
NATL
of sr,

tech

National Bureau
of Standards

Computer Science
and Technology

NBS

PUBLICATIONS

NBS Special Publication 500-132

Benchmark Analysis of

Database Architectures:

A Case Study

Daniel R. Benigni, Editor

M he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The
M Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and

government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering

.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards
2

• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement

capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering2

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering 2

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid • Programming Science and
Federal agencies in the selection, acquisition, application, and use of com- Technology

puter technology to improve effectiveness and economy in Government • Computer Systems

operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Engineering

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

Inorganic Materials

Fracture and Deformation
3

Polymers

Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.
2Some divisions within the center are located at Boulder, CO 80303.

^Located at Boulder, CO, with some elements at Gaithersburg, MD.

Computer Science
and Technology

NBS Special Publication 500-132

Benchmark Analysis of

Database Architectures:

A Case Study

Daniel R. Benigni, Editor

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards
Gaithersburg, MD 20899

Prepared by:

S. Bing Yao
Alan R. Hevner

Software Systems Technology, Inc.

College Park, MD 20740

Issued October 1985

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 85-600599
National Bureau of Standards Special Publication 500-132

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-132, 198 pages (Oct. 1985)
CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1985

For sale by the Suoerintendent of Documents, U.S. Government Printing Office, Washington. DC 20402

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

FOREWORD 2

DISCLAIMER 3

1. INTRODUCTION 4

1.1 Objectives 4

1.2 A Caveat 5

1.3 Selection of Database Systems 5

2. A BENCHMARK METHODOLOGY FOR DATABASE SYSTEMS 6

2.1 Benchmark Design 6

2.1.1 System Configuration 8

2.1.2 Test Data 8

2.1.3 Benchmark Workload 8

2.1.4 Experiment Design 9

2.2 Benchmark Execution 9

2.3 Benchmark Analysis 10

2.3.1 Individual System Analysis 10
2.3.2 Comparative Analysis 10

3. TEST DATA 11

4. BENCHMARK WORKLOAD 16

4.1 Queries 16

4.2 Job Scripts 20

5. EXPERIMENT DESIGN 22

5.1 Performance Measures 22

5.2 Experimental Variables 23

-i i i-

6. MICROCOMPUTER BENCHMARK 25

6.1 System Configuration and Benchmark Execution . 25

6.2 Benchmark Analysis 25

6.2.1 Single Relation Queries 25
6.2.2 Multiple Relation Queries 30
6.2.3 Updates 37

6.3 Summary 37

7. MINICOMPUTER BENCHMARK 39

7.1 System Configuration and Benchmark Execution . 39

7.2 Benchmark Analysis 39

7.2.1 Single Relation Queries 39
7.2.2 Multiple Relation Queries 51
7.2.3 Updates 54
7.2.4 Multiple User Results 55
7.2.5 Background Load Results 57

7.3 Summary 58

DATABASE MACHINE BENCHMARK 62

8.1 Benchmark Implementation and Execution 62

8.2 Benchmark Analysis 62

8.2.1 Single Relation Queries 62
8.2.2 Multiple Relation Queries 71
8.2.3 Updates 75
8.2.4 Multiple User Results 76
8.2.5 Background Load Results 76

8.3 Summary 78

9. COMPARATIVE BENCHMARK ANALYSIS 80

9.1 Query Complexity 81

9.2 Number of Records Retrieved 81

9.2.1 Micro- vs. Minicomputer Architecture 82
9.2.2 Minicomputer vs. DB Machine Architecture . 82

9.3 Database Size 90

-iv-

9.4 Number of Users 93

9.5 Background Load 97

9.6 Database. Loading and System Set-Up 97

9.7 System Reliability 97

9.8 Summary 99

REFERENCES 101

GLOSSARY 103

APPENDICES

A: PERSONNEL FILE FORMATS

B: BENCHMARK QUERIES

C: BENCHMARK DATA TABLES

D: BENCHMARK SYSTEMS

-v-

LIST OF FIGURES

Figure Title Page

2. 1 Database System Benchmark Methodology 7

3. 1 Personnel Database Schema 13

3. 2 Relational Database Schema 14

3. 3 Three Levels of Indexes 15

6. 1 Query Complexity vs. Time to First Record 26

6. 2 Query Complexity vs. Time to Last Record 27

6. 3 Records Retrieved vs. Time to Last Record 28

6. 4 Single Relation Index Tests (Level 3 Indexes) 31

6. 5 Aggregate Function Test (No Indexes) 32

6. 6 Multiple Relation Index Tests 33

7. 1 Query Complexity vs. Time to First Record 41

7. 2 Query Complexity vs. Time to Last Record 42

7. 3 Records Retrieved vs. Time to Last Record 43

7. 4 Single Relation Index Tests (6 MB Database) 44

7. 5 Index Levels vs. Time to Last Tuple (6 MB DB) 45

7. 6 Effect of Buffering (10 MB Database) 48

7. 7 Effect of Sorting (10 MB Database) 49

7. 8 Effect of Aggregation (10 MB Database) 50

7. 9 Database Size vs. Time to Last Record 52

7. 10 Multi-User Results (6 MB Database) 56

7. 11 Background Load Results (6 MB Database) 59

8. 1 Query Complexity vs. Time to First Record 63

8.,2 Query Complexity vs. Time to Last Record 64

-vi-

LIST OF FIGURES
(continued)

Figure Title Page

8. 3 Records Retrieved vs. Time to Last Record 65

8. 4 Effect of Buffering (10 MB Database) 69

8. 5 Effect of Sorting (10 MB Database) 70

8. 6 Effect of Indexing (6 MB Database) 72

8. 7 Database Size vs. Response Time for
Multiple Relation Query q6-l 73

8. 8 Multiple User Response Times (6 MB Database) 77

9. 1 Microcomputer vs. Minicomputer Architectures
Time-to-Fir st Difference (3.5 MB Database,
Level 2 Indexes) 83

9. 2 Microcomputer vs. Minicomputer Architectures
Time-to-Last Difference (3.5 MB Database,
Level 2 Indexes) 84

9. 3 Minicomputer vs. Database Machine Architectures
Time-to-Fir st Difference (Single Relation
Queries) (3.5 MB Database, Level 2 Indexes) 86

9. 4 Minicomputer vs. Database Machine Architectures
Time-to-Last Difference (Single Relation
Queries) (3.5 MB Database, Level 2 Indexes) 87

9. 5 Minicomputer vs. Database Machine Architectures
Time-to-Fir st Difference (Single Relation
Queries) (10 MB Database, Level 2 Indexes) 88

9. 6 Minicomputer vs. Database Machine Architectures
Time-to-Last Difference (Single Relation
Queries) (10 MB Database, Level 2 Indexes) 89

9. 7 Minicomputer vs. Database Machine Architectures
Time-to-Fir st Difference (Multiple Relation
Queries) (6 MB Database, Level 2 Indexes) 91

9. 8 Minicomputer vs. Database Machine Architectures
Time-to-Last Difference (Multiple Relation
Queries) (6 MB Database, Level 2 Indexes) 92

-vi i-

LIST OF FIGURES
(continued)

Figure Title Page

9.9 Database Size vs. Average Response Time
(Single Relation Queries) 94

9.10 Database Size vs. Average Response Time
(Multiple Relation Queries) 95

9.11 Multi-User Architecture Comparison 96

9.12 Background Load Architecture Comparison 98

-viii-

LIST OF TABLES

Figure Title Page

4.1 Record Size Results 18

5.1 Database Sizes 23

6.1 Index Effect in Nested Queries 34

6.2 Nested Join Tests 35

6.3 Join Sequence Test 36

6.4 Order of Query Blocks 36

7 1 Multiple Relation Index Effect (10 MB DB) •J X

7.2 Response Time Data for Special Case 2 53

7.3 Performance Data for Multiuser Tests (6 MB DB) 55

7.4 Performance Data for Job Scripts (6 MB DB) 57

7.5 Performance Data for Background Jobs 58

8.1 Response Times with Level 2 Indexes 67

8.2 Special Case 2 Results 74

8.3 Performance Data for Multiuser Tests (6 MB DB) 76

-ix-

BENCHMARK ANALYSIS OF DATABASE
ARCHITECTURES: A CASE STUDY

Daniel R. Benigni, Editor

This report presents an application of the
generalized performance analysis methodology for
the benchmarking of database systems reported in
NBS Special Publication 500-118 [BENI 84] . The
principal objectives of this report are to bench-
mark the performance of three distinct database
system architectures: a microcomputer database
system, a minicomputer database system, and a da-
tabase machine. This report not only proves the
viability of the benchmarking methodology in
evaluating real systems, but it also provides com-
parable observations as to the capabilities of da-
tabase systems based upon different architectures.
Together with NBS Special Publication 500-118,
this report serves as a reference for the bench-
marking of database systems by providing a com-

i-plete description of the benchmarking framework
and a detailed application showing how to imple-
ment it.

Keywords: Benchmark execution; benchmark methodol-
ogy; benchmark workload; database systems; DBMS;
indexing; performance evaluation; query complexi-
ty; response time.

-1-

FOREWORD

This report is one of a continuing series of NBS publi-
cations in the area of data management technology. It con-
centrates on actual benchmark experiments with three data-
base system architectures using the benchmarking methodology
developed in NBS Special Publication 500-118 [BENI 84].

Other NBS publications addressing various aspects of
data management system selection include: FIPS 77 [NBS 80],
NBS Special Publication 500-108 [GALL 84] , and FIPS 110 [NBS
85] .

In this report the methodology is summarized and the
results of the three benchmark experiments are presented.
The final report is structured as follows:

Section 1 outlines the background and objectives of the
project

.

Section 2 provides a summary of the benchmark methodol-
ogy developed for this project.

Sections 3-5 present the benchmark parameters that
remain constant over the three benchmark experiments. These
parameters are the test data, the benchmark workload, and
the performance measurement and evaluation criteria.

Sections 6-8 present the details of the benchmark ex-
periments for each of the three systems.

Section 9 completes the report by discussing the obser-
vations drawn from analyzing the benchmark results over the
three database system architectures.

The appendices provide complete details of the original
data tape (Appendix A) , the benchmark workload queries (Ap-
pendix B) , the performance data from the benchmarks (Appen-
dix C) , and the selection, implementation schedule, and
benchmark execution for each tested system (Appendix D)

.

-2-

DISCLAIMER

This report identifies database management systems by
trade names when necessary to provide a descriptive charac-
terization of their features. Inclusion of a system in this
report in no way implies a recommendation or endorsement by
the National Bureau of Standards, and the presentation
should not be construed as a certification that any system
provides the indicated capabilities. Similarly the omission
of a system does not imply that its capabilities are less
than those of the included systems. The data presented in
this report are from benchmarks performed by individuals
with no potential conflict of interest in the results. The
data and observations drawn from the data have been made
available to each system vendor. The report is intended to
be informative and instructive in state of the art bench-
marking of database system architectures, and not a critical
evaluation of commercial database systems.

-3-

1. INTRODUCTION

Benchmark testing is the most accurate method of
evaluating the performance of a database system. Today's
database systems are too complex to be satisfactorily
evaluated using the techniques of analytic modeling and
simulation. Previous research on the performance evaluation
of database systems using modelling and benchmarking tech-
niques have been surveyed in [BENI 84]. The survey finds
that, when feasible, benchmarking a system provides the most
comprehensive evaluation of system capability and perfor-
mance .

1.1 Objectives

The purpose of this guide is to document the design and
test of a benchmarking methodology which evaluates the per-
formance of database management systems. Once the new
benchmarking methodology was developed, it was applied to
three different database systems representative of current
microcomputer, minicomputer, and database machine architec-
tures. These experiments demonstrated the viability of the
methodology, and provided performance measures which charac-
terize today's database systems under these environments.
The final objective of the study was to reach conclusions,
based upon the results of the benchmark experiments, which
span the three architectural classes. Observations are made
about the performance of each type of system architecture,
rather than comparing three commercial database systems.

In an accompanying report [BENI 84] , a concise survey
of past research on the performance evaluation of database
systems is presented, with an emphasis on previous bench-
marking studies. A comprehensive benchmarking methodology
for use on database systems is detailed. In this report,
three benchmarks experiments on the architecturally dissimi-
lar database systems are presented. Observations that com-
pare performance across the system architectures are made
based upon the benchmark results. In the remainder of this
section the selection of the three database systems is dis-
cussed .

-4-

1.2 A Caveat

To use this document appropriately, it is necessary to
understand that many aspects of the environments encompass-
ing this guideline are changing very quickly. The microcom-
puter marketplace in particular, with the types of products
and the pace at which they are announced and made available,
is undergoing rapid transformations. In the short time
since the testing phase of this study and the publication of
results, the particular hardware and software configurations
probably could not be duplicated due to the constant update
of hardware and software. Therefore, care must be exercised
in interpreting this snapshot taken of a dynamic environ-
ment, and particular results should not be heavily relied on
out of this context.

1.3 Selection of Database Systems

It is highly desirable to choose systems of the same
data model. Although there are several popular data models
for commercial database management systems, few have been
implemented on a database machine. Experimental database
machines have been structured on the network data model
(e.g., NEC's experiment [MAKI 132]) and the hierarchical data
model (e.g., ADABAS machine). However, only the relational
data model has been successfully used as a basis for a com-
mercial database machine (e.g., Britton-Lee's IDM-500 and
IDM-200) . In fact, it is shown in [LUO 82] that the rela-
tional data model provides a much more efficient interface
to a database machine than other data models. In this
study, all the target systems will utilize the relational
data model. Appendix D discusses the rationale behind the
selection of the actual systems used to represent the three
architectural classes for this benchmark study.

-5-

2. A BENCHMARK METHODOLOGY FOR DATABASE SYSTEMS

Managing a database requires a large, complex system
made up of hardware, software, and data components. A
benchmark methodology for database systems must consider a
wide variety of system variables in order to fully evaluate
performance. Each variable must be isolated as much as pos-
sible to allow the effects of that variable, and only that
variable, to be evaluated. Because of the complex, interac-
tive nature of database systems, it is often very difficult,
if not impossible, to do this. A benchmark methodology in
which a designer can identify key variables of a database
system to be evaluated has been developed in [BENI 84] . In
this section, a summary of this methodology is presented.

The benchmark methodology for database systems consists
of three stages:

1. Benchmark Design - Establishing the system environ-
ment for the benchmark involves -designing the system
configuration, test data, workload, and deciding on
the fixed and free variables of the benchmark stu-
dies .

2. Benchmark Execution - Performing the benchmark and
collecting the performance data.

3. Benchmark Analysis - Analyzing the performance
results on individual database systems and, if more
than one system is benchmarked, comparing performance
across several systems.

Figure 2.1 illustrates a flow chart of the methodology.

2.1 Benchmark Design

The design of a benchmark involves establishing the en-
vironment of the database system to be tested, and develop-
ing the actual tests to be performed. The four steps of the
benchmark design phase are surveyed below. For a compara-
tive benchmark over several database systems the benchmark
design should be invariant over all systems. Note, however,
that for the benchmark study in this report the system con-
figurations of the three database systems are varied since
the goal is to study databases in different architectures.

-6-

SYSTEM
CONFIGURATION

BENCHMARK
DESIGN

BENCHMARK
WORKLOAD

EXPERIMENT
DESIGN

BENCHMARK
EXECUTION

SYSTEM
1

SYSTEM
2

SYSTEM
n

SYSTEM 1

ANALYSIS

BENCHMARK
ANALYSIS

SYSTEM 2

ANALYSIS
SYSTEM n
ANALYSIS

COMPARATIVE
ANALYSIS OF

SYSTEMS

Figure 2.1: Database System Benchmark Methodology

-7-

2.1.1 System Configuration.

The hardware and software parameters, such as main
memory size, the number and speed of the disk drives,
operating system support for database system requirements,
and load scheduling policies will be determined under this
step. Often the hardware and software configuration is
given. This is generally the case when the database system
is to be added to an existing computing system. Also, many
database systems can be installed on only one or very few
types of operating systems. Cost is virtually always a fac-
tor, and for many applications it will be the primary deter-
minant of which system configuration is actually chosen.
Therefore, specifying this aspect of the environment is usu-
ally straightforward.

The parameters related to configuration that could be
varied in the testing include maximum record length, the
blocking factor of data in the storage system (e.g., the
amount of data transferred by one disk access) , the number
of allowable indexes on relations, the maximum size and
number of attribute values in an index, and the other types
of direct access retrievals and their performance costs.

2.1.2 Test Data.

Among the parameters considered here are the test data-
base, the background load, and the type and amount of index-
ing. The database on which the testing is performed can be
generated using one of two methods. The traditional method
has been to use an already existing database, reformating it
for the benchmark needs. Recently, however, the approach of
generating a synthetic database has been gaining popularity.
These two methods are described and compared in [BENI 84]

.

2.1.3 Benchmark Workload.

A transaction load consists of several qualitative and
quantitative aspects. Some of the qualitative aspects re-
lating to transaction load are: the types of queries which
occur (e.g., simple retrieval on a single relation or com-
plex queries involving many files) , the possible modes used
for modification of the database (e.g., batch updates, up-
dates in conjunction with queries) , the level of user-system
interaction (e.g., on-line vs. batch access), and whether or
not users commonly access the same data files. Some of the
quantitative aspects of the transaction load include: the
percentage of time that each type of database action is per-
formed, the average amount of data returned to a user per
transaction, the average number of users, and the number of
users involved in each type of transaction. Therefore, the

-8-

transaction load defines not only the number of users
present in the system, but also the quality and degree of
activity introduced into the system by each user.

2,1.4 Experiment Design.

In this phase of the benchmark design the parameters
must be considered to decide which ones will be varied in
the benchmark testing. Values to be used for the parameters
must also be defined. It is very important to choose values
that, while within reason for the system being tested, push
the system to identify it's limitations. Among the para-
meters to be considered include database size, background
load, number of indexes, query complexity, and number of
simultaneous users.

It is also in this phase of the benchmark design that
the criteria to be used for evaluation are considered. It
is important to realize that the planned use of the system
to be selected will have a definite relation to the main
measurement criteria on which the systems are evaluated.
For example, if the system is expected to be used on a
heavily loaded basis and is likely to become CPU bound, sys-
tem utilization or throughput should most likely be the main
measurement criteria. On the other hand, if the system is
more likely to be run under a light or moderate workload,
response time would most likely be the most important cri-
teria.

Benchmark experiments normally produce large amounts of
output data that are too burdensome to evaluate. The final
phase of a good benchmark experiment, therefore, must be a
concise summary of the results obtained. This summary
should point out the interesting results of the experiment
and attempt to explain the reasons behind these results. A
good summary will also present graphs relating testing
parameters to response measures and matrices comparing
results under varying variables.

2.2 Benchmark Execution

After the time consuming and complex task of designing
the benchmark is completed, the next step is to execute the
experiments. It would make benchmarking a much less compli-
cated task if the benchmark could be implemented exactly as
designed on each individual system to be tested. In reali-
ty, this is seldom the case. Each system has its particular
design and limitations to be considered. Therefore, the
benchmark has to be tailored to each specific system in-
volved in the testing.

-9-

2.3 Benchmark Analysis

Benchmark analysis involves forming the raw performance
data into graphs and tables that clearly illustrate observa-
tions and comparisons on the systems benchmarked. The
analysis phase is divided into two steps.

2.3.1 Individual System Analysis.

For each system the collected data are analyzed to pro-
vide observations on the performance of the system and its
environment. In this report an extensive system analysis is
performed on the performance data that were gathered for the
microcomputer, minicomputer, and back-end machine database
systems

.

2.3.2 Comparative Analysis.

If more than one system is being studied, performance
data can be compared among similar systems. This analysis
step should provide a basis to make validated statements as
to a critical comparison between candidate database systems.
Note that the goal of this report is not to make a compara-
tive analysis among the three database systems that were
benchmarked, but to analyze the characteristics of the
representative database system architectures.

-10-

3. TEST DATA

For benchmark testing in this project the Department of
Commerce provided a tape containing personnel data. The
data on the tape came from a large application file system.
All sensitive data had been eliminated from the file before
it was received. The details of the file formats on the
tape are contained in Appendix A.

From this data, a personnel database schema was
designed. In the database design process, a core entity
(PERS_DATA) of the basic personnel data attributes (e.g.,
SSN, NAME, SEX, B IRTH_DATE , etc.) was identified. Other en-
tities were formed and the relationship of these entities
was defined with the PERS_DATA entity. For certain attri-
butes the data tape was incomplete because of sensitive data
cleansing and empty data fields. For these attributes data
values were synthesized and placed into the appropriate da-
tabase relations in the database. The final schema, modeled
in an Entity-Relationship Diagram, is presented in Figure
3.1.

A program was written to extract the data from the data
tapes and place it into a relational representation of the
database schema. The data extraction was done in two steps.
First all pertinent data elements were read from the tape
and written into a single first normal form relation. From
the single relation the second step constructed the third
normal form relations for the benchmark tests. These rela-
tions are listed in Figure 3.2 along with the record size,
in bytes, of each.

Three different levels of indexing were studied in the
benchmark. Level 0 contained no indexes on any of the data-
base attributes. Level 1 provided primary indexes on the
database. Unique, clustered indexes were built on all pri-
mary keys and an unclustered index was built on
JOB_H I STORY. AGENCY. (The definitions for clustered and un-
clustered indexes can be found in the Glossary.) The data-
base systems' ability to provide combined indexes was also
tested. Level 1 included three combined indexes. Level 2

included the indexes from level 1 and added additional
secondary indexes on attributes that were used for retrieval
in the benchmark query set described in the next section.
The specific indexes constructed on the personnel database
are shown in Figure 3.3.

-11-

The different size databases were constructed by elim-
inating a percentage of records from the single relation
form of the database. The original data from the personnel
data tape formed a single relation of size approximately 56
MB (Megabytes) and containing 189,960 records. By randomly
eliminating records several database sizes for the bench-
mark experiments were able to be formed. For the 3.5 MB
database 10,500 records were retained, for the 6 MB data-
base 20,000 records were retained, and for the 10 MB data-
base 33,000 records were retained. Once the appropriate
number of records was contained in the single relation, the
the program to divide the data into multiple relations was
run to build the test database.

-12-

Figure 3.1: Personnel Database Schema

-13-

AGENCY_DESC (AGENCY , SUBELEMENT, NAME , DESCRIPTION)
RECORD SIZE = 33 BYTES

AUTH_PERS (SSN, CODE)
RECORD SIZE = 8 BYTES

LEGAL_AUTH (CODE, NAME)
RECORD SIZE = 22 BYTES

LEGAL_AUTH_DES (CODE, EXPLANATION)
RECORD SIZE = 4 5 BYTES

EDUCATION (SSN, EDUCLEVEL , DEGREE_DATE, ACAD DISC)
RECORD SIZE = 17 BYTES

JOB DETAIL (SSN, PAY_DETERM, PAYBASIS, PAY_PLAN, PAY_GRADE

,

CUR_GRDE_DT, CUR_OCC_DT, STEP, TENURE, PATCO,
GS_EQUIV, BARG_UNIT, FLSA_EXEMPT, APPT_TYPE, UPDAT)
RECORD SIZE = 53 BYTES

JOBHISTORY (SSN, SERV_DATE, AGENCY, SUBELEMENT, STATE, SALARY
STD_METRO, WORK_SCHED, POS_OCCUPIED)
RECORD SIZE = 2 5 BYTES

PERS_MISC (SSN, SUBMIT OFF, SPEC_PRG_ID, RETIREMENT, ANNUITANT
FEGLI, PMIP, VET_PREF, VIET_VET)
RECORD SIZE = 17 BYTES

PERS_DATA (SSN , NAME, SEX, CITIZEN, BIRTH_DATE, HANDICAP, RACE
SERV_DATE, OCCUPATION, FUNCT_CLASS, LOCATION,
STAT_CODE, MNGR_LEVEL, MNGRS_SSN, UPDAT)
RECORD SIZE =85 BYTES

PSNL_ACTS (SSN, ACT_NATURE , PSNL_ACT_DT)
RECORD SIZE = 12 BYTES

RETAIN_DATA (SSN , RETGRADE, RETSTEP, RET_PAY_PLAN)
RECORD SIZE = 11 BYTES

SEP_DATA(SSN, SEP_DATE)
RECORD SIZE = 9 BYTES

Figure 3.2: Relational Database Schema

Level 0 Indexes:

No indexes.

Level 1 Indexes:

Unique

,

Unique

,

Unique

,

Unique

,

Unique

,

Unique

,

Unique

,

Unique

,

Unique

,

Unique

,

Unique

,

Unique

,

Nonclus

clus
clus
clus
clus
clus
clus
clus
clus
clus
clus
clus
clus
ter ed

tered
tered
tered
tered
tered
tered
tered
tered
tered
tered
tered
tered
inde

index on PERS_DATA (SSN)
index on PERS_MISC (SSN)
index on SEP_DATA (SSN)
index on RETAIN_DATA (SSN)
index on JOBHISTORY (SSN, SERV_DATE)
index on JOB_DETAIL (SSN)
index on EDUCATION (SSN, EDUC LEVEL)
index on PSNL_ACTS (SSN)
index on LEGAL_AUTH (CODE)
index on LEG_AUTH_DES (CODE)
index on AGENCY_DESC (AGENCY)
index on AUTH_PERS (SSN, CODE)

x on JOB HISTORY (AGENCY)

Level 2 Indexes:

All Level 1 i

Nonclustered
Nonclustered
Nonclustered
Nonclustered
Nonclustered
Nonclustered
Nonclustered
Nonclustered
Nonclustered
Nonclustered
Nonclustered
Nonclustered

ndexes
index on RETAIN DATA (RET_GRADE)
index on RETAIN ~DATA (RET_PAY_PLAN)
index on PERS_DATA (RACE)
index on PERS_DATA (LOCATION)
index on JOB DETAIL (PAY_GRADE)
index on AGENCY_DESC (SUBELEMENT)
index on EDUCATION (EDUC_LEVEL)
index on JOB_DETAIL (PATCO)
index on PERS_DATA (HANDICAP)
index on PERS_MISC (VETPREF)
index on JOB_H ISTORY (STATE)
index on EDUCATION (ACAD DISC)

Figure 3.3: Three Levels of Indexes.

-15-

4. BENCHMARK WORKLOAD

4.1 Queries

A number of queries were designed to test the retrieval
and update capabilities of the database systems. The
queries were written in the SQL query language for the mi-
crocomputer and minicomputer database systems, and in QUEL
for the database machine system. For exposition purposes
the SQL formation of the queries was used in this section.
The full set of QUEL queries are found in Appendix B.l. The
full set of SQL queries are found in Appendix B.2.

The queries were divided into several test categories.
For data retrieval ten query sets and several special pur-
pose queries were developed to test specific database system
features. Each query set contained from four to seven
queries that varied in complexity based upon the number and
type of conditions in the query predicate. The complexity
classification developed by Cardenas [CARD 73] was used in
the benchmark methodology. The range of complexities in
each query set can be illustrated by examining query set 1.

Query ql-1 required retrieval of all records in the da-
tabase relation.

ql-1: select ssn , r et_gr ade , ret_pay_plan
from retain_data

Query ql-2 contained a single atomic condition on the
relation

.

ql-2: select ssn, ret_grade, ret_pay_plan
from retain_data
where ret_pay_plan = 'WG'

Query ql-3 contained a single item condition as a dis-
junction (OR) of two atomic conditions.

ql-3: select ssn, ret_grade, ret_pay_plan
from retain_data
where ret_pay_plan = "*WG'

or r et_pay_plan = * GM'

Query ql-4 contained a single record condition as a
conjunction (AND) of two item conditions.

ql-4: select ssn, ret_grade, ret_pay_plan

-16-

from retain_data
where (ret_pay_plan = 'WG' or ret_pay_plan = 'GM'

)

and ret_grade > '08'

Query ql-5 added another item condition to the record
condi tion

.

ql-5: select ssn, ret_grade, ret_pay_plan
from retain_data
where (r et_pay_plan = 'WG' or ret_pay_plan = 'GM')

and ret_grade > '08'*

and ret_grade < '12'

Query ql-6 contained a single query condition as a dis-
junction (OR) of record conditions.

ql-6: select ssn, ret_grade, ret_pay_plan
from retain_data
where ((ret_pay_plan = 'WG' or ret_pay_plan = 'GM')

and ret_grade > '08'
and ret_grade < '12')

or ret_grade = '07'

Each query set was designed so that the complexities of
the query predicates increased with increased numbers in the
set. The number of records retrieved changed from one query
to the next depending on whether an OR condition (increase
in records) or an AND condition (decrease in records) was
added

.

