
Aiiioa siiiib

Computer Science
and Technology

NBS

PUBLICATIONS NBS SpGcial Publication 500-142

A Management Overview of

Software Reuse

William Wong

C 2

NATL INST OF STANDARDS & TECH R.I.C.

I A1 11 02577778
Wong, Wllllam/A management overview o(s

QC100 .U57 NO.500-142 1986 V19 C.1 NBS-P

he National Bureau of Standards' was established by an act of Congress on March 3, 1901. TheTM he

g Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and

government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering

.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essentiaJ services leading to accurate and uniform physical and
chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

TTie National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems

Engineering

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

Ceramics
Fracture and Deformation

Polymers
Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

^Located at Boulder, CO, with some elements at Gaithersburg, MD.

RESEARCH

INFORMATION

CENTER

Computer Science
and Technology

NBS Special Publication 500-142

A Management Overview of

Software Reuse

William Wong

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards

Gaithersburg, MD 20899

September 1986

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 86-600581

National Bureau of Standards Special Publication 500-142

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-142, 24 pages (Sept. 1986)

CODEN: XNBSAV

U.S. Government Printing Office

Washington: 1986

For sale by the Superintendent of Documents, U.S. Government Printing Office, Wasfiington, DC 20402

ABSTRACT

With skyrocketing software costs, both Federal and private sector
organizations are increasingly interested in finding v;ays to
improve software quality and productivity, and reduce software
risks. Software reuse is one promising method of accomplishing
this objective. This report presents a management overview of the
problems and issues related to software reuse. It provides a
description of software reusability and its scope. The necessity
of technical and management involvement to achieve greater levels
of software reuse is emphasized.

KEYWORDS

Application domain, design environment, development environment,
development methodology, domain analysis, program understanding,
software component, software costs, software management, software
reusability, software reuse, support tool.

i i i

TABLE OF CONTENTS

1 . 0 FOREWORD 1

1.1 Introduction 1

2.0 THE SOFTWARE PROBLEM 2

3.0 SOFTWARE REUSABILITY 4

4.0 BENEFITS Of SOFTWARE REUSE 5

5.0 OBSTACLES TO SOFTWARE REUSE7
6.0 WHAT IS CURRENTLY BEING REUSED ,...8
7.0 WHAT IS NEEDED TO IMPROVE REUSE 10
8.0 SUMMARY ...12

REFERENCES 14
GLOSSARY 16
FIGURES

FIGURE 1 - The Software Problem 3

FIGURE 2 - Benefits Of Software Reuse 6

,r FIGURE 3 - Obstacles To Software Reuse7
FIGURE 4 - What Is Currently Being Reused 9

. , ^ FIGURE 5 - What Is Needed To Improve Reuse 11

i V

1 . 0 FOREWORD

The Institute for Computer Sciences and Technology (ICST) of the
National Bureau of Standards (NBS) , has a responsibility under
Public Law 89-306 (Brooks Act) to promote cost effective
selection, acquisition, and utilization of automatic data
processing resources within the Federal Government. ICST efforts
include research in computer science and technology, technical
assistance, and the development of standards and guidelines for
data processing equipment, practices, and software. The ICST is
developing software reuse guidance designed to assist Federal
agencies in improving software quality and productivity as well
as controlling software development and maintenance costs.

This report presents a managment overview of the various aspects,
problems and benefits of software reuse. Effective reuse of
software may involve substantial up-front investment in order to
lay the basis for future gains. In addition to technical issues,
there are equally important non-technical issues such as lack of
standards, resistance to change, data and proprietary rights, and
project management problems that need to be addressed and
resolved before widespread reuse of software will become a
reality. While there is no magic solution to the problem of
achieving reusable software, this report provides general
guidance in software reuse. Its purpose is to increase awareness
of the scope of the issues and the approaches to improving
software reuse.

1 . 1 INTRODUCTION

The cost of computing is now clearly dominated by the cost of
software. In the late 1950 's software accounted for 20%-30% and
hardware 70%-80% of the direct cost of computing [B0EH81] . Today,
as a result of technological advances in hardware, these numbers
have been reversed. The basic causes of the increased software
cost are the explosive growth in size and complexity, the
critical nature of modern software systems, and personnel costs.
Software costs for both development and maintenance are largely
related to the labor-intensiveness of the process and the
inadequate use of available technology. Effective reuse of
programs, designs, specifications, methods, techniques, and tools
that can be adopted from previous work is one way of lowering
software costs and reducing software risks. Software reuse has
become a key element in efforts to improve quality and
productivity, and to reduce software development time and costs.

