
Computer Science
and Technology

PUBLICATIONS

NBS Special Publication 500-148

Application Software
Prototyping and Fourth
Generation Languages

Gary E. Fisher

NATL INST OF STANDARDS & TECH R.I.C.

A1 11 02661 975
Fisher, Gary E/Application software prot

QC100 .U57 NO.500-148 1987 V19 C.I NBS-P

1987

Tm hehe National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall

goal is to strengthen and advance the nation's science and technology and facilitate their effective application for

public benefit. To this end, the Bureau conducts research to assure international competitiveness and leadership of U.S.

industry, science arid technology. NBS work involves development and transfer of measurements, standards and related

science and technology, in support of continually improving U.S. productivity, product quality and reliability, innovation

and underlying science and engineering. The Bureau's technical work is performed by the National Measurement

Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute

for Materials Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community,

industry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; provides

calibration services; and manages the National Standard Reference Data

System. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors

to address national needs and to solve national problems; conducts research

in engineering and applied science in support of these efforts; builds and

maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services;

develops test methods and proposes engineering standards and code

changes; develops and proposes new engineering practices; and develops

and improves mechanisms to transfer results of its research to the ultimate

user. The Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of
computer technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by
managing the Federal Information Processing Standards Program,
developing Federal ADP standards guidelines, and managing Federal

participation in ADP voluntary standardization activities; provides scientific

and technological advisory services and assistance to Federal agencies; and
provides the technical foundation for computer-related policies of the

Federal Govenunent. The Institute consists of the following divisions:

Information Systems Engineering

Systems and Software

Technology
Computer Security

Systems and Network
Architecture

Advanced Computer Systems

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information

fundamental to the processing, structure, properties and performance of
materials; addresses the scientific basis for new advanced materials

technologies; plans research around cross-cutting scientific themes such as

nondestructive evaluation and phase diagram development; oversees

Bureau-wide technical programs in nuclear reactor radiation research and
nondestructive evaluation; and broadly disseminates generic technical

information resulting from its programs. The Institute consists of the

following Divisions:

• Ceramics
• Fracture and Deformation^
• Polymers
• Metallurgy
• Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Sorne divisions within the center are located at Boulder, CO 80303.

'Located at Boulder, CO, with some elements at Gaithersburg, MD

itesearch Infonuatiou Ceuler Aj?,*' (
Aalioiial Kureau of Slaudarda

^

Gaithersburg, Maryland 20899 QjLlOO

Computer Science ^^^^

and Technology c

NBS Special Publication 500-148

Application Software Prototyping

and Fourth Generation Languages

Gary E. Fisher

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, Maryland 20899

May 1987

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrlge, Secretary

National Bureau of Standards

Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal Governnnent for com-

puter science and technology activities. The programs of the NBS Institute for Computer Sciences and

Technology are designed to provide ADP standards, guidelines, and technical advisory services to im-

prove the effectiveness of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This publication series will report

these NBS efforts to the Federal computer community as well as to interested specialists in the academic

and private sectors. Those wishing to receive notices of publications in this series should complete and

return the form at the end of this publication.

National Bureau of Standards Special Publication 500-148
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-148, 65 pages (May 1987)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 87-619824

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1987

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington DC 20402

TABLE OF CONTENTS

LIST OF FIGURES v

EXECUTIVE SUMMARY vi

1. INTRODUCTION 1

2. SOFTWARE PROTOTYPING 5

2.1. Benefits of Prototyping 5

2.2. Disadvantages and Limitations of Prototyping 6

3. PROTOTYPING METHODOLOGY 9

3.1. Appleton 9

3.2. Boar 9

3.3. Connell and Brice 10
3.4. Dearnley and Mayhew 10

3.5. EDP Analyzer 13

3.6. Gomaa 13

3.7. MacEwen 14

3.8. McCracken and Jackson 14
3.9. Wasserman 15

3.10. Young 16

4. PROTOTYPING STRATEGIES AND FACTORS 17

4.1. Personnel Resources 17

4.2. Applicability of Prototyping 17

4.2.1. Types of Prototypes 18

4.2.2. Application Domain 18

4.3. Hardware Constraints 19

4.4. Availability of Prototyping Tools 19

4.4.1. Requirements for Prototyping Tools 20

4.4.2. Other Tool Capabilities 21

5. THE SOFTWARE LIFE CYCLE AND 4GL PROTOTYPING , 22

5.1. Define Purpose and Scope of System 25

5.1.1. Definition of System Scope 25

5.1.2. Establish Prototyping Team 25

5.2. Develop System Conceptual Model 26

5.2.1. Identify Major Input and Output 26

5.2.2. Estimate Implementation and Life Cycle Costs and
Schedules 26

5.2.3. Estimate Benefits of Proposed System 27

5.2.4. Analyze the Risk in Development 27

5.3. Develop Logical Data Model 28

5.4. Develop a Prototype and Demonstrate It 30

5.4.1. Demonstrate Prototype to Management 31

5.4.2. Demonstrate Prototype to Users 31

5.5. Revise and Finalize Specifications 32

5.6. Develop the Production System 33

iii

34
5.7. Release Beta Test System

5.8. Release the Production System

6. SUMMARY AND CONCLUSION

6.1. Summary
6.2. Conclusion

39
REFERENCES

43
GLOSSARY

APPENDIX A -- PROTOTYPING EXAMPLE

iv

LIST OF FIGURES

Figure 1. Dearnley and Mayhew Prototyping Model 12
Figure 2. Software Life Cycle with Integrated Prototyping 23
Figure 3. Software Life Cycle Tasks and Deliverables 24
Figure 4. Specification Review Highlights 33
Figure A-1. Organizational Structure of the Agency 46
Figure A- 2. Data Flow Diagram Symbols 48
Figure A- 3. Conceptual View of System 49
Figure A-4. Instrument Fabrication Division 52
Figure A- 5. Estimates Unit Information Flow 53
Figure A- 6. Division Local Information Flow 54
Figure A- 7. Global Information Flow Model 55

Certain commercial equipment, materials, or methodologies are identified in
this paper in order to adequately specify the environment and procedures.
Such identification does not imply recommendation or endorsement by the

National Bureau of Standards, nor does it imply that the materials, methodol-
ogies, or equipment identified are necessarily the best available for the

purpose

.

V

EXECUTIVE SUMMARY

Application prototyping is a technique used to define requirements and specify
constraints on a proposed software system. It is based on the premise that,

in a wide range of problem domains (particularly on-line interactive systems)
users of the proposed application do not have a concrete idea of what the

application should do, nor how it should operate. This report is designed as

an introduction to the planning, organizing, executing, and controlling of a

methodology for application prototyping. Senior level technical personnel and
project management who are interested in instituting a prototyping program
will benefit from this information.

The methodology combines application prototyping and Fourth Generation
Languages (4GLs) into a cogent and viable software life cycle designed to

acknowledge the inherent difficulty in specifying software requirements.
Often, after a system is operational, errors or shortcomings overlooked during
development become evident. Application prototyping attempts to overcome
these problems by providing users and developers an effective means to

communicate ideas and requirements before a significant amount of effort has
been expended in development. The prototyping process results in a functional
set of specifications that can be fully analyzed and understood by users,
developers, and management in deciding whether the application can be devel-
oped, and how it should be developed.

The influx of Fourth Generation Languages has induced many organizations to

undertake projects based on prototyping techniques. 4GLs provide many of the

capabilities necessary for prototype development, such as those described in
NBS Special Publication 500-138, A Functional Model for Fourth Generation
Languages. These capabilities include user functions for defining and
managing the user/machine interface, data management functions for organizing
and controlling access to data, and system functions for defining execution
control and interfaces between the application and its physical environment.

The benefits of the proposed methodology are the abilities to 1) identify
requirements and problem areas in early development phases, 2) reduce the

development time through reuse of the prototype or through knowledge gained in
developing and using the prototype, and 3) produce systems based on true,

rather than perceived, requirements.

The combination of application prototyping and Fourth Generation Languages
provides a cost-effective and controllable method of developing and maintain-
ing software.

vi

1. INTRODUCTION

Software prototyping is emerging as a viable software engineering technique.
A recent exchange over an electronic mail system highlights the issues of
prototyping as follows:

[Initial message] "All too often, one sees programmers writing code before
a proper Job of analysis and design has been done. I also believe that is

partly because semi-running code makes it appear as though progress has
been made, while a complete design doesn't convey the same impression."

[Response] "All too often, one sees programmers writing detailed design
specifications before writing any code. This is probably because design
specs make it appear that the problem is fully understood , and give the

impression to management that the rest of the process of implementation
will be entirely mechanical and hence will be on budget and on schedule

.

. . . Then one gets to draw up a new budget and schedule for 'maintenance"

,

which is the process of modifying the program so that it really meets the
customer ' s needs, instead of merely meeting the specifications

.

The alternative is to recognize that (a) the user probably does not have a

complete and coherent idea of what he needs, and hence cannot write a spec
or meaningfully assess one you write, and (b) in any case, the presence of
the software itself will change the user's tasks and therefore his needs.
Given recognition of this situation , it is not even theoretically possible
to avoid a trial-and- error process of software development . Hence you
should aim to make your inevitable mistakes as early as possible. Which
puts a heavy premium on getting initial prototype software into the hands
of the customers right away, so that you can learn what's wrong with it.

One progresses by iteratively enhancing (and perhaps sometimes re-doing)
the prototype , with regular user feedback

.

This is not to say that the design- it- first method doesn't have its uses,

and its advantages , when the problem is understood well enough. But a very
large class of problems- -almost anything to do with user interaction, for
example- - simply don't meet that criterion." [Spen86]

Development of automated systems based on techniques of prototyping is not a

well-understood subject. This report is an attempt to shed some light on the

process of prototyping by describing what prototyping is, pros and cons of the

concept, how it affects the life cycle of software, and the implementation of

a life cycle that integrates prototyping. While the report is designed

primarily for use by senior technical and mid-management personnel in develop-

ing an organizational approach to prototyping, it is hoped that software

developers can garner ideas to reduce the effort involved in software develop-

ment. In this manner, perhaps productivity and quality in developing auto-

mated systems can be enhanced.

"Software development productivity" is one of the most fashionable topics in

the information industry today. Large amounts of resources have been and will

be expended by government and industry in an attempt to overcome the problems

associated with productivity and quality in the development and maintenance of
software

.

James Martin stated in his book, Application Development Without Programmers

,

"If we assume no increase in programming productivity ... in 10 years'
time the industry will need 93.1 times as many programmers as now.
There are approximately 300,000 programmers in the United States today.
That suggests about 28 million programmers in 10 years' time..."
[Mart82]

The same argument was used long ago by nay-sayers against the introduction of
the telephone into the majority of homes in the U.S. (i.e., that everyone in
the U.S. would have to become a telephone operator). Martin also stated that
the number of applications will increase 41 times over the next 10 years.
These figures suggest that productivity will have to be increased by two
orders of magnitude just to keep up!

Martin's predictions may or may not come true. However, the underlying
assumption of this excerpt is the need for orders of magnitude increases in
the production of high quality software of all types.

Some inroads to productivity have been paved, but the resulting gains have
fallen far short of expectations and needs. In the late seventies, "struc-
tured programming" became a subject of intense interest in the programming
world. The application of this concept resulted in a 15 to 25 percent
productivity increase [Jone77, Jone79]. However, it did not attack the
problem of productivity in the software life cycle as a whole. It concen-
trated on detailed design and coding of programs which amounted to only 20 to
30 percent of the entire life cycle effort. The other phases were not affect-
ed, except perhaps the maintenance phase. (Structured programs tended to be
more readable and organized, therefore maintenance was conceivably somewhat
easier

.

)

McCracken and Jackson wrote a short paper published in the ACM SIGSOFT
Software Engineering Notes that delved into what they suspected was the root
of the productivity problem. They argued that life cycles did nothing to
enhance communication between users and developers; did not recognize end
users as potential developers; did not involve users past the definition
phases ; and did not recognize that requirements have never been susceptible to

prespecification [McCr82]

.

