
of Commerce

National Bureau
of Standards

Computer Science
and Technology

NBs NBS Special Publication 500-131
PUBLICATIONS

Guide for Selecting
IVIicrocomputer Data
IVianagement Software

Charles L. Sheppard

1985

m he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The
m Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and

government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering

.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and
chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and prop)oses engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems
Engineering

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-
mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

Inorganic Materials

Fracture and Deformation^
Polymers
Metallurgy

Reactor Radiation

'Headquarlers and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

-Some divisions within the center are located at Boulder, CO 80303.

'Located at Boulder, CO, with some elements at Gaithersburg, MD.

V;

• ARDSC;

LIBRARY

Computer Science
and Technology

NBS Special Publication 500-131

Guide for Selecting

Microcomputer Data
Management Software

Charles L. Sheppard

Center for Programming Science and Technology

Institute for Computer Sciences and Technology
National Bureau of Standards

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

Issued October 1985

National Bureau of Standards

Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 85-600598
National Bureau of Standards Special Publication 500-131

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-131, 65 pages (Oct. 1985)
CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1985

For sale by the SuDerintendent of Documents, U S. Government Printing Olfice, Washington. DC 20402

TABLE OF CONTENTS

SECTION DESCRIPTION PAGE

ABSTRACT 1

1 INTRODUCTION 2

1.1 SINGLE-FILE SYSTEMS 3

1.2 MULTI-FILE SYSTEMS 6

1.2.1 Relational-Like 8

1.2.2 Relational 8

1.2.3 Hierarchical 11
1.2.4 Network 11
1.2.5 Multi-model 13
1.2.6 Free- form 13

2. GENERAL FEATURES 15

2.1 DATA DEFINITION 15

2.2 DATA ENTRY 19

2.3 DATA RETRIEVAL 21

2.4 REPORT GENERATORS 24

3. SELECTION ISSUES 27

3.1 APPLICATION REUUIREMENTS 27

3.2 DESIRED DATA MANAGEMENT FEATURE^ 30

3.2.1 Data Definition and Reorganization 31
3.2.2 Data Transporting 34
3.2.3 Data Accessing 34
3.2.4 Communication 37

3.2.5 Documentation and Help Facilities 37

3.2.6 Interface Capabilities to Operating 37
System and Hardware

3.3 AVAILABLE SUPPORT 3 9

3.4 EXISTING AND PROJECTED USER BASE 40

3.5 PRICE 41

4. AN EVALUATION METHODOLOGY 4 2

4.1 ASSESS REQUIREMENTS 42

i i i

4.2 DEVELOP SELECTION CRITERIA 42

4.3 PERFORM FEATURE ANALYSIS 43

4.4 DERIVE BENCHMARK TEST SET 4 3

4.5 DESIGN BENCHMARK TESTS 44

4.6 PERFORM BENCHMARK TESTING 45

4.7 DESIGN EVALUATION CHART 47

4.8 PERFORM THE EVALUATION 47

5. FUTURE DIRECTIONS AND CONSIDERATIONS 49

6. CONCLUSIONS 50

7. References 51

APPENDIX A EXAMPLE OF FEATURE CRITIQUE SHEET 53

APPENDIX B EXAMPLE OF BENCHMARK TESTS 57

iv

LIST OF FIGURES

FIGURES DESCRIPTION PAGE

1 The Spectrum of Microcomputer Data Management 4

Sof tware

2 Sample User Menu 5

3 Typical DBMS Menu Hierarchy 5

4 Defining a Relational-Like Data Structure 9

5 Defining a Relational Data Structure 10

6 Hierarchical Data Definitions 12

7 Network Model Data Definition 12

8 Multi-Model Data Definition 13

9 Free-Form Data Definition 14

10 Data Field Attribute Specification 17

11 Data Definition Through Form-Building 17

12 Screen-Oriented Form Building 18

13 Screen-Oriented Data Entry 20

14 Sample Query Statement 22

15 Database Query Through Programming 23
Language CALL Statements

16 Database Query Using Imbedded Query 25
Language Statements

17 Free-Form Report Specification 25

18 Fixed-Form Report Specification 26

19 Evaluation and Selection Process 28

20 Potential Database Integrity Problem 33

21 ASCII File for Bulk Loading a Database 35

22 Data Interchange Format (DIF) File Example 35

23 Sample Benchmark Tests 46

24 Feature Evaluation Chart 48

V

GUIDE FOR
SELECTING MICROCOMPUTER DATA MANAGEMENT SOFTWARE

Charles L. Sheppard

ABSTRACT

This guide provides information to assist
data processing managers in the selection process
for microcomputer data management software. Gen-
eral information is provided on the different
categories into which microcomputer data manage-
ment software can be grouped. The features that
distinguish the software packages along this spec-
trum are discussed and illustrated. Inspection of
this spectrum shows that there is a common set of
features among packages regardless of their clas-
sification. This set of features and application
requirements are used to develop selection issues.
These issues serve as the foundation upon which an
evaluation methodolgy is developed.

Key words: application; assessment; benchmark;
database; evaluation; microcomputers; multi-file;
selection; single-file.

Acknowledgements - I would like to acknowledge the
members of our student program team, who worked
diligently and competently on the analysis and
testing of the microcomputer software assigned to
them, I would like to extend special thanks to
Dawn Hill who pioneered this effort with me and to
Sam Cook, Tammy Kirkendall, Francis Stanbach, and
Bill Youstra who joined in later.

-1-

1. INTRODUCTION

In recent years, there has been a steady growth in
data management software developed for microcomputers. Many
of these packages claim to be database management systems
(DBMS) . The validity of this claim depends upon how one de-
fines the capabilities of a DBMS. The definitions that fol-
low illustrate the diversification associated with defining
a DBMS:

"A DBMS is a set of procedures and data structures that
isolates the applications from the details of the crea-
tion, retrieval, storage, modification, security, and
physical storage structure of computerized data bases.
It presents an application with a view, as required by
its processing needs, without consideration for the
physical storage or access of the data". [TSIC77]

"The database management system (DBMS) is the software
that handles all access to the database. Conceptually
what happens is the following: (1) A user issues an ac-
cess request, using some particular data sublanguage;
(2) the DBMS intercepts the request and interprets it;
(3) the DBMS inspects, in turn, the external schema,
and the external/conceptual mapping, the conceptual
schema, the conceptual/internal mapping, and the
storage structure definition; and (4) the DBMS performs
the necessary operations on the stored database".
[Date77]

"The software that assists the application designer
(who must decide how the data will be stored, accessed,
displayed, etc.) and that later allows a computer user
to enter, retrieve, and manipulate the information in
the database is called a database management system, or
DBMS". [Gutt84]

"A data base management system is a software system
used to manage and maintain data in a prescribed struc-
ture for the purpose of being processed by multiple ap-
plications independent of storage device class or ac-
cess method. A data base management system organizes
data elements in some predefined structure, cross-
references defined relationships, and retains these re-
lationships between different data elements within the
data base". [Data84]

-2-

From the varied definitions stated above, it is
understandable why so many of the microcomputer data manage-
ment packages are being marketed as database management sys-
tems. This enforces the need to categorize these packages
according to their functional capabilities instead of at-
tempting to justify whether a package has all the necessary
features that would make it a database management system
[FipsllO]

.

Data management software for microcomputers can be di-
vided into two basic categories: single-file and multi-file
systems (see FIGURE 1) . Single-file systems allow users to
operate on only a single database file at a time. With
multi-file systems, users can operate on one or more data-
base files at a time. In this document, we will consider a
database file to have a logical structure that can be com-
pared to a two dimensional array (i.e., a table structure).

1.1 SINGLE-FILE SYSTEMS

A single-file system is generally designed as a
separate menu-driven package or as a functional part of an
integrated package. As a separate menu-driven package, upon
execution, a single-file system presents a user with a list
of options (see FIGURE 2) , generally referred to as the main
menu. By making a selection from among this list of options,
the user gains access to other sub-level menus (see FIGURE
3). As a functional part of an integrated package, the main
menu lists the database function as an option. Once the user
enters this functional level, the database functions are
made available. Spreadsheet packages are examples of this
type of data management software.

Single-file systems are designed to handle only a sin-
gle file at a time. That is, facilities are not available
to handle database file cross-referencing. Functions are
limited to such single-file operations as inserting, delet-
ing, updating, selecting, sorting and indexing. The insert
operation stores data into a database file through a prede-
fined record structure. Each insertion is called a record
occurrence

.

After storing a record occurrence in a database file, it
can be removed through the delete operation. The delete
operation locates a record occurrence through a specified
constraint which uses the data values contained in the
desired record occurrence as location controls. Once locat-
ed, the content of the record occurrence is erased or the
record is flagged as deleted.

-3-

Category Model Features

Single-
File

Non-Relating * menu driven
* does not allow cross-referencing between
data contained in separate data files

* self-contained or part of an integrated package

Multi-
file

Relational-
like

* menu driven
* allows cross-referencing of data contained in one

file with data contained in another
* ad hoc cross-referencing cannot be handled
* related data files are mapped to separate
structure definitions

* structure definitions of related data files must
reference each other

Relational * menu driven, command driven, or both
* allows cross-referencing of data contained in one

file with data contained in another
* ad hoc cross-referencing is allowed
* related data files are mapped to separate

structure definitions
* the structure definition of a data file does not

reference the structure definition of a related

* related structure definitions must have at least
one attribute of the same type and size

Hierarchical * choice of command or menu dialogue
* all data is stored in a single file
* the structure definition that maps to the data

file logically partitions the data into separate
data files containing record occurrences of the
same type

* cross-referencing across these logically separate
data files is accomplished through a concept calle^
segment linking

* ad hoc cr OS s— r efe r enc i ng can not be handled, that
is, all cross referencing must be handled through
predefined segment links

Network * program driven
* all data is stored in a single file
* the structure definition that maps to the data

file logically partitions the data into separate
data files containing record occurrences of the
same type

* cross-referencing across these logically separate
data files is accomplished through a concept
called sets

* ad hoc c r OS s— r e fe r enc i ng can not be handled,
that is, all cross-referencing must be handled
through predefined sets

Free-Form * menu driven
* a record can contain any type of information and

it does not have to resemble any other in the
database

* the orientation away from fixed form records tends
to nullify the concept of multiple files; however,
the capability to specify multiple indexes
maintains the concept of associating records
(i.e., cross-referencing)

* adhoc cross referencing is allowed

Multi- * has the same characteristics as specified for
either a relational or hierarchical model

Figure 1: The Spectrum of Microcomputer
Data Management Software

-4-

Main Menu

1 Define Table 5 Print

2 Add 6 Delete

3 Copy 7 Exit to System

Selection number:

Figure 2: Sample User Menu

Main Menu

Define Add

_ Create Table

_ Display Design

_ Change design

Copy

—Copy Design

-Copy All

SearchAjpdate Print Delete Exit

—Record

-Table

Figure 3: Typical Menu Hierarchy

-5-

Sometimes a record occurrence is only modestly
corrupted and can be corrected through editing as opposed to
deleting the entire record occurrence. Such editing can be
handled through the update operation. As with the delete
operation, the update operation requires a constraint clause
to guide it to the desired record occurrence that is to be
modified. Once the record occurrence has been located,
changes can be made.

