 11. Cumulative distribution and probability density functions
for total period not separated into two sections

Figure 12, Cumulative distribution functions separated into two sections

58

ru-i

ID.DD

KN5
ED.DD

KW5
ao.DD

,

HD.DD

Figure 13. Probability density
functions separated into

two sections

The respective probability density
functions are given in figure 10.

Often, there is interest in the general

trend of a workload parameter over the

total period under investigation rather
than just for a specific day. The same
technique and interval sizes used for
figures 7-10 were applied to the total

16-day period under investigation. Figures
11-13 show the results for the total 16-

day period. The graphs (fig 12 and fig

13) for the 16-day period illustrate there
can be some inaccuracies if one specific
day's information (fig 9 and fig 10) is

used to model the total period. Graphs
for some other specific days were plotted.
Those graphs were more inaccurate than the

day given in figures 9-10 as a representa-
tion of the total period.

These probability density functions
could now be used in a simulation model or
mathematical model that is evaluating per-

formance of the CYBER 74 when KWS of memory
used is a parameter being considered. If

a particular mathematical function was
being used as the probability density func-
tion, it should now be plotted and compared
to the functions generated from the observed
data. This would assure that the assumed
mathematical function is a good approxima-
tion to what is actually occurring in the

real model

,

9. Performance Measurement

An analysis of the turnaround time and

CRU generation performance measures was con-
ducted for each day in the time interval

0800-1600.

9.1. Turnaround

The first performance measure is based
upon the average turnaround per batch job
for the eight-hour period from 0800 to 1600.

The range of values is shown in table 8.

The average machine turnaround time
(ITURN) ranged from 1189.74 seconds (19.8
minutes) to 3176.835 seconds (53.0 minutes)
for jobs which were basically the same size

in terms of CPTIME, PPTIME, TIMEIO, and KWS.

For all of the investigation days, the

average turnaround time for a batch job was

28.3 minutes.

The slower turnaround could be a re-

sult of the computer system being saturated
with jobs. As an example, on slower turn-

around days, the time spent by a job in the

input queue waiting for processing and the

number of control points filled for a job
were larger than for jobs on days with fas-

ter turnaround. Faster turnaround appeared
to be proportional to faster throughput
time and inversely proportional to CRU's
per hour (fig 14). Future investigation
into INTERCOM turnaround time and response
time may further explain these relationships.

The average turnaround per day for all

the days investigated was 28.3 minutes.

59-

Table 8. Turnaround Summary

woRk 1 nan Slow Turnaround Medium Turnaround Fast Turnaround
PARAMETERS Days Days Days

(AVERAGE VALUES) OU Ol- r 90 OCT ?R ^FP 1 Q on 21 OCT 14 OCT

rPTT MF 29.15 22.13 34.43 23.12 29.60 22.60
PPTIME 83.78 48.45 66.50 34.53 72.02 62.36

TIMEIO 1056 61 24. 02 839.96 22 .95 16.34 15.49

36.52 31 .00 32.49 31 .43 29.44 24.96
KWS 1056.70 834.04 839.98 888.88 826.16 701 .93

CPOT 1103.85 1080.86 1142.59 863.50 964.20 777.24

CMLOC 180053 187128 51228 129792 146110 124030
CPLOC 91 .83 95.44 94.86 97.25 96.42 94.85

ROLLOUT 42.15 22.33 41 .63 27.50 16.17 17.37

I ATI ME 101.36 46.04 69.83 49.52 50.23 44.50
INQTIME 1533.99 1651 .24 1218.00 1310.99 931 .63 576.55
TAPE RE

Q

.097 .057 .093 .048 .056 .062

TAPE USED .094 .053 .092 .047 .053 .058

PERFORMANCE
MEASURES
(AVERAGE VALUES
PER HR UNLESS
STATED OTHERWISE)

JOBS/8 HRS 639 825

TURNAROUND/JOB 3176.84 3081 .54

THRUPUT 79. 8 103 .13

BATCH JOBS 43.00 62 .38

INTERCOM JOBS 36.00 42 .00

CPU UTIL 62.00 61 .60

PPU UTIL 182.20 136 .30

CPUS 2825.90 3126 .80

BATCH CRUS 1362.10 1529 .00

INTERCOM CRUS 1463.80 1597 .80

728 899 942 936
2726.35 2544.44 1752 .68 1189 .73

91 .00 112.38 117 .75 117 .00

50.38 63.88 76 .38 72 .25

40.25 44.50 39 .88 44 .00

79.30 68.90 79 .20 67 .70

164.80 105.40 143 .50 149 .80

2718.30 3422.80 3216 .70 2644 .10

1633.70 1913.60 2177 .70 1776 .80

1084.60 1509.50 1039 .00 867 30

60

il

-to

-CD

to
>-
a:Q

GC

-to CO
IxJ

OO'OOl 00*09 00*02 00*03- 00'09-

X W y3d indHOnO^Hi OAd

00 'tV 00*^.2 DQ'L 00*61- 00*85-

9or y3d ONno^bNyni oau

00 '023 OO'OSV OO'OBS OO'OTS 00*0^2

7 ,0T* dnoH y3d sn^o aoB^aAb

3
Q.

cn
3
O
S-

c
to

T3
c
3
o
I.
<o
c
3

Z3
Ofo

c
o
</>

•r—

t.
(O
a.
E
oo

at

3

I

61

Figure 15. Average turnaround per hour for 24 hours (30 September)

62

—j-

1225 I
1199 I
1 173 X
ll'<7 1

1121 I

1095 r
1069 1
10^3 I

1017 I

991 I
965 I
939 I
913 T

887 I

861 X I
835 I I

^ 809 I 1
7. 763 I I
" 757 I I
\ 771 I Tm

2 705 I I
67^ 1 1

q: 653 T 1

2 627 I I I
^ 601 I 1 1
H 575 I I T I

I I T T I 1
523 I I t t X I

^+97 I I 1 1 T J
i '71 I I I I I I

'f't5 I I I 1 I I
u. t»i 9 I r 1 I 1 I

393 I 1 I 1 I 1
367 I I 1 I X 1 I 1
Sifl I I I I X I I 1
315 I I I 1 I I I J
239 I I 1 I 1 I I I 1
26 3 I I x I I I I I I
237 I I I I I 1 I I 1
211 1 I I I I I I I I I

1S5 I I I I I I I T I I I 1
159 I I I II I I I I I r 1

1

133 I I 1 I II r I I I I r T I

107 I I I I I I I I I T I I I I I I I
81 I I I I I I Z I T X I I 1 T I I I I
55 I I I I Z I I I I I 1 I I I I I I I I I

29 I I I I I I I 1 I I I I I I I I I I I I
3 I I I I I I I I I I I I I I 1 I I I I I I

CLASS 2 6 8 10 13 20 22

CLASS- ^0 MIN/UI^IT

Figure 16. Average turnaround per hour for 24 hours (14 October).

63

Table 9. CRU Summary

WORKLOAD Low CRU Medi um CRU High CRU
PARAMETERS Days Days Days
(AVERAGE VALUES) 7 OCT 14 OCT 29 SEP 26 OCT 19 OCT 27 OCT

CPTIME 27 .31 22 60 35 .17 22 89 23 .12 23 .26

PPTIME 98 03 62 36 95 .72 33 .71 34 .53 68 .21

TIMEIO 881 05 15 .49 1397 .72 18 .65 22 95 23 .53

TOTCOST 31 .46 29 .96 43 .55 28 .02 31 .43 33 40
KWS 881 .25 701 .93 1397 .78 806 .09 888 .58 1022 81

CPOT 804 .03 777 24 1158 .486 933 .11 863 50 1234 .32

CMLOC 149777 124030 202640 174853 129792 76735
CPLOC 61 21 94 .85 92 .19 97 .81 97 25 95 .27

ROLLOUT 22 46 17 .37 61 .29 18 .10 27 50 16 83

lATIME 65 .35 44 .50 49 .92 54 .34 49 .523 42 22

INQTIME 808 29 576 .55 799 .85 525 .54 1310 .99 645 79
TAPEREQ .059 .062 .078 .031 048 050
TAPEUSED .055 .058 .076 .031 047 .040

PERFORMANCE
MEASURES
(AVERAGE VALUES
PER HR UNLESS
STATED OTHERWISE)

JOBS/8 HRS 764 936 525 904 899 863

TURNAROUND/JOB 1912.84 1189.73 1638.52 1355.74 2544.41 1567.16

THRUPUT 95.50 117.00 65.63 113.00 112.38 107.88
BATCH JOBS 50.13 72.25 40.75 67.50 63.88 68.00
INTERCOM CRUS 43.63 44.00 26.50 44.63 44.50 38.50

CPU UTIL 66.90 67.70 65.70 70.00 68.90 72.90
PPU UTIL 202.70 149.80 166.00 102.60 105.40 191.30

CRUS 2477.90 2644.10 3017.60 3073.30 3422.80 3345.10
BATCH CRUS 1680.00 1776.80 1849.80 1804.00 1913.60 2059.20
INTERCOM CRUS 797.90 867.30 1167.80 1269.30 1509.50 1285.90

FIGURE OF MERIT .000589 .001693 .002678 .000587 .000324 .000460

64

OO'Ot'B 0Q'09l 00*08 00 •0^

X |0I«

OO'OOl OO'S^ OO'OS 00*32 00 •0

o ynoH y3d ggor HOiua

00*001 OO'SZ. OO'OS 00*32 00 •0

55

In figures 15 and 16, the extremes of aver-
age turnaround per day are presented for com-
parison. Slowest average turnaround (52.9
minutes) was on 30 September and fastest
average turnaround (19.8 minutes) was on

14 October.

The backlog on the turnaround in both

histograms reflects the number of jobs
which enter the computer system at the 0800,
1200, and 1600 periods.

9.2. CRU's

As may be seen in table 9, there is a

wide range of total CRU's for the eight-
hour period on the various days investiga-
ted.

For the overall investigations, average
CRU's per hour for the CYBER 74 computer
system was 3001.21; the range of CRU's was
from 2477.93 to 3422.78. In terms of this
class of workload, the workload parameter,
CPLOC (control points) appeared to be relat-
ed to CRU's. The days with high CRU's
were the ones where more control points
were assigned.

As seen in figure 17, the number of
CRU's appears to depend upon the number of
batch jobs and upon the number of CRU's
generated by the batch jobs. INTERCOM jobs
and INTERCOM CRU's are relatively constant,

10. Conclusions

In this paper, the workload for a num-
ber of investigation days was analyzed by
several measurement tools. The techniques
and tools used are general and could be

applied to any computer workload study.

A brief description of the normal oper-
ations of the target computer system was
given. Particular attention was given to

the assignment of priorities to various job
classes in the system,

The measure of a computer system's per-
formance can be given as how effectively and
efficiently the system uses its resources to
accomplish its objectives. The objective
function as perceived by the management of
the ASD Computer Center for the CYBER 74

was presented. The objectives were rela-
tively broad, and it would have been exceed-
ingly difficult to select a single adequate
measure of performance. Thus, memory used,
CPU utilization, computer resource units
used, and total number of jobs executed per
day were selected as performance measures.

A description of the CLARA software
program used to collect accounting data for

the computer system was given. Problem
areas such as elimination of incorrect data
and the number of investigation days to be
used were considered.

The accounting data parameters from
CLARA provided an adequate source of infor-
mation from which selective parameters were
chosen. The parameters were then treated
as univariant functions and time series
plots were presented for the parameters.
The parameters were also subjected to nu-
merical derivations to produce cumulative
distribution and probability density func-
tions. Tables and figures were used exten-
sively to illustrate the workload parameters
and performance measures.

References

[1] Agrawala, A.K., J.M. Mohr, and R.M.

Bryant. ''An Approach to the Workload
Characterization Problem." Computer ,

9:18-32 (June 1976).

[2] Agrawala, A.K., and J.M. Mohr, "A Model
for Workload Characterization," Pro
ceedings of Symposium on Simulation of
Computer Systems , 3, 9-18 (1975).

[3] Bard, Y. "Performance Criteria and
Measurement for a Time-Sharing System."
IBM Systems Journa l, 10: 193-216

T'1970.

[4] Bell, T.E., B.W. Boehm, and R.A. Watson.
Computer Performance Analysis: Frame-
work and Initial Phases for a Perfor-
mance Improvement Effort . Rand Tech-
nical Report R-549-1-PR. Santa Monica:
Rand Corp., November 1972.

[5] Bell, T.E. Computer Performance Analy-
sis: Measurement Objectives and Tools .

Rand Technical Report R-584-NASA/PR.
Santa Monica: Rand Corp., February
1971

.

[6] Blitt, William J. et al , The Advanced
Logistics System CYBER 73: A Simulation
Model . Masters Thesis. Air Force Insti-
tute of Technology, Wright-Patterson
Air Force Base, Ohio: December 1975.

AD/A 019841

.

[711 Conti , D.W. "A Case Study in Monitoring
the CDC 6700 - A Multi -Programming,
Multi-Mode System." Proceedings of
Eighth Meeting of CPEUG , 115-118.

(4-7 December 1973).

66

[8] Control Data Corporation. Scope
Integrated Scheduler Tuning Guide Pro-
gramming Systems Bulletin . Pub. No.

60493500. Sunnyvale, CA. : CDC, 1975.

[9] Control Data Corporation. 6000 Series
Introduction and Peripheral Processor
Training Manual . Publication Number
60100000. Minneapolis, Minnesota;
Control Data Corporation.

[10] Dodson, P.O. Control Data Corporation ''s

CYBER 70: Procedures for Performance
Evaluation . Masters Thesis. Air Force
Institute of Technology, Wright-Patter-
son Air Force Base, Ohio: May, 1974,

[11] Drummond, M.E. "A Perspective on System
Performance Evaluation," I BM Systems
Journal . 8, No. 4: 252-261. (1969),

[12] Esposito, J.E, Statistical Analysis to

Determine Diciital Computer Workload
Characteristics . Bedford, Massachusetts:
Mitre Corporation, June 1974. AD 786061.

[13] Esposito, J.E. and K. Sreenivasan, ^
Semi-Empirical Approach for Evaluating
Computer System Performance . ESD-TR-
73-297. L,G. Hanscom Field, Massachu-
setts: Deputy for Command and Manage-
ment Systems, December 1973, AD773312,

[14] Gray, M.A. "A Performance Study of the

Multiprocessor Transition in a Large
Computer System." Proceedings of
Twelfth Meeting of CPEUG , 33-39.

(8-12 November 1976).

[15] Gudes, E. and C, Sechler, "Measures
for Workload and their Relation to
Performance Evaluation." Proceedings
of CPEUG : 115-121 (23-26 September
1975).

[16] Hamlet, R.G. "Efficient Multiprogram-
ming Resource Allocation and Account-
ing." Communications of the ACM , 16:

337- 343 (June 1973).

[17] Hellerman, Herbert and Thomas F. Con-
roy. Computer System Performance . New
York: McGraw-Hill Book Company, 1975,

[18] Johnson, R.R. "Needed: A Measure for
Measure." Datamation, 16:22-30, (15
December 1970)

.

[19] Kimbleton, S.R. The Role of Computer
System Models in Performance Evalua-
tion . TR-72-4. Ann Arbor: The Univer-
sity of Michigan, Michigan, Department
of Industrial Engineering, 30 April
1972. AD 746881.

[20] Lucas, H.C., Jr. "Performance Evalua-
tion and Monitoring." Computing Sur-
veys , 3: 79-91 (September 1971)

.

[21] Nie, Norman H., et a^. Statistical
Package for the Social Sciences . New
York: McGraw-Hill Book Company, Inc.,
1975.

[22] Noe, J,D. and G.J. Nutt. "Validation
of a Trace-Driven CDC 6400 Simulation,"
Proceedings AFIPS Spring Joint Computer
Conference , 40:749-758. Montvale, N.J.:
AFIPS Press, 1972.

[23] Pleuler, E.F. Design of a Computer Sys-
tem Performance Measurement Program .

Masters Thesis, Air Force Institute of
Technology, Wright-Patterson Air Force
Base, Ohio: December 1974.

[24] Shetler, A.C. and T.E. Bell. Computer
Performance Analysis: Controlled Test-
ing. Rand Technical Report R-1436-DCA.
Santa Monica: Rand Corp., April 1974.

[25] Sreenivasan, K. On the Use of Account-
ing Data in the Evaluation of Computer
System Performance . Bedford, Mass.:
Mitre Corp., January 1974,

[26] Sreenivasan, K, and J,E, Esposito.
Experiments with the Burroughs B3500
Computer Using a Synthetic Workload .

Bedford, Mass.: Mitre Corp., January
1975. AD/A 004804.

[27] Sreenivasan, K. , et a1 . Construction
and Application of Representative
Synthetic Workloads . Bedford, Mass.:
Mitre Corp., August 1973. AD 769855.

[28] Svobodova, L. Computer Performance Mea -

surement and Evaluation Methods :

Analysis and Applications . New York:
American Elsevier Publishing Company,
Inc., 1976,

[29] Watson, R.A. Computer Performance Analy-
sis: Applications of Accounting Data.
Rand Technical Report R-573-l^ASA/PR.

Santa Monica: Rand Corp., May 1971.

[30] Wood, D.C, and E.H, Forman, "Through-
put Measurement Using A Synthetic Job
Stream." Proceedings AFIPS Fall Joint
Computer Conference , 39: 51-56.

B. COMPUTER SYSTEM ACQUISITION

69

SELECTION OF ADPS FOR THE AIR FORCE ACADEMY:
A CASE STUDY

Robert E. Waters

Air Force Computer Acquisition Office
Hanscom Air Force Base
Bedford, Mass. 01731

This paper reviews the competitive acquisition of a large scale
ADP system capable of supporting numerous interactive terminals while
concurrently processing a large batch workload. The system was de-
signed to act as an educational tool for the cadets while simulta-

neously supporting research in aerospace mechanics, applied mathematics
and other related areas.

Emphasis is placed on the examination of the techniques used in

workload analysis and benchmark development associated with this ac-
quisition. This paper cites examples of sound approaches used in

these two areas and also discusses a major shortcoming in the bench-
marking of teleprocessing systems.

Key words: Air Force Academy; benchmark tests; development of

benchmarks; live test demonstrations; selection of ADPS.

1 . Introduction

As is the case with most other endeav-
ors, the successful acquisition of a large
scale computer system relies on careful pre-
paration and proper execution. Both of

these qualities were present during the
procurement of such a system for the United
States Air Force Academy. Although this
acquisition took place in 1971, many of the
problems encountered at that time and their
related solution are still appropriate today

One of the more significant problems at
that time, which remains with us, is the de-
velopment of a benchmark test that is both
representative and practical. Striking a

balance between these two often conflicting
factors is difficult indeed. Quite often
in an attempt to insure representativeness
one loses sight of the practicality of the
test. Conversely, in an effort to develop
a practical, less costly benchmark test,
the representative quality of the test is
often compromised. This paper will track

the development of the Air Force Academy
benchmark test and comment on the techniques
used to bring about a benchmark that has
been considered both practical and repre-
sentative.

2. Background

The Air Force was among the first to

recognize the computer as an effective man-
agement tool and has committed itself to the
use of computers for a myriad of applica-
tions. An obvious consequence of this fact
was the realization that a need existed for

Air Force Academy Cadets, who would be the
Air Force leaders of the future, to have a

thorough understanding of and appreciation
for computers. To this end the Air Force
Academy has included computer sciences in

its curriculum and has instituted a policy
of supporting other academic studies with
the currently available computer resources.

In the late 1960s it was apparent that
the computer system then installed at the Air
Force Academy was becoming inadequate for the
increasingly sophisticated workload applica-
tions. Upon receiving authorization from
Headquarters Air Force to upgrade their com-
puter capability, the Air Force Academy join-
ed with the Air Force's centralized computer
acquisition office to develop the Request for
Proposal and the related benchmark test.
This team appoach is profitable because it

brings together people who possess extensive
experience in the evaluation and selection
of computer systems with those people who
have the most thorough knowledge and under-
standing of the particular application.

A segment of that team concentrated on
the development of the Live Test Demonstra-
tion. Prior to developing a series of bench-
mark problems a workload analysis was requir-
ed. But even before this could be undertak-
en, the team needed a thorough understanding
of the operational environment.

Data processing in the academic environ-
ment is characterized by large numbers of
student users submitting small programs for
debugging of either syntax or logic errors.
Once a program is running correctly, it is

considered finished and seldom executed
again. However, another workload dimension
is present at the Air Force Academy. The
computer system has to support the analytical
activities of research associates and Academy
students and faculty. These activities are
mainly in the areas of aerospace mechanics,
applied mathematics and chemistry. The pro-
grams used in this research area are gener-
ally large and require extensive access to
library routines and utilize the full power
of the programming languages. Most programs
of this type are submitted for processing in
a batch or remote batch mode. The operation-
al approach conceived for the new system would
adequately support sixty interactive terminals
while concurrently processing the large sci-
entific applications in the background.

3. Workload Quantification

The benchmark development team began
with an examination of the volume of data
handled by the then current system. By re-
viewing outputs from the time and accounting
routines and by analyzing the programs and
exercises which instructors had included in
their lessons plans, the team was able to de-
termine the volume, content, and size of
transactions entering and leaving the system.
Further analysis revealed the types of Input/
Output devices used and the traffic load at
various times of the day. Similar investi-
gations into the experiments then being con-
ducted provided the volume, size, and content

of programs and data used in the areas of
research.

Since the activities of the cadets and
the research analysts are fairly closely
controlled, the projected workload throughout
the anticipated system life of the computer
was easy to calculate. A direct result of
this calculation was the determination of
the numbers and capabilities of the various
Input/Output devices that would be needed
for the anticipated system. The basic hard-
ware requirements of most all peripheral de-
vices were obtained through this exercise.

4. Workload Categories

With this statistical information in
hand and with the knowledge that the system
would be operating in batch, real time, and
interactive modes of processing in a multi-
programming environment, the team began to

formulate a scenario for the benchmark test.

The first step in this process was the es-
tablishment of workload categories. Four
categories were identified. Category One
included housekeeping and general utility
routines. (Batch processing with a high
concentration on Input/Output operations.)
Category Two represented the data processing
requirements to support beginning and inter-
mediate courses in computer programming. It

was established that approximately 800 cadets
would participate in this workload category.
The programs were small and often contained
numerous errors. Of primary importance in

this category was a requirement for a rela-
tively rapid turnaround. (Interactive pro-
cessing.) Category Three represented the
data processing requirements to support ad-
vanced courses in computer sciences and other
courses in the sciences and in engineering.
The student-generated programs covered the
full scope of data processing applications.
(Interactive processing of a more sophisti-
cated nature.) Category Four represented
the requirements needed to support the re-
search and analysis activities. The pro-
grams in this category were mathematical in
nature, generally large in size, and requir-
ed extensive use of library routines. (Batch
processing with a high concentration on com-
putation.) Thus, the team had established
workload categories which covered the various
types of computer resource usage encountered
at the Academy.

Once the workload categories were es-
tablished, it was necessary to determine the
relationship of each category to the whole.
That is, the establishment of what percen-
tage each category was of the total workload.

5. System Characteristics

It was now necessary for the team to
conduct a detailed examination of the antic-
ipated telecommunications network. This in-
cluded a determination of the need for and
capabilities of multiplexers or concentra-
tors; the type of terminals to be employed;
baud rates to be used; and the manner in
which the terminals were to be connected to

the networl<.

During this phase of the workload anal-
ysis a careful examination of external in-
fluences was also undertaken. Careful con-
sideration was given to how these influences
affected the volume of traffic flow through-
out a given day. An identification was made
of those periods of the day which were asso-
ciated with "peaks and valleys."

When all the significant factors of the
workload characteristics had been identified
and correlated, when the various segments of
the workload had been placed in categories
and the data volumes had been assigned to
the appropriate categories, then a profile
of the workload began to emerge. This pro-
file of the workload served as the model
used in the development of the Live Test
Demonstration.

With this workload profile in hand the
team searched the vast reservoir of existing
programs to find valid representatives of
the four workload categories. Those members
of the team most familiar with the overall
application chose programs which most
closely represented the type and content of
the programs within each category. Once the
representative programs were selected, the
number of iterations of each program was
manipulated until the proper percentage
relationship among the various categories
was obtained. In some instances alterations
in the volumes of data were necessary in
order to reflect the proper amount of peri-
pheral activity. However, when doing so,
care was taken to insure that the content
and format of the data were not altered.

Each program selected for inclusion in
the benchmark test was assigned specific
hardware devices for program handling and
for input/output handling. Programs were
arranged in a specific entry sequence and
were assigned a specific introduction time.
The device assignments, the sequencing and
introduction times of the programs were es-
tablished to reflect the structure of the
telecommunications network, the character-
istics of the workload and the normal
"peaks and valley" associated with the
Academy's computer usage.

The normal workday at the Academy at
that time was sixteen fiours. The team
chose to use a 2-hour benchmark test to
represent that workload. Thus, the volumes
and processing activities had to be scaled
down to one eighth of the actual figures.

In consort with these activities a

determination was made as to the hardware
configuration necessary to process the
benchmark test. This configuration was es-
tablished based on the need for a repre-
sentative number of devices, tempered by
the cost to the vendor to assemble and
operate the equipment. The more significant
components needed at the benchmark test in-
cluded: CPU, main memory, immediate access
storage (as required), magnetic tape units
(as required), two line printers, six remote
terminals, and two remote batch stations.

6. Testing and Review

Each selected program was tested and
"debugged" to insure that it compiled and
executed in the manner expected. Two sets
of input data were developed and tested.
The first set, the sample data, was distri-
buted to the various vendors subsequent to
the release of the Request for Proposal.
The second set, the live test data, con-
tained minor modifications which did not
alter the execution time or the logic flow
but caused obvious changes to the output
products. This second set of data was re-
tained by the Air Force and presented to
the vendor on the day of the Live Test
Demonstration.

At this point a review was made of the
benchmark model to insure that it properly
reflected the more significant characteris-
tics of the actual workload. The benchmark
model was subjected to the same type of
workload analysis as was the projected
workload. This exercise produced a workload
profile of the model which was compared to
the previously developed profile of the
actual workload. Results of this comparison
revealed a need for minor adjustments to the
benchmark model.

7. Documentation

Once it had been determined that the
benchmark model had attained an acceptable
level of representativeness, it was time to
begin the development of the benchmark
material. Care was taken to insure that the
benchmark material was accurate and com-
plete. The benchmark material included

programs, program listings, record formats,
narratives of the programs and data in the
appropriate medium.

In addition to the benchmark material,

a thorough description of the benchmark test
was included in the Request for Proposal.

Tables were developed which specified by

program, the frequency of the program's
occurrence during the timed mix, quantities
of data involved, device assignment, response
times (where appropriate) and program intro-
duction time during the timed mix.

The care and thoroughness spent in the
development of the benchmark documentation
greatly aided the vendors' ability to under-
stand the demands of the benchmark test.

This understanding, in turn, reduced the
potential for slippage in overall schedule,
and reduced the resources and preparation
costs expended by the vendors.

8. Summary

A review of this project reveals a num-
ber of factors which go a long way toward
insuring a proper benchmark test.

a. A team made up of individuals
who are familiar with the application in

question and specialists familiar with com-
puter acquisition procedures.

b. A gathering of statistical in-
formation concerning the volumes of data

entering, being processed, and leaving the
system.

c. An estimation of the workload
projected over the anticipated system life.

d. An examination of the manner in

which the data is manipulated and the envi-
ronment in which this is done.

e. The identification of categories
of workload and the establishment of the
relationship of one to another.

f. The selection of programs to

properly represent the workload of each
category.

g. Thorough testing and "debugging"
of each program used in the benchmark test.

h. Review, adjustment and a final
review of the benchmark mix to insure it
represents the actual workload as closely
as possible.

benchmark test in the Request for Proposal
designed to instruct the vendor of what is

expected of him.

j. Complete and thorough documen-
tation of the program and data to be used
in the benchmark test.

In general, if one follows the techni-
ques outlined above, the possibility of an
aborted project or a vendor protest is

greatly reduced and the possibility of ac-
quiring a system capable of accomplishing
the workload is considerably enhanced.

9. Epilogue

Although much effort was expended to

create a benchmark that was practical and
representative, one serious shortcoming was
experienced. The Request for Proposal
called for the proposed system to be
capable of supporting sixty remote terminals
concurrently. For the sake of practicality
and economy the benchmark called for only
six remote terminal devices and two remote
batch stations. Once the selected system
was installed, however, it became immedi-
ately apparent that the delivered software
could not support the remote devices in the
required manner. Much time and effort was
spent by both vendor and Academy personnel
to resolve this problem. It was a situation
not cherished by either party.

A more accurate measurement of the pro-
posed" systems ' telecommunication capabili-
ties could have been accomplished had a

remote terminal emulator been available for
use at the benchmark. Such a device would
have brought to light at the time of the
benchmark the kinds of shortcomings which
were discovered only after the system was
installed. Unfortunately, remote terminal
emulators were not available at the time of

this acquisition. They are available today
and it is recommended that consideration be
given to these devices in any benchmark test
designed to represent a workload environment
which utilizes a large number of remote
terminals.

i. A detailed description of the

74

VALIDATION - ALL IMPORTANT IN BENCHMARKING

L. Arnold Johnson

Federal COBOL Compiler Testing Service
Department of the Navy
Washington, D.C. 20376

This paper discusses validation of benchmarks associated with Govern-
ment procurement of data processing equipment. It is not uncommon, after
a procurement, to find that the computer system obtained did not have the

processing capability or capacity required by the Request for Proposal
(RFP) , even though the vendor successfully passed a benchmark. In many
cases this insufficiency can be attributed to inadequate validation of

the benchmarking process . The benchmark is a tool for validating the

capability of a vendor's computer system and there are certain characteris-
tics which the benchmark must have. This paper describes these character-
istics and some techniques for incorporating them into a benchmark. Bench-
mark preparation, benchmark execution, software configuration are four
areas which may affect the representativeness of the benchmark. Improper
validation of the software configuration for the benchmark or the optimiza-
tion applied to benchmark programs, for example, may result in a benchmark
implementation which would be uncharacteristic of the production workload.

The approach taken to benchmark validation can greatly affect the
ease and timeliness with which the benchmark demonstration can be performed.
A well—defined set of audit procedures and a multiple-step validation,
with appropriate contingency plans are essential to reduce benchmark reruns
and vendor protests. An approach for developing benchmark audit procedures
is presented, together with an outline of the steps in the benchmark
validation process.

Key words: Benchmarking; benchmark audit procedures; benchmarks
associated with government procurement of computers; validation.

1. Reason for Benchmark Validation

Considerable work and research are be
ing done on techniques which can be used
for benchmarking and how to represent a

predicted workload through benchmarking
for computer selection/procurement [1]^

Validation of the benchmarking process
on the other hand, is given much less
attention. If the validation process is

not properly conducted, misrepresentation

^Figures in brackets indicate literature
references at the end of this paper

.

of the benchmark workload can occur and a

less than adequate computer system may be

selected.

Goff's article, "The Case for Bench-
marking" [2] , suggests that benchmarking
is the only available means of evaluating
large and complex ADP systems by a common
standard (as opposed to other approaches
such as simulation) . This view is also
expressed in a Federal Government procure-
ment regulation that in effect says that
simulation shall not be used as the sole
selection criterion for selection of

computer systems. Kiviat's article, "A

75

Challenge to Benchmarking," (which is appen-
dix E of reference [1]), suggests that there
are sources available for testing the repre-
sentativeness of benchmarks and that a fair-
ly good feeling on just how representative
the benchmark is of the predicted workload
may be obtained. One is led to conclude
from this , that the means for determining
the credibility/capability of a vendor's
computer system will be via benchmarking,
and the benchmark will be a valid represen-
tation of the production workload. Normally
the benchmark is executed on the vendor's
computer system at the site of his
choosing. This means that the benchmark
material is given to the vendor in advance
and he is the one who prepares the comput-
er system environment, puts together the

components of the benchmark to represent
the workload and executes the benchmark.
This is accomplished by the vendor based
on his interpretation of the benchmark
instructions provided with the benchmark
material

.

No matter how well the benchmark has
been modeled to represent a predicted
workload, its representativeness can be
easily lost in the benchmark conversion,
the vendor preparation of the workload mix,
or the hardware/software that is used for
execution of the benchmark. Generally, the
benchmark is short in duration and only
representative of a portion of the total
monthly, weekly, or even daily user process-
ing requirements. Thus a small deviation of
the workload in the benchmark from the bench-
mark requirements can have a much larger
impact on the computer system's ability to
meet the installation's total processing
requirements. The truth is that this

situation can and does occur, and unfortu-
nately is often not detected until after
the computer system is procured. Proper
validation during the benchmarking process
can reduce the possibility that an inadequate
computer system will be selected.

The purpose of benchmarking is to have
the vendor demonstrate the ability of his
proposed computer system to meet the

requirements set forth by the Request for
Proposal (RFP) . Validation of the bench-
marking process serves to preserve the
integrity of the benchmark and the work-
load it represents. Benchmark integrity
is maintained only if: (1) all processing
is performed; (2) all processing is per-
formed correctly; (3) the hardware/aoftware
environment is as defined in the benchmark
instructions; and (4) the character of the
benchmark in terms of optimization, coding
style, etc. is consistent with the install

lation's production environment.

Another important reason for validating
the vendor benchmark implementation is to
ensure that each vendor has an equal oppor-
tunity for providing his most competitive
computer system. Vendor protests and pro-
curement delays can result if each vendor
is not processing an equivalent workload or
is not forced to adhere to the benchmark
requirements

.

2. Validation Begins with Benchmark Design

In order to adequately validate a
benchmark implementation, certain benchmark
qualities are necessary. It is difficult
to include these qualities in a benchmark
without having planned for them when the
benchmark was designed. There is an advan-
tage to both the vendor and the benchmark
validation team, if the benchmark has these
qualities. One task of the vendor is to

convert the benchmark material for use on his
system. If the benchmark design is lacking
in certain qualities it is likely that the
vendor will have to expend more of his
resources to merely get the benchmark into
execution. In addition to the required
conversion of the benchmark material for use
on his system, the vendor typically applies
whatever optimization that is possible to
the benchmark. By either the conversion or
the optimization process the vendor may have
changed the representation of the benchmark.
It is the job of the benchmark validation
team to ensure that any modifications to
the benchmark material by the vendor are
proper in terms of the processing require-
ments. If the benchmark does not include
qualities which enable one to evaluate the
correctness of the benchmark implementation,
then the task of validating is at best
difficult. The vendor must also be able to
verify that the benchmark implementation is
correct. If it is not correct, it could
affect the workload being represented and
cause the vendor to waste time and money
in sizing an inadequate computer system.
The following paragraphs discuss some
qualities which are desirable in bench-
marks .

2.1 Auditability

Auditability is the ability of the
benchmark to provide the information
necessary for evaluating whether the
benchmark implementation was correct. That
is, being able to determine from the bench-
mark execution that all the required proc-
essing was performed, that all the process-
ing was performed correctly and that the

76

1

benchmark implementation adjiered to the

requirements imposed by the benchmark
instructions. It is convenient for the

benchmark validation team if the auditing

process is as automated as possible. When
benchmark programs are self-auditing (ability

of a program to test its own processing

results, for example, against some pre-

determined value) , it reduces the work the

benchmark validation team must do. Also,

benchmark systems which have predesigned

checkpoints for determining whether the

benchmark execution is correct have been
found to be very useful. Information result-

ing from execution of the benchmark such as

the program displaying file record counts,

hash totals or producing summary reports

add to the benchmark's auditability . Fre-

quent checkpoints of this type are

advantageous from the viewpoint of the

computer vendor as well as the auditor,

since the vendor may have to do some debug-

ging on the benchmark.

2.2 Portability

Portability is the capability of bench-

mark programs to be implemented on each
computer vendor's system with minimal con-
version effort and expense. This means that

few modifications, if any, to the benchmark

programs are required to make the programs

operational on each vendor's computer system.

The objective of a competitive procurement

is to obtain a capable computer system at

the lowest price. Nonportable benchmarks

cause the computer vendor to direct his

resources to conversion instead of sizing

the computer system to satisfy the RFP re-
quirements. The expense which a vendor
incurs on the benchmark demonstration is

eventually reflected in the prices which he

can afford to offer the procuring agency.

Less than portable benchmarks can have a

serious effect on the benchmark with respect

to benchmark representativeness. The more
modifications the vendor must make to the

benchmark in order to implement the bench-
mark the more difficult it is for the bench-
mark validation team to verify that the

workload represented by the benchmark has

not been affected, e.g. , optimization has

not destroyed the representativeness of the

benchmark.

For a benchmark to be portable, standard
programming languages need to be used and

machine dependencies need to be kept to a

minimum. The machine and language features
which cause nonportable benchmarks are
beyond the scope of this paper. There is

literature available that discusses the cause
of nonportable benchmark programs and data,

77

and what can be done to make benchmarks
portable [3] .

j

2.3 Repeatability

Repeatability is the ability of the i

benchmark to produce the same execution '•

results on each vendor's computer system. i

Benchmarks which produce different results
on different computer systems raise doubt as

j

to whether the benchmark was implemented
j

correctly or whether all the intended pro- '>

cesslng was actually performed. It is recog-
i

nized within the computer community that
the exact results may not be possible among
computer systems due to differences in 1

numerical precision. Nevertheless, the
^

validation team needs to know whether differ- 3

ent results are truly due to precision. It

is therefore desirable if the benchmark can
j

be executed on different computer systems to

see how repeatable the benchmark is before '

it is officially released to the vendors.

2.4 Predictability

Predictability is the ability of the
!

benchmark to produce an expected result from '

a given set of data [4]. One technique
,

that is often used in benchmarking to reduce ,

the possibility that the benchmarked comput-
:

er system may be tuned to a given set of
j

data is to change some part of the bench-
mark before the benchmark test begins
(making substantial changes to the bench-
mark of course is not a good practice)

.

If the results that are produced when a

change is made to the benchmark cannot be '.

predicted, then its value as a validation
J

tool is questionable.
j

2.5 Modif lability I'i

li

Modiflability is the ability of the If

benchmark to be easily identified and up-
;|

dated. It may be necessary during the '4

period of the benchmark implementation or
'

for validation purposes to change the bench-
;

mark programs or data. There must be a i

method by which these changes can be
j

communicated to the computer vendor. j

Techniques such as line numbers in sequen-
tial order on each source line within the

program, name of the program embedded in

the program in a common location, or file
|

name and unique record number embedded in

each record of the file can simplify bench-
mark modification. If the vendor has ques- ;

tions regarding the benchmark this quality
is useful in that communication. '

2.6 Conformity

Conformity is the ability of the bench-
mark, as delivered to the vendor, to be

consistent with the software/hardware
requirements defined in the RFP . If, for

example, the RFP requires that a Standard

COBOL compiler be provided, then those
benchmark programs used in the benchmark
should be written in Standard COBOL and con-

tain no vendor extension.

3. What to Validate

A clear understanding of the role bench-
marking will take is important in validation
of a computer system against the RFP require-
ments . The purpose for which benchmarking
is being used influences the validation
approach which is taken and the items which
need to be checked. A combination of

contractual obligation and benchmarking is

the best practice to verify the credibility
of a vendor's claim. There are some RFP

requirements which cannot be adequately
validated by benchmarking. Computer system
reliability, for example is a requirement
which can be found in many RFP's. There is

a question as to how this can be done
through benchmarking. To verify that a

computer system will remain up and avail-
able for processing, say 95% of the time,

in a normal 2-hour benchmark would not be
meaningful. A much longer time frame would
be required to determine if the vendor can
comply with such a requirement. System
reliability is a requirement that will exist

throughout the life of the computer system,

and therefore, it might be better if this

were a contractual obligation with reason-
able penalties for noncompliance.

There are basically two types of bench-
mark demonstrations. One type of bench-
mark demonstration is for the purpose of

testing the capability of a specific feature/
function of the computer system often
referred to as a functional demonstration
[5]. The other type of benchmark demonstra-
tion is one which tests the ability of the

computer configuration to process a given
workload, within given time constraints,
often referred to as a benchmark mix demon-
stration [5]. Functional demonstrations
are typically expensive and time consuming
for the vendor and provide little benefit
toward validating RFP requirements except
under certain conditions. Normally,
functional demonstrations are used to

verify those RFP requirements about which
there remains a question as to whether some
part of a prospective system is capable of
meeting a requirement.

A benchmark mix demonstration is useful
for establishing the ability of a computer
system to process a given workload. This
type of demonstration involves the collec-
tion of programs, data and work require-
ments which together form a workload
quantity that is executed on the benchmark
computer system.

The specific items which must be check-
ed for the benchmark validation process
vary with each benchmark. These items
can be categorized into four general areas.
They are benchmark preparation, benchmark
execution, hardware configuration and soft-
ware configuration.

3.1 Benchmark Preparation

As discussed earlier in this paper the
techniques by which the benchmark is prepared
for execution can impact the representative-
ness of the benchmark. The purpose of vali-
dating benchmark preparation is to ensure
that the integrity of the benchmark was not
lost in the vendor's conversion or in de-
veloping the workload for the benchmark.
Occasionally, the vendor, in preparing the
benchmark for use with fewest or lowest-
priced hardware resources, will apply op-
timization to the benchmark which would be
uncharacteristic of the workload in a pro-
duction environment. There are some items
which can be checked to verify that the
vendor's preparation approach has not vio-
lated any benchmark instruction requirement
and is characteristic of its use in the
production environment:

(a) the modifications made to the bench-
mark programs by the vendor;

(b) the changes or reformatting of the

data by the vendor from that
originally provided;

(c) the optimization techniques applied
to the benchmark programs

;

Cd) the function and use of the software
developed specifically for the
benchmark

.

3.2 Benchmark Execution

Even though the vendor correctly pre-
pares the benchmark for execution, the way
in which the benchmark is executed can affect
the representativeness of the benchmark work-
load. The validation team needs to check
that the execution ground rules by which the

benchmark was modeled are also maintained by
the vendor. Some items which can be checked

78

to ensure proper benchmark execution are:

(a) the compiler or other software

options used are consistent with

the modeled benchmark;

(b) the data files have been preloaded

to the correct device type;

(c) the data files resulting from bench-
mark execution are assigned to the

correct peripheral device type;

(d) the benchmark job tasks were
initiated in the proper sequence;

(e) the starting status of all hardware

components was correct;

(f) the job queues were properly load-

ed before start of the benchmark

test

;

(g) the execution priority between

different processing types, e.g.

time-sharing vs. batch processing

is consistent with the benchmark
requirements

;

(h) all output produced by any pre-

vious benchmark execution has

been purged from the system;

(i) the benchmark execution adheres to

the time requirements imposed by

the benchmark instructions;

(j) the jobs entered into the bench-
mark test were from the proper
location/ device.

3.3 Software Configuration

The software configuration used for

the benchmark can affect the size and

power of the computer system required to

perform the benchmark. The computer

vendor has many options and versions of

operating systems, compilers, etc. avail-

able to him. Given a stable workload he

can tailor the software configuration to

process the workload in a very efficient

manner requiring only minimal amount of

computer resources. Since a benchmark
test rarely requires all of the functional
capability defined in the RFP, it is high-

ly conceivable that a "stripped-down"
version of the operating system software
and its components would be adequate to

execute the benchmark. However, if the

benchmark process is to be representative
of a production workload, all of the soft-
ware capabilities required by the RFP

should be present.

Language compilers , or the resulting
programs produced by them, play an impor-
tant role in most computer installations.
Most Government data processing installa-
tions require the use of high-level lan-
guages (namely, COBOL or FORTRAN), and it

is common to provide benchmark programs in
these languages. Current Federal Property
Management Regulations (FPMR) require that
COBOL compilers offered as a result of the
requirements set forth in a RFP must comply
with one of the four levels of Federal
Standard COBOL [6]. Although there is no
similar regulation for FORTRAN, it is

common to find Government RFP's requiring
American National Standard FORTRAN [7].

Also, there is a FPMR which requires
that all COBOL compilers brought into the
Federal inventory be validated [8]. Again,
there is no similar regulation for FORTRAN;
however the Navy in practice requires
that the FORTRAN compilers also be vali-
dated as part of their procurement process.
The Department of the Navy maintains the
COBOL Compiler Validation System (CCVS)

[9] and a FORTRAN Compiler Validation
System (FCVS) [10] which are used to test
a given compiler's conformance to its

respective language specification.
Validation services are also provided
upon request.

2

If the vendor is required to deliver
compilers which conform to their respec-
tive language standards, then it is proper
that the same compilers should be used for
benchmark purposes. A case in point is a

Government procurement in which a COBOL
compiler used for the benchmark did not
fully conform to the standard language
specifications. Later when it was brought
into conformance with the language stand-
ard, the memory requirements and the execu-
tion times of the compiled programs
increased substantially. In this instance
the compiler was brought into compliance
following the installation of the computer
system. It is quite likely that if the
compiler that met the requirements of the
RFP was used in the benchmark, it would have
required a larger system than was actually
bid. In fact, the system resulting from
this procurement required equipment upgrades
above and beyond that originally planned when

^Information on the FCVS or the CCVS can be
obtained from the Director, Federal COBOL
Compiler Testing Service, Department of the
Navy, Washington, D.C. 20376.

79

the system was initially purchased.

Current Government regulations require
that COBOL compilers be validated only be-
fore being brought into the Federal inven-
tory. A good policy, however, might be to

have the compiler validated before the
vendor's benchmark demonstration so the
validation team could evaluate the compiler
being used in the benchmark.

To test all computer system soft-
ware used in a benchmark test for

compliance with the RFP requirements would
be an impossible task. Typically, some
combination of vendor software certifi-
cation and software testing is used. A
software certification is useful when it is

impractical to test the system software
for compliance to RFP requirements . Cer-
tainly, where practical, the software most
affecting the performance of the system
being benchmarked should be tested.

3.4 Hardware Configuration

For the benchmarking environment to be

representative of the production environ-
ment, the hardware configuration for the

benchmark should be the same as that pro-
posed by the vendor. There are reasons
however which do not make this possible.
The benchmark workload is a subset of the
production workload, thus a full complement
of computer configuration proposed may not

be necessary in order to execute a bench-
mark test. Nevertheless, one must verify
that the smaller benchmark configuration
would be representative of the processing
environment on the production system.

As in validating the software config-^

uration, testing all hardware components
for functional compliance with the RFP

requirements would also be a very lengthy
and difficult process. Typically some
combination of vendor hardware certification
and physical inspection is used for vali-
dating the hardware configuration for com-
pliance with the benchmark instructions.

The vendor should be asked to provide
a configuration schematic and list of hard-
ware components of the benchmark system for

the validation team to review. Some items
which can be checked by the validation team
are:

(a) the hardware components configured
for the benchmark are the same as

listed on the configuration list;

(b) any difference between the bench-

mark configuration and the proposed
configuration are permissible in
accordance with benchmark instruc-
tions or Government approved
waivers

;

(c) any extra equipment on the config-
uration floor is not operational
or part of the benchmark config-
uration.

4. Audit Procedures

Quite often the difference between a

well-run office operation and one which is

mediocre, i-s that the well-run office has
documented operating procedures for all work-
ers to follow. The same is true in bench-
marking. For the vendor to plan for the
benchmark demonstration, he needs to know
what is expected of him. Also the bench-
mark validation team members need to know
their responsibilities and the things that
need to be checked for the validation. This
information can best be provided by means of
well-documented audit procedures

.

Good audit procedures for use in bench-
marking will, first, define the ground rules
by which the benchmark will be conducted and,
second, provide a detailed description of
each step in the validation process [11].
The audit procedures should describe the
audit material that the vendor must provide
and how this material will be used for the
validation. It is a good practice to have
validation forms and checklists which
supplement the audit procedures. The
reason for validation forms and checklists
is to aid the validation team members in
the mechanics of performing the validation.

It is convenient if the validation forms
identify the location and include a copy of
the exact data content that is to be veri-
fied. This may either be on the form itself
or it may be a sample listing attached to
the form. If the data which will be used in
verification is kept with the validation
forms or checklists and not included in the
audit procedures, then the audit procedures,
with a sample of the validation forms/
checklists, can be given to the vendor. This
will preclude the need to develop separate
audit procedures for the vendor and allow
both the validation team and the vendor to
work from the same procedures.

Having ground rules for the benchmark
demonstration is a vital part of the audit
procedures. Ground rules define those items
which are critical to smooth operations of
the benchmark test demonstration, but are not

80

an identifiable step in the validation pro-

cess. Some of the ground rules which are

commonly defined in benchmarking are:

(a) the composition of vendor and

validation teams which would
be permitted in the immediate
vicinity of the benchmark
demonstration configuration;

(b) the conditions or events which will
be considered the beginning of the

benchmark test; i.e., when timing
clocks for the tests will start;

(c) the conditions or events which
will be considered the completion
of the benchmark test; i.e., when
timing clocks for the benchmark
test will stop;

(d) the procedure that will be follow-

ed if program or equipment fail-

ure occurs during the benchmark
test

;

(e) the restart procedures that the

validation team will expect the

vendor to follow in the event the

benchmark test must be restarted;

(f) the persons who will be the "vendor

spokesperson" and the "validation
team spokesperson" during the

benchmark test.

