
Computer Science
and Technology

NBS Special Publication 500-141

Annotated Bibliography

on Software IVIaintenance

Wilma M. Osborne and Ron Raigrodski

M he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The
m Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and

government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering

.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essentiaJ services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

77?^ National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement

capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

• Programming Science and
Technology

• Computer Systems

Engineering

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

Ceramics
Fracture and Deformation ^

Polymers

Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

^Located at Boulder, CO, with some elements at Gaithersburg, MD.

Computer Science
and Technology

NBS Special Publication 500-141

Annotated Bibliography

on Software Maintenance

NBS
RESEARCH

INFORMATION

CENTER

QCloo

Wilma M. Osborne and Ron Raigrodski

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, MD 20899

September 1986

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 86-600579

National Bureau of Standards Special Publication 500-141

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-141, 138 pages (Sept. 1986)

CODEN: XNBSAV

U.S. Government Printing Office

Washington: 1986

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

ANNOTATED BIBLIOGEIAPHY ON SOFTWARE MAINTENANCE

Institute for Computer Sciences and Technology-
National Bureau Of Standards

Gaithersburg, MD 20899

ACKNOWLEDGEMENTS

This report is the result of the untiring efforts of a number of
individuals. Special thanks to Monica Holman, who spent many hours
reviewing computer books, journals, and news articles, and to Bonnie
Smith, Debbie Jackson, and Sharon Federline for their assistance in
the data entry of this material . The dedicated efforts of these
individuals helped to make this report possible.

ABSTRACT

This annotated bibliography contains summaries of two hundred and
eighty- five software maintenance articles or papers from computer
science journals, books, proceedings. Federal publications, computer
newspapers, and other technical reports. It covers a fifteen year
period between 1972 and 1986, and presents an overview of the
various aspects of software maintenance including problems and
issues faced in most software maintenance environments. It
identifies techniques, procedures, methodologies, and tools that
have been effectively employed throughout the software system
lifecycle to improve the quality of that system.

Key words: documentation, metrics, productivity, programmers,
software configuration management (SCM) , software errors, software
lifecycle, software maintenance cost, software packages, software
quality, techniques, testing, tools, users.

iv

INTRODUCTION

This annotated bibliography contains summaries of two hundred and
eighty- five software maintenance articles or papers from computer
science journals, books, proceedings. Federal publications, computer
newspapers, and other technical reports. It covers a fifteen year
period between 1972 and 1986, and presents an overview of the
various aspects of software maintenance including management and
technical issues faced in most software maintenance environments.
It identifies techniques, procedures, methodologies, and tools that
have been effectively employed throughout the software system
lifecycle to improve the quality of that system.

The abstracts or summaries describe factors to be considered whether
planning to make a software change or ensuring that the change has
been properly and correctly incorporated. Many of the summaries
suggest actions and procedures that can help software maintenance
organizations satisfy the growing demands of maintaining existing
systems . Others suggest steps that can be taken to improve the
quality and maintainability of the code during development. Still
others describe activities found to be effective in reducing the
cost and difficulty of software maintenance.

This bibliography provides a comprehensive collection of information
on how many organizations handle the software maintenance process
and the associated problems. It contains information based on case
studies and actual applications from software maintenance
organizations in Government and industry, as well as material from
the software engineering research community. It is intended as a
basic reference for Federal ADP managers and software maintainers
with responsibility for lifecycle software quality and
maintainability, as well as for researchers, practitioners, and
vendors of software maintenance tools.

A consistent theme throughout this bibliography is that there is an
increasing need for effective management control over the software
engineering process throughout the software system lifecycle.

V

The following cross reference is provided to aid in searching for
articles on a specific topic. References which address several
issues have been listed under multiple categories as a convenience
to the reader

.

CROSS REFERENCE

DOCUMENTATION DOCUMENTATION

rAGRE82a1 [MILS81]
fANDESH [MUNS81]
[BASI82] [MURP82]
[BERN84] [PARI 81]
[B0SS82] [PARI 82]
[BRIC84] [PENN80]
[BR0082B] [PEER81]
[CLAR80] [RICH84]
[DUNN84a] [SCHN82a]
[DUNN84b] [SCHN82b]
[EBER80] [SCHN83]
[EIPS105] [SHEP81]
[F0RN83a] [SING80]
[E0RN83b] [SNEE84]
[GILL83a] [S0L084]
[GUND73] [STAN77]
[HANN85] [TANN80]
[H0WA84b] [TAUT84]
[LAFF77] [TINN84]
[LET086] [TEIC77]
[LIU76] [WILS81]
[MERR78]

METRICS METRICS

[AGRE82b]
[ARN083]
[ARTH83]
[BASI80]
[BASI84]
[BELL84]
[B0EH78]
[CLAP81]
[CURT79]
[DEAN82]
[HARR82]
[YAU80b]

[HARR84]
[MCCCA77]
[MCCA83]
[NARR84]
[NBS99]
[PERL81]
[RAMA84]
[R0MB84]
[SILV83]
[WALT78]
[YAU80a]

vi

PRODUCTIVITY PRODUCTIVITY

[ARTH83] [LIENTBb]
[BASS84] [LI ENS Ob]
[BELL84] [LIENS3]
[C0UG83] [MANCS3]
[C0UG84] [MARTS 2]
[FERR81] [MILLS3]
[FINK77] [MURRS4]
[F0RN83b] [NBS74]
[FRAN83] [0SB0S6]
[GROSS 2] [PATTSl]
[H0WA83a] [PRESSl]
[H0WA84a] [RYANS2]
[J0NE78] [TINN83]
[LANE84] [ZELL83]
[LEAV83]

SOFTWARE CONFIGURATION MANAGEMENT (SCM)

BANNS 3]
BERS79]
BERSSO]
BRYA84]
^CANN72]
^DER07S]
^NBS129]

[DUNNS 2]
[DUNNS4a]
[FEINS4a]
[GLASS 2]
[LAFF77]
[MAUL83]
[ZAKS3]

SOFTWARE ERRORS

[BASIS4]
[BR0082a]
[C0DI77]
[DONASOa]
[DUNNS 2]
[ENDR75]
[FERRSl]
[GLASSla]
[GREMS4]
[GUND73]
[KEID74]
[KULLS3]
[LIP079]

SOFTWARE ERRORS

[LITTSO]
[MALM77]
[MAMR77]
[MAULS 3]
[MYER7S]
[MYER79]
[PARI SO]
[SCHN79]
[SHEP79]
[SHOOS 3]
[SWAN79]
[WEISSl]

SOFTWARE LIFECYCLE

[BERS79]
[B0EH7S]
[BOEHSlb]

SOFTWARE LIFECYCLE

[LIEN7Sa]
[LIP079]
[MCCLSl]

vii

[C00P78]
[DER078]
[DEUT82]
[DONASOb]
[EDWA84]
[FIPS105]
[FIPS106]
[FRAN83]
[GLASSlb]
[GEIEESI]
[HIGGSl]
[LANE84]
[LEHM77]
[LERNS3]

SOFTWARE MAINTENANCE COST

[ARN086]
[BASISO]
[BELLS 3]
[BOEHSlb]
[CHAPS4]
[DER078]
[D0NES4]
[ELSH82]
[FRANS3]
[GAOSl]
[GA083]
[GILLS3a]
[GILLS3b]
[GUIM83]
[HARRS3]

SOFTWARE PACKAGES

[GILLS 3b]
[GR0C84]
[H0WAS4b]
[MAJ0S4]
[MARTS 2]
[NBS114]

SOFTWARE QUALITY (OA)

[AFTESO]
[ALF077]
[ANDE7S]
[ARN0S3]
[B0EH78]

[MILL77]
[MUNSS2]
[MUSHS4]
[NAVE79]
[0SB0S4]
[P0D077]
[PUTNSO]
[RAMAS4]
[RAYNS3]
[SHNES6]
[WALKS1]
[WHIT77]
[WIENS4]
[YAUS2]

SOFTWARE MAINTENANCE COST

[INM084]
[KAPUS3]
[LAFF7S]
[MCKES4]
[MUNSS2]
[0VER74]
[PENNSO]
[PRESS2]
[RAMAS4]
[REUTSl]
[SHAR77]
[SHOOS 3]
[SINGSO]
[WHITSl]

SOFTWARE PACKAGES

[PARIS2]
[PARIS4]
[SP0KS4]
[WASS7S]
[WASSS2]

SOFTWARE QUALITY (QA)

[MCCAS3]
[MILLS3]
[NBS74]
[NBS129]
[0SB084]

viii

[CANN78b]
[CENTS2]
[C00P79]
[DUNNS 2]
[FCSCS3]
[GLASS2]
[HALL78]
[J0NE7S]
[LAFF77]
[LIENSOb]
[LIEN81]
[MCCA77]

techntquff:

"ANDESl]
'ARANS6]
"BASI75]
"BASIS2]
"BEELS3]
BRITS6]
"CHAP79]
TDONASOa]
TDONASOb]
"EBERSO]
[GILB79a]
[KERN7S]

TESTING

[AFTESO]
[BERLS3]
[BOSS82]
[CANN7Sa]
PEANS2]
[DONAS 0 a]
[DUNNS2]
[EBERSO]
[ENDR75]
[FISC77]
[GLASSla]
[HALL7S]
[HUAN75]
[LIP079]
[L0VE77]

TOOLS

[ANDE7S]

[0SB0S6]
[PEER81]
[PEERS4]
[PRES81]
[RAMA84]
[RYANS2]
[SHNESO]
[SHOOS 3]
[TAUTS3]
[TINNS4]
[WALT7S]

TEOMIQUKS

[LET086]
[MARSS3a]
[0SB0S6]
[PEERSl]
[PEERS4]
[PIZZS4]
[R0SS75]
[SARS77]
[SHNES6]
[YAU7S]
[YAU79]
[YAUSOb]

TESTING

[MCCA76]
[MYER7S]
[MYER79]
[NBS9S]
[NBS9S]
[PARISO]
[PIZZS4]
[PRESS2]
[RAMAS4]
[SCHN79]
[SHOOS 3]
[SILVS3]
[SNEES4]
[WALT7S]
[WASS7S]

TOOLS

[LIENS 3]

ix

FT TPn7Q1
TUT? Axmn(_jDK/\iN / / J

FT YDKr^^l 1

Lr>Kiv^c5± J Lr'JrUx. J. 0 0 J

r/"' aMM'7 T

1

[_UAJNJN / z J
FMVT'P '7Q n

|_iNr>0 / t:J

\jJnJ\rioA j

[UUiNIAoUaj |_1NDoX UD J
rr^OTvTA Q (TK "1

|_JJUin/\.c> UJO J
|_lN00X Z ^ J

rFMTNTNTQI "1

|_UUjNiNoJ. J
rT\f TKTNTQA^ TLJJUiNrN cJ'ia J
rT7T? Q/Ll rp AP T R n 1

[_£: *_<ov_<C5o J
TP AT? TP 91

rPAPTW^a"!|_r^/\rv.x 0od J

[_£ UXvJNtJoaj
rPAP TR'^'KI

|_E UKlN t3OD J

_t UKJNooCJ
LL7AU0U J

rp AVKTQ "51
[_I\/\xlNC5o J

[GLAS79] [R0SS75]
[GLASSlb] [SHAR77]
[SHNESe] [SNEE84]
[STAN77] [ZIRK78]

USERS /PROGRAMMERS USERS /PROGRAMMERS

[ARN086] [MCGR73]
3ALL85] [MIAR83]
^BELL83] [M00N75]
^BENS78] [NBS130]
^BRONSl] [0DGI72]
^CANN81] [0VER73]
'CHAP78] [0VER74]
^CLARSO] [PARI 80]
'C0UG83] [PARI 82]
X0UG84] [PARIS3a]
TEIN84b] [PERLSl]
TERR81] [PETE84]
TINK77] [P0D077]
T0RN83b] [PUNT75]
^GR0S82] [RAYS 3]
TiENKSl] [RAYN83]
H0UT83] [REUTSl]
TiOWA83a] [SCHN83]
TI0WA83b] [SHEP77]
1IULI84] [SHEP79]
^KAPU83] [SING80]
^KULL83] [S0L084]
XET086] [TANN80]
XIEN79] [TBIAYSO]

[LIEN83] [TIPS80]
[MANC83] [WEIN71]
[MANTBl] [WEIS82]
[MART84] [ZELK78]
[MAULSS] [ZUCK83]
[MGCA83] [ZVEG82]

SOME ADDITIONAL MAINTENANCE TOPICS

[BOEHSla] [iyiART79]
[BRAN75] [MURR83]
[BRAV76] [NARR84]
[CASH80] [PARN72]
[CONN80] [PARN79]
[DALY77] [PETE77]
[DUNS80] [RICH83]
[GILB77] [SCHN82C]
[GILH82] [SHIE78]
[KAPL77] [SPIE76]
[KHAN75] [STAN77]
[LEHM76] [SWAN84]
[LIEN80a] [TBIAY81]
[MARS83b] [WIN079]

Page 1

**

[AFTE80] Software OT&E Guidelines. Volume III . Software:
Software Maintainability Evaluator ' s Handbook . Air Force
Test and Evaluation Center (AFTEC) , RADC, Griffiss AFB, NY,
vol. Ill, April 1980.

Software OT&E Guidelines is a set of handbooks prepared by the
Computer/Support Systems Division of the Test and Evaluation
Directorate of the Air Force Test and Evaluation Center (AFTEC) for
use in the operational test and evaluation of software. Volumes in
the set include: the Software Test Manager's Handbook (AFTECP
800-1) ; the Handbook for the Deputy for Software Evaluation (AFTECP
800-2); the Software Maintainability Evaluator 's Handbook (AFTECP
800-3); the Software Operator -Machine Interface Evaluator ' s Handbook
(AFTECP 800-4) ; and the Software Support Facility Evaluation Tools
User's Handbook (AFTECP 800-5) . The Software Maintainability
Evaluator ' s Handbook is a guide for the software evaluator
participating in AFTEC" s software maintainability evaluation
process. It provides a methodology to enable evaluation team
members to independently evaluate software maintainability. The
handbook also includes examples, explanations, definitions, and a
set of characteristics used to rate the software.

Key words: operational, quality factors, software evaluation,
software maintenance, software testing.

**

[AGRE82a] W.W. Agresti, "Managing Program Maintenance",
Journal of Systems Management . vol. 33, pp. 34-37,
February 1982

.

This article defines 'software maintenance'; identifies three
categories of maintenance (perfective, corrective, and adaptive)

;

describes software maintenance problems; and presents ideas for
improving software maintenance management. The high turnover rate
among programmers and the use of entry- level versus senior level
programmers are also discussed. The author recommends that:

o software maintenance should be managed directly;

o more creative and innovative approaches for managing
and organizing software maintenance should be utilized;

o software changes should be scheduled and documented; and

o the user should perform some of the software maintenance.

Key words: documentation, management, software maintenance,
so ftware management , turnover

.

Page 2

**

[AGRE82b] W.W. Agresti, "Measuring Program Maintainability",
Journal q1 Systems Management , vol. 33, pp. 26-29, March
1982 .

This paper discusses metrics and methods for measuring a program's
maintainability. It also describes how metrics can be used to
estimate the resources needed to maintain a program. According to
the author, the use of metrics helps place the responsibility of
building maintainable software on the developers, and helps focus
attention on those aspects of software design that facilitate
software maintenance. A questionnaire for calculating the
maintainability metric of a program is provided.

Key words: maintainability, metrics, software maintenance, software
maintenance management

.

**

[ALF077] M.W. Alford, "A Requirements Engineering Methodology
for Real-Time Processing Requirements", IEEE Transactions
on Software Engineering . IEEE Computer Society Press, vol.
SE-3, no. 1, pp. 60-69, January 1977.

This paper presents a methodology for the generation of software
requirements for large, real-time, unmanned weapons systems. It
describes what needs to be done, how to evaluate the intermediate
products, and how to use automated aids to improve product quality.
An example of the methodology, the resultant products and the
benefits provided by using this methodology and other experimental
applications results are presented.

Key words: methodology, real-time, software engineering. Software
Requirements Engineering Methodology, Software Requirements
Engineering Program.

**

[ANDE78] P.G. Anderson, "Redundancy Techniques for Software
Quality", Proceedings of the Annual Reliability and
Maintainabi 1 ity Symposium , IEEE Computer Society Press, pp.
86-93, January 1978.

This article describes and compares the use of redundancy in both
hardware and software systems. The author demonstrates the use of
redundancy for improving the quality of software, specifically in
the areas of program and data structures, programming language
design, and programming team utilization. The author recommends
that software engineers adopt the tools and techniques of hardware
engineers to produce high quality software designs.

Page 3

Key words: maintainability, program structures, language, design,
programming team, reliability, software maintenance, software
quality, tools.

He********************************:)!**************

[ANDE81] R.E. Anderson, "Modular documentation: a software
development tool"

.

FTPS 1981 National Computer Conference
Proceeding s, pp. 401-405, May 4-7, 1981.

This paper presents a method for documenting the design and
implementation of a large software system. The method is presented
in terms of a family of documents based on the decomposition of any
system into specific levels of abstraction for the purpose of
software development. This approach facilitates the use of
structured design techniques, provides tangible objects for
organizing manpower resources on the basis of the system's
structure, aids in the generation of more meaningful milestones, and
results in a fully, documented system when the implementation phase
is complete.

Key words: documentation, management, design, development,
implementation, maintenance, design techniques.

**

[ARAN86] G. Arango, I. Baxter, P. Freeman,
and C. Pidgeon, "TMM: Software Maintenance by
Transformation", IEEE Software . vol. 3, no. 3, pp.
27-39, May 1986.

Porting an undocumented program without any source changes
demonstrates the value of a transformational theory of maintenance.
The theory is based on the reuse of knowledge. As needs change,
software must be amended, or maintained, to adapt to the new
environment. Often, such adaptation involves porting programs from
one machine to another. If there is no information about original
design decisions or abstractions, the software becomes obsolete, and
the enormous resources invested in its construction are lost.

This paper proposes a method that will allow practitioners to
recover abstractions and design decisions that were made during
implementation

.

Key words: design, Draco, paradigm, programming languages, software
maintenance, techniques.

Page 4

**

[ARN083] R.S. Arnold, "On tJie Generation and Use of Quantitative
Criteria for Assessing Software Maintenance Quality",
University of Maryland Department of Computer Science, PhD
Dissertation, February 15, 1983.

Whenever software metrics are used in assessing the quality of
software maintenance their values must be interpreted relative to
the metrics' intended use. Further, these interpretations should
lead to concrete suggestions for improving software maintenance
quality. This dissertation presents a method known as Criteria
Application (CA) for performing these interpretations and
improvements

.

The principle feature of this method is the development of criteria
for modeling software/software maintenance quality concepts. A
criterion is a testable condition, concerning software metrics
values, with an explicit judgment attached to the condition's
outcome. The criteria are used in (1) establishing goals for
software maintenance, (2) quantitatively determining whether the
goals are met, and (3) guiding remedial work if the goals are not
met. To illustrate its usefulness, CA is applied to some actual
software maintenance data, from the maintenance of scientific
application software. The author also shows how CA can be applied
beyond software software maintenance to software development.

Key words: criteria application, software development, software
maintenance, software metrics, software quality,

**

[ARN086] R.S. Arnold, Tutorial on Software
Restructuring . IEEE Computer Society Press, February 1986.

This Tutorial addresses restoring software structure whether the
lack of structure results from software maintenance or from software
development. With continued change, programs tend to become less
"structured." This is manifested by out-of-date documentation, by
code that does not conform to standards, by increased time for
programmers to understand code, by increased ripple effect of
changes, and so on. These can - and usually do - imply higher
software maintenance costs.

Software restructuring is an important option for putting high
software maintenance costs under control. The idea is to modify
software - or programmer's perceptions of software structure - so
one can understand it and control it anew.

There are many reasons why software managers and programmers should
be aware of software restructuring. This Tutorial addresses:

Page 5

1. Implementing standards for software structure
2. Regaining understanding of software by installing

software with known, easily traceable structure
3. Extending system lifetime by retaining a system's

flexibility through good structure
4. Preparing software for conversion.

Key words: change, conversion, programmers, restructuring, software
maintenance cost, software managers, standards, techniques.

**

[ARTH83] L.J. Arthur, Programmer Productivity , John
Wiley and Sons, 1983.

This book discusses software metrics for measuring quality,
achieving reliability and maintainability in programs, and acquiring
software to improve productivity. The author emphasizes the need to
develop an environment and standards to increase productivity. This
new environment is referred to as a 'software factory' . A number of
methods that can be used to identify software maintenance-prone
software are presented.

Key words: environment, maintainability, productivity, software
factory, software maintenance, software measurement, metrics,
standards

.

******* * * ***************************************

[BALL85] R.K. Ball, "Managing the Transition From Development
to support". Data Management . pp. 34-37, March 1985.

Problems often arise in DP organizations when a new system is
transferred from the development to the software support group. The
pressures on systems software maintenance managers to declare the
system operational, and the high expectations of the users often
compound the problems. A software maintenance manager has a nijmber
of options for handling this situation:

1 . Do nothing - depend on development to produce a
good product

.

2. Use the 'escort approach' - a member of the
development team should accompany the system
into support

.

3 . Use the systems acceptance approach

.

The author discusses each of these options and recommends option 2

which has built in safeguards that hold the development team
accountable to the future 'users' of the system. The objectives of
this approach are to : ensure that: systems design considers future
support requirements; verify the completeness and quality of the
system when passed on to support; ensure that the support staff are
adequately trained and equipped to support the system; and to manage

Page 5

the transition. Procedures for accomplishing these objectives are
presented

.

Key words: development, management, software maintenance,
acceptance approach

.

**

[BANN83] K. Banni, M. Suzuki, and T. Terano, "A Total
/^proach to a Solution for the Maintenance Problems Through
Configuration Management - Maintenance Support Facility
MSF", COMPSAC Proceedings . IEEE Computer Society Press, pp.
404-411, November 7-11, 1983.

This paper describes the solution of a software maintenance problem
in an electric power company. The authors developed a system called
DNUS which supports software maintenance tasks through system
configuration management. The paper provides a detailed explanation
of the components and behavior of DNUS, and summarizes the effects
of DNUS on the software maintenance effort.

Key words: configuration management, DNUS, management, software
maintenance

.

**

[BASI75] V.R. Basili and A.J. Turner, "Iterative
Enhancement: A Practical Technique for Software
Development", IEEE Transactions on Software Engineering .

IEEE Computer Society, vol. SE-1, no. 4, pp. 390-396,
December 1975

.

This paper recommends the "iterative enhancement" technique as a
practical means of using a top-down, stepwise refinement approach to
software development. Initially, a properly chosen (skeletal)
subproject is implemented. This is followed by the gradual
enhancement of successive implementations in order to build the full
implementation. The development and quantitative analysis of a
production compiler for the language SIMPL-T is used to demonstrate
that the application of iterative enhancement to software
development is practical, efficient, and encourages the generation
of an easily modifiable product, and facilitates reliability.

Key words: enhancement, SIMPL-T, software development, software
evaluation measures, top-down design.

Page 7

**

[BASI80] V.R. Basili, Tutorial: Models and Metrics
for Software Management and Engineering . IEEE Computer
Society Press, September 1980.

This tutorial presents a new, quantitative approach to software
management and software engineering that has taken shape over the
past few years. This quantitative methodology is needed to
understand, evaluate, control, and estimate software development and
maintenance and to make the necessary cost, time, and quality
trade-offs. The tutorial will focus on attributes that can be
managed quantitatively, including product-oriented attributes such
as size, complexity, reliability, and change, and process -oriented
attributes such as cost, schedules, and resources.

Key words: change, complexity, cost, measures, metrics, models,
reliability, resources, schedules.

**

[BASI82] V.R. Basili and H.D. Mills, "Understanding and
Documenting Programs", IEEE Transactions on Software
Engineering . IEEE Computer Society Press, vol. SE-8, no.
3, pp. 270-283, May 1982.

This paper reports on an experiment that tests the difficulty of
understanding an unfamiliar program. The goal was to stimulate a
practicing programmer in a software maintenance environment using
the techniques of program design adapted to program understanding
and documentation; that is, given a program, a specification and
proof of correctness were developed for the program. The approach
points out the value of proof of correctness ideas in guiding the
discovery process. Toward this end, a variety of techniques were
used: direct cognition for smaller parts, discovering and verifying
loop invariants for larger program parts, and functions determined
by additional analysis for larger program parts . An indeterminate
bounded variable was introduced into the program documentation to
summarize the effect of several program variables and simplify the
proo f o f correctness

.

Key words: program analysis, program correctness, documentation,
proof techniques, software maintenance.

**

[BASI84] V.R. Basili and B.T. Perricone, "Software errors
and Complexity: an Empirical Investigation",
Communications of the ACM . ACM Press, vol. 27, no. 1, pp.
42-52, January 1984.

An analysis of the distributions and relationships derived from the

Page 8

change data collected during development of a medium-scale software
project produces some surprising insights into the factors
influencing software development. Among these are the trade-offs
between modifying an existing module as opposed to creating a new
one, and the relationship between module size and error proneness

.

Key words: complexity metrics, error analysis, measurement,
reliability, software errors.

**

[BASS84] P. Bassett, "Software Manufacturing Techniques and
Maintenance", AFIPS 1984 National Computer Conference
Proceedings , AFIPS, vol. 53, pp. 357-365, May 1984.

A solution to the reusable code problem can also provide a solid
technical basis from which to understand and deal with the
production, quality, and software maintenance issues of the software
industry. A software manufacturing methodology called
Computer-Aided Programming (CAP) has been developed. CAP is based
on a functional programming concept called a frame. Frames, which
were originally developed as a means of resolving software
maintenance problems associated with reusable code, are presented
here as an alternative design methodology. Statistics from a case
study of a project that employed CAP indicate that: (1)
production-quality commercial software can be manufactured at rates
exceeding 2000 lines of debugged COBOL per man-day (including
systems design time) , and (2) less than 10% of this code needs to be
hand-written or maintained.

Key words: computer-aided programming, frames, productivity,
reusable, software maintenance.

**

[BEEL83] J. Beeler, "Manager Cuts Maintenance Time by 70%",
Computerwor 1

d

, pp. 7-8, January 31, 1983.

This article discusses how one manager reduced the heavy program
software maintenance load in his organization through structured
design and programming techniques . The systems design and
programming process were divided into several steps . After each
step, the work of each employee was submitted to a structured
walkthrough. The benefits of using the structured methodology are
discussed

.

Key words: programming techniques, software maintenance, structured
design, structured walkthrough.

Page 9

**

[BELL83] D. Bellin, "After the Purchase: Software Maintenance
and Outside Support", So ftware Review , vol. 2, no. 2, pp.
69-72, June 1983.

This article provides information for users of microcomputer systems
about the problems of software maintenance. Recommendations on how
to handle problems such as training, program enhancement, and
modification, communication with other computers, and system
expansion are addressed. Emphasis is placed on the need to plan
thoroughly and be aware of the needs and costs for ongoing software
support. The article provides useful information for organizations
planning to purchase microcomputers.

Key words: microcomputer, planning, enhancement, software
maintenance, software support.

**

[BELL84] F.J. Bell, "Technology Transfer in the Maintenance
Environment", AFIPS 1984 National Computer Conference
Proceedings, AFIPS, vol. 53, pp. 229-234, May 1984.

This paper reports on the software maintenance productivity project
at "rfie Equitable Life Assurance Society of the United States. In
1982, this firm established a software maintenance productivity
project (MPP) . Three potential areas were identified for technology
transfer: the software maintenance function, the software
maintenance environment, and software maintenance metrics. The
programs instituted include a software maintenance management
handbook, a software maintenance managers' round table, and greater
vendor, user, management, and programmer involvement during the
development of the integrated software maintenance environment. As
a result of this emphasis, software maintenance has become an
established and recognized area of specialization at Equitable.

Key words: environments, management, metrics, productivity,
programming, software maintenance.

**

[BENS78] M. Benson, "Responsibility vs. Authority, Lying to
Management: A Legitimate Solution?", ComputerworId . pp.
30-31, September 11, 1978.

This paper describes a confrontation between a very talented
software maintenance programmer and an incompetent DP manager. The
programmer had been working without much direction or management for
five years . He had revived and maintained programs that were
literally on the 'scrap heap' . The new manager now wanted reports
on the programmer's activities in two categories, changes and fixes.

Page 10

but not on cleanup since the manager felt that was a waste of time.
The programmer strongly disagreed. The author's question is whether
the programmer should listen to management or continue to include
his cleanup activities as changes or fixes . This is a very-
controversial issue which attempts to establish responsibility for
the quality of the software. This article provides an interesting
study in the management of talented software maintenance
programmers

.

Key words: management, personnel, programming, software maintenance
management

.

**

[BERL83] T.H. Berliner and T.J. DeGarmo, "Test Drive Your
Software", Computer Decisions , pp. 150-155, September
1983.

According to the authors, proper software testing provides a
meaningful, quantitative basis for ensuring that desired features
have been included, and that they will perform as required. The
procedures for software testing, planning, test designing, and
preparation of test data, are detailed.

