
A111D2 b337S2

Computer Science
and Technology

PUBLICATIONS NBS Special Publication 500-1 46

Report on the NBS Software
Acceptance Test Workshop
April 1-2, 1986

Dolores R. Wallace and John C. Cherniavsky

NATL INST OF STANDARDS & TECH R.I.C.

A1 11 02633752
Wallace, Dolores R/Reporl on the NBS Sof
QC100 .U57 NO.500-146 1987 V19 C.I NBS-P

of Standards

M he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The
m Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and

government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering

.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering'

Manufacturing Engineering

Building Technology

Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology

Computer Systems

Engineering

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, prop^erties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

Ceramics
Fracture and Deformation ^

Polymers

Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

-Some divisions within the center are located at Boulder, CO 80303.

'Located at Boulder, CO, with some elements at Gaithersburg, MD.

I 'IDO

RESEARCH

INFORMATION

CENTER

Computer Science
and Technology

NBS Special Publication 500-146

Report on the NBS Software
Acceptance Test Worlcshop
April 1-2, 1986

Dolores R. Wallace

John C. Cherniavsky^

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, Maryland 20899

Dr. Chemiavsky is also Chair, Department of Computer Science,

Georgetown University, Washington, DC 20057

March 1987

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrlge, Secretary

National Bureau of Standards
Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal Government for com-

puter science and technology activities. The programs of the NBS Institute for Computer Sciences and

Technology are designed to provide ADP standards, guidelines, and technical advisory services to im-

prove the effectiveness of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This publication series will report

these NBS efforts to the Federal computer community as well as to interested specialists in the academic

and private sectors. Those wishing to receive notices of publications in this series should complete and

return the form at the end of this publication.

National Bureau of Standards Special Publication 500-146
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-146, 50 pages (Mar. 1987)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 87-619806

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1987

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington DC 20402

ABSTRACT
This document is a report on the Software Acceptance Test Workshop held at the

National Bureau of Standards, April 1-2, 1986. The workshop consisted of eight sessions

divided over two days. The topics of the first day's sessions were acceptance testing of

off-the-shelf software, test case selection techniques, automated support for software

acceptance testing, and software acceptance criteria. The topics of the second day's ses-

sions were the management of software acceptance testing, standardization issues in

software acceptance testing, research areas for software acceptance testing, and the state

of practice in software acceptance testing. This report describes the charges given to all

of the sessions, highlights of discussions from each of the sessions, and the conclusions of

the workshop. This report is intended for those who purchase, market, develop or

maintain software and for those who are responsible for software acceptance testing.

KEYWORDS
automated tools; custom software; management; off-shelf software; research; software

acceptance criteria; software acceptance testing; standardization; test case selection; test

planning; test practices.

iii

TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 BACKGROUND 3

3.0 SUMMARIES OF WORIvING GROUP SESSIONS 5

3.1 Off-Shelf Software Acceptance Testing 5

3.1.1 Charge 5

3.1.2 Rationale 5

3.1.3 Discussion 5

3.2 TEST CASE SELECTION 8

3.2.1 Charge 8

3.2.2 Rationale 8

3.2.3 Discussion 8

3.3 AUTOMATION OF SOFTWARE ACCEPTANCE TESTING 12

3.3.1 Charge 12

3.3.2 Rationale 12

3.3.3 Discussion 12

3.4 SOFTWARE ACCEPTANCE CRITERIA 17

3.4.1 Charge 17

3.4.2 Rationale 17

3.4.3 Discussion 17

3.5 MANAGEMENT OF SOFTW.\RE ACCEPTANCE TESTING 21

3.5.1 Charge 21

3.5.2 Rationale 21

3.5.3 Discussion 22

3.6 STANDARDIZING SOFTWARE ACCEPTANCE TESTING 25

3.6.1 Charge 25

3.6.2 Rationale 26

3.6.3 Discussion 26

3.7 RESEARCH FOR SOFTWARE ACCEPTANCE TESTING 30

3.7.1 Charge 30

3.7.2 Rationale 30

3.7.3 Discussion 30

3.8 PRACTICES OF SOFTWARE ACCEPTANCE TESTING 33

3.8.1 Charge 33

3.8.2 Rationale 33

3.8.3 Discussion 34

4.0 SUMMARY 36

5.0 REFERENCES 40

6.0 APPENDIX. ATTENDEES 42

iv

LIST OF FIGURES

Figure 1. Generic description of off-shelf software 6

Figure 2. Parameters affecting off-shelf software acceptance test 6

Figure 3. Some characteristics of users' needs 7

Figure 4. Contractual considerations 9

Figure 5. Preliminary tasks for test case selection 10

Figure 6. Factors affecting automation of software acceptance testing 12

Figure 7. Suggested tool set 15

Figure 8. Some suggested evidence types 19

Figure 9. Example of mapping evidence to product criteria 20

Figure 10. Management issues of software acceptance testing 22

Figure 11. Standardization: benefits and limitations 27

Figure 12. Topics to understand before standardization 27

Figure 13. Information described in Software Acceptance Test Plan 29

Figure 14. Simplified software development model 31

Figure 15. Suggested research areas for software acceptance testing 32

Figure 16. Practices of software acceptance testing 35

Figure 17. Recommended practices for software acceptance testing 35

Figure 18. Key discussion topics 37

V

1.0 INTRODUCTION
This is a report on the Software Acceptance Testing Workshop held at the National

Bureau of Standards, April 1-2, 1986. The workshop was held to provide a forum for

discussion by researchers and practitioners in Government, industry and academia on

topics related to software acceptance testing. The attendees were asked to assess four

general areas and four specific topics regarding software acceptance testing. The general

areas were current state of practice, research, standardization, and management. The

specific areas were test case selection techniques, software acceptance criteria, automa-

tion of software acceptance test, and software acceptance testing of off-the-shelf

software (hereafter referred to as off-shelf software) vs custom software.

On the first day of the workshop, groups addressed specific issues related to software

test case selection, criteria for judging acceptance of the software, tools for aiding in the

acceptance of software, and special problems related to the acceptance of off-shelf

software. The leader of each group reported on the conclusions of the group at the end

of the day.

On the second day of the workshop, groups again formed to address more general

themes of standards, research, state-of-practice, and management as they relate to

software acceptance testing. Participants were from each of the four groups that had

met on the previous day. At the end of the workshop, the leaders of the second day's

groups presented their conclusions.

The workshop coordinators intentionally charged the participants with more
material than could reasonably be dealt with in two days. They hoped to stimulate

selections of topics that were of most interest to the individual groups. Before the

workshop, participants received a NBS publication on software acceptance testing

[NBS136] and other materials describing the topics for the workshop. These docu-

ments, though not binding, provided the participants with a common starting point for

discussion. Central to discussions within individual sessions was definition of software

testing terms. Most sessions defined software acceptance testing, specific tools, pro-

cedures, and other terms according to each group's experience.

This workshop report contains ba.ckground information concerning the workshop,

highlights of the workshop group discussions and their conclusions, and a summary of

the workshop accomplishments. This report was written by the editors from the materi-

als provided by the moderators and recorders of the eight groups. Opinions, definitions,

and conclusions are those of the participants and do not necessarily represent the opin-

ions, definitions, and conclusions of the National Bureau of Standards or the Federal

Government.

ACKNO WLEDGMENT
The Software Acceptance Test Workshop served as a forum for the discussion of

software acceptance testing. All attendees were contributors to the outcome of their ses-

sions. The efforts of this group over two days resulted in the approaches to software

acceptance testing described in this report. The moderators successfully combined their

leadership abilities and their knowledge of software engineering to unite a diverse group

from universities, government, and industry. Several attendees presented results of their

experiences in software acceptance testing. Without the session recorders, we might not

have been able to compile this report. We are grateful to the all participants; their

names are provided in the appendix at the end of this report. The names of the session

moderators, recorders and presenters are presented below.

WELCOME

o James Burrows, Director, Institute for

Computer Sciences and Technology

KEYNOTE ADDRESS

o W. Richards Adrion, Deputy Director of Computer Research,

National Science Foundation^

MODERATORS

o Jerry Raveling, Sperry Corporation

o Elaine Weyuker, Courant Institute of Mathematical Sciences, NYV
o Ronnie J. Martin, Georgia Institute of Technology

o Samuel T. Redwine, Jr., Institute for Defense Analyses

o W. Richards Adrion, National Science Foundation

o Keiji Tasaki, NASA Goddard Space Flight Center

o Lori Clarke, University of Massachusetts

o William H. Farr, Naval Surface Weapons Laboratory

RECORDERS

o Philip Marriott, Computer Technology Associates, Inc.

o Sheila Frankel, National Bureau of Standards

o D. Richard Kuhn, National Bureau of Standards

o Mike Slingluff, Federal Home Loan Mortgage Corporation

o Charles Eater, Veterans Administration

o Millie Ingels, Department of Commerce
o Mark Palmer, National Bureau of Standards

PRESENTERS

o Peggy Brouse, Mitre Corporation

o Nander Brown, Nander Brown & Company
o Vincent Dell'Orto, Internal Revenue Service

o Bill Dupras, NESTAR Systems

o Richard Fath, Federal Communication Commission

o Jean Philippe Favreau, National Bureau of Standards

o Dave Gelperin, Software Quality Engineering

o Phil Marriott, Computer Technology Associates

o Dan Schneider, Department of Justice

o Dave Siefert, NCR
o Mike Slingluff, Federal Home Loan Mortgage Co.

o Lou Smith, Bell Communications Research

Dr. Adrion is currently Department Chair, Computer and Information Science Department, University of Massachusetts.

2

2.0 BACKGROUND

The Software Acceptance Test Workshop, April 1-2, 1986, was sponsored by the

Institute for Computer Sciences and Technology of the National Bureau of Standards.

ICST has responsibility under Public Law 89-306, also known as the "Brooks Act", to

develop standards and guidelines for effective management and use of automatic data

processing (ADP) by the Federal Government.

One particularly critical area in ICST's program is software engineering, that is, the

engineering of software development and maintenance. The primary focus of the

software engineering activities at NBS has been to develop and identify methods, tech-

niques, tools and systems that can lead to the production and procurement of quality

software and systems by the Federal Government. To assist agencies in this area, ICST
has sponsored workshops and conferences and has issued Federal Information Processing

Standard (FIPS) publications, reports, and guidelines on software engineering topics,

including validation, verification and testing (W&T), documentation, and software

tools and environments.

Currently, the software engineering program has projects on software management,
software requirements and design specifications, software acquisition with emphasis on

reuse, software engineering environments, software maintenance, and W&T. One area

of W&T is software acceptance testing. The Federal Government spends about $15

billion per year on computers and related equipment and services; this sum includes the

acquisition and continued operation of many computer software applications. How well

these computer software applications will perform is of significant concern to the

Federal Government.

Software acceptance testing is usually the final opportunity to locate problems before

the software system is accepted by the customer. After this point, depending on con-

tractual arrangements, the vendor may have no further responsibility for the software.

When acceptance testing has not been performed, or when it has failed to uncover a

major problem or omission among the deliverables, an organization may suffer financial

losses and operational losses from which it may be difficult to recover.

Software acceptance testing helps assure software customers that:

o the software system will perform as expected, and

o the collection of software deliverables will provide the information necessary

to operate the software, to maintain the software, and

to reuse the software in other systems.

These requisite assurances of software acceptance testing reflect changing approaches

to software acquisition. In the earliest days of computers, almost all software acquisi-

tion involved a purchase of a custom designed software system for a single customer.

