
U.S. Department
of Commerce

National Bureau

of Standards

-iii'
A11102789121

Law,
QC100

QC

100

U57

#500-152

1988

C.2

Computer Science
and Technology

NBS Special Publication 500-152

Guide to Information Resource
Dictionary System Applications:

General Concepts and
Strategic Systems Planning

Margaret Henderson Law



Tm he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall

goal is to strengthen and advance the nation's science and technology and facilitate their effective application for

pubUc benefit. To this end, the Bureau conducts research to assure international competitiveness and leadership of U.S.

industry, science arid technology. NBS work involves development and transfer of measurements, standards and related

science and technology, in support of continually improving U.S. productivity, product quaUty and rehability, innovation

and underlying science and engineering. The Bureau's technical work is performed by the National Measurement
Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute

for Materials Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community,

industry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; provides

calibration services; and manages the National Standard Reference Data

System. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors

to address national needs and to solve national problems; conducts research

in engineering and applied science in support of these efforts; builds and
maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services;

develops test methods and proposes engineering standards and code

changes; develops and proposes new engineering practices; and develops

and improves mechanisms to transfer results of its research to the ultimate

user. The Laboratory consists of the following centers:

• Applied Mathematics
• Electronics and Electrical

Engineering^
• Manufacturing Engineering
• Building Technology
• Fire Research
• Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of

computer technology to improve effectiveness and economy in Government
operations in accordance with PubHc Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by
managing the Federal Information Processing Standards Program,
developing Federal ADP standards guidelines, and managing Federal

participation in ADP voluntary standardization activities; provides scientific

and technological advisory services and assistance to Federal agencies; and
provides the technical foundation for computer-related policies of the

Federal Government. The Institute consists of the following divisions:

Information Systems Engineering

Systems and Software

Technology
Computer Security

System and Network
Architecture

Advanced Systems

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information

fundamental to the processing, structure, properties and performance of

materials; addresses the scientific basis for new advanced materials

technologies; plans research around cross-cutting scientific themes such as

nondestructive evaluation and phase diagram development; oversees

Bureau-wide technical programs in nuclear reactor radiation research and
nondestructive evaluation; and broadly disseminates generic technical

information resulting from its programs. The Institute consists of the

following Divisions:

• Ceramics
• Fracture and Deformation^
• Polymers
• Metallurgy
• Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

'Located at Boulder, CO, witfi some elements at Gaithersburg, MD



Computer Science
and Technology

NBS Special Publication 500-152

Guide to Information Resource
Dictionary System Applications:

General Concepts and
Strategic Systems Planning

Margaret Henderson Law

Information Systems Engineering Division

Institute for Computer Sciences and Technology
National Bureau of Standards

Gaithersburg, MD 20899

April 1988

Hesearch Information Center

National Bureau of Standards

Gaithersburg, Maryknd 20899

» 'i;

—

rr:—7

U.S. DEPARTMENT OF COMMERCE
C. William Verity, Secretary

National Bureau of Standards

Ernest Ambler, Director



Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal Government for com-
puter science and technology activities. The programs of the NBS Institute for Computer Sciences and

Technology are designed to provide ADP standards, guidelines, and technical advisory services to im-

prove the effectiveness of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This publication series will report

these NBS efforts to the Federal computer community as well as to interested specialists in the academic

and private sectors. Those wishing to receive notices of publications in this series should complete and
return the form at the end of this publication.

Library of Congress Catalog Card Number: 88-600529
National Bureau of Standards Special Publication 500-152

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-152, 145 pages (Apr. 1988)
CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1988

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington DC 20402



GUIDE TO
INFORMATION RESOURCE DICTIONARY SYSTEM

APPLICATIONS

:

GENERAL CONCEPTS AND STRATEGIC SYSTEMS PLANNING

Margaret Henderson Law

This guide describes the use of the Information Resource
Dictionary System (IRDS) to support system development. The IRDS
is the Federal Information Processing Standard (FTPS) for data
dictionary systems, used to capture metadata during the system
life cycle. Metadata to be stored in an IRD throughout the
system life cycle is differentiated from data to be stored in a
database during the system operation phase. A variety of IRD
life cycle applications are described. The role of the IRDS in
supporting Information Resource Management (IRM) and Data
Administration is discussed. The development of the IRDS is
described in terms of the evolution of data processing toward
larger, more complex, integrated systems that require intensive
planning and control. The preparation of a detailed standards
and conventions document by an organization is recommended prior
to IRD use. The procedures for developing an IRD schema and IRD
metadata are described in terms of Entity-Relationship-Attribute
modeling, life cycle phase partitions, and user views. Metadata
integrity rules and validation procedures are discussed. The
guide illustrates the use of the IRDS with an IRD application for
Strategic Systems Planning. An extract of output for this IRD is
presented in an appendix.

Key words: Data Administration; data dictionary system; data
management; data modeling; Entity-Relationship model; E-R;
Federal Information Processing Standard; FIPS; Information
Resource Dictionary System; Information Resource Management;
IRDS; Strategic Systems Planning.

ACKNOWLEDGMENTS

The guidance provided by Dr. Alan Goldfine, Thomasin Kirkendall,
and Dr. David Jefferson during the conception of this guide is
gratefully acknowledged.





Table of Contents

1.0 Introduction 1
1 . 1 Purpose 1
1.2 What is an Information Resource Dictionary

System? 1
1.2.1 Data Dictionary Versus Database 1
1.2.2 Data Sharing 2

1.2.3 Data Versus Metadata 3

1.2.4 Evolution to the Information Resource
Dictionary System 5

1.3 Purpose of the IRDS Standard 7

1.3.1 IRDS Benefits 7

1.3.2 IRDS Prototype 7

1.4 Scope and Related Publications 7

1.4.1 Scope ..... 8

1.4.2 Related Publications 10

2.0 IRDS Support for Data Administration 11
2.1 Information Systems 11

2.1.1 Information Resource Management 12
2.1.2 Data Administration 12

2.2 IRD Applications for Data Administration 13
2.2.1 Data Element Standardization 13
2.2.2 Database Validation 15
2.2.3 System Planning Information Management . . 15
2.2.4 System Performance Analysis 17
2.2.5 Data and Function Analysis 17
2.2.6 System Resource Configuration Management . 18

2.2.6.1 Data Resource Management 18
2.2.6.2 Software Resource Management .... 19
2.2.6.3 Hardware Resource Management .... 19

2.2.7 Distributed Database Directory 20
2.3 Evolutionary Stages from Data Processing to IRM . 2 0

2.3.1 Systems Initiation 21
2.3.2 Systems Contagion 21
2.3.3 Systems Control 21
2.3.4 Systems Integration 2 3

2.3.5 Data Administration 2 3

2.3.6 Information Resource Management 2 3

3.0 Features of the IRDS Standard 25
3.1 History of Data Dictionary Systems 25
3.2 Existing Features of the IRDS Standard 25

3.2.1 Entity-Relationship-Attribute Modeling . . 2 6

V



3.2.2 Predefined Schema Structures 28
'

. 3.2.2.1 The Minimal Schema . . . , 29
3.2.2.2 The Basic Functional Schema .... 29
3.2.2.3 Schema Structures for Metadata

Control and Validation 30
3.2.3 Command and Panel Interfaces 31
3.2.4 Extensible Schema Definition Capability . . 32
3.2.5 Extensible Life Cycle Phase Facility ... 33

3.2.5.1 Hierarchical Phase Modeling .... 33
3.2.5.2 Relationship Sensitivity Structure . 34
3.2.5.3 Life Cycle Integrity Rules 34

3.2.6 IRD Versions, Views, and Quality Indicators 35
3.2.7 IRD-IRD Interface . 37
3.2.8 Security Facilities 38
3.2.9 Procedure Facility 39
3.2.10 Application Program Interface 39

3.3 Planned Features of the IRDS Standard 39

4.0 Standards and Conventions for IRD Use 41
4.1 Why Standards and Conventions are Necessary ... 41
4.2 Standardize Methodologies 42
4.3 Share Standardized Schema Structures 42
4.4 Ensure Responsibility, Efficiency, and Accuracy . 44

4.4.1 Assign Responsibility 44
4.4.2 Ensure Metadata Integrity 45
4.4.3 Standardize Efficient Procedures 45

4.5 Define Naming Conventions 46
4.6 Standardize Data Elements 47
4.7 Ensure IRD Security 53

5.0 Creating an IRD Schema 55
5.1 IRD Schema Concepts 55
5.2 Top-Down Planning for IRD Use 56
5.3 Metadata Model Design 57

5.3.1 Isolate Metadata Subjects 57
5.3.2 Develop Problem Statements 58
5.3.3 Classify Entities and Attributes 58

5.3.3.1 Entity-Type Classification 58
5.3.3.2 Attribute-Type Classification for

Entities 59
5.3.3.3 Associating Attribute-Types with

' Entity-Types 61
5.3.4 Classify Relationships and Attributes ... 61

5.3.4.1 Relationship-Type Classification . . 61
5.3.4.2 Characteristics of IRD Relationship

Structures 62
5.3.4.3 Attribute-Type Classification for

Relationships 62
5.3.4.4 Associating Attribute-Types with

Relationship-Types 63

vl



5.4 IRD Schema Description 63
5.4.1 Entity-Type Definition 64
5.4.2 Relationship-Type Definition 65
5.4.3 Optional Relationship-Class-Type Definition 65
5.4.4 Relationship-Type Defined as a

Relationship-Class-Type 66
5.4.5 Relationship-Type Positional Definition . . 67
5.4.6 Attribute-Type Definition 68
5.4.7 Attribute-Type Definition of Attribute

Value Format 7 0

5.4.8 Attribute-Group-Type Positional Description 71
5.4.9 Attribute-Type Association with Entity-Type 71
5.4.10 Attribute-Type Association with

Relationship-Type 72
5.5 Life Cycle Phase Partitioning 73

5.5.1 IRDS Life Cycle Phase Concepts 73
5.5.2 Life Cycle Phase Definition 74

6.0 Creating an IRD Application 75
6.1 IRD View Definition and Access 75

6.1.1 View Definition within a Life Cycle Phase . 75
6.1.2 View Access Permissions 76
6.1.3 The User's Effective-View 77

6.2 Metadata Definition Via Phases and Views 77
3.5.4 View and Phase Status 78
6.2.2 Metadata Retrieval from Views and Phases . 79

6.3 Entity Definition with Attributes 80
6.4 Attribute Value Formats 82
6.5 Relationship Definition with Attributes 82

6.5.1 Defining Relationships 83
6.5.2 Defining Attributes for Relationships ... 83
6.5.3 Defining Attribute Units of Measure .... 84

7.0 Life Cycle Approach to IRD Applications 85
7.1 Life Cycle Phase Applications 85
7.2 Early System Development Phases 87

7.2.1 Strategic Systems Planning 87
7.2.2 Requirements Definition 87

7.3 Intermediate System Development Phases 89
7.3.1 Functional Specification 89
7.3.2 Logical Database Design 89

7.3.2.1 Local and Global Information-Flow
Modeling 89

7.3.2.2 Conceptual and External Schema
Design 89

7.3.3 Data and Function Integration 90
7.4 Late System Development Phases 90

7.4.1 System Design 90
7.4.2 Physical Database Design 90
7.4.3 System Implementation 91

vii



7.5 Transferring Metadata Across Phases 91
7.5.1 Transferring Entities 91
7.5.2 Command to Transfer Entities 91
7.5.3 Limitations to Metadata Transfer Between

Phases 92

8.0 IRDS Support for Strategic Systems Planning 93
8.1 Strategic Systems Planning Phase Description ... 93

8.1.1 Analysis of Global Business Objectives . . 94
8.1.2 Definition of a Global Business Model ... 94
8.1.3 Definition of a Global Data Model 95
8.1.4 Data and Function Cross-Referencing .... 96
8.1.5 Assessment of Enterprise Directions .... 96

: 8.2 Strategic Systems Planning Application 97
8.2.1 Critical Success Factors 97
8.2.2 Organizational Structures 98
8.2.3 Decomposition and Cross-Referencing .... 100

8.3 Strategic Systems Planning Entity-Relationship
Models 104

8.4 Strategic Systems Planning Schema Definition . . . 106
8.5 Strategic Systems Planning Metadata Definition . . Ill
8.6 Results of Strategic Systems Planning 119

9.0 Conclusions 121

APPENDIX: Extract of IRD Output for Strategic Systems
Planning 122

GLOSSARY 127

REFERENCES 133

vill



List of Illustrations

Figure 1 Grocery System Data 3

Figure 2 Grocery System Design Metadata 5

Figure 3 Sample of an IRD for Data Element
Standardization 14

Figure 4 Organizational Stages Toward IRM 22
Figure 5 Information Resource Dictionary System Contents

in Relation to Data 27
Figure 6 Example Entity-Relationship-Attribute Model for

an Information Resource Dictionary 60
Figure 7 System Development and Operations Life Cycle . . 88
Figure 8 Critical Success Factors 97
Figure 9 Corporate Organizational Structure: The XYZ

Corporation 98
Figure 10 Company Organizational Structure: Company X . . 99
Figure 11 High-Level Functional Decomposition for

Company X 100
Figure 12 High-Level Success Factor and Function Cross-

Referencing 101
Figure 13 High-Level Data Decomposition for Company X . . . 102
Figure 14 High-Level Function and Data Cross-Referencing . 103
Figure 15 Entity-Relationship-Attribute Model for

Organizational Structure 105
Figure 16 Entity-Relationship Model for Strategic Systems

Planning 107

ix



:ti''v '
.

-i '.
1 'X'.



1 . 0 Introduction

1.1 Purpose

The purpose of this guide is to describe and illustrate the
use of the standard Information Resource Dictionary System
(IRDS) . This guide is directed toward Data Administrators,
Information Resource Managers, Database Administrators, and
others in government and industry who are interested in the
effective management of information resources.

1.2 What is an Information Resource Dictionary System?

An Infoirmation Resource Dictionary System (IRDS) is a
software system that conforms to the Federal Information Proces-
sing Standard (FIPS) for data dictionary systems. An Information
Resource Dictionary (IRD) is an application of the IRDS. An IRD
can be used to support system life cycle information management,
or it can be used for a number of other tasks. This guide
describes the use of the standard IRDS in constructing IRD
applications for information systems development and operations.
IRDS support for the Strategic Systems Planning phase is illus-
trated.

1.2.1 Data Dictionary Versus Database

Data dictionary systems have been designed specifically to
support the complexities of metadata. An Information Resource
Dictionary, or data dictionary, is a highly structured type of
database that can be used to design, monitor, locate, protect,
and control data in information systems.

A data dictionary differs from a database, however. While a
database holds the data value stored for a data item, a data
dictionary can contain a wealth of information about that data
item. This information about data is called metadata. Some
examples of information about a data item that a data dictionary
can support are:

o Category of the data item
o Relationships of the data item to other data items
o When and by whom it was defined
o When and by whom it was modified
o Total number of its modifications
o Description of the data item, such as its format
o Databases or files in which the data item appears
o Location of the data item in databases or files
o Set or range of valid data values permitted for a

data item in the database.

1



Data dictionary systems, such as the IRDS, support metadata.
Metadata is information describing the characteristics of data.

1.2.2 Data Sharing and Metadata

Information systems use programs to input, modify, and
access data, which is stored either in databases or in files.
While data was once considered subordinate to the programs that
direct data processing, data is now recognized to play a critical
role in information systems.

Data dictionary systems, such as the IRDS, support the
design of efficient programs and databases for improved informa-
tion systems that share data. An information system usually
contains multiple programs that access data from multiple
databases or files. When designed properly, programs within an
information system share data and data stores, so that data is no
longer the exclusive territory of one particular program. This
data sharing reduces the amount of effort necessary to prepare
input data within an organization. An organization no longer
must reproduce similar data in different input files to be used
by a variety of programs.

Data sharing among multiple programs has other benefits as
well. Data sharing improves data accuracy, due to better data
concurrency, and it improves the efficiency of data storage and
retrieval, due to reduced redundancy. Well-designed data
structures in shared databases allow programs to update and
access information more easily and cost-effectively.

The design of such databases requires the identification of
metadata describing the structural characteristics of data to be
stored. The IRDS supports metadata description for the design of
information systems that share databases and other system
resources.

Metadata can be seen in the forms used to capture data, such
as a personnel application form. The blank application form that
each job applicant fills out contains headings or questions
(e.g., last name, first name, middle initial, date of birth,
place of birth, social security number, college or university,
type of degree, date of degree) . These headings are metadata
that structure the data to be entered on the form and, if the
applicant is hired, to be stored in a database.

In this context, metadata is the identification and descrip-
tion of these form headings in terms of format, use, and meaning.
For instance, "date of birth" may require a numeric date format
of "month/day/year," while "date of degree" may permit only the
numeric date format of "month/year." Such a description of data
format constitutes one aspect of metadata.

2



1.2.3 Datia Versus Metadata

Data is stored in databases for use in operational systems.
For example, your local supermarket probably uses a database that
provides data for a grocery system. As a grocery shopper, you
are interested in data for the particular items you are buying.
When the checkout clerk draws one of your grocery items across
the optical scanning device that reads the item's bar code, you
are interested in the item name and its price, which are display-
ed on the cash register, and which appear on your sales receipt.
The price that you paid for a particular grocery item is the data
with which you, as a grocery shopper, are concerned. The grocery
item's bar code, name, and price are stored as data in the
database of the grocery system. The grocery system just describ-
ed is an operational database system.

Figure 1 provides two example views of grocery system data
in an operational database system. The shopper's view shows a
portion of a sales receipt, and the grocery store manager's view
shows a portion of a stock list. The italicized data items,
which structure this system design, can also be considered
metadata used to design this operational database system.

Grocery System Data

Shopper's Sales Receipt ST2%MILK 1 GAL 1.78
PEPFBREAD 1 LB .95
PEPEANBUT 12 OZ .89
ROMLETTUC 1 LB .99
STBUTMILK 1 QT .85

Manager's Stock List CATEGORY:
PRODUCT:
SUPPLIER:

DAIRY PRODUCT
MILK
SEALTEST

ITEM ITEM SALES STOCK SOLD-BY RESTOCK
TYPE SIZE PRICE NO/DATE NO/DATE NO/DATE

REG 1 GAL 1.85 300 4/09/88 125 4/12/88 300 4/14/88

1/2 GAL 1.10 400 4/10/88 89 4/13/88 375 4/16/88

2% 1 GAL 1.78 250 4/09/88 210 4/12/88 260 4/13/88

1/2 GAL 1.10 300 4/10/88 180 4/13/88 300 4/13/88

Figure 1

Metadata is different from data in that it describes data in
an operational system. While a grocery shopper would be inter-
ested in grocery shopping data, the person designing the grocery
system would be interested in metadata used to describe and
structure the data.

3



The grocery system designer's metadata, collected in a data
dictionary such as an IRD, provides the structure for grocery
data, collected in a database. In defining the information to be
accessed with a bar code, the grocery system designer would want
the system to indicate other types of information in addition to
the item name and its current price. This additional metadata
could include:

o CATEGORY describes data values such as "fresh
produce," "dairy products," "canned goods," "frozen
foods," "cleaning products," etc.

o PRODUCT describes data values such as "canned
pumpkin," "milk," "grapefruit," "detergent," etc.

o SUPPLIER describes data values such as "Nabisco,"
"Sealtest," "Pepperidge Farm," etc.

o lAST-SELL-DATE — describes data values such as "sell
by 10/1/91," etc., printed on perishable, packaged
grocery products that spoil if stored too long

In specifying these information elements and their domains
of valid values, the system designer is working with metadata.
For the example above, the designer will probably want to keep
metadata that defines the set of permitted values for each of the
terms above.

IRDS metadata representation is based on the Entity-Rela-
tionship-Attribute information modeling approach. In general, an
entity is a thing or concept about which information is col-
lected, such as a grocery system report called STOCK LIST, or an
element of this report called PRODUCT. An entity is classified
in terms of an entity-type, so that STOCK LIST is of entity-type
REPORT, and PRODUCT is of entity-type ELEMENT,

A relationship describes the association between two
entities, such as an association of CONTAINS between entity STOCK
LIST of type REPORT and entity PRODUCT of type ELEMENT. A
relationship is classified in terms of a relationship-type, which
in this case is REPORT-CONTAINS-ELEMENT.

Attributes, classified in terms of attribute-types, can be
used to describe either entities or relationships. Attributes
could be used to define the set of permitted values for an
ELEMENT such as PRODUCT, similar to the values listed above.
Metadata such as this can be captured in an IRD. Figure 2 shows
a number of entities of entity-type REPORT and ELEMENT, and
indicates a number of relationships between the REPORT entities
and the ELEMENT entities.

4



Grocery System Design Metadata

Entitv-tvpe: report Entities: STOCK-LIST
SALES-RECEIPT
DAILY-SALES-REPORT

Entitv-tvpe: element Entities: CATEGORY
PRODUCT
SUPPLIER
ITEM-TYPE
ITEM-SIZE

Relationship-tvpe: REPORT - CONTAINS - ELEMENT

Relationships:

SALES-RECEIPT REPORT CrWIT A IMG

SALES-RECEIPT REPORT - CONTAINS - ELEMENT ITEM-SIZE
SALES-RECEIPT REPORT - CONTAINS - ELEMENT SALES-PRICE

STOCK-LIST REPORT - CONTAINS - ELEMENT CATEGORY
STOCK-LIST REPORT - CONTAINS - ELEMENT PRODUCT
STOCK-LIST REPORT - CONTAINS - ELEMENT ITEM-TYPE
STOCK-LIST
B

REPORT - CONTAINS -

Figure 2

ELEMENT ITEM-SIZE

Such relationship information is useful to the system
designer in formatting reports, and will be useful later on
during system maintenance, when element names and report formats
change. Entities-Relationship-Attribute modeling for the IRDS is
described at greater length in subsequent chapters.

A great deal of metadata must be managed during the design
and development of any information system, even the relatively
simple one described. This metadata should be stored in a
specialized type of database, a data dictionary, such as an IRD.

1.2.4 Evolution to the Information Resource Dictionary System

Data dictionary systems have had several traditional system
support roles. One of these has been to support database
management systems (DBMSs) . In a DBMS support role, a data
dictionary system is coupled to a DBMS to record the data
structures and structural changes occurring in databases generat-
ed by the DBMS. By keeping track of the way the data is repre-
sented in a database, a data dictionary provides information on
the access, retrieval, and modification of data structures.

5



If one or more components of the information processing
environment, such as a DBMS, depend on the data dictionary system
for metadata, the data dictionary system is active. A data
dictionary system is considered active with respect to a program
or process if the program or process retrieves metadata from the
data dictionary system [LEON82].

Another traditional role for a data dictionary system has
been to standardize and document the data elements used by
multiple programs within a system. Many large government systems
depend on data element standardization that is supported by data
dictionary systems. These data element dictionaries provide a
means of:

o Recording information about data elements, such as
access name, data type, and storage format, for data
element documentation

o Reporting discrepancies in data element naming,
definition, and description, to aid data element
standardization

o Selecting data elements individually or in sets, for
various types of analysis.

Analysts defining, updating, and retrieving data element
information often use batch files to update and access the data
dictionary. A data element dictionary such as this is considered
passive if its metadata is accessed by a person, working in
either interactive or batch form, but cannot be retrieved by a
program or DBMS

.

While data dictionary systems continue to support database
management and data element standardization, they can also
support a wider range of applications. Data dictionary systems
are at the center of systems that support many different func-
tions, ranging from logical database design, and aircraft
engineering design, to program design languages.

Some state-of-the-art technology relies heavily on the
support of data dictionary systems. The new and emerging
Computer Aided Software Engineering (CASE) tools are often highly
structured data dictionary systems that have been combined with
analysis programs and graphics interfaces. Data dictionary
systems are at the heart of emerging distributed DBMS software,
which supports distributed database systems. Data dictionary
systems, in various forms, are beginning to play more visible
roles in supporting information management.

6



In the last decade, data dictionary systems have evolved so
dramatically that they appear to have even surpassed their name.
Other terms such as directory, encyclopedia, and repository have
been used by vendors to designate the expanded uses of data
dictionary systems. The name of the new data dictionary system
standard, the Information Resource Dictionary System, reflects
the evolution of this software into the information age.

1.3 Purpose of the IRDS Standard

The purpose of the FIPS IRDS standard is to provide U.S.
Federal government data dictionary system users with useful,
flexible, and user-friendly data dictionary system software
products to support all phases of the system life cycle. The
standards specify that these products must share a common set of
features independent of implementation. These standardized IRDS
features are specified in terms of core and optional modules that
allow vendors to implement IRDS features modularly and increment-
ally in their products. The modular structure of the IRDS
permits user organizations to acquire only needed modules.

1.3.1 IRDS Benefits

Both government and industry benefit with the incorporation
of the IRDS specifications into commercial data dictionary system
software products. Due to the common set of features shared by
IRDS products, organizations with multiple IRDS products from
different vendors can increase user efficiency and improve
metadata transportability from system to system. IRDS standards
are designed to improve the quality of data dictionary system
software, by giving users schema extensibility and life cycle
support, and by giving vendors a common basis from which to work.

1.3.2 IRDS Prototype

During the deliberation of IRDS technical specifications,
NBS developed a prototype implementation of the IRDS command
language to demonstrate technical IRDS concepts. The prototype
uses a commercially available programming language and runs as an
application of a commercially available DBMS. NBS provides the
source code of the IRDS prototype to interested users, such as
government agencies and software vendors.

1.4 Scope and Related Publications

This section describes the scope of this guide, and recom-
mends related NBS publications for readers who want more informa-
tion on the IRDS or system development process.

7



1.4.1 Scope

This guide illustrates the development of IRD applications
for a standard IRDS, to help data dictionary system users
understand the benefits of using a data dictionary system that is
compatible with the IRDS standard. The development of IRD
applications is demonstrated through a sample Strategic Systems
Planning application.

Future publications are planned to cover the use of the IRDS
in other life cycle phases such as Requirements Definition,
Functional Specification, Logical Database Design, System Design,
Physical Database Design, and System Implementation.

This guide is only intended to inform potential IRDS users
of a type of system development life cycle application that the
IRDS can be used to support; it is not intended to be a complete
IRDS user's manual.

Chapter 2 describes the use of the IRDS in Information
Resource Management and Data Administration. A number of IRD
Data Administration applications are described. Chapter 3

discusses the existing and planned features of the IRDS standard.
Standards and conventions necessary for an organization's
responsible use of the IRDS are described in Chapter 4.

Chapter 5 provides an overview of how to construct an IRD
schema appropriate for a planned IRD application. Since the IRDS
provides limited predefined schema structures, users should plan
to define additional schema structures for most IRD applications.
This chapter illustrates the schema development process, from the
user group's description of example problem statements, and
development of an appropriate Entity-Relationship-Attribute
model, to IRDS command language examples for schema definition.
Life cycle phase definition is explained.

Chapter 6 describes the process of defining metadata to
create an IRD application. This chapter demonstrates view
definition within a life cycle phase. Command language examples
are shown for defining entities, relationships, and attributes,
and for determining view and phase status.

Chapter 7 briefly discusses the use of an IRD application
through the system life cycle process. The transfer of metadata
across phases is discussed.

Chapter 8 illustrates the use of the IRDS in the first phase
of the life cycle. Strategic Systems Planning, showing the
definition of sample problem statements and Entity-Relationship-
Attribute models on which the IRD schema and metadata are based.

8



Chapter 8 illustrates the use of some features of the IRDS
to support a number of Strategic Systems Planning activities for
a fictitious corporation, the XYZ Corporation, and its subsid-
iary, Company X. The sample application is intended to assist
users of the IRDS in defining schema extensions and constructing
IRD applications.

Strategic Systems Planning results in an overview of an
entire enterprise, its critical success factors, and its multiple
system development or redesign projects. The analysis supported
by an IRD during Strategic Systems Planning provides a foundation
for the achievement of integrated information systems, designed
to meet management objectives and to sustain the critical success
factors defined for the enterprise.

Chapter 8 provides an example IRD schema definition for
Strategic Systems Planning, showing command language definitions
for the application. The definition of an IRD life cycle phase
partition is illustrated. Commands to define entity-types,
relationship-types, attribute-types and other schema descriptors
are shown

.

Chapter 8 also provides an example IRD metadata definition
for Strategic Systems Planning, showing command language defini-
tions for views within a life cycle phase, entities, relation-
ships, and attributes.

Chapter 9 draws the conclusions of the guide. The Appendix
offers an extract of the example IRD output for Strategic Systems
Planning.

The guide does not address IRDS support for many life cycle
activities such as prototyping, testing, operations, maintenance,
or redesign. While some system development activities are
mentioned, many system development activities are not addressed
in this publication. The partial Strategic Systems Planning
application defined in Chapter 8 is provided to illustrate IRDS
concepts and techniques. The limited space of this guide allows
illustration of only a partial and simplified example of IRD
development for the Strategic Systems Planning phase.

The IRDS is recommended for use during the information
system life cycle to support metadata definition and retrieval.
The large amount of metadata usually generated during a single
life cycle phase, and the enormous amount of metadata usually
generated over the duration of a complete system life cycle
necessitate that a data dictionary system like the IRDS be used
to support and cross-reference metadata for information system
development, operations, and maintenance activities.