The query sets were designed as follows. Query sets 1

through 5 tested single relation retrieval. The query sets
ranged from retrieval on a small size relation (Query set
1) , medium size relations (Query sets 2 and 3) , and large
size relations (Query sets 4 and 5) . Query sets 6 through
10 tested multiple relation retrieval. Query sets 6 through
8 were two relation queries. Query set 9 was a three rela-
tion query and Query set 10 was a four relation query. The
basic query sets are presented in Appendix B and are num-
bered for reference as qx-y, where x is the query set number
and y is the number of the query in the set (e.g., q3-4)

.

The number of bytes in the result record of each query set
is given in Table 4.1.

-17-

Table 4.1: Record Size Results

QUERY SET BYTES RETURNED

1 15
2 14
3 11
4 4

5 11
6 15
7 11
8 13
9 18

10 37

To test the sorting facility, Query sets 1 through 4

were modified by adding an 'ORDER BY' clause on an appropri-
ate attribute. These queries are designated with an 'o' in
this report (e.g., qo2-3) . Appendix B contains the details
of these queries.

To test aggregates query sets 4 and 5 were modified by
adding the 'COUNT' aggregate function in the output list.
These queries are designated with an 'x' in this report
(e.g., qx5-2) and are presented in Appendix B.

Each database system was tested for three special cases
of data retrieval. The tests on the microcomputer system
were slightly modified because of system limitations.

Special Case 1: Arrangement of Conditions

The performance of the following two queries was com-
pared. The only difference between the queries was the ar-
rangement of the query conditions.

scl-1: select pers_data. ssn, educ_level, birth_date, vet_pref
from pers_data, education, pers_misc
where pers_data.ssn = education. ssn
and education . ssn = pers_misc .ssn
and per s_misc . ssn = 300378541

scl-2: select per s_data . ssn , educ_level, birth_date, vet_pref
from pers_data, education, pers_misc
where pers_misc.ssn = 300378541
and pers_data.ssn = education. ssn
and education. ssn = pers_misc.ssn

Special Case 2: Implicit vs. Explicit Conditions

-18-

With the same query the performance was tested when the
join conditions were made explicit.

sc2-l: select pers_data.ssn, educ_level, birth_date, vet_pref
from pers_data, education, pers_misc
where per s_data . ssn = education. ssn
and education. ssn = pers_misc . ssn
and pers_misc . ssn = 300378541

sc2-2: select per s_data . ssn , educ_level, birth_date, vet_pref
from pers_data, education, pers_misc
where pers data. ssn = 300378541
and education. ssn = 300378541
and pers_misc.ssn = 300378541

Special Case 3: Join Optimization

A test was made to estimate the performance of a two
relation join with a sort/merge optimization technique.
This performance was compared with the query performance as
found with the standard join optimization method found in
the database system.

sc3-l: select retain_data . ssn , ret_grade, barg_unit
from retain_data, job_detail
where retain_data . ssn = job_detai 1 . ssn
and (patco = 'T* or patco = '0')

L

A sort/merge optimization of this query was approximated by
running the following three separate queries. Note that
query sc3-3 uses a temporary relation 'tempi" that was pre-
viously created.

sc3-2: select ssn, ret_grade
from retain data
order by ssn

sc3-3: insert into tempi
select ssn, barg_unit
from job_detail
where (patco = 'TV* or patco = '0')

sc3-4: select ssn, barg_unit
from tempi

In addition to the retrieval queries, the performance
of several update commands was tested. Representative
insertions (e.g., ql-l) , deletions (e.g., qD-1) , and modifi-
cations (e.g., qM-2) were designed on the personnel data-
base. These updates are found in Appendix B.

-19-

4.2 Job Scripts

Benchmark workloads were generated by defining job
scripts for each benchmark run. The job script is a file of
query numbers. For example, a job script for a benchmark
run could be {ql-1 , qx5-3, q9-4, qI-3 , q4-5 }

.

The job script file is read into a program on the
front-end or host computer called 'runner'. Runner executes
the queries in job script' order on the database system.
Runner records statistics on the query's performance in the
system. Times were recorded to the sixtieth of a second to
three decimal places for the minicomputer and database
machine benchmarks. The times recorded for the microcomput-
er tests were to the second. The statistics gathered were:

records - Number of records returned

The runner algorithm can be outlined as follows:

Algorithm runner:

Read Job-script-file into query-array until EOF;

Open database system;

While (query-array not empty) do

Read next query from query-array;
Send query to the database system;
Parse query;
Execute query;
Record time statistics on:

time-to-parse
time-to-execute
time-to-first
time-to-last
record-count ;

Print gathered statistics;

End while;

Close database system;

End of Algorithm.

parse
execute
first
last

Query parse time
Query execution time
Time until first record is retrieved
Time until last record is retrieved

Begin

-20-

For each benchmark test a job script was defined and
the 'runner' was executed on the different database systems.
Statistics for each query in the script were printed in a
convenient format. For multi-user tests and background load
tests on the databases multiple copies of runner were run
simultaneously on separate job scripts and the statistics
gathered on each.

-21-

5. EXPERIMENT DESIGN

5.1 Performance Measures

For this project response time was selected as the pri-
mary performance measure. The 'runner' program provided
easily accessible timings from which several types of query
response times could be calculated. Other potential perfor-
mance measures, such as throughput and utilization, while
useful, were not considered as important. Throughput in a
single user environment could be obtained from response time
statistics since 'runner' initiates a query in the job
script as soon as its predecessor completes. Throughput for
the multi-user portion of the study could be estimated by
timing the completion of all job scripts and dividing by the
number of queries completed. No software or hardware moni-
tors were available for measuring utilizations in this
study

.

The 'runner' algorithm provided several timing statis-
tics for each query as soon as the query completed. The
statistics that were used primarily in the analysis are the
time-to-first-record (TF) value and the time-to-last-record
(TL) value. The time-to-first statistic measured the time
from when 'runner' called the database system with the query
until the first result record was received at the host sys-
tem. Time-to-first-record is independent of the number of
records retrieved in the query and is free of potential
input/output delays. The time-to-last statistic measured
the total response time of the query from initiation until
the last record was retrieved.

As a general policy for all benchmark studies, if an
individual query ran for more than 30 minutes, the run was
halted and no data were gathered for that query. (Some ex-
ceptions to this policy can be observed in the result data.)
In the data tables in Appendix C dashes () denote a
timed-out query. This policy was necessary since a number
of queries required considerable time to complete under some
of the test conditions.

-22-

5.2 Experiment Variables

A number of important benchmark tests could be per-
formed on the personnel database by selecting and varying
one or more dependent database variables. The following
analysis variables were selected for the benchmark tests.

1. Database Size - The following database sizes were
studied on the database systems.

Table 5.1: Database Sizes

SIZE NUMBER OF RECORDS
IN SINGLE RELATION

5 6 MB 189,960
10 MB 33,000
6 MB 20,000

3 . 5 MB 10,500

Most tests were performed on the 3.5 MB, 6 MB, and 10
MB databases. Several additional benchmark tests
were on an 8 MB database.

2. Query Complexity - Two factors were considered in
determining query complexity. Greater complexity of
the query predicate lead to increased parsing time
and increased the potential for query optimization.
Within each query set, the predicate complexity was
increased by adding additional conditions (i.e.,
higher numbered queries). Second, the number of re-
lations involved in a query indicated query complexi-
ty. More complex join operations were required
between relations.

3. Records Retrieved - The time-to-last-record (TL)
depended greatly upon the number of records in the
query result.

4. Order of Query Execution - The different database
systems used internal memory as buffers for the
storage of needed indexes and intermediate results
during query execution. The effect of the buffer
memory on the order of query execution was tested.
Job scripts formed of similar queries were executed
sequentially (e.g., q2-l, q2-2, q2-3, q2-4, q2-5) to
investigate whether any efficiencies occur because of
the buffer. For example, a needed index may already
be in the buffer. The statistics for the queries run

-23-

in order were compared with the queries run in a ran-
dom order

.

5. Indexing - As described in section 3, Test Data,
three levels of indexing were defined on the data-
base: 0) no indexes, 1) primary key indexes, and 2)
primary key indexes plus several secondary key
indexes. Tests were run varying the different index
levels

.

6. Sorting - Sorting performance was tested by adding
'order by' clauses to certain query sets. By compar-
ing sorted and unsorted queries, the sorting perfor-
mance in the different database systems could be
determined

.

7. Aggregation Functions - Two query sets were modified
by adding an aggregation function, 'count', to the
output list.

8. Number of Users - Multiple users contend for database
system resources. This tends to increase the
response time and increase the throughput. On the
minicomputer and database machine systems, one, two,
and three user environments were tested. Each user
ran a separate job script. To study contention,
tests were run in which each user ran an identical
job script. Other tests included different job
script mixes.

9. Background Load - Tests were run varying the non-
database jobs in the host computer system. The
number of jobs could be increased and the type of
jobs in the background could be varied. Background
jobs could be designed as CPU or I/O intensive jobs.
Tests could determine the effect of these jobs on the
performance of the database queries. By measuring
the performance of the background jobs under dif-
ferent query loads, the effect of database jobs on
the background jobs could also be studied. This was
termed a reverse benchmark.

The benchmark analyses in the next three sections
present performance data for the benchmark tests that
resulted from varying combinations of the above experimental
variables. Additional tests in the benchmarks include the
special cases that were described in the workload section.
These studies included: 1) different orders of query predi-
cates (i.e., different arrangement of conditions), 2) impli-
cit join conditions vs. explicit join conditions, and 3)

sort/merge join technique in join optimization.

-24-

6. MICROCOMPUTER BENCHMARK

6.1 System Configuration and Benchmark Execution

Details of the representative microcomputer system con-
figuration, implementation, and benchmark execution are dis-
cussed in Appendix D.

6.2 Benchmark Analysis

There are four parts in this section: single relation
queries, multiple relation queries, updates, and special
case queries. A complete set of performance data for the
microcomputer benchmark is found in Appendix C.l.

6.2.1 Single Relation Queries.

Table MICRO. 1 lists the result sizes, in number of
records retrieved, for all query sets. Table MICRO. 2 con-
tains the time-to-first and time-to-last response times,
respectively, for different index levels in single relation
queries. (Time-to-first was not measured for all of the
queries.) Note that for the microcomputer benchmark an index
level 3 was added. This level added secondary indexes on
every attribute in the database.

"Response Time vs. Query Complexity"

Figures 6.1, 6.2, and 6.3 show the dependency of the
response times on query complexity and the amount of data
retrieved. Figure 6.1 shows that the time-to-first general-
ly decreased as the complexity of the query decreased for
single relation queries with and without indexes. An intui-
tive explanation is that when the query complexity de-
creases, more records are retrieved. If records are 'uni-
formly' distributed in the relation, the time for reaching
the first record should be shorter. This result was valid
for all single relation query sets. Note that the gaps
after query q2-3 show where 'OR' clauses were added to the
predicates. This increased the number of records retrieved
by the query and affected both time-to-first and time-to-
last performance. To clearly show the effect of adding
'AND' clauses to the query predicates, the line when the
'OR' operations were added has not been connected.

-25-

secondary
index

no index

q2-5 q2-4 q2-3 q2-2

query complexity

q2-1

Figure 6.1: Query Complexity vs. Time to First Record.

-26-

q?T5 q?3 q2^3 q2^2 q2^T

queries

Figure 6.2: Query Complexity vs. Time to Last Record.

-27-

I III! _i i i i

100

q2-5 q2-4
1000 ^ 2 _ 3

q2-2

of records retrieved

100|00

q2-1

Figure 6.3: Records Retrieved vs. Time to Last Record.

-28-

On the other hand, Figure 6.2 shows that time-to-las

t

increased as the complexity of the queries decreased for all
database sizes. Here the factor which influenced response
time to the last record was the total number of records re-
trieved, which is roughly inversely proportional to the
query complexity. Adding the 'OR' clause to query q2-2 in-
creased the number of records retrieved and accordingly in-
creased the time-to-last for those queries over the previous
query in the set. In Figure 6.3, the time-to-last increased
as the number of records retrieved increased. From q2-2 to
q2-l and from q2-5 to q2-3, as can be seen in Figure 6.3,
I/O delay was the major factor which caused the increase of
time-to-last. Query q2-5 did not complete with secondary
indexes because of index pointers overflowing the workspace.

"Effect of Indexing"

With respect to the comparison between queries with and
without indexes, the performance difference can be attribut-
ed to the fact that the queries with indexes included addi-
tional time for index access and optimization before the
first record could be returned. The benefit, however, was
that the system could retrieve records directly without per-
forming a sequential search through the database files. As
can also be seen in Figure 6.4, query set 2 with indexes had
a better performance than without indexes for time-to-last.
Over all query sets, it was found that when indexes could be
used effectively, the time-tp-last was reduced for single
relation queries.

For most queries, the t ime- to-f irst was, however, not
improved by indexing. Indexing did not even benefit the
time-to-last for some queries. This was due to a number of
factors. For the microcomputer data the following observa-
tions could be made:

1. Hit Ratio. The hit ratio refers to the percentage of
records retrieved from a relation. Indexes are use-
ful for retrieving a relatively low percentage of the
file because they can avoid the searching of the en-
tire relation sequentially. If the time-to-last per-
formance in Table MICRO. 2 is examined, it can be seen
that the high hit ratio penalized the performance of
queries 1-2, 1-3, 1-4, and 1-5. The hit ratios of
these queries were determined from Table MICRO. 1 as
55.6%, 56.5%, 36.7%, and 13.9% respectively.

-29-

2. Disjunctive Index. The use of a disjunctive condi-
tion (terms connected by 'OR') in a query can some-
times make index processing more difficult. It is
well known that if one of the terms in the disjunc-
tion is not indexed, then any other index in the con-
dition is not useful. However, if all the terms are
indexed, or if two terms in a disjunction use the
same index, then the performance depends on the par-
ticular implementation. In the microcomputer bench-
marks, a performance penality for disjunctive indexes
was observed on queries 2-3, 2-4, 2-5, and 2-7, for
example

.

3. Range Index. The use of an index to solve a range
query may have a similar effect as the disjunctive
index. This effect was observed on queries 3-4, 3-5,
and 5-4. A combination of the disjunctive clauses
and range clauses and their effects were found in
queries 3-6 and 5-6.

"Effect of Aggregate Functions"

The 'count' was used to show how aggregate functions
work under different system variables. The result is shown
in Figures 6.4 and 6.5. The response times are in Table MI-
CRO. 3. Similar to Figure 6.3, the time-to-last increased
with the number of records retrieved. The queries with the
'count' function actually had better time-to-last perfor-
mance. This was probably because only the count result, not
the result records retrieved, had to be produced. The con-
clusion above could be found in both queries using an index
(Figure 6.4) and queries not using an index (Figure 6.5).

6.2.2 Multiple Relation Queries.

Time-to-last for join queries is plotted in Figure 6.6.
Table MICRO. 4 contains the data for multiple relation
queries. As expected, there was a large difference between
the queries using indexes and the ones using no index. The
larger difference in multiple relation joins, compared with
single relation queries, seemed to result from the 'nested
loop' strategy used in the microcomputer database system
that has an exponential response time.

Because of the large number of records retrieved in
query sets 7 and 6, time-to-last data for these queries were
unable to be found without using indexes. In fact, it was
found that the time-to-last for some queries was more than
15 hours, by letting several run without aborting them.
After that point, the UNIX system would terminate the

-30-

40C,

u 300

+->

7 20C
O
-t->

I

160

select attribute function

count function

-i i i i i—i i i -i—i—t—i t i

100 1000

q2-4 |-q2-3

q2-2

10000

q2-1

of records retrieved

Figure 6.4: Single Relation Index Tests (Level 3 Indexes).

-31-

100

q2-5 q2-4

i i i i.i .

1000
-q2-3

q2-2

of records retrieved

10000

q2-1

Figure 6.5: Aggregate Function Test (No Indexes).

-32-

no index

secondary index

"RDSSN = JDSSN"

secondary index

"JDSSN = RDSSN"

10

6-1 6-2 6-3

query set 6

Figure 6.6: Multiple Relation Index Tests.

-33-

process and 'autologout' the query.

In Figure 6.6, the difference between queries using and
not using indexes shows the effectiveness of index access
for two-relation joins. The effect of changing the order of
join clauses is discussed in the section on special case
queries

.

The microcomputer database system did not support joins
of more than two relations. For query set 9, the queries
were changed to nested queries as shown below;

query q9-l:

select PDSSN, Birth_Date
from Pers_Data
where PDSSN in

select ESSN
from Education
where ESSN in

select PMSSN
from PersMisc
where PMSSN < '202000000';

To prevent the workspace from overflowing in a nested
query, it was necessary to restrict the size of records re-
trieved from the 'inner' query. In Table 6.1, the response
time for queries using secondary indexes shows improvement
in the nested queries.

Table 6.1 Index Effect in Nested Queries.

Response Time in Sec.

Query q9-2 q9-3

Level 1 Index 577 597

Level 3 Index 46. 497

"Special Studies"

The special cases used here are not the same as dis-
cussed in Section 4. Queries scl-1, scl-2, sc2-l, sc2-2,
sc3-l, and sc3-2 are shown below. The benchmark for each
case is discussed in turn.

scl-1: select ESSN, Educ_Level
from Education
where ESSN in

select PMSSN

-34-

from Pers_Misc
where PMSSN < '202000000';

scl-2: select ESSN, Educ_Level
from Education, Pers_Misc
where PMSSN = ESSN

and PMSSN < '202000000':

sc2-l select RDSSN, Ret_Grade, Barg_Unit
from Retain_Dat, Job_Detail
where RDSSN = JDSSN;

sc2-2 select RDSSN, Ret_Grade, Barg_Unit
from Retain_Dat, Job_Detail
where JDSSN = RDSSN;

sc3-l select (all)
from Pers_Data
where PDSSN in

select ESSN
from Education
where ESSN in

select PMSSN
from Pers_Misc
where PMSSN < '202000000';

(all)
Per s_Misc
PMSSN in
select PDSSN
from Pers_Data
where PDSSN in

select ESSN
from Education
where ESSN < '202000000';

sc3-2 select
from
where

"Join vs. Nested Join"

In SQL it is possible to write a join query as a nested
query. The result of the benchmark of the two equivalent
queries scl-1 and scl-2 is shown in Table 6.2 below.

Table 6.2: Nested Join Tests

Response Time in Sec.

No Index Level 3 Index

scl-1 scl-2 scl-1 scl-2

636 15,167 56 91

-35-

The result showed the nested query had faster response
time than the flat join. But this did not mean the nested
query was better than the select-join query. It should be
noted that there were two basic problems for nested queries.
First, there was not enough workspace to hold the temporary
data generated after processing the inner query. Second,
the nested query could not select the attributes from the
relation accessed in the inner query.

"Effect of the Join Sequence"

The second special test examined the effect of joining
two relations in different orders. As shown in queries
sc2-l and sc2-2, the join order of query q6-l was reversed
for the tests. The result is summarized in Table 6.3 below.

Table 6.3: Join Sequence Test

sc2-l sc2-2

6-1 407 51
6-2 106 2T
6-3 390 44

The above table shows the effect of changing the order
of the comparison "RDSSN = JDSSN". There were 74 records in
Retain_Data and 10,500 in Job_Detail. In sc2-2, the order
was changed to "JDSSN = RDSSN" and it was found that the
time-to-last dropped sharply from 407" to 51" and 390" to
44". As shown in Figure 6.6, the dashed line stands for the
order "RDSSN = JDSSN" and the dotted line stands for "JDSSN
= RDSSN". The size of the smaller relation, RetainData,
was the major factor that helped to reduce the access time
for matching records in the two-relation join.

"Order of Query Nesting"

The last special test examined the effect of the dif-
ferent order of query nesting. The result is shown in Table
6.4 below.

Table 6.4: Order of Query Blocks

No Index Level 3 Index

sc3-l sc3-2 sc3-l sc3-2

133 150 66.161

-36-

In the nested query, the change of the order of nested
blocks affected the performance. This indicated that the
nested blocks should be arranged so that the smaller rela-
tions are handled first in the outer blocks and the larger
relations in the inner blocks for best performance.

6.2.3 Updates.

As the update data in Table MICRO. 5 was examined, it
was observed that the index helped the modification and
delete queries. The index on the primary key improved
searching of the target records and reduced the response
time. Inserting new records into an indexed relation re-
quired the indexes to be updated. The index update caused
the insertion to be slower in this case.

6.3 Summary

The following points summarize the major results of the
benchmark study of the microcomputer database system archi-
tecture. These points can be used as guidelines for
evaluating performance of microcomputer database systems. A
comparison of performance over the three tested architec-
tures is presented in Section 9.

1. In general, query complexity was inversely propor-
tional to the number of records retrieved. Without
using indexes, the time-to-first-record was greater
when fewer records were retrieved, since the system
took longer to find the first record. The time-to-
last-record was greater when a larger number of
records were retrieved, due to the time required to
access and transmit additional records.

2. Indexing reduced response time if the index could be
used effectively in the query access strategy.
Several types of queries were identified that did not
allow the index to be used effectively. These cases
included queries with high hit ratios, queries with
disjunctive conditions, and queries with range condi-
tions .

-37-

3. Sorting and aggregation functions added significant
overhead to query response time.

4. Multiple relation queries (join queries) required
considerably more time to complete than single rela-
tion queries. The use of primary key indexes and
secondary key indexes were found to be essential for
the execution of multiple relation queries. Work
space size proved to be the major constraint on the
ability to run multiple relation queries on the mi-
crocomputer database system. The storage of inter-
mediate results and indexes quickly overflowed the
available work space and caused a system abort of the
query

.

5. Each SQL query block in the microcomputer database
system could only handle two relations. This res-
triction forced the use of nested block queries with
intermediate results. Special case testing showed
that the nested blocks should be arranged so that the
smaller relations should be handled first in the
outer blocks and the larger relations should be
placed in the inner blocks for best performance.

6. The writing of the join conditions had a significant
effect on performance. In a join condition such as
(JDSSN = RDSSN) , the attribute of the larger relation
should be listed first for improved performance

„

7. Update performance was significantly improved by hav-
ing indexes in a relation.

-38-

7. MINICOMPUTER BENCHMARK

7.1 System Configuration and Benchmark Execution

Details of the representative minicomputer DBMS system
configuration, implementation, and benchmark execution are
discussed in Appendix D.

7.2 Benchmark Analysis

In this section a summary of the results obtained from
executing a benchmark on the minicomputer system is present-
ed. The discussion of results is divided into five sec-
tions: single relation queries, multiple relation queries,
update queries, multiple user results, and background load
results. Observations were made on the performance of the
minicomputer database system based upon the analysis of the
result data. The measures of time-to-first-record and
time- to-last-record were used as the primary performance
statistics. All minicomputer data tables and graphs are
contained in Appendix C.2.

There is no claim to present here a critical analysis
of the performance of any commercial minicomputer database
system. Such an objective could only be achieved by running
an extensive mix of benchmarks under a wide range of en-
vironments, which is beyond the scope of this report.

7.2.1 Single Relation Queries.

"Response Time vs. Query Complexity"

The dependency of the response times on query complexi-
ty and the amount of data retrieved is shown first. Table
MINI.l lists the result sizes, in number of records re-
trieved, for each of the single relation queries. This
table matches the result size tables for the microcomputer
and database machine tables for all database sizes. Table
MINI. 2 contains the time-to-first and time-to-last response
times for the queries with level 1 indexing. Figure 7.1
shows that the time-to-first generally decreased as the com-
plexity of the query decreased. This observation does not
differ significantly for different database sizes of 3.5 MB,
6 MB and 10 MB. An intuitive explanation is that when the
query complexity decreases, more records are retrieved. If
records are 'uniformly' distributed in the relation, the

-39-

time for reaching the first record should be shorter. The
identical result was found for the microcomputer and data-
base machine environments. Obviously, this result is not
valid if indexes are used to process the query. Note that
the gaps after queries ql.6 and ql.3 show where 'OR' clauses
were added to the predicates. This increased the number of
records retrieved by the query and affects both time-to-
first and time-to-last performance. To clearly show the ef-
fect of adding 'AND' clauses to the query predicates, the
line when the 'OR' operations were added has not been con-
nected .

On the other hand, Figure 7.2 shows that time-to-last
increased as the complexity of the queries decreased for all
database sizes. Here the factor which influenced response
time to the last record was the total number of records re-
trieved, which is inversely proportional to the query com-
plexity. Adding the 'OR' clause to queries ql.6 and ql.3
increased the number of records retrieved and accordingly
increased the time-to-last for those queries over the previ-
ous queries in the set.

Figure 7.3 further reinforces this observation. When
the time-to-last was plotted against the number of records
retrieved, the curve showed an almost linear behavior until
the records retrieved approached 10,000.

"Response Time vs. Indexing"

The benchmark tests on single relation indexing lead to
the observation that the selection of secondary key indexes
provided significant performance advantages for queries that
contained selections on indexed attributes. Figures 7.4 and
7.5 illustrate this point using query set 5. The result
data for the index tests are in Tables MINI. 3 and MINI. 4.
In Figure 7.4 the performance of query set 5, under no
indexes and level 2 indexes (secondary key indexes added)

,

was studied for the 6 MB database. The EDUCATION relation
had secondary key indexes on attributes ACAD_DISC and
EDUC_LEVEL. In queries q5.1, q5.2, and q5.3 the indexed at-
tributes were not used in the query conditions. Thus, there
was no significant performance difference between the levels
of indexing. In queries q5.4 and q5.5, however, predicates
were added that utilized the two indexed attributes. The
improved performance of the queries with index level 2 was
apparent

,

The advantage of indexing was reinforced by Figure 7.5
where the performance improvement of queries q5.4 and q5.5
is shown under all three index levels. This improvement was
lost, however, when the query was made more complex by

-40-

q1-6 ql-5 q1-4 q1-3 q1-2 q 1 -

1

queries

Figure 7.1: Query Complexity vs. Time to First Record.

-41-

t

10MB «

6. 0MB

3 . 5MB

——» 1 1 1 » I

q1-6 q1-5 q1-4 q1-3 q1-2 q1-1

queries

Figure 7.2: Query Complexity vs. Time to Last Record.

-42-

Figure 7.3: Records Retrieved vs. Time to Last Record.

-43-

Level Z Index (Disjunction)

Level 2 Index (Conjunction)

No Index

10 '

1

q5-5
1010

| 1 ob

!
q5-2

0 1 0000
1

q5-1
q5-6 q5--4 q5 -3

of records retrieved

Figure 7.4: Single Relation Index Tests (6 MB Database)

.

-44-

Figure 7.5: Index Levels vs. Time to Last Tuple (6 MB Database).

-45-

adding another 'OR' clause in query q5.6. Although the new
condition used the indexed attribute ACAD_DISC , the response
time for the result with level 2 indexing was similar to the
response times for no indexing and level 1 indexing.

The performance of query execution did not always bene-
fit from the use of indexes. This result was found to be
valid over all database system architectures. The benefit
of indexes was influenced by the following parameters:

1. Hit Ratio. The hit ratio refers to the percentage of
records retrieved from a relation. Indexes are use-
ful for retrieving a relatively low percentage of the
file because they can avoid the searching of the en-
tire relation sequentially. To retrieve a large
amount of data, however, the extra index accesses be-
come a burden and sequential searching could be more
efficient. The time-to-last performance in Tables
MINI. 3 and MINI. 4 showed that the high hit ratio pe-
nalized the performance of queries 1-2, 1-3, 1-4, 1-5
and 1-6. The hit ratios of these queries were deter-
mined from Table MINI.l as 55.8%, 56.5%, 38.7%, 13.9%
and 21.7% respectively.