Code, with perhaps some documentation, was thought of as the total product. Over

time, customers have recognized that to use software productively in their environment

more than code must pass acceptance. At a minimum, training and user documentation

are part of the software deliverables for acceptance testing. Customers also have recog-

nized that the long operative life of most software requires continuous software mainte-

nance. And, finally, customers, especially in large organizations, are seeking ways to

reuse part, or all, of a software system in other systems in their organizations. For

these purposes, many other items are included in the software deliverables for

3

acceptance testing. In recent years, customer purchases of off-shelf packages, or pack-

ages modified to their specifications, may require somewhat different approaches to

software acceptance testing.

Traditional custom acquisition and its accompanying software acceptance testing are

fairly well understood. Yet, better methods and supporting tools are needed for com-

plete, successful acceptance testing. Changing approaches to software acquisition may
also require changing approaches to software acceptance testing. Even within the cus-

tom purchase, the criteria for acceptance go beyond functional specifications and include

such criteria as quality and performance features. For these, additional techniques and

tools are necessary. As the software market continues to change, approaches to

software acceptance testing may have to change to fit the needs of the software custo-

mer.

In summary, software acceptance testing is the final opportunity for software custo-

mers to examine their software products before they accept them from the vendor and

before they expect their organizations to use them. For some software (e.g., off-shelf

purchases) acceptance testing may provide the only opportunity to verify that the

software will satisfy customer requirements. Software acceptance testing is a complex

process that often is not allowed enough time and resources. Management and technical

concerns of software acceptance testing need further definition so that the assurances of

software acceptance testing may be a reality for software customers.

NBS has held workshops, such as this one on software acceptance testing, to define

specific software engineering topics in terms of:

o the areas where research is needed;

o the current state of practice and problems within that practice;

o the problems with transferring concepts and methodologies to wide practice;

o the applicability of existing standards;

o the methodologies requiring further development before standardization;

o the features ready for inclusion in guidelines or standards;

o the approaches for transferring technical recommendations into practice.

ICST is especially interested in helping Federal agencies to identify their needs for

software acceptance testing and to find ways to achieve them. The purpose of this

workshop was to provide a forum for discussion of management and technical concerns

to assist ICST in gaining a better understanding of the software acceptance test process

and to explore approaches for improvement. The goal is twofold:

o to provide information that is immediately useful to the participants; and

o to support NBS's research program in software engineering.

The workshop was structured to lead to a synergy of views that will aid in defining

principles underlying both problems and successes in software acceptance testing. The
participants consisted of both researchers and practitioners in software acceptance test-

ing from different federal agencies, industries, and academia, with a great deal experi-

ence and diverse viewpoints. The results of this workshop's findings will be used in

developing material that will contribute to a FIPS guideline on software acceptance test-

ing.

4

3.0 SUMMARIES OF WORKING GROUP SESSIONS

3.1 Off-Shelf Software Acceptance Testing

3.1.1 Charge

The working group for the acceptance testing of off-shelf software was charged with

defining differences and similarities between acceptance testing of custom software and

off-shelf software. Software acceptance testing practices for custom software may have

features that are transferable to off-shelf software testing. The group was asked to iden-

tify these practices and the critical issues to be resolved before a standard acceptance

methodology for off-shelf software can be defined. Finally, they were asked to recom-

mend, if feasible, a consensus approach to testing off-shelf software.

3.1.2 Rationale

One approach to software acceptance testing involves a complete lifecycle, in which

the customer is involved from the beginning of the software project. The customer has

defined the requirements of the software system; the customer may have "accepted"

intermediate products; the customer next accepts the final product. Finally, after accep-

tance, the customer may require enhancements. In this approach the requirements are

customized to suit the customer's needs. Superficially at least, defining acceptance tests

for custom software should be easy.

For off-shelf software acquisition, the vendor determines the requirements. A custo-

mer accepts the software based on those requirements. The customer is directly involved

only from acceptance of the completed software product. The off-shelf software custo-

mer has limited or no access to development materials, including developer's require-

ments specifications and test cases. The requirements and constraints on off-shelf

software may be sufficiently different from custom software to warrant completely

different approaches to software acceptance testing.

3.1.3 Discussion

The off-shelf software acceptance test group first agreed upon a working description

of off-shelf software. Instead of a formal definition, off-shelf software was defined by

the generic descriptors shown in Figure 1. All discussions of the working group were

based on software with these characteristics.

Many parameters affect how off-shelf software acceptance testing will be performed.

The effects of some parameters, shown in Figure 2, on the approach to acceptance test-

ing need to be better understood. The general discussions of the group focused on how
to use these parameters to define software acceptance testing for a specific purchase.

Once the process for a few specific examples is understood, more general guidelines may
be defined.

5

OFF-SHELF SOFTWARE

software which is in common use

software which is readily available

software which has broad application with little modification

Figure 1. Generic description of off-shelf software

Users who are purchasing off-shelf software need to recognize that the flexibility of

off-shelf software may be lower than that of custom software. This restriction is not

stated explicitly in the generic characteristics but follows logically from them. By care-

fully examining their own needs relative to the types of characteristics shown in Figure

3, purchasers/users can establish a precise definition of the off-shelf software they want.

They must define the essential features but must also define what functions are not

required. Then they can go on to develop measurable acceptance criteria. Other types

of criteria apply to an off-shelf software purchase. One might be a response to a ques-

tion like "would you pay for this product out of your own pocket?"^ .

users' understanding of their needs

precise definition of the off-shelf software

acceptance criteria for the off-shelf software

acceptance test procedures

constraints

standards

Figure 2. Parameters affecting off-shelf software acceptance test

As in custom software, acceptance criteria need to be developed for functional and

performance measures. Other criteria can be built around the level of effort it might

take for the product to be usable (e.g., change in business practices or substantial

changes to the software or the software documentation). The purchaser must also con-

sider to what extent the package can directly use inputs from other software or have its

outputs used directly by other software. Can the software be immediately installed, or

must changes be made for its integration into the total system? The purchaser needs to

look at the total lifecycle costs of the purchase (e.g., vendor support, user training,

hardware costs.)

The definition of specific acceptance test procedures may depend on factors unique

to off-shelf software. These factors take into account that several off-shelf products

might be considered before one is purchased. Other tasks must be performed to deter-

mine how much testing can be done:

o establish clear selection criteria up front

o reconcile market forces to requirements

o determine needed level of testing vs reality (available resources).

^d. note: This question was asked relative to low cost off-shelf software packages that might be purchased in large quantity.

6

Usually, the acquisition of off-shelf software has some constraints and differences

from the acquisition of custom design software. These differences will affect the perfor-

mance of software acceptance testing. The marketplace, not individual requirements,

drives what items are built for off-shelf purchase. The user may never see the require-

ments specification for a product, and, more importantly, has limited control of the

requirements and the design. What the user sees in a user manual is likely to be the

capability of the product and that capability might not be easily enhanced or modified.

The user likely does not have any knowledge of the vendor's quality procedures or the

extent of the vendor's qualification tests, i.e., those tests the vendor executes to demon-
strate that the product meets vendor requirements. The potential purchaser may con-

sider the vendor's reputation for building and supporting quality products. For a cus-

tom software product, users are likely to test for inclusion of all functions, which have

been specificed by them. For an off-shelf software acceptance test, users may need to

develop an application for the off-shelf software to determine if desired functions are

included.

target system features

intended use/ application

organizational considerations

single vs multi-site installation

intra / inter operability

technical specifications

documentation (requirements, design, test, user)

- availability

- scope

- depth
- completeness.

Figure 3. Some characteristics of users' needs

Economic considerations may drive the acceptance testing. Sometimes it doesn't

make sense to spend large sums of money testing a package that may be used by only

one person for a non-critical application. Vendors may be reluctant to permit access to

some materials. If the same package is to be purchased in large quantity, and/or its

application may be critical to the financial or operational capability of the purchasing

organization, economic common sense may warrant the extra expense of complete test-

ing. For a large purchase a vendor may allow access to development materials and qual-

ity assurance evidence. The characteristics of the acquisition and the user environment

should determine how acceptance testing is done.

Some aspects of the software acceptance testing can be standardized. These consist

of established test approaches, test tools, test cases, and diagnostics to be used during

testing. Instead of developing standards for off-shelf software acceptance testing,

perhaps the emphasis should be on evolving de facto standards for oflf-shelf software. If

this were the case, then acceptance testing would consist of standard tests to show con-

formance to these de facto standards. A constraint to this approach is that new tech-

nology could get locked out through exclusive use of standardized tests on products. In

selected areas some de facto standards could be achieved. Further, the use of off-shelf

7

software would promote working faster and smarter. Examples of possible de facto stan-

dards include data exchange, operating systems, documentation, and higher order

languages standards.

A final discussion item involved the management of testing of de facto standards.

Discussion ranged from the possibility of a "validation facility" to public newsletters. In

the former situation, purchasers would send acceptance test suites to a common facility.

New purchasers could match their needs against an already developed test suite. A
newsletter could carry information of what off-shelf software has undergone extensive

acceptance testing. For further information, prospective purchasers could consult those

who have executed the test suite.

3.2 TEST CASE SELECTION

3.2.1 Charge

The test case selection group was asked to study test case selection techniques

appropriate for software acceptance testing. Suggested topics included separating gen-

eric test case selection techniques from those more appropriate to a specific software

product or to a specific means of software acquisition; determining criteria for the

appropriateness of different types of selection techniques; defining the general

effectiveness of various test case selection techniques including the maturity of the tech-

nique and the software tools necessary to exploit the technique. Examples of some
specific topics include: path selection criteria, functional test case selection, test coverage

metrics, maintainability, reliability, and other quality concerns.

3.2.2 Rationale

Various test case selection techniques have been extensively studied, but criteria for

their use in acceptance testing have not been fully developed. In some acceptance test

situations (e.g., testing off-shelf software) information normally available for testing is

absent. This may include the code, the system design, and the component interface

information. In the absence of this information what techniques should be used to test

the software product adequately?

Terms such as robustness, maintainability, and reliability are often used to describe

desired software features. Quantitative criteria are yet to be defined for many of these.

Once they are, test case selection techniques should be used to test for these quality cri-

teria. Other parameters such as the application area, performance requirements, and

criticality of the software also affect the test selection techniques. There may be general

techniques to guide the choice of test case selection techniques. Software tools may be

required for effective use of the chosen test case selection techniques.

3.2.3 Discussion

The working group first established a definition of software acceptance test. As they

developed their theories on test case selection, the scope of the initial definition was

expanded. Time ran out before they could revise their initial definition to reflect their

conclusions. The following definition for software acceptance test served as their basis:

"A software acceptance test is a system test used to measure the conformance
of the deUvered software system to current contractual requirements."

8

For the technical selection of test cases appropriate to a specific software acceptance

test project, information is needed from several management-oriented tasks:

o determine the contractual requirements,

o establish the appropriate background and,

o select a test strategy based on that background.

Contractual Requirements

Contractual requirements are significant and affect all the parameters of software

acceptance testing. Acceptance testing, whether or not it includes some of the develop-

ment information, is for the user's benefit. Development testing, whether or not used by

the user, is primarily for the developer's benefit. An important factor in effective accep-

tance testing is the drafting of the contractual requirements that specify, as precisely as

possible, the conditions that the software must satisfy before it is accepted. Many items

need to be considered in establishing the contractual requirements (Figure 4).

