
A111D2 HbTSHS

Fioh. r-
A1 11 02469242

Computer Science
and Technology

NBS

PUBLICATIONS

NBS Special Publication 500-138

A Functional Model
for Fourth Generation
Languages

Gary E. Fisher

#500-138

1986

M he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The

jy Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering

.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement

capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. TTie

Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems

Engineering

77?^ Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference • Ceramics
materials, quantitative understanding and other technical information funda- • Fracture and Deformation
mental to the processing, structure, prop)erties and performance of materials; • Polymers
addresses the scientific basis for new advanced materials technologies; plans • Metallurgy
research around cross-country scientific themes such as nondestructive • Reactor Radiation
evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions witiiin the center are located at Boulder, CO 80303.

-Located at Boulder, CO, with some elements at Gaithersburg, MD.

Computer Science
and Technology

RESEARCH

WF0P.V>TiON

^'0

NBS Special Publication 500-138

A Functional Model
for Fourth Generation
Languages

Gary E. Fisher

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards
Gaithersburg, Maryland 20899

Issued June 1986

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series v^ill report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 86-600545

National Bureau of Standards Special Publication 500-138

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-138, 36 pages (June 1986)

U.S. GOVERMENT PRINTING OFFICE
WASHINGTON: 1986

For sale by the Superintendent of Documents, U S Government Printing Office, Wastiinglon, DC 20402

TABLE OF CONTENTS

PREFACE V

EXECUTIVE SUMMARY vi

1. INTRODUCTION 1

1.1 What is a Functional Model? 1

1.2 Objectives of the 4GL Functional Model 1

1.3 Scope of the 4GL Functional Model 2

1.4 Organization of the Report 2

2. WHAT IS A 4GL? 3

2 . 1 Language Generations 3

2.2 General Characteristics of 4GL 5

2.2.1 Compiled or Interpreted Code 5
2.2.2 Nonprocedural or Procedural 6

2.2.3 Productivity Improvement 6

2.3 Users of 4GL 7

2.3.1 Human Users 7

2.3.2 Other Users 8

3. 4GL FUNCTIONAL MODEL 9

3.1 User Functions 10
3.1.1 Screen Formatting 10
3.1.2 Menu Management 12
3.1.3 Message Prompting 12
3.1.4 Logical Device Management 12

3.2 Data Management Functions 12
3.2.1 Logical Data Structure Management ... 13
3.2.2 Data Storage and Retrieval 13
3.2.3 Archiving and Restoration 15
3.2.4 Auditing 15
3.2.5 Data Security 15

3.3 System Functions 16
3.3.1 File Handling 16
3.3.2 Job Control 16
3.3.3 Communications 17

3.4 Advanced 4GL 17

4. CONCLUSION 19

4.1 Summary of 4GL Functional Model 19

4.2 Typical Implementation of 4GL 19

4.3 The Future of 4GL=' 2 0

REFERENCES 2 3

A. GLOSSARY 2 6

ill

LIST OF ILLUSTRATIONS

Figure 3-1. Functional View of 4GL 9

Figure 4-1. Typical 4GL Architecture 20

iv

PREFACE

This report has been prepared by the Institute for Computer
Sciences and Technology in response to requests for information
and reference materials made by Federal Government and private
sector organizations over the past year. ICST formulated a
schedule of tasks designed to organize and research the area of
Fourth Generation Language (4GL) , and provide the needed informa-
tion. Two products of these tasks are a forthcoming guide on the
selection and use of 4GL, and a functional model designed to
solidify the concept of 4GL into an objectively definable entity.

A workshop on Application Development Productivity was held at
the National Bureau of Standards in Gaithersburg, Maryland, on
November 13-15, 1985. The first day of the workshop was a plenary
session on Fourth Generation Languages. Much of the discussion
centered on an urgent requirement for information and guidance on
4GL. This impetus set the stage for accelerating the dissemina-
tion of information and eventually led to the publication of this
model

.

This version of the Functional Model is a result of long and
arduous discussion and evaluation by my fellow members of ICST,
Martha M. Gray, James Hall, David Jefferson, Elizabeth Fong, and
Joan Sullivan. I would like to thank them for their help and
guidance.

V

EXECUTIVE SUMMARY

This report proposes a Functional Model for Fourth Generation
Languages (4GLs) . The purpose of this functional model is to
define Fourth Generation Language in a manner similar to specify-
ing the functions of a specific software application. This
definition process allows managers, technical personnel, and
end-users to refer to a commonly understood terminology in the
4GL context. In addition, the interfaces between 4GLs and
external entities (i.e. humans, operating systems, peripheral
devices, and other application systems) can be identified and
studied for research purposes and possible standardization.

The capabilities provided by 4GLs are grouped into three major
areas based on similarities in overall function. They are

—

o User functions;

o Data management functions; and

o System functions.

User functions define those capabilities necessary to provide a
high level dialogue between the 4GL and users of the 4GL. Users
of 4GLs may include humans and other systems.

Data management functions provide capabilities to describe, store
and retrieve, and perform ancillary tasks in the management and
safekeeping of application data.

System functions provide the support services necessary to allow
the user of 4GLs to define and access applications in relation to
the constraints of the environment in which the 4GL operates.

vi

1. INTRODUCTION

1.1 What is a Functional Model?

A functional model objectively defines the generic concepts of an
entity in terms of functions and services provided by the entity.
Fourth Generation Languages are at least one level of abstraction
removed from specific applications implemented in 4GL. Therefore
the Functional Model is conceptually at a much higher level than
functional specifications used to define applications. Functional
model relates to functional specification in the same way that
the term "transportation" relates to automobile or airplane.