The procedural steps of the audit
procedures should describe the activities
that are expected to occur during the
benchmark test. A logical approach is to

divide the audit procedures for the bench-
mark test into pre-execution, execution
and post-execution sections. Within each
of the three sections the steps that will
be followed by the validation will be
described. Where practical, a validation
form/ checklist is useful for each validation
step.

The following is a list of some
common steps that can be found in benchmark
validation.

4.1 Pre-execution

(a) Audit of the Benchmark Hardware
Configuration. This step would
involve a walk-thru and inspection
of the hardware configuration.
Also , any required vendor hardware

i
certification would be signed at

this time by the vendor.

(b) Audit of the Benchmark Software
Configuration. This step would be

an inspection of the list of system
software on the benchmark system
provided by the vendor. Also, any
required vendor software certifi-
cation statements would be signed
at this time.

(c) Change Benchmark Programs/Data.
This step would involve having the

vendor incorporate minor changes

,

for validation purposes , into the

benchmark and verify that the

changes were applied correctly.

(d) Audit of the Programs/Data. This

step would be an inspection of a

directory list of all data files
and programs catalogued on the
system.

4.2 Execution

Ca) Starting the Timing Clocks. This
step would involve the designated
team members starting the timing
clocks at the moment that the test
is to begin.

(b) Audit of the System Consoles. This
step would involve the monitoring
of the console operator activities
and verifying that all benchmark
jobs/ tasks initiated and terminated
in the required test time.

(c) Audit of Special Events. This step
would involve the monitoring of
special output or timing require-
ments that will result during
benchmark execution; e.g., response
times, messages, job initiation at
specific times or job execution
sequences

.

(d) Stopping the Timing Clocks. This
step would involve the designated
team member stopping the timing
clocks at the moment the bench-
mark test is completed.

4.3 Post-execution

(a) Produce the Audit Material. This
step would involve gathering the
data resulting from execution of
the benchmark and executing any
programs for producing the required
audit material.

(b) Audit the Benchmark Execution
Results. This step would involve

81

the checking of the files, record
counts, program reports, system
accounting data and other data
resulting from execution of the
benchmark.

5. Multiple-step Validation

Benchmarking is a process whereby the

computer vendor demonstrates the ability of

his computer system to execute the bench-
mark within the required time constraints,
and the procuring agency validates that

the benchmarking process is correct.

Because the computer vendor is required to

implement the benchmark on his system he

has an opportunity to become familiar with
its characteristics. The benchmark vali-
dation team, on the other hand, does not

have an opportunity to participate in the

implementation of the benchmark on each

vendor's computer system. Therefore, the

validation team must rely on technical
literature and information provided by the

vendor to familiarize themselves with the
vendor's benchmark implementation approach.

Often, the first in-depth review of the

vendor benchmark implementation by the

validation team occurs during the site visit
to the computer vendor for the benchmark
demonstration. This is insufficient for the

benchmark team to adequately validate a

benchmark implementation. Discovery of

Incorrect benchmark implementation at this

point would very likely cause the benchmark
demonstration to be postponed and require
the benchmark validation team to revisit
the vendor's computer site.

A validation approach which permits the

validation team to review each vendor's
benchmark implementation prior to the on-
site visit is the best practice. Possibly
a two-step validation where the first step

is a review of the vendor's benchmark
implementation before the site visit and

the second step is another review and vali-
dation at the on-site benchmark demonstra-
tion. The accepted benchmarking practice is

to evaluate the benchmark results at the

vendor's demonstration site so that an
indication can be given the vendor whether
the benchmark passed or failed prior to the
validation team's departure.

The Navy in one of its recent procure-
ments used a multiple-step validation
approach which resulted in a "smooth" bench-
mark demonstration by most benchmarking
standards. The first step was a review of

the vendor's benchmark implementation when
the vendor's proposal was submitted. The

second step was a discussion at vendor oral
presentations of the Implementation discrep-
ancies found in the first step. The third
step was a final review at the vendor's on-
site benchmark demonstration. There were
provisions in the validation plan for further
checks following the site visit but this
step was not required for any of the three
vendors benchmarked. The first step, by
far, was the most beneficial. For the
first review, the vendor was required to
provide the validation team with: (1) all
execution results from the benchmark; (2)

all the audit material that would be used
by the validation team; (3) a hardware con-
figuration schematic of the benchmark config-
uration; (4) an explanation for each change
made to the benchmark material; and (5) an
explanation of any special software used in
the benchmark that was not reflected in the
technical documents supplied by the vendor.
A review of this information revealed bench-
mark implementation discrepancies which if
found at the benchmark demonstration would
certainly have required another visit to the
vendor's benchmark site for some vendors.
Also, this review caused a dialogue between
the validation team and vendor which answer-
ed many questions regarding the benchmark.

A multiple-step validation has some very
Important advantages particularly for the
benchmark validation team. Having a "dress
rehearsal" before the site visit enables the
validation team to fine-tune the audit
procedures and the validation forms/ check-
lists. One may find that because of the
unique nature in which audit material is

provided by a vendor's computer system, the
validation forms or procedures may need to
be modified to be useful.

Another important advantage is the n

Information provided for the "dress rehears-
al" serves as excellent training material
for the benchmark validation team members

.

FIPS PUB 42-1 suggests that a trial bench-
mark prior to release of the benchmark
material to the vendor serves as a valuable

,

training exercise [5]. This approach has
merit but it is both untimely and incomplete
as a training mechanism for the validation
team. With the trial benchmark approach the

i

time period between validation team training
|

and benchmark demonstration is too long a
period to be effective. Also, this approach!
does not enable the validation team members '

to become familiar with the format of the
audit material that will be provided by each
vendor. An early review by the validation
team can be beneficial for the vendor as M
well. If the first review step is properly I
planned, the vendor has an opportunity to I]

82

correct any benchmark discrepancies and

resize his computer configuration before
the benchmark demonstration.

There are those who may consider this

first validation step as additional work and

expense which is required of the vendor.
Indeed this is partially true but it also
forces the vendor to check-out his bench-
mark implementation early, thus leaving
more time for him to size his most compet-
itive computer system.

6 . Summary

Validation associated with vendor
benchmarking is often not really given
the consideration that it should until
after the benchmark has been modeled . How
well the benchmark does in verifying that

the vendor's proposed computer system is

adequate is in part due to the qualities
which have been incorporated into its

design.

The ability of the benchmark to retain
its representation through the vendor's
implementation is largely the result of the
requirements placed on its implementation.
A modeled benchmark may be very representa-
tive of the predicted workload, but if the
benchmark, as converted by the vendor, is

not run under the environment characteristic
of the production workload, then it may cause
a computer system to be selected that is not
adequate for the production workload.

Procurement delays and vendor protests
are of concern to most and the possibility
of their occurrence can be reduced if a good
validation plan is in effect. A multiple-
step validation and well-documented audit
procedures serve to provide this end.

System Benchmarking, Proceedings of the
National Computer Conference , (1974) ,

p. 431-438.

[5] Federal Information Processing Stand-
ards Publications 42-1, Guidelines for
Benchmarking ADP Systems in the
Competitive Procurement Environment,
U. S. Department of Commerce, National
Bureau of Standards, (1977).

[6] Federal Information Processing Stand-
ards Publication 21-1, COBOL, U. S.

Department of Commerce, National
Bureau of Standards, (1975).

[7] American National Standard FORTRAN,
X3. 9-1966, American National Stand-
ards Institute, New York, (1966).

[8] U.S. Government Federal Property
Management Regulation 101-32. 1305-la,
Validation of COBOL Compilers,
Federal Register . Vol. 40, No. 221,
(November 14, 1975).

[9] Baird, George N. and Cook, Margaret
M., Experiences in COBOL Compiler
Validation, Proceedings of the
National Computer Conference , (1974)

,

p. 417-421.

[10] Hoyt, Patrick M., The Navy Fortran
Validation System, Proceedings of
the National Computer Conference .

(1977), p. 529-537.

[11] Handbook for Preparation of Benchmark
Instructions, Department of the Navy,
ADP Equipment Selection Office,
Software Development Division (1976).

References

[1] Benwell, N. , Benchmarking Computer
Evaluation and Measurement , John Wiley
& Sons, Inc., New York, (1975).

[2] Goff, N.S., The Case for Benchmarking,
Computers and Automation , 22 , 5,

(1973) , p. 23-25.

[3] Baird, G.N., Johnson, L.A. , System for
Efficient Program Portability, Proceed-
ings of the National Computer Conference ,

(1974) , p. 423-429.

[4] Oliver, P., Baird, N., Cook, M.

,

Johnson, A., and Hoyt, P., An Experiment
in the Use of Synthetic Programs for

83

ON-LINE SYSTEM EVALUATION

85

DETERMINATION OF NON-STEADY STATE CONDITIONS IN PERFORMANCE
MEASUREMENT RUNS

Nandakumar N. Tendolkar

International Business Machines Corporation
Poughkeepsie, New York 12602

An analytical technique is proposed for determining whether a per-
formance measurement run of an interactive computer system is in steady
state. The technique is illustrated by applying it to some measurements
of a benchmark workload processed by IMS/VS under 0S/VS2 (MVS). An ap-
proach is suggested to determine the length of measurement runs required
to predict system transaction rate with a given reliability.

Keywords: Interactive computer system; performance measurement; renewal
theory; statistical analysis; steady state.

1. INTRODUCTION

In the past, computer performance meas-
urement runs were controlled and set up by a

limited set of measiirements and by gut-feel-
ing. In such cases, the application of the
results of a small set of measurements to un-
measured systems often led to unpredictable
results. This paper describes an analytical
technique that was developed to control per-
formance measiirement rims of an interactive
computer system, and which was successfully
used in detecting non-steady state condi-
tions. The technique is based on the appli-
cation of renewal theory and statistics and
can be applied to the analysis of performance
measurement runs of many typical interactive
computer systems.

An , interactive computer system is a com-
puter system in which a large number of users
simultaneously communicate with the system
through terminals. Each user sends a trans-
action to the system for processing. The sys-
tem processes it and sends a response back to
the terminal. Examples of such interactive
systems are the Time Sharing Options of 0S/VS2
(MVS) and the IMS/VS systems.

In evaluating the performance character-
istics of an interactive computer system, the
principal components are defined. These are

usually the hardware configuration, the oper-
ating system, and the program product that
interfaces with the users . The hardware con-
figuration is described by the CPU, the mem-
ory size, the channels, and the number of
terminals

.

The objective of performance measurement
is to study the various system characteristics
as a function of the load on the system. The
system characteristics that are of interest
are response time, CPU, channel and device
utilizations, instructions executed, bytes
transferred from and to the direct access
storage devices, paging rates, etc. The load
on the system consists of a certain set of
transactions sent by the user and the rate at
which these transa-ctions are sent. Each
transaction type needs a specified amount of
processing from the system.

The outcome of a performance measurement
run is a collection of statistics about the
system characteristics and user load during a
time interval (the measurement interval) in
which a certain number of terminals are inter-
acting with a certain hardware configuration,
operating system, and program product.

The majority of performance measurement
runs are made to establish a steady-state
functional relationship between the system

87

charactertistics and the user load. An ex-
ample of such a relationship is the mean re-

sponse time as a function of the load (the
number of terminals or the transaction rate).
The problem then is to be able to determine
whether a steady state was obtained during
a measurement run.

Suppose Srp stands for a particular sys-
tem characteristic (for example, transaction
rate) measured during the time interval
(T, T+AT). We define a system to be in
steady state if there is some time T' such
that for

T ^ T'

,

d&T

dT

(that is, Srp is not a function of time for

T >T'). In this case, the statistic Srp

reaches a steady or stable value. Depending
upon the purpose of measurement, one may de-

fine a set of such statistics that have to
reach steady values to make the measurement
a valid measurement. This aspect of measure-
ments has been discussed by Hyman [I]-'- and
Wyrick [2] , In this paper we present a me-
thod of determining whether a measurement
run for an interactive computer system has
reached a steady state with respect to the
transaction rate.

It is not clear whether, for any general
case of performance measurement of a real in-
teractive computer system, one can derive the
necessary and sufficient conditions that in-
dicate the system is in a steady state. In
most real system measurements one does not
have an a, priori criterion that the system
would meet if it were operating in a steady
state. One approach that is commonly used
both in simulation experim.ents and in meas-
urements is to divide the measurement inter-
val into a number of segments and to study
various statistics for each interval [3].

The problem with this approach is that one
must know how much variation should be al-
lowed in the observed statistics from one
interval to another and how many intervals
should be observed before we are satisfied
that the system is in steady state.

An analytic methodology to solve this
problem for a specific set of measurements
that were planned for studying IMS/VS perfor-
mance characteristics is presented here. In
addition, a methodology is suggested to esti-

--Figures in brackets indicate the literature
references at the end of this paper.

mate the probability that a system will end
up in a non-steady state if it was in a steady
state during the measurement

.

2. SYSTEM CHARACTERISTICS

A certain set of performance measure-
ments was planned to study IMS/VS performance

|

characteristics on IBM System/3T0 Model 158
running under 0S/VS2 (MVS). A specific data
base was created, and the set of transactions
(messages) that the system would process was
defined. TPNS [h]

, running in another pro-
cessor, was used to send transactions to the
IMS/VS system (see fig. l). The TPNS system
was generated in such a way that the host sys-
tem communicates logically with a fixed num-
ber of terminals during a run. The number of
terminals is varied from run to r\in, but is

fixed during a run.

The terminals go through a cyclic activ-
ity of sending a transaction, getting the re-
sponse, and sending the next transaction. The
flow chart of the user behavior (terminal) is

shown in figure 2. The behavior of each ter-
minal is key to the derivation of the condi-
tions for steady state.

Host Processor

(IMS/VS under

MVS)

Data Bases

Cha

Communications

Controller

Channel

Terminals

Activity

Simulator

(TPNS)

Measurement Data

Figure 1. Performance rneasurement system set-up

88

A terminal sends a transaction to the
system at time T. TPNS then generates a num-
ber AT at random, with AT representing the
intermessage delay. For this system, AT was
\miformly distributed between 75-125 seconds.
If the response is received by the terminals
at time T', then there are two following pos-
sibilities (see fig. 2):

1. If T' < T+AT, then the next message
from the terminal would be sent at

time T+AT.

2. If T' > T+AT, then the next message
from the terminal wo;ild be sent at

time T'

.

^ Start

^

In a certain time interval, t, if 1^ is

the total number of transactions received by
the host system, then we define the average
transaction rate (X^) during the interval t

as M^/f Orie condition that the system must
satisfy in steady state is that should be
independent of t for large values of t and
should approach X, the steady state transac-
tion rate.

The mathematical model discussed here
deals with deriving the steady state distri-
bution of M^. Rj. is a random variable.

The distribution of Ej. leads us to speci-
fy the lower and upper limits for Rj.. The
lower and upper limits of Vl-^ are used to
check whether a given measurement run is in

steady state. We postulate that if a system
is in steady state, then will always be
between the lower and upper limits for
given by the mathematical model.

Sentl a

Transaction

TfrClocktime

N =

3. MATHEMATICAL MODEL

No. of terminals

Wait till

clock = T + iT

Generate

Intermessage

Delay" aT
aT=U(a,b)

Wait for

Response

Response

T'<. T + tlT

AT is diiiributed uniformly

between (a,b)

a = 75 seconds

b = 125 seconds

Response arrives at time T*

(T'iT)

Figure 2. Behavior of a terminal

M^ = No. of transactions sent by all
terminals in time t

D = Intermessage time, a random variable
distributed uniformly between (a,b)

a+b
2

variance of D = (b-a)^
12

y = mean of D

0^ -

The mathematical model derives the distribu-
tion of M^. N and D are specified for a given
measurement

.

M^ is the sum of N independent and iden-
tically distributed random variables 0^, where
Q-^ is the nimber of transactions sent by a

single terminal in time t

.

3.1 Derivation of the Distribution of 0.

In the first case, the intermessage
time would be AT; in the second case, it
would be T'-T. Note that T'-T is the re-
sponse time for the transaction.

Before each measurement run begins , the
TPNS system is generated to simulate a fixed
number of terminals . The times at which the
terminals send their first messages are ran-
domized. Hence, the times at which a termi-
nal sends a transaction (message) to the
system are independent of the times at which
other terminals send messages to the system.

The intermessage time, D, has a minimum
value of (a), where (a) is 75 seconds. For

the system at hand, the response time was much
smaller than 75 seconds. Hence, the time be-
tween two consecutive messages from a terminal

is D. Since the inteimessage times are inde-
pendent, identically distributed, random vari-
ables, all with distribution U(a,b), the
process of sending messages from a terminal
to the host system is an ordinary renewal
process [5] • number of renewals in

time t

.

From [5],
0-t;

is asymptotically normally
distributed with mean t/p and variance a^t/y3.

89

It should be noted that the fact that the
response time is always less than intermessage
time is critical for 0^ to be a renewal pro-
cess.

3.2 Derivation of Distribution of Rj.

Let

= t/y and =

= The sum of N independent, identi-
cally distributed, random variables
(iidrv) each with distribution 9^.

The distribution of 0^ is normal

(y^, and the s^m of N iidrv with normal
distribution (y-[_, ^i^^ ^ normal distribu-

tion [6] with mean Ny-]_, and variance Na^^.

Hence, is distributed normally with mean y2
and variance where

= Ny-]_ and = Naj^^

Substituting for y-|_ and a-^^ we get:

Nt , 2 Nta^
yp = 77- and Or, = —T-

3.3 Derivation of the Limits for Rj.

From the properties of the normal dis-
tribution [7] we get:

Probability (y2-3a2 < 1% < V'2'^'i02) =

0.99lh.

¥e define the upper limit and the lower

limit for in such a way that the probabil-
ity that NL(- would be outside these limits is

extremely small; that is, one would be 99-l^%
confident that M^. would be between these

limits.

Let:

LL = lower limit for

UL = upper limit for

then:

LL = y2-3a2

UL = y2+3a2

The interval (LL, UL) is also known as

the 99-1^% confidence interval.

In summary, for an N-terminal measure-

ment run, the number of transactions in t

seconds in steady state should be between LL

and UL. Note that LL and UL are functions
of N, t , a, and b.

h . PRACTICAL • CONSIDERATIONS

The model constructed above is for a
system where the intermessage delay is uni-
formly distributed between (a,b). Since the
behavior of the terminals is simulated by
generating random numbers uniformly between
(a,b), the actual numbers may not have the
exact characteristics of a \iniform distribu-
tion. The measurement intervals are small,
about thirty minutes long, and a typical ter-
minal sends about eighteen messages in this
interval. Hence, no rigorous tests could be
made to check the real distribution of the
intermessage time. Moreover, even if the
distribution of intermessage times could be
determined in one case, we cannot be sure it
will hold for another case. Hence, it is

clear that some method is required to take
into accoimt the deviation of the actual
measurement from a theoretical specification.

A number of measurements were made to
estimate the true distribution of the inter-
message time. The parameters of interest
were the mean and the variance of the inter-
message time. It was found that the mean of
the intermessage time was 101 seconds, a
value very close to, the theoretical 100 sec-
onds. The mean intermessage time did vary
from run to run, but the ratio of variance to
mean square (a^/y^) stayed constant and close
to its theoretical value of l/kQ. It can be
easily verified that for a uniform distribu-
tion from 75 to 125 seconds, the ratio of
variance to mean square is l/h8.

Another practical consideration is to
determine the value of t, the diiration of a

measurement interval. The renewal formula
holds for large values of t, since it is the
asymptotic distribution.

To determine the value of t that we covilc

use, two hours of terminal activity was simu-
lated where the intermessage time from each
terminal was a imiform distribution between
75 and 125 seconds. The two-hour interval was

broken into (l20Tt) t-minute intervals. The
number of transactions in each interval was
compared to the upper and lower limits for M^..

It vias found that for t > 10 minutes, the

number of transactions in time t was always
between LL and UL. Hence, we concluded that
if we let t be ten minutes, the renewal for-
mula would hold.

Hence, to adapt the model to practice,
we decided to divide a measurement run into K

90

intervals, each of length ten minutes. For
example, a thirty-minute run gives three ten-
minute intervals, and K would be 3. We also
note that:

^2
= Nt

= mean total transactions in
t-second interval

02
a22 = Nt /a2

variance of the nvimber of
transactions from N terminals
in time t.

But, earlier it was mentioned that
a2/y2 is 1/1+8 for the system. Hence,

The method of detecting whether a meas-
urement was in a steady state is as follows:

1. The measurement is divided into K

intervals each of length ten minutes,

The intervals are non-overlapping.

2. The number of transactions receiv-
ed by the system in interval i is,

say, for i=l, 2, . . .K. This
statistic is available from a mes-
sage log tape that TPNS produces.

Calculate M. M is given by-

EM.
1

Calculate LL, UL.

LL = M
M

^8"

rr 2 - Nt 1

From this and the formulae for LL and UL, we
get:

The theoretical value of is Nt/y.
But adjustments should be made xo take into
consideration the variation in y from run to
run. To do that, a run is divided into sev-
eral intervals_ each of length t. We can es-
timate y2 by M, where M is the mean number of
transactions in time t. M is given by:

Total transactions received
_ in the run time

number of intervals of length t

The lower and upper limits for the num-
ber of transactions in time t are:

LL = M - 3

UL = M + 3 \/

To calculate M, the run should have
three or more intervals of length t . Since
the minimum value of t is ten minutes, the
measurement should be thirty minutes or long
er

.

UL
M

5. If UL ^ M^^ LL for all i, then the
measurement r\in was in steady
state. Otherwise, the run was not
in a steady state.

6. The mean transaction rat_e for the
run in steady state is M trans-
actions per ten minutes.

5. APPLICATION TO REAL MEASUREMENTS

The theory developed here was used to
control the performance measurement runs for

IMS/VS system rimning under MVS on an IBM sys-
tem/370 Model 158. The results of four
independent measurement riins are shown here
to illustrate the application of the theory.

This section contains no performance analy-
sis of IMS/VS running under MVS. No con-
clusions can be drawn on the basis of the
four runs mentioned here regarding the true
transaction rate (nimiber of transactions
sent to the system for processing per unit
time) that any real IMS/VS system can sus-
tain. Transaction rate was measured only
for the particular IMS/VS system under study.

See Table I for the data collected during
the measurement runs.

The four runs represent fovx combina-
tions of number of terminals and main stor-
age size. Each run was thirty minutes long.

There was a fifteen-minute warm-up period
before the thirty-minute measurement inter-
val. The warm-up time was required to start
the required number of terminals. No data
was collected during the warm-up period. The
TPNS tape was processed to determine the num-
ber of transactions sent by the terminals to
the IMS/VS system in each ten-minute inter-

91

val of a r\m. Using the formulae developed
in the previous section, the values of M,UL,
and LL were calculated for each run. A check
was made to determine if LL <: Mj_ ^ UL for
each interval i for each run.

From Tahle I it follows that for rims 1,
2, and 3 the conditions for steady state were
satisfied. In run h, the analysis showed
that the system was not in a steady state

.

Table I. Results of Measurements

RUNID 1 2 3 11

No. of terminals 152 320 3811 438

Memory (MB) 3 1 4 3

Trans. /10 min. (M^)

Interval 1

Interval 2

Interval 3

902
901
905

1916
1890
1902

2282
22611

2289

2531 *

2486*
2222*

Average (M) 901 1903 2278 2413

UL 917 1922 2299 2434

LL 891 18811 2257 2392

Conclusion Steady
state

Steady
state

Steady
state

Not steady
state

Steady state trans,
rate (per sec.) 1 .506 3.172 3.797

* The interval where the number of transactions per ten

minutes is not between UL and LL.

It should be noted that, besides check-
ing whether a run is in steacSy state or not,
one must check other statistics that deter-
mine the validity of the run. One such pa-
rameter is the frequency of each transaction
type.

Having determined that a run was not in
steady state, we must determine why the run
did not reach a steady state. There could be
many reasons , such as

:

1. Telecommunication line failure.

2. Number of terminals too high for the
particular system to handle. The
transaction rate is initially high
but starts falling as (Queues develop.

3. Errors in measurement procedures.

k. Hardware or software failure.

If these causes can be eliminated in a
particular case, then we may conclude that the
system did not reach a stea(3y state because of
an imbalance between the workload (number of
terminals) and the system capacity. In this
case, the run should be further analyzed to
determine the cause of transaction queue
build-up. Tuning the system may help allevi-
ate the problem in this case.

When we analyze a measurement run that is

of finite time duration, we can reach one of
the following conclusions: the transaction
rate was steady during the run, or the trans-
action rate was not steady during the rim. In

the latter case, if a fixed number of termi-
nals are interacting with the system, then
theoretically the queues can take a finite
number of values. It is therefore possible
that if the measurement was continued longer,
a steady state might eventually be reached.
It is also possible that the transaction rate
may keep oscillating. A longer measurement
may help determine the true behavior of the
system in this case.

6. PROJECTING SYSTEM TRANSACTION RATE

If the system is in steady state during
the measurement interval, we can state its
throughput in terms of the observed steady
state mean transaction rate. The question
is, how sure are we that the system can sus-
tain the transaction rate indefinitely? The
question can be answered only in a probabilis-
tic way. The measurement is of finite dur-
ation, and only a finite set of load condi-
tions can be observed. There is a proba-
bility that, at some point in time beyond
the measurement interval, queues could de-
velop in the system that cause the trans-
action rate to depart from the steady state
value. The measured (steady state) trans-
action rate is an estimate of the true system
transaction rate. We would like to know how
reliable this estimate is.

Suppose there is a certain probability
'p' that the measured system would have an
interval where the transaction rate is out-
side the steady state limits. We would like
to estimate this probability. If 'p' is

close to 0, then the measured transaction
rate is a very reliable indicator of the
true system transaction rate for the measured
environment. If 'p' is close to 1, then the
measured transaction rate is not a reliable
indicator of the true system transaction
rate

.

One possible approach to estimating 'p'

is as follows. Let the number of intervals
measured be 'k'. The measurement indicated
that the system was in a steady state in all
of the 'k' intervals. 'p' is the probability
that an interval will be found where the
transaction rate is not between the specified
limits (UL, LL). 'p' is the unknown that we
must determine. The problem is analogous to
'k' Bernoulli trials [7] in which the number
of successes is zero. Let 'E' be the event
that the system is in steady state. P(e) is

the probability of the event 'E' . Then,

92

P(E) = (1-p)
K

= Probability that transaction
rate was within specified
limits in all 'K' intervals.

Let E' be the event that in one or more
intervals the transaction rate is outside the
limits of steady state.

P(E') = l-P(E)

= l-(l-p)
K

If P(E') > 0.95, then we can be at

least 95% confident that E' would occur.

There is a value pc, 0 < pc < 1 such
that

:

l-(l-pc)K = 0.95

For p > pc, P(E') > 0.95 and hence, E'

must occur. Since, in the real measiirement

E' did not occur, we reject the hypothesis
(with 95^ confidence of being right) that

p > pc.

tion:
'pc' is given by the following equa-

pc = l-(l-0.95)-'-/^

= l-(0.05)^/^

We will call (0,pc) the 95^ confidence
interval for 'p'. 'pc' is the maximm prob-
ability that the system would not sustain
the measured transaction rate in an interval.

For our system, an interval was ten
minutes long. Table II shows the values of
pc as a function of the number of intervals
and the total measurement r\m time.

Table II. Maxim\m Probability of Not

Sustaining the Measured transaction Rate

No. of
Intervals

Run Time
(Minutes

)

Maximum Probability
(pc)

1 10 0.95

2 20 0.78

3 30 0.63
1+ ko 0.53

5 50 O.i+5

6 60 0.39

9 90 0.28

15 150 0.18

18 180 0.15

36 360 0.08

60 600 0.05

The values of pc have been plotted in

Figure 3. Using Table II and figure 3, one

can select the run time that guarantees a

certain reliability in predicting the true

system throughput. For example, to ensure
that we are 80^ confident that the measured
transaction rate represents the true trans-
action rate, the run should be I50 minutes
long. Figure 3 also shows that the reli-
ability of predicting true system throughput
dramatically improves initially with increase
in run time. Beyond thirty intervals (300
minutes) the improvement is very slow.

200 300 iOO 500
RUN TIHE in niNUTES

Figure 3. Maximum probability that an interval would
be in non-steady state vs. run time

7. SUMMARY

We have presented an analytic method for
determining whether a performance measurement
run for an interactive computer system is in
steady state. The method was successfully
used to control performance measurement runs
for an IMS/VS system. The question of pro-
jecting whether a certain transaction rate
can be sustained indefinitely based on steady
state measurements was also looked at. We
derived a relationship between the number of
intervals measured and the 95^ confidence
estimate of the maximum probability that the
system cannot sustain the throughput in some
interval beyond the measured intervals . An
important result was to be able to select the
measurement run duration needed to ensixre a
certain reliability of estimating the true
transaction rate for the measured environment

.

The techniques described here can be
applied to control measurement runs of an
interactive computer system. Prior to the
availability of the technique, one had to use
graphical techniques, making subjective de-
cisions based on the graph to determine if
steady state was achieved. We hope the ana-
lytical techniques will provide an alterna-
tive method that can be used in many prac-
tical measurements.

93

References

[1] B, Hyman, Stability and Workload Defi-
nition for Time Sharing Systems, Pre-
sentation to Federal Information Pro-
cessing Standards Coordinating and
Advisory Committee, Task Group 13, Jiily
30, 1975.

[2] Thomas F, Wyrick, Concepts and Issues
Relevant to the Use of Remote Terminal
Emulation in Teleprocessing Procure-
ments y (Federal Computer Performance
Evaluation and Simulation Center,
Washington, D.C., May 1977), p. h6.

[3] G. Gordon, System Simulation, (Prentice-
Hall, 1969), Chapter 15

.

[i*] Teleprocessing Network Simulator (TPNS),
Program Product

(57i+0-XTl+
) , IBM Corpor-'

ation. White Plains, N.Y.

[5] D. R. Cox, Renewal Theory, (Methuen and
Co., London, 1962), p. 1+0.

[6] W. Feller, An Introduction to Probabil-
ity Theory and Its Applications, Vol. 2,
(John Wiley and Sons, I966), p. 1+6.

[7] B. W. Lindgren and G. W, McElrath,
Introduction to Probability and Statis-
tics, (The Macmillan Company, N.Y.
1959), p. 253.

94

CAPTURING TERMINAL TRAFFIC USING
A HARDWARE MONITOR

Thomas M. Marter

Computer Sciences Corporation
400 Army-Navy Drive

Arlington, VA 22202

This paper presents a detailed technical discussion of the HIS 6000
hardware monitoring project performed under subtasks 3 and 5 of task 398

of Contract Number DCA 100-74-C-0002. This paper presents a statement of

the problem, a conceptual overview of the DATANET 355 (and specifically
the HSLA) , the equipment selected, the probe points used and their devel-
opment, and the overall measurement strategy for the terminal data cap-
turing effort. Some additional discussion is presented on direction for
continuing work in this area.

Key words: Data input bus; data output bus; DATANET 355; high-speed line
adaptor; HIS 6080; interactive terminal; probe point development; pro-
grammable monitor; stimulator; terminal data.

1. Background

The Command and Control Technical Center
(CCTC) ^ at the Pentagon is a field activity
of the Defense Communications Agency (DCA)

and provides technical assistance in support
of the National Military Command System
(NMCS). Under the guidelines of the World-
wide Military Command and Control System
(WWMCCS), the CCTC has undertaken a conver-
sion from CDC and IBM mainframes to Honeywell
(HIS) systems. Until 1975, all Computer Per-
formance Evaluation (CPE) efforts were
directed at the IBM/360s at the CCTC, with
only nonrecurring projects performed on the
HIS system. It became apparent at that time
that an evaluation of the performance of both
the current and planned WWMCCS configurations
at the CCTC was required.

It had been established that the CCTC
management was faced with three major prob-
lems :

a. Configuration Variability - The sys-
tem at that time was a dual-processor HIS
6080. It would become a triplex system by
1 July 1975 and was projected to become a

quadruplet system in FY77.

b. System Behavior - The mix of batch
and interactive workloads, especially in

terms of the peak and fluctuating interactive
demands impact on the system, had to be
examined

.

c. DATANET 355 Behavior - A greatly
expanded terminal network was planned for the
projected system and its impact on that sys-
tem was not known; it was also not known if

the DATANET 355 front ends would prove to be
a bottleneck on that system.

The emphasis of all planning towards the
CPE effort would be focused on the correction
of these major problems, and a joint effort
was initiated between the CCTC, Computer
Sciences Corporation (CSC) and the Federal
Computer Performance Evaluation and Simulation

Formerly known as the National Military
Command Systems Support Center (NMCSSC)

.

95

Center (FEDSIM), with all hardware monitoring
support being the responsibility of CSC from
probe point development through data reduc-
tion.

The host system in question was the
Force Control HIS 6080 system at the CCTC,

The Pentagon, Washington, D.C. This system,
as shown in figure 1, was a triplex 6080 con-
sisting of three Central Processor Units
(CPUs), four Storage Control Units (SCUs)

with 576K of memory, three Input/Output
Multiplexors (lOMs) with 52 active channels,
and three DATMET 355s acting as front-end
processors supporting 42 terminals plus
remote line printers and data links. The
operating system in use was WWMCCS/GCOS 6.2

with approximately 1,000 batch jobs a day.

Terminals operated under TSS, under the
direct program access (DAC) mode of GCOS, or

in some cases under the Worldwide Data Man-
agement System (WWDMS). The Transaction
Processing System (TPS) was not used.

2. Objectives

From a hardware monitoring point of

view, there were two basic objectives to the
CPE effort. The first was to generate a
resource utilization profile of the host sys-
tem. The second objective was to capture all
data passing through the High-Speed Line
Adaptor (HSLA) of the DATANET 355s. This is

something that had never been done, and so

there was little assurance that it could be
done. Even those who proposed the idea had
grave doubts about its feasibility, but it

was selected because it was the best if not
the most practical alternative. The neces-
sity of capturing these data is treated in

the FEDSIM working paper "Phase I-NMCSSC Net-
work Study Technical Development Plan," and
the reader is referred to it for a detailed
discussion. For the purposes of this paper,
the following discussion will suffice.

The acceptance of simulation of a pro-
posed system configuration for acceptability
is not questioned; the results of the simula-
tion will reflect whether it was performed
well or badly. To simulate a batch/
interactive system, two ingredients are
necessary: a synthetic job stream to simu-
late the batch workload, and a terminal emu-
lator to simulate the interactive workload.
Successful capturing of the terminal data
would ultimately determine whether or not the
terminal emulation would reflect the real
world. In actuality, a stimulator^ was

2 See "Phase I-NMCSSC Network Study Technical
Development Plan" for a discussion on the
selection of a stimulator.

chosen as opposed to an emulator, but the
fact remained that certain metrics about the
interactive terminals were required for the
proposed study. These necessary metrics
included mean input message length, mean out-
put message length, expected interaction
time, and expected time between interaction.
All of these were needed for each channel.
In addition, a command usage distribution was
required.

There are several ways to obtain this
information. One is to attempt to interview
all users and get the information from them.

Even if all users could be contacted immedi-
ately after their terminal session, the
reliability of the data could be questioned.
At the CCTC, the number of users is large,
and the ability of a user to remember all he
did during a session is questionable. Addi-
tionally, there is no way that response times
and message lengths can be measured using
this method.

Another alternative is observation.
I.e., watching over the shoulder of the user.
However, it has been shown that being
observed has significantly altered the think
time of users. Some begin making mistakes
because they are being watched, while others
alter their behavior in order to make no mis-
takes. The observers, trying to keep track
of message lengths and timing interactions,
alone can distract and cause the user to

alter his behavior.

The normal solution is to give each user

a form or questionnaire to complete during
and after his terminal session. This is

acceptable if the user is not distracted by i

the questions, if the user is conscientious
about answering, and if no subjective ques-
tions are used, such as "How was response
time?" This method can work if the user keeps
track of all his message lengths and inter-

action times, but if he does, his behavior
must be altered, and therefore the experiment
is not valid.

The solution, therefore, if it can be
done, is to capture all terminal traffic for

[

prime shifts for a given number of days.

These data can then be submitted to data
reduction software, which can obtain the
required metrics and command distributions.

3. Discussion

It was known that the HSLA of the
DATANET 355 operates at a burst mode of

50,000 bits/sec. It transfers data as eight-
bit parallel modified ASCII with parity.

\

There are two physically separate data paths
for input and output, and up to 32 subchannels

97

can be serviced. Two eight-bit paths had to

be captured (parity was ignored) and some
means had to be found to identify the source
or target of the data, i.e., subchannel. If

the subchannel number could be appended to

the data, then two 13-bit^ data paths had to

be captured. Also, it was not known if any
vendor store function software would perform
the required function, so a monitor which
could be programmed was required.

3.1 Equipment Selection

Although the speed of the data handler
and minicomputer software were important, a

critical factor was tape speed. The
DYNAPROBE-'SOOO's 25 ips/1600 bpi/9-track
drive is not unique, but its "hot write"
capability is. It does not have to stop in
order to write an IRG but can write IRG "on
the fly." The expected data rate made this
highly desirable. In addition, the D-8000
allowed two 16-bit and one 14-bit store
operations. The monitor was built around a

PDP-11, a minicomputer very familiar to the
two key analysts involved. If reprogramming
the minicomputer would become necessary, this
would be an important factor. These reasons
and the economics of dealing with one vendor
and one measurement philosophy justified the
choice of the DYNAPROBE-8000. The D-8000,
with its PDP-11 and KSR-33, was selected
along with its own 1600 bpi/9-track tape
drive. The 1600-bpi tape drive was chosen
for two reasons: (1) twice as much data
could be collected on one tape, and (2) the
data reduction would not have to be done on
the host system since an IBM 360/67 was
available, meaning that the OS/360 software
could be run on a virtual OS machine under
CP-67.

Additionally, the DYNAPROBE monitor
family was chosen because of the single/quad
probe and quad concentrator philosophy. This
setup has always proven itself to be very
convenient and efficient.

3.2 Strategy - Interactive Terminal
Data Capturing

The interactive terminal data capturing
strategy was not straightforward; in fact, it

was nonexistent. As far as could be deter-
mined, no one had used a hardware monitor to

capture all data passing through a front-end
processor to a system mainframe. A parallel

^Elght data bits plus 5 subchannel number
bits. Five bits are needed to represent 32

subchannel numbers (0-31 or 2^)

.

front-end was once used to capture all data
on an airlines reservation system where a

lockout loop, which was believed to be input
data dependent**, was occurring, but this
approach was not feasible at the CCTC. No
DATANET 355 was available and parallel com-
munications lines were impossible.

The DATANET 355s at the CCTC are used as
front-end network processors and communication
subsystems to the HIS 6000. The DATANET 355
is a programmable stored program processor
and interfaces to the HIS 6000 either through
the SCM or lOM. The input/output structure
is bus oriented. Up to 16 channels can be
provided for on the I/O bus with a data trans-
fer rate of 500,000 words (up to 32 bits) per
second. Trying to capture the needed data at
this bus would be an impossible task, and
determining which data were terminal data
would be formidable if not impossible.

The DATANET 355 configuration shown in
figure 2 reveals that all high speed sub-
channels (and therefore all interactive
devices) are connected to the DATANET 355

through the HSLA. The HSLA provides connec-
tions for up to 32 lines (subchannels) at
speeds of 75 to 50,000 bps. This speed seems
much more feasible for data capture and the
only alternative closer to the data is the

subchannel itself. Study of the subchannel
showed that capturing the data at that point
would be simple; however, a single monitor
would be required for each of the three sub-
channels^ enabled on the three DATANET 355s.

This approach was not economically feasible.
The solution had to be within the HSLA.

Each DATANET 355 at the CCTC is con-
figured with only one HSLA, which supports 32

subchannels. The HSLA provides an interface
between the subchannel units (8 bits wide)
and the DATANET 355s I/O bus (32 bits wide)

that is 32 bits wide, though the actual data
flow is only 8 bits wide.

The problem for the analyst was to break
down the HSLA, find the eight bit path(s),
and determine the best place to capture it.

At first the only sources of information
available were the device itself, a Honejwell
Hardware Manual, "DATANET 355 Front-End Net-
work Processor," Number BS03, Rev, 1,

'*The author could not locate the original
source. The results and solution are now
known.

^Assuming only traffic on the lines and a
strobe of the LOGICAL AND of all the lines,
then 8 bits in plus 8 bits out equals 16

bits. A single D-8000 can accept 48 Inputs.

<
^ tc c

S ^ UJ

= S o. a.OSE<
S u 0. <

I— *^ L_o oc C
UJ UJ 2

O £ <

I

a. S O O3 S U D.

oc
UJ

»u <
S D «
«rt < O
X UJ
O Z a.

X 23

O DS:
CO 3

UJ Z
Sis
= y

°
r 3 ft.

X M 3

o
•H

M
60

o

in

CO

0)

00
•H

UJ

UJ
UJ M ^
ft. M ^
< < o
»- o »-

99

December 1973, and the DATANET 355 logic dia-
grams. After studying these sources for some
time, no immediately obvious way to capture
the data presented itself. All internal
registers and busses were 32 bits wide and,

although strobes drove these bits in ordered
groups, the function of the strobes and the

purpose of the bit groups were not intui-
tively obvious.

One thing did become immediately obvious
from the logic diagrams. The subchannel
number, at least in part, was controlled by
a scanner, or ring counter, with five output
lines which were ultimately decoded to 32

separate enable functions. These five lines
appeared to be the point at which the sub-
channel number could be captured, but the
knowledge that the DATANET 355 was a multiple
level interrupt driven device did not coin-
cide with a scanner. The probe points were
a beginning.

As an experiment, these probe points
were connected and the output of the probes
was wired directly to the display register
of the D-8000. By observing this display and
the subchannel number display on the mainte-
nance panel of the HSLA, it was determined
that the displays were in exact synch.
Further study showed that the subchannel num-
ber could be generated in one of two ways.
The first is by an interrupt of the scanner.
Each of up to five levels of requests would
be serviced for that subchannel without
refreshment of the interrupt register, and
then the scanner would continue. This is

how the subchannel gets data to the HSLA.
The second is when a subchannel number is

obtained from a Peripheral Control Word
(PCW) . This is how the HSLA gets commands
and data to the subchannel. A valid sub-
channel number was present in the Scanner
Address Switch register when the strobe
CCMDCTRL was not present. If this strobe was
present, a command was present in the switch
register. When successful data were finally
captured, it was determined that this strobe
was never present when data were being trans-
ferred, and therefore the strobe was not
needed. If an analyst wished to determine
which channel (device) was most active on the
DATANET 355, the inverse of this strobe would
be very useful.

Using the HSLA maintenance panel to
verify the subchannel number brought atten-
tion to the fact that there was provision
for displaying "DATA" on the panel for both
an Input Display and an Output Display. If

a meaningful strobe could be defined, this
could prove to be a useful way to capture the
data. The logic diagrams seemed to reinforce
the original premise and a good signal was

present which gated the lines to the light
drivers. Let it suffice to say that a great
deal of time was spent on this theory with
absolutely no results.

At this time the Honeywell customer
engineers pointed out the Product Engineering
Specifications microfiche for the HSLA. The
logic diagrams suddenly became clear. A
functional diagram of the HSLA is shown in
figure 3. The diagram shows that the common
denominator between input and output is the
data input switch register and the data out-
put switch register (please note that the
presence of CCMDCTRL at both the Scanner
Address Switch and the Data Output Switch
denotes the presence of a command, not data).
Again the observation method was used.
Probes were attached to each of the registers
in turn, and the D-8000 display was compared
with the maintenance panel display. They
were in exact synch.

In the case of the output data switch,'

it can contain data, the Base Address Word,
or a character control character. On the
output side it can be data, a Peripheral Con-
trol Word, a Base Address Word, or a Charac-
ter Control Character. Strobes still had to

be defined which would indicate that data
were present. Additional study and analysis
of the $CON strobe (CONNECT) and $ANS strobe
(ANSWER) and their families was begun. The
first likely candidate was $SCANS, which was
defined as "a strobe bus line which indicates
to the subchannel the completion of the sub-
channel initiated interrupt - answer cycle
and presence of data on the DOBUS if a data
request was made." A strobe with a more
succinct definition was necessary to fulfill
the needs of the study.

Staring at a microfiche reader for long
periods of time is not highly tolerable.
Between microfiche sessions, the input and
output switch registers were probed and mean-
ingful output data were gleaned from the data
captured, especially the output of the GCOS
module VIDEO, to the operator console CRT.

Input was not very obvious and was buried in

reams of synch frames from the synchronous
terminals (VIPs) and nondata characters, if

it was there at all.

Further perusal of the Product Engineer-
ing Specifications turned up CSCDATI, which
was defined as "a command bus line requiring
the subchannel to present the received data
character on theDIBUS," and CSCDATI which

was defined as "a command bus line informing
the subchannel that the requested data char-
acter is present on the DOBUS." Examination
of the logic diagrams confirmed that CSCDATO
was exactly what was needed, but <?SCDATI did

— Zq.31- 03»-a.3H Z3-l|>-a.^u<XOae

101

not appear to be logically correct for what
was needed. The output strobe was used to

capture the DOBUS and everything worked per-
fectly. A number of other strobes were pos-
tulated for input but none worked. Finally,
CSCDATI was tried and, except for a tendency
to append an erroneous character to the end
of messages, it worked. The verification of

input data was not as easy as the verifica-
tion of output data due to the small volume,
but test messages typed at a terminal on an
almost dead machine were immediately evident.

The normal source for $CON and $ANS and
their family of strobes is a nominal 100 ns
positive going strobe. Whether the source of

the strobe is a 100 ns strobe when online, a

logic edge when offline, or a standard strobe
from the recycle logic, pulse forming logic
forms a standard strobe of 35 ± 5 ns for

distribution. During the development of

these data capturing strobes, Tektronix
scopes proved to be invaluable in determining
the attributes of a signal on a given pin and
its attributes at the logic panel of the
D-8000. A D-416 monitor was used to deter-
mine the frequency of strobes and the fre-

quency of data captures.

3.3 Interactive Data Collection

It had now been shown that a D-8000 type
of hardware monitor could capture the inter-
active terminal data at the HSLA of a

DATANET 355. There were still a number of

questions that needed to be answered, in

particular, could all the data to and from
all terminals on a DATANET 355 be captured
during prime time

.

The selection of a programmable monitor
provided two options for the usage of the

D-8000. The first option would be to use the
monitor as is, using the vendor software to

dump the data directly to tape as quickly as
possible. The advantage of this option was
that the data could be handled at a high
expected arrival rate. The possible problem
area was that the arrival rate may be too
high even for this option. The second option
would be to reprogram the minicomputer to

massage and compress the data at the minicom-
puter and then write it to tape. The advan-
tage of this option was that the amount of
data is greatly reduced. Synch characters
make up a large percentage of the data and
can be easily eliminated. With additional
programming effort, the VIDEO display to the
operators CRT could be eliminated since it is
a known value and easily quantified. The
possible problem area would be that the
arrival rate is too high to allow program
execution time.

Because of strict time constraints, it

was decided that direct capturing of the data
was the only real option, and the system was
so implemented. The D-8000 had no problems
capturing all the data when attached to

DATANET 355s A and B. DATANET 355 C caused
some data to be lost due to the speed of the
data link type devices on its subchannels.
Approximately 9 million bytes of data would
fill a tape in 1 to 2 hours of monitoring.
Approximately 60 tapes were filled in a 10-

day period. A data reduction software pack-
age called SNORE was developed by CSC to

digest these tapes into the required FEDSIM
metrics.

3.4 DATANET 355 Core Availability
Monitoring

One metric was requested by the FEDSIM
which also was something that had never been
done, but because of the effort put forth on
the rest of the study, and the presence of a

usable alternative, its solution was allowed
to wait until last. It is an interesting
metric and solution, and was related to the
terminal data and therefore should be docu-
mented.

The FEDSIM wanted to know dynamically
how much core was available in the DATANET
355 during the prime shift. In the communi-
cations region of CRTS, word 652g (.CRBUF)

contains the number of words of free core.

Using the PEEK console command of CRTS, the

analyst could periodically interrupt the

DATANET 355, "peek" at word 652g, and record

the contents. This method can become boring
and can be very time consuming.