Key words: planning, software maintenance, software testing, test
designing

.

**

[BERN84] G.M. Berns, "New Life for Fortran", Datamation .

pp. 166-174, September 1, 1984.

The Maintainability Analysis Tool (MAT) is a diagnostic,
documentation program that analyzes FORTEIAN source program modules

.

(i.e., subroutines or functions) . It runs on a DEC VAX- 11 computer
system under the VAX/VMS operating system but can also process
modules written for any computer in the FORTEIAN 66 or 77 dialects.
MAT can analyze existing programs, as well as those currently under
development . Problems that can be detected by MAT include : module
internal discrepancies, module clutter or unused code, module
interface discrepancies, and discrepancies in program structures.
In addition, MAT assists programmers by documenting the module's
interface and the program's structure. The author suggests that MAT
can improve the reliability and maintainability of old and new
Fortran programs through the use of an index technique.

Key words: documentation, FORTEIAN, maintainability Analysis Tool,
programming, reliability, software maintenance, tools.

Page 11

**

[BERS79] E.H. Bersoff, V.D. Henderson, and S.G. Siegel,
"Software Configuration Management: A Tutorial", Computer .

pp. 6-14, January 1979.

Software configuration management (SCM) is the discipline of
identifying the configuration (or arrangement) of a system at
discrete points in time for the purpose of systematically
controlling changes to this configuration and maintaining the
integrity and traceability of the configuration throughout the
system lifecycle. The primary objective of SCM is the effective
management of a software system's lifecycle and its evolving
configuration. This paper identifies the need for a SCM methodology
and describes SCM concepts and guidelines. The four component
elements of configuration management are defined as follows:

o Identification - the items in the system configuration
are distinguished (identified)

.

o Control - managing changes to the system,
o Status accounting - provides a history of changes

made to the system; describes how the system evolved,
o Auditing - answers the question: 'Does the system I

am building satisfy the stated needs?'

.

Key words: software configuration management (SCM), software
1 i fecycle , so ftware maintenance

.

**

[BERS80] E.H. Bersoff, V.D. Henderson, and S.G. Siegel,
Software Configuration Management-An Investment in Product
Integrity . Prentice-Hall, 1980.

A detailed discussion of software configuration management (SCM) is
presented . The authors

:

o explain the basic elements of the SCM discipline;
o show how the application of these elements to the

software development cycle facilitates the
transformation of software into a visible,
manageable entity;

o demonstrate how this transformation is a key
ingredient to achieving software and system product
integrity.

Key words: product integrity, software configuration management
(SCM) , software development, software maintenance.

Page 12

**

[B0EH78] B.W. Boehm, J.R. Brown, H. Kasper, M. Lipow,
G.J. MacLeod, and M.J. Merrit, Characteristics of
Software Quality . North-Holland, 1978.

The study described in this book establishes a conceptual framework
for achieving software quality. The key points are:

o Explicit attention to characteristics of software
quality can lead to significant savings in software
lifecycle costs.

o The current software state-of-the-art imposes
specific limitations on the ability to automatically
and quantitatively evaluate the quality of software.

o A definitive hierarchy of well-defined, well-
differentiated characteristics of software quality
is developed. Its highei— level structure reflects
the actual uses to which software quality evaluation
would be put; its lower- level characteristics are
closely correlated with actual software metric
evaluations which can be performed,

o A large number of software quality evaluation
metrics have been defined, classified, and
evaluated with respect to their potential benefits,
quantiflability, and ease of automation,

o Particular software lifecycle activities have been
identified which have significant leverage on
software quality.

Key words: software lifecycle, software maintenance, software
metrics, software quality.

**

[BOEHBla] B.W. Boehm, "An Experiment in Small-Scale
Application Software Engineering"

.

IEEE Transactions on
Software Engineering . vol. SE-7, no. 5, pp. 482-493,
September 1981.

This paper reports on two small interactive application software
products that were developed to the same specification, one using
Fortran and one using Pascal . Several hypotheses were tested, and
extensive experimental data collected. The major conclusions were
as follows:

o Large project software engineering procedures
can be cost effectively tailored to small projects

o The choice of programming language is not the
dominant factor in small application software
product development

o Programming is not the dominant activity in small
software product development

Page 13

o Most of the coding on a small application software
product is devoted to "housekeeping"

.

Experimental data supporting these conclusions, their context and
implications is presented.

Key words: programming, languages, software engineering, software
management

.

**

[BOEHSlb] B.W. Boehm, Software Engineering Economics .

Prentice-Hall, 1981.

This book presents economic concepts and techniques in software
engineering. It provides a framework of software engineering goals,
and discusses a quantitative model of the software lifecycle, the
fundamentals of software engineering economics as they apply to
software projects, the detailed techniques for software lifecycle
cost estimation which support the software engineering economic
analysis techniques

.

Key words: cost estimation, software engineering economics,
software lifecycle, software maintenance.

**

[B0SS82] R.W. Boss, "Software Documentation", Software
Review , vol. 1, no. 2, pp. 165-167, October 1982.

The detailed record of the development of a computer program,
including its modification and testing histories (i.e., software
documentation) is a necessary peripheral in the development,
evaluation, purchase and ongoing use of custom or prewritten
software. Ihe author defines the various components of
documentation and describes its functions and usefulness for both
the vendor and the user

.

Key words: documentation, software design, software development,
software packages, software maintenance, testing.

[BRAN75] C.L. Brantley and Y.R. Osajima, "Continuing Development
of Centrally Developed and Maintained Software Systems",
CQMPCON Proceedings . IEEE Computer Society Press, pp.
285-288, February 25-27, 1975.

A field evaluation of DIR/ECT, a man/machine white pages telephone
book production system is presented. It describes the long term
recfuirements for balancing an overall program of software
maintenance and continuing development of large scale software

Page 14

systems. The latter is emphasized.

Key words: DIR/ECT, redesign, requirements, software development,
software maintenance.

************:************************************

[BRAN77] W.E. Branning, J. P. Schaenzer, D.M. Willson,
and W.A. Erickson, "Modern Programming Practices Study
Report", Rome Air Development Center, RADC, Griffiss AFB,
N.Y., ;^ril 1977.

This report on the technical study of programming practices shows
that:

o Top-down program development reduced cost by 15%,
o Regardless of the method for development used

labor was generally distributed as follows:
. 10% for analysis
. 30% for design
. 35% for coding and debugging
. 25% for testing

o Program testing was automated using real-time on
line simulation, scenario control, data recording
and reduction,

o Through system design, operating system software
provided real-time, on-line recovery of
system functions from hardware failures,

o Software tools found effective on the surveyed
programs were described and evaluated.

Key words: AN/UYK-7 computer, modern programming practices,
real-time, command and control systems, software tools, top-down
program development.

**

[BRAV75] P.H. Braverman, "Managing Change", Datamation .

pp. 111-113, October 1976.

Guidelines for managing changes made to projects are provided. The
author defines change as: 'any event, action, or edict which may
affect the scope of a project, the schedule of a project or the
resources planned for the project. ' A description of the internal
and external types of changes is provided. Project change planning
and control procedures are discussed. The need to quantify and
document project assumptions, and management and user expectations
is stressed. According to the author, a system for managing change
is a "must" for project management.

Key words: changes, development, management, project management,
software maintenance.

Page 15

**

[BRIC81] L. Brice, "Existing Computer Applications Maintain
or Redesign: How to Decide?", Computer Measurement Group
International Conference Proceedings . IEEE Computer Society-
Press, pp. 20-28, December 1-4, 1981.

Maintenance of large applications programs is an aspect of
performance management that has been largely ignored by those
studies that attempt to bring structure to the software production
environment. Maintenance refers to fixing "bugs", modifying current
design features, adding enhancements, and porting applications to
other computer systems. It is often difficult to decide whether to
maintain or redesign. One reason for the difficulty is that good
models and methods do not exist for differentiating between those
programs that should be maintained and those that should be
redesigned

.

This paper presents a case study of a large application software
maintenance effort which was monitored. The information obtained
provided significant insight into factors to be considered when
considering whether to redesign or continue to maintain. The study
found that much of the data that is necesary to establish accurate
predictions on redesign vs maintain is difficult to obtain.
Suggestions for collecting and measuring these and other types of
data are presented. Some of the tools that can be used for the
collection and measurement of performance data are also highlighted.

Key words: management, measurement, programs, redesign, software
evaluation, software maintenance, tools.

**

[BRIC84] L. Brice and J. Connell, "System Information
Database : An Automated Maintenance Aid" , AFIPS 1984
National Computer Conference Proceedings . vol. 53, pp.
209-216, May 1984.

This paper discusses a case study of how one data processing
organization applied student labor and a relational database
management system in a prototype to automate much of their
applications systems documentation function. Documenting
application systems has long been considered a necessary evil.
Necessary because documentation provides a map to present systems,
serves as a software maintenance aid, and is required by the
auditors; evil because it is an activity generally dreaded by those
who develop the systems . Since normal behavior regarding unpleasant
chores is avoidance, application systems documentation is sometimes
absent and often incomplete. Benefits of automated documentation
are presented.

Key words: automation, database management system, documentation
environments, software maintenance, tools.

Page 15

**

[BRIT86] R.N. Britcher, J.J. Craig, "Using Modern
Design Practices to Upgrade Aging Software Systems", IEEE
Software , vol. 3, no. 3, pp. 16-24, May 1986.

Modifying 100,000 lines of 20-year-old code, IBM-FSD successfully
applied its software engineering principles to modernization of the
FAA's air traffic control system. One of the major challenges
facing software system managers in the 1980 's is how to upgrade
large, complex, embedded systems, written a decade or more ago in
unstructured languages according to designs that make modification
difficult. This paper describes a plan to modernize its entire
National Airspace System, including towers, approach controls, and
"en route" centers

.

Key words: design, software maintenance, software, techniques.

**

[BR0N81] G.M. Bronstein and R. Okamoto, "I'm OK, You're OK,
Maintenance is OK", Computerwor 1

d

. pp. 21-24, January 12,
1981.

Industry attitudes towards software maintenance programmers are
examined in this article. Many of the managerial problems connected
with software maintenance programming are due to preconceived
notions and attitudes towards software maintenance programming. New
perceptions of software maintenance programming (i.e. software
maintenance programming is a rewarding and challenging career
requiring considerable skill and experience) must replace the
erroneous, traditional perceptions that were previously used in the
organization. Recommendations are provided for addressing software
maintenance personnel problems . The author suggests that one
approach for improving the software maintenance situation is to
develop an environment within the organization where it is 'OK' to
be a software maintenance programmer and where they are both
rewarded and recognized for their accomplishments.

Key words: environments, programmers, attitudes, programming,
software maintenance.

**

[BR0082a] F.B. Brooks Jr., The Mythical Man-Month .

Addison-Wesley publishing Company, 1982

.

The author presents numerous insights into software engineering
management, drawn from practical experiences gained while
implementing OS/350. The problems of large and small programming
projects are addressed. The author states that large programming
projects suffer management problems different in kind from small

Page 17

ones, due to the division of labor. The critical need is seen as
the preservation of the conceptual integrity of the product. The
difficulties of achieving this unity and methods for doing so are
explored. System debugging, component debugging, and methods of
design that reduce the number of bugs in a program are addressed.

Key words: debugging, design, OS/360, management, personnel,
software engineering, software maintenance, system debugging.

**

[BR0082b] R. Brooks, "A Theoretical Analysis of the Role of
Documentation in the Comprehension of Computer Programs",
PrQce^dlngg ol the Human Factors in Computer Systems . ACM
Press, pp. 125-129, March 15-17, 1982.

The use of documentation is critical to the success of the software
maintenance process. Documentation facilitates the understanding of
a computer program listing, an important prerequisite to updating or
enhancing a program. This article discusses a theory useful for
understanding programs and provides inferences and predictions
derived from this theory. These include the following:

o The role of documentation devices, such as flow
charts or program design languages, will be
particularly effective if the information they
provide is useful in constructing and confirming a
hypothesis

.

o It may be as important to adequately document the
problem as it is to document the program.

o Documentation must be matched to particular
programming environments. For example, different
programming languages may need different kinds of
documentation for different tasks.

o Multiple forms of documentation for the same
program will be beneficial when the different
forms convey different kinds of information."

Key words: beacons, documentation, flow-charts, program design
language, (PDL) , programming environments, software maintenance.

**

[BRYA84] W. Bryan and S. Siegel, "Making Software Visible,
Operational, and Maintainable in a Small Project
Environment", IEEE Transactions on So ftware Engineering .

IEEE Computer Society Press, vol. SE-10, no. 1, pp.
59-67, January 1984.

This paper discusses suggested software management practices
resulting from the experiences of a small (approximately 100
employees) software engineering company that develops and maintains
computer systems supporting real-time, interactive, commercial.

Page 18

industrial, and military applications. Practical suggestions are
presented for effectively managing software development in project
environments budgeted at no more than several million dollars per
year. The suggestions are based on the findings of a product
assurance group that is independent from the development group.
Within this check-and-balance management/development/product
assurance structure, a design review process is described that
effects an orderly transition from customer needs statement to
software code. Activities of a change control body (CCB) and
supporting functions geared to maintaining delivered software also
are described.

Key words: configuration control board, configuration management,
design review, product assurance, project management, software
development, software maintenance, testing.

**

[CANN72] R.G. Canning (editor), "That Maintenance Iceberg", EDE
Analyzer . pp. 1-14, October 1972.

Case studies of how two companies handle the software maintenance
function are presented. A plan is described for making application
systems more maintainable. The author defines 'more maintainable'
systems as those systems that have been developed according to
policies and procedures that will both reduce the need for software
maintenance as well as make any necessary software maintenance
easier to perform. The six aspects of this plan are: designing for
change by establishing standards, designing changes with the aid of
tools, making use of configuration policies, control and audit,
organizing for software maintenance, and converting to more
maintainable systems

.

Key words: configuration management, development, maintainability,
management, software maintenance, standards, tools.

**

[CANN78a] R.G. Canning (editor) , "Progress in Software
Engineering: Part 1", EDE Analyzer . pp. 1-13, February
1978.

An analysis of the concepts, features, and scope of software
engineering, including technological and managerial aspects is
provided. Improved design methodologies and the use of tools to
reduce the time spent on software maintenance are presented. The
following steps are recommended:

o Begin to develop and classify a list of errors
found in requirement statements

.

o Get user involvement.
o Select an approach for handling complexity (i.e.,

functional decomposition or information flow

Page 19

analysis) ,

o Use an inspection process

.

o Define e>qDected performance.

Key words: design methodologies, management, quality assurance,
requirements, software engineering, testing, tools.

**

[CANN78b] R.G. Canning (editor), "Progress in Software
Engineering: Part 2", EDE Analyzer , pp. 1-13, March
1978.

This report discusses some tools and techniques for managing the
creation and maintenance of software. An overview of the methods
used to evaluate the quality and performance of software is given.
Descriptions of some of the methods used to evaluate the quality and
performance of the software development staff, the products, and the
ability of users, are contained in this article. The author
discusses software engineering management which provides a
methodology for improving the management of software development and
modification. Three areas of software engineering management:
staff behavior patterns, project behavior patterns, and system
behavior patterns are examined.

Key words: adaptive maintenance, configuration management,
corrective management, personnel, program evolution, software
engineering, software quality, software maintenance.

**

[CANN81] R.G. Canning (editor) , "Easing the Software
Maintenance Burden", EDP Analyzer . pp. 1-14, August 1981.

Case studies of three organizations involved in software maintenance
are described. Techniques for lowering software maintenance costs
are discussed. Each organization uses different methods for
improving the maintainability of their systems. The author
discusses how the methods of performing software maintenance changed
during the 1970s. Techniques such as, fine tuning the organization,
fine tuning software maintenance procedures, programming for
maintainability, and off-loading software maintenance work onto
others (i.e., users or package vendors) are recommended for
improving software maintenance.

Key words: adaptive software maintenance, corrective maintenance,
enhancements, maintainability, software maintenance organization,
users

.

Page 20

**

[CASH80] P.M. Cashman and A.W. Holt, "A Communication-
Oriented Approach to Structuring the Software Maintenance
Environment^', Software Engineering Notes . pp. 4-17,
January 1980.

This article describes the communication oriented approach to handle
software maintenance. This approach emphasizes the need to support
the software maintenance process rather than emphasizing the
capabilities, tools, or static structures. This approach helps to
improve the software maintenance environment so that it reflects the
communication problems between different agents (either people or
programs) involved in the process of software maintenance. It
provides an environment in which the software maintenance process
can be easily monitored by managers

.

MONSTR (MONitor for Software Trouble Reporting) , a software
maintenance system designed using the communication-oriented
approach, is also described. MONSTR is a protocol -driven system
that is supplied with a description of the communication paths
(protocols) which may be used by project members during the process
of software maintenance.

Key words: communication, MONSTR, software maintenance, trouble
reports

.

**

[CENT82] J.W. Center, "A Quality Assurance Program for
Software Maintenance", AFIPS 1982 National Computer
Conference Proceedings . pp. 399-408, June 7-10, 1982.

An implementation of a quality assurance (QA) program applied to
software maintenance projects is described. The relationship
between the QA program and project management is identified. The
paper includes a brief discussion of waivers and deviations to
standards and control documents . The QA checks are delegated to
three levels: rationale, scope, and authority. A list of sample
criteria used for each QA check or inspection is provided.

Key words: maintenance projects, management, project management,
quality assurance, software maintenance.

**

[CHAP78] N. Chapin, "Semi-Code in Design and Maintenance",
Computers and People , pp. 17-27, June 1978.

This paper discusses semi -code, which is a narrative, prose- like
technique that describes the design of a system in narrative form
instead of using graphs or flowcharts. It fits well with the

Page 21

stepwise, incremental, or iterative refinement techniquies that are
growing in popularity with designing and maintaining programs and
systems. Semi -code is referred to by many names including
structured english, pseudo-code, program design language, system
development language and structured text.

Some of the major characteristics of semi-code are: (1) it narrates
the description of the program or system in terms of a sequence of
functions; (2) it is consistent with the disciplines of structured
programming and structured design; (3) it imposes no restrictions on
vocabulary at the start; and (4) it organizes the description into
four major parts: an identifying name, a list of the input data, a
list of the output data, and a set of statements for the function.

Key words: design, documentation, program design language (PDL)

,

programmers, pseudo-code, semi-code, software maintenance.

**

[CHAP79] N. Chapin, "Some Structured Analysis Techniques",
Datal?9ge , pp. 16-23, Winter 1979.

Technicjues for using structured analysis which is patterned after
the discipline of structured programming are discussed. These
techniques also focus on formal communications using graphic
techniques which include the: Data Flow Diagram (DFD) or bubble
chart. Compound System Chart (CSC) , and actigram/datagram

.

o The DFD or bubble chart represents the logical flow
of data,

o The CSC represents the logical or physical flow of data
at the users option, and

o The actigram/datagram models a system,
emphasizing the constraints.

The four areas to which these techniques are applied are:
organization, data and data flow, processes, and use. In addition,
two versions of the DFD, one advocated by DeMarco and Rose and the
other advocated by Gane and Sarson, are included in the comparison.

Key words: actigram/datagram, bubble chart, compound system
chart (CSC) , data flow diagram (DFD) , graphics, structured analysis
techniques

.

**

[CHAP84] N. Chapin, "Software Maintenance With Fourth
Generation Languages", ACM SIGSQFT Software Engineering
Notes vol. 9, no. 1, pp. 41-42, January 1984.

The impact of fourth-generation languages on software maintenance is
discussed. The advantages and disadvantages of both
third-generation and fourth-generation languages are discussed. The

Page 22

author suggests that the use of fourth-generation languages in the
development stage could result in increases in both the cost and
difficulty of software maintenance.

Key words: fourth generation languages, software maintenance costs,
program languages, software maintenance, third generation languages.

**

[CLAP81] J. Clapp, "Designing Software for
Maintainal5ility" , Computer Design , pp. 197-207, September
1981.

Factors that contribute to the cost of maintaining software, and
differences between software maintenance and software development
are presented. The article references an IBM report which addresses
the effects of software maintenance on a large system (IHVI's OS/350)
and the three laws of "Program Evolution Dynamics" . The author
identifies factors to be considered when planning, designing,
documenting, and managing software changes. Four trends in computer
technology that could affect the future of software maintenance are
discussed. These are: increased availability of tools,
quantitative measures of maintainability, monitoring the software
maintenance process, and the use of higher level software.

Key words: design, evolution, maintainability, metrics, software
maintenance costs, tools.

*******************************x****************

[CLAR80] D.M. Clark, "Maintenance Programming", Computerwor 1

d

.

pp. 27-30, July 28, 1980.

This article discusses a methodology for making changes to an
existing program. The methodology emphasizes change preparation,
since it takes more time to determine what to change in a program
than to make the actual change. The following guidance is provided:

o Determine approximately how long
the task should take, how important it is.

o Read and study the change instructions from
the user; contact the user for clarifications.
This is an important step because most
user-related problems are not technical problems,
but communication problems

.

o Acquire an overview of the program and
determine the program's purpose, framework,
and output

.

o Ignore that part of the program that will not be
affected by the change.

Page 23

o Document your changes as well as any
information which you have learned about the
program's logic. Placing the documentation and
a reference to the changed instructions
in the code itself is recommended.

Key words: documentation, software maintenance, users.

**

[C0DI77] C. Coding, "What Diagnostics Don't Tell You",
Computer Decisions . vol. 9, no. 5, pp. 58-69, June 1977.

The use of proper compiler diagnostics is an important factor in
reducing the cost and effort in software maintenance. This article
discusses the problems and solutions in the area of diagnostics.
The author suggests that since a compiler can translate an error
code into a meaningful description much faster than a human, error
codes should be translated into English. Even though memory space
and compile time are needed to adequately diagnose errors, a machine
is much more effective than a user would be. The author also
discusses diagnostics that should be avoided such as "SYNTAX ERROR"
and "ILLEGAL CHARACTER". Recommendations for improved diagnostics
are as follows:

o Pointer characters - a single character beneath
the point of detection is useful. Also, each
diagnostic should appear after the source
statement in question.

o Forgiving compilers - Under obvious conditions,
the compiler should flag the error, make the
appropriate, obvious assumption and continue.
It is important, however, that the compiler
indicate what assumptions are made and that
they be logical choices

.

Key words: compiler, diagnostics, errors, software maintenance.

**

[CONNS 0] A. P. Conn, "Maintenance: A Key Element in
Computer Requirements Definition", COM?SAC Proceedings .

IEEE Computer Society Press, pp. 401-406, November 1980.

This article analyzes software maintenance of large-scale,
state-of-the-art systems. The requirements specification process is
also examined. Of key concern is the suitability of the
requirements for contractual maintenance agreements

.

Key words: development, software maintenance, requirements
definition, requirements specification.

Page 24

**

[C00P78] J.D. Cooper, "Corporate Level Software
Management", IEEE Transactions on Software Engineering .

IEEE Computer Society Press, vol. SE-4, no. 4, pp.
319-326, July 1978.

Software management and standardardization are discussed from the
corporate viewpoint. Standardization is presented as the most
effective management device available at the corporate level for
enhancing the overall software posture. Research initiatives, as
well as corporate management actions available for favorably
influencing the quality of software over its lifecycle are
described.

Key words: lifecycle costs, lifecycle management plan, software
maintenance, contracts, standardization.

**

[C00P79] J.D. Cooper and M.J. Fisher, Software Quality
Management . Petrocelli publishers, 1979.

This book is comprised of papers presented at the 1979 Conference on
Software Quality and Management. Issues such as maintainability and
reliability are extensively discussed. One of the major premises of
this text is that many software problems are the result of applying
traditional hardware reliability, and maintainability technicjues and
procedures to the software development process.

Key words: maintainability, management, reliability, software
maintenance

.

**

[C0UG83] J.D. Couger and M.A. Colter, Motivation of the
Maintenance Programmer . CYSYS, Inc., 1983.

The results of an in-depth research effort on approaches to motivate
programmers and analysts assigned to software maintenance activities
is described. In phase I of the research, over 500 persons in 10
organizations completed the Couger-Zawacki (C-Z) diagnostic survey
questionnaire for computer personnel. In phase II, on-site
interviews were conducted with 104 persons (61 analysts and
programmers and 43 supervisors/managers of system departments)

.

Data were analyzed utilizing rigorous statistical methodology. The
results Indicate that productivity can be improved by motivation
enhancement procedures

.

Key words: maintenance programmers, motivation, programmers,
productivity, software maintenance.

Page 25

**

[C0UG84] J.D. Couger and M.A. Colter, "The Effects of
Maintenance Assignments on Goal Congruence for Programmers
and Analysts", CIS Conference, ACM Press, June 1984.

The effect of varying amounts of software maintenance work on
perceptions of role conflict, role clarity and reward clarity was
analyzed in ten organizations representative of widely varying
computing environments. The organizations had one characteristic in
common - productivity of software maintenance personnel was
satisfactory, consistent with that of personnel was satisfactory,
consistent with that of personnel assigned to new development work.
The research revealed significant differences in perceptions of
congruency between high software maintenance and low software
maintenance employees. High software maintenance employees appear
to attain much higher levels of role clarity and reward clarity and
much lower role conflict.

Key words: environments, goal congruence, software maintenance
personnel, personnel, productivity, programmers, role clarity, role
conflict, software maintenance.

**

[C0WE79] W.R. Cowell and W.C. Miller, "The Toolpack
Prospectus", Argonne National Laboratory, Applied
Mathematics Division, Tech. Memo Number 341,
WRC/wWCM90906, pp. 3-14, September 1979.

A group of computer scientists from universities, government
laboratories, and private industry explored the idea of producing a
systematized collection of software tools to facilitate the
development and maintenance of Fortran programs. The collection
would be a mechanism for making existing capabilities, resulting
from research in software engineering, more readily available to
Fortran users, in particular those developing numerical software.
This prospectus was intended as a summary of the background, goals,
and inplementation strategy of the Toolpack project.

Key words: Fortran programs, program development, software
maintenance, software engineering, software maintenance, software
tools , Toolpack

.

**

[CURT79] B. Curtis, S.B. Sheppard, P. Milliman, M.A.
Borst, and T. Love, "Measuring the Psychological
Complexity of Software Maintenance Tasks with the Halstead
and McCabe Metrics", I££Z Transactions on Software
Engineering . IEEE Computer Society Press, vol. SE-5, no.
2, pp. 96-104, March 1979.

Page 26

Three software complexity measures (Halstead's E, McCabe's v (G) , and
the length as measured by number of statements) were compared to
programmer performance on two software maintenance tasks. In an
experiment on understanding, length and v (G) correlated with the
percent of statements correctly recalled. In an experiment on
modification, most significant correlations were obtained with
metrics computed on modified rather than unmodified code. All three
metrics correlated with both the accuracy of the modification and
the time to completion. Relationships in both experiments occurred
primarily in unstructured rather than structured code, and in code
with no comments. The metrics were also most predictive of
performance for less experienced programmers. Thus, these metrics
appear to assess psychological complexity primarily where
programming practices do not provide assistance in understanding the
code

.

Key words: commenting, complexity metrics, documentation,
Halstead's E, human factors in software engineering, McCabe's v (G)

,

mnemonic variable names, modern programming practices,
modifications, software science, structured programming.

**

[DALY77] E.B. Daly, "Management of Software Development",
IEEE Transactions on Software Engineering , IEEE Computer
Society Press, pp. 229-242, May 1977.

This paper describes four major aspects of software management:
development statistics, development process, development objectives,
and software maintenance. The control of both large and small
software projects is included in the analysis.

Key words: program methodologies, software design software
maintenance, software development estimates, software management.

**

[DEANS2] J.S. Dean and B.P. McCune, "Advanced Tools for
Software Maintenance", Rome Air Development Center,
Griffiss AFB, Rome, N.Y., RADC, December 1982.

This is the final report on a project entitled "Software Maintenance
Techniques" . The purpose of this project was to study and design
advanced software maintenance tools and techniques for the future
ADA programming environment. Current software maintenance practices
for Air Force C3I software were studied. Three out of the four
major problems identified were attributed to the difficulty of
comprehending software. Nine tools have been proposed to help solve
these and other problems, including a tool to help coordinate the
programming process (the "Programming Manager") , a tool to aid in
the collection and use of documentation ("the Documentation
Assistant) , and an editor that is knowledgeable about what it is
editing (the Intelligent Editor") . The nine tools are based on the

Page 27

computer science technologies of artificial intelligence
(particularly knowledge based and expert systems) , automatic
programming, intelligent user interfaces, formal verification,
software engineering, programming environments, software metrics,
and computer-assisted instruction.

Key words : ADA, ADA Programming Support Environment (APSE)

,

artificial intelligence, documentation, environments,
knowledge-based systems, metrics, program management, program
modification, program verification, software engineering, software
maintenance, software testing, software tools.