The 4GL Functional Model provides a basis for defining a commonly
understood terminology in referring to 4GL, and for describing
the services and functions provided by a 4GL to external users.
The users of 4GL may include humans and software systems. The
functional model, in this case, is specified by a list of func-
tions and services that 4GL is expected to provide. This list is
organized into meaningful groupings corresponding to interfaces
between the model and specific types of users. The International
Organization for Standardization's (ISO) Open Systems Intercon-
nection layered architecture is an example of the functional
model approach [Inte84] where open systems interconnections
(communications interfaces) are modeled.

1.2 Objectives of the 4GL Functional Model

The objectives of this functional model are

—

o to serve as a basic definition of 4GL
concepts

;

o to define the major capabilities of 4GL;

o to facilitate the training of personnel by
providing a common framework for describing
4GL;

o to allow objective classification of vendor
implementations of 4GL; and

o to aid in reviewing, evaluating, and intro-
ducing 4GL into an organization.

Although the model itself is not a proposal for a standard, it

provides a framework for future study and possible standards
research. Important benefits may be achieved through standard-
ization of languages, product features, and interfaces between
products. It is up to users, vendors, managers, and teachers to

1

become aware of potential applications of these standards.
Potential benefits of standardization include, but are not
limited to, the following:

o Transportability of applications through common
languages, database management systems, user inter-
faces, and operating systems.

c Improved staff productivity and lowered training costs
from a reduction in required training and retraining
time.

o Simplification of 4GL evaluation and selection.

o Increased feasibility of data interchange between ap-
plications .

1.3 Scope of the 4GL Functional Model

Fourth Generation Languages encompass many diverse mechanisms for
organizing, entering, and retrieving data in the domain of
interactive on-line business data processing applications. The
functional model is designed to give managers technical exposure
to the capabilities of 4GL. As a consequence of this direction,
the functions and services are described from a perspective that
includes both an end-user's and professional programmer's views.

4GL may be used in those applications that are classed as
management support systems, transaction processing systems, and
other general business applications. Several vendors are in the
process of adding components to their 4GLs to allow 4GL use in
other types of applications that are far removed from typical
business applications, such as patient monitoring, or command and
control systems. This report will concentrate on 4GL definition
in the business data processing systems domain.

1.4 Organization of the Report

This report provides a description of the 4GL Functional Model,
background information, and the 4GL environment. Section one
described introductory material on the form of the functional
model

.

Section two provides general background information on the
definition of language generations, and what a 4GL is and does.
Section three formally presents the 4GL Functional Model.
Specific layers, components, and interfaces of the Model are
described. Section four concludes the report with a summary, and
expectations for the future of 4GLs.

2

2. WHAT IS A 4GL?

2 . 1 Language Generations

There is no general agreement on what constitutes a language
generation. A 4GL may not even be "fourth generation" depending
on whose definition of language generation is used. Some experts
call machine code the first generation, while others describe
assembly languages as the first.

Sippl defines machine code as a "programming language" because it
can be used to represent a program [Sipp72]. Jean Sammet,
however, left machine code out of the realm of programming
languages by defining "programming language" as a "set of
characters with rules for combining them" [Samm69] . One char-
acteristic of this set of rules is that knowledge of machine code
is unnecessary. In this definition of language, Sammet has
explicitly excluded machine code.

The American National Dictionary for Information Processing
Systems by contrast refers to machine code as the instruction set
executed on a computer. No reference to language is made
[ANSI82]

.

James Martin defines language generations as follows:

o First - machine language

o Second - assembly language

o Third - machine-independent [standardized]
languages (COBOL, PL/I, BASIC, etc.)

o Fourth - nonprocedural end-user oriented
languages (RAMIS II, MANTIS, IDEAL, etc.)
[Mart82]

Another aspect of the debate on language generations stems from
the relatively parallel development of languages and hardware.
First generation languages were used on first generation compu-
ters (vacuum tube memories) , second generation on transistorized
computers, third on integrated circuit computers, and fourth
generation on very large scale integrated circuit machines.
Although first, second and third generation languages are also
used on fourth generation machines, the argument can be made for
classifying languages based on the generation of hardware in
which each language reached prominence.

The term Fourth Generation Language is somewhat misleading. 4GLs
are referenced by various authors as programming languages,
system specification languages, nonprocedural languages, query

3

languages, end-user languages, application development languages,
and so on. This multiplicity of terms stems from the diverse
features offered by vendors, and different uses of 4GLs in the
overall scheme of software evolution. A survey of 4GL definitions
presented by various authors [Auer85, Inte84b, Inte84c, Mart84]
shows a few common ideas, but the uncommon ideas lead to further
confusion. Some of the recurring concepts in 4GL definitions
found in computing literature are--

o an integrated database management system;

o a nonprocedural language subset geared for
non-technical end-users;

o a nonprocedural and procedural language superset geared
for professional data processing personnel;

o a screen generator;

o operating system independence (or transparency)

;

o a 10 to 1 improvement in programming productivity as
measured in lines of code when compared to third
generation languages (Harel and McClean contend that a
4GL will produce the same application in less code than
will COBOL, but that COBOL will use less resources than
the 4GL application in executing [Hare82].);

o a report generator; and

o a query language.

Atre [Atre85] , in an article published on languages beyond third
generation, presented another twist by asserting that the
software industry is not quite at the Fourth Generation Language
stage. Almost all 4GLs purport to be "user-friendly" when
described in the end-user context, but Atre maintains that what
really exists are 3.5, 3.7, and 3.9 generation languages which
are "applications-programmer-friendly, " "professional-friendly,

"

or "non-professional-friendly" languages.

Unfortunately, most of these characteristics cannot be used in
objectively defining the functions of a 4GL. Therefore, charact-
eristics like "nonprocedural," "10 to 1 productivity increase,"
"query language," and "database management system" are not
included in this model. Instead, functions and services that may
be provided by components of a 4GL are used to define the model.
A discussion on some of these general characteristics will
illustrate the difficulties encountered in including them as part
of the functional model.