1

Reusing well-designed and well-developed software will increase
reliability and maintainability not only because the software has
been previously tested, but also because it has been used
successfully. Developing software for reuse can encourage better
designs with greater emphasis on modern development techniques
and programming practices.

There is not a strict definition for the scope of software reuse.
Some aspects of reusability have been in commerical use for some
time, while other aspects are still deeply entrenched in the
research community. A common misconception of software reuse is
that it is limited to the use of existing source code. Software
reuse should be broadly defined as the reuse of any information
that may be collected and later used to develop other software.
This definition includes reuse of available software development
methodologies; software requirements, specifications and design;
source code, modules and operating systems; documentation;
analysis data; test information; and maintenance information data
bases. The reuse of automated tools for generating software and a
software support environment to improve software lifecycle
processes are also part of the scope of software reuse efforts.

This report is organized into eight sections. Section 1 is this
introduction. Section 2 describes the software problem. Section 3

discusses software reusability. Section 4 presents benefits of
software reuse. Section 5 discusses obstacles to software reuse.
Section 6 describes what is currently being reused. Section 7

discusses what is needed to improve software reuse. Finally,
Section 8 summarizes the importance of software reuse.

2 . 0 THE SOFTWARE PROBLEM

The problems in the development and maintenance of software have
increased rapidly over the past decade. There has been an
explosive growth in size, complexity, and critical nature of
modern software applications and a lack of integrated software
development environments for supporting the software lifecycle
process. This section discusses several major factors which
contribute to the current software crisis. A summary list of the
software problems is presented in Figure 1.

2

FIGURE 1 - THE SOFTWARE PROBLEM

* Increased Complexity Of Software Systems

* Increased Demand For Qualified Software
Professionals

* Limited Use Of Software Development Tools and
Methodologies

* Frequently Changing Requirements

* Professional Training

* Maintenance

* Increased Complexity Of Software Systems
The requirements for new software systems are becoming
increasingly complex. Almost every national defense system
contains embedded computer software which performs mission
critical functions. Many other software systems such as air
traffic control, nuclear power plant control, simulation
modeling, and manufacturing automation are operated in complex
and unpredictable environments. These computer systems have high
performance requirements which require the software to be highly
flexible and reliable [MART83].

* Increased Demand For Qualified Software Professionals
There is a growing shortage of software professionals. The United
States Air Force (USAF) Scientific Advisory Board has estimated
that the demand for software professionals will continue to
exceed available resources through the end of this decade. The
shortfall of qualified software professionals may rise to 1.2

million by 1990 if remedial measures are not taken [USAF83,
BOEH82]. As a result, the difficulty of developing quality
software will continue to rise.

* Limited Use Of Software Development Tools And Methodologies
Existing software development tools and methodologies have not
been widely adopted and used to develop and maintain software.
Many software managers do not know what kind of information is

currently available for improving the traditional software
lifecycle processes. It is difficult for them to identify the

information needed for selecting the right tools and methods
without the appropriate information management technique. As a

result, software productivity has only increased an estimated

3

3%-8% per year while the installed data processing capacity has
increased at the rate of 40% or more per year [HOR084].

* Frequently Changing Requirements
Requirements play a critical role in software development. A
major part of software cost, time, and effort is spent on a
project's conception, definition, and specification. In fact,
most software systems will go through several prototyping and
specification revision cycles before implementation is
undertaken. In addition, most existing software methodologies do
not cope well with changes in requirements and specifications.
Software should be designed and developed so that it can be
reused and evolved in response to changing needs.

* Professional Training
The need to train software professionals and end-users in new
computer technology is often overlooked. This is something that
should be done through either in-house professional training
programs and/or technical educational institutes. Training
programs can serve as a feedback mechanism for collecting
information from users about their experiences in using the
systems, and the problems in understanding and using rapidly
changing modern programming techniques and practices.

* Maintenance
Software maintenance comprises 60%-70% of the total software
lifecycle costs [FIPS106] . The major causes of software
maintenance problems are the growth of the inventory of software
which must be maintained, and the failure to adopt and utilize
improved technical and management methods, techniques, and tools
for developing quality software. These software maintenance
problems can be addressed through the use of well-designed,
well-developed, and well-documented reusable software.