**

[DER078] B.C. DeRoze and T.H. Nyman, "The Software Life
Cycle - A Management and Technological Challenge in the
Department of Defense", IEEE Transactions on Software
Engineering . IEEE Computer Society Press, vol. SE-4, no.
4, pp. 309-318, July 1978.

This article stresses the need to m.anage software as a critical
component of defense systems over their lifecycle is becoming widely
recognized. Software costs are continuing to multiply in step with
advancing weapons systems sophistication, and opportunities for cost
avoidance now are leveraged against large dollar investments. The
establishment of software lifecycle management policy and practices,
and the vigorous development and application of new software
technology are discussed in considerable depth.

Key words: computer resources, configuration management, DoD,
software, software lifecycle, software management, software risk
analysis , standardization

.

**

[DEUT82] M. Deutsch, Software Vgrifigetion snd Validation:
Realistic Project Approaches . Prentice-Hall, 1982.

Verification and validation approaches that have been used
successfully on large-scale software projects are described. The
author discusses methodologies that can be applied to conplex
software development and that take account of cost, schedule, and
management realities in the actual production environment.
Verification is defined as an activity which assures that the
results of successive steps in the software development cycle
correctly embrace the intentions of the previous step. Validation
is defined as an activity that ensures the software end product is
functional and which contains the feature prescribed by its
recpjLirements specification. The book is divided into five parts:
Part 1 deals with verification and validation at summary level.
Part 2 is a tutorial on testing techniques. Part 3 describes the
role of automated tools in verification and validation. Part 4
explains the complete set of verification and validation activities

Page 28

performed over the lifecycle. Part 5 identifies future directions
in the verification and validation field.

Key words: automated verification, management, methodologies,
software lifecycle, testing methodologies, validation, verification.

[DONASOa] J.D. Donahoo and D. Swearinger, "A Review of
Software Maintenance Technology", Rome Air Development
Center, Grifiss, AFB, Rome, N.Y., RADC-TR-80-13, February
1980.

This report is intended to be a comprehensive statement about
software maintenance techniques and tools in use today. It focuses
on software maintenance technology as it is described and defined in
open literature and technical reports. Material was selected based
on its relevance to the subject of software maintenance and date it
was published. Generally, only papers and articles published since
1974 and reports and books published since 1975 were selected.

Key words: software failures, software maintenance techniques,
software maintenance tools, software testing, verification and
validation.

**

[DONA80b] J.D. Donahoo and D. Swearinger, "Software
Maintenance Technology" , COMPSAC Proceedings , IEEE
Computer Society Press, pp. 394-400, November 1980.

Effective computer software maintenance is becoming increasingly
important to data processing center managers who must commit more
and more of their resources to the support of operational software,
to programmers and analysts who find themselves responsible for
increasing volumes of program code and to users who have come to
expect improved performance and expanded capabilities from their
existing systems. This paper presents information compiled from
published literature dealing with software maintenance technology;
its development and application. The tools and techniques described
in this paper have been selected from those presented in the report
h Review of Software Maintenance Technology (RADC-TR-80-13) . They
are considered representative of the state-of-the-art in software
software maintenance technology.

Key words: software lifecycle management, software maintenance,
software software maintenance techniques, software maintenance
tools, software modification.

Page 29

**

[D0NE84] B.S. Donefer, "Software Maintenance: An
Investment, Not an Expense", Data Management , pp. 34-35,
March 1984.

This article provides a different perspective on software software
maintenance. It suggests that instead of being considered an
expense, software software maintenance should be viewed as a means
of protecting the software, a valuable asset. It also states that
DP professionals must convince top management of the importance of
software maintenance and the need to allocate resources for software
maintenance

.

Key words : so ftware maintenance resources , management , so ftwar

e

maintenance

.

**

[DUNN81] R. Dunn and R. Ullman, Quality Assurance For
Computer Software . McGraw-Hill, 1982.

An in-depth analysis on how to organize and run a quality assurance
program to improve software reliability and performance is
presented. Software quality assurance is defined as the mapping of
the managerial precepts and design disciplines of quality assurance
onto the applicable management and technological space of software
engineering. The authors discuss how to solve software engineering
problems using structured software development, configuration
management, an orderly development cycle, purposeful and planned
testing techniques, and independent verification and validation.
The author suggests that quality assurance and productivity can be
inproved through defect collection, analysis, and feedback. Other
topics discussed include:

-What needs to be controlled
-When controls should be introduced.
-How to search for defects
-Library control tools
-Staffing and training requirements
-How to sell top management on the
need for a quality assurance program.

Key words: configuration management, library control tools,
management, software, software defects, software engineering,
software verification and validation, staffing, testing, training.

Page 30

**

[DUNN84a] R.H. Dunn, "Configuration Control", Software
Defect Removal . McGraw-Hill, pp. 285-303, 1984.

Some of the key software maintenance issues addressed in this book
are

:

1. Maintenance and modification operations recfuire
exact information about the program being
altered.

2. Baselines are controlled collections of
information concerning a program - initially
just documentation, but later including code.
All development work constitutes a departure
from the previously established baseline.

3. Effective control is possible only with
auditable library control tools.

4. The principal instruments used to control
software are release notices for new material
or new versions, change requests, which indicate
the scope of effort to make a change and its
impact on baseline material, and change notices
which are used to disseminate the new status of
a baseline.

Key words: baselines, change requests, configuration management,
configuration control, documentation, library control tools,
management, software, software maintenance, versions.

**

[DUNN84b] R.H. Dunn, "Maintenance and Modification",
Software Defect Removal . McGraw-Hill, pp. 304-321, 1984.

Some of the key software maintenance issues addressed in this book
are

:

1. Properly performed software maintenance and
modification activities represent iterations of
the programming development process

.

2. The difficult conditions of software maintenance
programming result in the commission of an
untoward number of errors.

3. With regard to the properties of programs that
abet the work of software maintenance
programmers, simplicity and clarity are the

Page 31

most important

.

4. The initiation of the removal of a defect from
operational software starts with a program
trouble report . Since this is the source
document for a software maintenance project,
printed forms should be used to guide the
preparation and ensure the inclusion of all
relevant information.

5. Software warranties offer advantages to both
seller and buyer. However, it is necessary to
carefully spell out the seller's obligations if
the buyer modi fies the product

.

5 . The rate at which programs become obsolete
has to do not only with changes in programming
practices and the operational environment but
also with the state of preservation of the
program ' s structure

.

Key words: documentation, software maintenance, software
maintenance programmers, program trouble reports, programming,
programming environments, software maintenance, software warranties.

**

[DUNS80] H.E. Dunsmore and J.D. Gannon, "Analysis of the
Effects of Programming Factors on Programming Effort", The
Journal qZ Systems and Software . vol. 1, no. 2, pp.
141-153, February 1980.

The paper describes a series of experiments which were conducted to
investigate program construction, comprehension, and modification.
Ease of construction seemed related to average nesting depth,
percentage of global variables used for data communication, average
variables referenced, and average live variables per statement.
Data communication and live variables were shown to be related to
ease of modification.

Key words: data, communication, programming factors, languages.

**

[EBER80] R. Ebert, J. Lugger, and L. Goecke, Practice In
Software Adaptation and Maintenance . North-Holland, 1980.

A collection of articles from the proceedings of the SAM-Workshop
are contained in this book. The main topics and issues covered
include

:

1. conversion case studies;

Page 32

2. software maintenance tools;

3. analysis and documentation techniques to
describe internal software structures;

4. test techniques; and

5. user oriented interface and documentation.

Key words: conversion, documentation, reliability, software
adaptation, software maintenance, testing techniques,
user - inter face

.

**

[EDWA84] C. Edwards, "Information Systems Maintenance: An
Integrated Perspective", MLS Quarterly , vol. 8, no. 4, pp.
237-256, December 1984.

This article suggests that information systems software maintenance
is a complex task, requiring not only the maintenance of the
applications software, but also all the other elements in an
operational system. Literature relating to the maintenance of each
element reveals substantial underdevelopment and fragmentation in
many areas. Alternative methods of managing the software
maintenance operation are examined and the implications of these
methods in terms of designing the procedures, staffing the software
maintenance function, and the need for communication are discussed.

Key words: information systems management, software maintenance,
lifecycle, lifecycle management.

**

[ELSH82] J.L. Elshoff and M. Marcotty, "Improving Computer
Program Readability to Aid Modification", Communications of
the ACM , vol. 25, no. 8, pp. 512-521, August 1982.

Most of the problems encountered during change implementation can be
attributed to difficulty in understanding the program to be
modified. This paper provides guidance that that will make it
easier: to write effective specifications , make accurate cost
estimates modifications , design simpler software changes, and
implement error -free modifications.

Key words: modification, modification cost, readability, software
maintenance

.

**

[ENDR75] A. Endres, "An Analysis of Errors and Their Causes
in System Programs , IEEE Transactions on Software

Page 33

Engineering , IEEE Computer Society Press, vol. SE-1, no.
2, pp. 140-149, June 1975.

Program errors detected during internal testing of the operating
system DOS^/VS are addressed in this paper . This testing operation
serves as a basis for an investigation of error distributions in the
operating system programs. Since errors are classified according to
various attributes, conclusions can be drawn concerning the possible
causes of these errors. The information can then be used to help
determine the most effective methods for the detection and
prevention of errors.

Key words: errors, testing, methodology, error classification,
software reliability.

**

[ER84] M.C. Er, "Managing Source Code", Journal of Systems
Management . pp. 12-14, October 1984.

One of the main problems encountered in development and maintenance
of large projects is managing software changes. It is very
difficult to keep track of all the changes that take place over a
long period of time (i.e., who made the change, why it was changed,
etc.) . This article describes the features that should be included
in a successful software control system, called the Source Code
Control System (SCCS) . SCCS provides two basic commands, GET and
DELTA. GET is used to retrieve an old version of a program from a
file, and edit and test the program. DELTA is used to store the new
version back to the original file. SCCS saves disk and tape space
because instead of storing the source code of two different versions
entirely in a file, it compares the differences between these two
versions and then stores only the differences to the original file.
SCCS assigns a version number to each version of a program created
by DELTA; recovers any previous version of a program; prompts the
user for reasons for the update; facilitates protection from
unauthorized users; and prevents more than one person from working
on the same version of the program.

Key words: development, management, software changes, software
maintenance. Source Code Control System, tools.

**

[FCSC83] Federal Conversion Support Center, "Guidelines
for Planning and Implementing a Software Improvement
Program (SIP)", General Services Administration (GSA) , OSD
FCSC-83/004, May 1983.

This document presents managers with guidance for establishing,
planning, and implementing a SIP. It stresses the importance of
timely and thorough planning, and recommends an emphasize the
innovative, top-down, incremental approach. The emphasis is on
"what needs to be done" rather than "how to accomplish" a SIP.

Page 34

Key words: management, planning, quality assurance, software
engineering, software improvement program, tools, training.

**

[FEIN84a] D.A. Feiriberg, "A Simple Route to Program
Configuration Control , Data Management . pp. 24-27,
January 1984.

This article discusses program configuration control, an automated
technique to manage the software maintenance function. The
technique is based on four components: A baseline source file (the
original software product) , a change journal, an editor preprocessor
and a "time machine' program (this program traces historical
information) . These components are explained and demonstrated
through an example. Basically, the program configuration control
technique works as follows:

1 . A source program update is created
2 . the editor uses this update to revise the master

file
3 . the preprocessor detects information on changes

and appends it to the product's change journal.

Key words: software changes, configuration management, software
maintenance

.

**

[FEIN84b] D.A. Feinberg, "Credit Where It's Due",
Datamation , pp. 256-258, June 15, 1984.

In this article, the author describes the difficulties facing
software maintenance programmers: a negative perception of the
software maintenance function; and the bias of DP organizations in
favor of those programmers working on new projects. Two solutions
are suggested: (1) replace the word 'software maintenance' with a
name that provides a better description for the latter part of the
software lifecycle; and (2) 'projectize' all but the simple
error-correcting portions of the software maintenance. The author
states that implementing these solutions will allow DP organizations
to retain and recruit qualified personnel more easily.

Key words: attitudes, software maintenance programmers, personnel,
software maintenance.

**

[FERR81] A. Ferrentino, "Making Software Development
Estimates "Good", Datamation . pp. 179-182, September 1981.

Problems inherent in estimating factors coniiected with development

Page 35

projects are addressed. One such problem is the use of lines
completed as opposed to the number of functions implemented.
Another problem is the lack of sound methods for accurately-
predicting the time and manpower needed to develop a software
system. Other factors mentioned are: cost of error removal; use of
average productivity figures in estimating resources (high
programmer variability make this a unreliable measure) , and the
realization that organizational requirements, which impact the
software systems, are continually changing.

Key words: error removal, estimating factors, management,
productivity, programmers, project management, software systems.

**

[FINK77] R.C. Fink, "Major Issues Involving the
Development of an Effective Management Control System",
COMPSAC Proceedings . IEEE Computer Society Press, pp.
533-538, November 1977.

Eight issues are presented in this paper which can help revitalize
an ineffective Management Control System. The goal is to achieve
better decisions by managers, ultimately leading to higher
productivity of the computer programmers and analysts involved in
software maintenance.

Key words: management, productivity, programmers, software
maintenance

.

**

[FIPS105] Guideline For Software Documentation Management

.

NBS Federal Information Processing Standards Publication
105 . June 6, 1984.

This guideline can assist managers in establishing policies and
procedures for preparation, distribution, control, and maintenance
of documentation and computer programs. It identifies related
software engineering standards and provides checklists of
documentation that can be used by persons other than the originators
of the programs. This document provides explicit advice on managing
the planning, development, and production of software documentation.

Key words: documentation, guidelines, lifecycle, standards.

**

[FIPS106] Guideline on Software Maintenance. NBS Federal
Information Processing Standards Publication 10^, June 15,
1984.

There is a need for a strong, disciplined, clearly-defined approach

Page 36

to software maintenance. This report emphasizes the importance of
considering of software maintenance throughout the lifecycle of a
software system and stresses the need to plan, develop, use, and
maintain software with future software maintenance in mind. General
and functional definitions of software maintenance are provided and
software change activities are identified. The report presents
guidance for controlling and improving the software maintenance
process and includes suggested criteria for deciding whether
continued maintenance of a software system is justified. According
to this report an organization's software maintenance efforts can be
improved through the institution and enforcement of software
maintenance policies, standards, procedures, and techniques.

Key words: adaptive maintenance, corrective maintenance. Federal
Information Processing Standards publications, management,
perfective maintenance, software engineering, lifecycle, tools.

**

[FISC77] K.F. Fischer, "A Test Case Selection Method for
the Validation of Software Maintenance Modifications",
COMPSAC Proceedings . IEEE Computer Society Press, pp.
421-426, November 8-11, 1977.

Validation of software maintenance modifications is commonly
referred to as retest, and has yet to be adecjuately resolved. The
problem is how to efficiently select previously run test cases to be
rerun on the software to assure no degradation of reliability. This
paper presents alternative retest philosophies and identifies a
common operations research technique for solution. Detailed
examples show how 0-1 integer programming can identify a minimum
number of previously executed tests necessary to fully retest every
affected program element at least once. Use of this model to
determine proper selection of test cases can reduce the cost of
software maintenance and increase confidence in the reliability of
the code.

Key words: modifications, programming, reliability, retesting,
software maintenance, software management, testing, validation.

**

[F0RN83a] R.H. Forney, R.G. Race, and R.P. Nashleanas,
"Data Processing: A Management Paradox", Journal of
Systems Management . vol. 34, pp. 21-23, May 1983.

In this article, the causes for many software maintenance problems
are identified. According to these authors: (1) management
generally believes it is difficult, if not impossible to plan for
software maintenance; (2) a rise in DP salaries is causing the cost
of software maintenance to increase; (3) the person who wrote the
original program is usually not the person who maintains it; (4)
there is a lack of system documentation (i.e., when modifications

Page 37

occur, the documentation is rarely changed or updated) ; (5) present
maintainability standards are not being applied to existing
programs; and (5) an insufficient amount of resources are being
allocated for software maintenance. Their recommendations are:
change management's attitude towards software maintenance; make
management more aware of the resources needed, and more aware of
computer technology (i.e., software tools) to aid software
maintenance programmers

.

Key words: documentation, maintainability, management, resources,
software maintenance, tools.

**

[F0RN83b] R.H. Forney, R.G. Race, and R.P. Nashleanas,
"A Strategic Approach: The use of Tools", Journal of
Systems Management . vol. 34, pp. 29-31, June 1983.

The authors advocate the use of tools in software maintenance and
describe tool attributes. The authors discuss two approaches for
performing software maintenance. The traditional approach handles
each request separately; the strategic approach groups together
similar problems in order to reduce the programmer's familiarization
time (i.e., faster understandability of the program) and make the
solution easier to implement. Software tools, which automate highly
repetitive tasks can help accomplish this goal . Some tools found to
be effective for software maintenance are: static analyzer,
formatter, documentor, code splitter and dynamic analyzer.

Key words: code splitter, documentor, dynamic analyzer, formatter,
productivity, programmers, software maintenance, tools.

**

[F0RN83C] R.H. Forney, R.G. Race and R.P. Nashleanas,
"Reconditioning the Software Asset", Journal of Systems
Management . vol. 34, pp. 20-21, July 1983.

This article addresses structuring engines which transform poorly
structured programs into programs with a well-defined structure.
This tool has been found to be effective as an aid in planning for
software maintenance. Several specific and broad goals for software
maintenance are also discussed.

Key words: management, software maintenance, structured
retrofitting, structuring engines, tools.

Page 38

**

[FRAN83] W.L. Frank, Critical Issues in Software .

John Wiley and Sons, 1983.

This book describes software from both an economic and historical
point of view. It addresses the: cost factors relating to
software; lifecycle process for developing, operating, and
maintaining software; history and current state of software
development; economic issues of productivity for software
development and maintenance; impact of microcomputers on the
software industry; and the importance of managing the software
process

.

Key words: management, microcomputers, productivity, software cost,
software development, software lifecycle, software maintenance.

[GA080] "Wider Use of Better Computer Software Technology
Can Improve Management Control and Reduce Costs", General
Accounting Office (GAO) , FGMSD-80-38, April 29, 1980.

GAO conducted a survey to determine if the latest tools and
techniques were being used to develop and maintain Federal computer
software. They found that computer specialists at many agencies
were unaware of the newer, better methods; others were reluctant to
adapt them. GAO recommends various ways to promote the use of
better tools and techniques to improve management control and
control spending.

Key words: development, management, software maintenance, software
technology, software tools.

**

[GA081] "Government-Wide Guidelines and Management to
Improve ADP Systems Development", General Accounting Office
(GAO), AFMD-81-20, February 20, 1981.

In more than 57 reports in the past 10 years, GAO has identified
management weaknesses in the design and development of large,
complex Federal data processing systems . These weaknesses led to
the waste of over $300 million and systems which

-were not cost effective,
-did not meet agency needs,
-took too long to develop, or
-simply did not work.

The report suggests that guidelines for a structured management
approach to ADP systems development be developed, that their use be
required throughout the Government, and that a cost reimbursable

Page 39

center to assist agency top management in planning, designing,
acquiring, and evaluating large, complex ADP systems development
projects be established.

Key words: data processing systems, development, design,
management, planning, structured management.

**

[GA083] "The Air Force Can Improve Its Maintenance
Informations Systems , General Accounting Office (GAO) ,

GAO/GCD-83-20, January 25, 1983.

The Air Force spends millions on aircraft software maintenance
information. This report suggests that a timely development
decision on standard use of the software maintenance information
system throughout the Air Force-wide is necessary to eliminate
duplicate system development efforts and to prevent the acquisition
of unnecessary computer equipment. Other recommendations are made
to help reduce many of the software maintenance and information
management problems

.

Key words: data, information management, information systems,
management, system development.

**

[GILB77] T. Gilb, "The Measurement of Software Reliability
and Maintainability", Computers and People , pp. 15-21,
September 1977.

This article presents a number of technical and management
approaches to the production and maintenance of reliable software.
The four major areas covered are:

1. Quantification of reliability and maintainability:
the reliability and maintainability goals of a
project must be stated in measurable terms.

2. Automation of the reliability and maintainability
tasks: the evaluation of source program structure
is currently capable of being done automatically.

3. Management of reliability and maintainability:
managers should set standards which are checkable
by machine so that they can be effectively and
economically controlled.

4. Redundancy-based reliability technology:
automation of the production set of test cases.

Key words: automation, management, programming, redundancy,
software maintainability, software reliability, program analyzer,
standards

.

Page 40

**

[GILB79a] T. Gilb, "A Comment on the Definition of
Maintainability", Software Engineering Notes , IEEE
Computer Society Press, vol. 4, no. 3, pp. 32-33, July
1979.

The theme of this article is that maintainability is directly
measurable at many stages of system development. The author list
ten measurable factors to define maintainability. To aid managers
in predicting the maintainability of the company's programs, they
should use techniques that will measure the effect of design
decisions during development.

Key words: maintainability, management, measuring, software
maintenance , deve1opment

.

**

[GILB79b] T. Gilb, "Gilb's Methodology: Need for Training
in Program Maintenance", Computer Weekly , p. 5, March 15,
1979.

This article reveals the necessity for training in the area of
software maintenance. The author believes that the rapid turnover
in software maintenance personnel is caused by the fact that the
workers are neither well-trained nor motivated to maintain software.
He suggests that colleges or other training institutions should
establish special programs to address software maintenance issues as
well as tools and techiiiques required to successfully maintain a
system. According to the author, it is essential that a percentage
of the increasingly large number of persons entering the field of
computer science be recruited and trained to address the demanding
problems of software maintenance.

Key words: colleges, software maintenance, training, tools.

**

[GILH82] I .A. Gilhooley, "Organizing for Effective Program
Change Control", The Internal Auditor . vol. 39, pp.
59-63, February 1982.

Many organizations do not have formal systems for controlling
changes to application programs. The author suggests an approach
which centers around the creation of a change review board. All
changes should be: authorized by an appropriate level of
management, fully tested, and migrated into the production mode in a
controlled fashion, and include a complete management trail from
initiation to implementation. The change review board should
include people from the following departments: systems and
programming, computer operations, primary users, and audit. The

Page 41

change review board has six major functions: review change
requests, assign priorities and resources, review system analysis
and design, coordinate company resources, ensure completion of a
change request, and control the implementation of changes. A
detailed discussion of this approach is presented.

Key words: change review board, change requests, management, change
control, software maintenance.

**

[GILL83a] P. Gillin, "Experts Detail Methods to Control
Maintenance Costs", ComputerworId . p. 8, February 21,
1983.

The following advice is offered by a number of experts on reducing
software maintenance costs:

-coordinate modification and documentation.

-adopt the "release concept' where patches and enhancements are
collected over a period of time, implemented at one time, and
then offered as a new release.

-make management aware of the need to encourage greater respect
for maintenance within the DP department. Other suggestions
for controlling software maintenance costs are presented.

Key words: documentation, enhancements, software maintenance costs,
release concept, software maintenance.

**

[GILL83b] P. Gillin, "Users Fighting to Contain Costs",
ComputerworId . p. 8, February 21, 1983.

Changes undertaken by four companies to reduce software maintenance
costs are discussed in this article. Three of these companies
decided to purchase application packages. The case studies
presented support the decisions by each company to purchase
of f-the-shel f packages

.

Key words: maintainability, maintenance costs, software packages,
software maintenance.

**

[GLAS79] R.L. Glass, Software Reliability GuidQbQPK,
Prentice-Hall, 1979.

TThis book discusses technical and management techniques for
achieving software reliability, and the interrelationship between
reliability and software maintenance. The author describes a

Page 42

variety of tools and methodologies to assist in making software more
reliable. Special emphasis is placed on the problems of large
projects

.

Key words: management, methodologies, reliability, software
maintenance, software reliability, tools.

**

[GLASSla] R.L. Glass, "Persistent Software Errors", IEEE
Transactions on Software Engineering . IEEE Computer
Society Press, vol. SE-7, no. 2, pp. 152-158, March
1981.

Persistent software errors, including those which are not discovered
until the software becomes operational, are predominantly errors of
logic. Peer design and code review, desk checking, and rigorous
testing have been found to be the most helpful in reducing this type
of error. Glass concludes that new and better methodologies are
needed

.

Key words: complexity, software error, problem report, testing.

**

[GLASSlb] R.L. Glass and R.A. Noiseux, Software
Maintenance Guidebook

, Prentice-Hall, 1981.

This book discusses the people, technical, and managerial aspects of
software maintenance. Maintenance is discussed in relation to the
software lifecycle. The authors examine several personality traits
which can affect the work of a maintainer and describe the tools and
techniques found to be effective. This text provides a
comprehensive management perspective on software maintenance is
provided

.

Key words: maintenance programmers, management, personality traits,
software lifecycle, software maintenance, tools.

**

[GLAS82] R.L. Glass, Modern Programming Practices

:

A
Report From Industry . Prentice-Hall, 1982.

The author presents an industry view of industrial software
practices. This book relates the e>periences of six companies who
were paid by the Air Force to report their techniques for developing
and maintaining software. These reports also discussed techniques
for programming quality, performance, and productivity. With
regards to software maintenance, companies discussed it very little
in their reports. Techniques for software maintenance were not
mentioned. However, configuration management was almost an

Page 43

universal concern. Change control was one of the most frequently
mentioned modern programming practices. Unfortunately, software
maintenance was considered by companies to be necessary because it
was "not done right the first time"

.

Key words: change control, configuration management, modem
programming practices, productivity, programming, quality, software.

**

[GLAS84] R.L. Glass, "Report on the Software Maintenance
Workshop", System Development , vol. 3, no. 12, pp. 1-3,
February 1984.

This article describes the proceedings at the 1983 software software
maintenance shop. First, there were keynote presentations
evaluating the problems in software maintenance and presenting
solutions to these problems . Second, there were technical sessions
which included presentations by Japanese and Swedish speakers

.

Finally there were two sessions dealing with methods of developing
software to make it more maintainable. This article provides a good
update about present issues, solutions, and problems in software
maintenance

.

Key words: maintainability, maintenance.

**

[GREE81] J.F.Green and B.F. Selby, "Dynamic Planning and
Control of Software Maintenance: A Fiscal Approach", Naval
Postgraduate School, Master's Thesis, 1981.

Until recently, much of the budget planning for software systems has
been primarily targeted at costs incurred during the development
phase. However, with increasing software system life span and
complexity, software maintenance costs have become a more prevalent
concern. As a result of necessary corrections for design errors and
evolutionary software maintenance, post-delivery investment in
software systems now requires a greater proportional share of the
lifecycle costs. In this research, various methodologies and system
factors relating to software cost accounting are reviewed with the
intent of developing a cost control model for arriving at a
well -structured view for the management of the software maintenance
phase of the software lifecycle. The model proposed embodies a
planning concept for establishing a software maintenance strategy
and a control concept for analyzing manloading requirements during
the software maintenance phase.

Key words: software evolution, software lifecycle, software
macr©estimation, software maintenance, software microestimation

.

Page 44

**

[GREM84] L.L. Gremillion, "Determinants of Program Repair
Maintenance Requirements", Communications qZ the ACM , vol.
27, no. 8, pp. 826-832, August 1984.

Considerable resources are devoted to the maintenance of programs
including that required to correct errors not discovered until after
the programs are delivered to the user. A number of factors are
believed to affect the occurrence of these errors, e.g., the
complexity of the programs, the intensity with which programs are
used, and the programming style. Several hundred programs making up
a manufacturing support system are analyzed to study the
relationships between the number of delivered errors and measures of
the programs ' size and complexity (particularly as measured by
software science metrics) , frequency of use, and age. Not
surprisingly, program size is found to be the best predictor of
repair software maintenance recjuirements . Repair software
maintenance is more highly correlated with the number of lines of
source code in the program than it is to the software science
metrics, which is surprising in light of previously reported
results . Actual error rate is found to be much higher that that
which would be predicted from program characteristics

.

Key words: program complexity, program errors, software
maintenance

.

**

[CT10C84] J.M. Grochow, "When and How to Modify Packages",
ComputerworId . pp. 7-13, March 12, 1984.

This paper analyzes the option of purchasing and modifying software
packages as opposed to in-house development. Different types of
changes to a package are discussed. These changes include: fixing
reports and input screens, adding a new feature, changing package
performance in a particular area, and interfacing a package with
other operational systems . The author suggests alternative
approaches for modi fying so ftware packages . Some factors that
should be considered while evaluating software packages are:
warranty, customer support, ongoing vendor software maintenance, and
vendor assistance on program modifications. He describes modifying
packages as a cost-effective solution to system development.

Key words: customer support, packages, software maintenance, vendor
software maintenance, warranty.

**

[GR0S82] J.F. Gross, "Writing Straightforward, Maintainable
Programs", Computer Programming Management . Van Nostrand
Reinhold, pp. 101-112, 1982.