On other occasions, it will be necessary to extract in-
formation from a database file. This is handled through the
select operation. Like the delete and update operations,
the select operation uses a specified constraint to guide it
to a desired record occurrence. However, data is only
displayed with the select operation and is not disturbed as
it is with the delete and update operations.

The sort and index operations control the physical or
logical ordering of record occurrences stored in a database
file. The sort operation rearranges the physical order of
record occurrences within a database file. Record oc-
currences are arranged sequentially in accordance with the
specified ascending or descending order of values in a
specified field. The sorted results are placed in either a
resident or a temporary result-file. If results are place in
a temporary result-file, at the end of the sort process, the
original database file may be replaced by the contents of
the temporary result-file.

Record occurrences can also be sorted logically through
the index operation. Thus, an actual physical reordering of
record occurrences is not performed; instead, an index file
is generated from the specified fields (attributes) of
record occurrences. This index file controls the order in
which records are accessed during sequential search opera-
tions .

1.2 MULTI-FILE SYSTEMS

Multi-file systems include all the functions of
single-file systems plus additional functions such as joins,
unions, intersections, comparisons, differences, file-
linkings, and projections. The join operation, through ei-
ther implicit or explicit links, relates record occurrences
contained in different database files.

Implicit links allow relationships to be handled in an
ad hoc fashion while explicit links are rigid. Explicit
links involve the use of file-link information that is pre-
specified in the data definition tables associated with the
database. This file-link information will name the files to

-6-

be linked and the fields upon which the files are to be re-
lated. Some microcomputer data management packages that use
this method to join database files allow only uni-
directional relationships between files. That is, the data-
base file that is being pointed to cannot point back to the
file that is doing the pointing. Some packages that use this
method of joining limit the number of files to which a file
can be linked.

The union operation generates a resulting database file
that contains record occurrences from either or all speci-
fied database files. Each database file which serves as a
parameter for the operation must have identical data struc-
tures. Thus, the order, type and size of fields are of
paramount importance. Generally, the union operator for mi-
crocomputer data management packages operates on only two
database files at a time.

The intersect operation generates a resulting database
file that contains only those record occurrences that are
identical across specified database files. Like the union
operation, the intersect operation requires the specified
database files to have identical data structures, and again,
most microcomputer data management packages limit the number
of specified files to two.

The compare operation validates record occurrences in
one table against those in another; that is, one table acts
as a lookup-reference for the other, based on a specified
key field. Unlike the union and intersect operations, the
compare operation does not require identical data struc-
tures; however, the database file that is used as the lookup
reference must have at least one field of the same type and
size as a field in the database file that it is compared
against. This operation accepts only two database files as
its parameters.

The difference operation generates from two specified
database files a resulting database file that contains
record occurrences that are not common across the specified
database files. Like the union and intersect operation, the
difference operation requires the database files specified
as its parameters to have identical data structures.

The project operation extracts and displays data from a

subset of the fields contained in each record occurrence
that is returned by the select operation. The preferred data
fields are specified as part of the parameter-list submitted
to the select operation or as parameters submitted directly
to the project operation itself. Thus, microcomputer data
management packages may combine the select and project
operations or treat them as separate operations.

-7-

Multi-file systems allow access to their functional
capabilities through menus, menus in conjunction with forms,
or command language statements. Some systems offer all of
these methods. In addition to these, other systems allow
interfacing through programming languages such as FORTRAN,
COBOL, BASIC, PASCAL, C or their own built-in programming-
like language.

There is a spectrum of functional capabilities among
the multi-file systems (see FIGURE 1) . This ranges from
relational-like systems to free-form systems and includes
relational, heirarchical, network and multi-model systems.

1.2.1 Relational-Like.
Relational-like systems handle projections and joins

in a superficial fashion (with respect to the definition of
the relational model) . Some of these systems allow projec-
tions to be performed only after the user has defined an
output structure containing the desired attributes (fields).
To simulate joins, users are required to specify (at defini-
tion time) which database file is to be related to the file
being defined. This requirement is handled by establishing
an explicit link (pointer) . The explicit link is usually a
combination of the related file's name and the name of the
field upon which the link will be based. FIGURE 4 illus-
trates a relational-like data structure. Other relational-
like systems handle joins through a built-in programming-
like language or a supported programming language such as
BASIC, FORTRAN, COBOL, PASCAL or C. This may require a com-
plicated programming effort.

1.2.2 Relational.
Relational systems use data values (implicit links) to

relate database files. Thus, data definitions are self-
contained; that is, the database definition does not refer-
ence related database files. FIGURE 5 illustrates a database
file in relational systems. Through the use of implicit
links, relational systems are designed to handle projections
and joins with a minimum amount of user effort. The user can
develop projections without having to define an output
structure which contains the desired attributes (fields)

.

This is accomplished as a result of the relationship between
the project and select operations. The project operation is
incorporated as part of the select operation which allows
desired attributes to be submitted as part of its parameter-
list. The relational system uses this parameter-list, in
conjunction with the definition of the queried database
file, to control the form of projected output. Joins

-8-

Phase I: Define a logical structure
for each database file.

Enter name of database file: Emp

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE, WIDTH, DECIMAL PLACES
001 name, c, 20
002 deptno,n,3
003 address, c, 45
004 city, c, 15
005 state, c,

3

006 zip,n ,

5

007 salary,n,6,2
008 hdate,d
009 <return>

ENTER ANOTHER STRUCTURE? (Y/N)

y

Enter name of database file: Dept

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE, WIDTH, DECIMAL PLACES
001 deptno,n,3
002 deptname ,c , 1

5

003 <return>
ENTER ANOTHER STRUCTURE? (Y/N)

n

Phase II: Specify the fields on
which related database
files are to be linked.

Enter name of database file: Emp
Enter name of link field: deptno
Enter name of related database file: Dept

Figure 4: Defining a Relational-Like
Data Structure

-9-

Enter the name of the database file: Emp

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE,WIDTH, DECIMAL PLACES
001 name ,c , 15
002 deptno,n,

3

003 address, c, 45
004 city, c, 15
005 state, c,

3

006 zip,n,5
007 salary, n, 6,

2

008 hdate,d
009 <return>

ENTER ANOTHER STRUCTURE? (Y/N)

y

Enter the name of the database file: Dept

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE,WIDTH, DECIMAL PLACES
001 deptno,n,3
002 deptname ,c , 15
003 <return>

ENTER ANOTHER STRUCTURE? (Y/N)n

****Note: A command syntax simular to the following would
be used to JOIN the Emp file to the Dept file.

SELECT name
FROM Dept, Emp
WHERE Dept.deptno EQ Emp.deptno;

Figure 5: Defining a Relational
Data Structure

are handled through either a form of relational algebra or
relational calculus. If a system uses relational algebra,
the user is restricted to joining two database files at a
time. The generated output from the join is placed in a
third file referred to as the result-file. The joining of
any results deposited in this result-file with additional
database files is the only way to extend joining across mul-
tiple database files. Thus, if a user desires to join data-
base files A, B and C, the user must generate a result-file
by joining database files A and B, first. Then, the generat-
ed result would be joined to database file C which in turn
would generate the final result.

Relational algebra is a sufficient method for handling
simple joins; however, it can be burdensome to use when
joining across more than two database files (as illustrated
in the above paragraph) . This burden is relieved through
the use of relational calculus which uses all the primitive
operations performed by relational algebra but without the
user being aware of any intermediate results when joining
more than two database files.

1.2.3 Hierarchical.
Hierarchical systems permit defining data structures in

terms of segments which are very similar to what is called
records in other systems. However, the segment is comprised
of data elements and repeating groups. The data elements are
equivalent to attributes in a record definition. The repeat-
ing group describes a structure for storing a set of data
elements. Repeating groups serve a twofold purpose: they
link the levels of a hierarchial structure and incorporate
the concept of multiple files. Each repeating group can be
viewed as a file containing a single record type. This simu-
lates defining more than one record type per data definition
file. FIGURE 6 is an example of data structures using the
hierarchical model.

1.2.4 Network.
As with hierarchical systems, network systems permit

defining more than one record type per data definition file.
However, the concept of a record is explicit instead of be-
ing implied by repeating groups. The capability of defining
more than one record type per file incorporates into the
network model the concept of multiple files. Additionally,
the network model uses the concept of a set to link (relate)
the different record types. FIGURE 7 illustrates a data de-
finition for the network model.

-11-

1* DEPT-NUMBER (KEY INTEGER 9(3)):
2* DEPT-NAME (NON-KEY CHARACTER X(15)):
3* EMPLOYEES (RG)

:

4* EMPLOYEES NAME (KEY CHARACTER X(15) IN 3):
5* ADDRESS (NON-KEY CHARACTER X(45) IN 3):
6* CITY (NON-KEY CHARACTER X(15) IN 3):
7* STATE (NON-KEY CHARACTER X(3) IN 3):
8* ZIP (NON-KEY INTEGER 9(5) IN 3)

:

9* SALARY (NON-KEY DOLLAR $9(3). 99 IN 3):
10* DATE-HIRED (NON-KEY DATE MM/DD/YY IN 3)

:

Figure 6: Hierarchical ucicd Jefiaitioa

/***** IDENTIFICATION SECTION *****/

db DEPARTMENTS
file "CrDEPT.DB"
size 300 pages, page size 1024
title "DEPARTMENTS schema"

/***** RECORD SECTION ****/

record DEPARTMENT
item DEPTNO int 3

item DEPTNAME chr 15

record EMPLOYEE
item NAME chr 15
item ADDRESS chr 45
item CITY chr 15
item STATE chr 3

item ZIP int 5

item SALARY dollar
item HDATE date

/***** SET SECTION *****/

set SYSSET, type l:n
owner SYSTEM
member DEPARTMENT, order sorted ascending (DEPTNO)

duplicate not allowed
insertion automatic

set EMPLOYEES, type l:n
owner DEPARTMENT
member EMPLOYEE, order sorted ascending (NAME)

duplicate allowed
insertion automatic

end

Figure 7: Network Model Data Definition

1.2.5 Multi-model.
Multi-model systems permit users the option of defin-

ing data structures in accordance with one of the three most
popular models (i.e., hierarchical, network or relational).
FIGURE 8 illustrates a data structure in multi-model sys-
tems. These systems are useful for prototyping, because
they aid in identifying the most appropriate model for can-
didate applications. Thus, the functional capabilities
available to users depend on the type of data structure be-
ing used. For example, if the data structure satisfies the
hierarchical model, only the functional capabilities of a
hierarchical model are available to the user.