The D-8000 still had some measurement
capacity available in that the COMMAND
register was not being used. It was decided
that if a hook could be placed in CRTS so

that the contents of .CRBUF could be placed
where the monitor could see it when a NOPl
pulse was present, the problem could easily
be solved. Analysis of the DATANET 355

showed a number of registers available to the

programmer that could also be probed. It was
decided that the accumulator side of the AQ
register could easily be used and a patch was
applied. Due to a number of other patches
preexisting in CRTS, the frequency of NOPl
pulses was higher than expected. The non-
valid pulses were accompanied by register
contents of zero, so no invalid data were
involved. The solution to the problem was to

divide the strobe by 100 and therefore cap-
ture only every hundredth occurrence. By
ignoring zero data during data reduction, a

good core availability histogram could be

102

produced, with sufficient sample to allow
good confidence. Capturing every hundredth
occurrence also prevented the COMMAND
register from interfering with the terminal
data capture since it has highest priority
in the D-8000.

The probe points developed, their func-
tion names, logic sheet origin, and logic
levels are given in table 1. The application
layouts showing logic used and register
assignments for the D-8000s are available
upon request.

Table 1. (Continued)

Function Sheet Point Level

RA141P ZYOC PK-19 PK- TP18 (23) +5
RA151P ZYOC PK-22 PK- TP19 (22) +5
RA161P ZYOC PK-25 PK- TP20 (2l) +5
RA171P ZYOC PK-28 PK- TP21 (2°) +5

STROBE
DNOPIP ZYOl PH-10 PH-TPOl +5

4. Results

Table 1. D-8000 Probe Points

Function Sheet Point

OUTPUT

INPUT STROBE
(?SCDATI;000 B-8 B-WG07

SUBCHANNEL No.

FREE BUFFER

Level

DOBUS28;000 D-16 D-WC14 0

DOBUS29;000 C-13 C-WG14 0

DOBUS30;000 D-5 D-WC03 0

DOBUS31;000 D-5 D-WC04 0

DOBUS32;000 D-5 D-WC05 0

DOBUS33;000 D-5 D-WC06 0

DOBUS34;000 D-5 D-WC07 0

DOBUS35;000 D-5 D-WC08 0

OUTPUT STROBE
CSCDATO;000 B-9 B-WD04 0

INPUT
DIBUS28;000 D-13 D-WC15 0

DIBUS29;000 D-13 D-WC17 0

DIBUS30;000 D-14 D-WC18 0

DIBUS31;000 D-14 D-WC19 0

DIBUS32;000 D-14 D-WC20 0

DIBUS33;000 D-14 D-WDOO 0
DIBUS34;000 D-14 D-WDOl 0
DIBUS35;000 D-14 D-WD02 0

ASCADD0;010 C- 19 C--WHOO (2°) 0

ASCADD1;010 C-19 C--WH02 (2l) 0

ASCADD2 ; 010 C- 19 C--WH03 (22) 0

ASCADD3;010 C-19 C--WH04 (23) 0

ASCADD4;010 C-19 C--WH05 (2'*) 0

RA041P ZYOC PJ- 16 PJ- TP21 (2 13) +5
RA051P ZYOC PJ- 19 PJ- TP23 (2 ^2) +5
RA061P ZYOC PJ- 22 PJ- TP24 (2 ") +5
RA071P ZYOC PJ- 25 PJ- TP25 (2 10) +5
RA081P ZYOC PJ- 28 PJ- TP26 (2 5) +5
RA091P ZYOC PK- 4 PK- TP13 (2

S) +5
RAIOIP ZYOC PK- 7 PK- TP14 (2 ') +5
RAlllP ZYOC PK- 10 PK- TP15 (2 +5
RA121P ZYOC PK- 13 PK- TP16 (2 ^) +5
RA131P ZYOC PK- 16 PK- TP17 (2 +5

All the data necessary to script the
stimulator was obtained. The data reduction
software produced reports on mean input mes-
sage length, mean output message length,
expected interaction length, and expected
time between interaction. In addition, a TSS
subsystem command usage distribution was
obtained. The stimulator was scripted and
various projected systems were configured at

a test site and a batch load was placed on

these systems using a synthetic job stream
and a timesharing load was obtained from the
stimulator. The synthetic job stream was
obtained from a system used at the CCTC
through which a data base is maintained on
Statistical Collection File output. Based on
activities, pertinent information is stored
in a highly condensed version of the account-
ing data. This historical data base is then
used for generation of the job streams.

The configurations s batch workloads, and
timesharing workloads could be varied in

different ways so that deficiencies in the

projected configuration could be revealed and
possible variations of the configuration
could be proposed. If the configuration was
not found to be deficient, then the two work-
loads could be varied upward in order to

determine a projected life cycle for the
projected system configuration.

4.1 Recommendations

If and when this experiment is under-
taken again, the following would be consid-
ered advisable for the interactive data
collection. Dedicate some software develop-
ment time to reprogramming the minicomputer
to at least ignore sjmch characters. Addi-
tionally, to be efficient and economical,
the software should be capable of ignoring
specific subchannels, e.g., VIDEO display or

data link devices. Less captured data means
far less data reduction software execution.

This reprogramming can take the form of

rewriting the vendor supplied software or the

103

user can write their own version of software.

In either case, it is felt that the effort

will be well justified. At the CCTC plans
are being formulated for this effort.

4.2 Further Efforts

The Computer Sciences Corporation and

the CCTC are preparing to try an experiment
whereby this method of data capturing at the

HSLA can be used to determine response time

on the timesharing system at the CCTC. In

this case, response time is defined as the

total (wall clock) time that elapses between
the last terminal key stroke of a user and

the first character transmitted back to the

terminal by the HIS 6080 through the DN-355.

Terminal messages on the HIS 6000 are
terminated by an ETX (end of transmission)
character and are begun by an STX (start of

transmission) character. If the ETX charac-
ter can be detected in the incoming data
stream and the subchannel number can be cap-
tured and time-stamped, and likewise the STX
character from the outgoing data stream can

be detected and the subchannel number can be

captured and time-stamped, then data reduc-
tion software can be used to analyze the

response time.

At the CCTC this will be tried using a

known scenario on a known terminal only until

it can be proven to be feasible. Under these
conditions, response time can be related to

a particular TSS subsystem command. When
used for the system, in general, only a

general (average) response time can be con-
clusively obtained. Both the micro and macro
techniques should prove highly useful.

Work for the CCTC performed by the Mitre
Corporation has shown that the number of

retries on the network at the CCTC are
almost nonexistent on the terminal lines.

Using a D-8000 with its dual-function
store-mode software, the original experiment
with a single subchannel number can be imple-

mented by specifying the same value for the

monitored high and low limit when initial-
izing the software. The value will be the

13-bit combination of subchannel number and
the ETX or STX character. In addition, a

buffer size of one will be defined as the
store buffer. Thus each time the value is

found it will be immediately written to tape

and thus it will be time-stamped.

Using a D-7900, the same experiment can
be done using the logic shown in figure 4.

These strategies have never been used before
but there is a high confidence level of

success. The number of terminals monitored
on the D-7900 will be defined by the amount
of logic available at the plugboard. This
has not been fully studied but the expected
level of monitoring is eight terminals per
monitor.

This Technical Paper is based on work per-
formed under the direction of the Chief for
Computer Performance Evaluation by Computer
Sciences Corporation under Contract Number
DCA 100-74-C-0002.

Bibliography

[1] Honeywell Information Systems, Inc.,

DATANET 355 Front-End Network Processor ,

Order Number BS03, Rev. 1, December
1973.

[2] Federal Computer Performance and Simu-
lation Center, FEDSIM/NMCSSC Customer
Agreement , FEDSIM Project NA-505-081-
DCA, Washington, D.C., 30 May 1975.

[3] Federal Computer Performance and Simu-
lation Center, NMCSSC Network Study
Technical Development Plan , Working
Paper for FEDSIM Project NA-505-081-DCA,
Washington, D.C., October 1975.

[4] Federal Computer Performance and Simula-
tion Center, External System Measure-
ments , Informational Letter for FEDSIM
Project Number NA-505-081-DCA,
22 December 1975.

[5] Command and Control Technical Center,
I

Special Numeric Operations Report
Executive (SNORE) , Technical Report
TR-109-76, Washington, D.C.

[6] Command and Control Technical Center,
Application of Hardware Monitors to the
Triplex HIS 6080 , Technical Report
Number TR 110-76, Washington, D.C,
31 October 1976.

104

105

A NEW TOOL FOR MEASURING RESPONSE TIME

Dr. Gary Carlson

Director, Computer Services
Brigham Young University

Provo, Utah

Dormovil Ferreira

Director, CODEC
Goianoa, Goias , Brazil

A new software monitor was recently announced that
measures the response time of up to 100 terminals for
over 9 hours with only 32 seconds of CPU time and 8K
bytes of core overhead. The data reported includes the
minimum, maximum, average, standard deviation, and
distribution of response times by terminal, by hour.
Various other reports can be obtained.

1. Importance of Response Time

As on-line systems developed from
batch operations, the use of inter-
active terminals in a teleprocessing
environment has increased at an
enormous rate. In fact, there are
approximately 900,000 terminals
installed in the United States now
and perhaps as many as 1.2 million,
terminals installed world-wide [k] .

Carlson, in an earlier paper [k]

expressed the importance of response
time as follows:

"When we consider that there
is a human sitting at each
one of these terminals for
6 to 12 hours a day, the
enormous room for either
saving human effort or
wasting it becomes readily
apparent .

"

Figures in brackets indicate the
literature references at the end of
this paper.

With this human-terminal interaction,
it is often the terminal that can
determine the effective rate at which
people are working. This is similar
to many man-machine interactions, but
in most previous systems, like
assembly lines, the machine rate is
set to approach the limits of human
performance and the human is asked to
match the machine. With computer
terminal systems it is just the
opposite. We ask the human to perform
at his maximum rate and hope that the
machine can respond and keep up with
the human. If response times are
excessively slow or highly variable,
the machine then impedes the perfor-
mance of the human operator."

There are several things besides
response time that should be measured
to improve the overall performance of
teleprocessing systems. This includes
job turn-around time, system job
holding or delay time, rate of actual
transaction throughput, volume of
transaction throughput, both overall
and by operator, system availability,
and others. A further discussion of

the criteria that should be considered
in measuring of remote services is
given in Grubb and Cotton [9]

•

All o£ these activities need good
measurement procedures, and results.
We choose response time for the first
major measurement effort since it
seemed to be the most widely discussed
by our users of all of the other
measures. We were often told by our
customers that response time "sure is
slow today." By the time we would go
over with a stop watch, things always
seemed to be better. It seemed that
an easy to use, reliable measure of
response time could tell us where and
when problems of poor service were
happening

.

2. Measuring Response Time

In order to reduce terminal response
time we must first be able to measure
it, and this can be done with a:

1) hand held stop watch;
2) hardware monitor;
3) software monitor.

For some purposes any of these three
techniques may be satisfactory.
However, to perform concurrent
measurements of response time of all
terminals on the system, stop-watch
techniques are not adequate. It
would be necessary to have as many
people performing measurements as
there are terminals on the system.
For some installations this number
could run into the thousands.

Measurements of response time with a

hardware monitor provide the "truth"
down to a microsecond range. However,
the number of terminals that can be
measured at any given time is limited
by the number of probes and counters
available in the monitor (usually 16)
and by the distance of the terminals
from the hardware monitor. The
sensor probe that is connected to the
terminal cannot be located more than
200 feet from the hardware monitor.

The National Bureau of Standards has
developed a sophisticated Network
Measurement Machine (NMM) that uses
a minicomputer to measure the level
of service at the terminal [7].

Measurement of response time by soft-
ware monitors gives results that are

accurate within a few hundredths of a
second and are therefore adequate for
most tuning efforts. However, most
software monitors have given only
partial, or fragmentary information.

A new software monitor called TRT
(Terminal Response Time) has been
developed to perform concurrent
measurements of all response times
of interactive terminals operating in
IBM OS and VS operating systems. At
present TRT only measures terminals
that are in the local mode. Develop-
ments are under way to measure remote
terminals. Measurements are made at
the CPU by trapping on terminal I/O
processing. The definition of response
time used is the time interval from
when the enter key is hit until the
screen or typewriter starts to be
rewritten. For local terminals the
line and controller delays are
insignificant in human terms -- at
most only a few milliseconds. We
anticipate essentially the same
behavior with remote terminals. Some
preliminary measures show a maximum
line and controller delay in remote
operations of only 250 milliseconds.
Further information on remote
operations can be found in Grubb [8].
The trapping occurs at a very
fundamental system level and seems
to work for all kinds of access
methods and all kinds of TP control
systems. The monitor is designed to
measure terminal response time by
frequency of occurrence and arrange
the data into a number of intervals
in a form convenient to analyze, and
to provide the average and standard
deviation. The monitor provides the
following information at the end of
each run:

- terminal identification;
- total number of responses

(by terminal)

;

- average response time (by
terminal)

;

- maximum response time (by
terminal)

;

- minimum response time (by
terminal)

;

- standard deviation (by
terminal)

;

- frequency of occurrence of
response times for each class
interval specified by the
user (by terminal)

;

- cumulative percent of the
frequency of occurrence for

108

each class interval with an
automatic identification of
the 801 mark (by terminal).

The software monitor was designed in
a modular fashion, and is structured
in such a way that it runs under OS
or VS. Terminals can be grouped in
any desired way.

3. Response Time Distribution Curve

Many studies related to terminal
response time have been conducted
with the objective of determining the
average response time. However,
detailed analysis of data shows that
the average can be misleading in
studying response time because it
hides a lot of information. The
average alone cannot provide any
information concerning response time
variabi lity which has been of great
concern to terminal users [k] . There-
fore, any tool designed to measure
terminal response time must give the
distribution of response time, as well
as provide measurements of central
tendency and variability.

4. Overhead

Whenever a software monitor of any
kind is used, one must be careful
about the possible excessive overhead
on the system. Hardware monitors
were used to measure all activity in
the system while the new TRT software
monitor was running. At first we were
rather surprised and a little worried
when we found that almost 500
instructions were executed for every
terminal response. That is, to
intercept the fact that a terminal
"enter" key was hit, to measure the
time, and to record the activity takes
almost 500 instructions. Upon closer
scrutiny, however, it was found that
in the IBM OS system if yoii hit the
"clear screen" key, there are over
6,600 instructions executed. Further
analysis showed that the TRT software
monitor only used 38 instructions to
determine if the interrupt was caused
by a terminal. If some other
interrupt has occurred, processing by
the software monitor ends there. This
leads then to the very small overhead
that often an entire 8-to 9- hour day
can be monitored with less than h a
minute of CPU time.

The other overhead consideration is
core used and all software monitors
have to use some. The modular design
of TRT has allowed us to put all
critical functions in 8K bytes of core.

5 . Accuracy

The accuracy of any monitor must be
carefully examined to make sure that
we are measuring what is truly
expected. Many measurements have
been taken comparing the TRT software
monitor with various hardware monitors
and a hand-held stop watch. In all
cases the measurements are essentially
identical. The results of a typical
measurement are shown in Table 1. From
these results it can be seen that the
average and standard deviation are
essentially identical with all three
techniques. In other words, this is
evidence that if a person sits at a

terminal with a stop watch to measure
response time, he will get identical
results by using the Questronics
hardware monitor or the TRT software
monitor. The interesting feature of
the TRT software monitor is that it

gets simultaneous measures of all
terminals on the system and gives the
distributions of response times as
well

.

6. Some Early Results

Continuous measurements performed on
74 interactive terminals (IBM 3277)
connected to an IBM 360/65 installed
at Brigham Young University show that
the average number of entries per day
at this installation is about 436 per
terminal day, or 54 entries/terminal
hour, with an average response time
of less than 2 seconds. The distri-
bution of response times for 2 sets
of terminals is given in Figure 2 and
3. Computer installations differ
widely in their terminal response
time requirements, and the response
time needed is determined by the type
of teleprocessing application used
by each installation [6]

.

7. Some Early Conclusions from the
Terminal Response Time

Measurements

The monitor has been in use for over
a year now and some interesting and
in some cases surprising concepts seem
to be emerging. Some of these pre-
liminary and tentative ideas are:

109

1. There is a great deal of varia-
bility among response times of
terminals on the same system.
Average terminal response times
measured on one 360/65 OS MVT
system, range from 0.9 seconds up
to 27.2 seconds. This does mean
that asking for the average
response time of "terminals" on
a system is a misleading question.
The question must be more specific,
asking what is the response time
for a given terminal. This does
vary somewhat during the day, but
not nearly as much as one might
expect

.

2. System tuning may be a poor
approach to improvement of
response time. Otherwise, how
could we have such high varia-
bility in response times of
different terminals on the same
configured system during the
same time of measurement. Rather
than system tuning it appears
that particular programs will
have to be tuned, both in terms
of what they do and how they do
it, as well as more careful study
of the interaction between jobs.

3. The response time of terminals in
the computer center is generally
much better than the users

'

response time. This may point
out that we service ourselves best.
This is probably no surprise to
some people, but it was to us as
we were initially struck by this
phenomenon. This can be shown by
looking at Figure 2 which shows
an average response time for
Computer Services terminals of
0.57 vs. a user department shown
in Figure 3, with an average
response time of 1.65 seconds.
Not all user departments are that
bad, but these seem to be fairly
typical numbers.

4. Users can and do adapt to poor
response time. This adaptation
is enhanced if Computer Services
provide adequate "hand holding"
where we help the user feel that
we are interested in his well-
being even though we have poor
response time. Expression of
sympathy and sorrow and shared
frustration seems to help the user
feel okay about poor response time.
There is a fairly high cost in

people to do this and there is a
very large cost in wasted human
effort waiting for response time.

5. The distributions and average
response times are initially not
believed by the responsible
programmers . Programmers always
think that response time is better
than it actually is. This is
probably an expression of the same
phenomenon that a programmer
always thinks he can write a
program in at least half of the
time it will actually take. As
response time measurements are
gathered you need to be prepared
for disbelief by the programmers
who wrote the programs.

6. The terminal keyboard operators'
performance for the same function
can vary in the number of entries
from one operator to another by
501. This means that operators
on identical terminals, using the
same program and doing the same
function put out significantly
differing amounts of work. This
should come as no surprise, but
the differences seemed larger than
v/e expected. It does raise a
question if keyboard operators
should have an incentive plan or
piece rate similar to other kinds
of production workers.

These are some of the preliminary
insights. These came rather quickly
and easily. We are optimistic that
further insights can be obtained which
can help Computer Services do a better
job in terms of truly serving the user

8. Future of Response Time
Measurements

The development and installation of
the terminal response time monitor has
been very encouraging. The next
developments will be aimed at develop-
ing a cookbook procedure on how to
improve response time. Once the data
on what is actually occurring is
available, then specific steps can
be taken to improve the response time.
This cookbook approach will include
such things as balancing channel
activities, careful distribution of
disk files to minimize disk and
channel contention, and specific
techniques on improving the appli-
cations programs so that they use

no

less computing resources or at least [k]

use the resources in less competition
with the other system activities.
This list will grow as experience is
gained in making changes that do
bring about improvements in response
time. [5]

The next step planned after this is
to make this cookbook part of the
automatic "diagnostics" that the
monitor could provide. In other
words, we hope that the terminal [6]

response time monitor can be run to
measure the response time and then
highlight the terminals that most
need attention and what should be
done to try to improve the response
time. [7]

The third stage for the future is to
then incorporate the automatic cook-
book procedures into program fixes
so that the response times will be
automatically improved by automatic
changes of programs, data set
allocations, and other systems [8]
tuning that can bring about improve-
ment of response time. We realize
this ultimate goal is optimistic and
may take a while to get there, but
we are confident that the tools now
are in hand to make it possible. [9]

References

[1] Carlson, Gary. "What Causes
Slow Response Time on the DEC-10
and the IBM- 360 - A Use of
Factor Analysis." Proceedings
of Computer Science and Statistics
Eighth Symposium on the Interface

,

UCLA
,
February 13-14, 1975,

p. 466.

[2] Carlson, Gary. "A User's View
of Hardware Performance Monitors
or How to Get More Computer for
Your Dollar," Proceedings of
the IFIP Congress 71 . August
23- 28 , 1971 , Ljubljana

,

Yugoslavia. TA-5, p. 128-132.

[3] Carlson, Gary. "Practical
Economics of Computer Monitoring,"
in Proceedings of IFIP Adminis -

trative Data Processing Conference
,

Amsterdam, Holland, May 2-5 , 1972

.

Published in Management
Informatics , Vol. 1, No. 6,
p. 251-256.

Carlson, Gary. "Measuring
Response Time of Interactive
Terminals," EPF Performance
Review , Vol. 3, No. 8, August
1975. p. 1-5.

Martin , James . "Telecommunications
and the Computer." IBM Systems
Research Institute , Prentice-Hall
Inc., Englewood Cliffs, New
Jersey, 1976, p. 71-73.

Chang, J. H. "Terminal Response
Times in Data Communications
Systems," I BM Journal of Research
and Development , Vol. 19, No. 3,
May 1975, p. 272-282.

Rosenthal, Robert, Rippy, Don E.,
and Wood, Helen M. "The Network
Measurement Machine- -A Data
Collection Device for Measuring
the Performance and Utilization
of Computer Networks," NBS
publication TN-912, April 1976.

Grubb, Dana S. "Data Communications
System Throughput Performance
Using High Speed Terminals on
the Dial Telephone Network,"
NBS publication TN-779, May 1973.

Grubb, Dana S. and Cotton, Ira W.

"Criteria for the Performance
Evaluation of Data Communications
Services for Computer Networks,"
NBS publication TN-882, September
1975.

Ill

Response TRT
Number Stop Watch Questronics Software Monitor

1 1 .20 0.90
2 2 . 00 1.60
3 2 . 70 2 .40
4 3 .80 3.40
5 1 . 30 0.80
6 2 .00 1.60
7 2 . 80 2.40
8 3 .80 3.40 See Figure 1

9 1 . 10 0. 70 for distribution
10 1 . 40 1.10 of response times
11 1 . 80 1. 30
12 2 . 00 1.60 TRT does not give
13 2 .50 2. 20 each individual
14 3 .00 2.60 response time.
IS, 3 .50 3.10
16 4 .10 3. 70

17 4 .90 4.50
18 5 . 70 5.30
19 1 .40 1.10
20 2 . 20 1.80

Average 2 .66 2.28 2.31

Minimum RT 1 . 10 0 . 70 0.79

Maximum RT 5 . 70 5.3 5.28

Std. Dev. 1 .29 1.28 1.22

Table 1. Comparative Measurements of Response Time

112

OEL —<

on
UJ

^. cvr

UJ o

113

: 13 o
> O o:
a
uj T J>

: 1 rvj

I- ec
. LU <r| D >o
I- X| I

< c' I

a yl r-

o Ic
Q. (T- i > I

• ei o.:a -•
• O f^' ct o

CO

1

1

1

o -5
1

a o 3 t o 1

~* I^ 1
1

• 2
ri 1

2 1o i

'

o o t o
o b O

j
1

^ 1
»,

^
1

i

to 1
1

H> 1 o o o o o o 4 o
z ll o o o o o
LU

1
t •

l

s:
1

lU
1

1

^ 1 o o o o o
1 o o ow 1

j^
1

.-4 —

«

Z 1

y 1
—

«

o a o o o cr

S 1 O O u o V*
Cl£,

1
• t- 1

o
Z 1-

1

UJ
1

o o r\j o o cr

o o LP o cr

• 1—

1
o
—«

I
1

(_>
I

<x
1

o o o o (7*

Ut
1 c o o 0^ cr

• 1—
or ! o CO

o 1

! o o o* CO in cc

^ 1
O Q o p-i cr LO cr

^ 1Q 1

CL
1

<(•(<

l/>
1

LU
(

o i/^ CO cc in fV m CO

cc 1 o o o o o o o rv cr Q- o cr

I
(NJ r\

<f
O 1

I

UJ
1 o o -A o O o o
\ O 3 —

>

CO <) CO in ro o
^ t

• »— o CO CT» CM

3 1 o
1

1— »— (— »—

z z z z Z z
z UJ UJ Lil UJ UJ UJ

o o o o o o
of « a: o: QC Cil

< t— UJ -'J -^1 lU rn 'jj JJ rO u LU
»i a. 0.

>^

s:
3 •

ST >- CO

X • CO ^
<r or
3r

:3 • m ro m
:t H- o o o o o o
z • o o o o o
»—

<

5;

LU
cr

<I h- CO cr

'JJ • f-l

> CC

-J rr; in

<f UJ

a •

h- n
z

_j Z Z z z z Z
o O o o a z c
1/1 t/i <y> (/> o to

CO (/I CO (/I

LU ^ r
t~ Q o o o o

< «r <I <

< 1/1

Ẑ
UJ o m in >c J-

y: a: *r IT- tn LO

Of o o o O o o Ci o
UJ o
1- <

3
P.
e
o
u

o

!->

3
P.

114

c

-1 1~

< o. - or I

a: T. <i

O o =3 '

o u C (

a. o I

&._!<!
<r Lu

> Z X
<I M UJ '

K K-
U-l < <— Z CC

a. a. u
e uj G
O >- a
Of Z O
Q. O

o
I

roio: c
m O- 00

O * • o * *

^

1

<-U 1
• o • o • • o • • O

t/>
1

— 1

1

1ŵ
1

o • • • * • •H o •_
u*S 1

^
!

2 1 o o • o o • • o * O • o •

' (o o o o
1

\i
1^
!

£ t o • • ^ •

—I rn *

*

O
I

~; '

f>
_

LU
1
O Cj 0^ O

o * •

ry 1

-J O 1

Ll_ 1

Q CO 1

_
*^ r> O in

UJ 1 6^ —4 J* On

I

* ?
!

o IT, I

1 •0 CO
T,

I •o cr
1

1

*
•J* 1

"if

1

'0 o in
O Q o

? I

r|

!-!O 1
—1

2 1
-7

Gj UJ 111 UJ
—

* Q O o L_> o
Of

i\ ft*

' u
r\ o

t • •

>~

ID -J
o o o

_J
O CO (NJ in in o

a--

* * * • • • •

CO —

'

UJ

"-J —*

to o
El

• * • • •

— 1 o O o

"

"

_^ ^ *

in in

S •
•o Q LU

>—
Cl

h-

UJ CO (\l >o CO
ITS O U.

UJ O • -4 O
Q. 1— o

UJ
>-

,

'
Ml UJ UJ

_ ^ 1 n (/I —

*

_
1

7-

~i a
1

tf —J r—
« < I/) O

2r to h-
« UJ CO o O Q in cc
« S" a: in cc on cr 0-

4r or c o o o o O o o o o LU
Vf UJ c
4V t- <

L.

115

I

PERFORMANCE MEASUREMENT

117

COMPARATIVE STUDY OF TASK DISPATCHING
ALGORITHMS IN AN IBM MVT/ASP ENVIRONMENT

S. Elmer Freeman and F. Gary Green

Georgetown Computer Support Project
Office of Management and Computer Systems

National Oceanic and Atmospheric Administration
Washington, D. C. 20035

The study presents the results of a comparison of three dispatching
algorithms available in the IBM MVT/ASP environment. The three algorithms
investigated are: MVT/ASP with standard dispatching; MVT/ASP with dynamic
dispatching; and MVT/ASP using APG from the LSPS package. The compari-
sons were made using the synthetic benchmark approach described in the
NBS publication "Use of Synthetic Benchmarks for Estimating Service
Bureau Processing Charges." A relationship for the synthetic benchmark
in terms of elapsed running time is also developed in addition to those
described in the NBS publication. A discussion of the dispatching
algorithms as well as the procedure used for construction of the bench-
mark are described.

Key words: Benchmarking; dispatching algorithms; synthetic benchmarking.

I. Introduction

Keeping I/O bound tasks running while
maintaining an acceptable level of service to

all CPU bound tasks is a desirable feature of

most any general purpose operating system.
Historically several schemes have been pro-
posed (time slicing, etc.) and implemented to

achieve these goals. More specifically,
three dispatching^ algorithms for task
sequencing are available to users of IBM's
OS/MVT operating system. The standard MVT
approach, a priority method, relies on an
a priori knowledge of the task's CPU and I/O
characteristics and ignores the fact that

Dispatching - the process of allocating the
CPU resource to a task in an
OS/MVT environment.

these characteristics may change during the
life of the task. In the early 1970's HASP
and ASP (one of which was usually an integral
part of an OS/MVT system) incorporated a

monitor (called the Dynamic Dispatcher in
ASP) which determines whether tasks are CPU
or I/O bound and reorders the dispatching
queue placing I/O bound tasks closer to the
beginning of the sequence. Finally, in 1975,
through the efforts of SHARE (the IBM users
group) Automatic Priority Grouping (APG) of
the IBM Large System Program Support package
(LSPS) was made available to the general user
community. APG not only reorders the dis-
patching sequence periodically but also
assures that there exists an optimal percent-
age of CPU bound tasks. To maintain this
percentage, the dispatcher varies the
criteria for CPU and I/O boundedness as the
workload changes. Investigation of operating
system performance using these three
approaches has revealed some dramatic results
in terms of throughput and resource utiliza-

119

tion. The following discussion details these

results and explains the construction and

running of the necessary benchmarks and the

operation of the algorithms themselves.

II. Algorithm Descriptions

In the basic MVT operating system tasks
are scheduled on a priority basis. The
source of the priority may be from one of two

job control language parameters; in either
case assignment of priority is made at the
beginning of task execution. This may allow
performance advantages in an installation
where job characteristics are well known and

the priority scheme is directly related to

these characteristics. However, in many
installations either job characteristics are

not known or are subject to significant

change during execution. These shortcomings

have prompted development of at least two

other methods of dynamically measuring CPU
utilization and rearranging the dispatching
sequence to keep I/O bound tasks active and

CPU tasks from "hogging" the processor.

In the Dynamic Dispatcher an attempt is

made to distribute the CPU resource more
equitably. The Dynamic Dispatcher is imple-

mented as a system task which periodically
inspects CPU usage of tasks in a certain
priority range. Both the interval between
inspection and the range of priorities are

specifiable by the installation system
programmer. Usage of the CPU resource is

maintained according to the following
equation:

ht,n = CPUt,n + ht-l,n - Ht/N (1)

N

where H^. = J>
.'

(CPU^. ^ + h^_j ^)

;

i=l

N = the actual number of

tasks being monitored
during the time inter-
val;

h^ 1 = the history of CPU
utilxzation for task

n taken at the pre-
vious time interval;

CPUf. ji
= the amount of CPU time

used for task n during
time interval t.

The h^- ^ values are measures of the

current and most recent CPU usage character-
istics tempered by the average usage for all

tasks within the priority range. A low h^

value is indicative of low CPU usage by a

task. A high hj. ^ value indicates high pro-
cessor usage by ihe task [7]^.

During processing at the end of each
inspection interval, h^ is calculated and
the task dispatching sequence is reordered
by sorting tasks in order of increasing h^ ^.
Thus, tasks using smaller amounts of I/O
will have a higher priority relative to CPU
bound tasks. Newly initiated tasks have a

zero value for h^-i^n- Tasks continuing to

require small amounts of the CPU resource
will have negative h^ ^ values. To insure a

quick response by the 'algorithm to a sudden
change in CPU utilization by a task, there
exists a lower bound below which a task's
h^ ^ value will not be allowed. Tasks which
use the Attach feature of OS/MVT to create
other tasks are not addressed by the Dynamic
Dispatcher.

APG is similar to the Dynamic Dispatcher
in that "it dynamically determines the rela-

tive I/O or CPU boundedness . . . and estab-
lishes dispatching priority ... on that

basis" [3]. As in the Dynamic Dispatcher
only those tasks within the priority range

specified by the system programmer are

addressed. Further, tasks within the range

are segregated into I/O bound tasks which
have a favored, higher position in the dis-

patching sequence and CPU bound tasks which
have a less favorable position near the

bottom. If the task to be dispatched is

within the APG range, then it is dispatched
for a specified time interval. If the task
relinquishes the processor before expiration
of its interval, it is marked I/O bound and,

if previously I/O bound, remains in that

position in the dispatching queue. If a task

was previously CPU bound it is now reposi-
tioned as the last task in the I/O bound
section of the APG range (such tasks are

positioned last under the presumption that,

since they have recently been CPU bound, they

are likely to be so again). However, if the

time interval expires before the task
relinquishes control of the processor, the
task is marked CPU bound (if it wasn't
already) and is placed at the bottom of the

CPU bound portion of the APG range. This
methodology also effects a round robin algo-
rithm for continuously CPU bound tasks.

The aforementioned dispatching interval
for APG is dynamically determined in order

Figures in brackets indicate the literature
references at the end of the paper.

120

to maintain an optimal ratio of task switches
caused by tasks going CPU bound to total task

switches. Periodically, the recent history
concerning task switches is examined and if

the ratio of tasks going CPU bound to total

task switches is less than this optimal ratio,

then the interval is "too long" and is

shortened by a fixed amount. Conversely, if

the ratio is greater than optimal the inter-
val is "too short" and it is increased by a

fixed amount. For MVT systems there appears
to be nothing in the literature known to us

to suggest whether the optimal ratio should
be determined analytically or empirically.
In any event, in the original coding of APG
the ratio was 1:2 and experimentation with
several ratios up through 1 : 8 has indicated
that 1:2 is at least as good as any other for

this installation.

The range of job priorities to be
addressed by APG is specifiable by the sys-
tem programmer as is the amount by which the

interval is changed. APG is implemented as

a change to the OS /MVT control program.

III. Benchmark Construction

Resource-oriented synthetic benchmarks
were first introduced in 1969 by Buchholz [l].

Buchholz described a parameter-driven PL/I
program which he characterized as "a well-
behaved exerciser of system features ...".

Since then, resource-oriented synthetics have
been investigated extensively and the Buch-
holz program has been used as the basis for
many resource-oriented synthetic benchmarks.

A well-travelled and modified Fortran
version of the original Buchholz synthetic
program was selected for this study. The
program performs as a generalized file main-
tenance program operating on two ordered
files, a master file and a detail file. The

program sequentially reads the master file

until a record is found which matches the
current detail record. Upon detection of a

match, a compute-bound kernel is executed.
An attempt is then made to match the next
detail record. This process is continued
until the end of the master file is reached.
Input parameters are chosen to control the
master and detail records, the type of

compute-bound kernel activity to be performed
following a master-detail match, and the
number of times this kernel activity is to be
performed for each match. Note that this
program models all I/O channel activity via
disk I/O. The methodology used to calibrate
the synthetic program on the NOAA IBM 360/65
is identical to that used by Conti [2].

Calibration of the synthetic program
with respect to CPU time, EXCP3 counts, and
elapsed time was accomplished by running the
program over a wide range of NMAS (number of

master records) and NCPURP (number of CPU
loop repetitions per detail record) values as
input; and the CPU time, EXCP counts and
elapsed time on NOAA's IBM 360/65 were noted,
as shown in Table 1. The NDET (number of
detail records), NPASS (number of passes),
and ITYPE (type of CPU kernel activity) param-
eters were held constant at 12, 1, and 1

(integer arithemetic) ,
respectively. Using

the model:

CPU time = • NMAS + X2 • NCPURP + X3

linear regression analysis of the data in

Table 1 produced the following relationship
between CPU time and the NMAS and NCPURP
parameters

:

CPU time = .0042 • NMAS + .0018 » NCPURP

+ .5816 (2)

Analysis of the EXCP counts in Table 1 pro-
duces the following relationship between EXCP
counts and NMAS values

:

EXCP'S = 3 • NMAS + 54 (3)

This count includes 12 EXCP's for the synthe-
tic SYSIN and SYSOUT'^ activity. Further, the
DCB^ parameter values for the four temporary
data sets used by the program are:

BLKSIZE LRECL RECFM
800 32768 VS

For use of the synthetic benchmark program in

this study a relationship was also established
between elapsed time in terms of CPU time and
EXCP counts (this relationship was established
by running each job stand-alone). Using the

EXCP - a measure of the number of I/O block
transfers on IBM systems.

^SYSIN and SYSOUT - unit record I/O on IBM
systems-

^DCB (Data Control Block) - control block
containing file description charac-
teristics on an IBM system.

121

model:

Elapsed time = • CPU + X2 • EXCP + X3

linear regression analysis of the data in
Table 1 produced the follov7ing relationship:

Elapsed time = 1.0046 • CPU + .0119 • EXCP

+ 5.4439 seconds (4)

From the inverse of eqs (3) and (2) , the
proper values of NMAS and NCPURP needed for
the synthetic program to duplicate a pre-
scribed CPU time and EXCP count can be deter-
mined:

NMAS = (EXCP - 54) /3 (5)

NCPURP = (CPU - .5816

- .0042 • NMAS)/. 0018 (6)

Two synthetic job mixes were prepared in
order to compare the performance of the three
dispatching strategies. The first job mix
was composed of twenty three-part jobs. Each
job used the same total CPU time and EXCP
counts. However, each of the three job-parts
exhibited different behavior. Each job-part
was described in terms of the following
CPU boundedness definition:

CPU boundedness = CPU time/Elapsed time

Furthermore, the following definitions were
assumed

:

CPU bound - CPU boundedness >. .75

Mixed - .75 > CPU boundedness > .25

I/O bound - .25 >. CPU boundedness

Each job was constructed using all three CPU
boundedness types, i.e. CPU bound, mixed,
and I/O bound. The specific values selected
were:

TYPE BOUND ELAPSED CPU EXCP NMAS NCPURP
CPU .79 37.13 29.24 204 50 16000
MIXED .44 71.48 31.29 2754 900 16000
I/O .12 46.24 5.55 3054 1000 500

Using all permutations of the three different
part behaviors, six jobs each having identi-
cal overall characteristics but exhibiting
differing CPU boundedness during execution
were obtained.

The second benchmark consisting of fifty
jobs was developed from a random sample of
the NOAA IBM 360/65 SMF^ data from a repre-
sentative month of processing using a random
number generator with the uniform distribu-
tion to select both the day of the month and
a particular job within that day. The CPU
time and EXCP counts for each of the fifty
jobs were used in eq (4) to obtain an esti-
mated stand-alone run time. If the estimated
stand-alone run time exceeded thirty minutes,
a scaled synthetic job of thirty minutes or
less elapsed time was then constructed. This
random sample produced a surprisingly repre-
sentative benchmark in that the average CPU
time and EXCP counts for the selected month
were almost identical to those produced by
the benchmark.

For purposes of comparing the three dis-
patching strategies core was not considered
as a constraint for either of the job mixes,

IV. Results

In order to discuss the results of the
two benchmarks some terminology must first
be developed. '

Initiator/terminator - a part of the job
scheduler. In the MVT configuration of the
control program, the initiator/terminator se-j

lects a job from the input work queue,
j

allocates resources required to perform a

step of the job, loads and transfers control
to the program that is to be executed to per-
form the job step, and terminates the job *

step when execution of the program is com-
pleted .

Initiator capacity time - the amount of time
(in seconds) available to one initiator for
execution of jobs.

Total system capacity - the sum of individual
initiator capacity times.

Benchmark completion time - the termination
time of the last active job in a benchmark
job mix.

SMF (System Management Facilities) -

resource utilization and accounting in-
formation produced by IBM OS operating
systems.

122

Remaining initiator capacity time - the

difference between benchmark completion time

and the time when a given initiator completes

processing its last job.

Remaining system capacity - the sum of indi-

vidual remaining initiator capacity times for

a given benchmark.

Absolute benchmark completion time - the

benchmark completion time for the benchmark

under any one of the three dispatching

strategies

.

For purposes of benchmarking the three

dispatching strategies, six initiators were

chosen (the average number of active initia-

tors at this installation).

For synthetic job mix 1 absolute bench-

mark completion time is 2130 seconds after

benchmark initiation. Therefore, total sys-

tem capacity is 12780 seconds. Figure 1

illustrates the results of running synthetic

job mix 1 under all three dispatching
strategies. Note that the APG system has

11.3% more remaining system capacity than the

OS/MVT system and 6.1% more than the Dynamic
Dispatcher system. Figure 3 presents the

system active CPU time distribution for the

three dispatching strategies. Note here that

APG returns 12% of the CPU resource to the

problem state over the OS/MVT system and 7%

more than the Dynamic Dispatcher system.

For synthetic job mix 2 absolute bench-

mark completion time is 6060 seconds after
benchmark Initiation. Therefore, total sys-
tem capacity is 36360 seconds. Figure 2

illustrates the results of running synthetic
job mix 2 under all three dispatching
strategies. Note that the remaining system
capacity for the APG system versus the re-

maining capacities for the OS/MVT and Dynamic
Dispatcher systems exceeds even that which
was found in the running of synthetic job

mix 1. Figure 4 presents the system active
CPU time distribution for this benchmark.
Note here that the pronounced difference in

problem program state CPU is not seen as it

was in. job mix 1. However, the system CPU
figures dropped significantly with the use
of APG versus the other two strategies; time
did not permit an investigation of this be-
havior .

Although the results presented are based
on a statistically small sample, subsequent
measurements of this installation's opera-
tional environment while running APG support
these results. Since installing APG at this
installation we have experienced an increase
in the number of jobs processed per unit of

time and have seen an increase in the amount
of CPU time spent in the problem program
state.

V. Concluding Remarks

Three methods of task sequencing have
been presented and compared. It has been
demonstrated that several performance metrics
are dependent upon the choice of task se-
quencing algorithm; clearly, the APG algo-
rithm is superior In these areas. While APG
is certainly not the ultimate solution to the
problem of optimal task sequencing, it has
provided exceptional benefits to this in-
stallation.

We would like to thank Mr. Fred Long of

the National Oceanic and Atmospheric Adminis-
tration for his constructive evaluation of

this paper and for his many useful suggestions.

References

[l] Buchholz, W., "A Synthetic Job for
Measuring System Performance," IBM
Sy-itmi JouAnal, 8:4 (1969), 309-318,
6 refs.

[2] Conti, D., "Use of Synthetic Bench-
marks for Estimating Servic Bureau
Processing Charges," NBS Technical.

Uotz 920, National Bureau of Standards,
Washington, D. C. , July 1976, 13 refs.

[3] International Business Machines Corp.,
"LSPS Documentation", April 1971.

[4] International Business Machines Corp.

,

"IBM System/360 Operating System: Intro-
duction," Form GC28-6534.

[5] International Business Machines Corp.,
"The HASP System Documentation for IBM
Type 3 Program, HASP-II, Version 3.0,"
No. 360D-05. 1.014, February 1971.

[6] International Business Machines Corp.,
"IBM System/360 and System/370 ASP,
Version 3, Asymmetric Multiprocessing
System, Logic Manual," Form GC20-1403,
September 1973.

[7] Strauss, J., "An Analytic Model of the
HASP Execution Task Monitor," Commayiica-

tiom 0^ thz. ACM, 17:12 (December 1974),
679-685, 9 refs.

123

I

APPENDIX A

TABLES

125

TABLE 1

SYNTHETIC PROGRAM CALIBRATION
(NDET=1 2 , NPAS S= 1 , ITYPE=1

)

NMAS NCPURP CPU TIME (SEC) EXCP ELAPSED TIME (SEC)

12

50

100
500
900

1000

0.67
0.50
1.00
3.47
4.89
5.17

90

204

354
1554
2754
3054

7.47

8.92
11.12
26.98
42.92
46.22

12

50
100
500
900

1000

500
500
500
500
500
500

1.70
1.62
1.97
4.19
5.44
5.55

90

204
354
1554

2754

3054

7.65
10.53
11.70
28.87
43.23
46.25

12

50
100
500
900
1000

1000
1000
1000
1000
1000
1000

2.92
2.49
2.97
4.72
5.57
6.00

90
204

354
1554
2754
3054

8.66
10.78
12.64
27.87
43.42
49.03

12

50
100
500
900

1000

4000
4000
4000
4000
4000
4000

7.85
8.15
8.07

10.07

11.79
11.19

90
204
354
1554
2754
3054

13.80
15.97
17.97
33.35
49.98
54.23

12

50
100
500
900

1000

16000
16000
16000
16000
16000
16000

29.29
29.24
29.72
31.52
31.29
34.79

90
204

354
1554
2754
3054

35.44
37.13
39.25
55.10
71.48
75.32

12

50
100

500
900

90000
90000
90000
90000
90000

161.29
161.14
161.35
163.25
165.20

90
204

354
1554

2754

168.37
170.13
172.11
187.88
203.62

127

TABLE 2

SYNTHETIC BENCHMARK JOB MIX 1

JOBNAME STEP 1 STEP 2 STEP 3

A 10 MIXED CPU
B 10 CPU MIXED
C MIXED 10 CPU
D MIXED CPU 10
E CPU 10 MIXED
F CPU MIXED 10
G 10 CPU MIXED
H 10 MIXED CPU
I MIXED 10 CPU
J MIXED CPU 10
K CPU 10 MIXED
L CPU MIXED 10
M 10 MIXED CPU
N 10 CPU MIXED
0 MIXED 10 CPU
P MIXED CPU 10

Q CPU 10 MIXED
R CPU MIXED 10

S 10 MIXED CPU
T 10 CPU MIXED

TYPE SYNTHETIC INPUT PARAMETERS (NDET=1 2 ,NPASS=1 , ITYPE=1

)

STEP NMAS NCPURP

CPU
MIXED
10

50
900

1000

16000
16000

500

TABLE 3

EXPECTED VS. ACTUAL CPU TIMES, EXCP COUNTS, AND ELAPSED
TIMES FOR JOB MIX 1 FOR NOAA 360/65

TYPE CPU TIME (SEC)

STEP EXPECTED ACTUAL
ELAPSED TIME (SEC)

EXPECTED ACTUAL
EXCP '

S

EXPECTED ACTUAL

CPU
MIXED
10

29.59
33.16
5.68

29.24
31.29
5.55

37.25
69.65
47.36

37.13
71.48
46.25

204
2754
3054

204

2754
3054

128

TABLE 4

PARAMETER SPECIFICATIONS FOR SYNTHETIC JOB MIX 2

JOB SYNTHETIC INPUT PARAMETERS (NDET=12 ,NPASS=1 , ITYPE-1

)

NAME NMAS NCPURP

SIMlO 3328 4691

1

SIMl 1 29 164

SIM12 3570 84113
SIMl 3 342 1656
SIMl 4 7041 146036
SIMl 5 2113 21963
SIMl 6 2878 8517
SIMl 7 2S 729
SIMl 8 25 729

SIMl 9 1801 1024
SIM20 SSO 60
SIM21 341 12770
SIM22 1280 5023
SIM23 306 7846
SIM24 1210 17409
SIM25 29 164

SIM26 3225 29368
SIM27 5623 34334
SIM28 307 2849
SIM29 1070 22174
SIM30 5171 22055
SIM31 411 4273

SIM32 1350 415
SIM33 6445 247416
SIM34 1454 1284
SIM35 6802 73811
SIM36 4718 41996
SIM37 1000 38454
SIM38 376 6577
SIM39 64 83

SIM40 619 2676
SIM41 617 58231
SIM42 16285 138917
SIM43 237 2451
SIM44 1280 1

SIM45 18270 95369
SIM46 132 12702
SIM47 897 3139
SIM48 1349 13751
SIM49 98 1114
SIM50 6110 18192
SIM51 8679 61087
SIMS 2 445 13638
SIM53 964 64088
SIM54 724 765

SIM55 29 1831

SIM56 98 5559
SIM57 2426 6238

SIM58 341 3875
SIMS 9 29 1275

129

TABLE 5

EXPECTED VS. ACTUAL CPU TIMES, EXCP COUNTS, AND ELAPSED
TIMES FOR JOB MIX 2 FOR NOAA 360/65

JOB CPU TIME (SEC) ELAPSED TIME (SEC) EXCP S

NAME EXPECTED ACTUAL EXPECTED ACTUAL EXPECTED ACTUAL

SIMIO 99.00 99.70 224.35 254.73 10038 10038
SIMll 1.00 1.57 8.13 8.50 141 147

SIM12 166.98 166.84 301.28 335.81 10764 10764
SIM13 5.00 4.89 23.32 28.32 1080 1080
SIM14 293.02 293.07 551.82 620.60 21177 21177

SIM15 48.99 48.92 130.74 129.68 6393 6393
SIM16 28.00 27.42 136.96 134.66 8688 8688

SIM17 2.00 2.40 8.99 9.13 129 129

SIM18 2.00 2.19 8.99 9.32 129 129

SIM19 9.99 10.67 80.42 79.14 5457 5457

SIM20 3.00 3.05 28.74 28.61 1704 1704

SIM21 25.00 24.72 43.38 43.48 1077 1077

SIM22 15.00 15.27 66.85 65.98 3894 3894

SIM23 15.99 17.04 33.07 33.20 972 972

SIM24 37.00 37.97 86.45 85.58 3684 3684
SIM25 1.00 1.65 8.13 8.78 141 147

SIM26 66.99 67.45 188.52 187.70 9729 9729
SIM27 86.00 86.97 293.22 290.42 16923 16923
SIM28 7.00 7.37 24.08 24.15 975 975
SIM29 44.99 45.07 89.48 88.52 3264 3264
SIM30 62.00 62.15 252.98 251.90 15567 15567

SIM31 10.00 10.24 30.81 30.75 1287 1287

SIM32 7.00 5.19 61.31 60.25 4104 4104

SIM33 473.00 467.04 711.35 706.40 19389 19389
SIM34 9.00 10.52 67.04 66.11 4416 4416

SIM35 162.01 161.42 411.67 411.24 20460 20460
SIM36 95.99 95.52 270.95 268.07 14208 14208

SIM37 74.00 74.22 116.13 115.40 3054 3054

SIM38 14.00 14.00 33.57 33.68 1182 1182

SIM39 1.00 0.80 9.38 9.41 246 246

SIM40 8.00 8.54 36.22 36.14 1911 1911

SIM41 107.99 107.24 136.60 135.92 1905 1905

SIM42 319.03 320.87 907.96 915.18 48909 48909
SIM43 5.99 5.79 20.56 21.31 765 765

SIM44 5.96 6.19 57.77 57.46 3894 3894

SIM45 248.98 256.19 908.45 917.75 54864 54864

SIM46 24.00 23.90 34.91 35.35 450 450

SIM47 10.00 11.15 48.16 47.54 2745 2745

SIM48 31.00 30.70 85.39 85.41 4101 4101

SIM49 3.00 4.40 12.60 12.77 348 348

SIM50 58.99 59.55 283.47 295.40 18384 18384

SIM51 146.99 146.04 463.59 467.70 26091 26091

SIM52 27.00 26.44 49.10 49.32 1389 1389

SIM53 119.99 118.14 161.04 159.87 2946 2946

SIM54 5.00 3.85 36.96 36.38 2226 2226

SIM55 4.00 4.54 11.14 11.82 141 147

SIM56 11.00 11.35 20.64 21.03 348 348

SIM57 22.00 22.04 114.80 113.38 7332 7332

SIM58 8.99 9.24 27.29 27.15 1077 1077

SIMS 9 3.00 3.55 10.14 10.71 141 147

130

APPENDIX B

RESULTS

131

o
-a-

PS
w
PC M Mo u w to

< H < H < Ho H < O O
§ O o H o HH w u u uu M u uM o o O Oh O OW O 5 Zu M 00 6^ M e-«m M vO Z r--

CO M o M 00

DYNA REMA

00

REMA

i-H -a-

o
u-l

•

ou
CO

o
00

C-4

OM

H
CO
!H
CO

o
H

O o

CO
u
H

_ a

o o

•H
a

•H
(3

(N

•H
a

133

oow
CO

o

HM
U
<

H
CO

HOH

134

82%

75%

70% M:***A** *******

*******!**************

10%
14% 14%

^F?fW?f?j5nf*W*

******* ******* *******

20%

******* 11%

4%

MVT DD APG
PERCENT PROBLEM PROGRAM

MVT DD APG
PERCENT SYSTEM

MVT DD APG
PERCENT WAIT

SYSTEM ACTIVE CPU TIME DISTRIBUTION —
SYNTHETIC BENCHMARK JOB MIX 1^

FIGURE 3

57%

69%

70%

******* ******* *******
************** *******

************** *******

19%
******* 12%

9%*************
******* *******J*******

******* *******!*******

24%
******* 19% 21%
************** *******

MVT DD APG
PERCENT PROBLEM PROGRAM

MVT DD APG
PERCENT SYSTEM

MVT DD APG
PERCENT WAIT

~ SYSTEM ACTIVE CPU TIME DISTRIBUTION
SYNTHETIC BENCHMARK JOB MIX 2^

FIGURE 4

^Each asterisk (*) represents 5% on the vertical scale.