Software is considered critical if its failure could be responsible for loss of life or

large financial losses [IE729, IE730]. At the Software Acceptance Test Workshop, some
asserted that the criticality level of the software increases as the value of the software to

the purchasing organization increases. As the criticality increases, so should the scope

of the acceptance testing.

If acceptance testing is to determine satisfaction of the contractual requirements,

then the contract has to state its requirements in terms that can be transformed into

test conditions. The functionality of the software, that is, the tasks the software must
perform, should be clearly stated in the contract to ensure their inclusion in the

software product. The contract should specify other information about individual func-

tions and the system as a whole, e.g., expectations on function performance, required

security levels, and the most important software qualities. One difficulty lies in deter-

mining criteria and test cases to test for compliance with a quality. Many quality levels

are application dependent. For example, an unacceptable software safety level may
mean 1 failure/10**9 years for automated aircraft landing systems, while 1 failure/year

may be acceptable for an operating system (depending upon the type of failure). Other

1. The criticality of the software.

2. The functionahty of the software.

3. Security of the software.

4. Performance considerations.

5. Metrics for quality measurements.

6. Documentation requirements.

7. The integration of the software with existing hardware and software.

8. Certification methods for the software.

9. Problems of changing requirements

Figure 4. Contractual considerations

g

qualities, such as maintainability, traditionally have appeared to have no testable mean-

ing aside from the imposition of a development methodology (e.g., structured program-

ming, system development using a 4th generation language). As software engineering

practices and maintenance needs [FIPS106] become better understood, other contractual

requirements can be used to support a maintainability requirement (e.g., use of stan-

dards, inclusion of development test materials a^ deliverables). In summary, metrics

against which any function and any quality can be tested need to be quantified as much
as possible in the contractual requirements. At the very least, guidelines for metrics

must be included.

Frequently software is purchased as an enhancement to existing software or for use

with existing hardware and software. Examples range from word processors to space

station software. Contractual requirements include specifications for the interfaces

between the existing software and the product; these interfaces undergo acceptance test-

ing. For the "new" software, the purchaser may request evidence that the product has

met specified quality criteria during development. For off-shelf software that will be

used in the "new" product, earlier certification evidence might not be available.

The last topic in contractual considerations concerns the dynamic nature of the

requirements themselves. During a project, some requirements usually change, perhaps

even during a final evaluation period. The original contract needs to allow for changes

in the acceptance test plan to accommodate changes to the contractual requirements.

Background

When the contractual requirements are being developed, the purchasers should be

concerned with acceptance testing. At this time, they should establish the background

parameters on which they will base their acceptance test strategy (Figure 5).

The scope of software acceptance testing (e.g,. the activities, the testers, require-

ments for a good test) is affected by diff'erences between custom and off-shelf software as

well as by contractual and business requirements. Compliance to both contractual and

business requirements of the software system need to be tested.

o ESTABLISH BACKGROUND
Define acceptance test scope

Define acceptors

Define entry conditions

Perform risk assessment

Perform resource assessment

o SELECT STRATEGY
Match resources to risk

Determine techniques

Figure 5. Preliminary tasks for test case selection

10

One example where software type affects the scope is a contractual requirement for

either delivery of evidence of testing or purchaser participation in testing throughout

the lifecycle. Due to the proprietary nature of off-shelf software, the customer does not

always have access to source code and development information and participation in

life-cycle testing during development is generally not possible. Instead, the software

must be tested in its operational environment with data intended to find errors and par-

ticularly to test for compatibility with existing software and functionality requirements.

The functionality requirements include the ability of the software to perform the desired

function and also ergonomic considerations such as ease of use, ease of training, and

satisfactory performance. For most off-shelf software, these requirements could be writ-

ten into the requests for proposals (RFPs) and contracts.

For custom software, acceptance tests should be constructed for all stages of the

lifecycle. Requirements, specifications, design documents, and code should all be used in

developing an acceptance test suite. This testing could be performed by the developer

and certified by the user or performed by an independent party. This process does not

necessarily occur at the time of the delivery of the software, but may occur during

software development at contractually agreed upon review points.

Two problems with acceptance testing involve the user of the software product.

First, the end user should be involved with defining the contractual requirements and
the early planning for acceptance. Second, identification of the user is a problem, for

there are several users of the end product, (e.g., the operations staff, the maintainers,

the application users, and auditors). Each group may have different acceptance require-

ments, and different acceptance procedures. Each group should play a role in the accep-

tance of software. Other problems occur when the requirements for beginning the exe-

cution of acceptance test are not clear. It is important to define what documentation is

to be delivered, what software is in place, and what training is needed by the test staff.

Several kinds of risks also need to be identified. The management risks associated

with accepting a software product concern the assessment of the consequences of failure

of the product (e.g., premature product announcement or loss of life due to failure).

The results of this assessment may be used to support the decision of the scope of the

acceptance testing. The assessment of the technical risks that the product might fail is

supported by the results of the acceptance testing. Another type of risk occurs when
software acceptance testing cannot be performed in the complete operational environ-

ment. In this case, acceptance testing should use reliability tools for risk assessment.

The final object of establishing the background information for software acceptance

testing concerns the resources available. Software acceptance management should exam-

ine the background information to establish the software acceptance test needs and then

use the information for leverage to ensure the appropriate allocation of resources.

Strategy

Resources must be matched to the risks associated with the software product. Then

priorities can be established. Different acceptance techniques can be applied according

to project needs. The strategy of selecting test cases must be based on these manage-

ment assessments. Effective test case selection techniques have been the subject of

many research papers. Some require access to source code while others require sophisti-

cated tools. The resources available to the software acceptance testing effort will affect

the selection of , test cases. Some of these techniques may be applied to the final

software acceptance test case selection.

11

3.3 AUTOMATION OF SOFTWARE ACCEPTANCE TESTING

3.3.1 Charge

The participants in the software tools group were asked to make recommendations

concerning tools for software acceptance testing. They were also asked to recommend a

minimum set of tool features that should be used in software acceptance testing and to

relate tool characteristics to development testing and off-shelf software testing.

3.3.2 Rationale

Acceptance testing is different from other software testing because the customer or

end user is more likely to perform the testing than the developer. When not involved in

the development effort, how can the end user ensure that the product is of high quality?

Approaches vary from a contractual requirement permitting end user involvement in the

development effort to contractual clauses that impose liability for the failure to meet cri-

teria on the developer (in which case no testing may be required). For the one-of-a-kind

software project the former is frequently desirable, whereas for an off-shelf product the

latter may be feasible.

A particular concern is the type of tools that should be used to ease the acceptance

process. Concerns include how these tools may differ from development tools, how they

can be used to support acceptance (as opposed to development), their availability, and

their usability. Among the tools that may be considered are the following: tools for test

case generation; tools for measurement of compliance with acceptance criteria; tools for

the development of benchmarks; software configuration management tools; test report-

ing and analysis tools; traceability tools; and tools for documentation examination.

3.3.3 Discussion

Presentation and discussion of two automated test activities provided insights into

the appropriateness of some tools for software acceptance testing. The first was the

Mitre Automated Test Environment (MATE). MATE, developed for testing a computer-

ized employment compensation system, was used on a microcomputer to develop, track,

and schedule acceptance testing for the system. The second automated test activity was

an NBS effort to develop tests for communication protocols. Analytic techniques were

used to determine inputs that would trace execution paths in a finite automaton.

To determine the functionality requirements for a minimal tool set for software

acceptance testing, several factors relative to automation (Figure 6) need clarification.

There will be exceptions to any set of reasons for selecting, or not selecting, a tool for

software acceptance testing.

Definitions of acceptance testing in current guidance documents were viewed as

inadequate. A definition of software acceptance test should be rigorous enough to ensure

that a broad scope of acceptance activities would be considered. Acceptance is a con-

tinuing activity throughout the software lifecycle of a custom software project. This is a

major difference between acceptance for custom and off-shelf software. For the latter,

some business or user requirements might not be included within the written

specifications but should be tested. Under the current definitions, no provision is made
for such testing. Various interpretations of the current definitions could permit omis-

sions of other acceptance test tasks, e.g, examination of documentation.

12

o definition of software acceptance testing,

o differences between development and acceptance testing,

o responsibilities of developer and/or customer management
to prepare product for acceptance,

o procedures for software acceptance testing,

o circumstances when automation is needed,

o risks associated with tools, and

o purposes of automation.

Figure 6. Factors affecting automation of software acceptance testing

The group chose to define software tool needs based on their experience instead of a

software acceptance test definition. They felt that acceptance test planners should

determine their tool needs relative to a broad software acceptance test definition

tailored to their project needs.

The group discussed differences between development and acceptance testing that

might affect the types of software tools useful to acceptance testing. Generally, user

acceptance testing is based on the functional specifications whereas early development

testing requires design specifications and source code. Development testing is usually

performed by the developer on the developer's site Acceptance testing is usually per-

formed with customer involvement in an operational environment. Those executing

acceptance tests may consist entirely of users who have not seen the requirements

specifications document. Their assessment is based on how well the system provides the

functionality they have been told to expect via a more general user document or direc-

tive. They would not compare their user experience one-to-one with the functional

specifications, but rather with how well the system enables them to fulfill their job

responsibilities.

What should the developer do to prepare the product for acceptance testing? Are

tools and documents from the developer's environment essential to the customer? These

may be contractual responsibilities of the developer management to ensure that all items

for adequate acceptance testing are available to the" customer.

Acceptance testing includes executing the system to demonstrate how the customers

will use it. Preparing the demonstration includes planning, designing and developing

test cases, executing the tests, collecting and analyzing the test results, and preparing

the test reports on which the acceptance/rejection decision is based. Acceptance activi-

ties may also include evaluation of documents, installation procedures, maintainability

needs, and other customer requests. Automation can be used for many of these tasks.

Automation is desirable, but when the cost of test tools exceeds the cost of the pro-

duct being accepted, additional factors (e.g., reuse of the tool, criticality of the software)

must be considered. Cost includes time as well as the actual dollar cost of a tool. If a

product is simple enough to be tested adequately in two days, then five spent learning

to use a test tool may not be cost effective. If the same tool is likely to be reused for

other software acceptance testing, then the training time may be cost-effective. Of

course, if the product is vital to a company's business operations, the dollar cost of the

13

tool or training costs become less than the value of the software product. If the product

will itself be used in a critical application, added expense and time due to learning a tool

may be worth it. For complex products, tools may provide the only means of executing

complete test cases. Those selecting the automation level for software acceptance test-

ing should take all these factors into consideration.

There are risks associated with tool use. The tool may not exist and will need to be

built or purchased. Whether the test group builds or purchases the new tool, there is

always risk that it will not be completed in time for the acceptance test project. The
new tool's reliability, usability, and general value may not have been demonstrated

before its use.

The primary purpose of test tools should be to organize and control necessary test

data (e.g., test cases, functional specifications, test results, and reports). The tools

should provide support in the preparation, execution, and analysis of test cases

throughout both development and maintenance of the software. Candidate tools should

be examined in the context of at least the five characteristics, defined below, which the

group used to build a suggested tool set (Figure 7).

Generic -

Can the tool be used in many applications?

Development & Maintenance -

Can the tools be used by both the development and the maintenance phases

of the lifecycle?

Availability -

Is the tool commercially available? Does the tool even exist?

Off - Shelf -

Can the tool be applied to a packaged product (e.g., off-shelf software)?

