
U.S. Department

of Commerce

National Bureau

of Standards

Computer Science
and Technology

NBS

PUBLICATIONS

NATL INST OF STAND & Jf
CH

Special Publication 500-127

Aiiiob ^^fiio.^orkshop on Analytic and

National Bureau of Standards

Library

JUL 31 1985

Simulation Modeling of

IEEE 802.4 Token Bus
Local Area Networks

he National Bureau of Standards' was established by an act of Congress on March 3, 1901. TheTM he

Jl Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Center for Materials

Science.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

TTie National Engineering Laboratory

Provides technology and technical services to the public cind private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data eind measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems

Engineering

The Center for Materials Science

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Center consists of the following Divisions:

Inorganic Materials

Fracture and Deformation^

Polymers
Metallurgy

Reactor Radiation

Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

•Some divisions within the center are located at Boulder, CO 80303.

'Located at Boulder, CO, with some elements at Gaithersburg, MD.

OF STANDARDS

Computer Science

NBS Special Publication 500-127

Workshop on Analytic and
Simulation Modeling of

IEEE 802.4 Token Bus
Local Area Networks

Held at

National Bureau of Standards

Gaithersburg, Maryland

April 29-30, 1985

Robert Rosenthal, Editor

Systems and Network Architecture Division

Center for Computer Systems Engineering

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE

and Technology aso

Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued June 1 985

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and phvate sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 85-600556

National Bureau of Standards Special Publication 500-127

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-127, 268 pages (June 1985)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1 985

For sale by the SuDerintendenI ol Documents, U S Government Printing Ottice, Washington. DC 20402

TABLE OF CONTENTS

Keynote - Robert Rosenthal
National Bureau of Standards 1

Sessicn I: Simulation Approaches
Chairperson, Dan Stokesberry, National Bureau of Standards 4

Performance Simulation of the IEEE Token Passing
Bus Protocol using SIMAN - J.R. Pimentel, GMI
Engineering and Management Institute 5

Discrete-Event Simulation of the IEEE 802.4 Token
Bus IAN Protocol - E. Nugent, Boeing Computer Services 35

Simulation of the IEEE 802.4 Token Passing Bus
Protocol using SIMSCRIPT - A.R.K. Sastry and
M.W, Atkinson, Rockwell International Science Center 52

Session II: Verification and Compliance Testing
Chairperson, K. H. ^4uralidhar, Industrial Technology Institute.. 61

Discrete Event Simulator for Token Bus Networks
O, Kremien, Motorola Semiconductor, Israel 62

Performability Modeling Tools
J.F, Meyer, Industrial Technology Institute 69

Token Passing Networks and Starvation Issues
A. Nakassis, National Bureau of Standards 102

Session III: Performance Issues
Chairperson, Karen Hsing, National Bureau of Standards 112

Performance Analysis of the 802.4 Token Bus Media
Access Control Protocol - J. Chen, Industrial Networking, Inc 113

Performance Issues of Token Bus LAN's - B.A. Loyer, Motorola 153

Simulation of a Token Bus Using a Static Logical Ring
M.E. Ulug and N.R. Shapiro, General Electric R&D Center 168

ili

Session IV: Network Management Issues
Chairperson, Gary Workman, General Motors 179

A Hierarchical Policy for Timer Assignments in

IEEE 802.4 Network - K.H. Muralidhar, Industrial Technology Institute 180

On the Stability of a Token Passing Network
A. Nakassis, National Bureau of Standards 203

IEEE 802.4 Token Bus Bnraulator

F, Sylvanus and T. Saydam, University of Delaware 217

Discussion Groups

Factory Automation
Moderator, G. Workman 229

Network Performance and Managenfvent

Moderator, D. StokesiDerry 235

Conpliance Testing
Moderator, K. H. Muralidhar 247

SimulaticMi

Moderator, J. Pimentel 250

; " v..

iv

Acknowledgement s

A workshop is only as useful at the participants make it.
Thanks are due to the people who cajne to work.

Allen-Bradley
Anatoly Moldovansky
747 Alpha Dr

.

Highland Hts., OH 44143
(216) 449-6700

Atomic Energy of Canada
Tony Capel
275 Slater St.
Ottawa K1A1E5
Canada
(613) 236-6444

Autotote LTD
Fred Sylvanus
100 Belleuue Rd.
Newark, DE 19711
(302) 737-4300

Bell Communications Research
George Change
6 Corporate PI.
Piscataway, NJ 08854
(201) 981-3879

Boeing Computer Services
Ed Nugent
M/S 9C-23
P.O. Box 24346
Seattle, WA 98124
(206) 575-5444

Comm Power
Stephen Dunford
26560 Agoura Rd. #101
Calabasas, CA 91302
(818) 880-5511

I

V

Contel Information Systems
Gerald Boxer
11781 Lee Jackson Highway
Fairfax, VA 22033
(703) 385-4300 ext. 122

Contel Information Systems
Peter Malpass
11781 Lee Jackson Highway
Fairfax, VA 22033
(703) 385-4300 ext. 124

Digital Equipment Corp.
Tom McGowan
146 Main St.
ML05-2/E50
Maynard, MA 01754-2571
(617) 493-2648

Foxboro Corp.
Ed Shaughnessy
Dept. 351
38 Neponset St

.

Foxboro, MA 02035

General Electric CRS'D
M.E. Ulug
Bldg. KWC Room 308B
P.O. Box 8
Schenectdy, NY 12301

General Motors Corp.
APMES

Kester Fong
Manufacturing Bldg. A/MD-39
30300 Mound Rd.
Warren, MI 48090-9040
(313) 492-1586

vi

General Motors Corp.
General Motors Tech. Center
A/MD-39

David Greenstein
30300 Mound Rd.
Warren, MI 48090-9040
(313) 492-1581

General Motors Corp.
APMES A/MD-39

Gary Workman
12 Mile ^ Mound Rd.
Warren, MI 48090
(313) 575-0632

GMI
Juan R. Pimentel
1700 W. Third Ave.
Funt, MI 48502
(313) 762-7992

Hewlett Packard
Glenn Talbott
800 Foothills Blvd.
Roseville, CA 95678
(916) 786-8000

Industrial Networking Inc . /Ungermann-Bass Inc.
Jade Chien
3990 Freedom Circle
Santa Clara, CA 95050
(408) 496-0969

Industrial Technology Institute
John F. Meyer
P.O. Boz 1485
Ann Arbor, MI 48106
(313) 763-0579

Industrial Technology Institute
K.H. Muralidhar
P.O. Boz 1485
Ann Arbor, MI 48106
(313) 763-0579

vii

Litton Amecom
Chuck Dawson
5115 Calvert Rd.
College Park, MD 20740
(301) 454-9865

Litton Amecom
Tim McEllibot
5115 Calvert Rd.
College Park, MD 20740
(301) 454-9705

Litton Amecom
Fred Kalmus
5115 Calvert Rd.
College Park, MD 20740
(301) 454-9340

Motorola Semiconductor
Product Sector
Bruce Loyer
3102 N. 56tli St.
Phoenix, AZ 85018
(602) 952-3454

Motorola Semiconductor Israel Ltd.
Orly Kremien
147 Blalik St.
Ramat-Gan 52523
Israel
(03) 7538258

National Bureau of Standards
Jeff Bader
Bldg. 225/B217
Gaithersburg, MD 20899
(301) 921-3516

National Bureau of Standards
Charles Hartmann
Bldg. 225/B217
Gaithersburg, MD 20899
(301) 921-3516

vlii

National Bureau of Standards
Karen Hsing
Bldg. 225/B217
Gaithersburg , MD 20899
(301) 921-3516

National Bureau of Standards
Anastase Nakassis
Bldg. 225/B217
Gaithersburg. MD 20899
(301) 921-3516

National Brueau of Standards
Steve Ritzman
Bldg. 225/B217
Gaithersburg, MD 20899
(301) 921-2601

National Bureau of Standards
Robert Rosenthal
Bldg. 225/B217
Gaithersburg, MD 20899
(301) 921-3516

National Bureau of Standards
Curtis Royster
Bldg. 225/B217
Gaithersburg, MD 20899
(301) 921-3516

National Bureau of Standards
Dan Stokesberry
Bldg. 225/B217
Gaithersburg, MD 20899
(301) 921-3516

National Bureau of Standards
Robert Toense
Bldg. 225/B217
Gaithersurg, MD 20899
(301) 921-3516

ix

Siemens AG
Dr. Detler Leisengang
Balanstr 73
8 Munich 80
West Germany
49-89-4144 2493

Syscon Corp.
Joseph P. Brazy
1000 Thomas Jefferson St., N.W
Washington, DC 20007
(202) 342-4000

Syscon Corp.
Charles Croft
1000 Thomas Jefferson St., N W
Suite 300
Washington, DC 20007
(202) 342-4546

Sytek Corp.
Joseph Rickert, Jr.
6500 Rock Spring Dr.
Suite 100
Bethesda, MD 20817
(301) 530-5100

Tektronix Corp.
Andy Luque
131 N.E. McCartney
Bend, OR 97771
(503) 923-4423

Western Digital
Heinz Jauch
2445 McCabe Way
Irvine, CA 92714
(714) 863-0102

Western Digital
Kelly McClellan
2445 McCabe Way
Irvien, CA 92714
(714) 863-0102 ext. 341

X

special thanks are due to Ms. Mary Lou Fahey whose secretarial talents
and local arrangement expertise made the workshop possible.

V^rkshop Chairman - Mr. George Change, Bell Ccannunications Research

Program Chairman - A. K. A. Sastry, Rockwell International

MBS Liaison - Robert Rosenthal, National Bureau of Standards

xi

Keynote

:

Robert Rosenthal
National Bureau of Standards

1

Robert Rosenthal,
Manager Local Area Networking
Institute for Computer Sciences and Teclinology
National Bureau of Standards
Gaithersburg , MD 20899

ANALYTIC AND SIMULATION MODELING OF
IEEE 802.4 TOKEN BUS

Token bus technology is anticipated for use by national and
international organizations seeking standard local area network
solutions for factory, laboratory and process control automation
applications. Several token passing technologies have been
described; but, only one emerging token bus standard, the IEEE
802.4 Token Bus, currently includes broadband facilities.

The demand for hig'hly reliable token bus networks that support
prioritized and deterministic access with robust error detection
and recovery has sparked enormous interest in the Federal
Government and in the private sector. The National Bureau of
Standards has joined forces with researchers from industry and
academia to study the behavior and characteristics of token bus
technology

.

Our approach is to organize a consortium of researchers including
guest workers, faculty appointments, co-op students and staff
members that regularly meet to develop experimental plans and
laboratory testbed facilities, to conduct experiments, to collect
and analyze data and to organize and sponsor workshops that
report experimental findings. One of our research objectives is
to develop predictive analysis techniques for IEEE 802.4
networks. Analytic and simulation modeling of these networks
help to build competence and confidence in this new technology.

Our Workshop goals are to encourage modeling of the IEEE 802.4
specifications. Revision F, an ISO Draft International Standard
or DIS, has several documented problems; so. Revision G is being
planned. Many of these documented problems have been discovered
using the models described in these proceedings. These
proceedings also make available additional information about the
behavior and performance characteristics of Token Bus. Our hope
is that these proceedings will impact Revision G of the IEEE
802.4 Standard as it makes its way to International Standard
status in ISO.

2

Our work in predicitive analysis of IEEE 802.4 Token Bus
technology is just beginning. Researchers are now planning
experiments for the NBS Token Bus Test Bed Facility. Empirical
data that is acquired, reduced, and analyzed at NBS will be
compared with predictions from these analytic and simulation
modeling tools. Use of these tools will lead to a better
understanding of token bus behavior, optimized parameter and
timer settings for large and small network configurations and
increased performance in factory, laboratory and process control
environments

.

3

Session I:

Simulation ^proaches

Chairperson: Dan Stokesberry
National Bureau of Standards

4

PERFORMANCE SIMULATION OF THE IEEE TOKEN BUS PROTOCOL

USING SIMAN

Juan R. Pimentel

Industrial Technology Institute

and

GMI Engineering & Management Institute

II

' ABSTRACT

j
The SIMAN simulation language is used to simulate the performance of the

i physical and data link layers of a local area network suitable for

manufacturing. The protocol standards specified by the IEEE project 802.4

has been chosen for the study. A detailed network queueing model is

developed and implemented using the process view approach provided by

SIMAN. Simulation results are shown in terms of average number of frames

awaiting transmission, average response time, and medium utilization versus

traffic intensity.

INTRODUCTION

The IEEE (token bus) protocols are computer communications protocols

suitable for industrial local area networks (LAN). The token bus protocols

are being developed by the IEEE projects 802.4 and 802.2, and are having a

large impact for manufacturing and process control networks. According to

the ISO nomenclature, the IEEE standards correspond to the lower two layers

of the OSI reference model (i.e. physical and data link layers). General

Motors (GM) has chosen the token bus protocol as part of a set of

specifications for a network to support manufacturing applications,

referred to as the "Manufacturing Automation Protocol" (MAP). The success

of MAP is evident from the interest of the GM divisions to use MAP, the

interest of the computer vendor community to provide products compatible

with MAP, and the interest of other companies to adopt MAP as a standard.

Local area networks for manufacturing applications are relatively new. From

a network user's viewpoint, the most important problems in designing and

installing industrial local area networks are: network topology design,

development of application programs, and network performance evaluation.

The network topology design problem consists in specifying the layout of

all network components (e.g. stations, splitters, headends, amplifiers,

gateways, bridges) for a specific installation. Techniques for network

topology design usually minimize network costs satisfying constraints on

throughput, response time, network expansion and others. Once a network is

in place and operational, programs must be developed to support their

intended application. For example, a program that does production

scheduling on several manufacturing cells must utilize the network to

obtain information from and send scheduling policies to the various cells

that integrate the manufacturing facility. Another issue of interest to a

network user is the actual operating characteristics (i.e. performance) of

the network. Because of cost considerations it is desirable to estimate

network performance before the network is installed or before a proposed

change is implemented.

This paper concentrates on the performance evaluation of the IEEE 802.4 and

802.2 protocols using simulation models. The simulation language to be used

is SIMAN which is an application language originally designed for the

6

simulation of manufacturing systems. SIMAN provides three approaches for

simulation: process, discrete event, and a mixed process - discrete event.

The network simulation presented in this paper is based on the process

approach.

Several performance simulation studies have been made for token bus

protocols. Rahimi and Jelatis (Rahimi, 1983) developed a detailed model

intended for protocol verification. They simulated the state transition

diagrams that characterize the protocols. However, they did not present

performance results useful to a network's user. Their model was implemented

using SIMPAS which is a set of PASCAL routines designed to support discrete

event simulation (Raymond, 1981). Chen (Chen, 1984) presented a discrete

event simulation and concentrated on performance issues such as fairness

and stability versus traffic intensity. The model presented considered only

one queue at the MAC sublayer and the model implementation was done in

PASCAL.. Dahmen et. al . (Dahmen et al
, 1984) compared the performance of

token bus and CSMA/CD type of access mechanisms for a "session oriented"

traffic. Their model also considered only one queue. The model

implementation was done using FORCASD which is a FORTRAN based simulation

package that supports simulation constructs derived from Petri-Nets, with

results shown in terms of response times versus traffic intensity. Sweeton

(Sweeton, 1983) also developed a comparison of token bus and CSMA/CD

protocols in terms of worst case percent of load carried and worst case

transaction time versus traffic intensity. The model used a simplified

transport protocol and two priority queues for the MAC sublayer.

Archambault (Archambault, 1984) developed a model that includes four

queues. He studied the effects of packet length, target rotation time and

number of stations on network utilization, rotation time, waiting time, and

7

queue lengths. Our approach uses an application language (SIMAN) instead of

a general purpose language such as PASCAL as the model implementation tool.

SIMAN

We use the "process orientation" approach provided by SIMAN. The process

orientation is based on constructing a model by depicting the functional

operations of the systems as a block diagram (Pedgen, 1982). The block

diagram is a linear top down sequence of blocks which represent specific

process functions such as time delays and queues. Objects within the system

that engage in activities are called entities. For our model, the data

frames (i.e. the protocol data units at the LLC sublayer) are treated as

entities. Two other terms useful in a SIMAN simulation are variables and

attributes. Variables are the characteristics of the system which are

global in nature and are not related to a specific entity. The number of

frames waiting at the various queues is an example of a SIMAN variable.

Attributes refer to characteristics of a specific entity. For example, the

frame length is an attribute of a frame entity.

SIMAN is implemented in FORTRAN for transportability reasons. Hence, the

SIMAN interface to user written routines is very simple. The interface is

helpful for the simulation of events or blocks that SIMAN cannot support

directly but could be easily coded separately as a FORTRAN routine. The

advantage provided by SIMAN is that all simulation related activities (such

as keeping track of simulated time) are handled automatically. Thus the

analyst can concentrate on constructing a simulation model as opposed to

designing a program that implements this model.

8

SIMAN does not provide all the flexibility required to handle the

simulation of a complex system such as the IEEE protocols. There are two

alternatives for the solution of this problem: a) to use a combined process

and discrete event approach and b) to augment the process approach with

user written FORTRAN routines.

The process approach of SIMAN handles events effectively. However, it lacks

flexibility to handle complex mechanisms encountered in a token bus model

such as the selection of queues and the delay contributed by many different

sources. Consequently, the second alternative was chosen. Complex queue

selection rules are implemented using the FORTRAN UR function which returns

an integer indicating the queue number selected. The SIMAN statement

QPICK:UR:Q1 ,Q2, . . .
; selects the URth queue in the indicated order. Involved

delay calculations are best implemented using the UF function. The

statement DELAY:UF; delays entities arriving to this block by the quantity

DF.

SIMULATION METHODOLOGY

Performance simulation techniques in computer networks are use/ul for

protocol design, protocol verification, and network design. Protocol design

consists in developing specific algorithms (e.g. protocols) for the

information exchange at the same layer of two communicating entities. By

simulating the performance of the algorithm one can suggest more appropiate

protocols for the particular network. Protocol verification consists in

exercising a specific protocol implementation to insure that it conforms

according to the specification. Network design consists in specifying the

layout of all network components (e.g. stations, splitters, taps, headends.

9

amplifiers, gateways, and bridges) and all other network parameters (speed,

timers, buffers, and priorities) for a specific application. The

corresponding model for network design must be concerned with network user

requirements. Simulation models for protocol design and protocol

verification are more detailed than models for network topology design.

This is because protocol design and protocol verification simulation models

need to capture detailed mechanisms and interactions (e.g. state transition

diagrams) that characterize the protocol.

Whereas models for protocol design and protocol verification take an

internal view of the protocols, models for network design take an external

view, of the protocol. Network design models need only to capture those

mechanisms and interactions that are meaninful to a network user (e.g.

response time). Thus models for network design are less detailed and

consider a different set of variables and performance measures than models

for protocol design and verification. However, models for network design

must consider all OSI layers as well as the application process. In

contrast, models for protocol design and verification typically consider

only the specific layer for the intended protocol. The above discussion

suggests that simulation models for network design tend to be a large

conglomerate of somewhat simple and small modules. The performance

simulation model presented next is useful for network design. SIMAN is an

effective simulation language for network design applications.

THE SIMULATION MODEL

A queueing model is a mathematical model used to represent a physical

system in which there is contention for resources. The evolution of the

10

system over time is done by using probability functions. To fully describe

a queueing model it is necessary to describe the following [LAVE83]:

i) Customer arrival

ii) Service demand for each customer

iii) Service rate of each server

iv) Sequence of service centers visited by each customer

v) Order in which customers in each service center are served

When modeling the lower two layers of the TEEE 802 standard, customers are

the frames to be transmitted over the communication channel. The server is

one channel of a broadband coaxial cable. A service center is composed of

one queue and the shared resource. The access control machine (ACM)

determines which frame should be transmitted next. The customer arrival is

characterized by a Poisson process with arrival rate A . The service demand

is the amount of service required by a frame at the MAC - physical layer

interface given in bits (i.e. frame length). The server rate is the

speed at which the physical layer can send data into the medium (i.e. data

rate). The service time per frame is defined as the ratio of the expected

value of the service demand and the service rate.

Service time = E[S]/>p

The sequence of service centers visited is unique and simple since there is

only one server. The sequence would be different if other communication

model layers are taken into account in the simulation model because they

would introduce other servers, (e.g. the session layer may require a

service to be provided by a CPU which acts as another server).