135

COMPUTER PERFORMANCE COMPARISONS

Wayne Douglas Bennett

Navy Regional Data Automation Center
Washington Navy Yard

Washington, D.C. 20374

This paper enumerates the necessary and sufficient conditions
under which system accounting log data collected over one time interval
of normal operations may be statistically compared to that over a

second interval, obviating the need for benchmark experiments. It

is determined that since major modifications to hardware and system
software, as well as shifts in workload character occur at identifiable
points in time, the actual operational environment may, in fact,

be considered sufficiently "controlled" to permit the inspection of
one random variable and its effect on system performance over two
carefully selected intervals. Included is an account of such a

comparison as performed at NARDAC Washington DC which uses these
concepts to investigate the effect of a modification to the system
scheduling algorithm on an HIS-6000 computer.

Key words: Availability; basis statistics; offered load; performance.

1. Introduction

System performance is measured via a

set of statistics commonly thought to

reflect the multiprogramming efficiency of
the system. This set includes such
measures as average job turnaround and
queue times as well as throughput and
system multiprogramming depth. When one
or more of these values shifts over time,
very little information is available re-
garding the cause(s) of the shift(s)

.

Certainly, a decrease in job turnaround
could easily be attributed to fewer jobs,
shorter jobs, or perhaps even a new release
of the operating system.

This discussion is an attempt to

enumerate a set of "basis statistics" which,
when computed along with the performance
measures, yields a more complete picture of
why performance has changed. In fact, it is
determined that computation of these basis
statistics is a prerequisite to adequate
performance analysis. An example is given
here in which an attempt is made to

1

determine the effect of a modification to

the system scheduler on an HIS 6000 single
CPU system. The performance variables of
particular interest were defined as turn-
around time and throughput. However, all
available performance statistics (such as

input-queue time and activity-queue time,

etc.) were also computed, in order to

insure that all possible effects on the
system could be analyzed. In this context,
performance variables are defined as

statistics resulting from events whose
timing depends upon the entire multi-
programming environment. Performance
variables are actually "effects" whose
"causes" shall be labelled "basis statis-
tics." The latter can be categorized into
three broad areas

:

System Availability
Offered Workload
Site Parameters

The thesis presented here asserts that
meaningful comparison of performance
statistics depends upon the extent to which

normal operation at the site approaches a

controlled environment. That is to say that
the intervals of time used for the comparison
must be selected in a fashion that allows
only one of the basis statistics to vary
across the two intervals. Clearly, the rest

cannot remain constant. However, simple
statistical tests (such as the two-tailed
test of normal probabilities) requiring
only means and standard deviations of each
variable can be used to determine whether
any basis statistic has changed signifi-
cantly over the two intervals . When
similar tests are used on performance
variables, the causes for any significant
shift in these is immediately identifiable
as the one basis statistic which was allowed
to vary.

2. Time Intervals

Let there be two distinct periods of
time, p(l) and p(2). Sometime between
these two periods, one variable is known
or thought to have varied (in this instance,
the system scheduler) . It is desired that
system performance be measured over p(l)

and p(2) in order to determine whether the
system's multiprogramming efficiency (as

expressed in terms of job turnaround time
and throughput) has improved as a result
of this single modification. However, the

intervals of interest must be constructed
carefully. First, each period may not be of
interest in its entirety. Perhaps only
weekday-prime-time statistics are desired.

Let the sum of all such intervals of inter-
est over the period p(l) be called 1(1).
Further, over this sum of time, the

operating system may or may not have been
up and available for general use. In fact,

each subsystem of the operating system (such

as time-sharing) has associated with it a

set of intervals during which it is up. Let
SS be the set of all software systems at the

site, including the operating system. Suppose
there are Ns such elements, in the set SS, and
let the matrix S (size: 2*Ns) be defined
where each element, s(i,j), represents the
total time over the interval I(i) that the
software system ss(j) is both up and avail-
able for general use. All statistics of
interest must now be calculated over each
"interval" included as an entry of the
matrix S. Some statistics will require a

further breakdown of these time intervals.
Over any s(i,j), the configuration can be
expected to change often (whenever an
operator assigns or releases a device from
the system) , and so there exists a set of
smaller intervals of time, t(i,j,k), (sub-

intervals of s(i,j)) over which the config-
uration remains constant and such that:

t(i,j,k) = s(i,j) (1)

k

3. Basis Statistics

3.1. System Availability

Availability has two aspects

:

Software Up Time
Hardware Up Time

Software up time has been completely char-
acterized by the matrix S. The matrix H will
now be constructed to reflect the total
amount of available hardware at the site
over each of the s(i,j). Let DD be the set
of all device types (of which there are Nd)

at the site. Then d(i,j,k,m) can represent
the number of devices of type dd(m) that
were configured over the interval t(i,j,k).
Thus

,

h(i,j,m) =2 (t(i,j,k) * d(i, j ,k,m)) (2)

k

yields the total number of device hours
available over the interval s(i,j) for
device type dd(m) . Finally, an availability
matrix, A (size: 2*Ns*Nd) can be defined as

follows

:

a(i,j,m) = h (i, j ,m)/s (i, j) (3)

where a(i,j,m) is the average number of
devices of type dd(m) that were available
over the interval s(i,j). The variance of
each component can be computed if an H2
matrix is constructed, such that:

h2(i,j,m) =S (t(i,j,k) * (d(i,j,k,m)**2))
k (4)

Then the components of Var (A) can be
computed

:

var(a(i, j ,m)) = (h2 (i, j ,m) /s (i, j)) - (5)

(a(i,j,m)**2)

2

138

3.2. Offered Workload 3.3. Site Parameters

Let the volume of work entering the

system be represented by the matrix V

(size: 2*Ns) , where v(i,j) is the number

of jobs entering the system via ss(j) over

the interval I(i) . If SS is composed of:

ss(l): Operating System Executive
ss(2) : Time-Sharing Executive
ss(3) : Transaction Processing

Executive

then all normal batch jobs will fall under

ss(l). Once V is established, it is clear
that a useful statistic can be composed in

a matrix called E (size: 2*Ns) :

e(i,j) = v(i,j)/s(i,j) (6)

where e(i,j) is the average number of jobs

entering the system via ss(j) over I(i) , per
unit of time. Unlike V, E is independent of
the relative interval lengths, 1(1) and 1(2).

In order to arrive at VarE (the variance
matrix corresponding to the matrix E) , it is

necessary to compute each component from the

variance of the inverse of the inter-arrival
time for jobs of type ss(j) over the interval
I(i) .

The character of the offered load is

best described by computing the average job

requirements for each job type over each of
the s(i,j). The set RR includes all user
required processing by device type, all core
and file space requirements, and all other
user defined job parameters (such as initial
urgency) affecting job scheduling and
processing. If the number of all such re-
quirements is Nr, then let r(i,j,k,n) repre-
sent the rr(k)th job requirement of the nth
job entering the system via ss(j) during
s(i,j). The work matrix, W (size: 2*Ns*Nr)

,

can be defined as follows:

v(i,j)
w(i,j,k) =[2I r(i,j,k,n)] / v(i,j) (7)

n=l

where w(i,j,k) represents the mean rr(k)th
requirement for all jobs of type ss(j) over
I(i). VarW can be constructed from R2, V,

and W just as VarA was constructed from H2,

S, and A.

Site parameters are non-valued, but
must, nevertheless, be accounted for. These
include system software modifications,
changes in working hours and other hard-to-
qualify parameters affecting the system.
The status of each such parameter must be
determined for both time periods, so that
they may be compared by inspection wnile
the formally constructed matrices are com-
pared statistically.

4. Basis Comparison

4.1. Overview

We can consider the A matrix as the
system attribute matrix, since each com-
ponent represents average hardware avail-
ability per unit of software time. Likewise
the W matrix can be thought of as the job
attribute matrix. By fixing the first index
in each of W and A, a two dimensional plate
of each matrix is obtained. Let the plate
obtained by fixing the first index of W to

one be called Wl, and let the similar
plate in A be called Al. Likewise setting
this index to two yields W2 and A2.

It is desired that Wl be compared to W2
and Al be compared to A2 in order to
determine whether the average job require-
ments and system availability averages for

1(1) are significantly different from those
for 1(2).

Two kinds of comparisons will be
performed

:

Individual component comparisons
Scaled sum comparisons.

4.2. Individual Comparisons

Individual component comparison involves
only the mean and variance of each compo-
nent. Each respective pair of entries
from Wl and W2 can be compared if a Z

statistic is computed from the respective
means and variances

:

Let D(j,k) = W(l,j,k) -W(2,j,k)
E(j,k) = VarW(l,j,k)/v(l,j)
F(j,k) = VarW(2,j,k)/v(l,j)

Then ZW(j,k) = D(j,k)/((E(j,k,)+F(j,k))
**.5)

Similar computations yield the ZA matrix.

For the alternative that one normal
population has shifted from another, tests
based on the difference in sample means are
generally used. ZW(j,k) becomes a random

variable with standard normal distribution if

the population means are equal , that is

,

under the null hypothesis. Against the
alternative W(l,j,k) = W(2,n,k) (where in-

equality represents significant difference)
a two-sided critical region |zj> K would be
used at the p confidence level. When Z falls
in this critical region, the null hypothesis
is rejected. These values can be computed
directly using |z\ :

tion of the intervals 1(1) and 1(2), few
conclusions can be drawn.

4.3. Scaled Sum Comparisons

It is often the case that although
performance measures have shifted, no
individual ZW or ZA entries exceed the
tabulated K values and the status of all
site parameters has remained constant.
This is generally the result of at least
one of three causes

:

p = 2*(1-J (l//27)e ' dt) (8)

— 00

1. A variable has been omitted from
one of the three groups of basis
statistics

.

2. The user selected critical region
is too small (i.e. , the significance
level should be decreased)

.

P gives the confidence level at which
the alternative can be asserted (e.g., if
p=1.97 then it can be stated that at the
95+% confidence level, a shift in mean is

likely to have occurred) . The corresponding
K and p values are tabulated in most statis-
tics handbooks in a table entitled "two-
tailed probabilities for the standard normal
distribution" and can also be derived from
the tabulated percent of the standard normal
distribution.

It is clear that if two or more entries
in the ZW and ZA matrix exceed the tabulated
K value at the user selected confidence in-
terval p, then, should a later performance
statistic comparison for the two periods
indicate a shift in some performance mean
(such as turnaround time) , that shift can
never be attributed to a single identifiable
cause. Suppose, for instance, that the
mean CPU time per batch job over 1(1) is

substantially smaller than that same mean
over 1(2). If no other batch job require-
ment or hardware availability mean has
shifted across 1(1) and 1(2), no site para-
meter has changed status, and the mean batch
job turnaround time decreases across 1(1)
and 1(2), then that decrease is attributable
to the decrease in CPU time for batch jobs.
If, however, the job scheduling algorithm
was also modified sometime between 1(1) and
1(2), then any decrease in batch job turn-
around time is not uniquely attributable
to either the decrease in CPU time or the
modification in the scheduler. Neither
would there exist justification for attribut-
ing the change in performance to both CPU
time and the algorithm. It is highly likely
that one of these is the cause. However, if

neither is isolated through careful construc-

1

3. Although no single basis variable
has shifted, the interaction of
two or more such variables may in-
deed cause a shift from 1(1) to
1(2) .

Causes (1) and (2) are easily corrected.
Cause (3) , however, requires further com-
parisons. Certainly it is tedious to try
all N-way combinations to determine if any
have shifted over time. However a simple
check can be performed summing all job re-
quirements for each of the Ns job types in
order to determine whether any of the

Ns * ((2**Nr) - (Nr+D) (9)

possible interactions of job requirements
have indeed shifted. Likewise each of the
Ns columns of the A matrix can be checked in
order to determine whether any of the

Ns * ((2**Nd) - (Nd+D) (10)

possible interactions of hardware avail-
ability averages have shifted over time.
The job requirements matrix W shall be used
as an example. The procedure to be outlined
can be used not only for the column-wise Nr
and Nd-way interaction of the W and A
matrices, but any N-way interaction of
variables

.

It would be optimal if the job require-
ment entries in any given column of the VJ

matrix summed to a recognizable quantity.
However, this is not the case. In fact,

such requirements as "slave CPU seconds"
and "number of tapes" are not even summable

I

items, considering the fact that the latter

will be swamped by the former. Obviously
some scaling is required. A problem immedi-

ately encountered is the choice of scale.

If the data is normalized using the standard
score formula

:

Xi = (Xi-mean) /(Standard deviation) (11)

!
then all normalized addends will have zero

as means, their sums will have zero as

means and there will never exist a difference
in means across 1(1) and 1(2). However

I
one can proceed using the method of reductio
ad absurdum . If the individual components

1
do not have significantly different means

;|
across 1(1) and 1(2), then we shall assume
that the two "samples" are actually from the

I same population. This statistical procedure,
I analogous to its logical counterpart, calls

{

for seeking a contradiction that will in-

j

validate the assumption. If the samples are

^
from the same population, then a single

j

vector of scaling factors can be derived
I
from the job requirements over 1(1) alone.

I This will lead to a summed mean of zero for

; the period 1(1). However, since the 1(2)

sample is not identical , using the same

I

scaling vector on 1(2) job requirements will
! yield a siimmed mean different from zero.

These two estimates can then be compared in
; the same manner as were the individual
components. If there exists a significant

I

difference, the contradiction has been found.

I

At the outset, a single population was

I
assumed and the conclusion of significance

i
tests contradicted this assumption.

5. Application

As stated, this procedure was used
successfully in a recent effort at NARDAC
Washington DC in order to determine the
effect of modifications to the scheduling
algorithm on a Honeywell single CPU system.
The modification involved the construction
of an additional queue as well as a redefini-
tion of the urgency setting algorithm
incorporated in the scheduler. These changes
were implemented and tested during the period
13 September 1976 to 31 October 1976.

1 The intervals p(l) , p(2) , 1(1) and
' 1(2), as well as the sets DD, SS and RR
were defined as follows:

p(l) = 7 June 19 76 to 13 September
1976

p(2) = 1 November 1976 to 31

December 1976

1

The I(i) were defined as all prime
shifts (0600-1600) that occurred in
P(i) on weekdays during which at
least four hours were spent both up
and busy.

SETS :

SS (Software Systems)

GCOS OS
TIME -SHARING
TRANSACTION PROCESSING

DD (Device Types)

CPU
CORE
181 DISKS
191 DISKS
7-TRK TAPES
9-TRK TAPES
CARD READER
CARD PUNCH
TERMINALS
PRINTER

RR (Job Requirements)

CPU HOURS
CHANNEL HOURS
DISK HOURS
TAPE HOURS
NUMBER OF TAPES
NUMBER OF DISKS
PRINT LINES
ACTIVITIES
CPU LIMIT
10 LIMIT
CORE LIMIT

The selection of these P(i) was predicated
in part on the interim period of testing
which could not overlay either P(i). Had
a larger P(l) been selected (by starting
P(l) prior to June 1976), configuration
modification occurring at the end of May
1976 would have caused there to be a

decided shift in the A matrix, thus negating
the possibility that performance variable
shifts were uniquely assignable to the
scheduler change.

For these sets the necessary matrices
were constructed and it was found that at
the .05 significance level, the only shift
in basis statistics across the two intervals
was, indeed, the status of the scheduler.

The following performance variables of
interest were calculated:

Throughput
Turnaround Time/JOB

Input-Queue Time/JOB
Activity Queue Time/ACTIVITY
Swap Time/ACTIVITY
Core Time/ACTIVITY
Multiprogramming Effect/JOB
Useful Processing Per Hour

All performance variables remained con-
stant (to the .05 level of significance)
across 1(1) and 1(2) with the exception of

two, input queue time per job and activity-
queue time per activity. Input-queue time
represents that amount of time prior to

the assignment of a program number (cata-

logued time) plus all time in queue prior
to the loading of the first activity or task.

This statistic was foiind to be some 30% lower
over 1(2) than over 1(1). However,
activity-queue time, which represents the

amount of time between tasks, increased in

the order of 50%. Further, the job type
that was especially hard hit was batch
while jobs spawned via the time-sharing
subsystem showed a small improvement.

It was immediately evident that the
addition of a queue reduced the time jobs

spent catalogued. However, it was equally
clear that the new algorithm favored time-
sharing spawned jobs to the detriment of
batch jobs. An additional, tentative
conclusion drawn from this analysis was

that the system was in fact heavily loaded,

thus negating even the possibility of a

scheduling algorithm change having a

beneficial effect on throughput time and
turnaround. The performance statistics
clearly pointed to such a conclusion, and
subsequent software monitoring of core and
the central processor verified this.

6. Conclusions

The argument can be made that most
system statistics are not normally distri-
buted and that, therefore, tests based on
normal curves do not apply. However, it

should be noted that the variance can be
used in a meaningful manner even in non-
parametric statistics. Further, any test,
even one based upon non-parametric
statistics, could replace the one given
here. In addition to having yielded
reasonable results in the above applica-
tion, the method of two-tailed normal
probabilities is one of the most widely used
and easily understood. An effort was made
here simply to distinguish basis statistics
or "causes" from performance statistics or
"effects."

The conditions for meaningful perfor-
mance analysis are stated as follows:

IF there exists a pair of intervals
1(1) and 1(2) such that the following
statements are true

:

1. There exists exactly one basis
statistic X such that it is the
variable of interest and its value
has significantly shifted sometime
between 1(1) and 1(2).

2. No other variable affecting system
performance has significantly shifted
across the entire interval 1(1) + 1(2).

3. No N-way interaction between the
basis statistics (with the exception
of those involving X) has significantly
shifted across the entire interval
1(1) + 1(2) .

THEN :

A statistical comparison of
performance measures across 1(1) and 1(2)

will yield meaningful results and the cause
for any shift found to exist can be assigned
to the variable of interest X.

142

A STUDY ON THE EFFECTIVENESS OF DATA BLOCKING
IN AN MVS ENVIRONMENT

R. E. Paulhamus
G. E. Ward

Corporate Computer Center
Comptrollers Department

American Telephone and Telegraph Company

In a production oriented computer center with IBM equipment, blocking

of program data can be very advantageous yielding reduced resource

utilization. This paper outlines the theory of data blocking, derives

equations for two system variables, and interprets sample data in light

of these equations. Regression tests help to show the similarity of

theoretical and practical results.

Key words: blocking factor; data record; multiple regression;

processing time; regression model.

.0 Introduction

Efficient blocking of program data in

an IBM 370 MVS environment can be even
more important in terms of performance
than in pre-MVS operating systems.
Frequently, however, this area is

often overlooked in performance and
tuning studies. This paper presents
investigative work being done in the

area. Most of the arguments, reasoning
and formulae in the paper also apply
to other than MVS operating systems.
Where differences exist, we will
identify the special considerations
for MVS.

The objectives in conducting this
research were twofold:

1) to increase thruput of the
CPU by reducing the processing
time of jobs;

2) to increase utilization of
space on direct access sec-
ondary storage devices by
using more of the device's
capacity for storing data.

It was found that effective blocking
of program data files provided signifi-
cant steps in achieving these goals.

We began the study by interrogating
the Systems Management Facility (SMF)

data, the log file from an IBM system,
and quickly became convinced that data
sets were not being blocked efficiently
by programmers. It was decided that
an operating system option, invokable
by programmers, should be made avail-
able to automatically block new data
sets at a utilization factor for the
particular device of 95 percent or

better. This decision was made as it

was felt that information on the

efficiency of specific blocking factors
and the characteristics of various
storage devices was not common knowledge
to most programmers.

Theory of Data Blocking

Before examining the theory and reason-
ing behind data blocking, it is neces-
sary to define some terms to be used in
this paper. First of all, the term
record will refer to a logical unit of

143

information. Records are created, ma-
nipulated, updated, and destroyed by
programmers. External to the program,
however, these records are the respon-
sibility of the operating system and in
particular, the access methods (e.g.,

BSAM, QISAM, TCAM) . When transferred
between main memory and secondary
storage, these data records are moved
in blocks. A block is a physical
unit of data containing one or more
logical units (records) . Thus the
number of blocks of data transferred,
or Execute Channel Program (EXCP)

instructions in IBM terminology, may
or may not equal the number of program
reads and writes. At one extreme (no

blocking) , there is one physical
transfer (EXCP) for every associated
program read or write and a block is

equivalent to a record. The system
overhead for performing an EXCP is

high but relatively independent of

blocksize. To reduce this overhead,
therefore, records can be grouped in

one area of memory called a buffer
which is an area in core equal to the
blocksize; a physical read (write) is

then only required when the buffer is

empty (full) . The amount of core
required for a program is relatively
unimportant in an MVS environment;
therefore buffers can become quite
large without adding significant
overhead. The process of storing
data is performed by the access
method in queued methods (e.g. QSAM,
QISAM) and by the program in basic
access methods (e.g. BSAM, BISAM)

.

The number of records in a block is

the blocking factor for the file.
When data is blocked, the number of

EXCP's is reduced by a factor approx-
imately equal to the blocking factor.
Thus, blocking will reduce the total
overhead of issuing EXCP's and there-
fore decrease the processing time of
a job. This would help us achieve
our first objective. Since most ac-
counting packages charge for EXCP
count, blocking can also reduce job
costs

.

Processing time can also be saved at

the storage device end. Assuming that
this device is either a fixed (e.g.

an IBM 2305) or moveable (e.g. an IBM

3330, 2314, 3350) head device, actual
transfer of data is fast compared to

the preparation time of the device.
This preparation includes head move-
ment for moveable head devices and
average rotation delay. Thus fewer

144

transfers of data will result in less
total preparation time. Another
situation which must be considered is
the possibility that other users m.ay

be accessing data on the same device.
Thus, moveable head devices may spend
considerable time alternating between
data sets. It is obvious that blocking
will also reduce this time.

Blocking of data sets can increase
the utilization of the secondary
storage space. This utilization is
the percentage of the space used to
store program data. There is an
"inter-block gap," IBG, between each
block of data to allow the device
some rotation time to sense data.
For short unblocked records, more
space may be required for the IBG's
than for the actual data. The IBG
space will be reduced by a factor
equal to the blocking factor. Details
of the importance of this IBG will be
presented in the next section with
efficiency calculations.

3 . 0 Calculations

As stated in the introduction, we
were interested in decreasing the
elapsed time of jobs and increasing
utilization of secondary storage
space. We noted that both of these
objectives were affected by making
blocksizes of program data more
efficient. We will now proceed to
verify chis dependence. We are
interested in fixed-length records
stored on moveable and/or fixed-head
devices. We found the blocking of
variable length records to be effective
but the proof was not as straightforward.

3.1 Processing Time

The first calculation of interest is

the processing time of a task. This
factor, PT, is comprised of two
components: the CPU time, C, and the
non-oyerlapped input/output time,
I/O. We must distinguish between
"processing" and "elapsed" time of a

job in an MVS environment. This is

necessary due to the fact that swap
time (time when a job is made ineligi-
ble for computer resources due to
excessive system activity) can become
significant due to a poorly tuned MVS
system. When this occurs, swap time
may overshadow the CPU and non-
overlapped I/O time and totally
distort any calculations. Since this

is something we do not intend to

impact , we do not include the swap

time in the processing time calcula-
tions.

Thus,

PT = C + I/O (1)

but, I/O can be divided into two subcompo-

nents as:

I/O = t + t
'

(2)

. 1 2

where t = non-overlapped I/O time for the

1

data sets we are blocking
;

t = non-overlapped I/O time for

2

other data sets

.

But

Now

t = (t + b/TR)E
1 11

(3)

where t = the sum of the preparation time

11

for a data transfer to a device.

This will include average head

movement time and average rota-

tion time. Thus, t can be

11

considered a constant;,

b = blocksize;

TR = transfer rate for the device;

E = number of EXCP's to this data

set(s).

E = {BT/b} (4)

where

BT = total bytes transferred

during the program

execution;

b = blocksize;

{} = the next greater integer

function.

Now, substituting all the above into eq.

(1) , we have

PT = C + (t + b/TR)*{ST/b} + t (5)

11 2

3.2 Secondary Storage Utilization

As the second calculation, we define the

utilization efficiency, U, of the

storage device.

We can begin with the equation:

U = SU * 100
SA

(6)

where

SU = space used for

program data;

SA = capacity of a device

track.

Equation (3) states that the total non-over-

lapped I/O time for the blocked data set(s)

is the product of the number of EXCP's and

the sum of the time required to do one EXCP.

This time equals the preparation time plus

the time required to transfer a block of

data.

Now

where

SU = [SA/B]*b (7)

B = space required for a block

of program data;

145

b = blocksize;

[] = greatest integer function.

B can be further defined as

B = b + IBG + KL + KO (8)

where

b = blocksize;

IBG = interblock gap

KL = key length;

KO = key overhead.

KO and KL variables are nontrivial only if

the records have keys associated with them
as in an indexed sequential file. In this

situation each block of data has an addi-

tional overhead of one key, of length KL,

indicating the last record in the block,

and 56 bytes of overhead, KO. If the

records have no keys, however, both KL and

KO are zero. To express this in PL/1 type

statements

:

If Key Length = 0

Then Key Overhead = 0;

Else Key Overhead = 56;

Thus the space utilized, SU, can be

written as:

SU = r SA i*b (9)

'b + IBG + KL + KO

Again, by substitution in eq . (6), we have

r SA 1 "-b

U = b + IBG + KL + KO *100
SA

(10)

or

U = r SA
]

*b

b + IBG + KL + KO SA ''-lOO

These two results, eqs. 5 and 10, are

theoretically correct. They can now be
used to compare with the models resulting
from regression tests run on the actual

data to determine if any common
factors exist. This will be done in

Section 7.0, Results.

4 . 0 Environment

All investigative studies and tests
were conducted on an IBM 370/168
computer with four megabytes of real
memory and a production size comple-
ment of peripheral devices such as

disks, drums, tapes, teleprocessing
gear and unit record equipment. The
operating system is the MVS system
from IBM, Release 3.7, with several
of the available selectable units.
The system normally operates in one
of two modes. During prime shift, TSO
and IMS are online along with IMS and
development batch jobs. Between the
hours of 6 p.m. and 6 a.m. production
batch jobs for several departmental
systems, batch portions of the on-
line systems and system backup and
maintenance are performed. This
environment provided the data on data
set blocking for production and
development jobs, along with sub-
system components such as compilers,
linkage editors, utilities, etc.

5 . 0 Experiment Design

In the study, we initially had to
demonstrate the degree to which
blocking was being ignored, and to

make some sound hypotheses for what
sort of improvement could be expected
simply by blocking data. The first
step was to watch the system log file
for several weeks. A program was
designed and implemented to process
this file and simply list all data
sets accessed along with the record
length, blocksize and an indication
of how much I/O activity was issued
to this file. The I/O activity is
simply the number of physical reads
or writes to the file (EXCP's). A
sample of this output can be seen in
Exhibit 1 of the Appendix.

In compiling this data, we found that
in several of the production systems,
blocking was nonexistent. Other
files were blocked with ten records,
regardless of the record size. Still
others were blocked efficiently for
2314 disks but not for the 3330' s we
use. This was what had been expected.

We now had to gain a feel for the type
of improvement that could be expected

146

by blocking. For this part of the

study, several runs were made of

various programs representing the

typical jobs in the shop. These jobs

were run in a stand-alone environment

with various blocking factors and

results plotted. The four types of

jobs were:

1) an IBM utility;

2) a compile;

3) a CPU bound production job;

4) an I/O bound production job.

Four composite plots were then created

for the jobs. These were:

1) processing time versus
blocking factor;

2) I/O activity versus blocking
factor;

3) total CPU time versus block-
ing factor;

4) secondary storage used
versus blocking factor.

At this point, multiple regression
tests were run against the data to

determine what behavior could be found

for each job, and to see if similar

behavior was being exhibited by all or

certain types of jobs. Finally, an

attempt was made to interpret the data

in light of the theoretical results of

Section 3.

6.0 Data

The data used in the study included
the processing time and I/O

activity from the standalone runs.

The composite plots described in the

last section are seen in exhibits 2-5.

It is readily apparent that all jobs

are affected similarly by blocking
factor. The curves are more pro-
nounced than we had anticipated. This
indicated that even a very small

blocking factor produces significant
results. The rate of decrease in

processing and CPU time is an inverse

relation which is much better than a

simple linear relation.

Exhibit 5 illustrates how the

number of tracks needed to store the

same amount of data decreases as the

blocking factor is increased. This
general decrease is due to the elim-
ination of the interblock gaps when
larger blocksizes are used. However,
we see that the decrease is not
monotonic but rather a saw-tooth
effect with several local minima and
maxima. This effect is caused by the

requirement that each track of a

device contain an integral number of
blocks. A simplified example will
serve to illustrate this point. If

the capacity of a track is one hun-
dred (100) units and a blocksize of
twenty (20) units is specified, two
hundred (200) units of data may be
stored on two tracks. However, if a
blocksize of forty (40) is used in

the same circumstance, three tracks
will be required. This phenomenon
causes the saw-tooth graph until the
blocking factor results in half track
blocking. After that point, only one
block will fit on a track and the
graph is monotonic decreasing to the
point of full track blocking.

We then used this data in a regres-
sion analysis, attempting to fit a

curve to the observed data. In

almost all cases it was observed that
a model of:

E(Y) = a + b

X

provided a very good fit. In this
model, Y is the observed dependent
value (e.g., processing time, CPU

time, I/O activity) and X is the
blocking factor. This equation says
that processing time, for example, is

basically an inverse function of the
blocking factor. This one term
usually generated an value of .95

or above, which indicates that the
model fits the data quite well. In

some cases, we saw that a model of:

E(Y) = a + b

X'^

was found for processing time. This
implies that the processing time
decreases at the rate of:

1
(blocking factor)**2

An observed excellent fit for I/O
activity to the model:

E(Y) = a + b

X

is understandable since the relation
between the number of blocks (i.e.,
EXCP's) and the blocking factor is

nearly an inverse.

147

The processing time usually had the
lowest of the three regressions for
each job. This is also understandable
since this value is the least repeat-
able of the three. Variations are
caused by unpredictable supervisory
states, especially when in a job mix
as opposed to stand-alone.

New data was generated by normalizing
figures for processing time, CPU time
and I/O activity and summing the three.
A summary of the models found to fit

this new data for each job type is

seen in Figures 1-2.

Results

The basic result was the achievement,

with repeatable, statistically signif-

icant data, of the two objectives

stated in the introduction. We

showed that

:

1) Processing time, CPU time

and I/O activity
can be drastically reduced

simply by blocking program
data. The rate of decrease
was even better than ex-

pected, being on the order

of

1

Now, the BT/b factor in eq. 5 can be
rewritten as

:

blocking factor

2) Secondary storage utili-
zation could be increased by

using full-track, half-track
or third-track blocking.

The procedure to achieve these goals

is not complex but rather simple. In

fact, a program can be designed to

automate the blocking of temporary

and/or new data sets in the system.

It proves interesting, at this point,

to investigate the manner in which
actual data tracks the theoretical

results derived earlier in Section 3.1

of the paper. The two results were
calculations for processing time and

secondary storage utilization. The

equation for processing time, eq. 5,

is basically of the form:

where

PT = C + I + 0

C = CPU factor

I = I/O factor
data sets;

for blocked

0 = I/O factor
data sets.

for other

(R*LR)/b or R*(LR/b)

where R

LR

= number of records in
the data set;

= size of each record.

But (LR/b) is nothing more than

1

blocking factor

and this was the common factor in
all of the regression models shown
in Figure 1. The constant in these
models can be attributed to the CPU
time factor. Thus it would appear
that the empirical data correlates
very well with our hypothesis, eq.

5.

The second calculated result for
secondary storage utilization is

seen in eq. 10 in Section 3.2 If we
were to substitute actual values for
the variables in eq. 10 and con-
struct a plot, it would look very
similar to Exhibit 5. As was
mentioned in Section 6.0, the
saw-tooth effect of these plots is

due to the fact that each track must
contain an integral number of
blocks. This fact is depicted
exactly by the greatest integer
function found in eq. 10.

Thus not only have we collected data
which achieved the two objectives of
the study; we also illustrated the
high correlation of this data with
the derived calculations.

Although this was the primary
result, there were two other points
worth mentioning. First, the impor-
tance and effects of blocking data
in MVS is very similar to previous
IBM operating systems. Calculations,
graphs and so forth tend to sub-
stantiate this view.

The second point addresses the
question of whether increased
blocking continues to provide
increased performance. Is full-
track blocking always warranted?

The response to both of these queries
would seem to be negative. By
studying the data in exhibits 2-5,

148

Job Type Equation r2

IBM utility
0 0803

2.8842
+ BF

1

.9881

Compile 1 1 6968

1.2474
+ BF 1 .9826

I/O Bound
1

0 2560
2.6533 '

1

+ BF .9957

CPU Bound
0 6434

2.663
+ BF .9870

Figure 1. One Term Equation Regression Model.

Job Type Equation r2

IBM utility!

0 .0976

2.8508 3 1

+ BF + 0.0 BF .9890

Compile i 1 .6424

1.3465
+ BF + 0.0007 BF

|

.9980

I/O Bound
0 .2922

2.1698 + 0.5339
+ BF BF**2 .9997

CPU Bound 1

0 .6730
1.725 + 0.6243 1

+ BF BF**2 .9946

Figure 2. Two Term Equation Regression Model.

149

one can easily see the applicability
of the '80-20' rule. In other words,
80 percent of the benefits are
achieved through 20 percent of the
effort, or in this case blocking.
For all blockings, the processing
time, CPU time and I/O activity all
drop sharply with increasing blocking
factor to a point. That point appears
to be in the area where the blocking
factor is around twenty. After that,

the decrease in resource utilization
is minimal for blocking factors up to

full-track. Similarly for space
utilization, the number of tracks
required drops quickly and then tends
to level off. Thus recommendations
for blocking factors should probably
be in the 10 to 20 range for maximum
benefit. In a paging environment,
one should also consider the page
size of the system. For example, if

the page size is 2048 bytes, it would
not be profitable to use a blocking
factor of 20 if this results in a

blocksize of 2400 bytes. Rather,
blocksize should be close to, but not
larger than, some multiple of the
system page size. Keeping this in

mind may result in savings due to

minimal paging activity.

8.0 Future Work

This study, although already profit-
able, is far from complete. We hope
to develop and implement a resident
module and collect data on such
measurable items as device utilization,
turnaround times, processing time,

CPU and I/O activity, and channel
activity on packs with scratch space.
This resident module would also
automatically assign efficient block-
ing factors to newly created data
sets. We would also like to collect
data on the job mix effect for our
sample jobs and watch the system log
for paging, swapping and service rate
changes as the blocking factor is

varied

.

It is felt that substantial savings
in resource usage can be obtained on
any system through a conscientious
program for implementing efficient
blocking of program data. We hope to

develop and prove the worth of such a

program.

150

APPENDIX

151

JOBNAMF
VOLUME

TDJ. u DATASFT NAMF RFCFM LRECL
BLOCK
SI7F

TL700000 TAST56 MRISDCH.PSBOIO.DATA FB 80 1680 36,987

TL700000 TAST66 IMSEAW.WUMPUS.CLIST VB 255 1680 36,984

TL700000 TAST66 ASCRAP.SL03TSTC.nATA FBS 97 4850 36,981

TL700000 TAST66 X092476.X151727.SR03NRB F 80 80 36,971

VRl 60000 044765 CEN2.VR03C25 VB 3434 6872 933

IMSPROCS FFFFFF SYS77021.T063648.RV000. IMSPROCS F 80 80 137

VRl 60000 044749 CEN2.VR03B45 VBS 4000 4000 822

TLDMP006 PUB006 TLPUB006 U 00 13030 2,804

VRl 70000 044737 CEN2.VR03B21 V 3434 3438 6,778

VRl 70000 044763 CEN2.VR03C21 V 3434 3438 6,762

EXHIBIT 1

153

ELAPSED TIME (MINS)

01

01
o

t9

6
I

I

-aO

I

2! "B"

[>

e>

i>

[>

>

o I >

>!) >hCj >tT) >»TJ

<< << << <<
11 11 ||
a o o o

no M
» \
o o
d CO

o c
o
G Da

o B

o
o

EXHIBIT 2

154

EXCPS (THOUSANDS)

01;
—

CO
o

1^ cn
0 o

1 I I I I F
O o

I I I I I I I ini

>

1^

O I ^

<< << << <<

o ci

Q

O
O

91 3i S 2

S
3

EXHIBIT 3

155

CPU TIME (SECONDS)

2

o O

>»Tj >rrj >>i3 >.>ij

?o

II II p II
Q O

^ ^ ^

go GO
98 98

o
o o

EXHIBIT 4

156

157

NORMALIZED COMPOSITE VALUE

01

«9

O
10 CO

I I I I

if

if

> ^

ho
:< <

CO a »
Si 9§

o
o

EXHIBIT 6

158

A New Methodology For Computer System Data Gathering

R. A. Orchard

Bell Laboratories

Piscataway, New Jersey 08854

Many computer system monitoring, data gathering, and reduction efforts ignore unbiased

sampling techniques. The approaches generally taken are expensive and can make no

scientifically based statement about the accuracy of the data gathered or consequent data

reduction. The approach outlined in this paper attempts to correct these inadequacies by

using the theory of random sampling.

Several new techniques are introduced for obtaining optimal error bounds for estimates

of computer system quantities obtained from random samples. A point of view is taken

(boolean variable random sampling) which makes it unnecessary to have any a priori

knowledge of the population parameters of the phenomena being sampled. It is expected

that the techniques introduced will significantly reduce monitoring overhead for computer

systems while increasing the quality of the data gathered.

Key words: boolean random sampling; computer system monitoring; data gathering.

I. INTRODUCTION

Large investments of time, hardware, and

software are generally required for data gather-

ing and reduction by computer system analysts

and those responsible for computer system per-

formance and accountability. This paper

presents a rather obvious, but not currently

practiced, methodology for data gathering which

should significantly reduce the amount of data

gathered and increase its quality.

Many data gathering efforts in the computer

system area ignore techniques which would yield

objectively estimable sampling error. The
approaches generally chosen are expensive and

can make no scientifically based statement about

the accuracy of the data or consequent data

reduction. The rationale for the data gathering

may not stand on sound objective criteria. The
approach outlined in this paper attempts to

correct these inadequacies by using random sam-

pling.

The use of random sampling will allow one

to justify the cost of a data gathering effort in

terms of the quality of the data gathered. It is

expected that the implementation of the random
sampling techniques outlined will significantly

reduce monitoring overhead for computer sys-

tems. Several new techniques are introduced for

obtaining optimal error bounds for estimates of

computer system quantities obtained from ran-

dom samples.

II. CURRENT SAMPLING APPROACHES TO
DATA GATHERING

Current sampling techniques in use in the com-
puter system field today are characterized by one
or more of the following:

a. fixed periodic (uniform) sampling rate;

b. an assumption that the underlying

phenomenon is random;

c. absence of statistical confidence levels on

the quantities measured.

The presence of c. makes us suspect that in

many instances the rationale for the data gather-

ing methodology is not motivated by considera-

tions from statistical sampling theory. In these

cases, the "Christmas mail" philosophy is prob-

ably closer to the rationale; i.e., if we cover the

problem with enough data points, we should see

some result. In the limit, this technique is

guaranteed to work since one has all the points.

159

Item b. is an interesting note and has some
possible overtones of a psychological nature.

When human beings are confronted with com-
plexity and cannot discern simple patterns at

work, they tend to be borne out in fact. One
can mathematically test for "randomness." In

other situations, complex patterns and correla-

tions of a deterministic nature are at work and

the phenomena cannot be characterized

mathematically as random. Unfortunately, more
often than not, analysts do not test for random-

ness.

Others may make distributional assumptions

and, if so motivated, proceed to at least a

verification that the population reasonably fits

the assumed distribution. They then speak

about a random variable with the given distribu-

tion. Often they are not aware of the fact that

one could have a normal or exponential distribu-

tion of a variable without that variable being a

random variable. If one is working with purely

descriptive aspects of the distribution, the

misclassification of the variable may not affect

the end result of the analysis. If, however, the

randomness of the variable is central, serious

error may ensue.

It is known that if the underlying

phenomenon being sampled is not random then

fixed periodic sampling may be a statistically

biased sampling technique. The variance associ-

ated with it will depend heavily on the deter-

ministic components present in the system data.

Increases in the sampling rate may not

decrease sampling variance and may yield

unpredictable performance. If the underlying

phenomenon is random then fixed periodic sam-

pling is equivalent to the methodology outlined

in the next section and the equations presented

will hold. In this case, the results of this paper

will provide a sound basis for the choice of the

sampling rate and a new perspective on variable

sampling, namely, representation in terms of

boolean variable sampling.

There are individuals with sharp insight into

computer systems who may design monitors or

other data gathering mechanisms which yield

what are considered "good" results. The
difficulty here is that the accuracy of results

varies from monitor (individual) to monitor

(individual), generally bias is present, and no

objective measure of sampling error or bias exists.

Statistically speaking, as accepted as hardware

monitor results are, confidence intervals cannot

be placed on their results unless one assumes
the data stream being monitored is random,
every state change is being recorded, or one has

a priori knowledge of the phenomenon being

sampled; i.e., by what criteria do we validate a

hardware monitor's results? There are examples

of hardware monitor results being in error

because of synchronization with internal system

logic.

The sampling technique we propose for use

in computer system data gathering and analysis

is characterized by the following:

a. No Assumptions concerning the data being

monitored or gathered are made. The
independence and randomness necessary for

objectively estimating sampling error and

sample size are provided by the sampling

method itself.

b. No a priori knowledge or estimates of

actual mean values or standard deviations

are required.

c. The accuracy depends on sample size.

d. There is no sample bias.

e. One has some measure of control over the

cost of a data gathering effort. Sampling

error can be minimized for a given cost or

cost for a given sampling error.

f. The approach tends to stimulate a rational,

organized process of data gathering.

An area where the proposed sampling scheme
may be useful is in the collection of system-wide

computer system data (e.g., computer networks,

corporate or agency collections of data centers

and computer systems). In many instances a

well controlled sampling effort may turn out to

be cheaper and faster than a census or partial

census and meet accuracy requirements.

III. BOOLEAN REPRESENTATION OF COM-
PUTER SYSTEM VARIABLES

It is our conjecture that for a computer system,

most of the quantities of interest can be

expressed, for sampling purposes, as a suitable

function of attribute valued variables. Such

variables can be viewed as a boolean variable,

i.e., for a given instance of the variable either

the attribute is present (= 1) or absent (=0).

Examples of such variables are any bit positions

or combination of bit positions in a computer

system to which an attribute has been assigned

(CPU busy, channel n busy, task A active,

160

etc.).

Many quantities can be represented as a

boolean function of time. If, for example, the

quantity of interest is job elapsed time, then the

presence or absence of a suitable indication per-

taining to a job name in a computer system can

be taken as the variable of interest. The
number of times the job is found "elapsing"

divided by the total number of times the vari-

able was checked in a time period T can be used

to estimate the time the job was elapsing in time

period T. Similarly, the number of times the

CPU busy bit is a one and the channel busy bit

is a one, divided by the number of times the

and'ed condition was checked is an estimator of

CPU-channel overlap. In general, extremely

complex situations can be modeled from a

boolean data gathering perspective. A typical

instance of this might be the estimation of aver-

age queue length in a particular queue.

Suppose a queue can hold at most M items.

To the ith slot on the queue we assign a boolean

occupancy variable q,:

111 I I ImI

Ql q2 Qm

0 if slot i is not occupied

~
1 if slot i is occupied

If during a period of time T these variables are

sampled N times and their averages calculated,

we will find

- 1 V

/m = = relative frequency with

which exactly M elements

occur in the queue.

It is easily seen that:

M

(=0

Based on a random sample, we have determined

the distribution of the elements in the queue.

An estimate of the average queue length is:

_ M
L = I/-/,.

(=1

All of the quantities given above can be

estimated with high mathematical confidence

from a sample which, by today's standards,

would be a small amount of data gathered. In

addition, we have developed techniques which

require no a priori estimate of sample average or

sample standard deviation and yet yield the

"tightest" confidence intervals on the actual

occurring estimate of a quantity.

IV. PROPOSED RANDOM SAMPLING
APPROACH

A simple random sample is a sample of the

parent population in which each element of the

population had an equal probability of occurring

in the sample. We refer to a simple random
sample as a random sample. As a consequence

of the Central Limit theorem, it is known that

the sampling distribution of the sample mean of

a random sample asymptotically approaches the

normal distribution with increasing sample size.

This property is independent of the properties of

the parent population from which the sample is

drawn.

q, = relative frequency with

which a queue length

greater than or equal to i

elements occurred.

/o = 1 — q\= relative frequency with

which an empty queue

occurred.

/, = (q, — q,+\) = relative frequency with

which exactly i elements

occur in the queue,

1</<M-1.