9



1.4.2 Related Publications

For those interested in more information about the IRDS,
other NBS publications on the topic include:

o A Technical Overview of the Information Resource
Dictionary System (Second Edition) . by Alan Goldfine
and Patricia Konig, NBSIR 88-3700, National Bureau of
Standards, Gaithersburg, MD, January, 1988.

o Using the Information Resource Dictionary System
Command Language (Second Edition) , by Alan Goldfine,
NBSIR 88-3701, National Bureau of Standards, Gaithers-
burg, MD, January, 1988.

Other NBS publications indirectly related to use of the IRDS
include:

o Guide on Logical Database Design , by Elizabeth N. Fong,
Margaret W. Henderson [Law], David K, Jefferson, and
Joan M. Sullivan, NBS Special Publication 500-122,
National Bureau of Standards, Gaithersburg, MD,
February 1985.

o Guide on Data Entity Naming Conventions
^

by Judith J.
Newton, NBS Special Publication 500-149, National
Bureau of Standards, Gaithersburg, MD, October 1987.

For additional NBS publications related to the IRDS or to
systems development, see the references for [FONG86] , [GOLD82],
and [FISH87] listed at the end of this document.

10



2.0 IRDS Support for Data Administration

The IRDS represents Federal standards efforts to provide
quality data dictionary system support for information manage-
ment. An enterprise concerned with effective information
management, processing, conversion, and communications should
adopt a set of Information Resource Management (IRM) policies.
IRM policies coordinate the development, operation, and mainten-
ance of an enterprise's information systems. Within IRM, the
primary organizational component responsible for information
management is Data Administration. The IRDS provides many
functions useful for Data Administration.

2 . 1 Information Systems

Data Processing has long been the dominant concept and the
major organizational function for computer systems development.
As an organizational function. Data Processing has emphasized
programs and processes that transform data, rather than data
management. In traditional Data Processing, data was collected
for, stored with, and used by a particular program. Although
Data Processing management became increasingly aware of the need
for data sharing and data management, data sharing among multiple
programs was often not implemented during system development.
When data sharing was used, it was often limited to a few
programs used by the same department. Data sharing was often
only added on as an afterthought during expensive system mainten-
ance or system redesign projects.

The relatively recent concept of information resource
management derives from an understanding of the need to utilize
data as a primary resource of the enterprise. As a result of
emphasis on information resource management, some Data Processing
departments now often have new names: Management Information
Systems (MIS) , Information Systems (IS) , or IRM. The emerging
shift from Data Processing to IRM is partially due to the wider
use of computer systems, communications systems, and DBMSs.
Computer systems growth has resulted in greater quantities of
data to be managed from greater distances. Organizations now
require larger and faster systems in which telecommunications and
information retrieval are often as important as data processing.

Computer systems, which were once updated and accessed from
a single location and utilized by one type of user, have become
information systems. Information systems are often accessed and
updated from across the globe and utilized by several types of
users for many different purposes. In an information systems
environment that emphasizes information timeliness, accessibil-
ity, accuracy, and maintainability, the data management products
of effective IRM policies are vitally important.

11



2.1.1 Information Resource Management

IRM is a set of policies for the coordinated management of
an enterprise's information resources for systems development,
operation, and maintenance. IRM policies describe objectives and
procedures to provide information availability, timeliness,
accuracy, integrity, privacy, security, traceability

, ownership,
use, and cost-effectiveness [LEFK83]. IRM has been introduced as
an organizational unit within many companies and government
agencies. For IRM to be effective, it must define a coordinated
set of policies that result in integrated systems.

IRM policies provide a structure for coordinated information
management, processing, communications, and conversion [NEWM82].
To perform this complex task, IRM combines many disciplines under
its extensive umbrella. IRM coordinates the disciplines of Data
Administration, Database Administration, Data Processing, Office
Automation, Local Area Networking (LAN) , Telecommunications,
Systems Security, Computer Graphics, Systems Quality Assurance,
System Resource Configuration Management, Prototyping, Systems
Operations, Project Management, and Systems Integration.

The shift from viewing Data Processing, Data Administration,
and Communications as separate systems management functions, to
viewing IRM as the synchronized major policy or function for
information management, reflects a change within organizations.
Where the traditional Data Processing function tended to empha-
size meeting the data processing requirements of a single user
group, the trend toward IRM policy shows greater emphasis on
meeting the many information requirements of diverse users.

Data Administration helps IRM fulfill the many information
requirements of diverse users. One of the central concepts of
IRM, effective information management, is the primary mission of
Data Administration.

2.1.2 Data Administration

Data Administration supports IRM objectives by providing
data management guidelines and metadata products for effective
information modeling, storage, retrieval, security, data valida-
tion, and documentation throughout an organization.

Data Administration is the term that is most often used to
describe the organizational unit responsible for data element
standardization. Other Data Administration functions often
include: strategic systems planning, requirements analysis,
logical database design, data validation, data security, data
change control, data change impact analysis, system resource
configuration management, and data coordination among multiple
systems and subsystems.

12



The objectives of Data Administration are to plan, manage,
document, and control the data structures underlying the informa-
tion resources of an organization. The role of the Data Admini-
strator is to integrate and manage an enterprise's information
resources, which may be contained in file structures or databases
[DURE8 5] . A Data Administrator may guide the work of several
Database Administrators managing separate databases.

A data dictionary system, in its many forms, is the primary
tool used by the Data Administrator, The Data Administrator uses
a data dictionary system to define and structure metadata (i.e.,
information about data) for information management. As the data
dictionary system standard, the IRDS is designed to support Data
Administration. This guide describes how the IRDS supports the
Data Administration activities during Strategic Systems Planning.

2.2 IRD Applications for Data Administration

The IRDS supports metadata critical to Data Administration,
by providing a medium for metadata description, cross-referenc-
ing, and consistency checking. This section describes IRDS
support for a number of major Data Administration applications.
Later chapters illustrate in greater detail the use of the IRDS
in the early development phases of the system life cycle. The
following subsections describe some major Data Administration
applications that the IRDS can support.

2.2.1 Data Element Standardization

Data elements are the most basic, low-level data structures
used in a system. As the result of data element standardization,
consistent data elements can be efficiently stored in databases
and files, and can be accessed by multiple users and programs.
The IRDS supports the standardization of data element names,
definitions, and relationships. Data element standardization
contributes to the productivity of an enterprise. Figure 3 shows
a sample selection from a data element dictionary.

Without data element standardization, different departments
and systems of an enterprise can appear to be speaking different
languages. A common data element that should be shared by many
departments often remains unrecognized because each department
calls the data element by a different name. Unless the data
element is recognized and standardized, each department must
duplicate the effort of collecting, storing, and maintaining the
data for that data element. Conversely, misinterpretation
problems appear when different departments use the same name for
several data elements that have different meanings when used by
different departments.

13



Sample of an IRD
for Data Element Standardization

Entity

Entity = EMP-ACCOUNT-NO
Entity Descriptive Name = EMPLOYEE-ACCOUNT-NUIVIBER
Entity-Type = ELEMENT
Description = Employee's account number witli a financial institution,

such as a number identifying a checking account at a bank.

Attribxites

Added-By = LAW
Data-Element-Number = 256
Data-Length = 12

Data-Type = NUMERIC
Last-Modified-By = QUINN
Number-of-Times-Modified = 1

Source = PAYROLL-DEPT

Attribxite-Groxips

Date-Time-Added
System-Date = 19871020
System-Time = 092515

Date-Time-Last-Modified
System-Date = 19871103
System-Time = 141021

Identification-Name
Alternate-Name = EMP-ACCT-NO
Alternate-Name-Context = PERSONNEL-DEPT

Valid-Value-Range
Lowest-Valid-Value = 1

Highest-Valid-Value = 999999999999

Relationships

PAYMENT-TO-FINANCIAL-INST REPORT-CONTAINS-ELEMENT EMP-ACCOUNT-NO

DO-PAYROLL-ACCOUNTS SUBROUTINE-ACCESSES-ELEMENT
- FREQUENCY-OF-ACCESS = 2 (times-per-month)

EMP-ACCOUNT-NO

MODIFY-EMP-ACCOUNTS SUBROUTINE-UPDATES-ELEMENT
- FREQUENCY-OF-UPDATE = 2 (times-per-month)

EMP-ACCOUNT-NO

DEDUCTN-DEPOSIT-TEMPLATE TABLE-CONTAINS-ELEMENT EMP-ACCOUNT-NO

Figure 3

14



The IRDS helps the Data Administrator find, analyze, and
consolidate data elements so that unintentional synonyms (i.e.,
elements with different names but the same meaning) can be
located and eliminated. Through the listing of element access
names and descriptive names, users can locate typographical
errors and unintentional synonyms so that these elements can be
consolidated. The IRDS protects the user against homonyms
(i.e., elements with the same name but different meanings) which
the IRDS will not accept. The resulting standardized data
elements become the building blocks for the various databases
within an enterprise's information systems.

The Data Administrator can use the IRDS to capture a wide
variety of data element information, such as: data element
access name, descriptive name, alternate names, data element
definition, data type, data length, storage format, data valida-
tion rules, source (e.g., department that generates the data
element), location (e.g., databases or files where the data
elements are stored) , user access and modification permissions,
programs (e.g., programs that use the data element), data element
security levels, relationships among data elements, etc. Data
element information can be captured from either top-down or
bottom-up system design techniques, or from reverse engineering
techniques used to document the structure of an existing system.

2.2.2 Database Validation

Data integrity rules to ensure database validation can be
represented in an IRD. For a particular entity-type, the user
can define data integrity rules such as a range of values or a
particular set of values that are permissible for any instance of
such an entity in a database. Once the Services Interface of the
IRDS is complete, the user's DBMS will be able to refer to an
IRD for peinmissible data values when data is presented for entry
into a database. By comparing the candidate data entry with the
data integrity rules stored in the IRD, the DBMS will be able to
reject data entries that do not conform to the data integrity
rules. Through user specification of data integrity rules in an
IRD, the IRDS will assist DBMSs in enforcing data validation.

2.2.3 System Planning Information Management

The IRDS provides a repository and source for system
planning and requirements information that can be maintained
relatively easily to remain always up-to-date. The IRDS can be
instrumental in structuring an enterprise's Business Model and
Information Architecture during Strategic Systems Planning.
Planning and requirements information stored in an IRD can be
readily accessed and updated by many analysts, programmers, and
contractors, who can use one IRD at the same time.

15



The IRDS supports system analysts in defining and cross-
referencing diverse and complex functional and data requirements.
This cross-referencing results in easier function and data
integration, and in better definition of strategic systems plans
and system requirements.

Strategic Systems Planning for an entire enterprise is
difficult to perform manually because of the contradictions
inherent in trying to coordinate and standardize organizational
methods, terms, and systems. Prior to Strategic Systems Plan-
ning, the organizational units within the enterprise often use
different terms and methods for performing their separate and
overlapping functions. If the enterprise is large, a high volume
of planning information can be encountered. Faced with such a
host of organizational discrepancies to be resolved, the planner
needs the assistance of a tool like the IRDS,

Information system Requirements Definition is difficult to
perform manually because of the enormous amount of information to
be handled and the complexity of the system to be defined. The
IRDS gives the analyst an effective means of describing, compar-
ing, and interrelating all system requirements.

Without the support of a data dictionary system like the
IRDS, analysts usually record system requirements on paper, in
files, or in databases. System requirements documents produced
in this manner are notoriously huge, incomplete, inconsistent,
and difficult to understand. In addition, many requirements
documents are outdated almost as soon as they are issued, as
additions and modifications continue to be defined.

Storing requirements information in files or databases may
allow data access and updating, but files or databases do not
support many needs for requirements analysis. They do not help
system designers identify inconsistencies that occur between
functional and data requirements. Files or databases do not
readily represent interrelationships among requirements. They
cannot effectively relate program and logical database designs
backward to requirements nor forward to implementation.

Analysts need the cross-referencing capabilities of a. data
dictionary system, like the IRDS, to be able to understand how a
planned system ' s functional and data requirements interrelate.
IRDS cross-referencing capabilities are based on the structure of
relationships between entities. For cross-referencing purposes,
these relationships can exist between entities in the same life
cycle phase partition of an IRD, and between entities in differ-
ent life cycle phase partitions of an IRD. With the IRDS Life
Cycle Facility that supports cross-referencing of entities across
phases, analysts can trace the progress of individual planning
elements and system requirements through the later system
specification, design, and implementation phases.

16



2.2.4 System Performance Analysis

The IRDS can support performance information for the
subsystem components of an information system. An IRD applica-
tion can be constructed to capture workload and response time
information for database, communications, and data processing
subsystems. System designers, programmers, and engineers can use
such an IRD to isolate bottlenecks and optimize system perfor-
mance.

At present, performance information must be entered into an
IRD by the user through either the Command Language Interface or
the Panel Interface, or by a program through the Application
Program Interface. Although performance information collection
can be automated, at this time the standard does not specify a
facility to enable the IRDS to interface with DBMS services such
as the Structured Query Language (SQL)

.

The Services Interface is being developed for addition to
the IRDS standard. When it is adopted as part of the standard,
the Services Interface will enable users to automate the capture
and access of DBMS performance information to be stored in an
IRD. At that time, this IRD can be accessed by the DBMS in
active mode.

2.2.5 Data and Function Analysis

The IRDS provides documentation and cross-referencing
support for any system development life cycle phases that the
user defines. With the IRDS Life Cycle Facility, the system
designers can create phase-related partitions within an IRD. In
these partitions, system designers can store the information
appropriate to each life cycle phase, yet still be able to show
cross-reference traceability across phases.

Due to its extensible schema capability, the IRDS can
support a variety of information representations, including
structures for: functional definition, functional decomposition,
data flow analysis, data decomposition, requirements definition,
data element standardization, and cross-referencing both within
and across phases.

Without the cross-referencing traceability that the IRDS
provides, system designers are faced with the arduous task of
manual data and function integration. Manual data and function
integration for large systems is so difficult that it is rarely
performed well. System implementation suffers as a result. Use
of the IRDS can improve the quality and reduce the difficulty of
data and function integration. Improved data and function
integration results in improved system design and implementation.

17



2.2.6 System Resource Configuration Management

Organizations have long understood the necessity of managing
changes to their business, personnel, and monetary assets. More
recently, enterprises have begun to recognize the need to manage
changes within their information system resources. System
Resource Configuration Management includes the management of
hardware, software, and data resources.

Configuration Management of other types of resources
involves tracking changes in the number and description of
various configuration items, such as the component parts of ships
or automobiles. System Resource Configuration Management,
similarly, involves tracking structures and changes for all the
resources used in one or more information systems.

Configuration management of information system resources is
cost-effective when an organization: (1) has one or more large
information systems; (2) uses a number of information or
graphics storage methods; (3) frequently adds new resources; or
(4) frequently modifies or performs maintenance procedures on
resources of existing information systems. The IRDS can assist
in planning, monitoring, and controlling these resources.

Information system resources include: data resources (such
as databases and files) , graphics storage media, computer system
software (such as computer languages, DBMSs, and software
applications) , computer systems hardware, system peripherals, and
communications systems software and hardware.

Metadata collected about a configuration item could include
descriptions of: configuration item type, item identification
code, item description, primary use, manufacturer, storage
format, storage location, security level, acquisition date,
operator's documentation, system documentation, maintenance
schedule, date of last maintenance, last maintenance type, use
restrictions, and responsible department or organization.

An IRD can be used as both a directory to locate data or
item sources, and as a dictionary to describe configuration item
information. The directory and dictionary functions can be
combined in one IRD, or can be divided among two or more IRDs.

2.2.6.1 Data Resource Management

An IRD used as a Data Resource Directory describes the use,
location, and mode of data representation of on-line data files,
on-line databases, paper-based engineering drawings, computer
graphics images, archived data on tape or disk, paper records,
database reports, spreadsheet generated reports, word processing
files, etc.

18



2.2.6.2 Software Resource Management

Software Configuration Management describes the use,
location, and structure of reusable software items. To support
this task, an IRD can be used as a Source Code Directory that
lists and locates the programs, subroutines, functions, software
utilities, and languages available in one or more software
libraries. Software system operator's documentation can be
represented in an IRD Software Operations Dictionary to describe
how to use the information system software items listed in the
source code directory.

An IRD can serve as a Source Code Documentation Dictionary.
The software documentation represented in such an IRD would allow
information systems designers and maintainers to see and analyze
the structure of the system's programs without having to read the
documentation embedded in the code. A source code documentation
dictionary would contain the software item's short name, its full
name, its purpose (e.g., data conversion, screen windowing,
programming language translation, etc.), its type (e.g., main
program, function, subroutine) , the program the software item is
called by, the subroutines or functions the software item calls,
the parameters passed into the software item, a description of
the processes performed by the software item, and the variables
that the software item returns.

2.2.6.3 Hardware Resource Management

Hardware Configuration Management describes the use,
location, and structure of computer and communications hardware
used to support an information system. An IRD can be designed as
a hardware directory to list and locate hardware, peripherals,
testing equipment, and backup items required for computer and
communications systems maintenance, replacement, and repair.
Hardware system operator's documentation can be represented in a
Hardware Operations Dictionary that describes how to use the
hardware items listed in the hardware directory.

To manage system hardware configurations, an IRD tracks all
computer and communications hardware items acquired, the location
of each hardware item, who has responsibility for each hardware
item, how each hardware item is used, and all upgrades, scheduled
maintenance, and repairs to the hardware item.

An IRD can serve as a Systems Architecture Documentation
Dictionary. The hardware documentation represented in such an
IRD would allow information systems designers and maintainers to
understand the structure of a system's hardware architecture,
without having to go to a written report. A hardware maintenance
documentation dictionary would contain the hardware item's
identification, its manufacturer and model number, its purpose

19



(e.g., number crunching, file management), its type (e.g.,
multiplexer, front end, mainframe), the hardware item's connec-
tion mode to other hardware items, the purpose of the connection,
and a description of the major software systems that the hardware
item supports.

An IRD can be modeled to represent a Hardware Maintenance
Dictionary containing descriptions of the maintenance schedule
and maintenance procedures for each hardware item, a log of
hardware failures, and a description of the unscheduled repair,
upgrade, and maintenance procedures performed.

2.2.7 Distributed Database Directory

Distributed database are buzzwords of the 1980s and 1990s.
Since many organizations have multiple databases, files, and data
processing sites, users have problems in finding the correct
place to search for particular data.

Distributed data management has become necessary to help
users find data among many database locations, and to keep data
consistent among many locations. The concept of distributed data
management is to provide automated data access and updating among
multiple databases and files during system operation.

To locate data entities stored in different databases, the
emerging distributed DBMS software relies on an active, embedded
data dictionary system. This data dictionary system provides a
directory of data entity locations, so that the DBMS can easily
find each data entity in the correct database.

At present, a directory of data entity locations can be
represented in an IRD, along with a description of each entity's
mode of representation in a database, file, or other form. When
the Services Interface is incorporated into the IRDS, the IRDS
can then be used in an active mode with a DBMS to support
distributed database management.

An active IRD will also be able to support distributed data
management for file management systems. Other additions to the
IRDS standard are being considered to further support distributed
database management.

2.3 Evolutionary Stages from Data Processing to IRM

The adoption of the IRDS standard is a step forward in the
evolution from single system Data Processing to integrated
systems Information Resource Management (IRM) . The IRDS standard
provides a foundation for the widespread commercial development
and use of high-guality , compatible dictionary systems.

20



IRDS standardization can be viewed as a step toward the data
processing systems "maturity" depicted in Richard L. Nolan's
Stage Theory. Figure 4 shows a modified version of the Nolan
Stage Theory Model [NOLA82], [NOLA79], [FONG86]. The model has
been modified for this guide. A column for "Data Dictionary
Systems" has been added, and the last row has been renamed,
changed from "Maturity" in the Nolan model, to "Information
Resource Management" here. Other terms have also been modified.

The six stages of the model in Figure 4 indicate an organi-
zation's progression in Data Processing stages from infancy
(i.e.. Initiation) to maturity (i.e.. Information Resource
Management) . The six column titles provide a framework to
interpret the growth from stage to stage.

2.3.1 Systems Initiation

In stage one, computer hardware and software are just being
acquired or developed. Software applications are designed to
solve simple calculation and sorting problems, and to reduce
costs for the organization. Since the programs are few and are
relatively limited in scope, systems planning and control is not
yet a necessity.

2.3.2 Systems Contagion

By stage two, the news of Data Processing success has
spread, resulting in a flurry of intense system development.
More hardware and software is acquired, and software applications
proliferate. Every department wants one or more systems of their
own, for prestige as well as for cost savings. A backlog of
requests begins to mount in the Data Processing department. As
more systems are developed, discrepancies in data naming and
usage appear between one system and another. The Data Processing
department may invest in a stand-alone data dictionary system in
an attempt to reduce the confusion among overlapping systems.

2.3.3 Systems Control

In stage three, the Data Processing department begins to
realize the need to control the system development process.
Instead of developing a separate system for each user, perhaps
some users could share the same system. Some parts of some
systems might be interchangeable, so that a programmer might be
able to add onto an existing system to satisfy the requirements
of another user. The Data Processing department is more likely
to use one or more stand-alone data dictionary systems, and may
begin to maintain data element dictionaries for larger systems.



C ^ U (A

o) ' Q E

0) c w t:

E 2 ^ ^
LU C/} O (/)

« Q E

£ Q CO

>« JZ

c 5
o

U <0 0)

§ 2 w

ra >,*: m
o (0 £ o

o8

c
*- o
c 'J
0) (0

E N

a >- -

ra 2 £ a
o c/> O <

o •- S-*- c o
*^ C Q
V- to >

a
3 M
W E c
W *- —

E W Q

CO

tz

.2 a>
*- o
2 £

^1
^ "ra

c S
E OS

0)

o o
u. O

= °-
BJ Q.

a
<u iS «
> c E
o o 0)

«
P >•
± o8 W

o a.

TO -J #-

Q. >- Q
p <u m
£ Q. S 00

eS a
>» c
1^ (0

ra oT E- o <i>

c O
(0

E c

o

Ed) o
_ Q. O

3
o

>
o o 2:

Q. O _ _
3 *: i2 o
CO £ Q. O

0) o

c *-
a>

•2 H

o9

N O)

(0
c o

E 'c «—

'

c c
o ra o
U. Q. U

o
(3 o9

H
O)

E o
"c —

»

yst
Ian

c
o

CO Q. u

oa

ra

ra «

° 2

ra .— —
0) — »-
I- O. (Q

£ < CO

35

E
(0

o
0^ CO

CD

C CO

* -2 5
CO CO *5

0> — Q

£ < o8

w
CO

c ^ ®
= 2 "
a> o o
CO 0) Q.

r. P o
.2 o) S c
o)£ 0)0 ™
*- ^ " o O)
™ ™ ^ c «
i: i5 « 3 -
CO Q. S u. £

c
_o

o «

^ .2

O rr CO

o •—

C CO Q.
3 0 0.
u. O <

o

.2 i

S .2

II
a. <

0)

T3
CO

c

CO

x
UJ

CO

0) c
3 o

o CO

3 o
k.

CO Q.
0) Q.
OC <

cu
CO

CO

CO

CO

o

ED)
CO

o> c
w "

CO
CO

.2 Q
CO d)

E -S
3

£ o
c c

D)
C CO

« o8 .2
CD f
U - CO

o 5 oc
- .2

~
Q. CO

=

- <u E
c g E
0) o o
E O O

cu

3
Q.

E
O eOo

0) cu
k.

2 «2 CO

cr k. H-
O CO o
< X CO

o>

2 0)
o
o CO

E
cuO

flj> ™ CO
0) CO >.
Q Q CO

o
k.

o « £
§|co I
S 25

CO

1 "8 D)
*^ c
w c -z
.^J* O CO
CO •- £

CO CO

•— O) m
O) (u
cu -t: CO

m £ o

c
D)

*^ "«
CO d)

O O) >
E « 2

Q. S £

o c
0) (0

QoB

c 2
D) 2
'co «

O O

o

ii
t;

§ CO

0 c

1 E

c
o
O)
CO

c
o

CM O
c

• o
o O

c
CO .2

E «
D)

CO CU

^ CO £

CO (/)

r3£
E c
T3 O

in <

c
cu

a> c
o t
k. cu

3 O)
O CO

CO c:

cu CO

CO £ cr S

'Z o

5 E



2.3.4 Systems Integration

In stage four, the need to integrate systems becomes
apparent. DBMS software is acguired, and many databases are
developed. Data dictionary systems integrated with DBMSs are
acquired. Due to innovative metadata management, several systems
from a department now share data from one or more databases.
Planning and control is tailored to each system, as needed. As
the Data Processing department initiates or adopts these metadata
management controls, it begins to match system development to
user demand.

2.3.5 Data Administration

By stage five, the organization recognizes that data
management and control is the key to greater productivity and
improved systems design. From the partial integration of systems
in the previous stage, the organization decides that it wants
more fully integrated systems. To encourage data consistency and
integrity. Data Administration is introduced as a new department
within the organization. Several types of data dictionary
systems are acquired from the many commercially available.

During this stage, the Data Administration department uses a
data dictionary system to maintain Data Element Standardization
for all large systems, and possibly for all corporate systems.
Many data dictionaries are developed to support different types
of metadata. The Data Administration department actively
promotes and supports data sharing, data and function integra-
tion, and logical database design. Logical database design
information and other metadata are supported by data dictionary
systems

.

2.3.6 Information Resource Management

At stage six, we arrive at IRM. This stage may correspond
to the system "maturity" that Nolan described. IRM represents
our current understanding of how best to ensure system efficiency
and effectiveness. Nolan's final stage of organizational data
processing "maturity" may remain elusive, however, with IRM to be
succeeded later by enthusiasms for other advancements such as
knowledge based systems.

An organization using IRM recognizes the need for Strategic
Systems Planning in stage six, when organization-wide, top-down
planning for data and system resources is viewed as a necessity.
An organization involved in Strategic Systems Planning wants to
be able to trace this plan down through the individual features
of system requirements, design, and implementation.

23



Such an organization using IRM recognizes the importance of
Strategic Systems Planning: (1) to reconcile the inconsistencies
among separate systems and within individual systems, (2) to
trace the relationships of data to functions, and (3) to provide
continuing management support for information systems that help
the enterprise meet defined management objectives. The IRDS
standard provides support for these resource planning functions.

Organizations approaching the IRM stage recognize the need
for the integration of data management, data processing, data
conversion, and data communications systems into fully functional
information systems. Use of the standard IRDS supports informa-
tion systems integration of these four functions.

24



3.0 Features of the IRDS Standard

The IRDS supports information management throughout the
phases of systems development, as well as during system testing,
operations and maintenance. The standard IRDS specifies a basic
set of facilities to be supported in the Core IRDS, and a number
of more advanced facilities to be supported in optional IRDS
modules. Further description of the IRDS Core and modules can be
found in [GOLD88a] . Comprehensive IRD applications can be
developed through the use of IRDS facilities.

Figure 5 shows how the contents of the IRDS, including the
layers of IRD schema description, IRD schema, and IRD metadata,
relate to data in production databases. The highest level of the
figure, the IRD Schema Description Layer, was not provided in
early data dictionary systems.

3 . 1 History of Data Dictionary Systems

Vendors of early data dictionary systems defined fixed
metadata types used in those systems, providing a limited number
of entity-types, relationship-types, and attribute-types to
users, similar to those shown in the IRD Schema Layer of Figure
5. The schemas of these early data dictionary systems were
vendor-defined and could not be modified by users. Since vendors
could not reasonably anticipate the best metadata types for
every user, this fixing of dictionary terminology severely
restricted applications developed with such dictionary systems.

In response to user demand, many vendors then added special
facilities for user-defined metadata types, so that users could
create new entity-types, relationship-types, and attribute-types.
These facilities for schema modification provided for schema
extensibility, however the user-defined metadata types were
poorly integrated with the built-in metadata types fixed in those
systems. Users of such early dictionary systems were required to
learn two different sets of commands: one for fixed dictionary
terms, and another for user-defined dictionary terms.

3.2 Existing Features of the IRDS Standard

The IRDS is the next step in data dictionary system evolu-
tion. The IRDS completely integrates both built-in and user-
defined schema facilities. The user has complete freedom to
tailor the IRD to a particular task, while retaining the ability
to use all IRDS functionality.

25



3.2.2.3
The metadata types built-in to the IRDS are incorporated in

the Minimal and the Basic Functional Schemas, described below in
the section on Predefined Schema Structures. The features of the
existing IRDS Standard are discussed briefly in the following
sections

.

3.2.1 Entity-Relationship-Attribute Modeling

A schema is the part of a dictionary or database that
defines the basic structures to be supported in that dictionary
or database. This section describes the structure of an IRD
schema, which defines the structures that support metadata
representation in an IRD. IRD schema descriptors provide the
foundation on which metadata structures can be built. The IRD
Schema Description Layer is illustrated as the top level of
Figure 5. IRD schema description is based on the Entity-
Relationship information model, which was first proposed by Peter
Chen [CHEN79] and continues to be developed [TE0R86] . The
Entity-Relationship model supports the analysis of entities,
relationships, and attributes.

