
U.S. Department
of Commerce

National Bureau
of Standards

Computer Science
and Technology

NBS

PUBLICATIONS

,."'V-
INST OF STAND S TECH R.I.C.

NBS Special Publication 500-429

Software Maintenance
Management

James A. McCall, Mary A. Herndon, and

Wilma M. Osborne

nc—

—

100
U57
500-129
1985
c 2

he National Bureau of Standards' was established by an act of Congress on March 3, 1901. TheTM he
jM Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and

government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials

Science and Engineering

.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,-

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics

• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

• Programming Science and
Technology

• Computer Systems

Engineering

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Institute consists of the following Divisions:

Inorganic Materials

Fracture and Deformation^

Polymers
Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

'Some divisions within the center are located at Boulder, CO 80303.

^Located at Boulder, CO, with some elements at Gaithersburg, MD.

PAnOCAl BUR£M
Of ST DAW'S

UBKAJII

Computer Science
and Technology

NBS Special Publication 500-129

Software Maintenance
Management

James A. McCall and Mary A. Herndon

Science Applications International Corporation

La Jolla, CA 92038

Wilma M. Osborne

Center for Progrannnning Science and Technology
Institute for Connputer Sciences and Technology
National Bureau of Standards

Gaithersburg, MD 20899

Issued October 1985

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 85-600596
National Bureau of Standards Special Publication 500-129

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-129, 65 pages (Oct. 1985)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1985

For sale by the Superintendent of Documents. U.S. Government Printing Oflice, Washington. DC 20402

ABSTRACT

This report focuses on the management and maintenance of
software and provides guidance to Federal government personnel
to assist them in performing and controlling software
maintenance. It presents an overview of the various aspects of
software maintenance including the problems and issues
identified during the ICST sponsored survey of Government and
private industry maintenance organizations. Techniques,
practices, tools, and procedures which aid in reducing these
problems and which help to insure that quality software is
developed for and by the Federal ADP community are identified.
A definition of software maintenance is provided which
recognizes that maintenance includes enhancing a system to meet
users needs, modifying a system to adapt to a changing
environment, as well as correcting errors in the system. An
integrated approach to software maintenance is described with
suggestions for improving the software maintenance process.
These suggestions provide a basis for improving both the
software quality and the productivity of the organization.

Keywords: cost control measures, decision aids, management,
software configuration management, software maintenance
management, software maintenance tools, software quality
assurance, test plans.

iii

TABLE OF CONTENTS

Section Page

1.0 EXECUTIVE SUMMARY 1

2.0 BACKGROUND 3
2 . 1 Purpose 3
2.2 Introduction 4
2.3 Organization of Report 6

3.0 SOFTWARE MAINTENANCE DEFINITION 3 ^

3.1 ' Software Maintenance as a Phase
of The Lifecycle 9

3.2 Software Maintenance Characteristics 11
3.3 Software Maintenance Problems 12

4.0 MANAGING THE MAINTAINER 16

4.1 The Difficulty of Software
Maintenance Activities 16

4.2 The Maintenance Career Path 17
4.3 Attributes of Maintenance Personnel 17
4.4 Personnel Scheduling 19
4.5 Deadline Assignments 19
4.6 Performance Criteria and

Personnel Effectiveness 20

5.0 THE MAINTENANCE ORGANIZATION
AND USER INTERFACE 21

5.1 Establishing the User Interface 21
5.2 User Interface and Task

Prioritizing/Scheduling 22

6.0 ECONOMIC CONSIDERATIONS OF SOFTWARE
MAINTENANCE 24

6.1 Cost Control Measures 24
6.2 Cost Estimation Models 24
6.3 Work Breakdown Structures 25
6.4 Specifying Resource Requirements: A Software

Maintenance Management Plan 25

7.0 SOFTWARE MAINTENANCE TECHNIQUES 30
7.1 Problem Reporting Procedures 30
7.1.1 Forms 33
7.1.2 Data analysis 33
7.2 Software Quality Assurance Procedures ... 33

iv

TABLE OF CONTENTS (cont)

7.3 Configuration Management 34
7.4 Test Plans and Procedures 37

8.0 MAINTENANCE SUPPORT TOOLS AND TECHNIQUES ... 39
8.1 Types of Tools 39
8.1.1 Support librarians 39
8.1.2 Code analysis 39
8.1.3 Requirements database

and requirements tracing 39
8.1.4 Test data management 40
8.1.5 Test and error analysis 40
8.1.6 Code instrumentors/execution

analyzers 40
8.1.7 Text editors 41
8.1.8 Structure/restructuring 41
8.1.9 Application generation 41
8.1.10 Simulation/emulation 41
8.1.11 Management tools 42
8.2 An Integrated Maintenance Environment ... 44
8 . 3 Build or Buy Decision 44

9.0 MAINTENANCE MANAGEMENT DECISION AIDS 46
9.1 Redesign Guidance 46
9.2 Structured Versus Unstructured

Coding Techniques 47
9.3 Regression Test Coverage 47
9.4 Requirements Impact Analysis 48
9.5 Major Versus Minor

Modification Assessments 48

10.0 SOFTWARE MAINTENANCE PROBLEMS TO AVOID 49
10.1 Common Mistakes and Pitfalls

to Avoid 49
10.2 A Strategy for Implementing Survival

Tecliniques 51

11.0 PERFORMANCE GOALS OF SOFTWARE
MAINTENANCE MANAGEMENT 52

11.1 System Availability and Reliability 52
11.2 User Satisfaction 52
11.3 Change Request /Problem Report

Response Time 53
11.4 Productivity 53

V

TABLE OF CONTENTS (cont)

12.0 SUMMARY AND CONCLUSIONS . 54

13. REFERENCES 59

LIST OF TABLES

Section Page

2.3-1 TOPIC INDEX 7
3.1-1 SOFTWARE MAINTENANCE DEFINITION HIERARCHY 8
3.1-2 MAINTENANCE ACTIVITIES IN EACH CATEGORY 10
3.2- 1 SURVEY RESULTS 15
4.3- 1 ATTRIBUTES OF MAINTENANCE PERSONNEL 18
5.1-1 KEY INFORMATION ON SOFTWARE

CHANGE REQUEST 23
6.4- 1 OUTLINE OF A SOFTWARE MAINTENANCE

MANAGEMENT PLAN 28
6.4-2 IMPLEMENTING A SOFTWARE MAINTENANCE

MANAGEMENT PLAN 29
8.1- 1 TOOL TYPES 43
8.2- 1 TOOL PRIORITIES 44
9.2-1 REDESIGN TRADEOFFS 46
10.1-1 COMMON MISTAKES AND PITFALLS 50
12.1-1 IMPROVING THE MAINTAINABILITY

OF SOFTWARE 56
12.1-2 MAINTENANCE CONSIDERATION DURING DEVELOPMENT . . 57
12.1-3 ATTRIBUTES OF MAINTAINABLE SOFTWARE 58

List of Figures

6.2-1 Example of Workflow 26
7.1- 1 Problem Reporting Process

for Maintenance 31
7.1.1-1 Sample Problem Report Form 32
7.2- 1 SQA Code Walkthrough Checklist 35
7.3- 1 Flow of System Problem Reports and Change

Request Through Configuration Management ... 36

vi

1 EXECUTIVE SUMMARY

Software maintenance is a critical function witliin most
large organizations. Tlie reliability of software systems upon
which these organizations depend is the software maintainer's
mission. This mission includes not only correcting errors, but
modifying the system to make it more effective for the user. In
spite of its importance to the organization, software
maintenance often has been ignored as a significant management
concern.

This report focuses on the management of software
maintenance. Specific problems, identified during a survey of
Government and private industry software maintenance
organizations are described. These problems fall into the
following categories:

0 The level of resources required for software maintenance;

o The lack of management discipline and visibility into the
maintenance process;

o The lack of formal techniques and decision aids for
performing software maintenance;

o The lack of support tools for the maintainer;

o Personnel issues such as turnover, career paths, and
assignment and training techniques; and

o The legacy of development - the poor quality of the software
and documentation that must be maintained.

These problems make it difficult for organizations to:
meet user's changing needs; effectively manage a large inventory
of application software; control the increasing costs of
maintenance; and keep up with the demand for new application
software development

.

A definition of software maintenance is provided which
recognizes that maintenance includes enhancing a system to meet
users needs, modifying a system to adapt to a changing
environment, as well as correcting errors in the system. An
integrated approach to software maintenance is described with
suggestions for improving the software maintenance process.

- 1 -

Our recommendations are that software maintenance can be
improved hy taking the following steps:

0 DEVELOP A SOFTWARE MAINTENANCE PLAN

0 RECOGNIZE IMPROVEMENT OF MAINTAINABILITY
QUALITY ASSURANCE)

O ELEVATE MAINTENANCE VISIBILITY IN THE
ORGANIZATION

O REWARD MAINTENANCE PERSONNEL, PROVIDE
A CAREER PATH AND TRAINING

0 FORMALIZE QUALITY ASSURANCE AND TEST
PROCEDURES

0 ESTABLISH AND ENFORCE STANDARDS

o RECORD ALL SYSTEM CHANGES (KEEP DATA)

o INTRODUCE SOFTWARE TOOLS

0 USE MODERN PROGRAMMING TECHNIQUES

O CONTROL DATA (INCLUDING TEST DATA)

o USE SCHEDULED MAINTENANCE CYCLES

Additional improvements can be realized by introducing
software maintenance considerations during the early phases of a
software system's life cycle. In order to develop maintainable
software products, the goal of maintainability must be
established during the requirements, design, and development
stages and built into the software using standards, and proven
design and development techniques. It is essential, however, to
involve the managers, maintainers, and users during each of
these stages.

- 2 -

2 BACKGROUND

This report was produced in support of the National Bureau
of Standards Institute for Computer Sciences and Technology
(ICST) acting in response to its Brooks Act charter to promote
the cost effective selection, acquisition, and utilization of
automatic data processing resources within Federal agencies.
ICST efforts include research in computer science and
technology, direct technical assistance, and the development of
Federal standards for data processing equipment, practices, and
software

.

As part of this responsibility and the need to improve
software maintenance methods and management , the ICST is
developing software maintenance guidance designed to assist
Federal agencies in the ongoing support of existing computer
systems. While software systems vary in function, type, and
size, many of the functions performed under software maintenance
are universal in scope and the activities required to keep these
systems operational are generally the same.

This report, which is part of a comprehensive family of
software maintenance guidance, addresses management and
technical practices and discusses the need for a maintenance
policy with enforceable controls for use throughout the software
lifecycle

.

2.1 Purpose

The purpose of this report is to provide guidance to
Federal government personnel to assist them in performing and
controlling the software maintenance process. It presents an
overview of the various aspects of software maintenance,
including the current, most pressing problems. It identifies
techniques, practices, tools, and procedures which aid in
reducing these problems and which help to insure that quality
software is developed for and by the Federal ADP community.

The objectives of this report are:

o to provide a set of definitions relating to software
maintenance for use by Federal agencies. Define the various
aspects of software maintenance;

o to describe a methodology which provides the information and
guidance necessary for the preparation and implementation of
disciplined software maintenance procedures;

- 3 -

0 to provide specific and detailed guidance for managing
software maintenance;

0 to provide specific and detailed guidance on the various
techniques and methods which produce more effective software
maintenance management practices;

o to provide guidance on techniques and tools that can be used
during original development to reduce the cost and
difficulty of software maintenance;

0 to provide an analysis of the problems associated with
software maintenance; and

o to help Federal agencies to produce higher quality software
and reduce software costs.