Page 45

This chapter covers several topics in software maintenance. The
author discusses three situations that can force a program to be
modified. Various causes for the development of hard- to -maintain
programs are examined. These causes are as follows: philosophy of
perfection, educational bias towards one-shot programs, tradition,
laziness, the company's work environment, and a programmer's need to
be creative and to personalize his work. The use of a different
philosophy to solve these problems is also discussed. The basis of
this philosophy is to write programs with software maintenance in
mind. In addition, the use of foresight, a team effort in
programming, and instituting accurate reports and schedules are
included in this philosophy. The use of various standards and
techniques to improve program maintainability are recommended. The
author concludes that improvements in design and coding will save
money and increase productivity.

Key words: productivity, program maintainability, software
maintenance, programmers, programming, standards, work environment.

**

[GUIM83] T. Guimaraes, "Managing Application Program
Maintenance Expenditures", Communications of the ACM . vol.
26, no. 10, pp. 739-746, October 1983.

Program software maintenance represents a major portion of the total
expenditures on application programs. Despite the attention this
subject has received in the MIS literature, new guidelines to action
in this area remain of great interest to practitioners. A large
number of variables thought to be determinants of application
program software maintenance expenditure have been studied through
the inspection of application portfolios and personal interviews
with top computer executives and systems development personnel

.

Based on the results, recommendations are made on how to reduce
application software maintenance expenditures.

Key words: database management systems, personnel, software
documentation, software maintenance costs, program redevelopment,
program size, software packages.

**

[GUND73] R.E. Gunderman, "A Glimpse Into Program Maintenance",
Datamation , vol. 19, no. 6, pp. 99-101, June 1973.

This article gives a brief overview of the problems and solutions
involved with program software maintenance. The author states that
software maintenance is not an activity that should be given to
beginner programmers. He observed a significant amount of
programming time can be consumed in software maintenance and large
programs are virtually never completely debugged. The author
suggests a software maintenance-support facility as an aid for
software maintenance programming. This facility would provide: (1)

Page 46

a software maintenance specialist who could isolate program bugs and
give feedback to designers for enhancing the maintainability of
programs (2) classification of bug types and their correlation with
program sequences, routines, and/or instructions (3) program
definition through an established set of simple verbs (4) software
maintenance history and documentation of any pertinent events and
actions taken during a software maintenance task (5) a software
documenter (5) software maintenance data and statistics from
software maintenance activities.

Key words: documentation, debugging, software maintenance
programming, software maintenance-support facility.

**

[HALL78] T.G. Hallin and R.C. Hansen, "Toward a Better
Method of Software Testing", COMPSAC Proceedings . IEEE
Conputer Society Press, pp. 153-157, November 13-16, 1978.

While software testing is necessary for the production of quality
products, it is generally one of the least efficient steps in the
software development process. Testing typically consumes over 50
percent of the development effort. Software testing is thought of
as an art and not a science, and artistic approaches to testing
propagate the thinking. The complex test systems, complex program
implementations, seemingly unrelated requirements and design
information, and the complex system interactions all come to haunt
and confuse the poor software developer when it comes time to
certify the product is correct. The authors have attempted to step
back from all of these program intricacies and define what it means
to test software programs. A cause and effect testing methodology
is described. Promising results are provided from two development
efforts that have used this approach for software testing.

Key words: quality, software development, software testing.

**

[HANN85] J. Hannan, "Consultant: Upkeep is Service to Users",
Government Computer News , p. 41 and p. 54, March 29,
1985.

This article discusses reducing software maintenance cost and the
application backlog. Most of the material in this paper is taken
from an article in Auerbach's System Development Management
publication. The ADP manager establish short-term and long-term
objectives. Since software maintenance is a service to users the
short-term objective is to execute the change request as quickly as
possible. Guidelines for establishing priorities and long-term
objectives in the software maintenance phase are presented.
Staffing, organizing, and directing the software maintenance
function are also discussed. Improvent in the software maintenance
team's performance can be achieved by attention to:

Page 47

1. Service requests - all requests should be logged to
ensure that none of them are lost.

2. Maintenance steps - software maintenance and
development requests should be handled the same
way.

3. Setting Priorities - the software maintenance manager,
not users, should set priorities.

4. Implement standards for software maintenance, design,
documentation, and progr^anming

.

5. Maintenance Planning - The software maintenance
manager must establish software maintenance goals and
the means to achieve them.

6. Training - software maintenance programmers should be
trained in all applicable ADP tools and techniques.

Key words: documentation, planning, management, organizing,
programming, software maintenance, staffing, standards, training.

**

[HARR82] W. Harrison, K. Magel, R. Kluczny, and A. DeKock,
"Applying Software Complexity Metrics to Program
Maintenance", Computer , pp. 65-79, September 1982.

Predicting software complexity can save millions in software
maintenance costs, but while current measures can be used to some
degree, most are not sufficiently sensitive or comprehensive.

Key words: data flow, data structures, metrics, control structures,
software maintenance, software complexity.

**

[HAEIR83] W. Harrison, K. Magel, and R. Kluczny, "Research
in Software Maintenance", Journal q£. Systems Management .

vol. 34, pp. 10-14, July 1983.

This article discusses factors causing high software software
maintenance expenditures and presents two descriptive models of the
software maintenance field. The authors estimate that between 40%
and 75% of software and hardware expenses are for software
maintenance. An example is given to show that decreasing the cost
of software maintenance is the only viable way of increasing the net
return of the software. Also, the authors compare software
maintenance to other types of software maintenance (i.e., hardware)

.

Two software maintenance process and environment models are
described. The first model emphasis is on user perception of th e
software maintenance process, while the second focuses on the
characteristics in the software maintenance environment. Use of
these models help to show the how improved communication between
users and programmers increases the effectiveness of software
maintenance

.

Page 48

Key words: software maintenance costs, software maintenance
environment

.

**

[HARR84] W. Harrison, "Software Complexity Metrics", Journal
of Systems Management . pp. 28-30, July 1984.

This article reviews the status of software complexity metrics and
describes present research in this area. The two types of
performance and error data are also described. Software complexity
metrics are measurements that assess how difficult it is to
understand programs. Typically, such a metric attempts to measure
to what degree some characteristic exists within the software.
Usually, the characteristic of interest is one which the metrician
believes hinders the programmer from understanding the program.
These metrics are important in software maintenance because a major
factor affecting software maintainability is how easily can the
program be understood. The two approaches for evaluating metrics
are : Experimentation and field studies . Most experimental studies
are done with college students using small programs. Field studies
are usually more accurate since they examine professional
programmers working in a professional environment. The
characteristics which are often measured in assessing program
complexity can be divided into three main groups

:

1. Control flow - the number of decisions made in
the program and their interrelationships.

2. Program size - the size of the program which can
be expressed in many ways

.

3. Data structuring and flow - the relationship and
use of variables within the program.

Key words: control flow, data structuring, metrics, program
complexity, software maintenance.

**

[HENK81] T. Henkel, "Opportunity Sighted in Software
Maintenance", Computerwor 1

d

, p. 13, May 11, 1981.

This article discusses the future of software software maintenance
programmers. A breakdown of software maintenance programmer
activities is provided: coding and emergency repairs (10%)

,

enhancements to existing systems (45%) , changing conditions or , the
way the business is handled (25%) , upgrades or recoding to adapt to
hardware upgrades (10%) , and expanding the existing system to
accommodate a higher demand (10%) . An assessment of job
opportunities (i.e., pay and status) for software maintenance
programmers is presented. The author notes that job opportunities
are becoming an increasingly important function within the
organization. This article disputes the widely held notion that
software maintenance programming is a 'dead-end job.

Page 49

Key words: maintenance programmer, software maintenance.

**

[HERN83] M.A. Herndon and J. A. McCall, "A Tool For Software
Maintenance Management", Softfair Proceedings . IEEE
Computer Society Press, pp. 157-163, July 25-28, 1983.

Software maintenance accounts for a large percentage of the life
cycle costs of a software system. Little recognition by the
software tool community has been given to the unique problems and
tool requirements of software maintenance personnel . This paper
discusses these problems, the software characteristics required for
a maintainable product, and a system of tools which has been
developed specifically to support software maintenance
organizations

.

Key words: maintainability, software maintenance, software
maintenance management, software tools.

**

[HIGG81] D.A. Higgins, "Structured Maintenance - New Tools for
Old Problems", ComputerworId . pp. 31-40, June 15, 1981.

This report discusses methods for improving program maintainability.
The author emphasizes the importance of a program that is easy to
maintain. An example of a COBOL program including GOTOs is
presented in order to prove that removing the GOTOs does not
necessarily improve the program. Since excessive GOTOs are only a
symptom of poor program design, their removal does nothing to
improve the design of a bad program. A method for the data
structured design of programs is presented. The four data
structures found in every program and their significance for
improving program maintainability is provided.

Key words: COBOL, data structured design, data structures, design,
GOTOs, program maintainability, software maintenance, software
maintenance management, structured software maintenance, structured
programs

.

**

[H0UT83] C.A. Houtz, "Software Improvement Program (SIP)

:

A Treatment For Software Senility", General Services
Administration (GSA) , September 1983.

ADP organizations are plagued with high software maintenance costs,
long delays in responding to users ^ changing needs, and continued
development and maintenance of antiquated, outmoded, and relatively
obsolete software. This software can be thought of as being in an
advanced state of software senility, a degenerative condition, which

Page 50

if not corrected, will eventually render the software totally
useless. A reversal of this situation requires a Software
Improvement Program (SIP) , which is a treatment for the ills of
software senility, and offers a cure for many of the software
problems from which most ADP organizations are suffering. A SIP is
an incremental and evolutionary approach to modernizing software to
maximize its value, quality, efficiency, and effectiveness, while
simultaneously preserving the value of past software investments and
enabling the organization to capitalize on today's modern ADP
technology, as well as future technological advances in the field.
This paper describes the SIP philosophy and presents a strategy for
implementing a dynamic, ongoing SIP coupled with a sound Software
Engineering Technology, (SET) , to attack the causative factors of
the ever-growing software crisis.

Key words: software engineering technology fSETl , software
improvement, software improvement program (SIP) , software
obsolescence, stepwise refinement.

**

[H0WA83a] P.C. Howard (editor), "Motivating Maintenance
Personnel", System Development , pp. 1-2, July 1983.

This article is based on a session held at the 1983 National
Computer Conference, entitled motivating software maintenance
personnel. The thesis of this report is that the motivating
potential needed by software maintenance programmers who have high
need for professional growth is often missing. This, coupled with a
relatively short learning curve for software maintenance personnel,
leads to poor morale and low productivity. The findings of the
research effort on how to motivate software maintenance personnel
are presented. They include changes initiated in a number of
organizations to motivate the data processing staff in such areas
as: (1) job training, (2) simplification of the programming process

large applications are divided into smaller pieces, (3)
cross -utilized development and software maintenance personnel to
eliminate the stigma of software maintenance programming, and (4)
established a user-programmer link.

Key words: maintenance programmers, motivation, personnel,
productivity, software maintenance, training.

**

[H0WA83b] P.C. Howard (editor), "Reducing System Maintenance",
System Development . p. 7, July 1983.

This article describes a program for reducing software maintenance
which has three separate, but overlapping stages: (1) measuring the
existing software maintenance effort, (2) summarizing and analyzing
the software maintenance activity, and (3) resolving the software
maintenance problems by order of priority. A discussion of

Page 51

procedures for generating and tracking activities associated with
the software maintenance effort is presented. One of the best
sources of information is the data available from the personal logs
of software maintenance activities. According to this study,
extensive analysis of the logs enabled studied. From this study,
management can prepare procedures and guidelines to control costly
and unnecessary system software maintenance.

Key words: programmers, software maintenance, software maintenance
management, system software maintenance, users.

**

[H0WA84a] P.C. Howard, "Issues in Software Maintenance",
System Development , vol. 3, no. 12, pp. 3-4, February
1984.

This article discusses five principal issues relating to software
software maintenance. They are as follows: (1) a conceptual issue
involving the definition of software maintenance (2) measurement of
software maintenance activities (3) the scale of effort spent on
software software maintenance (about 50%) (4) the organization of
and the placement of the software maintenance activity (5)
productivity issues in software maintenance. This article is based
on surveys by Bennet P . Lientz

.

Key words: maintenance definition, software maintenance
organization, measurement of software maintenance activities,
productivity, software maintenance.

**

[H0WA84b] P.C. Howard (editor), "Hints on Controlling
Maintenance Expenditures", System Development . vol. 4,
no. 5, pp. 6-7, July 1984.

This article offers suggestions to managers for controlling software
maintenance expenditures. These suggestions are based on the
findings from a survey of 43 organizations and five in-depth case
studies, which examined the nature of the software maintenance
activity in commercial user organizations. A list of the findings
from this survey are presented in the article. The suggestions for
improving management of application program software maintenance
expenditures are as follows:

1 . Use Data Base Management Systems
2 . Do not use Assembly Language
3. Use application software packages
4. Use self-contained Query Language
5. Provide direct user access
6. Preplan equipment or software changes
7. Develop useful documentation.

Page 52

This article contains useful suggestions for reducing software
maintenance costs

.

Key words: assembly language, data base management system,
documentation, software maintenance costs, management, software
maintenance, self-contained query language, software changes,
software maintenance, software packages.

**

[H0WA84C] P. G, Howard (editor), "Building in
Maintainability , System Development, vol. 4, no. 10,
pp. 3-4, December 1984.

This article discusses methods for building in maintainability, both
for new and existing systems . The problems which prevent
maintainability are as follows: lack of data on a organization's
software maintenance activities, the existence of inflexible
software, poor management of software maintenance personnel, and the
flood of user requests for enhancements. There is a critical need
to adopt methods for designing software that will make the software
easier to change. Fourth generation tools as a way of escaping the
software maintenance problems associated with procedural languages.
Some of the positive effects from these tools on the software
maintenance effort include: improved readability of generated code,
improved documentation, ability to change programs faster and
ability of end-users to make their own enhancements. The article
concludes with the statement that for conventional applications
fourth generations tools offers a tremendous advantage both in the
development and software maintenance of software.

Key words: fourth-generation tools, maintainability, software
maintenance personnel, management, software maintenance.

**

[HUAN75] J.C. Huang, "An Approach to Program Testing", ACM
Computing Surveys , vol. 7, no. 3, pp. 113-128, September
1975.

One of the practical methods commonly used to detect the presence of
errors in a computer program is to test it for a set of test cases.
The probability of discovering errors through testing can be
increased by selecting test cases in such a way that each and every
branch in the flowchart will be traversed at least once during the
test. This tutorial describes the problems involved and the methods
that can be used to satisfy the test requirement.

Key words: directed graph, path analysis, path predicate, program
analysis, program instrumentation, program testing, test-case
generation

.

Page 53

**

,[HULI84] J. Huling, "User Requests Needn't be a Pain in the
Neck", Computerworld . p. 64, May 28, 1984.

This article describes a procedure for handling a backlog of user
requests. The first step of the procedure is to organize the
requests by some criteria (i.e., size, complexity, or program
function) . The advantages of organizing the requests are to
eliminate any duplication of effort and to allow the analyst to
assign priorities to the larger logical units . The second step is
to estimate the time and resources needed to complete each group of
requests . The third step is to contact the person requesting the
work to determine if the request is valid and to let the user know
the time and cost involved. The fourth step is to assign priorities
and prepare a schedule. When a request (or group of requests) is
complete, the person who requested the work should be informed. The
fifth and most important step is to gain management support.

Key words: management, organizing requests, programmers,
scheduling, user needs, user requests.

**

[INM084] W. Inmon, "On-Line Maintenance: A New Ball Game",
Computerworld . p. 45 and p. 55, September 3, 1984.

This article compares and contrasts system software maintenance in
the batch and on-line environments. In the batch environment, there
are three categories of software maintenance: "fix it" software
maintenance for immediate problems, system modifications, and system
additions. However, in the on-line environment there is a fourth
category of software maintenance: post- implementation design and
development. This fourth category is usually very expensive due to
the difficulty of making fundamental changes to a system that has
already been implemented. Companies which did not consider
important design issues (i.e., performance and availability) had
high software maintenance costs. This article provides an
interesting comparison between the software maintenance done in the
batch and on-line environments.

Key words: batch environments, software maintenance costs, on-line
environments, software maintenance, system software maintenance.

**

[IITR82] IITRI Staff, "MPP in the Pave Paws Software
Maintenance", Rome Air Development Center, Griffiss AFB,
N.Y. , June 1982

.

This report presents the results of a study to establish a baseline
software maintenance experience database and to determine

Page 54

relationships which exist on the use of modern programming practices
and software engineering tools on the ease of software maintenance
of the PAVE PAWS (Phased Array Warning System) .

Key words: modern programming practices, operation and maintenance,
software data collection, software engineering tools.

**

[J0NE78] T.C. Jones, "Measuring Programming Quality and
Productivity", IBM Systems Journal . vol 17, no. 1, pp.
39-63, 1978.

An analysis of common units of measure for assessing program quality
and programmer productivity reveals that some standard measures are
intrinsically paradoxical . Lines of code per programmer-month and
cost per defect are in this category. Presented here are attempts
to go beyond such paradoxical units as these. An in-depth
discussion of the usefulness of separating quality measurements into
measures of defect removal efficiency and defect prevention, and the
usefulness of separating productivity measurements into work units
and cost units is provided.

Key words: defect prevention, defect removal, productivity
measurements, program quality, programmer productivity, programming,
quality measurements.

**

[KAPL77] R.S. Kaplan, "Issue: An Information System and
Software Update Environment", COMPSAC Proceedings . IEEE
Computer Society Press, pp. 527-532, November 8-11, 1977.

An Information System and Software Update Environment (ISSUE) is a
data base management system that supports software control and
administration. ISSUE has been implemented on an IBM 370/168 and an
AMDAHL 470/V6, both running under IBM^s TSS (Time Sharing System)
operating system at Bell Laboratories. The major components of
ISSUE are described and the procedures used to administer a system
under ISSUE are documented.

Key words: data base management system, IBM 370/168, Information
System and Software Update Environment (ISSUE), software control.

**

[KAPU83] G. Kapur, "Software Maintenance", Computerwor 1

d

.

pp. 13-22, September 26, 1983.

This article analyzes the problems of software maintenance and
offers a plan for reducing its high cost. Reasons for the neglect
of software maintenance and for the less than effective use of some

Page 55

of the new innovations are provided. Some of the present factors
contributing to the problems of software maintenance include: (1)
DP management devotes little effort to solving the software
maintenance problem; (2) new tools and methodologies are mostly used
for development; (3) a lack of high-quality staff in the software
maintenance department; (4) a belief that software engineering
techniques are not applicable to software software maintenance. A
survey of 14 DP organizations reveals some of the causes for the
high cost of software maintenance. The author describes a
maintenance reduction plan, which addresses software maintenance
management audit, software system audit, and software
rehabilitation, are explained in detail

.

Key words: maintenance costs, software reduction plan, management,
software engineering, software maintenance, software rehabilitation,
staffing, tools, users.

**

[KEID74] S.P. Keider, "Why Projects Fail", Datamation ,

pp. 53-55, December 1974.

The author divides projects into five distinct phases:
pre- initiation period, initiation period, project duration, project
termination period, and post-termination period and describes some
serious problems that could jeopardize the success of a project. By
using examples of errors made during a number of projects, this
author provides an extensive empirical information to aid project
management

.

Key words: project characteristics, project failures, project
management

.

**

[KERN78] B.W. Kernighan and P.J. Plauger, The Elements qZ
Programming Style . McGraw-Hill, 1978.

This book provides an analysis of good programming style by means of
a set of about 100 rules augmented by examples and discussion. The
examples are from 'real' programs written in Fortran and PL/1. The
authors also discuss the following ideas:

1 . Structured Coding Techniques
2 . Top-down design and other design issues
3 . Modularize - use subroutines
4. Let the data structure the program
5. Don't comment bad code-rewrite it!

Key words: design issues, Fortran, modularize, PL/1, programming,
programming style, programs, rewriting, structured coding, top-down
design

.

Page 56

**

[KHAN75] Z. Khan, "How to Tackle The Systems Maintenance
Diemma", Canadian Datasystems . pp. 30-32, March 1975.

This article analyzes approaches for obtaining more efficient
systems software maintenance including: different types of software
maintenance, controlling and evaluating software maintenance
requests, how to organize the software maintenance function within
the DP department, and suggested solutions for reducing the time
spent on software maintenance. The author suggests that
establishing a formalized procedure for request, review, and
approval of software maintenance activities is the best way to
control the amount of resources spent on software maintenance.

Key words: maintenance requests, management, organizing the
software maintenance function, software maintenance, systems
software maintenance.

**

[KULL83] D. Kull, "Recovering From Mistakes", Computer
Decisions . pp. 145-151, April 1983.

This article discusses a number of actions that should be
implemented when a DP department makes a serious mistake.
Rebounding from mistakes depends on contingency planning
anticipating what might go wrong and a course of action to take if
something does . Another preventive measure is to monitor user
attitudes so that your organization will focus its service on the
users' needs. The author suggest giving the users a ten- item
questionnaire about every six months to enable the DP department to
pinpoint and correct problems quickly. For some projects, which are
vulnerable to foul-ups, one or two aides should be assigned to
monitor the project. In addition, the author recommends other
preventive measures : involve users in important decisions and do
not raise user expectations too high, instead, instill in the users
a sense of reality. A six step error recovery procedure is
presented

.

Key words: contingency planning, credibility, errors, management,
users, users' attitudes, users' needs.

**

[LAFF77] A.W. Laffan, "Software Maintenance - The Other Side
of the Delivery Goal", Proceedings of the 16th ACM/NBS
Annual Technical Symposium, pp. 103-106, June 2, 1977.

This paper explores the goals and problems of software maintenance.
The twin goals of software maintenance, correction and change, are
explained. Problems such as the inability of management to

Page 57

comprehend the many differences between software and hardware
software maintenance, the complexity of software, and poor
documentation are discussed. The author concludes by stating the
following solutions to these problems : acceptance of software
software maintenance as a major expense, a quality assurance plan
for all phases of software development, using configuration
management, using code that is well -documented and maintainable, and
planning for software maintenance. An excellent article, the
author's points are clear, concise, and easy to comprehend.

Key words: change, configuration management, correction,
documentation, maintainability, management, quality assurance,
software complexity, software maintenance.

**

[LAFF78] A.W. Laffan, "The Software Maintenance Problem",
Eleventh Hawaii International Conference on Systems
Sciences Proceedings . DPMA, pp. 119-123, January 1978.

System software maintenance is becoming increasingly critical.
Maintainability must become a management objective. This paper
discusses the software maintenance problem in terms of its
inevitability, its difference from hardware software maintenance,
its cost, and its importance.

Key words: maintainability, software maintenance, software
maintenance costs , v management , software, software maintenance.

**

[LANE84] R.G. Langergan and C.A. Grasso, "Software
Engineering with Reusable Designs and Code", IEEE
Transactions on Software Engineering . IEEE Computer Society
Press, vol. SE-10, no. 5, pp. 498-501, September 1984.

For over six years, Raytheon's Missile Systems Division, Information
Processing Systems Organization has used a successful approach in
developing and maintaining business software. The approach centers
on the fact that 60 percent of all business application designs and
code are redundant and can be standardized and reused. This
approach has resulted in significant gains in productivity and
reliability and improved end-user relations, while providing better
utilization of data processing personnel, primarily in the software
maintenance phase of the software lifecycle.

Key words: personnel, productivity, reliability, reusable code,
reusable designs, software development, software engineering,
software lifecycle, software maintenance, standards.

Page 58

**

[LEAV83] D. Leavitt, "Maintenance Work is Different",
So ftware News , vol, 3, no. 10, pp. 30 and p. 37,
October 1983.

This article distinguishes between the psychological factors of
development and software maintenance programming. It is based on a
presentation by Prof. J. Daniel Couger of the University of
Colorado at the 1983 National Computer Conference. Couger claims
that organizations using his methods in software maintenance
activities have experienced up to a 40% increase in productivity.
Couger listed five variables which can be used to motivate a worker
regardless of his personality type: skill variety, task identity,
task significance, autonomy, and feedback from the Job. This
article provides insight on the psychological factors involved with
software maintenance.

Key words: automation, development programming, feedback, software
maintenance programming, productivity, psychological factors,
software maintenance, skill variety, task identity, task
signi ficance

,

**

[LEHM76] M.M. Lehman and F.M. Parr, "Program Evolution and
its Impact on Software Engineering", Second International
Conference on Software Engineering , IEEE Computer Society
Press, pp. 350-355, October 13-15, 1976.

Large scale, widely used programs such as operating systems are
never complete. They undergo a continuing evolutionary cycle of
software maintenance, augmentation and restructuring to keep pace
with evolving usage and implementation technologies . The paper
provides quantitative evidence, from widely different environments,
of the existence and nature of this evolutionary process.
Interpretations and possible significance of some of the observed
phenomena are discussed. Some implications for software engineering
and for project planners and managers are noted.

Key words: environments, program evolution, project planners,
project management, software engineering, software maintenance.

**

[LEHM77] M.M. Lehman, "Evolution Dynamics - A
Phenomenology of Software Maintenance", Software Life Cycle
Management Workshop Proceedings, pp. 313-323, August 1977.

The dynamics of evolution of large software systems has been
extensively studied in recent years. This paper briefly reviews the
phenomena observed and the main conclusions that follow. The reader

Page 59

is referred to the most recent references and to other contributions
to the present Life Cycle Management Workshop for the data and
derived models on which these conclusions and generalizations are
based. Taken together, these results constitute a phenomenology
that provides an essential ingredient of developing computer
science

.

Key words: evolution dynamics, phenomenology, lifecycle management,
programming process, programming management, software maintenance.

**

[LERN83] J. Lerner, "Technique Eases Program Changes",
Computerworld

. p. SR74 and SR76, June 27, 1983.

The article suggests the use of a technique for easing and managing
program changes. Configuration management is concerned with
tracking changes in programs. It provides traceability and
accountability for all changes, from project inception through the
end of the product lifecycle. Attributes that should be included in
an effective configuration management system are discussed. An
example of how an on-line configuration management system fits into
the lifecycle of a project is provided.

Key words: configuration management, productivity, program changes,
project lifecycle, project management, quality assurance, software
software maintenance.

**

[LET086] S. Letovsky, E. Soloway, "Delocalized
Plans and Program Comprhension" , IEEE Software . vol. 3,
no. 3, pp. 41-49, May 1986.

A maintainer ' s understanding can go awry when it is based on purely
local clues. How can we spell out the intentions behind a piece of
code? A maintainer must develop an understanding of a program if he
is to carry out maintenance on it; the more complete and correct the
understanding, the more likely that the modifications will be
correct. When neither the program nor the documentation reveals
that specific pieces of code interact with other pieces of code some
distance away, the formation of a purely local understanding can
lead to an inaccurate understanding of the program as a whole, which
in turn can result in incorrect or inefficient program
modifications. This article describes the reasons for comprhension
failures in such situations, and goes on to suggest program
documentation strategies that should aid maintainers in
comprehending code implementing delocalized plans.

Key words: documentation, programmers, software maintenance,
strategies , techniques

.

Page 60

*********** * * ***********************************

[LIEN78a] B.P. Lientz, E.B. Swanson, and G.E. Tompkins,
"Characteristics of Application Software Maintenance",
Communications ol. the ACM , vol. 21, no. 6, pp. 466-471,
June 1978.

Maintenance and enhancement of application software consume a major
portion of the total lifecycle cost of a system. Rough estimates of
the total systems and programming resources consumed range as high
as 75-80 percent in each category. However, the area has been given
little attention in the literature. To analyze the problems in this
area a questionnaire was developed and pretested. It was then
submitted to 120 organizations. There were 69 respondents. The
results of the analysis indicate that: (1) software maintenance and
enhancement do consume much of the total resources of systems and
programming groups; (2) software maintenance and enhancement tend to
be viewed by management as at least somewhat more important than new
application software development; (3) in software maintenance and
enhancement, problems of a management orientation tend to be more
significant than those of a technical orientation; and (4) user
demands for enhancements and extension constitute the most important
management problem area

.

Key words: productivity aids, software maintenance, management,

**

[LIEN78b] B.P. Lientz and E.B. Swanson, "Discovering
Issues in Software Maintenance", Data Management . pp.
15-18, October 1978.

This article analyzes several important issues in software software
maintenance. The authors reveal their findings from an experimental
survey as well as the format of a more extensive survey that has
been recently undertaken. Literature is then reviewed in the
following five areas of software maintenance: conceptual issues
(what does "software maintenance' mean), scale-of-effort issues,
organizational issues, productivity technique issues (i.e. have the
proper productivity techniques been adopted and do they enhance
system maintainability), and problem area issues.

Key words: maintainability, organizational issues, productivity
technique issues, scale-of-effort issues, scheduled software
maintenance, software maintenance, software maintenance issues.

**

[LIEN79] B.P. Lientz and E.B. Swanson, "Software
Maintenance A User/Management Tug-of-War", Data Management .

pp. 26-30, April 1979.