Entity names correspond to nouns. Entities are the data
concepts that are represented and described in a data dictionary
or IRD. An entity can represent people, places, things, organi-
zations, concepts, or events about which an organization collects
data. Examples of entities, EMP-NO and SOC-SEC-NO, are shown in
the IRD Metadata Layer of Figure 5. The entity SOC-SEC-NO can be
captured as metadata in an IRD along with a description such as,
"9 digit number issued by the U.S. Social Security Administration
to identify U.S. citizens and resident non-citizens who have
Social Security accounts." Since the entity SOC-SEC-NO is viewed
in terms of its characteristics and mode of representation, it is
considered metadata.

Any particular instance of an entity, however, is considered
to be data, or a data item, not metadata. For example, the
numbers 229-21-5941, 228-70-9850, and 240-39-7633 are all
considered data items or instances of the entity SOC-SEC-NO.
Data items, such as these instances of SOC-SEC-NO, should be
represented as production data in a database. Such data items
are often used as keys to locate an individual's record in a
database.

In Figure 5 at the lowest level. Social Security Number 229-
21-5941 is shown as production data that is an instance of SOC-
SEC-NO. As described in Chapter 1, data items or instances, such
as 229-21-5941, belong in a database, not in a data dictionary or
IRD which are designed to support metadata.

26



in

27



Before an entity, such as SOC-SEC-NO, can be added to the
IRD, however, its entity-type must be defined in the dictionary
schema. One entity-type is used to establish a category for a
number of entities. For example, the entity-type EIiEMENT, which
appears in the IRD Schema Layer of Figure 5, can provide the
basis for defining entities such as SOC-SEC-NO and EMP-NO.

Attribute names correspond to adjectives or adverbs, and are
used to describe characteristics of entities or relationships.
As illustrated in the IRD Metadata Layer of Figure 5, the
attribute value "9" (characters) of the attribute-type LENGTH
describes the entity SOC-SEC-NO.

Attribute-types establish the categories of attributes that
can be supported by an IRD. Attribute-types must be defined in
the IRD schema before individual attribute values can be added to
the dictionary as metadata. As shown in the IRD Schema Layer of
Figure 5, an example of an attribute-type is LENGTH.

Relationship names correspond to verbs, a:nd are used to show
how one entity corresponds or associates with another entity. An
example of a relationship is shown in the IRD Metadata Layer of
Figure 5, as PAYROLL RECORD-CONTAINS-ELEMENT EMP-NO, where
PAYROLL is an entity of type RECORD, and EMP-NO is an entity of
type ELEMENT. Before individual relationships can be described
as metadata in the dictionary, however, relationship-types must
be defined in the IRD schema. Relationship-class-types, which
classify relationship-types, may also be defined in the IRD
schema

.

The relationship-class-type option permits the user to
define the central relationship term for relationships to be
established between entities in an IRD. Examples of relation-
ship-class-type are HAS and CONTAINS. A relationship-type
establishes the category of association between two entity-
types. A relationship-type includes a definition of the first
entity-type, the relationship-class-type between the entities,
and the second entity-type. As shown in the IRD Schema Layer of
Figure 5, an example of relationship-type is RECORD-CONTAINS-
ELEMENT.

3.2.2 Predefined Schema Structures

The IRDS provides a number of predefined schema structures.
The Minimal Schema, included in each IRDS, contains a set of
schema descriptors that provide critical schema structures used
in every IRD. The Basic Functional Schema, an optional module,
supplies commonly used schema structures that may be applicable
to many IRD applications.

28



The IRDS Core supplies the framework for all other pre-
defined and user-defined schema structures. Among the meta-
entities defined in the IRDS Core are a number of meta-attribute-
types that can be used for IRD metadata control and partial
validation. A few Minimal Schema structures can be used to
enforce metadata validation.

3.2.2.1 The Minimal Schema

The IRDS standard specifies a Minimal Schema for every IRDS
implementation. The Minimal Schema, part of the IRDS Core,
provides the critical schema descriptors needed to control every
IRD schema and IRD, such as:

o Entitv-types : IRDS-USER, IRD-VIEW, and IRD-SCHEMA-VIEW

O Attribute-tVPes : ADDED-BY, IRD-PARTITION-NAME , LAST-
MODIFIED-BY, IRD-SCHEMA-PHASE-NAME

, SYSTEM-DATE,
SYSTEM-TIME, and VALUE-VALIDATION

o Attribute-qroup-type : DATE-TIME-ADDED

o Relationship-class-type ; HAS

o Relationship-tvpes ; IRDS-USER-HAS-IRD-VIEW, IRDS-USER-
HAS-IRD-SCHEMA-VIEW

3.2.2.2 The Basic Functional Schema

The Basic Functional Schema, one of the IRDS modules,
provides an initial set of schema structures that the user can
use and build upon. The main schema descriptors specified in the
Basic Functional Schema are a set of entity-types, relationship-
types, attribute-types, and attribute-group-types, which are
described below. For a full definition of the Minimal and Basic
Functional Schemas, see [GOLD88a]

.

The entity-types that are predefined for the user in the
Basic Functional Schema include: USER, SYSTEM, PROGRAM, MODULE,
FILE, DOCUMENT, RECORD, and ELEMENT.

For the entity-types named above, many attribute-types are
predefined for the user by the Basic Functional Schema, such as:
ADDED-BY, ALLOWABLE-RANGE, CLASSIFICATION, DATE-TIME-ADDED

,

DESCRIPTION, EXTERNAL-SECURITY, LENGTH, LOCATION, and USAGE.

The Basic Functional Schema predefines a number of relation-
ship-class-types for the user, including: CONTAINS, PROCESSES,
RESPONSIBLE-FOR, RUNS, GOES-TO, DERIVED-FROM, CALLS.

29



Specific relationship-types between entity-types are also
predefined for the user, such as: SYSTEM-CONTAINS-PROGRAM,
DOCUMENT-CONTAINS-ELEMENT, PROGRAM-PROCESSES-DOCUMENT, MODULE-
PROCESSES-ELEMENT, USER-RES PONS I BLE-FOR-DOCUMENT, USER-RUNS-
PROGRAM, PROGRAM-GOES-TO-PROGRAM, etc. The directionality of the
required relationship-types is also predefined.

A few attribute-types for relationship-types are defined,
such as: FREQUENCY, which is associated with the relationship-
types of PROCESSES and RUNS.

3.2.2.3 Schema Structures for Metadata Control and Validation

The IRDS Core provides the foundation for all IRDS schema
structures. The IRDS Core also provides a number of predefined
meta-entity structures of meta-attribute-type designed for
validation and control of the metadata that will be added to an
IRD. Since these meta-entity structures are used to define the
schema, they cannot be changed.

The IRD Administrator for your organization or your own
system, however, can assign appropriate values to these meta-
attribute-types . For instance, the meta-attribute-type PURPOSE
can be assigned a textual value that describes the use of a
particular attribute-type. Meta-attribute-type values such as
this provide the basis for describing or controlling the metadata
that can be added to the IRD.

While the value for the meta-attribute-type PURPOSE is user-
assigned, the values for some other meta-attribute-types , such as
LAST-MODIFIED-BY . are system-assigned. For LAST-MODIFIED-BY , the
IRDS will assign as a value the name of the person who last
modified a particular IRD schema or metadata value.

A number of these meta-attribute-types can be used to store
and enforce data integrity rules for the partial validation of
IRD metadata. For example, the meta-attribute-type FORMAT can be
designated by the IRD Administrator to indicate the acceptable
category of attribute values for a particular attribute-type, as
either: STRING, TEXT, INTEGER, REAL, DATE, or TIME.

The default value for FORMAT is STRING, which permits an
attribute value to be a certain type of alphanumeric field. If
the FORMAT for an attribute-type is designated as INTEGER,
attribute metadata can only be added in INTEGER form. With
FORMAT specified as INTEGER, for example, the IRDS will protect
the IRD by keeping users from mistakenly adding real numbers or
alphanumeric attribute values. By permitting IRD users to add
only those attribute values that conform to the FORMAT specified,
FORMAT restrictions assist in enforcing IRD data integrity rules.

30



In addition to these Core structures, a few Minimal Schema
structures have been predefined to support metadata validation
within an IRD. The Minimal Schema contains the following meta-
entities that can be used to enforce metadata integrity and
consistency:

o ATTRIBUTE-TYPE-VALIDATION-DATA - One meta-entity of
Attribute-Type-Validation-Data has been predefined as
YES-OR-NO-VALUE and can be used to validate any
attribute value as either YES or NO.

O ATTRIBUTE-TYPE-VALIDATION-PROCEDURE - Two meta-entities
of Attribute-Type-Validation-Procedure have been
predefined as:

RANGE-VALIDATION . which can be used to restrict
the attributes of a given attribute-type to a
user-defined range of values.

VALUE-VALIDATION . which can be used to restrict
the attributes of a given attribute-type to a
user-defined set of values.

3.2.3 Conmiand and Panel Interfaces

A conforming implementation of the IRDS standard must
contain either the Command Language Interface, or the Panel
Interface, or both interfaces.

The Command Language Interface supports the user ' s interac-
tion with the IRDS in both batch and interactive modes. The
Command Language is fully described in [GOLD88b] . Chapters 4 and
5 of this guide illustrate the use of the Command Language in
some IRD applications.

The Panel Interface provides a set of panels (i.e., concep-
tual screens) through which the user can access and manipulate an
IRD. After using panels to define particular actions, a user can
"save" any number of those panels to be used in a future session.
A user can temporarily save or "mark" panels that will be kept
only for the duration of the current panel session.

The IRDS standard specifies the functional characteristics
of the Panel Interface, without specifying screen design or
layout. Different IRDS implementations will have the same panel
structural features, although their screens may not look alike.

31



Each IRDS panel contains the following:

o State Area—reports which IRD is being accessed, what
kind of action is being performed, and what system
defaults are in effect

o Data Area—shows the placement of input information, or
displays output results

o IRD Schema Area—displays those options available to
the user with the current schema, or shows the limita-
tions in effect

o Action Area—shows the other panels of the interface to
which the user may currently transfer to continue
operations, and supports the COMMIT function to perform
user-specified updates or retrievals

o Message Area—displays any IRDS error or warning
messages

o Help Area—provides information to the user in response
to "Help" requests

Sets of panels, called Panel Trees, are included in IRDS
specifications to assist users in performing: IRD metadata
maintenance, IRD metadata output, IRD entity-lists, IRD schema
maintenance, IRD schema output, and the interchange of schemas
and metadata between different IRDs.

3.2.4 Extensible Schema Definition Capcibility

The IRDS permits the user to make essentially unlimited
extensions to any IRD schema. This capability provides the user
with the flexibility to design a schema to fit the particular
needs of the organization or life cycle phase that the IRDS is
being used to support. The user has the freedom to extend the
schema in any manner that will be useful. This means that the
IRD can be structured to capture any type of metadata that the
user can define.

All implementations of the IRDS standard will have this
extensible schema definition capability, since it is part of the
IRDS Core. This flexibility permits vendors to choose whether or
not to implement the Basic Functional Schema as a starter schema
set, and permits users to customize their IRD applications.

32



3.2.5 Extensible Life Cycle Phase Facility

Two types of life cycle phase facilities are specified in
the IRDS standard. The Core IRDS has a basic life cycle phase
facility that provides the user with the capability to construct
partitions in an IRD corresponding to the life cycle phases to be
represented. Additional facilities are supported by the IRDS
Extensible Life Cycle Phase Module. This optional module
specifies integrity rules and customization facilities that give
the user comprehensive life cycle support.

The Core IRDS provides three life cycle classes in which the
user can represent specific life cycle phases. These three
classes are:

o Uncontrolled—IRDS users can represent any number of
system development life cycle phases through the use of
this Uncontrolled life cycle class. For example, some
development life cycle phases to be represented in this
Uncontrolled class might include: Strategic Systems
Planning, Requirements Definition, Functional Specifi-
cation, Program Design, Logical Database Design,
Physical Database Design, and System Implementation.
Uncontrolled generally describes "non-operational" life
cycle phases.

o Controlled—This life cycle class can contain only one
Controlled Life Cycle Phase, which corresponds to the
activities of systems operations and maintenance.

o Archived—This life cycle class can contain only one
Archived Life Cycle Phase, which corresponds to the
documentation activities associated with historical and
audit archives for metadata no longer in use.

Beyond the life cycle classes provided by the IRDS Core, the
Extensible Life Cycle Phase Module offers three additional
capabilities including Hierarchical Phase Modeling, Relationship
Sensitivity Structures, and Life Cycle Integrity Rules, which are
described below.

3.2.5.1 Hierarchical Phase Modeling

The module permits users to designate hierarchical relation-
ships among the phases. For example, when a system is under
development and the developer wants to demonstrate how system
requirements are being fulfilled in the implementation, the

33



developer may want to designate the Requirements phase (in the
Uncontrolled class) as the top of the hierarchy under which all
specification and design phases (also in the Uncontrolled class)
fall. Later, when the system is operational, the Data Admini-
strator may want to revise the hierarchical phase modeling to
show the Controlled phase (representing System Operation) at the
top with development phases, such as Requirements and Logical
Database Design (in Uncontrolled class) organized beneath.

3.2.5.2 Relationship Sensitivity Structure

In planning for the movement of metadata from a lower level
life cycle class to a higher level class, the IRD Administrator
has the option to categorize certain relationship-types, and
therefore their corresponding relationships, as phase-related.
When a phase-related relationship associates two entities, then
the first entity in the relationship can be considered
"dependent" on the second entity, while the second entity is
considered "independent" of the first.

For example, suppose that the relationship-type PROGRAM-
ACCESSES-SUBROUTINE is defined as phase-related in the System
Design (Uncontrolled class) phase. In the relationships based on
this type, entities of the type PROGRAM are considered dependent
on entities of the type SUBROUTINE. This dependency means that
in order to be considered complete, entities of type PROGRAM
require the presence of entities of type SUBROUTINE. The phase-
related relationship-type establishes this entity dependency.

The phase-related dependency extends to the specific
relationships of this relationship-type. For instance, in the
relationship PRODUCE-PAYROLL PROGRAM-ACCESSES-SUBROUTINE
PREPARE-CHECKS, the entity PRODUCE-PAYROLL, of entity-type
PROGRAM, has a phase-related dependence on entity PREPARE-CHECKS,
of entity-type SUBROUTINE. Such phase-related, relationship
dependencies provide a foundation for the IRDS to enforce life
cycle integrity rules.

3.2.5.3 Life Cycle Integrity Rules

The Extensible Life Cycle Phase module provides life cycle
integrity rules intended to protect the IRD when the IRD Admini-
strator moves metadata from an Uncontrolled phase into the
Controlled phase, or from the Controlled phase into the Archived
phase. Life cycle integrity rules should be used when an IRD
Administrator wants to move metadata already defined in one phase
to another phase of a higher life cycle class.

34



In planning for such an occurrence, the IRD Administrator
has the option of defining certain relationship-types as "phase-
related" in the source phase. Using the Relationship Sensitivity
Structure described above, the IRD Administrator has the flexi-
bility to define which sets of entities, associated by relation-
ships, are essential to the coherency and completeness of the
target phase.

These phase-related relationships permit the system to
enforce integrity rules as metadata is moved from the source
phase to the target phase. The integrity rules require that
independent entities must be transferred from the source phase
into the higher level target phase before the dependent entities
of that relationship can be transferred, so that their relation-
ship dependencies are retained.

If the relationship PRODUCE-PAYROLL PROGRAM-ACCESSES-
SUBROUTINE PREPARE-CHECKS is phase-related, the first entity
PRODUCE-PAYROLL is considered dependent on the second entity
PREPARE-CHECKS. When the user moves these entities from an
Uncontrolled class life cycle phase to the Controlled phase, the
independent entity PREPARE-CHECKS must be moved to the target
Controlled phase before the dependent entity PRODUCE-PAYROLL can
be moved there. This ensures that no entities of the type
PROGRAM can be moved to the target phase without having entities
of the type SUBROUTINE already present in the target phase.

Since the description of a program could not be considered
complete without information about its component subroutines, it
is reasonable to require the description of the related subrou-
tines before an entity can be established for a program that
calls subroutines. Due to this integrity rule, when the user
refers to an entity of the type PROGRAM in the target phase, the
user can be assured of finding in place all the information that
was originally defined for all related entities of the type
SUBROUTINE

.

3.2.6 IRD Versions, Views, and Quality Indicators

The IRDS provides specifications for versions, views, and
quality indicators. A version identifier for entities and meta-
entities is composed of a variation name and a revision number.

The IRDS versioning facility permits revision numbers to be
assigned to changing versions of each entity as part of the
access name. Every entity is automatically assigned a revision
number of "1" when it is first defined. When the user specifies
a "new-version" during entity modification, for example, that
entity's revision number is incremented. Each entity revision is
stored separately in the IRDS as a separate entity.

35



For instance, if you had originally defined an entity EMP-NO
with a description showing it to be a 5-digit integer, the IRDS
would, by default, assign it a revision number of "1" indicating
that it is the first version without revisions. This entity name
would then be EMP-NO (1). Later when your company had added more
employees, if you changed your EMP-NO description showing it to
be a 6-digit integer, then you could assign this version to have
the revision number of "2" indicating that it is the first
revision, or second version, of EMP-NO. This revised entity name
would be EMP-NO (2). Unless you remove EMP-NO (1) from the IRD,
both EMP-NO (1) and EMP-NO (2) will exist in your IRD.

This facility also permits the differentiation of entities
with variation names. You can use variation names, for example,
to differentiate between entities of the same name that are used
in different ways, such as those used in more than one life cycle
phase partition of the same IRD.

If an entity such as PRODUCE-PAYROLL, of entity-type
FUNCTION, is defined in the REQUIREMENTS-LIFE-CYCLE-PHASE, you
may want to use the same entity name entity name again in the
PROGRAM-DESIGN-LIFE-CYCLE-PHASE, now with entity-type PROGRAM.
Unless you alter the entity name with the addition of different
variation names, the IRDS will not permit the definition of the
same entity name again in different phase partitions of one IRD.

In the REQUIREMENTS-LIFE-CYCLE-PHASE, you can represent the
entity name as PRODUCE-PAYROLL (R) , in which the "R" indicates
Requirements; in the PROGRAM-DESIGN-LIFE-CYCLE-PHASE, you can
represent the other entity name as PRODUCE-PAYROLL (P) , in which
the "P" indicates Program Design. Two different entities are now
represented with the addition of these variation names. Any
number of variation names can be defined. Variation names, which
must begin with a letter, can be used for a variety of purposes.

Variation names and revision numbers can be used together.
For example, if the entity PRODUCE-PAYROLL (R) has been revised
once, for instance to modify its entity description, then the
variation name and the revision name can be represented together
as PR0DUCE-PAYR0LL(R:2)

.

The IRDS supports the definition of dictionary views to
provide logical partitions within the Uncontrolled life cycle
phases of an IRD. A view is a defined subset of an IRD that is
used to provide a limited perspective of the IRD contents.
Different user groups will often use different views to access or
develop different aspects of the same dictionary.

For example, when multiple groups are developing system
requirements using the Requirements Definition phase of an IRD,
each user group will want to access only their particular part of

36



the Requirements Definition dictionary. The Requirements
Definition IRD can contain many views that may support Software
Requirements, Communications Requirements, Hardware Requirements,
Site Requirements, etc. The IRD users working on Communications
Requirements, for example, would be able to view their metadata
separately from all the other metadata stored in the Requirements
Definition dictionary.

Quality indicators are supported by the IRDS for use in
standardization, quality assurance, and quality testing IRD
applications. Quality indicators have not been predefined as
meta-entities in either the Minimal or Basic Functional Schema.
To use this facility, organizations must define their own set of
quality indicator meta-entities in an IRD schema.

Since some organizations must respond to many types of
standards, the quality indicator facility provides these users
with a method of indicating which type of standard an entity
fulfills. Quality indicators can also be used to designate to
what degree an entity satisfies quality assurance tests. No
integrity rules for quality indicators have yet been provided.

3.2.7 IRD-IRD Interface

The IRDS standard provides general specifications for an
IRD-IRD Interface that supports schema and metadata interchange
between separate IRDs, which may be located in one IRDS or
separate IRDSs. The IRD-IRD Interface facility permits an
organization using standard IRDSs to select and transport part or
all of an IRD schema, and part or all of the corresponding IRD
data, from one IRD to another IRD.

Since the IRD-IRD Interface is defined in the IRDS Core,
every standard IRDS implementation has this capability. The IRD-
IRD Interface is important because it protects schema and
metadata interchange with integrity constraints, so that there is
no compromise to the data integrity of either IRD after the
interchange. The IRD-IRD Interface is the subject of further
standards work to insure interoperability among IRDS products of
different vendors.

To transport the contents of one entire IRD to another IRD,
the user works from one IRDS to specify the two dictionaries to
be accessed. The IRD-IRD Interface compares the schemas of the
two different dictionaries, and identifies incompatibilities in
the schemas for the user to resolve. Once any discrepancies are
resolved and the schemas are compatible, the IRD-IRD interface
supports the transport of one dictionary into the other.

37



Users may find it easier to undertake the IRD-IRD transport
incrementally, rather than to combine two complete IRDs. Since
many schema-level discrepancies often exist among different IRDs,
and because users can more easily resolve a limited number of
discrepancies at a time, users may prefer to transport only part
of an IRD at one time.

In this case, a subset of the source dictionary metadata is
selected and exported to an "empty" IRD. In this new IRD, the
user specifies the name of the old source schema, and the IRDS
creates a new schema to support the subset metadata. Then the
IRDS interface facility compares the schema of the new source
(i.e., subset) IRD, with the schema of the target IRD, and
reports any discrepancies. When the user has resolved all
schema-level discrepancies, the new source IRD and the target IRD
can be merged. The user repeats this process until all desired
parts of the two IRDs have been merged.

3.2,8 Security Facilities

The Security Facilities Module supports the restriction of
user access permissions to an IRD, to an IRD schema, to an
entity-type, to individual commands, and to individual entities.
Two levels of IRD access control are provided:

o Global Security—This facility provides restrictive
mechanisms to protect both the IRD and IRD schema.
These restrictions are designated according to entity-
type, meta-entity-type, or partition. For each IRDS-
USER, IRD-VIEW, and IRD-SCHEMA-VIEW entity, attributes
define the user's level of access. A user can be
limited to access only a subset of views. Within each
view and schema view, individual user permissions
(i.e., to read, add, modify, and delete) are defined
for each entity-type and meta-entity-type.

o Entity-Level Security—This facility provides the
ability to assign read or write privileges for individ-
ual entities. As an extension of the Global Security
Facility, Entity-Level Security allows read or write 10
digit number "locks" to be assigned by the system to
each entity. The system will issue the correct 10
digit number "key" only to users who have been granted
the appropriate permissions to access an entity secured
in this fashion. The Entity-Level Security Facility
requires the use of the entity-type ACCESS-CONTROLLER
and a set of relationship-types based on the SECURED-BY
class. The "lock" attribute-types associated with the
entity-type ACCESS-CONTROLLER are READ-LOCK and WRITE-
LOCK. The "key" attribute-types of the entity-type
IRD-VIEW are READ-KEY and WRITE-KEY.

38



3.2.9 Procedure Facility

One of the IRDS optional modules, the Procedure Facility
provides the user with the capability of defining and executing
new IRDS procedures, or macros, for IRDS commands. The IRDS
Command Language Interface Module must be present for the
Procedure Facility to operate.

Many kinds of command procedures can be user-defined with
the Procedure Facility. Instead of laboriously typing out every
command, for example, with the Procedure Facility a user can
store sets of commands that perform frequent tasks. Various
statement types are permitted in procedures, such as Assignment
Statements (i.e., to assign values to variables). Do Statements
(i.e., to group instructions together and execute iteratively)

,

If Statements (i.e., to specify conditions for executing proce-
dures) , etc.

3.2.10 Application Program Interface

The Application Program Interface provides an interface
between standard programming languages and the command language
of the IRDS. The Call feature of a standard language, such as
COBOL, PL/1 or FORTRAN, can be used to access the metadata in an
IRD. The IRDS standard does not specify particular language
bindings. With this module, users can write programs to collect
metadata from, and pass metadata to, the IRD. Sets of IRDS
commands can be passed through the language call to the IRD, and
error conditions from the IRDS can be carried back through
programs to the user. All IRDS integrity and security rules
continue to be enforced with this interface.

3.3 Planned Features of the IRDS Standard

The IRDS is expected to become a widely implemented standard
for data dictionary system products. As the IRDS standard is
implemented in commercially available IRDS software, IRDS system
users will have the benefit of easier system-to-system dictionary
transportabil ity

.

Specifications are planned for additional IRDS modules. A
facility expected to be defined within the next few years is:

o Services Interface — This planned facility will permit
the IRDS to be accessed by services such as programming
language compilers, database query languages like SQL
and the Network Data Language (NDL) ,

report writers,
and Open Systems Interconnection (OSI) systems. The
Services Interface will allow the IRDS to be used
actively in an operational environment.

39



Another facility under consideration for future addition to
the IRDS is:

o N-ary Relationship Module — X3H4 has recognized the
need for this future module that would permit IRDS
users to specify relationships among more than two
entities. When this module is implemented, relation-
ships among multiple entities could be defined. X3H4
is considering the n~ary concept to provide the IRDS
with a more convenient capability to represent complex
relationships. The intent is for this future module to
specify the schema descriptors necessary to define an
n-ary schema and support n-ary schema extensibility.

40



4 . 0 Standards and Conventions for IRD Use

The IRDS protects the user by allowing only one instance of
each entity name and relationship name, so that subsequent
additions will not inadvertently override previous entity
definitions. The IRDS also provides automated support for some
areas of metadata protection, such as Global Security and Entity-
Level Security supported by the Security Facilities module
discussed in Chapter 3. IRDS support for versioning, views, and
quality indicators provides the user with a number of devices to
protect metadata stored in an IRD.

The IRDS cannot, however, protect the user from himself.
When one user constructs and uses an IRD, use of an IRD appears
simple. When many users have access to an IRD without limita-
tions or structured procedures, chaos will reign.

4 . 1 Why Standards and Conventions are Necessary

Your IRD is a mirror of what you put into it. You can lose
metadata from your IRD if your user group does not plan ahead for
your IRD application's purposes and results. Without knowing the
purposes and planned results of your IRD, your user group can
easily develop incorrect schemas for your IRD, necessitating
deletions and additions after metadata has been added to the IRD.

Disorganized output will result from your IRD if your user
group has disorganized metadata input procedures. If you have
not defined areas of responsibility and enforced these with
security measures, or if you have not defined an analysis
methodology to be used by all user group members in developing
the metadata, your IRD metadata will not be dependable. A group
using an IRD without naming conventions and metadata validation
routines should expect to have redundant, contradictory metadata.

The IRDS provides the user with many facilities, but
facilities alone do not ensure a useful IRD. When an IRD has
more than one user, you should establish and enforce standards
and conventions for its use [VAND82].

An organization interested in using the IRDS should first
assign a small working group to use the IRDS to gain familiarity
with it. Through guidance, such as the use of this guide, and
through trial and error, this working group should devise its own
set of standards and conventions as the group develops several
IRD applications for demonstration purposes.

41

/



If an organization has previously used a number of data
dictionary or other design tools for which a set of standards and
conventions has already been instituted, these existing standards
and conventions should be examined and, as appropriate, modified
for use with the IRDS.

When this small working group has devised a number of test
applications using one or more IRDs, this group should plan a set
of IRDS usage standards and conventions for use throughout the
organization. The following sections provide general guidance on
the contents of such a standards and conventions document.

4.2 Standardize Methodologies

The standardized use of one analysis methodology by all user
group members working in one system development phase is critical
to the success of any IRD metadata application. Once you have
defined the purpose and results for your IRD, you know your
destination. Without a shared methodology, however, your user
group will not have the means to get there. A standardized
methodology provides a set of analysis procedures that all
members of a working group can follow during a system development
phase to derive the metadata that the IRD will store.

Many methodologies address single life cycle phases. For
example, NBS recommends a methodology for use in the logical
database design phase, described in Guide on Logical Database
Design , NBS Special Publication 500-122 [FONG85]. While method-
ology selection is important, equally critical is methodology
coordination. When different methodologies are used for differ-
ent life cycle phases, methodology use must be coordinated so
that no information is lost or duplicated among phases. Organi-
zations should adopt and standardize a set of methodologies that
have proved successful, for use throughout all the life cycle
phases

.

The IRDS can be used with any analysis methodology that your
organization finds satisfactory. In order to input your analysis
into an IRD, however, the metadata resulting from your analysis
methodology must be mapped into the Entity-Relationship model for
input to an IRD. Mapping of analysis results into the Entity-
Relationship model has been discussed earlier in this chapter.

4.3 Share Standardized Schema Structures

A number of user groups can share one IRD, if their purposes
and planned results for using the IRD are related. An IRD can be
partitioned into a number of phases in which metadata can be
collected to represent the various life cycle phases. Within

42



each IRD phase, a number of separate user views can be defined to
organize metadata according to the focus of working groups that
are each concentrating on one area of a phase.