Bernard Boar wrote in his book, Application Prototyping: A Requirements
Definition Strategy for the 80 ' s [Boar84] , that programmer productivity as

measured in lines of code has increased by a factor of 15 to 1 over the last
30 years. This is low compared to the 1,000,000 to 1 gain in hardware as

measured in the number of transistors per chip or instruction executions per
second cited for the same period. However, a major point made by Boar was
that software productivity was not hindered by the slowness of creating code,
but the ^ cessity imposed by life cycles to prespecify requirements.

2

Prespecification implies that all system specifications are known and can be
rigorously defined before the system is implemented. While this may be
desirable, it is often not possible. Prespecification stultifies users and
developers alike: users, because they do not have concrete ideas of what they
want and are continually changing the requirements; and developers, because
they cannot cope with what are simple changes in the eyes of the end users.

The act of implementing a system is a learning experience for the system user
and usually leads to new information about the system that was not known prior
to implementation. The result of the new information leads to the need to

specify changes, perform impact analyses due to the changes, and cost- justify
resources to make these changes . This is particularly discouraging to the end
user when the identified changes have profound effects upon the usability of a

system, but cannot be economically justified from management's perspective.
One suggested means of overcoming the problems associated with life cycles and
prespecification is to develop specifications and systems based on prototypes.

A prototype of an automated information system is an experimental version of

the system. It may be incomplete by not providing all of the functionality
required. It may be modified many times in direct response to user feedback.
It must be inexpensive to build in comparison with development of the full
system. It must be easily modified, and it must be flexible to the point that
it could conceivably be expanded to fulfill all system requirements. Because
it is initially experimental or explorative, it might be thrown away. Proto-
types have been used for centuries in the engineering of buildings, bridges,
airplanes, and other mechanical systems to verify assumptions made about the

full-scale project. Many times, prototypes display physical flaws that cannot
be seen in the written specifications. Through this process of model build-
ing, the users and implementors can come to agreement on what the final
product should be

.

Prototyping, however, is antithetical to the classical software development
model. Prespecification and rigorous control of changes form the basis of

most life cycles. Prototyping works in an alternate world where change and

experimentation are desirable. The problem is how to incorporate prototyping
Into a manageable development model without disrupting the effectiveness of

prototyping or the control needed to manage development. This calls for a

rethinking of the way in which software is developed.

One of the promising tools in support of prototyping is Fourth Generation

Languages (4GLs) . A 4GL is a software system of integrated tools designed to

assist end users in developing interactive online business applications with a

minimum need for knowledge of the technical aspects of data processing.

Components of a typical 4GL are a database management system (DBMS) , a query

language, a report generator, a screen formatter, a data dictionary, and a

high level procedural language. Using a 4GL allows end users and developers

to put a prototype together in days or weeks as opposed to weeks or months

with traditional programming languages, make changes to the prototype as they

are required, and emerge with a reasonable facsimile of the finished product

[Fish86]

.

3

The remainder of this paper discusses the pros and cons of prototyping,
provides a short guide to current thoughts on prototyping, and presents a
methodology for utilizing prototypes in software development. Section two

describes the features of prototyping and contrasts it to prespecification.
Section three presents a guide to several prototyping models and a proposed
model based on specification prototyping using a Fourth Generation Language.
Section four summarizes this report and presents conclusions on the prototyp-
ing based model and the use of 4GLs as a prototyping vehicle.

4

2. SOFTWARE PROTOTYPING

"Prototyping is ...

flying by the seat of your pants . .

.

iteratively !
" [Aqui85]

There are various types of software prototypes. They range from paper
descriptions of inputs, processes, and outputs, to fullblown automated
versions. They may take anywhere from several hours to several years to

build, and may cost several hundred dollars to several million dollars.

An exact definition of software prototype is impossible to find. The concept
is made up of various components. A prototype --

o is an actual working system for experimenting and from which lessons can be
learned in revising requirements [Goma83];

o must be comparatively cheap to build (less than 10 percent of the full
system development cost) [Goma83, Bric83];

o must be relatively quickly developed so it can be evaluated early in the

life cycle [Goma83];

o does not eliminate or reduce the need for comprehensive analysis and
specification of user requirements [Goma83];

o provides users with a physical representation of key parts of the system
before implementation [Boar84, Bric83];

o is not necessarily representative of a complete system [Bric83];

o performs only a subset of the functions of the final product [Zave82]; and

o lacks the speed, geographical placement, or other physical characteristics
of the final system [Zave82].

William Riddle expressed the term "prototyping" most succinctly as follows:

" [Prototyping is] the building of trial versions of software systems

that emphasize the preparation of immature versions that can be used as

the basis for assessment of ideas and decisions in preparation of a

version that is complete and deliverable." [Ridd83]

2.1. Benefits of Prototyping

In the last few years, the recognized benefits of prototyping have become

relatively numerous. A few of these benefits cited by various authors are

listed as follows:

5

o Prototyping emphasizes active physical models [Boar84] (i.e., The prototype
looks, feels, and acts like the real system.)

o Prototyping is highly visible and accountable; therefore, management of
prototyping is simple compared to full-scale implementation [Boar84]

.

o Several burdens are eliminated in prototypes: performance, optimum access
strategies, and complete functionality [Boar84]. As a result, the proto-
type should not require as much effort in development as compared to that
of the full system.

o Issues of data, functionality, and user/machine interfaces can be readily
addressed [Boar84]

.

o Requirements can be separated from system specification and decisions can
be made about what to prototype and what not to prototype [MacE82]

.

o Users are usually satisfied, because they get what they see [EDP84]

.

o Many design considerations are highlighted and a high degree of design
flexibility becomes apparent [Bric81].

o Information requirements are easily validated [Appl83].

o Changes and error corrections can be anticipated and made on the spur of
the moment in many cases [Appl83].

o Ambiguities and inconsistencies in requirements become visible and correct-
able [Goma83]

.

o Useless functions and requirements can be eliminated [Goma83].

2.2, Disadvantages and Limitations of Prototyping

While the advantages of prototyping are many and valuable, the disadvantages
and limitations of prototyping deserve consideration. Some of these are--

o Because the prototype is not the complete system, analysis of requirements
may not be adequate. Symptoms of the problems may be mistaken for the

problems [EDP84]. (e.g., A user may demand online access to daily data
when the solution is actually a timely summary report.)

o A prototype system may evolve into a production system before it is ready
to be used [EDP84]

.

o Prototyping is still viewed by management as development. Throw-away
(i.e., prototype) code is not considered to be economically justifiable
[Boar84] . (There should be no stigma attached to throwing away the

prototype if the possibility for such action is planned.)

6

o Because it is heuristic in nature, prototyping is not as reliable as more
rigorous approaches to requirements specification and analysis [Boar84]

.

o The technology of prototyping is less well -understood and less available
than other means of system development (i.e., The tools and techniques are
not as wide -spread as those of other software development techniques.)

o End users make unrealistic demands based on prototypes [Smit85].

o Prototypes do not address security procedures, backup/recovery, conversion,
system testing, implementation plans, user sites, system reliability,
controls and documentation, and training [Adam85]

.

o The actual performance and ease of maintenance of the finished product
cannot be ascertained from the prototype [Tayl82].

Some of these limitations and disadvantages can be refuted as follows:

o Analysis of requirements may not be adequate in prototyping. However, in

general a prototype is not the final system, and as stated before, is not a

replacement for full analysis. Prototyping experts do agree that users are
happier with the delivered system when they have a great deal of contact
with the development staff during evolution of the prototype. Contrast
this aspect with systems that have failed, even when based on rigorous
techniques of system prespecification.

o The purpose of a prototype is to assist in defining requirements and
analyzing specifications. As with all technical fields, prototyping
requires understanding and training before implementation should proceed.
There are documented cases where users did not want to give up the proto-
type system [EDP84] , even though the prototype may have been inefficient or

an incomplete system. The only way to combat this possibility is to

educate the users on the purpose of the prototype and provide controls to

manage prototype evolution. However, if the overriding requirements of the

users can be met with the prototype, and no one objects, then perhaps no

problem exists in using the prototype as the delivery system.

o Proponents of rigorous approaches to software development often include

methods that rely heavily on labor intensive documentation of the specifi-

cations and plans. More often than not, these methods are more heuristic
in nature than is prototyping. For example, the typical waterfall model of

the software life cycle is not based on any mathematically proven or

correct engineering principles. Prototyping is heuristic, but it allows

for experimentation and insight into the human- computer domain. Tradi-

tional approaches do not take this into consideration.

o One of the major arguments against prototyping in the past was that

prototype systems were almost as expensive and just as difficult to modify

as the production systems. Fourth Generation Languages (4GLs) have helped

overcome this problem to a large extent. Throw- away code is economically

feasible when 4GLs are used for prototyping. In the sense that a 4GL can

be used to produce a prototype with relatively much less effort than is

7

needed when using a third generation langauge (3GL) such as COBOL or C, the

4GL prototype may be thrown away. To throw away a prototype written in a

4GL is much more easily justified than for a prototype in a 3GL.

o End users always have, and always will, make unrealistic demands on systems
developers. (Or is it "Systems developers always produce the wrong
system? "

)

o Prototypes do not address security, backup, testing, controls, etc. This
argument is based on environmental factors more than on the concept of

prototyping. In truth, prototypes can encompass many of these aspects
according to the tools available for creating the prototypes. Some 4GLs
provide capabilities to directly address factors affecting security,
backup/recovery, and auditing. The users' acts of iteratively modifying
and reviewing a prototype is a type of testing that is not even prescribed
in most life cycle models. Documentation, training, and maintenance of the

system are enhanced because of direct user involvement at the outset.

o Performance of 4GLs has been debated over and over. While many 4GLs are
interpretive and have an associated higher overhead in operation, many
vendors are re implementing their products in compiler versions and optimiz-
ing execution. This is a direct result of competition among 4GL vendors.
Now, instead of executing ten times as slow as systems in third generation
languages

,
they approach very close to execution times of third generation

systems. Very large applications are being produced by organizations such
as the Federal Bureau of Investigation, the Social Security Administration,
and the Customs Service that include online query, distributed data, high
volumes of transactions, and large databases all of which are handled by
4GLs.

8

3. PROTOTYPING METHODOLOGY

A methodology consists of the methods, rules, and procedures organized to

solve problems in a specific domain. If the methodology has developed
successfully, these methods, rules, and procedures should be well - integrated

.

The following subsections describe several life cycle integrated prototyping
methodologies that have been proposed in recent years. They are presented to

show the diversity of concepts involved in defining software life cycles and
to illustrate the effects of prototyping on the life cycle in general. The
recurring theme throughout the majority of the models is that the prototype is

one small part of the development cycle, but that its ramifications are felt
overall. The models are presented in alphabetical order by author's name.

3.1. Appleton

Data-Driven Prototyping consists of the following six steps. They are--

o Operational review - define the project scope; evaluate the environment,
current organizational, and information structures;

o Conceptual design - define proposed metadata (i.e., the structure of data
and relationships between individual structures) ; scenarios to describe
service functions that change data states; and types of retrievals;

o Data design - normalize the metadata;

o Heuristic analysis - check consistency of requirements against metadata
through the use of real data values and iterate this with the data design
step

;

o Environment test - build programs to support data entry and retrieval
(prototype) ; and

o Monitor performance and tune the application [Appl83]

.

3.2. Boar

Bernard Boar's book. Application Prototyping: A Requirements Definition

Strategy for the 80 ' s ,
provides an in-depth discussion of many aspects of

application prototyping. He proposes the following model:

o Identify basic needs - This phase concentrates on identification of

fundamental goals and objectives, major business problems to be solved,

definition of data elements, data relations, and functions.

o Develop working model - Quickly build a working prototype that addresses

the key needs identified in the previous step.

9

o Demonstrate the prototype - Present the prototype to all interested users
and obtain additional requirements through user feedback. Stimulate the
users with "what if" types of questions.

o Prototype is done - Iterate between demonstration and enhancement of the
prototype until the users are satisfied that the organization could provide
the service needed from the prototype. Once the users agree that the

prototype fits the concept of the service needed, the prototype can be
enhanced into the final system, or rewritten in a less resource -consuming
language [Boar84]

.