Page 61

This article describes issues that the authors researched in their
survey. This survey was a 19-page questionnaire mailed to a random
sample of 2000 DPMA members of which 487 or (24%) responses were
received. The managers included in this survey were from the
government and other industries . The answers given in the survey
provided the authors with the following results : (1) the DP
department spends half of its time on software maintenance which is
contrary to some claims that the level of software maintenance has
remained constant; (2) managers indicated that their departments
were somewhat understaffed; (3) over 40% of the software maintenance
work consist of providing users with enhancements that primarily
include added volumes of data and reports. Managerial problems with
regard to software maintenance, organizational controls, and future
avenues for research are discussed. The authors conclude that since
user enhancements constitute a significant portion of the software
maintenance activity, and since management cites user demands for
enhancements as the greatest of its software maintenance problems,
therefore, increased attention to user related issues is warranted.

Key words: management, organizational controls, software
maintenance, staffing, user enhancements, users.

**

[LIENSOa] B.P. Lientz and E.B. Swanson, Software Maintenance
Management . Addison-Wesley publishing Company, 1980

.

This book reports on the results of the most extensive public study
of the software maintenance and enhancement of existing application
software to date. Its objective is to contribute to the
understanding of the software maintenance process, to identify and
asses key issues, and to suggest future directions for management
and research. The emphasis is exploratory, rather than definitive.

Key words: enhancements, software maintenance, software software
maintenance issues, software maintenance management.

**

[LIENSOb] B.P. Lientz and E.B. Swanson, "Impact of
Development Productivity Aids on /^plication System
Maintenance", Database . pp. 114-120, winter-spring 1980.

The use of productivity aids has been widely advocated as a means of
improving software quality, reducing software software maintenance
effort and, in some cases, reducing total development costs. A
variety of tools and techniques has been proposed for different
activities. Some questions that arise are: How widely are such
tools employed? Is software of better quality produced? Is the
software maintenance effort ultimately reduced? During the past
three years, the authors have been involved in studies of
application software maintenance, the most recent of which provide
some tentative answers to the cjuestions raised above.

Page 52

Key words: productivity aids, problem factors, software
maintenance, software quality, tools, total system cost.

**

[LIEN81] B.P. Lientz and E.B. Swanson, Problems in
Application Software Maintenance", Communications qZ the
ACM , vol. 24, no. 11, pp. 763-769, November 1981.

This report analyzes the survey results of the problems of
application software maintenance in 487 data processing
organizations. It identifies six problem factors: user knowledge,
programmer effectiveness, product quality, programmer time
availability, machine requirements, and system reliability. The
results are both surprising and informative.

Key words: application machine requirements, software maintenance
problem factors, product quality, programmer effectiveness,
programmer time availability, system reliability, user knowledge.

**

[LIEN83] B.P. Lientz, "Issues in Software Maintenance",
Computing Surveys . vol. 15, no. 3, pp. 271-278,
September 1983.

This article discusses some of the major issues and problem areas in
software maintenance and suggests that the key reasons for research
of software maintenance are that: (1) software maintenance consumes
substantial hardware and software resources, (2) there is limited
personnel availability due to a high turnover rate, and (3) present
research has not addressed many of the problems associated with
software maintenance. A survey of software software maintenance
organization which identified five issues in software software
maintenance: conceptual issues, measurement issues, the percentage
of staff time spent on software maintenance, organizational issues,
and productivity issues is described. According to the survey, the
major problem areas were with user knowledge (59.5%) and programmer
effectiveness (11.9%) Most of the severe problems were nontechnical.
This article provides managers and users with comprehensive
information on current problems and issues in software maintenance.

Key words: Conceptual issues, managers, measurement issues,
personnel, productivity issues, software maintenance, tools,
turnover rate, users.

**

[LIP079] M. Lipow, "Prediction of Software Failures",
The Journal of Systems and Software , vol. 1, no. 1, pp.
71-75, December, 1979.

Page 63

The article addresses the cost of errors during certain stages of
the lifecycle. It compares the costs, types, and causes of software
errors during the reqiairements, design, and coding phases. Errors
detected in design phase are compared against errors detected in the
test phase. Research in this area indicates that (1) since more
errors originate during requirements and design phases than during
the coding phase, more effort should be spent in requirements and
design validation; (2) tools are less effective than practices and
procedures for preventing or detecting faults; and (3) if the cost
of developing a tool or technique is low enough, it should be used
to detect errors in the requirements or design phases

.

Key words: coding phase, design phase, error costs, requirements
phase, software errors, software failures, software lifecycle, test
phase, tools.

**

[LITT80] B. Littlewood, "Theories of Software Reliability:
How Good Are They and How can They Be Improved?", IEEE
Transactions m Software Engineering . IEEE Computer Society
Press, vol. SE-6, no. 5, pp. 489-500, September 1980.

An examination of the assumptions used in early bug-counting models
of software reliability shows them to be deficient. Suggestions are
made to improve modeling assumptions and examples are given of
mathematical implementations. Model verification via real -life data
is discussed and minimum requirements are presented. Example of how
these requirements may be satisfied in practice are provided. The
author suggests that current theories are only the first step along
what threatens to be a long road.

Key words: debugging software, program error, reliability growth,
software bug count, software failure, software failure rate,
software lifecycle cost, software reliability measurement.

**

[LIU76] C.C. Liu, "A Look at Software Maintenance",
Datamation , vol. 22, no. 11, pp. 51-55, November 1976.

This article describes some of the major problems in the software
maintenance field as well as recommendations for rectifying these
problems. The author states the contradiction of high software
maintenance costs with no recognition of its importance. A list of
the software maintenance function are included. The author
summaries the software maintenance process as:

1. The capacity, function, and logic of the existing
program or system must be understood throughly.

2 . New logic to reflect the new request or
additional feature must be developed.

3 . The new logic must be incorporated into the

Page 64

existing logic.

The author recommends that organizations

:

a . start the documentation activity
the moment the project is initiated;

b. document not only 'what has been
done

'
, but ' why it has been done

'

;

c. consider management policies, practice
and plans as part of the documentation; and

d. when documenting, consider the document users.

Key words: documentation, software maintenance programming,
management, personnel, program logic, programmers, systems software
maintenance, systems testing, software maintenance.

**

[L0VE77] T. Love, "An Experimental Investigation of the
Effect of Program Structure on Program Understanding",
General Electric Technical Information Series, Internal
report, TIS-771SP006, GE Class 1, April 1977.

An experimental design was used to test the effect of two variables
on program understanding. The independent variables were complexity
of control flow and paragraphing of the source code. Understanding
was measured by having the subjects memorize the code for a fixed
time and reconstruct the code verbatim. Also, some subjects were
asked to describe the function of the program after completing their
reconstruction. The two groups of subjects for the experiment were
students from an introductory programming class and from a graduate
class in programming languages.

The major findings were:

that paragraphing of the source had no effect for either group
of subjects;

that programs with simplified control flow were easier for the
computer science students to understand;

that the dependent variable, rated accuracy of their
description of the programs ' s function, did not differ as a
function of either independent variable.

Key words: structure, psychological complexity, reliability,
software psychology, structured programming.

Page 65

**

[LY0N81] M.J. Lyons, "Salvaging your Software Asset
(Tools Based Maintenance)", AFIPS 1981 National Computer
Conference Proceedings . pp. 337-342, May 4-7, 1981.

Software is a valuable asset embodying processes of an organization
and contributing directly to the means of production. Maintenance
is the mechanism for combating deterioration of the software asset,
which over time tends to become inflexible. Though extremely
costly, maintenance is essential to insuring the viability of the
organization. Both rewrites and purchased software, with ensuing
conversions, are usually not a cost-effective solution to software
decay. Structured retrofit is an effective alternative, using a
software tools-based methodology for combating decay and the high
costs of software maintenance. The critical tool is the COBOL
structured programming engine. This tools mechanically transforms
spaghetti code to well -structured programs, whose ongoing software
maintenance reaps the benefits of the structured programming
methodologies

.

Key words: COBOL structured programming engine, software
maintenance, structured methodologies, structured retrofit.

**

[MAJ084] M. Major, "Can Software Vendor Support Really
Help?", Software News , pp. 51-53, May 1984.

This article discusses different approaches to vendor support. In
the introduction the author states some reasons why todays end-users
need vendor support. One of the reasons for an increased need of
vendor support is due to the arrival of sophisticated software,
which allows for more complex usage of personal computers. Also, at
a Softcon Convention, 95% of the dealers claimed that 'difficulty of
use' was the most frequent complaint about software products. Some
of the different types of vendor support are as follows:

1. Training center concept - analyzes DP needs,
purchases, and sets up the equipment, and trains
all users of the prescribed selected system.

2. Tutorials - allows the user to learn about
the product through testing.

3. Telephone support - technicians will answer the
user ' s questions about the package

.

This paper provides end-users with some useful advice in the area of
vendor support

.

Key words: end-users, personal computers, software packages,
training, tutorials, vendor support.

Page 56

**

[MALM77] A.F. Malmberg, "Maintenance for the NET-

2

Network Analysis Programs", BDM Corporation, April 1977.

Maintenance activities for the release 9 version of the NET-

2

Network Analysis Program are described. These activities include
correction of logical and programming errors. Improvement of
numerical techniques as required, and provision of engineering
assistance and consultation in application of NET- 2 as directed by
the Harry Diamond Laboratories

.

Key words: electronic circuit analysis, network analysis,
programming errors, software maintenance, system analysis.

**

[MAMR77] S. Mamrak and J.M. Randal, "A Analysis of a
Software Engineering Failure", The Computer Journal . vol.
20, no. 4, pp. 316-320, November 1977.

Historical analyses of software engineering projects that fail are
rare commodities in the computer science field today. This paper
describes the rise and fall of a professionally engineered project
that was doomed to failure by strategical, technical and tactical
errors which were clearly revealed by analytic hindsight.

Key words: software engineering, software engineering failure,
software engineering projects.

**

[MANC83] P. Manchester, "The Programming Paradox",
Computer Management . pp. 39-42, June 1983.

This article analyzes various methods for increasing productivity in
software maintenance. The author compares different methods for
organizing a data processing department. Advantages and
disadvantages of two of these methods, the applications-oriented
team and the project-oriented team, are given. Certain procedures
are recommended for use in the design and implementation phase in
order to ensure that the system will be easily maintainable. The
author discusses new technology to aid software maintenance
programmers. The use of network systems have led to remote support
service for software support. This service enables the software
maintenance staff to dial into a user installation and obtain
relevant information (i.e., dumps, user displays and program code)
for debugging a software problem.

Key words: design phase, implementation phase, maintainability,
network systems, productivity, software maintenance.

Page 67

**

[MANT81] M. Mantel, "The Effect of Programming Team
Structures on Programming Tasks", Communications of the
ACM , vol. 24, no. 3, pp. 106-113, March 1981.

The literature recognizes two group structures for managing
programming projects: Baker's chief programmer team and Weinberg's
egoless team. Although each structure's success in project
management can be demonstrated, this success is clearly dependent on
the type of programming task undertaken. Here, for the purposes of
comparison, a third project organization which lies between the
other two in its communication pattern and dissemination of decision
making authority is presented. . Recommendations are given for
selecting one of the three team organizations depending on the task
to be performed.

Key words: chief programmer team, group dynamics, project
management, software engineering.

**

[MARS83a] N.L. Marselos, "Human Investment Techniques for
Effective Software Maintenance", AFIPS 1983 National
CQiqnputQr Conference Proceedings . pp. 131-136, May 1983.

This paper presents methods for improving the maintenance of
software by addressing the psychological issues that impact on
software maintenance personnel. The emphasis in this paper is on
making software maintenance developers more effective through goal
setting, by using team-building approaches, through support
personnel, and by using skill profiles to plan for their technical
growth.

Key words: goal setting, software maintenance, support personnel,
team-building

.

**

[MARS83b] R.E. Marsh, "/^plication Software Maintenance:
One Shop's Experience and Organization", AFIPS 1983
National Computer Conference PrQCge<^ingg , pp. 145-153,
May 1983.

Several years of data on software support activity at Dow Coming
are analyzed to illustrate the problems of managing this function.
Most software changes are small from the user's point of view, but
few changes are small from the software maintenance point of view.
Several organizational models have been tried for the management of
support. None were entirely successful.

Key words: software maintenance, software support management.

Page 68

**

[MART79] G.N. Martin, "EDP Systems Maintenance", Journal
of Systems Management . pp. 18-21, September 1979.

This article analyzes several factors which influence systems
software maintenance. It provides a list of the characteristics of
software maintenance management which includes such things as:
scheduling system modification, assigning work, and controlling a
large number of projects. The author also discusses methods of
organizing systems software maintenance and suggests that:

-the best method of organization is to set-up
two groups, (software maintenance and
development) each with its own management;

-the prerequisites for systems software maintenance,
include long-range planning and software
maintenance project justification.

-the project should consist of five phases:
project initiation, survey, construction (analysis,
design, and development) , implementation, and a
final evaluation prior to production acceptance.

A list of performance standards and controls for the software
maintenance function is provided.

Key words: management, performance standards, planning, project
management, software maintenance, systems software maintenance.

**

[MART82] J. Martin, Application Development Without
Programmers . Prentice-Hall, 1982.

The author describes various methods that aid in the development of
data processing applications. The following topics are discussed:
the programming dilemma, software for application development
(without the use of conventional programming) , productivity,
problems with conventional application development, changes needed
in DP management, the role of data bases, the changing role of the
system analyst, preprogrammed application packages, application
generators, and end-user computing. The author recommends:

1 . A thorough logical data-base analysis

.

2. A well-designed data-base environment.
3. Use of high-level application generators, query

languages, and report generators rather than

Page 69

COBOL or PL/1. The application-creation
facilities should be chosen such that they are
self-documenting and applications can be
modified quickly and easily.

4. Avoidance of hardware configuration that may
look cost-effective, but cause conversion
problems

.

5. Redevelopment of old applications with
application generators to eliminate the need
for COBOL and PL/1 reprogramming

.

Key words: development, application generators, application
packages, database environments, end-user computing, productivity,
query languages, software management.

**

[MARTSS] J. Martin and C. McClure, Software MaIntenance

-

Thg Problems and Its Solutions . Prentice-Hall, 1983.

This book presents an overview of the software maintenance problem
and offers ideas and tools for rectifying it. The authors describe
the software maintenance problem, define and categorize software
maintenance, discuss the underlying causes of software maintenance,
characterize and measure maintainability, and examine methods for
building maintainability in software. They suggest that much of the
software maintenance problem arises from the historical tendency to
subordinate 'data' to 'process' in software systems. An indepth
discussion of data systems, data normalization, and data modeling is
provided. They recommend the use of fourth-generation languages for
solving the software maintenance problem. Their conclusion is that
users can create their own software using these languages.

Key words: data modeling, data normalization, fourth- generation
languages, maintainability.

**

[MART84] R.J. Martin and W.M. Osborne, "The Ideal
Maintainer: A Profile", Data Management . pp. 39-40, March
1984.

This article explains some of the characteristics and personality
traits which are necessary for a successful software maintenance
programmer. A programmer must be: flexible, self-motivated,
responsible, creative, disciplined, analytic, thorough, experienced,
and knowledgeable about the existing system. Recommendations for
management of software maintenance environments are also provided.

Page 70

Key words: maintainer, personality, software maintenance
programmers, software maintenance.

**

[MAUL83] C.R. Maule, "Clearing Up Software Chaos",
Systems and Software , pp. 125-129, October 1983.

Configuration Management (CM) keeps track of changes in the source
code that typically follow initial development. The CM system must
preserve every change made because such information is vital for
tracking errors, auditing progress, and suggesting future changes.
The article introduces Vista (VOS Integral Source Tracking and
Analysis) , a software system that uses a different approach than
previous CM systems. The author discusses the advantages of Vista
over previous CM systems . The present CM systems either store
copies of the source files or create special database files that
store only code changes . Since the information is never stored in
formats that can be read by operating systems, programmers must
remove the files from the database to update, debug or document the
contents. This approach removes the files from CM control and is
particularly error prone since programmers often ignore or misuse
the cumbersome procedures. A detailed discussion of the VISTA
system is provided.

Key words: configuration management, errors, files, operating
system, programmers, VOS Integral Source Tracking and Analysis
(Vista) .

**

[MCCA76] T.J. McCabe, "A Complexity Measure", Second
International CQPference on Software Engineering, ieee
Computer Society Press, October 13-15, 1975.

This paper describes a graph theoretic complexity measure and
illustrates how it can be used to manage and control program
complexity. The paper first explains how the graph theory concepts
apply and gives an intuitive explanation of the graph concepts in
programming terms. The control graphs of several actual Fortran
programs are then presented to illustrate the correlation between
intuitive complexity and the graph theoretic complexity are then
proved which show, for example, that complexity is independent of
physical size (adding or subtracting functional statements leaves
complexity unchanged) and complexity depends only on the decision
structure of a program. A characterization of non-structured
control graphs is provided and a method of measuring the
"structuredness" of a program is developed. The relationship
between structure and reducibility is illustrated with several
examples

.

Page 71

Key words: Complexity measure, control flow, decomposition, graph
theory, independence, linear, modularization, programming,
reduction, software testing.

**

[MCCA77] J. A. McCall, P.K. Richards, and G. Walters,
"Factors in Software Quality", General Electric Technical
Information Series, June 1977.

The objective of the study was to establish a concept of software
quality and provide an Air Force acquisition manager with a
mechanism to quantitatively specify and measure the desired level of
quality in a software product. Software metrics provide the
mechanism for the quantitative specification and measure of qiaality.
Volume I, Concept and Definitions of Software Quality, describes the
process of developing our concept of software quality and what the
underlying software attributes are that provide the quality, and
defines the metrics which provide a measure of the degree to which
the attributes exist. Volume II, Metric Data Collection and
Validation, describes the application of the metrics to software
products and the validation of the metrics' relationship to software
quality. Volume III . Preliminary Handbook on Software Quality for
an Acquisition Manager, is a preliminary stand-alone reference
document to be used by an acquisition manager to implement the
techniques established during the study.

Key words: quality assurance, software development, software
metrics, software quality.

**

[MCCA83] J. A. McCall and M.A.Herndon, "Quality
Assessment: A Missing Element in Software Maintenance",
COMPSAC Proceedings . IEEE Computer Society Press, pp.
87-88, November 7-9, 1983.

The authors explains the need for software metrics in software
software maintenance. Software measurements used in the development
of software should also be used in the maintenance of software. If
a baseline set of metrics is used to describe the current software,
as the software is modified, the value of these metrics will change.
These changes can assist management and programmers in assessing
whether the modifications made have improved or degraded the quality
of the software. This provides management with a useful technique
for establishing quality control during software maintenance. A
basic set of measurements used to perform this quality assessment
are listed. The authors suggest that software metrics can reduce
future software maintenance cost, provide insight to management on
the quality of software and are a good source of information to the
software maintenance programmer.

Key words: management, metrics, programmers, software maintenance.

Page 72

software measurements, software metrics, software quality.

**

[MCCL81] C.L. McClure, Managing Software Development and
Maintenance . Van Nostrand Reinhold, 1981

.

This book presents practical project management methods that focus
on the management and software maintenance issues of the software
lifecycle. Principles and methods for controlling rising software
costs by the application of engineering principles and methodologies
for software maintenance are presented, as are procedures for
building and preserving the quality of maintainability into a
software system, A number of case studies of actual projects have
been included.

Key words: maintainability, management, project management,
software, software development, software engineering, software
lifecycle, software maintenance.

**

[MCC084] P.R.H. McConnel and W.B. Strigel, "Results of
Modern Software Engineering Principles Applied to Small and
Large Projects", AFIPS 1984 National Computer Conference
Proceedings . vol. 53, pp. 273-281, May 1984.

This paper discusses the software development environment, tools,
techniques, and methodology as applied in two mediums to large
real-time software projects. Both quantitative and qualitative
measures of success obtained in these projects are discussed. The
qualitative measures are statistics representing the size of
produced code. the manpower over the project lifecycle, and other
data relevant to software engineering management. The qualitative
evaluation is more concerned with results obtained from walkthroughs
and various aspects of the applied methodology. Results are
compared with those reported in the literature. Recommendations and
suggestions for further improvements are presented.

Key words: software development environments, software engineering,
software projects, tools.

**

[MCGR73] B. McGregor, "Program Maintenance", Data
Processing , vol. 15, no. 3, pp. 172-174, May-June 1973.

This article addresses the difficulties faced by the DP manager in
handling software maintenance personnel and activities. Senior
personnel feel software maintenance programming is downgrading and
are more interested in development projects. Junior programmers do
not have the experience to handle difficult software maintenance

Page 73

projects. This puts the DP manager in a terrible situation. The
author suggests that the solution is to use consultant programmers
to handle the software maintenance task. Advantages of using
consultant programmers are presented and suggested as an alternative
to the DP manager, faced with persistent problems due to an
inadequately skilled staff or to the poor image of software
maintenance

.

Key words: programmers, software maintenance.

**

[MCKE84] J. McKee, "Maintenance as a Function of Design",
AFIPS National Computer Conference Proceedings . vol.
53, pp. 187-193, May 1984.

Changing one's point of view on the software maintenance function
can lead to a better understanding of the relationship between
software maintenance and other aspects of software products. This
can lead to an improved allocation of effort when building software
products

.

Key words: database management systems, maintainability, software
maintenance, software maintenance costs, software lifecycle.

**

[MERR78] S. Merritt, "Standard Definitions: A Missing
and Needed Software Tool", 17th Annual ACM/NBS Technical
Symposium Proceedings, pp. 193-198, June 15, 1978.

This article attempts to give clear and concise definitions to such
terms as software maintenance, conversion, and documentation. For
each term, alternative definitions are given before the final
definition is stated. Software maintenance is defined as any work
done on software after its first production of user output, except
conversion. This author provides yet another view of what
constitutes so ftware maintenance

.

Key words: conversion, documentation, end-users, modification,
software maintenance.

**

[MIAR83] R.J. Miara, J. A. Musselman, J. A. Navarro, and
B. Shneiderman, "Program Indentation and
Comprehensibility", Communications q£ thg ACM, vol. 26,
no. 11, pp. 861-867, November 1983.

The consensus in the programming community is that indentation aids
program comprehension, although many studies do not back this up.
The authors tested program comprehension on a Pascal program. Two

Page 74

styles of indentation were used-blocked and non-blocked in addition
to four possible levels of indentation (0,2,4,6 spaces) . Both
experienced and novice subjects were used. Although the blocking
style made no difference, the level of indentation had a significant
effect on program comprehension. (2-4 spaces had the highest mean
score for program comprehension) . The authors recommend that a
moderate level of indentation be used to increase program
comprehension and user satisfaction.

Key words: indentation, maintainability, Pascal, program
comprehension, programmers, programming.

**

[MILL77] C.R. Miller, "Software Maintenance and Lifecycle
Management", Software Lifecycle Management Workshop, IEEE
Computer Society Press, pp. 53-51, August 1977.

This paper discusses the importance of software maintenance in
lifecycle management and why the software maintenance phase
constitutes a major portion of the cost of software. Software
maintenance problems are identified and their causes are discussed.
Some of the key problems identified are: tasks involved in software
maintenance have not been defined, skills have not been taught and
exact values to measure accomplishment are not available. Factors
that contribute to readability and modularity are presented and new
methods in software development that help to alleviate the software
maintenance problem are discussed. The author suggests that
software maintenance must be given higher priority within
organization objectives.

Key words: lifecycle management, modularity, readability, software
development, software maintenance.

**

[MILL83] H.D. Mills, Software Productivity .

Little, Brown and Company, 1983.

This is a collection of 19 published papers and internal IBM
memoranda written between 1957 and 1981 . These articles present a
good foundation of software engineering to the reader a foundation
in both senses of the word in that the articles provide the
historical and fundamental underpinnings of the field. Ihe earliest
articles are from the era when "software engineering" was only a
clever phrase denoting a problem area . These discussions and their
suggestions for development of an engineering discipline were on
target and are highly recommended for those in the field today.

Key words: productivity, program complexity, programming, software
development, software engineering, software productivity, software
quality, structured programming.

Page 75

**

[MILS81] J.H. Milson, "Automating Documentation Aids in
Software Maintenance", Data Management , pp. 15-17, April
1981

.

This article discusses a documentation tool as an aid for software
maintenance. The automated documentation system (ADS) generates
system and program documentation from both the source code of the
programs and the JCL (Job Control Language) . Since the purpose of
documentation is to assist the software maintenance staff in
performing its duties, it is essential that documentation be
accurate, adequate and current. Proper documentation can lessen the
time for a new programmer to become productive, thereby reducing the
cost of software maintenance. The author describes three different
types of system and program modifications (emergency, routine, and
enhancements) along with the quality and quantity of the
documentation for each of these modifications. ADS helps establish
standards and documents the system in a systematic and consistent
fashion. A detailed description of ADS and the macro-level and
micro-level reports are provided. Macro- level information consists
of: programs in the system, and files in the system, while micro-
level information consists of data element definitions.

Key words: automated documentation system (ADS), automation,
documentation, enhancements, program documentation, program
modifications, software maintenance, tools.

**

[M00N75] J.W. Mooney, "Organized Program Maintenance",
Datamation , vol. 21, no. 2, pp. 53-54, February 1975.

This article demonstrates for management new possibilities for
organizing and handling software maintenance personnel. Differences
between the old way of solving software maintenance problems and the
new improved methods are compared. Innovations put into use
include: (1) a team of senior and junior programmers to work on
software maintenance only, (2) a project manager to organize the
team and to ensure that standards were met, (3) explain to
programmers that their task is more important than any other
programming function, and (4) assure team members that they will
always receive the largest merit increase allowed by conpany policy.
All of these changes aided in keeping high morale among these
programmers. The result was a large decrease in software
maintenance time and a significant increase in time spent on new
development. An excellent article for DP managers, it provides
valuable information for handling DP personnel

.

Key words: maintenance personnel, management, organization,
programmers, project managers, software maintenance, standards.

Page 76

**

[MUNS81] J.B. Munson, "Software Maintainability: A
Practical Concern for Life-Cycle Costs", Computer , vol

.

14, pp. 103-109, November 1981.

One of the major problems in software maintenance is the
modification of software which is difficult to maintain. This
article recommends different methods and techniques for creating
software that facilitates software maintenance. The main theme of
this report is that modiflability must be built into the software
from the start. This implies that software modiflability must be
planned during the development phase. Techniques for ensuring
modiflability during the development phase are discussed. These
techniques are as follows: (1) establish a policy so that certain
standards are upheld, (2) develop the requirements specification
document to define a baseline for modiflability and to discuss
system expandability, (3) design flexible user interfaces, (4)
establish guidelines for building modifiable computer programs and
modules, and (5) develop a dictionary to control and handle data.
Post-delivery techniques to be used during operation and software
maintenance are also described.

Key words: contract, development phase, documentation,
maintainability, modi fiability, software maintenance, standards,
user inter faces

.

**

[MUNS82] J.B. Munson, "Plan Software Maintenance Now;
Save Time and Dollars Later", Data Communications . vol.
11, pp. 103-107, June 1982.

The planning for future software maintenance early in the software
development cycle is an important step for reducing the cost and
effort involved with software maintenance. This article describes a
software maintenance plan which requires a formal understanding
between the users and the software developers. It also addresses
the need to identify guidelines and procedures in software contracts
for software modifications and programming techniques.
Modiflability must be explicitly planned by the employer and the
contractor, and then managed from start to finish. The author
suggests that the contract should include both a software
modifiability development plan and a software modification support
plan. The former plan should define design techniques, set
programming standards, and specify management controls. The latter
plan should contain the post-delivery resources to support computer
program modifications (i.e., test facilities, support and test
tools, and configuration-management procedures) . Upon acceptance of
the final product, the author recommends that the developer should
be required to deliver all development tools, test materials, and
software maintenance documentation. Each plan is discussed in
detail

.

Page 77

Key words: modifications, modifiability plan, lifecycle, software
maintenance, software maintenance plan, software maintenance costs,
support plan.

**

[MURP82] W. Murphy, "Documentation: Writers/Editors
Vital", MIS Week , p. 23, December 22, 1982.

This article identifies problems with documentation and offers some
innovative ideas to solve these problems. The author defines
documentation as that which supports a system or process either as a
learning or reference tool that is useful, accurate, concise and
current. Some of the suggested solutions include: the assignment
of an editor who would have responsibility for providing information
on system documentation; the use of word processors and diskettes to
eliminate the heavy reliance on paper would not only save space and
money but would also be easier to maintain and understand; the
establishment of a publications group, responsible for documentation
and user information, to support systems development and software
maintenance

.

Key words: diskettes, documentation, editors, software maintenance,
word processors

.

**

[MURR83] J. P. Murray, "Separating Maintenance From
Development Function", ComputerworId . pp. 51-52, November
21, 1983.

The main theme of this article is that the software maintenance and
development functions should be separated. The author recommends
that the word "software maintenance" be eliminated from our
vocabulary due to its negative connotations. Its use degrades the
importance of the work done to improve operational systems. The
following reasons are given:

1. Until these two functions are separated the
development phase will receive more attention
and respect. Workers will believe that the
judgement of their performance is connected to
development projects causing a lack of interest
in software maintenance.