161

sampling distribution

of random sample means
E[x]

sampling distribution

of biased sample means

parent population

mean /a

variance cr'

Distributions of Random and Biased Sample Means

Figure 1

Confidence a

k = 1.645

k = 1.96

A: = 2.575

k = 3.01

90%
95%
99%
99.9%

.10

.05

.01

.001

Alternately we may write (1) as

jLt — kcrx < X <
fj,
+ ka-

The precision on a sample mean 3c is then

x±k(T-

01 smce cr- =

(2)

Figure 1 indicates that the mean of the ran-

dom sampling distribution is identical to the

parent population mean. In other words, if ran-

dom samples of size n were repeatedly drawn

from the same parent population and the sample

averages calculated, the random variable x would

take on different values and the ETx] = ix. The
variance of the random sampling distribution is

crl = —, where cr^ is the parent population
" n

variance.

Another sampling technique, which is biased,

is also shown in Figure 1. The sample means x

from repeated samples of size n in this case are

not distributed about /u, but rather about some
point ix' . That is, E[x] =

fj.' . U'— is the

sampling bias of the nonrandom sampling tech-

nique. Random samples have no sampling bias.

If X is an instance of a mean calculated from a

sample, then |3c— ^[x]! is called the sampling

error. For the random sampling technique,

|3c— is then the sampling error.

An approximate large sample confidence

interval for the true mean of the parent popula-

tion is given by:

X —k(T-<fl<X+k(T- (1)

where k is the o- limit on the standard normal

distribution giving 100 (l-a)% confidence.

ka-
(3)

o", the standard deviation of the parent popula-

tion, is generally unknown and the sample stan-

dard deviation

V
is usually taken as an estimator for a for large n.

Hence an estimate of the accuracy of 3c as an

estimate of is:

x± ks

But this is known after the fact (after the sample

is taken), and depends on the accuracy of s as an

estimator for cr. We do not take this approach.

Suppose we wish to impose an accuracy

requirement on our estimate and want the

corresponding sample size. If it is required that

an absolute tolerance of a units be maintained

then from (3):

(4)

At this point our interest is restricted solely to

boolean variables (populations) so that x is an

162

estimator for a proportion (utilization). In this case

if fjL is the parent population mean then a is

easily shown to be -Jfiil —jx).

Equation (4) then becomes,

.(\-tJi). (5)

Since we do not know a priori the actual mean /u,

of the parent population, we choose the sample

size that will guarantee the tolerance a for all jx.

The maximum of tx(\ —fi) occurs at /x = .5, so

that:

(6)

is the desired sample size.' For utilization to be

accurate within .01 absolute error at 99%
confidence.

2.575

2.(.01)

16577

samples must be taken.

If the tolerance a in (5) is not an absolute

tolerance but rather a relative tolerance then a is

of [he form bfj.. In this case (5) becomes,

b

fjbil —/n)

(5.1)

Since
1 'JL

is a strictly decreasing function as

/X—*1, if (5.1) is evaluated at a particular /i,*then

the tolerance specified by b will be valid for

M>M *. For a utilization to be accurate within

1% relative error for utilization >^ .1 at 99%
confidence.

2.575

01

596,757

(l-.l)

.1

samples must be taken. This sample size would

produce absurdly low relative error bounds at

higher utilization. Fixing n at 596,757 and solv-

ing for 6 as a function of /j. in (5.1) we find,

b-k^ 1

(596,757)

and the relative errors at 30%, 60% and 90%
1 3 1

utilization are respectively —%, "^0"% and

V. CHOOSING ERROR CRITERIA AND
DEVELOPING ERROR BOUNDS

Two possible approaches to choosing reasonable

error criteria are developed in this section. Both

use an absolute error condition.

Method 1

For utilizations within desired ranges, specify

the absolute error constraint to be met and the

confidence level desired.

absolute error confidence /c value

^2

interval

fJ,\<p.<fl2

l^j<fJ'<l^j+\

tl„<p.<p.n+\ «n k„

The sample size ensuring all the tolerances will

be met at the appropriate confidence levels is

given by

n = maxfn,}

where

1. Tables are given in Appendix A.

2a,
fXjil -fj.j

).

/Lt/= l.U.b. {^t|/U,y</Ll</i,y+l} (7)

163

If more than one variable (utilization) is

being estimated, say fi\ n^,,,,, fu."', then for each

ju,' , an n^, is calculated using (7). The sample

size needed is then:

max n

It is clear that if the sample size so calculated is

considered to be too high, then the /u' yielding

the maximum value n , is the candidate for re-

evaluation. Returning to (7) the jth interval

producing n ^, can be altered in absolute error or

confidence to bring down the sample size. It is

possible to automate the choice of an appropri-

ate sample size covering several sample vari-

ables. Operations research techniques can be

useful here.

Method 2

In this method it is first noted that /x = .5 max-

imizes the sample size in (5). Hence, if an

absolute tolerance of a utilization units is

specified, there may be some difficulty in

estimating the accuracy at low utilizations. A
statement that the tolerance at .02 is .02 ± a

may not be too meaningful if a is .01. However,

the sample size calculated in (6) is a worst case

sample size since we are assuming no a priori

knowledge. If the actual utilization is less than

or greater than /li = .5 then more samples than

necessary have been taken and one should see a

better tolerance than a in effect. Solving for a

in (5) yields

(8)

A specification of a = .01 for all fx at 99%
confidence yields by (6), 16577 samples. Substi-

tuting this for n and 2.575 for k in (8) results in

an expression for the tolerance as a function of

/JL at this sample size and confidence.

a = .Oly/fJi (I -fj.) (9)

(In general, if o* is the absolute tolerance at a

given k and «*, then:

a=la*-^\^) (9.1)

and a <_ a* for all ^.)

At = .02 the tolerance is not .01 but a =
.005. Rather than make a tolerance statement

x± .01 for all sample means, we will derive an

error expression as a function of the actual sam-

ple estimate obtained.

Sample derived error bounds

Let an absolute error criterion of a* be imposed

for all ju, and let n* be the sample size calculated

by (6) then (8) becomes

V n

Ml (10)

and a _< a* for all fi.

Suppose X is an actual sample mean obtained

from a random sample of size n* then,

X — a * < fM< X +a *

with the confidence level associated with k. If x
+ (f < .5 then an estimator of /lc (i.e., x) can-

not be in error by more than a where a is calcu-

lated from (10) with /x = x+a *.

U X - a* > .5 then an estimator of fj, (i.e., x)

cannot be in error by more than a where a is

calculated from (10) with /x = x — a*.

If neither of the two conditions hold then fj.

may take on the value fx = .5. Combining
these results we have the following.

If X < .5 - a* then

a+aVa - (x+a*))
(11)

is the appropriate approximate error on x

Ux> .5 + a* then

- a-a*)
(11.1)

is the appropriate approximate error on x

Otherwise the error interval is:

X ±a*.

The argument could be repeated on^ the new
confidence interval for 3c given by (11) or

(11.1). The process will converge on the tight-

est error interval that can be placed around x ^.

2. Note that we are solving a fixed point problem for a.

164

One iteration is generally sufficient for most

accuracy needs.

At a 99% confidence level with a* = .01,

16577 samples are required. If a sample mean
of X = .005 were recorded, the error interval

would be .005 ±.01 . Using (11) a refined error

interval would be .005 + .002. If (11) were

reapplied using .002 as the a*, a more refined

error interval of .005 + .0016 would occur.

Another application would show no change

in the fourth digit place and the tightest error

interval to four places about 3c = .005 based on
/?* samples is now available. If x were .05, one

application of (11) yields .05 + .005 to three

places. Reiteration does not change the result to

three places.

Combined approaches using both method 1

and method 2 are possible. Rather than tighten

an error bound on a particular sample mean x,

one can use an approach similar to method 2 to

derive a higher confidence level for a particular

sample mean. Solving (10) for /c would yield:

If /c* is the k used when n* was determined for a

fixed tolerance a in (6) then for all
ij,

in (12)

k>k*.

It is also possible to use (11) or (11.1) to

drop the error bound on a given sample mean x
from +a * to ±a. If a is not the minimum error

bound achievable, then the unwanted difference

between a and the tightest bound can be used to

increase the confidence in a. The new value of

A: can be calculated from (12) with

fjL
= X + a it X < .5 — a

fi = x - a ifx>.5 + a (13)

Alternately, if one simply stays with the error

bound a for which rf was computed, (12) given

the substitutions in (13) will calculate the higher

confidence levels for utilizations not equal to .5.

Clearly, if one is willing to accept a larger error

bound and/or confidence level ait the 50% utili-

zation level, then a smaller sample size can be

used. As the utilization being sampled

approaches 0% or 100%, the error bounds and

confidence levels improve from those specified

at the 50% level.

VI. ENSURING RANDOM SAMPLING

All of the results of the previous sections

require that the sampling be carried out in a ran-

dom manner. Suppose that we have analyzed

our problem and, based on cost and accuracy

considerations, arrived at a sample size n and a

time period T for which results are to be

reported.

There are many methods by which one can

sample a parent population. The choice and

study of a particular method for a given set of

circumstances is the subject of sampling theory.

Since we have in view the development of the

most generally applicable sampling methodology

for computer systems, our interest is primarily

in those methods which are based ultimately on
simple random sampling of boolean variables.

This will allow the automation of computer sys-

tem data gathering and reduction with no
assumptions on the underlying computer system

phenomena.

Two methods of random sampling are given.

The first, simple random sampling, is the

method on which all sample sizes, confidence

statements, and error bounds mentionea in this

paper are based. The second method is stratified

sampling with simple random sampling, of sam-
ple size one, within each stratum. This tech-

nique in general yields higher accuracy than sim-

ple random sampling (and in no case lower accu-

racy). If the second method is used, then the

error bounds developed in previous sections are

conservative bounds. We make no attempt in

this paper to improve on the error bounds in the

case where stratified sampling is used.

Simple Random Sampling

Case (i)

Let the parent population size be with

individuals numbered 1 to A^.

Let n be the sample size desired. Generate n

integer uniform random numbers on the discrete

interval [1,^. The n items in the parent popu-

lation corresponding to the n uniform numbers
constitute the random sample.

Case(ii)

Let T be a time interval and {x(t)
1
1 e T) the

parent population. Let n be the sample size

desired. Generate n uniform random numbers
in the interval T. The collection {x(t')

1

1' is one

of the generated n random numbers) is the

desired sample of size n.

165

In both cases, if a duplicate random number
is generated it may be discarded in favor of a

nonduplicate number (sampling without replace-

ment), strata

Stratified Sampling With Random Sampling of Size

One Within Strata
random samples <

within strata

Case (i)

Let the parent population size be A^. Let n

be the sample size desired. Form n strata of size

N/n. We leave it to the reader to adjudicate a

nonintegral division since there are several rea-

sonable ways of handling this situation. Assum-
ing there are now m units in a given stratum,

generate an integer random number on [l,m]

say i. The ith element of the stratum is placed

into the sample. Repeating the procedure for all

strata yields the random sample of size n.

Case(ii)

Let T be a time interval and {x(t)
1
1 e T} the

parent population. Let n be the sample size

desired. Form n strata (subintervals) on T, each

of length T. In each stratum generate a random
time t' from a uniform distribution [0,r]. The
point x(t') is then placed in the sample. Repeat-

ing the procedure for all strata yields the desired

sample of size n.

Comparison of the Two Sampling Techniques

If a sample must be obtained in time (e.g., we
are monitoring a process), then simple random
sampling requires that n random points in time

be generated, ordered, and stored before the

process begins. Hence, additional memory is

required for the data gathering effort. Stratified

sampling obviates the need for the storage of

sample times since the next sampling time can

be calculated (generated) "on the fly". There are

several subtleties which may have to be con-

sidered in any actual implementation of the

scheme (e.g., the amount of time needed to

generate and sample the next point, etc.).

Previously, it was mentioned that the

stratified sampling method yielded in general a

lower error on our sample estimates. To see

this consider a stratified sample as in the follow-

ing figure: Hence,

for stratum i
•

stratum mean =
/j.,

stratum variance = a-

Figure 2

For simple random sampling, we saw that the

error bound on the sample mean took the form
ka/yfn where cr^ is the population variance. It

is known that for the stratified sampling method
outlined above, the error bound on the sample

mean is

where a-} is the population variance in the ith

stratum.

Let the error bound for simple random sam-

pling be:

yJn

and for stratified sampling:

(14)

(15)

Let the total parent population size be A'^ If bj

denotes the jth element in the ith stratum, m
elements per stratum with n strata, o-^ can be

written;

1 n m
f 12

i = \j= \ '^, = 17= 1

=

166

1 "

or

equality holding precisely when = /u, for all i.

That is, when each and every stratum average is

identically the population average. Hence, from

(14) and (15)

E2<E\

Since the condition for equality is a rare event,

sampling by stratification is to be preferred

where possible. It also represents a methodol-

ogy similar in form to systematic sampling.

Therefore a minimum of work is entailed in

converting existing systematic sample based data

gathering to a random sample basis.

VII. APPLICATIONS OF BOOLEANIZATION
IN COMPUTER SYSTEM AREAS

The use of the boolean variable random sam-

pling techniques outlined in previous sections is

of such broad applicability that a complete

enumeration of where they may be applied in

computer system analysis is precluded. How-
ever, whenever these techniques are used to

replace current data gathering technique, an

increase in data quality and a decrease in cost

should ensue. Many quantities are gathered on

a census basis (i.e., every value of the variable is

captured). A well controlled random sampling

plan may be preferred, if the quality of the

census data is in question or the census cost too

high. This may be especially useful in gathering

computer system reliability and benchmarking

data.

Computer system variables capable of being

randomly sampled, and therefore accurately

estimated, include:

• utilizations (channel, CPU, problem program

state, etc.)

• average queue lengths and queue distribu-

tions

• arrival rates to queues and hence average

waiting times

• overlaps between n variables

• single thread characteristics of a job run in a

multiprogrammed environment

• event triggered monitoring may also be car-

ried out on a sample basis. Based on a ran-

dom variable, one chooses to trace an event

or not.

Census reporting and information gathered to

support a variety of computer indices may be

gathered at a decrease in cost and possibly an

increase in the reliability of the data. Since the

method of sampling is random, a certain level of

data integrity is insured. Current system wide

indices for computer systems should be re-

evaluated from the perspective of boolean ran-

dom sampling.

VIII. CONCLUSION

It is extremely unlikely that current data reduc-

tion and reporting facilities available to the

reader state confidence intervals on the quanti-

ties reported. Unfortunately, sampling theory is

often neglected in computer science programs at

the university level. Hopefully, this paper will

stimulate further investigation of the quality,

quantity, and necessity of current data gathering

efforts. Computer system overhead for software

monitors can be significantly reduced.

167

APPENDIX

TABLES FOR THE DESIGN OF RANDOM SAMPLING EXPERIMENTS

169

CONFIDENCE LEVEL

99.0% (K=2.575)

ABSOLUTE SAMPLE AVERAGE INTERSAMPLE TIME FOR REPORT INTERVAL OF
ERROR ON SIZE

QUANTITY

.01 16577. 1 MIN 5 MIN 10 MIN 30 MIN 60 MIN

0.004 SEC. 0.018 SEC. 0.036 SEC. 0.109 SEC. 0.217 SEC.

2 HR 4 HR 8 HR 16 HR 24 HR

0.007 MIN. 0.014 MIN. 0.029 MIN. 0.058 MIN. 0.087 MIN.

.02 4144. 1 MIN 5 MIN 10 MIN 30 MIN 60 MIN

0.014 SEC. 0.072 SEC. 0.145 SEC. 0.434 SEC. 0.869 SEC.

2 HR 4 HR 8 HR 16 HR 24 HR

0.029 MIN. 0.058 MIN. 0.116 MIN. 0.232 MIN. 0.347 MIN.

.03 1842. 1 MIN 5 MIN 10 MIN 30 MIN 60 MIN

0.033 SEC. 0.163 SEC. 0.326 SEC. 0.977 SEC. 1.955 SEC.

2 HR 4 HR 8 HR 16 HR 24 HR

0.065 MIN. 0.130 MIN. 0.261 MIN. 0.521 MIN. 0.782 MIN.

.04 1036. I MIN 5 MIN 10 MIN 30 MIN 60 MIN

0.058 SEC. 0.290 SEC. 0.579 SEC. 1.737 SEC. 3.475 SEC.

2 HR 4 HR 8 HR 16 HR 24 HR

0.116 MIN. 0.232 MIN. 0.463 MIN. 0.927 MIN. 1.390 MIN.

.05 663. 1 MIN 5 MIN 10 MIN 30 MIN 60 MIN

0.090 SEC. 0.452 SEC. 0.905 SEC. 2.715 SEC. 5.429 SEC.

2 HR 4 HR 8 HR 16 HR 24 HR

0.181 MIN. 0.362 MIN. 0.724 MIN. 1.448 MIN. 2.172 MIN.

171

ABSOLUTE ERROR OF .01 AT 99.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

u E U E U E U E U E

.0 .0 .200 .0080 .400 .0098 .600 .0098 .800 .0080

.005 .0014 .205 .0081 .405 .0098 .605 .0098 .805 .0079

.010 .0020 .210 .0081 .410 .0098 .610 .0098 .810 .0078

.015 .0024 .215 .0082 .415 .0099 .615 .0097 .815 .0078

.020 .0028 .220 .0083 .420 .0099 .620 .0097 .820 .0077

,025 .0031 .225 .0084 .425 .0099 .625 .0097 .825 .0076

.030 .0034 .230 .0084 .430 ,0099 .630 .0097 .830 .0075

.035 .0037 .235 .0085 .435 ,0099 .635 .0096 .835 .0074

.040 .0039 .240 .0085 .440 ,0099 .640 .0096 .840 .0073

.045 .0041 .245 .0086 ,445 ,0099 .645 .0096 .845 .0072

.050 .0044 .250 .0087 ,450 ,0099 .650 .0095 .850 .0071

.055 .0046 .255 .0087 ,455 ,0100 .655 .0095 .855 .0070

.060 .0047 .260 .0088 ,460 ,0100 .660 .0095 .860 .0069

.065 .0049 .265 .0088 .465 .0100 .665 .0094 .865 .0068

.070 .0051 .270 .0089 .470 .0100 .670 .0094 .870 .0067

.075 .0053 .275 .0089 .475 .0100 ,675 .0094 .875 .0066

.080 .0054 .280 .0090 .480 .0100 .680 .0093 .880 .0065

.085 .0056 .285 .0090 .485 .0100 .685 .0093 .885 .0064

.090 .0057 .290 .0091 .490 .0100 .690 .0092 .890 .0063

.095 .0059 .295 .0091 .495 .0100 .695 .0092 .895 .0061

.100 .0060 .300 .0092 .500 .0100 .700 .0092 .900 .0060

.105 .0061 .305 .0092 .505 .0100 .705 .0091 .905 .0059

.110 .0063 ,310 .0092 .510 .0100 .710 .0091 .910 .0057

.115 .0064 .315 .0093 .515 ,0100 .715 .0090 .915 .0056

.120 .0065 .320 .0093 .520 ,0100 .720 .0090 .920 .0054

.125 .0066 .325 .0094 .525 ,0100 .725 .0089 .925 .0053

.130 .0067 .330 .0094 .530 ,0100 ,730 .0089 ,930 .0051

.135 .0068 .335 .0094 .535 ,0100 ,735 .0088 ,935 .0049

.140 .0069 .340 .0095 .540 ,0100 ,740 .0088 ,940 .0047

.145 .0070 .345 .0095 .545 ,0100 ,745 .0087 ,945 .0046

.150 .0071 .350 .0095 .550 ,0099 ,750 .0087 .950 .0044

.155 .0072 .355 .0096 .555 ,0099 ,755 .0086 .955 .0041

.160 .0073 .360 .0096 .560 ,0099 ,760 .0085 .960 .0039

.165 .0074 .365 .0096 .565 ,0099 ,765 .0085 .965 .0037

.170 .0075 .370 .0097 .570 .0099 ,770 .0084 .970 .0034

.175 .0076 .375 .0097 .575 .0099 ,775 .0084 .975 .0031

.180 .0077 .380 .0097 .580 .0099 .780 .0083 .980 .0028

.185 .0078 .385 .0097 .585 .0099 .785 .0082 .985 .0024

.190 .0078 .390 .0098 .590 .0098 ,790 .0081 .990 .0020

.195 .0079 .395 .0098 .595 .0098 .795 .0081 .995 .0014

172

ABSOLUTE ERROR OF .02 AT 99.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

U E U E U E U E U E

.0 .0 .200 .0160 .400 .0196 .600 .0196 .800 .0160

.005 .0028 .205 .0161 .405 .0196 .605 .0196 .805 .0158

.010 .0040 .210 .0163 .410 .0197 .610 .0195 .810 .0157

.015 .0049 .215 .0164 .415 .0197 .615 .0195 .815 .0155

.020 .0056 .220 .0166 .420 .0197 .620 .0194 .820 ,0154

.025 .0062 .225 .0167 .425 .0198 .625 .0194 .825 .0152

.030 .0068 .230 .0168 .430 .0198 .630 .0193 .830 .0150

.035 .0074 .235 .0170 .435 .0198 .635 .0193 .835 .0148

.040 .0078 .240 .0171 .440 .0199 .640 .0192 .840 .0147

.045 .0083 .245 .0172 .445 .0199 .645 .0191 .845 .0145

.050 .0087 .250 .0173 .450 .0199 .650 .0191 .850 .0143

.055 .0091 .255 .0174 .455 .0199 .655 .0190 .855 .0141

.060 .0095 .260 .0175 .460 .0199 .660 .0189 .860 .0139

.065 .0099 .265 .0177 .465 .0200 .665 .0189 .865 .0137

.070 .0102 .270 .0178 .470 .0200 .670 .0188 .870 .0135

.075 .0105 .275 .0179 .475 .0200 ,675 .0187 .875 .0132

.080 .0109 .280 .0180 .480 .0200 .680 .0187 .880 .0130

.085 .0112 .285 .0181 .485 .0200 .685 .0186 .885 .0128

.090 .0114 .290 .0182 .490 .0200 .690 .0185 .890 .0125

.095 .0117 .295 .0182 .495 .0200 .695 .0184 .895 .0123

.100 .0120 .300 .0183 .500 .0200 .700 .0183 .900 .0120

.105 .0123 .305 .0184 .505 .0200 .705 .0182 .905 .0117

.110 .0125 .310 .0185 .510 .0200 .710 .0182 .910 .0114

.115 .0128 .315 .0186 .515 .0200 .715 .0181 .915 .0112

.120 .0130 .320 .0187 .520 .0200 .720 .0180 .920 .0109

.125 .0132 .325 .0187 .525 .0200 .725 .0179 .925 .0105

.130 .0135 .330 .0188 .530 .0200 .730 .0178 .930 .0102

.135 .0137 .335 .0189 .535 .0200 .735 .0177 .935 .0099

.140 .0139 .340 .0189 .540 .0199 .740 .0175 .940 .0095

.145 .0141 .345 .0190 .545 .0199 .745 .0174 .945 .0091

.150 .0143 .350 .0191 .550 .0199 .750 .0173 .950 .0087

.155 .0145 .355 .0191 .555 .0199 .755 .0172 .955 .0083

.160 .0147 .360 .0192 .560 .0199 .760 .0171 .960 .0078

.165 .0148 .365 .0193 .565 .0198 .765 .0170 .965 .0074

.170 .0150 .370 .0193 .570 .0198 .770 .0168 .970 .0068

.175 .0152 .375 .0194 .575 .0198 .775 .0167 .975 .0062

.180 .0154 .380 .0194 .580 .0197 .780 .0166 .980 .0056

.185 .0155 .385 .0195 .585 .0197 .785 .0164 .985 .0049

.190 .0157 .390 .0195 .590 .0197 .790 .0163 .990 .0040

.195 .0158 .395 .0196 .595 .0196 .795 .0161 .995 .0028

173

ABSOLUTE ERROR OF .03 AT 99.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

T Tu h

.0 .0

.005
f\r\ A
.0042

.010 .0060
n 1 c .00/3

.(J2U
AAO A.0084

.025 .0094

.030 .0102

.035 .0110

.040 .01 18

.045 .0124

.050 .0131

.055 .0137

.060 .0142

.065 .0148

.070
A 1 C "5

.0153

.075 .0158

.080 .0163

.085
A 1 zn
.0167

.090 .0172

.095
A1 "7^
.0176

.100
n 1 on
.0180

.105 .0184

.110 .0188
lie
.115

A 1 A 1
.0191

.120
A 1 A C
.0195

1 T C
.125

A 1 AO
.0198

.130 .0202
1 > C
.135

ATA C
.0205

.140 .0208

.145 .021

1

.150 .0214

.155 .0217

.160 .0220

.165 .0223

.170 .0225

.175 .0228

.180 .0231

.185 .0233

.190 .0235

.195 .0238

U E

.200 .0240

.205 .0242

.210 ,0244

.215 .0246

.220 .0249

.225 .0251

.230 .0252

.235 .0254

.240 .0256

.245 .0258

.250 .0260

.255 .0262

.260 .0263

.265 .0265

.270 .0266

.275 .0268

.280 .0269

.285 .0271

.290 .0272

.295 .0274

.300 .0275

.305 .0276

.310 .0277

.315 .0279

.320 .0280

.325 .0281

.330 .0282

.335 .0283

.340 .0284

.345 .0285

.350 .0286

.355 .0287

.360 .0288

.365 .0289

.370 .0290

.375 .0290

.380 .0291

.385 .0292

.390 .0293

.395 .0293

U E

.400 .0294

.405 .0295

.410 .0295

.415 .0296

.420 .0296

.425 .0297

.430 .0297

.435 .0297

.440 .0298

.445 .0298

.450 .0298

.455 .0299

.460 .0299

.465 .0299

.470 .0299

.475 .0300

.480 .0300

.485 .0300

.490 .0300

.495 .0300

.500 .0300

.505 .0300

.510 .0300

.515 .0300

.520 .0300

.525 .0300

.530 .0299

.535 .0299

.540 .0299

.545 .0299

.550 .0298

.555 .0298

.560 .0298

.565 .0297

.570 .0297

.575 .0297

.580 .0296

.585 .0296

.590 .0295

.595 .0295

U E

.600 .0294

.605 .0293

.610 .0293

.615 .0292

.620 .0291

.625 .0290

.630 .0290

.635 .0289

.640 .0288

.645 .0287

.650 .0286

.655 .0285

.660 .0284

.665 .0283

.670 .0282

.675 .0281

.680 .0280

.685 .0279

.690 .0277

.695 .0276

.700 .0275

.705 .0274

.710 .0272

.715 .0271

.720 .0269

.725 .0268

.730 .0266

.735 .0265

.740 .0263

.745 .0262

.750 .0260

.755 .0258

.760 .0256

.765 .0254

.770 .0252

.775 .0251

.780 .0249

.785 .0246

.790 .0244

.795 .0242

U E

.800 .0240

.805 .0238

.810 .0235

.815 .0233

.820 .0231

.825 .0228

.830 .0225

.835 .0223

.840 .0220

.845 .0217

.850 .0214

.855 .0211

.860 .0208

.865 .0205

.870 .0202

.875 .0198

.880 .0195

.885 .0191

.890 .0188

.895 .0184

.900 .0180

.905 .0176

.910 .0172

.915 .0167

.920 .0163

.925 .0158

.930 .0153

.935 .0148

.940 .0142

.945 .0137

.950 .0131

.955 .0124

.960 .0118

.965 .0110

.970 .0102

.975 .0094

.980 .0084

.985 .0073

.990 .0060

.995 .0042

174

ABSOLUTE ERROR OF .04 AT 99.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

U E U E U E U E U E

.0 .0 .200 .0320 .400 .0392
^ AA
.600 .0392 .800 .0320

.005
AA C ^ TAC

.203 .0323 /I AC.405 AO A'2.0393 .605
A on 1.0391

OA C
.805 AO 1 "7

.0317

.010
AAOA
.0080

'MA
.210 .0326 .410

AT n "5

.0393
£ 1 A
.610

A > AA.0390 O 1 A
.810

A 0 1 >l.0314

.015
AAm
.009/ TIC .0329 /lie.415 .0394 /lie.615 A 0 OA.0389 0 1 c

.815
AO 1 1
.03 1

1

.U2U
A1 1 'I
.01 12

A
.220 .033

1

/I TA.420 AO nc.0395 .620 AO 00.0388 0 "OA.820 AO AT
.0307

.025
A 1 C
.0125 .225 AO 0 /I.0334 .425

AO AC.0395 .625
A 0 OT.0387 0 1 c

.825 .0304

.030
A 1 "5 z:
.0136

T "5 A
.230

AO 0 T
.0337 /I ^ A.430 AO A/;.0396 .630

A 0 O ^
.0386

O 0 A
.830

A 0 A 1
.0301

.035
A 1 /I •?

.0147 .235
AO 0 A
.0339

A 1 C
.435

A 0 A*?
.0397 .635

A 0 O C
.0385

O 0 c
.835

A*^ A"?
.0297

.040 .0157 .240 .0342 .440 .0397 .640 .0384 .840 .0293

.645 .0166 .245 .0344 .445 .0398 .645 .0383 .845 .0290

.050 .0174 .250 .0346 .450 .0398 .650 .0382 .850 .0286
AC C
.055

A 1 O
.0182

'ICC
.255

A 0 /* A
.0349 .455

A 0 A O
.0398

c c c
.655

A 0 OA.0380 o c c
.855

A'^ O
.0282

.060
A1 AA.0190 .260

AO C 1

.0351 .460
A 0AA
.0399 .660

A 0 TA
.0379

O ^ A
.860 .0278

.065
A1 A"T
.0197 .265

AO C 0
.0353

A H C
.465

A 0 AA
.0399

cue
.665

A 0 •? O
.0378

o ^ c
.865 .0273

.070 .0204 T7A
.270

AO C C
.0355 .470

A 0 AA
.0399

C "7A
.670 .0376 .870 .0269

.075 .021

1

.275 .0357 .475 .0399 .675 .0375 .875 .0265

.080 .0217 .280 .0359 .480 .0400 .680 .0373 .880 .0260

.085 .0223 .285 .0361 .485 .0400 .685 .0372 .885 .0255

.090 .0229 .290 .0363 .490 .0400 .690 .0370 .890 .0250

.095 .0235 .295 .0365 .495 .0400 .695 .0368 .895 .0245

.100 .0240 .300 .0367 .500 .0400 .700 .0367 .900 .0240

.105 .0245 .305 .0368 .505 .0400 .705 .0365 .905 .0235

.110 .0250 .310 .0370 .510 .0400 .710 .0363 .910 .0229

.115 .0255 .315 .0372 .515 .0400 .715 .0361 .915 .0223

.120 .0260 .320 .0373 .520 .0400 .720 .0359 .920 .0217

.125 .0265 .325 .0375 .525 .0399 .725 .0357 .925 .021

1

.130 .0269 .330 .0376 .530 .0399 .730 .0355 .930 .0204

.135 .0273 .335 .0378 .535 .0399 .735 .0353 .935 .0197

.140 .0278 .340 .0379 .540 .0399 .740 .0351 .940 .0190

.145 .0282 .345 .0380 .545 .0398 .745 .0349 .945 .0182

.150 .0286 .350 .0382 .550 .0398 .750 .0346 .950 .0174

.155 .0290 .355 .0383 .555 .0398 .755 .0344 .955 .0166

.160 .0293 .360 .0384 .560 .0397 .760 .0342 .960 .0157

.165 .0297 .365 .0385 .565 .0397 .765 .0339 .965 .0147

.170 .0301 .370 .0386 .570 .0396 .770 .0337 .970 .0136

.175 .0304 .375 .0387 .575 .0395 .775 .0334 .975 .0125

.180 .0307 .380 .0388 .580 .0395 .780 .0331 .980 .0112

.185 .0311 .385 .0389 .585 .0394 .785 .0329 .985 .0097

.190 .0314 .390 .0390 .590 .0393 .790 .0326 .990 .0080

.195 .0317 .395 .0391 .595 .0393 .795 .0323 .995 .0056

175

ABSOLUTE ERROR OF .05 AT 99.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

u E U E U E U E U E

.0 .0 .200 .0400 .400 .0490 .600 .0490 .800 .0400

.005 .0071 .205 .0404 .405 .0491 .605 .0489 .805 .0396

.010 .0099 .210 .0407 .410 .0492 .610 .0488 .810 .0392

.015 .0122 .215 .0411 .415 .0493 .615 .0487 .815 .0388

.020 .0140 .220 .0414 .420 .0494 .620 .0485 .820 .0384

.025 .0156 .225 .0418 .425 .0494 .625 .0484 .825 .0380

.030 .0171 .230 .0421 .430 .0495 .630 .0483 .830 .0376

.035 .0184 .235 .0424 .435 .0496 .635 .0481 .835 .0371

040 .0196 .240 .0427 .440 .0496 .640 .0480 .840 .0367

.045 .0207 .245 .0430 .445 .0497 .645 .0479 .845 .0362

.050 .0218 .250 .0433 .450 .0497 .650 .0477 .850 .0357

.055 .0228 .255 .0436 .455 .0498 .655 .0475 .855 .0352

.060 .0237 .260 .0439 .460 .0498 .660 .0474 .860 .0347

.065 .0247 .265 .0441 .465 .0499 .665 .0472 .865 .0342

.070 .0255 .270 .0444 .470 .0499 .670 .0470 .870 .0336

.075 .0263 .275 .0477 .475 .0499 .675 .0468 .875 .0331

.080 .0271 .280 .0449 .480 .0500 .670 .0466 .880 .0325

.085 .0279 .285 .0451 .485 .0500 .685 .0465 .885 .0319

.090 .0286 .290 .0454 .490 .0500 .690 .0462 .890 .0313

.095 .0293 .295 .0456 .495 .0500 .695 .0460 .895 .0307

.100 .0300 .300 .0458 .500 .0500 .700 .0458 .900 .0300

.105 .0307 .305 .0460 .505 .0500 .705 .0456 .905 .0293

.110 .0313 .310 .0462 .510 .0500 .710 .0454 .910 .0286

.115 .0319 .315 .0465 .515 .0500 .715 .0451 .915 .0279

.120 .0325 .320 .0466 .520 .0500 .720 .0449 .920 .0271

.125 .0331 .325 .0468 .525 .0499 .725 .0447 .925 .0263

.130 .0336 .330 .0470 .530 .0499 .730 .0444 .930 .0255

.135 .0342 .335 .0472 .535 .0499 .735 .0441 .935 .0247

.140 .0347 .340 .0474 .540 .0498 .740 .0439 .940 .0237

.145 .0352 .345 .0475 .545 .0498 .745 .0436 .945 .0228

.150 .0357 .350 .0477 .550 .0497 .750 .0433 .950 .0218

.155 .0362 .355 .0479 .555 .0497 .755 .0430 .955 .0207

.160 .0367 .360 .0480 .560 .0496 .760 .0427 .960 .0196

.165 .0371 .365 .0481 .565 .0496 .765 .0424 .965 .0184

.170 .0376 .370 .0483 .570 .0495 .770 .0421 .970 .0171

.175 .0380 .375 .0484 .575 .0494 .775 .0418 .975 .0156

.180 .0384 .380 .0485 .580 .0494 .780 .0414 .980 .0140

.185 .0388 .385 .0487 .585 .0493 .785 .0411 .985 .0122

.190 .0392 .390 .0488 .590 .0492 .790 .0407 .990 .0099

.195 .0396 .395 .0489 .595 .0491 .795 .0404 .995 .0071

176

ABSOLUTE SAMPLE
ERROR ON SIZE

QUANTITY

.01 9604.

.02 240L

.03 1067.

.04 600.

.05 384.

CONFIDENCE LEVEL

95.0% (K=1.960)

AVERAGE INTERSAMPLE TIME FOR REPORT INTERVAL OF

1 MIN

0.006 SEC.

2 HR

0.012 MIN.

1 MIN

0.025 SEC.

2 HR

0.050 MIN.

1 MIN

0.056 SEC.

2 HR

0.112 MIN.

1 MIN

0.100 SEC.

2 HR

0.200 MIN.

1 MIN

0.156 SEC.

2 HR

0.312 MIN.

5 MIN

0.031 SEC.

4 HR

0.025 MIN.

5 MIN

0.125 SEC.

4 HR

0.100 MIN.

5 MIN

0.281 SEC.

4 HR

0.225 MIN.

5 MIN

0.500 SEC.

4 HR

0.400 MIN.

5 MIN

0.781 SEC.

4 HR

0.625 MIN.

10 MIN

0.062 SEC.

8 HR

0.050 MIN.

10 MIN

0.250 SEC.

8 HR

0.200 MIN.

10 MIN

0.562 SEC.

8 HR

0.450 MIN.

10 MIN

1.000 SEC.

8 HR

0.800 MIN.

10 MIN

1.562 SEC.

8 HR

1.249 MIN.

30 MIN

0.187 SEC.

16 HR

0.100 MIN.

30 MIN

0.750 SEC.

16 HR

0.400 MIN.

30 MIN

1.687 SEC.

16 HR

0.900 MIN.

30 MIN

2.999 SEC.

16 HR

1.599 MIN.

30 MIN

4.686 SEC.

16 HR

2.499 MIN.

60 MIN

0.375 SEC.

24 HR

0.150 MIN.

60 MIN

1.499 SEC.

24 HR

0.600 MIN.

60 MIN

3.374 SEC.

24 HR

1.349 MIN.

60 MIN

5.998 SEC.

24 HR

2.399 MIN.

60 MIN

9.371 SEC.

24 HR

3.748 MIN.

177

ABSOLUTE ERROR OF .01 AT 95.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

U E U E U E U E U E

.0 .0 .200 .0080 .400 .0098 ,600 ,0098 ,800 .0080

.005 ,0014 .205 .0081 .405 .0098 ,605 ,0098 ,805 .0079

.010 .0020 .210 .0081 .410 .0098 ,610 .0098 ,810 .0078

.015 .0024 .215 .0082 .415 .0099 .615 ,0097 ,815 .0078

.020 .0028 .220 .0083 .420 .0099 ,620 .0097 ,820 .0077

.025 .0031 .225 .0084 .425 .0099 ,625 ,0097 ,825 .0076

.030 .0034 .230 .0084 .430 .0099 ,630 .0097 ,830 ,0075

.035 .0037 .235 .0085 .435 .0099 ,635 ,0096 ,835 ,0074

.040 .0039 .240 .0085 .440 .0099 ,640 ,0096 ,840 ,0073

.045 .0041 .245 .0086 .445 .0099 ,645 ,0096 ,845 ,0072

.050 .0044 .250 .0087 .450 .0099 ,650 ,0095 ,850 ,0071

.055 .0046 .255 .0087 .455 .0100 ,655 ,0095 ,855 ,0070

.060 .0047 .260 .0088 .460 .0100 ,660 .0095 ,860 ,0069

.065 .0049 .265 .0088 .465 .0100 ,665 .0094 ,865 ,0068

.070 .0051 .270 .0089 .470 .0100 ,670 .0094 ,870 .0067

.075 .0053 .275 .0089 .475 .0100 ,675 ,0094 .875 .0066

.080 .0054 .280 .0090 .480 .0100 ,680 ,0093 .880 .0065

.085 .0056 .285 .0090 .485 .0100 ,685 ,0093 .885 .0064

.090 .0057 .290 .0091 .490 .0100 ,690 ,0092 .890 .0063

.095 .0059 .295 .0091 .495 .0100 ,695 ,0092 .895 .0061

.100 .0060 .300 .0092 .500 .0100 ,700 ,0092 .900 .0060

.105 .0061 .305 .0092 .505 .0100 ,705 ,0091 .905 .0059

.110 .0063 .310 .0092 .510 .0100 ,710 ,0091 .910 .0057

.115 .0064 .315 .0093 .515 .0100 .715 ,0090 .915 .0056

.120 .0065 .320 .0093 .520 .0100 .720 ,0090 .920 .0054

.125 .0066 .325 .0094 .525 .0100 .725 ,0089 .925 .0053

.130 .0067 .330 .0094 .530 .0100 .730 ,0089 .930 .0051

.135 .0068 .335 .0094 .535 .0100 .735 ,0088 .935 .0049

.140 .0069 .340 .0095 .540 .0100 .740 ,0088 .940 .0047

.145 .0070 .345 .0095 .545 .0100 .745 ,0087 ,945 .0046

.150 .0071 .350 .0095 .550 .0099 .750 ,0087 .950 .0044

.155 .0072 .355 .0096 .555 .0099 .755 .0086 .955 .0041

.160 .0073 .360 .0096 .560 .0099 .760 .0085 .960 .0039

.165 .0074 .365 .0096 .565 .0099 .765 .0085 .965 .0037

.170 .0075 .370 .0097 .570 .0099 .770 .0084 .970 .0034

.175 .0076 .375 .0097 .575 .0099 .775 ,0084 .975 .0031

.180 .0077 .380 .0097 .580 .0099 .780 ,0083 .980 .0028

.185 .0078 .385 .0097 .585 .0099 ,785 ,0082 .985 .0024

.190 .0078 .390 .0098 .590 .0098 ,790 ,0081 .990 .0020

.195 .0079 .395 .0098 .595 ,0098 .795 .0081 .995 .0014

178

ABSOLUTE ERROR OF .02 AT 95.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

u E

.0 .0

.005 .0028

.010 .0040

.015 .0049

.020 .0056

.025 .0062

.030 ,0068

.035 .0074

.040 .0078

.045 .0083

.050 .0087

.055 .0091

.060 .0095

.065 .0099

.070 .0102

.075 .0105

.080 .0109

.085 .0112

.090 .0114

.095 .0117

.100 .0120

.105 .0123

.110 .0125

.115 .0128

.120 .0130

.125 .0132

.130 .0135

.135 .0137

.140 .0139

.145 .0141

.150 .0143

.155 .0145

.160 .0147

.165 .0148

.170 .0150

.175 .0152

.180 .0154

.185 .0155

.190 .0157

.195 .0158

U E

.200 .0160

.205 .0161

.210 .0163

.215 .0164

.220 .0166

.225 .0167

.230 .0168

.235 .0170

,240 .0171

.245 .0172

.250 .0173

.255 .0174

.260 .0175

.265 .0177

.270 .0178

,275 .0179

.280 .0180

.285 .0181

.290 .0182

.295 .0182

.300 .0183

.305 .0184

.310 .0185

.315 .0186

.320 .0187

.325 .0187

.330 .0188

.335 .0189

.340 .0189

.345 .0190

.350 .0191

.355 .0191

.360 .0192

.365 .0193

.370 .0193

.375 .0194

.380 .0194

.385 .0195

.390 .0195

.395 .0196

U E

.400 .0196

.405 .0196

.410 .0197

.415 .0197

.420 .0197

.425 .0198

.430 .0198

.435 .0198

.440 .0199

.445 .0199

.450 .0199

.455 .0199

.460 .0199

.465 .0200

.470 .0200

.475 .0200

.480 .0200

.485 .0200

.490 .0200

.495 .0200

.500 .0200

.505 .0200

.510 .0200

.515 .0200

.520 .0200

.525 .0200

.530 .0200

.535 .0200

.540 .0199

.545 .0199

.550 .0199

.555 .0199

.560 .0199

.565 .0198

.570 .0198

.575 .0198

.580 .0197

.585 .0197

.590 .0197

.595 .0196

U E

.600 .0196

.605 .0196

.610 .0195

.615 .0195

.620 .0194

.625 .0194

.630 .0193

.635 .0193

.640 .0192

.645 .0191

.650 .0191

.655 .0190

.660 .0189

.665 .0189

.670 .0188

.675 .0187

.680 .0187

.685 .0186

.690 .0185

.695 .0184

.700 .0183

.705 .0182

.710 .0182

.715 .0181

.720 .0180

.725 .0179

.730 .0178

.735 .0177

.740 .0175

.745 .0174

.750 .0173

.755 .0172

.760 .0171

.765 .0170

.770 .0168

.775 .0167

.780 .0166

.785 .0164

.790 .0163

.795 .0161

U E

.800 .0160

.805 .0158

.810 .0157

.815 .0155

.820 .0154

.825 .0152

.830 .0150

.835 .0148

.840 .0147

.845 .0145

.850 .0143

.855 .0141

.860 .0139

.865 .0137

.870 .0135

.875 .0132

.880 .0130

.885 .0128

.890 .0125

.895 .0123

.900 .0120

.905 .0117

.910 .0114

.915 .0112

.920 .0109

.925 .0105

.930 .0102

.935 .0099

.940 .0095

.945 .0091

.950 .0087

.955 .0083

.960 .0078

.965 .0074

.970 .0068

.975 .0062

.980 .0056

.985 .0049

.990 .0040

.995 .0028

179

ABSOLUTE ERROR OF .03 AT 95.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

u E U E U E U E U E

.0 .0 .200 .0240 .400 .0294 .600 .0294 .800 .0240

.005 .0042 .205 .0242 .405 .0295 .605 .0293 .805 .0238

.010 .0060 .210 .0244 .410 .0295 .610 .0293 .810 .0235

.015 .0073 .215 .0246 .415 .0296 .615 .0292 .815 .0233

.020 .0084 .220 .0249 .420 .0296 .620 .0291 .820 .0231

.025 .0094 .225 .0251 .425 .0297 .625 .0290 .825 .0228

.030 .0102 .230 .0252 .430 .0297 .630 .0290 .830 .0225

.035 .0110 .235 .0254 .435 .0297 .635 .0289 .835 .0223

.040 .0118 .240 .0256 .440 .0298 .640 .0288 .840 .0220

.045 .0124 .245 .0258 .445 .0298 .645 .0287 .845 .0217

.050 .0131 .250 .0260 .450 .0298 .650 .0286 .850 .0214

.055 .0137 .255 .0262 .455 .0299 .655 .0285 .855 .0211

.060 .0142 .260 .0263 .460 .0299 .660 .0284 .860 .0208

.065 .0148 .265 .0265 .465 .0299 .665 .0283 .865 .0205

.070 .0153 .270 .0266 .470 .0299 .670 .0282 .870 .0202

.075 .0158 .275 .0268 .475 .0300 .675 .0281 .875 .0198

.080 .0163 .280 .0269 .480 .0300 .680 .0280 .880 .0195

.085 .0167 .285 .0271 .485 .0300 .685 .0279 .885 .0191

.090 .0172 .290 .0272 .490 .0300 .690 .0277 .890 .0188

.095 .0176 .295 .0274 .495 .0300 .695 .0276 .895 .0184

.100 .0180 .300 .0275 .500 .0300 .700 .0275 .900 .0180

.105 .0184 .305 .0276 .505 .0300 .705 .0274 .905 .0176

.110 .0188 .310 .0277 .510 .0300 .710 .0272 .910 .0172

.115 .0191 .315 .0279 .515 .0300 .715 .0271 .915 .0167

.120 .0195 .320 .0280 .520 .0300 .720 .0269 .920 .0163

.125 .0198 .325 .0281 .525 .0300 .725 .0268 .925 .0158

.130 .0202 .330 .0282 .530 .0299 .730 .0266 .930 .0153

,135 .0205 .335 .0283 .535 .0299 .735 .0265 .935 .0148

.140 .0208 .340 .0284 .540 .0299 .740 .0263 .940 .0142

.145 .0211 .345 .0285 .545 .0299 .745 .0262 .945 .0137

.150 .0214 .350 .0286 .550 .0298 .750 .0260 .950 .0131

.155 .0217 .355 .0287 .555 .0298 .755 .0258 .955 .0124

.160 .0220 .360 .0288 .560 .0298 .760 .0256 .960 .0118

.165 .0223 .365 .0289 .565 .0297 .765 .0254 .965 .0110

.170 .0225 .370 .0290 .570 .0297 .770 .0252 .970 .0102

.175 .0228 .375 .0290 .575 .0297 .775 .0251 .975 .0094

.180 .0231 .380 .0291 .580 .0296 .780 .0249 .980 .0084

.185 .0233 .385 .0292 .585 .0296 .785 .0246 .985 .0073

.190 .0235 .390 .0293 .590 .0295 .790 .0244 .990 .0060

.195 .0238 .395 .0293 .595 .0295 .795 .0242 .995 .0042

180

ABSOLUTE ERROR OF .04 AT 95.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

1

1

p

n.u n
.\j

fins .UUJO

nnsn

ni s.yj ij

ni 1
"?