2. Disjunctive Index. The use of a disjunctive condi-
tion (terms connected by 'OR') in a query can some-
times make index processing more difficult. It is
well known that if one of the terms in the disjunc-
tion is not indexed, then any other index in the con-
dition is not useful. However, if all the terms are
indexed, or if two terms in a disjunction use the
same index, then the performance depends on the par-
ticular implementation. Many database systems are
not able to process the 'OR' index efficiently. In
these benchmarks, performance penalities for disjunc-
tive indexing can be observed, for example, on
queries 2-3, 2-4 and 2-5.

3. Range Index. The use of index to solve a range query
may have a similar effect as the disjunctive index.
This effect can be observed on queries 3-3, 3-4, 3-5,
3-6, and 5-6.

The size of the database
performance for the tests
single relation queries would
the 10 MB database.

"Effect of Buffering"

had a significant effect on
when no indexes were used. No
complete under 30 minutes for

-46-

In order to determine if there was any buffering effect
among queries accessing the same set of relations, two dif-
ferent mixes of queries were run. The first set of query
mix ran similar queries in sequence. The response time
could be reduced if the system was able to take advantage of
the data kept in the buffer from previous accesses. The
data for these runs are found in Table MINI. 5. The other
query mix ran queries in random order (Table MINI. 2). Fig-
ure 7.6 shows that the time-to-last for query set 5 was not
reduced significantly by running similar queries for any
number of records retrieved. The same observation was valid
for all query sets, for all database sizes tested, and for
all database system architectures.

"Effect of Sorting"

Next the effect of sorting on the response time was ex-
amined. Table MINI. 6 contains the results of the sorting
tests. Figure 7.7 demonstrates the significant increase in
response time when query results must be sorted. The com-
parison is shown for query set 1. One set of data required
sorting the resulting records, one did not. The response
time to the last record retrieved was significantly longer
for the set which required sorting, regardless of the number
of records retrieved. The difference between the response
times to last record retrieved also increased with the
number of records retrieved. Since sorting involves a non-
polynomial complexity, this result was expected. A similar
result was seen in each database system architecture tested.

A test was also run to see if sorting performance was
improved by adding level 2 indexes (Table MINI. 7). No sig-
nificant improvement over level 1 indexing was found.

"Effect of Aggregate Functions"

The inclusion of aggregate functions in query sets 4

and 5 was tested. The number of result records are shown in
Table MINI. 8 and the response times are shown in Table
MINI. 9. In Figure 7.8 the time-to-last of query set 5 with
and without the aggregate function are compared. The per-
formance difference was not important until the result sizes
increased beyond 10,000 records. Then the cost of perform-
ing the aggregate function became significant. Table
MINI. 10 displays the response time values for aggregate
queries with level 2 indexing. Here significant decreases
were found in response times for queries wherein the aggre-
gations were based on groupings by indexed attributes. In
queries qx4.3, qx5.4, and qx5.5, the time-to-last values
were much smaller when the attribute to be grouped for
aggregation was indexed.

-47-

1 0 1 00 1 000 1 0000
q5-5 q5-2 q5-1

q5-6 q5-4 q5-3

of records retrieved

Figure 7.6: Effect of Buffering (10 MB Database)

-48-

Figure 7.7: Effect of Sorting (10 MB Database)

-49-

1 000

1 00

aggregate

/
/ *

10
|

1 00 | 1000 1)0000 T
q5-5 q5-6 q5-2 q5-4 q5-

q5-3
of records retrieved

Figure 7.8: Effect of Aggregation (10 MB Database)

7.2.2 Multiple Relation Queries.

"Response Time vs. Query Complexity"

The multiple relation result sizes are given in Table
MINI. 11. Similar to the single relation queries, within
each query set, the number of records retrieved reflected
the complexity and makeup of the query conditions. The
benchmark results provided several clear observations.
Query set 10, the four relation query, did not execute under
any conditions. Multiple relation queries would only run
with level 1 and level 2 indexes. Thus, at a minimum,
unique indexes on relational keys must be provided for sa-
tisfactory join performance.

Table MINI. 12 contains the performance data for the
multiple relation queries with level 1 indexing. Figure 7.9
shows the effect of the increasing database size on the
time-to-last performance of queries q8.1, q8.2, and q8.4.
The behavior was approximately linear on a log scale. Other
test queries had similar performance behavior.

"Response Time vs. Indexing"

The effect of indexing on multiple relation queries
provided a similar observation as in the single relation
case. Secondary key indexes were valuable when they could
be used effectively in the query predicate. The performance
data for level 2 indexing is found in Table MINI. 13.

Consider the time-to-last data in the following Table.

Table 7.1: Multiple Relation Index Effect (10 MB Database)

Response Time is Milliseconds

Query Level 1 Indexes Level 2 Indexes

q6-2 654,420 399,890
q6-3 1,358,270 1,344,760

q7-2 2,973,060 457,830
q7-3 2,975,690 2,963,660

q8-2 7,729, 520 223,200
q8-3 7,837, 480 8,017,500

For query sets 6, 7, and 8 the second query (e.g., q7-
2) added an equality selection condition on an attribute
that was indexed under level 2 indexing. The improvement in
response time was dramatic when an index on the selection
attribute was placed on the database as shown in the above

-51-

1 1

3 . 5MB 6 . OMB
database size

1 0 . OMB

Figure 7.9: Database Size vs. Time to Last Record

-52-

data. The third query in these query sets added another
equality selection condition to the predicate connected by
an 'OR' operation. For example, query q7.3 is:

q7-3: select per s_data . ssn , citizen, vet_pref
from pers_data, pers_misc
where pers_data. ssn = pers_misc.ssn
and handicap = '01"* or handicap = '49';

The level 2 indexing, however, provided no performance im-
provement over the level 1 indexes, even though the OR'ed
attributes were indexed. These examples provide clear evi-
dence for the discussion in the previous section that index-
ing is not always beneficial in a minicomputer database.
Here the presence of the 'OR' operation did not lead to ef-
ficient index use on the queries.

"Special Studies"

The following observations are based upon the response
time data on the special case multiple relation queries.

1. Order of query condition. The rearrangement of
clauses in the query condition resulted in an im-
provement in response time. On the 3.5 MB database
query scl-1 had a time-to-last value of 1330 mil-
liseconds while query, scl-2 ran in 630 milliseconds.
On the 6 MB database query scl-1 ran in 1250 mil-
liseconds and scl-2 ran in 680 milliseconds. Simi-
larly, on the 10 MB database scl-1 ran in 1410 mil-
liseconds and scl-2 ran in 660 milliseconds. The
tested database system did not seem to recognize when
identical clauses in a query were rearranged. Dif-
ferent access strategies seemed to be produced.

2. Implicit vs. explicit join. The implicit vs. expli-
cit join queries were run on the 3 different database
sizes. The resulting data are presented here:

Table 7.2: Response Time Data for Special Case 2

Response Time in Milliseconds

Query
Time to First Time to Last

3 . 5MB 6MB 10MB 3. 5MB 6MB 10MB

sc2-l
sc2-2

1,460
145,560

1,420
148,670

1,410
147, 730

1,490
283,090

1,420
547,050

1,650
902,920

-53-

As the data shows, the system performed very poorly
on the explicit query. As in the first special case,
the minicomputer database system did not appear to
recognize certain types of identical queries. This
performance was not attributed to the system archi-
tecture, however.

3. Join optimization. The join optimization test was
run on the three database sizes. On the 3.5 MB data-
base the result values for time-to-last were:

Database System Optimization
379,260 ms.

Simulated Sort/Merge
193,290 ms.

On the 6 MB database the result values for time-to-
last were:

Database System Optimization
839,140 ms.

Simulated Sort/Merge
365,910 ms.

On the 10 MB database the result values for time-to-
last were:

Database System Optimization
1,388,450 ms.

Simulated Sort/Merge
662,320 ms

.

It was observed that the tested database system query stra-
tegy resulted in response times that were nearly double the
response times of the sort-merge strategy that was simulated
with the other 3 queries. It can be concluded that this
particular database system did not take full advantage of
the sort-merge join optimization techniques that were bene-
ficial for many queries. Again, however, this result cannot
be attributed to an architecture weakness, but to the par-
ticular database system implementation.

7.2.3 Updates.

-54-

The performance results for the updates are found in
Table MINI. 14. Since no records were retrieved, only one
response time figure is presented. The following observa-
tions are made.

1. The updates would only run with indexes. Only
response times for level 1 and level 2 indexes are
given

.

2. The extra overhead of updating additional indexes is
clearly seen in queries qI-2 and qD-3 on the EDUCA-
TION relation. In these two queries, three level 2
indexes had to be updated when a record was inserted
into or deleted from the relation. With level 1
indexes, only one index had to be updated. The con-
clusion is that additional indexes may significantly
impact performance during updating in a minicomputer
database system.

7.2.4 Multiple User Results.

Multiple user tests with 1, 2, and 3 users were run. A
random job script with 5 single relation queries and 4 mul-
tiple relation queries was selected. The job script con-
sisted of queries {ql-1, q2-2, q3-3, q4-4, q5-5, q6-5, q7-7

,

q8-3«, q9-2). The runs were made on the 6 MB database with
level 1 indexes. The job script was varied in three ways to
test the effect of potential conflict and data locking. In
order 1, the job scripts for each user were identical and in
the same order. In order 2, one of the job scripts was re-
versed. In order 3, the job scripts for each user were
scrambled. The response times are recorded for the comple-
tion of the job scripts of queries. The times in the table
below are in seconds.

Table 7.3: Performance Data for Multiuser Tests
(6 MB Database)

Response Time in Seconds

of users Order 1 Order 2 Order 3

1 8,435.95 8,339.69 8, 511. 58

2 15,696. 23 15,029.96 15,673.71

3 23,626.54 23,639.76 23,631.29

This data is graphed in Figure 7.10. The following observa-
tions are made:

-55-

Figure 7.10: Multi-User Results (6 MB Database)

-56-

1. Rearranging the order of the queries in the job
script had no effect on the response times.

2. The graph clearly shows the linear increase of the
response times over the range of users in the study.

7.2.5 Background Load Results.

To test the effect of a background load on database
performance, a sort routine was designed and programmed on a
medium size data file. This job was estimated to be 75% CPU
intensive and 25% I/O intensive. Running alone on a dedi-
cated VAX 11/750 the sort routine had an average response
time of 1,106.29 seconds.

Two job scripts were built for this benchmark. Job
script 1 contained all of the single relation query sets (1
- 5) . Job script 2 contained the multiple relation query
sets 6, 7, and 9. Each job script was run with 0, 1, 2, and
3 background jobs and the response times of the job scripts
and the background jobs was measured. The benchmarks were
run on the 6 MB database with level 1 indexes. As with all
of the benchmarks in this report, the costs of the 'runner'
program was considered as negligible.

The performance effects of running a background load
was measured in two ways. First the effect of the back-
ground jobs on the database job scripts was studied. The
effect of the database load on the response times of the
sort job was also studied.

The table below lists the response times of the two job
scripts as the background load was increased from 0 to 3

jobs

.

Table 7.4: Performance Data for Job Scripts (6 MB Database)

Response Time in Seconds

of
background jobs

single relation
job script

multiple relation
job script

0 6, 369. 68 T77rro.Tz

1 7, 353. 20 19,231.50

2 8, 428. 52 20,426. 44

3 9,351.03 21, 592.07

-57-

Figure 7.11 shows the linear effect that the addition of
more background jobs had on the database job scripts. This
result was expected in a minicomputer architecture.

For the reverse benchmark, the average response times
for the background sort jobs were:

Table 7.5: Performance Data for Background Jobs

Response Time in Seconds

of
background jobs

single relation
job script

multiple relation
job script

1 4,243.75 2,983.56

2 6,024.80 4,223.21

3 7,839. 60 5,352.08

The response times of the background jobs increased linearly
as the number of background jobs was increased. The most
interesting observation was that the sort job ran signifi-
cantly slower while the single relation job script was run-
ning than when the multiple relation job script was running.
This was true even though the multiple relation job script
required nearly 2.5 times more process time to complete.
This was due to the number of individual queries in the sin-
gle relation job script (30 vs. 18 in the multiple relation
job script). The CPU contention caused by activating, pars-
ing, and optimizing each single relation query affected the
sort programs to a greater extent than the handling of the
fewer multiple relation queries.

7.3 Summary

The following points summarize the major results of the
benchmark study of the minicomputer database system archi-
tecture. These points can be used as guidelines for
evaluating the performance of minicomputer database systems.
The first 6 points show results of similar nature as in the
microcomputer database benchmark. A comparison of perfor-
mance over the three tested architectures is presented in
Section 9.

1. In general, query complexity was inversely propor-
tional to the number of records retrieved. Time-to-
first-record was greater when fewer records were re-
trieved, since the system took longer to find the

-58-

21000

1 8000

8 15000

to 1 2000

I

O
4J

I

<u

6

9000

6000

3000

1

of background jobs

multiple relation
job script

single relation
job script

Figure 7.11 Background Load Results (6 MB Database)

-59-

first record. Time-to-last-record was greater when a
larger number of records were retrieved, due to the
time required to access and transmit additional
records

.

2. Indexing reduced response time if the index could be
used effectively in the query access strategy.
Several types of queries were identified that did not
allow the index to be used effectively. These cases
included queries with high hit ratios, queries with
disjunctive conditions, and queries with range condi-
tions .

3. The order in which queries were run had no influence
on performance.

4. Sorting and aggregation functions added significant
overhead to query response time.

5. Multiple relation queries (join queries) required
considerably more time to complete than single rela-
tion queries. Queries involving four relations would
not complete. Multiple relation queries would not
run on databases of any size without indexes. For
acceptable performance, indexes had to be present on
primary keys in the database.

6. The arrangement of conditions in a query had an ef-
fect on performance. This was attributed to the par-
ticular database system's implementation, not the
system's architecture.

7. Join conditions should be clearly written to identify
the attributes involved in a matching operation
(e.g., pers_data.ssn = education. ssn) . A signifi-
cantly poorer response time resulted when the same
query was tested and each join condition was made ex-
plicit (e.g., (pers_data. ssn = 300378541) AND
(education. ssn = 300378541)). This was attributed to
the particular database system's implementation, not
the system's architecture.

8. Update performance was significantly improved by hav-
ing clustered indexes on the primary keys in a rela-
tion.

9. The presence of multiple users had a linear effect on
the performance of the job scripts in the database
system

.

-60-

Adding background load jobs increased the response
times of job scripts linearly based upon the number
of background jobs on the host computer system. A
reverse benchmark showed that the performance of the
background jobs is affected by the number of database
queries entered into the database system through the
host computer system.

8. DATABASE MACHINE BENCHMARK

8.1 Benchmark Implementation and Execution

A comprehensive discussion of the system configuration,
implementation, and benchmark execution for the representa-
tive database machine architecture is given in Appendix D.

8.2 Benchmark Analysis

In this section selected analyses are presented based
upon the performance results that were obtained from execut-
ing a benchmark on the database machine. The discussion of
results is divided into five sections: single relation
queries, multiple relation queries, update queries, multiple
user results, and background load results. The resulting
performance data from the tests on the database machine are
found in Appendix C.3. There is no claim to present here a
critical analysis of the performance of any commercial data-
base machine.

8.2.1 Single Relation Queries.

One of the most important measures for a database
system's performance is the query response time. In most
on-line applications, response time is defined as the time
from the submission of the query until the query result is
available. Two different timings are important: the time
until the first result record is obtained and the time until
the last record is available. In this benchmark study, both
of these timings are analyzed.

"Response Time vs. Query Complexity"

Figures 8.1 through 8.3 show the dependency of the
response time on the query complexity and the amount of data
retrieved. Table DBM.l in the appendix contains the single
relation query result sizes. The response times for the
single relation queries with level 1 indexes are in Table
DBM.2.

Figure 8.1 shows that the time-to-first decreases as
the complexity of the queries decreases. This observation
does not differ significantly for different database sizes
of 3.5 MB, 6 MB and 10 MB. An intuitive explanation for
this result is that when the query complexity decreases,
more records are retrieved. If records are 'uniformly'

-62-

0

10.0MB
10.0MB
6.0MB

3.5MB

3.5, 6.0MB

N, •

q1-6 q1-5 q1-4 q1-3 q1-2 q1-1

queries

Figure 8.1: Query Complexity vs. Time to First Record.

10.0MB
6.0MB

3.5MB

*i 2
on
(O

i

O
i

0.

10.0MB

6.0MB

3.5MB

T.

q1-6 q1-5 q1-4 q1-3

queries

q1-2 q1-1

Figure 8.2: Query Complexity vs. Time to Last Record.

-64-

1,000.-

u
<D
oo

-t->

go

£ 1001
I

o
-t->

i

a;
E

10-^

h-q2-5 q2-4 -|_ q2-3 q2-1

1 i

1,000 10,000

of records retrieved

10.0MB
6.0MB
3.5MB

100 100,000

Figure 8.3: Records Retrieved vs. Time to Last Record.

-65-

distributed in the relation, the time for reaching the first
record should be shorter. Obviously, this result will not
be valid if indexes are used to process the query. The
breaks in the curves correspond to the introduction of the
'OR' operator in the query condition. The addition of 'OR'
had an effect of increasing the number of records retrieved.
In order to isolate the 'AND' effect it was decided not to
connect data points for the 'OR' operations in the figures.

On the other hand, Figure 8.2 shows that time-to-last
increased as the complexity of the queries decreased. Here
the factor which influenced response time to the last record
was the total number of records retrieved which is inversely
proportional to the query complexity. The curves show a
sharp jump from query ql-2 to query ql-1 for all three data-
base sizes. This is to be expected since for 6 MB, the
number of records retrieved goes from 72 to 129 records and
for 10 MB, from 78 to 163 records (Appendix C.3, Table
DBM.l)

.

Figure 8.3 further reinforces this observation. When
the time-to-last was plotted against the number of records
retrieved, the curve showed an almost linear behavior. The
initial rather 'flat' segment, where a smaller number of
records was retrieved, was influenced by the query process-
ing overhead including parsing, optimization, directory ac-
cess, etc. Obviously, this result will not be valid if
indexes are used to process the queries.

"Response Time vs. Indexing"

The effect of indexing was important for performance.
Tables DBM.3 and DBM.4 contain the performance data for the
single relation queries with level 2 indexes and no indexes,
respectively. The indexes had different effects on time-
to-first and time-to-last as the query complexity increased.
When using indexes in queries q2-l and q2-2, the time-to-
first for the three different database sizes all increased
as the complexity increased (Appendix C.3, Table DBM.3). On
the other hand, the time-to-last increased as the complexity
decreased (Appendix C.3, Table DBM. 3-cont .) . The major fac-
tor for time-to-first seemed to be the initial index search
time. Once the index table was searched, the main factor
that influenced the time-to-last performance was the time to
fetch the qualified records. This result is summarized in
the following Table 8.1.

-66-

Table 8.1: Response Times with Level 2 Indexes

Response Time in Milliseconds

Query

q2-l
q2-2

Time to First Time to Last

3 . 5MB
867

1,816

6MB
766

1,450

10MB
750

1,117

3. 5MB
189,733
29,133

6MB
359,150
37, 533

10MB
599,700
51,434

The performance of query execution did not always bene-
fit from the use of indexes. This point was recognized for
all of the tested database systems. The benefit of indexes
is influenced by the following parameters:

1. Hit Ratio. The hit ratio refers to the percentage of
records retrieved from a relation. Indexes are use-
ful for retrieving a relatively low percentage of the
file because they can avoid the searching of the en-
tire relation sequentially. To retrieve a large
amount of data, however, the extra index accesses be-
come a burden and sequential searching could be more
efficient. The time-to-last performance in Tables
DBM.3 and DBM.4 showed that the high hit ratio penal-
ized the performance of queries 1-2, 1-3, 1-4, 1-5
and 1-6. The hit ratios of these queries can be
determined from Table DBM.l as 55.8%, 56.5%, 38.7%,
13.9% and 21.7% respectively.

2. Disjunctive Index. The use of disjunctive condition
(terms connected by 'OR') in a query can sometimes
make index processing more difficult. It is well
known that if one of the terms in the disjunction is
not indexed, then any other index in the condition is
not useful. If all the terms are indexed or if the
terms in a disjunction use the same index, then the
performance depends on the particular implementation.
In these benchmarks, a performance penality for dis-
junctive index was observed on queries 2-3, 2-4 and
2- 5.

3. Range Index. The use of an index to solve a range
query may have a similar effect as the disjunctive
index. This effect was observed on queries 3-4, 3-5,
3- 6, 5-4 and 5-6.

"Effect of Buffering"

-67-

In order to determine if there was any buffering effect
among queries accessing the same set of relations, two dif-
ferent mixes of queries were run. The first set of query
mix ran similar queries in sequence (Table DBM.5). The
response time can be, reduced if the system is able to take
advantage of the data kept in the buffer from previous
accesses. The second query mix ran queries in random order
(Table DBM.2). Figure 8.4 shows that the response time to
the last record retrieved was not reduced significantly by
running similar queries for any number of records retrieved.
The difference in response times ranges from 366 mil-
liseconds for 3615 records to 217 milliseconds for 33,000
records - insignificant amounts. A similar result is ob-
served on the tested minicomputer database system.

"Effect of Sorting"

Next the effect of sorting on the response time is ex-
amined. Table DBM.6 contains the performance data for the
single relation queries with sorting. Figure 8.5 demon-
strates the significant increase in response time when query
results must be sorted. The comparison was made between
similar query sets. One set required sorting the resulting
records, the other did not. The response time to the last
record retrieved was significantly longer for the set which
required sorting, regardless of the number of records re-
trieved. For example, q2-l requires 591,633 milliseconds,
and q2-l with a sorted result requires 1,080,216 mil-
liseconds .

The difference between the response times to last
record retrieved also increased with the number of records
retrieved. For example, q2-5 and q2-5 with sorting re-
trieved 170 records and the difference between the response
times was 7916 milliseconds. For q2-l and q2-l with sorting
retrieved 33,000 records, and the difference was 488,583
milliseconds. Since sorting involves a non-polynomial com-
plexity, this result was expected.

"Effect of Aggregate Functions"

Table DBM.7 contains the result sizes for the bench-
marks run on queries with aggregate functions. Table DBM.8
contains the response time for the queries with level-1 in-
dex. The overhead of aggregation increased greatly as the
number of records retrieved increased in the queries.

-68-

buffer use

no buffer use

Figure 8.4: Effect of Buffering (10 MB Database).

-69-

with 'order by'

no 'order by'

1,000-

100 -

10- r
100

-f—r s t ill

q2-5
Tooo

t f T » I lj

10000
T f t T

j

1000000

q2-4
q2-3 q2-1

of records retrieved

Figure 8.5s Effect of Sorting (10 MB Database)

8.2,2 Multiple Relation Queries.

Several benchmark tests were run using the multiple re-
lation query sets 6 through 9. The result sizes of the
queries is shown in Table DBM.9. Table DBM.10 holds the
response times of the multiple relation queries with level 1

indexing. Tables DBM.ll and DBM.12 contain the response
times of the queries with level 2 indexes and no indexes,
respectively

.

"Response Time vs. Indexing"

Of particular interest was the effect of indexing on
the join performance. To process a join without using in-
dexing, most systems use a nested loop technique. That is,
for each record in the first relation, the entire second re-
lation is accessed. The complexity for this type of algo-
rithm is N**2 where N is the number of records (or pages)
for each relation. Index support improves this algorithm by
providing indexed access to the second relation and greatly
reducing the complexity.

Figure 8.6 shows that the benefit of using clustered
indexing was significant when the indexes were involved in
the join. For the query set considered, the response times
for queries using the index (level 2) were 3984, 3433, 4233
and 4984 milliseconds versus 107,834, 199,066, 693,250, and
617,567 milliseconds, respectively, when no indexes were
used. The same beneficial effect of indexes was found in
the minicomputer tests.

"Join Saturation Point"

Figure 8.7 shows that there was a significant jump for
both time-to-first and time-to-last between database sizes 6

MB and 8 MB. This figure shows the data for query q6-l;
however, all multiple relation queries have a similar
behavior (see Table DBM.10). This could reflect the partic-
ular buffer management techniques being used by the system.
Clearly, a saturation point was reached when the benchmark
database approached 8 MB and the multiple relation join per-
formance deteriorated after that point. Note that the sa-
turation point of 8 MB in this case should not be interpret-
ed as the capacity of the particular database machine. The
saturation point will be dependent on the workload variables
and machine configuration. While a similar saturation point
in the minicomputer database system was not observed, this
is not considered to be a result of the system architecture.

"Special Studies"

-71-

Figure 8.6: Effect of Indexing (6 MB Database).

Figure 8.7: Database Size vs. Response Time
for Multiple Relation Query q6-l.

The following observations are based upon the response
time data on the special case multiple relation queries.

1. Order of query condition. The rearrangement of
clauses in the query condition resulted in no signi-
ficant change in response time. On the 6 MB database
query scl-1 ran in 1384 milliseconds and scl-2 ran in
1100 milliseconds. Similarly, on the 56 MB database
scl-1 ran in 288067 milliseconds and scl-2 ran in
287584 milliseconds.

2. Implicit vs. explicit join. The implicit vs. expli-
cit join queries (queries sc2-l and sc2-2) were run
on 3 different database sizes. The resulting perfor-
mance was:

Table 8.2: Special Case 2 Results

Response Time in Milliseconds

Query

sc2-l
sc2-2

Database Size

3 . 5MB
1,250
1,333

6MB
1,400
1,017

10MB
50,700
51,600

As can be clearly seen from the data, both queries
performed identically. Thus, the database system
recognized that both queries were equivalent.

3. The database machine performance on the first two
special case tests differs significantly from the
results on the minicomputer. The minicomputer data-
base system did not recognize equivalent queries
while the database machine system did. These differ-
ences are not attributed to the system architectures,
however, but to the database system implementations.

4. Join optimization. The join optimization test pro-
vided some interesting results. The test was run on
the 6 MB and the 56 MB databases. On the 6 MB data-
base the results were:

Database Machine Optimization
198, 017 ms.

Simulated Sort/Merge
128,483 ms.

On the 56 MB database the results were:

-74-

Database Machine Optimization
1,990,567 ms.

Simulated Sort/Merge
1,488,299 ms.

It was observed that the database machine query strategy
resulted in a higher response time than the simulated
sort/merge strategy. On the 6 MB database the sort/merge
strategy resulted in a 54% decrease in response time. On
the 56 MB database the sort/merge strategy resulted in a 38%
decrease in response time. Therefore, the database machine,
similarly to the tested minicomputer database system, did
not consider the sort-merge join optimization techniques
that were beneficial for some join queries.

8.2.3 Updates.

The performance results for the updates are found in
Table DBM.13 in Appendix C.3. The following observations
are made.

1. The updates were executed on the 6 MB database with
level 1 indexes and on the 10 MB database with no
indexes. Little difference was observed based upon
size and indexing, except for queries qD-3 and qM-2.
The larger database with no indexes required a signi-
ficantly greater time in these cases. By looking at
the updates it was noted the condition in both
queries contained a restriction on the SSN primary
key. The absence of an index required a sequential
search of the record to delete and modify. Thus, the
increased response time.

2. The updates were run on the 56 MB database with all
levels of indexing. Identical performance was ob-
served except for updates qD-2 and qM-1 where the da-
tabase with no indexing performed significantly poor-
er. Again, the basis of the poor performance can be
attributed to the absence of the index on the CODE
primary key in the LEGAL_AUTH table.

The conclusion drawn from both of these observations is
that indexes on primary keys are helpful for satisfactory
update performance in the database machine. The identical
result holds for the other tested architectures.