3 . 0 SOFTWARE REUSABILITY

Software reusability should not be narrowly defined as the reuse
of existing source code modules. It should be broadly defined as
the reuse of any information that may be collected and later used
to develop other software. It includes reuse of:

Software development methodology;
Requirements, specifications, and design;
Source code, and modules;
Documentation

;

Software tools and software support environments;
Analysis data;
Test information;
Maintenance information base.

4

The reusability challenge must be viewed as one which spans the
entire software lifecycle. The reuse of well understood and
previously validated specifications and designs can be as
important as the reuse of actual high order source code. For
example, a well-specified functional requirement for a commonly
used function is valuable, especially if it has resulted in
useful or effective software, even if the source code can not be
reused. Similarly, system design, documentation, development
methods and techniques, and software components such as the
definition of objects can also be reused. The use of various
software support tools from project to project is recommended,
from both an economic and reliability perspective.

Furthermore, the software and its supporting information must be
easily accessed, understood, and incorporated into a new
application. Any modifications required for this integration must
be easy to identify, document, and use. Ideally, the software
components should be general enough to be used for a variety of
related purposes. Before considering reuse as an alternative, it
is necessary for a software designer or developer to answer the
following questions:

1) What software is available for consideration?
2) Does it meet the requirements (functionality, interfaces,

size, costs, debugging aids, operating systems)?
3) What adaptation features are available?
4) What information base is available (specification,

design, source, module, executable, documentation)?
5) What changes are pending or under consideration?
6) What restrictions apply to the usages?
7) What support is available if problems are encountered?
8) Who is responsible for notifying the users of changes?
9) How much effort should be devoted to software

acquisition and evaluation?

4.0 BENEFITS OF SOFTWARE REUSE

The benefits of software reuse depend on the complexity and size
of the software product and the differences between the old and
new applications. The incentive for software reuse lies in its
increased reliability and quality, reduced development time and
lifecycle costs, improved maintainability, and more efficient use
of resources.

The more complex a software system is, the higher the anticipated
cost to reuse it. Because a significant effort will be required
to understand the structure and function of the system,
modifications required to reuse a complex system will be made
more difficult. Debugging the modifications will be costly. A

system with a design and function that is easy to understand will

5

be less costly to reuse than a more complex system. If the
software products are reused several tirrfes, the incremental cost
of creating and cataloging the component can be amortized over
the number of times it was used. Similarly, there is benefit in
reusing well-developed specifications, designs, tools, analysis
data, and development environments. Software reusability can be
seen as a capital investment. Figure 2, presents a summary of
benefits for the reuse of software.

FIGURE 2 - BENEFITS OF SOFTWARE REUSE

* Economics

* Reliability

Reusing software reduces costs
(requirements, design, specification,
coding, testing, maintenance, and
support tools)

.

Reusing software products or
components which are known to be
reliable reduces the potential of
unforeseen errors.

* Maintainability

* Quality

* Development time -

* Resources

Reusing software products or
components which are well-designed
and developed for reusability can
improve future maintenance efforts.

Reusing software products or
components can contribute to improved
software quality and system
performance

.

Reusing software products can reduce
the total time needed to develop and
implement a software system.

Reusing available software products
allows concentration of resources
on improvement of the software
products and other analysis work.

6

5 . 0 OBSTACLES TO SOFTWARE REUSE

Although the concept of reusable software appears attractive from
both economical and technical view points, it represents a major
deviation from the traditional principles of software production.
It may be initially difficult to implement in an organization.
This section describes several obstacles to software reuse.
Figure 3, presents a summary list of obstacles to software reuse.

FIGURE 3 - OBSTACLES TO SOFTWARE REUSE

* Lack of Confidence In Reusable Software Components

* Little Incentive To Apply The Technology For Reuse

* Resistance To Change

* Software Rarely Designed For Reuse

* Lack Of Standards

* Organizational Issues

* Lack Of Confidence In Reusable Software Components
There is resistance from many managers and software developers
who doubt that software which is developed by another
organization, for another system can be reused in a new system
without any modifications. Software developers must be
encouraged to reuse existing available software components as
much as possible.