4

2 . 2 General Characteristics of 4GL

Tools, by design, are suited to particular functions and needs.
For example, a wrench is not used to drive wood screws, nor is a
screwdriver suited to sawing wood. Each tool has its specific
application domain, even though one may attempt to try to perform
tasks with the wrong tools. The same is generally true of 4GLs.

Fourth Generation Languages are eminently suited to the develop-
ment of interactive on-line business data processing systems.
Budget, payroll, order-entry, and general accounting systems are
prime candidates as the types of applications that currently fit
the 4GL domain.

The objective of a 4GL is to hide many of the housekeeping chores
of programming from the user. On the other hand, this same fea-
ture will inevitably provide many stumbling blocks for those
applications that require unusual manipulation and computations.

Complexity of the application has an effect on the ability of a
4GL to handle the application. Most 4GLs operate up to a vague
level of complexity, beyond which an application is usually less
difficult to develop in a lower level language. This level of
complexity is defined by the amount of application detail hidden
in the 4GL. One of strong points of a 4GL is its ability to let
the user view an application at a higher and more abstract level
than is possible with most third generation languages. However,
because application details are hidden by the abstraction process
designed into the 4GL, a 4GL, is out of necessity, more rigid and
inflexible in defining an application than are lower level lan-
guages. The insulation that protects the user from the system
also protects the system from the user [Inte84a]

.

2.2.1 Compiled or Interpreted Code

The importance of executing compiled or interpreted code that is
produced by a 4GL will depend on the type of application generat-
ed. For example, some 4GLs produce COBOL, PL/I, or other third
generation code which is then compiled into machine code for
execution. Others generate internal proprietary code which is
interpreted by a run-time system. Usually, compiled code executes
faster on a particular machine than does the interpreted code
[Hare82]

.

Interpreters offer other capabilities that are not found in most
compilers. For example, interactive debugging is inherent in many
interpreted languages. This capability allows the user to execute
a program, suspend it at an appropriate point, change data
element values or control structures, and continue execution.
Interpreted code may be better for those applications that are
classified as "quick and dirty," or developmental, while compiled

5

code may be more appropriate for production systems. Thus, the
applications may well dictate the selection of a 4GL.

Whether a 4GL produces compiled or interpreted code is not a
suitable element to include in a functional model. The production
of one form of code or another is purely a matter of implementa-
tion and not of function.

2.2.2 Nonprocedural or Procedural

"Procedural" is defined in the programming sense as the describ-
ing of the course of action taken for the solution of a problem
in a finite series of steps. "Nonprocedural" states that the
solution of a problem is not dependent on the order in which
these steps are executed. These definitions reduce more or less
to the following:

o Procedural - "how" a problem is to be solved

o Nonprocedural - "what" problem is to be
solved

If one uses the definition that nonprocedural means "non-order
dependent problem-solving," there are no nonprocedural 4GLs. In
every case, the order in which the problem is stated does make a
difference. For example, virtually all database management
systems require knowledge of the structure of the user's database
before data may be stored or retrieved. Those that do not require
this have built in knowledge of a data structure and force the
user to organize the data in this structure.

This characteristic is not included in the functional model.
Intuitively, a user may be able to state that a 4GL is nonproced-
ural, but there is currently no meaningful measure that can be
applied to this term to determine if a 4GL meets the requirements
of "nonprocedural ity .

"

2.2.3 Productivity Improvement

James Martin [Mart82] and others assert that 4GL leads to
productivity improvement in the evolution of new systems. This
may be true when source code is used as the basis of productivity
measurement. (See [Hare82].) However, there is some difficulty in
accepting this as the primary measurement of productivity. One
programmer's source code may be another programmer's maintenance
nightmare. Producing code can be very different from producing
good, clean, efficient, maintainable code.

Other factors in software evolution such as elapsed time of
development, execution error rate, dollars spent, etc. may all be

6

just as valuable in measuring productivity. These factors are
still saddled with the problem that there is no objective v;ay of
defining absolute reference points (standards) against which
productivity can be measured. Relative measures based on any of
these factors can indicate whether or not wise decisions have
been made in the evolution process, but a functional model must
include only those criteria that are, at a minimum, based on
general acceptance by the user community.

2.3 Users of 4GL

A Fourth Generation Language may be used by humans in the context
of application evolution, or in the actual processing of data. In
addition, other application systems may also be characterized as
users of a 4GL. This characterization is necessary in order to
differentiate between applications or systems that interact with
4GLs at a conceptually high level, and operating systems that
interact with 4GL at a lower level in providing services to the
4GL.

2.3.1 Human Users

Human users of 4GL fall into two broad categories: technical data
processing professionals and nontechnical end-users. Nontechnical
end-users view 4GL as a day-to-day working tool used to support
information needs as they arise during the course of business. It
is not uncommon for a trained end-user to generate a formatted
report in less than a day. Queries may be generated in hours or
minutes

.

Professional data processing personnel may take a different view
of 4GLs. The greatest benefit of a 4GL, in the eyes of the
professional data processor, may be its ability to quickly create
the logical structure of a system. However, as is the case with
its 3GL cousins, a 4GL lacks components to handle specific
aspects of system evolution that are outside the area of pro-
gram/code generation, such as requirements analysis, testing, and
maintenance. A 4GL is useful in structuring one or two phases of
the software life cycle, but it is not the total solution to
software evolution problems.

The task of a data processing professional is to use available
techniques to effectively and efficiently build software systems
that support the real needs of end-users. These end-users should
not be concerned with how the professional data processor
performs development tasks. Instead, they should concentrate on
what their real information needs are and develop the ability to
communicate those needs. A 4GL offers a conduit to help in this
communication process.