3.3. Connell and Brice

This model replaces the traditional life cycle phases with a rapid prototyping
process. The steps are--

o Rapid analysis - results in an incomplete paper model that shows the system
context, critical functions, an entity-relationship model of the database,
and conceptual tables, screens, attributes, reports, menus, etc.;

o Database development - uses a relational architecture to create a working
database for the use of the prototype;

o Menu development - expands upon the initial concepts defined in rapid
analysis and fixes the hierarchical structure of the application;

o Function development - functions are grouped by type into modules;

o Prototype demonstration - iterate by redoing parts as necessary and tuning
where possible;

o Design, code, and test - the detailed "as built" design specifications are
completed; and

o Implementation - based on the evolution of the prototype and completion of
all programs, tests, documentation, etc. [Conn84] . ..«3-.*>=pffi,. ..^ . .«i«i»sK.«v,K.«

3.4. Dearnley and Mayhew

P. A. Dearnley and P. J. Mayhew presented their ideas on software tools in

prototyping at a working conference on prototyping in 1983 [Dear84] . Essen-
tially their concept on software development with prototyping consists of two
separate but interrelated cyclic models: one consisting of a classical
software development cycle and the other a prototyping cycle that interacts
with the classical model during the phases of analysis and design. The
diagram of these two models resembles a figure eight lying on its side. (See

figure 1.) The major operations and operators are:

10

o Classical cycle
User request
Feasibility
Investigation
Consider prototyping (see prototyping cycle below)
Analysis
Design
Final proposed design
Program
Test
Implement
Operation
Evaluation
Maintenance

(Repeat the cycle)

o Prototyping cycle
Design prototype
Use prototype
Investigate (Use prototype some more)
Analyze (Investigate prototype some more)
Refinement, or is new prototype required?

(Repeat the cycle if not done)

The interaction of the two cycles occurs when investigation in the classical
cycle uncovers the need to prototype, at which time the prototyping cycle is

entered. Prototyping is terminated when analysis, design, or the final
proposed design of the classical cycle can be completed based on information
discovered or verified in the prototyping cycle.

11

Use

Prototype

\

Investigate

User

Request

Feasibility

/
Maintenance

Investigation

/
Consider Prototyping?

YES NO

/ \Design ^
Prototype- Analysis

Evaluation

Ope^tion

Implement

/
Test

^ Design Final

/ Proposed

YES / / Design

y
Program

Refinement or New
Prototype Required?

Analyze

Concept used by permission of the authors and publishers.

Figure I. Dearnley and Mayhew Prototyping Model

12

3.5. EDP Analyzer

The EDP Analyzer's Special Report - Fourth Generation Languages and Prototyp-
ing, proposes the following life cycle:

o Create a prototyping team of one analyst/programmer and one end user.

o Identify the user's basic needs by interviewing several end users to define
the problem and sample user expectations

.

o Quickly develop a prototype that addresses most of the issues of the
problem and user expectations

.

o Demonstrate the prototype to the end user. If it fits, let the user
experiment with it and perform work. Otherwise, scrap it and try another
prototype. Specify a time period in which the user may use the prototype.

o Refine the prototype by including changes identified through use. Iterate
through this step and the previous step until the system fully achieves the
requirements

.

o Identify an end user test group to get more feedback on the prototype.
Allow this test group a specified period of time to exercise the prototype.

o Determine whether the prototype will be implemented, or the system will be
rewritten in a conventional language. Base this decision on maintenance
considerations, hardware/software efficiency, flexibility, and other system
requirements [EDP84]

.

3.6. Gomaa

This model is proposed to assist in specifying user requirements, verifying
the feasibility of system design, and in translating the prototype into the

final system. The procedure definition follows:

o Preliminary analysis and specification of requirements to establish a

baseline for future reference.

o Design and implementation of a prototype emphasizing the user interface,

small development team, prototype development language, and tools to assist

in rapid development.

o Exercise the prototype in the user's workplace.

o Refine the prototype by incorporating user comments as quickly as possible.

o Refine baseline requirements by incorporating lessons learned from the

prototype

.

13

o Design and implement the production system using a traditional life cycle
with requirements derived from the prototype [Goma83].

3.7. MacEwen

The Iterative Development Accounting life cycle is based on the view that a

system is a sequence of specification levels with an increasing amount of
detail at each level. These levels are--

o informal requirements

;

o formalized requirements;

o design;

o implementation;

o configuration; and

o operation.

Each level contains more detail than the one above it. Additionally, each
level must be balanced with upper level specifications. Iterative Development
Accounting imposes development accounting on each level. This means that a

change in a discrete level of specification can only be made if the next
higher level has been modified to accommodate the change. In turn, the
previous level can be changed only if the level above it has been modified to

allow the lower level modification.

A complete history of development is maintained by this accounting technique
to insure that consistency remains throughout all levels. A prototjrpe is

developed at each level to show that the specifications are consistent. Each
prototype concentrates on the functions to be evaluated at that level. The
final prototype becomes the implemented system once testing, installation, and
training have been completed [MacE82].

3.8. McCracken and Jackson

Two models are presented here. The first is termed the evolutionary model in
which the prototype is built and gradually enhanced to form the implemented
system. The second has become known as the "throw one away" model (after Fred
Brooks' expression in his book, The Mythica.1 Man Month [Broo75]).

The end user becomes an integral part of the prototype development in both
models. The authors suggest that the end users be trained in the use of a

prototyping tool, such as a simulation language or a Fourth Generation
Language. The two models are described briefly as follows:

14

o Method 1

In responding to the end user's earliest and most tentative needs,
allow the user to experiment with and use the prototype to perform
productive work.
The analyst watches the user to see where fitting of the prototype
needs to take place. A series of prototypes, or modifications to the
initial prototype, could then evolve into the final product.

o Method 2

Implement a prototype. Write the initial design from this and the end
user's feedback. Produce another prototype to implement the initial
design. Design the final system and implement in a conventional
language [McCr82]

.

3.9. Wasserman

The User Software Engineering Methodology (USE) is based on a model of
software development that is partially formal and partially informal. Parts
of the methodology have been automated in the Unified Support Environment.
The USE methodology includes the following steps:

o Requirements analysis includes activity and data modeling, and identifica-
tion of user characteristics.

o An external design step develops transactions, and user/program interfaces.

o A "facade" of the system is developed as a prototype of the user/program
interface and is revised as needed.

o Narrative text is then used to informally specify the system operations.

o A preliminary relational database is designed as the basis for a functional

prototype of the system.

o The functional prototype is developed to provide at least some of the

functionality of the proposed system, and perhaps all.

o A formal specification of the system operations may be optionally developed

at this point.

o The system architecture and modules are designed.

o The system is implemented in PLAIN (a procedural language used in the

Unified Support Environment)

.

o Testing and verification are performed on the implemented system before

being released into the production environment [Wass83]

.

15

3.10. Young

This prototype methodology describes the development of a system as the
evolution of a prototype. The stages are described as follows:

o Stage 1 - Management states the organization's objectives in terms of
information requirements, and the scope of the system boundaries and
capabilities. Prototype screens and reports are developed,

o Stage 2 - The end users and management review and approve the prototype.
Full system design, equipment selection, programming, and documentation are

completed.

o Stage 3 - Management reviews and commits to implement the system. System
tests of the prototype are run in parallel to the old system. Work begins
on the next release which causes an iteration of all three stages [Youn84]

.

16

4. PROTOTYPING STRATEGIES AND FACTORS

The models discussed in section three suggest numerous strategies for proto-
typing. The life cycle can be modified to add a prototyping phase, or
prototypes can be built during several phases. The prototype may be throv/n
out when no longer needed, or it may evolve into the finished product. In
each organization that chooses to implement a prototyping life cycle, various
factors must be taken into account in deciding what strategy to follow. Some
of these factors are--

o personnel resources

;

o applicability of prototyping;

o hardware constraints; and

o availability of prototyping tools.

These factors are examined in the following subsections to define the context
for prototyping in a Fourth Generation Language.

4.1. Personnel Resources

One of the most important aspects of implementing prototyping is to ensure
that the technical personnel who will develop prototypes are fully trained in
the techniques and control of prototype development. They must also be able
to teach end users what they need to know about prototyping.

Technical prototype developers must be thoroughly knowledgeable in the
methodologies applied to current software life cycles. They must be exper-
ienced particularly in software development, requirements specification, and
analysis. Junior programmers must be guided by more experienced and senior
personnel who are very familiar with the application of prototyping and the

constraints on a particular development effort.

Additional characteristics include the ability to make presentations before
senior management, such as in demonstrating prototypes for the benefit of

decision-makers, and experience in estimating costs and project schedules.

4.2. Applicability of Prototyping

Inevitably the question, "What should be prototyped?", must be answered. The

answer is dependent on several factors such as what types of applications will

be developed, and the eventual use of the prototype in relation to a particu-

lar application. These and other areas are addressed in the following

subsections

.

17

4.2.1. Types of Prototypes

Christiana Floyd described several classes of prototypes in a paper entitled
"A Systematic Look at Prototyping" [Floy83]. These are--

o Explorative prototyping which emphasizes the clarification of requirements
and features to be developed, and helps in deciding among alternative
solutions. (This type of prototype is generally thrown away since the
direction it must follow is not necessarily known in advance.)

o Experimental prototyping which assists in determining if the proposed
solution is adequate before a large investment in development is made. In
this case, the prototype consists of any number of proposed functions, the

user interface, or a test of the proposed system architecture. Experi-
mental prototypes may be thrown out, or they may evolve into deliverable
systems

.

o Evolutionary prototyping which is performed with the express purpose of
evolving into the final system. They are generally marked by releases of
incremental versions that add progressively more functions and capabilities
as the need arises and resources permit.

Another view of prototyping accentuates the logical and physical aspects of a

system. These prototypes are known as mockups , functional prototypes, and
simulations. Mockups address the user interface as the primary target. The
goal of a mockup is to incorporate user characteristics and preferences in the
way a system is perceived. Ease-of-use is a primary concern in this type of
prototype

.

Functional prototypes concentrate on specific capabilities that are required
in the delivery system. The ability to program these functions and the

interactions among various functions are tested and reconfigured until the

appropriate mix is achieved.

Simulations are used to estimate metrics such as response times, database
access times, throughput rates, and other performance characteristics required
in the delivery system. Simulations are generally carried out after mockups
and functional prototypes have been developed. The requirements developed in

the process of prototyping the user interface and functional components of the

system have a direct impact on the factors measured with simulation.

In practice, a mixture of mockups and functional prototypes should produce a

realistic set of requirements. It would not be unusual to find that all three
types of prototyping are used in many cases. (Section 5.3 provides more
specific guidance on what to prototype after a logical data model has been
completed.

)

4.2.2. Application Domain

Prototyping has been used in various application systems. For example, a

realtime process control system in a manufacturing context is documented in

18

[Goma83] . The Santa Fe Railroad developed large systems for tracking freight
and 20,000 pieces of rolling stock, and for billing customers. The Federal
Bureau of Investigation has used prototyping in the development of admini-
strative personnel systems for its 9,000 agents throughout the United States.
The Criminal Justice database system has been implemented partially through
the use of prototyping.

There are numerous cases of large and small systems documented in the refer-
ences cited at the end of this report. The range of application domains in
these references appears to run the gamut of all types . Experiences have not
provided conclusive evidence to say that prototyping is better suited to one
or another type of application domain. However, advice reported in many
references suggests that prototypes should be used for those areas of an
application that are not well understood and for user interfaces.

4.3. Hardware Constraints

The primary function of a prototype is to display functionality of the

proposed system while searching for flaws in the system concept. In the case
where a prototype evolves into the production system, care must be taken to

insure that tuning between the hardware and software is performed and
monitored. This tuning, however, will occur after the decision is made to

keep or throw out the prototype based on whether the prototype is explorative,
experimental, or evolutionary. CPU cycles, memory, disk storage, and other
types of peripherals cost money. Users of prototypes must take into account
how the hardware reacts to the load caused by the prototype and the number of
users to be supported by the delivery system.