2. Due to major differences in each function, the
work in one function can cause distractions in
the other function.

3. It enables management to focus on one area.

4. If the two groups can work together, they can
improve the performance of the entire system.

Page 78

5 . The development group benefits because once the
software maintenance group accepts the system
they are no longer responsible for it

.

Key words: development, management, software maintenance,

**

[MURR84] J. P. Murray, "Maintenance Considerations",
System Development, vol. 4, no. 5, pp. 4-6, July 1984.

In DP management, the development of new systems receives the most
attention. Formal methods have been established for managing new
development projects. However, in the software maintenance
function, which consumes 50% to 70% of the total systems and
programming effort, the use of some type of management control is
often lacking. This article describes an approach for the
management of systems and programming software maintenance. The key
steps are as follows: (1) separate software maintenance from
development within the DP department. This will assist management
in achieving the goal of creating an environment where the software
maintenance of operational programs has the same level of importance
as the development of new systems. (2) develop a method which can
be used to identify and control the software maintenance workload.
This would include the installation of a formal process for
requesting work on a particular program or system (i.e., completing
a form for each request)

.

Key words: development, management, productivity, software
maintenance

.

**

[MUSH84] M. Mushet, "Life After Implementation: Managing
System Maintenance", Journal Information Systems
Management . vol. 1, no. 2, pp. 55-65, Spring 1984.

This article gives an overview of the software maintenance field. A
discussion of system life and how systems can wear out or become
deficient is presented. The author suggests that the key to
prolonging system life is to improve system software maintenance.
The different phases of the system lifecycle - analysis, design,
construction, implementation, and software maintenance - and the
effects of the first three phases on future software maintenance are
^Iso described. Some of the techniques used in the software
maintenance phase to improve system effectiveness are identified.
Steps typically involved in the software maintenance process are as
follows: (1) promote a positive attitude among software maintenance
workers, (2) implement equal pay scales for development and software
maintenance workers, (3) ensure that there are a wide variety of
skills in the software maintenance group, and (4) require the
involvement of users in software maintenance tasks. Recommendations
for a successful software maintenance program are also provided.

Page 79

Key words: analysis, construction, design, inplementation,
lifecycle, software maintenance.

**

[MYER78] G.J. Myers, "A Controlled Experiment in Program
Testing and Code Walkthroughs/Inspections", Communications

the ACM , pp. 760-768, September 1978.

This paper describes an experiment in program testing, employing 59
highly experienced data processing professionals using seven methods
to test a small PL/1 program. The result show that the popular code
walkthrough/inspection method was as effective as other
computer-based in finding errors and that the most effective methods
(in terms of errors found and cost) employed pairs of subjects who
tested the program independently and then pooled their findings

.

The study also shows that there is a tremendous amount of
variability among subjects and that the ability to detect certain
types of errors varies from method to method.

Key words: code inspections, code walkthroghs, debugging, errors,
program verification, software reliability, testing, testing
techniques

.

**

[MYER79] G.J. Myers, Hie Art ol Software Testing .

John Wiley and Sons, 1979.

This book describes software testing techniques. The text includes
discussions of various testing techniques and checklists of errors
to look for during activities such as walkthroughs and inspections

.

Some of the other topics covered in this book are: the testing of
modules, subroutines, and systems, tools for testing, how to write
effective test cases, and program debugging. In the chapter on
program debugging, the author discusses various methods of
debugging, debugging principles, and performing an error analysis to
inprove subsequent programming efforts

.

Key words: debugging, error analysis, errors, inspections, testing,
test cases, testing, testing tools, walkthroughs.

**

[NAEm.84] B. Narrow and J. Kelly, "Two Perceptions of
Software Maintenance Performed by an On-Site Contractor",
AFIPS 1984 National Computer Conference ProggedingS> vol.
53, pp. 235-242, 1984.

This paper describes lessons learned by a customer and an on-site
contractor. Software software maintenance is a difficult task under
the best of circumstances. Having work performed by an on-site

Page 80

contractor adds a additional layer of complexity to the customer's
task. This type of relationship places greater emphasis on formal
work procedures and detailed reports of the work in progress. It
also promotes the use of performance norms for evaluating contractor
performance. These factors are all on the positive side. However,
such a relationship also calls for a special awareness of contractor
ploys calculated to increase their performance evaluation.

From the contractor's point of view, being on-site imposes a more
disciplined environment and places special importance on the manner
and means of dealing with the customer. Another special feature is
that the contractor receives formal feedback from the users, through
periodic performance evaluations, indicating how well the software
maintenance group measures up to expectations

.

Key words: management, performance evaluations, performance
metrics, personnel, software development, software maintenance.

**

[NAVE79] "Computer Software Life Cycle Management Guide",
Naval Electronic Systems Command, March 1, 1979.

The purpose of the Computer Software Life Cycle Management Guide
^CSLCMG) is to provide information to the NAVELEX program manager
(PM) to allow him to understand and be able to meet sound software
development practices for a NAVELEX software system acquisition.
The obj ectives o f the CSLCMG are to

:

o Provide the PM with detailed information that
will enable him to manage the lifecycle
software acquisition process.

o Provide the PM with insight into software
engineering methods so that he can understand
and be able to require their implementation
by a so ftware contractor

.

o Provide management techniques whereby the PM
can ensure high visibility of the software
development process

.

o Make innovative technical and management
contributions, based on major lessons learned
from previous software development projects.

The CSLCMG provides amplifying procedures for carrying out the
policy and practices specified in NAVELEXINST 5200.22. The CSLCMG
is the first of a series of NAVELEX Computer Software Acquisition
Management Guidebooks for program managers

.

Key words: lifecycle management plan, management, software
acquisition, software development.

Page 81

**

[NBS74] R. Houghton, "Features of Software Development
Tools", NES Special publication 500-74 . February 1981.

Software tools are powerful productivity and quality aids that in
many cases are not being used effectively. This report discusses an
effort to lessen this problem by providing a formal way in which
tools can be classified according to the features that they provide.

Key words: productivity, software development, software development
tools, software quality, tools.

**

[NBS98] P.B.Powell, Editor, "Planning for Software
Validation, Verification, and Testing", NBS Special
Publication 500-98 . November 1982

.

This document is for those responsible for directing and
implementing computer projects. It addresses the process of
obtaining increasing levels of confidence in a solution through a
series of checkpoints and reviews during software development. It
discusses the selection and use of validation, verification, and
testing tools and techniques for software development. It also
explains how to develop a plan to meet specific software validation,
verification, and testing goals.

Key words: automated tools, lifecycle, software verification, test
coverage, test data generation, testing, validation.

**

[NBS99] T. McCabe, "Structured Testing: A Software
Testing Methodology Using the Cyclomatic Complexity Metric",
mS. Special Publication 500-99 . December 1982.

Various applications of the Structured Testing methodology are
presented. The philosophy of the technique is to avoid programs
that are inherently untestable by first measuring and limiting
program complexity. Part 1 defines and develops a program
complexity measure. Part 2 discusses the complexity measure in the
second phase of the methodology which is used to quantify and
proceduralize the testing process. Part 3 illustrates how to apply
the techniques during software maintenance to identify the code that
must be retested after making a modification.

Key words: measures, metrics, program complexity, software
maintenance, software testing, structured testing.

Page 82

**

[NBS106] R.J. Martin, W.M. Osborne, "Guidance on
Software Maintenance", NBS Special Publication 500-106 .

December 1983.

This report addresses issues and problems of software maintenance
and suggests actions and procedures which can help software
maintenance organizations meet the growing demands of maintaining
existing systems. The report establishes a working definition for
software maintenance and presents an overview of current problems
and issues in that area. Tools and techniques that may be used to
improve the control of software maintenance activities and the
productivity of a software maintenance organization are discussed.
Emphasis is placed on the need for strong, effective technical
management control of the software software maintenance process.

Key words: adaptive software maintenance, corrective management,
perfective software maintenance, software engineering, software
maintenance , tools.

**

[NBS114] S. Frankel, Editor, "Introduction to Software
Packages", NES Special Publication 500-114 . April 1984.

This document provides an introduction to applications software
packages. It encourages the use of software packages as an
alternative to in-house development and directs potential users of
software packages to sources of useful information. Application
areas which are currently supported by software packages are
reviewed and the benefits of software package use versus in-house
development are discussed. An annotated list of publications is
also provided.

Key words: applications software packages, off-the-shelf software,
so ftware packages

.

**

[NBS129] J. A. McCall, M.A. Herndon, W.M. Osborne,
"Software Maintenance Management, " NBS Special Pnbl i nation
500-129 . October 1985.

This report focuses on the management and maintenance of softw&re
and provides guidance to Federal government personnel to assist them
in performing and controlling software maintenance. It presents an
overview of the various aspects of software maintenance including
the problems and issues identified during the ICST sponsored survey
of Government and private industry maintenance organizations.
Techniques, practices, tools, and procedures which aid in reducing
these problems and which help to insure that quality software is

Page 83

developed for and by the Federal ADP community are identified. An
integrated approach to software maintenance is described with
suggestions for improving the software maintenance process. These
suggestions provide a basis for improving both the software quality
and the productivity of the organization.

Key words: cost control measures, decision aids, management,
software configuration management, software maintenance management,
software maintenance tools, software quality assurance, test plans.

**

[NBS130] W. Osborne, "Executive Guide to Software
Maintenance, " NBS Special Publication 500-130 . December
1985.

This Guide provides answers to sixty- four key questions about
software maintenance. It is designed for Federal executives and
managers who have a responsibility for the planning and management
of software projects. It is also intended for federal staff members
affected by, or involved in making software changes and who need to
be aware of steps that can reduce both the difficulty and cost of
software maintenance.

Issues addressed in the Guide include the feasibility and
applicability of software reuse, the development of maintainable
software, as well as the improvement of existing software, achieving
programmer and software productivity, and the three key attributes
of maintainable software: correctness, understandability, and
reliability. Finally, it discusses software tools that can aid in
making existing code more maintainable.

Key words: maintainability, program structure, languages, software
maintenance, standards.

**

[(X3DI72] J.L. Ogdin, "Designing Reliable Software",
Datamation , pp. 71-78, July 1972.

This article analyzes some of the problems and issues in designing
reliable and maintainable software. The author identifies some
common causes for the development of unreliable software. First,
most computer programs are simply coded, not designed. A major
cause of this problem is that programmers are taught a language
without being taught good design principles and practices . Proper
program design minimizes the effort required to accomplish an
objective and returns more than the invested time and effort. It is
estimated to be five times easier to change a well -designed program
than a poorly coded one. Another cause of unreliable programs is
the lack of discipline by both the program and system designer in
adhering to a single design strategy. Two major problems in design
strategy: designing a system to satisfy all perceived and projected

Page 84

needs is unrealistic and designing a system that tries to do too
much are discussed.

Key words: communication, maintainability, program design,
programmers, reliability, software maintenance, system design.

**

[0SB084] W. Osborne, "A Framework for Improving Software
Maintenance Throughout the Software Lifecycle, Third
Software Engineering Standards /^plication Workshop
Proceedings . IEEE Computer Society Press, pp. 137-138,
October 2-4, 1984.

One of the problems in the software maintenance field is the lack of
planning which it receives during the phases of the software
lifecycle. This article addresses the issue by suggesting a
framework for software maintenance throughout the lifecycle. This
framework should consider the maintainability of software during
each software lifecycle phase and should influence any decisions
made during that phase. Software lifecycle requirements which
should be included in this framework are

:

1. ease of understanding the software
2. ease of making and controlling changes
3. use of improved techniques and tools
4. ease of using software
5. establishment of a quality assurance plan.

In addition, the software maintenance staff, upper management, and
users should be involved in this framework throughout the software
maintenance process. These three groups should jointly: (1)
establish a centralized approval point, (2) ensure that proposed
changes are not incompatible with the orginal system intent and
design, (3) require that all software maintenance be performed with
effective techniques, procedures, and tools, and (4) require that
maintenance of routine changes be scheduled (if possible)

.

Key words: maintainability, management, quality assurance, software
lifecycle, software maintenance, tools.

**

[0SB086] W.M. Osborne, A.L. Hankinson, "Developing
Federal Software Standards: A New Direction", Computer
Standards Conference 1986 Proceedings (Addendum) . IEEE
Computer Society Press, May 13-15, 1985.

The software community has made great strides in the application of
engineering methods and tools to improve software quality and to
enhance the productivity of the software development process. Much
of the credit for improvement in this area can be attributed to the
development and use of software development standards. The

Page 85

inprovements in software development are in stark contrast to the
lack of progress in maintaining operational software.

This discussion describes efforts underway at NBS/ICST to use
software standards as a framework for developing, acquiring, and
maintaining software during its operation life. These standards:

1 . have a so ftware management focus

;

2. build upon existing Federal, national, and
international standards;

3. are integrated as part of a comprehensive policy,
guidance, and training program.

Key words: productivity, software development standards, software
quality, techniques, tools.

**

[0VER73] R.K. Overton, et.al., "Research Toward Ways of
Improving Software Maintenance: Ricasm Final Report",
CIRAD, January 1973.

This paper discusses research efforts to improve software
maintenance. Studies of some fundamental aspects of the work
indicate that (1) before a person can modify a program efficiently,
he needs to be able to trace the structure into which the
modification has to fit, and recognize the conceptual blocks of
which the structure is built; (2) it should be possible to specify,
and set some standards for maintainability-affecting features of
programming languages, and the style and structure of programs; (3)
physical characteristics of terminal displays can handicap or help
the software maintenance programmer, and displays of lists of cues
and probabilities may also help him. Future development, based on
these points, were recommended.

Key words: maintainability, programmer, program structure,
languages, software maintenance, standards.

**

[0VER74] R.K. Overton, et.al., "Developments on Computer
Aided Software Maintenance", AMS Incorporated, September
1974.

Data were collected on two aspects of software maintenance
programming (which, according to publish estimates, costs the U.S.
approximately five billion dollars a year) . Aspects were (Ij

arrangement and sources of information at graphics consoles, and (2)

the value of "conceptual groupings" to software maintenance
programmers using Fortran and PL/1. Research indicates that at
consoles, there is a need for a better matching of problem- solving
facilities for the level of abstraction or detail needed by the
programmer. Scattered sources of needed information were a

Page 86

handicap, as were distraction and other factors. Pilot programs
were developed to automate display of "conceptual groupings. In at
least some cases, such programs decidedly improve software
maintenance efficiency. Further development and wider usage of such
programs is warranted.

Key words: computer aids, conceptual groupings, graphics consoles,
Fortran, software maintenance.

**

[PARI80] G. Parikh, Techniques siZ Program and Systgm
Maintenance . Winthrop publishers, 1982.

This book is a compilation of important and useful material on
software maintenance, published in the computer periodicals,
conference proceedings, reports and books. The book is divided into
seven sections. The first section introduces the problems of
software maintenance and provides some perspective. The second
section covers 'how to' aspects for a software maintenance
programmer. Techniques for managing software maintenance are
presented in the third section. The application and impact of
structured technologies on software maintenance are described in
section four. Section five, an extension on section four, indicates
possible future developments in this vital area. It includes a
chapter related to 'structuring engine, ' a software package that
automatically transforms an unstructured program into a structured
program. Section six is an extensive, annotated bibliography,
containing works on software maintenance, testing, structured
technologies, tools, etc.

Key words: debugging, structured technologies, structuring engine,
system software maintenance, tools.

**

[PARI 81] G. Parikh, "Structured Maintenance - The
Warnlier/Orr Way", Computerworld

, pp. 11-18, September 21,
1981.

The Warnier/Orr methodology is very useful for designing, modifying,
and documenting existing programs or systems . This article explains
this methodology and reveals how it can be used for the software
maintenance phase of the lifecycle. Warnier is the only person who
provides guidelines for maintaining structured systems. His
techniques can also be used for maintaining existing, unstructured
systems . Warnier invented a procedural method for designing
programs and systems called the Logical Construction of Programs
(LCP) and the Logical Construction of Systems (LCS) . The principal
designing tool of his methodologies is the Warnier diagram. Orr
added to the LCP notation developed by Warnier. The advantages of
the Warnier/Orr methodology are as follows:

Page 87

1. It helps design systems, programs and data files;
2. It is effective, efficient and economical both for

development and software maintenance;
3. Any program can be documented with the Warnier/Orr

diagram.

This report includes a case study of a company that chose
Warnier/Orr diagrams for redevelopment.

Key words: design, documenta'cion. Logical Construction of Programs
(LCP) , Logical Construction of Systems ^LCS) , software maintenance,
structured software maintenance, Warnier/Orr diagrams, Warnier/Orr
methodo1ogy

.

**

[PARI 82] G. Parikh, "Cost-Effective Software
Maintenance", ICP Interface Data Processing Management, pp.
37-39, Summer 1982.

This article presents several methods for performing cost- effective
software maintenance. The author suggests:

1. Buying software packages from reliable vendors
with software maintenance contracts included, or
using consultant/contract programmers to maintain
the organization's software;

2. Developing maintainable software by utilizing an
appropriate structured methodology, engineering
principles, and proper development tools;

3. Keeping records of all software maintenance
activities to assist in future software
maintenance and to inform management where
software maintenance money and effort is being
spent;

4. Understanding and using Gerald M. Weinberg's
80/20 rule and his 'worst- first ' approach for
redesigning software (20% of the code causes 80%
of the software maintenance effort therefore,
problem code should be redesigned)

;

5. Using the following structured techniques in the
software maintenance phase: programmer librarian,
walkthroughs, structured programming techniques
and structured documentation technicjues

.

Key words: documentation, software maintenance contracts,
management, productivity, programmers, software packages, software
maintenance, structured programming, tools, training.

Page 88

**

[PARI83a] G. Paritch and N. Zvegintzov, "Managing
Stability and Change: Software Maintenance Training",
Data Training , pp. 11-12, May 1983.

This article provides an overview of software maintenance and
discusses some approaches for training personnel in the software
maintenance field. Statistics are provided on the cost, level, etc.
of software maintenance. The laws of growth and evolution of large
systems are discussed. Five elements of software maintenance
training are identified as follows: ^1^ study techniques from other
installations and research groups, (2) use software maintenance
tools, (3) review your change methodology, (4) use a technical
partnership workshop (i.e., maintainers working in different
functions of the company brief each other on the technical content
of their own assignments) , and (5) develop a functional partnership
consisting of software maintenance staff, operations staff, and
users

.

Key words: maintenance programmers, management, personnel, software
software maintenance, software maintenance management, software
maintenance tools, software maintenance training.

**

[PARI 8 3b] G. Parikh and N. Zvegintzov, Tutorial on
So ftware Maintenance . IEEE Computer Society Press, May
1983.

Software software maintenance, the work done on a software system
after it becomes operational, consumes at least half of all
technical and management resources expended in the software area.
This Tutorial approaches software maintenance not only as an
essential element in the life of a software system but also as a
process with its own rules and techniques. Thirty-one papers by
thirty-seven leading authorities on software maintenance papers are
contained in this tutorial . This selection represents papers most
often requested and papers in hard-to-find sources. Included in the
tutorial are an introduction, an epilogue, an annotated
bibliography, and name and topic indexes.

Key words: development, software maintenance activities, software
evolution, software maintenance, software modification, software
system, tools, understanding software.

**

[PARI84] G. Parikh, "Software Maintenance: Questions and
Answers", Data Management . pp. 25-26, June 1984.

This article examines problems in maintaining microcomputer software

Page 89

and identifies differences between its software maintenance and the
software maintenance of mainframe software. The author discusses
some problems in the software maintenance of microcomputer software
packages (i.e. answering customer questions and distributing
updates to scattered customers) and offers electronic mail and
software maintenance by telephone as solutions. Creating tools for
software development and software maintenance on microcomputers, is
briefly reviewed. Both the modi flability of the software and the
method of software development should be considered when buying a
so ftware package

.

Key words: electronic mail, mainframe software, microcomputer
software, modi flability, software development, software maintenance,
software packages, telesoftware maintenance.

**

[PARN72] D.L. Parnas, "On the Criteria To Be Used in
Decomposing Systems into Modules", Communications of the
ACM , vol. 15, no. 12, pp. 1053-1058, December 1972.

This paper discusses modularization as a mechanism for improving the
flexibility and comprehensibility of a system while allowing the
shortening of its development time. The effectiveness of a
"modularization" is dependent upon the criteria used in dividing the
system into modules . A system design problem is presented and both
a conventional and unconventional decomposition are described.
Unconventional decompositions have distinct advantages for the goals
outlines. The criteria used in arriving at the decompositions are
described. The unconventional decomposition, if implemented with
the conventional assumption that a module consists of one or more
subroutines, will be less efficient in most cases. An alternative
approach to implementation which does not have this effect is
sketched

.

Key words: KWIC index, modularity, modules, software design,
software engineering.

**

[PARN79] D.L. Parnas, "Designing Software for Ease of
Extension and Contraction", IEEE Transactions on Software
Engineering . IEEE Computer Society Press, vol. SE-5, no.
2, pp. 128-137, March 1979.

Designing software to be extensible and easily contracted is
discussed as a special case of design for change. A number of ways
that extension and contraction problems manifest themselves in
current software are explained. Four steps in design of software
that is more flexible are then discussed. The most critical step is
the design of a software structure called the "uses" relation. Some
criteria for design decisions are given and illustrated using a

small example. Identification of minimal subsets and minimal

Page 90

extensions can lead to software that can be tailored to the needs of
a broad variety of users.

Key words: contractibility, extensibility, modularity, software
design, software engineering, subsets, supersets.

[PATTSl] M.B. Patterson, "Motivating Your Staff", Data
Management, pp. 23-25, April 1981.

The lack of morale among maintenance programmers is a major problem
for DP managers. This article offers recommendations on motivating
DP workers and improving their morale. The findings of a 1979
report by Diebold Group, Inc. which shows the influence of
management on programmer productivity are discussed. This report
also states that productivity will increase if management can
improve the attitudes and morale of DP workers. Five suggestions
are explained for improving job satisfaction: task identify, skill
variety, task significance, autonomy, and feedback. The author also
describes the need of structure of the programmer/analyst and its
importance for proper motivation.

Key v/ords: autonomy, feedback, management, motivation,
productivity, programmers, skill variety, task identity, task
significance

.

**

[PEER81] D.E. Peercy, "A Software Maintainability
Evaluation Methodology", IEEE Transactions on Software
Engineering . IEEE Computer Society Press, vol. SE-7, no.
4, pp. 343-351, July 1981.

This paper describes a conceptual framework of software
maintainability and an implemented procedure for evaluating a
program's documentation and source code for maintainability
characteristics. The evaluation procedure includes use of
closed- form c[uestionnaires completed by a group of evaluators.
Statistical analysis techniques for validating the evaluation
procedure are described. Some preliminary results from the use of
this methodology by the Air Force Test and Evaluation Center are
presented. Areas of future research are discussed.

Key words: evaluation by questionnaire, evaluation reliability,
quality metrics, software engineering, software maintainability
evaluation, software quality assurance.

Page 91

**

[PEER84] D.E. Peercy, "A Framework for Software
Maintenance Management Measures", Seventeenth Hawaii
IntgrngttiQnal Conference on System Sciences . pp. 453-461,
1984.

Some of the important issues of problems of software maintenance
management are discussed within the context of a proposed software
maintenance framework. This framework consists of four elements:
software products, software maintenance environment, software
maintenance management, and software maintenance measures. Emphasis
is upon the need for a data base of accurate measures to support the
management decision process . The measures are used to determine
which characteristics, technicjues, tools, and requirements have the
most effect on maintenance resource requirements and allocations.
Elements of software product quality, software maintenance
environments, and software maintenance activity are briefly
discussed

.

Key words: software maintenance, software maintenance environment,
software maintenance management, software maintenance measures,
software product quality.

**

[PENNBO] R.H. Pennington, "Software Development and
Maintenance-Where Are We?", CONFSAC Proceedings . IEEE
Computer Society Press, pp. 419-422, 1980.

Current practice and state-of-the-art in software development and
maintenance are discussed. A series of assertions is given which
summarize the current status in the view of the author. Among the
major assertions are:

o Most software now in use or being written
is unstructured and poorly documented.

o Currently there is no structured programming
language available.

o Although most of the cost of software is in
maintenance, there are no rewards for writing
maintainable code.

o We research on toy problems, but the world
presents large, complex problems.

Key words: documentation, maintainability, software costs, software
development, software maintenance, structured programming.

Page 92

**

[PERL81] A. Perils, F. Sayward, and M. Shaw, Software
Metrics

:

^ Analysis and Evaluation. The MIT Press, 1981.-

Software metrics Is an area of computer science that enables
programmers or analysts to assign quantitative Indexes of merit to
software. This book surveys the field by measuring Its present
extent, describing Its characteristic features and Indicating
directions of potential expansion. It contains fifteen articles on
software metrics which were edited or written by the authors. These
articles focus on the problems and methods In software metrics.

The role of statistical theory and application Is explored In order
to Indicate how statistics can help guide future research on needed
software maintenance tools. Areas In which research Is needed are
outlined, together with some pitfalls to be avoided In pursuing the
research challenges.

Key words: llfecycle model, programmers, software maintenance
tools, software maintenance statistics, software metrics.

**

[PERR84] W.E. Perry, "Software Must Last Another 20
Years - But How?", Government Computer News , p. 68, March
1984.

This article addresses problems In software maintenance and offers
some suggestions on how to handle these problems . A GAO report Is
cited which states that maintenance Is an unplanned, unbudgeted, and
unmanaged function. According to the author, one of the major
challenges for persons working In the software maintenance field In
the 1980 's and 1990 's will be extending the life of existing
applications. In addition, DP organizations are advised to develop
action plans for dealing with system maintenance. The action plan
should Include these four tasks: (1) establish an Inventory of
operational application systems (so that organizations have good
records of their software systems) , (2) rate the portfolio of
application software, ^3) develop a maintenance policy, and (4)
appoint an Individual (I.e., manager) responsible for software
maintenance

.

Key words: maintenance policy, management, planning, software
maintenance, software replacement cost.

**

[PETE77] D.R. Peterson, "Software Acquisition Management
Guidebook: Software Development and Maintenance
Facilities", Electronic Systems Division, Hanscom AFB,
;^rll 1977.

Page 93

This document is one of a series of guidebooks covering important
aspects of software acquisition. The guidebooks are prepared for
use by Air Force program office personnel responsible for the
management and planning of software development. This guidebook
focuses on the management decisions and technical issues related to
planning and acquisition of software development and maintenance
facilities

.

Key words: acquisition, computers, development, facility, hardware,
maintenance, management, planning, software maintenance.

**

[PETE84] R.O. Peterson, "Maintenance Isn't Maintenance
Anymore", Computerworl

d

. pp. 27-36, June 11, 1984.

This article describes methods for improving the attitudes of
workers towards software maintenance, including changing the term to
-production support' rather than maintenance. The author warns
managers about the placement of novice programmers in maintenance.
The novice programmers learn bad traits from the old programs and,
inevitably, have to be retrained. The differences between the
personality traits of development and maintenance programmers are
described. Since these two groups of programmers require such
different personality traits, the author recommends that development
and productioi^ support be separated. The methods, standards, and
other factors associated with project turnover (transferring a
project to maintenance) are also discussed. The following steps are
suggested as a way to improve the effectiveness of the production
support group: (1) the production support group must be given the
responsibility and authority to keep the departmental goals intact;
(2) workers in the production support group must be involved with
the initial design of the system; (3) some programming standards
should be enforced by the support group; (4) the career
opportunities for the development and productions support groups
should be the same.

Key words: maintenance, maintenance attitudes, maintenance
programmers, personality traits, production support, programmers,
programming, standards, project turnover, software maintenance.

**

[PIZZ84] A. Pizzarello, Development and Maintenance qI.

Large Software Systems . Lifetime Learning publications,
1984.

This book provides guidelines, suggestions, and tools for developing
and maintaining large software systems. The author defines 'large
software systems' as associations of several individual programs
which are expected to jointly achieve some global goals. These
systems deal with complex problems, are of considerable size and
rec[uire the cooperative labor of several people. Some of the topics

Page 94

covered in tiiis book are as follows: program design and testing,
hierarchical development and design, data abstractions, program
specifications and techniques for understanding programs. Lastly,
the author presents the most recent findings on special
characteristics of large software systems.

Key words: data abstractions, development, large software systems,
maintenance, program design, program specifications, program
testing, software maintenance, techniques for understanding
programs

.

**

[P0D077] J.L. Podolsky, "Horace Builds a Cycle",
Datamation, pp. 162-168, November 1977.

This article introduces an alternative to the classical system
development cycle called the Recursive Development Cycle. Fictional
characters are used to discuss the advantages and disadvantages of
both lifecycles. Some of the problems with the traditional
lifecycle are: users change their minds during the development,
people responsible for the project's development often leave or get
assigned to another project, and maintenance cost two to four times
as much as 'development.' The classical system development cycle
assumes things will only be built once which conflicts with the
workings of the real world. The foundation for the Recursive
Development Cycle is a hypothesis that the system development cycle
should be constructed so that it recognizes that a system will
probably require substantial, continuing change after the user
begins live use of the system. In the author's new cycle, project
planning does not end at installation. Since the cycle assumes that
modifications will be made after the system is operational, the
system must be constructed to facilitate future maintenance.
Therefore, the author suggests using the following techniques: (1)
use high level programming languages, (2) comment programs
extensively, so it is clear what the program is doing, (3) structure
programs following approved standards with careful use of modules
and carefully defined interfaces, (4) use tables and files rather
than embedded code, and (5) carefully document changes. The author
concludes that this cycle will allow developers to become involved
with the users, to control costs, and to provide high cjuality
service over the entire life of the system.