While this report is prepared specifically for use within the
Federal government, it should be applicable and useful to
software maintenance managers and practitioners in industry as
well

.

2.2 Introduction

It is currently estimated that software maintenance
accounts for sixty to seventy percent of each software dollar
allocated [NBS106] , [MART83, GAOSlb, LIEN76] . Software, as it
is used here, refers to computer programs, data, and
documentation. In some environments, it is reported that
programmers spend up to eighty percent of their time on
maintenance functions. It is important to note that over the
lifecycle, software maintenance consumes a far greater amount of
resources than software development and inevitably costs more.
Software maintenance is also a highly visible, labor intensive
activity subject to both application area and computing
environment changes. If software maintenance is to be improved,
aid is needed to improve not only the quality of the software,
but the environmental factors as well. This will require the
adoption of improved maintenance techniques, tools, procedures,
and a management philosophy which incorporates planned and
anticipated or preventive software maintenance.

A number of Federal Agencies have initiated measures to
help achieve more effective software maintenance. The U.S.
General Accounting Office (GAO) produced several reports
addressing the cost and problems associated with software
maintenance and the need for guidance in this area. The first
report, [GA080] , suggested that unless Federal agencies make
more use of modern software tools and techniques for development
and maintenance. Federal computer software will continue to cost

- 4 -

millions more than is necessary. The second report, [GA081a]

,

concluded that Federal data processing systems often are not
cost effective, do not meet user needs, have cost overruns and
simply do not work. This was attributed in part to inadequate
management control during system development and inadequate
control over software changes. In a third report [GA081b] , it
was estimated that two-thirds of the programmers on fifteen
sites visited by the GAO, spent their time on maintenance. The
National Bureau of Standards (NBS) SP 500-106 entitled "Guidance
on Software Maintenance" identifies software maintenance
problems and provides recommendations for reducing both its
difficulty and cost

.

One of the comments frequently encountered in the
literature is that maintenance costs are difficult to control
because of the disparity in how maintenance is defined. There
is also a difference of opinion on whether all of the costs
attributed to maintenance are justified. Many contend that the
majority of what is termed software maintenance is in fact,
on-going development . For what is considered development in one
environment is considered maintenance in another . Thus , a
comprehensive set of definitions which encompasses all of the
functions commonly identified as maintenance is needed. This
would facilitate better software management and a more even
assignment of maintenance costs.

Lientz and Swanson [LIEN80] defined software maintenance to
include all modifications made to an existing applications
system, including enhancements and extensions. They divided
software maintenance into three major categories: corrective,
adaptive, and perfective. The GAO document AFMD-81-25 [GAOSlb]
defineds maintenance to include: the removal of defects, tuning
the software for efficiency and economy, modifying the software
for end-user satisfaction, and adapting the software to new
operating conditions. Most of the managers surveyed agree that
maintenance generally refers to those activities required to
keep the software system operational from the time it is
accepted until the software is replaced. Regardless of how
maintenance is defined, many of the same activities need to be
performed. If maintenance is to be performed effectively, then
a methodology which employs the best available techniques and
tools must be used.

- 5 -

2.3 Organization Of Report

This section provides an overview of the structure of the
Guide and includes an alphabetized table indexed by topic.

Section 1 provides an executive summary, highlighting the
general observations and guidance offered in the report.

Section 2 provides the background, introduction, purpose, and
organization of the report.

Section 3 provides a standard definition for software
maintenance and summarizes the current problems faced by most
maintenance organizations.

Section 4 discusses the types of qualifications and experience
needed in a maintenance environment

.

Section 5 discusses user interface responsibilities in a
software maintenance environment

.

Section 6 examines current software maintenance costs, describes
estimating techniques and the concept of a software maintenance
management plan.

Section 7 describes specific maintenance techniques ranging from
problem reporting, quality assurance, configuration management,
testing, and standards and conventions which should be employed
as standard practices.

Section 8 provides an overview of software support tools which
can be beneficial in a software maintenance organization.

Section 9 describes decision
managers or supervisors
organizations

.

aids that can be helpful to
within software maintenance

Section 10 identifies common mistakes and pitfalls and discusses
how to avoid them.

Section 11 recommends performance goals that will assist in
monitoring and evaluating the organization's maintenance
activities, and provides details on how to develop maintainable
software

.

Section 12 provides the summary and conclusions.

- 6 -

TABLE 2.3-1 TOPIC INDEX

TOPIC SECTION NUMBER

Common Mistakes/Pitfalls 10
Configuration Management 7
Costs 6
Decision Aids 9
Definitions 3
Estimating 6
Executive Summary 1

Introduction 2
Maintenance Measures 11
Management Plan 6
Organization 5

Performance Evaluation 4, 11
Performance Goals 11
Personnel Issues 4
Problems 3
Problem Reporting/Cliange Requests 7
Quality Assurance 7
Redesign Criteria 9
Scheduling 4

Software Maintainability 11
Software Support Tools 8
Standards and Conventions 7
Task Assignments 5
Testing 7
Test Coverage 9
Workbreakdown Structure 6

- 7 -

3 SOFTWARE MAINTENANCE DEFINITIONS

This section provides a constituent set of software
maintenance definitions and establishes a common basis for
discussion in this report. This set of definitions is in the
form of a hierarchy. At the highest level, software maintenance
is defined as a phase of the lifecycle of a software product.
At the next level, the different types of maintenance typically
performed are identified. This is the level at which managers
are likely to relate to from a functional standpoint. At the
lowest level, the activities or generic tasks typically
performed during software maintenance are defined. The concept
of this hierarchy of definitions is shown in Table 3.1-1.

In the first two levels of the definition hierarchy, the
works of Swanson [SWAN76] and Martin and Osborne [MART82] have
been used extensively.

TABLE 3.1-1 SOFTWARE MAINTENANCE DEFINITION HIERARCHY

Software Maintenance: Performance i

of those activities required to I

keep a software system operational I

and responsive to its users I

after it is accepted i

and placed into production. i

LEVEL 1

Definition as a
phase of lifecycle

Perfective i LEVEL 2
Adaptive I

Corrective I Categories of
maintenance

Requirements Analysis I

Design Analysis I

User Interface 1

Design Review I

Configuration Control 1

Code Audits 1

LEVEL 3

Maintenance
activities

- 8 -

3. 1 Software Maintenance As A Phase Of The Lifecyle

The lifecycle of a computer software system is defined as
the period from its initial conception until it is no longer
used. Traditionally, the lifecycle phases have been defined as
requirements, design, implementation, testing, and operation and
maintenance. These phases are generally associated with the
development of a software system. Software maintenance,
however, is usually associated with those activities performed
after development. Thus, the definition of software maintenance
as a lifecycle phase is:

the pgrf^rmanse Q,f th^se aQtiYities required tQ keep a.

s^jftware system operational and resp^^ssiye ts its users
after it is accepted and placed into production

.

There is a set of products associated with each lifecycle
phase. These products encompass requirements and design
documentation, code, the data base, users manuals, test plans,
procedures and results, operators manuals, etc. Software
maintenance, then, is a set of activities which results in
changes in the baseline product.

CATEGORIES QF SQFTSARE MAINTENANCE

Maintenance activities are frequently divided into three
categories which were originally proposed by Swanson [SWAN76].
These are: perfective, adaptive, and corrective. In this
Guide, these categories are defined as follows:

0 Perfective Maintenance

All changes, insertions and deletions,
modifications, extensions, and enhancements made to a
system to meet the evolving and/or expanding needs of the
user are considered to be perfective maintenance.
Activities designed to make the code easier to understand
and use, such as restructuring or documentation updates
(often referred to as "preventive" maintenance) are
considered to be perfective as well as optimization to
make the code run faster or use storage more efficiently.
Estimates indicate that more than 60% of all maintenance
effort falls into this category.

- 9 -

0 Adaptive Maintenance

Adaptive maintenance consists of all effort initiated as
a result of changes in the environment in which a
software system must operate. These environmental
changes are normally beyond the control of the software
maintainer and consist primarily of changes to the
computer hardware, operating system, operating system
tools (compilers, utilities, etc.) and terminal devices.
Note that changes in requirement specifications by the
user are considered to be perfective, not adaptive.
Estimates indicate that approximately 20% of all
maintenance effort falls into this category.

0 Corrective Maintenance

Changes necessitated by actual errors (induced and
residual "bugs") in a system are considered to be
corrective maintenance. This category consists of
activities normally considered to be "fire-fighting" or
"quick fixes" to allow a system to continue to be
operational. Corrective maintenance is usually a
reactive type process where an error must be fixed
immediately. Estimates indicate that only 20% of all
maintenance effort falls into this category. Table 3.1-2
provides some example activities of each of these
categories.

TABLE 3.1-2 MAINTENANCE ACTIVITIES IN EACH CATEGORY

CATEGORY I ACTIVITY

PERFECTIVE

ADAPTIVE

CORRECTIVE

Making Code Easier to Understand
Improving Documentation
Optimizing the Code
Adding a New Capability

Modifying application for new version of
operating system, compiler, peripherals, or DB

Quick fixes and fire-fighting

- 10 -

3.2 Software Maintenance Characteristics

Software maintenance involves many of the same activities
associated with software development . One way of describing the
activities of software maintenance is to identify them as
successive iterations of the first four phases of the software
lifecycle, i.e. requirements, design, implementation, and
testing. Software maintenance is this successive iteration with
unique characteristics of its own. The unique characteristics
include the time-frame in which maintenance is performed, the
personnel performing maintenance, the environment of the
software product, and the testing process. Software maintenance
is typically performed within a much shorter time-frame than a
software development effort which often spans one or more years.

With respect to personnel, software development projects
are usually staffed with a specific mix of skills to meet the
requirements of the application and development efforts. People
with different skills are assigned at the various phases of the
development to take full advantage of their expertise. In
contrast, all maintenance activities for a particular software
product may be performed by one person, acting as requirements
analyst, designer, coder, and tester. Although this is not
always the case, the separation and assembling of a certain mix
of skills is more typical during development than during
maintenance

.

Another characteristic of maintenance is that the
maintainers usually are not the same persons who developed the
system. Thus, the maintainers must analyze and understand the
existing product before they can modify or correct the software,
usually without any inherent knowledge of the implementation
strategies employed by the developer. While this is a subtle
difference, it is significant. It is also the basic reason
people traditionally have stated that maintenance is not a
creative process, motivating many 'good' programmers to seek
development projects. Since maintenance activities are
performed within the context of an existing framework or system,
it is generally thought that an individual ' s flexibility is
somewhat constrained. This, more than any other factor,
presents the most challenging problem for maintenance personnel.
Moreover, the older the system, the more difficult the system is
to maintain.

Software maintenance can be viewed as successive iterations
of the development phases, but its uniqueness should be
recognized to insure effective management, staffing and planning
considerations. The following is a list of functions typically
performed while maintaining software

:

- 11 -

Change Requirements
Impact Analysis
User Interface
Problem Report Recording and Control
Change Request Recording and Control
Configuration Control
Data Base Modification
Code Modification/Recompilation
Code Debugging
Module/ Subsystem/ System Testing
Documentation Modification
Code Inspections/Walkthroughs
Test Data Generation
Management Planning and Control
Field Delivery
Administrative Support
User Assistance/Training

Depending on the environment , a certain subset of the these
activities may be associated with corrective maintenance while
another subset may be associated with perfective maintenance.
The processes are influenced by such factors as the size of the
change, response time or other time constraints, whether the
maintenance is performed on-site or at a centralized maintenance
facility, etc.