11

The order in which the frames are served is detailed in the TEEE 802.4

specification (IEEE, 1984). The following is a summary of the algorithm

used to determine which frame will be selected next for service. Additional

details can be found in the above reference. Each station maintains four

queues at the medium access control (MAC) sublayer. Let q(i), q(i-l),

q(i-2), q(i-3) represent the four queues, where 4 ^ i N and N is the

total number of queues in the network. There is a priority for the order of

service of the queues with q(i) having the highest priority, and q(i-3)

having the least priority. Associated with each queue there are four timers

THT, TRT4, TRT2, TRTO for q(i), q(l-l), q(i-2), q(i-3) respectively. THT is

the high priority token hold timer, TRT4, TRT2 , and TRTO are the target

rotation timers for access classes 4, 2, and 0 respectively. In addition, a

variable TCT which represents the last token circulation time is also

needed for the selection algorithm. The timers are used to select one queue

with a priority scheme described next. First, q(i) is examined and allowed

to send frames for as long as THT. The next queue to be examined is q(i-l)

which could send messages as long as TRT4 is greater than TCT. Likewise,

q(i-2) is examined next and could send frames as long as TRT2 is greater

than TCT. Finally, q(i-3) is examined and allowed to send messages as long

as TRTO is greater than TCT. According to the IEEE specification the token

is passed from station to station. Our model assumes that the token is

passed from queue to queue which is compatible with the protocol

speci f ication

.

The model assumptions are detailed below.

Physical layer

12

- The network layout corresponds to a broadband, single cable system for a

facility with dimensions less than 1000 feet (see Fig. 1).

- Data rate = 10 Mbps.

- cable propagation delay = L/(0.75c); L is the cable length and c is the

speed of 1 ight.

- Head end delay = 7//sec.

- Transmitter modem delay = O.S^sec.

- Receiver modem delay = 3^sec.

MAC sublayer

- Four queues for four classes of service are provided.

- The length of the preamble is 32 bits.

- Source and destination addresses have a length of six bytes.

- It is assumed that the network operates with no token maintenance

functions such as addition of stations to the logical ring, deletion

of stations, multiple tokens, rejected tokens, failed station or

receiver, and lost tokens.

13

LLC sublayer

- This sublayer provides class I type operation only. Class I does

not require acknowl edments nor flow control or error recovery. In

addition, it is assumed that the only cormiand used is UI (unnumbered

information)

.

- Frames arrive to the LLC sublayer following a Poisson process.

The nomenclature introduced by Sauer et. al. (Sauer et. al, 1984) is used

to represent the model. Figure 2 depicts the queueing model suitable for

simulating the token transfer mechanism as described above. The switch time

Tn is defined in figure 3 and corresponds to the time from which the token

is received by any station until the token is received by the next station

in the logical ring.

The terms described next are with reference to figure 3. Queueing delay is

the elapsed time from when the frame arrives to when the token is received

by the present station. Station delay is the elapsed time from when the

token is received by the present station to when the station starts sending

the message. Ttp is the transmission path delay and depends solely on the

distance between a source and a destination station (going through the

headend). Tmess is the time taken to send a frame and depends only on the

total number of bits in the frame (data plus overhead). Ttf is the token

frame delay which is equal to Tmess when only control (overhead) bits are

transmitted. Trw is the delay involved in waiting for the duration of a

response window. The definitions of the other terms are self explanatory

from figure 3. Stations do not send solicit successor frames every time

14

they get the token. The parameter intersol ic it_count determines how often a

station shoud send solicit successor frames. The model considers this by

normalizing the elapsed time from when a solicit successor frame is sent to

when the token is received by the next station.

15

MODEL IMPLEMENTATION

The model in figure 2 has been implemented in SIMAN. The process view for

simulation provided by SIMAN treats an entity (frame) as it goes through

the following stages: frame generation, queueing, token seizing, delay, and

frame release.

Frame arrivals are implemented by the SIMAN statement

CREATE:EX(1 ,2) :MARK(20) ; . This statement creates entities with interarrival

times given by an exponential distribution whose parameters are in

parameter set number 1, with stream number 2, and assigns attribute number

20 as the arrival time of the entity. The arrived frames wait on queues for

the token with the statement QUEUE,!; which queues frames arriving to the

statement block in file number 1. Frames can attempt to access the token by

means of the statement SEIZErTOKEN; . If the resource is busy (i.e. another

station has the token) the frame is forced to wait in its corresponding

queue. The service rate of the server is coded in a user function UF as

OELAYrUF; . The function UF calculates the delay of a frame from the time

the token is received by the highest priority queue of a station until the

token is received by the highest priority queue of the next station in the

logical ring. The delay UF is a function of the message length, data rate,

and the various delay introduced by the different hardware elements of the

network (e.g. modem and headend delays). The statement OPICK: UR:Q1 ,Q2,Q3;

implements the order in which the different queues are served. UR is a user

rule coded as a separate FORTRAN function. Allowing the user to define its

own rule is advantageous since SIMAN does not have the capability of having

a complicated rule for serving customers as the one specified by the 802.4

protocol. The function UR contains all the logic necessary to handle the

priority mechanisms for the four queues discussed earlier. The statement

16

RELEASEiTOKEN; frees the server. The statement TALLY: A(l), INT (20): DISPOSE

;

records statistics for variable INT in file 20, corresponding to frames

with attribute A{1). The block modifier DISPOSE causes the departing frames

to be destroyed.

Channel utilization is obtained using the DSTAT element of the experimental

frame. For example, DSTAT: 1 ,NR(2)
,UTIL; causes some statistics of the

number of busy units of resource 2 be recorded using the label UTIL. The

FILTER element of SIMAN is u^ed to generate batches for output analysis.

Finally, the INTERVALS element is used to generate confidence intervals on

the observations generated by FILTER.

Some statistics (average, standard deviation, minimum and maximum values)

are readily available from the SIMAN program for the following variables:

number of frames awaiting transmission per queue, the response time per

queue (see figure 3) and channel utilization. The network performance is

shown as a series of graphs of the average number of frames awaiting

transmission, the average response time and channel utilization versus

traffic intensity. Traffic intensity is given by:

P = A
V

where, /\ is the overall network frame interarrival rate, S is the message

length and \) is the medium signalling data rate.

17

RESULTS

Several experiments were conducted using the model reported here. The

method of batch means available in the SIMAN output processor is used to

obtain 95% confidence intervals. Typically, the number of batches truncated

at the beginning of the simulation varies from 1 to 6 and the number of

batches kept varies from 5 to 10. Typically, a batch contains results for 6

seconds of simulated time. For all experiments, frames arrive according to

a Poisson process. Even though the simulator can be configured easily to

include a variable number of stations, all results presented here

corresponds to four stations. Station delay is assumed to be 100

microseconds.

Fig. 4 depicts the response time for the different access classes. The

number in parenthesis are the target rotation timer values for the

different access classes in units of 10 microseconds (i.e. a value of 500

represents 5 milliseconds). Timer values shown correspond to typical values

if one wishes to use the access classes in a manner that decreases

performance as one utilizes lower priority classes for message

transmission. Fig. 5 shows the effect of increasing the timer value for

access class 4 to 2000. The effect is that as one increases the timer value

for access 4, while maintaining the other timer values constant, access

class 4 behaves as the highest priority access class (class 6). This effect

is also true for priority classes 2 and 0. The effect of 3 sets of timers

(see table I) on response time is depicted in Fig. 6. Response time for

class 6 increases in a similar manner if any of the timers for classes 4,2,

or 0 increase while the other timer values are held constant.

18

Channel utilization and information utilization (data bits only) are shown

in Figs. 7 and 8 for timer set 1. As depicted in Fig. 9, information

utilization is relatively insensitive to changes in timer values for access

classes 4,2, or 0. Queue lengths shown in Figs. 10 and 11 correlate with

results for response times shown in Figs. 4 and 5 for the same parameter

values. Sensitivity of changes of timer values on queue length is shown on

Figs. 12 and 13.

ACKNOWLEDEMENTS

The author wishes to thank P. Dougherty for his efforts in programming and

running the experiments and to K.H. Mural idhar for helpful discussions.

TABLE I

Timer rotation values in units of 10 microseconds

THT TRT4 TRT2 TRTO

Timer set 1 500 600 700 800

Timer set 2 500 2000 700 800

Timer set 3 500 600 700 2000

REFERENCES

Bryant, R. M. , "SIMPAS 5.0 User Manual," University of Wisconsin-Madison,

Computer Sciences Technical Report No. 456, Nov. 1981.

19

Chien J. Y., "Performance analysis of the 802.4 token bus media access

control protocol,", Factory Floor Communications Workshop, GM technical

center, sept. 1984.

Dahmen N., Killat U., and Stecher R., "Performance analysis of token bus

and CSMA/CD protocols derived from FORCASD simulation runs," Proc. of the

2nd. Int. Symp, on the performance of computer communication systems,

Zurich, March, 1984.

IEEE PROJECT 802.4, "Token-Passing Bus Access Method and Physical Layer

Specifications," Draft F, July 1984.

Lavenberg, S.S., Editor, COMPUTER PERFORMANCE MODELING HANDBOOK, Academic

Press, New York, 1983.

MAP task force, "Manufacturing Automation Protocol," General Motors

technical center, Warren, Michigan, April, 1984.

Pedgen C. D., "INTRODUCTION TO SIMAN," Systems Modeling Corporation, State

College, Pennsylvania, 1982.

Rahimi S. K., and Jelatis 6. D., "Simulation Modeling of IEEE 802 token bus

medium access control protocol," Proc. of the workshop on performance and

evaluation of local area networks, pp. 127-154, march, 1983.

Sauer C. H. , MacNair E. A., and Kurose J. F., "Queueing Network Simulations

of Computer Communication," IEEE Journal on selected areas in

20

communications, Vol. 2, pp. 203-219, Jan. 1984.

Sweeton 0. C, "Simulation results for factory floor networks," Eleventh

International Purdue Workshop on industrial computer systems, Lafayette,

Indiana, Oct. 1983.

21

(ZD

HERO END

3 3 3

/

CD

Splitter

/
Coupler

3
3

3

/
Station

Figure 1. Network layout for a smell broadband single cable systenri

22

Present Station

Figure 2. Queueing model for the physical and data link

layers of the token bus protocol.

23

End frome
transmission

Slort frame

transmission

station

'm»ss

Token passed

to next queue

Solicit successor

frame sent

Frame Token received

arrival Dy present queue
Send solicit

successor frame

n

response time

T
Time

Token received

by next queue

Figure 3. Timing relationships for the queueing model

24

Response Tirfie in Access Classes

4 Stations, Frarne Size = 1024 octets

PestDonse time (microsecj

0 1 i : \ 1

.0 0.2 0.4 0.6 O.S 1.

Fig. 4 Normal iz eel Traffic Intensity

25

Response Time m Access Classes with TRT4 changed

4 Stations, Frame Size = 1024 Octets

Response tirne (rnicrusecl CI S (

1(3000

.0 0.2 0.4 0.5 0.8 1.0

Fig. 5 Normalized Traffic Intensity

26

Affect of Timer Value Changes on Response Time in Class 6

4 Stations, Frame Size = 1024

Response time (microsec) Timer Set 1

2000

1700

1300

Timer Set 2

Timer Set 3

0.2 0-4 0.6 0.1 1.0

Fig. 6 Normalized Traffic Intensity

27

Information and Channel Utilization

4 Stations. Frame Size = 1024 Octets

itiliiation

1.0

0.8

0.6

0.4

0.2

/ /
/

EI

Inform. Jtil

Channel Util

.0 1 .1 o 1.0

Fig. 7 Normalized Traffic Intensity

28

Affect of Frarne Size on Information Utilization

4 Stations

Information Utilization 512 Octet

1024 Octets

.0 u .4 1.0

Fig. 8 Normalized Traffic Intensity

29

Affect of Timer Values on Information Utilization

4 Stations. Frame Size = 1024 Octets

Information Utilization Timer Set 1

Timer Set 2

Timer Set 3

.0 0.^ 0.4 0.6 0.8 1.0

Fig. 9 Normalized Traffic Intensity

30

Queue Lenqth in Access Classes

4 Stations, Frame Size = 1024 Octets

A\.'erage queue length CI 6 (500

2.0

1.5

1.0

0.5

CI 4 (600)

CI 2 (700)

CI 0 (800

n 2 0.4 0.6 (j. 1.0

Fig. 10 Normalized Traffic Intensity

31

Queue Length m Access Classes with TRT4 cheiiged

4 Stations, Frarne Size = 1024 Octets

A-^-'erage queue length CI 6 (500

CI 4 (2000)

CI 2 (700)

CI 0 (800)

.0 0. z 0.4 0.6 1.0

Fig.n Normalized Traffic Intensity

32

Affect of Timer Values on Queue Length in Class 6

4 Stations, Frame Size = 1024 Octets

Average queue length

0.08

0.06

0.04

0.02

Timer Set 1

Timer Set 2

Timer Set 3

.0 o.z 0.4 0.6 0.8 1.0

Fig. 12 Normalized Traffic Intensity

33

Affect of Timer Values on Queue Length in Class 0

4 Stations, Frarne Size = 1024 Octets

Average queue length

2.0

1.5

1.0

0.5

.0

Timer Set 1

f

1^
/

'

Timer Set 2

Timer Set 3

0.2 0.4 0.6 0.8 1.0

Fig. 13 Normalized Traffic Intensity

34

DISCRETE EVENT SIMULATION OF THE IEEE 802.4 TOKEN BUS LAN PROTOCOL

A STRUCTURED ANALYSIS APPROACH

Edward R. Nugent
Boeing Computer Services

Engineering Technology Applications Division

April, 1985

35

Abstract

Boeing Computer Services is developing a discrete event simulation of
the IEEE 802.4 Token Bus Media Access Control protocol. NBS will use
the simulation model as part of their token bus research project. This
paper describes the BCS simulation approach. Topics include project
background, objectives and the simulation methodology used.

Background

The Boeing Company is dedicated to the integration of multi-vendor
equipment to solve its manufacturing and office automation requirements.
The standardization of communication protocols for these various
components is an area of vital importance to our company, and Boeing
strongly supports General Motors' Manufacturing Automation Protocol
(MAP) as a very positive step in this standardization process. In fact,
to complement the MAP activity, Boeing has initiated the development of
Technical/Office Protocols (TOP) project, which defines the suite of
standard protocols necessary to support the office automation and
Engineering/Scientific computing environment.

The National Bureau of Standards (NBS) is managing a cooperative
research project aimed at understanding and evaluating the behavior of
local area networks that conform to the IEEE 802.4 standard. This is

the Media Access Control (MAC) method called for by the MAP
specification (GM84). The NBS Institute for Computer Sciences and
Technology is leading this research project by establishing a Research
Associate Program, which provides a mechanism for industry to jointly
participate with government in research projects. The goals of the NBS
effort are to enhance the understanding and competence in token bus

technology, to make the cooperative research results available to the
voluntary standards arena, and to issue Federal Information Processing
Standards and Guidelines for token bus local area networks. The vehicle
NBS will employ to accomplish its objectives is the establishment of a

performance testbed laboratory.

Boeing's role in this research effort is to provide the predictive
analysis tools (discrete event simulation) needed by the research group
in order to effectively use the NBS performance testbed. This

laboratory is currently under construction at the Gaithersburg, Maryland
campus.

The NBS Local Area Network group presently has a preliminary discrete
event model (NBS84) and some excellent analytical models (NAK85a)

(NAK85b) which were developed in house. Boeing's primary objective is

to build on this extensive modeling base to develop additional model (s)

that are tailored specifically to the research of token bus performance
on the NBS testbed facility.

The approach taken has been to design and implement a "virtual" testbed

(e.g. a simulation tool to model hypothetical local area network

36

environments). This will allow economical testing of general
performance issues, in order to direct the final experimentation on the
"real world" testbed. The virtual testbed will also perform experiments
outside the scope of the NBS lab (i.e. very large networks). This
parallel testbed concept will increase the researchers confidence in the
statistical inferences made from analysis of real data, as well as add
some measure of validity to the model's ability to predict IEEE 802.4
protocol performance.

The virtual testbed will be a complete simulation system, which will

include a DBMS, graphical display capability and the simulation kernel.

Finding the Proper World View for MAC Simulation

The following section describes a methodology for building MAC protocol

research models. Although the discussion will be limited to IEEE 802.4,

we believe this methodology has widespread applicability to model

building in general, especially when the environment includes

specialists working as a project team.

Classical software development methodologies do not work well when the

objective is the simulation of a system. This is because model

development naturally tends toward the scientific method.

Scientific methodology can be described in the following 6 steps

(GRAY80), which are compared to their model building counterparts in

Figure 1.

STEP SCIENTIFIC METHOD MODELING REQUIREMENT

1 Observe System Same

2 Formulate Hypothesis Develop Model

3 Make Predictions based Use Model to Predict
on Hypothesis System Behavior

4 Compare Predicted Results Validate Model (compare to

to Observed Results real system if possible)

5 Change Hypothesis if Modify Model if Necessary
Differences Exist

6 Repeat Step 3 and on Same

Figure 1

37

As seen by the loop at step 6 this is an iterative methodology, where
the desired system is fixed (the system to be modeled) and the software
is developed by finding the best representation of that system. This
model then determines the needed inputs to the software and the types of
outputs available from it.

This approach is diametrically opposed to classical software development
which prescribes the definition of system outputs as one of the first
steps to be taken. Why is this not the case in simulation software
development? The answer lies in the nature of modeling itself. It is

often possible to build models which are good predictors of some system
attributes and poor predictors of others. For example, a model may be a

good predictor of token rotation time and a poor predictor of maximum
delay encountered by a frame to be transmitted from access class 6.

Along these same lines, there is no guarantee that if outputs were
possible to define before model development, that those outputs would be

a complete and adequate description of that system. Certainly this does
not preclude the simulation analyst from having a knowledge of what
information is desired from the simulated system. It does mean,
however, that the exact form of that data may not be known until the
design process is complete.

This leads to difficulty in managing simulation projects where teams of

researchers are working together to integrate database and data
management with simulation in a complete simulation system environment.
What is required is a formal but flexible methodology, that promotes
communication among the research team. A structured methodology based
on data flow diagrams is proposed as the tool to solve this requirement.
Not only does a structured technique offer the change mechanism needed
in model iterations, but it also provides the formal documentation
required by classical software methodologies.

A Stuctured System Approach

The approach taken has been tailored from Dickenson's methodology using
structured techniques (DICK81). The content of the methodology is

partitioned into the following components:

1. Data Flow Diagrams (DFD), which describe the system and the

model in a mostly graphical form and shows the relationships
of processes and data movement between processes without regard
to time sequencing.

2. Data Dictionary, which defines all data used in the method-
ology, including aliases for data used in multiple processes.

3. Process Descriptions, which define each process in detail.

At the lowest level this becomes the simulation pseudocode.

The methodology calls for a specific structure to the ordering of the

38

DFDs. This is a hierarchical structure, with each descending level
offering a greater level of detail. The general form of this ordering
is shown in figure 2.

The methodology calls for "explicit iterations", which means that no
level is fixed in content until the end of the project. This is a major
advantage to modeling projects that require cycling to achieve the
desired result.

Application to Token Bus Simulation

The following section describes the application of this methodology to
the development of an IEEE 802.4 Token Bus Simulation. The diagrams
that are used to illustrate this section are excerpts from the full
DFDs, data dictionary and process descriptions. The sections chosen
show how this technique can be used to start from a high level view of
the problem and work down to a specific simulation process.

The methodology begins with the development of the context diagram.
Figure 3 shows the context diagram for a Token Bus Simulation system.
It provides a very general view of the expected outside interaction with
the system. The context diagram in conjunction with the level 0 diagram
(figure 4) and their associated data dictionary and process descriptions
define the requirements for the IEEE 802.4 simulation.

These diagrams were developed after considerable time was spent learning
the needs of the NBS token bus researchers and understanding the IEEE

802.4 specification. Although the context diagram is not expected to

change, the level 0 diagram is a candidate for change based on
definition of additional requirements to the basic system.

The level 1 diagrams are now developed in an activity analogous to
preliminary design. Figure 5 shows the high level view of the
simulation process, which was identified as process number 5 on Diagram
0. At this level the basic simulation components are identified and

described. The level 1 diagrams are more susceptible to change than the

level 0 diagram during the iterative process, although major changes are
not anticipated here.

This process sets the stage for the detailed design of the system. The
detail design is developed using the level 2 diagrams as a working tool.