Key words: development, lifecycles, maintenance, programming,
project planning, recursive development cycle, standards, system
development cycle, users.

**

[PRES81] L. Presser, "Reversing the Priorities",
Datamation , pp. 208-210, September 1981.

This article presents a view that productivity should be measured by

Page 95

the quality of code and not by the number of lines produced
(quantity) . An example is provided which illustrates the cross -over
point (the point at which programmers start resigning because more
time is spent on maintenance than on developing new software) can be
lengthened by increasing the quality of software. The relationship
between software quality and software productivity is highlighted.

Key words: cross-over point, productivity, programmer productivity,
quality, software productivity, software quality,

**

[PRES82] R.S. Pressman, Software Engineering: A
Practioner ' s Approach . McGraw-Hill, 1982.

This book analyzes each step in the software engineering process.
Early chapters present the planning phase, emphasizing system
definition, software planning, and software requirements analysis.
Specific techniques for software costs and schedule estimation are
also included in these chapters . In subsequent chapters emphasis
shifts to the software development phase. Later chapters address
with software testing techniques, reliability, and the managerial
and technical aspects of software maintenance.

Key words: coding style, reliability, requirements analysis,
schedule estimation, software costs, software design methodology,
software development, software engineering, software lifecycle,
software maintenance, software testing, software tools.

**

[PUNT75] M. Punter, "Programming for Maintenance", Data
Processing . vol. 17, no. 4, pp. 292-294,
September/October 1975.

This article explores programming practices that facilitate software
maintenance. The author discusses the importance of software
maintenance to the organization and suggests sound practices that
should be used during the system development stage. He also
recommends the use of system diagrams and glossaries during the
design stage . Since program listings are considered to be the
maintenance programmer's primary tool, comments, blanks, and
indentations should be included to improve the program's readability
and comprehensibility . Maintenance should be considered during the
development stage as well as when changes are incorporated.

Key words: development, design, maintenance programmers, program
complexity, program listings, programming, readability, software
maintenance, software quality.

Page 96

**

[PUTN80] L.H. Putnam, Tutorial: Software Cost
Estimating and Life-Cycle Control ; Getting thg Software
Numbers , IEEE Computer Society Press, August 1980.

All software projects exhibit lifecycle behavior. This tutorial
reviews the nature of the cycle, explaining its characteristics and
emphasizing the dominant influence of the independent variable of
time. This tutorial presents a quantitative methodology of cost
estimating, and discusses economics, trade-off opportunities, and
investment strategies in a description of the managerial practices
necessary for effective planning and control of software
development

.

Key words: economics, investment strategies, lifecycle, management,
methodology of cost estimating, software.

**

[RAMA84] C.V. Ramamoorthy, A. Prakash, W. Tsai, and
Y. Usuda, "Software Engineering: Problems and
Perspectives", Computer . pp. 191-209, October 1984.

This article discusses aspects of the software engineering field and
speculates on its trends and future needs. The following areas of
software engineering are covered: software lifecycle, requirements
and specification, software design, software testing, software
maintenance, software quality assurance - which includes software
reliability and metrics, software reusability, rapid prototyping,
and cost estimation. Sources of maintenance problems are identified
as: (1) insufficient or incomplete documents, (2) inconsistency
between the documents and the code, (3) design difficult to
understand, modify, and test, and (4) insufficient record of past
maintenance. The authors offer three ways of reducing maintenance
cost

.

1 . Develop the system with maintenance in mind

.

2 . Maintain the system with future maintenance
in mind.

Upgrade the system to cope with future
technology.

Key words
maintenance

,

maintenance

,

adaptive maintenance, corrective maintenance,
maintenance costs, perfective maintenance, preventive
rapid prototyping, requirements and specification,

software design, software engineering, software lifecycle, software
maintenance, software metrics, software quality assurance, software
reliability, software reusability, software testing.

Page 97

**

[RAY83] H.N. Ray, "A Planned Approach to Making the User
Useful", Data Management . p. 18 and pp. 37-38, March 1983.

A major problem in the DP industry is the lack of user involvement
in the design and development of application systems. This is an
important issue in software maintenance because many problems result
from a lack of communication with users and from users having a lack
of understanding about their systems. The author recommends a
Planned User Involvement Program to rectify this problem. This
program is a continuous, 'forward-looking' organizational
undertaking which must be totally integrated into the information
systems environment. However, significant alterations to the
traditional systems life cycle are needed for a successful program."
In addition, effective user participation in systems development
requires a minimal level of training and experience to reduce the
fears which may inhibit successful user involvement. The eight
phases in the planned user involvement systems lifecycle are as
follows

:

1. Periodic ongoing user indoctrination. This
phase is the most crucial to the success of
the program.

2. User identified problem definition.

3. Preliminary analysis and feasibility study.
This is a team effort consisting of users,
system analysts, and other specialists.

4. Appropriate, concentrated user training in
analysis and design.

5. Analysis and design that is user directed,
with an emphasis on evaluation and review.

6 . Development and testing (includes user
operation and approval)

.

7. User training and the development of user
procedures and documentation.

8. Implementations and operations (team effort,
user directed)

.

Educating users and involving them during system design will improve
relations between user and the information systems department

.

Key words: analysis and design, development. Planned User
Involvement Program, user involvement, user training, users.

Page 98

**

[RAYN83] R.J. Raynor and L.D. Speckmann, "Maintaining
user Participation Throughout the Systems Development
Cycle", .^FIPS 1983 National Computer Conference
Proceedings, pp. 155-151, May 1983.

Effective user participation is well known to be an important aspect
of good system development methodology. Specific tools and
techniques for managing user participation in all phases of the
system development lifecycle are illustrated by a large business
system development project at Texas Instruments. Emphasis is placed
on maintaining a constant level of communication between user and
developer as the system design evolves.

Key words: management, system development lifecycle, tools, user
participation

.

**

[REUT81] J. Reutter, "Maintenance is a Management Problem
and a Programmer's Opportunity", AFIPS 1981 National
Computer Conference Proceedings, pp. 343-348, May 4-7,
1981.

This paper defines the categories and characteristics of maintenance
and points out the opportunities for management success and job
enrichment in software maintenance. The author identifies the seven
categories of maintenance along with the estimated cost for each
category. According to the author, fixing bugs constitutes between
8-15% of the total maintenance costs. A number of software
maintenance management issues are addressed including: the need to
require cost benefit analysis and tradeoffs, and poor programmer
morale. A structured maintenance approach (including such concepts
as a documented maintenance master plan and the use of project
management techniques) is presented. The author recommends that the
maintenance problem can be overcome through proper management that
incorporates formal planning and reporting disciplines as part of
the maintenance process

.

Key words: documented maintenance, maintenance, maintenance costs,
management, planning, programmer morale, programmers, project
management, reporting, software maintenance, software maintenance
management, structured maintenance approach.

**

[RICH83] G.L. Richardson and C.W. Butler,
"Organizational Issues of Effective Maintenance
Management", AFIPS 1983 National Computer Conference
Proceedings, pp. 155-161, May 1983.

Page 99

It is a continuing challenge to today's data processing (DP)
organization to evolve a management structure that matches the
technological advances of the system for which it is responsible.
The goal of this paper is to synthesize the emerging role of a DP
organization within its corporate environment, focusing particular
attention of the issue of software maintenance. Attention is
primarily on three dimensions of the required organization: the
user view, organized by functional area; the technical view,
organized by area of e:>q)ertise; and the organizational view,
arranged by planning horizon. The conclusion is drawn that a single
group should have responsibility for integration and enhancement of
all installed applications. The tasks of this group comprise
software configuration control, operational integrity, performance
tuning, and requirements analysis and planning support for installed
systems

.

Key words: environment, maintenance management, organizational
issues, planning, software maintenance, software maintenance
management

,

**

[RICH84] G.L. Richardson and E.D. Hodil,
"Redocumentation : Addressing the Maintenance Legacy",
AFIPS 1984 National Computer Conference Proceedings, vol.
53, pp. 203-208, 1984.

Over the past decade or so there has been much attention paid to
techniques and methodologies to produce high-quality systems. A
concurrent development has been the emergence of software tools that
aid in the production and maintenance of software systems; yet the
maintenance environment continues to be littered with poorly written
and poorly documented programs. The focus of this paper is to
outline a conceptual approach to the allocation of software
maintenance resources and the role of automated tools in this
process . The author suggests that it takes an administrative
activity to quantitatively decide which code units are best for
resource allocation. A case study is presented to illustrate the
utility of this approach.

Key words: documentation, maintenance, management, redocumentation,
software, software maintenance, software maintenance resources,
software maintenance tools.

**

[R0MB84] H.D. Rombach, "Design Metrics For Maintenance",
Ninth Annual Software Engineering Workshop, pp. 100-116,
November 28, 1984.

This paper describes results of a study to develop maintenance
metrics based on structural software design characteristics. The
intent of the study was to define a characteristic metric set.

Page 100

suited to explain and predict software maintenance behavior. The
maintenance aspects investigated in this study are stability and
modi flability. While stability refers to the average number of
modules affected per change cause, modi flability characterizes the
ease with which changes can be made within each of these modules.
Additional attention is dedicated to the difference between
characteristic design and implementation metric sets, and to the
difference between change behavior during development and
maintenance. Six software systems and controlled maintenance
experiments using these systems are examined.

Key words: maintenance metrics, metrics, modi flability, software
design, software development, software maintenance, stability.

**

[R0SS75] D.T. Ross, J.B. Goodenough, and C.A. Irvine,
"Software Engineering: Process, Principles, and Goals",
Computer . pp. 17-27, May 1975.

This paper attempts to define the principles and goals that affect
the practice of software engineering. Its intent is to organize
these aspects of software engineering into a framework that
rationalize and encourage their proper use, while placing in
perspective the diversity of techniques, methods, and tools that
presently comprise the subject of software engineering.

Key words: software engineering, software engineering methods,
software engineering techniques, software engineering tools.

**

[RYAN82] J.R. Ryan, "Software Product Quality Assurance",
AFIPS 1982 National Computer Conference Proceedings, vol.
51, pp. 393-398, 1982.

Providing clear objectives, guidelines, and requirements in an
environment conducive to high productivity is absolutely essential
to designing and producing high-quality software. The Software
Quality Branch of the Computer Systems Division of Texas Instruments
is tasked with providing support functions that are vital to
producing high-quality software. This paper explains the role of
the Software Quality Branch in administering the development
methodology of the Computer Systems Division. It describes an
effort to define and monitor quality indices and use of software
quality circle to encourage commitment to quality goals and to
develop solutions to quality problems.

Key words: productivity, quality, software quality, software
quality assurance.

Page 101

**

[SARS77] T. Sarson, "Structured Systems Development",
Computer Decisions , vol. 9, no. 8, pp. 26-30, August
1977 .

The key cost factor in computer systems is the time spent in
testing, maintaining, and changing these systems . This has led to
the development and use of techniques which maximize the
changeability of computer software and make computer programs easier
to read. These techniques are collectively referred to as
structured systems development techniques. The four phases of
structured systems development are: structured coding, structured
design, structured walkthroughs, and top-down implementation.

Structured coding is the use of a small number of logical constructs
to produce programs consisting of a nested hierarchy of one-entry,
one-exit modules. Structured design is a set of techniques to
insure that the modules of a system are well fonned and independent
of one another. Structured walkthroughs are the formal review of
code and other development products by the members of a team
responsible for detecting logic and other errors at an early stage.
The top-down development strategy, the highest level skeleton of the
system is coded and tested and then the detailed, lower levels of
the system are integrated.

Key words: structured coding, structured design, structured systems
development, structured walkthroughs, top-down implementation.

**

[SCHN79] N.F. Schneidewind and H.M. Hoffman, "An
Experiment in Software Error Data Collection and Analysis",
XEEE Transactions on So ftware Engineering . IEEE Computer
Society Press, vol. SE-5, no. 3, pp. 276-286, May 1979.

The propensity to make programming errors and the rates of error
detection and correction are dependent on program complexity.
Knowledge of these relationships can be used to avoid error prone
structures in software design and to devise a testing strategy which
is based on anticipated difficulty of error detection and
correction. An experiment in software error data collection was
conducted in which the error data was carefully defined and
analyzed. The error data was defined in terms of a directed graph
representation of a program using such criteria as: errors found,
time between error detections, and error correction time.
Significant relationships were found between complexity measures and
error characteristics

.

Key words: abstract data types, complexity measures, error
detection, program complexity, programming languages, set languages,
software errors, testing, very high level languages.

Page 102

**

[SCHN82a] N.F. Schneidewind, "Software Maintenance:
Improvement Through Better Development Standards and
Documentation", Naval Postgraduate School, Internal
Report, February 1982

.

Software maintenance is frequently the most expensive phase of the
software lifecycle. It is also the phase which has received
insufficient attention by management and software developers.
Software standards have improved the ability of the software
community to develop and design software. Unfortunately, most
standards do not deal with the maintenance phase in a substantive
way. Since maintainability has to be designed into the software and
cannot be achieved after the software is delivered, it is necessary
to have software standards which explicitly incorporate requirements
for maintainability. Accordingly, this report suggests design
criteria for achieving maintainability and evaluates Weapons
Specification WS 8506 and MIL-STD 1679 against these criteria.
Using these documents as typical examples of military software
standards, recommendations are made for improving the
maintainability aspects of software standards.

Key words: documentation, maintainability, software maintenance,
so ftware standards

.

**

[SCHN82b] N.F. Schneidewind, "Evaluation of Secnavinst
3560.1 Tactical Digital Systems Documentation Standard for
Software Maintenance", Naval Postgraduate School, Internal
Report, February 22, 1982.

Management and developers have given insufficient attention to
software maintenance, the most expensive phase of the software
lifecycle. Standards have improved the ability to develop and
design software, but most standards do not deal with the maintenance
phase in a substantive way. SECNAVINST 3560.1 Tactical Digital
Systems Documentation Standard for Software Maintenance, was
evaluated with respect to its usability for software maintenance.
Recommendations are made for improving the maintainability aspects
of this instruction.

Key words: documentation, software maintainability, software
maintenance, software standards, traceability

.

**

[SCHN82C] N.F. Schneidewind, "Usability of Military-
Standards for the Maintenance of Embedded Computer
Software", Naval Postgraduate School, Internal Report,
June 1982.

Page 103

Several military software standards were examined and evaluated with
respect to their applicability and usability for maintaining
embedded computer software. These standards were discussed from
three standpoints: (1) the degree to which they support the use of
newer software development technologies (e.g., requirements analysis
methodologies) for improving software maintenance; (2) the effect of
the microcomputer and its software development environment on the
application of these standards; and (3) the extent to which these
standards enhance traceability (tracing the various levels of
related documentation)

.

Key words: aircraft software redesign project, microcomputer
software, requirements analysis methodologies, software design,
software maintainability, software maintenance, software standards,
traceabi 1 ity

.

**

[SCHN83] G.R.E. Schneider, "Structured Software
Maintenance", AFIPS 1983 National Computer Conference
Proceedings, pp. 137-144, May 1983.

Many books are written about structured design and programming, but
never about structured maintenance. True structured maintenance
comprises four functional roles: the manager, librarian, archivist,
and programmer . The manager manages . The archivist protects
contents of computer files and stores information about these files
in an archive library. The librarian organizes and stores software
documentation package. The programmer, of course, programs, using
versions of the archive and library documents with slightly altered
contents, and records day-to-day activities in the programmer's
notebook. A special tool used by programmers is emergency takeover,
which is a procedure for taking maintenance control of a new
program

.

Key words: archivist, librarian, managers, programmers, software
documentation, software maintenance, structured software
maintenance

.

**

[SHAR77] W.K. Sharpley, "Software Maintenance Planning
for Embedded Computer Systems", COMPSAC Proceedings . IEEE
Computer Society Press, pp. 520-526, November 8-11, 1977.

This paper addresses key issues in software maintenance for embedded
computer systems (i.e. weapon systems) . Software maintenance cost
factors such as problems with inefficient use of labor and
inadequate planning are discussed. Planning should include
provision for prompt and complete error detection and reporting by
the system users. Software management tools and special tools for
software maintenance are included. The author suggests that the
goals of software maintenance of embedded computer systems are:

Page 104

support for initial development, support of new requirements, and
normal operational support

,

Key words: embedded computer systems, maintenance cost factors,
software management tools, software maintenance, software
maintenance tools

.

**

[SHEP77] S.B. Sheppard and L.T. Love, "A Preliminary
Experiment to Test Influences on Human Understanding of
Software", General Electric, Internal report, June 1, 1977.

Eight experienced programmers were each given three Fortran programs
to memorize and reproduce functionally, without notes. Three levels
of complexity of control flow and three levels of mnemonic variable
names were independently manipulated. The experimental design was
an incomplete split-plot factorial where each programmer was given
one version of each program and all levels of the two primary
independent variables. The participants correctly recalled
significantly more statements when the complexity of control flow
was reduced. The Pearson correlation coefficient was -0.81, over
the 24 data points; thus indicating that Halstead's E is a powerful
predictor of one's ability to understand a computer program.

Key words: complexity, control flow, Fortran, mnemonics, program
style, programmers, software engineering, software psychology,
software science, understanding of software.

**

[SHEP79] S.B. Sheppard, B. Curtis, and P. Milliman,
"Factors Affecting Programmer Performance in a Debugging
Task", General Electric, Internal Report, February 1979.

This report is the third in a series investigating characteristics
of software related to psychological complexity. Three independent
variables, length of program, complexity of control flow, and type
of error, were evaluated for three different Fortran programs in a
debugging task. Fifty- four experienced programmers were asked to
locate a single bug in each of three programs. Documentation
consisted of input files, correct output, and erroneous output.
Performance was measured by the time to locate and successfully
correct the bug. Small but significant differences in time to
locate the bug were related to differences among programs and
presentation order. Among measures of software complexity,
Halstead's E proved to be the best predictor of performance followed
by McCabe ' s v (G) and the number of 1ines o f code . The number o

f

programming languages known and familiarity with certain programming
concepts also predicted performance. As in the previous
experiments, experiential factors were better predictors for those
participants with three or fewer years experience programming in
Fortran

.

Page 105

Key words: control flow complexity, debugging, Fortran, modern
programming practices, program errors, programmers, software
psychology metrics, structured programming.

**

[SHEP81] S. Sheppard and E. Kruesi, "The Effects of the
Symbology and Spatial Arrangement of Software
Specifications in a Coding Task", General Electric
Technical Information Series, Internal Report, July 1981.

Thirty-six participants were presented with specifications for each
of three modular-sized computer programs. Nine different
specification formats were prepared for each program. These formats
varied along two dimensions: type of symbology and spatial
arrangement. The type of symbology included natural language,
constrained language (PDL) , and ideograms (flowchart symbols) . The
spatial arrangement included sequential, branching, and hierarchical
versions. Working from the specifications, the participants added
and debugged about fifteen lines of code at the middle of each
program. Substantial differences in performance were associated
with the type of symbology. The natural language was considerably
more difficult to code from than the constrained language or
ideograms. The effect of spatial arrangement was not as great as
the effect of symbology. Although not statistically significant,
the branching arrangement appeared to be superior to the sequential
and hierarchical arrangements. A comparison of the individual
formats revealed that the constrained language presented in a
sequential or in a branching arrangement resulted in the highest
level of performance.

Key words: flowcharts, program design language, software
documentation, software engineering, software experiments, software
human factors

.

**

[SHIF78] E.R. Shifflett, N.A. Hofland, and D.J.
Schultz, "A Pragmatic /^proach to Software Development",
17th Annual Technical Symposium, ACM/NBS, pp. 47-52, June
15, 1978.

This paper addresses and questions the fundamental theories inherent
in the traditional way in which large, complex software systems have
been built. Aspects addressed include the nature and
characteristics of such systems, the methods used to get the
technical work done, staffing philosophy, and management strategies.
Based on an examination of the traditional concepts, a different
philosophical approach is suggested and outlined. This includes
viewing development of large systems as experimental in nature,
reversing and changing the order of technical work activities to
build such a system, using a new approach to staffing, and offering
hope for management visibility and control of the process.

Page 106

Key words: management, software development, software systems,
staffing.

**

[SHNE80] B. Shneiderman, Software Psychology .

Winthrop publishers, 1980.

This book reviews current trends and experimental results which have
immediate application in software engineering and offers a model of
human behavior which may be useful for further research. The author
presents a definitive study on people who develop and maintain
software. Some of the sections included in this book are aa
follows: programming style, team organization, personality factors,
and software quality evaluation.

Key words: personality factors, personnel, programming style,
software development, software engineering, software maintenance,
software psychology, software c[uality evaluation, team organization.

**

[SHNE86] B. Shneiderman, P. Shafer, R. Simon,
L. Weldon, "Display Strategies for Program Browsing:
Concepts and Experiment", 1£E£ Software , vol. 3, no. 3,

pp. 7-14, May 1986.

The new, larger display screens can improve program comprehension
if the added space is used for more effective presentation, not just
more code or larger type. Software maintenance is an important part
of a programmer's work and a product's lifecycle, yet it remains one
of the most troublesome of tasks. Even existing, newly developed
technic[ues are not of much use, since only time can determine their
value. Thus, instead of presenting another new maintenance tool or
management technique, these pages focus on strategies for inproving
the presentation of information - specifically, on the new, larger
display screens. An earlier version of the material in this article
was presented at CSM-85. Recent experimental results have been
added

.

Key words: lifecycle, software maintenance, strategies, techniques,
tools

.

Page 107

**

[SH0083] M.L, Shooman, Software Engineering : Design

.

Reliability, and Management , McGraw-Hill, 1983.

This book presents software engineering methodologies for the
development of quality, cost-effective, schedule-meeting software.
The first chapter introduces the concepts of software development.
This chapter focuses on software costs, the technical and managerial
problems of software development and the techniques for designing
high-quality software at a reasonable cost. Chapter 2 emphasizes
modern software design methods such as modularity, structured
programming, top-down design, and defensive programming. Chapter 3
develops complexity measures related to development cost and the
number of program errors. Chapter 4 describes the various levels of
testing (i.e. m.odule and integration) and introduces several kinds
of tests. Chapter 5 explains reliability concepts and develops
models for predicting and measuring software errors, reliability,
and availability. Chapter 6 deals with the basic principles of
so ftware management

.

Key words: complexity measures, defensive programming, software
costs, software design, software development, software errors,
software management, software quality, software reliability,
structured programming, testing, top-down design.

**

[SILV83] J. Silverman, N. Giddings, and J. Beane, "An
T^proach to Design for Maintenance", Honeywell Systems and
Research Center, pp. 1-5, June 17, 1983.

Maintenance of a software system is enhanced when the system is
viewed as a software architecture (an interconnection of parts) . A
Component Interconnection Language (CIL) has been defined for
representing software architectures. In addition, several
structural complexity metrics have been defined for evaluating
architectures . The CIL supports maintenance in four basic ways : as
a vehicle for recording design history, to help a maintainer
evaluate the effect of a proposed design change, to help design
retesting procedures, and as a basis for knowledge-based assistants
for design and maintenance. The CIL and metrics have been evaluated
in a design of a selected real-time, embedded software system.

Key words : component Interconnection Language (CIL) , design,
embedded software system, metrics, retesting, software
architectures, software maintenance.

Page 108

**

[SING80] L.M. Singer, "Attacking Maintenance Costs",
Computerwor 1

d

. p. 9 and pp. 12-16, September 8, 1980.

This article offers a method for reducing system maintenance costs.
This method consist of three separate but overlapping stages: (1)
measuring the existing maintenance effort, (2) summarizing and
analyzing the maintenance activity, and (3) resolving the
maintenance problems on a prioritized basis. In the first stage,
the author suggests using a time project accounting system as a
means for collecting data on system maintenance. In addition,
personal logs that record specific activities and events should be
filled out by the DP staff. The format of the log should be
standardized, but the content should be left to the individual . The
next stage, summarizing and analyzing the maintenance activity, can
begin after two months of collecting data. This stage summarizes
the quantitative and qualitative aspects of maintenance. In the
final stage management should begin attacking the true causes of
costly system maintenance on a priority basis

.

Key words: changes, documentation, maintenance costs, management,
operational support, programmers, software maintenance, system
maintenance, user support, user training, users.

**

[SNEE84] H.M. Sneed, "Software Renewal: A Case Study",
Software , pp. 56-63, July 1984.

This article presents the results of a test project to determine the
usefulness of software engineering tools and techniques. This
corporation had previously developed a commercial application system
for distributing books and other publications throughout the world.
Their system was developed using the HIPO method for design and a
decision table generator, for coding. The data base, which contains
5000 data items, was constructed using the Adabas database system.
Testing and documenting such a large system was a major problem.

The strategy of the project was to proceed in four stages: (1) the
modules were to be statically analyzed and redocumented with the aid
of a static analyzer; (2) the programs and data structures were to
be formally specified using an automated specification tool; (3) the
module test cases were to be written in a test specification
language; and (4) The test specification was to be merged with the
functional specification of the programs and their data structures,
to create a production environment for maintenance and further
development

.

Although the testing project was not economically Justified, it
established a testbed for future testing. The project demonstrated
that the postdocumentation and testing of programs can be done
economically by using adequate tools.

Page 109

Key words: database system, design, documentation, HIPO method,
PL/1, redocument, respecify, reverify, software engineering,
software engineering tools, specification tools, static analyzer,
test cases, test specification, testing, tools.

**

[S0L084] E. Soloway, S. Letovsky, B. Loerinc, and
A. Zygielbaum, "The Cognitive Connection: Software
Maintenance and Documentation", 9th Aniiual NASA/Goddard
Workshop on Software Engineering, pp. 1-11, November 1984.

With the goal of trying to understand what software maintainers do,
an experiment was conducted using audio, video-taped protocols with
four e:>q5ert maintainers as they were actively engaged in the process
of enhancing a relatively small, interactive database program. The
subjects exhibited a number of different types of information
gathering strategies. Underlying these patterns of behavior,
however, was the use of expectations about what should be seen in
the program under examination. These expectations were generated on
the basis of knowledge previously acquired as to the goals and
programming plans that are typically employed in realizing
interactive database programs. Thus, while the experts seemed to
possess adequate programming knowledge, their actual code patches
violated a basic principle of program structure. The failure by the
programmers, at least in part, to was attributed to ineffective
program documentation. Therefore improvements in the content of
program documentation that should better facilitate software
maintenance was recommended.

Key words: database system, documentation, maintenance programmers,
modifications, program documentation, programming, software
maintenance

.

**

[SPIE76] M.J. Spier, "Software Malpractice - A
Distasteful Experience", Software zl Practice and
Experience , vol. 6, no. 3, pp. 293-299, July-Sept 1976.

A sequence of events is described, which lead to the deterioration
of an initially well -conceived and well -implemented compiler. This
article presents a case study of how an initial "optimization"
implanted a latent bug in the compiler, which was subsequently
uncovered by a compiler modification. Details on how the compiler
continued to deteriorated as a result of improper changes to correct
the bug.

Key words: compilers, software engineering methodology, software
maintenance, software production, structured programming.

i

Page 110

**

[SP0K84] M. Spokony-Smith and R. Smith, "Getting the
Best Software Support", Electronic EdUC^tiOH/ vol. 3, no.
6, p. 23 and p. 50, March 1984.

Software support and technical assistance are very important
considerations when purchasing a software package. Three categories
of software support and guidelines for achieving efficient software
support service are provided.

1 . No support - the buyer must figure out how
to install and use the package.

2. Direct help from the software dealer - the
buyer can call or go to the store to request
aid for his problems

.

3. Support from the software publisher - the
buyer receives assistance via the telephone
from a technical assistance department
dealing directly with the end user.

Key words: end-users, software package, technical assistance.

**

[STAN77] J.R. Stanfield and A.M. Skrukrud, "Software
Acquisition Management Guidebook: Software Maintenance",
System Development Corporation, October 1977.

This report is one of a series of Software Acquisition Management
(SAM) guidebooks. The scope of this document is limited to those
acquisition and development activities, occurring throughout the SAM
cycle, which impact software maintenance. It includes discussions
of system turnover to the using command and the transfer of program
management responsibility to the supporting command. The computer
lifecycle is also considered. Most of the information provided in
this report covers the implementing command's responsibilities
during the SAM cycle. However, software maintenance during the
Deployment Phase is also discussed to provide the background for
proper planning. Current programming concepts are discussed as well
as the military regulations, specifications, and standards. Within
these constraints, this report emphasizes what the Program Office
can do to specify and procure maintainable software, including
procurement of the facilities, support tools, and documentation
necessary to support software maintenance activities.