1.2.6 Free-form.
Free-form systems allow users the option of entering

data into a database file in any format, such as text,
tables or numbers. Whatever the format, each information
unit may be associated with one or more keywords. For exam-
ple, a paragraph of text could be assigned the keywords "mi-
crocomputer" and "data management". The paragraph could then
be retrieved by asking the system for any information on mi-
crocomputer, data management, or both. In free-form systems,
the concept of a fixed record format is not available. Thus,
information can be entered without regard to previous entry
forms. FIGURE 9 is an example of defining structures for
free-form systems.

FILENAxME = Sample, EXTENSION='DBF' #

SEGNAME=Dept , SEGTYPE=root #

FIELDNAME=deptno, FIELDTYPE=nuinber , FIELDLENGTH=3 #

FIELDNAME=dnaine, FIELDTYPE=char acter , FIELDLENGTH=15 #

SEGNAME=Einp, SEGTYPE=chi Id , PARENT=Dept #

FIELDNAME=ename, FIELDTYPE=character , FIELDLENGTH=15 #

FIELDNAME=address, FIELDTYPE=char acter , FIELDLENGTH=45 #

FIELDNAME=city , FIELpTYPE=char acter , FIELDLENGTH=15 #

FIELDNAME=State, FIELDTYPE=char acter , FIELDLENGTH=3 t
FIELDNAME=zip, FIELDTYPE=number , FIELDLENGTH= 5 #

FIELDNAME=salary , FIELDTYPE=dol lar , FIELDLENGTH=6 »

FIELDNAME=hire-date, FIELDTYPE=date #

Figure 8: Multi-Model Data Definition

-13-

PHASE 1: DEFINE INDEXED ITEMS

Item Name Type Length Pattern

DEPTNO INTEGER 3

ENAME CHARACTER 15

PHASE 2: DEFINE NONINDEXED ITEMS

Item Name Type Length Pattern

DNAME
ADDRESS
CITY
STATE
ZIP

SALARY
HIRE-DATE

CHARACTER
CHARACTER
CHARACTER
CHARACTER
INTEGER
MONEY
DATE

2

7

8

tf!" tf* ^ rf>^

MM-DD-YY

PHASES: DEFINE RECORDS

Record Name Items

DEPARTMENT DEPTNO, DNAME
EMPLOYEE ENAME, ADDRESS, CITY, STATE, ZIP, SALARY, HIRE-DATE

PHASE 4: DESIGN/SAVE SCREEN FORMS FOR EACH RECORD

DEPT EMP

DEPTNO:
DNAME:

ENAME:
ADDRESS:
CITY:

STATE:

SALARY:
ZIP:

HIRE-DATE:

J V.

Figure 9: Free-Form Data Definition

-14-

2. GENERAL FEATURES

Most data management software for microcomputers
is single-user oriented. That is, the more popular packages
are designed to run under single-user operating systems (for
microcomputers) . This is predominantly the case for packages
that have been designed to run under 8-bit architectures.
Under 16-bit architectures, both single- and multi-user
operating systems are generally available. As a result, some
vendors offer both single- and multi-user versions of their
data management packages. Under 32-bit architectures,
multi-user versions are predominant. Regardless of the
category, there are four basic features common to all of
these packages. These features are:

o data definition,

o data entry,

o data retrieval, and

o report generators.

Each of these common features will be discussed in the fol-
lowing sections.

2.1 DATA DEFINITION

The data definition specifies the logical frame-
work through which data structures are accessed by users.
The data definition feature of those microcomputer data
management packages that fall into the categories single-
file, relational-like, or relational allow users to define
data structures in terms of two-dimensional tables consist-
ing of rows and columns. Entry of the data definition for

these structures is generally accomplished through either:

o an attribute file,

o a form file, or

o parallel development of attribute and form files.

-15-

An Attr ibute Fi le - In the first approach, the user is
prompted to enter the attributes of each field according to
a predefined format. FIGURE 10 illustrates this approach.
The NAME attribute is generally limited to a maximum of ten
characters. The base set of data TYPES usually includes the
NUMERIC and CHARACTER data types; however, most packages ex-
tend this set with the DATE data type. The WIDTH is the max-
imum number of characters that may be contained in an as-
signed data value. The DECIMAL PLACES is the specified pre-
cision in digits to the right of the decimal point for
numeric data types.

A Form File ~ A second way to enter the definition for
data structures is for the user to build a form file. This
is, in effect^ defining the data structure by designing its
data entry form. As shown in FIGURE 11, this method re-
quires attribute names to be enclosed in square brackets or
some delimiting symbols. The permitted length in characters
for assigned data values is indicated by an appropriate
number of underline keystrokes. After building the form
file, the user is then prompted to specify the data type for
each attribute painted as part of the screen form.

Parallel Development - A third way to enter the defini-
tion for data structures is for the user to specify the data
types for each attribute as the form is being developed. As
shown in FIGURE 12, this method is generally a menu driven
process. After the user selects the file creation option and
specifies a filename, the microcomputer data mangement sys-
tem enters a screen-edit mode. In this mode, scrolling the
cursor to any position on the screen is possible. This
feature enables the user to create a form. The user simply
scrolls the cursor to any position on the screen and enter
an attribute name. Once the end of the attribute name is in-
dicated, the system highlights another set of commands in
the menu window beneath the designated screen-edit area. At
this point, the characteristic of assignable values (such as
data type, size, precision and range) can be specified.

Those microcomputer data management systems that
satisfy the characteristics of either the hierarchical or
network models provide another means of entering the defini-
tion of data structures. Entry of the definition is gen-
erally achieved through the aid of a text editor. After
creating the definition file through the aid of a text edi-
tor, it is submitted to a data definition processor which
uses the information in this file to generate a data dic-
tionary file and to initialize the database file needed to

-16-

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE, WIDTH, DECIMAL PLACES
001 name ,c , 20
002 address ,c , 25
003 ci ty ,c , 20
004 state ,c ,

2

005 zip-code, c,

5

Figure 10: Data Field Attribute Specification

Enter a new forn (Y/N) ?y

[NAME]

:

(ADDRESS]

:

[CITY]

:

[STATE] : [ZIP-CODE]

:

Enter data definition in the following format:

>FIELD-NAME: FIELD-TYPE,
Choices : (ANJ$R)

FIELD-SIZE, MIN-VALUE, MAX-VALUE,
(1-127 bytes) (1-10 digits)

"DEFAULT-VALUE"
(0-15 Characters)

>l.NAME:a,20
> 2. ADDRESS: a, 2 5

>3.CITY:a,20
> 4. STATE: a,

2

>5.ZIP-CODE:a,5

Figure 11: Dat6 Defcinition through
Foctn Bu) Iding

-17'

CO

"(5

T3
0)

'55

ifi "CO

.9 ^
e .1

0)

CM

<DW
CO

o

CD

£
CO

.Q .92

"a5 <DO JC

D.E

-a T3

_^ ^

2 S

2 ^

CO

D

Q.
E
o
CJ

CO

c
O)
<0
CDD
C
CD
CD
k_O
CO

c

CM

C
CO

CO
CD
CO
CO
sz
Q.

to
CD
Q.
CD

DC

CO
CD
CO
CO
sz
CL

c

3

e

O

1)

•H
V-l

O
I

c
o
<u

o
CO

cn
•H
Cm

-18-

store record occurrences. An example of the data definition
file for the hierarchical model is shown in FIGURE 6. In-
spection of this file will reveal a logical view that is
built around the concept of nesting children records within
an associated parent record. A parent record contains at
least. one attribute that serves as a label for a list of
children attributes. In FIGURE 6, line 3* is such a parent
attribute. This attribute explicitly links the attributes of
the parent record (i.e., DEPT-NUMBER and DEPT-NAME) with the
attributes of a child record (i.e., EMPLOYEES, ADDRESS,
CITY, STATE, ZIP, SALARY and DATE-HIRED)

.

An example of the definition file for the network model
is shown in FIGURE 7. As shown, the definition of a data
structure requires identifying three sections. In the first
section, the Identification Section, the logical naming la-
bel for the database is linked to the actual database file
(i.e., DEPARTMENTS is linked to CtDEPT.DB) . In addition, the
expected amount of storage space is specified. The second
section, the Record Section, identifies the name of each
record type along with the names and characteristics of
their respective attributes. In FIGURE 7, there are two
record types, DEPARTMENT and EMPLOYEE. In the third section,
the Set Section, the relationships among the different
record types are indicated. Each relationship is assigned a
set name. Each set contains an owner record type and one or
more member record types. In FIGURE 7, the set section iden-
tifies two set types, SYSSET and EMPLOYEES. SYSSET is a spe-
cial set type that serves as the entry point for the data
structure

.

2.2 DATA ENTRY

Data entry in a large number of microcomputer data
management packages is accomplished through facilities that
prompt a user to enter a value for each defined attribute
comprising a record occurrence. Generally, the prompting is
through a screen form that was previously designed by the
user, or determined by the data management system from the
previously specified data definition. The screen form will,
in most cases, indicate the allowed number of characters for
an attribute by an appropriate number of underscores or a

boxed-in number of character positions highlighted in re-
verse video. FIGURE 13 illustrates this method of data en-
try. In the first case, the underscores are overwritten as
data values are entered. In the case of reverse video, the
characters for data values are accented by a rectangular
shape

.

-19-

Case 1 : Use of underscores to indicate the maximum
character length of data values

r
name: Adams

city: Jacksonville

state:

zip:

salary:

hdate:

Case 2: Use of reverse video to indicate the maximum
character length of data values

f
name: Adams
address: 1 91 5 Hunter Street

city: 1 Jacksonville 1

state: 1 1

ziD:l 1

salary: 1 1

hdate:
| |

Figure 13: Screen-Oriented Data Entry

-20-

Additionally, many packayes support a bulk loading
facility. Such a facility requires the input file to be in a

format that is familiar to the data management package. A
format that is common across many packages is an ASCII file
containing attribute values separated by commas. Each line
in the ASCII file must contain only enough attribute values
for a single occurrence of a record type. The order of the
attribute values must match the order of the attribute names
in the definition for the associated record type in the
database

.

2.3 DATA RETRIEVAL

Data retrieval in microcomputer data management
packages is performed through either menu or non-menu query
facilities. Some packages that are driven completely by
menus allow users to control the format of the menus while
others do not. In either case, at execution time a set of
options is presented from which the desired data retrieval
action can be specified. The retrieved data can then be
displayed on the screen, directed to a printer, or stored in
a file.

Those packages that support only non-menu query capabil-
ities use either a query command syntax or an interface with
a programming language such as BASIC, FORTRAN, COBOL, PAS-
CAL, or C. The query command languages retrieve data
through command statements that are syntactically correct.
An example of such a command statement is shown in FIGURE
14. This command statement would list those records from the
table that satisfy the specified constraint (FOR comm >

1000)

.