7

2,3.2 Other Users

4GLs may act in concert with other applications and the operating
system. These applications may use a 4GL to retrieve files of
data explicitly generated by the 4GL for this purpose. An example
of this is illustrated in the extraction of data from a database
by the 4GL for downloading to another computer.

The operating system may use a 4GL to act as the primary means of
communicating with end-users. For example, this interaction may
exist specifically to allow novice end-users to access an on-line
database of operating system tutorials or to provide command
menus

.

8

3. 4GL FUNCTIONAL MODEL

Figure 3-1 illustrates the functional view of a 4GL. The three
major functional areas are

—

o User functions;

o Data management functions; and

o System functions.

Each of these areas is discussed in the sections that follow.
Implementation of specific functions is not the task of this
report. However, where applicable, specific examples may be used
to illustrate features that may be found in implementations that
are currently available.

User
functions

4GL

User

Sgstem
functions

Oper-
ating

System

Data Management
functions

Data

Figure 3-1. Functional View of 4GL

9

3 . 1 User Functions

The subjective characteristics of a user (i.e. whether or not the
user is a 4GL novice, how experienced the user is in the applica-
tion domain, etc.) influence how that user will interact with a
system. For example, a novice end-user may want to rely on full
menus and help screens to perform tasks using the 4GL. A profes-
sional data processor may not want to wade through many levels of
menus, and may choose a more cryptic form of command entry
instead. Still other users may feel comfortable with command
entry by mouse in some 4GL components, but may revert to keyboard
entry in others.

User functions define those capabilities and services provided by
a 4GL to address the interaction between system users and the
4GL. These functions define a high level dialogue management
capability in the sense that much of the housekeeping concerning
the interaction between the 4GL and the user is managed and
performed by the 4GL. This area is further broken down into the
following specific functions:

o Screen formatting

o Menu management

o Message prompting

o Logical device management for devices such as light
pen, touch-screen, mouse, graphics tablet, remote
sensors, etc.

3.1.1 Screen Formatting

There are numerous ways of formatting a display screen. Examples
include scrolled question-answer dialogue, full-screen cursor
positioning, graphic symbol manipulation, etc. The screen
formatting function concerns itself with only the logical
description of the screen (i.e. the description of screen
formats, the types of data that are displayed, etc.), and not the
transformations necessary to produce what the end-user physically
sees on the screen.

A screen's logical description may consist of information such as
the name of the character set used, the type of terminal, screen
dimensions, positioning coordinates for each item displayed on
the screen, actual data values or literals to be displayed, and
physical field attributes such as format and justification.

Examples of capabilities that implement some of the screen
formatting functions include the following:

10

Field character validation (only valid numbers may be
entered in numeric fields and only alphabetic char-
acters in alphabetic fields)

Bell/buzzer - recommended for all autoskip fields and
error occurrences

Field mask (specific character strings or a mixture of
character types may be specified as the only acceptable
entries; for example, a code identifier may be defined
as "@###", where the first character may be defined as
alphabetic and the last three as numeric)

Required fields (the cursor will not pass a field that
requires an entry until one is made)

Filled fields (the cursor will not leave a field that
must contain a minimum number of characters till that
field has been entered)

Autoskip (the cursor automatically jumps to the first
character of the next input field once the current
field is filled)

Video intensity (reverse video, bold versus faint
characters) - particularly useful to form visual cues
in guiding the user on screens that are not frequently
used

Computed fields (field is computed and filled-in based
on other entries made by the user or default values) -

recommended for applications that require time-consum-
ing computation or complex entries

Default field values (saves time in exception oriented
data entry)

Screen/data field refresh (the last entry in each field
stays visible until specifically erased by the user)

Inter-field checks (entries in fields are checked
against entries in other fields or separately defined
tables to maintain consistency in the data)

Inter-record checks (contents of a screen and the
associated action - add, change, delete - are checked
against records in the data files to insure that the
action results in consistent data)

11

3.1.2 Menu Management

Menus are conceptually a subset of formatted screens, and may be
used in contexts different from those in which formatted screens
are used. Menus generally are used to channel users into specific
task performance, whereas formatted screens are associated more
with data entry and display. Limited selection of actions is a
typical feature of menus.

3.1.3 Message Prompting

Not all terminals are equipped with CRT screens. Many use
thermal, electrostatic, impact, or other types of printers to
display information on paper. Screen formatting in such cases is
not feasible. Instead, one-line messages may provide a better
format for information display. The user may make various types
of entries based on the response required.

3.1.4 Logical Device Management

The growth of peripheral input/output devices has grown to the
extent that it is now feasible to use multiple types of devices
in concert with applications without incurring large expense.
Examples of such devices include voice recognition hardware,
touch sensitive screens, light pens, mice, graphics tablets, and
remote sensors.

Each of these types of devices produces characteristic data that
may be translated from analog to digital form and fed through an
electronic medium directly or indirectly to an application. 4GLs
allow these devices to be connected to applications through
logical interfaces provided for that purpose. To a 4GL, these
differing devices should appear to be the logical equivalent of
other input/output ports such as those associated with the
keyboard or disk drives.

3 . 2 Data Management Functions

The area of data management in the context of 4GL includes
capabilities necessary to describe data structures, store and
retrieve instances of data, and provide facilities to secure the
content and integrity of the data. Functions in this area include
the following:

o Logical data structure management

o Data storage and retrieval

o Archiving and restoration

12

o Auditing

o Data security

Most of these functions are predominantly found in database
management systems (DBMS) . However, the functional model makes no
assumptions about the implementation of these functions in actual
usage.