One IRD can support the metadata generated by each require-
ments group through the use of views that provide a localized
perspective of the IRD metadata. Separate user views of one IRD
can provide integrated support for a number of groups working on
different analysis aspects of a phase.

When developing an information system, an organization may
decide to define a number of views, such as a Strategic Systems
Planning Phase, a Requirements Phase, a Functional Specification
Phase, a Logical Database Design Phase, and a System Design
Phase

.

A number of different types of Requirements Phase informa-
tion for a planned system can each be associated with a view
defined within this phase of one IRD, so that several groups can
work on different requirements issues at the same time without
hindering each other.

Within the Requirements Phase, a Communications View can be
designated to support a group working on communications require-
ments, a Decision Support System View can be defined for a group
working with that focus, a System Security View can be defined
for a group working with that focus, and a Software Configuration
Management View can be defined for a group working with that
focus. The metadata stored within different views of one IRD
phase can be retrieved either from within a view, or from across
different views.

One benefit of using multiple views within an IRD phase,
rather than using multiple IRDs, will be the ability to cross-
reference information generated by different groups. If a user
group has defined its own views and has permission to "read" the
other views within the one IRD, that user group can then choose
whether to limit its perspective to only its own metadata, to
show the relationships between its own metadata and that of
another group, or to show relationships to all the metadata in
the IRD.

For instance, within the Requirements Phase of an IRD
defined with separate views, the communications group can choose
to limit its metadata definition and retrieval to Communications
View metadata. The group can also define and retrieve metadata
to show how requirements added through the Communications View
can support requirements added through the Decision Support
System View. The manager of the requirements analysis project
will be able to query and receive reports on metadata stored in
this one IRD when checking all requirements areas for complete-
ness .

43



Another benefit of using phases and views within one IRD,
rather than using separate IRDs, will be the shared use of some
schema structures common to a number of user groups. This
sharing of some schema structures will require better coordina-
tion among working groups to avoid inconsistencies and duplica-
tion of effort. Establishing security controls for the shared
metadata is also important, to avoid having a situation in which
one group accidentally modifies another group's metadata.

When several user groups have different views of one IRD, a
special planning and coordination function is needed to decide
the use of some shared schema structures, and to monitor the
development of relationships between entities of different
working groups. This planning and coordination function may
involve the services of an IRD Administrator (i.e.. Data Diction-
ary Administrator) responsible for one or more IRDs and familiar
with the IRDS software, and a Data Administrator familiar with
the metadata subject matter of the system development effort.

4.4 Ensure Responsibility, Efficiency, and Accuracy

When using an IRD, particular areas of responsibility should
be assigned to different users, IRD procedures should be planned
for maximum efficiency, and metadata integrity rules should be
defined. Assigning responsibility ensures that users understand,
review, and take responsibility for categories of metadata.

4.4.1 Assign Responsibility

Organizations that plan to use the IRDS extensively will
wish to assign an IRD Administrator, or IRD Administration team,
to provide expertise with the IRDS and have responsibility for
schema definition, security permissions, and other functions such
as interfacing IRDs. A Data Administration team, who may often
be the primary users of an IRD, can provide useful support to
other IRD users for metadata analysis. The IRD Administrator and
Data Administration team could be assigned joint responsibility
for writing the IRDS standards and conventions guide for use
throughout a project or organization.

Individual users and user groups should also be assigned
areas of responsibility appropriate to their use of an IRD.
Areas of responsibility can be enforced with the Security
Facilities module. A person responsible for a certain area of
metadata can be assigned security permissions that will give that
person control of the accuracy of that metadata. The IRD
Administrator and Data Administration team should work together
to decide when certain security permissions should be granted or
withheld.

44



When security privileges have been restrictively defined and
a user wants to modify an entity which another person controls,
the user has several options. The user who wishes to make the
change to the restricted metadata must either: (1) submit the
change to the responsible person who can decide whether to make
the change; (2) submit the change to the IRD Administrator who
can decide whether to make the change; or, (3) request the IRD
Administrator to grant the user security privileges to that
restricted area of the dictionary. These measures help control
the quality of the metadata in an IRD.

4.4.2 Ensure Metadata Integrity

Automated metadata validation checks should be used to
assist in ensuring the metadata integrity of the IRD. The IRDS
supports a number of validation rules designed to protect an IRD.
In addition to checking that metadata names are unique, the IRDS
provides other schema structures that can enforce user-specified
integrity rules for metadata validation. These schema structures
are discussed in Chapter 3 in the section on Schema Structures
for Metadata Control and Validation.

In addition to using the automated metadata validation
facilities supported by the IRDS, organizations should require
frequent IRD reviews to monitor IRD content. These reviews will
assist in ensuring IRD accuracy and integrity. Regular walk-
throughs of IRD metadata should be conducted by the Data Admini-
stration team as another means of ensuring the quality of the
IRD. Critical walkthroughs of particular metadata areas should
be lead by those users who have been assigned responsibility for
that metadata. Such walkthroughs provide management and other
project groups with information on the status of a particular
phase or area of an IRD, and provide IRD users with a critique of
metadata development and IRD practices.

4.4.3 Standardize Efficient Procedures

For an organization to develop and maintain an IRD with
efficiency, the organization should standardize procedures for
schema definition and metadata input, update, deletion, and
output. Even when all IRD users know how to implement these IRDS
commands, standardized procedures will show users when these
procedures should be performed, and in what manner these proce-
dures should be carried out.

For example, an organization may prefer that all IRD inputs
and modifications be performed in batch mode at night. This
procedure would permit the IRD Administrator to review all users'
metadata definition and modification commands at the end of the
day, and to review the results in the morning.

45



If some individuals in this organization make their IRD
changes in interactive mode, however, the Data Administrator will
not be able to review changes to the IRD as planned. Since the
IRD Administrator would only expect changes made in batch form,
the interactive modifications could be overlooked. Unrecognized
integrity problems may occur in the IRD metadata as a result.

To enforce protections against metadata integrity problems,
the IRD Administrator and Data Administration team must identify
potential problem areas such as this. Once procedures have been
specified for IRD users, protective measures can be carried out
to see that specified procedures are followed. In addition to
standardized procedures for users, metadata integrity rules and
review procedures should be specified within an IRD to validate
metadata input and modifications. Data integrity rules for IRD
metadata validation are discussed above and in Chapter 3.

An organization's standardized procedures and protections
should be fully described in a standards and conventions docu-
ment. This document should designate areas of responsibility,
indicate the assignment of security permissions, define proce-
dures for IRD use, and describe the definition of automated
metadata validation checks. This standards and conventions
document should be required reading for any IRD user, and its
procedures should be strongly enforced by the organization.

4.5 Define Naming Conventions

When more than one person uses an IRD, naming conventions
become a necessity. Naming conventions should be specified in an
organization's standards and conventions document so that IRDS
users can avoid the climb up the Tower of Babel.

Syntax conventions for types of names should be defined
according to placement of parts of speech within a name. For
example, an organization may wish all entity names to have the
syntax where the first term is an adjective directly followed by
a noun. Other organizations may want every entity name to begin
with a noun. Some organizations may want all entity access names
to have one syntax format, with the same or another syntax format
used with descriptive names. Alternate names reflect entity
usage in various systems and are not necessarily standardized.

Naming conventions may be organized differently according to
entity-type. For example, for entities of entity-type TABLE a
certain syntax could be specified, along with the caution not to
use abbreviations. For entities of entity-type FIELD, on the
other hand, another syntax could be specified, along with the
recommendation to use standard abbreviations.

46



Organizations may want to standardize relationship names by
establishing a limited set of relationship-type names that can be
used in an IRD. While some organizations may require only active
verbs in relationship-types, other organizations may accept
either active verbs or passive verbs.

Similarly, organizations can require that standardized sets
of attribute names and attribute-group names be used with
particular entity-types. If attribute-group-types have particu-
lar significance within an organization, such as RANGE-OF-LENGTH
or RANGE-OF-WEIGHT, the organization may want to specify entity-
types for which these attribute-group-types must be used.

Conventions for forming abbreviations will be useful to IRD
user groups attempting to develop brief but meaningful access
names. Some organizations may want to use an abbreviation
dictionary for reference, with the addition of the organization's
own abbreviation rules for terms not listed in the dictionary.
Those abbreviation rules may require, for example, the formation
of all unlisted abbreviations by deleting all vowels from a word.

Along with abbreviation conventions, standard lists of codes
and acronyms should be included in your naming conventions.
Acronyms permeate our lives in increasing numbers. Standard
lists of acronyms should be included in naming conventions so
that all IRD users know how to use them correctly.

In the interest of IRD economy, codes may often be used in
an IRD to represent common classifications of metadata. Codes
may be standardized by an organization for use in an individual
IRD, or may be standardized across all IRDs. As an organization
becomes familiar with recurring patterns in metadata, IRD users
may begin to recognize opportunities for greater efficiency
through the use of codes. Codes should be identified in the
naming conventions.

For further discussion of entity naming conventions, see
Guide to Data Entity Naming Conventions , NBS Special Publication
500-149 [NEWT87]. For a reference book to abbreviations and
acronyms, see [CROW84].

4 . 6 Standardize Data Elements

Data element standardization is performed to ensure that the
data used by one or more information systems can be maintained
and accessed accurately, effectively, and efficiently. As
discussed in Chapter 2 , a data element is the most basic form of
data used by programs and operational databases.

47



Data elements must be standardized to permit multiple
programs and databases to refer to data in standard forms with
standard meanings. To perform data element standardization,
organizations collect information about data, or metadata, in one
or more repositories where each data element can be defined,
described, and cross-referenced to many other data elements and
to metadata of other types. An IRD provides full support for
data element standardization.

In an IRD used for data element standardization, data
elements are defined according to a format prescribed in the
organization's standards and conventions document and supported
by the IRD schema. All element names should conform to the
organization's standard naming conventions.

While data dictionary formats for data element definition
vary [VAND82], most data element IRDs should contain information
similar to the descriptive format described below. An organiza-
tion should define dictionary terminology for metadata types that
will be most appropriate in its data element standardization
applications. An IRD application used for data element standard-
ization might include the following data element format:

Data Element
Entity Information

o Entity — the access name of the data element; a data
element is always an entity; entity-type is predefined.

o Entity Descriptive Name — the formal name of the data
element entity; this capability is predefined.

o Entity-Type — for data elements, you can use the
predefined entity-type ELEMENT or can define another
entity-type DATA-ELEMENT.

Data Element
Attribute Information

o Added-By — a predefined, system-maintained attribute-
type that identifies the person who first defined the
data element; corresponds to another common attribute
term that you can define, Responsible-Person.

o Data-Element-Number — you can define this attribute-
type to assign an identification number to a data
element for additional reference.

48



o Data-Length — you can define this attribute-type to
capture information about the number of characters or
digits permitted in data values of the element; a
similar attribute-type, LENGTH, has been predefined.

o Data-Type — a predefined attribute-type used to
capture information on whether the permitted data
values for the element are alphabetic, numeric,
alphanumeric, or in date format. Data-Class is a
similar predefined attribute-type that you may prefer
to use.

o Description — a predefined attribute-type that
supports a narrative description of the purposes and
uses of a data element entity.

o Last-Modified-By — a predefined, system-maintained
attribute-type that identifies the person who last
updated the data element.

o Number-of-Times-Modified — a predefined, system-
maintained attribute-type that records the number of
times an entity, such as a data element, has been
modified.

o Source you can define this attribute-type to
identify the organizational unit, such as department,
that first defined the data element.

o Valid-Value — you can define a multiple attribute-
type like this one to record a set of permitted data
values that are either numeric and non-contiguous, or
non-numeric; if the permitted data values are numeric
and contiguous, use Valid-Value-Range. Allowable-Value
is a predefined attribute-type that you may prefer to
use.

Data Element
Attribute-Group Information

o Date-Time-Added — a predefined attribute-group-type
that identifies the date and time that an entity was
added; it contains two attribute-types, System-Date of
the entity addition, and System-Time of the entity
addition.

- System-Time — a predefined attribute that
represents the time that the entity was added, in
hours, minutes, and seconds, in the numeric form
of HHMMSS.

49



System-Date -- a predefined attribute that
represents the date that the entity was added, in
year, month, and day, in the numeric form of
YYYYMMDD.

Date-Time-Last-Modified — a predefined attribute-
group-type that identifies the date and time that an
entity was last modified; it contains two attribute-
types, System-Date (of entity modification) and System-
Time (of entity modification)

.

- System-Time -- a predefined attribute that
represents the time that the entity was last
modified, in hours, minutes, and seconds, in the
numeric form of HHMMSS

.

System-Date -- a predefined attribute that
represents the date that the entity was last
modified, in year, month, and day, in the numeric
form of YYYYMMDD.

Identification-Name — a predefined attribute-group-
type that supports alternate names used to identify
entities; it contains two multiple attribute-types,
Alternate-Name and Alternate-Name-Context.

-- Alternate-Name — a predefined multiple attribute-
type that records aliases that can be used,
instead of an entity's access name, to specify
that entity; any number of Alternate-Names may be
defined; each Alternate-Name is paired with an
Alternate-Name-Context

.

Altemate-Name-Context — a predefined multiple
attribute-type that records the context in which
an Alternate-Name is used, such as a department or
a system; one Alternate-Name-Context corresponds
to one and only one Alternate-Name.

Valid-Value-Ranqe — you can define an attribute-group-
type like this one to record the range of valid data
values permitted for a data element; this definition
of valid data values provides useful information for
data validation; valid-value-range can be used if the
peirmitted data values are a contiguous, numeric set;
if the permitted data values are non-numeric, or
numeric but non-contiguous, use a multiple attribute-
type such as Valid-Value. Allowable-Range is a
predefined attribute-group type that you may prefer.



Lowest-Valid-Value — you can define this attri-
bute-type to record the lowest permitted numeric
value in the valid range. Low-of-Range is a
predefined attribute-type that you may use with
Allowable-Range

.

Hiqhest-Valid-Value -- you can define this
attribute-type to record the highest permitted
numeric value in the valid range. High-of-Range
is a predefined attribute-type that you may use
with Allowable-Range.

Data Element
Relationship Information

Process-Accesses-Element: -- you can define this
relationship-type; for a system being developed, this
relationship-type permits the user to identify the
processes that access this element without updating it;
the description of a process is captured in a separate
entity-type, Process; the location of a process, in
turn, can be captured in relationships such as System-
Contains-Process and Department-Performs-Process ; if
the system being described is operational, use the
relationship-type Subroutine-Accesses-Element instead.

- Frequency-of-Access — you can define this
relationship attribute-type to describe the
frequency with which the process is expected to
access the element.

Process-Updates-Element — you can define this rela-
tionship-type; for a system being developed, this
relationship-type permits the user to identify the
processes that update a particular element; as
explained above, the description of a process is
captured in a separate entity-type. Process; the
location of a process can be determined from other
relationships in which Process participates; if the
system being described is operational, use the rela-
tionship-type Subroutine-Updates-Element instead.

- Freouencv-of-Update -- you can define this
relationship attribute-type to describe the
frequency with which the process is expected to
update the element.

51



o Record-Contains-Element — a predefined relationship-
type; for an operational system that uses records in
files or databases to support data, this relationship-
type permits the user to identify the record (s) in
which the element is located; the description of a
record is captured in a separate entity-type. Record;
the location of a record, in turn, can be captured in
relationship-types such as File-Contains-Record and
Table-Contains-Record

.

o Report-Contains-Element -- you can define this rela-
tionship-type; for an operational system that uses
reports to distribute information collected from files
or databases, this relationship-type permits the user
to identify the reports (s) in which the element is
used; the description of a report is captured in a
separate entity-type. Report; a report's location can
be captured in relationship-types such as System-
Generates-Report and User-Is-Responsible-For-Report

.

o Subroutine-Accesses-E1ement — you can define this
relationship-type; for an operational system, this
relationship-type permits the user to identify the
subroutine (s) that access the data element without
updating it; the description of a subroutine is
captured in a separate entity-type. Subroutine; the
location of a subroutine, in turn, can be captured in
relationships such as Program-Contains-Subroutine ; if
the system being described is under development, you
may want to use the relationship-type Process-Accesses-
Element instead.

- Frequency-of-Access -- you can define this
relationship attribute-type to describe the
frequency with which the subroutine accesses the
element.

o Subroutine-Updates-Element — you can define this
relationship-type; for an operational system, this
relationship-type permits the user to identify the
subroutine (s) that update the data element; the
description of a subroutine is captured in a separate
entity-type. Subroutine; the location of a subroutine,
in turn, can be captured in relationships such as
Program-Contains-Subroutine; if the system is under
development, you may wish to use the relationship-type
Process-Updates-Element instead.

- Frequency-of-Update -- you can define this
relationship attribute-type to describe the
frequency with which the subroutine accesses the
element.

52



o Table-Contains-Element — you can define this rela-
tionship-type; for an operational system that uses a
relational DBMS to support data, this relationship-
type permits the user to identify the database table (s)

in which the element is located; the description of a
relational table is captured in a separate entity-type,
Table; the location of a table, in turn, can be
captured with a relationship-type such as Database-
Contains-Table

.

Other metadata types useful for data element standardization
are predefined in the Minimal and Basic Functional Schemas.
Users may define any number of additional metadata types in the
IRD schema.

Data element standardization is much easier to perform at
the metadata level, with an IRD, rather than at the data level in
a database. Since operational databases contain a minimum of
self-descriptive information and contain a considerable amount of
operational data, data element standardization in a database is
awkward. The limited data dictionary facilities built into many
DBMSs do not provide adequate support for thorough data element
standardization

.

Since the IRDS is designed to support metadata applications,
such as data element standardization, metadata definition and
analysis of this type can be performed more effectively with the
support of an IRD.

An organization's IRD standards and conventions document
should include a set of procedures for standardizing data
elements. Such procedures will specify how IRD users should find
and correct unintentional synonyms in data element names, and how
to find and correct unintentional errors in data element defini-
tions, descriptions, and assigned formats. The standards and
conventions document should also provide users with procedures
for using and maintaining data elements with the IRD.

4.7 Ensure IRD Security

An organization should establish conventions for assigning
security permissions. Conventions on assigning security permis-
sions should include a description of what types of personnel
should have what types of permissions to read, add, modify, or
delete different types of metadata in the various views and life
cycle phases defined for one IRD.

53



Conventions defining data security measures should define
the types of personnel who can modify the schemas, and designate
the security methods used in the various IRDs owned by the
organization.

In addition to this general set of security conventions,
organizations should maintain a document listing the assignment
of security permissions of different types to particular individ-
uals. Since the IRDS Security module can support security
permissions down to the entity-level, these permissions may have
to be highly specific, according to the needs of the organiza-
tion. Once these security permissions have been defined, they
should be implemented in the IRD. Security use and permissions
should be reviewed regularly for effectiveness.

54



5.0 Creating an IRD Schema

This chapter provides a general framework of concepts and
procedures to be used in designing a schema to support an
Information Resource Dictionary (IRD) application.

5 . 1 IRD Schema Concepts

A schema provides a means of representing information in a
database or data dictionary. The construction of the schema
determines the types of information that can be captured in the
database or data dictionary.

Much as data types must be declared at the beginning of a
program, metadata types must be defined before beginning to use a
data dictionary. While the IRDS provides a number of predefined
metadata types in its Minimal and Basic Functional Schemas, the
IRDS user must consider if any additional metadata types are
needed for a particular application.

As data types must be specified appropriately in each
program, metadata types must be specified appropriately in each
IRD schema. The structure of the IRD schema determines the types
of information that the user can represent in the IRD. Because
of this significance, the IRD user should be interested in the
definition of the schema.

Unlike many data dictionary systems, the IRDS provides a
fully extensible schema. This schema extensibility gives users
nearly complete flexibility in representation. The benefit of
this extensibility also imposes a burden, however, in that the
user must be responsible for the structure of the schema.

A number of basic schema structures are provided in the
Minimal Schema and the Basic Functional Schema, described
generally in Chapter 3 of this paper and in greater detail in
[GOLD88a] . These schema "starter sets" are intended to support
the functionality of the IRDS and help organizations begin to use
the IRDS.

While IRDS users will want to continue to use aspects of the
Minimal and Basic Functional Schemas in many advanced IRD
applications, the schemas provided with the IRDS are designed to
satisfy only a limited subset of users' needs. IRDS users should
plan to expand and redefine their IRD schemas as appropriate for
their unique applications.

55



When an organization wants to use the IRDS to capture life
cycle system development information, users should use one IRD
partitioned into phases. The phase-related partitions of the IRD
should be defined with separate but related schemas. These
phase-related schemas can be defined at once or incrementally.

During the IRD schema definition process, users should
consider the traceability they wish to capture from phase to
phase. Users of the IRDS Life Cycle Phase module will want to be
able to define cross-referencing relationships between entities
of different phases. To establish relationships between phase-
related entities, the user must define the appropriate meta-
relationship structures in the IRD phase-related schemas. The
procedures for defining cross-referencing relationships across
phases will be discussed in detail in a subsequent publication.

A subschema is a subset of a schema that defines the
structure of a database or data dictionary. Also known as an
"external schema", a subschema is usually a part of the schema
that supports a user group's view, or partial perspective of a
database or data dictionary. Since an IRD can support a number
of user groups that have different views of the dictionary, each
IRD schema can have many subschemas.

While the IRDS standard does not now specify full subsetting
capabilities to derive a subschema from a schema, the IRDS does
provide users a capability to siibset a view. Through the view
facility, users can access any individual view and find the
subschema, the portion of the schema, that supports it.

5.2 Top-Down Planning for IRD Use

The first procedure for any IRD application should be to
define the purpose of your planned metadata collection. For
instance, users should decide if the IRD will be used to support
data element standardization for several systems, to support
logical database design for one system, or to support all life
cycle phases for one system.

The next step should be to define what results or goals must
be accomplished to achieve this purpose for the IRD. For
instance, what specific reports, queries, information models,
data flows, or documents should result from the information you
plan to capture in the IRD? For each of these planned results,
what types of metadata must be represented?

If your purpose is to support Strategic Systems Planning,
what results do you want to achieve with the IRD? Will IRD
output lists be sufficient to represent the Business Model and
Global Data Model? Or must specific IRD output be generated
within a document, such as a Concept of Operations?

56



If specific IRD output must appear within a document, what
particular types of metadata should be retrieved from the IRD for
that document? Should IRD output be converted into input for a
document generator that will insert metadata in appropriate
portions of document text?

When a top-down approach is used by defining the project's
purpose and results before beginning an IRD application, a user
group can plan an IRD schema to be sufficient to support its
purpose and goals. If you do not plan ahead for the purpose and
goals of your IRD project, however, your organization may find it
necessary to redesign the IRD schema several times throughout IRD
development

.

The IRDS fully supports schema modification. Once metadata
has been defined and an IRD is in use, however, schema redesign
can be time-consuming. Since schema modification to a function-
ing dictionary may result in metadata loss or reentry, top-down
IRD project planning is recommended before beginning IRD schema
definition.

5.3 Metadata Model Design

These preliminary steps should be performed to develop a
metadata model before you begin to devise your IRD schema or
application. The metadata application problem statements and
structures that you develop in this procedure will determine how
your IRD schema should be defined.

5.3.1 Isolate Metadata Subjects

The first step in developing an IRD is to isolate the one or
more subjects of your immediate metadata collection. For
instance, the subject of your data collection might be the
development of a global data flow and global data model for
Strategic Systems Planning.

As your organization learns how to use the IRDS, subject
isolation may be performed initially by separate user groups.
Once your organization has gained greater familiarity with the
IRDS, different user groups that are working on the same system
development project can be coordinated to combine their subject
areas into one IRD, or a set of related IRDs. Experienced user
groups should be able to combine a number of subjects effectively
in one IRD, with each user group referring to one or more views
within a phase partition of the dictionary.

57



5.3.2 Develop Problem Statements

The second step is to define a few representative analysis
examples or problem statements for each subject. A problem
statement may take the form of one or more sketches of high-level
data flows or a generalized global data model. Define the
problem statements in sufficient detail that they provide you
with enough information to cover the analysis procedures of each
subject.

To avoid modifications to the IRD schema as an IRD applica-
tion progresses, users should develop a comprehensive problem
statement for the current life cycle phase. A comprehensive
problem statement, or set of problem statements, represents all
the metadata types needed to support the information to be
developed during a particular IRD life cycle phase application.

5.3.3 Classify Entities and Attributes

Working from your analysis sketches, translate your examples
into categories of metadata that can be represented as entities,
relationships, and attributes. Since it can be difficult to
distinguish which objects in your examples should be entities,
relationships, and attributes, some guidance on Entity-Relation-
ship-Attribute modeling is provided in this section.

5.3.3.1 Entity-Type Classification

Select objects from each example that resemble nouns, and
designate these as entities. If you plan to collect descriptive
information (i.e., attributes) about a noun-like metadata object,
that object is probably an entity. For example, some entities
for an information system could be NETWORK-INTERFACE-DEVICE,
FRONT-END-PROCESSOR, PAYROLL-SYSTEM, or WEEKLY-STATUS-REPORT . If
you plan to use a metadata object to describe an entity, that
object is an attribute.

Entity ncimes can be the same names as you used in your
example, as modified by your naming conventions. You should
consider naming conventions early in your project, to standardize
your name usage from the beginning [NEWT87] . Naming conventions
are described briefly later in this chapter.

Entities should be examined to determine if they are all of
one type or of different types. If you have difficulty determin-
ing their entity-types, consider if the set of entities can be
divided into one or more general categories.

58



Establish a number of categories of entities, and decide how
the entities can be assigned to these categories. Consider these
categories as candidates for your entity-types. Entity-type
names should be defined for each category, such as HARDWARE-ITEM,
SOFTWARE-ITEM, SYSTEM, or REPORT.

Examples of entity-types are illustrated in Figure 6, in
terms of the Entity-Relationship-Attribute model used with the
IRDS. Entity-type names can be chosen from those defined in the
Minimal and Basic Functional Schemas, or you may define your own
entity-types . Each entity-type can refer to many entities, while
each entity derives from one entity-type. Since these entity-
types will be the first major organizing factor of your IRD,
entity-type names should be used consistently with the same
meanings. The meaning or purpose of each entity-type can be
stored in the IRD schema as a value of the meta-attribute-type
"purpose", which has been predefined in the Minimal Schema.

5.3.3.2 Attribute-Type Classification for Entities

If you have information that you will want to use to
describe these entities, then you want to define one or more
attributes. A metadata object can be recognized as an attribute
if it is descriptive, and if, at the metadata level, it has only
an identifier and a metadata value. Attributes can be used to
describe either entities or relationships. Attributes that are
used like adjectives describe entities, and attributes that are
used like adverbs describe relationships. Individual attribute
values are supported by the definition of attribute-types. Each
attribute-type can be used to represent many attributes (i.e., or
many attribute values) , while each attribute must have only one
attribute-type

.

An attribute-type must be defined before individual attri-
bute values of this type can be assigned. To find appropriate
attribute-types, locate the attribute values in your example that
describe entities, divide these attribute values into categories,
and devise names for these categories. These category names are
the attribute-types that will be used to describe the entity-
types in your application.

For an entity-type of PROGRAM, for example, a useful
attribute-type might be LANGUAGE, for which the attribute value
is the name of a programming language, such as "PASCAL". Another
useful attribute-type might be LENGTH, for which the attribute
value would be the number of lines of code in a particular
program, such as "16". While the attribute value of "PASCAL" may
not need any further explanation, the attribute value of "16" has
little meaning without the unit of measure, which in this case is
"lines of code." Capturing the unit of measure for attribute-
types is discussed briefly in Chapter 6.

59



60



5.3.3.3 Associating Attribute-Types with Entity-Types

After the definition of attribute-types, the user should
decide which attribute-types will be assigned to which entity-
types. An attribute-type may be used to describe more than one
entity-type. As entity-types and attribute-types are in the
process of being developed and associated, different entity-types
may share the same set of attribute-types. When an IRD schema is
complete, however, each entity-type should have its own unic[ue
set of attribute-types.

When the attribute-types needed for entities are described,
if a number of different entity-types share the same set of
attribute-types, these entity-types should be combined to form
one, more general entity-type. This elimination of redundancy
assists in normalizing an IRD.

5.3.4 Classify Relationships and Attributes

Relationships between entities provide the second major
organizing factor for your dictionary. You should consider how
the entities in your problem statement interrelate, and define
relationships for your problem statement at this point, if you
have not done so previously.

5.3.4.1 Relationship-Type Classification

The user should define additional relationship-types to
structure the relationships to be used in an IRD application. A
relationship-type is based on the concept that the central verb
of the relationship-class-type (e.g. ,

CONTAINS) joins two entity-
types (PROGRAM-CONTAINS-SUBROUTINE) . Figure 6 illustrates other
examples of relationship-types and shows one relationship with an
attribute-type association.

Relationships drawn from your problem statement should be
categorized to obtain their relationship-class-types (central
verbs) and relationship-types (association of entity-types) . A
relationship-type is composed of:

Entity-type - Relationship-class-type - Entity-type

For instance, if your example problem is a data flow diagram
in which a relationship shows data flowing from one entity to
another, a relationship-class-tvpe such as FLOWS-TO or UPDATES
can be defined. If the two entity-types involved are DATA-SET
and DATA-STORE, a relationship-tvpe should be defined such as
DATA-SET-FLOWS-TO-DATA-STORE, or DATA-SET-UPDATES-DATA-STORE

.