At this level the full power of the methodology becomes apparent.

The higher layer diagrams (Context through Level 1) document the "what

are we modeling?" aspect of the simulation process. In other words,

they record our observations of the system. Level 2 diagrams, on the

other hand, assist in and document model formulation. This will answer

the question "how are we going to model i t?" (STREI81)

.

Figure 6 shows the level 2 diagram for the process of transmitting a

message on the physical media. This process was identified in Diagram 5

39

Level Relationship Definition

Context Context Piaqram
I

Ident-Jfy the system
boundries

Level 0

Level 1

Diagram 0

Diagram 1 Diagram n

System Overview

High level view of

system processes

Level 2 Diagram 1.1.. Diagram l.k Diagram n.l.. Diagram n.k Working level view
of system details.

DFD Hierarchy

Figure 2

40

802.4
Research

Events

User Data

System
Support

1 A

Confirm

Test Data

Real Data

LANM

Implemen-
tor

Summary

(a)

Context Level

Figure 3

(a) Context Diagram

41

Test Data - all data required to set up the simulation program to run
experiments on 802.4 protocol performance. Includes
simulation control data, station management data,

" configuration data, experimental test parameters and display
control data.

(b)

Model Protocol - provide a discrete event simulation system that will predict
performance of an IEEE 802.4 network. Include capability to
manage, store and display data for multiple experiments.

(c)

Context Level

Figure 3

(b) Sample Data Definition

(c) Process Description

42

Setup

Logic
Structure
Model
Data

Results

Storage
Structure
Model
Data

User
Data
Files

KEY

Data
Originator
/Terminator

Data
Store Data

Flow

(a)

Level 0

Figure 4

(a) Partial Diagram 0

43

All data required to initialize the model to perform a single 802.4
simulation. See level 1 and 2 diagrams for complete list of data
elements included in this data flow.

(b)

Perform discrete event simulation of IEEE 802.4 protocol
performance based on setup data. Provide results to data
manipulation service in form of event listing or summary
statistics.

(c)

Level 0

Figure 4

(b) Sample Data Definition

(c) Sample Process Description

44

(a)

Level 1

Figure 5

(a) Partial Diagram 5

45

Send Message- All data required to transmit a frame on the media. Includes
preamble length, frame length, SA, DA, and FC.

(b)

Physical

Transmission- Send a message from the station transmitting to the head end
and return to all stations on the forward channel. This process
will identify those frames that collide during contention
processing and will handle the operation of the following
boolean variables; bus quiet, Rx_Protocol_Frame, Rx Data Frame
and Noise Burst.

(c)

Level 1

Figure 5

(b) Sample Data Definition
(c) Sample Process Description

46

MACM

Start Time

Length
Frame Delimiters

Collision

Delimiters

KEY

Data
Originator
^Terminator

Data
Store Data

Flow

(a)

Level 2

Figure 6

(a) Partial Diagram 5.5

47

Frame Delimiters- SD, ED, and first preamble bit.

Collision

Delimiters- SD and abort sequence

(b)

Collision

Identification- Event 1: More than 1 frame or noise burst arrives at the head
end.

Action 1 : Send abort to all stations and intercept incoming data .

Replace this with pseudo-silence until a valid SD is

heard.

Event 2: SD is recieved at the head end.
Action 2: If no other signals at current time in the head end,

send the SD to stations. This will set the bus_quiet
indicator to false.

(c)

Level 2

Figure 6

(b) Sample Data Definition

(c) Sample Process Description

48

(figure 5). At level 2 we break the process down to the simulation
components themselves. At this point the type of simulation (i.e.
discrete, continuous) need not be identified. The process descriptions
at this level identify the events, processes and functions of the real
world system judged to be critical to the system by the token bus
researchers. These process descriptions and associated data flows and
data dictionary become the documented detail design and provide the
pseudocode for the construction of the simulation program.

Special Simulation Considerations

Validation of the simulation model is greatly eased by the use of the

level 2 diagrams. Validation of a model is a check to ensure that the
model formulated is a true representation of the system being simulated.

The level 2 work provides a complete, clear, concise and non-redundant
method of communication between the researcher validating the model and

the simulation analyst building the model. The validation consists of

the determination that all possible critical aspects of the system have

been identified. In this project additional validation/verification
will be accomplished through comparison to the testbed facility and

other discrete event models. Paper validation by the above process will

precede run validation.

In classical software development programs, choice of the computing
environment is made early in the process. Boeing Computer Services has

a wide range of simulation software available for use. The choice
depends on the identification of the best "world view" for the

simulation project. Different systems are best viewed from one of

several "world views". The general classifications of these views are:

1. Event Orientation: the system is viewed as a series of

discrete events that trigger changes in

the state of the system and schedule
subsequent events.

2. Process Orientation: the system is viewed as a set of

discrete events that trigger some

standard process execution that will

change the state of the system.

3. Continuous Orientation: the system is viewed as a series of

continuous functions that cause smooth

changes to the state of the system.

4. Hybrid: some combination of the above

orientations.

Classification of the system can be made by examining the level 2

process descriptions. This will point us in the direction of the

simulation language best suited for MAC modeling. The ability of the

language chosen to interact with other software directs us toward the

49

support software required to complete the total simulation system.

Coding, Verification, Testing and Documentation

Final simulation coding, verification and testing of the simulation
software also proceed from the level 2 process descriptions.
Verification in this sense is assurance that the simulation code
embodies all the critical items detailed in the process flows. The test
plan is developed so that all events shown will occur during one of the
simulation test runs.

It has been mentioned throughout this paper that this methodology will
provide documentation required of classical software development. Two
documents, the Systems manual and the Users manual do not come directly
from the structured techniques described. The production of these
documents is, however, made much easier with the documentation provided
by the methodology.

Finally, it should be noted that the development of the system does not
require the completion of a given level before beginning the next.

Actually, it would be surprising if this were to happen. As we have
seen, the methodology allows detail design to influence preliminary
design, due to its ability to iterate through the design process. This
provides the flexibility required during simulation development. The
documentation provides the communication tool for the research team to

stay on top of these changes and work in harmony.

Summary

A methodology for developing a Token Bus Simulation of IEEE 802.4 has

been described. This structured analysis technique is more appropriate
than classical software development methodologies because it is:

1. A complete, clear, concise and non-redundant method of

describing an IEEE 802.4 LAN simulation system.

2. A dialogue for communication between the simulation analyst
and other token bus researchers.

3. A working tool

.

4. Current throughout the course of the project.

5. A method that produces required documentation as a natural

product of analysis.

Acknowledgement

I would like to thank Dan Streiffert for his valuable contribution as

the originator of this simulation methodology at The Boeing Company. I

would also like to thank Bob Slate, Paul McElwain, Dave Wolf and Mark

Jones for their thoughtful assistance in applying this metholdology to

the simulation of IEEE 802.4 protocol performance.

50

References

(DICK81) Dickenson, B.
, "Developing Structured Systems" , New York:

Yourdon Inc., 1981.
(GM84} General Motors "Manufacturing Automation Protocol", Warren

MI: 1984.
(IEEE84) Institute for Electrical and Electronic Engineers. IEEE

Standard 802.4, Draft F, July, 1984.
(GRAY80) Graybeal , W.J. , Pooch, U.W. , "Simulation: Principles and

Methods", Cambridge: Winthrop Publishers Inc., 1980.
(NAK85a) Nakassis,A."On the Stability of a Token Passing Network",

Proceedings of the Workshop on Analytical and Simulation
Modeling of IEEE 802.4 Token Bus, to be published by NBS:1985

(NAK85b) Nakassis,B. "Token Passing Networks and Starvation Issues",

see above.

(NBS84} National Bureau of Standards, Archambault, J.L.

,

"An IEEE 802.4 Token Bus Network Simulation",
NBSIR 84-2966, October, 1984.

(STREI81) Streiffert,D.L. , "Structured Analysis Techniques Applied
to Discrete Simulation and Modeling", Internal report.

Boeing Computer Services: 1983.

51

SIMULATION OF THE IEEE 802.4 TOKEN PASSING BUS PROTOCOL
USING SIMSCRDPT

A.R.K. Sastry and M.W. Atkinson

Information Sciences Group

Rockwell International Science Center

1049 Camino Dos Rios

Thousand Oaks, California 91360

Abstract—A simulation model has been developed for the performance evaluation of

the IEEE 802.4 token passing bus local area network protocol using SIMSCRIPT. The
model has identifiable 'processes' corresponding to the four 'machines' of the protocol, i.e.,

access control, receive, transmit, and interface machines. In addition, a 'frame process'

is used to simulate the signal flow on the bus. An initialization 'routine' serves to input

the network parameters and to initially activate the processes in the proper order, while a

statistics extraction routine gathers output data during a simulation run. The entire model

is developed in an incremental mode, gradually increasing the detail and complexity so that

code can be validated by 'walking through' at every stage of the development. Queues with

four different priorities, a message generation process at each queue, random selection of

frame lengths, and token rotation timers have been incorporated. Results from a number

of simulation runs suggest the need to develop methodology to relate the timer values with

the desired priorities under given traffic conditions, which seems to be a very significant

user-oriented issue.

^ 1. INTRODUCTION

The IEEE 802.4 draft Standard token-passing bus scheme [1] is a medium access

control procedure for local area networks implemented on a broadcast bus. It belongs to

the medium access sub-layer in the data link layer of the Open System Interconnection

(OSI) model [2] of the International Standrds Organization (ISO), as shown in Fig. 1. The

scheme is one of the three considered for standardization by the IEEE 802 committee for

local area networks, the other two being the Carrier Sense Multiple Access with Collision

Detection (CSMA/CD) and the Token Passing Ring. Unlike the CSMA/CD and token

passing ring, which have been well studied in the literature [3], [4], the token passing bus

as described in [1] is relatively new, and its performance and design issues have not been

investigated yet in detail. The token passing bus scheme has a deterministic bound on

delay and becomes attractive at low bus propagation delays and high message rates [5].

There have also been some studies on the correctness and completeness of the protocol

[6], [7], when it was in its early stages of the standardization process. P\irther studies on

its validation and performance aspects are needed.

52

This paper describes some preliminary work on development of a simulator for the

scheme as specified in [1] and its use in performance evaluations. The simulation effort is

divided into two incremental parts: (i) a performance part that includes all the data and

token transmission mechanisms of the scheme, assuming that all stations are active all the

time and that the network is functioning normally without noise bursts, missing tokens,

etc.; and (ii) a network maintenance part that includes token claims, entry and exit of

stations, contention resolution mechanisms and so on. The performance part has been

completed and is found to be a valuable tool in assessing throughput-delay performance

under normal network operating conditions. The network maintenance functions are cur-

rently being implemented, which, when completed will allow performance analyses in more

realistic settings and investigations on the correctness and completeness of the protocol.

The subject matter of this paper is on the performance part. The token passing bus scheme

is described briefly in section 2. The key features of SIMSCRIPT, the language chosen for

the simulation, are summarized in section 3. The simulation methodology, description of

the model, validation procedures, and the mechanism of collecting statistics are described

in section 4. Some performance results obtained from simulation runs are discussed in

section 5. Section 6 gives conclusions.

2. THE TOKEN PASSING BUS SCHEME

In this scheme, stations connected to a bus form a logical ring based on the descending

order of their addresses (unlike in a ring network in which stations would be physically

connected serially). A station is allowed to transmit data only when it receives a 'token'

(a control frame), which represents a right to access the bus. After transmitting data, a

station hands over the token to the next active station in the logical ring. The commu-
nication on the bus thus has two phases; i.e., a token-passing phase and a data transfer

phase. Detailed procedures have been specified in the draft standard document [1] on the

data transfer mechanism and network control.

Each station's protocol is made up of five components: the Access Control Machine

(ACM); the Receive Machine (RXM); the Transmit Machine (TXM); the Interface Machine

(IFM); and a station management unit. At each station, there is provision for an optional

four-level priority mechanism for traffic handling, with each level having a separate queue.

The transmission of data frames from each queue is conditioned by the residual value of a

target token rotation timer for that queue at the time of receiving the token. If the timer

expires, transmission of data from that queue is not allowed. The timer is reset with an

initial value before beginning transmission of data frames or before passing the token if no

data frames are to be transmitted, as the case may be. Timers at different queues may be

assigned different initial values depending on the priorities desired. Thus, if a large number

of data frames are transmitted from one queue (using up a long time) in a given token

rotation, lower priority queues in that station and queues at other stations get relatively

53

less time for transmissions in that rotation, depending on the initial values assigned for the

timers of those queues. This interaction among the timers is incorporated in the scheme to

enforce fairness in bus access allocations. While considerable flexibility exists in tailoring

the priority scheme to the needs of specific applications, implementation of a given priority

scheme through selection of appropriate initial values for the timers is somewhat complex

due to the interdependence among the timers. The complexity grows with increase in

the number of stations. Other timing interrelationships determined by such parameters

as bus transmission rate, frame sizes, propagation delay, acd interface processing delay

also become important in determining the achievable throughput [8]. Simulation aids in

understanding some of these issues that are rather difficult to analyze.

3. SIMSCRIPT: LANGUAGE STRUCTRE Vs NETWORK ELEMENTS

Communications networks belong to a class of physical systems that can be studied

effectively using discrete event computer simulation models. Those networks of interest

usually involve a complexity that extends beyond the restrictive assumptions required for

analytical methods of study. With simulation, network performance can be examined

over a wide variety of network topologies, traffic loads and operating conditions to derive

results where analysis is unwieldly or not feasible. Simulation can be used to supplement

other analytical results, and higher order statistical measures of performance can also be

obtained.

The computer modeling activity is more efficient if a problem-oriented language is used

rather than a general purpose algorithmic language like Fortran. We have successfully

used SIMSCRIPT for a number of telecommunications network simulation projects [9].

SIMSCRIPT is a language comparable in power to Fortran, but with added list processing

(queue handling) and discrete event simulation capabilities. It is English-like in appearance

and contains semantics whose world-view assists the person modeling; the programming

is done in a language closer to the concepts involved. SIMSCRIPT contains semantics

(statement types) that closely fit the concepts in communications network simulation.

The dynamics of these networks usually involve several mutually related components (for

example, nodes and links) working in a concurrent asynchronous fashion. The ability to

model this functioning is provided by the software mechanisms in SIMSCRIPT. It makes

the state changing events happen at the proper time. It provides context switching from

"process to process" without programmer intervention. Creating the optimum connection

between the language element and an element in the model is the real art in modeling in

SIMSCRIPT.
Various network components (their activities) are modelled as SIMSCRIPT "pro-

cesses" which control the movement of the messages (packets) around the network. Usu-

ally, several copies (instances) of these processes are necessary, and the language gives an

individual the ability to replicate these while specifying only one prototype. As the num-

ber of these problem elements is usually not known a priori, dynamic storage allocation/

deallocation is provided. Elements of the traffic (calls, messages, packets) can be created

and destroyed at will. The modeling of random phenomena is assisted by the existence

of the most commonly used random distributions. SIMSCRIPT provides software mech-

anisms for the collection of statistics as the simulation proceeds over time. This would

54

include performance measures such as throughput and delay. Node and Link utilizations

are easily collected using these language features. A complete description of Lhe language

is contained in [10].

SIMSCRIPT is available at Rockwell on the VAX 11/780, IBM/S370 and the IBM
PC/XT. In addition, a graphics package has been developed specifically to display the sim-

ulation results on Tektronix terminals. SIMSCRIPT is the commercial product of CACI,
Inc. and is widely used and accepted in government and industry. The language is the

same for each host computer; therefore it is highly portable. The English-like appearance,

world-view, a set of dedicated statements and associated software for discrete-event sim-

ulation result in a dramatic increase in model building efficiency over other algorithmic

languages. Our experience at Rockwell shows that SIMSCRIPT requires much less time

for model building compared with Fortran.

4. SIMULATION OF THE TOKEN PASSING BUS

Each machine is modeled as a SIMSCRIPT "process" that operates asynchronously

with each other. A message generation mechanism, located at each station, fills 4 levels of

priority queues which act as sources for the traffic. Exponential distributions are used for

inter-frame intervals and for selecting the length of each frame. A number of parameters

such as number of stations, initial values for the target token rotation timers for each queue,

mean inter-frame interval of the message generation distribution of each queue, mean length

of the frame for each queue, maximum propagation delay, and bus transmission rate are

all user-selectable. These parameters can be incorporated by changing a data set that

otherwise functions as a set of default values. Fig. 2 summarizes the various functions

incorporated in the simulator. A frame process is used to simulate the signal flow on the

bus. Each frame transmitted on the bus 'wakes up' all the receivers on the bus. Each frame

carries a number of attributes such as time of generation, time of leaving the queue, length

of the frame, type of frame (data or control), time of reception at the destination receiver,

source address and destination address. The model is developed in an incremental mode,

in a gradual manner such that adherence to the protocol specification can be assured by

'walking through' the code at every stage of the development. For example, alternate

transmission of a single data frame and a token frame is realized initially for a single

queue, followed by step-by-step introduction of various features such as multiple queues

and message generation processes, variable frame lengths, target rotation and token hold

timers, and so on. An initialization 'routine' provides input on the network parameters

and initially activates different processes in proper order. A statistics extraction routine

gathers data throughout the simulation run and provides the output at the end of the

run. The output data contain an array of statistics on number frames generated, number

of frames transmitted, throughput efficiency, and mean queueing delay; for each queue,

station and for the network as a whole. Results obtained from some typical simulation

runs are discussed in the following section.

55

5. PERFORMANCE RESULTS FROM SIMULATION RUNS

In the investigations conducted using the simulator to understand the behavior of

the priority scheme, throughput and average delays are measured for different initial val-

ues for the timers and for different mean inter-frame intervals for the frame generation

distributions that feed the queues. Table I shows the typical output for a given station

that includes statistics within a particular rotation and the cumulative statistics up to

that rotation starting from the first rotation. The results are shown in Figs. 3 and 4. In

Fig.3, which gives results for a case in which frame generation at each queue is at a fast

pace such that there is no starvation of traffic, it can be seen that the timers should be

given a minimum value before a significant improvement in throughput efficiency can be

realized. This is due to the presence of some fixed number of high priority frames that

should be transmitted by each station. Fig. 4 shows the performance with different mean
inter-arrival times between frames for the exponential frame generation distribution (a

seperate run is made for each mean value). As the mean value increases, the offered traffic

at each queue decreases and the throughput efficiency, ratio of transmitted data octets

to the generated (offered) data octets, increases. However, the average delay per frame

does not fall monotonically. One of the queues at each station is required to transmit

on high priority in each rotation, four frames if available. As the traffic generation slows

down, a point is reached at which the required four frames are not available at this queue;

thus the token is passed more frequently to lower priority queues in which frames with

large queueing delays are waiting. This caused the early dip and the subsequent increase

in the delay curve. As the traffic generation slows down further due to the higher mean
interarrival times, the queueing delays fall substantially leading to the eventual downward

trend in the average delay curve.

CONCLUSIONS

The results indicate that the relationships between desired priority levels and the

assignment of initial values to the timers of various queues are not easy to determine, since

any change in any given timer value affects the throughput and delays of all the queues.

This relationship becomes more difficult to determine if the frame generation processes

are not identical. Some constraint values on throughput and delay must be specified as

guidelines to aid in the selection of initial values for the timers.

ACKNOWLEDGEMENTS
The authors wish to thank their colleagues W.F. Hall, A.P. Andrews, and K.W. Fer-

tig, Jr., of the Rockwell International Science Center and J.F. Mesmer of the Rockwell

International Space Station Systems Division, for their keen interest and support through-

out the work.

56

REFERENCES

. IEEE Project 802, Local Area Network Standards, "Token-passing Bus Access

Method and Physical Layer Specifications," Draft IEEE Standard 802.4, Draft E,

July 1983.

. International Standards Organization (ISO), "Information Processing Systems - Open
Systems Interconnection - Basic Reference Model," Draft International Standard

ISO/DIS 7498, 1982.

. W. Bux, "Local Area Sub-networks: A Performance Comparison," IEEE Trans. Com-
mun., pp. 1465-1473, October 1981.

. W. Stallings, "Local Network Performance," IEEE Communications Magazine,

Vol. 22, pp. 27-36, February 1984.

. B. Stuck, "Calculating the Maximum Mean Data Rate in Local Area Networks," IEEE
Computer, pp. 72-76, May 1983.