Data retrieval with a programming language (e.g. COBOL)
is achieved through call statements or embedded query com-
mand statments. If call statements are used, an appropriate
sequence of parameters must be passed to the routine that is
functionally capable of handling the desired request. An ex-
ample of call statements in a COBOL program is shown in FIG-
URE 15. This program can be submitted directly to the COBOL
compiler; however, a program with embedded query command
statements must be submitted to a precompiler before being
submitted to the compiler of the programming language. There
are, however, advantages in not having to learn the neces-
sary call routines and the required parameters that must be
passed to them. Instead, a user has to learn only the syntax
of the query language and place the query statements at the
proper location within the lines of programming code. After
learning the syntax for the query language, embedding a

COBOL program with query statements will generally be easier
than working with CALL statements. Also, the code of a

-21-

Database File: Employee

Empno EName Job Sal Comm

6359 Milton Clerk 1,300.00

6495 Allen Salesman 1,600.00 300.00

6621 Jones Analyst 2,800.00

7031 Martin Salesman 1,800.00 1,200.00

7545 Scott Clerk 1,500.00

7820 Sims Salesman 1,200.00 1,500.00

Objective - to select names of those employees that have commissions
greater than $1 ,000.00.

Command Syntax - SELECT EName
FROM Employee

WHERE Comm > 1000;

Figure 14: Sample Query Statement

-22-

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

DBLOGON AREA.
0 2 DBLOGON ERROR PIC S999.
0 2 DBLOGON WA PIC S999 OCCURS 20 TIMES
CURSOR.
0 2 CURSOR ERROR PIC S999.
02 CURSOR WA PIC S999 OCCURS 30 TIMES
OUTPUT RECORD.
0 2 NAME PIC X(15) .

02 FILLER PIC XX VALUE SPACES.
02 JOB PIC X (40) .

02 FILLER PIC XX VALUE SPACES.
02 AGE PIC S999.
02 FILLER PIC XX VALUE SPACES.
02 SAL PIC S9 (6) V99
02 FILLER PIC XX VALUE SPACES.
02 COMM PIC S9 (6) V99
USER-ID PIC X(7) VALUE "manager"
SQL-SELECT PIC X(60) VALUE
"SELECT NAME, JOB, AGE, SAL, COMM FROM EMPLOYEE WHERE COMM > 1000".

PROCEDURE DIVISION.
BEGIN.

CALL "DBLOGON" USING DBLOGON_ERROR , USER-ID.
IF DBLOGON_ERROR NOT = 0

PERFORM DB-ERROR
GO TO EXIT-STOP.

CALL "OPENCURSOR" USING CURSOR_ERROR , DBLOGON_ERROR

.

IF CURSOR_ERROR NOT = 0

PERFORM DB-ERROR
GO TO EXIT-DB.

PERFORM DISPLAY-OUTPUT THROUGH EXIT-OUTPUT
UNTIL CURSOR_ERROR = 8.

EXIT-CLOSE.
CALL "CLOSE_CURSOR" USING CURSOR_ERROR

.

IF CURSOR_ERROR NOT = 0

PERFORM DB-ERROR.
EXIT-DB.

CALL "LOGOFF_DB" USING DBLOGON_ERROR.
IF DBLOGON_ERROR NOT = 0

PERFORM DB-ERROR.
EXIT-STOP.

STOP RUN.
DISPLAY-OUTPUT.

CALL "EXECUTE_SQL" USING CURSOR_ERROR ,
SQL_SELECT, NAME,

JOB, AGE, SAL, COMM.
IF CURSOR_ERROR NOT = 0

IF CURSOR_ERROR NOT = 8

PERFORM DB-ERROR
GO TO EXIT-OUTPUT.

DISPLAY, OUTPUT-RECORD.
EXIT-OUTPUT.

EXIT.
DB-ERROR.

IF DBLOGON_ERROR NOT = 0

DISPLAY "Experiencing database error" DBLOGON_ERROR
ELSE

IF CURSOR_ERROR NOT = 0

DISPLAY "Experiencing table error" C0RSOR_ERROR.

Figure 15: Database Que^y through Programming
Language CALL Statements

program that is embedded with query command statements is
easier to understand than one with embedded CALL statements.
FIGURE 16 is an example of a COBOL program that is embedded
with query command statements.

Additionally, some microcomputer data management systems
offer the choice of data access through either menu or non-
menu facilities. These systems attempt to offer the best of
both worlds. Menus for their ease of use and non-menus for
user sophistication.

2.4 REPORT GENERATORS

Report writer facilities for microcomputer data
management packages generally fall into two categories:
free-form report writers and fixed-form report writers.
Free-form report writing is accomplished either through a
screen editing mode which allows the user to scroll upon the
screen painting a desired report format, or through screen
utility commands embedded in a command file. In either
case, the set of format controls is linked to the database
file which contains the data needed to generate the desired
report. FIGURE 17 illustrates use of a command file embed-
ded with screen utility commands.

Fixed-form report writing requires users to supply ap-
propriate responses to a set of prompts. The set of prompts
presented is to some degree determined by the user's
responses. FIGURE 18 illustrates use of a fixed-form report
writer

.

-24-

IDENTIFICATIOMN DIVISION.
PROGRAM-ID. SAMPLE.

ENVIRONMENT DIVISION.
DATA DIVISION.
SUB-SCHEMA SECTION.

DB COMPANYDB
SQLCODE IS DB-STATUS.

TD TABLE SECTION.
01 EMPLOYEE.

02 NAME PIC X (15) .

02 JOB PIC X (40)

.

02 AGE PIC S999.
02 SAL PIC S9(6)V99.
02 COMM PIC S9 (6) V99.

WORKING-STORAGE SECTION.
01 LASTREC PIC X(3) VALUE "NO".
01 DB-STATUS PIC S9(5) VALUE 0.

PROCEDURE DIVISION.
DECLARATIVES.
LASTREC-ERROR SECTION.

USE FOR DB-EXCEPTION ON +100.
MOVE "YES" TO LASTREC.

ABNORMAL-ERROR SECTION.
USE FOR DB-EXECPTION ON OTHER.
DISPLAY "DB ERROR". ROLLBACK. STOP RUN.

END DECLARATIVES.
OPEN LISTEMP CURSOR FOR

SELECT NAME, JOB, AGE, SAL, COMM
FROM EMPLOYEE
WHERE COMM IS GREATER THAN 1000.

FETCH LISTEMP.
PERFORM UNTIL LASTREC = "YES".

DISPLAY NAME, JOB, AGE, SAL, COMM.
FETCH LISTEMP.

EN i-PERFORM.
ST)P RUN.

Figure ±6. DuLctbase Query using Imbedded
Query Language Statements

Screen Command Statements

ERASE SCREEN
OPEN Einployees_table
@1C,5 SAY 'Name:' GET Name
@12,5 SAY 'Address:' GET Address
@14,5 SAY 'State:' GET State
@14,30 SAY 'Zip Code:' GET Zip-Code
@17,5 SAY 'Salary:' GET Salary
@17,27 SAY 'Hdate:' GET Hdate

Output Format

Name : []

Address: [

State: [] Zip Code: [

Salary: [] Hdate: []

Figure 17: Free-Form Report pec L f ioa t ion

-25-

System Prompts for User Responses

ENTER NAME OF REPORT: Example
ENTER OPTIONS ,M=LEFT MARGIN , L=LINES/PAGE , W=PAGE WIDTH:W=65
PAGE HEADING? (Y/N)y
ENTER PAGE HEADING:List of Employees
DOUBLE SPACE REPORT? (Y/N)

n

ARE TOTALS REQUIRED? (Y/N)n
ENTER HEADING :< Name
COL WIDTH, CONTENTS
001 15 , NAME
ENTER HEADING :< Job
002 20, JOB
ENTER HEADING :< Manager
003 15, MANAGER
ENTER HEADING: < Salary
004 9, SAL
ENTER HEADING:< 'Hire Date'
005 10,HDATE
ENTER HEADING :<

Output Format

Name Job Manager Salary Hire Date

Johnson President $4, 500. 00 Jan- 18-35

Miller Clerk Brown $1, 500. 00 Feb- 01-83

Brown Manager $2, 500. 00 Mar- 05-81

Figure 18: Fixed -Focm Report Spec i C icat ion

-26-

3. SELECTION ISSUES

Selection of microcomputer data management
software should not be performed haphazardly. A prospective
user should consider and employ selection criteria such as
the following [Gall84]

:

o application requirements,

o desired data management features,

o user support,

o existing and projected user base, and

o price.

Each criterion will be discussed in the following sections.
FIGURE 19 illustrates the activities that occur when apply-
ing this selection scheme with the evaluation methodology
discussed in Section 4.

3.1 APPLICATION REQUIREMENTS

An assessment of what is functionally required to
implement candidate applications should be performed before
procuring any microcomputer data management software. The
functional assessment will identify the category of data
management software that will best handle the implementation
of candidate applications. If an application can be handled
through nonrelated database files, the data management pack-
ages that fall into the single-file category will be an ap-
propriate selection. In contrast, applications that require
cross referencing of two or more database files are handled
best by those packages that fall into the multi-file
category. However, the variety of models in this category
makes the selection process a difficult one. The
relational-like, hierarchical, and network packages are all
appropriate for applications that have stable data struc-
tures. Such structures require studying the relationship
among data items so that storage and access methods for best
performance can be defined at data definition time. Addi-
tionally, a stabilized data structure demands that a data-
base be defined around the type of queries that will be made

-27-

Study each >ppUcuioa

• Nature of Activitiet

• Itenu of Interest

Talk 1

Talk 5

Taak t

Tuk 2

AsKU Requiremeait

• Oau Eotiliei

• Data Deaciiplion

• Data Shahoi
• Data Inpot/OnlpiU

• Data Voluma
• DauStnciuRt
• Training

• Coovenioo

Task 3

Identify Desirable Dau
Management Features

• Data Deriniof

• Data Reorganizing

• Data Traosponing

• Data Accessing

• Commuoicatioo
• Help Facilitiea

• Documentation

• Interface Capabilities

with Operating System

Task 4

Defloe Selection Criteria

• Desirable Dau Management features

• Price

• Support

• Subjective weights for each criteria

Task 6

Derive a List of Candidate Packages

• Highlights from Computing Literature

Task 7

Perform Benchmarking
Task 9Design Tailoring

• Observations

• Paformance Tmiea
<

1

("Wall Gock^PU time)

/ Testing No

jYes

Evaluate Test Results

• Use of Evaluation Charts

Task 10

Figure 19- Svalaation and Selection Process

-28-

against it. Thus, to insure a stable data structure, a lot
of work must be performed before defining the data struc-
ture .