-75-

8 ,2.4 Multiple User Results,

Multiple user tests were run with 2 users and with 3

users. A random job script with 5 single relation queries
and 4 multiple relation queries was selected. In one test
each user ran the script in the same order (order 1) . In
another test the order (order 2) of the scripts were scram-
bled. The performance results are shown in Figure 8.8. The
following observations are made:

1. The presence of two users approximately doubled the
response times of the job scripts over the single
user times. The different orders had little effect.

2. The three user test showed a similar effect on per-
formance. Response times approximately tripled over
the single user times. The ordering of the queries
in the different job scripts had an important impact,
however. In the three user run with the job scripts
in the same order, one of the users became 'locked'
and did not complete. This phenomenon was inexplica-
ble.

The performance data for the multiple user tests on the
database are presented in Table 8.3. The performance trends
are similar to the minicomputer multiple user tests.

Table 8.3: Performance Data for Multiuser Tests
(6 MB Database)

Response Time in Milliseconds

of Users Order 1 Order 2

1 1,024, 251 1,024, 251
2 1,732,781 1,823,651
3 2,721,616

8.2.5 Background Load Results.

The purpose of the database machine architecture is to
off-load database processing onto a separate processor.
Only a small interface program remains in the front-end com-
puter. In this way database processing will have little
performance effect on the front-end computer processing and
vice versa. Any background load on the VAX 11/750 system
was found to have a negligible effect on the DBM benchmark
results. This is a major architectural difference between
the host computer database systems and a database machine.

-76-

Figure 8.8: Multiple User Response Times (6 MB Database).

-77-

8.3 Summary

The following points summarize the major results of the
benchmark study of the database machine architecture. These
points can be used as guidelines for evaluating performance
of database machines. The first 4 points show results simi-
lar in nature to the microcomputer and minicomputer database
benchmarks. A comparison of performance over the three
tested architectures is presented in Section 9.

1. In general, query complexity was inversely propor-
tional to the number of records retrieved. Time-to-
first-record was greater when fewer records were re-
trieved, since the system took longer to find the
first record. Time-to-last-record was greater when a
larger number of records were retrieved, due to the
time required to access and transmit additional
records

.

2. Indexing reduces response time, if the index can be
used effectively in the query access strategy.
Several types of queries were identified that did not
allow the index to be used effectively. These cases
include queries with high hit ratios, queries with
disjunctive conditions, and queries with range condi-
tions .

3. The order in which queries are run had no influence
on performance.

4. Sorting and aggregation functions added significant
overhead to query response time.

5. Multiple relation queries (join queries) required
considerably more time to complete than single rela-
tion queries. Queries involving four relations would
not complete. Database size had a significant effect
on the performance of multiple relation queries.
Results on the 8 MB database showed markedly de-
creased performance over the results on the 6 MB da-
tabase .

6. The arrangement of conditions in a query had no ef-
fect on performance.

7. Writing a query with explicit join conditions or im-
plicit join conditions had no effect on performance.

-78-

8. Update performance was significantly improved by hav-
ing clustered indexes on the primary keys in a rela-
tion.

9. The presence of multiple users had a linear effect on
the performance of the job scripts in the database
system.

10. Background loads had no effect on the performance of
queries in a back-end database machine.

-79-

9. COMPARATIVE BENCHMARK ANALYSIS

The benchmark results from the three database systems
support several significant comparisons of the architectures
that the systems represent. The three architectures dis-
cussed in this section are a microcomputer system (MRS) , a
minicomputer system (ORACLE) , and a database machine (IDM-
500) . First, it is important to note that a majority of the
benchmark studies found similar performance patterns over
all three architectures. In summary, the following general
observations can be made for each of the benchmarked sys-
tems .

1. Query Type . Each system supports all the query types
that were tested; single relation queries, multiple
relation queries, updates, sort queries, and aggrega-
tion queries.

2. Order of Query Execution . This factor had no effect
on response time in any system tested, except for the
phenomenon mentioned in Section 8.2.4.

3. Indexing . The use of indexing was found to be valu-
able for queries that used the indexes effectively.
Cases were recognized, however, where indexing did
not improve system performance and, in some cases,
actually decreased performance. These observations
were made across all systems.

4. Sorting . The addition of sorting to a query was
costly for all systems.

5. Aggregations . Aggregation functions also decreased
the performance of queries in all systems.

6. Special Case Studies . While several interesting ob-
servations can be made from the special case studies
of rearrangement of query conditions, implicit vs.
explicit join conditions, and simulated optimization
methods, performance was a result more of the partic-
ular system implementation than of the system archi-
tecture. Therefore, it is felt that no major archi-
tectural differences can be cited.

Based upon the benchmark results, seven areas were
found in which the database system architecture had a signi-
ficant effect upon the capabilities and performance of the
database system. These areas ares

-80-

1. Query Complexity
2. Number of Records Retr ieved
3 . Database Size
4. Number of Users
5 . Background Load
6. Database System Loading and Set-Up
7. System Re 1 i ab i 1 i ty .

The first five factors had a pronounced effect upon the per-
formance data that were able to be gathered in the benchmark
tests. The final two areas affected the execution of the
benchmark. The architectural comparisons for these factors
are based upon the data and experiences obtained from run-
ning the benchmarks.

9.1 Query Complexity

The principal architectural difference was that the mi-
crocomputer database system was not able to handle join
queries with more than two relations in a non-procedural
manner. A user is required to form such a query with nested
blocks. The benchmark found that the placement of different
size relations in the inner and outer blocks had a signifi-
cant impact on the performance of the query. It was also
found that all of the tested systems could not run the test-
ed four relation query set. In both the single relation and
multiple relation tests, query complexity directly affected
the number of records retrieved. More complex queries re-
trieved fewer records because of the more selective condi-
tions .

9.2 Number of Records Retrieved

Two sets of comparisons were made under this topic.
First, the performance of the microcomputer architecture is
compared with the minicomputer architecture. This study
concentrated on the effect of differing architectural capa-
cities of host computer database systems. In the second
study the performance effects between the front-end minicom-
puter database system versus the back-end database machine
architecture are studied.

-81-

9,2.1 Microcomputer vs. Minicomputer Architecture.

The microcomputer and minicomputer architectures were
compared on the 3.5 MB database by varying the number of
records retrieved by the test queries. Figure 9.1 and Fig-
ure 9.2 show the performance differences between the micro-
computer database system and the minicomputer database sys-
tem on time-to-first record and time-to-last record, respec-
tively. Note that the minicomputer performance data were
used as the base of the graphs.

The minicomputer database system had a significantly
better time-to-first response time for all queries tested
(Figure 9.1). For time-to-las t , the minicomputer database
system also showed faster response time for most queries
(Figure 9.2). It was interesting to see that the microcom-
puter database system actually ran several queries faster
than the minicomputer database system. Before drawing any
conclusions on this comparison the following points must be
mentioned

:

1. The performance of a system reflected the implementa-
tion techniques used. A given system's performance
changed if the implementation was improved.

2. The microcomputer database system was run on a much
slower and lower priced computer than that of the
minicomputer database system. One can expect a very
significant performance gain if the microcomputer da-
tabase system was benchmarked on a minicomputer.

3. The minicomputer database system was a more complex
system with several capabilities the microcomputer
did not offer; such as concurrency control for multi-
ple users, the ability to process more complex
queries, and recovery features.

Thus, it seemed that the relative simplicity of the micro-
computer database system allowed it to be faster for certain
queries. In most cases, however, the minicomputer system
provided significantly better response times. The extensive
capabilities also set the minicomputer system apart from the
microcomputer system.

9.2.2 Minicomputer vs. Database Machine Architecture.

-82-

12

u

- 9

3

oni
£

0

u c
<u 7
1/1 z

0] 6
A 3
i. C
Ik.

i

•-4

£ 5
c
—J w

1

te

3̂
»

E
CO 3

0
-
0
•H 2
z

1

10 100 iToDO

of records retrieved

io;ooo

Figure 9.1: Microcomputer vs. Minicomputer Architectures
Time-to-First Difference (3.5 MB Database, Level 2 Indexes)

-83

120

u
o

3 90a
s0
o

u C

Is 60

CQ

«o C

13
30

-&
S
O

§ c

u
o

2C

-60

-70

10

© Time to First

Time to Last

iu i Lit . 1 99
JL-I U I I I 1i: 9

-i »
i

' J _» L

1 I .

'

i do i ,doo

of records retrieved

10,000

Figure 9.2: Microcomputer vs. Minicomputer Architectures
Time-to-Last Difference (3.5 MB Database, Level 2 Indexes)

-84-

The comparisons between the minicomputer architecture
and the database machine architectures provided some very
interesting observations. The database machine performance
data was used as the base of the graphs in this section.
Figures 9.3 and 9.4 show the time-to-first record and time-
to-last record data for the single relation queries on the
3.5 MB database using level 2 indexes. Figure 9.3 shows
that in every query the minicomputer architecture had better
time-to-first performance than the database machine archi-
tecture. This clearly illustrated the effect of the 9600
baud data channel that connected the front-end host computer
with the database machine. The delay of sending the query
to the database machine and receiving the first record from
the machine imposed a significant delay for the time-to-
first value across all queries independent of the number of
records eventually retrieved.

In Figure 9.4, the time-to-last data demonstrated the
advantages of the database machine architecture. In order
to compare the scales of Figures 9.3 and 9.4, the time-to-
first data has been included on both graphs. It is clear
that the t ime- to-f irst performance disadvantage of the data-
base machine architecture was not significant when compared
with its advantage in the time-to-last performance. Of
course, the relative importance of the time-to-first and the
time-to-last performance was dependent upon the particular
appl icat ion

.

Note that the amount of the performance difference
changed as the number of records retrieved varied. For
queries that retrieved less than 100 records the performance
difference was negligible. Note that both systems had level
2 indexes. Thus, fast retrieval of the small set of result
records was expected on both architectures.

The major performance difference was observed in the
medium range of records retrieved, between 100 and 2000
records. Here the advantages of a specialized hardware and
software database system in a back-end machine were ap-
parent. The database machine had significantly better
time-to-last performance for this range of queries. For the
range of records retrieved between 5000 and 10,500 records
the performance differences were relatively insignificant.
The reason was that the total time-to-last for retrieving
this number of records was quite large. In relationship to
the great response time, the performance differences between
the two architectures were not significant.

-85-

4)

c
•H

€ (

2
<U—. CO

u to

o Q -

v»
fl

- I

eg

jj

3
Cu
s -3

o

eH

4-H 1—i—i 1 1 » A » i » |*

I

1

H 1 1 1—I l I I.

.4

10 160 1 ,'ooo

t of records retrieved

10,'000

Figure 9.3: Minicomputer vs. Database Machine Architectures
Time-to-First Difference (3.5 MB Database, Level 2 Indexes)

Single Relation Queries

-86-

15C -

e

o
<z

z
a

- 3 100

— OD

• 3
° C

$ B 50
— u- a

u
a
£
0
o

s <
» J"

I t

9—©- Time to First

» Time to Last

>—«—t—t—

i

25

10 iob 1 ,boo

of records retrieved

10,000

Figure 9.4: Minicomputer vs. Database Machine Architectures
Time-to-Last Difference (3.5 MB Database, Level 2 Indexes)

Single Relation Queries

-87-

.5

c
•f-4

JZ
o

z
a

—^ 05

«" "it
'—

jj

wi a
i_

^ 2O c
'2

a;
~

.= u

3 -2
&
e
0
o

c
•H

0 t till 1 it I til «L I l_ S. ' * * * i -> ,-4—r>——I I.IJI » .
'

* 4

-3.5

10 100 1,000

of records retrieved

10,000

Figure 9.5: Minicomputer vs. Database Machine Architectures
Time-to-First Difference (10 MB Database, Level 2 Indexes)

Single Relation Queries

-88-

- 600
tu

c

£,
O
A3 300
z

05

•»>

a
«-» Q
* a, 300

11
J. E

.r u
«-» a

4-1

3
a
s
0
u

c

s

200

100

100

Time to First

Time to Last

%1 | 4 j JlJ 1 I I I I CO

10 100 1,000

of records retrieved

10,000

Figure 9.6: Minicomputer vs. Database Machine Architectures
Tirae-to-Last Difference (10 MB Database, Level 2 Indexes)

Single Relation Queries

-89-

The data in Figures 9.5 and 9.6 demonstrate that the
above observations also held for the performance data found
on the 10 MB database with level 2 indexes. The minicomput-
er database system had better time-to-first response time
over the complete range of records retrieved (Figure 9.5).
The database machine architecture had better time-to-last
response time than the minicomputer architecture (Figure
9.6). As on the 3.5 MB database, the performance difference
varied based upon whether a small number of records was re-
trieved (1-100 records) , a medium number of records was re-
trieved (200-10,000 records), or a large number of records
was retrieved (10,000-33,000 records). The largest relation
in the 10 MB database contained 33,000 records.

Next the performance differences between the minicom-
puter architecture and the database machine architecture for
the multiple relation queries on the 6 MB database with lev-
el 2 indexes were studied. The time-to-first data is
graphed in Figure 9.7 and the time-to-last data is graphed
in Figure 9.8. Again, the minicomputer system had a better
time-to-first performance. Due to the complexity of join
processing, however, this better performance was not as con-
sistent as in the single relation cases.

The time-to-last data did not demonstrate the differ-
ences in performance (based upon the number of records re-
trieved) that were seen in the single relation graphs. The
database machine architecture had a consistently better per-
formance across the entire range from 1 to 20,000 records
retrieved. It was concluded that multiple relation queries
required the use of architecturally dependent access stra-
tegies and the result was independent of the number of
records eventually retrieved. Therefore, the speed advan-
tages of the database machine architecture were observed for
all of the tested multiple relation queries.

9.3 Database Size

In the benchmarks, the size of the database was varied
from 3.5 MB to 56 MB. The database machine was tested on
database sizes of 3.5 MB, 6 MB, 8 MB, 10 MB, and 56 MB. The
minicomputer database system was tested on database sizes of
3.5 MB, 6 MB. and 10 MB. The microcomputer database system
was only able to run the 3.5 MB database. The microcomputer
architecture was limited by memory capacity and storage
capacity. The limited memory capacity for handling buffers
and index workspace, in particular, caused many queries to
be aborted. The microcomputer architecture could not sup-
port databases of the size that could be handled easily by
the minicomputer and database machine architectures.

-90-

5

a
c

s
a

- j:

'

—

1

jj

° 5

_ 0)

JJ

3
C.
E
0
o

10

• 20

30

-40

_t —L—t-L-i-l T
i 1 . . . f

JT

—*—i i j

10 100 1,000

of records retrieved

10,000

Figure 9.7: Minicomputer vs. Database Machine Architectures
Time-to-First Difference (6 MB Database, Level 2 Indexes)

Multiple Relation Queries

-91-

2,000 _Q O
Time to First

c
•H
JZ
o

s
0)

W—» <TJu o

12
Q

^ cn

,
3

0 C
<-» -H

1
2

.5 u
«j (U

4J

3
a
s=

O
o
•H
c
•H
2

Time to Last

1,000

• f

44- » i i » t t4—' ' 1—
' ' Mjj "Air

-f—r-

-400 > i
-rr

10 100 1,000

of records retrieved

10,000

Figure 9.8: Minicomputer vs. Database Machine Architectures
Time-to-Last Difference (6 MB Database, Level 2 Indexes)

Multiple Relation Queries

-92-

A significant difference was not found in the abilities
of the minicomputer database system and the database machine
to support database sizes in the range that was tested.
While tests for the 56 MB database were run on the database
machine, the results were so inconclusive (e.g., no join
queries ran to completion within 30 minutes) that a similar
set of tests on the minicomputer system was not run.

In Figure 9.9 the average response time in seconds for
single relation queries for each system over the tested da-
tabase sizes is shown. The average was taken over all
queries tested using equal weights. In Figure 9.10 the
average response time in seconds for multiple relation
queries for each system is shown. For the graph in Figure
9.10 certain response time values for queries that exceeded
30 minutes were extrapolated from measured performance data.
The extrapolation was performed by recording the percentage
increase in average response time on query set 6 between the
6 MB and 8 MB databases and the 6 MB and 10 MB databases.
Then this percentage increase was applied to the average
response time over all multiple relation query sets on the 6

MB database to find the estimated average response times in
Figure 9.10 for the 8 MB and 10 MB databases.

It was concluded that both the minicomputer and data-
base machine architectures tested can support databases from
3.5 MB to 10 MB with varying degrees of efficiency. The da-
tabase machine seemed to have better performance for the
cases tested.

9.4 Number of Users

Multiple user tests were run on the minicomputer and
database machine database systems. The microcomputer system
was tested as a dedicated system; architecturally unable to
support more than one user. Figure 9.11 shows the response
time in seconds for a specially designed job script on the
two systems as the number of users varies from 1 to 3. Both
architectures can support multiple users. The performance
of both systems degraded linearly with the number of users
in the system. Thus no architectural differences were ob-
served .

-93-

I

I

I

Figure 9.9: Database Size vs. Average Response Time
Single Relation Queries

-94-

Figure 9.10: Database Size vs. Average Response Time
Multiple Relation Queries

-95-

Figure 9.11: Multi-User Architecture Comparison

-96-

9.5 Background Load

One of the major advantages of the database machine ar-
chitecture was that it relieved the front-end computer sys-
tem of database processing. The effect of the load on the
front-end VAX 11/750 was found to have a negligible perfor-
mance effect on the database machine processing. The back-
ground load tests on the minicomputer database system
resulted in a significant increase in the job script
response time as more background jobs were added on the host
VAX 11/750. Figure 9.12 illustrates the performance effects
of adding background jobs for the two tested architectures.

9.6 Database Loading and System Set-Up

The database system loading and set-up procedures
varied greatly among the three systems. The microcomputer
database system required the least expertise and set-up
time. A user could master the techniques for loading and
system initialization in a short time. The other two sys-
tems required a significant effort for loading and set-up.

For the minicomputer database system several minor
set-up delays were experienced. These problems were quickly
solved by means of phone calls to the vendor's systems
staff. The load procedure of reading the database from a
tape to disk went smoothly. While testing queries, buffer
space kept running out. This was remedied by increasing the
size of a work space file.

The database machine system architecture was the most
difficult to load and set-up. Considerable time was spent
in order to configure the database machine with a compatible
disk drive. The vendor's system personnel had to come on
site to help solve these problems. The data loading pro-
cedure was extremely time consuming. Loading the 56 MB da-
tabase required over 26 hours. The bottleneck was the 9600
baud communications line between the VAX 11/750 and the da-
tabase machine. Faster communication links between the
back-end and the host computer are needed for more reason-
able data transfer time.

9.7 System Reliability

The basic architectural issue for reliability was the
presence of two computer systems in a database machine ar-
chitecture. Both systems had to function correctly for the
database machine to be operative. This effectively de-
creased the reliability of a database machine architecture.

-97-

6,000-;
DBM

<u 5,000-
e
o

I 4.000-

3,000

:

2,000

1 2

Number of Background Jobs

Figure 9.12: Background Load Architecture Comparison

-98-

For example, if the probability of failure of the VAX 11/750
is p(i) and the probability of failure of the back-end sys-
tem is p(j), then the probability of failure for the com-
plete front-end/back-end system would be

1 - (1 - p(i)) * (1 - p(j)) = p(i) + p(j) - p(i)p(j).

Such an increase in failure probability would be significant
in an environment that requires high reliability of its da-
tabase system.

During the benchmark experiments, an instance was ex-
perienced where a storm caused the database machine to crash
while the VAX 11/750 was unaffected. As a result the data-
base was unavailable until the database machine was rebooted
the next day.

9.8 Summary

The comparisons made in this section clearly show that
each of the three database system architectures has definite
advantages and disadvantages in terms of performance and
usability. It was also found that the different architec-
tures exhibit similar characteristics in some performance
parameters. While understanding the risk of over simplifi-
cation, the major observations are summarized briefly in the
following points:

1. Microcomputer Database Systems .

Microcomputer systems have limited capacities for
data storage and workspace buffers. Joining capabil-
ities may be limited to at most two relations in a
query. The principal advantages of microcomputer da-
tabase systems are their simplicity and ease of use.

2. Minicomputer Database Systems .

Minicomputer database systems performed effectively
on databases of size from 3.5 MB to 10 MB. These
systems offer extended capabilities beyond the micro-
computer database systems. These capabilities in-
clude concurrency control for multiple users, the
ability to process more complex queries, and recovery
features. At least for the system benchmarked, it
seemed that these additional capabilities were ob-
tained at the expense of lower system performance in
some areas. It was also found that running a data-
base system placed a significant load on the host

-99-

computer. The database jobs and background jobs were
shown to compete for computer resources.

3. Database Machine Systems .

Database machines provide a specialized hardware and
software component that performs most of the database
processing on the back-end of a host computer system.
Thus, database processing has a negligible resource
requirement on the host computer. Similarly to the
minicomputer database system, the database machine
performed effectively in the tested range from 3.5 MB
to 10 MB databases. In most cases it provided a fas-
ter time-to-last response time and a slightly slower
time-to-first response time than the minicomputer
system. The database machine system was found to
have a more complex set-up and load procedure and to
be slightly less reliable because of the presence of
two separate, dependent systems.

This report has concentrated on the evaluation of the
three architectures based upon performance factors. A
comprehensive evaluation procedure for selecting and
evaluating a database system must include other important
factors, such as cost, user friendly interfaces, documenta-
tion, add-on features (e.g., report writers, word process-
ing, graphics packages, etc.), and other qualitative
features essential to a particular operating environment.
The conclusions and guidelines drawn in this report must be
applied only after a thorough requirements analysis of a
particular database environment and a features analysis of
candidate database systems. Finally, as was emphasized in
the Introduction, these results should not be heavily relied
on out of context. This is a snapshot of a dynamically
changing environment, particularly in the microcomputer
hardware and software areas.

-100-

REFERENCES

[BENI 84] Benigni, D. (Editor), Yao, S., and Hevner , A. R. ,

A Guide to Performance Evaluation of Database Sys-
tems , NBS Special Publication 500-118, 1984.

[CARD 73] Cardenas, A. "Evaluation and Selection of File Or-
ganization - A Model and System," Communications
of the ACM , Vol. 16, No. 9, Sept. 1973.

[CODD 82] Codd, E. "Relational Database: A Practical Founda-
tion for Productivity," Communications of the ACM
, Vol. 25, No. 2, February 1982.

[DATE 81] Date, C. An Introduction to Database Systems
Third Edition, Addi son-Wesley Inc., 1981.

[GALL 84] Gallagher, L.J., and Draper, J.M. Guide on Data
Models in the Selection and Use of Database
Management Systems , NBS Special Publication 500-
108, January 1984.

[I DM 82a] IDM-500 Installation and Operation Manual, 201-
0500, March 1982.

[IDM 82b] IDM-500 Software Reference Manual, Version 1.4,
202-0500, 1982.

[LUO 82] Luo, D., Xia, D. and Yao, S. "Data Language Re-
quirements for a Database Machine," Proceedings of
NCC, 1982.

[MAKI 82] Makimo, T. et al . "An Evaluation of a Generalized
Database Subsystem," Journal of Information Pro-
cessing , Vol. 5, No. 1, March 1982.

[NBS 80] NBS Guideline for Planning and Management of Data-
base Applications , FIPS PUB 77, September 1980.

[NBS 84] NBS Guideline for Choosing a Data Management Ap-
proach , FIPS PUB 110, December 1984.

[ORAC 83] ORACLE Database System Manuals, Version 3.1
Oracle Database Administrators Guide,
UFI Terminal Users Guide,
UFI Terminal Users Reference Manual,
SQL/UFI Reference Manual,
HLI Call Interface Manual,
Oracle Database Administrators Guide,
Database Loader Utility - ODL,

-101-

Database Backup and Recovery,
Oracle VMS Installation Guide,
Oracle Error Messages and Codes,

[STON 80] Stonebraker, M. "Retrospective on a Database System,"ACM Transactions on Database Systems ,

Vol. 5, No. 2, 1980.

-102-

GLOSSARY

ACCESS . The operation of seeking, reading, or writing data
on a storage unit.

ACCESS METHOD. A technique for moving data between a com-
puter and its peripheral devices, e.g., serial access,
random access, remote access, virtual sequential access
method (VSAM) , hierarchical indexed sequential access
method (HISAM)

.

ACCESS TIME. The time that elapses between an instruction
being given to access some data and that data becoming
available for use.

ADDRESS. An identification (number, name, label) for a lo-
cation in which data is stored.

ATTRIBUTE. A field containing information about an entity.

AVAILABILITY. A measure of the compatibility of a system to
be used for performing its intended function, as a result
of the system's being in an operating state.

BLOCKING. The combining of two or more records so that they
are jointly read or written by one machine instruction.

BUFFER. An area of storage which holds data temporarily
while it is being received, transmitted, read or written.
It is often used to compensate for differences in speed or
timing of devices. Buffers are used in terminals, peri-
pheral devices, storage units and in the CPU.

CHANNEL. A subsystem for input to and output from the com-
puter. Data from storage units, for example, flows into
the computer via a channel.

DATABASE. A collection of interrelated data stored together
with controlled redundancy to serve one or more applica-
tions; the data are stored so that they are independent of
programs which use the data; a common and controlled ap-
proach is used in adding new data and in modifying and re-
trieving existing data within a database. A system is
said to contain a collection of databases if they are dis-
joint in structure.

DATABASE MANAGEMENT SYSTEM. The collection of software

-103-

required for using a database.

DATA DICTIONARY. A catalogue of all data types giving their
names and structures.

DATA ITEM. The smallest unit of data that has meaning in
describing information; the smallest unit of named data.
Synonymous with DATA ELEMENT or FIELD.

DATA MANAGEMENT. A general term that collectively describes
those functions of the system that provide creation of and
access to stored data, enforce data storage conventions,
and regulate the use of input/output devices.

DIRECT ACCESS. Retrieval or storage of data by a reference
to its location on a volume, rather than relative to the
previously retrieved or stored data.

DIRECTORY. A table giving the relationships between items
of data. Sometimes a table (index) giving the addresses
of data.

DOMAIN. The collection of data items (fields) of the same
type, in a relation (flat file).

ENTITY. Something about which data is recorded.

FILE. A set of similarly constructed records.

FUNCTIONAL DEPENDENCE. Attribute B of a relation R is func-
tionally dependent on attribute A or R if, at every in-
stant in time, each value of A has no more than one value
of B associated with it in relation R.

HIT RATE. A measure of the number of records in a file
which are expected to be accessed in a given run. Usually
expressed as a percentage:

Number of input transaction x 100%

Number of records in the file

INDEX. A table used to determine the location of a record.

INDEX, CLUSTERED. Records in a file are physically organ-
ized based upon the values of the indexed attribute.

INDEX, UNCLUSTERED. The indexed attribute does not effect
the physical storage of records in a file.

KEY. A data item used to identify or locate a record (or

other data grouping) .

-104-

KEY, PRIMARY. A key which uniquely identifies a record (or
other data grouping) .

KEY, SECONDARY. A key which does not uniquely identify a
record, i.e., more than one record can have the same key
value. A key which contains the value of an attribute
(data item) other than the unique identifier.

MODEL. The logical structure of the data. Schema.

MULTILIST ORGANIZATION. A chained file organization in
which the chains are divided into fragments in each frag-
ment indexed, to permit faster searching.

MULTIPLE-KEY RETRIEVAL. Retrieval which requires searches
of data based on the values of several key fields (some or
all of which are secondary keys)

.

NORMAL FORM, FIRST. Data in flat file form.

NORMAL FORM, SECOND. A relation R is in second normal form
if it is in first normal form and every nonprime attribute
of R is fully functionally dependent (q.v.) on each candi-
date key of R (E. F. Codd's definition)

.

NORMAL FORM, THIRD. A relation R is in third normal form if
it is in second normal form and every nonprime attribute
of R is nontransi ti vely dependent on each candidate key of
R (E. F. Codd's definition).

NORMALIZATION. The decomposition of more complex data
structures into flat files (relations) . This forms the
basis of relational databases.

OPERATING SYSTEM. Software which enables a computer to su-
pervise its own operations, automatically calling in pro-
grams, routines, language, and data, as needed for con-
tinuous throughput of different types of jobs.