3.2.1 Logical Data Structure Management

A 4GL must provide facilities for recording, storing and process-
ing descriptions of data structures to be used in an application.
The mechanism for this is usually located in the DBMS. The
importance of this function to the 4GL and the user is that data
structures need be defined only once for numerous applications or
uses within an application. Once defined, these data structures
may be included automatically in retrievals, dialogues, and
procedures simply by referencing data item names within the
structures

.

The inclusion of this function in a 4GL will allow the user to
ascertain other important information about the application. For
instance, modifications to data structures may cause ramifica-
tions throughout an application. The user should be able to
identify how and where these changes will affect the application
by listing references to data structures in association with the
modules that use these structures.

Data structure management also includes the ability to copy one
structure into another, rename structures, delete structures, and
reorganize data structures application-wide. Generally, vendors
implement these functions in the component that has become known
as a data dictionary.

3.2.2 Data Storage and Retrieval

Data storage and retrieval functions include the capabilities to
add, delete, and modify instances of data in primary and second-
ary storage (i.e. floppy diskette, magnetic tape, rigid disk,
etc.); and to perform transformations on this data for displaying
it in forms other than those available through the user func-
tions. These forms include printed reports, plotted graphics, and
other output media.

Data storage and retrieval may be performed through components,
such as query languages and report generators as implemented by
many 4GL vendors, or through a single command language that

13

contains capabilities of performing the actions of several
components. These capabilities should include functions similar
to those described in the following paragraphs.

With a report generator, a user may define report layouts in
several different ways: interactively through a question and
answer dialogue at a terminal, through a predefined command file,
or by other means. The report may be the result of executing a
program generated by the report generator, or interpreting the
report commands directly. The ultimate goal is that the 4GL
produces printed user-defined reports based on data that is
available within the application and described through catalogued
logical data structures.

Query languages are used primarily for querying or browsing
through the data (hence, the name) in an ad hoc manner, but the
implementation of query language in a particular 4GL context may
include data modification capabilities (e.g. joining tables,
creating temporal relationships, updating, deleting, etc.).

3.2.2.1 End-user Language

Part of the meaning of language in the term Fourth Generation
Language is based on the existence of a programming language
designed for use specifically by 4GL end-users. This language may
overlap somewhat with capabilities provided by the user functions
area. Typically, an end-user will not differentiate between the
command language used to operate a 4GL and the language used to
execute reports, display screens, and define procedures.

Examples of the types of commands found in end-user languages
are

—

o COMPUTE, ADD, and SUM for performing numerical computa-
tions ;

o SELECT, JOIN, and DISPLAY for retrieving and presenting
data in a relatively straightforward form such as would
be found in many query components; and

o PRINT, SUBTOTAL, and TABLE LOOKUP for retrieving and
presenting data in tabular formatted form such as in
printed reports.

3.2.2.2 Professional/Technical User Language

Many Fourth Generation Languages available today include a more
comprehensive language for use by professional programmers in
creating extensive applications with the 4GL. The constructs
available in this language are not application specific and

14

usually require much more technical expertise in application
evolution than is observed in most 4GL end-users.

The capabilities of this language include mechanisms for manipu-
lating virtually all components of the 4GL. It is here that many
4GL vendors implement the commands necessary to perform screen
formatting, report generation, and procedure definition.

3.2.3 Archiving and Restoration

4GLs must possess the capability of archiving copies of all data
and application code to a secure medium. These copies will
compose the backup of the application and system data in the
event that a system failure occurs, or the system must be
restarted at some previous instant in processing. Either the 4GL
must allow the user to define the archival procedure specifi-
cally, or the 4GL must perform periodic checkpoint dumps of data
to meet this requirement.

Conversely, a 4GL must allow the user to invoke utilities to
restore the application or data from the archived information.
Presumably, the 4GL will include enough information in the
archive to allow most, if not all, of the system recovery to take
place automatically. This may be effected through specific
automated procedures, or through manual procedures that can be
executed by end-users (i.e. procedures that do not require
professional assistance)

.

3.2.4 Auditing

The ability to reconstruct the status of an application at a
particular instant of time through a repeatable procedure has
legal impact on many organizations. Accounting systems, as well
as many other types of applications require the capability of
verifying system status through external audits of the system. A
4GL may provide the functions necessary to record and track
changes to the data. Normally, this is done through automatic
logging of transactions as they are processed by the application.
In addition, system accesses may be logged by the 4GL to allow
analysis of when and by whom these changes were made.

3.2.5 Data Security

Security includes the concepts of data protection and confidenti-
ality, and data integrity. Data integrity is included because it

exists in close kinship with data protection, although it may be
implemented in components along with data storage and retrieval
functions, or user functions.

15

As a minimum, a 4GL should provide data protection at the file,
record, or table level. Two common methods of implementing this
requirement are password protection and data encryption. Data
integrity may be implemented partially through data storage and
retrieval, such as in the use of primary and secondary keys and
indexes; and partially in user functions, such as in formatted
data entry screens.

3 . 3 System Functions

The environment in which a 4GL operates may contain more capabil-
ities than those available as part of the 4GL. The ability to
access these capabilities through the 4GL is an integral function
of 4GLs in general. These functions include, but are not limited
to, file handling, job control, communications, and other
applications. Each of these is described in the following
paragraphs. The minimum requirement of the 4GL in this particular
case is that it be able to access system capabilities that are
not directly a part of the 4GL.

3.3.1 File Handling

File handling includes file management, transfer of files, file
editing, and other actions that affect files as a whole. File
management at the system level allows the user to set and
retrieve pertinent information about files such as file access
modes (i.e. read, write, extend), buffer size, file size, file
location, directory entries, etc. Files may be transferred from
one device to another such as in copying from fixed disk to a
removable disk. Operating systems may include programs to edit
files based on physical structure rather than logical structure
as is most often found in 4GLs.