. T.L. Phinney and G.D. Jelatis, "Error Handling in the IEEE 802.4 Token-Passing

Bus LAN," IEEE Sel. Areas in Commun., Vol. SAC-1, pp.784-789, November 1983.

. S.K. Rahimi and G.D. Jelatis, "LAN Protocol Validation and Evaluation," IEEE Sel.

Areas in Commun., Vol. SAC-1, pp. 790-802, November 1983.

. A.R.K. Sastry, "Maximum Mean Data Rate in a Local Area Network with a Specified

Maximum Source Message Load," Conf. Rec, IEEE INFOCOM, pp. 216-221, March

1985.

. M.W. Atkinson, "Network Simulation Using SIMSCRIPT," Conf. Rec, IEEE
GLOBECOM, Atlanta, Nov. 1984.

. Simscript II.5 Programming Language, CACI, Inc., 1983.

57

Table I. Typical output for a given station and for the network at the
end of a simulation run (number of stations: 5)

QUEUE EXRACTION REPORT FOR STATION NO 4

QUE NO.
QUE NO.
QUE NO.
QUE NO.

4
3
2

1

QUE TOKEN NO. DATA
HOLD TIME ERA TRAN'D

2.00
7311.00
11072.00
8204.00

REMAINING
QUE SIZE

2
0
1
2

ACTUAL TOKEN
ROTATION TIME

30835.00
30837.00
38148.00
49220.00

CUMMULATIVE STATISTICS OF THROUGHPUT AND DELAY AT TIME = 89248.00 OCTETS
FOR STATION AND EACH QUEUE WITHIN STATION

STATION 4 STATISTICS

TOTAL DELAY 254079.17 TOTAL QUEUE DELAY 226497.17 TOTAL THRUPUT 0.52
SUM FRAMES GENERATED 11 SUM OCTETS GENERATED 51228
SUM FRAMES X'MITED 6 SUM OCTETS X'MITED 26982
SUM. FRAMES REC'VD 6
AVG DELAY 42346.53 AVG QUEUE DELAY 37749.53

QUEUE STATISTICS FOR STATION 4
QUE #4 QUE # 3 QUE # 2 QUE # 1
35402.00 74844.97 85913.20 57919.00
35402.00 37422.48 42956.60 57919.00
30837.00 64331.97 73904.20 57424.00
30837.00 32165.98 36952.10 57424.00

CUMULATIVE STATISTICS
3 2 3 3

15256 10229 14138 1160512 2 1
4465 10313 11809 395

0.290 1.000 0.829 0.030

SUM TOTAL DELAY
AVG TOTAL DELAY
SUM QUE DELAY
AVG QUE DELAY

SUM FRAMES GENR'TD
SUM OCTETS GENR'TD
SUM FRAMES TRAM'TD
SUM OCTETS TRAM'TD
THRUPUT EFFICIENCY

SUM FRAMES GENERATED
ROTATION STATISTICS
3 2

COMPOSITE NETWORK STATISTICS: ALL STATIONS, ALL QUEUES
TOTAL DELAY
TOTAL QDELAY
TOTAL THRUPUT
TOTAL FRAMES GENERATED
TOTAL OCTETS GENERATED
TOTAL FRAMES TRANSMITTED
TOTAL FRAMES RECEIVED
TOTAL OCTETS TRANSMITTED
AVERAGE TOTAL DELAY
AVERAGE QUEUE DELAY
BUS UTILIZATION

782321.38
701921.38

0.35
60

221887
21
21

78300
37253.40
33424.83
99 . 14 PERCENT

FINAL CUMULATIVE STATISTICS
SIMULATION ENDED NORMALLY AT TIME = 89248.00
INITIAL TOKEN HOLDER WAS STATION 5 WHICH PASSED TOKEN
RESULTING IN an AVG. ROTATION TIME = 89248.00

1 TIMES

58

LAYERS >2

LLC
LOGICAL LINK CONTROL

SUBLAYER

SC85 30964

LAYER 2 ^

MAC
MEDIUM ACCESS CONTROL

SUBLAYER

LAYER 1
PHY

PHYSICAL LAYER

TOKEN PASSING
BUS PROTOCOL
BELONGS TO MAC
SUBLAYER

MEDIUM

Fig. 1. Relationship of the token-passing bus protocol to the layers in the OSI model.

SC85 30965

HIGHER^LAYERS

DATA UNKLAYeF

LOGICAL LINK CONTROL
SUBLAYER

LLC)

LU
O
Z 2
=> o

O -I

O Z)

?i
oc
a.

DATA
FRAMES

MEDIUM ACCESS CONTROL SUBLAYER
(TOKEN PASSING BUS)

ACCESS CONTROL AND DATA EXCHANGE

1. TRANSMIT AND RECEIVE DATA FRAMES
2 TRANSMIT AND RECEIVE CONTROL FRAMES
3. CHECK PRIORITY CLASSES
4. MONITOR STATES OF THE TIMERS
5. ADMIT NEW STATIONS
6. RESOLVE CONTENTIONS
7. UPDATE LISTS OF ACTIVE STATIONS
8. DETECT DUPLICATE ADDRESSES

STATION MANAGEMENT

1 . INITIALIZATION PROCEDURES
2. TIMER SETTINGS
3. CHANGE OF STATUS ON LOGICAL

RING
4. GENERATION OF ADDRESSES
5. SPECIFICATION OF PRIORITIES
6. CHANGE OF PARAMETER VALUES

PHYSICAL LAYER

DATA AND CONTROL FRAMES

Fig. 2. Functions of the token-passing bus medium access protocol.

59

2800

2400

2000
(0
LU

<
oc 1600

O
K
S 1200

800

400

700

_ 600
CO

0"-

500

400

h ^ 300

>
<

S 200

100

0.24

0.23

0.22

0.21

0 20

0.19

0.18^-

0.17

0.160-

0.15

0.14

0.13[^

0.12

0.1 1

qI— 0.10

I
\ \

1 1 1—
MEAN INTER-ARRIVAL TIME FOR FRAME GEIM
DIS. = 10,000 OCTETS

A NUMBER OF FRAMES GENERATED
V NO. OF FRAMES TRANSMITTED

O THROUGHPUT EFFICIENCY
AVERAGE DELAY PER FRAME

SC84-28941

T

_L _L ±
10 20 30 40 50 60 70 80 90

TOKEN ROTATION TIMER VALUES (THOUSANDS OF OCTETS)

100

Fig. 3. Performance of the token passing bus as a function of the initial values of the

target token rotation timers (timers of all the queues are assigned the same values

in this example).

2400

2000

K 1600

£ 1200
CD

2
800 f-

400

0*-

240

g 200

<
to

O 160
I

I- > 1.0
o

- t 0.8

120

80

Ol-

0.6 -

0.4

40 - 0.2l>

10

TOKEN ROTATION TIMER VALUE = 50,000 OCTETS

A NUMBER OF FRAMES GENERATED
V NUMBER OF FRMES TRANSMITTED
O THROUGHPUT EFFICIENCY
AVERAGE DELAY PER FRAME

20 30 40 50 60 70 80 90

MEAN INTER-ARRIVAL TIME (THOUSANDS OF OCTETS)

100

Fig. 4. Performance of the token passing bus as a function of mean inter-arrival frame

times of the frame generation distribution.

60

Session II:

Verification and Cotpliance Testing

Chairperson: K. H. Muralidhar
Industrial Technology Institute

61

Motorola Semiconductor Israel (MSIL) Ltd TBrjs

Token Bus (IEEE Std. 802.4) Network Simulator
Orly Kremien

Motorola Semiconductor Israel Ltd*
147 B i al i k Street

Ramat-Gan 52523f Israel

ABSTRACT

The Token Bus Network Simulator (TBMS)* developed by Motorola Semicon-
ductor Israel (MSIL)f is a software tool which aids in Token-Bus (IEEE
802«4) protocol development* verification and performance evaluation.
It is a discrete event-driven simulator that is coded in PASCAL and pro-
vides predictions of delayt throughput and many other performance meas-
ures as a function of offered load. The simulator implements the IEEE
802.4 (Rev. A» 1964) Token-Passing Bus Medium Access Control (MAC) Spec-
ification of protocols for local area networks. It models token-bus
network behaviour in batch mode and under interactive user control. The
simulator can trace the progress through the network of each
message/event to facilitate model validation and analysis. Use of the
simulator at MSIL has resulted in the discovery of several protocol
errors (including one deadlock situation) which were reported back to
the IEEE 802.4 committee.

OBJECTIVES FOR TBNS DEVELOPMENT

Several objectives led to the development of TBNS :

Token-Bus protocol verification - after the definition phase of a

Token-Bus Controller (TBC) VLSI chip and a thorough study of the
IEEE 802.4 protocol* we felt that some of the mechanisms suggested
might not work. We wanted to find deadlocks and inefficiencies of
the protocol* if such existed.

Token-Bus Network performance evaluation - to gain better under-
standing and deeper insight into token-bus networks in general* and
TBC based networks in particular. From this study we were able to
identify sensitivities of a Token-Bus network to configuration and
protocol parameters.

62

Motorola Semiconductor Israel (MSIL) Ltd TBNS

Token-Bus chip development - verification of micro-code and logic
implementation by integration of a VLSI simulator with TBNS.

Networking software development to support Token-Bus networks - ver-
ification of software functions (e.g. network management) in a net-
work environment.

Simulation aided configuration and tuning of token-Dus networks.

TBNS IMPLEMENTATION

The modular design of TBNS provides ease of ennancement and ease of
adaptation to future standards revisions. The main modules of the simu-
lator are :

user interface

- network configuration algorithms

node (chip) specification description

- simulator management routines

USER INTERFACE

An enhanced* menu-driven user interface (with an elaborate debugger)
allows for interactive network configuration* simulation control (define
stopping criterion)* store/ res tore system image* halt s i mul at i on/ resume
run* display/set station variables* display/set management variables*
presentation of system state* presentation of statistics* trace simu-
lation (scheduler* control -program* ACM actions* TxM* RxM)* and also has
an option to force "nasty" events (introduce artifical errors).

For a specific simulation run* the user describes the network topology
and node types. After initialization the user defines a stopping crite-
rion (reach steady-state* transmit N frames* etc.). When the run is
completed the user will have all performance measures available (queuing
delay* throughput* protocol statistics etc.). For performance evalu-
ation the simulator is first run until steady-state is reached*
statistics are then reset and following the reset the simulator runs
until the stopping criterion is met.

63

Motorola Semiconductor Israel (MSIL) Ltd TaNS

NETWORK CONFIGURATION ALGORITHMS

Network topology is described by physical character i st ic s» such as cable
length* cable type (basebandt broadband) t data-rate ? propagation-time and
node distribution along the cable* Node types define node character-
istics in terms of offered load (by a station of this type)* frame
length distribution* node options (e.g. PROWAY) and parameter setting*
and other node attributes* Each node type may describe one or more
nodes. Address assignment and node allocation along the caole are
either random or user specified.

NODE (CHIP) SPECIFICATION DESCRIPTION

The simulation model of the MAC sublayer implements the interface
machine (IFM)* the access control machine (ACM)* and receive and trans-
mit machines (PxM* TxM). Propagation delay* frame transmission time and
frame collisions are taken into account. Station delay which results
from system bus latency is included in the model (some physical charac-
teristics such as noise are excluded from the model).

ACCESS CONTROL MACHINE (ACM)

The ACM* which is the heart of the MAC sublayer* is the most complex and
important machine. IEEE 802.^ (part 7) specifies the ACM using a formal
extended state transition model. This formal model was directly trans-
formed into an extended state machine coded in PASCAL. The ACM is
described by the ACM state variable (OFFLINE* IDLE* etc.) for each sta-
tion* state routines and events for scheduling state routines. Condi-
tions are checked by state routines and the appropriate action routine
is entered. Action routines usually trigger scheduling of other events.

INTERFACE MACHINE (IFM)

The IFM is represented by four input frame queues for each node* and
procedures to access (add/get a frame) these queues. The LLC sublayer
and all higher layers are represented by the traffic generator which is

part of the IFM.

64

Motorola Semiconductor Israel (MSIL) Ltd TBNS

RECEIVE AND TRANSMIT MACHINES

The receive machine is responsible for frame reception and detection of
changes in the bus state (as perceived by this station). The receive
machine is modeled by a s tar t_of _r ecept i on event» and an
end_of_recept i on event* It updates the relevant state variables
(bus_quiet» noise_burstf Rx_protocol _f rame» Rx_data_f rame) accordingly*
It should be noted that one station can detect bus__quiet at the same
time as another station detects bus_busy« The model also accounts for
frame collision (superposition of signals). Noise burst might also
result from frame arrival to a station while this station is in transmit
mode. Notice that if only the preamble part of a frame collides with
another frame* the first frame will result in a valid frame reception
and the latter in noise burst.

The transmit machine is modeled by a start_of_t ransmi ss i on event?
end_of _t ransmi ss i on event and transmi t_mode state variable. Frame tran-
smission time as well as propagation delay between the transmitting sta-
tion and the receiving station are both taken into account*

SIMULATOR MANAGEMENT

The network simulator is a discrete? event-driven simulator* All events
generated during a simulation run reside in a linked list (non-linear)*
Emphasis is placed on simulator efficiency to allow for fast simulation
of medium and large networks at various loads* Each event has several
attributes; the main two attributes are event (future) schedule time and
event-type* Sophisticated algorithms (of log N complexity scheduling
time* with N events present in the list) are used for eventrlist handl-
ing* Events in the Event List are sorted by their scheduled time*
Events are either unconditional* in which case their scheduled time will
never change* or conditional* in which case they might be rescheduled as
a result of a change in the state of the network* All events* condi-
tional and unconditional* reside in one list* The main simulator
management routines are :

- simulator control and event handling routines

The simulation control program always selects the first event to be
executed and the simulation clock is advanced accordingly* The
event type is checked and the appropriate routine is executed* Fol-
lowing the execution of that routine* usually one or more events are
schedul ed *

traffic generation modeling (Workload modeling)

65

Motorola Semiconductor Israel (MSIL) Ltd TBNS

A traffic generator (which is part of the IFM) generates data frames
of varying size which arrive at various rates (frame length and
frame rate distributions are specified for each node type during
simulation initialization).

statistics collection and analysis

Statistical information is gathered during a s i mu 1 at i on run and ana-
lyzed upon user request*

TBNS USAGE

USING SIMULATION FOR TOKEN-BUS PROTOCOL VERIFICATION

One of the token-bus network simulator main objectives is to aid in pro-
tocol verification* Two methods are used for protocol verification :

run test cases - with this method* the expected protocol behavior
under both normal and abnormal conditions is tested. In order to
prove the correctness of the token-bus model t we formulate
assertions which reflect the desired correctness properties. Some of
these assertions are taken from the literature and others from a

thorough study of the protocol. For each of these assertions we
have to show that the protocol for each entity satisfy the
high-level assertion.

analyze statistical measures - statistical information might reveal
unexpected behavior of the protocol (e.g. blocked stations). Dif-
ferent traffic loadSf operating conditions* parameter . sett i ngs and
configurations are observed? and statistical measurements imple-
mented in the simulator help with the protocol verification task.
Using this method* we discovered a deadlock situation - a combina-
tion (which is not rare) of protocol parameter settings and load
might lead into a situation where stations are not allowed into the
logical ring.

TOKEN-BUS PERFORMANCE

To characterize token-bus network performance* a series of measurements
obtained from token-bus simulator runs are presented and interpreted.
From these measurements we are able to characterize the effects of vari-
ous protocol parameter settings and hence recommend settings to avoid

66

Motorola Semiconductor Israel (MSIL) Ltd T3NS

certain possible anomalies* Dependence on topology? number of stations?
cable-length and other parameters is also characterized.

We have completed our first set of experiments aimed at performance
evaluation. One of the results we have from these experiments is that
the token-bus network is not sensitive to node address allocation.
These results are described in detail in a separate article.

TOKEN-BUS CHIP DEVELOPMENT

An interface to a high-level chip-simulator was added for
network-simulator/chip-simulator integration. The TaC chip designers
use this tool to debug the micro-code in a network environment. They
are able to run a large amount of test cases and to get chip performance
statistics? point out performance bottlenecks? and use this information
to optimize TBC design.

NETWORKING SOFTWARE DEVELOPMENT TO SUPPORT TOKEN-BUS NETWORKS

Using simulation run results? considerable insight into token-bus net-
work management proolems is acquired. Network management functions
(distributed and centralized) which are unique to token-bus are identi-
fied? and models of these functions are developed. Simulation is then
used to check the effect on the system of these functions? and those
which give a positive effect will be selected for implementation in a
token-bus network.

CONCLUDING REMARKS

The Token-Bus Network Simulator proved to be a valuable tool for proto-
col development. The simulator provides us with an accurate model of a
real network which is impossible to model analytically. The modular
design enables us to modify our model easily whenever there is a

revision of the token-bus protocol or a new feature of its VLSI imple-
mentation. We recommend this approach for protocol development
projects.

67

Motorola Semiconductor Israel (MSIL) Ltd T3NS

ACKNOWLEDGMENTS

I iwoul d like to thank 0. Kol ton for his valuable assistance with the
i mp 1 ement at i on f debugging and running of TBNS.

BIBLIOGRAPHY

1. IEEE Standard 302. 4» Rev. At 198^.

2. Rahimif S. K. Jelatis* G. D.
LAN Protocol Validation and Evaluation
IEEE Journal on Selected Areas in Commun icat i onst November 1983

3. Phinneyt T. L. Jelatis» G. D.
Error Handling in the lEEt 802 Token-Passing Bus LAN
IEEE Journal on Selected Areas in Commun icat ions» November 1933

^. McCormackt W.M. Sargentt R» G.
Analysis of Future Event Set Algorithms for Discrete Event Simu-
lation
Communications of the ACM, December 1981

68

PERFORMABILITY MODELING TOOLS

J. F. Meyer

Communications and Network Laboratory

Industrial Technology Institute

Ann Arbor, MI

Abstract

Methods/tools for modeling performability (unified performance-reliability) are described

with application to the evaluation of real-time local area networks. Emphasis is placed

on the use of stochastic activity networks (SANs), where the presentation includes pre-

cise definitions of a SAN and associated concepts. Construction of SAN-based performa-

bility models is then discussed and the use of this procedure is illustrated in the model-

ing of a local area network with timing constraints.

1. INTRODUCTION

Complex systems require correspondingly powerful modeling tools to effectively

determine needed information concerning a system's ability to perform (performability)

in the presence of faults. Local area networks and, particularly, IEEE 802.4 Token Bus

networks are no exceptions in this regard.

A new class of probabilistic network models, called stochastic activity networks

(SANs) [l, 2] , has been developed for this purpose via work at both the Industrial Tech-

nology Institute (Communications and Network Laboratory) and The University of

Michigan (Computing Research Laboratory). SANs, which are generalized versions of

stochastic Petri nets, permit the representation of concurrency, timeliness, fault toler-

ance, and degradable performance in a single model. Given a SAN model of the system

69

in question, it is possible to determine, either by analysis or simulation, the probabilistic

nature of the SAN's state-activity behavior. This information, in turn, can serve as the

basis for evaluating system performability.

The key to successful application of this methodology is the development of

software tools which can aid the process of model construction and can fully automate

performability solutions. As might be expected, no single solution technique can provide

the support necessary for an arbitrary system. Both analytic and simulation techniques,

along with appropriate model decomposition methods are necessary and, accordingly,

tools must be developed to meet each of these needs. Simulation can be done directly at

the network level, while analytic solutions require derivation of higher level state-

transition models called stochastic activity systems (SASs) [2] . In this case, model con-

struction includes determination of the SAS that corresponds to an underlying SAN, fol-

lowed by an appropriate characterization of the SAS's state-activity behavior. This

phase of model construction must likewise be automated since the SAS corresponding to

a realistic SAN can have thousands of states. However, one of the principal features of

SANs is the fact that higher level representations of their behavior can indeed be derived

automatically. Moreover, unlike queueing networks for example, all the information

required to do this is provided directly by the syntax of a SAN model.

Following a brief discussion of the basic concepts that underly performability

evaluation, this paper reviews the definition of SANs and describes the procedure by

which SANs and their corresponding SASs are used to model performability. Although

the focus here is on analytic methods/tools, we are also in the process of developing a

simulation package to augment existing analytic capability. In the concluding section,

we illustrate an application to LANs and, specifically, a LAN that is subject to real-time

70

constraints on the timeliness of message passing.