Relational packages are often more appropriate for ap-
plications that do not have stable data structures; that is,
data structures can be changed easily on a periodic basis
without affecting the functional capabilities of software
developed for the applications lJame84] . Thus, relational
packages allow complete data structures to be defined in
stages. They are also good at handling applications that
require unforeseen queries.

Free-form packages lend themselves to applications that
are not disciplined by any specific data structure (i.e.,
hierarchical, network, or relational). Thus, a predefined
data-entry format is not necessary. Instead, each record
occurrence is associated with a unique format (i.e., a for-
mat that is specific to the set of attributes for that
record occurrence)

.

Multi-model packages serve as excellent prototyping
tools. They allow for performance testing on a small data-
base of the desired application under different models be-
fore committing full software development for a specific
model. Multi-model packages are also good for tracking data
structures from a dynamic to a stable state. For example,
during the dynamic period, the relational model could be
used. Once the data structure stabilizes, either the
hierarchical or network model could be used. The final model
selection would be determined by the one that offered the
best performance.

Other considerations during the needs assessment are the
characteristics of the data and the physical limitations
that are characteristic of microcomputers. The main physical
limitation of microcomputers is data storage. A potential
purchaser of data management software should identify both
internal and external memory requirements for a candidate
package. The user should verify whether internal memory re-
quirements by the package can be adequately handled by the
target microcomputer. If internal memory requirements for
the package exceed the amount of internal memory installed
in the target microcomputer, the cost associated with the
necessary expansion should be estimated. As for external
memory requirements, it should be determined whether the
capacity of a single diskette, if the target microcomputer
has only floppy disk drives, can store all of a package's
software. This point is emphasized because of the cumbersome
operating procedures that will be required should a single
diskette prove to be insufficient storage space for all the
software of a package. An example of the difficulty that

-29-

could arise is the user having to manually swap diskettes to
find the software needed for a desired operation. To combat
this situation, a user can select a package that has a
storage requirement that is less than the capacity of a sin-
gle diskette or target a microcomputer that has a hard disk
dr ive

.

Another key evaluation factor is the size of database
files for each candidate application. Limitations on data-
base file sizes are both physical and logical. The physical
limitation has to do with the type of disk medium available
on the target microcomputer (e.g., hard disk versus floppy
diskette). For example, a hard disk generally allows
storage in excess of 10 million characters while a typical
floppy diskette allows only about 360 thousand characters.

Logical limitations result from the constraint that is
placed on the logical design of a database file by a candi-
date package. For example, the maximum number of characters
that can be assigned as a value for an attribute may be in-
sufficient for a given application. Thus, if assigning memo
notes or abstracts that have character string lengths of a
thousand or more characters is required, it would be impos-
sible in a system which allows a maximum of only 132 charac-
ters. Other examples of logical limitations include the
maximum number of records per database file, attributes
(fields) per record, and database files per database.

3.2 DESIRED DATA MANAGEMENT FEATURES

Every microcomputer data management package has a
means of allowing users to define data structures and to
logically store and retrieve data from these structures.
However, the manner in which these features are made avail-
able to users can be crucial to the performance of a candi-
date application. Some issues pertaining to desirable data
management features are listed below:

o data definition and reorganization,

o data transporting,

o data accessing,

o communication.

-30-

o documentation and help facilities, and

o interface capabilities to operating system and
hardware

.

Each of these features will be discussed in the following
sections

.

3.2.1 Data Definition and Reorganization,
The data definition language is central to the opera-

tions of any data management package. Based on this premise,
users should consider the following list of features when
selecting from a set of candidate data management packages:

o the ease by which data definitions can be specified,

o the set of available data types,

o the database indexing facilities,

o the levels of data integrity,

o the levels of data security, and

o the ease by which data definitions can be modified.

Ease of Specification - The above features determine the
degree of flexibility available to users when defining data
structures. For example, a data definition facility that
offers screen editing capabilities makes it easer to enter
and change the definition of data structures.

Data Types - A large set of data types increases the
strength of operations that can be performed on the defined
data structures. An illustration of this is a microcomputer
data management package that has only the CHARACTER and
NUMBER data types. With such a package, implementing an ap-
plication requiring date operations could be very difficult
and, in some cases, the associated cost in time would make
it impractical.

Indexing Facilities - Large database files will require
some form of indexing to improve performance in record re-
trievals. Database files that contain one thousand or more
records are generally considered to be large database files

-31-

for microcomputer data management systems. Indexing will
occur automatically for some microcomputer data management
systems. On such systems, when defining the data structure,
specification of one of the attributes as a key is required.
The system will index record occurrences by the values as-
signed to the key attribute. On other systems, indexing is
handled by an indexing facility that is independent of the
data definition facility. Thus, the name of a database file
and a selected key attribute must be submitted to the index-
ing facility. The indexing facility uses these parameters to
either update the definition file for the data structure or
generate an index file. In the latter case, both the data
definition file and the index file have to be open simul-
taneously for the proper indexing effect.

Integrity Features - Integrity features will help ensure
reliable data. These features should be incorporated by the
data definition facility. An example is the specification
of value-acceptance constraints to the attributes defined in
the definition of a data structure. This constraint assign-
ment would serve as a filter through which unacceptable
values would not be passed. Integrity checking is generally
performed at the attribute, entity and referential levels.
At the attribute level, assigned values are restricted to a
specific domain. However, it is the integrity checking at
the entity level which assures uniqueness in record oc-
currences. The third level of integrity checking is neces-
sary to control anomalies when performing updates. An illus-
tration of an update anormaly is shown in FIGURE 20. In this
example, vendor XYZ was deleted from the VENDOR table; how-
ever, without any form of referrential integrity checking,
reference to vendor XYZ would remain in the ITEM table,

Secur i ty Features - Data security features for microcom-
puter data management packages are not commonly available.
This is particularly true for those data management packages
that are single-user oriented, because it is assumed that
equipment and data will be physically protected from unau-
thorized users. However, security features are beginning to
be offered with some data management packages. For those
packages that offer security features, the levels of securi-
ty will vary from securing access to an entire database file
(through passwords or encryption) to securing access to por-
tions of a database file (i.e., records and/or attributes).

Database Structure Modification - After defining data
structures, circumstances may arise that will require a
reorganization. In such a case, it is desirable to have
available a facility that will allow modifications to the
data structure without having to reload the database. Data
structure modifications are generally allowed by microcom-
puter data management systems; however, in many cases, an

-32-

Vendor Table

Vendor Address State Zip

BLD 1521 Rockford Drive OH 21789

BDY 2341 Ranch Road MI 45312

KRW 1314 London Avenue MI 47431

XYZ 2115 Maple Drive CA 81910

Operation

HdELETE from VendorTable ~\

[_ WHERE Vendor = 'XYZ'

J

I

Vendor Address State Zip

BLD 1521 Rockford Drive OH 21789

BDY 2341 Ranch Road MI 45312

KRW 1314 London Avenue MI 47431

Item Table

ITEM Vendor Description Cost

Printer A BLD Matrix, 80 Column S345
Printer A XYZ Matrix, 80 Column $450

Printer AX XYZ Matrix, 132 Column S550
Printer AX BDY Matrix, 132 Column $500

Monitor A KRW Monochrome $175

Monitor A XYZ Monochrome $250

Item Table

"Remains the same."

Note: Item_Table record for ITEM=MonitorA
contains a vendor reference to a now non-existent

Vendor Table record.

Figure 20: Potential Database Integrity
Fr oblem

-33-

explicit dumping of data has to be performed or it will be
lost during the reorganization process.

3.2.2 Data Transporting.
A data transport facility is important for bulk loading

of data and migrating data to or from another data manage-
ment package. Loading data by keyboard entry one record at
a time is not practical when loading large volumes of data.
Bulk loading facilities are more appropriate in such in-
stances. These facilities are supported by many microcomput-
er data management packages. The ASCII file format shown in
FIGURE 21 is a data file format that is commonly accepted
for initial bulk loading of data occurrences. In this for-
mat, attribute values are separated by commas and nonnumeric
values are enclosed by double quotes.

Those packages that accept such an ASCII file form for
initial loading of data occurrences usually allow data to be
unloaded into the same format. This unloaded format, in some
cases, is the only format available for transferring data to
other data management packages. However, another format that
is commonly used for transferring data among microcomputer
data management packages is the Data Interchange Form (DIF)

.

FIGURE 22 is an ASCII file example of the DIF format. This
format is comprised of two sections, a header and a data
section. The header section contains descriptions of the
file and the data section contains the actual values.

3.2.3 Data Accessing.
The next critical evaluation factor is the level of

support for data access. The following items are useful in
determining the strength of the data access capability:

o command and programming languages,

o menus,

o performance controls,

o updating options, and

o report generating.

Command Language - Only a few popular microcomputer data
management packages offer a command language as a major data
access method. In addition, these packages generally offer a

-34-

"E.d.roosevelt" ,1882, "democrat "new york"
" ford" , 1913 , "republican" ,"michigan"
"l.b. johnson" , 1908, "democrat" , "texas"
"Kennedy" , 1917 , "democrat" , "massachusetts"
"hoover" , 1874 ,

" r epubl ican" , "iowa"
"nixon", 191 3, "republican", "California"
"reagan" ,1911, "republican" ," ill inois"
"eisenhower" , 1890 ," r epubl ican" ," kansas"
"carter" , 192 5, "democrat" , "georgia"
"truman" , 1884 , "democrat" , "missour i"

Figure 21: ASCII File for Bulk Loading
a Database

TABLE A
0,1
"U. S. Presidents"
VECTORS
0,4
n n

TUPLES f
0,10 /

LABEL

^

\ V Header
1,0

1 / Section
"President"
LABEL
2,0 ^ Data Element \

"Birth Year" 7 Specifications 1

LABEL
3,0
"Party"
LABEL
4,0
"Birth State"
DATA <
0,0 '

n n

-1,0
BOT
1,0
"f .d.roosevelt"
1,0
"1882"
1,0
"democrat"
1,0 /
"new york" /

N» Data
Section

-1,0
[

BOT I

1,0 \

"truman" \

1,0 \

"1884"
1,0
"democrat"
1,0
"missouri"
-1,0 /
EOD y

Figure 22: Data rntecohdrige Format (DIF)

File for Leading Database

-35-

built-in programming-like language that allow pre-determined
queries to be embedded in program structures. Some of these
packages also allow embedded queries in such programming
languages as BASIC, COBOL, FORTRAN, PASCAL, and C. Such pro-
gramming capabilities offer the flexibility of tailoring the
functions of the data management package to specific appli-
cations .

Menus - Many data management packages do not offer a
command language and/or programming capability. Instead,
they offer data accessing through menus. Menu-driven systems
generally shift the burden of operational controls from the
user to the system. However, a user does not have the flex-
ibility that is available through command-driven systems.
Thus, menu-driven data management packages can tend to bog
users down in a maze of menus and prompts. Purely command-
driven packages tend to assume that users know exactly what
they are doing, and generally provide little in the way of
guidance for new users. For these reasons, some packages
offer a combination of menu and command language capabili-
ties .