3.3.2 Job Control

A 4GL will generally allow the user to execute other applications
that are accessible only through the operating system. These
would include applications that have no direct access from the
4GL. For example, the user may use a 4GL to maintain statistical
data files, and a separate application package to actually
perform statistical calculations. The user may store the data
using the 4GL in a form that is usable by the statistics package,
and then suspend 4GL execution by calling the appropriate
statistics routines through the operating system. Once the
statistics routines have finished, the operating system would
return control to the 4GL to perform the next task.

Using predefined job control routines, the 4GL user may invoke
totally independent background tasks to execute outside of the

16

4GL in a timesharing or distributed computing environment. The
user may continue executing the 4GL while the background tasks
are executing in batch mode on the same machine, or on another
machine in a network.

3.3.3 Communications

Communications includes two overlapping areas: communicating over
dedicated networks, and communicating over multi-purpose networks
such as voice-grade telephone systems. Both types of network
require specialized hardware and software to implement communica-
tions between the network nodes. The hardware is used to trans-
form digital information into analog counterparts for transmis-
sion over wires, microwaves, fiber optics, or radio/TV transmit-
ters. The software codes and decodes the digital information
transmitted and received by each computer in the communication
exchange.

A communications capability is essential for implementing
distributed applications in a 4GL, or for enabling developers to
send and receive information on individual workstations through
electronic mail software. Application evolution can be enhanced
through the sharing of common data and utilities that are
accessible to many users through the communications network.

Communications capabilities may be implemented in various methods
which are dependent on the 4GL vendor's concept of communica-
tions. Some 4GLs provide a direct interface to communications
ports, while others provide a separate utility that is accessible
through the 4GL's system function interface.

3.4 Advanced 4GL

The functions described in the previous sections represent a

minimal 4GL. This does not prevent a 4GL from providing addi-
tional capabilities, such as the following:

o graphics output

o programming language interface (PLI)

o command language for direct access to the
operating system

o program/data/text editing capabilities

o debugger/compiler

o real-time control language functions and
services

17

o office automation facilities

o word processing

A 4GL that contains additional capabilities above those in the
minimal 4GL may be classified as an advanced 4GL.

18

4 . CONCLUSION

4.1 Summary of 4GL Functional Model

A Fourth Generation Language is not a language in the classical
sense of programming languages. Instead it is a system of
integrated tools designed to assist end-users in developing
interactive on-line business applications with a minimum need for
knowledge of the technical aspects of data processing.

A 4GL is also suited for use by professional application devel-
opers through a high level language that permits rapid develop-
ment of code and performs much of the general housekeeping
associated with programming in a lower generation language.

A minimal 4GL provides the following functions and services:

o User functions

o Data management functions

o System functions

An advanced 4GL provides the minimum set of functions and
services plus additional functionality, such as command language
processing, graphics manipulation, decision support modeling,
artificial intelligence, and other special purpose capabilities.

4.2 Typical Implementation of 4GL

Figure 4-1 illustrates a typical Fourth Generation Language
architecture for a component implementation. The components are

—

o Query language;

o Screen formatter;

o Report formatter;

o Procedural language;

o Data dictionary; and

o Database management system or file handler.

The user functions generally are implemented across the combina-
tion of query language, screen formatter, report formatter, and
procedural language components. This is a conceptually easy-to-
understand method of providing the required functionality.

19

However, the functional model does not specify how user functions
should be implemented.

For example, a massive all-encompassing procedural language could
contain all user functions so the user could interact with just
this one part. In this case, the query language is subsumed into
the procedural language so there is no need for a query language
component. The screen and report formatters change complexion to
become processors of commands submitted by the procedural
language component. There is then no need to have the individual
screen and report components do any more than execute these
commands

.

The data management functions are implemented almost universally
in the combination of data dictionary and database management
system components. System access functions, however, may be
spread throughout the 4GL with each component capable of gaining
its own access to other components and providing sentries to
determine if other components may have access.

User
Fuctians

QUERY
LRNGUR6E

SCREEN
FORMRHER

REPORT
6ENERRT0R

PROCEDURRL
LRN6UR6E

System Faectiees are
interspersed threaghoot
the compaBeats of a
particular iaipieaieBtatioa.

DRTR
DICTIONRRV DRMS

T
Data Maaagemeat

Faactiaas

Figure 4-1. Typical 4GL Architecture

4.3 The Future of 4GLs

The 4GLs available today have benefitted from many years of
research on the software evolution process. Human factors

20

engineering has been incorporated into many of the newer products
available today, so users with virtually no data processing
experience can accomplish work using a 4GL. Database techniques
have been incorporated in many 4GLs to assist users in the
process of cataloguing their information resources and control-
ling parts of the software evolution process. A 4GL may be used
to quickly generate and modify functioning models of systems to
allow users to exercise ideas about information needs.

An excellent use of 4GLs which has found a significant following
within the last two or three years is in the evolution of new
systems specifications. Using the 4GL as a prototyping tool, a
useful model or prototype of a proposed system can be developed
quickly. The developer can immediately view the prototype's
results, make modifications and enhancements, and repeat the
process until the prototype embodies most, if not all, of the
concepts that the developer has in mind.

Upon acceptance by the user, the data structures, screen formats,
report commands, and other system elements defined in the
prototyping process then become the basis of the new system's
specification. Evolution may proceed using the 4GL, a lower
generation language, or a combination of both. References
[Boar84, Conn84, EDPA84, EDPA85] propose methods for implementing
prototypes in a 4GL and discuss the prototyping process in
detail

.