ni 7s

nin ni %f,

.yjjj ni 47.O 1 /

ni S7

.DHJ ni fi6.u 1 oo

.VJ\J ni 7d

.yjjj ni 89

.\j\)yj 01 on

•UO J ni Q7

010 n9n4

n9i 1

.UoKJ 091 7.UZ 1 /

.Uo J 0991.UZZ J

0990.UZZ 7

.yjy J 09 IS.UZ J J

1 00 n9dn

1
. lUj 094S

1 1 n n9sn.UZ jU
1 1

. 1 1 J n9ss.UZ J J

1 70
. 1 Zu n9^;n

1 9S
. 1 Z J .UZD J

1 ^n 09AQ.UZO 7

1 IS 097^.UZ / J

1 40 097S.UZ / O

1 ds 0989.UZoZ

.150 .0286

.155 .0290

.160 .0293

.165 .0297

.170 .0301

.175 .0304

.180 .0307

.185 .0311

.190 .0314

.195 .0317

U E

.200 .0320

.205 .0323

.210 .0326

.215 .0329

.220 .0331

.225 .0334

.230 .0337

.235 .0339

.240 .0342

.245 .0344

.250 .0346

.255 .0349

.260 .0351

.265 .0353

.270 ,0355

.275 .0357

.280 .0359

.285 .0361

,290 .0363

.295 .0365

,300 .0367

.305 .0368

.310 ,0370

.315 ,0372

.320 .0373

.325 .0375

.330 .0376

.335 .0378

.340 .0379

.345 .0380

.350 .0382

.355 .0383

.360 .0384

.365 .0385

.370 .0386

.375 ,0387

.380 .0388

.385 .0389

.390 .0390

.395 .0391

U E

.400 .0392

.405 .0393

.410 .0393

.415 .0394

.420 .0395

.425 .0395

.430 .0396

.435 .0397

.440 .0397

.445 .0398

.450 .0398

.455 .0398

.460 .0399

.465 .0399

.470 .0399

.475 .0399

,480 ,0400

.485 ,0400

.490 .0400

.495 .0400

.500 .0400

.505 .0400

.510 .0400

.515 .0400

.520 .0400

.525 .0399

.530 .0399

.535 .0399

.540 .0399

.545 .0398

.550 .0398

.555 .0398

.560 .0397

.565 .0397

.570 .0396

.575 .0395

.580 .0395

.585 .0394

.590 .0393

,595 ,0393

U E

.600 .0392

.605 ,0391

.610 .0390

.615 .0389

.620 .0388

.625 .0387

.630 .0386

.635 .0385

.640 .0384

,645 .0383

.650 .0382

.655 .0380

.660 .0379

.665 .0378

.670 .0376

.675 .0375

.680 .0373

.685 .0372

.690 .0370

.695 .0368

.700 ,0367

.705 .0365

.710 .0363

,715 ,0361

.720 .0359

.725 ,0357

.730 .0355

.735 ,0353

.740 .0351

,745 .0349

.750 .0346

.755 .0344

.760 .0342

.765 .0339

.770 .0337

.775 .0334

,780 .0331

.785 .0329

.790 .0326

.795 .0323

U E

.800 .0320

,805 .0317

.810 .0314

.815 .0311

.820 .0307

.825 .0304

.830 .0301

.835 .0297

.840 .0293

.845 .0290

.850 .0286

.855 .0282

.860 .0278

.865 .0273

.870 .0269

.875 .0265

.880 .0260

.885 .0255

.890 .0250

.895 .0245

.900 .0240

,905 .0235

.910 .0229

.915 .0223

.920 .0217

.925 .0211

.930 .0204

.935 .0197

.940 .0190

.945 .0182

.950 .0174

.955 .0166

.960 .0157

.965 .0147

.970 .0136

.975 .0125

.980 .0112

.985 .0097

.990 .0080

.995 .0056

181

ABSOLUTE ERROR OF .05 AT 95.0% CONFIDENCE FOR ALL U
YIELDS THE FOLLOWING ERROR BOUND AS A FUNCTION OF U

u E U E U E U E U E

.0 .0 .200 .0400 .400 .0490 .600 .0490 .800 .0400

.005 .0071 .205 .0404 .405 .0491 .605 .0489 .805 .0396

.010 .0099 .210 .0407 .410 .0492 .610 .0488 .810 .0392

.015 .0122 .215 .0411 .415 .0493 .615 .0487 .815 .0388

.020 .0140 .220 .0414 .420 .0494 ,620 .0485 .820 .0384

.025 .0156 .225 .0418 .425 .0494 .625 .0484 .825 .0380

.030 .0171 .230 .0421 .430 .0495 .630 .0483 .830 .0376

.035 .0184 .235 .0424 .435 .0496 .635 .0481 .835 .0371

.040 ,0196 .240 .0427 .440 .0496 .640 .0480 .840 .0367

.045 .0207 .245 ,0430 .445 .0497 .645 .0479 .845 ,0362

.050 .0218 .250 .0433 .450 .0497 .650 .0477 .850 .0357

.055 .0228 .255 .0436 .455 .0498 .655 .0475 .855 .0352

.060 .0237 .260 .0439 .460 .0498 .660 .0474 .860 .0347

.065 .0247 .265 .0441 .465 .0499 .665 .0472 .865 .0342

.070 .0255 .270 .0444 .470 .0499 .670 .0470 .870 .0336

.075 .0263 .275 .0477 .475 .0499 .675 .0468 .875 .0331

.080 .0271 .280 .0449 .480 .0500 .670 .0466 .880 .0325

.085 .0279 .285 .0451 .485 .0500 .685 .0465 .885 .0319

.090 .0286 .290 .0454 .490 .0500 .690 .0462 .890 .0313

.095 .0293 .295 .0456 ,495 .0500 .695 .0460 .895 .0307

.100 .0300 .300 .0458 .500 .0500 .700 .0458 .900 .0300

.105 .0307 .305 .0460 .505 .0500 .705 .0456 .905 .0293

.110 .0313 .310 .0462 .510 .0500 .710 .0454 .910 .0286

.115 .0319 .315 .0465 .515 .0500 .715 .0451 .915 .0279

.120 .0325 .320 .0466 .520 .0500 .720 .0449 .920 .0271

.125 .0331 .325 .0468 .525 .0499 .725 .0447 .925 .0263

.130 .0336 .330 .0470 .530 .0499 .730 .0444 .930 .0255

.135 .0342 .335 .0472 .535 .0499 .735 .0441 .935 .0247

.140 .0347 .340 .0474 .540 .0498 .740 .0439 .940 .0237

.145 .0352 .345 .0475 .545 .0498 .745 .0436 .945 .0228

.150 .0357 .350 .0477 .550 .0497 .750 .0433 .950 .0218

.155 .0362 .355 .0479 .555 .0497 .755 .0430 .955 .0207

.160 .0367 .360 .0480 .560 .0496 .760 .0427 .960 .0196

.165 .0371 .365 .0481 .565 .0496 .765 .0424 .965 .0184

.170 .0376 .370 .0483 .570 .0495 .770 .0421 .970 .0171

.175 .0380 .375 .0484 .575 .0494 .775 .0418 .975 .0156

.180 .0384 .380 .0485 .580 .0494 .780 .0414 .980 .0140

.185 .0388 .385 .0487 .585 .0493 .785 .0411 .985 .0122

.190 .0392 .390 .0488 .590 .0492 .790 .0407 .990 .0099

.195 .0396 .395 .0489 .595 .0491 .795 .0404 .995 .0071

182

PREDICTION METHODS

183

s

if

THE USE OF A VALIDATED EVENT MODEL IN A COMPREHENSIVE PERFORMANCE EVALUATION
OF AN ON-LINE MINICOMPUTER SYSTEM

S. G. Gangwere Jr., J. R. Hosier, L. H. Stewart

TRW
Hawthorne, CA

A performance evaluation technique is described that has been
successfully applied to several on-line systems implemented on a

NOVA minicomputer with a disk file. The technique is based on the
use of a system event model, validated by direct, hardware-assisted
measurement of system behavior. The event model is necessary for
successful evaluation of system limits and for prediction of the
effect of various design changes on system behavior. The fidelity
required of the model is such that the hardware and software actions
of the disk file system must be simulated in detail; considerations
of disk modelling are examined.

Key words: Credit authorization system; critical resource; disk

modelling; event model; resource dependency; measurement; model-
ling; system capacity; validation.

1. Introduction

1.1 Objectives and Scope

This paper describes a technique used
in the detailed analysis of the performance
characteristics of TRW credit authorization
systems. These systems are real-time, on-
line transaction processing communication
systems, implemented on a minicomputer with
a moving-arm disk. The minicomputer is

responsible for the management of the commu-
nication network and the disk files, as well
as for the execution of the credit authori-
zation algorithm.

System performance evaluation combines
analysis, measurement, and predictive event
modelling. Each technique is examined
separately for its utility and limitations
as an evaulation tool. Special emphasis is

given to the use of an event modelling
technique that draws on measurement tech:-

niques for validation. An illustrated
example shows the application of the model-
ling technique to a specific credit authori-
zation system, and the conclusions drawn
from the use of -a validated model of the
system.

1.2 The Performance Evaluation Program

TRW Communication Systems and Services
has an active Performance Evaluation Program,
charged with detailed performance analysis
of all the minicomputer and microprocessor-
based systems in TRW's retail and financial
product lines, including the credit authori-
zation systems. The Performance Evaluation
Program has been underway since early 1976.

During that time, it has performed detailed
evaluations of six systems. The program is

successful from a business viewpoint as well
as from a technical one.

1.3 The Study and its Objectives

The study exemplified in this paper was
performed during the summer of 1976. The

study objective was simple but comprehensive:
to discover the operating limit of the

system, that is, the transaction throughput
capacity. The preliminary results showed

that the throughput capacity was unacceptably
low; consequently, the study was broadened
to include an investigation of design alter-
natives that might improve system throughput.

The study resulted in a thorough under-

standing of the operating behavior of the

system. The system event model has subse-

quently been used to examine design changes

and further refinements to the same system;

a contractual performance level commitment

has been made by TRW based on the study

results

.

2. System Description

The system studied is a typical depart-

ment store credit authorization system; the

structure of the system is shown in figure 1.

The communication lines are interfaced
to the minicomputer by a conventional tele-

processing interface device, which delivers
one interrupt to the processor for each
character. The disk is interfaced by a

conventional direct-memory-access ("DMA")

controller, which permits overlapped seek
operations on the drives.

The keyboard inquiry terminals are

connected to the half-duplex, multidrop
communication lines via communications inter-

face ("CI") devices located in the stores.

The terminals themselves are fully buffered.
Figure 2 shows a segment of a typical commu-
nication line.

A "breakaway" communications strategy is

used. I'Jhen an inquiry message is complete in

the terminal's buffer, the operator presses

the "send" key at the terminal. The CI is

constantly scanning keypads; when a send key
is noted, the CI stops scanning, locks onto

that terminal, and awaits a "poll" message
from the central system. l-Then one is

received, the CI routes the message from the

terminal onto the line and "breaks away" to

resume scanning. When the system response is

transmitted to the CI, it contains the ter-

minal address as well as the CI address.

2.1 Software Overview

Within the minicomputer, the software is

responsible for supervising the communica-
tions process. An inquiry message normally
includes at least an inquiry type, an account
number, and a purchase amount. When such an

inquiry message is completely assembled, the

system accesses the disk file to obtain the

account record that is the subject of the

inquiry. A decision is made to OK or reject
credit. In the normal "OK" case, the system
must update and rewrite the disk file, and
transmit the appropriate message to the orig-

inating terminal. If the credit request is

not automatically accepted, the system trans-
mits full particulars of the situation to an
authorization clerk at a CRT terminal for a

manual decision. At the conclusion of any

1

transaction, an audit trail record is

written to magnetic tape. Figure 3 shows
the processing sequence.

2.2 Disk Subsystem

The disk files in the subject system
are hash-organized, with a single level of

disk-resident index (see figure 4)

.

The program accesses the index file by
a conventional hash technique. The index
file contains a pointer to every record in

the data file. This organization preserves
disk space, by permitting dense packing with-
in the large data file. It requires a mini-
mum of two disk accesses per transaction.

2.3 Communications Subsystem

The communication manager within the
system is driven by periodic interrupts. Its

execution is transparent to the application
program shown previously. Essentially, a

program of the form shown in figure 5 is

attached to each active line.

One significant feature of this picture
is that the communication line to which the

program is attached becomes idle while the

program is "getting" a communications buffer.
This has a significant effect on system per-
formance, and must be accurately simulated by
the system model.

3. Performance Evaluation Techniques

One of the results of the 18-month per-
formance evaluation experience is a clear
understanding of the applicability and scope
of the three fundamentally different evalua-
tion techniques and tools: analysis, measure-
ment, and event modelling. The material
below summarizes the utility of each to the
performance program and outlines the way in

which they are combined to effect a compre-
hensive understanding of a system.

3.1 Analysis

Conventional queuing analysis is

adequate for a reasonably accurate descrip-
tion of the behavior of the communication
lines, terminals, and other equipment, under
a variety of load conditions. TRW has
successfully sized communications configura-
tions for some years, by the application of

a standard analytic model. Queuing theory
also provides a description of the behavior
of hashed files, and offers rules of thumb
for the evaluation of the observed behavior
of other queued facilities. Additionally,
analytic approximations of the behavior of

various system elements are included in the
system event models.

12C0MM LINES

1200 baud

2400 baud

~1 75 stores

~25 CRTs
~2500 inquiry terminals

NOVA 1200

CPU

80K WORDS 5
Peripherals:

9 - track tape

Operator Console

Line Printer

• • •

4 2314 - Type Disks

—700000 Records

Figure 1. Structure of Study System

MULTIDROP
COMMUNICATION
LINE

CI

• • •

CREDIT INQUIRY
KEYBOARD
TERMINALS

STORE 1

CREDIT INQUIRY
KEYBOARD
TERMINALS

STORE 2

Figure 2. Segment of Typical Communication Line

187

V

INITIAL PROCESSING.

(FORMAT CONVERSIONS,
ETC.)

READ ACCOUNT
RECORD

BEGIN TRANSMISSION
OF "OK" RESPONSE

BEGIN TRANSMISSION
OF "CALL CREDIT OFFICE"
RESPONSE

BEGIN TRANSMISSION
TO AUTHORIZATION
CLERK

WRITE ACCT RECORD

POSTPROCESSING:
WAIT FOR COMM TO
FINISH. WRITE AUDIT
RECORD. EXIT.

Figure 3. Simplified Transaction Processing Sequence

188

12 bytes-

hash -

organized

index file

1.2n

100 bytes

densely packed data file

n = number of accounts on file

Figure 4. Disk File Organization

189

GET COMM
BUFFER

ISSUE POLL
MESSAGE.
WAIT FOR
RESPONSE

DATA

ATTACH BUFFER
TO NEW APP'N

TASK FOR
PROCESSING

igure 5. Communication Line Driver Program

190

Analysis, however, leaves us short of

our goal of determining the response char-

acteristics of each system, under varying

loads. The physical and logical elements

that contribute to this response character-

istic include (and are connected by) a

relatively complex software algorithm — far

too complex for accurate analytic modelling

within our budget and schedule constraints.

Figure 6 illustrates this point. It

shows a simplified version of the basic flow

for a single transaction, relating it to the

use of the major system resources — the CPU,

the disk system components, the disk buffer

pool, and the communications buffer pool.

The response time as a function of load in

the subsystem shown is highly complex,

because the availability of the different

resources is influenced by the availability

and servicing times of each of the others.

Because the CPU resource is acquired and

dismissed several times during the service

time of the disk buffer, for example, its

waiting and service times are reflected in

the service time of the disk buffer. The

same interaction occurs in the case of the

communications buffer.

The communications buffer also affects

the basic service rate of the CPU resource.

This results from the unique relationship

between the communications buffer pool and

the polling function. When the buffer pool

is exhausted, the polling function for a

line requires nonzero time to acquire a new
communications buffer. During this time,

the line lies fallow, contributing no inter-

rupts. Consequently, the total CPU overhead

drops slightly.

In addition, the physical behavior of

the disk resource is complex. Disk through-

put improves to some extent with increasing

load, because the drives attached to a

controller can perform seek operations
simultaneously. When a substantial number

of drives (three or more) are attached to

the controller, this has the effect of

lowering the contribution of the arm facility

to the deterioration of system responsiveness

with increasing load. In such a configura-

tion, the system behavior is more dependent
on the disk channel itself than on the disk

arms

.

These and other complexities persuade

us that development and verification of an

analytic model would cost far more than an

event model. We suspect that an analytic

model of even such a simple system would

become so complex that we could never have

developed the confidence in its behavior
that we have in the behavior of the event

model. T

3.2 Measurement

The term "measurement" used in conjunc-
tion with the performance evaluation program
has come to mean direct measurement of system
behavior, usually by hardware-assisted or
direct hardware means. We use three funda-
mentally different types of measurement, as
described below.

3.2.1 Lab Measurement

Measurement under laboratory conditions
Is logistically the simplest measurement
technique. Normally, at the outset of a

system evaluation process, a lab configura-
tion is set up similar to the one in figure
7.

The system need not have a real communi-
cations environment, or even real files. It

normally has a single communication line with
a single CI and terminal attached. This type
of configuration is used to measure the basic
system operating parameters: the behavior of
the disk system, the execution times of the
important programs (interrupt codes, trans-
action-processing codes, etc.), and the
communications system behavior.

A lab system provides controllable,
repeatable experimentation, involving only a

single computer. However, the system is not
in a real environment; it is not subjected to

realistically high overhead, does not have
realistically large files, and is not sub-
jected to a realistically large load. Trans-
actions are entered into the system one at a
time, by hand, through the attached inquiry
keyboard. Although this configuration
permits basic measurements, it hardly permits
accurate conclusions to be drawn about the
behavior of the system in the real world.

3.2.2 Field Measurement

The opposite of the lab conditions above
are provided by measurements of the field
customer environment. Whereas the lab con-
ditions lack reality, the field provides the
actual loads, files, and configurations.
Field measurements are very useful; they
provide accurate data points along the re-

sponsiveness-load curve. Unfortunately,
there are several drawbacks to field measure-
ments. The largest is that the experiments
are neither controllable nor repeatable, and
are difficult to analyze. It is hard to

know precisely what conditions prevailed
during the measurement. This situation is

complicated by the fact that a field measure-
ment activity must be performed in a remote
location, to which people and instrumentation
gear must be shipped days in advance — all
on the customer's premises.

RESOURCE

ACTIVITY:

POLL

ASSEMBLE INQUIRY

PREPROCESS

DISK READ: INDEX SEEK

INDEX READ

(FILE MANAGER)

DATA SEEK

DATA READ

(FILE MANAGER)

CREDIT DECISION ALGORITHM

DISK WRITE: DATA SEEK

DATA WRITE

(FILE MANAGER)

POSTPROCESS

Figure 6. Resource Usage in a Simplified Transaction Flc

Figure 7. Lab Measurement Configuration

192

The utility of field measurements is

high enough, however, that we tolerate the

difficulties in order to obtain the data.

For experimental verification of predicted

system behavior, the behavior of the system
in the field is irreplaceable. Further, the

existence of empirical performance informa-

tion permits new insight into any overall

system behavior problems that occur during
instrumented periods.

3.2.3 Measurement with Simulators

The third type of measurement is

depicted in figure 8.

In this kind of configuration, the

subject system is driven by another computer,

which simulates the communications environ-
ment, provides a controllable load to the

subject system, and observes its response.

This technique combines the benefits of the

lab situation with those of the field. It

permits controllable, repeatable experiments,
using real files, high loads, and nontrivial
communications configurations.

Simulator configurations are the work-
ing backbone of the performance measurement
program. However, they are subject to two
fundamental" shortcomings:

1. The communications environment in the

real world is very complex; it involves
various foreign equipment — lines with
diverse characteristics attached to many
kinds of terminal devices with individ-
ually peculiar features. Consequently,
the simulated environment can never
precisely duplicate the actual environ-
ment. The small differences between the

real and simulated environments are
significant, especially where they hurt
most - at high load levels.

2. The degree to which the simulator and the
subject system limit each other is

unknown. At very high load levels, when
the combination is saturated, it is

difficult to infer anything about the
limit behavior of the subject system in
the field.

These difficulties combined preclude the
use of simulator configurations to determine
the operational limits of real field systems
directly. However, the overall utility of
the simulator configuration is enormous; it

provides the basic tool for acquiring data
for validation of the system event model.

3.2.4 Fundamental Limitations
of Measurement Techniques

The three measurement types described
above have individual advantages and short-
comings. From them, it is possible to obtain
a clear picture of the behavior of an exist-
ing system under achievable loads. However,
several questions that must be addressed
during the evaluation of a system cannot be
answered from such a picture, no matter how
clear. Measurement techniques can be used
only on systems that exist. This leads to

the following issues:

1. The effect of design changes cannot be

evaluated by a measurement procedure,

2. The operating limit of most systems
cannot be assessed by a measurement
procedure. In some cases, field-measured
loads provoke system behavior that is

characteristic of the system operational
limit — but when this occurs, it is a

lucky coincidence. We have been unable
to accurately predict system limits by
driving simulated lab environments to

the brink.

3. The identity of the critical resource
cannot be determined from even a very
thorough measurement exercise. This
is a consequence of the complex inter-
action of the different system facilities
as shown in figure 6. When the system
approaches its limit, the resources that
appear to be most heavily loaded may not
be the ones whose behavior most strongly
affects the system. This subject is

illustrated in the discussion of resource
dependency, using the event model example

3.3 Predictive Event Modelling

The third major technique employed by
the performance evaluation program is the

use of a detailed, high-fidelity event model,
for each system studied. The term event

model as used in this paper means a software
realization of an idealized version of a

modelled system. An event model defines two
basic entity types:

1. Resources , which represent the facilities
of the subject system (for example, refer
to figure 6)

;

2. Tasks, which represent transactions and
various internal system program activi-
ties.

Tasks contend for resources in the
model, as they do in reality; the contention
is resolved by a queue and scheduling

193

NOVA 1200

COMMUNICATIONS
NETWORK
SIMULATOR

NOVA 1200

SUBJECT
SYSTEM

DISK

SUBSYSTEM

MEASUREMENT
EQUIPMENT

Figure 8. Simulator Measurement Configuration

194

1

algorithm associated with each resource.

The utility of an event model lies in

its behavior: in mimicking the inner work-

ings of a subject system, the model offers

a detailed insight into the behavior of the

system itself. The actions of the model are

highly visible and mirror the inner workings

of the system, which are otherwise difficult
to observe.

The level of detail at which a system
is modelled is not fixed. For each system,

the level has been just high enough that the

observed behavior of the model could be made
to correspond closely to the measured
behavior of the simulated system in the lab.

The examples presented later in this paper
show a model with about 20 resources, where

each inquiry requires the modelling of about

15 events. The simplicity of this model is

one of its attractive features. The model-
ling technique, when combined with a measure-
ment program for model validation, offers a

verifiable predictor of system behavior under
conditions that cannot be realized readily in

the lab. The measurement process has short-

comings — it is unable to determine limits,

detect resource dependencies, or examine
design alternatives. These difficulties are

all overcome through the use of a validated
model. Additionally, the implementation cost

of a model the size of ours is attractively
low. The initial version of our model for

the system exemplified in this paper is

written in about 1500 lines of BASIC. A
subsequent version has been implemented on

the NOVA in about the same number of lines
of an in-house higher-order language. More-
over, models for different systems share a

basic structure and quite a bit of code; a

typical "new" model for a credit authoriza-
tion system now requires the development of

only about 500 lines of new code.

The arguments against the use of event
models for circumstances like ours are less
than convincing. The strongest of these
arguments is that the model shares complexity
and "unknowability" with the system it

depicts. In practice, this is unimportant.
We understand the behavior of our models
thoroughly, and from them have learned much
about the behavior of the systems themselves.
Our strategy was to keep the model as simple
as possible, consistent with our requirements
for fidelity; this tends to minimize the

complexity argument. Further, the simplicity
of our models has enhanced our confidence in

their reliability, and has minimized the cost

of their preparation.

The most persuasive argument for event
modelling was based on our conviction that a

195

high-fidelity analytic model of the systems !

we were investigating would be extremely
I

complex — so much so that we would never
I

develop the intuitive confidence in its

behavior that we have for the event models.

The keystone of any modelling effort,
of course, is careful validation of the '

model. In our case, the measurement labora-

tory provides ample opportunity for verifi-
cation of model behavior. Subsequent
sections define our validation techniques in

detail, with illustrations from actual system
validation exercises. Our confidence in the

behavior of our family of models is based
entirely on earned trust: the models have
been individually and painstakingly vali-
dated. This necessity was not obvious to us

at the outset of our effort. We suspect
that unvalidated models have contributed to ,

the poor standing that event modelling)

efforts apparently hold within the CPE commu-
nity, i

i

3.4 Evaluation Strategy
!

Figure 9 shows the evaluation strategy
j

that combines model execution with the

measurement program. After the initial
development of the basic system description,
the model is implemented; a measurement con-

j

figuration is used to determine the basic 1

operating parameters of the system, which ';

are supplied to the model. The model is then
'

executed in a variety of configurations and
under a variety of loads, all of which must i

be realizable either in the lab or in the
\

field. The data drawn from these model
executions is compared with the behavior of

the system under the modelled conditions.
Discrepancies are examined in detail, and the

model is altered appropriately - usually by

redevelopment of the system description at a

more detailed level. When the discrepancies \

have been reduced to an acceptable level,

the model is used for predictions of system
j

behavior under conditions that cannot be !

realized in the lab. ;!

This procedure is directed toward
j

determining the transaction throughput
'

capacity of a system. After the exercise is '[

complete, this information is used in con- i

junction with standard queuing formulae to
'

determine the response time characteristics
of the keyboard entry terminals attached to '

the system, as a function of system load.
;

(The latter part of the performance evalua-
tion activity is not included in this paper.)

i

ii

DEVELOP SYSTEM DESCRIPTION

IMPLEMENT

MODEL

MEASURE BASIC

SYSTEM OPERATING
PARAMETERS

PARAMETERIZE MODEL AND VADLIDATE BY COMPARISON

WITH SYSTEM MEASUREMENTS TAKEN UNDER VARIOUS

SIMULATED LOADS AND CONFIGURATIONS.

INADEQUATE

ADEQUATE

T

EXTRAPOLATE USING MODEL:

DETERMINE LIMITS AND RESOURCE DEPENDENCIES

Figure 9. System Evaluation Strategy

196

I

4. The Evaluation Process: An

Illustrated Example

This section illustrates the evaluation

process with reports from model runs. All

data refer to the evaluation of the study

system.

4.1 Basic Measurements

' The basic operational parameters of the

system include disk operation times, execu-

tion times of the application programs, and

the CPU overhead load measurements. They
i were all made in a lab configuration, using

a TRW-built address comparator and a

I

DYNAPROBE 7900. to determine all time inter-

. vals and extents. This configuration is

depicted in figure 10.

4.2 Disk System Measurements

I

Because the disk controller permits

overlapped seek operations, it was necessary
to measure the operating characteristics of

' the disk system first. These measurements
included seek time, synchronization delay
time, overall channel and arm utilization,

I

and the maximum rate for random disk

i
accesses. This phase of the project yielded

j
numerous surprises. For example, the

I

measured mean seek time of the disk is 42

I milliseconds — not 35 milliseconds as the

manufacturer had suggested. This difference

j

was explained by an analytic error in the

computation of the mean on the part of the

j

disk drive manufacturer. The published data
I for seek time as a function of number of

tracks moved proved to be correct; only the

j

dynamic average was inaccurate.

Additionally, the disk controller used

an unexpectedly large amount of channel-^

active time for each operation. This problem
was traced to a synchronization delay,

necessary for almost every operation on any

drive, and amounting to about half a revolu-
tion per operation.

The results of the first phase of the

process had thus already invalidated the
system description to which the model was
built. It was necessary to alter the model
to reflect the synchronization delay, as

well as the longer seek time.

The model described, as well as several
others built subsequently, includes a

detailed model of the actions of the disk
system - to the level of accurate depiction
of arm motions, rotational (and synchroniza-
tion) delays, and channel utilization. We

have become convinced that a high-fidelity
model of a real-time disk-based system must

197

necessarily include detailed disk descrip-
tions. After an initial validation exercise,
the disk model was further altered: the '

drives had to be independently positioned '

rotationally as an initial condition, and

the arms had to be given random initial
[

positions. The latter has only a small
effect. The effect of the random rotational
positioning, however, is significant -

especially when pack-to-pack data motion
dominates processing.

4.3 Additional Measurements

In addition to measurements of the

disk system, the execution times of the
significant programs were measured, by direct

application of the DYNAPROBE/comparator con- f

figuration shown in figure 10. These
|

measurements included the following: •!

1. "Clock" processing time, that is, the
j

time required to process the periodic
'

interrupt that drives the communications
management function.

2. Interrupt response program times for

communications interrupts.

3. Execution times for each application
module modelled.

Also, various fundamental hardware-
related measurements were made during all

experiments as a cross-check on other
results: the total interrupt-disable time,

the total channel utilization, the total
arm-in-motion time, and others.

4.4 Validation Phase

The validation phase consists of

executing the newly parameterized model 1

side-by-side with the system, with identical i

loads and configurations. For the subject
|

study, the validation phase took about three
;

weeks; it was only the second validation we
j

had done. Validation is a highly time-con-
;

suming and frustrating process. The lab
;

equipment is placed in a simulator configura- !

tion. Measurement involving two computers
|

which must cooperate, and which are connected i

to a maze of measurement gear, leads to '

difficult logistic problems that lengthen !

the total time substantially. ;

The validation phase measured two ,i

different configurations at various load
j

levels, comfortably below the system limit, '.,

so that interference from the simulator
could be held to a minimum. The selected i

configurations used three and six connected
)

lines. For validation criteria, two kinds
;

KEYBOARD
INQUIRY
TERMINAL 4 2314 - TYPE

DRIVES

Figure 10. Basic Measurement Configuration

198

of measurements were used: 4.5 Limit Predictions Phase

1. "External" measurements; for example,

the "response" time displayed by the

system in each experiment. The response

time is taken in measurement and by the

model to be the time elapsed between

the moment when a message is completely
assembled in the processor ready for

processing and the moment when the first

output character is transmitted to the

waiting terminal.

2. "Internal" measurements: the validation
exercise measured and compared the total

channel-busy time, the communications
buffer service time, the disk buffer

service time and other "internal"
measurements reflecting overall system
activity.

The validation was eventful; the model

had to be made fundamentally more complex to

behave like the real system. The system

description presented earlier in this paper,
particularly of the communications subsystem,
was developed in response to discrepancies
between the lab system and the original
model version; the original version
supplied the application processor with a

single exponential stream of inquiries.
This had provided a fundamental inaccuracy,
since in the real system the communication
system causes lines to become occasionally
idle, thus lowering total system overhead.
Because the system, in the final analysis,
is heavily CPU-bound, the overhead is a

determining factor in total capacity.

Figure 11 shows a report from a valida-
tion run of the final version of the model.
It shows a load of two transactions per
second and a configuration of three lines.
The report is in four sections: response
time data, communication line-associated
data, resource utilization data, and miscel-
laneous disk system data. The first and last
report sections are self-explanatory. The
second and third sections are explained by
figures 12A and 12B, respectively.

Figure 11 shows that the system is

behaving "well" — that is, the load is well
below the system limit. This is evidenced
by the low standard deviation of response
times and by the low facility utilization
figures. Validation was performed on mean
response time, "dynamic buffer" (communica-
tions buffer) service time, channel facility
utilization, and disk buffer service time.

The validation is satisfactory, as examina-
tion of figure 11 shows.

1

The hard work of a modelling effort
comes in the validation phase. After con-
fidence in the fidelity of the model grows,

the measurement phases can end, with their
difficulties, and the model can be used for

a variety of investigations - limit predic-
tions, alternative design investigations,
critical resource identification, and others.

The limit prediction phase looks for

the saturation transaction throughput
capacity and the operating transaction
throughput capacity of the system. The
former is the highest load level at which
the system is able to operate, regardless
of response times; the latter is the
highest level at which the system is able
to execute with reasonable times. Naturally,
the latter limit is not absolutely fixed;

however, investigation of the response time

versus load characteristics of the system
usually makes the operating point obvious -

at the "knee" of the response time curve.

A report from a limit run with the
model is shown as figure 13. This report
shows a steady-state condition with the
system absolutely saturated; its output rate
is about 7.4 transactions per second, as

measured on successive reports. This rate
is the saturation transaction throughput
capacity of the system. The situation
depicted by this report could never be
achieved in reality. Most transactions are
"timed out" (refer to "NUM LOST" in figure
13) . The system response time as seen from
keyboard terminals would be erratic and
very long. However, the absolute throughput
limit of a system is an excellent criterion
for comparison of different systems.

In figure 14, both response time and

inter-poll delay time are plotted as a

function of system load. "Inter-poll delay
time" is the mean time during which a line
lies idle, following receipt of an inquiry.

This delay results from exhaustion of the

dynamic buffer pool, and strongly affects
the response time of the system as seen from
the inquiry terminals.

Inspection of figure 14 shows the safe
operating limit of the system to be about
5 or 5.5 transactions/second. Above this

level, the system is no longer able to absorb
the peaks in the load; response time distri-
bution becomes erratic, and some very long
response times may occur.

Figure 15 shows a report from execution
of the model at about five transactions/
second — near the safe operating limit.

RESPONSE TIME DATA

TOTAL TIME = 16. 000 SEC
NUMBER OF TRANSACTIONS SPAWNED = 32
AVERAGE SPAWNING RATE = 2. OO./SEC

MEAN RE.SPONSE TIME =
. 2S SEC ®

MAX. RESP. TIME FOR TIMES BELOW 15. 00 SEC =
. ^6 SEC

STANDARD DEVIATION OF RESP. TIMES = .102 SEC
75 PERCENTILE RESPONSE TIME =

. 33 SEC
95 PERCENTILE RESPONSE TIME =

. 50 SEC

LINE PERFORMANCE

LINE NUM TRANS NUM NUM NUM MAX NUM MAX MEAN
NUM TRANS ./SEC LOST COMP IN SYS IN SYS WAIT WAIT DELAY

1 13 . 81 0 13 0 0 1 . 000
2 7 . 43 0 7 0 2 0 1 . 000
o 12 . 75 0 12 0 4 0 1 . 000

TOTAL 32 2. 00 0 32 0 0 . 000
NUMBER OF COMPLETIONS/SEC = 2. 00

RESOURCE PERFORMANCE

RESOURCE OPS. MEAN MEAN MEAN MEAN MAX % PEAK
NAME ./SEC SERV WAIT QUEUE QLNTH QUEUE FACILITY DEMAND

TIME TIME LNGTH ©DISP LNGTH LOAD

CPU 12. 00 . 018 . 002 . 03 . 20 22. 1

CHANNEL 12. 00 010 . 002/ . 02 . 14 2 12. 9@
DRIVEl . 93 . 056 . 000 . OH) . 00 0 5. 3

DRIVE2 1. 31'
. 056 . 000 . 00 . 00 0 7. 3

DRIVES 2. 06 . 048 000 00 . 00 0 9. 9

DRIVE4 1. 68 . 055 . 000 . 00 . 00 0 9. 3

SYS#BUF1 . 31 . 025 . 00 . 20 1 7. 1

SYS#BUF2 . 43 220 . 00 . 00 0 9. 6

SYS#BUF3 . 68 . 199 ^ . 000 . 00 . 00 0 13. 7

SYS#BUF4 . 56 . 220, . 075 . 04 2 12. 3

DTBUF«PAIR 2. 00 239 . 000 . 00 . 00 0 4. 7 6

AUXttBUF 2. 00 .314 . 000 . OC) . 00 0 6. 2 6

DYN#BUF 2. IS 1. 658 (g) . 000 . 00 . 00 0 24. 1 9

96 CHANNEL OPERATIONS, OF WHICH 52. 08"/: REQUIRED SYNC
63 NON-NULL SEEKS, AVERAGING 66 TRACKS AND 41. 0 MILL I SEC

Measured Values

A. riean Response Time .282 sec.

B. Mean Disk Buffer Service Tine .220 sec.

C. Channel Facility Utilization 13.1%
D. Dynamic (comm) Buffer Service Time 1.6 sec.

Figure 11: A Validation Run

200

LINE PERFORMANCE

NE NUM TRANS NUM NUM NUM MAX NUM MAX MEAN
IM TRANS /SEC LOST COMP IN SYS IN SYS WAIT WAIT DELAY

1 13 . SI 0 13 0 0 1 . 000
2 7 . 43 0 7 0 2 0 1 . 000
3 12 . 75 0 12 0 4 0 1 . 000

-a
n>
-i

n
o

3
cr

3

o c
3

in cr—
' (T)

5'
i

-5 -a 3
01 O J3
ri- —

' c
ft)

-<• -5

3 -J-

IQ fD
to

el-

s'
m
CL
1

o
c
r+

Q.
' e:

3
cr
rc

-s

13
X5

•a

fD

fD
Q.

-s c
O 3o cr
fD fD
(/) -5

fD -•
Q. 3

J3

cr
fD

3
to

o c— 3—' cr
fD

-s

3
-Q

3

o

3
n>
-s

-a
o

Q.

fD

o m
3 01
fD c->

-• n
3 o
fD —

'

O 3
3- 3
Qi
-5 (/>

O) 3-
n o
c+ S
fD CO

-s
-• Cl-
io 3-
r+ fD

O CSl

f+
Oi

(Bottom line shows totals for all lines)

TOTAL 32 2. 00 0 32 0 0 000
NUMBER OF COMPLETIONS/SEC = 2. 00

Figure 12A. Key to Section 2 of Model Report

201

RESOURCE PERFORMANCE

r*. r~ 1 fRESOURlE OPS. MEAN MEAN MEAN MEAN MAX v. PEAK
NAME ./SEC SERV WAI

T

QUEUE QLNTH QUEUE FACILITY DEMANI
TIME TIME LNGTH @DISP LNGTH LOAD

CPU 12. 00 . 018 . 002 . 03 . 20 3 22. 1

CHANNEL 12. 00 . 010 . 002/ . 02 . 14 2 12. 9
DRIVEl . 93 . 056 . 000 . 00 . 00 0 5. 3
ORWE

2

1. 31*
. 056 . 000 . 00 . 00 0 7. 3

DR I VE3 2. 06. . 048 . 000 . 00 . 00 0 9. 9
DR I VE4 1. 68 . 055 . 000 . 00 . 00 0 9. 3
SYS#BUF1 . 31 . 228 . 025 . 00 . 20 1 7. 1

SYS#BUF2 . 43 . 220 . 000 . 00 . 00 0 9. 6
SYS#BUF3 . 68 . 199 . 000 . 00 . 00 0 13. 7
SYS#EUF4 56 . 220 . 075 . 04 12. 3
DTBUF#PAIR 2. 00 . 239 . 000 . 00 . 00 0 4. 7 6
AUX#BUF 2. 00 . 314 . 000 . 00 . 00 0 6. 2 6
DYNtBUF 2. 18 1. 658 . 000 • 00 . 00 0 24. 1 9

o
3
fD

n>
3

O

n>
01
o
zr

-S
(B
10

O
-5

o

70

o

c
ft)

pa

r+
ft)

ft)

OJ

-s
(13

o
c
-s
o
fD

(D

3
X)
c

-s
n>

a.
fD
3
O
fD

c
fD

fD

-J 3
ft) ft)

(/I QJ
O 3
C
-5 XI
O C
fD fD
c

0> fD

O fD
0 3
01 IQ
r+ r+
-• 3-
O
3 0»

ri-

X)
c
fD
c
fD

fD
3
to

:33
fD
to

o
c
-s
o
fD

</> r—
-I. Ql

3 Tc in—
' fD

r+ f)
CU r+3
fD 3
O C
c 3
l/l O"—

' fD
<< -s

Figure 12B. Key to Section 3 of Model Report

202

RESPONSE TIME DATA

TOTAL TIME - 90. 000 SEC
NUMBER OF TRANSACTIONS SPAWNED - 6S9
AVERAGE SPAWNING RATE = 7. 65/SEC
MEAN RESPONSE TIME •= 2. 17 SEC
MAX. RESP. TIME FOR TIMES BELOW 15. 00 SEC = 4. 39 SEC
STANDARD DEVIATION OF RESP. TIMES = 664 SEC
75 PERCENTILE RESPONSE TIME = 2. 56 SEC
95 PERCENTILE RESPONSE TIME = 3. 44 SEC

LINE PERFORMANCE

LINE NUM TF;(- NUri NUM NUM MAX NUM MAX MEAN
N1,JM TRANS /SE L LOST COMP IN SY:E ; IN WAIT WAIT DELAY

1 •'+«.: 156 59 1
1" t 1

1

1. 435
130 Oo 1 14 1 t. 12 1. 435

2 / 1 39' 6 1

1

1. 433
4 22

'

1 57 61 1 7 1

1

1. 413
2:0C' 1 32 i'O jL. 6 13 1. 418
203 135 7 10 1. 426

7 201 131 t.s 1 6 12 1. 375
44 150 1 7 13 1. 381

0 1 4 0 1 027
10 34 0 0 0 1 004
1

1

64 1 7C' 60 2 A 13 1. 418
12 224 156 6C' 7/

1

1

1. 407

TOTAL 2192 24. 1440 673 16 1. 264
NUMBER OF CC MPLE T IONS./SEC = 7, 47

RESOURCE PERFORMANCE

RESOURCE OP MEAN MEAN MEAN MEAN MAX •/ PEAK
NAME .'SEC SERV WAIT OUEUE QLNTH QUEUE FACILITY DEMANI

T 1 me: T I ME lnliTH m I sp LNGTH LOAD

CPU 45. 0 7 . 021 . 044 -) 02 2. 18 6 98. 6
CHAf'iNEL 45. 04 . 013 C'OSi . 61 61. 6
DRIVEl cr

OS' . 072 000 i"'0
. 00 0 37. 0

DRIVE2 0 i . 071 000 0'..> 00 0 43.

DRIVES . 073 C'OQi OCi 00 0 43. 8
DRIVE4 cz- 43 . 072 . 000 00 00 0 39. 4
SYS#BUF1 1 70 , 455 . 426 72 1. 31 5 77. 4
SYS#BUF2 01 . 444 . 737 1. 48 2. 10 89. 4
SYS#BUF3 00 . 445 . 815 1. 2. 32 6. 89. 1

SYS«BUF4 1 31 . 449 . 818 1. 2. 31 7 81. 4
DTBUFWPAIR 7. 1. 145 . 000 00 00 0 86. 9 10
AUX#BUF 7

.

58 1. 314 72 6, 74 10 99. 7 10
DYN#BUF 84 2. 190 1, 448 y. 91 9. 72 10 99. 9 15
CRTi-tBUF 4. 534 . 016 01 05 1 62. 9 6

2027 CHANME.L OPEt^:ATIONS.. OF WHICH 9'- '85a REQUIREC SYNC
1351 NON-NULL SEEKS.. AVERAGING 68 TRACKS AND 41 4 MILL I SEC

Figure 13. Saturation Limit (NOVA 1200)

Mean Response Time

Mean Inter-Poll Delay

2 3 4 5 6

SYSTEM LOAD (transactions/second)

Figure 14. Response Time vs. Load (NOVA 1200)

204

RESPONSE TIME DATA

TOTAL TIME = 50. 000 SEC
NUME5ER OF TRANSACTIONS SPAWNED = 253
AVERAGE SPAWNING RATE = 5. 05/SEC
MEAN RESPONSE TIME = .47 SEC
MAX. RESP. TIME FOR TIMES BELOW 15. 00 SEC = 1. 39 SEC
STANDARD DEVIATION OF RESP. TIMES = . 186 SEC
75 PERCENTILE RESPONSE TIME = .56 SEC
95 PERCENTILE RESPONSE TIME = .87 SEC

LINE PERFORMANCE

INE NUM TRANS NUM NUM NUM MAX NUM MAX MEAN
UM TRANS /SEC LOST COMP IN SYS IN SV'S WAIT WAIT DELAY

1 32 . 64 0 31 1 0 . 025
2 29 . 58 0 27 2 5 0 . 033
3 18 . 36 0 18 0 2 0 . 015
4 20 . 40 0 20 0 2 0 . 000
5 23 . 46 0 23 0 3 0 . 016
6 19 . 38 0 18 1 2 0 . 025
7 21 . 42 0 21 0 2 0 . 000
8 19 . 38 0 19 0 2 0 . 017
9 9 . 18 0 9 0 1 0 . 000
10 1 . 02 0 1 0 1 0 . 000
11 26 . 52 0 26 0 3 0 . 000
12 36 . 72 0 36 0 3 0 . 003

OTAL 253 5. 05 0 249 4 0 . 013
NUMBER OF COMPLETIONS/SEC = 4. 98

RESOURCE PERFORMANCE

RESOURCE OPS. MEAN MEAN MEAN MEAN MAX > PEAK
NAME /SEC SERV WAIT QUEUE QLNTH QUEUE FACILITY DEMANI

TIME TIME LNGTH ©DISP LNGTH LOAD

CPU 30. 04 . 024 . 018 . 56 . 85 4 73. 0
CHANNEL 30. 10 . 012 . 004 . 14 . 31 3 37. 9
DRIVEl 3. 81 . 060 . 000 . 00 . 00 0 23. 2
DRIVE2 3. 48 . 062 . 000 . 00 . 00 0 21. 6
DRIVES 94 . 062 . 000 . 00 . 00 0 24. 7
DRIVE4 3. 81 . 063 . 000 . 00 . 00 0 24. 3
SYS#BUF1 1. 27 . 315 . 068 . OS . 40 2 40. 4
SYS#BUF2 1. 15 . 318 . 067 . 07 . 34 2 36. 9
SYS#BUF3 1. 32 . 320 . 079 . 10 . 39 2 42. 3
SYS#BUF4 1. 27 . 306 . 058 . 07 . 37 2 39. 1

DTBUFttPAIR 5. 05 382 . 000 . 00 . 00 0 19. 3 8
AUX#BUF 5. 05 , 509 . 000 . 00 . 00 0 25. 7 8
DYN#BUF 5. 05 2. 452 . 014 . 07 . 11 3 82. 7 15
CRT#BUF 24 8. 741 . 000 . 00 . 00 0 34. 9 3

752 CHANNEL OPERATIONS, OF WHICH 80. 587. REQUIRED SYNC
503 NON-NULL SEEKS, AVERAGING 67 TRACKS AND 41. 0 MILL I SEC

Figure 15, Operating Point Limit (NOVA 1200)

205

The behavior of the model at this load level

is acceptable: response time is low, and the

low standard deviation of response time shows

that the load level is below the "knee" of

the curve. However, some signs show that the
system is nearing its limit. The processor
has a wait time nearly as long as its service

time, and is 73% utilized. Also, the 82%

load on the dynamic buffer pool ("DYN#BUF")

is responsible for the 13-millisecond inter-

poll delay time, which affects response time

at the inquiry keyboards.

4.6 Resource Dependency Determination

Casual investigation of figures 13 and

15 may suggest that the critical resource is

the dynamic buffer pool, because this

resource has higher facility utilization than

any other. However, this is misleading; it

is caused by the complex interlocking of the

utilization of the different resources in

this system. The resource that really counts
is the NOVA 1200 CPU itself. To demonstrate
this, we ran the model in two altered con-
ditions - with a greatly enlarged dynamic
buffer pool, and with an infinitely fast CPU.

Reports from these two runs are shown as

figures 16 and 17. In the first report,

with an essentially infinite dynamic buffer

pool, response time actually deterioriates

somewhat. Examination of figure 14 shows

that the response time for 6 transactions/

second should be about .7 seconds; in the

report of figure 16, the response time is

1.02 seconds. This result is_ caused by the

previously described nature of the communi-

cations system: when no dynamic buffer is

available, a line lies idle until a buffer

becomes available. When lines become idle,

CPU overhead drops somewhat, because there

are no- interrupts to be processed for that

line. The increased buffer pool does not

help; it hurts.

The second run, figure 17, shows the

effect of an infinitely fast processor.
Comparison of this with the previous report
should leave no doubt as to the major point:
the CPU is what is hurting performance in

the system. Additionally, it should be
clear that measurement alone, no matter how
well done, is inadequate to detect the real
resource dependencies in an existing system.

The results of the critical resource
identification exercise suggest the replace-
ment of the NOVA 1200 with a faster
processor — a NOVA 800 or NOVA 3. The
NOVA 800 executes instructions in about 60%
of the time taken by the NOVA 1200. To
examine the effect of the NOVA 800 in the
system, the model was re-parameterized to
reflect the operating speeds of the 800, and

206

limit determination runs were made. Figure
18 shows the relationship of load to response
time for the NOVA 800; figure 19 shows the
reasonable operating point of a NOVA 800
system - about 9 transactions per second.
These values have been validated by lab
experiments with a NOVA 800-based system.

5 . Summary

This paper has described a performance
evaluation of an existing credit authoriza-
tion system, using a detailed system event
model, validated by laboratory measurements
of system behavior. The system was found to

be limited to about 5 transactions per
second; the primary limiting factor was
found to be the NOVA 1200 CPU itself.
Replacement of the NOVA 1200 with the faster
NOVA 800 raises the transaction throughput
capacity to about nine transactions per
second.