Minimal -

Is the software part of the minimal package a facility should have to per-

form automated testing? "On-line Systems Only" refers to the minimal

required software capability to use the tool.

Several automated support tools may be used for software acceptance testing (Figure

7). No one in the group has used a document evaluator. Otherwise, each type of tool

has been used for software acceptance testing in at least a primitive form by one or

more members of the working group. No one claimed to have used an integrated set of

the majority of the tools. Some of the group's assessments, particularly as to availabil-

ity, have not been substantiated. As some of these tools become more widely-used, their

effectiveness will be better known and can be added to the characteristics. The tools

were discussed in the context of their definitions given in this section of the report.

Some constraints may apply to these tools. For example, a white box test data evalua-

tion tool, for use in software acceptance testing, might be applied to critical pieces of

the software; in most cases the source code would not be available.

14

Automated Support for Software Acceptance Testing
Automated Capability Generic Development

Maintenance

Off Shelf Minimal Available

Test Data Generator

Black Box X X X X

Test Data Generator

White Box X X X

Test Data Generator

Random X X X X

Test Data Evaluation

Black Box X X X

Test Data Evaluation

White Box X X X

Comparators X X X X X

Documentation

Ve r i fi e rs-Ev al uators X

Performance

Evalu ators X X X X X

Test Driver X X X X X

Script Recorders X X X X x

Test Documentation
And Configuration

Controllers -

Object Manager

X X X X X

Emulators X X X X

r liters A A A A

Standards Enforcers

Evalu ators X X X X

Figure 7. Suggested tool set

The working group defined the tools sliown in Figure 7 according to their common
level of experience. These definitions are provided below.

Test Data Generator (Black Box) -

A tool which generates test data and test output results. Information regarding

data relationships is not used.

15

Test Data Generator (White Box) -

A tool which generates test data and results in which information regarding data

relationships (e.g., path coverage) is known. The tool's application for acceptance

testing may be somewhat limited because of its use on software development pro-

ducts.

Test Data Generator (Random) - A tool that generates random test data.

Test Data Evaluation (Black Box) -

A tool which examines the adequacy of the test data(e.g,, completeness of data,

correct boundaries) for determining whether the relationships between the test data

and the results are correct. The user is unable to view the relationships.

Test Data Evaluation (White Box) -

A tool which examines the adequacy of the test data for use in determining whether

the relationships between the test data and the results are correct. This is normally

a tool used during program development rather than acceptance testing, but may
be used for critical modules during acceptance testing for internal structural test-

ing.

Comparators -

A tool that compares and cites differences between two files.

Document Verifiers/Evaluator -

A tool which verifies that the documentation matches the code. The evaluator is a

tool that compares the documentation to the specifications and evaluates it by such

criteria as clarity, ease of use, readability, user friendliness, etc.

Performance Evaluator -

A tool that evaluates the performance of a system. The items measured may
include response time, the amount of machine resources used, the interface with

other software, and performance under full load (stress testing).

Test Driver -

A tool that automates the execution of tests.

Script Recorders -

An on-line tool that records test scenarios. The tool may be used for code check-

ing, for regression testing, and for simultaneous use by more than one tester.

Configuration Manager, Controller -

A tool that manages and controls the code, specifications, requirements, documen-

tation, test data, etc. generated during the development of a system.

Emulator - A tool that exactly simulates another system.

16

Filter - A tool that manipulates input data from one file to produce output data

for another file using simple text based transformations. The term arose from a typ-

ical use of pipes in UNDC^ in which input text files are manipulated by programs

into output text files where extraneous information has been removed or "filtered".

Standards Enforcer/Evaluators -

A tool that ensures that development standards are followed. An evaluator checks

that standards are followed; an enforcer requires that standards be followed.

3.4 SOFTWARE ACCEPTANCE CRITERIA

3.4.1 Charge

The participants in the software acceptance criteria group were asked to define a

comprehensive list of acceptance criteria qualities. Suggested topics included a taxonomy
of acceptance criteria, metrics for acceptance criteria, tradeoffs between criteria,

management issues in defining and implementing acceptance criteria, the relationship of

actual requirements to acceptance criteria, and the definition of existing terminology

and its relationship to existing standards.

3.4.2 Rationale

The simplest criteria for software acceptance is that the software meets the

customer's requirements. Frequently, however, these requirements are stated in terms

with ambiguous definitions. An example is this requirement, "The software must be

maintainable, robust, fault tolerant, and secure." While definitions for some acceptance

criteria exist [DOD2167], one of the tasks of the acceptance criteria group is to define

those criteria used by customers in specifying desired qualities of software.

A second task is to determine how these criteria should be used in the acceptance

testing process. That is, how do the criteria map to the software deliverables? A related

task is the development of tests to ensure that the quality criteria are met. Some quality

criteria, (e.g., specific security requirements), are testable while others, (e.g., maintaina-

bility), appear to be more difficult to test.

Finally, the question of automated tools is important. Is software acceptance testing

sufficiently understood so that software tools can be used to ascertain whether or not a

software product meets a quality criterion?

3.4.3 Discussion

The working group established the following goals to enable them to accomplish the

tasks of their charge:

o understanding the role(s) of acceptance testing

o defining a comprehensive list of criteria

o developing a taxonomy.

^UNIX is a registered trademark of AT&T.

17

Understanding acceptance

The working group addressed software acceptance testing relative both to custom

software developed under contract and in-house and to compromises in the final

software acceptance. Their discussions and conclusions were built around their interpre-

tation of the keywords in the statement that software acceptance testing is the demons-

tration that the software meets its requirements:

o demonstration: evidence

o requirements: contractual description on which the criteria are defined

o software: the deliverables

o testing: actions that produce the evidence.

There are two views to acceptance: as a contractual event, and as a milestone event.

As a contractual or legal event, the software contractually meets specifications or fails to

meet those specifications. Simply put, when accepted, the payment for the software

must be made. As a milestone event (e.g., during an in-house development), acceptance

may be considered as a green light to proceed to the next stage. The next stage can

mean several things. In development, it may mean the step from design into code activi-

ties. It may also mean a conditional acceptance, until other components are integrated

and the system further accepted. It may mean acceptance so a company may release a

product. In some organizations, the term "qualification" is used instead of acceptance

to indicate that some pieces are ready and further development dependent on those

pieces may proceed. It could also entail promises to management, production commit-

ments, commitments of money and manpower to another stage of software development,

etc. Acceptance may range from a minimal meeting of specifications to an exhaustive

assessment of all parts. Organizations are driven by project parameters (e.g.,target

dates, legislative mandates, risk assessments). How do these affect acceptance of mile-

stone events?

The scope of acceptance testing is greater than functional testing of the software.

With respect to the executable software itself, there are questions concerning its reliabil-

ity and its maintainability. The software consists of many items, all of which should

undergo some acceptance.

The types of items included in software acceptance are the meeting of the software's

specifications, delivery of acceptable documentation, and assessments of risks, adherence

to standards, ease of use and maintenance, meeting of performance requirements, and

the meeting of functional requirements.

There is also a relationship between quality assurance and acceptance testing: accep-

tance testing is a quality assurance tool to support quality assurance activities.

Criteria

The software acceptance criteria for a software product can include only the criteria

that have appeared in the specifications for that product. The workshop group prepared

a working checklist of criteria categories on which they built a taxonomy to aid in

measuring how well a product satisfies its criteria. The criteria checklist could be used

as an aid in defining software requirements, but once the requirements have been

defined, the checklist has to be tailored to a specific acquisition. The approach taken by

the group was to develop a list of criteria, based on a set of quality characteristics

[RADC], which would apply to diff'erent types of deliverables. Different kinds of evi-

dence may be used for different criteria.

18

Criteria are applied to the baselines against whicli the software requirements will be

tested. Baselines change as the software development or maintenance activities progress.

The emphasis will be on different criteria during different aspects of software acceptance

test. The development of acceptance criteria necessarily involves the development of

metrics to measure compliance with the criteria. These criteria, however, are not a

panacea. There should be some threshold of error so that if the software exceeds that

threshold, then acceptance must not occur. There also should be a measure of severity.

A severe error should cause the software to be rejected, while a number of non-severe

errors may still allow acceptance (subject, of course, to later correction).

In addition to functionality, quality requirements (e.g., usability, maintainability,

safety) should be built into requirements and specifications before the development pro-

cess begins.

Taxo7iomy

The taxonomy developed by the working group involves a three-dimensional

approach to solving the problem of quantifying acceptance criteria. The three dimen-

sions may be applied somewhat differently, depending on the software acquisition, but

need to include the following:

o the products (e.g., design documentation, user manual)

o the categories of criteria

o the types of evidence or metrics to measure compliance.

Dynamic methods

DT Dynamic tests

Static methods

RW Reviews/ Walkthroughs

AA Automated Analysis

MS Measurement

Experience

EI Internal

EX External

WR Warranties

Other Support

HL Hot line

TR Training

CN Consulting

EN Enhancements

Figure 8. Some suggested evidence types

19

All three dimensions are used to provide an overview of the project's acceptance

needs. Different forms of evidence may be used to demonstrate how specific software

products meet each category of applicable criteria. Some forms of evidence, indicated in

Figure 8, have been selected for the example of Figure 9. In this example, acceptance

testers would first identify the products, then the criteria, and finally, the types of evi-

dence. Evidence may be demonstrated at different time points of the acquisition. The
product may be examined as a milestone event, readiness to go on to next step, or as a

contractual event, as a deliverable. Not all evidence may be requested, and only some
possible types are indicated in Figure 8.

The software consists of more than the code which is executed by a computer. It

consists of a collection of products that make up the complete system:

o the specifications for requirements and designs

o prototypes

o the W&T documentation

o user manuals

o operator manuals

o maintenance information

o configuration information

o training

o code

o any other information required in the deliverables.

ACCEPTANCE CRITERIA
Usability Maintainability Installability Traceability

Management Plans

Requirements Specs RW RW, AA RW RW
Prototypes RW
Designs RW, AA
Code, Docs RW, AA
Tests RW, AA
Test Results

User Aids

Installation Aids DT, EX
Maintenance Aids

Operator Aids

Configuration Aids

Marketing Aids

Figure 9. Example of mapping evidence to product criteria

The acceptance criteria form the basis for acceptability of these products. The cri-

teria are derived from the specifications of these products. It is important to ensure

that these specifications are measurable. Some examples of qualities are the following:

Functionality - Output

Performance- Resources, Time, Capacity

Usability

Maint ainab i 1 ity/ Enhancements

20

Installability

Standards Adherence

Reliability and Availability

Security

Regulatory

Traceability

Risk Assessment

Safety

Learning.

Some of the products may have associated quality criteria, which are more difficult

to demonstrate. Some approaches to measuring quality are to demonstrate the lack of

errors, degree of functionality, and satisfaction of performance measures and the use of

static techniques.

The types of evidence that can be used vary widely. Static evidence is obtainable

from code and design reviews/walkthroughs, automated analysis tools, and performance

measurements. Other evidence of compliance could be a warranty, previous project

experiences, sufficient vendor support. The evidence for the satisfaction of a criterion

could be based solely on trust (whether contractually enforced or not) or some objective

information could be used. The satisfaction of some criteria, such as maintainability,

might be possible through legal means such as maintenance contracts with the vendor.

The acceptance process then consists of determining the criteria during the develop-

ment of the requirements/specifications, certifying that each product is adequately

tested (this should also be in the specification), and ensuring that the entire project

meets the final acceptance tests.