4.4. Availability of Prototyping Tools

There are several general classes of prototyping tools. They include execut-

able specification language processors, program design languages, and Fourth
Generation Languages. Many of these tools have been available through public
domain and commercial sources for several years.

Executable specification languages are application languages designed expli-

citly for defining systems. The specifications consist of commands and

declarations which can be validated and verified through automated tools using

various analysis criteria. These tools ensure that the system specifications

are complete, unambiguous, and executable. When the user has finished

documenting the system through the textual specifications, a processor may

execute these text commands in emulation of the actual system. The execution

can take place at various levels within the system. For example, the system

may be executed at a very high level through graphical representation of the

actions occurring within the system, or individual screens and reports may be

executed to determine whether the content of each system object is correct.

Program design languages, such as structured English and languages found in

several proprietary products, are used to define the architectural structure

of a system once the requirements have been identified. Whereas specification

19

languages are used to define "what" a system is required to do, design
languages are used to define "how" the system is to implement the require-
ments. As such, they are generally not suited to high level functional
requirements specification. Whereas specification languages may be used to

define functional aspects of a system, design languages may be able to fulfill
only procedural definition of the system. Design languages and functional
requirements specification languages are complementary tools.

A Fourth Generation Language (4GL) is a system of integrated tools designed to

assist end users in developing applications with a minimum need for knowledge
of the technical aspects of data processing. A typical implementation
contains components such as a DBMS, a query language, a report generator, a

screen formatter, a data dictionary, and a high level procedural language.
These components may be used by analysts and end users to develop prototypes
by rapidly building models of data entry screens, reports, database struc-
tures, and specialized processes.

The major difference between functional requirements specification/design
languages and Fourth Generation Languages is in the user interface. Because
the syntax of specification/design languages are usually very complex, they
are generally usable only by highly skilled data processing professionals.
Fourth Generation Languages, on the other hand, are designed to be used by
both data processing professionals and end users.

There are numerous commercially available 4GLs in the price range of several
hundred dollars to several hundred thousand dollars . The price is usually a

function of the type of machine on which a particular 4GL will execute. The
larger the machine, the more functionality a 4GL is able to include.

4.4.1. Requirements for Prototyping Tools

In searching for tools to implement prototyping, some specific capabilities
should be kept in mind. Required capabilities include-

-

o a requirements specification language to allow analysts and users to

nonprocedurally describe the goals and functions of a specific software
system;

o a design language to allow designers to nonprocedurally define software
system components such as subsystems, modules, programs, interfaces, and
control features

;

o a procedural language to facilitate the programming of problems that cannot
be managed in the other language subsets;

o a testing language to structure and reduce the effort needed to perform
unit, integration, system, and regression testing; and

o a project management and control subset to assist in managing and control-
ling the development effort.

20

Optional but strongly recommended capabilities include

-

o an environment language to allow site managers to define the site's
physical limitations and standards (e.g., how much memory and online disk
storage is available) ; and

o a text and graphics manipulation language for the purpose of producing
documentation and man-machine dialogues.

4.4.2. Other Tool Capabilities

Other features indirectly related to prototyping tool capabilities include--

o a specification interpreter for rapidly changing and testing specifications
during development, and the ability to compile tested code for production;

o an integrated editor;

o a debugger that animates execution through the procedural and data manage-
ment parts of the specification;

o extensibility to allow common problem domain structures and terms to be
incorporated in the specifications; and

o optimization of database structures during analysis.

There are numerous research projects underway in academic and commercial
environments to develop specification languages and tools. Each language or

tool has the above capabilities as its goal. The languages, however, are

still far removed from general availability. Subsets of these capabilities do

exist in various forms within the Fourth Generation Languages arena. It is

there that the majority of available prototyping tool capabilities will be

found

.

21

5. THE SOFTWARE LIFE CYCLE AND 4GL PROTOTYPING

The software development model presented below is based on the incorporation
of prototyping. Implementation of the model is based on capabilities provided
by a 4GL. A Fourth Generation Language is used to give form and content to

major parts of the system prototype. In addition to textual specifications
perhaps produced by other methodologies, a 4GL provides actual working models
or mockups of system objects such as--

o data entry and query screens;

o output reports

;

o logical data descriptions ; and

o integrated procedures for demonstrating prototype processes.

The underlying concept of the model is that a prototype system is used to form
the basis of the system requirements. The implemented system may then be
coded in a conventional language after design has taken place, or the proto-
type may evolve into the implemented system through the 4GL.

Each phase of development is described, and deliverables from each phase are
defined. The software life cycle based on prototyping in a 4GL consists of
the following major tasks:

o Define purpose and scope of the system

o Develop system conceptual model

o Develop logical data model (with assistance of a 4GL)

o Develop a prototype in the 4GL and demonstrate it

o Revise and finalize specifications

o Develop the production system (4GL or 3GL)

o Release beta test system

o Release the production system

o Iterate the cycle (maintain the system)

Figure 2 diagrams the procedural relationships of the phases. Figure 3

summarizes the steps and deliverables for individual tasks within the proto-

typing life cycle.

22

User
Request

Define
Purpose

Maintain
the System

z
identify

Input/Output

Release
Production
System

T
Release

Beta Test

System

Develop
Production
System

Determ I ne
Feasi b 11 Ity

i
Develop
Logical

Data Model

7
Develop

Prototype

Revise
Specification

Develop
Using 3GL

Cancel
o r

Suspend

Figure 2. Software Life Cycle with Integrated Prototyping

23

TASK DELIVERABLES

0. User Request Project Request Document

1. Define Purpose and
Scope of System

Statement of Goals and Objectives,
Definition of System Scope, Establish-
ment of Prototyping Team

2. Develop System
Conceptual Model

3. Develop Logical
Data Model

System Diagrams, Data Dictionary,
System Development Estimate, Prototype
Estimate, Total System Life Costs,
Estimate of Benefits, Risk Analysis,
Screen/report Layouts

Logical Data Model

4. Develop Prototype
System and Demon-
strate

Data Entry Screens
,
Sample Reports and

Menus, Physical Database Structure,
Draft User Manual

5. Revise and Finalize
Specifications

Formal System Requirements Specifica-
tions, Listings of 4GL Commands,
Sample Reports and Data Entry Screens

,

Data Dictionary Report, Actual Proto-
typing Costs, Revised Estimates and
Schedules

6. Develop Production
System

7 . Release Beta Test
System

Decision: a) Rewrite in 3GL,

b) Continue Evolution of Prototype, or
c) Cancel the Project

Revised User Manual, Error Reports,
Change Requests, Detailed Design
Documentation

8. Release Production
System

Final User Manual, Training

9. Iterate the Cycle (As above)

Figure 3. Software Life Cycle Tasks and Deliverables

24

5.1. Define Purpose and Scope of System

Why the system needs to be implemented must be defined within the context of
organizational goals and information requirements. This context must include
specific objectives of the system including identification of those objectives
that are most critical to the success of the organization and to the system.
These objectives must be balanced to preclude overly subjecti^^e or overly
specific constraints that may adversely affect the system design.

5.1.1. Definition of System Scope

The scope of the system is generally based on management's objectives and the
primary purpose of the system in question. The definition of system scope
entails establishing the boundaries within which the system must be developed,
operated, and maintained. Examples of specific factors influencing placement
of boundaries include-

-

o the user environment (i.e., What organizations and types of users will come
into direct contact with the system?);

o the hardware environment (i.e., What processing, storage, and communi-
cations capabilities are needed?);

o other systems that interact with the system as sources of input and
recipients of output;

o available funding, time constraints, and resources; and

o security of the data and software.

The purpose of a system may be further defined by requesting the proposed
users of the system to describe their concept of the system: how it would be
organized, and how it would operate. This can be contrasted with the results
of analysis of current procedures, if they exist, to determine where changes
in procedures may benefit the organization and system development.

The deliverables from this phase are a statement of management goals and
objectives, and a definition of the scope of the system.

5.1.2. Establish Prototyping Team

The work of defining the major input and output, and defining a system

conceptual model is performed by a prototyping team. This team consists of a

senior analyst/programmer who is familiar with the business in which the

organization is engaged, and one or two end users from the division that will

be directly responsible for the services to be provided by the implemented

system. These individuals must be trained in the techniques of prototyping
and the use of a specific fourth generation language.

25

One of the most important factors in the success of software development based
on prototyping is the understanding and enthusiasm shown by the personnel
involved in the development effort. Connell and Brice [Conn85] described two
prototyping projects, one a failure and the other a success, and compared
various aspects of each project. They concluded that the failure was due in
large part to misconceptions on the part of management and developers about
prototyping and how to control it.

5.2. Develop System Conceptual Model

Using a graphical method, such as data flow diagrams (DFD) [DeMa79], or
Warnier-Orr (W-0) diagrams [Orr77] , construct a model of the major system
functions on paper. Augment this model with data dictionary descriptions of
each object contained in the diagrams. Define which objects are most critical
to the success of the system by matching each object with a corresponding or
closely related system objective the more critical the objective, the more
critical is the object.

The deliverables from this task are user-defined diagrams (i.e., bubble chart,
W-0 diagram, etc.) of the system, a text description of each object in the
diagram, definitions of the major inputs and outputs of the system, and a
listing of entries in the data dictionary.

5.2.1. Identify Major Input and Output

Major input and output are generally categorized as input files from other
systems, manual updates, queries, output files bound for other systems, and
printed reports. These are the starting points for further investigation into
the user's real requirements.

The major paths of input and output through a system form a network, the nodes
of which define points where transformations of data take place. These paths
and the possible types of input and output form a major part of the require-
ments for a first-cut prototype of the system.

5.2.2. Estimate Implementation and Life Cycle Costs and
Schedules

Estimate the cost of implementing the full-scale system using any method that
is appropriate. Examples of cost estimating techniques are Albrecht's
function points method [Albr79] and Boehm's COCOMO method [BoehSl] . The added
cost of developing a prototype appears to be no more than 6 to 10 percent of
the full-scale implementation cost according to current experience [Boe84a,

Goma83]. For example, if the full system implementation estimate were
$100,000 and 6 labor-months of effort, then the prototype cost estimate would
be between $6,000 and $10,000 and would take 0.36 to 0.6 labor-months, or 1 to

2 weeks elapsed time with two persons working full time. The total develop-
ment cost of the system and the prototype would then be $106,000 to $110,000.

26

If system development costs are approximately one- third to one-half of the
total system life costs (i.e., maintenance costs are typically one-half to

two-thirds of the total system life costs) , then the total system costs would
be in the $200,000 to $300,000 range. The prototype costs would add two and a

half to five percent of the total system costs over the life of the system.
However, because the prototype may allow a better grasp of the problems of
design and functionality of the system, the expected maintenance costs may be
less [Boe84a, Goma83, John83]. The end user exercises the prototype and can
see what will be delivered. Therefore, the spate of changes that typically
occur within the first six months of system use should not materialize. This
is a major benefit of prototyping! [Aqui85, Boar84, Boe84a, ConnBS] As a

result, the total system life costs should be less using prototyping.

5.2.3. Estimate Benefits of Proposed System

Estimating system benefits is the counterpoint of system costs. Not only must
development costs be recovered, but costs for maintenance support must be

added to calculate a breakeven point. There are numerous methods for comput-

ing benefits from a system, but they all reduce to "How much is the function-

ality of the system worth?" Another way to put this is, "How much would the

organization be willing to pay for the information provided by the system if

it were available on the open market?"

The cost of development and support versus the value of the benefits has been
neglected or disregarded altogether on numerous development projects to the

combined detriment of both developers and users alike. (Most of these

situations are politically motivated. Unfortunately, software development

methodologies are ill-equipped to support or suppress politics.) If the costs

exceed the benefits, then the system is not feasible. (Guidance on

cost/benefit analysis is contained in [Chip84, Drap81, Fior83, and FIPS64].)