PAGING. In virtual storage systems, the technique of making
memory appear larger than it is by transferring blocks
(pages) of data or programs into that memory from external
storage when they are needed.

POINTER. The address of a record (or other data groupings)
contained in another record so that a program may access
the former record when it has retrieved the latter record.
The address can be absolute, relative, or symbolic, and
hence the pointer is referred to as absolute , relative,
or symbolic.

-105-

RANDOM ACCESS. To obtain data directly from any storage lo-
cation regardless of its position with respect to the pre-
viously referenced information. Also called DIRECT AC-
CESS.

RANDOM ACCESS STORAGE. A storage technique in which the
time required to obtain information is independent of the
location of the information most recently obtained. This
strict definition must be qualified by the observation
that we usually mean relatively random. Thus, magnetic
drums are relatively non-random access when compared to
magnetic cores for main memory, but relatively random ac-
cess when compared to magnetic tapes for file storage.

RELATION. A flat file. A two-dimensional array of data
elements. A file in normalized form.

RELATIONAL ALGEBRA. A language providing a set of operators
for manipulating relations.

RELATIONAL CALCULUS. A language in which the user states
the results he requires from manipulating a relational
data base.

RELATIONAL DATABASE. A database made up of relations (as
defined above) . Its database management system has the
capability to recombine the data elements to form dif-
ferent relations thus giving great flexibility in the
usage of data.

SCHEMA. A map of the overall logical structure of a data
base

.

SECONDARY INDEX. An index composed of secondary keys rather
than primary keys.

SECONDARY STORAGE. Storage facilities forming not an in-
tegral part of the computer but directly linked to and
controlled by the computer, e.g., disks, magnetic tapes,
etc

.

SEQUENTIAL PROCESSING. Accessing records in ascending se-
quence by key; the next record accessed will have the next
higher key, irrespective of its physical position in the
file.

SORT. Arrange a file in sequence by a specified key.

TABLE. A collection of data suitable for quick reference,
each item being uniquely identified either by a label or
by its relative position.

-106-

THIRD NORMAL FORM. A record, segment, or tuple, which is
normalized (i.e., contains no repeating groups) and in
which every nonprime data item is nontransitively depen-
dent and fully dependent on each candidate key.

In other words: the entire primary key or candidate key
is needed to identify each other data item in the record
and no data item is identified by a data item which is not
in the primary key or candidate key.

TRANSFER RATE. A measure of the speed with which data is
moved between a direct-access device and the central pro-
cessor. (Usually expressed as thousands of characters per
second or thousands of bytes per second.)

WORKING STORAGE. A portion of storage, usually computer
main memory, reserved for the temporary results of opera-
tions .

-107-

APPENDIX A - PERSONNEL FILE FORMATS

-108-

RECORD LAYOUT FOR FILE: CPDFKOMl RECORD SIZE: 180 Ch
WORDS : 3 0

FILE DESCRIPTION: CPDF Transaction History File

SORT SEQUENCE - Agency (2 POS) . SSN, Eff Date, PAC

CHARACTER POSITION DATA

1 Record Type
2-3 Agency
4-5 Subelement
6-8 PAC (Per sonnel Action Code)

9-14 Effective Date (YYMMDD)
15-18 SON (Submitting Office Number)
19-22 Date of Birth (YYMM)
23-26 Service Computation Date (YYMM)
27-30 SMSA (Standard Metropolitan

Statistical Area)
31 PMIP (Presidential Management

Intern Program)
32 Filler
33 Veterans Preference

34-35 Handicap Code
36-37 SPID (Special Program Ident.)

38 Sex
39 Tenure
40 Minority
41 Citizenship
42 PATCO
43 Pay Rate Determinant

44-52 SSN (Social Security Number)
53-56 BUS (Bargaining Unit Status)

57 FLSA (Fair Labor Stnds. Auth.)
58 VEV (Vietnam Era Veteran)
59 Annuitant Indicator

60-62 Legal Authority 1

63-65 Legal Authority 2

66-68 Current Appointment Authority 1

69-71 Current Appointment Authority 2

Latest Data Values
72 FEGLI
73 Retirement
74 Position Occupied
75 Work Schedule

76-79 Occupational Code
80-81 Functional Classification
82-90 Geographic Location Code
91-92 Pay Basis
93-94 Pay Plan
95-96 Grade
97-98 Step

99-103 Salary
104 Supervisory Code

105-106 Educational Level
107-108 Year Degree Attained
109-112 Academic Discipline
113-114 Type of Appointment

-109-

RECORD LAYOUT FOR FILE: CPDFKOMl RECORD SIZE: 180 Ch
WORDS: 3 0

FILE DESCRIPTION: CPDF Transaction History File

SORT SEQUENCE - Agency (2 POS) . SSN, Eff Date, PAC

CHARACTER POSITION DATA

Previous Data Values
115 FEGLI
116 Retirement
117 Position Occupied
118 Work Schedule

119-122 Occupational Code
123-124 Functional Classification
125-133 Geographic Location Code
134-135 Pay Basis
136-137 Pay Plan
138-139 Grade
140-141 Step
142-146 Salary

147 Supervisory Code
148-149 Educational Code
150-151 Year Degree Attained
152-155 Academic Discipline
156-157 Type of Appointment
158-161 Date Entered Curr. Code (YYMM)
162-165 Date Entered Curr. Occup. (YYMM)
166-169 Process Date (YYMM)
170-180 Filler

-110-

RECORD LAYOUT FOR FILE: CPDFFFX3 RECORD SIZE: 72 Ch
WORDS: 3 0

FILE DESCRIPTION: High Utility Extract File

SORT SEQUENCE - Agency (2 positions)

CHARACTER POSITION DATA

1-6 Service Computation Date
(YYMMDD)

7-12 Date of Birth (YYMMDD)
13 Work Schedule

14-17 SON
18-22 Salary
23-26 Occupation
27-30 City
31-33 County
34-37 SMSA
38-39 Handicap

40 PRD
41-42 Pay Basis

43 Veterans Preference
44 Tenure
45 Race & National Origin
46 Position Occupied
47 Sex

48-49 Agency
50-51 Subelement
52-53 State/Country Code
54-55 Pay Plan
56-57 Grade
58-59 Step

60 Supervi sor
61-62 Education Level

63 PATCO
64-65 GS Equivalent
66-67 TOA (Type of Appointment)

68 FEGLI
69 Ci ti zenship
70 Retirement
71 Annuitant Indicator
72 VEV (Vietnam Era Veteran Ind.

-Ill-

RECORD LAYOUT FOR FILE: CPDFFFXl RECORD SIZE: 150 Ch
WORDS: 2 5

FILE DESCRIPTION: Master File

SORT SEQUENCE - Agency, SSN

CHARACTER POSITION DATA
"I
_ q Gonial ^pnir i' Nnrnhp r fci^M^

10-15 Service Comoutation Date (YYMMDD}
16-17 Retained Grade

18 Citizenshio Code (YYMMDD}
19-24 Date of Birth (YYMMDD)

2 5 Work Schedule Code
26 Status Code

27-32 Separation Date (YYMMDD)
33-36 Submitting Office Number (SON)
37-42 Eff. Date Personnel Action
43-47 Salary
48-51 OccuDation Code
52-53 Functional Classification
54-60 City, County, Geog . Location
61-64 SMSA
65-66 SDecial Proaram Identifier
67-68 Handicap Code

69 Filler (reserved field)
70 Pay Rate Determinate

71-72 Pay Basis Code
73 Veterans Preference Code
74 Tenure Code
75 Race &. National Origin
76 FEGLI
77 Retirement Code
78 Position Occupied
79 PMIP
80 Sex

81-82 Agency Code
83-84 Subelement Code
85-86 State/County Geog. Location
87-88 Pay Plan
89-90 Pay Grade
91-92 Step (or Rate)
93-9 5 Nature of Action Code

96 Surjervisorv or NonsuD./MQr.
97-98 Academic Educational Level

99-100 Year Degree Attained
i 01-1 04x \j J- i v i Aradpni i r rii cf inline
i 0 5-1 0 6 Retained Steo

i n 7 PATCH
108-109 GS-Equi valent
110-111 Retained Pay Plan
112-115 Bargaining Unit Status

116 FLSA Exemption Status
117 Vietnam Era Veteran Indicator
118 Anuitant Indicator

119-121 Legal Authority (1)

122-124 Legal Authority (2)

125-127 Current Appointment Auth. (1)

128-130 Current Appointment Auth. (2)
-112-

RECORD LAYOUT FOR FILE: CPDFFFXl

FILE DESCRIPTION: Master File

SORT SEQUENCE - Agency, SSN

CHARACTER POSITION DATA

RECORD SIZE:
WORDS

:

150 Ch
25

131-132
133-136
137-140
141-150

Type of Appointment
Date Entered Cur. Grade (YYMM)
Date Entered Cur. Occup. (YYMM)
Filler

-113-

APPENDIX B - BENCHMARK QUERIES

-114-

APPENDIX B.l - QUEL QUERY SETS
/*
/* QUERY SET # 1
/*
/* Single, small relation retrieval
/*
ql-1: range of r is RETA IN_DAT

A

retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)

ql-2: range of r is RETA IN_DAT

A

retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)
where r . RET_PAY_PLAN = "WG"

ql-3: range of r is RETA IN_DATA
retrieve (r.SSN, r.RET_GRADE, r . RET_PAY_PLAN)
where (r . RET_PAY_PLAN = "WG"

or r . RET_PAY_PLAN = "GM")

ql-4: range of r is RE TA IN_DATA
retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)
where (r . RET_PAY_PLAN = "WG"

or r . RET_PAY_PLAN = "GM")
and r.RET_GRADE > "08"

ql-5: range of r is RE TA IN_DAT

A

retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)
where (r . RET_PAY_PLAN = "WG"

or r . RET_PAY_PLAN = "GM")
and r.RET_GRADE > "08"
and r.RET_GRADE < "12"

ql-6: range of r is RE TA IN_DATA
retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)
where ((r . RET_PAY_PLAN = "WG"

or r . RET_PAY_PLAN = "GM")
and r.RET_GRADE > "0 8"

and r.RET_GRADE < "12")

or r.RET_GRADE = "07"
/*
/* QUERY SET # 2

/*
/* Single, medium relation retrieval
/*
q2-l: range of p is PERS_DATA

retrieve (p.SSN, p. RACE, p. OCCUPATION)

q2-2: range of p is PERS_DATA
retrieve (p.SSN, p. RACE, p. OCCUPATION)

where p. RACE = "C"

q2-3: range of p is PERS_DATA

-115-

retrieve (p.SSN, p. RACE, p. OCCUPATION)
where (p. RACE = "C" or p. RACE = "L")

q2-4: range of p is PERS_DATA
retrieve (p.SSN, p. RACE, p. OCCUPATION)
where (p. RACE = "C" or p. RACE = "

L
"

)

and p. SEX = "F"

q2-5: range of p is PERS_DATA
retrieve (p.SSN, p. RACE, p. OCCUPATION)
where (p. RACE = "C" or p. RACE = "

L
"

)

and p. SEX = "F"
and p . B I RTH_DATE > 550101

/*
/* QUERY SET # 3

/*
/* Single, medium relation retrieval
/*
q3-l: range of j is JOB DETAIL

retrieve (j.SSN, J.PAY_GRADE)

q3-2: range of j is JOB_DETAIL
retrieve (j.SSN, j.PAY_GRADE)
where j.PATCO = "T"

q3-3: range of j is JOB_DETAIL
retrieve (j.SSN, j . PAY_GRADE

)

where (j.PATCO = "T" or j.PATCO = "0")

q3-4: range of j is J0B_DETAIL
retrieve (j.SSN, j . PAY_GRADE

)

where (j.PATCO = "T" or j.PATCO = "0")

and j.PAY_GRADE < "11"

q3-5: range of j is J0B_DETAIL
retrieve (j.SSN, j.PAY_GRADE)
where (j.PATCO = "T" or j.PATCO = "0")

and j . PAY_GRADE < "11"
and j . PAY_GRADE > "06"

q3-6: range of j is JOB_DETAIL
retrieve (j.SSN, j.PAY_GRADE)
where (j.PATCO = "T"- or j.PATCO = "0")
and (j . PAY_GRADE < "11" and j . PAY_GRADE > "06")
or j.BARG_UNIT = "0030"

/*
/* QUERY SET # 4

/*
/* Single, large relation retrieval
/*

-116-

q4-l: range of a is AGENCY_DE SC
retrieve (a. AGENCY, a . SUBELEMENT)

q4-2: range of a is AGENCY_DE SC
retrieve (a. AGENCY, a . SUBELEMENT)
where (a. AGENCY = "BD" or a. AGENCY = "AF")

q4-3: range of a is AGENCY_DE SC
retrieve (a. AGENCY, a . SUBELEMENT)
where (a. AGENCY = "BD" or a. AGENCY = "AF")
and a. SUBELEMENT = "0 7"

q4-4: range of a is AGENCY_DE SC
retrieve (a. AGENCY, a . SUBELEMENT)
where ((a. AGENCY = "BD" or a. AGENCY = "AF")
and a. SUBELEMENT = "07")

or a. SUBELEMENT = "2 4"

QUERY SET # 5

Single, large relation retrieval

/*
/*
/*
/*
/*

q5 -1: range of e is EDUCATION
retrieve (e.SSN, e . EDUC_LEVEL)

q5-2: range of e is EDUCATION
retrieve (e.SSN, e . EDUC_LEVEL)
where e. DEGREE DATE > 80

q5-3: range of e is EDUCATION
retrieve (e.SSN, e . EDUC_LEVEL)
where (e . DEGREE_DATE > 80 or

q5-4: range of e is EDUCATION
retrieve (e.SSN, e . EDUC_LEVEL)
where (e . DEGREE_DATE > 80 or
and e.EDUC LEVEL > 13

e. DEGREE DATE < 5 5)

e. DEGREE DATE < 55)

q5-5: range of e is EDUCATION
retrieve (e.SSN, e . EDUC_LEVEL)
where (e . DEGREE_DATE > 80 or
and e.EDUC_LEVEL > 13
and e . ACAD DISC = "0506"

e. DEGREE DATE < 5 5)

q5-6: range of e is EDUCATION
retrieve (e.SSN, e . EDUC_LEVEL)
where ((e . DEGREE_DATE > 81 or e . DEGREE_DATE < 55)

and e.EDUC_LEVEL > 13
and e.ACAD_DISC = "0 506")
or e . ACAD DISC = "1701"

-117-

/* QUERY SET # 6

/*
/* Two relation retrieval - small and medium relations
/*
q6-l: range of r is RE TA IN_DAT

A

range of d is JOB_DETAIL
retrieve (r.SSN, r . RET_GRADE , d . BARG_UN IT)
where r.SSN = d.SSN

q6-2: range of r is RE TA IN_DAT

A

range of d is JOB_DETAIL
retrieve (r.SSN, r . RET_GRADE , d . BARG_UN IT)
where r . SSN = d . SSN
and j . PATCO = "T"

q6-3: range of r is RE TA IN_DATA
range of d is JOB_DETAIL
retrieve (r.SSN, r . RET_GRADE , d.BARG_UNIT)
where r.SSN = d.SSN
and (d. PATCO = "T" or d. PATCO = "0")

q6-4 : range of r is RETA IN_DAT

A

range of d is JOB_DETAIL
retrieve (r.SSN, r.RET_GRADE, d.BARG_UNIT)
where r . SSN = d . SSN
and ((d. PATCO = "T" or d. PATCO = "0")
and d . BARG_UN IT = "7 777"
and r.RET_GRADE < "08") or r . RET_PAY_PLAN = "WG"

/*
/* QUERY SET # 7

/*
/* Two relation retrieval, medium - medium
/*
q7-l: range of m is PERS_MISC

range of d is PERS_DATA
retrieve (d.SSN, d. CITIZEN, m.VET_PREF)
where d.SSN = m.SSN

q7-2: range of m is PERS_MISC
range of d is PERS_DATA
retrieve (d.SSN, d. CITIZEN, m.VET_PREF)
where d.SSN = m.SSN
and d. HANDICAP = "01"

q7-3: range of m is PERS_MISC
range of d is PERS_DATA
retrieve (d.SSN, d. CITIZEN, m.VET_PREF)
where d.SSN = m.SSN
and (d. HANDICAP = "01" or d. HANDICAP = "49")

q7-4: range of m is PERS MISC

-118-

range of d is PERS_DATA
retrieve (d.SSN, d. CITIZEN, m . VET_PREF)
where d.SSN = m.SSN
and (d. HANDICAP = "01" or d. HANDICAP = "49")
and d.SEX = "M"

q7-5: range of m is PERS_MISC
range of d is PERS_DATA
retrieve (d.SSN, d. CITIZEN, m . VET_PREF)
where d.SSN = m.SSN
and (d. HANDICAP = "01" or d. HANDICAP = "49")
and d.SEX = "M"
and m.VIET VET = "V"

q7-6: range of m is PERS_MISC
range of d is PERS_DATA
retrieve (d.SSN, d. CITIZEN, m.VET_PREF)
where d.SSN = m.SSN
and ((d. HANDICAP = "01" or d. HANDICAP = "49")

and d.SEX = "M"
and m.VIET_VET = "V")
or m .VET PREF = "*"

/*
/*
/*
/*
/*

q8

QUERY SET # 8

Two relation retrieval, large - large

-1: range of h is JOB_HISTORY
range of e is EDUCATION
retrieve (e.SSN, h. AGENCY, e . EDUC_LEVEL)
where e.SSN = h.SSN

q8-2: range of h is JOB_HISTORY
range of e is EDUCATION
retrieve (e.SSN, h. AGENCY, e.EDUC_LEVEL)
where e.SSN = h.SSN
and e . ACAD DISC = "0506"

q8-3

q8-4

range of h is JOB_HISTORY
range of e is EDUCATION
retrieve (e.SSN, h. AGENCY, e.EDUC_LEVEL)
where e.SSN = h.SSN
and (e.ACAD_DISC = "0506" or e.ACAD_DISC = "0101")

range of h is JOB_HISTORY
range of e is EDUCATION
retrieve (e.SSN, h. AGENCY, e.EDUC_LEVEL)
where e.SSN = h.SSN
and (e.ACAD_DISC = "0506" or e.ACAD_DISC = "0101")
and h.SERV DATE > "780101"

-119-

q8-5: range of h is JOB_HISTORY
range of e is EDUCATION
retrieve (e.SSN, h. AGENCY, e.EDUC_LEVEL)
where e.SSN = h.SSN
and (e.ACAD_DISC = "0 506" or e.ACAD_DISC = "0101")
and h.SERV_DATE > "7 80101"
and (e . EDUC_LEVEL > "21" or h. STATE = "??")

/*
/* QUERY SET # 9

/*
/* Three relation retrieval
/*
q9-l: range of p is PERS_DATA

range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . BIRTH_DATE , m.VET_PREF)
where p.SSN = e.SSN and e.SSN = m.SSN

q9-2: range of p is PERS_DATA
range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . B I RTH_DATE , m.VET_PREF)
where p.SSN = e.SSN and e.SSN = m.SSN
and (m.VET_PREF = "2")

q9-3: range of p is PERS_DATA
range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . B I RTH_DATE , m.VET_PREF)
where p.SSN = e.SSN and e.SSN = m.SSN
and (m.VET_PREF = "2" or m.VET_PREF = "6")

q9-4: range of p is PERS_DATA
range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . B I RTH_DATE , m.VET_PREF)
where p.SSN = e.SSN and e.SSN = m.SSN
and (m.VET_PREF = "2" or m.VET_PREF = "6")

and p. HANDICAP = "15"

q9-5: range of p is PERS_DATA
range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . B I RTH_DATE , m.VET_PREF)
where p.SSN = e.SSN and e.SSN = m.SSN
and (m.VET_PREF = "2" or m.VET_PREF = "6")

and p. HANDICAP = "15"
and e.EDUC_LEVEL > "17"

q9-6: range of p is PERS_DATA
range of e is EDUCATION

-120-

range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . B I RTH_DATE , m.VET_PREF)
where p.SSN = e.SSN and e.SSN = ro.SSN
and (m.VET_PREF = "2" or m.VET_PREF = "6 n

)

and p. HANDICAP = "15"
and (e.EDUC LEVEL > "17" or e . ACAD DISC = "2209")

/*
/* QUERY SET #10
/*
/* Four relation retrieval
/*
qlO-1: range of a is AGENCY_DESC

range of h is JOB_HISTORY
range of p is AUTH_PERS
range of 1 is LEGAL_AUTH
retrieve (a. AGENCY, p.SSN, h. SALARY, l.CODE, 1 . NAME

)

where a. AGENCY = h. AGENCY and h.SSN = p.SSN
and p. CODE = l.CODE

qlO-2: range of a is AGENCY_DESC
range of h is JOB_HISTORY
range of p is AUTH_PERS
range of 1 is LEGAL_AUTH
retrieve (a. AGENCY, p.SSN, h. SALARY, l.CODE, 1 . NAME

)

where a. AGENCY = h. AGENCY and h.SSN = p.SSN
and p. CODE = l.CODE
and a. AGENCY = "AF"

qlO-3: range of a is AGENCY_DESC
range of h is JOB_HISTORY
range of p is AUTH_PERS
range of 1 is LEGAL_AUTH
retrieve (a. AGENCY, p.SSN, h. SALARY, l.CODE, 1 . NAME

)

where a. AGENCY = h. AGENCY and h.SSN = p.SSN
and p. CODE = l.CODE
and (a. AGENCY = "AF" or a. AGENCY = "BD")

qlO-4: range of a is AGENCY_DESC
range of h is JOB_HISTORY
range of p is AUTH_PERS
range of 1 is LEGAL_AUTH
retrieve (a. AGENCY, p.SSN, h. SALARY, l.CODE, 1 . NAME

)

where a. AGENCY = h. AGENCY and h.SSN = p.SSN
and p. CODE = l.CODE
and (a. AGENCY = "AF" or a. AGENCY = "BD")
and h. STATE = "31"

qlO-5: range of a is AGENCY_DESC
range of h is JOB_HISTORY
range of p is AUTH_PERS
range of 1 is LEGAL_AUTH

-121-

retrieve (a. AGENCY, p.SSN, h. SALARY, l.CODE, 1 . NAME

)

where a. AGENCY = h. AGENCY and h.SSN = p.SSN
and p. CODE = l.CODE
and (a. AGENCY = "AF" or a. AGENCY = "BD")
and (h. STATE = "31" or h. SALARY > 29000)

QUERY SETS WITH SORTING

/*
/* QUERY SET # 1 with sorting
/*
/* Single, small relation retrieval
/*
qol-1: range of r is RE TA IN_DAT

A

retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)
order by RET_GRADE

gol-2: range of r is RETAINJDATA
retrieve (r.SSN, r.RET_GRADE, r . RET_PAY_PLAN)
order by RET_GRADE

where r.RET PAY PLAN = "WG"

qol-3: range of r is RETA IN_DATA
retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)
order by RET_GRADE

where (r . RET_PAY_PLAN = "WG"
or r . RET_PAY_PLAN = "GM")

qol-4: range of r is RETA IN_DAT

A

retrieve (r.SSN, r.RET_GRADE, r . RET_PAY_PLAN)
order by RET_GRADE

where (r . RET_PAY_PLAN = "WG"
or r . RET_PAY_PLAN = "GM"

)

and r.RET GRADE > "0 8"

qol-5: range of r is RETA IN_DAT

A

retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)
order by RET_GRADE

where (r . RET_PAY_PLAN = "WG"
or r . RET_PAY_PLAN = "GM")
and r.RET_GRADE > "08"
and r.RET GRADE < "12"

qol-6: range of r is RETAINJDATA
retrieve (r.SSN, r . RET_GRADE , r . RET_PAY_PLAN)
order by RET_GRADE

where ((r . RET_PAY_PLAN = "WG"
or r.RET PAY PLAN = "GM")

-122-

and r.RET_GRADE > "08"

and r.RET_GRADE < "12")
or r . RET_GRADE = "0 7"

/*
/* QUERY SET #2 with sorting
/*
/* Single, medium relation retrieval
/*
qo2-l: range of p is PERS_DATA

retrieve (p.SSN, p . RACE , p . OCCUPATION)
order by OCCUPATION

qo2-2: range of p is PERS_DATA
retrieve (p.SSN, p. RACE, p . OCCUPATION)
order by OCCUPATION

where p. RACE = "C"

qo2-3: range of p is PERS_DATA
retrieve (p.SSN, p. RACE, p. OCCUPATION)
order by OCCUPATION

where (p. RACE = "C" or p. RACE = "L")

qo2-4: range of p is PERS_DATA
retrieve (p.SSN, p.RACE, p . OCCUPATION)
order by OCCUPATION

where (p. RACE = "C" or p. RACE = "L")
and p. SEX = 11 F

"

qo2-5: range of p is PERS_DATA
retrieve (p.SSN, p. RACE, p. OCCUPATION)
order by OCCUPATION

where (p. RACE = "C" or p. RACE = "L")
and p. SEX = "F"
and p . B I RTH_DATE > 550101

/*
/* QUERY SET # 3 with sorting
/*
/* Single, medium relation retrieval
/*
qo3-l: range of j is JOB_DETAIL

retrieve (j.SSN, j.PAY_GRADE)
order by PAY_GRADE , SSN

qo3-2: range of j is JOB_DETAIL
retrieve (j.SSN, j.PAY_GRADE)
order by PAY_GRADE, SSN

where j .PATCO = "T"

qo3-3: range of j is JOB_DE TAIL
retrieve (j.SSN, j . PAY_GRADE)
order by PAY_GRADE, SSN

-123-

where (j.PATCO = "T" or j.PATCO = "0")

qo3-4: range of j is J0B_DETAIL
retrieve (j.SSN, j.PAY_GRADE)
order by PAY_GRADE, SSN

where (j.PATCO = "T" or j.PATCO = "0")

and j.PAY_GRADE < "11"

qo3-5: range of j is JOB_DETAIL
retrieve (j .SSN, j.PAY_GRADE)
order by PAY_GRADE, SSN

where (j.PATCO = "T" or j.PATCO = "0")

and j . PAY_GRADE < "11"

and j . PAY_GRADE > "0 6"

qo3-6: range of j is J0B_DETAIL
retrieve (j.SSN, j . PAY_GRADE)
order by PAY_GRADE , SSN

where (j.PATCO = "T" or j.PATCO = "0")

and (j . PAY_GRADE < "11" and j . PAY_GRADE > "06")
or j . BARG_UNIT = "0030"

/*
/* QUERY SET #4 with sorting
/*
/* Single, large relation retrieval
/*
qo4-l: range of a is AGENCY_DESC

retrieve (a. AGENCY, a , SUBELEMENT)
order by SUBELEMENT

qo4-2: range of a is AGENCY_DE SC
retrieve (a. AGENCY, a . SUBELEMENT)
order by SUBELEMENT

where (a. AGENCY = "BD" or a. AGENCY = "AF")

qo4-3: range of a is AGENCY_DE S

C

retrieve (a. AGENCY, a . SUBELEMENT)
order by SUBELEMENT

where (a. AGENCY = "BD" or a. AGENCY = "AF")
and a. SUBELEMENT = "0 7"

qo4-4: range of a is AGENCY_DE SC
retrieve (a. AGENCY, a . SUBELEMENT)
order by SUBELEMENT

where ((a. AGENCY = "BD" or a. AGENCY = "AF")
and a. SUBELEMENT = "07")

or a. SUBELEMENT = "24"

QUERY SETS WITH AGGREGATION

-124-

/*
/* QUERY SET # 4 with aggregation
/*
/* Single, large relation retrieval
/*
qx4-l: range of a is AGENCY_DESC

retrieve unique (a . SUBELEMENT,
SUB_CNT = count (a . NAME by a . SUBELEMENT)

)

qx4-2: range of a is AGENCY_DE SC
retrieve unique (a . SUBELEMENT,

SUB_CNT = count (a . NAME by a . SUBELEMENT)