61



5.3.4.2 Characteristics of IRD Relationship Structures

The IRDS recognizes only binary relationships, which
associate two entities. The IRDS does not recognize ternary
relationships, which associate three entities. If you wish to
represent ternary relationships in your IRD application, they can
be represented as entities.

At present, the relationships represented in an IRD are
unidirectional, not reciprocal. For example, if you define
relationships based on the relationship-type DATABASE-CONTAINS

-

TABLE, the IRDS does not automatically define or maintain a
reverse relationship-type, TABLE-IS-CONTAINED-IN-DATABASE. While
such a reciprocal relationship capability would be useful, it has
not been specified as part of the current standard.

Although the IRDS will support the definition of the reverse
relationship-type and relationships based on it, the IRDS does
not recognize any association between the two relationship-types
or relationships based on them. To avoid possible data integrity
errors that can result when one relationship is modified but the
reverse relationship is not, IRD users should define only
unidirectional relationship-types and relationships.

In the event that reciprocal relationships are critical to
the success of your IRD application, your organization's IRD
Administrator should devise procedures to protect the integrity
of the dictionary. In this case, the IRD Administrator should
enforce the use of batch files for metadata creation and updates
that must contain the appropriate reciprocal commands for the
coordinated definition, modification, or deletion of such paired
reciprocal relationships.

5.3.4.3 Attribute-Type Classification for Relationships

The IRDS supports the association of attribute-types with
relationship-types in the IRD schema, in much the same way that
attribute-types are associated with entity-types. This schema
structure permits users to define attributes to describe rela-
tionships.

Find the attributes in your example that describe relation-
ships, and classify these attributes into categories of attri-
bute-types. For a relationship-class-type of COMMUNICATES-WITH,
for example, that describes an association between two entities
of entity-type SITE, a useful attribute-type might be THROUGHPUT.
The attribute value for THROUGHPUT would be a number such as "80"
with the unit of measure being the "number of megabytes per
second" to be supported in communication between site A and site
B. The representation an attribute-type's unit of measure is
discussed briefly in Chapter 6.

62



Some relationship attribute-types may be critical to the
success of your IRD application. For instance, in any Logical
Database Design application, connectivity attribute-types should
be used to describe all relationships. Connectivity describes
the occurrence of entity instances for each relationship, such as
one-to-one, one-to-many, or many-to-many entity instances in a
relationship.

While schema structures to support connectivity are not
predefined by the IRDS, connectivity can be represented in an IRD
with the IRDS extensible schema. Users can define additional
attribute-types to describe relationship connectivity as ap-
propriate for Logical Database Design applications.

5.3.4.4 Associating Attribute-Types with Relationship-Types

After the definition of attribute-types to describe rela-
tionships, the user should decide which attribute-types will be
assigned to which relationship-types. An attribute-type may be
used to describe more than one relationship-type. Each relation-
ship-type, however, should have its own unique set of attribute-
types.

Once all the attribute-types needed for the relationships in
your application are described, you may find that a number of
different relationship-types share the same set of attribute-
types. You should consider combining these relationships-types
to form one, more general relationship-type, if this combination
can be accomplished without loss of meaning. Such an elimination
of redundancy assists in normalizing an IRD.

5.4 IRD Schema Description

After Entity-Relationship-Attribute modeling is completed
for your problem statement, and you have determined which IRD to
use, you are ready to define the life cycle phase, views, and
schema structures appropriate to your IRD application. A new IRD
can be created for your application schema, with your metadata
added to a life cycle phase partition, accessed through a view.
Or a suitable existing IRD can be used, with your metadata
defined through a view within a life cycle phase partition. The
predefined Uncontrolled phase can be used, or a new user-defined
phase can be added as part of the schema.

To create your IRD, you must either use a predefined schema
or define your own schema as necessary. If your IRDS includes
the Basic Functional Schema, and if your application does not
exceed the structure of the Minimal and Basic Functional schemas,
you can begin adding your metadata.

63



To use an extended schema with additions to the predefined
Minimal and Basic Functional schemas, follow the procedures
described below to define a schema sufficient to represent the
problem statement for your application. This section briefly
illustrates the commands necessary to define IRD schema addi-
tions. Further information on the IRDS command language,
including schema definition commands, is available in [GOLD88b]

.

The IRD schema must be defined in the appropriate schema
description terms. If you will look back to Figure 5, you will
see most of the appropriate terms listed in the top layer, the
IRD Schema Description layer. The primary terms used in IRD
schema description either begin with "meta" such as meta-entity,
meta-relationship, and meta-attribute, or end in "type" such as
entity-type, relationship-type, and attribute-type.

With the command language interface, each schema creation
command line starts with "add meta," such as "add meta-entity."
Using the "add meta-entity" command, represent the names for each
category of entity, attribute, and relationship as entity-type,
attribute-type, and relationship-type. With these commands, you
define your IRD schema to support the metadata of your problem
statement in terms of entities, attributes, and relationships
raised to a higher, "meta" level.

5.4.1 Entity-Type Definition

Each entity that you add as metadata in your dictionary must
be defined as having a particular entity-type. To define a new
entity-type in the schema, the command format is:

Add meta-entity entity-type-name meta-entity-type =
entity-type

;

If you want to use entity-types such as PROGRAM, SUBROUTINE,
TABLE, FIELD, and VARIABLE to capture information about a program
that uses a relational DBMS to access tables and fields, you must
define the commands:

Add meta-entity SUBROUTINE meta-entity-type = entity-type;
Add meta-entity VARIABLE meta-entity-type = entity-type

;

Add meta-entity DATABASE meta-entity-type = entity-type;
Add meta-entity TABLE meta-entity-type = entity-type;
Add meta-entity FIELD meta-entity-type = entity-type;

The entity-type PROGRAM, which could have been defined with
commands like those above, is predefined for you in the Basic
Functional Schema, so you will not need to redefine it.

64



5.4.2 Relationship-Type Definition

After you have defined the entity-types you plan to use, as
shown above, you can use the "add meta-entity" command again to
define any relationship-types you may want to establish between
any two entity-types. New relationship-types are defined with the
command format:

Add meta-entity relationship-type meta-entity-type =
relationship-type

;

To define the relationship-types of DATABASE-CONTAINS-TABLE,
TABLE-CONTAINS-FIELD, SUBROUTINE-ACCESSES-TABLE, SUBROUTINE-
ACCESSES-FIELD, and SUBROUTINE-RETURNS-VARIABLE, you must issue
the commands:

Add meta-entity DATABASE-CONTAINS-TABLE meta-entity-type
= relationship-type;

Add meta-entity TABLE-CONTAINS-FIELD meta-entity-type
= relationship-type;

Add meta-entity SUBROUTINE-ACCESSES-FIELD meta-entity-type
= relationship-type

;

Add meta-entity SUBROUTINE-RETURNS-VARIABLE meta-entity-type
= relationship-type;

5.4.3 Optional Relationship-Class-Type Definition

The optional relationship-class-type definition may be used
to help you structure your schema. New relationship-class-types
are defined according to the format:

Add meta-entity relationship-class-type-name
meta-entity-type = relationship-class-type;

For example, if you wanted to use the relationship-types of
SUBROUTINE-ACCESSES-TABLE, or SUBROUTINE-ACCESSES-FIELD, you can
define the relationship-class-type of ACCESSES. Similarly, if
you want to use the relationship-type of SUBROUTINE-RETURNS-
VARIABLE, you can define the relationship-class-type of RETURNS.
While relationship-class-types may seem cumbersome, they are
helpful in organizing an application.

65



To specify the optional relationship-class-types, use the
command form:

Add meta-entity relationship-class-type-name
meta-entity-type = relationship-class-type;

The following examples show how to define a relationship-
class-type in your IRD schema:

Add meta-entity ACCESSES meta-entity-type =
relationship-class-type

;

Add meta-entity RETURNS meta-entity-type =
relationship-class-type

;

The relationship-class-type CONTAINS is predefined for you
in the Basic Functional Schema, from which you can later draw
relationship-types, such as DATABASE-CONTAINS-TABLE and TABLE-
CONTAINS-FIELD.

Following the specification of relationship-class-types and
relationship-types, you should associate the two with the "add
meta-relationship" command

.

5.4.4 Relationship-Type Defined as a Relationship-Class-Type

If you have defined relationship-class-types, then you must
associate the appropriate relationship-types with these new
relationship-class-types. Such an association allows the IRDS to
know that a relationship-class-type refers to one or more
relationship-types. The command for this association follows the
form:

Add meta-relationship relationship-type member-of
relationship-class-type

;

The following examples show how relationship-type membership
in relationship-type-classes can be defined in your IRD schema:

Add meta-relationship TABLE-CONTAINS-FIELD
member-of CONTAINS;

Add meta-relationship DATABASE-CONTAINS-TABLE
member-of CONTAINS;

66



Add meta-relationship SUBROUTINE-RETURNS-VARIABLE
member-of RETURNS;

Add meta-relationship SUBROUTINE-ACCESSES-FIELD
member-of ACCESSES;

5.4.5 Relationship-Type Positional Definition

For each relationship-type that you have added to your
schema, as illustrated above, you must establish the position of
each entity-type in that relationship-type. Similarly, if you
have defined new attribute-group-types, you must establish the
position of each component attribute-type in the group.

Use the "add meta-relationship" command to define the
positional placement for each entity or attribute-type. This
command is necessary for the IRD to determine whether the entity-
type is in position = 1 at the beginning of the relationship, or
whether the entity-type is in position = 2 at the end of the
relationship. The format of the command to establish entity-type
placement in relationship-type statements is:

Add meta-relationship relationship-type
connects first-entity-in-relation position = 1;

Add meta-relationship relationship-type
connects second-entity-in-relation position = 2

;

For the relationship-types TABLE-CONTAINS-FIELD, SUBROUTINE-
ACCESSES-TABLE, and SUBROUTINE-RETURNS-VARIABLE, the following
meta-relationship commands are needed to establish entity
placement:

Add meta-relationship TABLE-CONTAINS-FIELD
connects TABLE position = 1;

Add meta-relationship TABLE-CONTAINS-FIELD
connects FIELD position = 2;

Add meta-relationship SUBROUTINE-ACCESSES-TABLE
connects SUBROUTINE position = 1;

Add meta-relationship SUBROUTINE-ACCESSES-TABLE
connects TABLE position = 2;

67



Add meta-relationship SUBROUTINE-RETURNS-VARIABLE
connects SUBROUTINE position = 1;

Add meta-relationship SUBROUTINE-RETURNS-VARIABLE
connects VARIABLE position = 2;

5.4.6 Attribute-Type Definition

Categories of additional attributes, beyond those defined in
the Minimal and Basic Functional Schemas, must be defined as
attribute-types with the "add meta-entity" command.

The Minimal Schema provides a number of useful attribute-
types and attribute-group-types that will probably be used in
most IRD applications. For example, the Minimal Schema provides
users with the attribute-types NUMBER-OF-TIMES-MODIFIED, LAST-
MODIFIED-BY, as well as the attribute-group-type DATE-TIME-LAST-
MODIFIED, which includes the attribute-types SYSTEM-DATE and
SYSTEM-TIME. All of the attribute-types of the Minimal Schema,
such as these, are automatically system maintained.

These attribute-types and attribute-group-types in the IRD
schema permit the IRD to record, for example, the number of times
an entity has been modified, the person who made the last
modification, and the time/date of that modification.

The Basic Functional Schema provides a number of attribute-
types, such as FREQUENCY, that will prove useful in your IRD
applications. The Basic Functional Schema also predefines for
you an attribute-group-type IDENTIFICATION-NAMES, which includes
the attribute-types ALTERNATE-NAME and ALTERNATE-NAME-CONTEXT

.

With this schema structure, you will be able to define attributes
for ALTERNATE-NAME , or the alias names of an entity, and attri-
butes for ALTERNATE-NAME-CONTEXT, such as the department or
system where that alias is used.

You may define attribute-types beyond those provided by the
Minimal and Basic Functional schemas. The format for the
definition of a new attribute-type is:

Add meta-entity attribute-type-name meta-entity-type
= attribute-type;

Many of the attribute-types users will want have predefined
in the Minimal and Basic Functional schemas, but you may find
that you want to add additional ones. For example, you may find
the attribute-type ADDED-BY, provided by both the Minimal and
Basic Functional schemas, useful in designating the person who
added a particular schema or metadata item to the dictionary.

68



If you wanted to use an additional attribute-type to
describe the department that added an entity, however, you will
need to define a new attribute-type. You could define the
attribute SOURCE, for instance, to designate the department or
other organizational unit responsible for defining metadata
items. To define SOURCE as a valid attribute-type that you will
be able to use later with entities and relationships, use the
command

:

Add meta-entity SOURCE meta-entity-type = attribute-type
with purpose = "Department that defined this metadata";

If you want to define additional attribute-group-types, you
will use a similar command format:

Add meta-entity attribute-group-type-name meta-entity-type =

attribute-group-type

;

For instance, you might want to be able to describe metadata
of the relationship-type SUBROUTINE-ACCESSES-TABLE with a
permitted access range that will define the limits of how often a
table should be accessed. If you wanted to be sure that a table
was accessed for updates at a certain minimum interval and that a
table used by many departments was not accessed for update too
often for the current physical database design, you might want to
define these access limits for specific tables. This range could
be used to trigger a warning message when the limits are passed.

To support metadata describing the permitted limits for a
subroutine to access a table, you could define an attribute-
group-type with the name of PERMITTED-ACCESS-RANGE, to include
the attribute-types MINIMUM-ACCESS-VALUE and MAXIMUM-ACCESS-
VALUE. Since you will probably want the metadata values to be
numeric, your standards and conventions document should include
information about the method of measurement, such as "per day,"
or "per hour." To define such an attribute-group-type and its
component attribute-types, use the following commands:

Add meta-entity PERMITTED-ACCESS-RANGE meta-entity-type =

attribute-group-type

;

Add meta-entity MINIMUM-ACCESS-VALUE meta-entity-type =

attribute-type

;

Add meta-entity MAXIMUM-ACCESS-VALUE meta-entity-type =

attribute-type

;

69



5.4.7 Attribute-Type Definition of Attribute Value Format

Depending on the schema definition for each attribute-type,
attribute values can be added to an IRD in a number of different
formats. The format for attribute values of any attribute-type
are specified in the schema with the FORMAT meta-attribute of the
attribute-type meta-entity. The permitted values for the FORMAT
of an attribute-type are STRING, TEXT, INTEGER, REAL, DATE, and
TIME. The default value for FORMAT is STRING, which permits the
options of; (1) a single term with no embedded blanks; (2) a
string with no embedded blanks, in which the terms of the string
are separated by hyphens; or (3) a quoted string in which
embedded blanks are permitted.

To define the appropriate FORMAT for a particular attribute-
type, the user can simply include the FORMAT meta-attribute into
the "add meta-entity" command shown above:

Add meta-entity attribute-type-name meta-entity-type
= attribute-type with FORMAT = integer;

The same form would apply for attribute-types to be associ-
ated with an attribute-group-type. Since attribute values will
not be directly assigned to attribute-group-types, an attribute-
group-type does not directly receive the FORMAT meta-attribute-
type. The command would appear as:

Add meta-entity PERMITTED-ACCESS-RANGE meta-entity-type =
attribute-group-type

;

Add meta-entity MINIMUM-ACCESS-VALUE meta-entity-type =
attribute-type with FORMAT = integer;

Add meta-entity MAXIMUM-ACCESS-VALUE meta-entity-type =
attribute-type with FORMAT = integer;

If the attribute-types have already been defined, then the
user should modifv them, not define them again. To add the
FORMAT meta-attribute for attribute values to attribute-types
that have previously been defined, use the "modify meta-entity"
command form:

Modify meta-entity MINIMUM-ACCESS-VALUE with FORMAT =
integer

;

Modify meta-entity MAXIMUM-ACCESS-VALUE with FORMAT =
integer;

70



5.4.8 Attribute-Group-Type Positional Description

If you have defined attribute-group-types, you must also
define the positions of the attribute-types that you want to
include in those groups. Attribute-types are associated with
attribute-group-types with an "add meta-relationship" command.
The format of the command to associate an attribute-group-type
with its component attribute-types is:

Add meta-relationship attribute-group-type-netme contains
first-attribute-type position = 1;

Add meta-relationship attribute-group-type-name contains
second-attribute-type position = 2

;

To associate the attribute-group-type PERMITTED-ACCESS-RANGE
with its component attribute-types, use the following commands:

Add meta-relationship PERMITTED-ACCESS-RANGE contains
MINIMUM-ACCESS-VALUE position = 1

;

Add meta-relationship PERMITTED-ACCESS-RANGE contains
MAXIMUM-ACCESS-VALUE position = 2;

5.4.9 Attribute-Type Association with Entity-Type

When you want to use particular attribute-types with
particular entity-types, you must define this association in the
IRD schema. The Minimal and Basic Functional schemas provide
this association of some existing attribute-types with some
existing entity-types. See [GOLD88a] for definition of which
existing attribute-types have predefined associations with which
existing entity-types.

When you add entity-types, you must associate each new
entity-type with any attribute-types you want to use to describe
it. Since the attribute-types provided in the Minimal Schema are
automatically maintained, you do not need to be concerned with
those. However, if you want to use predefined attribute-types
from the Basic Functional Schema to describe additional entity-
types that you have defined, you must associate those attribute-
types with your new entity-types. The format for the command
that establishes this association is:

Add meta-relationship entity-type-name contains
attribute-type-name

;

71



If you want to be able to define metadata showing what
departmental sources are responsible for which particular tables,
fields, databases, programs, and subroutines, you should define
the following commands:

Add meta-relationship TABLE contains SOURCE;
Add meta-relationship FIELD contains SOURCE;
Add meta-relationship DATABASE contains SOURCE;
Add meta-relationship PROGRAM contains SOURCE;
Add meta-relationship SUBROUTINE contains SOURCE;

Just as you must associate attribute-types with entity-
types, so must you associate attribute-group-types with the
appropriate entity-types. The command that establishes the
association of attribute-group-types with entity-types is:

Add meta-relationship entity-type-name contains
attribute-group-type-name

;

If you want to be able to describe tables and databases with
metadata for the predefined attribute-group-type IDENTIFICATION-
NAMES, which includes the attribute-types ALTERNATE-NAME and
ALTERNATE-NAME-CONTEXT, define the following commands:

Add meta-relationship TABLE contains IDENTIFICATION-NAMES;
Add meta-relationship FIELD contains IDENTIFICATION-NAMES;

5.4.10 Attribute-Type Association with Relationship-Type

To use attribute-types with a particular relationship-type,
you must define this association in the IRD schema. The Minimal
and Basic Functional schemas associate a few predefined attri-
bute-types with a few predefined relationship-types. See
[GOLD88a] for definition of which existing attribute-types have
predefined associations with which existing relationship-types.

When you add new relationship-types, you must associate each
new relationship-type with any attribute-types to be used with
it. You do not need to be concerned with the attribute-types
predefined in the Minimal Schema, since those are maintained
automatically. If you use attribute-types predefined in the
Basic Functional Schema with new relationship-types that you have
added, you must associate those attribute-types with your new
relationship-types

.

72



The command to associate an attribute-type with a relation-
ship-type has the following format:

Add meta-relationship relationship-type-name contains
attribute-type-name

;

If you want to be able to define metadata showing how
frequently particular tables and databases are accessed, using
the attribute-type FREQUENCY, define the following commands:

Add meta-relationship SUBROUTINE-ACCESSES-TABLE contains
FREQUENCY;

Add meta-relationship PROGRAM-ACCESSES-DATABASE contains
FREQUENCY;

The association of attribute-group-types with relationship-
types follows a similar pattern.

Add meta-relationship relationship-type-name contains
attribute-group-type-name

;

5.5 Life Cycle Phase Partitioning

Life cycle phase partitions can be used to organize the IRD
schema and metadata into different phases within an IRD. The
schema and metadata of an IRD must be defined in terms of a life
cycle phase partition.

5.5.1 IRDS Life Cycle Phase Concepts

The predefined IRDS life cycle phases are UNCONTROLLED-LIFE-
CYCLE-PHASE, CONTROLLED-LIFE-CYCLE-PHASE, and ARCHIVED-LIFE-
CYCLE-PHASE. The UNCONTROLLED-LIFE-CYCLE-PHASE corresponds to
systems development metadata, the CONTROLLED-LIFE-CYCLE-PHASE
corresponds to system operations metadata, and the ARCHIVED-LIFE-
CYCLE-PHASE corresponds to former system operations metadata

.

In addition to the UNCONTROLLED-LIFE-CYCLE-PHASE, any number
of additional Uncontrolled phases can be user-defined for system
development support, such as the STRATEGIC-SYSTEMS-PLANNING and
REQUIREMENTS-DEFINITION phases. IRD metadata can only be defined
in user-defined Uncontrolled phases such as these, or in the
UNCONTROLLED-LIFE-CYCLE-PHASE

.

73



Metadata can only be placed into the CONTROLLED-LIFE-CYCLE-
PHASE through the transfer of metadata from the UNCONTROLLED-
LIFE-CYCLE-PHASE or from one of the user-defined Uncontrolled
phases. In turn, CONTROLLED-LIFE-CYCLE-PHASE metadata concerning
current system operations can be transferred to the ARCHIVED-
LIFE-CYCLE-PHASE, which is designed to record systems operations
metadata that is out-of-date. Metadata can only be placed into
the ARCHIVED-LIFE-CYCLE-PHASE is through this transfer of
metadata from the CONTROLLED-LIFE-CYCLE-PHASE.

5.5.2 Life Cycle Phase Definition

Additional life cycle phase partitions can be defined within
an IRD to represent the phases of the system development life
cycle. Only additional Uncontrolled life cycle phases can be
defined; no other Controlled or Archived phases can be defined.
These additional Uncontrolled phases are defined in the schema as
meta-entities of the type IRD-Partition.

Additional Uncontrolled life cycle phase partitions can be
defined with the following command format:

Add meta-entity PHASE-NAME meta-entity-type = IRD-Partition;

The following are. examples of the command to define new
Uncontrolled life cycle phases:

Add meta-entity STRATEGIC-SYSTEMS-PLANNING
meta-entity-type = IRD-Partition;

Add meta-entity REQUIREMENTS-DEFINITION
meta-entity-type = IRD-Partition;

While there are additional IRD schema definition commands,
such as those for schema modification and deletion, the major
terms of your initial IRD schema have been described in this
chapter. Once an appropriate schema has been defined, users can
go on to add metadata to the IRD.

74



6.0 Creating an IRD Application

When the schema is specified for your IRD, you can begin to
add metadata to the dictionary in terms of the entity-types,
attribute-types, and relationship-types that have been defined.
The schema of your IRD can combine the predefined IRDS Minimal
and Basic Functional Schemas with your user-defined schema
definition commands.

6.1 IRD View Definition and Access

A view, the user's doointfay into a dictionary or a phase,
permits the user to access either a limited portion of an IRD or
an entire IRD, depending on how the view is defined.

Each view must be defined in terms of the life cycle phase
partition in which it is used. View and life cycle phase
facilities are supported by the Minimal Schema, so any conforming
IRDS can support the definition of views and phases.

Every IRD user must be assigned at least one permitted view,
usually by the IRD Administrator. The user or the IRD Admini-
strator must also assign the user at least one effective-view or
default view, that corresponds to one of the user's permitted
views. The effective-view is the user's current operating view
of an IRD, which may be changed according to the user's wish and
view permissions.

The user's view permissions and effective-view may be
relatively transparent to the user, or the user's access to
information in the dictionary can be restricted. Restrictive
view permissions can be defined with the Security Facilities
optional module to provide greater protection for an IRD's
metadata and schema.

6.1.1 View Definition within a Life Cycle Phase

The IRD Administrator, or another user who has been granted
administrator privileges, can define views within life cycle
phases. A view provides a doorway into an IRD life cycle phase
through which the user can: (1) access the life cycle phase, (2)
store metadata in the life cycle phase, and (3) retrieve metadata
from the life cycle phase. An IRD life cycle phase must always
be accessed through a view. Users should consider the life cycle
phase and view in which metadata should be placed before defining
the view and its associated metadata, since it can be time-
consuming to transfer metadata from one phase to another.

75



Before defining a view within a particular user-defined life
cycle phase, the IRD administrator must have previously defined
that life cycle phase name. A view is associated with a phase by
means of the IRD-Partition-Name attribute of the IRD-View entity.
The metadata command format to define a view within a phase is:

Add entity VIEW-NAME entity-type = IRD-View
with IRD-Partition-Name = PHASE-NAME;

Examples of the command to define views within the user-
defined REQUIREMENTS-DEFINITION phase are:

Add entity DATA-MANAGEMENT-VIEW entity-type = IRD-View
with IRD-Partition-Name = STRATEGIC-SYSTEMS-PLANNING;

Add entity DATA-PROCESSING-VIEW entity-type = IRD-View
with IRD-Partition-Name = STRATEGIC-SYSTEMS-PLANNING;

Add entity DATA-COMMUNICATIONS-VIEW entity-type = IRD-View
with IRD-Partition-Name = STRATEGIC-SYSTEMS-PLANNING;

Add entity DATA-CONVERSION-VIEW entity-type = IRD-View
with IRD-Partition-Name = STRATEGIC-SYSTEMS-PLANNING;

6.1.2 View Access Permissions

In order for a user to access a view, the user must be
associated with that view. A user can be associated with any
number of views. The IRD Administrator is the appropriate person
to define views and grant users permission to access particular
views. The IRD Administrator must have previously defined the
appropriate user names and view names before issuing the command
to associate a user with a view. The metadata command to
associate the user with a view has the following format:

Add relationship USER-NAME user-has-IRD-view VIEW-NAME;

Examples of this command to associate a user with a view are:

Add relationship LAW user-has-IRD-view
DATA-MANAGEMENT-VIEW

;

76



Add relationship LAW user-has-IRD-view
DATA-PROCESSING-VIEW

;

Add relationship QUINN user-has-IRD-view
DATA-PROCESSING-VIEW

;

6.1.3 The User's Effective-View

While a user may have access to many views, at any given
time a user has one and only one effective-view. Either the IRD
Administrator or the user can define the user's effective-view.
Since a user may wish to change his or her effective-view
relatively often, we will consider the effective-view command
from the user's perspective.

The user does not need to identify him or herself, because
the user's login to the IRD defines the user's name. The command
the user issues to define his or her effective-view has the
following format:

Set IRD view = VIEW-NAME;

An example of this command is:

Set IRD view = DATA-COMMUNICATIONS-VIEW;

The user cannot define a view as his or her effective-view
unless the user has previously been granted access permission to
that view. If the user wishes to change his or her effective
view, the user just re-issues this command indicating another
effective VIEW-NAME.

6.2 Metadata Definition Via Phases and Views

When defining metadata in the various life cycle phase
partitions of an IRD, the user will only be able to define a
metadata item once. Users cannot define the same metadata item,
such as an entity, in more than one phase. If you wish to define
an entity in more than one phase, you will have to vary the
entity name slightly for each phase. Creating unique names for
entities used in multiple phases can be supported through the use
of the variation name facility.

77



For instance, the variation ncune facility can be used to
vary the entity EMP-NO, first defined in the UNCONTROLLED-LIFE-
CYCLE-PHASE, to EMP-NO(R) for the REQUIREMENTS-DEFINITION-PHASE

/

to EMP-NO(F) for the FUNCTIONAL-SPECIFICATION-PHASE, and EMP-
NO(L) for the LOGICAL-DATABASE-DESIGN-PHASE, etc. Since each of
these variation names is stored as a separate entity, you can
define relationships between these different entities.

Cross-referencing relationships can also be established
across phases. For example, if you wanted to show that the
REQUIREMENTS-DEFINITION phase EMP-NO referred to the FUNCTIONAL-
SPECIFICATION phase EMP-NO, you could define the relationship
EMP-NO (R) EMP-NO-REFERS-TO-EMP-NO EMP-NO (F), if your IRD schema
is constructed to support such a relationship-type.

If views have been defined within the predefined UNCONTROL-
LED-LIFE-CYCLE-PHASE (i.e., instead of within a user-defined
phase) the IRDS will read every metadata definition and place the
new metadata into the UNCONTROLLED-LIFE-CYCLE-PHASE via the
user's effective-view.

If views have been defined and associated with user-defined
life cycle phases, the IRDS will read every metadata definition
and place the new metadata into the user-defined life cycle phase
with which the user's effective-view is associated.

3.5.4 View and Phase Status

If you are using the Panel Interface facility of the IRDS,
your current view and phase status should be displayed in the
STATE panel area. If you do not have the Panel Interface
available to you, you can use the Session Status command to find
your effective-view.