3.5 MANAGEMENT OF SOFTWARE ACCEPTANCE TESTING

3.5.1 Charge
The participants in the management group were asked to address issues concerning

the management of software acceptance testing. They were asked to separate manage-

ment from technical concerns and to define effective management strategies for solving

software acceptance test problems. This working group had members from vendor

organizations, testing organizations, in-house developers, and purchasers of contracted

software. Their unique perspectives are represented in the session discussion.

3.5.2 Rationale

Project management is responsible for the definition of contractual requirements for

acceptance of software and the definition of acceptance testing in the context of particu-

lar software products. Management is also responsible for the ultimate acceptance of the

software. Since management defines software acceptance testing and is ultimately

responsible for the acceptance of the software, management is critical to the software

acceptance testing process. The management of software acceptance testing differs little

from traditional management (e.g., planning, controlling, providing support, and per-

forming cost-benefit and risk analyses) except that it is done in the context of software

acceptance.

Management has the responsibility of planning to ensure that contractual require-

ments meet user needs. This may require planning for validation, verification, and

21

testing activities throughout the software development lifecycle, or for testing to ensure

that off-shelf software meets the organization's needs. In planning the testing required

for acceptance, management has responsibility for designating the persons who ensure

that tests are performed.

Management is responsible for defining and implementing controls over the vendor,

the vendor testers, and within the end user organization. Controls may include report-

ing and change procedures throughout the acceptance test period.

Management is responsible for choosing the test methodology. Management is also

responsible for ensuring that ergonomic issues are settled, for putting in place required

training, and for making available the required documentation to effectively use the

delivered software product. Management ensures that schedules are appropriate for the

tasks involved.

. Finally management is responsible for the risk and cost-benefit analyses that esti-

' mate how much testing is required before acceptance of the software product. Typically

these estimates will be most affected by the criticality of the system but other factors

(e.g., size, expected lifetime, complexity) are important.

3.5.3 Discussion

The group established the primary goal of a well-managed acceptance test effort to

be user satisfaction in the accepted product. The tasks for the session were to define

management's role in achieving this goal and to determine how management could solve

some of the technical problems of acceptance testing. The group discussed specific

issues management should address, possible approaches to each of these issues, and con-

straints on applying these approaches (Figure 10). The group established some
differences between development testing and acceptance testing of software, and
between custom software and off-shelf software acquisition.

In software development testing the primary goal is to locate errors and discover

omissions. In software acceptance testing, the goal is to determine if the product can be

satisfactorily used by the customer, even if some errors go uncorrected until the next

version is released. In acceptance testing, an additional goal is the assessment of main-

tainability of the product. Another major difference between development testing and

acceptance testing involves perspective: testing against evolutionary development

materials vs testing against contract specifications. The administration of the testing

has similarities (e.g., appropriate documentation for planning, test materials and report-

ing) and differences (e.g., type of information included in the documentation, change

procedures caused by rejection). Some types of automated support for testing can be

used for general testing (e.g., test driver), but others may serve best in only one type of

testing (e.g., source instrumenter).

Managem.ent responsibilities differ for custom and off-shelf software. For custom

software, the customer establishes contractual requirements placed on the development

process. These may include the development methodology, documentation standards,

quality assurance standards, the specific deliverables, and the criteria for their accep-

tance. The contractual requirements may include delivery of test data suites and data

related to the number, kind, and severity of discovered errors. The developer has

responsibility for meeting scheduled milestones and for providing information from

which certification of both modules and the integration of modules can be deduced. An
effective configuration control system would be required to provide useful information.

22

Issue Possible Approach Constraints

Management

Custom User involvement through lifecycle

Accurate, timely information

provided to the user

Integrity of vendor

Accuracy and

completeness of data

0(T-Shelf Demonstration

Functional testing

Planning for integration with

existing software

Integrity of vendor

Contractual

Initial acceptance Development of stable & quantifiable

acceptance criteria for contract

Existence of

contract

Maintenance Warranty

Support agreements

Enforceability

Risk

Consequences

of failure

Risk analysis consistent

with cost+benefit analysis

Size of application

Criticality

Modes of

failure

bnective identincation oi

risks

Development of

quantifiable tests for risk

Organization

Structure +
Commitment

Define authority & responsibility

Develop organizational

standards

Develop effective reward systems

Existing organizational

structure

Conflicting objectives

Planning Develop test strategy

Integrate all other management issues.

xime, money
Quality of personnel

Quality of external organization

Availability of tools

Figure 10. Management issues of software acceptance testing

When information from the development process cannot be contractually required

(e.g., with off-shelf software), management is forced to rely on other mechanisms. These

could include previous experiences with the vendor, demonstrations of the software, and

trial versions of the software. Management would still be required to specify criteria for

the acceptability of such software. These criteria include functionality of the software

and whether the software works well with existing software.

23

The constraints on the above management approaches include the availability of the

information, its accuracy, and the integrity of both the information and the developer.

Contractual issues (e.g., items for inclusion in contracts, enforcement) are another

management responsibility. Two principal types of contractual items involve different

times within the life of the product:

o the development and initial acceptance of the software, and

o problems that arise with the software after initial acceptance.

For the former, contractual documentation identifies deliverables and assigns respon-

sibilities to the developer and the user. For the latter, it is very important to establish

criteria that can be measured. For example, a contract requiring only that the product

be maintainable does not provide measurable criteria. A contract requiring material with

specific content and format (e.g., design documentation, development test data) to sup-

port maintainability is better. Management, through its planning responsibilities, can

help to solve the technical software acceptance test problem of testing for maintainabil-

ity. A contract should specify materials needed by the customer for support of a feature

or quality characteristic, and the acceptance test plan will ensure examination of these

materials.

For working with later problems, the contract should have a warranty. Support,

maintenance, and training agreements should be specified. The constraints on contrac-

tual items are the existence of a real contract and the enforceability of contractual

clauses.

The theme of risk appeared in almost every discussion. The risks are of two kinds:

managerial and technical. Management is concerned with the consequences of failure of

the accepted product, or, in the case of a vendor releasing a product, the marketed pro-

duct. Liability, marketing capability, and financial matters (e.g., the cost of mainte-

nance due to acceptance of an untested, poor product) are managerial concerns while

reliability, performance, and maintainability are examples of technical risks. Acceptance

testing and the analysis of the results provide measures for the assessment of potential

failure and of the amount of maintenance a product might require. The management
strategy includes risk analysis that

o identifies risks,

o establishes their priority, and

o quantifies the risks.

One outcome of a risk analysis is the identification of acceptable and unacceptable

risks in terms of costs to the organization. A risk analysis might affect vendors' decisions

on the level of acceptance testing and on the release of a product. For example, should

the company market a product with known errors because entry into the marketplace is

critical at this time or would damage to its reputation be unrecoverable with this entry?

Organizational structure and commitment issues refer to the responsibilities of indi-

viduals within the organization and the organization's commitment to eff"ective accep-

tance testing. The management strategy is to develop plans that define both responsi-

bilities and the authority to manage aspects of acceptance testing; to develop a uniform

acquisition procedure; to be involved in acceptance testing from the beginning and

throughout the project; to develop organizational quality standards that acquired

software must meet; and to have an organizational structure rewarding individuals who
perform effectively in the software acceptance process. The management constraints

24

consist of existing organizational structures; conflicting organizational objectives; and

the time and money allocated to acceptance testing.

A principal management responsibility is planning for ensuring maintainability and

continued usability of the software. Software acceptance testing needs to include exami-

nation of the product for these qualities. A maintained product should undergo accep-

tance testing and repeatability of previous acceptance tests is important. It is a

management responsibility to insist that acceptance tests are repeatable. Management
support in planning and directing software acceptance testing can help to solve some
technical problems.

Acceptance testing should include the kinds of users who may be involved with a

software product:

o those who use the end product,

o those who operate the end product, and

o those who maintain the end product.

The group suggested that all involved parties should be required to sign for accep-

tance or rejection as a result of the acceptance tests.

Planning is a management issue that overlays all the rest and includes the develop-

ment of a software acceptance test strategy flexible enough to evolve over time. This

strategy should include scheduling, methodology, required standards, and early

identification of alternatives if problems arise in the software development or the

acquisition of off'-shelf software. Management must also identify and quantify quality

criteria, perform risk analysis, develop evaluation procedures (with feedback), and coor-

dinate the external development with internal acceptance testing. The constraints in

this planning include the quality and number of people, the amount of money and time

available for the acceptance testing effort, the expertise of the personnel, the accounta-

bility of individuals within the organization, the quality of the external organization,

and the availability of tools to aid the acceptance process.

Planning was determined to be the key task of the management of software accep-

tance testing. Perhaps the most important factor in planning for acceptance testing is

the risk analysis that provides management with the ability to determine how much
acceptance testing is needed. The planners may develop requirements and constraints

based on these risks. The plan may provide direction for some technical problems of

testing. Once the plan is written, management u\ust ensure its complete implementa-

tion.

3.6 STANDARDIZING SOFTWARE ACCEPTANCE TESTING

3.6.1 Charge

The participants in the Standardization group were asked to examine standardiza-

tion as applied to software acceptance testing. Issues include aspects of software accep-

tance that could be standardized; aspects that should be standardized; aspects that

should not be standardized; and aspects that currently cannot be standardized. Existing

standards should also be addressed.

25

3.6.2 Rationale

Acceptance testing for products in domains other than software has led to standard

that ensure the quality of those products. These range from physical standards such a&

strength of materials and tolerances of parts to engineering standards for the design of

structures such as bridges and buildings. Software is unusual because few standards

exist to measure either the quality of the delivered product or the quality of the

engineering process that went into the design of the product.

Successful methodologies and engineering practices for the development of software

have matured; the issue of software quality standards can be addressed. Categories of

standards could include standards for acceptance of a delivered product, standards for

the development of software, standards for the products to be delivered with the

software (e.g., documentation), and standards for tools to measure compliance with

software acceptance test standards.

The main benefit of a standard is obvious - the assurance that a product meets

specified standards for its development practices and for its product specifications.

There are dangers, however, to standards. Standards can stifle innovation for there may
be little incentive for producing a product that "exceeds" a standard. Standards may
prevent competition because new methodologies may be precluded from use. Standards

may be imposed prematurely. To what extent is the area of software acceptance testing

mature enough to benefit from standardization?

The standards group was asked to investigate the suitability of various areas of

software acceptance testing for standardization. They were to investigate areas where

existing standards could be adapted to acceptance testing (e.g., test planning) and areas

where standards are needed or could be developed. These questions were to be

addressed specifically and in the general context of the need and desirability for stan-

dards at this time.

3.6.3 Discussion

The group considered the benefits and limitations, usage guidelines, and specific

areas for standardization.

Benefits and Limitations

A summary of benefits and limitations of standards in software acceptance testing

appears in Figure 11. A software acceptance test standard would be used by vendors,

testers, quality assurance personnel, legal staff, auditors, and customers, including both

the contracting office and the end users. A common set of definitions may help to clar-

ify legal misunderstandings. For example, the users of the standard could understand

how deliverables in a contract are to be measured, based on that standard's common set

of definitions. Managers may use a standard as a vehicle for planning. Personnel new to

software acceptance testing may have a minimum basis from which to work. In general,

a standard provides a framework from which a particular task may be tailored to pro-

ject needs. Different audiences derive different benefits from using standards.