2. PERFORMABILITY EVALUATION

Performability is a generally defined concept which unifies usual notions of perfor-

mance and reliability and includes each as special cases. As argued in [3, 4] , the need

for this unified view arises when system performance is degradable in the presence of

structural change due to faults. Although prior familiarity with performability modeling

is useful in what follows, a brief review of basic concepts and terminology should suffice

for anyone familiar with probabilistic models.

Given a system S (interpreted as including not only a system, per se, but also

relevant aspects of its environment), the performance of S over a specified utilization

period T is a random variable Y taking values in a set A . Elements of A are the

accomplishment levels (performance outcomes) to be distinguished in the evaluation pro-

cess. The performability of 5* is the probability measure Perf (denoted ps in [3,4])

induced by Y where, for any measurable set B of accomplishment levels {B C A),

Perf [B] is the probability that S performs at a level in B . Solution of performability

is based on an underlying stochastic process X, called a base model of S, which

represents the dynamics of the system's structure, internal state, and environment dur-

ing utilization. A base model X together with a performance variable y is a performa-

bility model of S . (We are omitting some details here regarding how Y must relate to

X
,
resulting in a slight departure from the definition given in [4]). Performability

model construction is the process of identifying a performance variable Y and determin-

ing a base model stochastic process X that permits a solution of performability. Perfor-

mability model solution is the process of obtaining performability values Perf {B) for

71

accomplishment sets B that are of interest to the user. Generally, knowledge of the pro-

bability distribution function (PDF) of Y suffices to determine such values.

As reviewed in [5] , most of the work to date on performability evaluation has

focused on accommodating properties of fault tolerance and degradable performance.

However, in the case of distributed real-time systems, and particularly real-time LANs,

properties of concurrency and timeliness can likewise influence a system's ability to per-

form. Accordingly, when such evaluations are model-based (on either analytic models or

simulation models), all four properties need to be dealt with effectively in the modeling

process.

During the past 20 years, considerable effort has been devoted to the modeling of

concurrent systems for the purpose of behavior analysis and, to a lesser extent, perfor-

mance evaluation. Much of this activity has been directed toward behavior analysis in a

nonprobabilistic setting through the use of Petri nets, derivatives thereof, and other

model types which are behaviorally equivalent to Petri nets (see [6] for a comprehensive

discussion of such models). Efforts have also been made to extend Petri-type nets, via

the introduction of timing, to obtain models that are better suited to performance

evaluation [7, 8, 9, 10, 11, 12] . Regarding probabilistic models that deal with con-

currency, one might legitimately include queueing networks (as surveyed, for example, in

[13] but, typically, such models treat concurrency at much higher (less detailed) levels

than do Petri-type models. Of greater relevance are probabilistic network models that

capture concurrency at lower levels. The latter include GERT Networks [14] and Gen-

eral Activity Networks [15] that date back to 1964, along with more recent models

which are direct probabilistic extensions of Petri nets [16, 17, 18] .

72

I

I

The background and needs indicated above (see [19] for a more detailed discussion

of these considerations), motivated the development of stochastic activity networks, the

class of network models referred to briefly in our introductory remarks. These models

incorporate features of both queueing networks and stochastic Petri nets and, via an

appropriately defined set of network primitives, permit complex "instantaneous activi-

ties" to be represented quite simply. Moreover, they indeed appear to be well suited to

the representation of concurrency and timeliness as well as fault tolerance and degrad-

able performance.

3. STOCHASTIC ACTIVITY NETWORKS

As defined in [1] , stochastic activity networks (SANs) are probabilistic extensions

of activity networks (ANs), where the nature of this extension is similar to the definition

of stochastic Petri nets in terms of (ordinary) Petri nets. For a more thorough under-

standing of what follows, the reader should become familiar with the definitions of both

ANs and SANs, as presented in [1] . Briefly, ANs are generalized Petri nets with two

types of activities ("transitions" in Petri net terminology): timed activities (e.g., activi-

ties Ti-Tc^ of Fig. 2) and instantaneous activities (e.g., activities /1-/5 of Fig. 2). (It

should be noted that the need for such a distinction was independently recognized by

Marsan, et al. [20] in their definition of "generalized stochastic Petri nets".) Further

generalization is achieved via the association of cases with activities (see activities

and of Fig. 2, for example) and the use of gates (e.g., GyG^ oi Fig. 2) which permit

greater flexibility in describing how an activity is enabled and how the completion of an

activity affects the next marking of the network.

73

Given an AN which is well-behaved (see [1]) in some specified initial marking, a

SAN is formed by adjoining functions C , F , and G , where C specifies the probability

distribution of case selections, F represents the probability distribution functions of

activity times, and G describes the sets of "reactivation markings." Relative to the

definition presented in [1] , the introduction of reactivation markings (via G) is new.

Moreover, since the concept of a SAN is central to the discussion that follows, it is

appropriate to define them in greater detail.

3.1. Model Definition

Definition 2.1: A stochastic activity network is a structure [M ,^q,C ,F ,G) where:

i) M is an activity network with a set of places P consisting of n places.

ii) ^0 is the initial marking, a stable marking in which M is well-behaved.

iii) C is the case distribution assignment, an assignment of functions to activities such

that for any activity a , :N"' XX^ —>-[0,l], where is the set of natural numbers

and Xf^ is the set of cases of activity a . Furthermore, for any marking /xeN^ and

activity a which is enabled in ft, Ca(/^)) is a probability distribution called the

case distribution of activity a in marking /i.

iv) F is the activity time distribution function assignment, an assignment of functions

to timed activities such that for any timed activity a
,
F^ '-N" XR —•[0,1], where N

is the set of natural numbers and R is the set of real numbers. Furthermore, for

any stable marking //eN" and timed activity a which is enabled in //, Ff^[ii,-) is a

probability distribution function called the activity time distribution function of

activity a in marking ^ ;
F^ (/it,r)=0 if r<0.

74

v) G is the reactivation function assignment, an assignment of functions to timed

activities such that for any timed activity a , -.N^ —yP{N"), where N is the set

of natural numbers and P(A^") denotes the power set of N" . Furthermore, for

any stable marking fxeN" and timed activity a which is enabled in /i, is a

set of markings called the reactivation markings of a in fi.

A stochastic activity network is represented graphically by associating expressions

inside brackets and braces with the graphical representation of an activity network.

Expressions inside brackets "[]" represent case distributions and are assigned to the

cases of the graph. Expressions enclosed by brackets "< >" represent activity time dis-

tribution functions and are associated with timed activities. Expressions inside braces

represent reactivation functions and are assigned to timed activities. When an activity

time distribution functions is exponential it can uniquely be described by a rate (the

parameter of the exponential distribution function). As a result, in graphical representa-

tion of SANs, an exponential activity time distribution is indicated by its characterizing

rate (which may be a function of the markings of the network) inside parentheses. Fig. 2

shows the graphical representation of a stochastic activity network using the above con-

ventions.

3.2. Execution of Stochastic Activity Networks

Stochastic activity networks are extensions of activity networks [1] where both tem-

poral uncertainty and spatial uncertainty are specified probabilistically.

Regarding temporal uncertainty, execution of the network proceeds as follows.

When instantaneous activities are enabled, they complete instantaneously. Enabled

timed activities, on the other hand, will (with probability 1) require a nonzero time to

75

complete. An enabled timed activity is activated at instants of time called "activation

times" (defined below). After a timed activity is activated it may complete at an instant

of time called a completion time. If the activity becomes disabled before it completes it is

said to be aborted. The difference between a completion time of a timed activity and its

last activation time (before that completion time) is an activity time. Activation times of

timed activities are formally defined as follows.

Definition 2.2: An activation time of an enabled timed activity a is any of the follow-

ing instants of time:

i) a time when a becomes enabled, provided a is previously disabled.

ii) a time when a completes, provided a remains enabled in the next stable marking.

iii) a time when a stable reactivation marking //' of a in stable marking fi is reached,

provided a is enabled in /i' and is previously activated in fi.

The following are assumptions about the temporal uncertainty of stochastic activity

networks:

a) Activity times are mutually independent random variables.

b) The distribution function of the activity time of a timed activity a
,
given that a is

activated in stable marking //, is (//,), where F^{iJ,,-) is the activity time distri-

bution function of a in (see Definition 2.1, part iv)).

Regarding spatial uncertainty, the execution proceeds as follows. When an activity

a completes in a marking /x, it can only affect its input places and output places. The

next marking is determined in two steps as follows.

76

1) For each input gate of activity a with input function / , the marking of the

corresponding input places, represented as a vector fi^, is changed to a vector ii[

such that =/ [tiij. For input places directly connected to the activity this

means losing of one token for each of those places.

2) Case c of activity a is chosen with probability Ca(/x,c), where (//,) is the case

distribution of activity a in marking n (see Definition 2.1, part iii)). Then, for each

output gate of activity a for case c which has output function g , the marking of

the corresponding output places, represented as a vector 112, is changed to a vector

/i2 such that ^2 —9 (/^2)- f'or output places directly connected to the activity this

means gaining of one token for each of those places.

4. SAN-BASED PERFORMABILITY EVALUATION

In the case of analytic modeling, SANs are used to determine a stochastic process

X that

can serve as the base model of a performability model. In the construction of X from

some specified SAN, it is convenient to first derive a corresponding higher level model,

called a stochastic activity system (SAS) [2] , which suffices to describe the SAN's state-

activity behavior. Model construction is also influenced by the type of solution method

employed. In the discussion that follows, we assume that the solution method is of the

type introduced in [21] and subsequently refined in a number of recent studies (see

[22, 23, 24] , for example). This approach presumes a performability model wherein a

fixed "performance rate" is associated with each "structure state". Accordingly, in the

process of model construction it is natural to attempt a structure-performance decompo-

sition as early as possible, preferably in the initial SAN model of the system. The

77

procedure specified and illustrated below is based on this philosophy.

4.1. Model Decomposition

To describe the nature of this decomposition, we introduce the notions of a perfor-

mance submodel, a structure submodel, and a set of common places. These concepts will

enable us to specify necessary and sufficient conditions that a SAN must satisfy if its

stochastic behavior is to be described in a manner conforming to "reward model" solu-

tion techniques [21, 22, 23, 24] . Central to the decomposition is the notion of a set of

structure-related activities and a set of performance-related activities. Given a stochas-

tic activity network, the set of structure-related activities is the set Ag containing all

activities which represent variations in the system due to a change in system structure.

The set of performance- related activities is the set Ap containing all activities which

represent variations in the internal state and environment of the system, excluding

structure-related activities. In terms of Ag and A^ , two submodels are distinguished as

follows:

Definition 4.1: Given a stochastic activity network [M ,p,Q,C ,F ,G), where M is an

activity network with a set of activities A , a set of places P , a set of input gates /, and

a set of output gates O , the structure submodel is a stochastic activity network

(M' ,Ho' ,C' ,F' ,G<) where:

1) M' is an activity network consisting of

a. the set of structure-related activities Ag

.

b. the set Pg of places which are connected to a structure-related activity through

a single gate.

c. the set Ig of input gates which are connected to some structure-related activity.

d. the set Og of output gates which are connected to some structure-related

activity.

78

e. interconnections between
,
Ag

,
Ig , and Og as in M.

2) fiQ is the function Hq restricted to Pg

.

3) C" is the function C restricted to Ag and structure markings.

4) F' is the function F restricted to Ag and structure markings.

5) G' is the function G restricted to Ag and structure markings.

and the term structure marking denotes the marking of M restricted to Pg

.

Definition 4.2: Given a stochastic activity network {M ,Hq,C ,F ,G), where M is an

activity network with a set of activities A , a set of places P , a set of input gates /, and

a set of output gates O , the performance submodel is a stochastic activity network

(M' ,fio' ,C' ,F' ,G') where:

1) M' is an activity network consisting of

a. the set of performance-related activities Ap .

b. the set Pp of places which are connected to a performance-related activity

through a single gate.

c. the set Ip of input gates which are connected to some performance-related

activity.

d. the set Op of output gates which are connected to some performance-related

activity.

e. interconnections between Pp
,
Ap

,
Ip , and Op as in M.

2) //q' is the function //q restricted to Pp .

3) C" is the function C restricted to Ap and performance markings.

4) F' is the function F restricted to Ap and performance markings.

5) C is the function G restricted to Ap and performance markings.

and the term performance marking denotes the marking of M restricted to Pp .

Definition 4.3: Given an activity network, the set of common places P^ is the set

4.2. Base Model Construction

In order to construct a base model by the following procedure, the SAN in question

must satisfy the following conditions.

79

1. The SAS realized by the structure submodel and SAS(s) realized by the perfor-

mance submodel must have a finite set of states.

2. The marking of a common place may not change upon completion of any activity

in the performance submodel.

3. No activity a EA, may have an activity time distribution function, case distribu-

tion, or reactivation function which is dependent on a marking in the set Pp .

4. The set of performance-related timed activities
(
Ap) occurs at a sufi"iciently

high rate, as compared to the structure-related timed activities
(
Ag^A-p), so

that, to a good approximation, the performance submodel will reach steady-state

conditions between the occurrence of structure-related activities.

When a SAN meets the conditions stated above, base model construction can proceed in

the following manner.

Procedure:

1. Construct a stochastic activity network which meets the previously stated condi-

tions.

2. Define the reward rate as a function of the (steady-state) marking of the perfor-

mance submodel or the steady-state probability distribution of the stochastic state

behavior of the performance submodel.

3. Construct the SAS realized by the structure submodel of the SAN in question.

4. For each state of the SAS which corresponds to a distinct marking of the common

places in the reachability set of the structure submodel:

80

a. Construct the SAS realized by the performance submodel of the SAN in question,

taking the initial marking of the common places to be their marking in the current

state of the structure SAS.

b. Derive the stochastic state behavior of the SAS constructed in a.

c. Compute the reward rate in the current state of the structure SAS from the

steady-state stochastic state behavior of the performance submodel.

The state behavior of the structure submodel, together with reward rates determined

above constitute a base model of the system in question. Moreover, such base models

are suited to performability solution methods of the type described in [21, 22, 23, 24] .

Steps 3 and 4 of this procedure can be automated and software tools for this pur-

pose are currently implemented as part of a larger performability evaluation package

known as METAPHOR (Michigan EvaluaTion Aid for PerpHORmability) [22, 25] .

5. LAN EXAMPLE

To illustrate the use of these modeling techniques for performability modeling of

real-time local area networks, let us consider the local behavior of a network in a single

station which employs a scheduling mechanism referred to as promptness control [1] . In

short, promptness control is a monitor that rejects a message before it is transmitted if,

at the time of a promptness check, the message cannot be received before its deadline.

Without promptness control, we assume that the local behavior of the station can be

modeled by a queueing system (see [26, 27, 28] for related work using this approach).

Standard solution techniques for queueing networks (see [29] , for example) may then be

used to solve the model. With promptness control, however, the above local behavior

cannot be modeled directly by a queueing network, requiring instead the type of

81

modeling capability provided by SAN's.

5.1. System Description

The system we consider is a total system S={N,E) where, informally, the local

area network N and environment E can be described as follows. N is a degradable sys-

tem using M identical channels (M>1) for transmitting messages when it is fault-free.

Station B whose local behavior is to be modeled has a finite capacity L [L >0), that is,

B is capable of storing at most L messages. Moreover, there is a promptness control

point (pc point) located at the head of the queue in station B (see Fig. 1). The environ-

ment E consists of the arrival of messages and their associated real-time requirements.

More specific assumptions about N and E are as follows.

5.1.1. Environment Model

Messages arrive at each station of the network randomly. Each incoming message

(to a station) is associated with a specified deadline before which it is required to be

received at its destination (in order to be on time). Various incoming messages to a sta-

tion are classified according to their allowed delays (difference between their deadlines

and their respective arrival times) such that each class represents a set of messages with

the same fixed allowed delay. We assume that the number of such classes is finite and

that the arrival of messages within each class is a Poisson process. We also assume that

the arrivals of messages of different classes form a set of mutually independent (random)

processes.

82

I

5.1.2. LAN Model

As depicted in Fig. 1, the fault-free structure of the network uses M identical chan-

nels. When a channel fails the system is able to recover (with a specified coverage c) to

a degraded configuration with one less channel. However, when there is only one chan-

nel left and that channel fails, total system failure will occur. The stations and prompt-

ness controls are assumed to be fault-free. Failure of a channel is assumed to occur as a

Poisson process with rate of X. The arrival of messages at station B is also assumed to

be a Poisson process with rate of a. Promptness control PC of station B checks any

message at the head of the queue of B for promptness whenever the transmission of a

message of B is completed. If the message is late it will immediately be rejected from

the system; otherwise, the message will get access to a channel and will be transmitted.

The channel access time is assumed to be exponentially distributed with mean of —

.

When a message arrives at its destination it will be checked for promptness. If it is on

time it will be received at the station; otherwise, it will be rejected from the system.

More specifically, in a structural configuration with i fault-free channels {0<i <M), we

assume that the local behavior of station B can be modeled (with good approximation)

by an M/M/i/i+L queueing system (with FCFS scheduling discipline and) which

employs promptness control. Accordingly, an incoming message may be lost either

because the station is full (at its arrival) or because it is rejected by promptness control

(since it is late). Obviously, when a message is transmitted via a channel it may still be

late and miss its deadline during the transmission.

t

83

5.2. Performance Variable

We presume that, ideally, the user wants the LAN to successfully transmit all the

messages that arrive at station B . However, due to finite capacity of station B , failure

of the channels, and deadlines for message transmission, ideal behavior will generally not

be attainable. We assume that after an incoming message misses its deadline it will be

of no value to the user(s). Accordingly, performance variables such as "throughput"

should reflect the rate at which messages are transmitted "on time," i.e., before or at

their associated deadlines. To accomplish this in more formal terms, let T=[0, t]

denote the period during which the system is utilized and consider the following (ran-

dom) variables.

Mf = number of messages that arrive during T

.

SMi = number of messages that are received on time during T

.

Then real-time throughput measures can be defined as follows:

RThi = is the real-time throughput of the system during T

.

^

SMt
NRTht = is the normalized real-time throughput of the system during T

.

In the evaluation that follows, we take Yt=NRThf to be the performance variable

Y of the performability model (see Section 2).

5.3. Base Model Construction

Base model construction is a process of determining a stochastic process X which

can serve as a base model for performability modeling of the system. Such process, how-

84

ever, is influenced by the type of solution method employed. In the discussion that fol-

lows, we assume that the solution method is of the type introduced in [21] and subse-

quently refined in a number of recent studies (see [22, 23, 24] , for example). This

approach presumes a performability model wherein a fixed "performance rate" is associ-

ated with each "structure state". Accordingly, in the process of model construction it is

natural to attempt a structure-performance decomposition as early as possible. For the

system in question this is accomplished as follows.

The structure configurations of the network N is represented by the set of states

Qji ={0,1, • • • M}, where state 2 represents the number of fault-free channels in the

network. (Note that t—0 corresponds to system crash.) Using the earlier assumptions

about the occurrence of faults in the system, we can model the structure behavior of the

network as a Markov process with the set of states . For each structure state i
,

the performance aspects of the network in station B can then be modeled (with good

approximation) by a M/M/i/i+L queueing system with promptness control. Conse-

quently, we can identify a Markov process X; ,• with a set of states Qj ^ such that Xj

models the local behavior of station B when the network is in structure state i . Com-

posing the structure related Xj^ with the performance related X/ ,-, the behavior of the

network N in station B is finally modeled as a single Markov process X with state set

Q ,j) I

I cQjfi ,j cQj i], where i is a structure state of N and j is the performance

related state of A'^ in structure state i . X then serves as a base model for the performa-

bility modeling of the system in question.

The above procedure for determining a base model X, however, may be compli-

cated when the capacity of station B increases, resulting in a large state space. For

example, for the case of a single fault-free channel and a station with capacity L =9,

85

there will be 2 =1024 states in the state set of X . One way to alleviate this difficulty is

to use some models which can represent the system in a natural way and whose state

behaviors can serve as a base model X . Provided that there is a procedure for deriving

the base model X from the model used, and this procedure is automated, the above pro-

cess of base model construction is greatly facilitated.

Employing this approach, we have used stochastic activity networks (SANs) (see

Section 3) to model the system in question where M=2 and L =4, i.e., for a case where

network has 2 channels and the capacity of station 5 is 4. It is also assumed that

the environment consists of only one class of incoming messages (i.e.,, all incoming mes-

sages have a fixed allowed delay). A stochastic activity network corresponding to this

case is given in Fig. 2. As shown in Fig. 2, the model consists of two major parts; a

structure submodel and a performance submodel, representing the structure related and

performance related parts of the system, respectively. This decomposition facilitates base

model construction and model solution (using techniques described in [21, 22, 23, 24]).