3.3 Software Maintenance Problems

Recognition of the cost of software maintenance to the
Government was the catalyst for the focus of attention on
maintenance. Two surveys, one by the General Accounting Office
(GAO) and one by Lientz, Swanson, and Tomkins , contributed
significantly to this recognition. Each survey identified the
major problems in software maintenance. Table 3.2-1 summarizes
the findings of these two surveys along with the findings of the
survey conducted by the National Bureau of Standards (NBS). The
problems identified in each of these surveys are grouped
according to six major problem areas.

- 12 -

The first problem area identified is that of cost. GAO
estimated that two-thirds of the programming staff in the
Federal government are involved in maintenance. Statistics from
Department of Defense studies report up to 75% of the lifecycle
budget for software systems is related to software maintenance
[RADC82] . A recent book on software maintenance [MART83]
estimates $30 billion are spent annually on software maintenance
world wide. These types of statistics have only recently been
recognized due to the lack of a standard definition of what
constitutes maintenance and to the difficulties in obtaining
cost accounting and management data.

Management problems are considered to be the second most
significant area of concern. The problems in this group involve
managing/recognizing maintenance as a separate function; user
and upper level management's perception of maintenance; a lack
of goals, standards, and criteria to judge performance; and
managing the user interface. These problems can be attributed
to the fact that unique aspects of software maintenance were not
recognized in the past

.

The third problem area specifically addresses technical
approaches (techniques) and procedures for performing software
maintenance. While there are many standards, methodologies,
techniques, and procedures advocated for software development,
there are few associated with maintenance. Emphasis on software
development problems is a familiar theme within the software
research and software engineering communities. However, until
recently software maintenance has received little attention. A
typical response to the reason for this neglect is that if
software is developed well in the first place it will be easy to
maintain. This response ignores the fact that sixty to seventy
percent of maintenance consists of modifying software to perform
new functions or to comply with new requirements. It also
ignores the sizeable software inventory currently being
maintained that was developed without the use of modern
programming practices. Without disciplined approaches to
maintenance, these systems are characterized by an exponential
growth in size and complexity during their post delivery life.
The result is generally premature system demise or instability
and progressively more costly maintenance.

The fourth problem area identified in the survey is
software tools. There are few tools available which directly
apply and support the unique aspects of software maintenance.
The lack of specific tools for software maintenance is
compounded by the fact that tools common to development
organizations that would also benefit software maintenance are
rarely transferred to the maintenance organization.

- 13 -

Tlie fifth problem area involved personnel issues such as
availability, lack of training, turnover, motivation,
ezperience, scheduling, etc.

The last problem area identified by maintenance personnel
is the legacy of development. This legacy is that software
turned over to the maintainers is often poorly designed, poorly
implemented, and poorly documented. Thus, the maintainer has a
poorly structured product to maintain without the proper
information to understand it. These attributes all contribute
to making the software more difficult to fix or modify.

The existence of these problems in a data processing
organization can result in:

o an inability to meet the user's changing needs;

0 an inability to manage effectively a significant investment
in a large inventory of software programs and data;

0 an application backlog, where most resources are devoted to
maintaining existing systems, preventing development of new
applications. (The costs of not developing a new system are
typically not accounted for but can be significant.); and

0 a decline in the quality of systems because of poor software
maintenance, resulting in more expensive future maintenance.

- 14 -

Table 3.2-1 Survey Results

1 IH
1 *> <M
1 a>
1 «04J 1 B

1 O
1

1 A a 1 4J
1 o 1 B.
1 r-t 1 o;
1 0) (0 1 0
1 c a t>o 1

\ o o o 1 0)

1 O »H 1 Ck.

1 U V
n 1 h u a 1 ID

1 4J

1 ll <M 1 B
< 1 4J 1 0) 0)

1 Cl. u 1 E O
1 Q u a 1 Q, a

X 1 h « 1 tie d
1 Vi 1 c c
1 o >^ u 1 c &

>> 1 o 1 s)

e 1 1^ D O 1 B a
> 1 O 'IJ •-I

it 1 CC (D -<-> 1 k. d
a 1 ' 1 a> B
to 1 1^ « u 1 c~

1 O 3 O 1 &.<M
CO 1 iO B C 1 D O
GO
K 1 O O 1 o

ji
*i

0
a fi.

0)

fi kt

o €9 <D
1o a

1 .A 1 ID k.

1 O «j 1

1 «H 0> o
ID a 1 SI o
01 o 1 > a 0)
It « o 1 a
9 O 1 ID Q 1 o
T) *> 1 rH •3 1 -H
a> 1 O 4J

1 *i
O ID 1 O Q 0 1 •)
o a> 1 0) w^ 4->

1 ^
b «o 1 o D a 1 a
A. a 1 u a fi H IS C E 1

•3 1 F-t u u fi ^ 0) 1

1 £ a •m fi 1 3 0) »i 4J 1

o o 1) 0) O 1 O (D ID 1

1 It 4J
1 O O 0) >> 1

1 a >. o 1 O T5 ID 1

c o 1 D >4 *J
o 1 c « «-) a 1 V. >». Vi ^ 1

o >> 1 « fi iH o 1 O O O 01 1

o >H U > 4-> 1

•x a 1 V4 *i
1 1

o a> 1 O b « > a. 1 *i +3 4J 3 1

s 1 O r-l O a> 1 -H 1M V 1 M fi. •H a o 1 t-1 FI « 1

o a 1 O fi. C k. « I u e e u J

1 19 S > 3 ki

•J b. 1 >3 m < H cu

O O 1 o o o o 1 O O O O 1

1 *3
1 a

oni
1 01

1 fH «
CD

fi

1 a> 1 fi.O O
ID 1 E a k> 1 o a kl

t- 1 a> «0 1 1 01 « B «0 to

1 c T3 1 B 1 1 fi. a .H O O O
1 c C c 1 B ^ 1 1 a> 0) ^ kl a
1 « ID) 0) F^ 1 « E 1 1 k. *i o a 'Wfi.fi.

1-4 1 £ *i 4J fi. o> 1 4J B 1 1 o a o B 0 ID

.3 •w 1 a C ID H a 1 a> a) 1 1 ^ a o
IS 0 1 a c ki 0) a 1 kl <b kl 1 I •) « ID c e a
B E 0) o 1 U E «D 1 1 ID E B k. a> B «o

e 0) ID 1 ki •a ki ID 1 » c O 1
1 n a S B -H

0 1 o 4^ a ID ki 1 "O o kl 1 1 B fi. 3 X>0 IS

ID X> B. 1 w. 9 ID Q> 1 k. h fi. >, 1 1 d O a O -H 0)

a O Q e 3 fi. 1 0 ^ 4^ 1 1 E -4 V. O kl

k> 1 IC E k4 (0 1 X > O -H 1 1 Q) ^ o •o O
1 -D o a> O t>04^ 1 o 4J kl 1 1 T) e tM

u O 1 (3 u ID •4 c a 1 O 0 «0 1 1 »H c w O
>> 1 « 3 *3 ^ OJ 1 4J (B ID DP 1 1 «Ofh fH fH o O O

•o k. 1 E a> ID ^ E 1 O O D « 1 1 6 -4 a> kl o 0. « >,
a 0) O 1 S 1-1 >H ID S 1 ID a kl B 1 1 -H £l B C 4^ >. 0
« ^ ID 1 ^ 3 o •H D kl 1 QJ d t! « ^ 1 1 ^ d C > m c e 4J 4J 0

O O e O -H 1 u » h T3 1 1 a, f4 o O f4 o > Ft -H 3
N T>0 k> 1 ki (D M 0) V 3 1 B 0) B « 1 1 fi.'F4 ID E fH f4 fh cr
*i ^ » 1 Q> ja C kl kc cr 1 gj .a 0) 1 1 E e k. k. U 4J d d (D

a 3 > 1 ID O « BOO 1 £ O •O ^ •] 1 1 o > 0) 3 M t c 3 3 TJ
a to O i B LQ .3 D b. kl 1 U ID < ID Q 1 1 o < fi.i-> CO fi.X oo<

o o 1 O O O o o 1 o O O 1 1 o o o o o o o o

e 1 rs
t-i 1 a> a
£l e kl 1 1 B d 44

4J O 1 1 «-! .a .H
u fh a « 1 d 4J

1 ID 1 *i
e d ID 1 i fH 1 B

«o > m 41 fi. "O 1 1 o fH fi, 1 a
a « k< s g> o M 1 J o 1 d fi. o 1 o
«4 S (C 10 4J d o 1 1 *> 1 s O f4 1 «-!

e 4J « E E fi. •O O 1 a e 1 4>
a 4> E B CD O a «o 1 1 <M 1 a fi. > 1 d

o 3 e d kl c o d 1 1 o 1 a o 1 49
< O V kl 0) o H k4 1 1 *i *> ^ 1 a

O > ID O IP 1 1 « 1 <M a 1 CD
O o o o a V. O 1 1 ID 1 o (D 49 1 E
« a kl u ^ >> o a 1 1 3 k< « 1 3

>> 0) fi. d B f4 ID d d 1 1 o> 1 O
*> B <-l B O (D 4J FH -4 B 1 1 -a 1 kl <M 49

: O
CD s d d —t ^ d kl kl 1 1 a> 1 d , -a

kl O «S O kl E 4J> .H a O D O 1 J 4J 1 » •H a
3 O d O O > •'4 VS'k) Vi 1 1 -H 1 4J V ID 1 k<
(0 a to T) 4J C W •H b> 1 1 B 1 IM o 1 o

o d ^ o 0 3 0 0) o kl a> J 1 -H 1 O 1 oo<
SS E N h. ae <M z V s U fi. 1 1 .3 1 CO A 4> 1 En

O O o o O 1 1 o 1 o 1 O

B
n 1 49
o 1 0
9 1 fH 1 <M 9H 1 9 1 O E

1 a 1 fi.
f4 1 a 1 >>o
d f IB 1 o 1 CH
E 1 fH 1 IS

kl 1 o 1 kl 1 «o>
O 1 o 1 w 1 e e
b. 1 H 1 a. 1 J Q

- 15 -

4 MANAGING THE MAINTAINER

Tlie software development process has evolved to a set of
procedures that are performed in a prescribed order. Although
performance of the procedures often requires several passes
before the desired quality is obtained, the course of action is
generally better defined than the maintenance process. Although
the maintenance process can be viewed as iterations of the
development process, there are unique aspects of maintenance
which seemingly have no procedural counterpart to development.
There are numerous training courses on software development
techniques , but only a few corresponding types of courses that
address software maintenance. While numerous studies have
investigated the inherent difficulty of constructing a complex
system, only a few studies have addressed the difficulty of
maintaining a complex system. Furthermore, the results of these
studies have contributed to the development of tools and
techniques to aid in the tasks of software requirements
definition, design, coding, and testing. Maintenance tasks are,
in general, less organized than development tasks. The
situation is further complicated by the fact that documentation
and other information necessary to complete maintenance tasks
are often unavailable.