* Little Incentive To Apply The Technology For Reuse
Software developers may reject the reusability concept, due to
their fear of being displaced by it. Many managers also feel
threatened with the potential cuts in budgets and resources due
to the payoffs of software reusability.

* Resistance To Change
A major problem related to software reuse is the "Not Invented
Here" syndrome for software developers. In terms of software
contractors, the reuse of software may be in conflict with profit
for developing, implementing, and maintaining a custom-built
software application.

7

* Software Rarely Designed For Reuse
Software that is to be reused must be designed for reuse.
Attempting to reuse software components that were not designed
for reuse will probably fail. For example, well-designed data
structures may have a significant impact on reusability.
Generalized data structures which are easy to understand,
flexible, and extensible can reduce the costs associated with
reusing the software.

* Lack Of Standards
Standards problems must be resolved before widespread reuse will
become a reality. Standards should be oriented towards defining
standard reusable components which can be used by many different
software engineering methodologies. For example, there should be
an organization specific standard taxonomy for cataloging
reusable components in the library. Reusability standards should
define what a reusable component is and in what notation it is
recorded. This lack of organization-wide standardization also

' makes it extremely difficult to share software with confidence.

* Organizational Issues
Software reuse creates different management problems depending on
the number of organizations involved and the relationships among
them. For example, if reuse occurs within a single organization
which controls both the development of the software components
being reused and the decision to reuse, it can be much easier to
effect reusability than when multiple organizations are involved.
There is also the issue of the desire for a unique software
system tailored precisely to the organizations requirements and
specifications. In this situation, an off-the-shelf package or
software built from reusable components may not quite provide a
satisfactory solution without additional modifications.

6.0 WHAT IS CURRENTLY BEING REUSED

There is a wide variety of approaches that address software
reusability. The use of subroutine libraries and off-the-shelf
software are the most common examples of reusing existing
software. The reuse of existing software is becoming more and
more practical due to the increasing amount of available, quality
software systems. For many commercial applications, modestly
priced packages are available and can be incorporated into a

software system. Similarly, well-developed existing packages for
scientific, government, aerospace, and mission-critical
applications are available. It is worth the acquisition and
evaluation effort at the beginning of each software development
project to determine whether existing software is available for
consideration. If candidate software or an appropriate software
development methodology is found, a detailed acquisition and
evaluation process should be conducted. It is also possible that

8

off-the-shelf software might be acquired as a temporary system
while a custom-built system is being designed and developed.
This approach can provide the user with an interim solution for
refining the requirements and specifications. In addition, it
can provided the software developers with a model from which the
desirable software system can be designed and built. This may
result in reducing software development time and costs. This
section briefly describes what is being reused in the various
approaches. Figure 4, summarizes what is currently being reused.

FIGURE 4 - WHAT IS CURRENTLY BEING REUSED

* Reusable Design

* Reusable Code

* Application Generators

* Simulation

* Reusable Data

* Reusable Design
Reusable design is an approach advocated by [RICE81] and [PARN83]
which consists of performing an analysis of a given domain. This
produces a set of concepts and terms which are used when a

specific system is to be designed for this domain. The main
objective is be able to design programs and components with the
potential for reusability and to be able to incorporate reusable
components in the design of new applications.

* Reusable Code
The use of subroutine libraries and off-the-shelf software are
examples of reusing code. Reusable code has long been an
attractive idea, but has yet to be accepted as a practical
solution for software development. It requires extensive
knowledge of the existing software modules, the programming
language, operating system, routine utilities, and input-output
devices

.

* Application Generators
An application generator is a software package which is designed
to help end-users build applications in a given domain. For
well-established domains, such as report generation and language
parsers, the basics of generating applications in that domain are
captured in a tool (the application generator) and only the

9

application-specific details need to be supplied to use the tool
to generate the program.

* Simulation
Simulation has, for a long time, been recognized as a major type
of generic application for software development. Simulation
models and test languages are developed as packages and widely
used by software project developers. Examples of such simulators
are Math Models, Data Processing System Models, Multiple Flight
Computer Simulator, Advanced Processor Emulator System (APES) and
Statistical Analysis System (SAS)

.

* Reusable Data
A critical problem of the computer industry has been the lack of
a standard data interchange format to facilitate both sharing
data among applications and systems reusability. Most commercial
database systems have data formats that allow many applications
to share data under that database. There is, however, no
universal data interchange format to allow easy transportability
of data from system to system, especially among systems that are
competitive in the market place.