26

BENEFITS LIMITATIONS
Common definition

Minimum set

Planning aid

Large audience

Too weak
Technology hindrance

False security

Art; not practice

Figure 11. Standardization: benefits and limitations

One of the major problems associated with technical standards is that new technolo-

gies cannot always be adopted when a standard is in place. Others complain that

because standards are written in the broadest manner possible, they may become so

weak that no benefit is derived from using them. Some standards may contain examples

or other material that usei-s apply directly to their projects without incorporating any

additional material into their application. This approach may provide a "false sense of

security" when a standard is intended to provide only a minimum set of standardized

activities.

An inherent danger of attempting to standardize a technology lies in not separating

the state of art from the state of practice. A technology that is not yet mature (e.g.,

wide-spread disagreement on how to perform a process) is not ready for standardization.

In some cases, it might be better to develop a recommended practice rather than a

standard. This would be especially helpful where there may be political difficulties in

putting a standard into place. Finally, another limitation of standards concerns the

content. Should the content define a minimum set of tasks and directives that all pro-

jects must perform or use, or should a standard set a goal that all projects should strive

to achieve?

Usage Guidelines

The working group discussed the implementation of a standard. A standard should

include an appendix with guidelines on usage, with suggestions for tailoring to specific

types of projects and with examples. A standard in software acceptance testing will

have several types of users, ranging from vendors' internal organizations to those of the

customers. The vendor, for example, may perform a set of qualification tests first; the

actual dynamic acceptance tests may be a subset of the tests the customer will perform.

The audience determines how the standard will be implemented.

Standardization Topics

For software acceptance testing, the topics indicated in Figure 12 need to be clearly

understood before a standard can be developed.

Users of a standard for software acceptance testing may include developers, quality

assurance personnel, test personnel, and customers, including both end users and the

acquisition agency. Project managers may use such a standard to help with their

resource and schedule planning for the software acceptance testing. On small projects

some of these groups can overlap; on very large or critical projects, the project organiza-

tion can be large with little overlap among the groups. In the former case, a quality

assurance organization might be tasked with software acceptance testing but in the

latter situation might only approve the use of, and ensure compliance with, a software

acceptance test standard. It may be possible to develop a versatile standard useful to

any of the audiences, in any organizational arrangement, but usage guidelines should be

included.

27

o users of the standard

o requirements and testing relationship

o the type of software system: off-shelf vs custom

o tool for implementation of the standard

o specific items for standardization

- test methodology
- test plan

- test results report

- test evidence

- test evaluation and recommendations.

Figure 12. Topics to understand before standardization

Requirements for the product(s) and acceptance testing go together. For acceptance

testing, the basis for the testing must be identified, (e.g., requirements documentation,

contractual agreement). Often an assumption is made that the requirements fully

represent the user needs; unfortunately this is not always true. How are user needs

represented in acceptance tests? The group emphasized that "contractual documents"

for custom software should include user needs.

Acceptance test for off-shelf software is a very different process from acceptance test

for custom design software. For off-shelf software, a comparison is usually made among
several products before one is selected. The user documentation and user requirements

provide materials for the acceptance test. With custom software, the functional

specifications may evolve during development, and some parts of the acceptance process

may occur during development.

One member of the group described a very limited set of acceptance test tools

applied on a project. On this project, tools were developed to provide total data cap-

ture during testing. Testing was easier to track and more consistently performed with

standard formats for test scripts, test data, and documentation. The testing itself was

automated. The experience from this set of tools indicates that generic types of tools

for software acceptance testing could be specified in a standard.

The test activities may be performed in a standardized sequence. One standard

[IE829] defines a generic test methodology that orders a given sequence of test documen-

tation (e.g., test plan, design, cases, procedures). Another standard [IE1012] defines test

types according to their sequence of execution and requires a requirements trace, i.e., a

matrix of requirements vs test documentation. A software acceptance test standard can

provide a standard format for the following items:

o scope of objectives for the acceptance test

o sequence of test activities

o test plan

o control procedures, (stop & restart)

o form for pre-determined cases (form for test scripts)

o type of evidence

o tool types

28

o test results report (analysis, evidence)

o test summary and recommendations.

The initial software acceptance test standard should specify the type of information

to be addressed in the test plan, the test evaluation and analysis report, and the test

summary and recommendation report. In Figure 13, the types of information vary

according to who will use the test plan: the vendor or purchaser of off-shelf software or

those involved with custom software. The amount or type of information for a specific

information product may also vary according to the perspective of the user of the plan.

The timing sequence of development of test items is specified. The traceability matrix is

required for all software. Information on constraints should be kept separate from the

actual plan but is vital in establishing the acceptance test plan.

Time ran out before the group could take what they considered the next logical step:

to expand on each of the information products in Figure 13 from the vendor's view and

the user's view for off-shelf software, and the customer's view for custom-built software.

Types of Software

OfT-Shelf
Information products

Vendor's View User's View Custom

Test Plan

1. Criteria Objectives Marketing

user documentation

User Documentation

and Needs

Contractual

2. Methodology Needs to be

identified

Needs to address

"quahfication" tests

Based on Criteria

3. Procedure Needs to be

identified

Based on Methodology Based on

Methodology

4. Cases Subset of

qualifications

Built by

user

Based on Procedure

5. Data Subset of

qualifications

Range from

generic to specific

Based on test data

6. Traceability Matrix Applicable Applicable Applicable

7. Controls for

stops & restart

Needs to be

identified

Not Applicable Needs to be

identified

8. Requirements Needs to be

identified

User's needs Needs to be

identified

Constraints

1. Resources Simulation of

operating environment

Training Simulation of operating

environment

People; Hardware; Tools

2. Schedule Release driven Need driven Contract driven

Figure 13. Information described in Software Acceptance Test Plan

29

The expansion would have given more details in these areas without establishing any

standards, for it is too early to standardize those details.

In closing, the group made the suggestion that a standards developing organization

might form a committee to consider a standard for software acceptance testing.

3.7 RESEARCH FOR SOFTWARE ACCEPTANCE TESTING

3.7.1 Charge

The participants in the research session were asked to define areas where research in

software testing could lead to techniques permitting more effective software acceptance

testing. The topics to be addressed included research in automated support of accep-

tance testing; research results that are ready for transfer into practice; topics in accep-

tance testing that might be amenable to precise definition (e.g., robustness, maintaina-

bility); and programming language research that could lead to the development of good

specification and requirements languages.

3.7.2 Rationale

Although some areas of software testing (e.g., test case selection) have received

attention from the research community, they lack direct connections to the problems of

acceptance testing. The identification of those areas is important for facilitating the

transfer of technology from the research community to the practice of software accep-

tance testing. The research areas session was asked to identify those areas which show
the most promise for technology transfer.

Terms describing quality (e.g., robustness, functionality, maintainability) are gen-

erally understood by the testing community but lack a precise definition. This leads to

great difficulties in defining test data to test for these qualities and to difficulties in

measuring when a sufficiently high level of each quality is achieved. One solution might

be to define models of software development in which such terms can be given precise

meanings. Do existing models of software development permit precise definition of such

terms and if so can the definitions be extended to more general settings? Part of the

development model includes representation of requirements and specifications. The
research areas group was asked to discuss the development of requirements and

specification languages and to discuss the eff'ectiveness of any known to be in use.

Generic areas of research (e.g., artificial intelligence) might lead to more effective

techniques for software acceptance testing. For example, could a system understanding

natural language aid in solving the problem of requirements validation? The partici-

pants were asked to investigate which generic research areas might lead to the solution

of outstanding problems in software acceptance testing.

3.7.3 Discussion

The research areas group concentrated on acceptance testing for one of a kind

software projects in which access to software development data is available. The accep-

tance test is then viewed as a two part process. The first is certification that the

software, as developed, is thoroughly tested (development test). The second is that the

software works correctly (operational test) in its intended environment. The group con-

sidered the software acceptance test concerns relative to the initial delivered version of a

product. If the software is certified properly during the development stages, and if the

30

information is kept for use during maintenance, then the same techniques should be

applicable during maintenance.

The certification of the development test process can then be viewed as satisfying

testing criteria at various points in a general software lifecycle. Many products must be

developed during various stages of the software development process, beginning with

definition of the user requirements and ending with the final product.

The definition of software acceptance testing is the "formal testing conducted to

determine whether a software system satisfies its acceptance criteria and to enable the

customer to determine whether to accept the system" [FIPSlOl]. The research group

felt that there are two common scenarios. One occurs when off-shelf software is pur-

chased. Then the customer has little influence on the products that are provided (e.g.,

design documentation, test cases), but the customer can do comparison shopping (e.g.,

benchmarking of similar products). The second scenario occurs when software is

specified, for one of a kind systems. Under this scenario, the group strongly felt that

doing acceptance testing only after the system is complete is a big mistake: that

development testing must be considered as part of acceptance testing. Points in the

lifecycle earlier than the acceptance point were to be considered as possible research

areas for acceptance testing.

Real World

Requirements

1

Validation {zj

Agreed-Upon (1)

Representation

Specification (2)

Verification (4,^i)

Executable (5)

Representation

Code

Internal Analysis (5)

Usability (1)

Internal Analysis (5)

Trial, Beta test

Figure 14. Simplified software development model

To enable a customer to determine whether or not to accept a system implies build-

ing customer confidence in a system. One question concerns how to build that

confidence when there are many different lifecycles, appUcations, and development para-

digms. The research areas group developed a simplified lifecycle model, shown in Figure

14, that also indicates the iterative nature of software development. The model would

be applied to software maintenance also. Possible research areas from Figure 15 were

mapped to this simplified model.

Some of the research areas include development testing. The group felt strongly

that customers must have confidence in the development testing and that research is

needed to learn how to take advantage of white box certification during acceptance test-

ing. White box coverage techniques enable the acceptance tester (and customers) to

know what percentage of modules (or source lines, or branches) have been tested. This

knowledge, combined with other types of evidence during acceptance testing, enables

the customers to determine if the system does what they want; the combination may
help to build customer confidence. The acceptance testing may perhaps be focused on

usability at the operational level. For usability, research is needed to quantify human

factors. This research area appeared frequently in group discussions. Human factors

31

would be taken into account to represent a system to the customers as part of the pro-

cess in enabling them to make an acceptance decision. An example is that user func-

tions need to be analyzed before accepting a very high level language as usable.

At the beginning of the lifecycle, product development begins with the statement of

user requirements. Several issues arose concerning this topic. There was clear agreement

that prototyping is an effective way to obtain user requirements in many situations. A
prototyping tool would then act as a requirements validation mechanism. It was also

generally agreed that the problem of notation for requirements has not been solved.

Suggestions for such notation ranged from subsets of English, to graphics, to other

unspecified media. It was agreed that the notation would depend very much on the

specific product being developed.

Further into the lifecycle it becomes necessary to convert the user requirements into

some form of specification (e.g., design). These specifications must then be shown to be

consistent internally and with the requirements. At a minimum, the form for

specifications should permit effective consistency checking. Ideally there would be an

automatic conversion from requirements to specifications; this was viewed as a very long

term research goal.

Still further into the lifecycle it becomes necessary to convert the specifications to

code. At this point unit testing becomes important. Advances in unit test have been

made, but they are costly to implement. One research issue is the automation of the

unit test process to reduce cost. If modules can be given certificates of correctness, then

what does this imply about the correctness of the software system as a whole? It was
agreed that such certificates were necessary for acceptance of the software, but not

sufficient. Thus the integration of the modules must be tested.