Key words: maintainability, software maintenance.

**

[SWAN79] E.B. Swanson, "On the User-Requisite Variety of
Computer Application Software", IEEE Transactions on
Reliability

, pp. 221-226, August 1979.

In this model for software maintenance, user demand for enhancements

Page 111

and extensions is an integral component . Such demand is directed
toward obtaining the user-requisite variety of the software, which
manifests itself by recognizing errors of discrimination and
omission during a history of data processing. The concept of
variety in data and programs is introduced and developed, and
measures are suggested. Behavior of the measures over a history of
data processing is investigated. Validation and application of the
model is discussed.

Key words: enhancements, errors, management, model, softv/are
maintenance, validation, user.

**

[SWAN84] E.B. Swanson, "Organizational Designs for
Software Maintenance", Fifth International Conference on
Information Systems, IEEE Transactions on Software
Engineering . November 28-30, 1984.

Organization design theory is applied to issues in information
systems (IS) management of application software maintenance.
Following the suggestion of Galbraith (1973, 1977) , it is argued
that increased uncertainty in the maintenance task requires
organizational adaptation to reduce the IS need for information
processing in support of this task, or, alternatively, to increase
the capacity for the same. Sources of uncertainty in the
maintenance task are identified, and a number of related
propositions are developed and enumerated. A corresponding set of
design alternatives for maintenance management is also presented and
given theoretical interpretation.

Key words: design, information systems management, software
maintenance

.

**

[TANN80] M.R. Tanniru, "Achieving Integrity in the System
Maintenance Phase", Nineteenth Annual Technical Synposium,
pp. 35-39, 1980.

Much attention has been paid to ensure systems integrity during the
development phase. Growth of modular programing work- stations make
it easier for a system or program designer to access and update the
program modules in real-time as they attempt to modify existing
systems or design new systems. This paper develops a maintenance
procedure that makes available to users, programmers, system
designers and auditors a 'reliable' documentation of each system.

Key words: documentation, management, module, programmers, system
designers, software maintenance, system maintenance, users.

i.

Page 112

**

[TAUT83] B.J. Taute, "Quality Assurance and Maintenance
Application Systems^', AFIPS 1983 National Computer
Conference Proceedings . pp. 123-129, May 1983.

Modifications to application systems in production can have a
devastating effect on the environment if the changes are not handled
correctly. A comprehensive quality assurance (QA) approach can help
minimize this potentially harmful effect. This approach involves
all groups: users, data processing center, applications
programming, and quality assurance.

The QA approach should address four areas

:

1 . Phased approach
\ 2 . Procedure flows

3. Maintenance guidelines
4. Implementation

This paper describes a QA approach which consists of the definition
and implementation of eight phases, envisioned in a circular
lifecycle. Emergency processing is considered separately.
Procedure flows consist of diagrams and charts listing
responsibilities of the participants. Maintenance guidelines
contain helpful hints and checklists and provide direction to the
participants

.

Key words: applications programming, data processing center,
maintenance, c[uality assurance, software maintenance.

**

[TAUT84] B.J. Taute, "Software Maintenance: A Phased
Approach", Data Management . pp. 37-39, March 1984.

The purpose of this article is to give the four groups involved with
maintenance (the user base, DP center, application programming and
quality assurance function) a structured approach for handling
maintenance. This approach consist of eight phases : the request
phase, estimate phase, schedule phase, programming phase, test
phase, documentation phase, release phase (replacement of the old
system with the changed system) , and operation phase . Each phase is
clarified, and deliverable's from each phase to the next phase are
described. In addition, the procedure for handling emergency
changes is explained. The author provides valuable information not
only for DP management, but for each of the groups involved in
software maintenance.

Key words: documentation, emergency processing, maintenance
lifecycle, software maintenance.

Page 113

**

[TEIC77] D. Teichroew and E.A. Hershey, III, "PSL/PSA:
A Computer -Aided Technique for Structured Documentation and
Analysis of Information Processing Systems", lEEL
Transactions on So ftware Engineering , vol. SE-3, no. 1,

pp. 41-48, January 1977.

PSL/PSA is a computer-aided structured documentation and analysis
technique that was developed for, and is being used for, analysis
and documentation of requirements and preparation of functional
specifications for information processing systems. The present
status of requirements definition is outlined as the basis for
describing the problem which PSL/PSA is intended to solve. The
basic concepts of the Problem Statement Language are introduced and
the content and use of a number of standard reports that can be
produced by the Problem Statement Analyzer are briefly described.

Key words: computei—aided documentation. Problem Statement
Analyzer, Problem Statement Language, PSL/PSA, requirements
analysis, structured documentation.

**

[TEIAY80] R.H. Thayer, A. Pyster, and R. Wood, "The
Challenge of Software Engineering Project Management",
Computer . pp. 51-59, August 1980.

This article discusses the problems and issues in software
engineering project management (SEPM) . It presents an analysis of
the survey results of the twenty hypothesized problems in SEPM. 361
persons including project managers, programmers/analysts, technical
leaders, R&D personnel, and educators were surveyed. The survey
revealed that : (1) planning activities are considered as the most
important SEPM problem, (2) no consensus exists on how to solve
these problems, and (3) the only groups who rated planning for
maintenance as an important issue were educators and research and
development personnel. The authors contend that one of the reasons
that commercial software is so difficult to maintain is that
industry is not convinced that planning for maintenance is an
important problem. The results of the survey are both informative
and revealing for persons involved with software engineering.

Key words: maintenance, software engineering, software engineering
project management (SEPM), software maintenance.

**

[THAY81] R.H. Thayer and A.B. Pyster, "Major Issues in
Software Engineering Project Management", XEE£ Trangagtions
on Software Engineering , vol. SE-7, no. 4, pp. 333-342,
July 1981.

Page 114

Software engineering project management (SEPM) has been the focus of
much recent attention because of the enormous penalties incurred
during software development and maintenance resulting from poor
management. To date, there has been no comprehensive study to
determine the significant problems of SEPM, their relative
importance, or the research directions necessary to solve them. The
author conducted a survey of individuals from all areas of the
computer field to determine the general consensus on SEPM problems

.

Twenty hypothesized problems were submitted to several hundred
individuals for their opinions. The 294 respondents validated most
of these propositions. All of the propositions were considered to
be important. The respondents indicated a number of research
directions

.

Key words: management, software development, software engineering
project management (SEPM) , software maintenance, survey, university
curriculum

.

**

[TINN83] P.C. Tinnirello, "Improving Software Maintenance
Attitudes", AFXFS 1983 National Computer Conference
Proceedings . pp. 107-112, May 1983.

In the past, there has been little recognition of the significance
of how attitudes affect the performance of maintenance functions.
Investigation into the origin of these attitudes has led the author
to formulate feasible solutions that foster productive attitudes
through the educational and professional work environments.

Key words: environments, maintenance attitudes, maintenance
management, maintenance programming, productivity, software
maintenance

.

**

[TINN84] P.C. Tinnirello, "Software Maintenance in
Fourth-Generation Language Environments", AFIPS 1984
National Computer Conference Proceedings . vol. 53, pp.
251-257, May 1984.

It is often asserted that fourth-generation languages will resolve
the problems associated with software development, and in particular
the technical and morale problems of software maintenance. This
paper suggests that fourth-generation languages can not solve all of
the present problems of maintenance, and indeed they can introduce
problems of their own. The successful user of fourth-generation
languages will be the organization that takes appropriate
countermeasures . Benefits and disadvantages of fourth- generation
languages are e>qplored.

Key words: documentation, fourth-generation languages, maintenance
programming, product releases, quality assurance, software

Page 115

ownership, software selection, software standards, software
warranty

.

**

[TIPS80] E. Tipshus and J. Sanderson, "Rotating '•Rival'
Programmers Between T^plications and Maintenance Dampens
Antagonism, Improves Documentation" , Data Management

.

pp

.

42-46 , June 1980.

This article contains an example of an organization's problems due
to conflicts between the system development and maintenance groups.
Problems with project turnover and staff rivalry are described. The
solution implemented by this organization was to combine these two
groups into one system development department. This new department
had the following attributes: (1) a new group of maintenance
programmers consisting of a group leader and seven rotating
programmers who were responsible for emergency maintenance; (2)
approximately 10% of the DP staff would be responsible for regular
eriiancements and modifications; (3) at implementation, a programmer
who had worked on developing the system would be assigned to the
maintenance group. A description of initial problems and their
solutions during this reorganization is provided.

Key words: development group, documentation, maintenance group,
maintenance programming, management, personnel, programmers, project

**

[WALK81] M.G. Walker, Managing Software Reliability - Ths.
Paradigmatic Approach . North Holland, 1981.

This book proposes a paradigm which transforms the management of
software reliability from a craft into a controllable,
scientifically based engineering discipline. Software developers
can use the paradigm to organize software development, maintenance,
and conversion into a predictable and reliable methodology.

The paradigm specifically guides software managers in the following
areas

:

1. It gives them an understandable picture of
the software lifecycle.

2 . It offers them a guide for selecting
techniques for building and maintaining a
system

.

3. It provides them with a guide for managing
their staffs.

Key words: management, software conversion, software development,
software lifecycle, software maintenance, software reliability.

Page 116

**

[WALT78] G.F. Walters and J. A. McCall, "The Development
of Metrics for Software R&M", Proceedings of the Annual
Reliability and Maintainability Symposium, DPMA, pp.
79-85, January 1978.

This paper describes the derivation and validation of software
metrics which provide a means for quantitatively specifying and
measuring software quality. The procedure for quantifying software
quality is : (1) determine a set of factors which comprise software
quality; (2) develop a set of criteria for each factor; (3) define a
metric (measure) for each criterion and use a "normalization
function' to combine all these measures for an overall rating of the
factor; (4) validate the metrics and normalization functions by
utilizing historical data; and (5) set guidelines that can be used
by project management to specify the quality of the software product
and to measure in the development stages whether the project is
meeting that level of quality. Eleven software quality factors are
listed. This article provides an explanation of the uses and
benefits of software metrics for software maintenance.

Key words: correctness, flexibility, reusability, portability,
software maintainability, software metrics, software quality,
software reliability, testability.

**

[WASS78] A.I. Wasserman and L.A. Belady, "Software
Engineering: The Turning Point", Computer . pp. 30-41,
September 1978.

This article deals with the problems of software engineering in the
late seventies. Steps to improve the software engineering field are
described. The first step is to develop validated and well-tested
software components (packages) instead of programming from scratch.
These components should be easier to modify and maintain. The
author suggests a software component inventory from which a software
implementor could design a system. The second step is to learn from
present systems and tools in order to improve their operation and to
evolve them gradually into new configurations. Finally, there needs
to be improvement in transferring technological information on
software engineering to industry, in order to ensure widespread
adoption of software engineering principles. This involves
improving educational programs both within universities and
industries. Future research directions in software engineering are
described. They include: (1) Flexibility and modularity (2) module
interfaces (3) validation, verification, and testing (4)
specification techniques. The authors also identify some of the
external pressures (i.e., economic and legal) which force people to
change their present practices and set higher standards for their
software system.

Page 117

Key words: reuse, software packages, software engineering, testing,
veri fication

.

**

[WASS82] A.I Wasserman and S. Gutz, "The Future of
Programming", Communications of the ACM , vol. 25, no. 3,

pp. 196-206, March 1982.

The nature of programming is changing. These changes will
accelerate as improved software development practices and more
sophisticated development tools and environments are produced. This
paper surveys the most likely changes in the programming task and in
the nature of software over the short, medium, and long term.

In the short term, the focus is on gains in programmer productivity
through improved tools and integrated development environments . In
the medium term, programmers will be able to take advantage of
libraries of software components and to make use of packages that
generate programs automatically for certain kinds of common systems.
Over the longer term, the nature of programming will change even
more significantly as programmers become able to describe desired
functions in a nonprocedural way, perhaps through a set of rules or
formal specification languages. As these changes occur, the job of
the application programmer will become increasingly
analysis-oriented and software developers will be able to attack a
large number of application areas which could not previously be
addressed effectively.

Key words: integrated development environments, packages,
prototyping, personal development systems, reuse, software
components

.

**

[WEIN71] G.M. Weinberg, The Psychology of Computer
Programming . Van Nostrand Reinhold, 1971

.

This book investigates the behavior and thought processes of
programmers as they carry out their daily activities. The author
discusses the following psychological factors:

1 . The programmer ' s working quarters have a
profound effect on his/her productivity.

2. Social factors that cause different levels
of performance from different programmers.

3. 'Ego-less programming' and individual
ownership of programs.

4. The creation and coordination of programming
teams .

"

Keywords: human factors, programmers, psychological activities,
software maintainability.

Page 118

**

[WEIS81] M. Weiser, "Program Slicing", Fifth
International Conference on Software Engineering, IEEE
Computer Society Press, pp. 439-449, 1981.

Program slicing is a method used by experienced programmers for
abstracting from programs. Starting from a subset of a program's
behavior, slicing reduces the program to a minimal form which still
produces that behavior. The reduced program, called a "slice", is
an independent program guaranteed to faithfully represent the
original program within the domain of the specified subset of
behavior. A dataflow algorithm is presented for approximating
slices when the behavior subset is specified as the values of a set
of variables at a statement. E^erimental evidence is presented
that these slices are used by programmers during debugging.
E>perience with two automatic slicing tools is summarized. New
measures of program complexity are suggested based on the
organization of a program's slices.

Key words: debugging, program maintenance, program slicing,
dataflow analysis, slice.

**

[WEIS82] M. Weiser, "Programmers Use Slices When
Debugging", Communications of the ACM , vol. 25, no. 7,
pp. 446-452, July 1982.

Computer programmers break apart large programs into smaller
coherent pieces. Each of these pieces: functions, subroutines,
modules, or abstract datatypes, is usually a contiguous piece of
program text . The experiment reported here shows that programmers
also routinely break programs into one kind of coherent piece which
is not contiguous. When debugging unfamiliar programs, programmers
use program pieces called slices which are sets of statements
related by their flow of data. The statements in a slice are not
necessarily textually contiguous, but may be scattered through a
program.

Key words: Program decomposition, slice.

**

[WHIT77] D.C. Whitmore, R.D. Bivans, D.L. Bowie, and
M.P. Kress, "Computer Program Maintenance: Software
Acquisition Engineering Guidebook Series", Internal report,
Boeing Aerospace Company, December 1977

.

This report is one of a series of guidebooks whose purpose is to
assist Air Force Program Office Personnel and other USAF acquisition
engineers in the acquisition engineering of software for Automatic

Page 119

Test Equipment and Training Simulators. This guidebook describes
the software maintenance lifecycle, including maintainability,
maintenance tasks and required maintenance resources

,

Key words: software acquisition, acquisition engineering, software
maintenance, software change control, software certification,
contractor support, software lifecycle costs, support software.

**

[WHIT81] B.A. Whitesides, "The Hidden Costs of In-House
Development", Datamation , pp. 173-175, September 1981.

The purpose of this article is to compare the in-house development
costs against the external development costs . Many hidden costs for
internal development are described (i.e., recruiting and training
programmers, monthly benefits for each employee and rushing the
implementation of a project) . According to the author, there is
less risk in obtaining services from an outside contractor than in
hiring programmers. One reason is that payments can be withheld or
recovered from a contractor while this is not possible with an
unsuitable employee. Generally, a software house provides a variety
of skills not always available in-house and thus, produces
significant advantages in management control. This article
identifies some of the benefits of using the services of a software
house but does not mention any of the disadvantages.

Key words: in-house development costs, external development costs,
so ftware , training

.

**

[WIEN84] W.K. Wiener-Ehrlich, J.R. Hamrick and V.F.
Rupolo, "Modeling Software Behavior in Terms of a Formal
Life Cycle Curve: Implications for Software Maintenance",
XEEE Transactions on Software Engineering, vol. SE-10, no.
4, pp. 376-383, July 1984.

In this paper, a formal model of the software manloading pattern,
the Rayleigh model, is described and then applied to four Bankers
Trust Company (BTCo

.
) new development projects possessing complete

lifecycle manloading data (maintenance phase included) . To fit the
Rayleigh curve to a project's manloading scores, (nonlinear)
regression was used to obtain least squares estimates of the
Rayleigh parameters, which, in turn, were used to generate the
Rayleigh manloading curve. For all four projects, deviation from
the Rayleigh curve was small and constant throughout the software
development phases (i.e., preliminary design through
implementation) ; however, the Rayleigh curve consistently deviated
from the actual manloading during system maintenance,
underestimating the amount of maneffort expended. Restricting
maintenance effort to manpower expended repair of system faults
("corrective" maintenance) resulted in a single Rayleigh curve that

Page 120

could be applied over the entire BTCo . lifecycle. Furthermore,
this corrective portion of the maintenance effort could be
accurately forecasted from the Rayleigh curve fit to software
development. Implications of these findings for software management
are discussed.

Key words: corrective maintenance, development project, empirical,
fitted curve, forecasting software maintenance, formal model of
software lifecycle, projected curve, Rayleigh model, residual score.

**

[WILS81] L. Wilson, "The Do's and Dont's of
Documentatlion" , Datamation , pp. 185-185, September 1981.

This article discusses documentation utility. It provides helpful
hints for organizations having difficulties using existing
documentation or faced with the responsibility of writing their own
documentation. Many types of documentation are addressed.

Key words: documentation, management, operations documentation,
program documentation, system documentation, software maintenance.

**

[WIN079] T. Winograd, "Beyond Programming Languages",
Communications qZ the ACM, vol. 22, no. 7, pp. 391-401,
July 1979.

As computer technology matures, our growing ability to create large
systems is leading to basic changes in the nature of programming.
Current programming language concepts will not be adequate for
building and maintaining systems of the complexity called for by the
tasks we attempt . Just as high level languages enabled the
programmer to escape from the intricacies of a machine's order code,
higher level programming systems can provide the means to understand
and manipulate complex systems and components . In order to develop
such systems, we need to shift our attention away from the detailed
specification of algorithms, towards the description of the
properties of the packages and objects with which we build. This
paper analyzes shortcomings of programming languages, and identifies
some possible directions for future research.

Key words: programming, programming languages, programming systems,
systems development

.

**

[YAU78] S.S. Yau, J.S. Collofello, and T. MacGregor,
"Ripple Effect Analysis of Software Maintenance", COMPSAC
Proceedings , IEEE Computer Society, pp. 60-65, 1978.

Page 121

Maintenance of large-scale software systems is a complex and
expensive process. Large-scale software systems often possess both
a set of functional and performance requirements. Thus, it is
important for maintenance personnel to consider the ramifications of
a proposed program modification from both a functional and a
performance perspective. This paper describes the ripple effect
which results as a consequence of program modification will be
analyzed. A technique is developed to analyze this ripple effect
from both functional and performance perspectives. A
figure-of-merit is then proposed to estimate the complexity of
program modification. This figure can be used as a basis upon which
various modifications can be evaluated.

Key words: functional requirements, large software systems,
maintenance personnel, performance requirements, program
modification, program modification complexity, ripple effect
analysis, software maintenance.

**

[YAU79] S.S. Yau and J.S. Collofello, "Performance
Considerations in the Maintenance Phase of Large-Scale
Software Systems", Rome Air Development Center, Griffiss,
AFB, N.Y., Contract report, June 1979.

Maintenance of large-scale software systems is a complex and
expensive process. Large-scale software systems often possess both
a set of functional and performance requirements. Thus, it is
important for maintenance personnel to consider the ramifications of
a proposed modification from both a functional and a performance
perspective

.

This report describes the possible effect of program modifications
during the maintenance phase on the performance of large-scale
software systems is analyzed. Mechanisms for the propagation of
performance changes from one part of the system to another are
identified, and the relationship among these mechanisms, performance
attributes, critical program sections and performance requirements
is also investigated. The development of a maintenance technique
for predicting which performance requirements in the system may be
affected by a proposed modification is outlined. This technique
will enable maintenance personnel to incorporate performance
considerations in their criteria for selecting the type and location
of software modifications needed. It also helps to identify which
performance requirements should be verified to ensure that they were
not violated by the modification.

Key words: critical sections, large software systems, mechanisms of
propagation, performance attributes, performance changes,
performance consideration, ripple effect analysis, software
maintenance

.

Page 122

**

[YAUSOa] S.S. Yau, "Self-Metric Software Summary of
Technical Progress", Rome Air Development Center, Griffiss
AFB, N.Y., F30602-76-C-0397, April 1980.

This report documents the research in the area of developing
effective techniques for large-scale software maintenance, including
those for the design, implementation, validation, and evaluation of
reliable and maintainable software systems with a high degree of The
research results which have been presented in previous papers and
interim technical reports are summarized, and unfinished work is
presented

.

Key words: logical and performance ripple effect analysis,
maintainability, software maintenance, self-metric software,
stability, understandability

.

**

[YAUSOb] S.S. Yau and J.S. Collofello, "Self-Metric
Software A Handbook: Part I and II, Performance Ripple
Effect Analysis", Rome Air Development Center, Griffiss
AFB, N.Y., April 1980.

This handbook consists of two parts on ripple effect analysis for
large-scale software maintenance. Part I describes a ripple effect
analysis technique for software maintenance from the logical or
functional perspective is presented. Part II describes a ripple
effect analysis technique for software maintenance from the
performance perspective. The material is organized in several
levels: a description of the technique; performance ripple effect
analysis technique, as well as how this technique is interfaced with
the user; a lexical analysis and tracing phase, and finally,
integration of the processing steps involved in this analysis.

Key words: analysis, lexical analysis and tracing, mechanisms for
modification propagation, performance ripple effect software
maintenance

.

**

[YAU82] S.S. Yau and J.S. Collofello, "Design Stability
Measures for Software Maintenance", COMPSAC Proceedings . pp.
100-108, November 8-12, 1982.

The high cost of software during its lifecycle can be attributed
largely to software maintenance activities, and a major portion of
these activities is to deal with the modifications of the software.
In this paper, design stability measures which indicate the
potential ripple effect characteristics due to modifications of the
program at the design level are presented. These measures can be

Page 123

generated at any point in the design phase of the software lifecycle
which enables early maintainability feedback to the software
developers. The validation of these measures and future research
efforts involving the development of a user-oriented maintainability
measure which incorporates the design stability measures as well as
other design measures are discussed.

Key words: design stability, programming, ripple effect analysis,
software maintenance.

**

[ZAK83] J.R. Zak, "When a Data Processing Department
Inherits Software", AglPS 1993 National Computer Conference
Proceedings . pp. 163-172, 1983.

This paper discusses some of the problems that occur in dealing with
inherited software and some of the basic procedures necessary to
manage successfully a data processing department or group that is
converting and/or maintaining software that has been imposed on them
and that they neither designed nor implemented.

Key words: inherited software, management, software conversion,
software maintenance.

**

[ZELK78] M.V. Zelkowitz, "Perspectives on Software
Engineering", Computing Surveys . pp. 197-215, June 1978.

Software engineering refers to the process of creating software
systems. It applies loosely to techniques which reduce high
software cost and complexity while increasing reliability and
modi flability. This paper outlines the procedures used in the
development of computer software, emphasizing large-scale software
development, and pinpointing areas where problems exist and
solutions have been proposed. Solutions from both the management
and the programmer points of view are given for many of these
problem areas

.

Key words: certification, chief programmer team, program
correctness, program design language (PDL) , development lifecycle,
software engineering, structured programming, top-down design,
top-down development, validation, verification.

**

[ZELL83] L. Zells, "Data Processing Project Management:
A Practical /^proach for Publishing a Project Expectations
Document", AFIPS 1983 National Computer Conference
Proceedings , pp. 181-187, 1983.

Page 124

The mounting demand for proficient personnel and the parallel
increase in salaries, has prompted management to look for ways to
improve productivity in order to realize a higher return on their
investment dollars. Knowing what to do, when to do it, and how to
do it prevents costly retries. Given any kind of a project and 2 to
N participants, there will be 2 to N views of the project. This
paper reflects a practical method for transforming facts and
conflicts into an approved development approach and publishing the
results in what will be called a project expectations document.

Key words: management, productivity, personnel, project
expectations document, project management.

**

[ZIRK78] A.L. Zirkle, "An Automated Software Maintenance
Tool For Large-Scale Operating Systems", Navy Industrial
Fund, December 1978

.

A method for automating many of the tasks involved in maintaining a
large computer operating system (SCOPE 3.4 on the CDC 67Q0) is
described. The method is embodied in several procedures, each of
which aids in one phase of operating system maintenance. These
procedures are written in a manner that promotes ease of
modification or enhancement. This automated maintenance tool can
also be used in other programming applications where a large amount
of effort must be expended in noncreative housekeeping tasks.

Key words: operating systems, programming, program libraries,
programmer efficiency, software development methodology, software
maintenance, software tools, systems programming.

**

[ZUCK83] S. Zucker, "Automating the Configuration
Management Process", Softfair Proceedings, IEEE Computer
Society Press, pp. 164-172, July 25-28, 1983.

An Automated Configuration Management System (CMS) was developed at
General Electric in order to improve and enhance the mutual
techniques for project tracking and change control and to allow for
reliable management of large multi- facility projects. Because CMS
works with any file, it can perform Configuration Management on all
items in the configuration. The bookkeeping and status accounting
forms are displayed on a terminal and the user is assisted in
completing them correctly. New configuration items or changes are
entered into the system only after approval by the proper authority.
A common project data base is built by CMS which makes visibility of
current system status available to anyone who has access authority.
Standard report forms, as well as user defined report forms are used
when viewing the current or historic system information. CMS not
only controls the configuration, but also the paperwork, change
approval cycle, and the c[uality of the project.

Page 125

Key words: maintenance programmers, morale, management, personnel,
software maintenance.

**

[ZVEG82] N. Zvegintzov, "The Eureka Countdown",
Datamation . pp. 172-178, April 1982.

A five-step procedure (path) for understanding a software system
referred to as the Eureka countdown include:

Step 5: the five questions to ask;
Step 4: the four actions to take with the

answers

;

Step 3: the three places to work. These are
the places to penetrate the systems-

Step 2 : the two products - what you do with
your knowledge;

Step 1: the one golden rule.

The five questions are: What?, Why?, How?, Where From?, and Where
To? The most important step is to learn about the "what's" in your
system. The "what's" in your system would include any functions
important enough to have names. The four actions are: review,
reflect, record, and react. The reflect action involves
simplifying, correlating, and evaluating. These four actions repeat
and form a cycle. The three places to work are at the top, the
problem, and the edges. Working at the problem is equivalent to the
technique o f ' working backwards ' . Working at the edges means
working in areas where you have at least a partial understanding of
that area. The two products of understanding are action and
readiness. Finally, the golden rule is never give up! The Eureka
Countdown can be integrated with other methodologies and tools. The
author suggests that the Eureka Countdown is not so much a method as
an attitude; it provides DP workers with information on how to
approach a problem.

Key words: Eureka Countdown, management, personnel, programmers,
software maintenance.

**

[ZVEG83] N. Zvegintzov, "Quick Response as a Maintenance
Management Strategy", COMPSAC Proceedings, IEEE Computer
Society Press, pp. 91-92, November 7-9, 1983.

In order to solve the problems of software maintenance management, a
managerial/engineering strategy for a quick response should be
implemented. The author lists software maintenance problems as
expressed by the following groups: users, maintenance programmers,
and first and second level managers. The strategy would be a

package that includes such tactics as knowledge of the product, an
easy-to-modify product, planned availability, team training, and

Page 126

scenario exercises

.

Key words: maintenance programmers, managers, quick response
strategy, software maintenance, software maintenance management,

users

.

NBS-n4A (REV. 2-ec)

1 PIIRI l(~ATIOM riR 2> Performing Orgsn, Report No,

BIBLIOGRAPHIC DATA
SHEET (See /n struct/on

REPORT NO.

\|BS/SP-500/141 Sopt. 1986

4. TITLE AND SUBTITLE
Computer Science and Technology:

Annotated Bibliography on Software Maintenance

5. AUTHOR(S)

Wilma M. Osborne Ronnie T. Raigrodski

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

Gaithersburq, MD 20899
Fi nf:il

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State. ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number 86-600579

[^J Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bi bliography or literature survey, mention it here)

This annotated bibliography contains summaries of two hundred and fifty software main-

tenance articles or papers from computer science journals, books, proceedings, Federal

publications, computer newspapers, and other technical reports published during the ten

various aspects of software maintenance including the problems and issues faced in most

software maintenance environments. It also identifies techniques, procedures, methodo-

logies, and tools employed throughout the lifecycle of a software system to improve the

maintainability and quality of that system.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

configuration management; cost; documentation; errors; lifecycle; metrics; productivity;

programmers; software; software packages; software quality; techniques; testing; tools;

user.
13. AVAILABILITY

;gX] Unlimited

For Official Distribution. Do Not Release to NTIS

*X1 Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

138

15. Price

USCOMM-DC 6043-PSO

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washmgton, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-S03)

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad
range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the worid's literature and critically evaluated. Developed under a woridwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 2(X)56.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final rep)orts of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB>—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