As a prototyping tool and as a day-to-day working tool, a 4GL can
be used by both technical and nontechnical users. With this dual
utility comes the problem of resource control. Data processing
managers are learning how to implement controls on the 4GL-based
software evolution process. Difficulties arise, however, in
introducing these controls to end-users. Controls such as
documenting programs, reports, screens, and data files; configur-
ation management; and code optimization are new concepts to
nontechnical users. They do not see these controls as necessary
in view of the primary responsibilities of their jobs. Instead,
these controls may be seen as arbitrary and sometimes politically
motivated by the data processing organization. DP managers are
faced, not only with the problem of controlling resources, but of
educating the nontechnical user on the value of data controls.

There are numerous documented cases to support the need for
controls in using 4GLs [Inte84b, EDPA85, EDPA84]. Large main-
frames have been "brought to their knees" under the deluge of
applications developed by nontechnical end-users and professional
data processors in unrestrained use of 4GLs. There are also many
cases that show the benefits of controlling computing resources
in similar situations.

As more is learned about software evolution, the concept of a

Fourth Generation Language will evolve into a broader spectrum.

21

Today's market is proceeding in several directions at once with
the suggestion of new tools and capabilities to be added to the
4GL concept in the not too distant future. Included among these
are expert system components to assist developers and users in
the requirements and design phases of system development, testing
methodologies and tools to assist in determining reliability of
the software produced, and truly nonprocedural methods of
specifying systems utilizing graphics interfaces and very high
level language components.

Fourth Generation Languages will have a profound effect on
applications evolution for a long time to come. Perhaps they
cannot accommodate the whole range of applications needed in
today's information systems. They are, nevertheless, important
and formidable tools in the evolution of data processing systems.

22

REFERENCES

[Amer82] American National Standards Institute Committee X3 -

Computers and Information Processing, "American
National Dictionary for Information Processing," X3
Technical Report X3/TR-1-82, Computer and Business
Equipment Manufacturers Association (CBEMA) , Washing-
ton, DC, 1982.

[ANSI85a] X3 Committee, H2 Subcommittee on Database Standards,
"Database Language SQL, ANSI Draft Proposed American
National Standard X3 . xxxx-198x, " American National
Standards Institute, March 1985, New York, New York.

[ANSI85b] X3 Committee, H4 Subcommittee on Information Resource
and Dictionary System Standards, "American National
Standard Information Resource Dictionary System: Parts
1, 2, 3, and 4," American National Standards Institute,
New York, New York, 1985.

[ANSI85C] Database System Study Group, Database Architecture
Framework Task Group, American National Standards
Institute, X3 Committee/SPARC, "Reference Model for
DBMS Standardization," NBSIR 85-3173, National Bureau
of Standards, U.S. Department of Commerce, May 1985.

[Atre85] Atre, Shaku, "Will the Real Fourth-Generation Language
Please Stand Up," Computerworld, Vol. XIX No. 24, June
17, 1985, pp. 57-70.

[Auer85] "Data Base Management," Report No. 23-02-04, Auerbach
Publishers, Inc., Pennsauken, New Jersey, 1985, p. 4.

[Boar84] Boar, Bernard H. , "Application Prototyping," John Wiley
and Sons, Inc., New York, New York, 1984.

[CODA85] CODASYL Screen Management Committee, " CODASYL Screen
Management System Journal of Development," VI. 0, July
1, 1985.

[Conn84] Connell, John, and Linda Brice, "Rapid Prototyping,"
Datamation, August 15, 1984, pp. 93-100.

[EDPA84] "Fourth Generation Languages and Prototyping," EOF
Analyzer Special Report, Canning Publications, Inc.,
Vista, California, 1984, pp. 32.

[EDPA85] "Speeding Up Application Development," EDP Analyzer,
Vol. 23, No. 4, April 1985, pp. 1-16.

[Gold85] Goldfine, Alan, and Patricia Konig, "A Technical
Overview of the Information Resource Dictionary

23

System," NBSIR 85-3164, National Bureau of Standards,
Institute for Computer Sciences and Technology, 1985.

[Gran85] Grant, Dan, "Hammers, Monkeys, and the Fourth Genera-
tion," Information Center, Vol. 1 No. 7, July, 1985,
pp. 16-17.

[Hare82] Harel, Elie C. , and Ephriam R. McLean, "The Effects of
Using A Nonprocedural Computer Language on Programmer
Productivity," Information Systems Working Paper #3-83,
Computers and Information Systems Research Program,
Graduate School of Management, University of Cali-
fornia, Los Angeles, California, November 1983, pp. 26,
26 refs.

[Heff85] Heffernan, Henry, "Trade-offs Found in FOCUS, COBOL
Test," Government Computer News, Vol. 4 No. 11, June
21, 1985.

[Inte84] International Organization for Standardization,
"Information Processing Systems - Open Systems Inter-
connection - Basic Reference Model," ISO 7498, First
Edition—1984-10-15.

[Inte84a] International Data Corporation, "Application Genera-
tors," IDC #2545, Framingham, Massachusetts, October
1984, pp. 48.

[Inte84b] International Data Corporation, "Fourth Generation
Languages: Information Generators to Meet Information
Needs," IDC #2563, Framingham, Massachusetts, October
1984, pp. 41, 23 refs.

[Inte84c] International Data Corporation, "New Programming
Languages," Research Memorandum IDC #2483, Framingham,
Massachusetts, May 1984, pp. 22.

[Mart82] Martin, James, "Application Development Without
Programmers," Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1982.

[Mart84] Martin, James, "Ideal DP Development Facility for
Commercial DP," Report on High-Productivity Languages,
Technology Insight, Inc., 1984, pp. 1.3/1+.

[Samm69] Sammet, Jean E., "Programming Languages: History and
Fundamentals," Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1969.

[Sipp72] Sippl, C. J., and C. P. Sippl, "Computer Dictionary and

24

Handbook," Second Edition, Howard W. Sams and Co.,
Inc., Indianapolis, Indiana, 1972.