In the performance submodel of Fig. 2, the completion of timed activities Ti and

T2 represent the completion of the transmission of messages of station B by the two

channels. Completion of timed activity represents the arrival of an incoming message

at B . The three blocks consisting of instantaneous activities I^, I^, and /s function simi-

larly; each of these blocks represents the shifting of a waiting message in the station to

the next empty buffer stage. Instantaneous activity I2 represents the rejection of late

messages in B (i.e., messages which have missed their deadlines) at pc point PC . This

rejection occurs whenever a message of station B completes its transmission and a late

message is still waiting at the head of the queue in B . Instantaneous activity acts like

a scheduler assigning messages passed PC to the channels for transmission. Places

86

Pz, P 4, P b, a.nd Pq represent the first, second, third, and forth buffer stages in station

B
,

respectively. Having tokens in any of these places represents a message at the

corresponding buffer stage. When there is only one token in one of these places, it

means that the corresponding message will be transmitted by a channel (i.e., it will pass

PC). On the other hand, when there are two tokens in one of these places, it means

that the corresponding message will not be transmitted by any channel and hence will

be rejected at PC . Places Pi and P2 represent the status of the two channels, which are

either available or unavailable to station B . A channel is unavailable to B if it is

transmitting a message of B or if it is faulty. Place P7 represents the number of mes-

sages arrived in station B which will be transmitted (i.e., will not be rejected at PC).

Place Pg represents the total number of messages in the system which arrived at B (and

are either waiting of being transmitted).

When activity completes, meaning that a message has arrived at station B , one

of two cases may occur when it will be checked for promptness at PC ; either it will be

on time or it will not. These two possibilities are modeled by two cases of activity T^,

case 1 and case 2, respectively, as shown in Fig. 2. If case 1 occurs, one token is put in

place Pq, meaning that a message which will pass PC has just arrived at station B . If

case 2 occurs, two tokens are put in place Pq, meaning that a message which will be

rejected at PC has just arrived at B . The (previously mentioned) blocks will then shift

these tokens accordingly if there is an empty stage in the buffer. This is done more

specifically as follows. When a place in the buffer has one token (i.e., representing a

message which will pass PC) while the next place is empty (i.e., the next stage is

empty), the instantaneous activity of the block between these two places completes

immediately and removes the token from the first place and puts it in the next one (i.e.,

87

the message is immediately shifted to the next empty stage in the buffer). Similarly,

when a place in the buffer has two tokens (i.e., representing a message which will be

rejected at PC) while the next place is empty (i.e., the next stage is empty), the instan-

taneous activity between these two places completes immediately and removes the

tokens from the first place and puts them in the next one (i.e., the message is immedi-

ately shifted to the next empty stage in the buffer).

As for the structure submodel of Fig. 2, completions of timed activity represents

the failure of a channel. Instantaneous activity /y represents the occurrence of system

failure when both channels have failed. Place Pg represents the number of fault-free

channels. Place P^q represents the status of the overall system, either operational or

total failure. When a channel fails (via completion of T^) one of two cases may occur;

either the system can successfully reconfigure to an operational state with a single fault-

free channel (case 1) or it cannot successfully reconfigure and the system will fail (case

2). When case 1 occurs, the resulting degraded performance is modeled as follows. First,

place Pii receives one token, denoting that a channel has failed. This change in struc-

ture immediately affects the performance submodel via completion of instantaneous

activity Iq and the disabling of timed activity T2 (representing the failure of a channel).

Completion of instantaneous activity Iq puts one token in place P2, denoting that a

channel has become unavailable to B

.

The above describes an activity network model of the system. A stochastic activity

network model of the system can be formed by assigning the activity rates (timed activi-

ties are assumed to have exponential activity time distributions) to all timed activities

and the case distributions to activities and T^. The stochastic activity network

model of the system in question is shown in Fig. 2, where the activity rate of a timed

88

activity is given by an expression inside parentheses and the case distribution of an

activity is represented as expressions inside brackets associated with the cases of that

activity. Note that case probabilities a{Pj) and c (Fg) are functions of the number of

tokens in places P7 and Pg, respectively, and are defined as follows:

. =0 «

'

c{P,){k)=l-j-

Given this SAN, a base model X is obtained by determining the network's stochas-

tic state behavior. This base model along with the performance variable Y^Yt defined

earlier constitutes a perform ability model {X ,Y) of the system. The solution of this

model is discussed in the subsection that follows.

5.4. Model Solution

The solution method used is of the type introduced in [21] and which subsequently

refined in a number of recent studies [22, 23, 24] . This approach takes advantage of an

important property exhibited by most degradable fault-tolerant systems, namely, that

performance related activities occur at much higher rates than do occurrences of faults.

Accordingly, in each structure state of the system, the state behavior of the system can

be viewed as the long run (steady-state) behavior of the performance related activities.

With respect to a performance variable, this implies that there is a fixed (steady-state)

performance rate associated with each structure state. Considering such rates as reward

rates, the base model X can then be described by a reward model [30] . This reward

model is then solved to obtain the probability distribution function (PDF) of the perfor-

mance variable of the system.

89

In the SAN model of Fig. 2, the structure submodel is relatively simple and consists

of three stable markings representing the three structure states; two fault-free channels,

a single fault-free channel, and no fault-free channels (system failure). The solution then

proceeds by solving the performance submodel for each of these structure states (see [2]

regarding a procedure for this technique). The solution for the case of a system failure is

trivial. All performance variables will simply have rate of 0 in this structure state. For

the other two structure states, the state behavior of performance submodel will be Mar-

kov processes (see [2] for conditions ensuring that the state behavior of a SAN is a Mar-

kov process). Standard Markovian solution techniques may then be used to solve these

processes. Figs. 3 and 4 show the state- transition-rate diagrams of such Markov

processes for the cases of two fault-free channels and a single fault-free channel, respec-

tively. The states of these diagrams are tuples whose elements, from right to left,

represent the number of tokens, if any, of the places Pi P^, Pq, respectively.

Obtaining the steady-state probabilities of these states, the performance submodels for

the above two structure states can analytically be solved. Using such solution method,

Fig. 5 displays the performance rate of the network for the case of two fault-free chan-

nels, with promptness control and without promptness control, as a function of traffic

intensity p=— . It is assumed, in this and subsequent figures, that the allowed delay is

the mean value of the channel access time, i.e., D =—. Fig. 6 shows the same informa-

tion but for the case of a single fault-free channel. As is shown, promptness control

always improves the performance of the system. Finally, for the case of p==2 and the

above allowed delays, we use METAPHOR [22, 25] to derive the PDFs of the perfor-

mance variable Y of the network, with promptness control and without promptness con-

trol, for a given set of system parameters as depicted in Fig. 7. As is the case for (strict)

90

performance in a fixed structure state, we see that promptness control likewise improves

the overall performability of the system.

91

A. Movaghar and J. F. Meyer, "Performability modeling with stochastic activity

networks," in Proc. 1984 Real-Time Systems Symp., Austin, TX, Dec. 1984.

J. F. Meyer, A. Movaghar, and W. H. Sanders, "Stochastic activity networks:

structure, behavior, and application," ITI Technical Report 84-7, Industrial

Technology Institute, Ann Arbor, MI, Dec. 1984.

J. F. Meyer, "On evaluating the performability of degradable computing sys-

tems," in Proc. 1978 Int. Symp. on Fault- Tolerant Computing, Toulouse, France,

June 1978, pp. 44-49.

J. F. Meyer, "On evaluating the performability of degradable computing sys-

tems," IEEE Trans. Comput., vol. C-22, pp. 720-731, Aug. 1980.

J. F. Meyer, "Unified performance-reliability evaluation," in Proc. of the Ameri-

can Control conference, San Diego, California, June 6-8, 1984.

J. L. Peterson, Petri Net Theory and the Modeling of Systems. Englewood Cliffs,

NJ: Prentice-Hall, 1981.

G. Nutt, "The formulation and application of evaluation nets," Ph.D Thesis,

University of Washington, July 1972.

C. Ramchandani, "Analysis of asynchronous concurrent systems by Petri nets,"

Ph.D Thesis, Dept of Electrical Engineering, MIT, July 1973.

J. L. Baer and J. Jensen, "Simulation of large parallel systems: Modeling of

tasks," in Measuring, Modeling, and Evaluating Computer Systems, H. Bellner

and E. Gelenbe, Ed. Amsterdam: North-Holland, 1977, pp. 53-73.

Y.W. Han, "Performance evaluation of a digital system using a Petri net-like

approach ," in Proc. of the National Electronic Conf, vol. 32, 1978, pp. 155-160.

J. D. Noe, "Nets in modeling and simulation," in Net Theory and Application,

Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, 1980.

J. Sifakis, "Performance evaluation of systems using nets," in Net Theory and

Application, Lecture Notes in Computer Science. Berlin, Germany: Springer-

Verlag, 1980.

Computing Surveys (Special Issue on queuing network models of computer sys-

tems performance) ,
vol. 10, no. 3, Sept. 1978.

92

A. A. B. Pritsk er and W. W. Happ, "GKRT: Graphical evaluation and review

technique - Part I. fundamentals," Journal of Industrial Engineering, vol. 17, no.

5, pp. 267-274, May 1966.

S. E. Elmaghraby, "An algebra for the analysis of generalized activity net-

works," Management Science, vol. 10, pp. 621-631, 1964.

B. Beyaert, G. Florin, P. Lone, and S. Natkin, "Evaluation of computer system
dependability using stochastic Petri nets," in Proc. 1981 11th Int. Symp. on

Fault- Tolerant Computing, Portland, ME, June 1981, pp. 66-71.

S. Shapiro, "A stochastic Petri net with application to modeling occupancy times

for concurrent task systems ," Networks, vol. 9, pp. 375-379, 1979.

M. K. Molloy, "Performance analysis using stochastic Petri nets," IEEE Trans.

Comput., vol. C-31, pp. 913-917, Sept. 1982.

J. F. Meyer, "Performability modeling of distributed real-time systems," in

Mathematical Computer Performance and Reliability, G. lazeoUa, P. J. Courtois

and A. Hordijk , Ed Amsterdam: North-Holland, 1984.

M. A. Marsan, G. Balbo, and G. Conte, "A class of generalized stochastic Petri

nets for performance evaluation of multiprocessor systems," ACM Trans, on

Computer Systems, vol. 2, no. 2, pp. 93-122, May 1984.

J. F. Meyer, "Closed-form solutions of performability," IEEE Trans. Comput.,

vol. C-31
, pp. 648-657, July 1982.

D. G. Furchtgott and J. F. Meyer, "A performability solution method for

degradable, nonrepairable systems," IEEE Trans. Comput., vol. C-33, June 1984.

L. Donatiello and B. R. Iyer, "Analysis of a composite performance reliability

measure for fault tolerant systems," IBM Res. Report RC10325, January 1984.

A. Goyal and A. N. Tantawi, "Evaluation of performability in acyclic Markov
chains," IBM Res. Report RC10529, May 1984.

D. G. Furchtgott, "Performability models and solutions," Tech. Report CRL-
TR-8-84, Univ. of Michigan, Ann Arbor, MI, Jan. 1984.

A. S. Sethi and T. Saydam, "Performance analysis of token ring local area net-

works," in 9th Conference on Local Computer Networks, Minneapolis, Min-

nesota, October 1984.

M. E. Ulug, "Calculation of waiting times for a real-time token passing bus " GE
Research Report, Schenectady, New York, 1984.

M Marathe and S Kumar, "Analytical models for an ethernet-like local area
network hnk, m ACM/Sigmetrics Conference on Measurement and Modeling ofComputer Systems, Las Vegas, NV, Sept. 1981.

L. Kleinrock, Queueing Systems, Volume I: Theory. New York, NY: John Wilev
1975. ' ''

'

R. A. Howard, Dynamic Probabilistic Systems, Vol II: Semi-Markov and Decision
Processes. New York, NY: Wiley, 1971.

94

Sta-tion

(capacity L
)

Promptness

control

Co .

Cz -

Channels ^ ^

Fig. 1 Block diagram of A''.

95

96

I

97

98

Fig. 5 Performance rate of 5 for the cose of two fault-free channels.

With PC

0 1 2 3 4 5

99

100

Fig. 7 Plut of f 1^(3/) as a funcLion of y for the

iiidicaLeJ choices of I and base model parameters. With PC

Without PC

t =2'10

c =.90

Fi=.00

0.2 0.4 0.6 0.8

101

Token Passing Networks and Starvation Issues.

by Anastase Nakassis
Institute for Computer Science and Technology
National Bureau of Standards, Dept of Commerce.
Building 225, room B221.

, Wash. D.C. 20234

Abstract : In what follows we will advance a necessary and
sufficient condition for a low priority queue to
eventually get and use the token. Then we will use some
of the machinery we will develop in the proof of the
above mentioned condition in order to explore issues of
Target Rotation Time (TRT) allocation and fairness.

INTRODUCTION.

Assume that there are k queues named l,2,3,...,k. It is assumed that
the token is passed from queue 1 to queue 2, to queue 3, . . . ,to queue k,
to queue 1, ... and so on. Clearly what matters is the cyclical order,
so that one might have named the same queues i,i+l, . . . ,k, 1,2, . . . ,i-l
(l<i<=k). In particular, the last queue (k) may be any particular
queue we wish to denote as "last queue".

By "token passing" we mean something more general than what the term
usually denotes (passing the token from one station to the next).
In this text, token passing means passing the "right of transmission"
and takes place from queue to queue, not from station to station.
For reasons that will be explained later, token passing will be thought
of as being an instantaneous event . In what follows we assume that we
have been given two sequences - h[i] and TRT[i] , 1=1,2,3,4 k -

such that

:

1. If queue i is of high priority, then h[i] >0 and TRT[i]=0.
2. If queue i is not of high priority, then h[i]=0 and TRT[i]>0.

Evidently, h stands for token holding time and TRT for Target
Rotation Time.

Notice that we do not make any assumption concerning the distribution of
high priority queues, although the IEEE 802.4 standard (July 1984,
draft F) on which this work is loosely based does imply some
distribution

.

Let f (x)=max{x, 0} , that is f(x)=x whenever x>0 and f(x)=0 otherwise
(another way to define f is x plus absolute value of x, divided by two).
Then a necessary and sufficient condition for low priority queue i not
to starve under any conceivable circumstances is that,

TRT[i]> SUM h[j] + SUM f (TRT [j] -TRT [i]) (1)

j j

In particular, if i is chosen in such a way that TRT[i] is minimal among
all positive TRT's, then the above condition becomes a necessary and
sufficient condition so that no queue ever starves. Indeed, in this
case the left side hits its minimum while the right side hits its
maximum as a cursory inspection will readily show.

102

By starvation, of course, we mean that one can conjure up patterns of
token usage which are compatible with the protocol specifications and
in which queue i has messages to send but is unable to do so for all
times beyond some arbitrary time t.

Finally, let us address the problem of "instantaneous" token
transition. If the time it takes to pass the token from one station to
the next is constant, then we can reduce each positive TRT entry by D,
the total time we spend in token passing during a complete revolution,
and act as if the time we spend in token passing is zero. Clearly, if
there were low priority queues in the original network for which
0<TRT[i]<=D, then these queues will starve regardless of the token
usage by the other queues. We can therefore assume that
min { TRT[i] i i=l , 2 , 3 , . .

. , k } exceeds D so that we can reduce each
TRT by D and use expression (1).
Alternatively, if the token passing times are constant, then
the lemmas we will develop will show that a sufficient
and necessary condition is given by (2) below:

TRT[i] > SUM h[j] + SUM f (TRT
[j

] -TRT [i]) + D (2)

j j

In the more general case, the time needed to pass the token is not
constant and one way to use the results obtained under zero token
passing time is to insert between any two queues an imaginary high
priority queue which holds the token long enough to simulate the token
passing time of the original network. Thus, we can always embed the
original network into a network with more high priority stations and
no token passing time. We will see in an appendix how this construct
can be used in order to yield both probabilistic statements and
deterministic statements in the general case.
But, for the time being, let us assume that the token passing time is
constant and equal to zero.

PROOF OF THE STATEMENT

Definition: A sequence {s[i,j]} , 1=0,1,2,3,... and j=l,2,3 k ,

is called admissible iff (if and only if):

1. for all i and j s[i,j] is not negative, and
2. for all j s[0,j]=0, and
3. whenever h[j]>0, h[j]>=s[i,j], and
4. whenever h[j]=0 and s[i,j]>0, then

TRT[j] >= s[i-l
,
j]+s[i-l , . . .+s[i-l,k]

+s[i,l]+s[i,2]+. . .+s[i,j]

.

Admissibility then means that one can create a scenario such that at
the i-th revolution the j-th queue has held the token for s[i,j] time
units. Evidently, queue j can starve iff there is an admissible
sequence such that

s[i-l,j]+s[i-l,j+l]+.. .+s[i-l ,k]+s[i, l]+s[i,2]+. . .s[i, >=TRT[j] (3)

for all i that exceed some nonnegative i[0].
In this case, even if queue j has messages to send, it is prevented

from using the token by the protocol.

103

In what follows we will assume that j=k. Indeed, from what we
remarked in the introduction, there is no loss of generality in
assuming that a particular queue is the last queue.

We plan to prove by contradiction that if (1) holds for queue k,
then queue k cannot starve. To do so we need some lemmas which, given
an admissible sequence that satisfies (3) for all i, i>=i(0), and j=k,
will allow us to construct more tractable admissible sequences that
also satisfy (3). The following two lemmas show us how to "frontload"
an admissible sequence.

Lemma 1. Assume that {s[i,j]} is an admissible sequence. Let {t[i,j]}
be another sequence which agrees with s in all terms but
two, t[i'

,

j
']=s[i'

,

j
']+p and t [i ' ,

j
' +1] =s[i ' ,

j -p
(p being a positive constant). The sequence t[i,j] is
admissible iff

a. s[i',j'+l]>=p, and either
b. h[j

'
] >=s[i'

,

j
']+p>0, or

c. TRT[j '
] >=s[i'-l, j ']+s[i'-l, j

' + + . . .

+s[i'-l,k]+s[i' , l]+s[i' ,2]+ +s[i'
.

j
']+p.

Proof : Trivial

.

Condition a. ensures that all terms of t are nonnegative.
Condition b. ensures that if queue j' is of high priority,
then its token usage does not exceed h[j'].
Finally, the forward transfer of credit ensures that from all
sums of the type
s[i-l,j]+sti-l,j+l]+...s[i-l,k]+s[i,l]+s[i,2]+...s[i.j]
the only one to increase is the one obtained when i=i' and
j=j ' •

Condition c. ensures that even after the increase, this sum
does not exceed TRT[j'].

LEMMA 2. Let {s[i,j]} be an admissible sequence such that
s[i'

,

j '+l]=s[i'
,

j '+2]= ... =s[i' ,m]=0<p<s[i' ,m+l]

.

If either h[j
'

] >=s[i ' ,

j
']+p or if

TRT[j
'

] >=s[i'-l, j
']+s[i'-l, j '+1]+

. . .+s[i'-l,k]+s[i' ,l]+sti' ,2]+. . .+s[i' ,J']+p,
then we can construct a new admissible sequence by
transfering p time units from s[i',m+l]
(s[i' ,m+l]=s[i' ,m+l]-p) to s[i',j'J (s[i ' .

j
'
] =s[i ' ,

j
']+p)

.

Proof: It suffices to remark that all terms remain nonnegative,
that the only entry that increases is sti',j'] (which remains
less than h[j'] if queue j' is of high priority), and that the
only (i,j) for which s[i,j]>0 and the sum
s[i-l,j]+sti-l,j+l]+...+s[i-l,k]+s[i,l]+s[i,2]+...s[i,j]
increases is (i',j'). By hypothesis, if queue j' is of low
priority, then TRTtj'] will continue to exceed this stum even
after the forward transfer of token usage.

THEOREM 1. There is no admissible sequence {s[i,o]} such that

s[i-l,k]+s[i, l]+s[i,2]+. . .+s[i,k-l] >=TRT[k]

for m+1 successive values i provided that the number of
of low priority queues is m and that condition (1) holds
for queue k.