The major concern regarding integration, and for that matter the entire software

development effort, was the tremendous amount of data that accumulates over the life

of a major project. Research should be directed towards the development of a sophisti-

cated configuration manager. The configuration manager tool would track changes in

code through both requirements and specifications. It would track those modules

affected by changes in requirements or specifications. Advances in several areas (e.g.,

database theory, incremental data flow, artificial intelligence) might contribute to the

development of such a configuration manager.

1. Quantification of human factors

2. Notation for requirements specifications

3. Methods to validate requirements specifications

4. Black box testing techniques

5. White box testing techniques

6. Test adequacy measures throughout the lifecycle

7. Measures of the effectiveness of testing and adequate data collection

8. Control of test documentation and configuration control

9. Automation of testing throughout the lifecycle

Figure 15. Suggested research areas for software acceptance testing

32

Problems associated with the the final testing of the system (operational testing)

were then brought up. The first was the possibility that the system could not be opera-

tionally tested. This type of problem exists with military systems (e.g., SDI software), as

well as in civilian systems (e.g., nuclear reactor control systems). Simulation helps in

such situations, but is not adequate in many cases. Another problem is in the testing of

expert systems. A solution to this problem is reliance on some sort of Turing test (e.g.,

testing the system's recommendations against those of three experts). The system is

accepted if it agrees with a majority of the experts sufficiently often or sufficiently

closely.

Several types of tools might be useful for software acceptance testing. Among these

are data collection tools. Collected data on project history could be used by the forecast-

ing tools to predict time and effort needed for retesting. Or, data may be used by
evaluation tools to indicate project testpoints. Comparison tools for use at different

points in the lifecycle might also be helpful. Other tool areas where research efforts

might contribute to advances are test support tools and version control tools.

While some tools do exist, research is needed to improve their utility, especially in

tool integration. The group proposed an ambitious research project: development of an

integrated data base containing software development information (e.g., requirements,

specifications, modules, unit tests). Tools would operate against the data base for docu-

ment generation, tracking, forecasting, and other tasks. With such a system, those per-

forming the final acceptance tests would require delivery of the data base, the tools to

access it, and the operational tests; then they might be able to perform complete accep-

tance tests.

The group addressed two related issues: How does one make an acceptance decision?

And, how does one learn to make an acceptance decision? Research in the areas of

black box testing (4), test adequacy measures (6), white box techniques (5), and meas-

ures of the effectiveness of testing and data collection (7) as indicated in Figure 14 might

help to answer the first question. Research on quantifying human factors (1) and again

effectiveness measures (7) might provide advances in answering the second question.

And finally, research on controls (8) and automation (9) might be used to support

advances in management, configuration management, automation, and data collection

problems.

3.8 PRACTICES OF SOFTWARE ACCEPTANCE TESTING

3.8.1 Charge

Through the study of examples of current practices in government and industry, the

participants in the state of practice session were asked to determine the current state of

practice and to recommend procedures to improve the state of practice in software

acceptance testing.

3.8.2 Rationale

The state of practice in software acceptance testing varies widely from organization

to organization. From examination of the practices in a number of organizations and

analyses of their successes and failures, optimal methods for acceptance testing might be

uncovered.

33

First, it is necessary to identify current practices, to separate the successes from the

failures, and to identify common features among the successes. Other useful informa-

tion concerning current practices includes the extent to which automation is utilized, the

levels of required documentation, the commonality of acceptance test deliverables, and

the kinds of standards, both developmental and acceptance test, that are used. It will

also be necessary to determine how the acceptance test practices differ with the type of

software undergoing test.

The results of the information gathering can lead to the recommendation of practices

ready for standardization, the identification of problem areas that require improvement,

and the recommendation of a software acceptance test methodology including

automated support.

3.8.3 Discussion

The participants' discussions on the state of practice of software acceptance testing

primarily concerned custom software. The software may be custom built for a specific

customer, or developed by a vendor to become an off-shelf product. In the latter situa-

tion, the vendor becomes the acceptance tester of the software for acceptance as a pro-

duct to be marketed.

The participants discussed their practices, citing successes and problems, in a lifecy-

cle development framework. The firmest recommendation was for a strong acceptance

test plan, supported with other management and quality practices. Practices, described

according to successes and problems (Figure 16), involve different parties:

o the users (acceptance testers)

o the acceptance test management
o the hardware/ software system.

Acceptance testers, who represent users of the software, must be involved

throughout the software lifecycle. Communication between developers and users of the

product is essential. An experienced developer may provide help to purchasers who, for

a variety of reasons, may not be totally familiar with their own business practices or

who may not have used computer systems previously. When the users of the intended

product are not the contracting officers, communications are vital during requirements

specifications to ensure that all the functions for the product are included, and are

clearly stated. The users who are either represented by, or who are, the acceptance tes-

ters, need to work closely with the developers to ensure testability of any requirement.

Acceptance testers, especially those who are the intended end users, may be unfami-

liar with computers. Often an application is part of a much larger system, including the

hardware to be maintained by the purchasing organization. Steps must be taken to

ensure that the acceptance testers do not become frustrated by problems unrelated to

the software application. Operations and systems personnel need training in advance of

acceptance testing to prevent test disruption due to non-application problems (e.g., com-

munication protocols incorrectly initiated). The acceptance testers themselves need to be

trained in the application. They should have access to all the documentation, and

should know how each of their tests relates to contractual requirements.

34

SUCCESSES PROBLEMS
USERS Standardized internal procedures

Quality assurance

Configuration management
System training

Trial use before testing

User business training

Computer and application training

Test staff turnover

Staff working in shifts

Inexperienced operations staff

Inexperience with the business

Inexperience with computers

MANAGERS Strong acceptance test plan

Clear requirements

Testable criteria

Designation of responsibility

Risk assessment

Rewards, reasonable schedules

Lack of quality assurance

Haphazard practices

Lack of testable requirements

Uncorrected errors

Schedule

Frustrated testers

SYSTEM Configuration management tools

Test-aid tools

Trace tools

Repeatable, maintained test sets

Changing versions

Changing environment (developer to operations)

(operation changes)

System interfaces

Regression testing

Figure 16. Practices of software acceptance testing

One organization solved the problem of severe delays caused by staff turnover by
developing a standardized internal system for building and maintaining test cases. The
system included the rules for test case development, a test case matrix for tracing the

test materials to requirements, and predetermined test results. Quality assurance and
configuration management on acceptance testing also made regression testing easier to

perform correctly. Tools were cited as helpful for all test-related activities; those cited

as most useful are for test coverage checking, test reporting, and configuration manage-

ment.

Strong management can solve many of the technical problems by insisting on com-

munications with the developers, training for all parties involved in the acceptance test-

ing, appropriate tools, and reasonable schedules. The management has responsibility for

ensuring that the requirements to be tested are testable, and the acceptance criteria

measurable. The managers need to plan how the testers are to report problems, what

conditions warrant stopping of tests, and how much regression testing on changes is to

be done. In some organizations, testers are detailed from their daily jobs as needed for

the test execution. Sometimes when acceptance tests last over several months, the tes-

ters will sign off simply to be done with the task. Management needs to have clear pro-

cedures and designated responsibility for signoff. Finally, the testers are often frustrated

because they have been removed from their normal duties and career paths. Managers

need to consider incentives for testers, (e.g., reward system).

The product itself is the cause of some acceptance test problems. Differences in the

product may occur in the transition versions from the developer to the operational

environment ; these differences can be detected by using configuration management tools

to ensure all the appropriate pieces are in place. Comparators used on code compiled in

different environments (e.g., developer-user; two or more user installations) can check for

differences in the object code. When the user environment itself changes, acceptance

testers need to examine the requirements to understand how the acceptance tests should

change. Several organizations represented at the workshop cited use of test sets

35

MANAGEMENT PRACTICES
o Take a lifecycle approach to acceptance testing

o Be involved early to establish acceptance criteria and test requirements

o Insist on documentation well in advance of various development progress

o Develop QA, CM plans

o Perform, follow through on, risk assessment

o Keep all parties informed

o Allow sufficient time for auxiliary tasks

- documentation review

- training of different types of personnel

o Use results of verification and validation tasks

o Specify test reporting, stopping policies.

TEST PLAN TOPICS
o Automated Tools

o Testable Criteria

o Process for Trouble Reporting & Monitoring

o Traceability of Test Requirements

o Adequate Test Case Coverage

o Test Case Matrix

o Predetermined Test Results

Figure 17. Recommended practices for software acceptance testing

maintained on tape; these are executed after any environmental change and checked by
means of comparators with previous tests.

The working group prepared a summary of items that acceptance test managers

must address in software acceptance test plans (Figure 17). The complement to items

appearing in a plan are the policies that software acceptance test management must
develop and implement, and ensure that the staff also implement them. Planning ahead

for software acceptance testing, management implementation of policies, and support for

the acceptance testers are important steps for ensuring good practice in software accep-

tance testing.

4.0 SUMMARY

The Software Acceptance Test Workshop held at the National Bureau of Standards

on April 1-2, 1986, has resulted in the expansion of the software acceptance test project

into the software acceptance project. Consensus of the various sessions is that software

acceptance, whether for custom or off-shelf software, is a life-cycle activity. Initial plan-

ning for software acceptance occurs in conjunction with project planning, and continued

management of the software acceptance must occur throughout the lifecycle. Execution

of software acceptance tests at the delivery of the software is a subset of the processes

36

of software acceptance. Software acceptance incorporates many evaluation methods and
procedures from software development. These methods and procedures are used to

determine whether quantifiable acceptance criteria have been satisfied.

o software acceptance

o maintainability

o automation
- recommended types

- emphasis on research

o initial and continued management

o learning from successes

o acceptance criteria and the end user

- during requirements (deliverables, evidence)

- throughout development
- human factors research

o role of development testing

- vendors of custom and off-shelf

- purchaser

o standards

- de facto

- conformance testing

o guide, rather than standard

Figure 18. Key discussion topics

Some key points of the workshop are presented in Figure 18. In some cases, discus-

sion of these topics led to the software acceptance approach. In other cases, consensus

on the approach led to the discussion of these topics as key to developing successful

acceptance procedures. The life-cycle approach to software acceptance was taken by all

the groups, except the off-shelf group; their view was that the lifecycle affects the ven-

dors but purchasers have a different perspective. A more general disagreement occurred

when several groups defined either software acceptance or acceptance test as a starting

point for their discussions. These definitions differed in detail from one another and also

from published definitions of the terms. Further work is needed to form a consensus

definition. Some recommendations within groups were based on their perceptions of

how development testing and acceptance testing differ. At least three groups had

different opinions (test case selection; automation; management).

37

Maintainability was the software quality referred to most often during the workshop.

The participants felt that end users needed to be involved early to ensure that maintai-

nability was established as a contractual requirement. The suggested contractual

requirements ranged from the inclusion of intermediate development products as deliver-

ables (design documentation, test materials, tools) to required development practices

(e.g., standards for design documentation, test materials, tools). Evaluation for maintai-

nability could include reviews, walkthroughs, or automated analyses of these materials.

Although the human factors aspect of maintainability was felt to be important, the

groups concluded that further research would be needed to determine how to measure

this aspect of maintainability.

Automation for software acceptance testing was addressed by alm.ost every group.