5.2.4. Analyze the Risk in Development

Barry Boehm expressed the main concerns in feasibility and risk analysis in an

article published in the IEEE Software magazine [Boe84b] . The following are

excerpts from this article:

"Will the specified system provide a satisfactory way for users to perform

their operational functions? ...

"Can a system be developed that satisfies the specified requirements (at an

acceptable cost in resources)?"

"Will the specified system cost- effectively accommodate expected growth in

operational requirements over its life cycle? ...

"Will it be cost-effective to maintain?"

"Will it be cost-effective from a portability standpoint?"

27

"Will it have sufficient accuracy , reliability , and availability to cost-
effectively satisfy operational needs over its life cycle?" [Boe84b]

Have the following been considered?

"Achievable levels of overhead ...
"

"Achievable levels of man-machine performance ... "

" ... Reliability of . . . hardware , operating system ... "

"Availability of key personnel ...
"

"Expected volume and quality of data ... "

"Expected sophistication , flexibility , and degree of cooperation of system
users ... " [Boe84b]

5.3. Develop Logical Data Model

The Guide on Logical Database Design [Fong85], published by the National
Bureau of Standards, defines a sequence of activities designed to produce a

logical data model. These activities are described as follows:

o Model the local information flow for individual subsystems or local views
of the data (i.e., for individual groups of workers or specific functional
areas)

.

o Model the global information flow for collections of subsystems combined
into a global system view (i.e., for the organization as a whole).

o Design the conceptual schema in terms of entities, relationships among
these entities, and attributes that describe each entity. (This is known
as the entity-relationship-attribute model and is independent of the
structure of the system's data.)

o Model each physical external schema as a view of the conceptual schema from
each individual user's perspective (i.e., in terms that individual workers
would perceive)

.

(See [Fong85] for a complete description of the terms and methods used in

logical data modeling. See Appendix A of this report for an abbreviated
example of the techniques.)

After the logical data model has been produced, the next step is then to

design the physical database to provide optimum access and require the least
amount of storage for each user and the system as a whole.

Physical database design must always be performed before the software can
access the data. The rigor of the physical database design determines

28

efficiency. If a prototype is to evolve into a production system, it is

important to access the database at the logical, not the physical, level.
This allows the physical database structure to be fine-tuned as the need
arises without affecting existing software. In prototyping, the developers
are not worried about a precise physical model of the data, nor optimum access
strategies. In many cases, the prototype is developed at the subsystem level
to purposely decrease the amount of complexity involved in large system
evolution.

The logical data model produced by the above steps can be integrated in large
part with the prototype and used to help guide in prototype development. The
modeler must approach logical data modeling from three perspectives: (1) the
organization's view of the data, (2) the functions to be performed, and (3)

the events that drive the system to be developed. Otherwise, valuable
information about the underlying database structure could be overlooked or

misinterpreted. Any data model that does not include all three perspectives
is incomplete.

In developing a prototype, the prototyper can view the system in two levels of
abstraction: (1) the strategic or organization-wide view, and (2) the tactical
or operational view. The data modeler's perspectives and the prototyper 's

views must be brought together to determine what should and should not be
prototyped. When the logical data model has been prepared, the developers
have a base for making decisions on what to prototype.

Bernard Boar [Boar84] suggests the following guidelines in helping to deter-

mine where a prototype is appropriate:

o Systems based largely on batch processing may not be good candidates for

prototyping. (These include many of the day-to-day operational systems

that are functional rather than dependent on specific events or organiza-
tion-wide requirements.)

o Systems oriented toward terminal operations, online database processing,
and periodic or needs -based reporting would make good candidates. (This is

especially true for systems that are more strategically oriented, such as

management information systems; or more event driven, such as airline

reservation systems.)

o Systems that take on modular structures and are functionally well-parti-

tioned may or may not be good candidates for prototyping. An overriding

concern in this case is, how much interaction will users have with the

system? Usually, higher levels of interactive use point to prototyping,

but this is not always true.

o The types of users involved in development of a prototype have an impact on

the applicability of prototyping. If the user is uncertain about details

of the system's requirements (i.e., "I don't know what I want, but I'll

know it when I see it."), or the user is a decision-maker, prototyping may

be appropriate. In this case, the system fits more in the categories of

strategic and organizational systems. The disadvantage here is that the

perfect user may not have time to participate in reviewing prototypes

29

because he or she is too busy running the organization. If the prototype
cannot be reviewed by users in a timely fashion, the project will stop dead
in its tracks!

o Systems that are already in severe trouble cannot be saved by prototyping.
The same goes for high pressure, "need it now" projects. Prototyping is

not quick- and- dirty . It takes time and planning.

o No matter how well-intentioned are the participants, if training in the
techniques of prototyping is not available, or the tools are not available,
the developers should stick to prespecification.

5.4. Develop a Prototype and Demonstrate It

Using a 4GL, the prototyping team constructs a prototype system consisting of
a mixture of data entry screens, printed reports, external file routines,
specialized procedures, and procedure selection menus. These will all be
based on the logical database structure developed in the data modeling
process. The sequence of events for performing the task of developing the
prototype in a 4GL is iterative. suggested procedure is described in the
following

:

o Define the basic database structures derived from logical data modeling.
(The data structures will be populated periodically with test data as

required for specific tests to be performed.)

o Define printed report formats. (These may initially consist of query
commands saved in an executable procedure file on disk. The benefit of a

query language in this respect is that most of the report formatting can be
done automatically by the 4GL. The prototyping team needs only to define
what data elements to print and what selection and ordering criteria to use
for individual reports

.

)

o Define interactive data entry screens. Whether or not each screen is well
laid out is immaterial at this point. Getting the right information in the

form of prompts, labels, help messages, and validation of input is more
important. (Use defaults as often as possible initially.)

o Define external file routines to process data that are to be submitted In
batches to the prototype or created by the prototype for processing by
other systems. This can be done in parallel with other tasks.

o Define algorithms and procedures to be implemented by the prototype and the

finished system. These may include support routines solely for the use of
the prototype.

o Define procedure selection menus. Concentrate on the functions performed
as the user would see them rather than as the developers see them. This
may entail combining seemingly disparate procedures into single functions
that may be executed with one command from the user.

30

o Define test cases to ascertain that data entry validation is correct, that
procedures and algorithms produce expected results, and that system
execution is clearly defined throughout a complete cycle of system opera-
tion.

o Reiterate this process by adding report and screen formatting options,
corrections for errors discovered in testing, and unambiguous instructions
for the destined users. Suspend the process after the second or third
iteration, or when changes become predominantly cosmetic rather than
functional (e.g. when determining how many spaces should go between
employee number and employee name on a data entry screen becomes a major
decision)

.

At this point, the prototyping team should have a good feel for the overall
operation of the proposed system. The team must now describe the operation
and underlying structure of the prototype. This is most easily accomplished
through development of a draft users manual. A printed copy of each screen,
printed report, query, database structure, selection menu, and catalogued
procedure or algorithm must be included. Instructions for executing each
procedure should include an illustration of the actual dialogue.

5.4.1. Demonstrate Prototype to Management

The purpose of this demonstration is to give management the option of making
strategic decisions about the application based on prototype appearance and

objectives. The demonstration consists primarily of a short narrative
description of each component of the prototype, particularly important effects

of each component, and a walkthrough of typical usage of each component.

Every person in attendance at the demonstration should receive a copy of the

draft users manual.

The emphasis is placed on results of the prototype and its effects on tasks

left to be done. At this stage, the prototype is not necessarily a function-

ing system, so management must be made aware of its limitations.

5.4.2. Demonstrate Prototype to Users

There are arguments for and against letting the prospective users actually use

the prototype system. The major arguments against users exercising the

prototype are that users' expectations are raised to an unrealistic level

about delivery of the production system, and that the prototype will be placed

in production before it is ready. Several cases have been documented in the

computing literature of users actually refusing to give up the prototype

system when the production system was ready for delivery. This may not be a

problem if the prototype meets the users' expectations and the environment can

absorb the load of processing without affecting others.

The main argument for allowing the users to exercise the prototype is that

these users will discover the problems in procedures and unacceptable system

behavior very quickly. An organization may elect to place prototypes in the

31

hands of the users, but before this decision is made, the environment should
be studied carefully.

As a minimvim, the prototype should be demonstrated before a representative
group of users. This demonstration should consist of a detailed description
of the system operation, data entry, report generation, and procedure execu-
tion. The system structure should be described in detail. Above all, the
users must be made to understand that the prototype is not the final product,
that it is flexible, and that it is being demonstrated to find glaring or
subtle errors from the users' perspectives.

The result of these demonstrations will include requests for changes, correc-
tions to errors, and overall suggestions for enhancing the operation of the
system. Once the demonstrations have been held, the prototyping team will
reiterate latter steps in the prototype development process to develop the
changes, corrections, and enhancements deemed necessary through consensus of
the prototyping team, the end users, and management.

For each iteration through prototype development, demonstrations should be
held to show how the system has changed due to specific feedback from users
and management. This technique should help to eliminate the "we versus they"
syndrome found in classical development life cycles which stems from separa-
tion of the development team and the users. The demonstrations increase the
users' sense of ownership, especially when they can see direct effects from
suggestions made during the prototype development phase. Above all, the
changes must be developed quickly and demonstrated promptly to the users to

get the maximum effect from feedback.

The results of demonstrations will directly influence the number of iterations
necessary in prototyping before final specifications can be developed.
Requirements uncovered in demonstrating and using the prototype may cause
profound changes in the system scope and purpose, the conceptual model of the
system, or the logical data model. Modifications in any of these will have a

cascading affect in modifications to succeeding steps. Because these modifi-
cations occur in the requirements specification phase rather than in design,
code, test, or operational phases, they are much less expensive to implement
by one or two orders of magnitude [BoehSl].

5.5. Revise and Finalize Specifications

At this point, the prototype consists of data entry formats, report formats,
file formats, a logical database structure, algorithms and procedures,
selection menus, system operational flow, and a draft users manual. Using a

review list such as that described in figure 4, the prototyping team reviews
each component for inconsistencies, ambiguities, and omissions. Corrections
are made and the specifications are formally documented.

The deliverables from this phase consist of formal descriptions of the system
requirements, listings of the 4GL commands files for each object programmed
(i.e., screens, reports, database structures, etc.), sample reports, sample
data entry screens, the logical database structure, data dictionary listings.

32

and a risk analysis. (The risk analysis should include the problems and
changes that could not be incorporated into the prototype, and the probable
impact that they would have on development of the full system and subsequent
operation.

)

1. Statement of Goals and Objectives
2. Definition of System Scope
3. System Diagrams
4. Object Definitions
5. Data Dictionary Report
6. Risk Analysis
7. Logical Data Model
8. Data Entry Screens
9. Report Layouts
10. Selection Menus/Operational Flow
11. Physical Database Structure
12. Draft Users Manual

(Each of the above elements is indexed and cross-referenced by
subject and component to insure that all elements are present,
that all components have been defined, and that there are no
ambiguities or conflicts.)

Figure 4. Specification Review Highlights

5.6. Develop the Production System

At this point, development can proceed in one of three directions:

o Suspend or cancel the project because the prototype has highlighted
insurmountable problems, or the environment is not ready to mesh with the

proposed system.

o Throw away the prototype because it is no longer needed or because it is

too inefficient for production or maintenance, and continue development in

a third or second generation language using a classical development method-

ology.

o Continue Iterations through prototype development, each time adding more

system functions and optimizing performance until the prototype evolves

into the production system (i.e., evolutionary prototyping).

j

33

The decision will generally be based on factors such as the following:

o Actual cost of the prototype

o Problems uncovered during prototype development

o Estimated cost of developing the system in a conventional language

o Availability of maintenance resources

o Availability of software technology in the organization

o Political and organizational pressures

o Amount of satisfaction with the prototype

o Difficulty in changing the prototype into a production system

o Hardware requirements

If management decides to cancel the project based on the risk assessment, then
this report cannot add to nor detract from the decision. It can only provide
system auditors with the road map and directions used by the prototyping team
to get to this point.