)

where (a. AGENCY = "BD" or a. AGENCY = "AF")

qx4-4: range of a is AGENCY_DESC
retrieve unique (a . SUBELEMENT,

SUB_CNT = count (a. NAME by a . SUBELEMENT)

)

where (a. AGENCY = "BD" or a. AGENCY = "AF")
and a. SUBELEMENT = "0 7"

/*
/* QUERY SET #5 with aggregation
/*
/* Single, large relation retrieval
/*
qx5-l: range of e is EDUCATION

retrieve unique (a . EDUC_LEVEL,
SSN_COUNT = count (e.SSN by e . EDUC_LEVEL)

)

qx5-2: range of e is EDUCATION
retrieve unique (a . EDUC_LEVEL

,

SSN_COUNT = count(e.SSN by e . EDUC_LEVEL)

)

where e . DEGREE_DATE > 80

qx5-3: range of e is EDUCATION
retrieve unique (a . EDUC_LEVEL,

SSN_COUNT = count (e.SSN by e . EDUC_LEVEL)

)

where e .DEGREE_DATE > 80 or e . DEGREE_DATE < 55

qx5-4: range of e is EDUCATION
retrieve unique (a . EDUC_LEVEL,
SSN_COUNT = count (e.SSN by e . EDUC_LEVEL)

)

where (e . DEGREE_DATE > 80 or e ,DEGREE_DATE < 55)

and e.EDUC_LEVEL > 13

qx5-5: range of e is EDUCATION
retrieve unique (a . EDUC_LEVEL,

SSN_COUNT = count (e.SSN by e . EDUC_LEVEL)

)

where (e .DEGREE_DATE > 80 or e . DEGREE_DATE < 55)

and e.EDUC_LEVEL > 13
and e . ACAD DISC = "0506"

-125-

qx5-6: range of e is EDUCATION
retrieve unique (a . EDUC_LEVEL ,

SSN_COUNT = count (e.SSN by e . EDUC_LEVEL)

)

where ((e . DEGREE_DATE > 80 or e . DEGREE_DATE < 55)
and e.EDUC LEVEL > 13
and e.ACADJDISC = "0506")
or e . ACAD DISC = "1701"

SPECIAL CASE QUERIES

/*
/* Special Case 1: Arrangement of Conditions
/*

scl-1: range of p is PERS_DATA
range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . B I RTH_DATE , m.VET_PREF)
where p.SSN = e.SSN and e.SSN = m.SSN

and m.SSN = 578608501

scl-2: range of p is PERS_DATA
range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . B I RTH_DATE , m.VET_PREF)
where m.SSN = 578608501 and

p.SSN = e.SSN and e.SSN = m.SSN

/*
/* Special Case 2: Implicit vs. Explicit Conditions
/*

sc2-l: range of p is PERS_DATA
range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . B I RTH_DATE , m.VET_PREF)
where p.SSN = e.SSN and e.SSN = m.SSN

and m.SSN = 578608501

sc2-2: range of p is PERS_DATA
range of e is EDUCATION
range of m is PERS_MISC
retrieve (p.SSN, e . EDUC_LEVEL , p . BIRTH_DATE , m.VET_PREF)
where p.SSN = 578608501 and e.SSN = 578608501

and m.SSN = 578608501

/*
/* Special Case 3: Join Optimization

-126-

/*

sc3-l: range of r is RE TA IN_DAT

A

range of d is JOB_DETAIL
retrieve (r.,SSN, r . RET_GRADE , d . BARG_UNIT)
where r.SSN = d.SSN

and (d.PATCO = "T" or d.PATCO = "0")

sc3-2: range of r is RE TA IN_DAT

A

retrieve (r.SSN, r . RET_GRADE)
order by SSN

sc3-3: range of d is J0B_DETAIL
retrieve into TEMPI (d.SSN, d.BARG_UNIT)
order by SSN
where (d.PATCO = "T" or d.PATCO = "0")

sc3-4: range of t is TEMPI
retrieve (t.SSN, t.BARG UNIT)

UPDATE QUERIES

/*
/* Insertions
/*

ql-l: range of 1 is LEGAL_AUTH
append to LEGAL_AUTH (

CODE = "XXX"

,

NAME = "NAME OF REGULATION")

qI-2: range of e is EDUCATION
append to EDUCATION (

SSN = 155360283,
EDUC_LEVEL = 18,
DEGREE_DATE = 83,
ACAD_DISC = "6X6X")

qI-3: range of a is AGENCY_DE SC
append to AGENCY_DESC

(AGENCY = "XX", SUBELEMENT = "YY"

,

NAME = "NEW AGENCY", DESCRIPTION = "NEW DESCRIPTION")

/*
/* Deletions
/*

-127-

qD-1: range of a is AGENCY_DESC
delete a where a. AGENCY = "XX"

qD-2: range of 1 is LEGAL_AUTH
delete 1 where 1.C0DE = "XX"

qD-3: range of e is EDUCATION
delete e where e.SSN = 155360283

/*
/* Modifications
/*

qM-1: range of 1 is LEGAL_AUTH
replace 1 (NAME = "changed")
where l.CODE = "Q7M"

qM-2: range of e is EDUCATION
replace e (DEGREE_DATE = 82)
where e.SSN = 155360283

-128-

APPENDIX B.2 - SQL QUERY SETS

/*
/* QUERY SET #1
/*
/* Single, small relation query
/*
ql-1: select ssn, ret__grade, ret_pay_plan

from retain_data;
/*
ql-2: select ssn, ret_grade, ret_pay_plan

from retain_data;
where ret pay plan = 'WG';

/* " "

ql-3: select ssn, ret_grade, ret_pay_plan
from retain_data;
where ret_pay_plan = 'WG'

or ret_pay_plan = 'GM';
/*
ql-4: select ssn, ret_grade, ret_pay_plan

from retain_data;
where (r et_pay_plan = 'WG' or ret_pay_plan = 'GM')

and ret_grade > '08';
/*
ql-5: select ssn, ret_grade, ret_pay_plan

from retain_data;
where (r et_pay_plan = ' WG' or ret_pay_plan = 'GM')

and ret_grade > '08'

and ret grade < '12';
/*
ql-6: select ssn, ret_grade, ret_pay_plan

from retain_data;
where ((ret_pay_plan = 'WG' or ret_pay_plan = 'GM')

and ret_grade > '08'

and ret_grade < '12')

or ret_grade = '07';

/*
/* QUERY SET #2
/*
/* Single, medium relation retrieval
/*
q2-l: select ssn, race, occupation

from pers data;
/*
q2-2: select ssn, race, occupation

from pers_data
where race = 'C';

/*
q2-3: select ssn, race, occupation

from pers_data

-129-

where race = 'C' or race = 'L'

;

/*
q2-4: select ssn, race, occupation

from pers_data
where (race = or race = 'L')

and sex = 'F';
/*
q2-5: select ssn, race, occupation

from pers_data
where (race = 'C' or race = 'L')

and sex = 'F';
and birth date > 550101;

/*

/* QUERY SET #3
/*
/* Single, medium relation retrieval
/*
q3-l: select ssn, pay_grade

from job detail;
/*
q3-2: select ssn, pay_grade

from job_detail
where patco = "T":

/*
q3-3: select ssn, pay_grade

from job_detail
where patco = 'T' or patco = '0';

/*
q3-4: select ssn, pay_grade

from job_detail
where (patco = 'T' or patco = '0')

and pay grade < '11'*:
/* —

q3-5: select ssn, pay_grade
from job_detail
where (patco = 'T* or patco = '0')

and pay_grade < '11'

and pay_grade > '06';
/*
q3-6: select ssn, pay_grade

from job_detail
where ((patco = 'T' or patco = '0')

and pay_grade < '11'

and pay_grade > '06')
or barg unit = '0030';

/*
/* QUERY SET #4
/*
/* Single, large relation retrieval
/*
q4-l: select agency, subelement

-130-

from agency_desc;

2: select agency, subelement
from agency_desc
where agency = 'BD' or agency = 'AF'

;

3: select agency, subelement
from agency_desc
where (agency = 'BD' or agency = 'AF')

and subelement = '07';

4: select agency, subelement
from agency_desc
where ((agency = 'BD' or agency = 'AF'

)

and subelement = '07')
or subelement = '24';

QUERY SET #5

1: select ssn, educ_level
from education;

2: select ssn, educ_level
from education
where degree_date > 80;

3: select ssn, educ_level
from education
where degree_date > 80 or degr'ee_date < 55;

4: select ssn, educ_level
from education
where (degree_date > 80 or degree_date < 55)

and educ_level > 13;

5: select ssn, educ_level
from education
where (degree_date > 80 or degree_date < 55)

and educ_level > 13
and acad_disc = '0506';

6: select ssn, educ_level
from education
where ((degree_date > 80 or degree_date < 55)

and educ_level > 13
and acad_disc = '0506')

or acad_disc = '1701';

QUERY SET #6

Two relation retrieval - small and medium relations

-131-

/*
q6-l: select retain_data . ssn , ret_grade, barg_unit

from retain_data , job_detail
where retain_data . ssn = job_detai 1 . ssn;

/*
q6-2: select retain_data . ssn , ret_grade, barg_unit

from retain_data, job_detail
where retain_data . ssn = job_detai 1 . ssn

and patco = "T"

;

/*
q6-3: select retain_data . ssn , ret_grade, barg_unit

from retain_data, job_detail
where retain_data. ssn = job_detai 1 . ssn

and (patco = 'T' or patco = '0')
;

/*
q6-4: select retain_data . ssn , ret_grade, barg_unit

from retain_data, job_detail
where retain_data . ssn = job_detai 1 . ssn

and (((patco = 'T' or patco = '0')

and barg_unit = '1111'
and ret_grade < '08')

or ret_pay_plan = 'WG');
/*
/* QUERY SET #7
/*
/* Two relation retrieval, medium - medium
/*
<?7-l: select per s_data . ssn , citizen, vet_pref

from pers_data, pers_misc
where pers_data. ssn = pers_misc.ssn;

select pers_data.ssn, citizen, vet_pref
from pers_data, pers_misc
where pers_data. ssn = pers_misc.ssn
and handicap = '01';

select pers_data. ssn, citizen, vet_pref
from pers_data, pers_misc
where pers_data . ssn = pers_misc.ssn
and handicap = '01' or handicap = '49';

select pers_data.ssn, citizen, vet_pref
from pers_data, pers_misc
where pers_data . ssn = per s_mi sc . ssn
and (handicap = '01' or handicap = '49')

and sex = 'M';

select per s_data . ssn , citizen, vet_pref
from pers_data, pers_misc
where pers_data . ssn = pers_misc . ssn
and (handicap = '01' or handicap = '49')

/*
q7-2:

/*
q7-3:

/*
q7-4:

/*
q7-5:

-132-

and sex = "m"
and viet vet = "V" j

/*
ql-6: select pers_data. ssn, citizen, vet_pref

from pers_data f pers_misc
where pers_data . ssn = per s_mi sc . ssn
and (((handicap = '01' or handicap = "49")
and sex = "M"
and viet_vet = 'V')
or vet_pref like '%');

/*
/* QUERY SET #8
/*

/* Two relation retrieval, large - large
/*
q8-l: select education. ssn, agency, educ_level

from education, job_history
where education. ssn = job history. ssn;

/*

q8-2: select education. ssn, agency, educ_level
from education, job_history
where education. ssn = job_hi story . ssn

and acad disc = '0506';
/*
q8-3: select educat ion . ssn , agency, educ_level

from education, job_history
where education. ssn = job_hi story . ssn

and (acad_disc = '0506' or acad_disc = '0101');
/*
q8-4: select educat ion . ssn, agency, educ_level

from education, job_history
where educat ion . ssn = job_hi story. ssn

and (acad_disc = '0506' or acad_disc = '0101')
and serv_date > 780101;

/*
q8-5: select educat ion. ssn, agency, educ_level

from education, job_history
where educat ion . ssn = job_history.ssn

and (((acad_disc = '0506' or acad_disc = '0101')
and serv_date > 780101
and educ_level > 21)
or state = ' 31'

)

;

/*

/* QUERY SET #9
/*
/* Three relation retrieval
/*
q9-l: select per s_data . ssn , educ_level, birth_date, vet_pref

from pers_data, education, pers_misc
where pers_data . ssn = educat ion . ssn

and educat ion. ssn = per s_mi sc . ssn;

-133-

/*
q9-2: select per s_data . ssn , educ_level, birth_date, vet_pref

from pers_data, education, pers_misc
where pers_data. ssn = education . ssn

and education. ssn = per s_mi sc . ssn
and vet_pref = '2';

/*
q9-3: select pers_data.ssn / educ_level, birth_date, vet_pref

from pers_data, education, pers_misc
where pers_data. ssn = educat ion . ssn

and education. ssn = per s_mi sc . ssn
and (vet pref = '2' or vet pref = '6');

/*
q9-4: select per s_data . ssn , educ_level, birth_date, vet_pref

from pers_data, education, pers_misc
where pers_data . ssn = educat ion . ssn

and educat ion. ssn = pers_misc . ssn
and (vet pref = '2' or vet_pref = '6')

and handTcap = '15';
/*
q9-5: select per s_data . ssn , educ_level, birth_date, vet_pref

from pers_data, education, pers_misc
where pers_data. ssn = educat ion . ssn

and education. ssn = pers_mi sc . ssn
and (vet_pref = '2' or vet_pref = '6')

and handicap = '15'

and educ level > 17;
/*
q9-6: select per s_data . ssn , educ_level, birth_date, vet_pref

from pers_data, education, pers_misc
where pers_data. ssn = education. ssn

and educat ion . ssn = pers_mi sc . ssn
and (((vet_pref = '2' or vet_pref = '6')

and handicap = '15'

and educ_level > 17)
or acad disc = '2209');

/*

/* QUERY SET #10
/*
/* Four relation retrieval
/*
qlO-1: select agency_desc . agency , auth_pers.ssn, job_history. salary,
legal_auth .code , legal_auth.name

from agency_desc, job_history, auth_pers, legal_auth
where agency_desc .agency = job_history .agency
and job_hi story . ssn = auth_per s . ssn
and auth pers.code = legal auth.code;

/*
qlO-2: select agency_desc . agency , auth_per s . ssn , job_history. salary

,

legal_auth .code , legal_auth .name
from agency_desc, job_history, auth_pers, legal_auth

-134-

where agency_desc . agency = job_hi story . agency
and job_history .ssn = auth_pers . ssn
and auth_per s .code = legal_auth .code
and agency = 'AF';

/*
qlO-3: select agency_desc . agency , auth_per s . ssn , j ob_hi story . salary

,

legal_auth.code , legal_auth .name
from agency_desc, job_hi story , auth_pers, legal_auth
where agency_desc . agency = job_hi story .agency
and job_hi story . ssn = auth_pers.ssn
and auth_per s .code = legal_auth .code
and agency = 'AF' or agency = 'BD ' ;

/*
qlO-4: select agency_desc . agency , auth_pers . ssn , job_hi story . salary

,

legal_auth .code , legal_auth .name
from agency_desc, job_history, auth_pers, legal_auth
where agency_desc . agency = job_hi story .agency
and j ob_hi story . ssn = auth_pers . ssn
and auth_per s .code = legal_auth .code
and (agency = 'AF' or agency = 'BD')
and state = '31';

/*
qlO-5: select agency_desc . agency , auth_pers . ssn , job_hi story . salary

,

legal_auth .code , legal_auth .name
from agency_desc, job_hi story, auth_pers, legal_auth
where agency_desc . agency = job_hi story . agency
and j ob_hi story . ssn = auth_per s . ssn
and auth_pers .code = legal_auth .code
and ((agency = 'AF' or agency = 'BD')
and state = '31') or salary > 29000;

QUERY SETS WITH SORTING

/*
/* QUERY SET #1 with sorting
/*
/* Single, small relation retrieval
/*
qol-1: select ssn, ret_grade, ret_pay_plan

from retain_data
order by ret grade;

/*
qol-2: select ssn, ret_grade, ret_pay_plan

from retain_data
where ret_pay_plan = 'WG'
order by ret_grade;

/*
qol-3: select ssn, ret_grade, ret_pay_plan

-135-

from retain_data
where ret_pay_plan = 'WG'

or ret_pay_plan = 'GM'
order by ret_grade;

/*
qol-4: select ssn, ret_grade, ret_pay_plan

from retain_data
where (ret_pay plan = 'WG' or ret_pay_plan = 'GM')

and ret_grad"e > '0 8'

order by ret_grade;
/*
qol-5: select ssn, ret_grade, ret_pay_plan

from retain_data
where (r et_pay_plan = 'WG' or ret_pay_plan = 'GM')

and ret_grade > '08'

and ret_grade < '12"*

order by ret grade;
/*
qol-6: select ssn, ret_grade, ret_pay_plan

from retain_data
where ((ret_pay_plan = 'WG' or ret_pay_plan = 'GM')

and ret_grade > '08'

and ret_grade < '12')
or ret_grade = '07'

order by ret_grade;
/*
/* QUERY SET #2 with sorting
/*
/* Single, medium relation retrieval
/*
qo2-l: select ssn, race, occupation

from pers_data
order by occupation;

/*
qo2-2: select ssn, race, occupation

from pers_data
where race = 'C'
order by occupation;

/*
qo2-3: select ssn, race, occupation

from pers_data
where race = 'C ' or race = 'L'
order by occupation;

/*
qo2-4: select ssn, race, occupation

from pers_data
where (race = 'C ' or race = 'L')

and sex = 'F'
order by occupation;

/*
qo2-5: select ssn, race, occupation

-136-

from pers_data
where (race = 'C' or race = 'L'J

and sex = 'F'
and birth_date > 550101

order by occupation;

/*
/* QUERY SET #3 with sorting
/*
/* Single, medium relation retrieval
/*
qo3-l: select ssn, pay_grade

from job_detail
order by pay grade, ssn;

/*
qo3-2: select ssn, pay_grade

from job_detail
where patco = 'T"
order by pay_grade, ssn;

/*
qo3-3: select ssn, pay_grade

from job_detail
where patco = 'T" or patco = '0 '

order by pay_grade, ssn;
/*
qo3-4: select ssn, pay grade

from job_detaTl
where (patco = 'T" or patco = '0')

and pay_grade < '11'

order by pay grade, ssn;
/*
qo3-5: select ssn, pay grade

from job_detaTl
where (patco = "T"* or patco = '0')

and pay_grade < '11"

and pay_grade > '06'

order by pay_grade, ssn;
/*
qo3-6: select ssn, pay_grade

from job_detail
where ((patco = 'T' or patco = 'O')

and pay_grade < '11'

and pay_grade > '06')

or barg_unit = '0030'

order by pay_grade, ssn;
•/*

/* QUERY SET #4 with sorting
/*
/* Single, large relation retrieval
/*
qo4-l: select agency, subelement

-137-

from agency_desc
order by subelement;

/*
qo4-2: select agency, subelement

from agency_desc
where agency = 'BD' or agency = 'AF'
order by subelement;

/*
qo4-3: select agency, subelement

from agency_desc
where (agency = 'BD' or agency = 'AF')

and subelement = '07'

order by subelement;
/*
qo4-4: select agency, subelement

from agency_desc
where ((agency = 'BD' or agency = 'AF')

and subelement = '07')
or subelement = '24'

order by subelement;

QUERY SETS WITH AGGREGATION

* QUERY SET #4 with aggregation
/*
/* Single, large relation retrieval
/*
qx4-l: select distinct subelement, count (name)

from agency_desc
group by subelement;

/*
qx4-2: select distinct subelement, count (name)

from agency_desc
where (agency = 'BD' or agency = 'AF')
group by subelement;

/*
qx4-3: select distinct subelement, count (name)

from agency_desc
where (agency = 'BD' or agency = 'AF')

and subelement = '07'
group by subelement;

/*
/* QUERY SET #5 with aggregation
/*
/* Single, large relation retrieval
/*

-138-

qx5-l: select distinct educ_level, count (ssn)
from education
group by educ level;

/*
qx5-2: select distinct educ_level , count (ssn)

from education
where degree_date > 80
group by educ level;

/*
"

qx5-3: select distinct educ_level, count (ssn)
from education
where degree_date > 80

or degree_date < 55
group by educ level;

/*
qx5-4: select distinct educ_level , count(ssn)

from education
where (degree_date > 80 or degree_date < 55)

and educ_level > 13
group by educ level;

/*
qx5-5: select distinct educ_level, count (ssn)

from education
where (degree_date > 80 or degree_date < 55)

and educ_level > 13
and acad_disc = '0506'

group by educ_level;
/*
qx5-6: select distinct educ_level, count(ssn)

from education
where ((degree_date > 80 or degree_date < 55)

and educ_level > 13
and acad_disc = '0506')
or acad_disc = '1701'

group by educ_level;

SPECIAL CASE QUERIES

/*
/* Special Case 1: Arrangement of Conditions
/*

scl-1: select pers_data. ssn, educ_level, birth_date, vet_pref
from pers_data, education, pers_misc
where pers_data.ssn = education . ssn
and education. ssn = per s_mi sc . ssn
and pers_mi sc . ssn = 300378541

-139-

scl-2: select per s_data . ssn , educ_level, birth_date, vet_pref
from pers_data, education, pers_misc
where pers_mi sc . ssn = 300378541
and pers_data.ssn = education. ssn
and education. ssn = per s_mi sc . ssn

/*
/* Special Case 2: Implicit vs. Explicit Conditions
/*

sc2-l: select pers_data. ssn, educ_level, birth_date, vet_pre£
from pers_data, education, pers_misc
where pers_data . ssn = education . ssn
and education. ssn = pers misc. ssn
and pers_mi sc . ssn = 300378541

sc2-2: select pers_data.ssn, educ_level, birth_date, vet_pref
from pers_data, education, pers_misc
where pers_data. ssn = 300378541
and education. ssn = 300378541
and pers_mi sc . ssn = 300378541

/*
/* Special Case 3: Join Optimization
/*

sc3-l: select retain_data.ssn, ret_grade, barg_unit
from retain_data, job_detail
where retain_data . ssn = job_detai 1 . ssn
and (patco = or patco = '0')

sc3-2: select ssn, ret_grade
from retain_data
order by ssn

sc3-3: insert into tempi
select ssn, barg_unit

from job_detail
where (patco = *T" or patco = '0"*)

sc3-4: select ssn, barg_unit
from tempi

UPDATE QUERIES

/*
/* Insertions

-140-

/*

ql-l: insert into legal_auth (code, name)
values ('XXX', 'NAME OF REGULATION'

)

qI-2: insert into education (ssn, educ_level, degree_date, acad_disc)
values (155360283, 18, 83, '6X6X')

qI-3: insert into agency_desc (agency, subelement, name, description)
values ('XX', 'YY', 'NEW AGENCY' , 'NEW DESCRIPTION')

/*
/* Deletions
/*

qD-1: delete from agency_desc
where agency = 'XX'

qD-2: delete from legal_auth
where code = 'XX'

qD-3: delete from education
where ssn = 155360283

/*
/* Modifications
/*

qM-1

:

update legal
set name =

where code

auth
'changed'
= 'Q7M'

qM-2 : update education
set degree_date = 82
where ssn = 155360283

-141-

APPENDIX C - BENCHMARK DATA TABLES

-142-

APPENDIX C.l - MICROCOMPUTER DATA TABLES

Table MICRO. 1 - Result Size

Number of Records Retrieved

ql-1 74 q2-l 10, 500 q3-l 10, 500
ql-2 46 q2-2 1,484 q3-2 1,459
ql-3 47 q2-3 1,484 q3-3 1,828
ql-4 35 q2-4 584 q3-4 1,645

q2-5 170 q3-5 880
q3-6 910

q4-l 10,500 q5-l 11,152 q6-l 74
q4-2 10,500 q5-2 135 q6-2 7

q4-3 10 q5-3 9,754 q6-3" 7

q5-4 629 q6-4 46
q5-5 18
q5-6 70

q7-l 10,500 q8-l 28,090 q9-l 141
q7-2 764 q8-2 899 q9-2 43
q7-3 871 q8-3 908 q9-3 45
q7-4 674 q8-4 50

q7-5 142 q8-5 111
q7-6 10,500

-143-

Table MICRO. 2 Response Time - Single Relation Queries

Response Time in Seconds

Time to First Time to Last
3uery

Index Level
No Index Level 2 Level 3 No Index Level 1 Level 2 Level 3

1-1 2 3 3 11 11 11 11
1-2 2 2 3 11 11 11 10
1-3 2 3 4 11 11 12 11
1-4 3 3 4 12 12 11 11

2-1 2 3 3 377 385 391 394
2-2 3 8 9 219 230 87 82
2-3 3 10 12 224 237 238 189
2-4 3 11 11 193 200 203 128
2-5 4 * * 140 144 141 *

3-1 3 4 4 245 235 238 249
3-2 4 10 11 132 121 64 66
3-3 3 12 14 138 130 136 138
3-4 3 10 * 140 131 105 *

3-5 3 8 * 105 106 86 *

3-6 3 * * 113 114 114 *

4-1 2 3 3 216 226 223 231
4-2 3 12 13 228 233 235 248
4-3 4 7 7 87 88 11 11

5-1 2 3 3 222 217 218 226
5-2 4 4 6 84 83 83 17
5-3 2 11 12 216 207 207 211
5-4 3 12 * 206 200 201 *

5-5 4 11 * 92 94 93 *

5-6 3 * 98 100 97 *

* Workspace Exceeded.