This condensed information belies the
difficulty of its derivation and its impor-
tance to the relationship between TRW and
its customer. The evaluation required
almost three calendar months and about six
man months to complete. In total, TRW's
performance evaluation staff has now done
six complete evaluations, including four

with a validated model. We have gained the
following insight into the difficulty and
cost of these activities:

1. The logistics of a model validation
exercise are very difficult. The
multiple-machine configuration is a

difficulty in itself; the checkout
problems can be lengthy. A locked
measurement lab is required to pre-
vent delays due to logistic inter-
ference. Every step is slow.

2. Models of disk systems present partic-
ular problems. The disk activity

must be modelled in extensive detail
to achieve high-fidelity results in

a model of a disk-based system. This
requires careful validation measure-
ment, which complicates the logistic
problem, because several drives and

controllers must be available as part
of the measured configuration.
Furthermore, measurements of disk
controller peripherals require that
probes be attached at probe points
that must be devised in-house for

non-standard disk controllers.

3. Evaluation of existing software is

difficult at best because of inade-
quate documentation and unwarranted
complexity. Additionally, even the

best existing software is hard to instru-

ment as an afterthought.

The combination of these difficulties lends
an unfortunate aura of unschedulability and
unmanageability to the evaluation activity.

Nonetheless, it appears to us that the value
of the information yielded is so high that

we must continue to proceed, essentially as
above, for many existing TRW systems.

207

RESPONSE TIME DATA

TOTAL TIME = 60. 000 SEC
NUMBER OF TRANSACTIONS SPAWNED ^ 372
AVERAGE SPAWNING RATE =• 6. 19./ SEC
MEAN RESPONSE TIME = 1. 02 SEC
MAX. RESP. TIME FOR TIMES BELOW 15. 00 SEC = 3. 40 SEC
STANDARD DEVIATION OF RESP. TIMES =

. 569 SEC
75 PERCENTILE RESPONSE TINE = 1. 31 SEC
95 PERCENTILE RESPONSE TIME = 2. 19 SEC

LINE PERFORMANCE

INE NUM TRANS NUM NUM NUM MAX NUM MAX MEAN
UM TRANS /SEC LOST COMP IN SYS IN SYS WAIT WAIT DELAY

1 41 . 68 0 41 0 4 0 . 000
2 38 . 63 0 0 4 0 . 000

44 . 73 0 44 0 5 0 . 000
4 28 . 46 0 27 1 0 . 000
5 35 -•O 0 33 2 4 0 . 000
6 36 . 60 0 34 2 3 0 . 000
7 23 . 46 0 28 0 3 0 . 000
8 34 . 56 0 34 0 4 0 . 000
9 S . 13 0 0 1 0 . 000
10 7 . 11 0 7 0 2 0 . 000
1

1

31 . 51 0 31 0 4 0 . 000
12 42 . 70 0 42 0 3 0 . 000

OTAL 372 6. 19 0 367 5 0 . 000
UMBER OF COMPLETIONS./SEC = 6. 1

1

RESOURCE PERFORMANCE

RESOURCE OPS. MEAN MEAN MEAN MEAN MAX r PEAK
NAME /SEC SERV WAIT QUEUE QLNTH QUEUE FACILITY DEMAND

TIME TIME LNGTH SDISP LNGTH LOAD

CPU 36. 90 . 024 . 049 1. 81 2. 07 6 91. 7
CHANNEL 36. 95 .013 . 006 . 22 . 42 3 48. 9
DRIVEl 4. 28 . 068 . 000 . 00 . 00 0 29. 1

DRIVE2 4. 63 . 065 . 000 . 00 . 00 0 30. 1

DRIVES 5. 01 . 068 . 000 . 00 . 00 0 34. 1

DRIVE4 4. 55 . 067 . 000 . 00 . 00 0 30. 8
SYSttBUFl 1. 43 . 469 . 339 . 43 1. 01 4 67. 3
SYS#BUF2 1. 54 . 449 . 406 . 63 1. 22 5 69. 6
SYS#BUF3 1. 68 . 447 . 485 . 81 1. 37 4 75. 3
SYS#BUF4 1. 51 . 452 . 274 . 41 . 97 3 68. 6
DTBUF#PAIR 6. 19 . 832 . 000 . 00 . 00 0 51. 6 10
AUX#BUF 6. 19 1. 019 . 043 . 27 . 38 5 63. 2 10
DYN#BUF 6. 11 2. 667 . 000 . 00 .. 00 0 16. 4 24
CRT#BUF . 28 8. 038 . 000 . 00 . 00 0 37. 9 5

1108 CHANNEL OPERATIONS, OF WHICH 96. 4SX REQUIRED SYNC
738 NON-NULL SEEKS, AVERAGING 72 TRACKS AND 42. 6 MILL I SEC

Figure 16. Large Dynamic Buffer Pool (NOVA 1200)

208

RESPONSE TIME DATA

TOTAL TIME = 60. 000 SEC-

NUMBER OF TRANSACTIONS SPAWNED = 357
AVERAGE SPAWNING RATE = 5. 94/SEC
MEAN RESPONSE TIME =

. 23 SEC
MAX. RESP. TIME FOR TIMES BELOW 15. 00 SEC = . 94 SEC
STANDARD DEVIATION OF RESP. TIMES = .112 SEC
75 PERCENTILE RESPONSE TIME = .27 SEC
95 PERCENTILE RESPONSE TIME = 45 SEC

LINE PERFORMANCE

INE NUM TRANS NUM NUM NUM MAX NUM MAX MEAN
UM TRANS /SEC LOST COMP IN SYS IN SYS WAIT WAIT DELAY

1 37 . 61 0 37 0 •"y 0 . 000
2 26 . 43 0 26 0 0 . 009
3 31 . 51 0 31 0 0 . 000
4 46 . 76 0 44 —1

0 . 002
5 31 . 51 0 31 0 A. 0 . 000
6 35 0 35 0 2 0 . 000
7 28 . 46 0 oO 0 0 . 000
8 41 . 63 0 41 0 0 . 000
9 8 . 13 0 o 0 1 0 . 000
10 9 . 15 0 9 0 1 0 . 000
11 32 . 53 0 0 X. 0 . 000
12 33 . 55 0 0 2 0 . 005

OTAL 357 5. 94 0 355 0 . 001
NUMBER OF COMPLETIONS/SEC = 5. 91

RESOURCE PERFORMANCE

RESOURCE OPS. MEAN MEAN MEAN MEAN MAX J PEAK
NAME /SEC SERV WAIT QUEUE QLNTH QUEUE FACILITY DEMANE

TIME TIME LNGTH ©DISP LNGTH LOAD

CPU 35. 5S . 000 . 000 . 00 . 00 1 0
CHANNEL 35. 61 . 012 . 006 . 22 . 32 44. 5
DRIVEl 4. 30 . 062 . 000 . 00 . 00 0 26. 9
DRIVE2 4. 51 . 064 . 000 . 00 . 00 0 29. tj

DRIVE3 4. 30 . 064 . 000 . 00 . 00 0 27. 8
DRIVE4 4. 69 . 066 . 000 . 00 . 00 0 31. 2
SYS#BUF1 1. 43 . 187 . 030 . 04 . 27 2 26. 9
SYS#BUF2 1. 51 . 193 . 035 . 05 . 28 ^ 29. •Zf

SYS#BUF3 1. 43 . 194 . 025 . 03 . 23 2 27. 8
SYS#BUF4 1. 56 . 199 . 072 . 11 . 50 3 31.

DTBUF#PAIR 5. 94 . 235 . 000 . 00 . 00 0 14. 0 7
AUX#BUF 5. 94 . 235 . 000 . 00 . 00 0 14. 0 7
DYN#BUF 5. 1. 941 . 001 . 00 . 02 2 75. 4 15
CRT#BUF 31 6. 532 . 000 . 00 . 00 0 34. 4 4

1068 CHANNEL OPERATIONS, OF WHICH 66. 66"/i REQUIRED SYNC
709 NON-NULL SEEKS, AVERAGING 63 TRACKS AND 41. 2 MILL I SEC

Fij5ure 17. Infinitely Fast Processor

209

Absolute Throughput Limit

o ir> <-

^ d d
TIME (seconds)

Figure 18. Response Time vs. Load (NOVA 8Q0)

210

RESPONSE TIME DATA

TOTAL TIME =: '^0. 000 SEC
NUMBEP OF TRANSACTIONS SPAWNEtJ - 630
AVERAGE SPi'iWNINo RATE •= 9. 00/SEC
MEAN RESPONSE TIME . 57 SEC
MAX. RESP, TIME FOR TIMES BELOW 15, 00 SEC = 1. 91 SEC
STANDARD DEVIATION OF RESP, TIMES «

. 298 SEC
75 PERCENTILE RESPONSE TIME =

. 70 SEC
95 PERCENTILE RESPONSE TIME = 1. 20 SEC

L. I N t. PER F 0RNAN C,E

L I ME TRhTmS NUM r'iLiM NLIM

NUM TRANS ./SEC L.OST COMF' IN S

1 , 97 (.) 1

2 60 (";/ 1

60 0 .~i '7/ 1

4 64 , 9 1 0 64 0
5 70 1. 00 0 70 0
6 65 9 2 0 64 1

7 55 0 55 0
8 60 C- 0 '':.0 0
9 12 . 1

7

0 1 1 1

10 1 0 , 14 0 1

1

1

. 74 0 50
12 0 54 1

TOTAL 9, 01 Ci 62

1

9
NUMBER OF r OMF LET 10 MS./3EC ::::: l^i S7

MAX NLIM

IN SYS WAIT
MAX

WAIT
MEAN

DELAY

099
104
1 00
129
141
097
124
121
000
000
1 09
096

1 08

RESOURCE PERFORMANC

E

RESOL.iRCE 0 -'S. MEAN MEAN MEAN MEAN MAX f' PEAK
NAME ./ EC ^ERV WA I

T'
QL.IEUE QLNTH QUEUE FACILITY DEMANI

TIME r I ME LNGTH (iiDISP LNGTH LOAD

CPU 5 49 , 013 009 , 49 . 74 73. 9
CHANNEL 5ij

, 013 , 012 i'-.8
. 85 0 70. 9

DRIVEl 7 , 079 Oi.">0 . 00 . 00 0 57. 7
DRIVE2 74 . 078 . 000 oc> . Oil' 0 53. 0
DRIVES 30 . 079 OiQ'O

. OC' . 00 0 50. 2
DRIVE4 44 OSC' . 000 . 00 . 00 0 51. 7
SYS#r?UFl 42 . 306 . 81 1. 50 6 74.

SYS#BUF2 , 299 230 en;"
1. 08 4 67. 6

SYSttBUF:?. Oy , 310 134 . 28 . 75 4 65. 1

SYS#BUF4 15 3C'6 . 170 . 92 66. 0
DTBUFttPAIR 00 523 000 . 00 , 00 0 47. 1 10
AUX#EUF OQi

. 594 001 . 01 02 2 53. 4 10
DYNttBUF SO 1. 607 . 1 1

3

1, 28 6 94.
-"1 15

CRTirBUF 34 6. 465 000 , 00 00 0 36. 9 4

1872 CHANNf." L. OPE ^AT' I ONS,' OF WHICH 96. 31% REQUIREC SYNC
1244 NON-NL L. L. SE EKS,. AVEF AO I hir:-- 67 TFvACKS AND 41, 2 MILLI SEC

Figure 19 . Operating Point Limit (NOVA 800)

211

APPROXIMATE EVALUATION OF THE EFFECT OF

A BUBBLE MEMORY IN A VIRTUAL MEMORY SYSTEM

W. T. K. Lin

A. B. Tonik

Sperry Univac
Blue Bell, PA 19422

This paper uses an approximate queuing model to evaluate how a

bubble memory will affect a virtual memory paging system. Specifically,
we compare the throughput of two systems: one uses bubble memory, the
other uses a fixed-head disk. We found that if we replace the fixed-head
disk by a bubble memory, we can reduce the main memory size by at least

two million bytes and still maintain the same system throughput.
Although we make several assumptions about the model, these assumptions
have been shown to be quite accurate by various authors.

Keywords: Bubble memory; performance evaluation; system modeling;
virtual memory system.

1. Introduction

Bubble memory is not just a research
object anymore; it will be a real product
on the market very soon. But is it worth-
while putting a bubble memory into a system?
This paper will use an approximate queuing
model to evaluate the bubble memory in a

virtual memory system. A fixed-head disk
system, the SPERRY UNIVAC 8405, will be

used for comparison with bubble memory being
worked on by a SPERRY UNIVAC Research group.

2. Mathematical Model

The mathematical model used to compare
bubble memory and a fixed-head disk is shown
in figure 1. There are three stations in

this closed queuing model. The first
station Sp consists of the CPU and main
memory. Si consists of either bubble memory
or fixed-head disks, and S2 is mass storage
of slower speed, such as a moveable-arm disk.

There are m processes circulating in this
system; i.e., the multiprogramming level is

m. After being processed by the CPU for an

average of I/uq seconds, a process will

generate a page fault. This missing page

has the probability of Pi of being found in

S], and P2 of being found in S2 . That means
a process will leave Sg for S,, if the miss-
ing page resides in S], or S 2 if the missing
page is in S2. The missing page in Si will,

on the average, take l/ui seconds to be

brought into So. The missing page in S2

will, on the average take l/u2 seconds. We

assume the service times in all three stations

are exponentially distributed. We also assume
that there is only one CPU, one I/O channel

for each storage level. Then, from the
result of a paper by Gecsei and Lukes [l] \
we derive the following equations:

X. = P.Xq for i = 1,2 (1)

+ X^ = Xq (2)

1 Figures in brackets indicate literature
references at the end of this paper.

213

Qq + + = m

U. = X./u.

(3)

(4)

where

:

X. throughput of station S. in processes
per second

queue length at station S^, including
the one being served
utilization of station
average service rate of station S^.

From these equations we want to find

the CPU utilization Uo which is equivalent
to the system throughput. Since we assume
there is only one CPU, one I/O channel per
storage level, and exponential service time,

we can approximate each station by a M/M/1

queue. Gecsei and Lukes [l] have shown that

this is a good approximation. Therefore,

from Queuing Theory we know:

Qi
= U./(l-U.) (5)

Before we solve these equations, let us check

which variables are unknown variables, and

which are given parameters.

Multiprogramming level m and secondary
storage access times ui and U2 are given
system parameters. Average CPU service time

between page faults I/uq, and probabilities

Pi, P2 can be computed by using the linear
model proposed by Saltzer [2]. In that paper
it is suggested that the number of memory
references between page faults is propor-
tional to the size of the main memory, i.e..

c S,
(5)

where c is some constant. So is main memory
size, n is the number of memory references
between page faults. Since part of the
memory is used for resident system software,
it is not pageable. Thus we modify eq (6)

to eq (7):

between page faults. For the number of
references between page faults to any part of
the main memory, we have to add to n two
numbers. One is the number of references
to the non-pageable part of the main memory,
which is approximately 25 percent of n; the
other is a fixed overhead per page fault of
about 2500 references. Therefore:

c (Sq - M) (1 + 25%) + 2500. (8)

If we assume there are r memory references
per instruction executed (measurements
within UNIVAC indicate r can range from 1.5

to 2.0), and the CPU speed is v seconds per
instruction, then the time between page
faults will be:

1/Uq = nv/r

;vc (Sq - M) (1 + 25%) + 2500 v)/r (9)

By extending the linear model to the fixed-
head disk (or bubble memory), we can compute
the average number of memory references
between page faults from the fixed-head
disk to moveable-arm disk, i.e..

c S.

where Si is the size of the fixed-head disk

(or bubble memory). Therefore:

P^/P^ = (1/n - l/n^)/(l/n^) (10)

P^ .P^ = 1.

By solving (10) and (11), we obtain P-j

(11)

and

2-

By substituting eq (1) into eq (4) and

eq (4) into eq (5) and eq (5) into eq (3),
we have an equation with Xo as the unknown.

A value for Xg can be obtained from which,

by eq (1), X-j can be obtained. Then the

utilization of the various levels is

obtained by using eq (4).

n = c (S. M) (7)

where M is the size of non-pageable main
memory (see [s]). Actually, n is the number
of memory references to the pageable part

214

3. Comparison Between Bubble Memory
and a Fixed-Head Disk

The model developed in the last section
is used to compare a bubble memory being
developed by UNIVAC with a UNIVAC 8405
fixed-head disk. The results are shown in

figures 2 through 4. The values used for
the parameters are as follows:

r = 2

c = 1/1950
M = 3 X 10^ bits

V = 10"^/3 seconds/instructions
I/U2 = 4 X 10"^ seconds.

These graphs show how the effective CPU
utilization varies as the size of main memory
varies for different levels of multi-
programming. The parameter m is the multi-
programming level. The main memory size is

expressed in units of 10"^ bits.

The difference between figures 2 and 3

is the number of modules of 8405. In figure 2

the system has 4 units and in figure 3, six
units. It can be seen that there is very
little increase in utilization (throughput)
by adding more 8405 memory units (except
in the case of very large main memory sizes).
Figure 4 has the bubble memory connected to
the system through a regular I/O channel of
3 megabytes per second transfer rate. The
size of the bubble memory is 6 x 10^ bits,
about twice the size of the fixed-head disks
in figure 3. The reason for using twice as
much bubble memory is because the price of
bubble memory per bit is about half of the
8405.

Let us try to compare a system with
8405 's and a system with bubble memory. We
could take two systems with the same size
main memory. However, it is obvious that
the system with bubble memory would have
more throughput (because the bubble memory
is faster). According to figures 2 through
4, the system with bubble memory has about
two times the throughput of the system with
8405' s. This is almost the ratio of the
total access times of those devices (this
ratio is not surprising considering that the
devices are the limitation of the systems).
A more interesting comparison is to compare
systems with the same throughput. This means
that we should pick the CPU utilization of,

for example, 0.25 on all figures. The first
observation is that the different systems
would have different sizes of main memory.
Consequently, the multiprogramming level in

the different systems should be different.
Let us look at m = 9 for the system with
six 8405 's and m = 5 for the system with

bubble memory. From figures 3 and 4, we
obtain the following:

8405 (Bubble)

Main Main
CPU Memory Memory

utilization (m=9) (m=5)

.25 50M 26M

.20 40M 21 .5M

.15 32M 16. 5M

A system with bubble memory could have
about 15 million bits less of main memory
and still maintain the same throughput. This
is about two million bytes. At 1.7 cents per
bit, the savings to the users are about
$250K. This is out of a system cost to the
customer between $1.5M and $2M. This compari-
son also shows that at lower multiprogramming
(m = 5 versus m = 9), the bubble memory
system can still achieve the same throughput.
However, in a transaction-oriented system,
response time as well as system throughput
will be important. This paper only addresses
a batch virtual memory system. A separate
analysis of a transaction system with bubble
memory will be published at a later time.

References

[1] Gecsei , J. and Lukes, J. A., A model
for the evaluation of storage
hierarchies, IBM Systems Journal, J3_,
163 (1974).

[2] Saltzer, J. H., A simple linear model
of demand paging performance, Communi-
aations of the ACM, 1_7, 181 (1974).

[3] Sekino, A., Throughput analysis of

mul ti programmed virtual -memory computer
systems. Proceedings of SIGME Symposium,
1973, pp. 47-58.

[4] Kleinrock, L., Queueing Systems, Vol. 1,

(John Wiley & Sons, New York, 1975).

215

CPU and

Main Memory

Univac 8405 or

Bubble Memory

Disk

Q = Queue length; no. of jobs waiting for service (including the one

being serviced)

S = Storage level

1/u = Average service time (I/O or CPU time between page faults)

X = Throughput
P = Probability of a missing page found in a storage level

U = Utilization of a storage level (fraction of time it is used)

Figure 1.

Queuing Model

.55 ..

.50 ..

.45

.40

.35

.30

.25

= 2 X 10° bits

1/u^ = (8.3 + 7.2) X 10" sec.

1/u, 4 X 10"^ sec.

r.5 "2.0 2.5 3.0 3.5 4.0 4.5

MEMORY SIZE (IN UNITS OF 10^ BITS)

Figure 2.

System with Four Modules of 8405

216

.55..

S, = 3 X 10^ bits
.50-' 1 n

= (8.3 + 7.2) X 10"'^ sec.

i/u^ = 4 X 10-2 sec.

.40"

.35--

m ,— 1 • 1 ' • ' >—
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

"'MEMORY SIZE (IN UNITS OF 10^ BITS)

Figure 3.

System with Six Modules of 8405

217

THE USE OF MEASURED UTILIZATIONS
IN QUEUING NETWORK ANALYSIS

James Bouhana

Academic Computing Center
University of Wisconsin

Madison, WI 53706

For closed queuing networks having simple,
load-independent servers, computationally efficient
equations are derived relating several interesting
network properties to server utilization. The equa-
tions permit measured utilizations to be used in com-
puting the probability of a specific number of jobs
at a server, the expected number of jobs at a server,
and the mean queue length at a saturated server. The
expressions in the derived equations require far less
knowledge about the detailed stochastic parameters of
a network than is needed in classical queuing network
analysis

.

Key words: Operational analysis; queuing networks;
queuing theory; utilization.

1 . Introduction

In recent years, queuing theory
has proved increasingly useful in
computer performance studies. Visu-
alizing the components of a computing
system as an interconnected network
of servers and associated queues has
enabled analysts to quantify the
queuing delays that result when jobs
compete for service in a multi-
programming environment. In particu-
lar, analysts are often interested in
determining the expected apportion-
ment of jobs and the mean lengths of
the queues that form at each server.

In classical queuing network
analysis, the determination of job
apportionment and mean queue lengths
proceeds by way of considering the
equilibrium joint probability distri-
bution of jobs in the network. The
resulting mathematical expressions

are in terms of the detailed stochas-
tic parameters of the network. A

brief exposition of the mathematical
solution of a certain type of queuing
network is given in Section 3-

In this paper, our orientation
is that of determining queuing net-
work properties by using easily-
measured operational data. Although
operational data has been the tradi-
tional raw material of performance
analysis, its application to queuing
systems has only recently been con-

sidered [1] . As delineated by Buzen
[2] :

Figures in brackets indicate refer-
ences to the literature at the end of
this paper.

The operational method . .

.

is based on a set of con-
., cepts that correspond natu-

rally and directly to ob-
served properties of real
computer systems. ... This
method is based on a set of
definitions and working as-
sumptions that are intended
to reflect the viewpoint of
individuals engaged in em-
pirical studies of computer
system performance.

The operational data required
for our analysis are the measured
utilizations of each server at each
level of multiprogramming (henceforth
called "mix level" for brevity). We
will derive formulas relating certain
network properties to measured utili-
zations. The derivations are pre-
sented in Section 4.

Next, some definitions and as-
sumptions are stated which describe
the type of queuing network models we
will be considering.

2. Queuing Network Models

An example of a queuing network
model is shown in figure 1. The ex-
ample is the central-server model,
discussed in [3], in which the cen-
tral server represents the CPU and
each of the peripheral servers repre-
sents an input/output device.

Figure 1: Central server model.

Associated with each server is a

"waiting room" or queue which tempo-
rarily contains jobs that arrive at a
server and find that the server is
busy. The network is assumed to be

closed in the sense that a fixed num-
ber of jobs travel among the various

servers. (The assumption of closure
will not prevent the analysis of ac-
tual systems in which the mix level
varies, as we shall see later.) The

)

routing of jobs through the network
is specified by directed paths con-
necting pairs of servers. Associated

\

with each path emanating from a

server is a number specifying the
probability that the path will be
taken by a job that has just complet-
ed service at that server. The sum
of the probabilities of all paths :

emanating from a server must equal
one. The routing probabilities do
not vary with time nor with the num-
ber of jobs at any server (i.e., they
are both time and load independent).
Each server is assumed to be simple
in the sense that only one unit of
that server is present at each circle
(e.g., multiple CPU's are disallowed, ,'

unless each is modelled as a separate
server). All jobs are assumed to be-
have identically in their routing
through the network. Jobs are also
identical with respect to the amount
of service that they require from
each server. The mean amount of time
it takes for a server to fulfill a

job's request for service is inde-
pendent of the number of jobs in the
server's queue (the "load-inde-i
pendent" assumption). The mean serv-
ice time at a specific server is also Ij

independent of the load at any other i'

server (the "homogeneity" assumption,
which is equivalent to saying that
the servers behave the same within
the network as they would if they
were isolated from the network and
given the same workload). Finally,
each server is assumed to have a

per-request service time distribution
that is exponential, with different
servers having possibly different ex-
ponential distributions.

The models considered in the
following sections are more general
than the central server model in that
the servers may be arbitrarily con-
nected, as long as it is possible to
travel from any server to any other
server in the network. Additional
generality will be noted in Section
3.2, as one of the major assumptions
(that of exponentially distributed
service times) is relaxed.

220

3. Mathematical Solution

The mathematical solution of
closed queuing networks having sim-
ple, load-independent, exponential
servers is presented in this Section.
A complete understanding of the solu-
tion itself is not critical to under-
standing the results produced in Sec-
tion 4. The solution is presented
here for completeness and to estab-
lish notational conventions used in
subsequent derivations.

For a network having M servers
and containing N jobs, a state of
the network is described by an M-
tuple n = (n^, n^, n^^) where

each n^ gives the number of jobs

present at the i-th server (n^ in-

cludes the jobs that are enqueued, if

any, and the one that is in service,
if any) . Each n^ is a non-negative

integer, and the sum of all M of
them equals N.

A queuing network is considered
solved if one can determine the
equilibrium probability distribution
of states. Gordon and Newell [4]
showed that the equilibrium probabil-
ity distribution of states for the
type of closed network discussed in
this Section is:

M ^

P(n^, n^) = ^^]~y (X^)
^

1 = 1

constant selected such that the prob-
abilities of all states sum to one.
That is.

M

G(N) = X^TT ^^1^

neA 1=1

where A is the set of all states.

3.1 Derived Statistics

In practice, a performance ana-
lyst is rarely interested in the
probability of occurrence of a spe-
cific state. More commonly, one
seeks expressions for server utiliza-
tions, probability of a specific num-
ber of jobs at a server, and mean
number of jobs at a server. Buzen
[3] showed that these statistics can
be derived from the equilibrium solu-
tion. His results, which we will use
later, are:

Min imum number of jobs . The proba-
bility that there are at least
k jobs present at the i-th server
(both enqueued and in service) when
there are N jobs in an M-server
network is:

P(n, N) = a/^^^ (1)

where the X. are
1

the M equations:

such that Server utilization is simply given by
the probability that there is at
least one job at the server, or:

t .X.
J J

m

Zt.X.p.

.

1 i^ij
1=1

(1 1 J 1 M) P(n. > 1, N) (X.)
G(N-l)
G(N)

(2)

are satisfied (1/t. is the load-
J

independent mean service time of
the j-th server, and p. . is the

constant probability associated with
the directed path— if any— connecting
the i-th server to the j-th server).
The quantity G(N) is a normalizing

Exact number of jobs . The probabili-
ty that there are exactly k jobs at
the i-th server is:

P(n. = k, N)

k

gTnT (G(N-k) -

(X.)G(N-k-l)) (3)

221

Mean number of Jobs . The mean number
oT jobs botPPenqueued and in service
at the i-th server is:

E(n^, N) (X.)
k G(N-k)

G(N)
k=l

3.2 A Generalization

The "product form" network solu-
tion given in Section 3 was derived
by Gordon and Newell [4] under the
assumption that the per-request serv-
ice time of each server is
exponentially distributed. Using op-
erational arguments, Denning and
Buzen [5] have recently shown that
the product form equation is valid
for general service time distri-
butions--provided that the interpre-
tation of "probability of a specific
state" is replaced by the operational
counterpart of "fraction of time
spent in a specific state." The
change in interpretation poses no
difficulty; it is, in fact, wholly
consistent with our operational ori-
entation.

The results of Denning and Buzen
permit generalizing the derived sta-
tistics of Section 3.1 to networks
having non-exponential servers. In
eqs (1)-(4), only the terms are

directly related to the service time
distribution. In Section 4.1, we
show that even these terms cancel
completely in the derived expres-
sions. Thus, the results which will
be subsequently derived are, in an
operational sense, truly independent
of both the mean and the form of the
service time distribution.

4 Measured Utilizations

will denote the
the i-th server
are N jobs in the

In
U . (N)

the
P(n. >

1 —
notation

1 , N)

utilization
when

mix by

of

of
there

U. (N) .

eq (2),

In practice, server utilizations
can be determined by a hardware or a

software monitor. Alternatively, one
could use a recently-developed algo-
rithm for determining mean server
utilizations at each mix level from
accounting log data [6]. Either of
the first two suggested methods is
generally more accurate than using
accounting log data. However, use of
accounting data avoids the overhead
usually incurred by monitoring, and
the data is readily available on most
systems

.

In the remainder of this Sec-
tion, an equation relating the net-
work solution parameter G(N) to
utilization will be derived. From
eq (2), we have the following rela-
tionships for the i-th server at
mix levels of 1, 2, N:

G(l)

G(2) =

(X.)G(0)

U.(l)

(X.)G(l)

U. (2)

U. (1)

(X.)'

U^(1)U^(2)

(5)

G(N)

(X^)G(N-l)

U7(N)

(X.)

Suppose that for a computing
system with simple homogeneous load-
independent servers, one empirically
measures server utilizations at each
mix level

.

the i-th
del i vered

If at some mix level N,
server is observed to have

total of hours of

service
length

in
T

an observation period of
hours, then the utiliza-

tion of that server is T. /T,
1

We

4.1 Derived Statistics

By substituting the formulation
for G(N) given in eq (5) into the
expressions given in Section 3.1, we
arrive at expressions formulated
solely in terms of utilizations, as
fol lows

:

222

Minimum number of jobs

N

P(n^ > k, N) =

j=N-k+l

Exact number of Jobs

.

u.(j) (6)

M) and P(n. k, N)yield P(n^ >^ k, .., .

for all values of k ranging between 1

and N. Then, the total number of ad-
ditions and multiplications required
for evaluating eqs (6)-(8) for any
one server is N (the one extra op-
eration results from the additional
multiplication and subtraction ap-
pearing in eq (7)).

P(n^ = k, N) = u.(j)

j=N-k+l

(1 - U^(N-k)) (7)

Mean number of jobs

,

E(n^, N) u.(j) (8)

k=l j=N-k+l

a. Computational Aspects

We first consider the number of
additions and multiplications re-
quired for the evaluation of eq (8).
Assuming that the utilizations
of M servers at mix levels ranging
from 1 to N have been determined
and are stored in an M x N array,
the computation of the mean number of
jobs at any one server can be accom-
plished with N-1 additions and
multiplications. Denoting the M x N

array by UTIL, an ALGOL routine which
evaluates eq (8) for the i-th server
and stores the result in a one-
dimensional, M-element array JOBS is:

TEMP := UTIL[I,N];
JOBSLI] := TEMP;
FOR K := 2 STEP 1 UNTIL N DO

BEGIN
TEMP := TEMP»UTIL[I ,N-K+1]

;

JOBS[I] := JOBS[I] + TEMP;
END;

5. Saturation

Aside from its pragmatic appli-
cations, eq (8) is interesting in a

theoretical sense, since it yields
simple expressions for queuing behav-
ior- under conditions of server satu-
ration. In this Section, we develop
and comment upon expressions for
E(n. N) at saturation Throughout

this Section we assume that there is
a unique server that becomes saturat-
ed before any other server.

If some server, say the i-th,
becomes 100% utilized at some mix
level, say S, then its utilization
will remain at the value of 1 for
all mix levels above S. The deter-
mination of the mean number of jobs
at the i-th server for any mix
level N where N>S takes the
form

:

E(n. , N)

N-S+1

Z
k=i j=N-k+l

u.(j)

u.(j) (9)

k=N-S+2 j=N-k+l

Since U.(j) = 1 for all j > S, all of

the product forms in the left term of
eq (9) equal one; also, the upper
limit of the product form in the
right term need only extend to S-1,
yielding

:

Note
computing
uct forms
are also

that in
JOBS[I]

,

appearing
computed

.

the process of
all of the prod-
in eqs (6) - (7

)

Thus, the given
computational routine may be

straightforwardly embellished to

E(n. ,N) = N-S+1+

(Equatlon is continued on next page)

223

N S-1

k=N-S+2 j=N-k+l

Expanding the sum of products in

eq (10) shows that it can be written
in a form independent of N, as fol-
lows :

sents the mean queue length (exclu-
sive of the job in service) of
the i-th server at saturation.

Note that the sum of products in
eq (12) is of a familiar form, and
the equation can be re-written as:

E(n.,S) = 1 + E(n., S-1)

E(n^, N) = N-S+1+

S-1 S-1

k=l j=S-k

U.(j) (11)

which states that the mean queue
length of a server at its saturation
level is equal to the mean number of
jobs at that server when the mix lev-
el is one less than the saturation
level.

Level of Detail

Equation (11) states that the
mean number of jobs at a saturated
server grows linearly and equally
with the mix level beyond saturation.
Since the amount of growth is in fact
equal to number of jobs beyond the
saturation level of the server, we
can deduce that the first server to
become saturated is the one at which
jobs will become enqueued. Thus, the
first server to become saturated ex-
clusively captures--in a statistical
sense--all jobs entered after satura-
tion, and that server may rightly be
viewed as the bottleneck of the net-
work .

5.1 Mean Queue Lengths

Suppose, as before, that the
i-th server is the first server to
become saturated and that saturation
occurs at the mix level of S.
Setting N = S in eq (11) yields:

E(n^, S) 1 +

S-1 S-1

in
k=l j=S-k

U. (j)

(12)

Equat ion (12) is
ful , since the
side can be
ing the job
ferent jobs
is always

intuitively meaning-
1 on the right hand

interpreted as represent-
(or, more precisely, dif-
at different times) that
keeping the server busy.

The sum of products in eq (12) repre-

Equations (6)-(8) are somewhat
surprising, since they reveal the
wealth of probabilistic information
embodied in such a macroscopic-level
quantity as measured utilizations.
After a moment or two of reflection,
much of the surprise vanishes as one
realizes that utilizations themselves
are macroscopic-level manifestations
of the detailed stochastic parameters
that describe a network model of a

computing system. So, one should not
be too surprised that a mathematical
connection can be made relating cer-
tain aspects of network behavior to
utilizations. Equations (6)-(8)
expose some of the connections.

However, one element of surprise
lingers, which is that the connection
can be made in a way that makes no
reference whatsoever to the stochas-
tic quantities required in the clas-
sical mathematical solution of a

queuing network. For example, one
need not know the mean service times
of the servers. Also, the transition
probabilities are not required. In
fact, one need not even know the man-
ner in which the servers in the sys-
tem are interconnected, other than
knowing that it is possible for a job
to get from any server to any other
server. Finally, one need not even
specify the number of servers in the
network

.

The presence of other servers,
the manner in which the network is
interconnected, the routing probabil-
ities, and the mean service times are

224

all reflected in the utilizations
that each server experiences at vari-
ous mix levels! Thus, it may well be
that utilizations constitute a natu-
ral bridge connecting the two realms
of operational and stochastic analy-
sis of queuing networks. Additional
research exploring the mathematical
topography of the utilization bridge
is needed. Any further contributions
can only serve to enrich our knowl-
edge of both methods of analysis.

References

[1] Buzen, J. P. "Operational Anal-
ysis: The Key to the New Gener-
ation of Performance Prediction
Tools," Proc. IEEE Fall Compcon
'76

, (Sept., 1976), Washington,
D.C., pp. 166-171.

[2] Buzen, J. P. "Fundamental Laws
of Computer Systems Perform-
ance," Proc. IFIP-ACM Sigmet -

rics International Symposium on
Computer Performance Modeling,
Measurement, and Evaluation,

Cambridge, Mass., (March, 1976),
pp. 200-210.

[3] Buzen, J. P. "Computational Al-
gorithms for Closed Queueing
Networks with Exponential Ser-
vers," Comm. ACM , Vol. 16, No.
9, (Sept., 1973), PP . 527-531.

[i4] Gordon, W. J. and G. F. Newell
"Closed Queuing Systems with Ex-
ponential Servers," Operations
Research , Vol. 15, No. 2,
(April, 1967), pp. 254-265.

[5] Denning, P. J. and J. P. Buzen
"Operational Analysis of Queuing
Networks," Proc. Third Interna-
tional Symposium on Modelling
and Performance Evaluation of
Computer Systems , Bonn,
W. Germany, (Oct. , 1977) .

[6] Bouhana, J. "A Family of Mix
Characteristics Curves," Proc

.

12-th CPEUG Meeting , (Nov.,
1976), San Diego, Calif., pp.
181-188.

225

APPLICATIONS OF QUEUING MODELS TO ADP SYSTEM PERFORMANCE
PREDICTION: A WORKSHOP SUMMARY

Mitchell G. Spiegel

Federal Computer Performance Evaluation
and Simulation Center (FEDSIM)

Washington, DC 20330

The objective of this presentation is to summarize the state-of-
the-art of queuing models from the position of Workshop Chairman of
a recently completed workshop on the "Applications of Queuing Models
to ADP System Performance Prediction." Over sixty queuing model
practitioners gathered together at the National Technical Information
Service (NTIS) on 7-8 March 1977. Topics discussed were divided into
four general areas: (1) Application of Queuing Models to Feasibility
and Sizing Studies; (2) Application of Queuing Models to System Design
and Performance Management; (3) Queuing Model Validation; and (4) New
Queuing Model Implementations. Eighteen speakers provided a broad
viewpoint of applied queuing model issues.

Key words: Computer-communication networks; configuration analysis;
model validation; performance management; performance prediction;
queuing networks; sizing studies; system design.

INTRODUCTION

A workshop was held on the Applications
of Queuing Models to ADP System Performance
Prediction on 7-8 March 1977 at the National
Technical Information Service in Springfield,
VA. Topics were divided into four general
areas: (1) Application of Queuing Models to
Feasibility and Sizing Studies, (2) Applica-
tion of Queuing Models to System Design and
Perfomance Management, (3) Queuing Model
Validation and (4) New Queuing Model Imple-
mentations. Mr. Philip J. Klviat, Chairman,
SIGMETRICS, made the welcoming remarks. As
Workshop Chairman, I provided a historical
overview of queuing model use which traced
the development of the application of queuing
models to ADP system performance prediction
through the 20th century, while setting the
stage for each speaker's talk.

The first queuing model applications were
to busy signal problems in the early telephone
network. One of the early uses of queuing
formulas to model a computer system was for
the SABRE airline reservation system. These
early uses employed queuing tables . In the

Figures in brackets indicate the literature
references at the end of this paper.

early 1960's, fixed form queuing models
appeared within the internal algorithms of
packaged simulators. Today, queuing model
facilities with graphical types of languages
and imbedded approximation techniques allow
the analyst to describe and solve almost any
queuing network

.

FEASIBILITY AND SIZING STUDIES

The speakers on the first day of the
workshop concentrated their talks on queu-
ing model applications. A complete list of

the speakers and their topics is provided
in Appendix 1. The first speakers, Capts.
Askland and Davis, discussed the use of a

queuing model for an Air Force Base Level
Burroughs 3500 Sizing. The model was used
on hundreds of combinations of configurations
and workloads. The presenters estimated
that over 138,000 experiments had been
performed. The model employed was that of
Avi-Itzhak/Heyman [l]'^. Two implementations
were described: (1) a version to solve for
response time and (2) fixing response time
and service rate to find maximum tolerable
traffic. Performance data on the operating
system was obtained by graphing measure-
ments of the ratio of system I/O's to user
I/O's for many different mixtures of work-
load. The mechanics of testing the adequacy

of a particular configuration was to test
the largest configuration within a class
of CPU and accept or reject it by experimen-
tation. This approach eliminated unsatisfac-
tory classes immediately.

The next speaker, Capt. Pearson,
described the in-depth analysis of a small
communications network model for the Navy.
The normal method of modeling a host
computer was reversed; the network terminated
at the host. The host was represented as
a single arrival/departure point for
traffic. The network consisted of ten
geographical sites with 500 interactive
terminals. The model was constructed
using the Analytic Solution for Queues
(ASQ) . Model limitations forced the
experimenter to accept a loss of accuracy
by consolidating different attributes of
the network.

One limitation of the ASQ model was a
maximum of three job types. Five different
experiments were run using the same sub-
network structure, while altering the use
of the job-type feature. Representing a
class of work, i.e., time-sharing, as a
job type was less desirable than allocating
a job type to a physical network location
containing heterogeneous traffic, because
detailed information about specific nodes
was lost. (The most accurate representation
is a job type for each physical location
and kind of work.)

Another experiment tested the use of
Norton's theorem to collapse an arbitrary
network to a single node with a queue-
dependent service rate. This feature is
thought to be critical to managing the
analysis of a large network. Experiments
with sub-networks demonstrated the validity
of the "collapse" approach. One other
observation concerned the flow of job
types. Results were not reliable unless
all job types passed through one node
somewhere in the network. This omission
is common for beginning users of a network
model.

Dr. Wang closed the morning session
with a talk on the sizing of a computer
for use in a switching network. His
opening remarks addressed a general net-
work design methodology. He proposed a
cyclic process consisting of four stages:
(1) definition of network functions, (2)
distribution of network intelligence, (3)
structuring of network architecture, and
(4) design of network to cost/performance
constraints. "Performance" related to the

configuration before, during, or after the
structuring process. He recommended
setting performance constraints, minimizing
the cost of a sub-network within the
constraints established, and relaxing the

constraints slightly to test the sensitivity
of the design to performance parameters.

The sizing study Dr. Wang described
was part of a system, redesign problem.
The existing network served 20,000 terminals,
14,000 of which were in the continental
United States, The workload consisted of

cyclic transactions and source data entries
for various destinations. Response time
performance was the principal measure of

service used by subscribers and was contrac-
tually guaranteed. Dr. Wang began the
analysis by partitioning response time
into six component parts stretching from
terminal to host. His approach to sizing
evaluated the slowest component first (in

this instance, the low-speed line). He
then attempted to eliminate the intervening
level of processing in the network (network
and data processors) by multiplexing low-
speed lines directly to the host computer.
Predicted response times were insensitive
to the type of application, which was an
unsatisfactory situation. By replacing
the multiplexor with a data processor
containing frequently accessed data, the
desired response time mix was obtained.
Performance was predicted using a number
of subsystem models with discrete capability
to evaluate the dynamics of line protocols,
concentrators, and network component
interactions. The subsystem results were
fed to a queuing network model of the
entire computer-communications net.

The Monday morning panel discussed the
imprecise measure of response time produced
by most queuing models. None of the

presenters saw this as a problem, because
users have little or no conception of

response time at all, or its distribution.
Management has been receptive to rough
predictions relating response time to

economic value. "Price/ Performance" data
is much sought after for major system
design and financing decisions. Panelists
also felt that an undue amount of attention
is paid to system response time without
regard for the design implications on the
human operators in the user-computer loop.

SYSTEM DESIGN AND PERFORMANCE MANAGEMENT

Dr. Wang reopened the afternoon session
with a second presentation describing the

228

use of a queuing model in detailed design
trade-offs for a 2, 500-terminal network.
The workload modeled consisted of over 30

transaction types. Terminals were connected
in a star configuration to a network
interface minicomputer. The minicomputer
was joined to other minicomputers in a

loop with a host computer. Messages could

travel in either direction in the loop,

with the minicomputer acting as a packet
switching node. The queuing model predicted
the number of intermediate nodes and loop

line utilization maximums required to meet
all response time design goals.

Mr. Berners-Lee of ICL described how a

manufacturer successfully used a queuing
model Internally within his organization.
A model following Jackson's theory, known
as the "football model," was constructed
and validated carefully for throughput and
elapsed time predictions over long periods
of time (12 hours of mixed work on a

system) . The model is now used to plan
enhancements to the product line. System
analysts are trained in configuration
balancing in order to assist customers to

obtain the best system performance possible.

While calibrating the model. Interna-
tional Computers Ltd. technicians observed
a close fit between the number of file
accesses and the storage space occupied by
the file. The access pattern conformed to

Zipf's law (access traffic is proportional
to the logarithm of the number of unique
addresses on the file) . Further, the use
of isolated server theory (Norton's theo-
rem) worked well in a hierarchical model.
It was also thought that competitive
sizing would be difficult because of the
problem of translating the performance of

an application from one machine to another.
This proved not to be the case. Once a

model of a competitive operating system
was obtained, it was relatively simple to
forecast the impact of an application
conversion to the competitive vendor's
equipment and software [2] . Finally, a

good long-term model of system performance
was obtained by developing an aging cycle
for file activities. Using the state
transitions, analysts predicted various
types of file traffic over time, e.g.,
retrieval, archiving.

Ms. Dowdy used queuing models to

configure a system, by balancing work
between a general purpose processor and an
array processor. Measured data from
benchmarks were used to calibrate the
initial closed queuing network model.

Subsequent predictions were validated
against actual measured data and found to

follow the projections closely.

Dr. Bronner indicated the importance of
queuing models to understanding complicated
system environm.ents. Queuing models can
answer most management questions easily and
quickly and are proving to be a very popular
tool. He has incorporated queuing models
into a capacity planning methodology that
addresses the management of computer re-
sources [3]. By using the capacity planning
process, the loading, utilization, and
response of the system's resources are
monitored and analyzed by a group of capaci-
ty planners. Most of the measurement tools
used (i.e., SMF) were not developed with
capacity planning as an objective. Although
the data are incomplete, an organized
structure for tracking and analysis, using
existing tools, offers insights into the
operation of an installation. The type of
projection usually made by the analyst is a

trend line, using time series analysis.
The trend line helps to correlate interact-
ing factors among workload, resource use,
and user service levels. Detailed analysis
of subsystem measurement data (e.g., TSO
trace, CICS analyzer) is required for model
development. When data are not available,
approximations are required. One example
of an approximation is to double the data
transfer time to account for command data
passed back and forth over data channels.
Dr. Bronner recommended the use of an
analytically-oriented person to enhance the
modeling and predictive skills of the
capacity planning group. This person can
provide reasonable loading and service
level predictions for new applications,
changes in existing workload, or system
configuration modifications.

Queuing models were recommended once
confidence in established measured parame-
ters had been obtained. His opinion was
that the problem in complex computer systems
analysis was not with the availability of

analytics, but a lack of understanding of
system relationships. Most prediction
requirements can be handled by treating the
computer/communications system as a single
system queue. Refined analysis employs
hierarchical queuing networks in place of

the single system queue point.

Mr. Day described the use of a queuing
model as part of a customer assistance
package in the pre-sale, order-sizing, and
post-sale environments. In the pre-sale
environment, the package operates in a

229

"choice" phase. The customer describes the

number and location of stations in his
network, traffic, and transaction types.

The package output consists of a prediction
of the size and type of system required.
The model contains pre-measured values for

the service times of all critical paths
through the software operating system and
related subsystems.

Mr. Day responded to a challenge by
members of the audience. He claimed to be
able to generate non-trivial response time
distributions without excessive run time.

His methodology consisted of computing all
the permutations and combinations of event
service time probabilities in such a se-
quence that when the tail of the distribution
containing high response times is reached,
he truncates the calculation in accordance
with a delta corresponding to the percentage
of all combinations desired. Very little
accuracy is lost with large reductions in

run time.

The afternoon speakers ended the discus-
sion of applications of queuing models with
ideas about how to get performance out of

applications during their initial design.
The panelists agreed that performance does
take a back seat to error-free execution,
except when it is mandatory to the accept-
ance of the work. Analysts have a poor
track record for getting a performance
discipline into the application design
cycle. The results are saturated systems,
in as little time as six months following
installation, and far in advance of the
projected peak workload conditions. Users
have had good queuing models available to

them for some time, but they persist in

doubting the validity of the parameters and
the models' world view of the system instead
of applying the models to the application
design process.

The critiques submitted by attendees
were very receptive to the sessions of the
first day. The first session, on applica-
tions of queuing models to feasibility/
sizing, "illustrated the problem domain and
pointed toward the need for improvement in
support and directions for future research
and development efforts" for one attendee.
A presenter wrote "I got some insight into
how others are using queuing models." A
user's comment was: "Very good overview of
the state-of-the-art in applying queuing
network models to real world problems."
The second session, on applications to
design, implementation, and tuning, con-
tained presentations by three mainframe
vendors. Several users were pleasantly

surprised at "computer manufacturers
really trying to get control of matters
with novel approaches."

MODEL VALIDATION

The speakers on the second day dealt
with the issues of queuing model validation
and new queuing model implementations. A
complete list of the speakers and their
topics is provided in Appendix 1.

Cmdr. Rose discussed the various uses
of queuing network models and the problems
encountered with current measurement
devices. He obtained the current version
of the Buchholz FORTRAN jobstream from
FEDSIM and conducted many carefully
controlled benchmark experiments at the
IBM Gaithersburg facility that had been
heavily instrumented for this purpose [4].