25

Ao GLOSSARY

Advanced Fourth Generation Language — A Fourth Generation
Language that has specific capabilities in addition to those
required of a minimal 4GL.

Application Generator — A 4GL that produces functional programs
by interpreting and directly executing very high level commands
specified by the user. No source code is produced.

Code Generator — A 4GL that produces program source code in a
third, second, or first generation language. This code may then
be compiled and executed.

Data Dictionary — A database that specifically organizes
documentary information about an application or organization.
This information is then used by other applications as a source
of data for specific purposes in application evolution and
execution, such as for providing descriptions of data used in
reports and transactions.

Data Management Functions — A required function of 4GLs to
provide capabilities to describe, store and retrieve, and perform
ancillary tasks in the management and safekeeping of application
data.

Decision Support System — Application systems that are used in
the high level management support processes of an organization
rather than in the day-to-day business operations. Used to
abstract data into trends to support planning for future opera-
tions .

Dialogue Manager — A special purpose computer program that is
used to manage and control interactions (the dialogue) between
human users and the applications that execute on the computer.

End-user Language — A high level programming language that
allows end-users who are not data processing professionals to
define applications and interact with a computer in a nonpro-
cedural fashion.

First Generation Language — The languages originally used to
program computers. They were defined at the machine or hardware
level of the computer and were therefore called machine lan-
guages. They consisted of strings of zeros and ones in specific
patterns that represented operations and operands to the central
processing unit. Virtually all present-day computers still use
machine languages, but programming is done in high level lan-
guages and automatically translated or compiled into machine
language.

26

Functional Model — A representation of an object or concept
through abstract symbols and narratives that denote each specific
function or service to be provided by the object or concept.

Menu — A tabular list of choices and responses displayed by a
program on a terminal screen, and that controls the sequence of
events chosen by a human user in interacting with the program.

Minimal Fourth Generation Language — A high level nonprocedural
language that provides basic user functions, data management
functions, and system functions for defining and interacting with
data processing applications.

Nonprocedural Language — Programming language based on manipula-
tion of objects and specification of what a program should do
rather than how the program should do it.

Procedural Language — Commonly used programming languages that
specify a program in discrete steps or algorithms defining how
the program should behave.

Program Generator — A special purpose computer program that is
used to generate source code in a third or second generation
language from high level procedural or nonprocedural statements.
The program generator may use libraries of preprogrammed subrou-
tines or blocks of commonly used source code statements to
produce the final generated program.

Query Language — A high level language designed specifically for
interacting with a database management system (DBMS) to retrieve
and manipulate data stored within the DBMS.

Report Generator — A special purpose computer program with which
a user may create and modify reports to be automatically gen-
erated by computer.

Screen Formatter — A special purpose computer program used for
defining terminal display screen layouts and for defining the
types of interaction that can occur between the user and the
screen.

Second Generation Language — A computer programming language
that consists of symbolic names and numbers which are translated
into first generation language instructions by means of an
assembler; generally called assembly language.

Software Development Productivity — The relative capacity of
combinations of organization, technique, methodology, and
automated tools to produce and maintain software.

27

Software Life Cycle — The definition and organization of phases
through which a software system goes in its lifespan. Typically,
these phases are requirements analysis, functional specification,
design, code, test, installation, and maintenance.

Software Prototype — A model or less-than-complete version of a
proposed software application that is developed to verify and
validate user requirements before major specification work is
done.

System Functions — Functions that provide the support services
necessary to allow the user of a 4GL to define and access
applications in relation to the constraints of the 4GL's environ-
ment. Examples are file management functions, communications,
peripheral device control, etc.

Third Generation Language — Languages that consist of high level
procedural and declarative statements which are compiled into
second or first generation code. Examples of 3GLs include COBOL,
ADA, C, and Fortran.

User Functions — Those functions that define those capabilities
and services necessary to provide a high level dialogue between
the 4GL and users of the 4GL. Users of a 4GL may include humans
and other application systems.

28
* U.S. Government Printing Office: 1986 0-491-070 (40092)

NBS-n4A IREV. 2-ac)

1 U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instruciions) NBS/SP-500/138 June 1986

4. TITLE AND SUBTITLE

Computer Science and Technology:
A Functional Model for Fourth Generation Languages

5. AUTHOR{S)

Gary E. Fisher

6. PERFORMING ORGANIZATION (If joint or other than NBS. see /n struct/on s) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

GAITHERSBURG, MD 20899 Fi nal

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State, ZIP)

National Bureau of Standards
Gaithersburg, Maryland 20899

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number 86-600545

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bi bliography or literature survey, mention it here)

The Fourth Generation Language (4GL) functional model places 4GL in the context of

programming language evolution, and describes the functions provided within this

context. An example implementation of a 4GL is also presented.

A 4GL is a software system that provides integrated functions for developing inter-

active on-line data process ing appl ications . These functions are defined as:

1) user functions that define those services and capabilities necessary to provide

a high level dialogue between the 4GL and users of the 4GL; 2) data management

functions that provide capabilities to describe, store and retrieve, and perform

ancillary tasks in the management and safekeeping of application data; and 3)

system functions that provide the support services necessary to allow the user of

4GL to define and access applications in relation to the constraints of the 4GL's

environment.

A typical implementation of 46L distributes pieces of these functions over various

components, such as a DBMS, query language, data dictionary, screen formatter,

report generator, and high level procedural language.

12. KEY WORDS fS/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

application generation; code generation; end user computing; Fourth Generation

Language; high level language; nonprocedural language; 4GL

13. AVAILABILITY

I ^1 Unlimited

I I

For Official Distribution, Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

36

15. Price

USCOMM-DC 6043-PeO

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Nolificalion key N-S03)

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

ana development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodolog>' and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-3%).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, co\ering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington. DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Ser\ices Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