4.1 The Difficulty Of Software Maintenance Activities

One research study [CIRA71] related maintenance to trying
to find "a needle in the haystack". For example, when a
software error occurs, how does the analyst proceed to isolate,
analyze, and repair the problem? There are no tried and true
techniques that can immediately isolate the routine at fault.
Rather, the analyst must perform some "detective work" based
upon analytical skills and perseverance, and must be able to
reconstruct the processing scenario at the time the problem
occurred. The process of reconstructing the scenario can be
extremely difficult, involving complex processing. The analyst
must decide, on the basis of clues, which parts of the system
contain the faults. This process, sometimes referred to as
"over confirmation of clues" [CIRA71]), is inefficient in terms
of the number of logic paths the analyst must trace before
identifying the faulty one.

Examination of the psychological processes necessary for
incorporating a major enhancement, reveals further sources of
difficulties. For example, upon beginning a task, the analyst
may have a reasonable idea of what routine will be affected.
However, before that intuition can be verified, the impact on
the design must be assessed. This assessment necessitates a

- 16 -

jump upward in the level of abstraction. If the affected module
is tightly coupled with other modules, additional jumps upward
are necessary. After identifying all of the modules implicated,
the analyst must move quickly to a lower level of abstration,
(i.e. the code) to begin modifications. Studies have shown
[CIRA 71] that the process of hopping from one level of
abstraction to another is error-prone and inefficient.

Since maintenance managers and technical personnel are
judged by their success in meeting deadlines, there is often an
attempt to hurry to complete the tasks. Pressure mounts and
mistakes occur. Thus, the physical environment may not be
conducive to maintaining the concentration level essential for
the task.

4.2 The Maintenance Career Path

Throughout the industry, the role of the maintenance staff
has not always been viewed favorably. Often, a person is
assigned to a maintenance activity after performing development
tasks poorly or simply as an "entry-level" assignment. Careers
are sometimes short-lived because of the lack of management
support and a good organizational attitude about software
maintenance. The very nature of maintenance responsibilities
can result in a demanding 24 hour on-call environment . In some
cases, the personnel must agree to be available on weekends in
the event of a system emergency. Fortunately, the traditional
viewpoint and other unfavorable conditions are disappearing in
the DP community.

Organizations should identify a specific career path for
maintenance personnel. This path may be identified in the same
terms as development personnel, i.e. progression from an
entry-level programmer to a senior programmer to an analyst to a
supervisor to a unit manager. However, the key is to
demonstrate that there is a career path.

4.3 Attributes Of Maintenance Personnel

Software maintenance is a critical function in most
organizations; thus, it is important that the staff be highly
skilled. The key attributes of successful maintenance personnel
are highlighted in Table 4.3-1. Attempts should be made to hire
persons with these attributes; they should also be encouraged in
the existing staff through training courses and by managers who
reinforce them during meetings and counseling.

- 17 -

TABLE 4.3-1 ATTRIBUTES OF MAINTENANCE PERSONNEL

ATTRIBUTES TECHNICAL BACKGROUND

EXPERIENCED Application
Coding /Debugging
Testing

TECHNICAL
PROGRAMMING SKILLS

Understand existing software
Ability to make software more
maintainable

ABLE TO RELATE
TO USERS NEEDS

ABLE TO RELATE TO
OPERATIONAL
ENVIRONMENT

VERSATILE Knowledge of various hardware,
operating systems, languages.

ANALYTICAL Able to find, error.
Able to analyze impact of change.

ADAPTABLE Able to work under sometimes poor
conditions, using poor documentation.

RESOURCEFUL/
IMAGINATIVE

Must be creative, (i.e. must be able
to diagnose problem, create work around
or invent a method for enhancing a
system within existing constraints).

OBJECTIVE Must recognize deadline and technical
constraints of task.

THOROUGH

:

Fixes and changes must be thoroughly
debugged and tested.

- 18 -

4.4 Personnel Sclieduling

A frequently practiced management strategy in software
maintenance is to assign a "resident ezpert" to every system
that is maintained. While the simplicity of this management
strategy is attractive, the overall effectiveness of the
maintenance team may be reduced. Depending upon the size and
urgency of the request load, bottlenecks may develop, especially
if the resident expert is unavailable. Another result of this
approach is an eventual deterioration of the documentation
because the resident expert fails to maintain it. In fact,
undocumented changes enhance the maintenance expert's image and
job security. If this resident expert leaves the organization,
however, the system is left in an unmaintainable state. One way
to avoid this type of disaster, is to make multiple system
assignments so that no single individual becomes the weak link
in the chain.

Another approach is to rotate assignments so that the lack
of one person will be less of a bottleneck in the completion of
tasks. An added advantage of rotational assignments is the
increase in the responsibility level of personnel. The concept
of rotational assignment is also applicable between development
and maintenance assignments.

4.5 Deadline Assignments

Maintenance activities typically are more susceptible to
deadlines than development activities. Problems that result in
a system crash demand an immediate response, e.g. banks must
post transactions on a daily basis or incur both a loss of funds
and the wrath of customers. Similarly, payroll offices are
beset with complaints if weekly payroll checks are not on time.
Inevitably, the maintenance tasks of "keeping the system up and
running" generate the pressing deadline requirements for the
technical staff. While the ability to meet deadlines is often
an important evaluation criteria for the technical staff, missed
deadlines reflect negatively on management as well.

Effective techniques for forecasting resource requirements
are often not available. Thus, task completion estimation
techniques for software consist of heuristic recipes rather than
replicable analytical techniques. If the technical staff is
unduly rushed in performing maintenance tasks, there is a high
probability that the quality of work will be lower. In the
process , maintenance standards and procedures are often ignored
in an effort to "get it out the door". The end result is
degraded system and software quality and more deadline
assignments

.

- 19 -

The tendency to "rusli to fix" tasks can be reduced by:

o rotating "on-call" assignments among the staff so no
one person is relegated to continuous on-call
assignment. This may be more difficult to accomplish
in small organizations than in large ones;

o offering incentives to lessen the psychological
burdens

;

o estimating the resources required for enhancements and
other major modifications before assignment;

o taking the complexity of the change and the system into
consideration when estimating the time required for
change implementation; and

0 considering the presence or absence of adequate
documentation

.

4.6 Performance Criteria And Personnel Effectiveness

Accurate and objective personnel evaluation techniques for
programmers and analysts are not well established in the
industry. Programmer productivity, whether in a maintenance or
a development setting, has proven to be difficult to measure.
While many types of measures have been proposed, (lines of code
produced per day, success in meeting deadlines, cost per line of
code, etc.) no one set of measures has been unanimously accepted
as a standard. Furthermore, programmer productivity takes on a
separate meaning when considering maintenance rather than
development

.

Maintenance productivity metrics should evaluate the
criteria that reflect the measure of satisfaction to the user
and organization as a whole. Some examples of appropriate
metrics include the ability to meet a deadline (if realistically
set); the degree of quality of the maintenance activities
(post-maintenance problem report frequency) ; the ability to
improve future maintenance by preparation of adequate
documentation; and the observation of standards and procedures.

- 20 -

5 THE MAINTENANCE ORGANIZATION AND USER INTERFACE

The historical perspective is that maintenance is a
necessary evil, required because the software was not developed
well in the first place. This attitude is changing rapidly in
today's environment where computers and software are present in
all facets of our life. Almost every major organization is
dependent to some extent on the effective performance of
software maintenance. Thus, an understanding of the
difficulties, challenges, and requirements of software
maintenance by manager and users is essential.

There are a number of factors which contribute to efficient
and cost effective software maintenance. Most of these factors
are discussed in detail in sections six through eleven of this
Guide. The two factors that are perhaps the best indicators of
how well a software maintenance organization is performing,
however, are effective user interface and user satisfaction.

5 . 1 Establishing The User Interface

Effective user interface helps insure that all persons
involved or affected by the change request are aware of each
others' requirements, as well as the functional capabilities of
the system. It is one of the most important responsibilities
within a maintenance organization. Most maintenance
(approximately 60%) is performed specifically at the users
request (to modify the system). The user interface group would
have responsibility to:

o Forecast User's Needs /System Changes;
o Complete System Change Request

;

o Estimate time and resources requirements;
o Review Estimates;
o Keep informed of status;
o Participate in tests;
o Review User ' s Manual

;

o Understand User's situation, people, needs; and
o Educate user to the environment,

organizational capabilities, feasible
responses

.

User interface should be established with a degree of
formality and conducted on as friendly a basis as possible. The
degree of formality can be introduced by the use of a system
change request form. This form not only introduces some
formality, it provides an historical record of system changes
and provides a basis for managing the change process. Table
5.1-1 identifies the key information the change request form
should contain. A more detailed example of a problem reporting

- 21 -

form which could also be used for change requests may be found
in section seven of this report. The requestor should always
provide as much information as possible about the cause of the
problem or the nature of the change. This will not only assist
the maintainer in changing the software, and but will help
management better assess the cost of making the change.

5.2 User Interface And Task Prioritizing/Scheduling

When possible, fixed maintenance cycles should be
established. The user should be involved in the assignment
process. An effective technique is to have periodic user group
meetings where new and current system change requests,
availability of resources, and priorities can be reviewed. It
is important that the user recognize that the maintenance
organization is a limited resource and that change requests must
be prioritized to effectively utilize that resource.
Organizations that employ scheduled maintenance cycles are able
to manage their resources more effectively than those that react
to daily ad hoc demands.

- 22 -

TABLE 5.1-1 KEY INFORMATION ON SOFTWARE CHANGE REQUEST FORM

o Identification of Requestor

o Date of Request

o Change Desired (description and why)

o Date Change Needed/ Priority

0 Analysis (description of approach to change)

o Identification of Resources Required

0 Responsible People

o Schedule/Milestones

o Date Change Made (with maintainer and user
sign off)

- 23 -

6 ECONOMIC CONSIDERATIONS OF SOFTWARE MAINTENANCE

The effort required to maintain systems developed within
the last five years is typically less than that required for
older systems. The reason is that these systems typically have
been developed using structured high level languages, structured
design and implementation methodologies, well documented system
utilities and data base management systems. As a result, these
systems tend to be easier to understand and modify.

6.1 Cost Control Measures

Maintenance organizations are beginning to recognize the
need to improve systems as they are modified. Evidence suggests
that a 20% to 50% reduction in future maintenance costs can be
achieved by the consistent use of software quality standards,
tools, and techniques (See [MCCA83] and [MART83].).

Another cost control measure that has proven effective,
though not always compatible with an organization's accounting
procedure, is the use of a charge back system. In a charge back
system, the users pay for maintenance on the applications that
support them. The advantage of this system is that requests for
modifications are evaluated in detail , and in terms of their
cost /benefits by persons responsible for the cost. A related
benefit is that the user gains insight into the maintenance
process. While it is difficult to determine the cost savings
provided by a charge back system, the use of this technique has
the effect of encouraging more efficiencies in the system by
users and maintenance staff.

6.2 Cost Estimation Models

Most cost estimation models are parametric models for which
the user provides input parameters describing the system in
terms of size, application, language, complexity, etc. Some of
these models provide an estimate of lifecycle costs for the
system

.

The output of the models is the estimated level of
effort /cost to develop and maintain the system. This output can
be used to estimate the cost of making a major change to an
existing system. The change may be described to the model in
terms of the amount of new code to be developed and the
percentage of the existing code to be modified. Further
information can be found in [THIB81] and [COOK80]

.