If the system is to be developed in a 3GL such as COBOL, C, or Ada, then the
user of this report is referred to other references that are specifically
designed to assist in system development using other life cycle models and
methodologies. Prototyping at this point has accomplished the tasks for which
it was designed.

The remainder of this paper describes continuing activities in the third
direction: the evolution of the prototype into the production system.

5.7. Release Beta Test System

The evolution of the system never stops until the system is no longer neces-
sary or is replaced by another system. As the team adds functions to the
evolving prototype, the prototype eventually is transformed into the full
production system. When all functions have been tested at the unit level and
have been integrated, the system design is documented in detail, the user
manual is revised, a training plan is drawn up, and the system is released in

beta test mode. This means that the system is probably ready for production
but must undergo a shakedown demonstration to make sure that it is stable
under production conditions

.

Beta testing puts the system under full production conditions but does not
yet allow the existing system to be replaced. In general, testing is inte-
grated and performed throughout prototyping at two levels: the user level and
the system level. Both of these types are embodied in the beta test, but much
testing is performed in the development of the data model and in iterations

34

where the end users may exercise various stages of the prototype system. Unit
and integration testing are recommended procedures after initial prototyping
has been completed. The prototype is a straightforward vehicle for testing
not only procedures and data structures, but also the specification of
requirements and how well they have been communicated by the users and
understood by the developers.

All users are trained in operation of the system. If the system has the
potential of affecting safety, or there are legal ramifications for the
organization, then the system may be run in a strict test mode. This may
involve parallel operation next to the current production system, or testing
in a secure environment. Beta test usually means that there are no warranties
or guarantees made about the system until a period of perhaps thirty or sixty
days elapses without system failure under full projected production condi-
tions .

Errors and changes requested during this period may be implemented based on
severity of the errors or need for changes. Prototypes implemented in a 4GL
tend to be easy to correct where errors are concerned. Changes and enhance-
ments may be more difficult, but adherence to modular construction of the

system should limit repercussions for any specific changes.

5.8. Release the Production System

Once the beta test period is complete and the users have accepted the system,

the users manual is updated and produced in its final version. Maintenance of

the system consists of periodically updating the software and documentation to

add new functions, eliminate unneeded functions, tune the system, etc. Each

periodic update, or release, of the system will have gone through at least a

major portion of the prototyping cycle.

i

35

6. SUMMARY AND CONCLUSION

6.1. Summary

Application prototyping using a Fourth Generation Language (4GL) as the

specification medium has generated enthusiastic support in the past five
years. Some of the reasons for this support are--

o its effectiveness in communicating system requirements between developers
and end users

;

o flexibility for reflecting changes in a "what if" mode of analysis; and

o ease of validating "true" user requirements.

The advantages of prototyping cited by various users and authors include-

-

o its manageability, because it is highly visible and accountable;

o its flexibility in making rapid changes to users' requests for new capabil-
ities;

o the ease of validating information requirements (i.e., "What you see is

what you get."); and

0 its emphasis on active physical models instead of paper specifications and
documentation.

Combining a Fourth Generation Language with prototyping helps to overcome some
of the perceived disadvantages of prototyping and emphasizes the benefits by
providing the tools and control necessary to develop prototypes rapidly and
inexpensively. The development model proposed in this report is based on
prototyping in a Fourth Generation Language and consists of the following
maj or tasks

:

o Define purpose and scope of the system

o Develop system conceptual model

o Develop logical data model

o Develop a prototype and demonstrate it

o Revise and finalize specifications

o Develop the production system

o Release beta test system

36

o Release the production system

o Iterate the cycle (maintain the system)

Part of the difficulty a few software professionals have in accepting proto-
typing is in not knowing what to prototype. There are many kinds of proto-
types. The three major classes are explorative, experimental, and evolution-
ary prototypes, each with its own particular area of application.

Another view of prototyping accentuates the logical and physical aspects of a

system. These prototypes are known as mockups , functional prototypes, and
simulations. Mockups address the user interface as the primary target.
Functional prototypes concentrate on specific capabilities that are required
in the delivery system. Simulations are used to estimate metrics such as

response times, database degradation, throughput rates, and other performance
characteristics required in the delivery system. In practice, a mixture of

mockups and functional prototypes should produce a realistic set of require-
ments. It would not be unusual to find that all three types of prototyping
are used in many cases

.

Organizations considering prototyping in a Fourth Generation Language should
review the following factors in making a determination:

o the user community -- What types of users will have access to the systems?

o the hardware environment - - What hardware is needed to implement a 4GL and
prototjrping?

o the technical support personnel -- What training and experience are

necessary?

o the application domain -- How complex are the applications? How much is

known about the problem area?

o the 4GL -- How flexible is it? How many resources does it consume? How
maintainable are systems written in the 4GL?

37

6.2. Conclusion

There are no panaceas to completely eradicate the software productivity
problem. The hope of finding a solution in the next few decades cannot
ameliorate the need for help now. In lieu of a solution, the most that can be
accomplished is to face each individual problem area, define it as precisely
as possible, analyze it, and develop methods to overcome some of the shortcom-
ings in the current methods of developing applications.

In effect, application prototyping using a Fourth Generation Language is only
one approach to one facet of the necessary evolution of software. Many
organizations have tried application prototyping. Some have failed, and many
have succeeded. There is mounting evidence, however, that prototyping is more
than just a fad. The expanding use of Fourth Generation Languages is allowing
software developers to realize significant increases in productivity. For the

first time, the information industry has tools and techniques available that
allow developers to correct errors quickly. Even significant errors are
handled rapidly using a 4GL. Using a 4GL and the life cycle proposed in this
report may provide a means for organizations to leverage and control the
evolution of software in a highly productive environment.

Prototyping using a 4GL has given software developers many new insights into
the development process and has allowed users for the first time to actually
see the results of analysis based on working models. It forces the developers
and the users to communicate with each other. This is what has given them the
freedom to express their ideas in systems that actually work and do what they
are expected to do.

38

REFERENCES

[Adam85]

[Albr79]

[Appl83]

[Aqul85]

Adamski, Lee, "Prototyping Is: Fast, Effective. Practical; Is
Not: New, Magical, a Substitute", Computerworld Vol. XIX No. 18,
May 6, 1985, pp. ID/23-32.

Albrecht, A. J., "Measuring Application Development Product-
ivity"

,
Proceedings of the Guide/Share Application Development

Symposium
.
Monterey, California, October 14-17, 1979, pp. 83-92.

Appleton, Daniel S., "Data-Driven Prototyping",
November 1983, pp. 259-268.

Datamation

,

Aquino, Gary, and Donna Rund, "Levis Presentation", Proceedings

.

Data Administration Users Conference . San Francisco, November 24-

27, 1985.

[Blat82] Blattner, Meera, and Richard Frobose, "Prototyping and the Life
Cycle of Software Systems", ACM SIGSOFT Software Engineering
Symposium on Rapid Prototyping

.
April 19-21, 1982, Columbia,

Maryland, Paper #06.

[Bl\im83] Blum, Bruce I., "Still More About Rapid Prototyping", ACM SIGSOFT
Software Engineering Notes Vol. 8, No. 3, July 1983, pp. 9-11.

[Boar84] Boar, Bernard H., Application Prototyping: A Requirements
Definition Strategy for the BO's, John Wiley and Sons, Inc.,

1984.

[Boeh81] Boehm, Barry W. , Software Engineering Economics, Prentice -Hall

,

Inc. , 1981.

[Boe84a] Boehm, Barry W. , Terence E. Gray, and Thomas Seewaldt, "Proto-
typing vs. Specifying: A Multi -Proj ect Experiment", Proceedings
of the 7th International Conference on Software Engineering .

March 26-29, 1984, Orlando, Florida, IEEE Computer Society Press,

pp. 473-484.

[Boe84b] Boehm, Barry W.
,

"Verifying and Validating Software Requirements
and Design Specifications", IEEE Software . Volume 1, Number 1,

IEEE Computer Society Press, January 1984, pp. 78-79.

[Bric81] Brickner, Martin F. , IBM Technical Report TR-03.155, Application
Development Without Programming - A Relational Data Base Ap-

proach, International Business Machines Corporation, July, 1981.

[Bric83] Brice, L. , J. Connell, and D. Shafer, "Using INGRES as a Rapid

Prototyping Device During Development of Management Information

Applications", Proceedings of the IEEE Symposium of Automated

Tools for Software Development . November 1-3, 1983, San Fran-

cisco, IEEE Computer Society Press, 1983, pp. 34-43.

39

Brooks, Fred, The Mythical Man Month, Addison Wesley, 1975.

Chipman, Mary Lou, Marco Fiorello, Peg Kay, Patricia Powell, and
Monty Snead, Toward an Improved FIPS Cost-Benefit Methodology,
Phase II: Descriptive Models - -General Purpose Application
Software Development and Maintenance, National Bureau of Stan-
dards Special Publication 500-116, U. S. Department of Commerce,
June 1984.

Connell, John, and Linda Brice, "Rapid Prototyping", Datamation .

August 15, 1984, pp. 93-100.

Connell, John L. , and Linda Brice, "The Impact of Implementing a

Rapid Prototype on System Maintenance"
,

Proceedings of the
National Computer Conference (NCO 1985 . AFIPS

,
Chicago, Illi-

nois, 1985.

Davis, Alan M.
,

"Rapid Prototyping Using Executable Requirements
Specifications", ACM SIGSOFT Software Engineering Symposium on
Rapid Prototyping

.
April 19-21, 1982, Columbia, Maryland, Paper

#09.

Dearnley, P. A., and P. J. Mayhew, "On the Use of Software
Development Tools in the Construction of Data Processing System
Prototypes"

,
Approaches to Prototyping. Proceedings of a Working

Conference on Prototyping . October 1983, Namur
,

Belgium, edited
by R. Budde , K. Kuhlenkamp , L. Mathiassen, H. Zuellighoven,
Springer-Verlag, Berlin, 1984, p. 70.

DeMarco, Tom, Structured Analysis and System Specification,
Prentice-Hall, Inc., 1979.

Draper, Jesse M. , Costs and Benefits of Database Management:
Federal Experience, National Bureau of Standards Special Publi-
cation 500-84, U. S. Department of Commerce, November 1981.

"Special Report - Fourth Generation Languages and Prototyping",
EDP Analyzer

.
Canning Publications, Inc., 1984.

Fiorello, Marco, Peter L. Eirich, and Peg Kay, Toward an Improved
FIPS Cost-Benefit Methodology, Phase I: Descriptive Models--Data
Processing Operations, National Bureau of Standards Special
Publication 500-100, January 1983.

Federal Information Processing Standards Publication 64, Guide-
lines for Documentation of Computer Programs and Automated Data
Systems for the Initiation Phase, National Bureau of Standards,

U. S. Department of Commerce, August 1, 1979.

40

:Fish86]

;Floy83;

[Fong85]

[Goma83]

[Hare82]

[Heit82]

[John83]

[Jone77]

Fisher, Gary E., A Functional Model for Fourth Generation
Languages, National Bureau of Standards Special Publication 500-

138, U. S. Department of Commerce, June 1986.

Floyd, Christiane, "A Systematic Look at Prototyping", Approaches
to Prototyping. Proceedings of a Working Conference on Prototyp-
ing . October 1983, Namur

,
Belgium, edited by R. Budde , K.

Kuhlenkamp, L. Mathiassen, H. Zuellighoven
,

Springer -Verlag

,

Berlin, 1984, p. 1.

Fong, Elizabeth, Margaret W. Henderson, David K. Jefferson, and
Joan M. Sullivan, Guide on Logical Database Design, National
Bureau of Standards Special Publication 500-122, U. S. Depart-
ment of Commerce, February 1985.

Gomaa, Hassan, "The Impact of Rapid Prototyping on Specifying
User Requirements", ACM SIGSOFT Software Engineering Notes Vol.

8, No. 2, April 1983, pp. 17-28.

Harel, Elie, and Ephriam McLean, The Effects of Using A Nonpro-
cedural Computer Language on Programmer Productivity, University
of California, Los Angeles, Graduate School of Management, 1982.