7.0 WHAT IS NEEDED TO IMPROVE REUSE

In order to achieve the expected gains in software quality and
productivity from the concept of reusability, it is necessary to
acquire, explore, evaluate, and use new, innovative software
design methodologies and techniques. Furthermore, the iterative
enhancement process of a software development lifecycle can be
viewed as another effective way of reusing existing software.
With the appropriate software development methodology, tools,
techniques, and an automation base for capturing the updated
software within the existing system, software quality and
productivity can be improved substantially. A well integrated
software development environment should be provided that supports
the entire software lifecycle. This environment can have a
significant impact on the ease of developing and maintaining
software and on the quality of that software. Use of even a
minimum set of commercially available software tools can have a
positive impact on the quality of the software and on its reuse.
Successful reuse of existing software depends on:

1) techniques used for developing software,
2) methodologies for reusing software in the development

lifecycle,
3) integrated software engineering environment and well

defined software libraries that promote the reuse of
existing software.

10

This section briefly addresses what is needed to improve software
reusability. Figure 5, presents a summary list of what is needed
to improve software reuse.

FIGURE 5 - WHAT IS NEEDED TO IMPROVE REUSE

* Domain Analysis

* Information Retrieval

* Program Understanding

* Interfaces Between Software Components

* Design Environment

* Standardization

* Domain Analysis
Domain analysis is a generalization of systems analysis in which
the objective is to identify the operations and objects (e.g.,
design, component, specification, requirement, development
methods, etc) needed to specify information processing in a
particular application domain [NEIG83]. Successful software
reusability efforts have occurred in application domains that are
well established and well understood. In order to make
reusability beneficial, a thorough domain analysis must be
performed to identify the basic operations and objects of the
domain that have reusability potential. It is also necessary to
realize that the application areas that are new or are rapidly
evolving may not gain as much benefit from reusability as those
areas that repeatedly involve similiar system development
efforts

.

* Information Retrieval
A system of 'software component folders' (e.g., a well defined
reusable library) could be organized and cataloged using
conventional techniques for indexing information in the area of
computer science literature. Having each component in a software
library in a form which can be easily retrieved will facilitate
reuse

.

* Program Understanding
In order to reuse software, the software professional must
understand how the software works. Software maintenance
comprises 60%-70% of the total software lifecycle costs.

11

Understanding the software, as well as the systems, make up
40%-60% of the software maintenance cost. Thus, a critical issue
is the problem of program understanding. Commonality and
documentation of software should help to make it easier to reuse.
In addition, program functions or descriptions should be coded
throughout the system to provide a better understanding of the
system.

* Interfaces Between Software Components
The interface specifications must specify exactly what the
software component does. In addition, the software component must
function correctly in that well-integrated software development
environment. Interface specifications are very important in
providing the basis for schemes of cataloging and retrieving
software components.

* Design Environment
The design environment is an important factor in software reuse
because it provides the foundation on which software is defined,
implemented, maintained, and reused. The design environm.ent can
enforce the precision required, and provide the support to handle
the large volume of information associated with reusable
software. Without an adequate design environment, software reuse
would be impossible.

* Standardization
For effective software reuse, the software support tools such as
simulation packages, math model validation aids, High Order
Languages (HOL) support tools, database generators. Program
Design Languages (PDL) representations, requirements
specification aids, and traceability analyzers, as well as
hardware components must be standardized. In addition,
organizational guidelines must be developed and implemented to
deal with all areas of reusable software development, information
sharing, and use so that software developers and users alike will
have enough confidence to use it.

8 . 0 SUMMARY

Software development through reuse can substantially reduce
software costs and risks, while improving software quality and
productivity. The reuse of existing software is becoming more and
more practical due to the increasing amount of available, quality
software. It is worth the acquisition and evaluation effort at
the beginning of each software development project to determine
whether existing software or related reusable information is
available for consideration. The adaptation of existing software
as part of system requirement analysis for developing new
systems, the reuse of automated tools for generating software and
a software support environment should be encouraged. Studies

12

indicate that many software applications are common and generic
[JONE84]. Such source code is a logical target for standard
functions, and reusable modules. The potential for sharing
software, information, and systems should be a key factor in the
decision-making process for future software development and
management

.