- 24 -

6.3 Work Breakdown Structures

A work breakdown structure is a tectinique used for planning
and controlling projects by decomposing each project into
manageable work units. This technique is used often when
Government organizations contract for development or services.
Essentially, this technique requires a planner to describe the
workflow within the maintenance organization. For a particular
maintenance task, this work flow can be used to plan/estimate
resources required and milestones. An advantage of using a
consistent work breakdown structure across many tasks is that
planning and estimating become easier and more accurate because
of the empirical data upon which those plans are based. Figure
6.3-1 provides an example of a work flow plan. Each boz
represents a work unit that could be associated with a work
breakdown structure accounting code.

6.4 Specifying Resource Requirements: A Software
Maintenance Management Plan

The mode of many software maintenance organizations
responding to problem reports and change requests is both ad hoc
and reactive. It is difficult to project resource requirements
on a long term basis using this mode of management . We
recommend that a plan be developed to assist management in
specifying project resource requirements. This plan should
provide a brief description of the application system including
the hardware/ software environment on which the production system
runs. Any variations or multiple configurations should be
defined. Organizations which use the system or have
responsibility for its development and maintenance should be
identified. Their responsibilities and interfaces should be
outlined

.

- 25 -

I •+ — — 4-

I I

«
I O I

I ^ c t>0 I

I E « a I

I 0) 4^ 'H I

I 4-> dfti I

I (fi OJ CO I

I >> O ffi I

I CO o H I

* < I

I

+ >

1 + + —
1

1

+ 1

1 1 a
1 1

1 + — +
1 1 "0 1 1

1 1 h 4> 1 B 1

1 1 OS 'H 1 O «0 1

1 1 13 1 <p a 1

+ —

-

+ 1 1 n p 1 Cfi ^ 1

1 1 «< 1 >»-p 1

1 1 -p 1 u m 1

a> a 1 1 CO 1 £ a> 1

1 1 1 9 H 1

1 + + •f CO 1

ts a 1

ss 1 1

1 1

1 1

1 —

-f

1—
1

4-

+
1

1

1 — > 1

1

1

+ 1 + — 1

> +

a
a a
E IS

a> >>

•H u
a p
&•<

I

I

4- — -f — —

a
o

"O *>
o d

(0 U 4>
o> e

x s) n EU 0) -H 9
4> o

(DUO
a -H Q

M
M «

a

I T)
I 43 0)
I E 01 U> >
I 0) w) a> ^
I 4> n 9 0)
I B) d cru
I >>A 0) 0)
I CO u a: ce
I

4. _

+ 4- 4-

««
a

» p-l B

T) 4i
0 O IS

•O X 0)

O HU

•a -H
o >
U 01

4- 4- 1 1 e 1 1 1

1 1 0 a 1 1 0 1 1 0
1 1 1 -H 0 1 1 0 1 1 0
1 r 1 43 ^ 1 1 ^ 1 1 ^fI

1 1 1 IS 4> 1 1 43 1 1 f
4- 4- 1 1 4> « 1 1 « 1 1 d

1 1 CI 0 1 1 e 0 1 1 d 0
1 1 0) ^ 1 1 TJ W 1 1 *> -HWO <D 1 1 E vi 1 1 0 <H 1 1 d<M

<D 9 W 9 10^1 1 O-H
0 4:1 43 0> 1 1 o-o 1 1 1 1 Tl« OS iH 1 1 0 0 1 1 0 1 1 0
9 E (4 t> 1 1 Q X 1

1 1 1

1 X 1 1 Xo-H a> a 1 1

a *> a K 1 4- — — 4- 4- 4- 4-

0? (0 <p
o: H u 1 1 1 1

a t 1 1 1

« 1 1

1 1

1

+ 4- 1 4- — 4-
1 1

— +

4-4- — + 4-+ — 4-4-— 4-4-

4- 4- — 4-

I I

I I

I a » I

I QOO) I

I -H 'H I

> 4- 10 > I

> 4. 4.

+ — — — 4-

a a I

(4 d -H I

<ti 4^ a \

U ID I

D -H d I

10 u I

10 H I

< I

I

4- — 4-

+ 4-

a I

iH I

T3 iH I

^ O I

E O (1 I

Q> O *> I

H 01 a I

XIU o \

O O I

(4 43 I

Cl. ti « I

O fl I

e.d I

0) I

a I

I

4. +

4- 4-

O I

h ^ I

0> 4> I

> o o I

•ri 4:1 9 I

r4 -a ISO I

^ I

I

I

I

I

4- — 4-

I

10 I

0> I

49 I

4 > 4 X d I

1 OV I

I &< I

I D I

I

M
•I hi

I o
« ^
ID <M
O

01

»4 01
S H
t>0 Cl<

•rt E
lb d

M
H

I I

4 4-

- 26 -

The plan should outline the procedures to be followed in
maintaining the systems. The procedures should address how
system changes are requested by the user and how priorities and
schedules are to be assigned. Other procedures to be covered
include problem reporting by the user, provisions for customer
assistance, and response times for problem resolution,
provisions for review, approval, and implementation of
configuration and version changes, and any planned maintenance
cycles. Any quality assurance activities and testing activities
(regression testing) including user involvement in acceptance
testing should also be addressed.

The plan should identify such resource requirements as
hardware, software, personnel, facilities, and supplies. Care
should be taken to include the anticipated time requirements for
maintenance of the system. The plan should also identify
support software tools and methods to be used in maintaining the
system

.

The plan may change as the situation changes or as lessons
are learned and feedback obtained. The fact that it ezists,
however, provides continuity, formality, and a rationale for the
procedures in place. The result of these influences on the
maintenance organization is an introduction of a more
disciplined approach to maintenance providing a more effective
resource to the overall organization. Table 6.4.1 describes key
attributes of a software maintenance management plan; while
Table 6.4-2 descibes specific steps that should be taken when
implementing a software maintenance management plan.

- 27 -

TABLE 6.4-1 OUTLINE OF A SOFTWARE MAINTENANCE MANAGEMENT PLAN

1.0 Introduction
Purpose
Scope
Applicable Documents

2.0 System Description
Hardware (Application system Production Environment)
Software
Definitions /Glossary

3 . 0 Management
Identification of User, Developer, Maintainer
Responsibilities
Interfaces

4.0 Procedures
System Change Requests /Problem Reports
Customer Assistance
Configuration Control
Quality Assurance
Testing /Acceptance Testing
Maintenance Cycles

5.0 Resources
Hardware (Maintenance Environment

)

Support Software
Personnel (Assigned Responsibilities)
Facilities
Supplies

- 28 -

TABLE 6.4-2 IMPLEMENTING A SOFTWARE MAINTENANCE MANAGEMENT PLAN

o Inventory all application software and documentation.

0 Establish maintenance management plans for each, application.

0 Establish a common workflow.

o Assign personnel to key functions such as configuration
management, quality assurance, user interface, and testing.

0 Establish standards and conventions.

0 Initiate the use of system change request and problem report
forms and maintenance logs.

0 Document a plan to purchase or build support tools incrementally.
Present this plan to upper management for approval.

o Establish procedures for fixed maintenance cycles to handle
user change requests and problem reports (critical problems
in a high priority mode)

.

0 Establish a training program including in-house training,
on-the-job training, and commercial seminar /course attendance.

0 Brief upper level management periodically on the progress of the
improvement plan citing statistics collected from problem
reports, change request forms and maintenance logs.

o Schedule periodic meetings with staff to solicit ideas on
effective techniques or tools.

0 Communicate with developers and provide them with feedback on
maintenance problems, including problem type and frequency.
The goal of this exercise is to improve software development
standards and quality.

- 29 -

7 SOFTWARE MAINTENANCE TECHNIQUES

Effective control of a software maintenance organization
usually results in a higher quality product. Controlling the
activities performed by the maintenance personnel is best
accomplished when there is a definitive set of procedures to
follow. The techniques and procedures discussed in this section
include: problem reporting (forms usage, data analysis),
software quality assurance, code walkthroughs, software
configuration management, and test plans and procedures.

7.1 Problem Reporting Procedures

A critical aspect of user satisfaction is a responsive
problem reporting procedure. Problems can be residual
(delivered with the system) or introduced as a part of
modification activities. Regardless of which type of problem
exists, maintenance organizations must be prepared to catalogue
problems efficiently for either future or immediate analysis and
correction. An example of a useful reporting system is a data
base management system that maintains the current problem
reports and their status, catalogues the problem reports, and
provides various error analysis as depicted in figure 7.1-1.
Key aspects of a problem reporting procedure include:

o a form for the user to fill out;

0 discussion of the problem report with the user and
estimate of the time and resources required to correct
the problem;

o documentation of the analysis of the problem;

0 categorization the problem for future use;

o involvement of the configuration control function in
assigning the priority and insuring the update is made
properly; and

o documentation the completion of the fix.

- 30 -

Analysis

Figure 7.1-1 Problem Reporting Process for Hainten&nce

- 31 -

TITLh
DATt „

P*<00fUM ID:
AKiALYSTfS):

Coaputltlanal
11(1 US MMtlM
•ivltiwi Itr t»««
Mel9iious itatanMt
•rrwicout ealeuUtlon
i^NwcMMry wicylttiw
1a*«

l»i»ufflel»«

violation of eodlitv ttandtrd

subscript •rrpn
cr9iMnt list inemtlttcftclM
tfFiinitlallXffd ««n«b)t

eats ltr«tftur» trrori

sesllitfl/prBClllon trrof^

lts1<«« taft
»i ruwous
wnmt ««()u»nct

Tastar

Low. Hediw, .Bl9h,

^rfrcl^*^) -Performance Sufastandird Performance Unacceptab'k - Systew Stops

METHOD OF DFTECTION:

DESCRIPTION OF PROBLEM:

EFFECTS OF PROBLEM:

RECOMMENDED SOLUTION:

f ^fSr^^ REQUIREMENTS LIN>:S NUMBERS: CLOSED
S • CLOSED DATt -

Circle one: c . CORRECTED. CLOSED
U « UNSUPPORT^). CLOSED

Figure T. 1.1.1 Staple Problem Report Form

- 32 -

7.1.1 Forms -

Problems can originate from the field, from users, or from
in-house analysts and programmers. Often, the need to retrieve
information quickly is very important in maintaining high
user-satisfaction. A form that records certain useful
descriptive information can aid in this task. Figure 7.1.1-1
contains an ezample of a Problem Report Form. Problem reports
vary in form but the information content is generally as shown.
More advanced problem reporting systems, based on data base
management systems can assist in analysis and provide statistics
on the types and frequency of problems being reported.

7.1.2 Data Analysis -

The data gathered by the problem reporting system can be
used to describe the changing quality of the system. For
example, the project manager may wish to examine each module in
a system for a frequency distribution of the number of problems
by module. Experience has indicated that sources of errors are
rarely uniformly distributed across all modules. Rather, a
subset of modules will exhibit high error rates. Once the
problem areas are pinpointed, management is better able to
determine whether it would be more cost effective to redesign
rather than continue maintaining these modules.

7.2 Software Quality Assurance Procedures

The software quality assurance (SQA) procedures should
identify the documents that will be reviewed, the personnel
involved, and the schedule. These procedures and
responsibilities should be documented in a software quality
assurance plan. The SQA procedures should, as a minimum,
involve design and code walkthroughs. They may also include a
documentation audit, test monitoring, and an SQA sign off prior
to release.

The most common of these procedures is the code walkthrough
which is performed typically by a group of four people. The
author of the code explains the program statement by statement.
During this time, a checklist is used by the moderator to
eliminate common coding errors. The checklist identifies such
items as: data item initializations, subscripts in array
references, pointer updates, computation errors and comparison
errors. An example checklist is shown in Figure 7.2-1. As the
walkthrough progresses, group interaction results in a trouble
shooting analysis of the software. One benefit of the group

- 33 -

interaction is that design errors are often discovered by other
team members.