Heitmeyer, C. , C. Landwehr, and M. Cornwell, "The Use of Quick
Prototypes in the Secure Military Message Systems Project", ACM
SIGSOFT Software Engineering Symposium on Rapid Prototyping .

April 19-21, 1982, Columbia, Maryland, Paper #16.

Johnson, James R. , "A Prototypical Success Story", Datamation .

November 1983, pp. 251-256.

Jones, T. Capers, "Optimizing Program Quality and Programmer
Productivity", Proceedings of GUIDE 45 . Atlanta, Georgia,
November 1977.

[Jone79] Jones, T. Capers, "The Limits of Programming Productivity",
Tutorial- -Programming Productivity: Issues for The Eighties,
Second Edition, IEEE Computer Society Press, Washington, DC,

1986, p. 381.

[MacE82] MacEwen, Glenn H.
,

"Specification Prototyping", ACM SIGSOFT
Software Engineering Symposium on Rapid Prototyping

.
April 19-21,

1982, Columbia, Maryland, Paper #24.

[Mart82] Martin, James, Application Development Without Programmers,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

[McCr82] McCracken, D. D. , and M. A, Jackson, "Life-Cycle Concept

Considered Harmful", ACM SIGSOFT Software Engineering Notes .

April, 1982, pp. 29-32.

41

[Orr77] Orr
,

Kenneth, Structured Systems Development, Yourdon Press,
Inc., 1977.

[Ridd83] Riddle, William E., "Advancing the State of the Art in Software
System Prototyping"

,
Approaches to Prototyping. Proceedings of a

Working Conference on Prototyping . October 1983, Namur, Belgium,
edited by R. Budde , K. Kuhlenkamp , L. Mathiassen, H. Zuellig-
hoven, Springer-Verlag

,
Berlin, 1984, p. 19.

[Smit85] Smith, Wayne, "Alternative Approaches for Successful Prototyp-
ing", Computerworld Vol. XIX No. 37, September 16, 1985, pp. 17

and 23.

[Spen86] Spencer, Henry, ARPANET message subject "questions from using
lint", University of Toronto, May 15, 1986.

[Tayl82] Taylor, Tamara, and Thomas A. Standish, "Initial Thoughts on
Rapid Prototyping Techniques", ACM SIGSOFT Software Engineering
Symposium on Rapid Prototyping

.
April 19-21, 1982, Columbia,

Maryland, Paper #40.

[Wass83] Wasserman, A. I., "The Unified Support Environment: Tool Support
for the User Software Engineering Methodology"

,
Proceedings

:

SOFTFAIR. A Conference on Software Development Tools. Techniques,
and Alternatives . Arlington, Virginia, July 25-28, 1983, IEEE
Computer Society Press, Silver Spring, Maryland, 1983, p. 145.

[Wein85] Weinberg, Gerald M. , and Daniela Weinberg, "What Do Users Really
Want? Part I: The 30-Minute Expert", Journal of Information
Systems Management Vol. 2, No. 2, Sprint 1985, pp. 68-71.

[Youn84] Young, T. R.
,

"Superior Prototypes", Datamation . May 15, 1984,

pp. 152-158.

[Zave82] Zave
,

Pamela, "Position Statement", ACM SIGSOFT Software Engi-
neering Symposium on Rapid Prototyping

.
April 19-21, 1982,

Columbia, Maryland, Paper #45.

42

GLOSSARY

Alpha testing -- The testing of software designed as part of the development
process and undertaken as system or operational testing under a control-
led/simulated user environment before delivery to the customer.

Beta testing -- The testing of software undertaken after delivery to the
customer but before acceptance testing. This phase of testing is considered
an operational test under production conditions by agreement of the customer.

Fourth Generation Language --An automated application development system that
provides integrated user functions, data management functions, and system
functions at a high level for use by end users and professional data proces-
sing personnel [Fish86].

Methodology -- The methods, rules, and procedures that are organized to solve
problems in a specific problem area or domain.

Modularity -- The concept of organizing system components into physical and
logical groups based on various characteristics, such as function, subsystem,
input-output, etc.; the extent to which a system is composed of modules.

Prespecification -- The act of specifying the requirements, design, testing,

and evaluation of a software system before all requirements and other factors
are known, on the assumption that all "important" factors are identified
beforehand.

Evolutionary Prototyping -- A software life cycle based on the development of

prototype systems to validate requirements and to expressly evolve into a

delivery system.

Prototyping Strategy -- The course of action followed in software development
after the prototype has been created. These courses are (1) throw out the

prototype and develop the system in a lower level language, (2) enhance the

prototype till it evolves into the production system, or (3) cancel the

project as infeasible or no longer needed.

Prototyping Team -- A small team of individuals made up of a programmer/an-

alyst who is experienced in software prototyping, and one or two users from

the organization that is requesting the development of a system. The purpose

of the team is to develop a prototype, test it, and provide recommendations on

changes relating to system requirements . All members of the team need to be

trained in the use of a Fourth Generation Language.

43

Software Development Productivity -- The relative capacity of combinations of
organization, technique, methodology, and automated tools to produce and
maintain software

.

Software Life Cycle -- The definition and organization of control phases
through which a software system goes in its lifespan. Typically, these are
requirements analysis, functional specification, design, code, test, instal-
lation, and operation and maintenance.

Software Prototype -- A model or less- than-complete version of a proposed
software application that is developed to verify and validate user require-
ments before major specification work is done.

Throw-away Code -- A method of developing a system based on software proto-
types. The prototypes are coded and thrown away when no longer needed, as

opposed to evolutionary systems in which the prototype evolves into the final
system.

44

APPENDIX A -- PROTOTYPING EXAMPLE

The following example situation was taken from [Fong85] and was modified to

include sections on prototyping.

INTRODUCTION

"A Federal agency is designing a financial management system. None of the
application systems offered by software vendors seem to gracefully accommodate
the agency's code structure and its cost accounting procedures for its

reimbursable divisions. As a matter of fact, although the individuals on the

team suirveying these packages are each expert in a particular subject area,
they lack a good overview of what their agency's requirements are, or should
be. "

"A primary objective of the design effort is to gain an organizational
perspective of the agency's financial data. The logical database design can
then be used to develop a system. Prototyping is being considered for possible
candidate parts of the system."

"An important consideration in the logical database design project is that the

agency's appropriation from Congress constitutes only 63% of the operating
budget. Additional income is provided by contracts with other government
agencies and the sale of goods and services to the public sector. The finan-
cial management system must be able to charge back costs to customers. Another
important consideration is that there is an existing payroll system which must
interface with the financial management system."

"An example of a reimbursable division is Instrument Fabrication Division,

IFD, whose income from services to other government agencies represents 8% of

the agency's budget. IFD relies on other divisions within the agency for

functions such as procurement and accounting. IFD finances all management and

support services by applying a fixed-rate surcharge to the labor base in some

of its own units .

"

"The sample system chosen, 'Agency Financial Management System' , is limited in

scope, showing some aspects of in-house financial management for a service

-

oriented agency. Other federal agencies, whose mission is to administer or

disburse government funds, would consider this example system a minor subsys-

tem. "

Figure A-1 illustrates the basic organizational structure of the agency.

45

MANAGEMENT

ESTIMATES DESIGN OPERATIONS

MANUFACTURING CALIBRATIONS

Figure A-1. Organizational Structure of the Agency

46

A.l. Define Purpose and Scope of System

The tasks associated with defining the purpose and scope of the system include
the following:

o Stating the goals and objectives of the system

o Defining the system scope by establishing boundaries with other systems and
external entities

o Establishing a team of professional software developers and systems users
to define and document a prototype system

A. 1.1. Statement of Goals and Objectives

One of the overriding concerns of the effort to develop the financial manage-
ment system is to gain an organizational perspective of the agency's financial
data. Other objectives include incorporating functions such as charging costs
back to customers, accounting for various types of operations such as reim-
bursable funds and procurement, and interfacing with an existing payroll
system.

A, 1.2. Definition of System Scope

The boundaries of the financial management system are defined as a function of

the logical components of the system, the functions to be performed, and the

outside world. Specifically, interfaces between the system and the outside
world occur between the system and the existing payroll system, the mechanism
to allow customers to reimburse the agency for costs, and for vendors to

invoice the agency and be paid.

A. 1.3. Establish Prototyping Team

The prototyping team is comprised of a professional data processing person who

is familiar with the agency's business, expert in the use of a 4GL, and

trained in the methodology of prototyping; and one or two prospective system

users from the eventual user divisions. In this case, the users would

probably come from the accounting and procurement areas of the organization,

although the team may be augmented by persons in other highly specialized

application areas to provide needed technical expertise from time to time.

A. 2. Define System Conceptual Model

The software life cycle is based on development of a conceptual model of the

system in question. This model is used to provide a high level conceptual

view of the system. Because of its abstract nature, it does not contain the

internal detail necessary for implementation. This frees the developers from

47

having to wade through levels of information that may be unnecessary for the
required task, such as defining detailed functionality. At a later stage,
implementation details may be filled in using the same technique.

Data flow diagramming, one of the techniques proposed for developing the
model, is described in [DeMa791. Data flow diagrams are composed of special
symbols that represent the functional flow of information through a system and
the conceptual processes that transform the information on its journey. A
subset of these symbols is defined in figure A-2. (A subset is used here
because the full set contains additional symbols that have meaning primarily
in system development rather than in the abstract system concept.)

External entity: A source or recipient of data
outside the control of the system. (May be a

person, other system, etc.)

External
Entity Name

Transformation: A manual or automated process
that transforms information going into the
process into different information emanating from
the process. (The terms 'transformation' and
'process' are used interchangeably.)

Data flow: Links that connect system entities
(i.e., external entities and transforms) to show
the movement of information throughout a system. Data Flow

Name

Figure A-2. Data Flow Diagram Symbols

A conceptual view of the system was developed by the prototyping team using
these symbols. Figure A-3 illustrates this view.

The diagram shows types of processes rather than names of specific processes
(i.e., ACCOUNTING is a type of process, whereas PROCESS -REIMBURSABLE-ACCOUNTS
and PROCESS -APPROPRIATED-TECHNICAL-OPERATIONS -ACCOUNTS might be better suited
to use in the transformation symbols.) This was done to remove a significant
amount of detail in the diagram that would have otherwise obscured the very

high level concept of the system. Major information flows are clearly shown

as they progress through various interfaces between objects in the system.

48

PUBLIC SECTOR

TREASURY
DEPARTMENT

BUDGET
OFRCE

0 Financial

reports

o Schedule of

payments

0 Ad hoc reports

o Summary
reports

0 Authorizations

0 Ad hoc requests

0 Payments

OTHER
AGENCIES

0 Payroll

PAYROLL
reports/tape

OPERATIONS

i

0 Bills

o Orders

0 Contracts

0 Labor hours

0 Billing info

0 Payment

authorization

ACCOUNTING

0 Invoices

0 Obligations

VENDORS

0 Purchase

orders

0 Accounting

reports

0 Status

reports

REIMBURSABLE
OPERATIONS

0 Requisitions

0 Accounting

reports
0 Labor hours

0 Payment

authorization

PROCUREMENT
0 Requisitions
M

APPROPRIATED
TECHNICAL
OPERATIONS

Figure A- 3. Conceptual View of System

49

A. 2.1. Identify Major Input and Output

Identifying major input and output of the system is affected by two important
factors: 1) the contents and medium of each input and each output, and 2)

whether or not the information exists or can be computed from existing
information

.

One of the most straightforward means of determining these two factors is to

analyze the schematic diagrams of the system in its conceptual or functional
form. Figure A- 3 identifies major input and output as those data flows
between external entities and transforms within the system.

Essentially, the task consists of tracing flows of information from external
entities down through the system. Each intervening transform and major
information flow is assigned a priority based on its distance from the
external entity where the path was started. At the conceptual level, this
task is generally not complex. (There is usually a highly visible rela-
tionship between each object and the requirement which caused its inclusion.)
As the conceptual model is decomposed into more and more detailed entities,
these relationships become more difficult to judge and tend to drown in the
mass of information defined. At the most detailed levels, it helps to look
back at this original set of priorities to set the direction for later phases
of development.