-144-

Table MICRO. 3 Response Time - Single Relation Queries
Count Function

Response Time in Seconds

Time to Last at Different Index Levels
Query

No Index Level 2 Level 3

ql-1 11X X 9 10
ql-2 9 10 11
ql-3 1

2

X A* 10 9

ql-4 10 10 12

q2-l 90 89 89
q2-2 94 93 48
q2-3 100 98 99
q2-4 100 101 76
q2-5 102X V 102X \J €m

*

q3-l 79 78 79
q3-2 82 81 44
q3-3 89 87 86
q3-4 90 90 *

q3-5 96 94 *

q3-6 95 93 97

q4-l 69 69 70
q4-2 78 77 69

q4-3 86 86 10

q5-l 68 68 72

q5-2 73 73 14
q5-3 81 79 82
q5-4 86 84 *

q5-5 92 92
q5-6 98 98 98

* Workspace Exceeded

-145-

Table MICRO. 4 Response Time - Multiple Relation Queries

Response Time in Seconds

Time to Last
Query

Index Level
No Index Level 1 Level 2 Level 3

6-1 5,405 396 393 407
6-2 5,486 381 99 106
6-3 5,486 380 376 393

7-1 7,542 7,327 7,331
7-2 — 5, 583 7,011 5540
7-3 _ 5,659 4 ,970 5585
7-4 — 5,521 5,392 *

7-5 _ 5,508 5,409 *

7-6 5,444 5,410 *

8-1 11,854 12,268 12,270
8-2 8,774 8,932 1,567
8-3 8,788 8,975 9,214
8-4 8,668 8,706 9,075
8-5 8,593 8,922 *

9-1 1,371 1,192 1291
9-2 577 482 488
9-3 597 496 497
9-4 387 324 *

9-5 359 17 *

9-6 371 301 *

Workspace Exceeded

-146-

Table MICRO. 5 Response Time - Update Queries

Response Time in Seconds

Index Level
Query

No Index Level 1 Level 2 Level 3

ql-l 5 5 6 10
qI-2 10 10 10 10
qI-3 9 10 11 12

qD-1 73 11 10 11
qD-2 9 9 11 9

qD-3 73 12 11 13

qM-1 10 10 9 9

qM-2 72 12 12 12

-147-

APPENDIX C.2 - MINICOMPUTER DATA TABLES

Table MINI.l - Result Size - Single Relation Queries

Number of Records Retrieved

Database Size
Query

3 . 5MB 6MB 10MB

1-1 74 129 163
1-2 46 72 :78
1-3 47 73 81
1-4 35 50 55
1-5 14 18 21
1-6 18 28 33

2-1 10, 500 20,000 33,000
2-2 1,484 1,989 2,774
2-3 1,484 2,088 2,874
2-4 584 875 1,223
2-5 170 257 359

3-1 10,500 20,000 33,000
3-2 1,459 2/668 7,618
3-3 1,828 3,408 8,563
3-4 1,645 3,095 8,078
3-5 880 1,636 3,615
3-6 910 1,667 3,646

4-1 10,500 20,000 33,000
4-2 10,500 19,948 19,948
4-3 10 23 23
4-4 10 23 23

5-1 11,152 21,349 35,534
5-2 135 227 421
5-3 9,754 18,921 28,997
5-4 630 1,298 1,645
5-5 18 30 34
5-6

1
70 117 159

-148-

Table MINI. 2 - Response Time - Single Relation Queries
Level 1 Indexes

Response Tine in Milliseconds

Time to First Time to Last
Query

3.5MB 6MB 10MB 3.5MB 6MB 10MB

1-1 366 360 440 1,690 2,690 3,350
1-2 340 530 360 1,470 2,210 2,750
1-3 330 310 310 1,530 2,510 2,880
1-4 350 490 380 1,480 2,250 2,750
1-5 380 540 400 1,350 1,520 2,520
1-6 450 390 450 1,510 2,250 2,840

2-1 360 980 380 225,000 437,190 721,490
2-2 440 740 470 169, 240 80,920 510 ,690
2-3 440 440 560 182,710 340,910 567 ,250
2-4 1,900 1,940 1,910 173 , 140

—k —l AAA
323 ,900 539 , 500

2-5 2,130 2,190 2,120 172,250 321,080 534 ,480

3-1
4 J A340 370 360 195, 940 373 , 370 613,230

3-2 370 720 440 149 200X *1 J> f £m \J \J 100 650 486 . 150
3-3 390 390 440 159,820 302,290 517,210
3-4 390 680 430 160,840 492,120 519,760
3-5 460 570 520 154,000 251,010 485,620
3-6 520 500 580 164,580 310,580 514,430

4-1 330 980 350 184,640 351,310 574,770
4-2 400 310 380 191,040 363,210 517,440
4-3 25,260 530 25,200 115,820 11,730 364,440
4-4 27,450 27,460 27,470 125,640 238,820 394,210

5-1 350 1,000 410 203,330 391,010 (542,236
5-2 1,750 1,730 1,760 131,970 251,670 418,850
5-3 360 340 390 205,510 394,170 631,830
5-4 520 900 510 137,360 177,850 432,450
5-5 5,780 1,140 5,760 132,330 217,370 418,820
5-6 3,740 3,760 3,800 137,790 260,980 439,540

-149-

Table MINI . 3 - Response Time - Single Relation Queries
Level 2 Indexes

Response Time in Milliseconds

Query
Time to First Time to Last

3 . 5MB 6MB 10MB 3 . 5MB 6MB 10MB

1-1
1-2
1-3
1-4
1-5
1-6

376
540
360
520
510
390

420
590
330
560
520
420

320
500
380
460
550
460

1,680
1,520
1,540
1,550
1,020
1,420

2,730
2,240
2,400
2 , 250
1,410
2,600

3,260
2,340
3,550
2,640
1,740
2,820

2-1
2-2
2-3
2-4
2-5

350
500
440

1,990
2,130

400
640
500

2,390
2,390

370
540
440

2,230
2,230

234,910
59,480

182,300
174,010
172,610

447,280
82,880

353,940
336,320
336,780

751,910
115,490
578,860
561,950
560,210

3-1
3-2
3-3
3-4
3-5
3-6

390
500
420
520
570
560

370
570
380
530
600
550

300
600
440
490
660
520

198,930
54,070

159,600
254,180
131,500
163,660

381,970
102,790
310,570
501,810
255,710
320,370

636,230
246,230
531,990
861,450
384,240
530,300

fci
4-3
4-4

310
350
560

27,530

250
310
550

28,150

370
390
880

28,040

185,700
190,950

1,070
126,090

364,730
376,880

1,810
246,210

605,210
533,250
46,090

403,690

5-1
5-2
5-3
5-4
5-5
5-6

240
1,730

380
810
970

3,770

330
1,900

390
850
940

4,040

350
1,760

390
890
940

4,090

205, 490
132,440
206,150
41,650
10,410

137,480

406,920
261,530
411,180
79,590
17,440

273,710

662,900
431,740
654,910
142,770
22,350

451,530

-150-

Table MINI. 4 - Response Time - Single Relation Queries
No Indexes

Response Tine in Milliseconds

Time to First T i me to Last
Query

3 . 5MB 6MB iomb 3.5MB 6MB 10MB

11-1 380 300 ——— 1,690 2,890
i— z 390 350 1,540 2,390
1-3 350 310 — 1,550 2,440
1 - A± — H 3 50 380 1,480 2,360
1-5 C ft ft500 1 , 390 2,330
J. o 440 450 1,490 2,330

5-1 n 6 A
3 8 0

'—TT7340 230,840 452,030
460 490 168,730 324,220

2-3 560 550 182,750 354,170
2-4 1,960 2,110 172,700 338,430
2-5 2,120 2,100 172,900 341,270

3-1 410 340 196,080 381,400
3-2 400 380 148,930 288,820
3-3 420 350 159,500 311,620
3-4 410 430 159,950 312,790
3-5 470 480 154,190 298,840
3-6 540 500 164,400 318,050

4-1 370 330 183,980 362,320
4-2 370 310 190,180 373,820
4-3 25,300 26,260 115,740 225,210
4-4 27,420 28,500 125,860 246,220

5-1 380 300 205,650 402,370
5-2 1,850 1,820 132,350 259,040
5-3 310 400 205,510 407,110
5-4 490 490 137,140 270,610
5-5 5,770 5,790 132,590 261,430
5-6 3,790 3,770 137,640 272,790 :::

-151-

Table MINI. 5 - Response Time - Single Relation Queries
Level 1 Indexes - Buffer Effect Test

Response Time in Milliseconds

Time to First Time to Last
Query

3.5MB 6MB 10MB 3.5MB 6MB 10MB

1-1 310 320 440 1,630 2,830 3,630
1-2 250 270 250 1,380 2,200 2,560
1-3 220 260 240 1,370 2,250 2,650
1-4 250 290 230 1,340 2,410 2,500
1-5 280 340 280 1,200 1,950 2,320
1-6 290 380 340 1,330 2,160 2,750

2-1 320 250 400 230,650 455,030 736,360
2-2 520 570 510 170,070 324,860 525,990
2-3 490 510 550 182,780 351,050 580,470
2-4 1,960 1,910 1,870 174,160 336,310 551,390
2-5 2,180 2 , 170 2,350 172,400 333 , 020 547,040

3-1 350 290 480 196,010 382,870 628,820
3-2 410 370 380 148,800 290,380 498,250
3-3 390 370 430 159,520 311,670 528,270
3-4 460 420 400 160,170 312,190 533,270
3-5 460 400 500 153,750 300,160 495,230
3-6 500 530 500 164,420 319,770 524,550

4-1 310 250 460 184,150 363,570 591,840
4-2 250 290 370 190,490 373,210 530,080
4-3 25,170 25,640 25,720 115,730 234,680 372,950
4-4 27,440 28,060 28,490 125,850 245,840 405,680

5-1 330 270 450 204,610 401,210 656,750
5-2 1,800 1,790 1,850 132,320 259,940 430,660
5-3 370 390 370 205,340 404,070 653,450
5-4 490 510 470 136,970 271,390 444,960
5-5 5,670 5,780 5,730 132,150 260,090 428,620
5-6 3,760 3,940 3,920 137,600 268,690 449,990

-152-

Table MINI. 6 - Response Time - Single Relation Queries
Level 1 Indexes - Sorted Results

Response Time in Milliseconds

Time to First Time to Last

3 . 5MB 6MB ± uriD 6MB 1 OMR

6,690 10,060 1 , y 1 u 12,240 15 270
1-2 3,090 5,550 5,610 3,880 6,950

7
',0 50

1-3 3,160 5,280 5,930 3,950 6,500 7,370
1-4 2,730 4,110 4,890 3,290 4,920 5,850
1-5 1,830 2,760 4,010 2,040 3,020 4,340
1-6 2,080 3,480 4,050 2,350 3,920 4,600

2-1 1,119,250 2,342,780 3,940,200 1,530,220 3 ,128,290 5,231,130
2-2 242,890 420,680 681,860 284,740 482,120 774,870
2-3 255,320 467,460 75780 300,340 533,110 852,250
2-4 200,580 375,080 615,730 211,260 391,720 647,210
2-5 178,530 343,730 568,990 181,420 347,930 576,130

3-1 801,130 1,606,020 2,836,540 1,089,880 2 ,165,500 3,827,200
3-2 219,630 426,070 926,920 253,340 492,520 1,133,730
3-3 248,480 500,330 1,017,170 293,860 588,160 1,253,570
3-4 241,380 472,520 991,450 280,250 547,790 1,207,570
3-5 195,600 377,970 691,060 211,960 411,650 774,300
3-6 210,430 405,120 727,360 228,160 440,120 811,270

4-1 791,530 1,572,680 2,640,570 1,054,190 2 ,083,950 3,504,900
4-2 787,450 1,608,760 1,774,260 1,051,590 2 ,115,560 2,298,350
4-3 116,220 227,730 375,870 116,360 228,080 376,230
4-4 126,800 245,670 409,160 126,950 246,020 409, 570

-153-

Table MINI. 7 - Response Time - Single Relation Queries
Level 2 Indexes - Sorted Results

Response Time in Milliseconds

i i we to first Time to Last
Query

3.5MB 6MB 10MB 3 . 5MB 6MB 10MB

1-1 6,650 10,050 12,620 7,890 12,530 16,000
1-2 3,050 5,820 5,240 3,820 7,080 6,600
1-3 3 ,150 5,150 5,840 3,920 6,370 7 , 260
1-4 2,840 4,130 4,860 3,410 5,520 5,780
1-5 1,430 2,100 2,610 1,630 2,370 2,830
1-6 2,090 3,550 4,040 2,360 3,990 4,590

2-1 1,120,190 23,511,750 3,832,640 1,527,480 3,134,(580 5,699,470
2-2 133,390 184,390 266,390 174,610 244,900 355,160
2-3 255,760 468,960 721,910 299,580 532,750 818,110
2-4 200,490 376,740 592,800 211,060 393,910 623,100
2-5 177,810 347,400 539,850 180,690 351,660 546,070

3-1 804,730 1,601,890 2,762,870 1,090,560 2,167,050 3,729,750
3-2 122,060 240,750 684,750 155,100 306,120 883,440
3-3 248,190 483,890 990,010 293,180 571,710 1,211,100
3-4 346,800 681,920 1,297,180 378,080 744,400 1,462,180
3-5 176,670 343,380 578,910 194,010 375,550 652,590
3-6 208,450 404,840 705,340 225,580 438,990 786,450

4-1 790,130 1,588,630 2,553,890 1,045,770 2,099,940 3,395,630
4-2 786,430 1,592,590 1,709,160 1,042,400 2,099,400 2,216,660
4-3 1,430 2,590 46,080 1,570 3,120 46,430
4-4 126,270 246,990 395,660 126,420 247,330 396,020

-154-

Table MINI . 8 - Result Size - Single Relation Queries
Aggregate Queries

Number of Records Retrieved

Database Size
Query

. 5MB 6MB 10MB

x4-l 36" 45 63
x4-2 36 38 38
x4-3 1 1 1

x5-l 21 22 23
x5-2 7 8 8
x5-3 20 21 23
x5-4 8 10
x5-S 3 3 3

x5-6 6 6 7

Table MINI. 9 - Response Time - Single Relation Queries
Level 1 Indexes - Aggregate Queries

Response Time in Milliseconds

Query
Time to First Time to Last

3 . 5MB 6MB 10MB 3.5MB 6MB 10MB

x4-l
x4-2
x4-3

789,010
794,960
116,880

1,544,760
1,549,710

228,320

2,948,950
1,725,050

377,550

791,190
797,140
116,900

1,547,700
1,552,360

228,340

2,954,350
1,727,580

377,570

x5-l
x5-2
x5-3
x5-4
x5-5
x5-6

904,150
137,970
773,330
148,150
133,360
142,070

1,752,710
266,850

1,517,290
286,970
259,920
276,530

2,965,480
441,760

2,389,150
476,720
428,770
455,930

905,290
138,290
774,440
148,470
133,480
142,330

1,754,210
267,220

1,518,470
287,340
260,040
276,790

2,966,770
442,120

2,390,420
477,190
428,890
456,240

-155-

Table MINI. 10 - Response Time - Single Relation Queries
Level 2 Indexes - Aggregate Queries

Response Tine in Milliseconds

Query
Time to First Time to Last

3.5MB 6MB 10MB 3.5MB 6MB 10MB

x4-l
x4-2
x4-3

787,210
790,450

1,200

1,528,440
1,538,600

1,860

2,832,860
1,662,610

45,020

789,560
792,680

1,220

1,531,460
1,540,990

1,880

2,836,890
1,664,960

45,040

x5-l
x5-2
x5-3
x5-4
x5-5
x5-6

903,560
138,970
773,750
37,090
10,740

141,600

1,727,640
261,690

1,499,860
68,190
17,740

268,780

2,865,670
430,220

2,310,680
126,460
22,250

445,960

904,700
139,290
774,880
37,400
10,860

141,870

1,728,880
262,060

1,501,020
68,560
17,860

269,040

2,866,970
430,580

2,311,990
126,950
22,370

446,270

Table MINI. 11 - Result Size - Multiple Relation Queries

Number of Records Retrieved

Database Size
Query

3. 5MB 6MB 10MB

6-1 74 129 163
6-2 7 14 30
6-3 7 14 30
6-4 46 72 79

7-1 10,500 20,000 33,018
7-2 764 1,472 2,944
7-3 871 1,664 3,186
7-4 674 1,299 2,506
7-5 142 244 364
7-6 10,500 20,000 33,018

8-1 28,090 53,273 88,627
8-2 899 1,415 1,764
8-3 908 1,436 2,686
8-4 50 90 213
8-5 111 537 1,033

9-1 11,152 21,349 35,591
9-2 4,487 8,539 12,242
9-3 4,691 8,772 12,475
9-4 32 60 71
9-5 1 1 2

9-6 5 7 15

-156-

Table MINI. 12 - Response Time - Multiple Relation Queries
Level 1 Indexes

Response Time in Milliseconds

Time to First Time to Last
3uery

3.5MB 6MB 10MB 3.5MB 6MB 10MB

6-1 2,740 2,970 2,920 377,840 821,220 l,34fl,5S0
6-2 12,980 13,440 13,620 137,310 347,740 654,420
6-3 24 , 700 27,740 28,050 378,470 824,660 1,358,270
£ - A 2,820 3,130 i ion 'ion Ian a o c i *7rtozo, / /

U

7-1 1,900 970 700 668,120 1,268,230 3,138,500
7-2 880 800 840 611,390 1,153,960 2,973,060
7-3 850 800 830 614,590 1,174,060 2,975,690
7-4 930 810 860 616,980 1,174,930 2,986,760
7-5 2,190 2,240 2,740 273,980 494,730 921,860
7-6 910 840 840 677,130 1,294,530 3,193,810

8-1 420 2,166 2,060 2,508,650 4,767,470 8,416,5(56
8-2 4,230 4,240 4,730 2,291,770 4,323,700 7,729,520
8-3 4,280 4,250 4,800 2,309,650 4,360,630 7,837,480
8-4 9,300 9,340 11,170 564,230 1,066,680 2,177,960
8-5 10,550 10,490 11,660 2,337,270 4,430,410 7,880,420

9-1 1,740 1,220 1,160 1,473,720 2,8(52,690 5,884,110
9-2 1,090 1,090 1,170 732,820 1,384,750 2,611,040
9-3 1,180 1,140 1,180 1,433,920 2,791,760 5,744,600
9-4 9,390 9,130 12,690 1,386,630 2,691,640 5,621,160
9-5 926,370 935,060 972,060 936,530 1,822,500 3,116,780
9-6 9,800 9,790 13,240 1,398,420 2,717,990 5,752,380

-157-

Table MINI. 13 - Response Time - Multiple Relation Queries
Level 2 Indexes

Response Tine in Milliseconds

Time to First Time to Last
Query

3.5MB 6MB 10MB 3.5MB 6MB 10MB

6-1 2 ,590 2 ,900 4,250 384,780 822, 110 1,339,890
6-2 5,940 6,690 7 , 160 77,780 158,610 399 , 670
6-3 25,000 27,590 27,790 386,260 824,410 1,344,760
6-4 2,830 3,320 3,130 391,810 825,400 1,348,590

7-1 770 850 1,820 679,530 1,264,950 3,131,000
7-2 970 1,120 1,260 108,900 180,040 457,830
7-3 840 740 800 628,960 1,170,800 2,963,660
7-4 890 860 930 631,820 1,173,240 2,972,150
7-5 2,300 2,070 2,720 277,620 493,710 921,130
7-6 950 880 860 690,360 1,293,580 3,189,690

8-1 700 610 730 2,480,710 4,710,160 8,639,260
8-2 970 1,050 1,320 99,790 161,210 223,200
8-3 4,520 4,440 5,240 2,296,540 4,349,240 8,017,500
8-4 9,270 9,310 11,370 693,040 1,064,520 2,207,100
8-5 10,400 10,310 12,180 2,309,670 4,422,050 8,100,380

9-1 1,050 1,070 1,840 1,503,570 2,845,860 5,873,570
9-2 1,330 1,150 1,520 697,560 1,289,090 2,430,920
9-3 1,160 1,280 1,220 1,463,320 3,276,790 5,730,840
9-4 1,440 1,450 1,600 28,880 45,440 76,190
9-5 17,510 15,550 19,040 17,860 29,330 46,370
9-6 9,950 9,590 13,230 1,427,180 2,717,030 5,632,630

-158-

Table MINI. 14 - Response Time - Update Queries

Response Time in Milliseconds

Query
Index Level Time to Completion

3.5MB 6MB 10MB

1-3
No
1

2

1,270
530

420
750

840
500

1-2
No
1
2

500
840

400
990

630
1,130

1-3
No
1

2

580
570

520
590

740
680

D-l
No
1

2

320
370

A O A280
350

310
310

D-2
No
1
2

280
410

330
380

300
360

D-3
No
1

2

380
480

360
510

3 00
460

M-l
No
1

2

40,090
39,260

74,550
75,540

183,970
125,540

M-2
NO
1
2

430
440

490
470

540
550

-159-

APPENDIX C.3 - DATABASE MACHINE (DBM) DATA TABLES

Table DBM. 1 - Result Size - Single Relation Queries

Number of Records Retrieved

Query
3 . 5MB 6MB 8MB 10MB

X X 7 A x zy 10 J / uo
1-2 46 72 73 78 228

n /
•7"! •7 c 0 X

1 — AX t j 3 no 593t c cJ J 180
1-S 1

4

X o X j £. X 1 ni;X U J

1-6x—

o

laX O 0 0z o TlJ X J 1J J X / H

2-1 J. U p JVU 50 OflfliU p u u u 25, 500 33 , dOO 169 96fiA O J f 7 V U

2-2 1,484 1,989 2',438 2,774 28,739
2-3 1,484 2,088 2,537 2,874 29,474
2-4 584 875 1,080 1,223 15,741
2-5 170 257 308 359 4,274

3-1 10,500 20,000 25,500 33,000 189,960
3-2 1,459 2,668 4,604 7,618 31,471
3-3 1,828 3,408 5,446 8,563 37,937
3-4 1,645 3,095 5,061 8,078 33,842
3-5 880 1,636 2,467 3,615 14,707
3-6 910 1,667 2,498 3,646 15,503

4-1 10,500 20,000 25,500 33,000 189,960
4-2 10,500 19.948 19.948 19.948 19.974
4-3 10 23 23 23 23

5-1 11,152 21,349 27,363 35,534 201,925
5-2 135 227 309 421 1,398
5-3 9,754 18,921 23,026 28,997 161,088
5-4 629 1,296 1,451 1,636 9,267
5-5 18 30 32 34 155
5-6 70 117 135 159 1,122

-160-

Table DBM.2 - Response Time - Single Relation Queries
Level 1 indexes

Time to First Record 1

in Milliseconds

Database Size
Query

3.5MB 6MB 8MB 10MB 56MB

1-1 1,117 834 817 850 917
1-2 1,083 1, 016 1,033 1,083 1,117
1-3 1,000 1,084 933 934 1,183
1-4 1,317 1,317 1,233 1,184 1,266
1-5 1,350 1 , 417 1,333 1,367 1,400
1-6 1,333 1,333 1,250 1,800 1,366

2-1 816 783 733 716 916
2-2 1,400 1,017 867 867 1,4 50
2-3 1,100 1,050 983 966 1,200
2-4 2,300 1,500 1,300 1,333 2,317
2-5 3,050 2,283 2,433 2,617 6,100

3-1 9l<5 833 867 817 934
3-2 1,484 1,100 1,117 1,050 1,334
3-3 1,250 1,134 1,184 1,117 1,267
3-4 1,534 1,150 1,300 1,100 1,500
3-5 2,400 1,950 1,433 1,350 1,500
3-6
L

2,116 1,917 1,433 1,350 1,500

4-1 $33 950 900 850 950
4-2 1,050 1,100 1,017 1,050 1,117
4-3 7,833 13,083 16,567 21,200 127,550

5-1 733 950 867 784 950
5-2 2,300 1,767 1,600 1,567 2,100
5-3 950 1,134 1,050 917 1,117
5-4 1,450 1,200 1,134 1,083 1,333
5-5 8,283 11,817 6,483 6,400 8,333
5-6 4,383 4,500 3,900 3,983 4,183

-161-

Table DBN.2 (cont.) - Response Time - Single Relation Queries
Level 1 Indexes

Tine to Last Record
in Milliseconds

Database Size
Que ry

3.5MB 6MB 8MB 10MB 56MB

l—l d t XUU 2,617 3,034 1 TOO3 , 133 11, 517
If Ojj 1,916 1,950 o ftti2 , 067 A O O O

4 , 333
1-3 1,566 2,000 1,867 1,950 4,933

1 fillIf Ojj 1,900 1,850 1 O O. A1,834 O TOO3,733
1—3 1 Ten 1,433 1,350 1,534 2 ,784

1 ill 1,550 1,500 2,084 3,783

Z —

1

1? J f JOo 360,233 461,067 cnl tilDjI ,0 33 o—IK3T "i a o.3 , 4UO , 403
0 — 0Z — z £7 f ODD A c. Ann

*t D f 4 U U *k D f D ± I
CO A C "7
53 , 467 coo 0 1

o

523 , 317
2-3 30,817 49,350 51,033 61,950 551,200
2-4 22,083 39,317 31,200 39,733 330,584
2-5 21,734 38,833 26,833 34,584 207,600

3-1 111,183 210,100 269,233 344,650 1,982,684
3-2 16,950 29,183 48,850 80,234 330,050
3-3 20,500 36,467 58,117 90,067 396,817
3-4 19,367 34,200 54,134 85,317 355,334
3-5 17,517 31,917 31,316 43,134 210,266
3-6 18,850 35,083 37,766 49,850 271,650

4-1 102,500 192,600 246,817 317,966 1,825,764
4-2 102,317 192,517 197,000 204,166 353,233
4-3 7,850 13,100 16,584 21,217 127,583

5-1 173,233 322,417 416,750 538,434 3,647,416
5-2 8,733 15,300 12,383 16,350 98,367
5-3 149,433 286,300 348,817 437,584 2,432,450
5-4 10,383 20,384 23,050 27,150 169,383
5-5 8,283 14,850 10,950 14,350 85,066
5-6 11,616 21,917 23,734 30,867 175,466

-162-

Table DBM.3 - Response Time - Single Relation Queries
Level 2 Indexes

Time to First Record
in Milliseconds

Database Size
Query

3 . 5MB 6MB 10MB 56MB

1-1 1,267 866 900 983
1-2 1,867 1,417 1,150 1,767
1-3 1 ,184 1,134 967 1,166
1-4 2 , 533 2,084 1,734 3,600
1-5 3,083 2,484 1,900 3,600
1-6 1,333 1,334 1,266 1,450

2-1 867 766 750 983
2-2 1,816 1,450 1,117 2,284
2-3 1 , 116 1,084 983 1 , 184
2-4 2,334 1,850 1,333 1,733
2-5 3 , 067 2,633 2,684 4,334

3-1 967 850 817 1,084
3-2 2,333 1,533 1,384 2, 333
3-3 1,300 1,150 1,150 1,316
3-4 2,467 2,533 2,500 10,317
3-5 12 , 116 18,883 16,900 98 ,433
3-6 2,034 1,850 1,384 1,817

4-1 933 950 816 1,017
4-2 1,084 1,133 983 1,166
4-3 1,566 1,650 8,400 70,050

5-1 800 984 816 983
5-2 2,234 1,933 1,583 2,450
5-3 966 1,183 966 1,167
5-4 7,583 11,850 10,817 81,700
5-5 5,317 6,700 3,850 11,767
5-6 4,400 4,534 4,034 4,266

-163-

Table DBM.3 (cont.) - Response Time - Single Relation Queries
Level 2 Indexes

Time to Last Record
in Milliseconds

Database Si ze
Query

3 . 5MB 6MB 10MB 56MB

1-1 2,333 2,633 3,166 11,815
1-2 2,817 2,317 2,133 9,484
1-3 1,734 2,050 1,983 4,883
1-4 3,150 2,667 2,384 6,084
1-5 3,100 2,500 2,033 4,950
1-6 1,350 1,550 1,550 3,850

2-1 189,733 359,150 599,700 3,044,833
2-2 29,133 37,533 51,434 543,317
2-3 29,033 49,617 61,983 551,284
2-4 22,034 42, 650 39,716 329,133
2-5 21,667 42,450 34,817 200,850

3-1 111,234 209,000 345,983 1,981,667
3-2 18,166 30,250 81,234 349,283
3-3 20,350 36,817 90,133 397,283
3-4 93,967 183,833 191,467 1,089,083
3-5 61,850 115,700 107,433 580,267
3-6 18,800 35,566 49,850 273,783

4-1 103,300 193,333 319,533 1,825,267
4-2 102,950 193,566 204,200 352,216
4-3 1,583 1,667 8,400 70,067

5-1 169,934 322,606 547,933 3,046,200
5-2 8,617 14,433 16,366 98,917
5-3 147,833 286,417 441,266 2,431,333
5-4 18,133 42,317 45,867 324,200
5-5 5,333 7,683 6,100 36,817
5-6 11,583 21,200 31,017 175,366

-164-

Table DBM.4 - Response Time - Single Relation Queries
No Indexes

Response Time in Milliseconds

Time to First •TM met 4* f\ Tact"

Query
6MB 6mb

1-1 1,167 2 ,917
1-2 867 1,800
1-3 950 1 ,866
1-4 1,117 1,700
1-5 1,167 l f 167
1-6 1,234 1,450

2-1 717 359,983
2-2 900 38,517
2-3 983 42,816
2-4 1,350 25,384
2-5 2,300 20,100

3-1 817 210,333
3-2 1,000 28,817
3-3 1,100 36,567
3-4 1,234 33,467
3-5 1,283 22,366
3-6 1,400 28,733

4-1 850 195,033
4-2 1,100 194,633
4-3 13,300 13,516

5-1 950 325,117
5-2 1,583 9,916
5-3 1,200 288,117
5-4 1,400 20,483
5-5 6,633 8,550
5-6 4,233 18,683

-165-

Table DBM.5 - Response Time - Single Relation Queries
Level 1 Indexes - Buffer Effect Test

Time to First Record
in Milliseconds

Database Size
Query

3 . 5MB 6MB 8MB 10MB 56MB

1-1 800 1,033 783 1,117 633
1-2 884 917 817 900 683
1-3 900 900 866 883 767
1-4 1 , 017 1,000 983 1 ,017 883
1-5 1,100 1 , 100 1 ft CI1 , 0 07 1,133 966
1-6 1,217 1,816 1 ,150 1 ,167 933