7.3 Configuration Management

The primary objective of software configuration management
(SCM), generally referred to as the management of software
changes, is the release of operationally correct, reliable, and
cost effective software. SCM consists of four functions:
identification, configuration control, status accounting, and
auditing. It helps to ensure that software changes satisfy
specified requirements and test criteria. It is also the
responsibility of SCM to: provide for records retention,
disaster recovery, library activities, a software repository,
and to ensure that the necessary coordination and approvals are
obtained prior to changing the baseline. SCM helps to track all
actions associated with a problem report or change request.
Figure 7.3-1 identifies the flow of control for problem reports
and change requests using SCM.

- 34 -

I

Code «BLU:tlirougb Cbeoklist i Inepector:
I

I

Systen N&ne : i Date

:

Progr&D M&ine: I

STRUCTURE

1. Does the progr&n exceed establlslied size etandards?
2. Does the program have only one entrance and one exit?
3. Does the prooesslng flow fron top to hottom?
4. Does the number of decisions exceed established complexity

standards?
5. Does the number of paragraphs exceed established standards?

DOCUMEKTATION /COMMEKTS

1. Are there prologue comments that identify function, inputs and
outputs, variables, author, modifications made, limitations, etc?

2. Are decisions commented?
3. Are variables described by comments?
4. Are branches commented?
5 . Is all machine language code commented?
6. Do comments do more than repeat operation?
7. Is consistent indentation and spacing used?

DATA

1 . Are all variables names unique?
2. Does each variable have only one unique name?
3. Are variables used in only one way?
4. Are global variables used consistently with respect to \inits

and type?
5. Are all elements of an array /table functionally related?
6. Are all variables initialized before use?
7. Are all default values described?
6. Are arrays/tables/ strings initialized before use?

INTERFACES

1. Are all calls to other programs commented?
2. Are all arguments within calls parametrics?
3. Does the calling program maintain control?

ERROR HANDLING

1 . Are inputs range tested?
2. Are possible conflicts or Illegal combinations of inputs checked?
3. Is there a check to determine if all necessary data is available

prior to processing?
4. Are loop and branch index parameters range tested?
5. Are sTibscripts range tested?
6. Vhen an error condition occurs, is it passed to a calling module?
7. Are the results of a computation checked before outputting or

processing continues?
6. Are there any mix made expressions?
9. Are all unusual termination conditions described?

10. Are error messages descriptive and necessary actions explained?

CONSISTENCY/COMPLETENESS

1. Dofis the code represent the design?
2. AiHi all global variables defined?
3. ^re all called programs defined?
4. Is all code reachable?
5 . Are all labels necessary?
6. Are nonstandard language features avoided?
7. Is sfcJ-f-modifying code avoided?

Figure 7.2-1 SQA Code Walkthrough Checklist

- 35 -

Figure 7.3-1 Flow of Systea Proijlem Reports eiad Change RequeBxs
Tlirougii Configuration Management

- 36 -

7.4 Test Plans And Procedures

Effective test plans and procedures can help to ensure
software quality during maintenance. The test plan should be
established with milestones and estimates for each step that
indicate when a system fix or modification is to be designed,
coded, tested, and placed into production. A reasonable amount
of time should be allocated for testing prior to release.
Management should also require that status reports, which
provide visibility into the testing schedule, be received
promptly from the person or team responsible for making
modifications and testing. Otherwise, intermediate milestones
may slip without any adjustment being made to the final
milestone or release date. This often results in a compressed
testing schedule which makes thorough testing impossible. There
should be a standard approach for testing and using automated
aids for test case generation and storage. The standard
approach should include the following steps

:

0 plan for enough time to thoroughly test a modification to a
system;

0 require the development and use of test cases which
thoroughly test the software;

0 archive the test data for future regression testing;

0 prepare tests that are based on user scenarios and on the
functional requirements of the system; and

0 establish a set of criteria for test coverage that provides
confidence that the testing has been thorough. This set of
criteria may include such procedures as

:

a percentage of all lines of code must be executed;

a percentage of all decision paths within the software
must be executed; and

execution of all error handling processes in the code.

o Use a parallel test system.

0 Involve user in acceptance of system.

There should be a commitment to establish and maintain a
standard set of test cases (data) for each application. This
set of test data can be used for regression testing whenever
software modifications are required.

- 37 -

While there are many software tools that support the test
process, many maintenance programmers develop their own tools to
assist in debugging and testing code. It is recommended that a
standard set of tools be used in the test process. Tools to be
considered range from test data generators, to test database
management systems, to code instrumentors/execution analyzers.
The following NBS publications provide additional information in
the areas addressed in this section: [FIPS106] , NBS106]

,

[FIPSlOl], [NBS98], and [NBS93]

.

- 38 -

8 MAINTENANCE SUPPORT TOOLS AND TECHNIQUES

During the survey of maintenance organizations, most
managers expressed a desire for more software support tools.
Many were not aware of tlie existence of tools for maintenance
activities, Others stated that their budget was not sufficient
to purchase additional tools. The following section identifies
the types and function categories of the tools that are
available. A more detailed description of these tools may be
found in Table 8.1-1 and in the NBS Special Publications 500-88
[HOUG 82]

.

8 . 1 Types Of Tools

8.1.1 Support Librarians -

There is a wide variety of tools which control changes to
the configuration or version of source code. They range from
specific configuration control systems to programmer utilities
which facilitate standard program construction and modification
processes. Most maintenance organizations practice
configuration control but only about half use an automated tool
to support that activity. This is an area in which automated
support librarian tools are especially useful.

8.1.2 Code Analysis -

One of the first steps a maintenance programmer performs,
when debugging a reported error is to examine the source code.
Considerable time is spent looking at the source code since the
documentation is often out of date. Code analysis tools can be
used to process the source code for: standards enforcement,
data flow analysis, complexity analysis, generation of cross
reference listings, or production of flow charts.

8.1.3 Requirements Database And Tracing -

When a user requests a change to a function or capability
of the system, the change is not identified with a particular
routine. In a large system, tracing a change (requirement)
through the design of the system to where it is implemented can
be time consuming. Tools exist that provide this type of
traceability . In some cases these tools require the
specifications to be written in a formal language ([ALF077].
[TEIC77]) and in other cases they do not [HERN81] . In all
cases, these tools can be very advantageous to the maintainer

- 39 -

attempting to analyze how to modify a system and wliat impact a
change will have.

8.1.4 Test Data Management -

Test data may be prepared manually, generated from actual
production data sets, or prepared as a result of analysis of the
code. Once prepared, the test data should be maintained for
regression testing. Tools such as test data generators and data
base management systems support these activities and provide
considerable cost savings by preventing the maintainers from
generating and storing test data manually.

8.1.5 Test And Error Analysis -

Problem reports from the users are valuable sources of
information to a maintenance organization. They not only
identify corrections that must be made but help to keep track of
the frequency, number, and type of problems being reported,
enabling an organization to improve its performance over time.
This improvement can be realized by completely redesigning and
rewriting programs which exhibit high error rates, by assigning
senior personnel to those problem programs, and by instituting
standards which will alleviate occurrence of certain types of
errors during modifications or correction activities.

8.1.6 Code Instrumentors/execution Analyzers -

Tools exist which instrument source code with counters,
sensors, and assertions, and then provide reports after test
cases have been run against the code. These tools report code
and path coverage and assertions during the test /execution run
providing some assessment of the thoroughness of testing. Other
tools in this category assist in optimization by identifying
frequency of execution of individual statements and segments of
the code. Such tools support the debugging process by allowing
a programmer to step through the execution of a program during
execution. These types of tools provide automated support in
analyzing the dynamic behavior of the code, and are particularly
helpful when tuning a system or during testing (regression
testing) changes to the system.

- 40 -

8.1.7 Text Editors -

Text editors are used extensively in software environments
to produce documents and to enter and modify code. A
significant benefit can be realized in maintenance if the
documentation produced during development is delivered to the
maintenance organization in machine readable form. Modification
(updates and revisions) of the documentation then becomes a
process similar to that of code modification and is more easily
enforced upon the programmers. Keeping the documentation up to
date can provide significant savings in debugging and designing
modifications

.

8.1.8 Structuring/restructuring -

Several tools
few years which
unstructured code,
product can be
most cases, the
considerable to
Other tools in
preprocessors to
conversion package

have emerged in the market place in the last
are designed to generate structured code from
The benefits of working with a structured

significant to a maintenance organization. In
inventory of unstructured code must be

warrant the expense of a restructuring tool,
this category include structured language
facilitate structured coding and language

s which support conversion of code.

8.1.9 Application Generation -

Application generators are high level languages oriented
toward a specific type of application which allow use of
functional statements to build a system. In the past, these
types of tools have not facilitated maintenance because of the
difficulty in debugging, tuning, and testing in the high level
language, the lack of support tools, and the scarcity of
personnel experienced in application generators. However,
recent advances in these types of tools make them more
accommodating to the maintainer. Their use is dictated to the
maintainer if the development was performed using one.

8.1.10 Simulation/emulation -

Simulations and emulations are typically developed for a

specific application. They are used to assess performance of

the system. In maintenance, they can be used to assess whether
performance goals are met after modification. They also are
useful if an application is being maintained on a computer
system which is not the same as the production system. In this

- 41 -

case, a simulator or emulator allows testing to be done on the
maintenance facility prior to fielding the new version.

8.1.11 Management Tools -

There are a number of tools which can assist in managing a
maintenance organization. Tools such as schedulers can be used
to keep track of different tasks, personnel assignments,
milestones, etc. Tools that utilize data from various sources
can provide management data which describe the amount of change
being made to a system, the growth in complexity of that system
as a result of the changes, the performance of the maintenance
organization in terms of user problem reports, and response time
for completion of change requests. Although these tools may not
increase the maintenance staff's productivity, they do assist
the manager in making better decisions about resource
allocation.

- 42 -

TABLE 8.1-1 TOOL TYPES

TOOL TYPES 1 FUNCTION CATEGORIES IN NBS SPECIAL PUBLICATION 500-88 [HOTJG 82]

Support Librarians 1 formatting, configuration management

Code AnalyslB 1 cross-reference, data flow analysis, structure checking, comparison

.

1 Interface analysis, type analysis

RequlrenentE Data Base
and Tracing

completeness checking, consistency checking, tracabillty

Test Data Management test data generation, regression testing

Test and Error AnalyslB problem report data base.

Code Instrumentation/
Ezeoutlon Analysis

coverage analysis, tracing, tuning, symbolic execution, assertion cheokin
debugging support

Text Editors editing

Structure /Restructure translation, restructuring

Application Generators synthesis

Optlnlzers optimization

Simulations /Emulations simulation

Management Tools schedulers, PERT/CPM, status reports, cost estimation models

- 43 -

8.2 An Integrated Maintenance Environment

A recommended approach to realizing long term benefits from
software tools is to accumulate an inventory of tools that will
support the various activities performed by the maintainer. The
goal should be to establish an integrated set of tools which
support a logical sequence of activities (a methodology), share
data, and provide a common user interface. Table 8.2-1 provides
a list of tools grouped by the order in which they should be
accummulated to maximize phasing in the tools under budgetary
constraints. This concept can have tremendous benefit to an
organization if all personnel are using the same set of tools.