Software and systems can be interchangeable only if
standardization and reusability are goals and objectives in the
original design. The reusability challenge must be viewed as one
which spans the entire software lifecycle. The reuse of well
understood and previously validated designs and specifications
can be as beneficial as the reuse of source code. The initial
reusability thrusts should emphasize understanding the concept of
software reuse, and encouraging the use of existing well-
developed software, designs, specifications, methods, techniques,
and tools to enable economic reuse of software in developing new
systems. The benefits of reusing available well-designed and
well-documented software can significantly relieve the resource
demands for developing timely, cost-effective, reliable software
systems

.

Effective software reuse requires a substantial investment
up-front in order to establish the basis for future gains. The
participation of project management and software experts are
equally important in the decision process for developing reusable
software. Experiences in industry and in Department Of Defense
(DOD) underscore the importance of software management
representation at top levels within an organization. Top
managers must recognize the increasingly critical and pervasive
role of software, its characteristics, and the development and
selection problems which must be addressed and resolved, in order
to be able to make widespread reuse of software a reality.

13

REFERENCES

[ANDE85] Anderson, CM, Henne, M, "Reusable Software - A
Concept For Cost Reduction" , DoD STARS Workshop
Reports, April, 1985.

[BARBS 5] Barbacci, M, Hoberman, A, Shaw, M, "The Software
Engineering Institute: Bridging Practice and
Potential", Carnegie-Mellon University, 1985.

[BURT8 5] Burton, B.A, Broido, M.D, "A Phased Approach to ADA
Package Reuse", DoD STARS Workshop Reports, April,
1985.

[BUSI84] "Software: the New Driving Force", Business Week .

. ri , ; February , 1984.

[B0EH81] Boehm, B.W, Software Engineering Economics
,

Prentice Hall, 1981.

[BOEH82] Boehm, B.W.
, Standish, T.A., "Software Technology

in the 1990 's". Appendix to Software Initiative
Plan, 1982

.

[CSDL80] The Charles Stark Draper Laboratory, Inc., "A Study
Of Software Management And Guidelines For Flight
Projects, Final Report", Cambridge, Massachusetts,

- 1980.

[FIPS106] "Guideline On Software Maintenance", Federal
Information Processing Standards Publication 106,
National Bureau of Standards, June, 1984.

[FRAN8 3] Frank, W.L, Critical Issues In Software: A Guide To
Software Economics, Strategy, And Profitability .

John Wiley, 1983.

[GRAB84} Grabow, P.C, "Reusable Software Implementation
Technology Reviews", Hughes Aircraft Company, 1984.

[HOR084] Horowitz, E, "An Expansive View Of Reusable Software",
IEEE Transactions on Software Engineering ,

September, 1984.

[MART8 3] Martin, E.W, "The Context of STARS", IEEE Computer
Society Press, November, 1983.

[JONE84] Jones, T.C, "Reusability In Programming: A Survey Of
The State Of The Art", IEEE Transactions on Software
Engineering , September, 1984.

14

[MUXW8 3] Muxworthy, D.T, Programming For Software Sharing ,

D.Reidel Publishing Company, 1983.

[NEIG83] Neighbors, J. "The Draco Approach to Constructing
Software from Reusable Components", Proceedings of
ITT Workshop on Reusability in Programming . Nev/port,
RI, September, 1983.

[RICE81] Rice, J.G, Build Program Technigue; A Practical
Approach For The Development Of Automatic Software
Generation System , John Wiley, 1981.

[PARN83] Parnas, Clements, and Weiss, "Enhancing Reusability
With Information Hiding", Proceedings of ITT Workshop
on Reusability in Programming , Newport, RI

,
September,

1983 .

[STAN84] Standish, T, "Software Reuse", IEEE
Transactions on Software Engineering , September,
1984 .

[USAF83] USAF Scientific Advisory Board, "Report on the High
Cost and Risk of Mission-Critical Software", December,
1983.

[VISC83] Viscomi, A, "What The Software Can't Do",
Computer Decisions , November, 1983.