Performance Controls - Microcomputer data management
packages that have performance controls enable users to ob-
tain better response time than those that do not. The need
for performance controls is of paramount importance when
queries are made against large database files. For example,
it takes longer to search a database file using a nonindexed
field than it does to search on an indexed field. Indexing
can mean the difference between 30 minutes and 3 minutes
search time for large applications!

Updating Options - Throughout the life of an applica-
tion, there will be times when it is necessary to make
changes (updates) to the data in a database. Making these
changes can be time-consuming and tedious unless adequate
facilities are available. A user may desire some form of
screen editing that allows searching on a specified string
value or a facility that allows multiple updates through a

single command.

Report Generation - A report generator is both con-
venient and desirable for the application user. A report
generator allows a user to format output. The power of a re-
port writer can be measured in terms of flexibility. The
more flexible a report writer is, the more likely it will
allow a user to tailor reports to the requirement needs of
an application. Some desirable characteristics for a report
writer include free-form placement of headings, titles, la-
bels, lines of text, footnotes, and free specification of
output values. Additionally, the report writer should allow
specifying such common functions as totalling and

-36-

subtotalling

.

3.2.4 Communication,
A communication feature is important in the case of dis-

tributed data processing. For example, if your application
uses a subset of the data in a large database on a minicom-
puter or mainframe computer, the communication feature will
allow downloading that subset to the microcomputer where
operations on it can be performed at lower cost. Prefer-
ably, any structural conversion of data that is required
during the download process should be invisible to the user.
Thus, an ideal communication feature would merge the data
management environments (mainframe and microcomputer) in
such a way that it appears as if the user is working in a
single environment. It should be noted, however, that such
features usually require specially designed software on both
the microcomputer and the mainframe. The alternative is to
use microcomputer-only software which causes the microcom-
puter to respond like a standard terminal device to the
mainframe. In this way, existing data management software
on the mainframe can be used to download data to the micro-
computer where it can then be reformatted for the
microcomputer's data management system.

3.2.5 Documentation and Help Facilities.
An essential reference for the daily operation of any

software is its documentation. Desirable documentation for
microcomputer data management software includes a tutorial
manual, a users manual, and a reference card [Sof t84] . The
tutorial manual should include examples that illustrate the
functional capabilities of the software. The users manual
should group commands according to their functional capabil-
ities. The reference card should briefly summarize the ac-
tions of each command.

In addition to manuals, automated help facilities are
desirable features which allow the user to inquire about the
use of a command without having to refer to a bound docu-
ment. An inquiry would cause a brief but informative expla-
nation to appear on screen, perhaps with a reference to the
location in the printed documentation for more details.

3.2.6 Interface Capabilities to Operating System and
Hardware

.

There are five areas to consider when looking at how
well a data management package interfaces with the operating
system of a target microcomputer. They are:

-37-

o memory requirements,

o keyboard characteristics,

o operating system compatibility,

o access to operatory system functions, and

o multi-user processing.

Memory Requirements - The minimum amount of memory
specified for a data management package may not be enough
for maximum performance of that package. This may be the
case for those packages that can take advantage of addition-
al internal memory to minimize disk access time. The com-
puting literature and the user-base for a given data mange-
ment package are good sources for finding out whether addi-
tional memory will increase performance.

Keyboard Character istics - A keyboard with an appropri-
ate set of function keys is required to fully utilize the
capabilities that are offered by some packages. As an exam-
ple, a data management package may require a special set of
function keys that are available on only certain microcom-
puter models. Thus, some data management packages are
designed for a specific microcomputer model.

Operating System Compatibility - Since the operating
system controls the interaction between the application pro-
gram and the microcomputer hardware, it is of paramount im-
portance that the data management software be compatible
with the operating system of the targetted microcomputer.
For example, when the data management system makes a re-
quest, the operating system translates that request into
specific instructions for the hardware. Thus, a data manage-
ment package running under an incompatible version of an
operating system may cause extraneous errors and may fail to
fully utilize all the features that are available through
the operating system.

Access to Operating System Functions - The ability to
execute operating system commands while running a data
management package is a desirable feature. Such a feature
would provide users with the convenience of listing, typing,
and copying files with familiar operating system commands
during the execution of the data management software.
Often, these functions are available only through an inter-
pretive set of commands that is supplied by the microcomput-
er data management package. That is, the syntax of of these
commands is not a duplicate of the syntax that is supported

-38-

by the operating system. Thus, the user must learn a new
set of utility commands. Alternatively, the package may
have the ability to pass operating system commands directly
to a resident command processor, thus providing full access
to operating system facilities from within the package.

Multi -User Processing - Some operating systems permit
multitasking and multiusers, but most 8 and 16-bit microcom-
puter operating systems cannot take full advantage of these
features because they are limited by microprocessor speed
and memory constraints. As a result, data management pack-
ages for microcomputers are generally designed for single-
user environments. However, there are packages that can be
tailored to either single or multi-user environments.

3.3 AVAILABLE SUPPORT

Before purchasing any software, a user should care-
fully consider the options available for support, including
[Soft84] :

o available training,

o telephone assistance,

o revisions and updates,

o user groups, and

o warranty.

Available Training - Classroom training for microcomput-
er data management users is generally available only if
there is a large user base for a specific package. Instead,
demonstration diskettes, tutorial documents, and help facil-
ities are commonly used to guide the novice user.

Telephone Assistance - A call-up service is desirable
for handling any problems in using a data management pack-
age. If this service is offered by the vendor of a package
through a toll-free number, this would be a preferred op-
tion. However, another option is the availability of such a

service through a local computer store that markets the
software

.

Revisions and Updates - Revisions and updates are gen-
erally provided to users at additional cost; however, in
some cases, a dealer or vendor may offer a form of

-39-

maintenance contract. A maintenance contract is advisable
upon expiration of the warranty period. The cost effective-
ness of a maintenance contract is determined by whether a
package is heavily used and whether the contract will cover
the cost of all technical support, revisions, and updates.

User Groups - The popularity of a microcomputer data
management package will determine the possibility of a user
group. In many cases, the existence of a user group is just
as important as a maintenance contract. For example, users
experiencing problems with a selected package could call on
other users who may have experienced a similar problem and
have a ready solution. Also, members of a user group will
have more of a guarantee of getting the attention of the
vendor of the selected package. As a final point, a user
group is a good source of reference before selecting a pack-
age and can serve as a continuing source of information
through meetings and newsletters.

Warranty - Terms of the warranty should be discussed
with a local dealer. It should be determined if the local
dealer is authorized to sell the software. If not, the war-
ranty that is offered by the software vendor may be violat-
ed. In some cases, dealers may offer their own warranties.
In such cases, a potiential user should carefully study the
particulars that are contained in the warranty and determine
whether the dealer's business is well established.

3.4 EXISTING AND PROJECTED USER BASE

The type of users that will be using a system is an
important issue to keep in mind when inspecting the features
of a candidate microcomputer data management package. A
casual user will find a menu-driven system easier to work
with. A menu-driven system will carry on a dialogue with the
user providing ready responses, and eliminating the need for
the user to consult a manual for required procedures
[Ever83] . All the user has to do at this point is select an
appropriate set of options. However, in order not to stifle
the growth of novice users, it may be desirable to acquire a

system that allows users to increase their role as dialogue
initator as their knowledge of the system increases. With
such a system, the use of menus would be optional. Thus, the
option of interacting through a command language should be
available. This would allow querying database files without
going through a menu session with the system. Additionally,
a nonstifling system should allow the option of menu
development. This could be accomplished through a built-in
programming language feature. A programming feature would
allow users to tailor menus to a specific application.

-40-

The size of a software package's existing-user base is a
major determinant in the amount of support that will be
available for the software. A large user base will mean that
the software has been extensively tested in the field and
that there is likely to be an established user group. The
benefits of a user group were discussed in Section 3.3.

3.5 PRICE

Price is one of the last considerations because it
is features as discussed in Section 3.2 that should be scru-
tinized the most. However, the relatively low cost of micro-
computer data management software is a great attraction for
potential users. Prices vary from as low as $25 to as high
as $3500 for a first-time license. This price range is very
attractive when compared with the cost of data management
software for minis and mainframes which start in the tens of
thousands of dollars.

Another key cost is the cost for new releases (i.e.,
updates, corrections, and enhancements) and support. The
price of new releases ranges between $10 and $995 while sup-
port ranges between $15 and $150 per year. These prices are
attractive, indeed, when compared to the thousands of dol-
lars that are required for new releases and support for mini
and mainframe data management software.

-41-

4. AN EVALUATION METHODOLOGY

The evaluation process for microcomputer software,
like that for any other software, is a multi-step process.
The following is a proposed sequential set of actions for
evaluating microcomputer data management software:

o assess requirements,

o develop selection criteria,

o perform feature analysis,

o derive benchmark test set,

o design benchmark tests,

o perform benchmark testing,

o design evaluation chart, and

o perform evaluation.

These actions are illustrated in FIGURE 19 and further dis-
cussed in the following sections.

4.1 ASSESS REQUIREMENTS

As Stated in Section 3.1, assessing the functional
requirements of candidate applications will aid in identify-
ing the category of microcomputer data management software
that is most appropriate for implementing candidate applica-
tions. The assessment will be instrumental in serving as a
base for developing the selection criteria.

4.2 DEVELOP SELECTION CRITERIA

The selection criteria should place emphasis on
those data management features that are crucial to the suc-
cess of implementing candidate applications. The selection
criteria should take into consideration such desirable
features as those discussed in Section 3.2. The criteria
should also consider available support, and existing and

-42-

projected user bases as discussed in Sections 3.3, and 3.4,
respectively

.

4.3 PERFORM FEATURE ANALYSIS

After defining the selection criteria, the next
step is to perform a feature analysis. This is a two-phase
process. The first phase involves identifying potential
packages in technical journals and computer related refer-
ence sources. The result of this effort, plus use of the
selection criteria, should enable the potential purchaser to
compile a list of candidate packages that come closest to
satisfying the requirements of candidate applications.

An in-depth look at the features of each candidate
package is the second phase of the analysis. The user manu-
als of each package, which normally contain detailed
descriptions of the software features, should be carefully
studied. A suggested means of acquiring manuals for each
package is to visit a computer store or a site that has
copies of the desired manuals. This course of action will
help minimize cost. However, as stated in Section 3.5, the
prices of microcomputer data management packages generally
range between $25 and $3500. Such a low cost, as compared to
the cost of data management software for minis and main-
frames, offers another avenue for obtaining manuals for a
candidate package. Thus, a version of each data management
software for which manuals are not available could be pur-
chased. This is practical only if the selected package for
implementing candidate applications is to be purchased in
large volumes. Whichever avenue is used to gain access to
the manuals, the in-depth study should cover such questions
as outlined in Appendix A.