TABLE 8.2-1 TOOL PRIORITIES

First Phase Compiler (structured
languages)

Text Editor
Configuration Manager/
Support Library

On-line Debugger

Second Phase Code Analyzer
Test and Error Analysis
Optimizers
Code Instrumentation/
Execution Analysis
Simulation/Emulation
Management Tools

Third Phase Restructurer
Requirements Data Base
Application Generator

8 . 3 Build Or Buy Decision

Software support tools have always suffered from the "not
invented here" syndrome. Programmers often prefer to develop
their own utilities and tools rather than use existing ones.
Traditionally, tools have been poorly documented, very
specialized, and difficult to move from one environment to
another. There has been significant improvement in commercial
tool development, and many of the software tools now offered are
reliable, and well documented. Therefore, a build or buy
decision process should be conducted prior to building a tool

- 44 -

in-house . If a tool that sufficiently meets the requirements of
the maintenance organization can be purchased commercially, it
is usually cost beneficial to do so rather than building one
in-house

.

- 45 -

9 MAINTENANCE MANAGEMENT DECISION AIDS

Managing a maintenance organization is a challenging task.
Decision aids assist management by helping them decide when to
redesign rather than to continue making patches; when structured
coding techniques should be used on unstructured code; and what
the impact of a change will be on the system and on resource
requirements

.

9 . 1 Redesign Guidance

One of the more difficult questions that arises during
change analysis, is when to redesign. The basic question is
whether a change to a system should be simply a modification to
the code (a patch) or if a particular segment (module or
modules) of the system should be redesigned and rewritten.
Table 9.2-1 provides the basic tradeoffs involved in making this
decision.

TABLE 9.2-1 REDESIGN TRADEOFFS

Why Patch Why Redesign

0 Expediency 0 Feasibility of change

0 Schedule 0 Efficiency of Performance

0 Effort 0 Restructure Code

0 Continued 0 Use modern design/code
operation techniques

0 Facilitate future changes

Generally, redesign is dictated when the change is not
feasible within the current structure of the system or in order
to meet performance (efficiency) goals. Other compelling, but
often overlooked reasons to redesign are the restructure of the
code: to comply with standards; to incorporate more modern
design and programming practices; and to facilitate future
changes. A basic set of criteria for redesign may be:

- 46 -

o time and effort are available;

0 feasibility of change requires it;

o performance requirement necessitates it;

0 if more that 20% of the lines of code of a module are
affected; and

o if a patch will cause the complexity of the system to
exceed established standards.

9.2 Structured Versus Unstructured Coding Techniques

A significant percentage of the inventory of software being
maintained in most organizations today was developed over eight
years ago. This software may have been developed using
unstructured languages and without the discipline of modern
programming practices. In some situations, attempting to change
this type of code using modern structured approaches is
difficult. If the change is small and expediency takes
priority, then no attempt to "structure" the code is necessary.
If the change is significant , then redesign using more modern
techniques are recommended. In this way, the overall structure
of a software system can be gradually improved.

9.3 Regression Test Coverage

A key decision that must be made in all maintenance
organizations is when a new version of a system should be placed
into production. The question that must be answered is: has
the system been tested, sufficiently to provide the manager with
confidence that the system will perform satisfactorily?
Resource and time limitations typically prevent an organization
from testing as much as they would like. The following
guidelines are recommended: o If modifications to a system are
localized, then regression testing should be performed against
the subset of software effected. This subset can be determined
by analyzing interfaces and determining that subset of software
whose interfaces with the rest of the system are not affected by
the change

.

o If the modification permeates the system, regression testing
should be performed. This is especially true where the change
affects global data. The key to successful testing, however, is
the proper selection of test data. See [MCCA77] . o During
regression testing, criteria of complete testing are:

- 47 -

execution without failure;
100% coverage of all decision paths; and
100% coverage of all interfaces.

9.4 Requirements Impact Analysis

Most change requests involve adding a new capability or
modifying an existing capability. The user generally identifies
more uses for the system or identifies more effective ways to
use the system. The impact of a change should be assessed by
the maintenance organization prior to making the change.

The manager should encourage the user to take a long range
view of the system and plan changes to the system in a
systematic way. One technique that has proven effective
involves establishing and maintaining an itemized requirements
data base which identifies each function and traces that
function to the modules which implement it. This data base can
then be used by managers to determine the feasibility and cost
effectiveness of each change. The ability to estimate the
probable resources required for each change has implications
both in the resources and priority assigned to the requests.
Use of the data base to analyze priority, impact, and long term
goals with the user enables the manager to better plan for
resource requirements.

9.5 Major Versus Minor Modification Assessments

The difference between a major modification and a minor one
can vary significantly from one applications area to another.
The set of criteria used to make the distinction of major and
minor is installation dependent. What one manager may consider
to be a large resource commitment, another may perceive as
typical and acceptable.

Using a definite set of criteria will help the manager, as
well as the user to understand the magnitude of each change.
The manager must prepare information for each user request that
will support any scheduling decisions. This information can
often be prepared from historical data referencing past changes
that were similar to the specific request.

- 48 -

10 SOFTWARE MAINTENANCE PROBLEMS TO AVOID

There are two key ingredients to successful ADP maintenance
management. The first is to recognize problems that are unique
to the ADP maintenance environment, and the second is to plan
strategies and policies that incorporate maintenance technology,
good management practices, and service goals of the
organization

.

10.1 Common Mistakes And Pitfalls To Avoid

From a management viewpoint , establishing set procedures
(policies) and insuring that supervisors and personnel enforce
those procedures is the best way to avoid problems and pitfalls.
Many of these mistakes are a result of actions taken for the
sake of expediency or from a lack of established procedures

.

Table 10.1-1 identifies common mistakes made in maintenance
organizations, and describes the associated indicators or
symptoms

.

- 49 -

TABLE 10.1-1 COMMON MISTAKES AND PITFALLS

MISTAKES /PITFALLS SYMPTOMS / INDICATORS

0 CM done manually
by programmer

0 No records kept (no ctiange
request form, problem report,
or maintenance log)

Loss of configuration
control

No resource tracking by task
Inability to estimate
task requirements

Loss of configuration
control

0 Respond to problem reports
and change requests only,

0 No separation of
maintenance function

- Reactive maintenance

Transparent costs
Lack of control/visibility

o Lack of organizational
respect for maintenance,
personnel management , use
of junior/entry level programmers

- High turnover

0 No quality assurance

0 No documentation updates

o No redesign/all patch
methodology

0 No formal regression testing

- Cost of maintaining system
gets higher each cycle

- Error rates after mainte-
nance cycle are high

- Cost of maintaining system
gets higher each cycle

- Loss of configuration cntl.
- Fixes become all patches

to avoid ripple effect

- System performance degrades
- Cost of maintaining system

gets higher each cycle
- High turnover

- Higher error rates after
fielding

- customer dissatisfaction

- 50 -

10.2 A Strategy For Implementing Survival Techniques

Implementation of survival tecliniques in an ADP maintenance
environment requires the cooperation of the other ADP functional
areas as well as the maintenance group. All parties involved
must be convinced that the improvements are in their best
interest and the overall goal is the improvement of the
organizations ' s performance. Unless the implementation plan
convinces all parties, provincial attitudes are likely to hinder
any real improvements. Once some order is established, the
maintenance manager can proceed to implement a plan to improve
the overall performance of the maintenance organization.
Consideration should be given to the following recommendations:

0 If your maintenance organization is completely saturated and
over-committed, has borrowed as many resources as possible
from developing organizations, and management is considering
a new application development which will dilute resources
even further, look at off-the-shelf software. Many packages
are available with maintenance support

.

0 If an application system has degraded in performance,
maintenance is extremely difficult because of the complexity
of the code, and documentation is outdated, consider forming
an audit team. This audit team, consisting of at least one
senior analyst, a programmer, perhaps a technical writer,
and a user representative, could review all documentation,
code, and records, and provide a documented recommendation
of how to salvage the application system.

o If the workload is impossible to perform within required
schedules, the manager should attempt to form a review group
of users. The manager should chair this group and, at

meetings, outline user requests, and schedule commitments,
and available resources. Where conflicts exist, it will be
the responsibility of this group to assign priorities and
slip schedules.

o Develop a plan which provides a phased approach to the
software maintenance process. This plan should introduce
formal procedures for assigning responsibilities, and
purchasing or developing tools. It should not only give
direction to the staff, but help to improve the software
products

.

- 51 -

11 PERFORMANCE GOALS OF SOFTWARE MAINTENANCE MANAGEMENT

The overall goals of a maintenance group can be summarized
as "keeping the system up and running" and "pleasing the users".
This section describes some key measures of the performance of a
maintenance organization which are listed as follows:

0 System availability and reliability

o User satisfaction

0 Timely responses to change requests and problem reports

0 Productivity improvement

It is recommended that, as a minimum, these elements be measured
when evaluating software maintenance performance goals.

11.1 System Availability And Reliability

Problem report frequency is a good measure of how well a
maintenance organization is doing. This involves counting the
problem reports that represent failure of the system to perform
as specified. It does not include change requests which
represent the user's desires for new capabilities or
enhancements. The amount of downtime that results from a
failure is an indicator of the severity of the problem. If the
frequency of problem reports is steadily decreasing, then the
maintenance organization is performing maintenance more
effectively.

11.2 User Satisfaction

Although difficult to evaluate objectively, user
satisfaction is the most important performance measure of a
maintenance organization. The user's satisfaction with the
maintenance organization is influenced, to a large extent, by an
effective user interface. In some cases, the users lack
in-depth knowledge of data processing. In other cases, the user
may want to get involved in the technical issues of maintenance.

A technique that is effective in assessing user
satisfaction is the use of periodic user surveys soliciting a
critique of the maintenance organization's performance. Review
of the results of this survey with the user and development of
corrective action plans can be effective in improving user
satisfaction.

- 52 -

11 . 3 Change Request /Problem Report Response Time

The time it takes to make a change to the system
significantly influences the attitude about the maintenance
organization. The attitude of upper level managers, as well as
users, is influenced by the timeliness of completing each change
request. Users want a response to their requests as soon as
possible, and the upper level managers will focus on the cost
factors involved in each alteration.

The change request and problem report forms can be used to
capture statistics about response time. These statistics can be
used to justify additional tools to increase productivity and to
identify bottlenecks in procedures.

11.4 Productivity

Very few maintenance organizations use productivity
measures, primarily because no standards or commonly accepted
measures exist. However, using some measure of productivity is
recommended because it aids in pinpointing areas where
productivity gains can be realized. Some measures that are
commonly used and that are relatively easy to compile include:

o number of problem reports corrected per time period;

o number of change requests completed per time period;

0 number of lines of code (entire inventory of applications)
maintained per maintenance personnel ; and

o number of lines of code modified or added per maintenance
personnel

.

These productivity measures can be evaluated on an
organization-wide basis or by application. Applications for
which very low productivity figures are recorded may be
candidates for redesign, documentation support, or support
tools

.

- 53 -

12 SUMMARY AND CONCLUSIONS

Software maintenance effort is impacted by tlie fact that a
large percentage of the current inventory of applications being
maintained was not designed to accommodate change. A
significant number of systems are poorly implemented and poorly
documented due to the lack of discipline, the lack of uniformity
in development approaches, and schedule and budget pressures.
Thus, the use of state-of-the-art development methodologies will
not guarantee a software system in which all future changes are
anticipated.