To list all the IRD views with which the user is associated,
and to identify the user's effective-view, the user issues a
Session Status command with the following format:

Status IRD-VIEW;

To find the life cycle phase with which your effective-view
or another view is associated, use the command format:

Output IRD-NAME
select entities with access-name = VIEW-NAME
show attribute IRD-PARTITION-NAME

;

78



6.2.2 Metadata Retrieval from Views and Phases

A set of output commands with selection criteria have been
specified for the IRDS which allow the user to structure queries
for output. While the subject of IRD output is too extensive to
be covered adequately for the purposes of this guide, this
section briefly discusses a few global output commands.

The global command to generate IRD output refers to the
user's current effective-view, which is the user's default view.
Depending on how the user's effective-view is defined by the IRD
administrator, that view may permit access to the entire IRD or
may restrict access to only part of it. Since the user's
effective-view must be associated with a life cycle phase, the
user's retrieval of life cycle phase metadata is determined by
the retrieval of view metadata. In order to output all metadata
within a phase, the user should retrieve all metadata from all
the views defined for that phase.

A global command to generate IRD output by selecting all
entities in the user's current effective-view, has the format:

Output IRD-NAME select all show all;

To issue a global command to output the contents of another
view to which the user has access, the command format is:

Output IRD-NAME using-IRD-view = VIEW-NAME
select all show all;

A global command to output the combined contents of several
views to which the user has access in one IRD has the format:

Output IRD-NAME using-IRD-view = VIEW-NAME
VIEW-NAME
VIEW-NAME

select all show all;

If the user wishes to issue a global command to output the
combined contents of all views to which the user has been granted
access permission within one IRD, the command format is:

Output IRD-NAME using-IRD-view = all
select all show all;

79



6.3 Entity Definition with Attributes

When the IRD schema has been defined, and user views have
been defined and associated with phases, metadata can be added to
populate your dictionary.

Metadata can be defined with the "add entity" and "add
relationship" commands. Begin your metadata definition at the
entity level with the "add entity" command, according to the
following format:

Add entity entity-name entity-type = entity-type-name
entity descriptive-name = full-name-that-you-provide
with attribute-name = attribute-value,
attribute-name = attribute-value,
• • •

attribute-group-name
( attribute-name
attribute-name

= attribute-value,
= attribute-value)

,

Any number of attributes or attribute-groups can be included
in your entity definition. The use of the "add entity" command
is illustrated in the examples that follow.

One potential application of an IRD is to document the
structure of computer progrcims in information systems. For
example, to document a system with many complex programs and
subroutines, programmers can be required to define in an IRD the
purpose, primary actions, interactions, inputs, and outputs for
each program , subroutine , and function . Such an IRD would
provide the means to analyze the structure of a system without
having to read documentation embedded in the code.

If, for instance, you have one program that converts data
from a data file into a format suitable to update a relational
database running on a DBMS , you could use an IRD to document the
structure of that program's subroutines. The entity-type PROGRAM
is predefined for you in the Basic Functional Schema, with a set
of attribute-types, so PROGRAM can be used as the basis of
additional entities.

If this data conversion and database update system are used
by a number of different departments within the organization,
which have each provided subroutines to the program, system
documentation should track the departmental SOURCE of each
subroutine. Since different departments may call one subroutine
by different names, system documentation should also track any
ALTERNATE-NAME by which these subroutines are referred.

80



The commands to add metadata to an IRD for such an applica-
tion could be:

Add entity UPDATE-PERSONNEL-PAYROLL-DB entity-type = PROGRAM
entity descriptive-name =
PREPARE-PERSONNEL-PAYROLL-DATABASE-UPDATES
with SOURCE = "PERSONNEL DEPT"

,

IDENTIFICATION NAMES =

(ALTERNATE-NAME= "PERSONNEL DB UPDATE PROGRAM",
ALTERNATE-NAME-CONTEXT = "PERSONNEL DEPT")

;

Add entity DO-TABLES entity-type = SUBROUTINE
entity descriptive-name =
PREPARE-INPUT-FOR-TABLES
with SOURCE = "DATA PROCESSING DEPT"

;

Add entity DO-FIELDS entity-type = SUBROUTINE
entity descriptive-name =
PREPARE-INPUT-FOR-FIELDS
with SOURCE = "DATA PROCESSING DEPT"

;

Add entity PERSONNEL-PAYROLL-DB entity-type = DATABASE
entity descriptive-name =
PERSONNEL-AND-PAYROLL-DATABASE
with SOURCE = "DATA PROCESSING DEPT",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "PAYROLL DB"

,

ALTERNATE-NAME-CONTEXT = "PAYROLL DEPT"),
(ALTERNATE-NAME = "PERSONNEL DB"

,

ALTERNATE-NAME-CONTEXT = "PERSONNEL DEPT")

;

Add entity EMPLOYEE entity-type = TABLE
entity descriptive-name =

EMPLOYEE-INFORMATION
with SOURCE = "PERSONNEL DEPT",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "EMP",
ALTERNATE-NAME-CONTEXT = "PAYROLL DEPT"),
(ALTERNATE-NAME = "EMPLOYE",
ALTERNATE-NAME-CONTEXT = "PERSONNEL DEPT")

;

Add entity EMP-NO entity-type = FIELD
entity descriptive-name =

EMPLOYEE-IDENTIFICATION-NUMBER
with SOURCE = "PERSONNEL DEPT"

;

81



The attribute-type SOURCE must be user-defined in the schema
before metadata, such as that above, can be added. In addition
to the few attribute-types used above, many other attribute-types
are available through the Minimal and Basic Functional schemas.
Descriptive-name is an entity name, not an attribute-type, so its
value is NOT followed by a comma.

6.4 Attribute Value Formats

Depending on the schema definition for each attribute-type,
attribute values can be added to an IRD in a number of different
formats. The format for attribute values of any attribute-type
are specified in the schema with the definition of the FORMAT
meta-attribute . The permitted values for FORMAT are STRING,
TEXT, INTEGER, REAL, DATE, and TIME.

The default value for FORMAT is STRING, which permits the
options of: (1) a single term with no embedded blanks; (2) a
string with no embedded blanks, in which the terms of the string
are separated by hyphens; or (3) a quoted string in which
embedded blanks are permitted.

Attribute value formats are discussed in the following
section, and in Chapter 5 in terms of the IRD schema.

6.5 Relationship Definition with Attributes

After the appropriate relationship-types have been defined
in your schema, and after the appropriate entities have been
defined as metadata, relationships can be defined as metadata in
your application. Relationships provide the basis for cross-
referencing your metadata. Since a relationship is used to show
the association between two entities of particular entity-types,
the names of those entities and their entity-types are included
in the relationship definition.

The relationship-type structure consists of the first
entity-type to be associated, the relationship-class-type, and
the second entity-type to be associated:

entity-type relationship-class-type entity-type

The relationship name structure consists of the first entity
name in the relation, the full relationship-type, and the second
entity name in the relation:

entity ncuae relationship-type entity name

82



6.5.1 Defining Relationships

The "add relationship" command is used to enter relationship
metadata into your IRD, as illustrated in the following examples.
The following is the format of the command to add a relationship
to associate two entities:

Add relationship entity-name relationship-type entity-name;

A relationship could be defined to show that a particular
database, the PERSONNEL-PAYROLL-DB, contains a particular table,
such as the EMPLOYEE table. Similarly, a relationship could be
defined to show that table EMPLOYEE contains the element EMP-NO.
Another relationship could be defined to show that the program
UPDATE-PERSONNEL-PAYROLL-DB contains the subroutine DO-TABLES.
The commands to add these relationships would be:

Add relationship PERSONNEL-PAYROLL-DB DATABASE-CONTAINS-
TABLE EMPLOYEE

;

Add relationship EMPLOYEE TABLE-CONTAINS-ELEMENT EMP-NO;

Add relationship UPDATE-PERSONNEL-PAYROLL-DB PROGRAM-
CONTAINS-SUBROUTINE DO-TABLES

;

6.5.2 Defining Attributes for Relationships

The "add relationship" command can also be used to enter add
attribute metadata to relationships, as you define relationships
for your IRD. The following is the format of the command to add
a relationship with an attribute:

Add relationship entity-name relationship-type entity-name
with attribute-type-name = attribute-value;

For example, a relationship could be defined to show that
the subroutine DO-TABLES accesses the table EMPLOYEE, with an
attribute defined to show that the relationship occurs with a
certain FREQUENCY. The value of the attribute-type FREQUENCY can
be defined as part of the "add relationship" command:

Add relationship DO-TABLES SUBROUTINE-ACCESSES-TABLE
EMPLOYEE with FREQUENCY = 2;

83



The attribute-type FREQUENCY was not used to describe the
relationship EMPLOYEE TABLE-CONTAINS-FIELD EMP-NO, since
"frequency" does not apply to the relationship-class-type
"contains.

"

6.5.3 Defining Attribute Units of Measure

The metadata value for the attribute-type FREQUENCY can be
represented in the FORMAT of INTEGER, REAL, or STRING. If STRING
is used as the FORMAT of attribute-type FREQUENCY, an attribute
value of "2 TIMES PER WEEK" could be assigned to capture the unit
of measure. While STRING permits the representation of the unit
of measure, it also makes the numeric value more difficult to
manipulate with an analysis program.

If INTEGER is used as the FORMAT of the attribute-type
FREQUENCY, then the integer value of "2" is easier to work with,
but the unit of measure may not be captured. Information about
the unit of measure, such as "TIMES PER WEEK", could be maintain-
ed in the users' standards and conventions document. To capture
unit of measure information, another alternative is to redefine
FREQUENCY as an attribute-group-type associated with additional
attribute-types such as FREQUENCY-VALUE and FREQUENCY-UNIT-OF-
MEASURE. Other options for representing the unit of measure for
an attribute-type will be covered in a subsequent publication.

84



7.0 Life Cycle Approach to IRD Applications

The IRDS can support metadata for all life cycle phases. As
described in Chapter 3, the Core IRDS provides a basic life cycle
phase capability that permits the user to define any number of
system development life cycle phases. The IRDS also provides an
optional module, the Extensible Life Cycle Phase Facility, that
provides additional life cycle protection capabilities.

Life cycle phase partitions have been defined for the IRDS
to support and organize the representation of the varied activ-
ities of information system development, operations, and mainte-
nance. Without phase partitions, no one IRD would be sufficient
to represent the spectrum of life cycle activities.

While it may not be practical to represent an entire system
life cycle in a single IRD, the IRDS gives the user the flexibil-
ity to decide what portions of the life cycle should be repre-
sented together in one IRD at any particular time. Due to the
capability of the IRDS to support relationships across phases,
the IRDS permits the user to cross-reference metadata across
phases. By cross-referencing entities across phases, the user
can selectively trace the development of a system from concept to
requirements, from requirements to specification, from specifica-
tion to logical database design, etc.

Because of the intensive use of an IRD during system
development, and the need for good IRD response time, the user
may want to maintain only two life cycle phases within the same
IRD at any one time. By working with any two phase partitions at
a given time, the user can establish relationships across phases
to establish traceability in development, and to verify that a
requirement results in a function or data specification, and that
a specification is reflected in the system design.

Function and data integration is at the heart of the system
life cycle, as illustrated in Figure 7. Although it is not
considered a life cycle phase, this type of information integra-
tion within and across phases is integral to the success of any
systems development effort. The IRDS supports function and data
integration, both within a phase and across phases.

7.1 Life Cycle Phase Applications

The IRDS supports function and data integration through the
use of the Entity-Relationship-Attribute model. Since all
functions and all data can be represented in an IRD life cycle
phase as entities of different types, they can be interrelated
through the use of relationships. Particular cross-referencing

85



relationship-types can be devised to support information integra-
tion. While entities must reside within a particular IRD life
cycle phase, the IRDS permits relationships to span life cycle
phases

.

An IRD can support the following relationship categories for
information integration within the same phase:

o Data entities can be associated with function entities,
to show which function requires or uses what data.

o Data entities of one entity-type can be associated with
data entities of another entity-type, to show hierarch-
ical progression and integration in levels of detail
for data description (i.e., "data leveling").

o Function entities of one entity-type can be associated
with function entities of another entity-type, to show
hierarchical progression and integration in levels of
detail in functional description (i.e., "function
leveling")

.

o Data entities can be associated with data entities of
the same entity-type, to indicate a self-referencing
data activity or recursion.

o Function entities can be associated with function
entities of the same entity-type, to indicate a self-
referencing function activity or recursion.

An IRD can support the following relationship categories for
information integration across different phases:

o Data entities in one phase can be associated with
function entities in another phase (or vice versa) , to
show which function requires or uses what data.

o Data entities in one phase of one entity-type can be
associated with data entities in another phase of
another entity-type, to show "data leveling" integra-
tion across phases.

o Function entities in one phase of one entity-type can
be associated with function entities in another phase
of another entity-type, to show "function leveling"
integration across phases.

o Data entities in one phase can be associated with data
entities in another phase of the same entity-type, to
trace a self-referencing data activity across phases.

86



o Function entities in one phase can be associated with
function entities in another phase of the same entity-
type, to indicate a self-referencing function activity
across phases.

The use of the IRDS to support the Strategic Systems
Planning phase is illustrated in this guide. Future publications
will address subsequent phases of the system development life
cycle. While the IRDS can be used to represent any set of user-
defined life cycle phases, a perspective of the system develop-
ment phases of the life cycle is provided below.

7.2 Early System Development Phases

7.2.1 Strategic Systems Planning

Also known by other names such as Enterprise Analysis, Needs
Analysis, and Business Systems Planning, this phase should be
conducted before other systems development work begins. The
purpose of Strategic Systems Planning is to establish the context
and boundaries for a number of systems development efforts
throughout the enterprise, to gain management support and
guidance for systems development projects, and to provide the
goals, focus, scope, priorities, and high-level requirements for
the target systems. The products of Strategic Systems Planning
are a global Business Model representing global objectives, a
global Functional Model, and a high-level, global Information
Architecture. Concepts for interrelated information systems are
developed as a result of Strategic Systems Planning.

7.2.2 Requirements Definition

The Requirements Definition effort for a particular system,
or set of systems, verifies and refines the global Business
Model, Functional Model, and Information Architecture that
resulted from Strategic Systems Planning, and defines a set of
information system requirements. During this phase, subsystems
within the system are identified, and technological and perfor-
mance directions are defined. For the target system and each
subsystem, site requirements, communications requirements, data
conversion, data processing, and data management requirements are
described. The products of Requirements Definition are system-
wide functional and data models, subsystem functional and data
models, and data flow models between subsystems and systems.

87



SYSTEM DEVELOPMENT
& OPERATIONS LIFE CYCLE

Functional

Activities

Functional
Specification

System
Design

System
Implementation

^

Data
Activities

Data
And

Function
Integration

Acceptance
Testing

System
Operation &
Maintenance

Logical

Database Design

Information
Flow

Modeling

ii

Schema
Design

Physical
Database
Design

^////////////////////^

Figure 7

88



7.3 Intermediate System Development Phases

7.3.1 Functional Specification

The Functional Specification effort further refines the
functional models and data flow models from the Requirements
Definition phase. The functional models, which had been decom-
posed down to the subsystem level in Requirements Definition, are
now decomposed down through various application levels to
represent user-oriented views. The products of Functional
Specification are functional decomposition and data flows for
each subsystem, functional primitives, data element definitions,
and decision-trees.

7.3.2 Logical Database Design

The Logical Database Design effort further refines the data
models from Requirements Definition and the data flow models from
Functional Specification. The Logical Database Design effort
defines both information flow modeling and schema design.

7.3.2.1 Local and Global Information-Flow Modeling

Within this subphase, user-oriented Local Information-flow
Models are defined for local entities, and data access workloads
are projected for these local entities. As a number of local
models are defined, they are consolidated into the Global
Information-flow Model to produce global data entities. This
consolidation of local entities is an iterative process. System
and subsystem boundaries are refined during this subphase. The
products of this subphase are many Local Information-flow Models,
and the Global Information-flow Model.

7.3.2.2 Conceptual and External Schema Design

Within this subphase, a Conceptual Schema is defined for all
information in the system, including identifiers of entities,
relationships among entities, the connectivity of relationships,
and attributes for entities. All entities are normalized. From
the Conceptual Schema, a number of External Schemas are extracted
to represent departmental perspectives within the Conceptual
Schema. Data access workload information and local constraints
are captured for each External Schema. The products of this
subphase are the Conceptual Schema and a number of External
Schemas.

89



7.3.3 Data and Function Integration

Data and function integration is a complex process of cross-
referencing data structures and process structures within a
developing system. Because the integration of data and functions
usually takes place iteratively during many life cycle phases, it
is rarely considered as a life cycle phase.

Data and function integration is critical to the success of
any system development effort. In the desire for rapid system
development progress ^ however, the need for thorough data and
function integration can be overlooked. Data and function
integration is often poorly performed, resulting in lack of close
coordination between the functions and data in the developed
system. Since the IRDS provides support for performing data and
function integration, this procedure is emphasized in this guide.

7 . 4 Late System Development Phases

7.4.1 System Design

The Program Design effort partitions the system into high-
level modules. Working from the data flow diagrams provided by
the Functional Specification and Logical Database Design phases.
Structure Charts are defined for each high-level module. The
Structure Charts are refined to reduce unnecessary data coupling
and promote functional cohesion. Transform analysis is performed
to identify and promote the functions performing the central
transformation of data. Transaction analysis is performed to
factor out common functions into new modules at lower levels, and
to combine any shared lower level functions. The product of
Program Design is a collection of detailed Structure Charts that
show the structure underlying each high-level program module,
with the calls and data passing among submodules.

7.4.2 Physical Database Design

The Physical Database Design effort considers data workload
factors and the specific DBMS implementation to be used, to
produce the detailed Internal Schema for databases used in the
target system. The Internal Schema is the basis of the target
system's data management function. In defining the Internal
Schema, the physical database designers balance the system needs
for data storage efficiency, data update facility, and data
retrieval performance. The product of Physical Database Design
is a detailed Internal Schema that supports database performance
optimization.

90



7.4.3 System Implementation

The Code Implementation effort uses the Structure Charts of
Program Design, the data structures of Logical Database Design,
and the database implementation structures of Physical Database
Design. This phase produces the programs and subroutines that
are the basis of the target system's data processing function.
Each of the programs and subroutines written are also documented
during Code Implementation. Hardware and software configuration
management is started during Code Implementation to document the
use of particular programs on particular computer hardware to
perform particular functions. Subroutines and functions are
organized so that they can be reused by multiple programs. The
products of Code Implementation are programs, subroutines,
functions, code documentation, and hardware and software config-
uration management.

7.5 Transferring Metadata Across Phases

The command that is used to transfer entities from one life
cycle phase to another does not literally move the entities
within the IRD. Instead, entities are reassigned from one life
cycle phase to another, effecting a "logical" not physical
transfer. Once you have transferred an entity to the target life
cycle phase, the entity is no longer associated with the source
life cycle phase.

7.5.1 Transferring Entities

While the command to transfer metadata from one phase to
another phase specifies only entities, all associated attributes
and relationships are also affected. Since all relationships are
associated with entities, and all attributes are associated with
either entities or relationships, the command to transfer
entities to another phase indirectly affects any relationships
and attributes associated with those entities. By selecting a
number of entities associated with a phase, the user will also be
able to select the particular relationships and attributes
associated with those entities in that phase.

If a relationship has been defined between an entity in one
phase and an entity in another phase, that relationship will span
the phases. This phase spanning feature is particularly useful
for cross-referencing information from phase to phase.

7.5.2 Command to Transfer Entities

The format of the command to transfer entities and related
metadata from one phase to another is:

91



Modify entity life-cycle-phase for ENTITY-NAME,
from PHASE-NAME to PHASE-NAME;

In this command, the term ENTITY-NAME can be replaced by a
list of entity access-names. The use of an entity list permits
the user to transfer a large number of entities simultaneously
from phase to phase. Examples of the command to transfer an
entity from one phase to another are:

Modify entity life-cycle-phase for EMPLOYEE,
from REQUIREMENTS-DEFINITION to
LOGICAL-DATABASE-DESIGN-PHASE;

Modify entity life-cycle-phase for ACCOUNTING-SYSTEM,
from SYSTEM-DESIGN-PHASE to
SYSTEM-IMPLEMENTATION-PHASE

;

Modify entity life-cycle-phase for PERSONNEL-PAYROLL-DB,
from UNCONTROLLED-LIFE-CYCLE-PHASE to
CONTROLLED-LIFE-CYCLE-PHASE

;

7.5.3 Limitations to Metadata Transfer Between Phases

IRD metadata can be transferred only between certain life
cycle phases. As stated previously in this guide, the IRDS
provides a predefined UNCONTROLLED-LIFE-CYCLE-PHASE that corres-
ponds to the system development phase, a predefined CONTROLLED-
LIFE-CYCLE-PHASE that corresponds to the system operation phase,
and a predefined ARCHIVED-LIFE-CYCLE-PHASE that corresponds to
the maintenance of historical records. Users can define addi-
tional Uncontrolled life cycle phase partitions for use during
system development.

IRD users can transfer metadata either: (1) from the
UNCONTROLLED-LIFE-CYCLE-PHASE to one of the user-defined Uncon-
trolled life cycle phases; (2) from a user-defined Uncontrolled
life cycle phase to the UNCONTROLLED-LIFE-CYCLE-PHASE; (3) from
the UNCONTROLLED-LIFE-CYCLE-PHASE to the CONTROLLED-LIFE-CYCLE-
PHASE; (4) from the CONTROLLED-LIFE-CYCLE-PHASE to the
ARCHIVED-LIFE-CYCLE-PHASE; or (5) from the ARCHIVED-LIFE-CYCLE-
PHASE to the CONTROLLED-LIFE-CYCLE-PHASE. Users cannot transfer
metadata from the UNCONTROLLED-LIFE-CYCLE-PHASE, or other user-
defined Uncontrolled life cycle phases, to the ARCHIVED-LIFE-
CYCLE-PHASE.

92



8 . 0 IRDS Support for Strategic Systems Planning

The IRDS can support any system development life cycle
phases that the user wants to define, such as those shown in
Figure 7. When an enterprise follows the policies of Information
Resource Management, the first phase in system development is
Strategic Systems Planning. Because this first phase encompasses
all systems and organizational planning within an enterprise, or
within a major component of an enterprise, the scope of Strategic
Systems Planning is greater than that of any one system.
Strategic Systems Planning results in a high-level, enterprise-
wide Information Architecture that provides a foundation for
integrated system development projects throughout the enterprise.

The purpose of Strategic Systems Planning is to describe a
high-level Information Architecture for the entire enterprise
that provides a global perspective of the following:

o Critical success factors, or primary objectives, for
the success of the enterprise.

o Functions and organizational structures within the
enterprise.

o Processes and data needed within the enterprise.

o Plans for systems development and other projects to
reach those objectives.

o Management objectives to achieve the enterprise's
critical success factors, and management support for
projects designed to meet these objectives.

Although only high-level infomation is defined during
Strategic Systems Planning, a considerable amount of information
can be collected. The support of a data dictionary system such
as the IRDS is important not only to the success of this effort,
but also to insure that the information derived from this effort
is easily accessible for reference during the subsequent system
development phases.

8.1 Strategic Systems Planning Phase Description

A series of procedures should be conducted during Strategic
Systems Planning to describe an Information Architecture
[F0NG86], [MART82]. This chapter describes a number of these
procedures for Strategic Systems Planning.

93



8.1.1 Analysis of Global Business Objectives

The Global Business Objectives defined during this step
should include: (1) critical success factors for the progress of
the enterprise, and (2) management objectives to fulfill those
success factors. Critical success factors are goals defined by
high-level management as being critical to the success of the
enterprise. Usually only a small number of critical success
factors, such as three to six, are identified. Once defined,
these critical success factors provide the goals for subsequent
management objectives and provide the basis for enterprise
analysis

.

Management objectives provide measurable goals to be
fulfilled at every level of the enterprise. The procedures for
management-by-objective should also be applied to information
systems, to insure that information systems development and
modification projects support the critical success factors
defined for the enterprise.

8.1.2 Definition of a Global Business Model

The Global Business Model defined during this step includes
a definition of the existing organizational structure, a func-
tional decomposition of all the major procedures performed within
the enterprise, a mapping of the functional decomposition against
the existing organizational structures, and a proposal of
alternatives for a more efficient organizational structure.

To define the existing organizational structure, the
organizational components of the enterprise are assigned to a
hierarchical structure similar to that of an organizational
chart. The representation of the existing organizational
structure can be modified later in the phase, if necessary, to
show a new organizational structure.

The functional decomposition of functions performed within
the enterprise includes the definition of: (1) the major
functional areas of the enterprise, (2) the major processes
performed within those functional areas, and (3) the major
activities supporting those processes. While most functional
areas and some processes can be defined during Strategic Systems
Planning, activities are usually defined during subsequent system
development phases.

The results of the functional decomposition are represented
hierarchically in an IRD so that the functional areas "contain" a
number of processes, and the processes "contain" a number of
activities.

94



In mapping the functional decomposition against the organi-
zational structure, the functions and processes of the functional
decomposition are cross-referenced to the organizational struc-
ture. Analysis of this mapping provides information for a
possible reorganization of the enterprise.

When a large number of organizational components are
performing the same function or process, redundant organizational
components might be put to better use in other functional areas.
When a very small number of organizational components are
performing an important function or process, this area is weak
and should be reinforced. A number of alternative reorganization
plans can be proposed for management to consider.

8.1.3 Definition of a Global Data Model

The Global Data Model described during this step includes
description of the major data used within the enterprise as the:
(1) subject data areas, or subject databases, (2) data sets, and
(3) data entities. Subject data areas are the primary data
categories within the enterprise. These high-level subject data
areas must be defined independently of the organizational
structures that use them. The term "subject data area" is used
in this guide rather than "subject database" because this concept
does not directly correspond to a physical database. When
implemented, the information represented by a subject data area
may be stored in one or more databases or files.

Once a number of subject data areas have been defined, such
as ten to thirty, then a number of major data sets should be
described within each area. A data set is a generalized group of
information that can be structured within a subject data area.
Data sets can be decomposed to indicate a few high-level data
entities that represent the most important concepts of a data
set. A limited number of data entities may be defined during
Strategic Systems Planning, while the majority of data entities
can be defined later during Requirements Definition. During
later life cycle phases, each data entity will be decomposed into
one or more data elements.

Data elements are the lowest, most basic level of the data
structure. Because only high-level data description is pursued
throughout Strategic Systems Planning, data elements are not
defined during this phase.

The results of this data area modeling are represented
hierarchically in an IRD so that the subject data areas "contain"
a number of data sets, and the data sets "contain" a number of
data entities.

95



In mapping the data model against the organizational
structure, the subject data areas and data sets are cross-
referenced to planned organizational structures. Analysis of
this mapping provides information for a possible reorganization
of databases or data files of the enterprise.

When several organizational components are using the same
subject data areas, databases or files should be reorganized so
these organizational components can share this data. A number of
alternative dataJsase reorganization plans can be proposed for
management to consider.

8.1.4 Data and Function Cross-Referencing

Once the data and function modeling has been completed, then
each functional area can be mapped to the subject data areas
needed to perform that function. Additionally each process can
then be mapped to the data sets needed to support that process.
If activities and data entities have been defined, each activity
can be mapped to the data entities needed to perform that
activity. This data and function cross-referencing indicates
what types of data are used in performing the primary functions
of the enterprise, and shows the relative importance of the
primary data areas.

The subject data areas that are associated with many
functions should receive a higher priority than the data areas
associated with few or no major functions. If a particular data
set or data entity has many associations with processes or
activities, consider whether that data set or data entity should
be promoted to the next higher level.

8.1.5 Assessment of Enterprise Directions

The highest level of management must participate in setting
the directions for the evolution of the enterprise. Many types
of directions can be defined during this step. Some enterprise
directions to be considered are: (1) technological directions
for the development or use of new technology; (2) organizational
directions for redefined goals or organizational restructuring;
(3) skill and training directions for the skill categories to be
emphasized in hiring and training programs; and (4) project
directions for the near-term and long-term projects needed to
meet management objectives and fulfill the critical success
factors of the enterprise.

The Strategic Systems Planning group will usually propose a
number of projects to be performed throughout the enterprise.
These proposed projects will often involve information systems
development or modification.



Information system development should be influenced by the
directions defined for the enterprise. The technological
directions of the enterprise will provide system designers with
information about management's level of interest in new technol-
ogy. The organizational directions show the goals of the
enterprise that system development or redesign projects are
designed to fulfill. The training and skill directions indicate
management's emphasis on certain skill categories that system
development efforts may either use directly or indirectly
enhance. The project directions provide project scheduling
information, and show how system development projects fit into
the larger scheme of management objectives for the enterprise.

Successful information system development projects fit into
the defined enterprise directions and receive direct management
support in meeting defined management objectives.

8.2 Strategic Systems Planning Application

The example Strategic Systems Planning application includes
the definition of critical success factors and organizational
structures, the decomposition of functional areas and processes,
the decomposition of subject data areas and data sets, and the
cross-referencing of functional area, subject data area, and
organizational information. The examples shown do not fully
illustrate all the steps of this phase.

8.2.1 Critical Success Factors

In Figure 8 , a number of critical success factors for the
success of the enterprise have been defined by the high-level
management of the XYZ Corporation, a manufacturing enterprise.