(4)

104

(this means that queue k is of low priority and that
TRT[k] > SUM h[j] + SUM f(TRTtj]-TRT[k])).

j j

Proof: We will argue by contradiction. Assume that m+1 such
successive values can be found starting with i=i[0] . Let then
.i[n] stand for i[0]+n, the n-th successor of i[0]. We observe
that (4) implies that s[i,k]=0 for i=i[0] ,i[l] ,i[2] , . . . ,i[m]

.

Furthermore, we may assume equality in all of the m+1
occurrences of relation (4). Indeed, whenever the inequality
is strict, we can lower some, or all, of the s[i,j] so that
the sequence remains admissible and relation (4) becomes an
equality for i=i[0] ,i[l] , . . . ,i[m]

.

Since s[i,k]=0 for i=i[0] ,i[l] , . .
. ,i[m] , the row sums

s[i,l]+s[i,2]+. . .+s[i,k-l]
are all equal to TRT[k] for i=i[l] ,i[2] ,i[3] , . . . ,i[m]

.

Based on this remark we will prove that if j[l] is the first
low priority queue, then the admissible sequence s can be
modified in such a way that all of the above properties will
hold and in addition:

s[i,j]=h[j] for i=i[1] .i[2] , . . . ,i[m] and j<j[l], and
s[i, jtl]]=f(TRT[j[l]]-TRT[k]) for i=i[2],i[3], i[m].

Indeed, if there is a high priority queue j, if s[i,j]<h[j],
and if j is followed by queues that use the token, then lemmas
1 and 2 assure us that we can obtain a new admissible
sequence by transferring to j token usage from the queues that
follow queue j . This transfer will stop when either
s[i,j] equals h[j] or all token usage after queue j becomes
zero. Thus, if jtU is the first low priority queue, then one
can construct a new sequence s for which all of the above
conditions hold and for which s[i,j]=h[j] for i=i[1] , . . . , i[m]
and j<j[l]. Indeed, conditions (1) and (4) ensure that in
rows i[l] through itm] there is enough credit (TRT[k]) to
fill queues 1 through j[l]-l.
Since entries 1,2 j[l]-l are identical for rows i[l]
through i[m], and since rows i[l] through i[m] sum to TRT[k]

,

then s[i, j [1]] < =f (TRT[j [1]]-TRT[k]) for i=i[2] , . . . ,i[m]

.

Furthermore, conditions (1) and (4) guarantee that there
is enough credit to be transfered in jtl] so that
s[i,o[l]]=f(TRT[j[l]]-TRT[k]) for i=i[2],i[3] i[m]

.

Obviously, the transfer of credit to s[i,j[l]i does not
destroy the admissibility of s.

By repeating the eibove argTiments, we can prove that if j[2] is
the second low priority queue, then we can transfer credit
within s in such a way that :

s[i.j]=h[j] for i=i[2] itm] and jtl]<j<o[2], and
s[i. j [2]]=f (TRT[j [2]]-TRT[k]) for i=i [3] . i [4] , . . . , i [m]

.

Finally, one can see by induction that if j[m-l] is the
[m-l]-th low priority queue, then one can transform s so
that

:

s[i,J]=h[j] for i=i[m-l] , i[m] and j [m-2] <
j

<
j [m-1] , while

s[i, j [m-1]]=f (TRT[j(m-l)]-TRT[k]) for i=itm].

But then, all queues between j[m-l] and k are high priority

105

queues whose token usage time is bounded by the corresponding
h value. Therefore, if i'=i[in], then

s[i' ,k]=TRT[k]-s[iM]-s[i' ,2]-. . .-s[i' ,k-l]

TRT[k]- SUM h[j] - SUM F(TRT[j] -TRT[k]) > 0.

j j

Therefore, we have just produced a contradiction. It ensues
that when condition (1) holds for queue k and when queue k
has messages to send, then it cannot be silenced for more
than m turns, m being the number of low priority queues.

Corollary 1. A queue can be forced to remain silent for m turns.

Proof: The proof is implicit in what preceeded. Therefore, we will
simply illustrate this corollary by an example. Assume that
there are no high priority queues and that there are three
low priority queues with TRT values 45, 40, and 30. The
following sequence is then admissible

:

0 0
15 10
15 10
20 10
15 15
15 10 and so on,

Corollary 2. If

TRT[k]<= SUM h[j] + SUM f (TRT[j] -TRT[k]) (5)
j j

, then queue k can be made to starve.

Proof. We can always find nonnegative numbers ctj] such that
a. if h[j]>0, then h[j]>=c[j], and
b. if TRT[j], then f (TRT[j] -TRT[k]) > =c[j] , and
c. c[l]+c[2]+. . .+c[k]=TRTtk]

,

provided that (5) holds. Remark that c[k]=0 and that
c[j]=0 for all low priority queues j for which TRT[j] < =TRT[k]

Let sti,j]=c[j] for i=l,2,3,... and j=l,2,3 k.
Then we have :

a. All s[i,j] are non negative, and
b. whenever h[j]>0, then h[j] > =s[i

,
j] =c[j] , and

c. whenever TRT[j]>0 and s[i,j]>0, then
s[i-l,j]+s[i-l,j+l]+. . .+s[i-l,k]+s[i,l]+s[i,2]+. . .+s[i,j]<
c[j]+c[j+l]+. . .+c[k]+c[l]+c[2]+. . .+ct j]=
TRT[k]+c[j] <=

TRT[k]+f (TRTt j]-TRT[k]) = TRT[j].
(notice that s[i,j] (c[j]) cannot be positive unless

TRT[j] >TRT[k]).

Therefore, there is a sequence, the one we just constructed,
which is admissible and which makes queue k starve. Indeed,
the protocol will prevent queue k from using the token since:

106

s[i-l.k]+s[i,l]+sti,2]+...+s[i.k-l]=
0 +c[l] +c[2] +...+c[k-l] =TRT[k]

(END OF PROOF)

It is quite obvious that in the above example not only queue k, but
also every low priority queue j for which TRT[j] < =TRT[k] has been made
to starve. Thus we have actually proven that there is an admissible
sequence for which all starvable queues do starve at the same time.
Indeed, we observe that while x is an increasing function of x,
SUM h[j] +SUM f(TRT[j]-x) is a decreasing function of x. Therefore,
j j

whenever there are starvable queues, there is among them a starvable
queue k' for which TRT[k'] is maximal. But, as stated in the
introduction, the names assigned to the queues and the choice of the
"last queue" is arbitrary. Therefore, there is no lack of generality
in assuming that k'=k (this is tantamount to saying that when there
are starvable queues, then we will assign najnes in such a way that
queue k is starvable and TRT[k] exceeds or equals TRT[j] for every
other starva±)le queue j). Under these conditions,

a. Whenever 0< TRT[j] < =TRT[k] , queue j fails condition (1) and is
starvable. while

b. Whenever TRT[j3> TRT[k] . queue j satisfies (1) and is not
starvaJDle

.

By applying corollary two, we see that there is an admissible
sequence that starves queue k and every other starvable queue j

.

APPENDIX 1.

On the fairness issue.

One can, conceivably, argue that the starvation issue is not important
because in any reasonable network the average input equals the average
output. Thus, every queue will sooner or later get the token. If on
the other hand the system is unstable, then regardless of starvation
the system is not satisfactory.

This argument makes the implicit assumption that the average output
is independent -or at least not sensitive to the choice- of the TRT's
and of the h's. This assumption is not true for all networks (see
ref[2]). But, since this objection does not raise starvation
related issues, let us pass onto the next one:

Although a queue may eventually get the token, it is conceivable that
it will do so in such an irregular way that the length of the queue's
contents will vary greatly with time. Such a feature (feast or famine)
is unwelcome in general, it is likely to result in higher standard
deviation, and it may be totally unacceptable in situations in which
the timely delivery of a message is important (e.g. when very long
silences are interpreted as a sign that one's correspondent is no
longer " alive and well").

In what follows we will use the insights obtained in the previous
section in order to find sequences that will give us an idea of how
uneven the token usage can become. Let us assume for instance that
there are k low and k high priority queues in the following order:

107

TRT[l]h[l]TRT[2]h[2] TRT[]j;]h[k]

(notice that we are using the same symbol to denote a queue and its
token rotation time/token holding time). Let us also assume that :

a. TRT[k]=TRT=min{TRTt 1] ,TRT[2] ,TRT[3] , . . . ,TRT[k] } , that
b. TRT>S= SUM h[j] +SUM f (TRT[j] -TRT) , that

j j

c. F=TRT-S, and that,
d. U[i]=TRT[i]-TRT, i=l,2,...,k.

We can contruct then the following admissible sequence :

LO: 0 0
LI: U[l] h[l]
L2: U[l]+F h[l]
L3: U[l] h[l]

0 0 0 0 0 0
U[2] h[2] U[k-1] h[k-l] 0 h[k]
U[2] h[2] U[k-1] h[k-l] 0 h[k]
U[2]+F h[2] U[k-1] h[k-l] 0 h[k]

Lx:

Lk: U[l] h[l] U[2] h[2] U[k-1]+F h[k-l] 0 h[k3
Lk+1: U[l] h[l] U[2] h[2] U[k-1] h[k-l] F h[k]
Lk+2: U[l] h[l] U[2] h[2] U[k-1] h[k-l] 0 h[k]

In the above sequence row LI contains admissible but arbitrary
values. All other values have been found under the assumption that all
queues are full and can use as much time as they are allowed by the
protocol. Since rows L2 and Lk+2 are identical, the finite sequence
given above will reproduce lines LI through Lk+2 until such time
that a queue will not be able to use all the time that the protocol
allows it to. We see then that the token usage for the j-th
low priority queue is proportional to (k+l)*(TRT[j]-TRT)+F.
This sequence may or may not be a worst case sequence. It implies
though that the token usage does not depend as much on the relative
values of the TRT's as on the relative values of their differences and
the quantity we called F. For instance, assume a network
having no high priority queues but three low priority queues with T's
equal to 70, 45, and 40 time units, respectively. Then F=40-30-5=5
and a possible sequence is :

LO 0 0 0
LI 30 5 0
L2 35 5 0
L3 30 10 0
L4 30 5 5

L5 30 5 0 and so on.

As usual, it is assumed that the second row values are arbitrary,
but the rest of the values are obtained on the assumption that each
queue can use the token for as much time as it is allowed to hold it
by the protocol. In the example above, the relative token usage is
125/25/5 and the (token usage)/TRT ratios are 1.79/0.56/0.125

A "cure" for the above situation could be to force all the TRT[i]'s
to be identical. This can also create problems. On the one hand it
denies us the freedom to discriminate between low priority queues.
It is also not much of a cure as the following example will show:

Assume one high priority queue with holding time h[l]=l followed
by k (k=2m-l) low priority queues with all TRT values
TRT[1] ,TRT[2] , . . . ,TRT[k] equal to t+1. Then, if all low priority

108

queues are full, one admissible sequence is the following:

LO . 0 0 0 0 0 0 0 0 0 0
LI 0 t+1 0 0 0 0 0 0 0 0
L2 1 0 t 0 0 0 0 0 0 0
L3 0 1 0 t 0 0 0 0 0 0
L4 1 0 0 0 t 0 0 0 0 0
L5 0 1 0 0 0 t 0 0 0 0

Lx
Lx+1
Lx+2

Lk-3 1 0 0 0 0 0 t 0 0 0
Lk-2 0 1 0 0 0 0 0 t 0 0
Lk-1 1 0 0 0 0 0 0 0 t 0

Lk 0 1 0 0 0 0 0 0 0 t
Lk+1 1 0 0 0 0 0 0 0 0 0
Lk+2 0 t+1 0 0 0 0 0 0 0 0

In this instance the token usage times are proportional to
t+m/t/t/ . . . /t/t .

If t is small compared to m, then the first low priority queue enjoys a
pronouncedly unfair advantage. If on the other hand t is big, then
each queue will have to wait for a long period of time before getting
the token. Finally, it must be noticed that every now and
then we manage to shut off all queues but one (see the ** row).
If the token passing time is constant and relatively big, then we have
wasted a considerable amount of time doing little but token shuffling.

Appendix 2

.

The case when the token passing time cannot be treated as a constant.

As we remarked earlier, one way to extend our results to the case in
which the token passing times are not constant is to consider that
between any two queues of the original network there is a phantom
high priority queue that holds the token during the token passing
phase between two adjoining real queues. Evidently, these phantom
queues do not emit any "real messages" but they otherwise behave as
high priority queues. If upper bounds can be found for their h
values, then we could set their h values as equal to these upper
bounds. If not, we can set them equal to plus infinity. A quite
natural assumption is that the time needed for token passing between
two adjoining stations i and j (j is i+1 except when i=k; in the latter
case j=l) during the n-th rotation, Z[j,n], is a random variable whose
values are independent of the network's history and have a distribution
function H(

. ;j). Assume then that there are k phantom queues and a
sequence d[i], i=l,2,3,...k, such that

TRT[k] > SUM h[j] + SUM f (TRT [j
] -TRT [k]) + SUM d[j] (6)

0 j j

C Clearly d is zero for the real queues while h and TRT are zero for the
phantom queues.

)

If (6) holds, and if q is defined by

q=Prob{ Z[j,n]<d[j] for l<=j<=k and m+1 consecutive values of n} , (7)

109

then the probability that queue k will be silent for m+l consecutive
revolutions is at most 1-q.
(Remark: We still assume that the last queue, k, is a real low

priority queue. Thus the time it takes to go from queue k
to the next real queue is thought of as being part of the
next rotation.

)

The proof is straightforward: Given a sequence of observed values,
the probability is q that (7) holds. For these sequences, queue k
cannot have been silent for the m+l token rotations that (7) covers.
Indeed, if it were, then there would exist an admissible sequence
for which phantom queue j holds the token d[j] time units or less
for m+l consecutive rotations, m being the number of the low priority
queues; at the same time, the protocol is preventing queue k from using
the token. If this were possible, then we could construct a new
network in which the present network's "phantom" queues have been
dubbed "high priority" queues with holding times equal to the
corresponding d values. The sequence that makes queue k silent for
m+l turns in the present network would be admissible in the new
network. Since the old and the new network have the same number of
low priority queues with the same TRT's, and since relation (7)
assures us that (1) will hold for the new network, we know that there
can be no admissible sequences that can deny queue k the token for
m+l consecutive rotations.

It is quite obvious that the above result can be strengthened in
several ways. For instance, we could have started as follows:

Let d[j]=max(X[j,n] i n=n[0] , n[0] +1 , . . . n[0] +m} for every phantom queue
j, and let q be the probability that (6) holds. Then, given any
sequence of m+l successive rotations, the probability that queue k
will be denied the token in each and every rotation in this sequence
is at most 1-q.
It is also quite obvious that we did not need to assume independence
between the network's history and the times needed to pass the token,
but in this case it would have been difficult to arrive at reasonable
estimates of q. Since it is also clear that all of the above
statements are vacuous when q is zero, from a practical point of view
we need models which are both reasonable and tractable.
Clearly, if our network starts exhibiting pathological behavior, a more
appropriate assumption is that the X values are not independent of each
other and of the network's history. But, it would hardly be appropri-
ate to focus on the problems of pathological behavior (in this instance
the network's behavior when several nodes and/ or the medium
malfunction) before we more or less understand the normal, usual, and
ordinary network functioning. From this point of view, it would appear
that the independence assumption for the X values is appropriate.

Appendix 3

.

The effects of exceeding the protocol's time allocation.

In what preceeds we assumed that whenever the protocol allows a
queue to transmit for t time units, then the queue will hold the
token for t time units or less. But, whenever a queue has not
exhausted either its messages or the allowed time t, it will attempt
to transmit one more message. Therefore, if the queue has sufficiently
many messages, the last transmission may start at time t-d and end
at time t+e so that the actual token usage (t+e) exceeds the allowed

110

token usage (t). When this effect is considered, it is clear that
our previous results need be adjusted. Fortunately, it is easy
to reformulate what preceeds in such a way that only minor changes
will be needed.

While the protocol allocates token usage on the basis of the h and
TRT sequences, the observed usage must, reflect the time extensions
due to the transmissions that extend the allocated time. Assume
therefore that for each high priority queue i, i=l , 2, 3, . . . ,k, he[i]
exceeds h[i] by the length of the longest possible extension for
queue i, and that TRTe[i]=0. Similarly, if j, j =1 , 2 , 3 ,k, is a
low priority queue, TRTe[j] exceeds TRTCj] by the length of the
longest possible extension for queue j and he[j]=0. Thus, a high
priority queue i, i=l,2,...,k, can keep the token for up to he[i]
time units while a low priority queue j, j=l ,2, 3, . . . ,k, can keep the
token for up to TRTe[j]-R units provided that the observed previous
rotation time, R, is less than TRT[j]. Assume also that F is a real
function defined as follows:

F(j,i) equals 0 unless TRT[j] >TRT[i] >0 in which case F(j,i)
equals TRTe[j]-TRT[i]

.

Given these definitions, we find that all precceding results hold,
provided that we substitute he[j] for h[j] and TRTe

[j] for TRT[j]
whenever TRT[j] exceeds TRT[i] . As an example, Theorem 1 holds if
condition (1) is modified as follows:

TRTLi] > SUM he[j] + SUM F(j,i) (8)

j j

A cursory examination of our statements and conditions reveals
that we can systematically modify and reformulate them in such a
way that these statements will remain true while all possible
token usage extensions will be correctly treated.

REFERENCES

[1] "An introduction to Probability Theory and Its Applications",
volumes I and II, by William Feller. (John Wiley and sons).

[2] "Stability issues in token passing networks", by A.Nakassis.
Internal ICST (NBS) memo.

Ill

Session III:

Performance Issues

Chairperson: Karen Hsing
National Bureau of Standards

112

Performance Analysis of the 802.4 Token Bus
Media Access Control Protocol

Jade Y. Chien

Network Architect

Ungermann-Bass, Inc.

Santa Clara, California

Abstract

IEEE Standard 802.-1-1984 defines a local area network protocol based on the

concept of token-passing for controlling access to a broadcast medium. A performance

analysis of such a network using simulation techniques has been conducted. Perfor-

mance is characterized in terms of stability, fairness, throughput, and acquisition delay.

This paper is a report on some of those efforts. Our analysis shows that the network

remains stable as the load increases. Fairness can be attained if enough time is allowed

for the system to become saturated. The acquisition delay is sensitive and degrades

greatly as load increases.

A comprehensive discussion of how the performance of the network is affected by sys-

tem parameters like data length, network sizes, token hold time, and station delay is

also included.

Keywords: local area network; 802.4; Media Access Control; token bus; simulation; sta-

bility; fairness; throughput; acquisition delay; performance characteristic.

113

Table or Contents

1. Introduction 1

2. Review of the Tolten Bus Protocol 1

3. The Methodolog) 3

3.1 Model Assumptions 5

3.2 Parameters 8

3.3 Statistics Collection 9

4. Performance Characteristics 10

4.1 Stability 10

4.1.1 Varying Frame Arrival Rate 10

4.1.2 Varying BaTa Length 12

4.1.3 Varying Number of Active Stations 13

4.2 Fairness 15

4.2.1 No Insertion After Initialization 16

4.2.2 Insertion After Initialization 18

4.3 Data Length 22

4.4 Number of Active Stations 25

4.5 Acquisition Delay.. 28

4.6 Token Hold Time.. 29

4.6.1 Moderate Load. 29

4.6.2 Hea\7 Load 32

4.7 Station Delay 34

4.8 Additional Factors 37

5.. Conclusions 37

114

1. Introduction

Due to the recent interest in industrial automation, the IEEE 802.4 Token Bus

Media Access Control (MAC) for Local Area Networks has received a great deal of

attention. One of the most attractive architectures for such a network is a shared,

ordered access broadband system with distributed control.

Nevertheless, the performance characteristics of the token bus protocol do not seem to

be well understood. At Ungermann-Bass, Inc. we have recently conducted a perfor-

mance analysis of this media access method based on a simulation model. The intent

of the present study was to further our understanding of the system by characterizing

the behavior. In addition, an attempt is made to assess performance under different

configurations and investigate various important design parameters.

It is worth mentioning that successful use of a local computer network depends on

much more than the specific communication medium. Many applications use higher

level protocols, including a complete architecture for internetwork communication

among numerous different systems. Those topics, however, are beyond the scope of

the current study, which is directed primarily at the behavior of the token bus protocol

itself.

In the sections which follow, we review the token bus protocol, describe the methodol-

ogy and the test environment, characterize the behavior of the system, and finally

highlight some of the important parameters.

2. Review of the Token Bus Protocol

The Media Access Control Sublayer controls when a station may transmit.