Our findings indicate that there is a need to:

0 adopt a software engineering approach for software
maintenance which takes into consideration software
problems, personnel involved, and user and management
constraints, (i.e. schedules, cost, and system capability);

0 develop management policies and procedures which incorporate
maintenance requirements. This implies establishing a
maintenance philosophy during the early stages of software
development , as well as a maintenance technology which
defines software maintenance requirements, activities,
techniques, and tools. The overriding objective of this
technology should be understandable, maintainable software
which is easy to revise and validate over the software life
cycle; and

0 adopt enforceable controls. Any clarification or
redefinition of maintenance may provide scant savings if not
accompanied by controls which can be made to work within the
organization. Such controls will enable improved error
tracking and also help to insure that software change
requests

:

-are within the scope of maintenance;
-do not adversly affect software performance;
-are incorporated using a modular approach;
-are adequately tested; and
-are properly documented.

It must be recognized that the problems faced in most
software maintenance environments are twofold: improving
maintainability and convincing management that the greatest gain
will be realized only when maintainability is engineered into
the software products. The goal of maintainability must be
established during the requirements, design, and development
stages and built into the software using standards, and proven
design and development techniques. It is also essential to
involve the managers, maintainers, and users during each of
these stages. The early introduction of maintenance concepts,

- 54 -

coupled with the use of more effective techniques for
maintenance, will lead to an integrated approach to software
maintenance over the lifecycle. The overall effect will be
increased maintainability and increased cost effectiveness of
the ADP organization in general. Therefore, maintainability
must be a goal of development

.

The following three tables provide general guidance on
practices that, when followed, will result in more maintainable
software. Table 12.1-1 provides a list of general practices
found to be effective for improving software maintainability.
Table 12.1-2 identifies factors and describes the activities
necessary to ensure that maintainability is engineered into the
software products, while Table 12.1-3 provides a checklist of
attributes that can be used as guidance to help programmers
improve the quality and maintainability of the software. This
guidance ranges from conceptual (anticipating the need to change
in design and implementation) , to incorporating state-of-the-art
technology (using modern programming practices), to managerial
(transition development tools to maintenance environment), to
practical (have maintainer be involved in development). If
these concepts are consistently enforced, the resultant software
product will be easier to understand, correct, modify, and
maintain

.

- 55 -

TABLE 12.1-1 IMPROVING THE MAINTAINABILITY OF SOFTWARE

0 Design and Implement for Maintainability/
Enhancement (Top down)

0 Use High. Order languages (4th Generation
languages if possible)

0 Use Report Generators, Data Base Management
Systems, System Utilities, Support Software

Use Modern Programming Practices/Techniques

n nnonTTiPTil". npsi tfn anrt Ttrinl PTtiPntati nn\J \^ KJLJAl^^ XX \J ^-J O _i_ tl XJ. UjXX\^ _L XL L yj _X \^ XI I XX \J \Jij \J XX

0 Trace Requirements to Implementation

;
' 0 Save Test Data

0 Use Error Checking Techniques

0 Design for Human Engineering

0 Move Development Tools to Maintenance
Environment

- 56 -

Table 12.1-2 MAINTENANCE CONSIDERATIONS DURING DEVELOPMENT

Phases

Requirements
Specification

Activity

o Identify maintainability as a
primary goal of development

.

o Identify maintenance Facility/
Resource requirements,

o Document requirements.

Design Phase Establish design standards and
conventions (maintainability
supporting standards.

Audit design for compliance with
standards

.

Document design.
Document data base design.
Trace requirements to design.

Coding Phase 0 Establish coding standards and
conventions (maintainability
supporting standards).

0 Audit code for compliance with
standards)

.

0 Trace design to code.
o Document code

.

0 Comment code

.

o Document a maintenance manual

.

0 Transition code and debug tools
to maintenance.

Test Phase I o
I 0
I

I 0

Document all errors

.

Assess maintainability during
error correction.

Maintain code and documentation
during test/error correction
activities

.

Establish test data base
Transfer test tools to
maintenance environment

- 57 -

TABLE 12.1-3 ATTRIBUTES OF MAINTAINABLE SOFTWARE [MCCA77]

Maintainability - the effort required to locate and fix an error
in operational program or the effort required
to modify an operational program (Flexibility)

Consistency - those attributes of software that provide
uniform design and implementation techniques
and notation.

Simplicity

Conciseness

those attributes of the software that provide
implementation of functions in the most under-
standable manner (usually avoidance of prac-
tices which increase complexity)

.

those attributes of the software that provide
for implementation of a function with a minimum
amount of code

.

Modularity - those attributes of the software that provide a
structure of highly independent modules.

Self-Descriptiveness - those attributes of the software that
provide explanation of the implementation of a
function.

Generality - those attributes of the software that provide
breadth to the functions performed.

Expandability - those attributes of the software that provide
for expansion of data storage requirements or
computational functions.

- 58 -

13 REFERENCES

[AFTE80] AFTEC/TEBC, "Software OTS'E Guidelines, Vol.
Ill: Software Maintainability Evaluator's Handbook."
NTIS ADA 104328, Apr. 1980.

[AFL077] Alford, M. , "A Requirements Engineering
Methodology for Real-Time Processing Requirements,"
IEEE Transactions Software Engineering, Vol 3,
1977.

[B0EH76] Boehm, B., "Software Engineering," IEEE
Transacticns CB Computers, Vol. C-25 , No
1976.

[CIRA71]

[COOK80]

[DER079]

[DONAS0]

[GA080]

[GA081a]

[GAOeib]

(IRAD), "A Study of Fundamental Factors
Underlying Software Maintenance Problems
Report" ESD-TR-72-121 , Dec. 1971.

12, Dec

Final

Cook, J. , "An Appraisal of Selected Cost/
Resource Estimation Models for Software Systems,"
NASA Z-582-81-1, Dec. 1980.

DeRoze, B. , Nyman, T. , "The Software Lifecycle -

A Management and Technological Challenge in the
Department of Defense," IEEE TraBsaCticss CB Scftvzare
EngineeriBg, Vol 4, 1979.

Donahoo, J. et al, "A Review of Software
Maintenance Technology," RADC-TR-80-13 , Feb, 1980

GAG, "Wider Use of Better Computer Software
Technology Can Improve Control and Reduce Costs,"
FGMSD-80-38, Apr. 1980.

GAG, "Government -Wide Guidelines and Management
Assistance Center Needed to Improve ADP Systems
Development," AFMD-81-20, Feb. 1981.

GAG, "Federal Agencies' Maintenance of Computer
Programs: Expensive and Undermanaged, " Report to
Congress AFMD-81-25, Feb. 1981.

- 59 -

[GELP79]

[GILB79]

[HALS77]

[HERNS 1]

[H0UG82]

[LIEN76]

[MART82]

[MARTS 3]

[MCCA76]

[MCCA77]

[MCCA83]

[MYER75]

[MYER77]

[PARIS2]

[PARI83]

Gelperin, D. , "Testing Maintainability," AQM
SIGSQFT Software Engineering SQtes, Vol. 4 /No,
Apr. 1979.

2,

Gilb, T. , "A Comment on 'The Definitions of
Maintainability'," ACM SIGSQFT S^ftsare Engineering
NQtes, Vol. 4, /No. 3, Jul. 1979.
Halstead, M. , Software Seience. Exoelier Press,
1977.

Herndon, M. , "Development of tlie Requirements
Management Methodology, " SAI Report LJF-S 1-0071 /OFS
OSS, Jan. 19S0.

Houghton, R. , "Software Development Tools," NBS
Special Pub 500-S8, Mar. 19S2.

Leintz, B. and Swanson, E.B., "Characteristics of
Application Software Maintenance," NTIS ADA 024085,
Dec. 1976.

Martin, R. , Osborne W. , "Guidance on Software
Maintenance," NBS Special Publications 500-106,
December 1983.

Martin, J., McClure , C. , SQfts/are Maintgnancej.
The Problem and Its Si^luti^^n, Prentice-Hall, Inc. , New
Jersey, 1983.

McCabe, T. , "Complexity Measure," Ttqq 2nd
International CsnferesQe fin Software Engineering,
1976.

McCall, J., et al, "Factors in Software Quality,"
RADC-TR-77-369, Nov. 1977.

McCall, J., Herndon, M. , "Software Maintenance
Survey," NBS Contract NBS2SBCA1650 , June 1983.

Myers, G. , Reliable Soft^^are Through Composite
Design, Petrocelli/Charter , 1975.

Myers, G. , Sfift^aze Eeliabilityj. Principles
and Practises, John Wiley & Sons, 1977.

Parikh, G. , Teehnigues Qi. Program and Systeffl
Maintenance, Winthrop Publisher, Inc., 1982.

Parkh, G. , Zvegintzov, N. , "Tutorial on Software
Maintenance," IEEE Computer Society, Catalog
EH0201-4, 1983.

No

- 60 -

[RADC82] RADC DACS Newsletter, June 1982.

[STAN77] Stanfield, JR., "Software Acquisition
Management Guidebook: Software Maintenance:" AD
A052040, Oct. 1977.

[SWAN76] Swanson, E.B., "The Dimensions of Maintenance,"
P£QQ SeQ^jnd Conference QS Sfift^-zare Engineering, 1976.

[TEIK77] Teichroew, D.
,
Hershey, E., "PSL/PSA: A

Computer-aided Teclinique for Structured Documentation
and Analysis of Information Processing Systems," IEEE
TranaQtiQns Qu ^Qft'^SiTQ. Engineering, vol 3, 1977.

[THIB81] Thibodeau, "An Evaluation of Software Cost
Estimation Models," RADC TR, Feb. 1981.

[WHIT77] Whitmore, D.C., "Computer Program Maintenance
One of the Software Acquisition Engineering Guidebook
Series," NTIS ADA083209, Dec. 1977.

- 61 -

NBS-n4A (REV. 2-8C

)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

PUBLICATION OR
REPORT NO.

NBS/SP-500/129

2. Performing Organ. Report No^ 3. Publication Date

October 1985

4. TITLE AND SUBTITLE

Computer Science and Technology:
Software Maintenance Management

5. AUTHOR(S)

James A. McCall, Mary A. Herndon, Wilma M. Osborne

6. PERFORMING ORGANIZATION (If joint or other tttan NBS. see /n struct/on s;

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
«(A:SmNfiY8M^fiKlXX80(^X

Gaithersburg, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State. ZiP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 85-600596

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bi bliography or literature survey, mention it here)

Software maintenance is a critical support function within most large organizations

today. In spite of its importance to the organization, software maintenance has been

ignored as a significant management concern and as a fertile area for technical

This report presents an overview of the various aspects of software main-

provides an indepth analysis of the associated problems, giving particular

the most pressing ones. It identifies tools, techniques, and procedures

reducing these problems. This report also provides detailed guidance for

managing software maintenance as a separate organizational entity. It also provides

assistance needed to develop and employ improved maintenance practices and procedures,

that result in reduced software costs and which help to insure that quality software

is developed for and by the Federal ADP community.

improvement,
tenance, and

attention to

which aid in

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

cost control measures; decision aids, lifecycle management plan; performance criteria
regression testing; software maintenance; software quality; software techniques; soft-
ware tools; test plans; software quality

13. AVAILABILITY

[~Xl Unlimited

I I

For Official Distribution. Do Not Release to NTIS

[x] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

65

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued m the

series: National Bureau of Standards Special Publication 500-

Namc

Company

Addresa

City State Zip Code

(Notification k»y N-S03)

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad
range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work f)erformed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FTPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