2-1 767 716 717 784 650
2-2 1,667 1,300 1 ,100 1 , 150 1 , 167
2-3 1,367 1,434 1,167 1,233 1,216
2-4 2,550 1,983 1,567 1,650 1,634
2-5 3,317 2,534 2,517 2 ,900 4, 500

3-1 800 700 684 667 800
3-2 1,517 1,116 1,150 1,084 1,150
3-3 1,234 1,134 1,200 1,150 1,217
3-4 1,683 1,300 1,333 1,284 1,350
3-5 2,616 2,150 1,550 1,450 1,833
3-6 2,150 1,900 1,500 1,500 1,600

.-i 817 750 667 866 747
4-2 850 867 800 867 900
4-3 4,200 13,183 16,617 21,300 127,383

5-1 750 933 883 800 817
5-2 2,733 2,400 1,950 1,817 2,017
5-3 833 883 833 783 750
5-4 1,600 1,467 1,334 1,133 1,233
5-5 9,350 13,050 7,266 7,050 8,550
5-6 9,167 5,000 4,266 4,133 4,067

-166-

Table DBM.5 (cont.) - Response Time - Single Relation Queries
Level 1 Indexes - Buffer Effect Test

Time to Last Record
in Milliseconds

Database Size
Query

1 gun 13 . 5MB 6MB 8MB 10MB 56MB

1-1 1,234 2,783 2,866 3,400 10,617
1-2 1 , 417 1,817 1,750 1,950 3 , 283
1-3 1,450 1,850 1,833 1,933 3,750
1-4 1,334 1,600 1,600 1,667 2,483
1-5 1,10 0 1,116 1,083 1,283 1 1 C 11, JO/
1-6 1,250 2,033 1,400 1,567 2 e 400

1 1£— 1 1 0 J i i 0 /
-") -i J" "A * '*

374 , 816 458,800 592,117
2-2 29 , 167 46,050 45,534 53,950 527 ,050
2-3 30,417 51,134 51,350 62,350 559,750
2-4 22,483 39,917 31,283 40,233 330,850
2-5 21,983 39,134 26,884 35,400 199,434

3-1 109,983 210,517 266,584 344,867 1,981,316
3-2 16,983 29,433 48,934 80,550 332,350
3-3 20,134 37,134 57,734 90,133 395,766
3-4 19,133 34,966 54,066 85,517 358,083
3-5 18,033 32,483 31,734 43,500 215,633
3-6 19,083 34,817 38,466 50,383 271,167

4-1 101, 667 194,983 246,000 351,166 1,826,150
4-2 101,566 193,317 196,117 203,550 331,500
4-3 4,200 13,200 16,634 21,317

5-1 168,500 331,866 413,650 536,700 3,066,500
5-2 9,317 16,134 14,017 17,617 96,283
5-3 147,550 294,583 350,633 437,366 2,442,633
5-4 10,683 21,150 23,450 27,100 168,150
5-5 9,366 16,067 11,850 14,750 75,517
5-6 12,550 22,650 25,100 32,050 172,083

-167-

Table DBM.6 - Response Time - Single Relation Queries
Level 1 Indexes - Sorted Result

Tine to First Record
in Milliseconds

Database Size
Query

3.5MB 6MB 8MB 10MB 56MB

ol-l 1,284 1,650 1,566 1 ,700 5,984
ol-2 1,317 1,367 1,467 1,500 2,850
ol-3 1,216 1,333 1,317 1,417 2,867
ol-4 1,467 1,600 1,434 1,483 2,816
ol-5 1,550 1,400 1,283 1,417 2,566
ol-6 1,400 1,550 1,400 1,550 2,850

o2-l 130,750 270,367 349,317 465,515 3,506,084
o2-2 32,017 52,000 44,217 56,700 562,800
o2-3 36,200 59,284 56,166 72,116 640,467
o2-4 25,067 44,633 36,984 46,683 408,300
o2-5 22,384 39,983 27,417 36,000 234,083

o3-l 123,166 258,400 331,267 463,317 3,264,717
o3-2 23,967 44,300 63,566 108,567 576,750
o3-3 31,267 58,033 81,917 128,283 709,584
o3-4 28,917 56,200 76,900 124,200 667,550
o3-5 22,134 42,367 46,733 64,884 375,084
o3-6 25,433" 46,450 55,200 80,350 444,733

o4-l 97, 516 209,783 273,534 393,784 2,654,883
o4-2 102,267 217,900 223,784 230,917 380,666
o4-3 7,850 13,300 16,433 124,200 127,850

-168-

Table DBM.6 (cont.) - Response Time - Single Relation Queries
Level 1 indexes - Sorted Result

Time to Last Record
in Milliseconds

Database size
Query

3.5MB 6MB 8MB 10MB

ol-l 2,217 3,467 3,583 3,966
ol-2 1,883 2,287 2,384 2,483
ol-3 1,783 A. , it O V 2,450
ol-4 1,784 2,300 2,084 2,133
ol-5 1,567 1,400 1,300 1,550
ol-6 1,416 1,766 1,650 1,833

o2-l 319,000 631,033 820,850 1,080,216
o2-2 59,200 87,417 88,133 106,983
o2-3 64,350 98,017 101,800 124,216
o2-4 35,543 63,417 56,350 68,816
o2-5 25,234 45,316 32,700 42,500

o3-l 233,333 470,466 607,950 818,450
o3-2 39,433 72,216 111,433 188,383
o3-3 51,533 94,366 138,567 217,367
o3-4 46,467 92,300 129,517 209,300
o3-5 32,550 59,217 72,250 104,850
o3-6 34,850 63,850 81,050 119,250

o4-l 198,916 401,683 531,034 722,317
o4-2 207,450 416,050 415,767 422,534
o4-3 7,866 13,300 16,450 21,183

-169-

Table DBM.7 - Result Size - Single Relation Queries
Aggregate Queries

Number of Records Retrieved

Database Size
Query

3 .5MB 6MB 10MB

x4-l 36 45 68
x4-2 36 38 38
x4-3 1 1 1

x5-l 21 22 23
x5-2 7 8 8

X5-3 20 21 23
x5-4 7 8 10
x5-5 3 3 3

x5-6 6 6 7

Table DBM.8 - Response Time - Single Relation Queries
Level 1 Indexes - Aggregate Queries

Response Time in Milliseconds

Query
Time to First Time to Last

3.5MB 6MB 10MB 3.5MB 6MB 10MB

x4-l
x4-2
x4-3

42,500
219,150
44,216

83,616
464,600
96,450

138,967
680,483
166,616

42,760
219,333
44,216

83,883
464,817
96,450

139,506
680,683
166,616

x5-l
x5-2
x5-3
x5-4
x5-5
x5-6

45,817
54,700

193,533
64,733
52,600

121,017

87,366
104,050
381,266
123,716
99,833

233,050

150,450
159,733
603,134
190,967
155,384
374,783

45,817
54,733

193,550
64,750
52,660

121,017

87,383
104,050
381,266
123,716
99,833

233,050

150,467
159,750
603,150
190,967
155,384
374,800

-170-

Table DBM.9 - Result Size - Multiple Relation Queries

Number of Records Retrieved

Database Size
Query

3.5MB 6MB 8MB 10MB 56MB

6-1 74 129 145 163
6-2 7 14 22 30 97
6-3 7 14 22 30 111
6-4 46 72 74 79

7-1 10,500 20,000
7-2 764 1,472 zzz
7-3 871 1,664
7-4 674 1,299 1,890
7-5 142 244 364
7-6 10,500 20,000

8-1 28,690 53,273
8-2 899 1,415
8-3 908 1,436
8-4 50 90
8-5 111 537

9-1 11,152 21,349
9-2 4,487 8,539
9-3 4,691 8,772
9-4 32 60
9-5

j
1 1

9-6 5 7

-111-

Table DBM.10 - Response Time - Multiple Relation Queries
Level 1 Indexes

Time to First Record
in Milliseconds

Query
Database Size

3.5MB 6MB 8MB 10MB 56MB

6-1
6-2
6-3
6-4

1,784
3,383
2,233
1,800

1,484
3,967
3,417
2,083

77,184
99,633
234,816
107,250

77,450
98,867
236,800
107,284

108,900
253,816

7-1
7-2
7-3
7-4
7-5
7-6

1,433
4,583
9,233
7,683

16,784
1,684

1,367
4,033
9,083
7,600
14,700
1,833

206^200
1,319,767

8-1
8-2
8-3
8-4
8-5

1,433
1,666
2,717

30,434
37,650

1,300
1,500
2,934

29,184
38,833

9-1
9-2
9-3
9-4
9-5
9-6

2,034
2,150
3,767

14,700
25,350

559,016

1,750
1,967
3,750

13,450
45,267

1,085,000

-172-

Table DBM.10 (cont.) - Response Time - Multiple Relation Queries
Level 1 Indexes

Time to Last Record
in Milliseconds

Query
Database Size

3. 5MB 6MB 8MB 10MB 56MB

6-1
6-2
6-3
6-4

3,467
3,400
2,233
2,750

4,984
3,984
3,433
4,233

524,467
112,116
254,183
626,517

687,250
178,783
357,133
822,550

7-1
7-2
7-3
7-4
7-5
7-6

169,083
50,050

180,416
95,216
62,100
216,734

319,384
83,850

344,483
188,850
99,800

411,717

15,995,783
27,405,117

8-1
8-2
8-3
8-4
8-5

522,033
28,533

178,083
118,234
345,500

964,933
41,117

342,000
216,967
663,933

9-1
9-2
9-3
9-4
9-5
9-6

528,734
209,000
545,284
32,217
25,350

559,033

1,028,567
378,817

1,059,783
55,067
45,284

1,085,016

-173-

Table DBM.ll - Response Time - Multiple Relation Queries
Level Z Indexes

Time to First Record
in Milliseconds

Query
Database Size

3. 5MB 6MB 10MB 56MB

6-1
6-2
6-3
6-4

1,700
2,300
2,150
1,766

1,484
3,917
3,267
1,750

77,467
101,600
237,033
107,267

148,884
254,400

7-1
7-2
7-3
7-4
7-5
7-6

1,416
2,567
9,016
6,650

12,333
1,800

1,317
2,633
8,867
7,747

14,966
1,934

1,319,500

8-1
8-2
8-3
8-4
8-5

1,383
1,717
2,683

29,767
37,750

1,516
1,683
2,783

29,250
38,850

9-1
9-2
9-3
9-4
9-5
9-6

2,117
2,250
3,700
5,950
4,350

558,317

2,066
2,200
3,200
5,417
9,200

900,983

-174-

Table DBM.ll - Response Time - Multiple Relation Queries
Level 1 Indexes

Time to Last Record
in Milliseconds

Query
O Cub3 • 5MB 6MB 10MB 56MB

6-1
6-2
6-3
6-4

3,317
2,317
2,167
2,666

4,867
3,934
3,283
3,900

687,450
186,450
357,550
822,867

7-1
7-2
7-3
7-4
7-5
7-6

169,283
26,800

180,483
94,100
57,650

217,650

319,383
57,950

344,083
189,850
99,983
411,367

8-1
8-2
8-3
8-4
8-5

510,300
25,650

178,400
117,500
345,717

956,433
36,116

341,900
217,033
663,750

5-1
9-2
9-3
9-4
9-5
9-6

528,350
212,400
545,017
12,916
4,367

558,434

851,616
384,683
816,567
20,267
9,216

901,000

-175-

DBM.12 - Response Time - Multiple Relation Queries
No Indexes

Response Time in Milliseconds

Time to First Time to Last
Query

6MB 6MB

6-1 109,650 617,567
6-2 107,817 107,834
6-3 199,050 199,066
6-4 145,100 693,250

-176-

Table DBM.13 - Response Time - Update Queries

Response Tiae in Milliseconds

Database Size and Index Level
Query

6MB 10MB 56MB 56MB 56MB
Level 1 No Indexes No Indexes Level 1 Level 2

1-1 1,150 850 1,116 960 1,406
1-2 1,333 983 1,266 1,500 1,886
1-3 1,333 950 1,216 1,333 1,366

D-l 13,550 13,830 120,383 118,916 119,663
D-2 866 800 188,766 900 1,116
D-3 1,166 11,650 72,200 70,266 72,116

M-l 933 916 1,000 1,200
M-2 966 11,766 73,500 20,216 71,850

-177-

APPENDIX D - BENCHMARK SYSTEMS

-178-

D.l. MICROCOMPUTER DATABASE SYSTEM

D.l.l SELECTION

Few database systems exist which are truly relational
and run on microcomputers such as the PDP 11/23 computer
that was used in the project. Many systems such as dBASE II
and CONDOR are intended for use in small personal computers
and have limited function and capacity. A sample of more
qualified systems includes: MRS, MARATHON, and SEQUITUR. In
this study MRS was chosen as the representative of the mi-
crocomputer architecture for the following reasons:

1. MRS is a fully relational database system as judged
by the criteria published in [CODD 82]

.

2. MRS uses a subset of SQL as its query language. SQL
[DATE 81] is widely used in larger relational data-
base systems.

3. MRS is a stable system widely used in a university
environment. MRS was developed by a highly regarded
University of Toronto group and runs under the mini-
UNIX operating system from Toronto.

4. The principal investigators had nearly one year of
experience in using a version of MRS at the Database
System Research Laboratory of the University of Mary-
land .

D.l. 2 SYSTEM CONFIGURATION

An MRS database system running the Bell UNIX version 6

on a PDP 11/23 was benchmarked to represent the performance
of a database system in the microcomputer environment. The
size of the main memory on the PDP 11/23 was 256 KB. 10 MB
of disk storage was used by the system. The database was
stored on a dedicated disk of 10 MB.

-179-

D.1.3 IMPLEMENTATION AND BENCHMARK EXECUTION

The MRS system was developed at Computer Systems
Research Group of the University of Toronto. Users, from a
UNIX terminal, can access MRS by using English-like commands
to query the database as well as to update it. It was ini-
tially designed for 'small' computers, where the maximum
number of records in a relation is 30,000. Thus, the test
database size was limited to 3.5 MB. Preliminary data
preparation of transferring the benchmark database into the
MRS format was required before any queries could be run us-
ing MRS. It should have been routine, but all the data and
delimiters provided were not in a regular format. The first
three weeks were spent transferring data and debugging. The
next five to six weeks were spent writing and testing the
quer ies

.

MRS uses an SQL-like query language but it supports
only an SQL subset. Thus, several variables considered in
the other two benchmark studies were not included in the mi-
crocomputer test. These included sorting on primary keys,
clustered indexing, more than two relation joins, concurrent
multiple users, and background workload.

When interpreting the results of the microcomputer da-
tabase system benchmark, several points should be recog-
nized :

1. Limited Work Space - The original design of the work
space (less than 10K) was for temporary storage of
data from secondary storage before it was sent to the
user. The space was also used by pointers retrieved
from indexes. There was no problem when the queries
did not use any indexes. But as additional indexes
were added, the work space was quickly filled by in-
dex pointers, the query was aborted, and a warning
message displayed.

2. Multiple Relation Join - MRS does not allow joins
between more than two relations. Queries of this
type were modified to queries in nested form. The
records retrieved from the "inner' query had to be
stored in the work space used in the "outer' query.
Again, the work space was quickly filled, giving a

warning message. To implement this test, the number
of records retrieved was reduced.

-180-

3. Single User Restriction - The number of users on the
UNIX operating system was restricted to a single MRS
user. Although UNIX can support multiple users, this
restriction was employed to simulate more exactly a
true microcomputer architecture. Also, MRS does not
provide concurrency controls for two or more users.
The total elapsed time reflected the running time on
a dedicated system for each specific query.

4. Query Access - MRS provides only two access methods,
sequential and index access.

D.2. MINICOMPUTER DATABASE SYSTEM

D.2.1 SELECTION

There existed a greater number of choices for
minicomputer-based relational database systems. A sample of
these included: ORACLE, INGRES, ENCOMPASS, and QBE. Among
the systems that run on the VAX 11/750 computer, ORACLE and
INGRES are the best known. The original INGRES was
developed by a research project in Berkeley. That system
runs under UNIX but has many shortcomings [STON 80] . Since
its performance did not represent a 'typical' relational da-
tabase in this class, it was eliminated from further con-
sideration. Only the commercial version of INGRES, which is
an enhanced version of the original INGRES, was considered.
Both INGRES and ORACLE presently run under the UNIX operat-
ing system. They are in many respects very similar. In
this study ORACLE was selected to be the target system for
the minicomputer architecture for the following reasons:

1. ORACLE has been available commercially for several
years and appears to have a larger user population.

II
2. Like MRS, ORACLE uses the SQL query language. This

simplified the design of test transactions and job

scr ipt s

.

3. The principal investigators had extensive experience
in using ORACLE.

-181-

D.2.2 SYSTEM CONFIGURATION

An ORACLE Database System [ORAC 83], version 3.1.1, was
installed on a VAX 11/750 running VMS 3.0. The 11/750 con-
tained 2 MB of main memory. ORACLE memory requirements were
300 KB above the memory required for VMS (ORACLE VMS In-
stallation Guide, p.l). The default sizes for all of
ORACLE'S work files were used except for the before images
file (ORACLE$BI) which was increased to be equal to the
largest database size to be tested (10 MB)

.

The mass storage available on the VAX 11/750 consisted
of a Digital Equipment RL02 system disk, and a 9766 Control
Data Corp. disk drive with an unformated capacity of 300
megabytes

.

D.2.3 IMPLEMENTATION AND BENCHMARK EXECUTION

Version 3.1.0 of the ORACLE Database System [ORAC 83]
was installed on a VAX 11/750 at the National Bureau of
Standards during the second week of September 1983. Follow-
ing the installation, initial attempts to create a 3 . 5 MB
database failed due to a lack of space within ORACLE. This
problem was resolved by creating a database partition large
enough to handle the test database sizes (3.5, 6, and 10 MB)
and adding it to ORACLE.

The base relation table was then loaded with data for a
3.5 MB database (10,500 records) using procedures developed
by Systems Development Corp. (SDC) . Attempts to load the
individual database relations failed at this point. The da-
tabase loading procedure required that several update opera-
tions be performed on the single large relation prior to
loading individual relations, and ORACLE locked while per-
forming these updates. ORACLE technical services personnel
suggested that the problem might involve one of ORACLE'S
work files, the before images file, which could be too small
to handle updates on large relations. The size of the be-
fore images file was increased from 1 to 4 MB and the update
operations were successfully run.

The 3.5 MB database was then used to test and debug the
query sets. This took six weeks, since the queries were not
returning results identical to those returned by the data-
base machine. The reasons for these discrepancies turned
out to be several minor logic problems with the database
load procedures developed by SDC. These problems were
corrected and testing began the first week of November.

-182-

Running queries against the 3.5 MB database proceeded
smoothly until joins were attempted on tables which had
indexes formed with concatenated fields. Query set 8

(joins) ran for more than 10 hours without producing
results. Discussions of the problem with ORACLE technical
services people revealed that version 3.1.0 of ORACLE had a
known bug with concatenated index fields, which had been
corrected under version 3.1.1. It was decided to install
version 3.1.1 and rerun the queries to allow the ORACLE da-
tabase to have indexes identical to those used by the data-
base machine. After installing 3.1.1 and rerunning the
queries, though, there was still a problem with concatenated
index fields. As a result every index with a concatenated
field (social security number plus an additional field) on
the database machine was created with only one field under
ORACLE. The joins were then rerun and all but query set 10
(4 relation join) completed successfully.

After testing on the 3.5 MB database was complete a 6

MB database with 22,000 records was created. All the single
relation queries and all multiple relation queries (except
joins without indexes and query set 10) were run and com-
pleted. Additional tests performed on the 6 MB database in-
cluded multiple user performance and performance as affected
by background jobs. Except for queries run in multi-user
mode or explicitly run with background jobs, there was no
background load on the VAX at any time (except a minimal
amount of time required by the operating system to maintain
system processes) . Several j'oins without indexes were al-
lowed to run to completion. These joins took 10 to 12 hours
to run against the 6 MB database; joins with level 1 and
level 2 indexes finished significantly faster.

Testing queries against the 10 MB database posed no
problems except that all queries run without indexes did not
finish within the 30 minute time limit. The size of the be-
fore images file also had to be increased from 4 to 11 MB to
accomodate the updates run against the 10 MB base relation
during the database creation process.

Most problems encountered with ORACLE involved default
space allocations, which were typically too small to handle
databases of any real size. The only problem for which ORA-
CLE did not issue an error message involved running out of

room in the before images file. Problems with indexes were
not apparent until queries actually failed to run, though,

since ORACLE does not automatically validate them when they
are created (a specific request by the user is necessary to

validate an index once it is created)

.

-183-

D.3. DATABASE MACHINE

D.3.1 SELECTION

There are few database machines available commercially.
The best-known machines are Britton-Lee's IDM and Intel's
iDBP. The IDM is a relational database machine using a
QUEL-like machine language. The iDBP supports lower level
operations and also handles variable length records and
string searches. For this performance study the IDM-500 da-
tabase machine was selected for the following reasons:

1. IDM has been available for several years and at the
present time over 100 units have been delivered and
installed. On the other hand the iDBP was only re-
cently announced (in 1982) , and has no commercially-
available front-end (host) software, and is not wide-
ly used.

2. IDM is a relational database machine. This simpli-
fied the benchmark design and result interpretation
and facilitated the comparison with other relational
database systems.

3. There existed a variety of host software for the IDM.
For this study, the host software provided by the
vendor was used.

4. The principal investigators had used the IDM-500 sys-
tem. Host software and an SQL processor for the IDM
was developed as part of a research project at the
Database Systems Research Laboratory of the Universi-
ty of Maryland.

Britton-Lee manufactures two models of the IDM, the 500
and the (newer) 200. Both are identical from a functional
point of view. The IDM-500 version was selected because of
its larger capacity and better availability based upon time
constraints. Britton-Lee has developed an add-on to the
IDM-500 which they call a "hardware accelerator". It is ex-
pected to greatly increase the speed of the IDM-500. Howev-
er, for this study the IDM-500 without the accelerator was
benchmar ked

.

-184-

D.3.2 SYSTEM CONFIGURATION

An IDM-500 database machine (110 volt model) with one
MB of memory was installed and used for the benchmark.
After loading the IDM-500 software, approximately 1/2 MB of
memory was available for users. Release 24 of the IDM
software was used. Mass storage for the IDM consisted of a
9766 Control Data Corporation disk drive with an unformated
capacity of 300 MB. The disk drive was ported to the IDM-
500 via an SMD interface with a data transfer rate of 1.2 MB
per second.

The IDM operated with a VAX 11/750 "front-end" computer
running Berkeley UNIX 4.1. The data transfer rate between
te VAX and the IDM-500 was through a 9600 baud RS232 inter-
face .

D.3.3 IMPLEMENTATION AND BENCHMARK EXECUTION

The IDM-500 database machine was delivered to NBS dur-
ing the third week of May, 1983. Britton-Lee arrived the
next week to install the disk drive and load the software.

Initially, a 10 MB Control Data Corporation disk drive,
SMD compatible, was to be used as the IDM drive, but all ef-
forts to hook the drive into the IDM failed. Eventually, it
was decided to use a Control Data Corporation 300 MB drive.
The drive was cabled, initialized, and the software unload-
ed.

Sometime that night a power surge affected the IDM
and/or the disk drive, and the disk format was lost.
Britton-Lee returned two days later and reinitialized the
disk. This problem fortunately never reoccurred.

The IDM single user software, IDL, was also installed
at this time. IDL and the query script runner program,
'runner' , (written by SDC) were tested. Runner was locally
modified to reflect device names and timing algorithms.

The data tape was prepared by SDC and the entire tape,
189,960 records, was loaded into the IDM-500. This initial
load took over 12 hours. Breaking up the relations and ad-
ding indexes took another 16 hours.

The next 4-6 weeks was spent writing and testing
queries. By July 1, the final benchmark workload was writ-
ten and testing began. No problems occurred during testing
of the single relation queries, but it quickly became

-185-

apparent that the multiple relation queries (the joins) ex-
hibited widely different performance depending upon the da-
tabase size.

After testing on the 56 MB database was complete, the
benchmark tests were duplicated on different size databases.
The single base relation 'nbsol' was copied onto the UNIX
disk, via the I DM Fcopy command, and a new database, 3.5 MB,
consisting of the first 10,500 records of the file was
created. It took approximately four hours to build this new
database, and testing began on August 10th. It was apparent
almost immediately that the queries were being processed
much more quickly on the smaller database.

Query set 10, the four relation joins, posed a problem.
None of the queries completed within the 30 minute time
frame, and when tested under IDL, these queries ran very
strangely. They would start to print normally, but would
stop in the middle of a record.

A 10 MB database containing 33,000 records was created.
This database handled much the same as the 56 MB database -

the joins took an extremely long time to run. All single
relation queries ran fine. It appeared that somewhere
between 3.5 and 10 MB the IDM-500 could no longer efficient-
ly handle joins between large relations. In order to deter-
mine where the break point occurred, a 6 MB database (20,000
records), a 7 MB database (22,250 records), and a 8 MB data-
base (25,500 records) were benchmarked. The performance
break point in running the joins appeared to be between the
7 MB database and the 8 MB database.

Two additional 9600 baud lines and ports were then
dedicated to the IDM to test muli-user functions. During
testing (via the 'runner' program), the order of the queries
in the job scripts had an effect on performance when three
users were on the system. (This was discussed in Section
8.2.4.)

Some additional benchmark execution problems included:

1. The IDM-500 and the disk drive were extremely sensi-
tive to electrical current fluctuation. Even if the
IDM stayed up, which it usually did, contact with the
disk was lost, and a reboot was necessary.

2. A non-super-user on the UNIX system could not KILL an
IDL process. This hindered testing.

-186-

The RS232 communications were very slow between UNIX
and the I DM. At 9600 baud (about 900 characters per
second) it took 26 hours to load the 56 MB database.
Database loads of the other database sizes were
correspondingly slow.

-187-

6U.S. GOVERNMENT PRINTING OFFICEi 19 8 5-461*105/20247

NBS-H4A (rev. 2-8C)
i

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS /SP -500/1 32

2. Performing Organ. Report No 3. Publication Date

October 1985

4. TITLE AND SUBTITLE

Computer Science and Technology:

Benchmark Analysis of Database Architectures: A Case Study

5. AUTHOR(S)

S. Bing Yao and Alan R. Hevner, Software Systems Technology, Inc. & Daniel R. Benigni

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

Software Systems Tech. , Inc.
TOKMMtttfMXWiXmKMKtiX 710o Baltimore Avenue, Suite 206

College Park MD 20740

(301) 779-6030 (or 5486)

7. Contract/Grant No. ten tor

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

National Bureau of Standards
Department of Commerce
Gaithersburg, MD 20899

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 85-600599

3 Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bi bliography or literature survey, mention it here)

The purpose of this guideline is to present an application of the generalized
performance analysis methodology for the benchmarking of database systems that was
reported in NBS Special Publication 500-118. The principal objectives of this guide

are to benchmark the performance of three distinct database system architectures:

1) a microcomputer database system; 2) a minicomputer database system; and 3) a data-

base machine. This guide not only proves the viability of the benchmarking method-
ology in evaluating real systems, but it also provides comparable observations as to

the capabilities of database systems based upon different architectures.

Together with NBS Special Publication 500-118, this report serves as a reference
for the benchmarking of database systems by providing a complete description of the

benchmarking framework and a detailed application showing how to implement it.

(Related Documents: NBS/SP-500/118: A Guide to Performance Evaluation of Database
Systems by Daniel R. Benigni (Editor), S. Bing Yao and Alan R. Hevner;

NBS-GCR-84-468: An Analysis of Three Database System Architectures Using Benchmarks
by S. Bing Yao and Alan R. Hevner)

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

benchmark execution; benchmark methodology; benchmark workload; database systems;

DBMS; indexing; performance evaluation; query complexity; response time

13. AVAILABILITY

Unlimited

| |

For Official Distribution. Do Not Release to NTIS

[~v] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Q3 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

198

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

V oluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FTPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 1 1717 (38 FR 12315, dated May 11, 1973) and Pan 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