15

GLOSSARY

algorithm - a finite set of well-defined rules that gives a
sequence of operations for performing a given task.

applications software - software which perforins a specific task
such as word processing, spread sheet analysis, etc. (compare
with system software)

.

compiler - a computer program which translates a high order
language program into machine language which can be executed by
the central processing unit.

component - a basic part of a system or computer program [*].

custom software - software specially developed for an individual
application

.

design methodology - a systematic approach to creating a
design, consisting of the ordered application of a specific
collection of tools, techniques, and guidelines [*].

design specification - a specification that documents how a
system is to be built. It typically includes system or component
structure, algorithms, control logic, data structures, data set
use information, input/output formats, and interface descriptions
[*] .

development environment - a systematic approach to the creation
of software with a set of integrated tools to support the
software development lifecycle. The environment includes support
tools for requirements and specifications, designing, editing,
compiling, testing, configuration management, documentation, and
project management.

development methodology - a systematic approach to the creation
of software that defines development phases and specifies the
activities, products, verification procedures, and completion
criteria for each phase [*].

domain analysis - a generalization of system analysis in which
the objective is to identify the operations and objects (e.g.,
design, component, specification, requirement, development
method, etc) needed to specify information processing in a
particular application domain.

[*] - Adapted from IEEE Standards Glossary of Software
Engineering Terminology (IEEE Std. 729) for consistency
of definition.

16

documentation - technical data, including computer listings and
printouts in human-readable form which 1) document the design or
details of the software, 2) explain the capabilities of the
software, or 3) provide operating instructions for using the
software to obtain the desired results from computer eguipment.
It also includes program listings or technical manuals describing
the operation and use of programs.

integration - the process of combining software components,
hardware components, or both into an overall system [*].

interface - 1) a shared boundary between software modules
and/or systems; 2) a hardware component which links two or more
devices; 3) that function of a computer program which presents
information to an operator and accepts user responses.

module - a well defined section of a computer program with
a specific function.

requirement specification - a specification that documents
the requirements of a system or system component. It includes
functional requirements, performance requirements, interface
requirements, design requirements, and development standards [*].

simulation - the representation of selected characteristics
of the behavior of one physical or abstract system by another
system. In a digital computer system, simulation is done by
software [*]

.

software lifecycle - the period of time that starts when a
software product is initiated and ends when a product is no
longer available for use. A software lifecycle typically
includes phases denoting activities such as initiation,
requirements analysis, design, implemenation , test, installation,
operation and maintenance.

software product - software that has been developed, tested
and documented to a level suitable for delivery to a customer.

software tools - packages, computer programs, and computer
systems used to help design, develop, test, analyze, or maintain
computer programs, data, and information systems. Examples
included high order languages, data base management systems,
requirement analyzers, statistical analysis packages, and
application generators.

[*] - Adapted from IEEE Standards Glossary of Software
Engineering Terminology (IEEE Std. 729) for consistency
of definition.

17

validation - determination of the correctness of the final
program or software produced from a development project with
respect to the user needs and requirements [FIPSlOl] . Validation
is usually accomplished by verifying each stage of the software
development lifecycle.

verification - in general the demonstration of consistency,
completeness and correctness of the software at each stage and
between each stage of the development lifecycle [FIPSlOl]

.

18

NBS-lUA (REV. 2-80

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS/SP-500/142

2. Performing Organ. Report No. 3. Publ I cation D ate

September 1986

4. TITLE AND SUBTITLE

Computer Science and Technology:
A Management Overview of Software Reuse

5. AUTHOR(S)

William Wong
6. PERFORMING ORGANIZATION (If joint or other thon NBS. see mstruct/ons)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
VlKAStMM B10H X a >tXX lOCMX

Gai thersburg, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS fStreet. City, State. ZiPj

Same as item 6

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number 86-600581

I

' Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

With skyrocketing software costs, both Federal and private sector organizations are
increasingly interested in finding ways to improve software quality and productivity,
and reduce software risks. Software reuse is one promising method of accomplishing
this objective. This report presents a management overview of the problems and issues
related to software reuse. It provides a description of software reusability and its
scope. The necessity of technical and management involvement to achieve greater
levels of software reuse is emphasized.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon si

Application domain; design environment; development environment; development methodology
domain analysis; program description; program understanding; software component; soft-

ware costs; software management; software reusability; software reuse; support tool.

13. AVAILABILITY

PK] Unlimited

I I

For Official Distribution. Do Not Release to NTIS

[X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

I

[
Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

24

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Governir.ent Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued m the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notirication key N-503)

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodiccds

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-3%).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Ser-

vice, Springfield, VA 2?161.

Federal Information Processing Standards Publications (TIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