A. 2. 2. Determine Feasibility and Estimate Cost and Schedule

Before the team completes the conceptual system model, it prepares an evalua-
tion of the project. The evaluation is based on the following:

o An estimate of the implementation and life cycle costs and probable
schedule of development

o An estimate of the benefits of the proposed system solution

o An analysis of the risk in development

A. 3. Develop Logical Data Model

Figures A-4 through A- 7 represent pieces of the full logical data model
developed for this example. Figure A-4 illustrates the high level information
flow for the Instrument Fabrication Division. This model shows the types of

information passed between organizational components of the division and other
components of the agency and the outside world.

Figure A- 5, a model of the local information flow between the Estimates Unit
and the rest of the world begins to show levels of detail in formation and
relationships that were suppressed in the agency and division models. This

suppression, or hiding of information, is necessary at higher levels in order
to allow the modeler to determine important data relationships at a strategic
level and lessen the view-obscuring internal details at the operational level.

50

This is a major objective of logical data modeling: to see the forest instead
of the trees.

Once each component of the division has been modeled, these models are
combined into a higher level local information flow model for the division,
which is illustrated in figure A-6. The process of abstraction begins to take
effect as information flows are synthesized from detailed data structures and
reduced to remove redundant information, or ambiguities caused by different
names applied to the same entities or attributes, or different meanings
ascribed to a name in separate parts of the organization.

In addition, not only are organizational units depicted in the model, but
functions that cut across organizational boundaries begin to emerge.

Finally, in the global information flow model illustrated in figure A-7,
functional systems and subsystems can be targeted for automation and defined
in terms of interfaces, which are in turn defined by the information flows.

The "Boundary of Automation" shown in figure A-7 includes objects such as

Accounting and Reimbursable Operations, among others. These objects represent
the essential components of the organization, the functions to be performed,
and events that will drive the system. They may correspond to systems,
subsystems, or specific procedures.

51

CUSTOMER

0 Plans

0 Orders

o Contracts

0 Labor hours distribution

0 Billing information

0 Purchase order payment

authorization

0 Estimates

0 Design Specifications

0 Status Reports

ACCOUNTING

0 Time cards

INSTRUMENT
FABRICATION

DIVISION

o Accounting reports

o Purchase order

receiving reports

SHIPPING

AND
RECEIVING

0 Quotes on

materials and

equipment

0 Requisition for

materials and

equipment

PROCUREMENT

Figure A-4. Instrument Fabrication Division

52

CUSTOMER

0 Cost/time

estimates

1 f

i

0 Plans

ESTIMATES

0 Quotes on

materials prices

^ VENDOR

0 Cost/time ^ 0 Labor rates

estimates

0 Plans

0 Purchase order

information
r

MANAGEMENT

Figure A-5. Estimates Unit Information Flow

53

MANAGEMENT

0 Approved plans

0 Priority list

DESIGN

o Design

specifications

o Materials

list

0 Project plans

0 Progress reports

0 Project/employee

hours summary
o Time cards

o Equipment requisitions

0 Materials purchase

orders

0 Task plans

0 Employee/project time

cards

0 Task status

0 Materials usage log

MANUFACTURING

CALIBRATIONS

Figure A-6. Division Local Information Flow

54

PUBLIC SECTOR

TREASURY
DEPARTMENT

BUDGET
OFFICE

0 Financial

reports

0 Schedule of

payments

0 Ad hoc reports

0 Summary
reports

PAYROLL
OPERATIONS

0 Payroll

repjarts/tape

! ^

0 Authorizations

0 Ad hoc requests

OTHER
AGENCIES

0 Labor hours

0 Billing info

0 Payment

authorization ^

ACCOUNTING

0 Obligations

VENDORS

0 Pyrchase

ortiers

o Accounting

reports

o Status

reports

REIMBURSABLE
OPERATIONS

0 Accounting

reports

0 Requisitions

0 Labor hours

o Payment

authorization

PROCUREME^^^
0 Requisitions APPROPRIATED

TECHNICAL
OPERATIONS

BOUNDARY OF AUTOMATION

Figure A-7. Global Information Flow Model

55

A corresponding entity-relationship-attribute data model may then be con-
structed from information flows and object relationships within a specific
section of the global information flow model. Entities become representations
of elements such as purchase order line items, vendor identifiers, project
time cards, etc. Attributes are composed of individual data elements or
fields associated with each entity. Relationships are specified as set
constraints where an entity may have a one-to-one, one-to-many, or many-to-
many relationship with another entity.

For example, a purchase order may include attributes such as a purchase order
number, a work order number, and a vendor identifier. The purchase order may
be related to vendors in such a way that one purchase order references only
one vendor, but one vendor may be referenced by many purchase orders. In
another relationship, one purchase order may be related to one work order, but
a work order may generate many purchase orders

.

These are the types of concepts that the prototyping team needs to know and
have available in order to determine where to concentrate in the development
of the prototype. If there are information flows that cross boundaries
between possible subsystems or between the system and the external world,
these would be likely candidates for inclusion in a prototype. The logical
data model provides the structure of the database and a starting point for
structuring the system. A prototype is used to tune this structure by
refining the procedures for operating the system model and providing realistic
data for evaluation of interfaces and function requirements.

A. 4. Develop a Prototype and Demonstrate It

Using a 4GL supported by a relational database management system, the proto-
typing team can create database structures based on the logical data model to

support the prototype. Entities becomes records or tables, attributes become
columns in those tables , and relationships become indexes and keys depending
on the types of entity relationships required.

Data entry and display screens are produced using one or more of several
strategies. The data elements found in information flows, entities, or forms

used in the organization may be used to provide the structure of the screens.
Data entry validation is provided by the relationships defined between
entities and by the types of values that specific attributes may contain.

Indexes, relational joins, and projections may be used to simulate rela-

tionships among entities. Reports can be developed using the same strategies.

Control menus reflect the structure of information flows and follow the basic
sequence of procedures that are deemed relevant by the prototyping team.

These procedures can be modified through the 4GL to take unforeseen require-

ments into account.

After all screens, reports, and intermediate procedures have been developed, a

draft users manual is created to reflect the operation of the prototype. Test

cases are developed and executed to determine if operation is correct and

56

results are as expected. Formal demonstrations can now be made to management
and selected users

.

A typical demonstration may progress through the following steps:

o The prototyping team leader describes the features of the demonstration and
reiterates that the prototype is only a preliminary and incomplete system.
(Note: In some cases, it may be politically expedient to pointedly leave
out specific pieces of the system to insure that the prototype cannot be
usurped into a production system before it is ready.) The points made in

describing the demonstration are--

that the prototype demonstrates the team's understanding of the system
requirements

,

that management should evaluate what is heard and seen in the demon-
stration to determine if the prototype projects the right concept, and
discussion of areas that need more emphasis or reevaluation of
priorities

.

o A high-level description of the system and the relationship of the proto-
type to the system are presented.

o Major flows of information through the system are illustrated using the
conceptual model diagram, the logical data model diagrams, and sample
screens and reports. These are related to sections in the users manual.

o Finally, the current project status and planned tasks are reviewed.

Whereas the prototype demonstration to management is primarily informative,
the demonstration to users is actually a training technique. The demonstra-
tion is designed to illustrate specific tasks and actions on the part of the

users and the prototype, and to lead the users through the manual.

A. 5. Revise and Finalize Specifications

As user comments and suggestions are received during a trial use period, the

prototyping team categorizes them as needing immediate attention or long-range

attention. "Immediate" means that the prototype could accommodate a change

without disrupting the system concept. "Long-range" means that the change

would have affects on the system that could change the system conceptually,

and would therefore require more requirements analysis and significant

prototyping effort.

The prototype and users manual are updated to reflect immediate changes. In

addition, the process of cross-checking all of the documentation is begun.

Eventually, the prototype is frozen and final documentation is produced to

show the current (frozen) state of the system. The risk analysis is modified

to show the projected impact of suggested modifications to the system. A

formal system specification is derived from the prototype documentation, and

the project schedule and cost estimates are modified to reflect the new

requirements

.

57

A. 6. Develop the Production System

At the end of the prototyping process, the team should meet with management to

discuss future development of the system. The team leader presents the
revised schedule, cost estimate, and risk analysis which will serve as the
basis for further evolution of the prototype.

The three primary alternatives (i.e., cancel the project, develop in a third
generation language, or allow the prototype to evolve into the delivery
system) are reiterated and arguments for and against each alternative are
presented

.

If management decides to continue with evolution of the prototype into the
final system, the prototyping team is expanded to include additional analysts,
programmers, and technical writers. The team leader makes task assignments
based on outstanding changes and planned evolution of the system. Specific
tasks may include, but are not limited to, the following:

o All screens and reports are modified to include all data formatting and
editing requirements

.

o Full-scale testing is performed using the test data developed during
prototyping, along with new data and scenarios developed during system
evolution.

o Designers document the state of the system for future maintenance.

o Technical editors and trainers prepare training plans using the prototype
demonstration scripts and the prototype users' comments and suggestions to

guide them.

A. 7. Release Beta Test System

Once the tasks of development are complete, users from each division are
trained and the system is put online. The development team monitors through-

put, system degradation, and problem areas to forecast "mean time to failure"
due to software malfunction or hardware overload.

As soon as problems or changes are identified, they are catalogued and

scheduled for immediate or future releases of the system.

When the system settles down over a one or two week period without having to

halt the system for repairs, a thirty- day benchmark period begins. During

this period, if the system has to be halted for repairs, the benchmark period

is repeated for thirty days from the last halt. At the end of the thirty day

period, the system is prepared for release into production mode.

58

A. 8. Release the Production System

The final version of the users manual is prepared for publication. Examples
of screens, reports, and procedures from system operation are merged into the
users manual to insure that the instructions do not differ from actual
operation

.

All software, documentation, and test cases are printed in final form for

publication. A magnetic tape copy of this information is made for on-site and
off- site storage and backup.

Production software source code and procedures are transferred to the control
of the system manager who places these items in the production library.

A. 9. Example Summary

The major points brought out in this hypothetical case consist of the follow-

ing:

o A prototype provides an inexpensive means of finding out if a system is

feasible

.

o Prototyping promotes explicit and continuing interaction among management,
users, and developers.

o A prototype becomes the kernel of a factual set of system requirements.

o The prototyping team should be small.

o The team should be knowledgeable in a particular 4GL and software engi-

neering methodology.

o Management factors, such as risk analysis, schedule, and cost estimates can

be monitored and communicated by the prototyping team.

o All parties (management, users, and developers) must be made aware of the

purposes of prototypes.

lirU.S. GOVERNMENT PRINTING OFFICE; 1987 - 181-076/60080

NBS-n4A (REV. 2-8C)

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NBS/SP-500/148 May 1987

4. TITLE AND SUBTITLE Computer Science and Technology:

Application Software Prototyping and Fourth Generation Languages

5. AUTHOR(S)

Gary E. Fisher

6. PERFORMING ORGANIZATION (If joint or other than N6S. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

GAITHERSBURG, fO 20899 Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

Same as item 6

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 87-619824

[^n Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information . If document includes a si gn i fi cant
bi bliography or literature survey, mention it here)

This report describes a methodology for developing software requirements and

specifications using Fourth Generation Languages (4GLs) and application prototyping.

Various prototyping methodologies are reviewed, and general prototyping strategies and

factors are discussed. This report describes the advantages and disadvantages of

application prototyping, and develops techniques for implementing a software development

model that incorporates prototypes based on the capabilities of 4GLs. The phases,

processes, and deliverables are described for each event in the development cycle. An

appendix contains a tutorial example to illustrate the methodology proposed.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

4GL; evolutionary software; fourth generation language; prototyping; software

lifecycle; software model; software productivity.

13. AVAILABILITY

[X] Unlimited

For Official Distribution. Do Not Release to NTIS

jj2 Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical In formation Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

65

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address
.

City State Zip Code

(Notification key N-S03)

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications— Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-3%).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by

the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

V oiuntarj Product Standards—Developed under procedures published by the Depanment of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 1 1717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