The automation group suggested tool types to aid in test tasks. The research group

recommended test support tools as a class of tools and expanded their recommendation

to included test management tools (e.g., forecast tools for retest resources). The stan-

dards group recommended that a standard on software acceptance should address tool

requirements. One tool type that had priority in discussions was a tracking tool, either

for tracing requirements and test documentation, or for tracking test progress and

results. All the groups preferred a highly-integrated tool set, but as emphasized by the

research group, more research is needed before an effective integrated tool set will reach

the marketplace.

The management of software acceptance begins with the requirements for both cus-

tom and off-shelf purchases. Initial management includes planning based on various

analyses (e.g, risk, cost/benefit). Risk concerns were voiced strongly as a primary

responsibility of management in determining the amount of resources to devote to

software acceptance. Communication was cited as an important means of alleviating

frustrations usually encountered during software acceptance. Good management prac-

tice includes incorporating practices that lead to the effective communication of manage-

ment decisions to the technical staff, communication among the technical staff members,

and communication from the technical staff to management. Management also provides

support by monitoring and controlling resources. In particular, resources (e.g., tools,

training, staff time) must be made available so as to ensure the timely completion of

software acceptance.

Problems in software acceptance testing experienced by some workshop participants

frequently found solutions from discussion of other participants' more successful experi-

ences in similar situations. End users who perform software acceptance tests were more

successful when they had standardized internal procedures, adequate training, and

software engineering practices in place for testing. The consensus of all the groups is

that it is management's task to ensure the existence of this type of environment for end

user software acceptance testing. Careful selection of automation may also contribute

to successes; however, both research and development are needed to create adequate

tools for software acceptance.

While most groups agreed that more deliverables should be evaluated for acceptance,

and that the evidence that acceptance criteria have been met may come in varied forms,

all groups had difficulty quantifying criteria. Research in human factors is important in

almost all areas (e.g., for transforming requirements to usable forms, for understanding

and quantifying maintainability, for acceptable user documentation). Identification and

involvement of the end user when the requirements are defined is also an important step

toward improving the software acceptance process.

38

The life-cycle approach to software acceptance includes both custoni and off-shelf

software, but generally from different perspectives. In both cases, development testing

may contribute to the confidence that the software meets its requirements. For custom

software, the purchaser should be tracking the development testing as performed by the

developer and as required by the contract. For off-shelf software, the vendor should be

employing good software engineering practices, including software testing during

development. Purchasers will want to know how the testing was done. Finally more

research is needed to understand how results of development testing can be used as part

of the acceptance process for off-shelf software.

For acceptance of off-shelf software, vendors and customers are both involved but

perhaps serially rather than in parallel as for custom software. Thus the life-cycle

acceptance process is different. Vendors should follow the acceptance practices during

development as though they were their own customers. Customers must then match
existing software characteristics of a product to their needs. The customers need the

confidence that the product meets its advertised characteristics. One approach to off-

shelf testing is to standardize the basic specifications for a generic off-shelf software pro-

duct or accept a de facto standard for a specific product type. Then conformance tests

could be executed to demonstrate conformance to that standard by products from

different vendors. If a standard for a product type did not exist, users would use other

test procedures (e.g., benchmarking). When off-shelf products are to be tailored for a

customer, the recommended practices for acceptance of custom software should be

implemented. Whether the ofi-shelf product is accepted as is, or is modified to custo-

mers' needs, an important component is its integration into an existing hardware and

software environment. This integration is easier to quantify than other acceptance cri-

teria. Hence the development of guidelines to aid software acceptance of off-shelf

software products is feasible.

Given the state of research and development in software acceptance, the best

approach is to develop a guide, not a standard, for software acceptance. A guide would

provide options. It would describe the types of information needed for planning and

managing the acceptance of software at critical points in the lifecycle. Evaluation

methods and procedures, and the automated aids to support them, have not matured

sufficiently to be standardized for all software.

39

5.0 REFERENCES
[DOD2167]

"Military Standard Defense System Software Development," DOD-MIL-STD 2167,

Washington, D.C., 1985.

[FIPS38]

"Guidelines for Documentation of Computer Programs and Automated Data Sys-

tems," National Bureau of Standards PIPS PUB 38, 1976.

[FIPS64]

"Guidelines for Documentation of Computer Programs and Automated Data Sys-

tems for the Initiation Phase," National Bureau of Standards FIPS PUB 64, 1979.

[FIPS99]

"Guideline: A Framework for the Comparison of Software Development Tools,"

National Bureau of Standards FIPS Pub 99, 1983.

[FIPSlOl]

"Guideline for Lifecycle Vahdation, Verification, and Testing of Computer
Software," Software," National Bureau of Standards FIPS PUB 101, 1983.

[FIPS105]

"Guideline for Software Documentation Management," National Bureau of Stan-

dards FIPS PUB 105, 1984.

[FIPS106]

"Guideline on Software Maintenance," National Bureau of Standards FIPS PUB
106, 1984.

[IE729]

"IEEE Standard Glossary of Software Engineering Terminology," ANSI/IEEE Std.

729-1983, The Institute for Electrical and Electronics Engineers, Inc., 345 East

47th St., New York, NY 10017.

[IE730)

"IEEE Standard for Software Quality Assurance Plans," ANSI/IEEE Std. 730-1984,

The Institute for Electrical and Electronics Engineers, Inc., 345 East 47th St., New
York, NY 10017.

[IE829]

"IEEE Standard for Software Test Documentation," ANSI/IEEE Std.829-1983,

The Institute for Electrical and Electronics Engineers, Inc., 345 East 47th St., New
York, NY 10017.

[IE1012]

"IEEE Standard for Software Verification and Validation Plans," IEEE Std. 1012,

The Institute for Electrical and Electronics Engineers, Inc., 345 East 47th St., New
York, NY 10017.

[NBS3407]

Wallace, Dolores R., "An Experiment in Software Acceptance Testing," NBSIR 86-

3407, National Bureau of Standards, Gaithersburg, MD 20899, July, 1986.

[NBS136]

Wallace, Dolores R., "An Overview of Computer Software Acceptance Testing,"

NBS SP 500-136, National Bureau of Standards, Gaithersburg, MD 20899, Febru-

ary, 1986.

40

[RADC]
Bowen, Thomas P., et al, "Specifications of Software Quality Attributes," RADC-

TR-85-37, 3 vols., Rome Air Development Center, GrifTiss AFB, NY 13441-5700,

February, 1985.

41

6.0 APPENDIX. ATTENDEES

W. Richards Adrion, National Science Foundation

Barbara Audrey, US Army
Steve Barnum, Department of Commerce
John Bielski, ASCI
John Biggie, Dept. of Health and Human Services

Peggy Brouse, Mitre Corporation

Nander Brown, Nander Brown & Company
Robert B. Bunting, Department of Education

Lee Burke, Treasury Department

John Cherniavsky, Georgetown University; National Bureau of Standards

Lori Clarke, University of Massachusetts, Amherst
Alison Cleary, Data General

Al Coblentz, Applied Info Develop Inc.

John Cochran, General Services Administration

Vincent Dell'Orto, Internal Revenue Service

Bill Dupras, NESTAR Systems

Charles Eater, Veterans Administration

Walter EUis, IBM Federal Systems Division

Doris Fairbanks, Internal Revenue Service

William H. Farr, Naval Surface Weapons Center

Richard Fath, Federal Communications Commission
Jean-Philippe Favreau, National Bureau of Standards

Sheila Frankel, National Bureau of Standards

Lela Franklin, Central Intelligence Agency
Charlotte A. Gallagher, Data Systems, Inc.

David Gelperin, Software Quality Engineering

Al Grau, Social Security Administration

Keith L. Hatfield, International Bureau of Software Testing

Harry Heffernan, Government Computer News
Stephen J. Hirsch, National Security Agency
Mei-Cheng Hu, IBM/FSD
Millie Ingels, Department of Commerce
Marvin L. Kelliebrew, Department of Commerce
Rick Kuhn, National Bureau of Standards

Cyr Linonis, Bureau of the Census

Phil Marriott, Computer Technology Assoc.

Roger Martin, National Bureau of Standards

Ronnie Martin, Georgia Institute of Technology

Gene McDowell, Department of Commerce/NOAA
Walter D. Medley Jr., Government Services Administration

Susan Menke, Federal Times

Robert Munsey, Bureau of the Census

A. J. Neumann, National Bureau of Standards

Joe Nichols, Small Business Administration

Wilma Osborne, National Bureau of Standards

Tom Ostrand, Siemens Corporation

42

Mark Palmer, National Bureau of Standards

N. Bea Parker, Bureau of the Census

Betty Paul, SAIC
Jim Petro, Social Security Administration

John Rachac, Sperry Corporation

Jerry Raveling, Sperry Corporation

Donna Reale, Internal Revenue Service

Samuel T. Redwine, Jr., Institute for Defense Analyses

Brenda Rigg, Pansophic Systems Inc.

Ron Rosh, Internal Revenue Service

George Sauer, Aspen Systems Corp.

Dan Schneider, U.S. Dept. of Justice

David M. Siefert, NCR
Mike Slingluff, Federal Home Loan Mortgage Co.

Louis Smith, Bell Communications Research

Tom Stengle, NASA Goddard Space Flight Center

John Sullivan, Nuclear Regulatory Agency
Keiji Tasaki, NASA Goddard Space Flight Center

Marvin L. Thomas, U.S. Army
Heniy Utz, Department of Commerce
Dolores Wallace, National Bureau of Standards

Elaine Weyuker, Courant Institute of Mathematical Sciences, NYU
Annette Winward, American Automobile Association

William Wong, National Bureau of Standards

Steven Zeil, University of Massachusetts, Amherst

43

NBS-114A iREv. 2.8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

PUBLICATION OR
REPORT NO.

NBS/SP- 500/146

(Jomputer science and

2. Performing Organ. Report No,

echnoiogy

:

3. Publication Date

March 1987

4. TITLE AND SUBTITLE

Report on the NBS Software Acceptance Test Workshop, April 1-2, 1986

5. AUTHOR(S)
Dolores R. Wallace
John C. Cherniavsky

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE

Gaithersburg, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

NATIONAL BUREAU OF STAjNDMDS
DEPARTSEOT OF COMNERCE
GAITHERSBURG, ^ro 20899

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number 87-619806

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bi bl i ography or I iterature survey, mention it here)

This document is a report on the Software Acceptance Test Workshop held at the

National Bureau of Standards, April 1-2, 1986. The workshop consisted of eight sessions

divided over two days. The topics of the first day's sessions were acceptance testing
of off-shelf software, test case selection techniques, automated support for software

acceptance testing, and software acceptance criteria. The topics of the second day's

sessions were the management of software acceptance testing, standardization issues "in

software acceptance testing, research areas for software acceptance testing, ana tne

state of practice in software acceptance testing. This report describes the charges
given to all of the sessions, highlights of discussions from each of the sessions, and
the conclusions of the workshop. This report is intended for those who purchase, market,
develop or maintain software and for those who are responsible for software acceptance
testing.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

automated tools; custom software? management; off-shelf software; research; software

acceptance criteria; software acceptance testing; standardization; test case selection;
test planning; test practices.

13. AVAILABILITY

^ Unlimited

I I

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

[^31 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

50

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(.NotiCcatioa key N-503)

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

IWonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications— Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Pro\ides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-3%).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quanerly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safely

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. .Analogous to monographs but not so comprehensive in scope or definiti\e in treatment of the subject

area. Often ser\e as a \ehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

\ oluntar> Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background
knowledge for shopping in today's technological marketplace.

Order the abo>e NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following SBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 1 1717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper
copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