Problems with model validations result
primarily from the fact that typical
measurement probe points and commercially
available monitors often preclude obtaining
the proper queuing network model parameters.
This situation does not necessarily mean
that achieving the capability is difficult,
but reflects the absence of a requirement
in the monitors' design specifications to

obtain model parameters. For example,
data processing centers have historically
been provided measurement devices so that
they can determine bottlenecks and equalize
CPU and I/O processor utilizations. The
installations typically measure "CPU
waiting and only channel 1 busy" and "CPU
busy and no channel busy," but these
measurements do not meet the requirements
of an analytic model.

An analytic model of a computer system
can be used to predict performance improve-
ment that might result from a proposed
modification of the existing system.
Cmdr. Rose hypothesized situations in
which a manager considered upgrading his
system and wanted to compare estimated
performance improvements to anticipated
costs. Cmdr. Rose basically ran a benchmark
program on the baseline system and validated
the model. After validation, he used the
model to predict CPU and I/O channel
utilizations for the upgraded or reconfig-
ured system. The benchmark was rerun on
the reconfigured system, and measured
utilizations were compared to the model's
predicted values. Adding a channel to an
IBM 370/155, reallocating files and adding
two channels to an IBM 370/155-2, and
adding a channel to an IBM 370/168-1

230

resulted in less than 10% variances between
predicted and measured utilizations. The
model overestimated these computers'
utilization by approximately 20% when main
memory was doubled.

Experiments with large CPU quantum in

the system worked better with a processor-
shared (PS) discipline than first-come-
first-served (FCFS) disciplines. When
smaller numbers of jobs were being proc-
essed, the reverse was true. The reason
appears to be the high level of interrupts
generated by a jobstream with many concur-
rent jobs. The high activity level effec-
tively creates a processor-shared environ-
ment.

Contrary to the expectation of the
audience, there is no requirement for
random access device motion time (seek and
latency), to calibrate the model. Station
balance was accurately reflected by using
channel service time only. The missing
time may have had an impact on predicting
the average memory use and throughput
level.

Mr. Berners-Lee described the valida-
tion process for the Jackson model he had
discussed previously. As the multiprogramm-
ing level increased, the model predicted
that all devices would increase their
utilization in proportion. Measured data
conformed remarkably well to these predic-
tions. As an aside, he mentioned that
allowing for non-integer values of multi-
programming level seemed to overcome
problems described by Cmdr. Rose, as well
as compensating for unknown or low-level
effects. A discovery he made showed that
parts of the operating system were multi-
programmed with other parts, as well as
with the user's job. Accounting for this
effect also improved the accuracy of the
model.

Mr. Wood chose a computer subsystem,
network polling control, applying workload
data to both queuing model approximations
and discrete simulation techniques. He
found that the use of actual line transmis-
sion speed as the service time for a line
discipline consistently gave erroneous
estimates of specific response time values.
However, the overall shape of the response
time curve produced by the queuing model
tracked against the simulation results, if
line service time was adjusted to account
for polling delay and polling list manage-
ment discipline.

The adjustment process was not

straightforward. The shape of the response
time vs utilization curve appeared to
resemble a high order polynomial (i.e.,
cubic), whose number of saddle points and
radius of curvature depended heavily on
the actual values of polling delay time,
polling discipline, and buffer space for
transmission blocks [5,6].

Mr. Wallack took a different position
with respect to validation of a closed
queuing network model [7]. He contended
that satisfactory accuracy cannot be
obtained for performance predictions
without including random access device
activity in the model. He ran several
benchmarks, and may have encountered a
file structure that was more sensitive to
the inclusion of device level service
times. Reaction from the audience included
speculation that for a highly utilized
system, channel utilization would be the
determining factor of response time delays.
For lightly loaded systems, device service
time anomalies would not affect system
throughput. Another observation was that
predictions of response time performance
for individual applications requiring
frequently utilized random access devices
would be inaccurate.

NEW IMPLEMENTATIONS

Mr. Giammo began the afternoon session
of queuing model implementations with a
discussion of new approaches to general
closed form solutions for queuing models [8] .

He described the problem that few queuing
formulae accept a product form solution
for traffic intensity. Using a product
form solution, he obtained a limiting
distribution. It was not necessary to
know the number of cycles between stations
or what the per-visit time to a station
was. Required was the aggregate amount of
work to be performed at each station. In
this concept, a job became an artificial
work unit for which individual characteris-
tics were no longer required. The change
of classes by jobs, and the amount of time
a job spends in a class were similarly
irrelevant pieces of data. The macro
approach to solutions for queuing network
structures facilitated the evaluations of
entire applications. The resource consump-
tions of an application were added to the
aggregate totals to determine the input on
system performance. Once the system
performance prediction was established,
applications or individual user performance
were derived by reversing Norton's collapse
theorem. To 6sti.iii3.t6 the p6rc6ntag6 contri—

bution by each user or application, the

network was expanded into all of its compo-
nent sub-networks, rescaling and allocating
traffic and service time data to conform to

the sub-network structure.

Dr. Browne summarized the benefits of

queuing model implementations. As an

overall prediction of system performance,
queuing models can achieve accuracies of

well below 10% error. They also excel at

describing the performance of subsystems
(i.e., direct access storage), and explor-
ing the importance of service time param-
eters for relative and comparative analysis.
At this time they are not effective for
analyzing operating system heuristic algo-
rithms. Their biggest value is enabling
the analyst to gain enough knowledge of the
workings of a system to understand the
performance experienced by users and adjust
it to meet a wide spectrum of service
levels. Dr. Browne described the most
recent enhancements to the ASQ queuing
model implementation [9] . These enhance-
ments consisted of a hierarchical decompo-
sition technique for the system and a

method of including the restrictions imposed
by a finite size executable memory on
system performance indices.

Dr. Sauer provided information on a

hybrid approach to performance prediction
employing both analytical models (QNET4)
and discrete simulation (APLOMB) . APLOMB
was used to verify the simplistic assump-
tions in the QNET4 models. QNET4 was used
as a subsystem model technique to provide
input to the APLOMB model of the overall
system. No connection between the models
was provided. The user must integrate the
output from each solution technique to
produce an overall result [10]

.

Dr. Agrawala discussed studies of

traffic obtained from terminals to study
the durability of the Poisson process as an
acceptable approximation to the distribu-
tion of user traffic. Invariably, the
distribution measured converged to a Poisson
process whenever more than ten terminals
were configured for the system and were
active over the same time period [il]

.

Another experiment performed by Dr. Agrawala
examined various ways of representing the
operating system in the model. The most
accurate representation of operating system
activities treated parallel processes in
the operating system as separate activities
at the job level. This finding matched
results of experiments performed by Mr.
Berners-Lee.

Dr. Goldberg wrapped up the afternoon
session by describing the use of a queuing
model implementation in three distinctly
different environments. Without providing
any detailed results, he relayed the
customer's satisfaction with the use of
the queuing model to meet the performance
product ojectives [12] .

The critiques of the second day's
sessions were equally favorable to those
of the first day. The session on validation
of queuing models was the overwhelm.ing
choice as the most popular session. Most
attendees were surprised at the amount of
validation which had been performed, and
they were pleased to hear the successes
the speakers achieved as well as the
unusual accuracy of many of the results.
Perhaps one fitting summary comment was
"these sessions are still necessary from
an educational viewpoint, but there is now
enough strong evidence to show that the
practitioner can obtain reliable results."
Another reviewer said "I was happy to see
the efforts that have taken place. The
validation of specific theoretical models
should continue, as well as the study of
the validity of our assumptions, many of
which still seem to be based on folklore."

The picture of queuing model use in
the 20th century for ADP system performance
prediction was clarified by the workshop.
During the mid-1960' s, analysts were
concerned with the throughput of primarily
batch systems. The packaged simulators
used queuing models to predict the effect
of multiprogramming on scheduling. Sub-
system analysis focused on the random
access device. Analysts of communication
systems using single server queuing models
to predict system response time treated
the host as the hub of a star network.
Some studies were done of the behavior of
operating system dispatchers in time-
sharing environments. The growth of

system and application software in the
early 1970 's changed the primary congestion
point of the system from I/O to the CPU.
Queuing models were popularized by people
studying how functions could be moved out
of the host processor and into the network.
The models were used in the operations
phase of the system life cycle to answer
more detailed design and configuration
questions. This trend increased the
concern about accuracy of these models.
Fortunately, the measurement of system
performance data was beginning in earnest.
The quantity of data provided a basis to

calibrate the models and determine their
accuracy

.

232

This present information technology is

heading toward the development of complex
computer-communications networks. Today,
there are many permutations and combinations
of alternative system structures capable
of meeting the requirements of an organiza-
tion. Queuing network models will be an

I

increasingly valuable tool for the study of

current and future systems, because they

can be used to quickly search through many
possible system approaches and find those
solutions which are most cost-effective.

ACKNOWLEDGEMENTS

Thanks to Gerald D. Stocks, Registra-
tion Chairman, Linda Glaza, Terry Hammer
and Sylvia Mabie for their excellent efforts
to successfully organize the workshop.

REFERENCES

[1] B. Avi-Itzhak and D. P. Heyman,
"Approximate Queuing Models for Multipro-
gramming Computer Systems," JORSA 21-6,

Dec, 1973, pp. 1212-1230.

[2] C. M. Berners-Lee, "Four Years
Experience with Performance Methodology for

System Planning," proceedings of Computer
Performance Evaluation session, EUROCOMP
1976 , Sept 1976, pp. 165-187.

[3] L. Bronner, "An Introduction to

Capacity Planning," IBM Washington System
Center Technical Bulletin GG-22-9001-00,
January 1977.

[4] C. A. Rose, "Measurement and Analysis
for Computer Performance Evaluation," PHD
Dissertation, George Washington University,
Sept 1975, available from University Micro-
film, Ann Arbor, MI.

[5] J. P. Bricault and I. Delgavis, "An
Analysis of a Request-Queued Buffer Pool,"
IBM Systems Journal

, Vol.5, No. 3, 1966,

pp. 148-157.

[6] J. H. Chang, "Terminal Response
Times in Data Communications Systems," IBM
Journal of Research and Development , Vol,

19, No. 3, May 1975, pp. 272-282.

[7] D. P. Gaver, "The Construction and
Fitting of Some Simple Probabilistic Comput-
er Models," Naval Postgraduate School
Technical Report No. 55GV75011, January
1975.

[8] T. Giammo, "Extensions to Exponential
Queuing Network Theory for Use in a Plan-
ning Environment," distributed at the Queuing

Model Workshop, unpublished.

[9] R, M. Brown, J. C. Browne, and K. M.

Chandy, "Memory Management and Response
Time," Communications of the ACM , Vol. 20

No. 3, March 1977, pp. 153-165.

[10] C. H. Sauer, M. Reiser, and E. A.

MacNair, "A Package for Solution of Genera-
lized Queuing Networks," Proceedings of NCC

77,, Vol. 46, pp 977-986.

[11] A. Agrawala and R. N. Brown, "On
the Behavior of Users in the MEDLINE System,
University of Maryland, Department of

Computer Science Technical Report, May
1973.

[12] J. P. Buzen, "Principles of Computer
Performance Modeling and Prediction,"
Infotech State-of -the-Art Report on Perform-

ance Modeling and Prediction , April 1977.

APPENDIX 1: FINAL AGENDA

MONDAY, 7 MARCH

Welcoming remarks - Mr. Philip Kiviat
USAF, FEDSIM, Washington, DC

I. INTRODUCTION

Mr. Mitchell Spiegel
USAF, FEDSIM, Washington, DC
Historical Overview of Queuing Model
Applications

II. APPLICATION OF QUEUING MODELS TO

FEASIBILITY AND SIZING STUDIES

Capt. Ed Askland/Capt . Larry Davis
USAF, AFDSDC, Montgomery, AL

Air Force Base Level Burroughs 3500
Sizing

Capt. Sam Pearson
USAF, FEDSIM, Washington, DC

A Communications Network for the

Navy

Dr. Lindsay Wang
SAI, Arlington, VA
Feasibility Study of a Brokerage
Network

Panel Discussion

III. APPLICATION OF QUEUING MODELS TO

SYSTEM DESIGN AND PERFORMANCE
MANAGEMENT

Dr. Lindsay Wang
SAI, Arlington, VA

233

Design of a Distributed Network

Mr, Conway Berners-Lee
ICL, London, UK
George III System Monitoring and

Modeling Utility

Ms . Ann Dowdy
Mobil Oil, Houston, TX
Use of Queuing Models for Configuring
Large Scale Systems

Dr. Leeroy Brenner
IBM, Gaithersburg, MD
Capacity Planning with Queuing
Models

Mr. John Day
Burroughs, Goleta, CA
Designing -Large Scale Systems Applica-
tions Using MAIDENS

Panel Discussion

TUESDAY, 8 MARCH

IV. QUEUING MODEL VALIDATION

Cmdr. Cliff Rose
NAVY, NELC, San Diego, CA
Problem of Validation and Inadequacy
of Measurement Tools

Mr. Conway Berners-Lee
ICL, London, UK
Validating Queuing Models that
Predict Operating System Performance

Mr. Jim Wood
R.L. Deal, Rosslyn, VA
Queuing Model Validation of a Commu-
nications Network Using a

Discrete Simulator

Mr. Barry Wallack
DCA, Washington, DC
Validation of Analytical Models for
H6000

Panel Discussion

V. NEW QUEUING MODEL IMPLEMENTATIONS

Mr. Tom Giammo
HEW, Baltimore, MD
New Theory and Its Implication for
Queuing Model Implementations

Dr. Jim Browne
University of Texas, Austin, TX
Current ASQ Implementation

Dr. Charles Sauer
IBM, Yorktown Heights, NY
RESQ (QNET4)

Dr. Ashok Agrawala
University of Maryland, College
Park, MD
Workload Characterization for Queuing
Models

Dr. Robert Goldberg
BGS Systems, Lincoln, MA
BGS Systems BEST/1 Computer Perform-
ance Evaluator

Panel Discussion

234

A SIMULATION STUDY
OF INITIATOR/TERMINATOR POLICY IN OS/MVT

E. Fiegl and N. Schneidewind

Naval Postgraduate School
Monterey, California 93940

An initiator is a task in IBM's OS/MVT which selects a job for
execution and attempts to obtain the main storage, file space and
devices which are necessary for job execution. A related task, the
terminator releases these resources upon completion of the job. The
order in which job classes are served by an initiator from the job
queue is determined by the order of assigning job classes to an
initiator. Initiators and their job class assignments are specified
by the operator with start initiator commands at the console. The
number of initiators started and the job class assignments significantly
influence system performance. The number of initiators corresponds
to the maximum degree of multiprogramming available. Hov;ever, too
many initiators could be detrimental to system performance because
an initiator and terminator consume main storage during the execution
of their functions. If the job input rate is low and there are many
initiators, resources will be wasted. On the other hand, if the job
input rate is high and there is an insufficient number of initiators,
a large job queue will develop.

Key words: IBM OS/MVT; initiator policy; job scheduling; simulation.

1 . Overview

The model simulates the main functions
of the IBM OS/MVT Job Management routines.
In general, the overall structure of the
operating system is reflected in the
structure of the model, but since OS/MVT is

a very complex system some simplifications
and limitations are necessary. They are
described in the following parts

.

The purpose of the model is to test
different initiator strategies under certain
job loads and operating conditions. To
achieve this goal the number of Initiators
(up to 15) and their associated job classes
(up to 8 per Initiator) can be varied during
the simulation. The model also allows im-

portant system parameters (size of main
memory, input spool space, number of I/O
devices, etc.) to be entered. By varying
these parameters, the simulation program

can be tailored to a certain extent to a

given environment.

The job stream used during the simula-
tion is generated by a job-generating module.
This module can be modified to allow genera-
tion of job streams with different character-
istics. Some statistical routines collect
and print statistical and performance data
upon user request

.

A special problem is the simulation of
the time used by Job Management routines, by

other system tasks, and by the different user
jobs. The basic time measurement in the

model is elapsed step run time. This is the
wall clock time counted from the beginning
of step initiation to the end of step termi-
nation. The elapsed job run time is the sum
of all elapsed step run times of a job. In-

cluded in this time is the CPU time used by
the job, the time waiting for I/O, as well

235

as the time used by the Job Management
routines and other system tasks. Since the

elapsed step run time has a range of one

second to several minutes, one second is

used as the basic time unit in the simulation
model

.

The programming language PL/1 was chosen
as the simulation language for several
reasons

:

1) it is a block-structured language;
2) it allows good data structuring;
3) it is easy to use for I/O routines;
4) it is well supported at the Naval

Postgraduate School (NPS) , where the
model was developed.

In addition, PL/1 allows nearly un-
restricted variable names. This makes the
program more readable and self-documenting.

A functional overview of the simulation
model is given in Figure 1.

2. Supervisor Module

The supervisor module initializes and
drives the entire simulation program. When
it calls the initialization and modification
routines, the user may enter the following
parameters

:

1) system modifications
a) main memory (high address)
b) main memory (low address)
c) number of disk drives
d) number of tape drives
e) amount of input spool space
f) amount of public direct access

space)

2) run parameters
a) number of jobs to be read
b) simulation time
c) job stream modifications

3) Initiator modifications
a) number of active initiators

(up to 15)

b) associated job class (es) for
each initiator

4) trace parameters
a) simulation trace
b) map of main memory usage
c) statistics gathering

After these parameters are entered the
timer module gets control. This module
checks the simulation time table, which
contains the times when the Reader and each
active Initiator need attention. The timer
always calls the next module, which is
responsible for updating the attention time.
This process is terminated when the simula-
tion time or the input job stream is ex-

hausted, whichever comes first.

At the end of each simulation step the
user has the choice to stop or restart. If
restart is chosen he may run the simulation
with the same or new parameters

.

3. Reader Module

It is assumed that the Reader is active
during all simulation steps and that it re-
sides in the upper part of the dynamic area
in main memory. The user must note the
amount of core used by the Reader when enter-
ing the main memory high address parameter.

During the initialization phase the job
generating module places the requested number
of jobs and their characteristics into the
input job stream and also sets the time of
the first job arrival into the simulation
time table. When the Reader is called by
the timer module it takes the next job from
the input stream and enqueues it according
to its class and priority into one of the
job input queues. Then the Reader deter-
mines the time of next job arrival and
places this time into the simulation time
table as its new attention time.

If the input spool space is exhausted,
the reading and enqueuing of jobs is de-
layed until another job terminates and
enough spool space becomes available. Since
the supervisor ends the simulation run after
the requested number of jobs has been read,
the Reader will never be called when the job
stream has been exhausted.

4. Initiator Module

The Initiator module simulates the
functions of job selection, waiting for work,
region management, device allocation, data
set allocation, direct access space alloca-
tion, step termination, and job termination.
All information necessary to perform these
functions is maintained in an Initiator
table. Since the dimension of this table
is 15 it is possible to run 15 Initiators
concurrently. Each Initiator updates its
time of next attention in the simulation
time table.

4.1. Job 'selection and Waiting for Work

An Initiator can be associated with up
to 8 different job classes. To find the
next job the input queues are searched in
the order in which the classes were assigned
to Initiators by the user.

If there is no job of the appropriate

236

class in the queues, the Initiator releases
its region and is put into a "wait for work"
state. This state is kept until a new job
arrives. Then the Initiator gets a new
region of a pre-defined minimum size and the

queues are searched again. If a job is

found it is dequeued and associated with its

Initiator for further processing.

4.2. Region Management

When a job is selected the region size
of its first step is determined and the
region currently used by the Initiator is

released. The new region is allocated from
the top of the dynamic area in main memory.
If insufficient continguous core is avail-
able, the Initiator is placed in a "wait for
core" state. It is activated again for a

new region allocation when another job ends
and some core is released. The region man-
agement routines are called at the beginning
of each job step.

It is assumed that the size of the
dynamic area is fixed during the simulation.
However, the user must set the upper and
lower addresses. He can account for the
size of the system queues by setting the
appropriate lower address. He must also
account for the amount of storage used by
system tasks, by Reader (s) , Writer(s) and
other permanent programs by setting the
appropriate upper address.

4.3. Device Allocation

In general, the allocation of I/O devices
and I/O channels is not simulated in the
model. Most devices are physically shareable
(data cell, disks) or are made shareable
using spooling techniques (card reader

,

printer, plotter) . Evaluation of system
logs has shown that normally all requests to
such devices can be satisfied by the system
immediately. The time overhead required for
selection, allocation, and spooling is in-

cluded in the elapsed run time of each job
step.

However, this simplification is not
valid in the case of tape drives and disk
drives with removable disk packs. The al-
location of these devices sometimes requires
operator interaction or causes long addition-
al waiting times until a requested tape or
disk drive becomes available.

The device allocation routines handle
the tape and disk requests of each job step.
If a device is not available, an operator
interaction is simulated. The operator
answer could be "cancel" or "wait." In the

first case the whole job is abended; in the
second case the Initiator is put into a

"wait for device" state. Whenever another
job terminates the device allocation routines
are activated again until all outstanding
device requests can be satisfied for the
current job step. In order to avoid long
waiting times, all jobs which request more
devices than are installed in the system are
abended.

The type of operator answer ("cancel" or
"wait") and his response time are drawn from
a probability distribution.

The number of tape and disk drives can
be set by the user, thus tailoring the simu-
lation model to his needs.

4.4. Data Set Allocation

Only those data set allocations are of

interest which require operator interaction,
thus causing additional waiting time. It is

assumed that for every requested tape and
disk drive an appropriate volume has to be

mounted. By placing the Initiator into a

"wait" state, the data set allocation routines
simulate the time needed by the operator to

perform the mounting.

Independent of mounting requests are
verification requests. Some data sets re-
quire an operator response to verify that a

user is authorized to access a data set.

This case is also simulated by the data set
allocation routines. Since, for the model,
the operator response time is of greater
interest than the reason for an operator in-

teraction, this case could also be used to

account for any additional operator request
which is otherwise not covered (channel

separation request, etc.).

The response time for mounting disks, .

mounting tapes, or answering other requests
is drawn from a probability distribution as

described earlier for the device allocation
routines. Also the possibility of job

cancellation is included in the model.

4.5. Direct Access Space Allocation

Only the allocation of temporary space
on public direct access devices is simulated.

The total amount of public space within the
system can be set by the user. If a space
request of a job step cannot be satisfied
the space allocation routine checks if there
are other job steps active. If not, the
current job will be abended, since its

request can never be granted. Otherwise
the Initiator is placed into a "wait" state

237

until another job ends which might release
some temporary space on public direct access
devices

.

4.6. Step and Job Termination

At the end of a step all requested
disks and tapes are released and given back
to the system. Temporary space on public
direct access devices, hov^ever, is kept until
job termination. If there is another step
to process, control is given to the region
management routines to start the next step.

At normal job temination as well as in
case of job abending all system resources
(tapes, disks, public direct access space,

and input spool space) are released. The
Initiator table is cleared and a new job can
be selected. Job termination is also posted
tc the Reader which might be waiting for in-
put spool space and to other Initiators
which are in a state of waiting for system
resources

.

5. Writer Module

Spooled system output only is assumed
for this simulation. This means that the
Writer works independently from and con-
currently with the Reader and Initiators.
Since the amount of overhead due to multi-
programming with the Writer is already in-
cluded in the elapsed job run times, no
Writer function has to be simulated. How-
ever, as mentioned earlier the user must
deduct the core size used by the Writer
from the top of the dynamic area in main
memory

.

6. Statistical Module

Several statistical routines gather
Initiator performance data. These data are
maintained in a statistical table which can
be written on a file upon user request.
This file must then be processed and eval-
uated by a separate evaluation program.

As a second choice the user can request
a simulation trace. Similar to the logs at
the operator's console, all important events
(job starting, job termination, initiator
waiting for work, mount requests, etc.) are
printed out. As a third choice a map show-
ing the utilization of main memory at the
end of each simulation step can be printed.

7. Source of Data

To drive the simulation model certain
information about input job stream character-
istics, system configuration, operator

response times, etc., were necessary. To
gather these data four main sources were
used.

The first source was the IBM 360/67
computer center at the Naval Postgraduate
School. An overview of the hardware con-
figuration is given in Table 1; the job class
definitions and the priority policy are
listed in Table 2. With the installation
of the HASP spooling system in September/
October 1976, the Quickrun class was re-
placed by the input class 0, which was
restricted to jobs using certain catalogued
procedures only, using up to 180K of core
and up to 20 seconds of CPU time. These
restrictions were nearly the same as for the
old Quickrun class, but since some changes
were made in the catalogued procedures,
about half of all old class A jobs together
with nearly all old Quickrun jobs would now
qualify for the new class 0. For the vali-
dation runs the characteristics of the old
Quickrun class were simulated.

The second source was data collected
from the System Management Facility (SMF)

routines. These routines gathered statistics
about every job processed by the computer
system. Contained therein were: job name,
job class, job priority, job arrival time
and date, job starting time and date, job
completion code, number of input cards,
number of job steps, requested and used
core per step, CPU time per step, elapsed
time per step, sysout records per step, etc.

Only SMF data of the period from Feb-
ruary to August 1976 were usable for the
purpose of this study. Before this time
period a completely different job class and
priority specification was in effect. After
this period some parameters used for the
simulation model were no longer recorded due
to the change to the HASP spooling system.
SMF tapes of April, May, and August 1976,

containing data of about 75,000 jobs, were
therefore evaluated.

As a third source the complete set of
system logs of August 1976 was available and
used to extract certain parameters. These
parameters included the number of Initiators
and their associated job classes, the number
of other system tasks active at the same
time, and upper and lower addresses of the
dynamic area in main memory.

Since the SMF tapes did not provide
information about usage of tapes and disks,
the system logs were also used to count the
number of tape and disk mount requests and
to evaluate data such as operator mounting

238

IBM 360/67 at NPS Effective 1 February 1976

No. Unit Description Job Class Definitions

2 2067-2 Processing Unit
1 2167-4 Configiiration Control Unit
2 1052-7 Console Typewriter
2 2860-2 Selector Channel
2 2870-1 Multiplexor Channel

3 2365-12 Processor Storage (256K Bytes
each)

5 MM365-12 Core Storage (256K Bytes each)
- Lockheed

1 2820-1 Drum Control
1 2301-1 Drum Storage {4M Bytes)

3 2841-1 Disk Control
8 2311-1 Disk Drives (7.25M Bytes each)

1 2314-1 Disk Unit (8 Drives, 29M Bytes
each)

2 5314 Disk Control - Plotter
16 4314 Disk Drives - Plotter (20M

Bytes each)

1 2321-7 Data Cell (400M Bytes)

1 3803-1 Tape Control
5 3420 Tape Drives
1 2803-1 Tape Control
2 2402-1 Tape Unit (2 Drives each)

1 2821-1 Control Unit
1 2821-2 Control Unit
2 1403-Nl Printer
1 2501-B2 Card Reader
1 2540-1 Card Reader/Punch
1 110 Plotter Control - CALCOMP
2 765 Plotters - CALCOMP

1 2702-1 Transmission Control Unit
(30 Ports)

24 2741 Communication Terminals
8 Video Display Units (assorted

vendors

)

1 2250-1 Graphic Display Unit
1 Tek4012 Display Terminal - Tektronix
1 Tek4610 Hard-Copy Device - Tektronix
1 PIX Paradyne PIX/Remote Job Entry
1 2701 Data Adapter Unit (with PDA)

Table 1. System Hardware at NPS

times, operator response times to other
system requests, and the number of job
cancellations by the operators.

Last, but not least, the operators
themselves and other members of the computer
center staff at NPS provided some valuable
input for the collection and evaluation of
system parameters

.

Class Region Time Tape/Jobstep

Q OUICKRUN none
A IBOK 20s none
B 18 OK 2m < 2

C 250K 5m 1 2

D 250K 5m < 2

E 350K 5m <_ 2

F 400K 30m none
J >400K >30m none
K >400K >30m any

Comments

:

1. Execution in each class will be on
First-come First-served (FCFS) basis

2. Classification scheme ignores SYSOUT
and SYSDA requirements. Printing
priority is considered separate from
execution priority and is based on
the actual number of lines generated

Table 2. Job Class Definitions at NPS

8. Job Stream Characteristics

Very important for an effective simu-
lation run were parameters which character-
ized the input job stream. Members of the
computer center staff and students had
analyzed the input job stream at the NPS
computer center. But since these studies
were based on jobs rather than steps, as

required by the simulation model, these
studies were not usable and a new evaluation
had to be made

.

Most of the job characteristics were
extracted from the SMF tapes. When working
with these tapes a few problems arose.

There was no class D job observed and the
number of J and K class jobs was very small.
In addition some jobs in undefined job
classes were present. An explanation for
this was that the operators used to start
one Initiator with an undefined job class.
Then they reset jobs from classes J and K
and the very few jobs from class D, and
selected these manually for initiation.
For the simulation model, classes D, J, K,

and all undefined classes were collected
into one class K.

Also some jobs used more core than
allowed by their job class. The explanation

239

again was that operators reset jobs from one

class to another. During the evaluation
these jobs were filtered out and added to job
class K.

Elapsed time and core used were not re-
corded for the Quickrun jobs. Since these
jobs had the same time and core restrictions
as class A jobs (core up to 180K, CPU time

up to 20 sec.) , the class A distribution was
assumed

.

To obtain relatively stable, but still
representative data the time period from
10 a.m. to 5 p.m. each day was selected.
The data collection was further restricted
to those days with more than 500 job arrivals
within this time. 47 days of the months of

April, May, and August 1976 met these require-
ments. Figure 2 gives a histogram of job
arrivals in April 1976. With this approach
untypical conditions which occur at night
and on weekends and holidays were eliminated.
Although the time of observation covered
only about 15% of the total hours within the
three-month period, 25,532 or more than one
third of all job arrivals were included.

To obtain the distribution of job
arrivals a 2-hour period in each month was
selected at random and the arrivals per
minute were counted. As shown in Table 3

in each job class the distribution was very
close to a Poisson distribution. In fact,

the observed values easily passed a 95 per-
centile chi-square test to match the theoret-
ical values. Thus for the job arrivals in
the simulation model a Poisson distribution
with exponentially distributed interarrival
times was used. The mean job arrival rate
was 9.294 jobs per minute.

Other parameters evaluated from the SMF
tapes were distribution of job classes,
number of steps per job, number of input
cards per job, core used per step, and
elapsed time per step. Histograms are
given in Figures 3 through Figure 7.

It was felt that the distribution of
elapsed step time might be approximated by
a Gamma or possibly a Weibull distribution.
Although a great amount of work was spent to
match the observed values with those theoret-
ical functions, no relationship could be
found.

In the simulation model the amount of
public direct access space was one input
parameter. The storage of system output
records was only one part of this space, but
other data were not available. An evaluation
of the job completion codes, however, showed

that within the observed time periods no job
abended because of lack of public direct
access space. Thus for the simulation runs
no public direct access space was requested.

The number of disk and tape mount re-
quests and the number of other system re-
quests were evaluated from the system logs
of August 1976. Only the total number of
requests could be counted, but information
about the associated job classes was not
available. For the simulation model it was
assumed that the probability of requests
was the same for all job classes.

Class A Class B Class C

i
F
o !th

F
o !th

F
o !th

0 67 66.41 88 87.43 105 104.15
1 39 39.29 26 26.69 13 14.75
2 11 11.62 6 4.38 2 1.05
3 2 2. 29 0 0.46 0 0.05
4 1 0.34 0 0. 04 0 0. 00

5 0 0.04 0 0. 00 0 0.00

Class E/F Class K Class QR

F F , F F F F
,

1 o th o th o th

0 118 118 01 109 109 49 106 105 02

1 2 1 97 11 10 04 12 14. 00

2 0 0 02 0 0. 46 2 0. 93

3 0 0 00 0 0 01 0 0. 04

F : observed number of 1-min. intervals
wxth 1 arrivals

F^j^: theoretical number of 1-min. intervals
with i arrivals assuming Poisson
distribution

Table 3. Distribution of Job Arrivals

9. Operator Response Times

The system logs were also used to

evaluate the operator volume mounting times,

their response times to other system re-

quests, and the number of jobs cancelled by

the operators because a request could not be

satisfied. One problem for the evaluation
was the fact that the system requests had no

time stamps. In most cases the time could

be estimated within a 10-second range from

other system messages with time stamps just
above and below the request messages. For

tape and disk mounts there were also no

direct operator answers on the system logs,

but in a certain number of cases the actual
mounting time could be estimated from other

system messages. Here again only those cases
were evaluated where the estimation could be
made within a 10-second time range. Using
this approach a total of aboi:t 700 operator
response times could be used. A histogram
of the probability distribution per job
step, separated into the cases for tape
mount, disk mount, and other system requests,
is given in Figure 8.

The relatively high probability of short
reaction times to tape and disk mount re-
quests came from the fact that the requested
volumes were already pre-mounted and the

devices had only to be varied on-line.

The number of jobs cancelled by the
operators because a request could not be
satisfied could be counted exactly: 49 jobs
or 1.31% out of 3,735 jobs.

10. System Parameters

The following system parameters were
used to tailor the simulation model to the
environment at the Naval Postgraduate School
as it was available to the user during the
time period April to August 1976:

1) number of tape drives: 9;

2) number of disk drives: 3;

3) amount of input spool space:

45,000 card images;

4) amount of direct access space:
100 records;

5) main memory (high address) : 1140K;

6) main memory (low address) : 140K.

11. Validation

In order to show the usefulness and
validity of the simulation model it was
parameterized to match the characteristics
of the computer center installation at the
Naval Postgraduate School. The parameters
used for input job stream characteristics,
system configuration, and operator response
times were mostly the same as described in
the previous chapter . The outcome of the
simulation runs could be compared with data
observed from the actual system.

An unexpected problem arose when search-
ing for console log data which could be com-
pared with simulation results. Within
August 1976, the only month for which both
SiVIF tapes and system logs were available,
there were 15 days which qualified for use
in the model (more than 500 job arrivals in
the period from 10 a.m. to 5 p.m.). At
first this seemed to be a sufficient number
of days to choose from, but a more detailed
examination showed that none of these days
could be used. For each day there was either
system down time, or the operators held the
queues up to 50 minutes, or both. In addi-
tion, the operators reset up to 40 jobs
daily from one class into another or changed
job priorities. The longest continuous time
interval without down time, or queue hold,
or with few resets was 4.5 hours. It was
observed from 10:00 a.m. to 2:30 p.m. on
August 16, 1976. This was a rather short
time period for validation purposes, but for

lack of better data it had to be used.

The actual number of disk drives in the
system was much higher (see Table 1) , but
without special arrangements only three were
free for general users. Also only five of
the eight core boxes were routinely avail-
able for OS/MVT.

Assuming a mean of 300 input cards per
job the amount of 45,000 card images was
equivalent to the current system spooling
capacity of about 150 jobs.

As mentioned earlier the direct access
space was not used as a parameter for the

simulation runs. Thus the number of 100
records had no meaning

.

The job arrival rate (1.2407 jobs per
min.) and the job class distribution (see

Table 4) within this time interval differed
significantly from the values observed over
the three-month period. The appropriate
modification in the simulation model was
made

.

Class: A B C E F

Prob.: .3403 .1940 .1045 .0179 .0149

Class: K QR

Prob.: .0716 .2567

The upper and lower addresses of main
memory were the bounds of the dynamic area.
These bounds varied depending on the load on
the system. The values of the bounds used
were mean values observed from the system
logs.

Table 4. Distribution of Job Classes
(Validation Runs)

Table 5 shows the usage of Initiators
and their associated job classes during the
validation runs. This set-up differed only
in two minor points from the actual usage.

241

class 0 in the validation runs represented
the old Quickrun class and class K was used
in the validation runs instead of class M.

TIME

Initiator 10:00 12:00 12:18 14:30

1 OAB OAB OAB OAB
2 OAB OAB OAB OAB
3 OABC OABC OABC OABC
4 OABC OABC OABC OABC
5 OABCE OABCE OABCE OABCE
6 K KABFEC KABFEC KABFEC
7 AB AB

Table 5. Initiator Usage {Validation Runs)

Forty validation runs with different
input job streams were made. A comparison
between the actual values and the mean
values from the simulations is given in

Table 6. More jobs were started in some
classes than arrived because the queues were
partly filled with jobs which had arrived
during the previous hour.

The ratio of jobs started to jobs

arrived observed from the evaluation runs
was very close to the actual ratio for the
job class 0 (=Quickrun) and for the total.
Good results were also obtained for classes
A, B, and C. Since the sample size for

classes E and F was small the results were
meaningless. Class K results were not re-

presentative since in the actual system
class M was used for K class jobs and these
jobs were selected by the operator.

Due to lack of more usable data no
further comparison against actual system
performance could be made. The small sample
size available for this kind of validation
did not allow a definitive statement about
the accuracy of the results.

Numerous additional validation runs
have been made to check individual components
of the model (region management, device
allocation, etc.) and to test boundary condi-
tions (limitation in number of devices, core
size, etc.). All of these runs showed the
expected results.

However, one unusual result was ob-
served. Although the job arrival distribu-
tion generated by the simulation model
closely approximated the desired distribution
for a sample size of 10,000 jobs, the job
arrival rate for the first 600 jobs was al-
ways too high for a given seed. To overcome
this anomaly a new feature was added to the

242

model . Upon user ' s request the seed for the
random number generator was modified by the
value of the computer clock. It was then
possible to change the seed at random. When
this feature was used in additional simula-
tion runs the unusual statistical pattern was
no longer observed.

Since the future use of the simulation
model is to compare the relative merits of
different Initiator strategies rather than
to predict absolute performance, it was
sufficient to assure that the principal
characteristics of the Job Management func-
tions were reasonably well simulated. The
results so far demonstrate the correct
functioning of the simulation model.

Bibliography

1. Afifi, A. A. and Azen, S. P., Statistical
Analysis, A Computer Oriented Approach ,

Academic Press, 1972.

2. Barron, D. W., Computer Operating Systems ,

Chapman and Hall Ltd., 1971.

3. Browne, J. C. , Lan, J. and Baskett, F.,

"The Interaction of Multiprogramming Job
Scheduling and CPU Scheduling," Pro-
ceedings of AFIPS FJCC , Vol. 41, Part 1,

p. 13-22, 1972.

4. Colin, A.J.T., Introduction to Operating
Systems , American Elsevier Inc. , 1971.

5. Cuttle, G. and Robinson, P.B. , Executive
Programs and Operating Systems , American
Elsevier Inc., 1970.

6. Flores, I., Computer Programming System/
360 , Prentice-Hall, 1971.

7. Flores, I., Job Control Language and File
Definition , Prentice-Hall, 1971.

8. Flores, I., OS/MVT , Prentice-Hall, 1973.

9. Freeman, P., Software Systems Principles ,

Science Research Associates, 1975.

10. Hoare, C.A.R. and Perrot, R.H., Operating
Systems Techniques , Academic Press, 1972.

11. IBM System/360 Operating System: Intro-

duction , 5th ed., IBM, 1972.

12. IBM System/360 Operating System: MVT

Guide , 6th Ed., IBM, 1974.

13. IBM System/360 Operating System: MVT
Job Management, Program Logic Manual ,

10th ed. , IBM, 1971.

14. IBM Systein/360 Operating System: MVT
Supervisor , 7th ed. , IBM, 1972.

15 . IBM System/360 Operating System ;

Operator's Reference, OS Release 21.7 ,

4th ed. , IBM, 1974.

16. Katzan, H., Jr., Computer Organization
and the System/370 , Van Nostrand
Reinold, 1971.

17. Katzan, H. , Jr., Operating Systems ,

Van Nostrand Reinold, 1973.

18. Katzan, H. , Jr., Information Technology ,

Petrocelli Books, 1974.

19. Madnick, S.E. and Donavan, J.J.,
Operating Systems , McGraw-Hill Book Co.

,

1974.

20. Sayers, A. P., editor. Operating Systems
Survey , Auerbach Publishers, 1971.

21 . User's Manual, W. R. Church Computer
Center , 2nd ed., Naval Postgraduate
School, Monterey, California, 1974.

Actual Data:

Classes

A B C E F K OR

A: 114 65 35 6 5 24 86

S: 126 63 32 0 3 9 86

R: 1.105 .969 .914 .000 .600 .375 1. 000

Validation Results:

Classes

A B C E F K QR

A: 127 69 40 5 7 29 77

S: 131 71 39 3 1 20 77

R: 1.027 1.019 .968 .621 .157 .711 l.OOE

335

319

354

A: Number of jobs arrived

S: Nimiber of jobs started

R: Ratio jobs started to jobs arrived

Table 6. Validation Results

243

Init,

Modify

I

<r.Syfltem_Mooi^ <^ Initiator Mod.

<^Rmi Parana. <^ Trace Param.

Job Gen. <^Job Mod

.

Timer

X
Initiator 1

Statistics

Write
Statistics

X
Restart <^Restart Parain]

Q Stop^^

Trace

,

Core Mai

Figure 1. Structure of the simulation model.

244

JA

700
April 1976

500

300

100

10 20 30 day

JA: Number of job arrivals between 10 a.m. and 5 p.m.

Figure 2. Job arrivals (April 1976).

Cia EE

pro b .

;

A

366U

B

,2 168

C

. 1254

E

out! . 0 1 1 u 0515 2175

Figure 3. Job class distribution.

245

prob

.6

prob

.6

class A class QR

0 ^ ' ' ' '

—

r—t—i—r—r—I—I ^ i—i

—

*—t
1 3 5 7 9 steps 13 steps

Figure 4. Histogram: job steps per class.

prob

.

.4

.3

class A

"400 80C cards

Figure 5. Histogram: input cards per job.

246

prob

.

.6

class A min. core: 62K
max. core: 180K

60
n r-i p
120 180 K core

prob

.

.10-

Figure 6. Histogram: core used per step.

class A

.05

100 200 300 400 sec.

Figure 7. Histogram: elapsed step run time.

247

h

prob

.

.21

.1

HI

Tape Mount
Requests

1

120 240 360 480 sec

prob

.

.2^

.1^

!

Disk Mount
Requests

0 120 240 360 480 sec.

Other Requests

I I I I I I I I n
I

I I I I
I

I I r I 1 I I I I I

0 120 ' 240 ' 360 480 ' 600 '720 sec

Figure 8. Histogram: operator response times.

248

«tlBS-114A (REV. 7-73)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

L PUBLICATION OR REPORT NO.

NBS SP 500-18

2. Gov't Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

COMPUTER SCIENCE & TECHNOLOGY:
Computer Performaxice Evaluation Users GrQup

CPEUG
13th Meeting

5. Publication Date

September 1977
6. Performing Organization Code

7. AUTHOR(S)

Editors: Dennis M. Conti and Josephine L. VJalkowicz
8. Performing Organ. Report No.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP)

Same as No. 9.

13. Type of Report & Period
Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 77-6OOO4O

j 16. ABSTRACT (A 200-word or less factual summary ol most signilicant information. If document includes a significant

I

bibliography or literature survey, mention it here.)

The Proceedings record the papers that were presented at the Thirteenth Meeting of the

Computer Performance Evaluation Users Group (CPEUG) held October 11-14, 1977 in New

Orleans. The technical presentations were organized around the three phases of the

ADP Life Cycle: the, Requirements Phase (workload definition), the Acquisition Phase

(computer system and service selection), and the Operational Phase (performance

measurement and prediction methods). The program of CPEUG 77 is also included and

serves as a Table of Contents to the Proceedings .

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper

name; separated by semicolons)]
-j fe cycle', computer performance evaluation; computer per-

formance measurement; computer performance prediction; computer system acquisition;

conference proceedings; CPEUG; hardware monitoring; on-line system evaluation;

predirtinn mpthods; queuing models; simulation; software monitoring ; workload definitiofi

18. AVAILABILITY |X] Unlimited

For Official Distribution. Do Not Release to NTIS

I X I
Order From Sup. of Doc, U.S. Government Printing Office
Washington, D.C. 20402, SD Cat. No. CI ^lOt 500-18

I I
Order From National Technical Information Service (NTIS)

,
Springfield, Virginia 22151

19. SECURITY CLASS
(THIS REPORT)

UNCL ASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

241

22. Price

$ 4.00

USCOMM-DC 29042-P74

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

n U. S. GOVERNMENT PRINTING OFFICE : 1977 244-785/6557

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau
of Standards research and development in physics,

mathematics, and chemistry. It is published in two
sections, available separately:

• Physics and Chemistry (Section A) <^
Papers of interest primarily to scier* orking in

these fields. This section covers a br .ige of physi-

cal and chemical research, wit*- ^r emphasis on

standards of physical measu'- ^ i'* , fundamental con-

stants, and properties of m^ ^<v*'.dsued six times a year.

Annual subscription: D- ^^\0^., $17.00; Foreign, $21.25.

• Mathematical Sci*^ ^^<v<> ..Section B)
Studies and com"- .is designed mainly for the math-
ematician and .Q<v*<;tical physicist. Topics in mathemat-
ical statis*^^c;^^^.leory of experiment design, numerical
analysi" ^JP ^retical physics and chemistry, logical de-

sign ^ programming of computers and computer sys-

t'^Q^^jnort numerical tables. Issued quarterly. Annual
sv^ ocription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bulle-

tin)—This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,

students, and consumers of the latest advances in

science and technology, with primary emphasis on the

work at NBS. The magazine highlights and reviews
such issues as energy research, fire protection, building

technology, metric conversion, pollution abatement,
health and safety, and consumer product performance.
In addition, it reports the results of Bureau programs
in measurement standards and techniques, properties of

matter and materials, engineering standards and serv-

ices, instrumentation, and automatic data processing.

Annual subscription: Domestic, $12.50; Foreign, $15.65.

NONPERIODICALS

Monographs—Major contributions to the technical liter-

ature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and
industrial practice (including safety codes) developed
in cooperation with interested industries, professional

organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences
sponsored by NBS, NBS annual reports, and other
special publications appropriate to this grouping such
as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, man-
uals, and studies of special interest to physicists, engi-

neers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific

and technical work.

National Standard Reference Data Series—Provides
quantitative data on the physical and chemical proper-
ties of materials, compiled from the world's literature

and critically evaluated. Developed under a world-wide
program coordinated by NBS. Program under authority
of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for

these data is the Journal of Physical and Chemical
Reference Data (JPCRD) published quarterly for NBS
by the American Chemical Society (ACS) and the Amer-
ican Institute of Physics (AIP). Subscriptions, reprints,

and supplements available from ACS, 1155 Sixteenth

St. N.W., Wash. D. C. 20056.

Building Science Series—Disseminates technical infor-

mation developed at the Bureau on building materials,

components, systems, and whole structures. The series

presents research results, test methods, and perform-

ance criteria related to the structural and environmental
functions and the durability and safety characteristics

of building elements and systems.

Technical Notes—Studies or reports which are complete

in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so compre-
hensive in scope or definitive in treatment of the sub-

ject area. Often serve as a vehicle for final reports of

work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under proce-

dures published by the Department of Commerce in Part

10, Title 15, of the Code of Federal Regulations. The
purpose of the standards is to establish nationally rec-

ognized requirements for products, and to provide all

concerned interests with a basis for common under-

standing of the characteristics of the products. NBS
administers this program as a supplement to the activi-

ties of the private sector standardizing organizations.

Consumer Information Series—Practical information,

based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable lang-

uage and illustrations provide useful background knowl-

edge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent

of Documents, Government Printing Office, Washington,
D.C. 20Jt02.

Order following NBS publications—NBSIR's and FIPS
from the National Technical Information Services,

Springfield, Va. 22161.

Federal Information Processing Standards Publications

(FIPS PUBS)—Publications in this series collectively

constitute the Federal Information Processing Stand-

ards Register. Register serves as the official source of

information in the Federal Government regarding stand-

ards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11,

1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of

interim or final reports on work performed by NBS for

outside sponsors (both government and non-govern-

ment). In general, initial distribution is handled by the

sponsor; public distribution is by the National Techni-

cal Information Services (Springfield, Va. 22161) in

paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES
The following current-awareness and literature-survey
bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service. A

literature survey issued biweekly. Annual subscrip-
tion: Domestic, $25.00 ; Foreign, 830.00'.

I
Liquified Natural Gas. A literature survey issued quar-

; terlv. Annual subscrintion: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: S.'^O.OO .

Send subscription orders and remittances for the pre-

ceding bibliographic services to National Bureau of

Standards, Cryogenic Data Center (275.02) Boulder,

Colorado 80302.

1

J.S. DEPARTMENT OF COMMERCE
lUational Bureau of Standards
Washington, D.C. 20234

OFFICIAL BUSINESS

'enalty for Private Use, £300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-215

SPECIAL FOURTH-CLASS RATE
BOOK