Critical Success Factors

1. Identify emerging market needs
2. New product innovation

3. Design more efficient products

4. Hire, train, and retain skilled workers

5. Improve production efficiency

6. Effective advertising and distribution

Figure 8

97



8.2.2 Organizational Structures

Figure 9 illustrates the existing high-level organizational
structures of the XYZ Corporation. The hierarchical structure is
typical of most organizational charts.

Corporate Oi^g^anizational Structure:

The XYZ Corporation

Corporate

Planning &
Assessment

Corporate

Operations

Analysis

CompanyX
Management

Corporate

Management

Corp(

Com
Manag

)rate

pany

ement

Company Y
Management

Corporate

Information

Systems

Corporate

Finance

Company Z
Management

Figure 9

98



Figure 10 illustrates some of the existing and planned
organizational structures of Company X, a subsidiary of the XYZ
Corporation. The high-level organizational structures of the
company are shown along with the mid-level structures of the
Accounting Division.

Company Organizational Structure:

Company X

Planning &
Qualiiy Control

Division

Information
Systems
Division

Company X
Management

Prodtrct

Design
Division

Marketing &
Advertising

Division

Personnel &
Benefits

Division

Accounting
Division

Shipping &
Receiving
Division

Product

ManTifacttiring

Division

Accounts

Receivable

Department

Accoxmts
Payable

Department

Payroll

Department

Cost

Accotmting
Department

KEY
Existing
Organizational
Unit

Planned
Organizational
Unit

Figure 10

99



8.2.3 Decomposition and Cross-Referencing

Figure 11 illustrates a small part of a high-level, enter-
prise-wide functional decomposition that defines functional areas
and processes. The functional areas defined do not necessarily
correspond to existing organizational components. An organiza-
tional unit may support part of a functional area, or one or more
functional areas.

Hig^-Lefvel Fxmctional Decomposition
for Company X

FUNCTIONAL AREAS PROCESSES

ACCOUNTING ACCOUNTS RECEIVABLE
ACCOUNTS PAYABLE
EMPLOYEE PAYROLL
COST ACCOUNTING
TAX ACCOUNTING

PERSONNEL PERSONNEL PLANNING
RECRUITING
EMPLOYEE TRAINING
EMPLOYEE COMPENSATION
EMPLOYEE BENEFITS
EMPLOYEE INCENTIVES

PRODUCT PLANNING PRODUCT DESIGN
PRODUCT ANALYSIS
PRODUCT REDESIGN
PRODUCT OPTIONS

PRODUCT MARKETING PRODUCT MARKET ANALYSIS
SALES FORECASTING
PRODUCT PRICING
PRODUCT PACKAGING
PRODUCT ADVERTISING
PRODUCT DISTRIBUTION

PRODUCTION PRODUCTION SCHEDULING
PROCEDURE PLANNING
MATERL\LS INVENTORY
EQUIPMENT SCHEDULING
QUOTA REPORTING

Figure 11

100

I



Figure 12 illustrates the cross-referencing of critical
success factors to functional areas. Each SUCCESS-FACTOR is
shown in relation to each FUNCTIONAL-AREA that it influences.

High-Level Success Factor and Function
Cross-Referencing

SUCCESS FUNCTIONAL SUCCESS
FACTORS AREAS FACTORS

ACCOUNTING

IDENTIFY
MARKET
NEEDS

PERSONNEL

PRODUCT
INNOVATION

DESIGN
EFFICIENT
PRODUCTS

PRODUCT 1—nr^ PLANNING
1

SKILLED
WORKERS

PRODUCT
MARKETING

EFFICIENT-
PRODUCTION

ADVERTISING
AND

DISTRIBUTION

PRODUCTION

Figure 12

Part of a high-level data decomposition is illustrated in
Figure 13 with a number of subject data areas and data sets. The
conceptual groupings represented by these subject data areas are
not intended to correspond directly to existing or planned
databases or files.

101



Hi^-Level Data Decomposition
for Company X

SUBJECT DATA AREAS DATA SETS

EMPLOYEE PERSONAL INFORMATION
POSITION DESCRIPTION
EDUCATION
PERFORMANCE

EMPLOYEE PAYMENTS PAY CATEGORY
AWARD CATEGORY
BONUS CATEGORY

EMPLOYEE BENEFITS LEAVE CATEGORY
RETIREMENT FAY
RETIREMENT SAVINGS
CO SAVINGS CONTRIBUTION
CO INSURANCE CONTRIBUTION
CO TAX CONTRIBUTION

DEPARTMENT PROJECT
DEPARTMENT EMPLOYEES
DEPARTMENT CONTRACTS
DEPARTMENT PRODUCTS

CUSTOMER CUSTOMER LOCATION
CUSTOMER ACCOUNT
CUSTOMER CONTRACTS
CUSTOMER ORDERS
CUSTOMER PAYMENTS RECEIVED

SUPPLIER SUPPLIER LOCATION
SUPPLIER CONTRACTS
SUPPLIER ORDERS
SUPPLIER PAYMENTS SENT

PRODUCT PRODUCT DESCRIPTION
PRODUCT SPECIFICATIONS
PRODUCT PRODUCTION SCHEDULES
PRODUCT MAINTENANCE MANUAL

PRODUCT MARKET PRODUCT MARKET SHARE
PRODUCT COMPETITORS
COMPETITOR PRODUCTS
PRODUCT DISTRIBUTORS
PRODUCT PRICE
PRODUCT SALES PERFORMANCE

Figure 13

102



Figure 14 illustrates data and function cross-referencing
through the association of a few functional areas with a small
number of subject data areas. The functional areas are shown in
relation to the subject data areas needed to perform those
functions

.

Hifi^i-Level Function and Data Cross-Referencing

FUNCTIONAL SUBJECT FUNCTIONAL
AREAS DATA AREAS AREAS

PERSONNEL

PRODUCT
MARKETING

PRODUCT
MARKET

Figure 14

103



8 . 3 Strategic Systems Planning Entity-Relationship Models

The corporate and company organizational structures of
Figures 9 and 10 translate into the Entity-Relationship-Attribute
model of Figure 15. The entity COMPANY-X is shown with an
attribute CHICAGO of attribute-type location. COMPANY-X is also
shown in an association of IS-PART-OF with entity CORPORATION-
XYZ. In turn, the entity COMPANY-X has a association of CONTAINS
with entity ACCOUNTING-DIVISION. This entity also has an
association of CONTAINS with the entity PAYROLL-DEPT . The entity
EMPLOYEE-PAYROLL of entity-type process is shown in an associa-
tion of IS-PERFORMED-BY with the entity PAYROLL-DEPT.

In Figure 16, the critical success factors of Figure 8

translate easily into entities, which can be defined for an IRD
as of entity-type success-factor. The functional areas and
processes of Figure 11 become entity-type functional-area and
entity-type process. Similarly, the subject data areas and data
sets of Figure 12 become entity-type data-area and entity-type
data-set. The relationships between entities of entity-type
success-factor and entities of entity-type functional-area can be
defined in terms of relationship-class-type INFLUENCES, which
describes an indirect, semi-causal association.

Similarly, relationships between entities of entity-type
functional-area and entities of entity-type process can be
defined in terms of the relationship-class-type CONTAINS, which
describes a direct, hierarchical association. The relationships
between entities of entity-type data-area and entities of entity-
type data-set can also be defined in terms of the relationship-
class-type CONTAINS.

The cross-referencing between entities of entity-type
functional-area and entity-type data-area, shown in Figure 14,
can be defined in terms of the relationship-class-type refers-to,
which describes an indirect referential association. Since we do
not know yet whether the functional-area entity-type "uses" or
"creates" the data in the data-area entity-type, the general term
"refers to" is used. Later in the life cycle, a more specific
relationship-class-type can be defined to support this associa-
tion.

To show which success factor influences a functional area,
the term "influences" becomes the central teirm in the relation-
ship between entities of types success-factor and functional-
area. In this figure, the entity EFFICIENT-PRODUCTION of
entity-type success-factor has an association of INFLUENCES with
entity PERSONNEL of the entity-type functional-area. The
relationship-class-type INFLUENCES provides the central term for
the relationship-type SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA.

104



Entity-Relationship-Attribute Model
for Organizational Structure

Entity-Type:

CORPORATION

Relationship-Type:
COMPANY-CONTAINS-
DIVISIO]

CONTAINS

Entity-Type
DIVISION y

ACCOUNTING-
DIVISION

Relationship-Type:

COMPANY-
IS-PART-OF-
CORPORATION IS-

PART-
OF.

Entity-Type:

COMPANY

COMPANY-X

Attribute-Type:

LOCATION

Relationship-Type:

DIVISION-
CONTAINS-
DEPT ^̂

CONTAINS

Relationship-Type:
PROCESS-IS-PERFORMED-
BY-DEPT

Entity-Type-

DEPT V
PAYROLL-
DEPT

Entity-Type:

PROCESS
j

EMPLOYEE-
PAYROLL

KEY

CD = Entity

O
c=:>

= Relationship

= Attribute

Figure 15

105



The full relationship between the entities EFFICIENT-
PRODUCTION and PERSONNEL in Figure 16 can be represented as:

E FF I CIENT"PRODUCTION SUCCESS-FACTOR-INFLUENCES-
FUNCTIONAL-AREA PERSONNEL

Similarly, Figure 16 shows PERSONNEL of the entity-type
functional-area in an association of CONTAINS with EMPLOYEE-
INCENTIVES of the entity-type process. The relationship-class-
type CONTAINS provides the central term for the relationship-type
FUNCTIONAL-AREA-CONTAINS-PROCESS. The full relationship between
FUNCTIONAL-AREA and PROCESS is:

PERSONNEL FUNCTIONAL-AREA~CONTAINS-PROCESS EMPLOYEE-
INCENTIVES .

The entity PERSONNEL is also shown in an association of
REFERS-TO the entity EMPLOYEE-PAYMENTS of entity-type data-area.
The relationship-class-type REFERS-TO provides the central term
for the relationship-type FUNCTIONAL-AREA-REFERS-TO-DATA-AREA.

Similarly, the entity EMPLOYEE-PAYMENTS is shown in an
association of CONTAINS with the entity PAY-CATEGORY of entity-
type data-set. The relationship-class-type CONTAINS is the basis
for the relationship-type DATA-AREA-CONTAINS-DATA-SET.

Figures 15 and 16 provide the Entity-Relationship-Attribute
model that can be used in representing Strategic Systems Planning
with the IRDS in an Information Resource Dictionary, or IRD.

8.4 Strategic Systems Planning Schema Definition

This section shows an example schema definition that will
support the sample metadata for Strategic Systems Planning.
Although not described here, attribute-types can be added to
entity-types and relationship-types, as described in Chapter 3.

Since the relationship-class-type CONTAINS and the attribute-type
LOCATION are already predefined in the Basic Functional Schema,
they are not added here.

Each entity-type name and entity name must be unique
throughout an IRD, regardless of the phase in which it is used.
Users who want to use the same entity-type name or entity name in
multiple phases can add a phase-related assigned access name
suffix (such as "-p" for Planning) to differentiate each entity-
type name, and a variation-name suffix (such as "P" for Planning)
to differentiate each entity name used in a different phase.

106



107



The addition the suffix "-P" (for Planning) at the end of
each meta-entity assigned access name representing an entity-type
indicates that this entity-type is defined in the Strategic
Systems Planning phase, and gives the name a unique definition
for this phase. Since the meta-entity of location has already
been predefined as an attribute-type in the Basic Functional
Schema, it is not added here, but is modified for this applica-
tion. The following IRDS commands define the schema for the life
cycle phase STRATEGIC-SYSTEMS-PLANNING.

STRATEGIC SYSTEMS PLANNING
SCHEMA DEFINITION

Life Cycle Phase Definition ;

Add meta-entity STRATEGIC-SYSTEMS-PLANNING meta-entity-type
= IRD-Partition;

Entity-Type Definition :

Add meta-entity SUCCESS-FACTOR-P meta-entity-type = entity-
type;

Add meta-entity FUNCTIONAL-AREA-P meta-entity-type = entity-
type;

Add meta-entity PROCESS-P meta-entity-type = entity-type;

Add meta-entity DATA-AREA-P meta-entity-type = entity-type;

Add meta-entity DATA-SET-P meta-entity-type = entity-type;

Add meta-entity DIVISION-P meta-entity-type = entity-type;

Add meta-entity DEPT-P meta-entity-type = entity-type;

Add meta-entity COMPANY-P meta-entity-type = entity-type;

Add meta-entity CORPORATION-P meta-entity-type = entity-
type;

Attribute-Type Definition :

Modify meta-entity LOCATION with purpose = "Indicates the
location of a company or other corporate organizational
unit"

;

108



Entity-Type Associated with Attribute-Type:

Add meta-relationship COMPANY-P contains LOCATION;

Relationship-Class-Type Definition :

Add meta-entity INFLUENCES meta-entity-type =
relationship-class-type

;

Add meta-entity REFERS-TO meta-entity-type =
relationship-class-type

;

Add meta-entity IS-PART-OF meta-entity-type =
relationship-class-type

;

Add meta-entity IS-PERFORMED-BY meta-entity-type = relation-
ship-class-type ;

Relationship-Type Definition ;

Add meta-entity SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA
meta-entity-type = relationship-type;

Add meta-entity FUNCTIONAL-AREA-CONTAINS-PROCESS
meta-entity-type = relationship-type;

Add meta-entity FUNCTIONAL-AREA-REFERS-TO-DATA-AREA
meta-entity-type = relationship-type;

Add meta-entity DATA-AREA-CONTAINS-DATA-SET
meta-entity-type = relationship-type;

Add meta-entity COMPANY-IS-PART-OF-CORPORATION
meta-entity-type = relationship-type;

Add meta-entity COMPANY-CONTAINS-DIVISION
meta-entity-type = relationship-type;

Add meta-entity DIVISION-CONTAINS-DEPT
meta-entity-type = relationship-type;

Add meta-entity PROCESS-IS-PERFORMED-BY-DEPT
meta-entity-type = relationship-type;

109



Relationship-Type Associated with Relationship-Class-Type:

Add meta-relationship SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-
AREA member-of INFLUENCES;

Add meta-relationship FUNCTIONAL-AREA-CONTAINS-PROCESS
member-of CONTAINS;

Add meta-relationship FUNCTIONAL-AREA-REFERS-TO-DATA-AREA
member-of REFERS-TO;

Add meta-relationship DATA-AREA-CONTAINS-DATA-SET
member-of CONTAINS;

Add meta-relationship COMPANY-IS-PART-OF-CORPORATION
member-of IS-PART-OF;

Add meta-relationship COMPANY-CONTAINS-DIVISION
member-of CONTAINS;

Add meta-relationship DIVISION-CONTAINS-DEPT
member-of CONTAINS;

Add meta-relationship PROCESS-IS-PERFORMED-BY-DEPT
member-of IS-PERFORMED-BY;

Relationship-Type Positional Definition :

Add meta-relationship SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-
AREA connects SUCCESS-FACTOR-P position = 1;

Add meta-relationship SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-
AREA connects FUNCTIONAL-AREA-P position = 2

;

Add meta-relationship FUNCTIONAL-AREA-CONTAINS-PROCESS
connects FUNCTIONAL-AREA-P position = 1;

Add meta-relationship FUNCTIONAL-AREA-CONTAINS-PROCESS
connects PROCESS-P position =2;

Add meta-relationship FUNCTIONAL-AREA-REFERS-TO-DATA-AREA
connects FUNCTIONAL-AREA-P position = 1;

Add meta-relationship FUNCTIONAL-AREA-REFERS-TO-DATA-AREA
connects DATA-AREA-P position = 2

;

110



Add meta-relationship DATA-AREA-CONTAINS-DATA-SET
connects DATA-AREA-P position = 1;

Add meta-relationship DATA-AREA-CONTAINS-DATA-SET
connects DATA-SET-P position = 2;

Add meta-relationship COMPANY-IS-PART-OF-CORPORATION
connects COMPANY-P position = 1;

Add meta-relationship COMPANY-IS-PART-OF-CORPORATION
connects CORPORATION-P position = 2

;

Add meta-relationship COMPANY-CONTAINS-DIVISION
connects COMPANY-P position = 1;

Add meta-relationship COMPANY-CONTAINS-DIVISION
connects DIVISION-P position = 2

;

Add meta-relationship DIVISION-CONTAINS-DEPT
connects DIVISION-P position = 1;

Add meta-relationship DIVISION-CONTAINS-DEPT
connects DEPT-P position = 2

;

Add meta-relationship PROCESS-IS-PERFORMED-BY-DEPT
connects PROCESS-P position = 1;

Add meta-relationship PROCESS-IS-PERFORMED-BY-DEPT
connects DEPT-P position = 2

;

8.5 Strategic Systems Planning Metadata Definition

This section shows how metadata about Strategic Systems
Planning can be represented in an IRD. Because every entity name
must be unique throughout an IRD, and since some of the same
entity names will be used during both the Strategic Systems
Planning and the Requirements Definition phases, a variation-name
suffix is added to each entity name.

The variation-name "P" added in parenthesis at the end of
each meta-entity name indicates that this entity is defined in
the Strategic Systems Planning phase, and gives the term a unique
variation for this phase. The following IRDS commands define
views and some metadata for the life cycle phase STRATEGIC-
SYSTEMS-PLANNING. Since view names cannot have version iden-
tifiers, the phase name is included in the view name.

Ill



STRATEGIC SYSTEMS PLANNING
METADATA DEFINITION

View Definition within a Life Cycle Phase :

Add entity TOTAL-VIEW-PLANNING entity-type = IRD-View with
IRD-Partition-Name = STRATEGIC-SYSTEMS-PLANNING;

View Access Permission Command :

Add relationship LAW user-has-IRD-view TOTAL-VIEW-PLANNING

;

User's Effective-View Definition :

Set IRD view = TOTAL-VIEW-PLANNING;

Entity Definition for Entitv-Tvpe CORPORATION :

Add entity CORPORATION-XYZ (P) entity-type = CORPORATION-P

;

Entity Definition for Entitv-Tvpe COMPANY :

Add entity COMPANY-X(P) entity-type = COMPANY-P with
LOCATION = "CHICAGO";

Add entity COMPANY-Y(P) entity-type = COMPANY-P with
LOCATION = "ST. LOUIS";

Add entity COMPANY-Z(P) entity-type = COMPANY-P with
LOCATION = "CINCINNATI";

Entity Definition for Entity-Type DIVISION :

Add entity PERSONNEL-BENEFITS-DIVISION (P) entity-type =
DIVISION-P;

Add entity ACCOUNTING-DIVISION (P) entity-type =
DIVISION-P;

Add entity PRODUCT-DESIGN-DIVISION (P) entity-type =
DIVISION-P;

112



Add entity MARKETING-ADVERTISING-DIVISION (P) entity-type =

DIVISION-?;

Entity Definition for Entity-Type DEPT :

Add entity ACCOUNTS-RECEIVABLE-DEPT(P) entity-type = DEPT-
P;

Add entity ACCOUNTS-PAYABLE-DEPT(P) entity-type =
DEPT-P;

Add entity PAYROLL-DEPT (P) entity-type =
DEPT-P;

Add entity COST-ACCOUNTING-DEPT (P) entity-type =
DEPT-P;

Entity Definition for Entity-Type SUCCESS-FACTOR ;

Add entity IDENTIFY-MARKET-NEEDS (P) entity-type =
SUCCESS-FACTOR-P entity descriptive-name =

IDENTIFY-EMERGING-MARKET-NEEDS

;

Add entity PRODUCT-INNOVATION (P) entity-type =
SUCCESS-FACTOR-P entity descriptive-name =
NEW-PRODUCT-INNOVATION

;

Add entity DESIGN-EFFICIENT-PRODUCTS (P) entity-type =
SUCCESS-FACTOR-P entity descriptive-name =
DESIGN-MORE-EFFICIENT-PRODUCTS;

Add entity SKILLED-WORKERS (P) entity-type =

SUCCESS-FACTOR-P entity descriptive-name =

HIRING-TRAINING-AND-RETENTION-OF-SKILLED-WORKERS;

Add entity EFFICIENT-PRODUCTION (P) entity-type =
SUCCESS-FACTOR-P entity descriptive-name =
MORE-EFFICIENT-PRODUCTION

;

Add entity ADVERTISING-AND-DISTRIBUTION(P) entity-type =

SUCCESS-FACTOR-P entity descriptive-name =

MORE-EFFECTIVE-ADVERTISING-AND-DISTRIBUTION;

113



Entity Definition for Entity-Tvpe FUNCTIONAL-AREA :

Add entity ACCOUNTING (P) entity-type = FUNCTIONAL-AREA-P

;

Add entity PERSONNEL (P) entity-type = FUNCTIONAL-AREA-P;

Add entity PRODUCT-PLANNING (P) entity-type =
FUNCTIONAL-AREA-P

;

Add entity PRODUCT-MARKETING (P) entity-type =
FUNCTIONAL-AREA-P

;

Add entity PRODUCTION (P) entity-type = FUNCTIONAL-AREA-P;

Entity Definition for Entitv-Tvpe PROCESS ;

Add entity ACCOUNTS-RECEIVABLE (P) entity-type = PROCESS-P;

Add entity ACCOUNTS-PAYABLE (P) entity-type = PROCESS-P;

Add entity EMPLOYEE-PAYROLL (P) entity-type = PROCESS-P;

Add entity COST-ACCOUNTING (P) entity-type = PROCESS-P;

Add entity PERSONNEL-PLANNING (P) entity-type = PROCESS-P;

Add entity RECRUITING (P) entity-type = PROCESS-P;

Add entity EMPLOYEE-TRAINING (P) entity-type = PROCESS-P;

Add entity EMPLOYEE-COMPENSATION (P) entity-type = PROCESS-P;

Add entity EMPLOYEE-BENEFITS (P) entity-type = PROCESS-P;

Add entity EMPLOYEE-INCENTIVES (P) entity-type = PROCESS-P;

Entity Definition for Entity-Type DATA-AREA :

Add entity EMPLOYEE (P) entity-type = DATA-AREA-P;

Add entity EMPLOYEE-PAYMENTS (P) entity-type = DATA-AREA-P;

Add entity BENEFITS (P) entity-type = DATA-AREA-P;

Add entity CUSTOMER (P) entity-type = DATA-AREA-P;

Add entity SUPPLIER (P) entity-type = DATA-AREA-P;

114



Add entity PRODUCT (P) entity-type = DATA-AREA-P;

Add entity PRODUCT-MARKET (P) entity-type = DATA-AREA-P;

Add entity DEPARTMENT (P) entity-type = DATA-AREA-P;

Entity Definition for Entity-Type DATA-SET:

Add entity PERSONAL-INFORMATION (P) entity-type =
DATA-SET-P;

Add entity POSITION-DESCRIPTION (P) entity-type =
DATA-SET-P;

Add entity EDUCATION (P) entity-type = DATA-SET-P;

Add entity PERFORMANCE (P) entity-type = DATA-SET-P;

Add entity PAY-CATEGORY (P) entity-type = DATA-SET-P;

Add entity AWARD-CATEGORY (P) entity-type = DATA-SET-P;

Add entity BONUS-CATEGORY (P) entity-type = DATA-SET-P;

Relationship Definition between COMPANY and CORPORATION :

Add relationship COMPANY-X(P) COMPANY-IS-PART-OF-
CORPORATION CORPORATION-XYZ (P)

;

Add relationship COMPANY-Y(P) COMPANY-IS-PART-OF-
CORPORATION CORPORATION-XYZ ( P)

;

Add relationship COMPANY-Z(P) COMPANY-IS-PART-OF-
CORPORATION CORPORATION-XYZ (P)

;

Relationship Definition between COMPANY and DIVISION :

Add relationship COMPANY-X(P) COMPANY-CONTAINS-DIVISION
PERSONNEL-BENEFITS-DIVISION (P)

;

Add relationship COMPANY-X(P) COMPANY-CONTAINS-DIVISION
ACCOUNTING-DIVISION (P)

;

Add relationship COMPANY-X(P) COMPANY-CONTAINS-DIVISION
PRODUCT-DESIGN-DIVISION (P)

;

115



Add relationship COMPANY-X(P) COMPANY-CONTAINS-DIVISION
MARKETING-ADVERTISING-DIVISION (P)

Relationship Definition between DIVISION and DEPT ;

Add relationship ACCOUNTING-DIVISION (P)
DIVISION-CONTAINS-DEPT ACCOUNTS-RECEIVABLE-DEPT (P)

;

Add relationship ACCOUNTING-DIVISION (P)
DIVISION-CONTAINS-DEPT ACCOUNTS-PAYABLE-DEPT (P)

;

Add relationship ACCOUNTING-DIVISION (P)
DIVISION-CONTAINS-DEPT PAYROLL-DEPT (P)

;

Add relationship ACCOUNTING-DIVISION (P)
DIVISION-CONTAINS-DEPT COST-ACCOUNTING-DEPT (P)

Relationship Definition between SUCCESS-FACTOR and FUNCTIONAL-
AREA:

Add relationship EFFICIENT-PRODUCTION (P)
SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA PERSONNEL (P)

;

Add relationship EFFICIENT-PRODUCTION (P)

SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA ACCOUNTING (P)

;

Add relationship ADVERTISING-AND-DISTRIBUTION(P)
SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA PRODUCT-
MARKETING (P) ;

Add relationship SKILLED-WORKERS (P)
SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA ACCOUNTING (P)

;

Add relationship SKILLED-WORKERS (P)
SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA PERSONNEL (P)

;

Add relationship PRODUCT-INNOVATION (P)

SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA
PRODUCT-PLANNING ( P)

;

Relationship Definition between FUNCTIONAL-AREA and PROCESS:

Add relationship ACCOUNTING (P) FUNCTIONAL-AREA-CONTAINS

-

PROCESS ACCOUNTS-RECEIVABLE(P)

;

Add relationship ACCOUNTING (P) FUNCTIONAL-AREA-CONTAINS

-

116



PROCESS ACCOUNTS-PAYABLE ( P)

;

Add relationship ACCOUNTING (P)
PROCESS EMPLOYEE-PAYROLL (P)

;

Add relationship ACCOUNTING (P)
PROCESS COST-ACCOUNTING (P)

;

Add relationship PERSONNEL (P)
PROCESS PERSONNEL-PLANNING(P)

Add relationship PERSONNEL(P)
PROCESS RECRUITING (P)

;

Add relationship PERSONNEL (P)
PROCESS EMPLOYEE-TRAINING(P)

;

FUNCTIONAL-AREA-CONTAINS

-

FUNCTIONAL-AREA-CONTAINS

-

FUNCTIONAL-AREA-CONTAINS-

FUNCTIONAL-AREA-CONTAINS

-

FUNCTIONAL-AREA-CONTAINS

-

Add relationship PERSONNEL (P) FUNCTIONAL-AREA-CONTAINS-
PROCESS EMPLOYEE-COMPENSATION (P)

;

Add relationship PERSONNEL(P) FUNCTIONAL-AREA-CONTAINS

-

PROCESS EMPLOYEE-BENEFITS (P)

;

Add relationship PERSONNEL (P) FUNCTIONAL-AREA-CONTAINS-
PROCESS EMPLOYEE-INCENTIVES (P)

;

Relationship Definition between DATA-AREA and DATA-SET:

Add relationship EMPLOYEE (P) DATA-AREA-CONTAINS-DATA-SET
PERSONAL-INFORMATION (P)

;

Add relationship EMPLOYEE (P) DATA-AREA-CONTAINS-DATA-SET
POSITION-DESCRIPTION (P)

;

Add relationship EMPLOYEE (P) DATA-AREA-CONTAINS-DATA-SET
EDUCATION (P)

;

Add relationship EMPLOYEE (P) DATA-AREA-CONTAINS-DATA-SET
PERFORMANCE (P)

;

Add relationship EMPLOYEE-PAYMENTS (P) DATA-AREA-CONTAINS-
DATA-SET PAY-CATEGORY (P)

;

Add relationship EMPLOYEE-PAYMENTS (P) DATA-AREA-CONTAINS-
DATA-SET AWARD-CATEGORY (P)

;

Add relationship EMPLOYEE-PAYMENTS (P) DATA-AREA-CONTAINS-
DATA-SET BONUS-CATEGORY (P)

;

117



Relationship Definition between FUNCTIONAL-AREA and DATA-AREA:

Add relationship ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA EMPLOYEE (P)

;

Add relationship ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA EMPLOYEE-PAYMENTS (P)

;

Add relationship ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA BENEFITS (P);

Add relationship ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA DEPARTMENT (P)

;

Add relationship ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA CUSTOMER (P)

;

Add relationship ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA SUPPLIER ( P)

;

Add relationship PERSONNEL(P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA EMPLOYEE (P);

Add relationship PERSONNEL (P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA EMPLOYEE-PAYMENTS (P)

;

Add relationship PERSONNEL(P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA BENEFITS (P);

Add relationship PERSONNEL (P) FUNCTIONAL-AREA-REFERS-TO-
DATA-AREA DEPARTMENT(P)

;

Add relationship PRODUCT-PLANNING (P) FUNCTIONAL-AREA-
REFERS-TO-DATA-AREA PRODUCT (P);

Add relationship PRODUCT-PLANNING (P) FUNCTIONAL-AREA-
REFERS-TO-DATA-AREA PRODUCT-MARKET (P)

;

Relationship Definition between PROCESS and DEPT :

Add relationship EMPLOYEE-PAYROLL (P) PROCESS-IS-PERFORMED-
BY-DEPT PAYROLL-DEPT(P)

;

118



8.6 Results of Strategic Systems Planning

The examples of Strategic Systems Planning show how an
organizational entity can capture information in an IRD about
success factors, organizational restructuring, functional
decomposition, cross-referencing of objectives and functions,
data decomposition, and cross-referencing of functions and data.