4.4 DERIVE BENCHMARK TEST SET

Phase two of the feature analysis is necessary to
further reduce the set of candidate packages. This reduction
process can be achieved through assigning a relative weight
(level of importance) and a grade (e.g., 1 to 10) for each
selection criterion. The relative weights are subjective
with respect to the requirements of candidate applications.
The grades should be determined by the number of affirmative
responses revealed on a feature critique sheet as shown in

Appendix A. An acceptable score range should be specified.
Each package should be rated to determine whether it falls
within the specified range. Those packages that meet the
specifications should be targetted for benchmark testing.

-43-

4.5 DESIGN BENCHMARK TESTS

The benchmark testing should take into considera-
tion an appropriate set of variables that will be essential
for implementing candidate applications. Each variable
should be isolated as much as possible so that the effects
of that variable, and only that variable, are evaluated. The
nature of the single-user environment of the microcomputer
lends itself nicely to this isolation process.

The benchmark design involves establishing the en-
vironment in which testing is to be performed, and develop-
ing a set of tests. The benchmark design is a four-step pro-
cedure that defines the variables associated with [Beni84]

:

o system configuration,

o test data,

o benchmark workload, and

o experimental design.

System Configuration - As for any system, the major
variables associated with system configuration are hardware
and software. The critical hardware variables are the
amounts of internal memory and external storage as well as
the type of external storage medium (hard or floppy disk) .

Internal memory influences the degree to which swapping is
performed; while, external storage constrains the size of
database files and the space available for results generated
by operations on the database files. The type of external
medium affects access time. A hard disk can be accessed fas-
ter than a floppy disk; however, the performance of a floppy
disk may be adequate for the candidate applications. The
software variables include such factors as maximum record
length, the number of allowable indexes per database file,
the length of an indexed field, and any other access perfor-
mance controls.

Test Data - The variables associated with test data in-
clude the amount of test data per database file and the
amount as well as type of indexing on the database files.

Benchmark Workload - The variables associated with the
benchmark workload cover both qualitative and quantitative
aspects [Beni84] . Qualitative aspects refer to the level of
difficulty of queries (i.e., simple retrieval on a single

44

database file or complex queries involving many files) , the
mode of operation for a given command (i.e., operates on
only two files at a time) , and the mode of interaction with
the data management system (i.e., menus, command language or
batch files). While, quantitatively, there are such factors
as the percentage of time that each type of database action
is performed, and the average amount of data returned to a
user per transaction. Thus, if tests are designed to cover
the qualitative and quantitative aspects of a data manage-
ment package, test results will help determine how well the
package performs under various workloads.

Exper imental Design - The experimental design phase in-
volves looking at such parameters as the candidate test
packages, the size of the database files, the number of
indexes, and the complexity of queries. For example, the
testing should be general enough to cover a common set of
features across the variety of candidate packages, yet
specific enough to reveal the strength and weaknesses of
each package. The database files should contain enough
records to realistically reflect candidate applications. If
response time to queries is critical to the applications,
the indexing capabilities of each package should be
thoroughly tested. Queries should vary in level of complexi-
ty in order to test the strength of a package as well as the
adaptability of that package to applications. An example of
a set of tests that can be used to test a variety of micro-
computer data management packages is shown in Appendix B.

4.6 PERFORM BENCHMARK TESTING

Execution of the benchmark tests may require dif-
ferent techniques for different data management packages.
That is, each candidate package will have its particular
design and limitations. For this reason, the benchmark tests
should be tailored to accommodate the design constraints of
each package. For example, some of the packages may be able
to handle selecting and sorting in a single statement while
others will require separate statements (i.e., one for
selecting and another to sort the selected result) . An exam-
ple of this is shown in FIGURE 23.

-45-

Action Resulting Table

SELECT ALL
FROM Employee

Employee

Empno Name Job Sal Deptno

3451 Brown Manager 2500.00 30
3454 Jenkins Programmer 1500.00 20
3459 Dawkins Technician 1200.00 20
5125 Smith Researcher 2000.00 10

5145 Jones Chemist 2400.00 40
2435 Wilkins Clerk 800.00 30

SELECT ALL
FROM Employee
WHERE Sal > 1200;

Empno Name Job Sal Deptno

3451 Brown Manager 2500.00 30
3454 Jenkins Programmer 1500.00 20
5125 Smith Researcher 2000.00 10

5145 Jones Chemist 2400.00 40

SORT result_table

ON Sal

IN DESCENDING ORDER;

Empno Name Job Sal Deptno

3454 Jenkins Programmer 1500.00 20
5125 Smith Researcher 2000.00 10

5145 Jones Chemist 2400.00 40
3451 Brown Manager 2500.00 30

Figure 23: 3dinple Benchmark Tests

4.7 DESIGN EVALUATION CHART

The composite score for each candidate package
from the benchmarking should be recorded as one of the en-
tries for an evaluation chart. The design of this evaluation
chart should include, in addition to the benchmark entry,
entries for the weighted scores derived from phase two of
the feature analysis as discussed in Section 4.4. FIGURE 24
illustrates an evaluation chart.

4.8 PERFORM THE EVALUATION

After the evaluation chart has been designed, it
should be completed for each package that was benchmarked.
The evaluation chart will serve as a score card for each
package. The candidate package with the highest score should
be the best selection.

-47-

Candidate

4

I
>

c

< *-

3 o)

35

o o
00

in
CO
o
CO

ino ino ooo
ooo
o
CO

in
CM
CM

o
CO

in
CM
CM

in
CM
CM

in
CO
o
CM

ooo
ino ino in o

CM
o
in
CO

oo
CM

o
in
CO

o
in
CO

o
CM
so

in

o
o
CM
om
CM

1.800

1

7.859

1

1
o

CJ> o> <35 o o C3> o> o> o> CO o C3> C3> 1^ CO o o o o CO 00 m CO m o>

Candidate

3
X *- o

CO
CO

o
CO
CO

o
CM
o
CO
O
CO
CO

in

CO

ooo
cnoo
o
CO

in
CM
CM

oo oo
CM

ooo
ooo
o
in
o
CM
T—

ooo
ooo

in
CM
O
CO

in

CO

o in

CM

o
CO
CM

o
CO
CO

ooo
ooo
o
CM
o
in
CM

oo
CO

CO

(

1

00 CO CO c^ 00 r>. o 00 in CO o o o
1

—

CO o o in o> C31 CO CO o o oo m CJ>

Candidate

2

X *-

TO Q)

LO
CsJ

CVJ

o
CM

ino o
CO
o
CO
CO

ino ooo
ooo
o
CO

in
CM
ooo
oo
CM

oo
CM

ooo
in
CM
CM

o
05o

ino ino oo
CM

o
CO
o
00
CM

o
00

in

CM

o
00
CM

in
CM
CM

ooo
ooo
mo o

in
CO

oo
CO

o
CO
o>
CO

o

LO CO 00 CO c;^ o o CO in o CO CO o in CO (3> 00 00 00 CJ> OO in o o CO

Candidate

1
<^ -s. <D

CO

LO

CO
CM
T—

CO
1 r\u >

CM
CM

LA I

CO

1—

1

oo oo
1—

\

COo
U i

CM
CM
o o

CM
oo oo in CM

/—V\^oo Oo
u i

o 00
u t

r—
CO

CM
T—

Q
CO
CM

Q
in
Qoo
QOo CM

QO oo
CO

CD
CO
CO

O

CO 1^ CO (75 in o (J) CO C3> in CO o o o 00 o o CO c:> CO in CO o o o CO CO CO

(fl

O)

oo
CO

.3)

1
IT)

O
in

o
in

o
o
CMO

in

o
in

o oo oo
o
CMo

in
CMo
o
CMo

in
CMo

in
CMo

in

o
in

o
m
o

in

o
in

o
in
CMo
o
CMo

in
COo
o
CMo
m
COo
m
COo

in

o
COoo

in

o
in

o
o
ino
oo
CM

Criteria

m CM
CD O 8 8 3 s 5 CMQ COQ s inQ Q lD LL a! 5 3 3 3 8 8 & 5 CM

(D
O
QL

o
_c

w
1-

-48-

5. FUTURE DIRECTIONS AND CONSIDERATIONS

In the future, microcomputer data management
software will be instrumental in realizing true distributed
database management. Recent developments in building micro-
mainframe links have led developments in this direction.
Historically, the amount of storage space on the microcom-
puter has limited developing on them applications which use
large data files. This limitation has kept larger databases
on mainframes. However, technical developments have in-
creased the amount of available storage on the microcomputer
making it feasible to develop micro-based applications that
in the past were not possible. Thus, "outside in" develop-
ment of distributed systems now appears to be the general
trend, rather than "inside out" (i.e., centralized on main-
frames) .

Several methods have been considered for linking main-
frame to microcomputer database [Free84] . An initial method
used software that made the microcomputer look like a termi-
nal to the mainframe. The terminal emulator method requires
the user to know how to exploit the mainframe database
management system. Thus, the user has to know the access
language that is used to manipulate data on the mainframe
through its resident database management system. Another
drawback of this technique is the fact that the user cannot
easily bring information from the mainframe to the microcom-
puter for processing. That is, the terminal emulator method
without file transfer capability is just that--"a terminal".

A second method integrates the terminal emulation and
file transfer capabilities. This method offers various fa-
cilities that allow data to be formatted appropriately for
target environments. Thus the user can access data from the
mainframe DBMS and download the data into file format on the
microcomputer where it can be manipulated. However, there is
still the drawback of having to know the data access
language for the mainframe DBMS.

Currently, the most advanced developments are in the
area called integrated software links. This method allows
the user to send queries from the microcomputer environments
to the mainframe DBMS, and the response is automatically re-
turned to the microcomputer environment in a format usable
by the microcomputer DBMS. This does not allow updating of
the mainframe DBMS through the link with the microcomputer.
Future developments will allow this updating. Also, micro-
computer data management software will become more a reflec-
tion of mainframe DBMSs. This will really make possible
transparent links between microcomputer data management
software and mainframe DBMSs.

-49-

6. CONCLUSIONS

Microcomputer data management software will never
replace mainframe database managements systems; however,
they can be complementary in many ways. A user should keep
this perspective in mind when selecting microcomputer data
management software. With this in mind, the following ac-
tions should be performed when selecting microcomputer data
management packages:

o assess application requirements,

o develop selection criteria, and

o evaluate candidate packages.

Assess Application Requirements - A clear understanding
of the requirements of an application should be achieved as
a first step in the selection process. Applications requir-
ing large volumes of data should not be expected to perform
as efficiently on microcomputers as on mainframes unless
adequate processing power and storage are available.

Develop Selection criteria - After identifying the needs
of an application, the assessment should be used as a basis
for developing an appropriate set of selection criteria. The
selection criteria should include desired plus needed data
management features.