Management's analysis of the critical success factors
uncovered a number of problems in functional performance in
Company X. While Company X's production efficiency was accept-
able, management was not receiving complete information on the
total cost to produce each product. This information was
provided through a number of organizational units, but no one
division or department had the responsibility to provide manage-
ment with good cost accounting information.

Due to the resulting poor cost accounting information,
production efficiency was not being effectively analyzed. When
this deficiency was uncovered. Company X management decided to
translate the Cost Accounting process into a new department
within the Accounting Division.

Another problem discovered at Company X was the relatively
large turnover in skilled employees. Management had known about
the high turnover before, but had not recognized the extent of
the problem or examined its causes. A significant number of new
employees were receiving training at Company X, working at
Company X for several years to gain experience, and then going to
work for competitor companies.

This loss of experienced personnel was expensive. As a
result. Company X was spending more to recruit, relocate, and
train employees. The large percentage of employee turnover also
affected production efficiency and product quality to some
degree, since the skills and experience of the absent personnel
would not be used to improve the products or efficiency of
Company X. By investigating this problem. Company X found that
competitor companies offered employee incentives to reward
skilled and motivated employees who performed particularly well.
Competitor companies also offered better employee benefits
packages that encouraged the retention of skilled employees.

As a result of this analysis, Company X decided to start its
own Employee Incentives program and to boost its lagging Employee
Benefits program with an improved retirement plan. While these
program changes would cost more initially, management decided
that they would eventually save the company money by reducing
employee turnover and giving Company X a greater base of skilled
employees. To support these new personnel programs, the manage-
ment of Company X has assigned a high-priority to the implementa-
tion of a new personnel system.

119



The investigation into employee turnover revealed that
employee retention and morale were also affected by missing and
misdirected paychecks. Due to the company's outdated payroll
system, employees often received paychecks for incorrect amounts,
or received their paychecks late when paychecks were sent to the
wrong employees. These payroll problems gave employees the
impression that Company X was unreliable and untrustworthy.
While Company X had previously known the problem existed,
management had not realized the extent or the affects of the
problem. As a result, Company X has now assigned a high-priority
to the development of a new payroll system.

As one result of Strategic Systems Planning, the XYZ
Corporation has decided to combine the data processing and data
files used in Company X's Personnel and Accounting functions into
one system. Because the functional areas of ACCOUNTING and
PERSONNEL both refer to the data areas of EMPLOYEE, EMPLOYEE-
PAYMENTS, BENEFITS, and EMPLOYEE-INCENTIVES, these shared data
areas are considered to be a good combination for a database.
The planned database to support this data will be called the
Accounting and Personnel Database. This database will be
coordinated with a number of data processing, data conversion,
and data communications programs in the new Accounting and
Personnel System, which will include the new payroll system.

The influence of the critical success factors defined by
high-level management give this project a high-priority for
system development. Company X wants to show rapid improvement in
performing these functions, since these functions are influenced
by success factors. The Accounting and Personnel System has been
scheduled for system development and a team is now being
assembled for the Requirements Definition phase.

120



9.0 Conclusions

This guide describes the Information Resource Dictionary
System (IRDS) and its applications, Information Resource Diction-
aries (IRDs) . Metadata to be stored in an IRD is differentiated
from data to be stored in a database. The status of IRDS
standardization is discussed.

Due to the enormous volume of interrelated information that
must be handled during system development, a data dictionary
system such as the IRDS should be used to support the system life
cycle. The IRDS standard is particularly recommended for
information system life cycle support due to the comprehensive
facilities the IRDS provides, which many other data dictionary
systems do not.

The extensible schema capability of the IRDS permits the
user to customize one or more Entity-Relationship-Attribute
models for any application. The Life Cycle Phase Facility gives
the IRDS user the capability to support information for multiple,
cross-referenced life cycle phases that are accessed through
views. The IRD-IRD Interface allows the user to transfer
information from one IRD to another, for a variety of purposes
such as information consolidation or archives.

The IRDS should be used to support Information Resource
Management (IRM) and Data Administration. IRDS applications for
Data Administration, such as Data Element Standardization, are
described. The development of the IRDS is illustrated in terms
of the evolution from Data Processing to IRM. Features of the
IRDS standard are discussed in terms of both functionality and
applications development. Procedures and commands for IRD
application development are defined.

This guide illustrates the use of the IRDS during the first
system development life cycle phase, Strategic Systems Planning,
through the definition of:

o Example problem statements representative of the
information to be supported during the Strategic
Systems Planning phase.

o An Entity-Relationship-Attribute model that represents
each problem statement.

o Schema definition commands that represent the Entity-
Relationship-Attribute model in an Information Resource
Dictionary.

o Metadata definition commands that represent the
information to be collected about the target system.

121



APPENDIX:
Extract of IRD Output for Strategic Systems Planning

Entity = COMPANY-X(P)
Entity Type = COMPANY-P

Attributes
ADDED-BY = law
LOCATION = CHICAGO
NUMBER-OF-TIMES-MODIFIED = 0

Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 172 324

Relationships
COMPANY-X(P) COMPANY-CONTAINS-DIVISION ACCOUNTING-DIVISION (P)

COMPANY-X(P) COMPANY-CONTAINS-DIVISION MARKETING-ANALYSIS-
DIVISION (P)

COMPANY-X(P) COMPANY-CONTAINS-DIVISION PERSONNEL-BENEFITS-
DIVISION (P)

COMPANY-X(P) COMPANY-CONTAINS-DIVISION PRODUCT-DESIGN-DIVISION (P)

COMPANY-X(P) COMPANY-IS-PART-OF-CORPORATION CORPORATION-XYZ (P)

Entity = COMPANY-Y(P)
Entity Type = COMPANY-P

Attributes
ADDED-BY = law
LOCATION = ST. LOUIS
NUMBER-OF-TIMES-MODIFIED = 0

Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 172543

Relationships
COMPANY-Y(P) COMPANY-IS-PART-OF-CORPORATION CORPORATION-XYZ (P)

122



Entity = COMPANY-Z(P)
Entity Type = COMPANY-P

Attributes
ADDED-BY = law
LOCATION = CINCINNATI
NUMBER-OF-TIMES-MODIFIED = 0

Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 172754

Relationships
COMPANY-Z(P) COMPANY-IS-PART-OF-CORPORATION CORPORATION-XYZ (P)

Entity = CORPORATION-XYZ (P)

Entity Type = CORPORATION-P

Attributes
ADDED-BY = law
NUMBER-OF-TIMES-MODIFIED = 0

Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 172203

Relationships
COMPANY-X(P) COMPANY-IS-PART-OF-CORPORATION CORPORATION-XYZ (P)

COMPANY-Y(P) COMPANY-IS-PART-OF-CORPORATION CORPORATION-XYZ (P)

COMPANY-Z(P) COMPANY-IS-PART-OF-CORPORATION CORPORATION-XYZ (P)

Entity = EMPLOYEE (P)
Entity Type = DATA-AREA-P

Attributes
ADDED-BY = law
NXJMBER-OF-TIMES-MODIFIED = 0

Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 181984200

123



Relationships
EMPLOYEE (P) DATA-AREA-CONTAINS-DATA-SET EDUCATION (P)

EMPLOYEE (P) DATA-AREA-CONTAINS-DATA-SET PERFORMANCE (P)

EMPLOYEE (P) DATA-AREA-CONTAINS-DATA-SET PERSONAL-INFORMATION (P)

EMPLOYEE (P) DATA-AREA-CONTAINS-DATA-SET POSITION-DESCRIPTION (P)
ACCOUNTING ( P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA EMPLOYEE ( P)
PERSONNEL (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA EMPLOYEE (P)

Entity = EMPLOYEE-PAYMENTS (P)

Entity Type = DATA-AREA-

P

Attributes
ADDED-BY = law
NUMBER-OF-TIMES-MODIFIED = 0

Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 184427

Relationships
EMPLOYEE-PAYMENTS (P) DATA-AREA-CONTAINS-DATA-SET AWARD-
CATEGORY (P)

EMPLOYEE-PAYMENTS (P) DATA-AREA-CONTAINS-DATA-SET BONUS-
CATEGORY (P)

EMPLOYEE-PAYMENTS (P) DATA-AREA-CONTAINS-DATA-SET PAY-CATEGORY (P)

ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA EMPLOYEE-
PAYMENTS (P)

PERSONNEL (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA EMPLOYEE-
PAYMENTS (P)

Entity = ACCOUNTING-DIVISION (P)

Entity Type = DIVISION-P

Attributes
ADDED-BY = law
NUMBER-OF-TIMES-MODIFIED = 0

Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 173255

124



Relationships
COMPANY-X(P) COMPANY-CONTAINS-DIVISION ACCOUNTING-DIVISION ( P)
ACCOUNTING-DIVISION (P) DIVISION-CONTAINS-DEPT ACCOUNTS-PAYABLE-

DEPT(P)
ACCOUNTING-DIVISION ( P) DIVISION-CONTAINS-DEPT ACCOUNTS-
RECEIVABLE-DEPT (P)

ACCOUNTING-DIVISION (P) DIVISION-CONTAINS-DEPT COST-ACCOUNTING-
DEPT(P)

ACCOUNTING-DIVISION (P) DIVISION-CONTAINS-DEPT PAYROLL-DEPT ( P)

Entity = ACCOUNTING (P)

Entity Type = FUNCTIONAL-AREA-

P

Attributes
ADDED-BY = law
NUMBER-OF-TIMES-MODIFIED = 0

Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 1802 37

Relationships
ACCOUNTING ( P) FUNCTIONAL-AREA-CONTAINS-PROCESS ACCOUNTS-
PAYABLE (P)

ACCOUNTING ( P) FUNCTIONAL-AREA-CONTAINS-PROCESS ACCOUNTS-
RECEIVABLE (P)
ACCOUNTING (P) FUNCTIONAL-AREA-CONTAINS-PROCESS COST-ACCOUNTING ( P)
ACCOUNTING ( P) FUNCTIONAL-AREA-CONTAINS-PROCESS EMPLOYEE-
PAYROLL (P)

ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA BENEFITS (P)

ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA CUSTOMER (P)

ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA DEPARTMENT (P)

ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA EMPLOYEE (P)

ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA EMPLOYEE-
PAYMENTS (P)

ACCOUNTING (P) FUNCTIONAL-AREA-REFERS-TO-DATA-AREA SUPPLIER(P)
EFFICIENT-PRODUCTION ( P) SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA

ACCOUNTING (P)
SKILLED-WORKERS (P) SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA

ACCOUNTING (P)

Entity = PERSONNEL (P)

Entity Type = FUNCTIONAL-AREA-P

Attributes
ADDED-BY = law
NUMBER-OF-TIMES-MODIFIED = 0

125



Attribute Groups
DATE-TIME-ADDED

SYSTEM-DATE = 19871210
SYSTEM-TIME = 180520

PERSONNEL ( P)
BENEFITS (P)

PERSONNEL(P)
COMPENSATION (P)

PERSONNEL ( P)
INCENTIVES (P)

PERSONNEL ( P)
TRAINING (P)

PERSONNEL ( P)
PLANNING (P)

PERSONNEL (P)

PERSONNEL (P)

PERSONNEL (P)

PERSONNEL (P)

PERSONNEL(P)

Relationships
FUNCT I ONAL-AREA- CONTAINS -PROCESS EMPLOYEE-

FUNCTIONAL-AREA-CONTAINS- PROCESS EMPLOYEE-

FUNCTIONAL-AREA- CONTAINS -PROCESS EMPLOYEE-

FUNCTIONAL-AREA- CONTAINS -PROCESS EMPLOYEE-

FUNCTIONAL-AREA-CONTAINS -PROCESS PERSONNEL-

FUNCTIONAL-AREA-CONTAINS-PROCESS RECRUITING ( P)
FUNCTIONAL-AREA-REFERS-TO-DATA-AREA BENEFITS (P)

FUNCTIONAL-AREA-REFERS-TO-DATA-AREA DEPARTMENT (P)

FUNCTIONAL-AREA-REFERS-TO-DATA-AREA EMPLOYEE (P)

FUNCTIONAL-AREA-REFERS-TO-DATA-AREA EMPLOYEE-
PAYMENTS (P)

EFFICIENT-PRODUCTION (P) SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA
PERSONNEL (P)

SKILLED-WORKERS (P) SUCCESS-FACTOR-INFLUENCES-FUNCTIONAL-AREA
PERSONNEL (P)

126



GLOSSARY

Access name - In an IRD at schema or metadata level, the
primary identifier of each entity or meta-entity; the name by
which the entity is known to the user; an access name consists
of an assigned access name and version identifier.

Assigned access name - In an IRD at metadata level , a user-
assigned or system-assigned name which provides unique access to
an entity when first added to the IRD; in an IRD at schema
level, a user-assigned name which provides unique access to a
meta-entity when first added to the IRD.

Assigned descriptive name - In an IRD at metadata level , a name
for an entity or meta-entity which is more descriptive than the
assigned name.

Attribute - In an IRD at metadata level, a property that
describes, quantifies, or defines the representation of an entity
or relationship.

Attribute-group - In an IRD at metadata level , an ordered set
of two or more attributes used together (e.g., the attribute-
group of DATE-TIME is made up of the attributes DATE and TIME)

.

Attribute-group-type - In an IRD at schema level, an ordered
set of two or more attributes used together (e.g., the attribute-
group-type DATE-TIME-ADDED is made up of attribute-types SYSTEM-
TIME and SYSTEM-DATE)

.

Attribute-type - In an IRD at schema level, the label for a set
of attributes which may be common to an entity-type or relation-
ship-type .

Data Administration - The responsibility for definition,
organization, supervision, and protection of data within an
enterprise or organization.

127



Data Administrator - A person or group that ensures the utility
of data used within an organization, by defining data policies
and standards, planning for the efficient use of data, coordinat-
ing data structures among organizational components, performing
logical database design, and defining data security procedures.

Database Administrator - A person or group which provides
technical support for one or more databases, by defining database
schemas and subschemas, maintaining data integrity and concur-
rency, providing physical database design for performance
optimization, and enforcing the policies, standards, and proce-
dures set by the Data Administrator.

Data dictionary - A specialized type of database containing
metadata that is managed by a data dictionary system; a reposi-
tory of information describing the characteristics of data used
to design, monitor, document, protect, and control data in
information systems and databases; an application of a data
dictionary system.

Data dictionary system - An automated system such as an IRDS
that can support one or more data dictionaries.

Data integrity - In information processing, the condition in
which data is acciirate, current, consistent, and complete.

Data security - The protection of data from accidental or
malicious modification or destruction, and from accidental or
intentional disclosure to unauthorized personnel.

Data structure - The logical relationships which exist among
units of data and the descriptive features defined for those
relationships and data units; an instance or occurrence of a data
model

.

Database Management System (DBMS) - A software system that
provides the functionality to support the creation, access,
maintenance, and control of databases, and that facilitates the
execution of application programs using data from these data-
bases .

Descriptive name - In an IRD at metadata level, a unique and
more descriptive name for the access name; consists of assigned
descriptive name and version identifier.

128



Entity - In an IRD at metadata level, any person, place, thing,
concept, or event about which metadata can be collected.

Entity-Relationship Model (E-R Model) - An infoirmation model
based on the concept of entities, relationships among entities,
and attributes of entities and relationships; also known as
Entity-Relationship-Attribute Model (E-R-A Model)

.

Entity-type - In an IRD at schema level, the label for a set of
entities which have a similar concept and share a set of common
attribute-types

.

Export/import - In an IRDS, pertains to that set of commands,
controls, and other procedural elements necessary to move the
contents of one IRD to another. (See Portability.)

Functionality - The capability of a software system to perform
a function.

Global data model - A high-level, top-down description of an
enterprise's data in a manner that reflects the information
structure of the entire enterprise.

Information Resource Dictionary (IRD) - A data dictionary
application managed by an IRDS; a collection of entities,
relationships, and attributes used by an organization to model
its information environment.

Information Resource Dictionary System (IRDS) - A set of
standard specifications for a data dictionary system resulting
from U.S. Federal and national standards efforts; a computer
software system conforming to these standards that provides
facilities for recording, storing, and processing descriptions of
an organization's significant information and information
processing resources.

Information Resource Management (IRM) - The responsibility for
planning, organizing, and controlling information for coordinated
use in data management, data processing, data communications, and
data conversion, in a manner consistent with the primary goals
and objectives of the enterprise.

129



Interface - A point of communication between two or more
persons, processes, software systems, or other physical entities.

Interoperability - In information processing, a characteristic
of software that allows it to be run on more than one type or
size of computer and under more than one operating system.

IRD-IRD interface - The means of transporting all or part of an
IRD's schema and metadata to another IRD, and of comparing the
schema of one IRD to the schema of another to establish compati-
bility between IRDs. (See Export/ import and Portability.)

IRD schema - A model of the logical structure of the IRD,
consisting of components such as entity-types, relationship-
types, and attribute-types.

IRD schema descriptor - Any meta-entity in the IRD schema, such
as an entity-type, attribute-type, or relationship-type.

IRD schema extensibility - The capability to add new IRD schema
descriptors (i.e., new entity-types, attribute-types, and
attribute-types) to any IRD schema.

Life cycle phase - A primary activity, or phase, in the
complete life cycle of an information system; in an IRDS, a
phase in the life of an IRD entity, or set of IRD entities, used
as a basis for a logical partition of an IRD; a logical parti-
tion of an IRD that is used to represent information about a
phase in the life cycle of an information system.

Meta-attribute - In an IRD at schema level , a property of a
meta-entity or meta-relationship of its schema

Meta-attribute-group - In an IRD, at schema level, an ordered
set of two or more meta-attributes used together.

Metadata - Information describing the characteristics of data;
data or information about data; descriptive information about an
organization's data, data activities, systems, and holdings.

130



Metadata model - A collection of Entity-Relationship-Attribute
models, used to describe the schema requirements for an IRD, and
the metadata the E-R-A models support, used to populate that IRD.

Meta-entity - In an IRD at schema level , a schema entity for
entity-types, relationship-types, and attribute-types.

Meta-relationship - In an
relationship between schema
entities)

.

IRD at schema level, a schema
entities (i.e., between meta-

Meta-relationship-class-type - In an IRD at schema level , a set
of meta-relationships that contain the same verb (e.g., [meta-
entity-type-1] -VERB- [meta-entity-type-2 ] )

.

Panel interface - In an IRDS, a screen-oriented user interface
designed to provide users with information about an IRD applica-
tion and permit easier interactive processing.

Partition - A boundary maintained within the logical storage
area used by a software system, such as an IRDS, that permits
separate areas to be allocated for different purposes, and to
which different priorities and access permissions may apply.

Portability - Transportability; in information processing, the
ability to transfer data or metadata from one system to another
without being required to recreate or reenter data descriptions
or to significantly modify the application being transported.
(See Interoperability.)

Relationship - In an IRD at metadata level , a directed associa-
tion between entities.

Relationship-class - In an IRD at metadata level, the common
verb shared by a set of relationships (e.g., CONTAINS).

Relationship-class-type - In an IRD at schema level, a set of
relationship-types which use the same verb in the central
position (e.g., [entity-type-1] -VERB- [entity-type-2 ] )

;

131



Relationship-type - In an IRD at schema level, the label for a
set of relationships which have similar meanings and share a set
of common attribute-types.

Revision number - In an IRD at schema or metadata level , a
positive integer consecutively assigned to each change affecting
an IRD meta-entity or entity, respectively; part of the version
identifier of the assigned access name. (See Version identifier.)

System life cycle - Those phases and activities associated
with, for example, the analysis, specification, design, develop-
ment, testing, integration, operation, maintenance and modifica-
tion of a software system. (See Life cycle phase.)

Transportability - In information processing, the ability to
transfer data or metadata from one system to another without
being required to recreate or reenter data descriptions or to
significantly modify the application being transported. (See
Interoperability.)

User - In information processing, an individual, organization,
or facility that makes use of an information system or other
software system, such as an IRDS.

Validation - In information processing, the checking of data
for correctness or compliance with applicable standards, rules,
and conventions.

Variation name - In an IRD at schema or metadata level, a label
which identifies each entity or meta-entity, respectively, with
the same assigned access or descriptive name; part of the
version identifier of the assigned access name. (See Version
identifier.

)

Version identifier - Last part of the assigned access name of
an entity or meta-entity; composed of the variation name and the
revision number of the entity or meta-entity. (See Variation
name and Revision number.)

View - In an IRD, a set of specified entity-types and relation-
ship-types within a single life cycle phase through which users
define and access metadata; a view may be associated with one or
more IRD users and, conversely, an IRD user may be associated
with one or more views.

132



REFERENCES

[ANSI86] ANSI, Draft Proposed American National Standard IRDS .

Document ISO/TC97/SC21/WG3 N166R1, American National
Standards Institute, 14 3 0 Broadway, New York, NY,
November 1986. See also [X3H487].

[CHEN79] Chen, Peter P., editor, Proceedings of the Internation-
al Conference on Entity-Relationship Approach to
Systems Analysis and Design , held December 10-12, 1979,
North-Holland Publishing Co.

, Amsterdam, The Nether-
lands, 1980.

[CROW84] Crowdley, Ellen T. , editor. Acronyms. Initialisms, and
Abbreviations . Gale Research Co., Detroit, MI, 1984.

[DATE8 6] Date, Chris J. , An Introduction to Database Systems
Vol .

I

. Addison-Wesley Publishing Co., Fourth Edition,
Reading, MA, 1986.

[DATE83] Date, Chris J., An Introduction to Database Systems
Vol . II , Addison-Wesley Publishing Co. , Reading,
MA, 1986.

[DEMA79] DeMarco, Tom, Structured Analysis and System Specifica-
tion , Yourdon Press, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey 1979.

[DOLL78] Doll, Dixon R. , Data Communications; Facilities,
Networks, and Systems Design . John Wiley & Sons, New
York, NY, 1978.

[DURE85] Durell, William R. , Data Administration: A Practical
Guide to Successful Data Management , McGraw-Hill Book
Co., New York, NY, 1985.

[FISH87] Fisher, Gary E., Application Software Prototyping and
Fourth Generation Languages , NBS Special Publication
500-148, National Bureau of Standards, Gaithersburg,
MD, May 1987.

[FIiAV81] Flavin, Matt, Fundamental Concepts of Information
Modeling, Yourdon Press, Inc., New York, NY, 1981.

[F0NG86] Fong, Elizabeth N. , and Alan H. Goldfine, editors.
Information Resource Management - Making It Work , NBS
Special Publication 500-139, National Bureau of
Standards, Gaithersburg, MD, June 1986.

133



[F0NG85] Fong, Elizabeth N. , Margaret W. Henderson [Law], David
K. Jefferson, and Joan M. Sullivan, Guide on Logical
Database Design . NBS Special Publication 500-122,
National Bureau of Standards, Gaithersburg, MD,
February 1985.

[GALLS 2] Frank J. Gal land, editor. Dictionary of Computing , John
Wiley & Sons, New York, 1982.

[G0LD88a] Goldfine, Alan, and Patricia Konig, A Technical
Overview of the Information Resource Dictionary System
(Second Edition) . NBSIR 88-3700, National Bureau of
Standards, Gaithersburg, MD, January 1988.

[GOLD88b] Goldfine, Alan, Using the Information Resource Diction-
ary System Command Language (Second Edition) ^ NBSIR 88-
3701, National Bureau of Standards, Gaithersburg, MD,
January 1988.

[GOLD82] Goldfine, Alan H. , editor. Data Base Directions;
Information Resource Management—Strategies and Tools

^

NBS Special Publication 500-92, National Bureau of
Standards, Gaithersburg, MD, September 1982.

[HENI80] Heninger, Kathryn L. ,
"Specifying Software Requirements

for Complex Systems: New Techniques and Their
Application," IEEE Transactions on Software
Engineering . Vol. SE-6, No. 1, January 1980.

[IS082] ISO TC97/SC5/WG3 Conceptual Schema. Appendix D: The
Entity-Attribute-Relationship Approaches , ISO publica-
tion, March 1982.

[LEON82] Leong-Hong, Belkis W. , and Bernard K. Plagman, Data
Dictionary/Directory Systems: Administration. Implemen-
tation and Usage . John Wiley & Sons, New York, NY,
1982

.

[LEFK83] Lefkovits, Henry C. , Edgar H. Sibley, and Sandra L.
Lefkovits, Information Resource/Data Dictionary
Systems . QED Information Sciences, Inc., Wellesley, MA,
1983.

[LOOM86] Loomis, Mary E. S., "Data Modeling — The IDEFIX
Technique," Proceedings of the 1986 IEEE Conference on
Computers and Communications . IEEE Computer Society,
IEEE Service Center, Piscataway, NJ, 1986.

134



[L00M85] Loomis, Mary E. S., "Logical Data Modeling — A Step
Toward Integration," Proceedincfs of Conference on
Computer-Aided Technologies COMPINT 1985 . held in
Montreal, Quebec, Canada, IEEE Computer Society, IEEE
Service Center, Piscataway, NJ, 1986.

[MARTS 2] Martin, James, Strategic Data-Planning Methodologies .

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[MAYN84] Mayne, Alan, The Uses of a Dictionary System . The
National Computing Centre Limited, Manchester, England,
1984

.

[NEWM82] Newman, David T. , editor. Information Resources
Management; Conference Proceedings 1982 ^ National
Institute for Management Research, Santa Monica, CA,
February 1982.

[NEWT87] Newton, Judith J., Guide on Data Entity Naming Conven-
tions . NBS Special Publication 500-149, National Bureau
of Standards, Gaithersburg, MD, October 1987.

[PAGE80] Page-Jones, Meiler, The Practical Guide to Structured
Systems Design , Yourdon Press, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1980.

[PERKS 5] Perkinson, Richard C. , Data Analysis; The Key to Data
Base Design . QED Information Sciences, Inc., Wellesley,
MA, 1985.

[TEOR86] Teorey, Toby J, Dongqing Yang, and James P. Fry, "A
Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model," ACM
Computing Surveys . Vol. 18, No. 2, June 1986, pp. 197-
222.

[VANDS2] Van Duyn, Julia, Developing a Data Dictionary System .

Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1982

.

[WERTS6] Wertz, Charles J., The Data Dictionary; Concepts and
Uses . QED Information Sciences, Inc., Wellesley, MA,
1986.

[X3H487] X3H4, "U.S. Member Body Proposed Changes to [ANSI
document] N166R1," Accredited Standards Committee X3
for Information Processing Systems, X3 Secretariat,
Computer and Business Equipment Manufacturers Associa-
tion, Washington, DC, March 1987.

135





NBS-n4A (REV. 2-8C)

U.S. DEPT. OF COMM. I. PUBLICATION OR 2. Performing Organ. Report No, 3. Publ ication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions)
NBS SP 500/152 Anril 1988

4, TITLE AND SUBTITLE

Guide to Information Resource Dictionary System Applications:
General Concepts and Strategic Systems Planning

5. AUTHOR(S)

Margaret Henderson Law

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

Same as item #6 above.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 88-600529

I I

Document describes a computer program; SF-I8S, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual sumnrtary of most si gnificant information. If document includes a si gnificant
bi bliography or literature survey, mention it here)

The guide describes the Information Resource Dictionary System
(IRDS) and its applications, Information Resource Dictionaries
(IRDs) . Metadata to be stored in an IRD is differentiated from
data to be stored in a database. The role of the IRDS in
Information Resource Management (IRM) and Data Administration is
discussed. The development of the IRDS is described in terms of
the evolution of data processing toward larger, more complex
systems that require greater control. With examples drawn from
the first phase of the life cycle, the Strategic Systems Planning
phase, the guide demonstrates how: (1) to develop example
problem statements indicative of the information to be
represented in an IRD; (2) to conceive of and define phase
partitions and views through which to access information in an
IRD; (3) to develop Entity-Relationship-Attribute models for
each example problem statement; and (4) to use the IRDS command
language in defining an IRD schema and in populating the IRD with
metadata. Procedures for using the IRDS extensible schema
capability are illustrated.

1 ?. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Data Administration; data dictionary system; data management, data modeling;
Entity-Relationship model; E-R; Federal Information Processing Standard;
FIPS; Information Resource Dictionary System; Information Resource Management;
IRflS; Strategic Systems Planning

13. AVAILABILITY

[X) Unlimited

I I
For Official Distribution. Do Not Release to NTIS

fx] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

145

15. Price

USCOMM-DC S043-P80





ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(NotiQcatloii key N-5Q3)

6 US GOVERNMENT PRINTING OFFICE: 1988— 201-597 8256S









Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-3%).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by

the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 2(X)56.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, ?nd perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.



U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

Sttmuiating America s Progress
1913-1988