Evaluate Data Management Packages - A weighted grading
scheme should be used to evaluate those features that are
both necessary and desirable for candidate applications. The
grading of features for each data management package should
be performed after studying manuals and literature about a
package. The subjective grading of features should narrow
the scope of candidate packages and identify a benchmark
test set. Thus, the final evaluation score is derived by in-
cluding benchmark scores with the subjective feature scores.
All the packages that score within an acceptable range are
good choices for implementing candidate applications.

-50-

7. References

[Beni84] Benigni D. R. , A Guide to Performance Evaluation
of Database Systems , NBS Special Publication 500-
118, National Bureau of Standards, December, 1984.

[Data84] A Buyer ^s Guide to Data Base Management Systems ,

Datapro (Minicomputers) , Datapro Research Corpora-
tion, Delran, NJ 08075, May 1984, page 70E-010-
61a.

[Date77] Date C. J., An Introduction to Database Systems ,

Addison-Wesley Publishing Company, Reading MA,
1977.

[Ever83] Everst G. C, Database Management Systems for Mi-
crocomputers ; Are They Surpassing DBMSs for Main-
frame Computers , School of Management, University
of Minnesota, November 1983.

[FipsllO] Guideline for Choosing a Data Management Approach ,

Federal Information Processing Standards (FIPS)
Publication 110, National Bureau of Standards, De-
cember 1984.

[Free84] Freedman D. H. , Tapping the Corporate Database ,

High Technology, April 1984, pages 26-29.

[Gall84] Gallagher L. J. and Draper J. M., Guide on Data
Models in the Selection and Use of Database
Management Systems , NBS Special Publication 500-
108, National Bureau of Standards, January, 1984,
pages 51-59.

[Gutt84] Guttman M. K., Micro Data Managers Get Mainframe
Power , Computers & Electronics, October 1984, page
67.

[Jame84] James B., Network vs. Relational: Fit the Solu-
tion to the Need , Computerworld , September 24,
1984, page SR/38.

-51-

[Soft84] Software Evaluations ; A Discussion of the Methodol -
ogy use? for Microcomputer Software Evaluation ^

Data Decisions, Filing Sequence 805, February
1984.

^

[Tsic77] Tsichritzis D. C. and Lochovsky F. H. , Data Base
Management Systems , Academic Press, Inc., m
Fifth Avenue, New York, New York 10003, 1977.

-52-

APPENDIX A: Example of a Feature Critique Sheet

A. General Information

Al - Package name:

B. Physical Requirements

Bl - Internal memory: K bytes
B2 - External memory: K bytes

C. Log ical Constraints

CI - Maximum characters per attribute (field):
C2 - Maximum fields per record:
C3 - Maximum records per database file:
C4 - Maximum database files per database:
C5 - Database files (tables) are assigned to designated area: (yes or no)

D. Data Definition

Dl - Defined through screen forms. (yes or no)
D2 - Screen editing is available while defining data

definitions. (yes or no)
D3 - The set of available data types, (check all)

number:
character:
logical:
text:
date:
dollar:
memo:
Other: (specify.)

D4 - A forms design facility is available. (yes or no)
D5 - Indexing can be specified. (yes or no)

If yes, indicate maximum number of fields allowed:
Is indexing optional or manditory:
Check any of the following performance controls (in addition to
indexing) that are available.

clustering:
triggers:
accelerators:
Other: (specify)

D6 - Is integrity checking of data values available: (yes or no)
If yes, check all of the following that apply,

range checking:

1

-53-

list checking:
table lookup:
Other: (specify)

D7 - Is security specifications available: (yes or no)
If yes, check all of the following that apply.

at the database level (passwords) :

at the table (database file) level:
at the record level:
at the attribute (field) level:
Other: (specify)

E. Data Reorganization

El - Is data reorganization possible: (yes or no)
If yes, check all of the following that apply.

Data must be unloaded (by the user) to a file before
reorganizing data definitions:

- Data is unloaded (by the system) to a temporary file
after reorganization is specified by the user and
then the data is loaded (by the system) to the modified
definition:

Other: (specify)

F. Data Loading and Unloading

Fl - Indicate which of the following features is available upon keyboard
entry.

Screen editing over the entire set of record attribute
values:
Single attribute prompting without screen editing
capabilities:
Other: (specify)

F2 - Can data be loaded (read) from a data file: (yes or no)
If yes, indicate all acceptable forms of data files.

DIF:
An ASCII file with attribute values separated according to

specification:
Binary form:
Other: (specify)

F3 - Can data be unloaded (written) to a file: (yes or no)
If yes, indicate all available forms that data can be written in.

DIF:
An ASCII file with attribute values separated according to

specification:
Binary form:
Other: (specify)

-54-

G. Data Accessing

Gl - Indicate the methods availabe for conversing with the system. (Check all)
Through a command language:
Through menus:
Through a built-in progr amming-1 ike language:
Through a programming language;
Through user-defined screens:
Other: (specify)

G2 - Indicate the methods available for updating. (Check all)
Through a form of screen editing (a single record at a

time) :

Through a form of screen editing (over several records at a
time) :

Through a non-screen edit mood (using some form of query capability
that allow attribute value replacement) :

Other: (specify)
G3 - Indicate the logic operators available for searching. (Check all)

AND:
OR:
NOT:
Other: (specify)

G4 - Indicate the operators that can operate simultaneously on multiple tables.
(Check all)
JOIN:
MATCH:
COMPARE:
UNION:
INTERSECT:
Other: (specify)

G5 - Indicate the features available for conditional searching. (Check all)
Wild cards are allowed:
A non-indexed field can be used as the search key:
Searches can be performed on any data type:
Other: (specify)

G6 - Can sorts be performed: (yes or no)
If yes, indicate the maximum number of fields that can be sorted

simultaneously:
G7 - Indicate the features available for report generating. (Check all)

Free form placement of headings:
Free form placement of titles:
Supports footnoting:
Supports totalling:
Supports subtotals:
Supports formatting of output values:
Supports page breaks:
Other: (specify)

H. Communication

Hi - Does the system allow communicating with another computing
environment: (yes or no)

-55-

I. Documentation and Help Facilities

11 - Are help facilities available: (yes or no)
If yes, can help be requestable from any functional

level: (yes or no)
12 - Indicate the availability of manuals and documentation. (Check all)

Tutorial:
User:
Reference card:
Other: (specify)

-56-

APPENDIX B: Example of Benchtnark Tests

Searching a single table

Tl-1 select all
from agencyd;

Tl-2 select all
from agencyd
where agency='BD';

Tl-3 select all
from agencyd
where agency='BD' or agency='AF';

Tl-4 select all
from agencyd
where (agency='BD' or agency='AF')
and subelemt=' 07'

;

Tl-5 select all
from agencydesc
where ((agency='BD' or agency='AF')
and subelemt=' 07'

)

or subelemt=' 24'

;

Selecting and Projecting through a single statement

T2-1 select agency , subelemt
from agencyd;

T2-2 select agency , subelemt
from agencyd
where agency='BD';

T2-3 select agency , subelemt
from agencyd
wherec agency='BD' or agency='AF';

T2-4 select agency , subelemt
from agencyd
where (agency='BD' or agency='AF'*

)

and subelemt=' 07'

;

T2-5 select agency , subelemt
from agency_desc
where ((agency='BD' or agency='AF')
and subel«^mt- = ' 07'

))

or subeleo't- 2^';

-57-

Sorting a table

T3-1 sort jobhist by servdate

T3-2 sort jobhist by jhssn , servdate

Loading a table

T4 load jobhist from jobhist.dat

Unloading a table

T5 unload jobhist to jobhist.dat

Updating a record

T6 update acadisc=0507
in educat
where essn=201235532

Deleting a record

T7 delete educat
where essn=201235532

Inserting a record

T8 insert record
into educat
where essn=201235532

educlvl=13
degrdate=78
acadisc=0506

Joining two tables

T9-1 join educat
, jobhi St

where essn=jhssn;

-58-

T9-2 join educat
,
jobh i s

t

where essn=jhssn
and acadi sc=' 0506'

;

T9-3 join educat , jobhi St
where essn=jhssn
and (acadisc='0506' or acadi sc=' 0101'

)

;

T9-4 join educat , jobhi St
where essn=jhssn
and (acadisc='0506' or acadisc='0101'

)

and servdate>780101

T9-5 join educat , jobhi st
where essn=jhssn
and (((acadisc='0506' or acadisc = ' 0101'

)

and servdate>780101
and educlvl>21)
or state='31')

Joining and Projecting through a single statement

TlO-1 select essn , jhagency ,educlvl
from educat , jobhi st
where essn=jhssn;

TlO-2 select essn , jhagency ,educlvl
from educat ,jobhist
where essn=jhssn

and acadisc=' 0506'

;

TlO-3 select essn ,
jhagency ,educlvl

from educat , jobhi st
where essn=jhssn
and (acadisc='0506' or acadisc=' 0101'

)

;

TlO-4 select essn ,
jhagency ,educlvl

from educat ,jobhist
where essn=jhssn
and (acadisc='0506' or acadisc='0101'

)

and servdate>780101

TlO-5 select essn , jhagency ,educlvl
from educat , jobhist
where essn=jhssn
and (((acadisc='0506' or acadi sc=' 0101'

)

and ser vdate>780i01
and educlvl>21)
or state='31')

-59-

NBS-n4A (REV. 2-6C)

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

DIDI inPDADUIP nATflblDLIUbKArnll/ UrtIM
REPORT NO.

October 1985SHEET (See instructions) NBS/SP-500/131

4. TITLE AND SUBTITLE

Computer Science and Technology:

Guide for Selecting Microcomputer Data Management Software

5, AUTHOR(S)

Charles L. Sheppard

6. PERFORMING ORGANIZATION (If joint or other ttian NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE

Gaithersburg, MP 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 85-600598

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

The purpose of this guide is to provide information that will aid in developing

criteria that can be used to select the microcomputer data management software that

is most appropriate for a specific database application. Emphasis is placed on iden-

tifying the spectrum of data management software for microcomputers and the tasks in-

volved in using a set of criteria to evaluate and select microcomputer data management

software.

12. KEY WORDS (S/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

application; assessment; benchmark; evaluation; microcomputers; multi-file;

selection; single-file

13. AVAILABILITY

[~X] Unlimited

I I

For Official Distribution. Do Not Release to NTIS

r"xl Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

14. NO. OF
PRINTED PAGES

66

15. Price

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washmgton, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Noliflcation key N-S03)

Technical Publications

Periodical

Journal of Research—^The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice Cmcluding safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, E>C 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safet\'

charaaeristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntar>' Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Tide 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide aU concerned interests with a basis for common understanding of the

characteristics of the produas. NBS administers this program as a supplement to the activities of the private

sector standardising organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PL1B)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagenc> Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or rruCTofiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