Token passing on a bus network is a method by which multiple stations share a com-

mon bus without conflict. A control packet known as the token regulates the right to

access. The token frame contains a destination address. The station receiving the

token acts as the temporary master of the network, and may transmit one or more

frames for up to a pre-set time limit.

The stations are assigned logical positions in an ordered sequence. This sequence by

which the token is passed among the stations is commonly referred to as a "logical

ring*. Note that not all active stations need to participate in the logical ring. Non-

token-using stations are allowed on the bus. Figure 1 illustrates this concept.

115

MEDIUM

Note:

Participating Stations:

A,B,C,D,E, and C
Non-Token Using Stations:

F and H

Figure 1 — Logical Ring on Physical Bus

116

I

This scheme requires considerable maintenance. The maintenance functions include

ring initialization, insertion into the logical ring, deletion from the ring, token passing

obligation, and fault management. These functions are performed by one or more sta-

tions on the bus. However, the token holding station has a bigger share. The token

holder may invite new stations to enter the ring periodically, and may remove itself

from the ring. The token holding station monitors its own token passing process and

detects multiple-token situation.

Lastly, as an option, a token bus system can include classes of service that provide a

mechanism of prioritizing access to the bus.

3. The Methodology

The most popular approach to the solution of a complex system model is to

simulate it, i.e. to use a program which behaves like the model and observe the

behavior of the program. The principal advantage of simulation is its great generality.

The simulation model describes the operation of the system in terms of individual

events of the individual elements in the system. The interrelationships among the ele-

ments are also built into the model. Then the model allows the computing device to

capture the effect of the elements' actions on each other as a dynamic process.

Another important characteristic of the simulation model is that simultaneous resource

processing can easily be taken into consideration.

Our approach to simulating the token bus protocol is a self-driven, event-advance

simulation. The simulation model is driven by generating statistical input data. The

simulation program provides the timing mechanism for the simulated system and takes

simulated time into consideration in its actions. The approach is to identify significant

events in the simulated system, i.e., times when noticeable changes occur. It is at these

points in simulated time that the simulation program must take action.

Each event is described by the time at which that event is to occur and by the action

that takes place. For a queuing network model, a typical event is the completion of a

job's service time.

The simulation program maintains a list of events ordered by time of occurrence. The

program cycles through the following steps:

117

1) Select the event with the earliest time.

2) Set the simulated clock to this time.

3) Perform the action.

118

At Ungermann-Bass, Inc. we have employed PASCAL to implement our

simulation model. This tailored simulation describes the topology and
access mechanism to a sufficient level of detail. The list of events is

represented by a linked list. Each list element includes the time and the

attributes of the event. We have considered the following types of

events:

Frame arrival - simulates frame arrival at the station

Station arrival - simulates non-token-using station desire to enter ring

Token holding - simulates when a station hears a token addressed to itself

and has the right to transmit

Sending frame - simulates the process of frame transmission

Frame reception - simulates frame received at the destination

Token passing - simulates the token passing obligation

Solicit successor - simulates the sending of the solicit_successor frame,

opening response window, resolving contention, and allowing new station

to join.

The simulator maintains two waiting queues at each station, the transmit queue and

the receive queue. Care is taken not to allocate a station for more than one frame con-

currently by queuing up requests for the station in a FIFO manner. However, con-

current services of different frames at different stations are allowed. In fact, the model

takes into consideration the various pipelining processes.

3.1 Model Assumptions

The following model assumptions were used in our simulation:

• The network is in a steady state condition where a logical ring has been

established and no error conditions are present.

119

The Head End Remodulator is in the center of the network configuration.

The radius of the network (the distance of the farthest unit to the Head
End Remodulator) is less than one mile. The cable propagation delay is 1

microsecond for every 1000 feet. The delay at the Head End Remodula-
tor is 7 microseconds.

The channel bandwidth is 10 Mbps (Mega-bits per second).

The six byte addressing structure has been adopted.

A token frame is recognized by the hardware as soon as the Frame Con-

trol (FC) field is read and the Destination Address equals This Station

Address. However, the Frame Check Sequence (FCS) field has to be read

and ctiecked to make sure that the token frame is good and is not gar-

bled. In other words, the transmitted message must be received to recog-

nize a good token.

The length of the preamble is 4 bytes.

The modem delays on the transmit and the receive sides are 0.5

microseconds and 3 microseconds respectively.

After a station has received a token, the delay to release a new token is

one microsecond. The delay to transmit the first pending frame at the

transmit queue is one station delay. Station delay is the longest time a

station waits to begin transmitting after having heard a frame to which it

should respond. The Transmit State Machine will be signaled in this

situation.

Stations not using the optional priority feature transmit every data frame

with an access class of 6 (the highest priority).

The workload model is described as follows: Frames arrive at each station

according to Constant or Poisson distribution with mean interarrival

time, the length (in bytes) being constant. The destination for the frame

is chosen at random from the other station.

120

The simulated error rate is 1 bit in 10 . Since this error rate is so low,

frames received in error have been excluded from all of the results

reported.

Non-token-using stations require ring insertion according to a Constant

distribution with mean interarrivai time.

121

3.2 Parameters

The simulated configurations are fully parameterized. For the simulator, the

following model parameters can be set:

1) Bandwidth of the bus

Maximum number of stations that can be connected on a single physical

channel

6

7

8

9

10

11

12

13

Initial number of participating stations on the bus

Propagation delay between stations (includes delay in station, cable and

Head End Remodulator)

The interarrival time of frames at each station

The type of arrivals (Constant or Poisson)

The length of the frame

The interarrival time of non-token-using stations requiring entrance

The number of token possessions that determine how often a station

opens response window (max_inter_solicit_count)

The token hold timer that determines how long a station can transmit

frames

The station delay

The slot time

The length of the simulation run

122

3J Statbtici Collection

As frames are processed by the model, the following statistics are collected:

1) Simulated time

2) The number of stations that have been granted ring entrance after the

logical ring was initiali2ed

3) The acquisition delay -- measured from the time when a frame arrives at

the transmit queue until the first bit is transmitj>ed onto the wire.

4) The latency — the average delay in sending a data frame, which includes

the queuing delay, the token delay, the station delay, and the transmit

delay

5) The total offered load — the total number of data bits generated by all

the active stations per second (expressed in terms of percentage of chan-

nel bandwidth)

6) The network throughput -- the total number of data bits received at the

destinations per second (expressed in terms of percentage of channel

bandwidth)

7) For each station:

• the length of time the station has been in the ring

• the offered load of the station

• the throughput achieved by that station

Note that the performance measures in numbers 5, 6, and 7 only take the data bits into

consideration. The protocol overhead is not included.

4. Performance Characteristics

In this section, the simulator model is used to investigate the performance of the

token bus protocol. We have researched the performance of the network under various

configurations and loading situations.

A detailed study of the effect of different factors on the system is made to allow gen-

eral conclusions to be drawn. The critical performance measures are the acquisition

delay, the offered load, and the network throughput. Demonstrative examples have

been chosen to facilitate the illustration of the following results.

4.1 Stability

The frame interarrival rate, the data length, and the number of active stations

are three important parameters of the total offered load. An increase in any of these

components will produce an increase in the offered load. The topic of interest is the

stability of the protocol as the load increases. We will investigate the stability of the

system when these parameters are varied.

For simulations in this section, we assume all the stations on the bus are active. Since

every station generates traffic with the same rate, the load offered by each one should

be statistically identical. Additionally, the following parameters are constant.

frame arrival type = POISSON
simulation time = 10 seconds

station delay = 100 microseconds

slot time = 250 microseconds

token hold timer = 4000 microseconds

max_inter_solicit_count = 100

4.1.1 Varying Frame Arrival Rate

The offered load was varied by changing the arrival rate. Note that the arrival

rate is reciprocal to the interarrival time.

We start with a modest offered load, and then increase that level by increasing the load

being offered by each station.

124

The data in Figure 2 shows the effect of changing arrival rates and represents the

offered load and the network throughput measured with 100 active stations transmit-

ting constant 500 byte frames. Each station generates this data length according to

Poisson distribution with mean rates of 5, 10, 15, 20, 25, 30, 35, and 40 frames per

second. These conditions permitted measuring the performance of the system with

total offered loads of 20% to 160% of the channel capacity. We have observed that

the network throughput is an increasing function of the arrival rate at each station.

STABILITY - Vary ins Tpame fVrlval Rate
180.0 Tire-Or^-<ypPH:,

,
,

,22;ai:30^.S.T.^r.gS/09/94

n^Prt PRRIVfiL RRTE ftT EACH STATION

Figure 2 — Stability — Varying Frame Arrival Rate

125

4.1.2 Varying Data Length

The effect on stability of different data length is now investigated. The simu-
lated configuration is 100 stations with frame arrival rate of 10 frames per second. The
constant data lengths are 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 bytes. The
total offered load will vary from 20% to 160% of the channel capacity. Figure 3 shows
that an increase in the data length produces an increase in the total offered load, and
thus an increase in the network throughput.

STABILITY - Varyir>9 Data Length
180.8 Tirt^-Or^-GRPPH;^ . , , ;27-ri1.S.T.,-,0B/g9/^.

, . , . , . , ,

DPTf^ LEMGTH (Bytes)

Figure 3 — Stability — Varying Data Length

126

4.1.3 Varying Number of Active Stations

We start with a light offered load, and then increase that level by adding more

stations. The frame arrival rate of each station is 10 frames per second. The data

length is 500 bytes. We have cases including 50 stations, 100 stations, 150 stations, 200

stations, 250 stations, 300 stations, 350 stations, and 400 stations. This results in total

offered loads of 20% to 160% of channel capacity. Again, we observe an increase in

the number of active stations causes an increase in network throughput. The results

are plotted in Figure 4.

127

STftBILITY - Varylna Hjnter of Active St«tJon»

20.e
5B.0 100.0 150.0 200.0 250.0 300.0 350.0 400

Number of Active Stations

Figure 4 — Stability — Varying Number of Active Stations

128

The stability of the system for varying the above three components of the offered load

has been examined. Due to the deterministic nature of the protocol, it is not surprising

that the network throughput is a function of the offered load and has a positive slope.

As the above result shows, the system remains stable under overload situations. The
throughput remains high and shows no signs of suddenly decreasing or becoming

unstable.

4.2 Fairness

The token passing access mechanism is deterministic. However, the implementa-

tion of the method on a local area network may introduce nondeterministic factors

such as the dynamics of the insertion and deletion of a station in the logical ring. The
issue of fairness is addressed in this section.

As a first attempt, let us assume that all the active stations transmit every data frame

with an access class of 6. If the network is fair, each station should have an equal

access to the channel. Thus, the throughput achieved by each station should be pro-

portional to the load offered by that station. This ratio is defined to be R. The proto-

col is very fair in its allocation of channel capacity if all the active stations have the

same R value. More mathematically, the standard deviation of the R values for all

active stations at any given load is small.

Under normal load, the system should be able to accommodate most of the traffic.

Thus, all the frames sent should be able to get through and each station docs not need

to fight for its desired bandwidth. Fairness is in general not an issue. However, for a

heavy load system, this is not necessarily true.

The following parameters are constant in all simulations in this section.

frame arrival type = CONSTANT
frame interarrival time = 0.0025 second

(frame interarrival rate = 400 frames/sec)

data length = 500 bytes

maximum no. of stations = 10

station delay = 100 microseconds

slot time = 250 microseconds

token hold timer = 4000 microseconds

max_inter_8olicit_count = 100

129

4.2.1 No Insertion After Initialiiation

Suppose ail 10 stations were granted entrance at ring initialization, and they

have been in the logical ring for about the same amount of time. The following simula-

tion captures the behavior of the system after 10 seconds simulated time. The total

offered load is 160% of the channel bandwidth. The system is very congested. The
network throughput is 92.41%. The average acquisition delay is 2112.117 msec. The
offered load, the achieved throughput, and the R ratio of each station is tabulated as

follows.

Station Time in Station Station

No. ring (sec) offered throughput R ratio

load

10

9

8

7

6

5

4

3

2

1

10

10

10

10

10

10

10

10

10

10

16.00

16.00

16.00

16.00

16.00

16.00

16.00

16.00

16.00

16.00

9.25

9.26

9.24

9.22

9.23

9.23

9.24

9.24

9.25

9.25

0.57825

0.57850

0.57725

0.57650

0.57675

0.57700

0.57725

0.57775

0.57800

0.57825

Table 1: No Ring Insertion (10 sec)

Figure 5 depicts the above result.

Statistics for the R ratio:

me^n = 0.57755

standard deviation = 0.0007

coefficient of variation = 0.0012

130

The coerTicient of variation is defined to be the ratio of standard deviation to mean.

The low variance implies that the protocol is very fair to all stations that have been in

ring for the same amount of time.

FAIfVCSS - No R ins Insertion (10 sec)
1.0 TirC^pGRflPH;^

, , . ,21;37;41^.S.T.-,-eS/10/P4,
, ,

e.o

R
A
T
I
O

e.6 -

e.4

e.2

* ^ * A i A ±
e.0

3 4 5 6 7 6 9
STATION NUriBCR (All In Rlns for 10 tee)

10

Figure 5 — Fairness — No Ring Insertion (10 sec)

131

4.2.2 Insertion After Initialisation

Next, we introduce the dynamics of station insertion after ring initialization.

We have assumed that there are two stations that have joined at initialization. Every

0.9 second, a non-token-using station will desire ring entrance. A snapshot of the per-

formance of the system after 10 seconds simulated time is depicted as follows.

offered load = 94.60%

network throughput = 79.07%

average acquisition delay = 275.491 msec

Station

No.

Time in

ring (sec)

Offered

load

Station

throughput R ratio

8

4

9

2

6

5

1

10

3

7

10.000

10.000

9.098

8.181

7.253

6.362

3.784

3.784

^ 0.370

0.308

16.00

16.00

14.56

13.09

11.60

10.18

6.05

6.05

0,59

0.49

14.09

14.07

12.64

11.17

9.69

8.24

4.28

4.28

0.32

0.28

0.880750

0.879500

0.868370

0.853301

0.835229

0.810142

0.707204

0.707204

0.544218

0.569106

Table 2: Ring Insertion (10 sec)

Statistics for the R ratio:

mean = 0.7655

standard deviation = 0.1273

coefficient of variation = 0.1663

132

The variance is high, suggesting that the protocol is not allocating channel bandwidth
fairly to the participating stations. The longer the station has been in the ring, the
more bandwidth it gets. The results are plotted in Figure 6.

FAIRTCSS - Ring Insertion (10 sec)
l.e TI^t-0^-GRfiPH:—, r-22:20:14—l1.S.T.-p0e/lB/B4_, ^

e.e

R
A
T
I
o

8.6 -

8.4

8.2 -

8.6
e.e

ill ill -L * ' '

z.e 4.e e.e
Tirt IN RING (sec)

e.e le.e

Figure 6 — Fairness — Ring Insertion (10 sec)

133

To better examine the behavior of the system, we extend our experiment to 120

seconds simulated time and gather the following results.

offered load = 154.55%

network throughput = 91.32%

average acquisition delay = 22467.865 msec

Station

No.

Time in

ring (sec)

Offered

load

Station

throughput R ratio

8

4

9

2

6

5

1

10

3

7

120.000

120.000

119.098

118.181

117.253

116.362

113.784

113.784

110.370

110.308

16.00

16.00

15.88

15.76

15.63

15.51

15.17

15.17

14.72

14.71

9.65

9.65

9.53

9.40

9.28

9.16

8.83

8.83

8.50

8.50

0.602979

0.602875

0.599929

0.596801

0.593719

0.590538

0.582032

0.582032

0.577616

0.577703

Statistics for the R ratio:

Table 3: Ring Insertion (120 sec)

mean = 0.590622

standard deviation = 0.01012

coefficient of variation = 0.01714

The variance is lower, demonstrating that fairness can probably be attained if enough

time is allowed for the system to become saturated and no other nondcterministic fac-

tors are introduced. See Figure 7 for details.

134

rAIf9€5S ' Rins Insertion (120 sec)
l.e Tlft-OF-JGRPRH:-, r-22: 29:47—M.S. 1.-^88/18/84,—, r

8.8

R

T
I
O

8.6 -

8.4

8.2 -

8.8
118.8 112.8 114.8 116.8

TItC IN RING (sec)
118.8 120.8

Figure 7 — Fairnesi — Ring Insertion (120 tec)

135

4.3 Data Length

The effect on performance of different data lengths is now investigated. The
constant parameters are as follows:

frame arrival type = POISSON
simulation time = 10 seconds

station delay = 100 microseconds

slot time = 250 microseconds

token hold timer = 4000 microseconds

max_inter_solicit_count =100

The simulated configuration is 100 active stations sending frames. The interarrival

rate at each station is varied to produce total offered load in the range of 25% to 150%
of channel bandwidth. The network throughput and acquisition delay are plotted

against total offered load as shown in Figures 8 and 9. As a comparison, results were

collected for 100, 250, 500, 750 and 1000 bytes of data. We notice that bigger frames

are transmitted with much greater efficiency than smaller frames. There is a reason

for this. As a frame gets longer, the fixed overhead of preamble and control informa-

tion (23 bytes in our case) becomes relatively less.

136

VflRYW DfiTP LENGTH

2B.e
20. e 40.0 60.0 60.0 100.0 120.0 140.0 160

OFFERED LOW iX Bandwidth)

Figure 8 — Varying Data Length

(Throughput versus Offered Load)

VPRVINS DATA LENCTH

e.e
20.0 40.0 ee.0 80.0 S00.0 120.0 140.0 160.0

CkVMJ> LOAD (% Bandwidth)

Figure 0 — Varying Data Length

(Acquisition Delay versus Offered Load)

138

4«4 Number of Active Stations

The performance characteristics of the system for varying network sizes is inves-

tigated in this section. In particular, networks with 10, 100, 200, 300 and 400 active

stations are considered. Again, the constant parameters are as follows:

frame arrival type = POISSON
simulation time = 10 seconds

slalion delay = 100 microseconds

slot time = 250 microseconds

token hold timer = 4000 microseconds

Max_inter_solicit_count = 100

For all configurations, the stations are homogeneous in that they all transmit frames

with a data length of 500 bytes. Again, we vary the interarrival rate at each station to

produce total offered load in the range of 25% to 150% of channel bandwidth. Meas-

urements were made of network throughput and acquisition delay for varying total

offered loads. The results are plotted in Figures 10 and 11. We notice that the smaller

size network performs better than the larger network with the offered load fixed. The
larger network wastes more bandwidth in transmitting the token and maintaining the

logical ring.

139

VRRYING NLUBER OF ACTIVE STATIOhB

T
H
R
0
U
6
H
P
U
T

B

N
D
H
I
D
T
H

95.6

9e.e

es.e -

ee.e

75.8

70.8 .

65.8 -

G8.8
28.8 48.8 68.8 88.8 188.8 128.8 148.8 168

OfTTRO) iX»S> iX Bandufidth)

Figure 10 — Varying Number of Active Stations

(Throughput versus Offered Load)

140

VflRYING NLtlBEK OF PCTIVE STPTIOTG

e.e
20.0 40.0 60.0 60.0 100.0 120.0 140.0 160.0

OFFERO LORD iX Bandwidth)

Figure 11 — Varying Number of Active Stations

(Acquisition Delay versus Offered Load)

141

4.5 Acquisition Delay

As a frame is processed by the model, three time statistics are collected:

• start time - time of arrival in a station's transmit queue

• access time - time the first bit of the frame is transmitted on the cable

• finish time - time frame is received at the destination

From these figures, various statistics can be calculated. For instance, the acquisition

delay is defined to be the difference of access time and start time. This latency usually

consists of two portions, the queuing delay and the token delay.

The queuing delay is measured from the time when a frame arrives at the end of the

FIFO transmit queue until it reaches the beginning of the queue. In other words, the

arriving frame has to wait for all those ahead of it to be transmitted.

The token delay is the average length of time a station has to wait for a free token.

This latency is stable and bounded by the worse token rotation delay which can be

determined by the size of the network, station delay, token hold time, ring mainte-

nance timer, etc.

However, the queuing delay is nondeterministic and heavily relies on the offered load of

the system. With an overload situation, we have observed that a frame experiences

infinite delay as the throughput approaches the channel capacity and when the system

has backlog of packets waiting to be sent.

Refer to Figures 9 and 11 for details. In general, wc note that the acquisition delay is

sensitive, unstable, and degrades sharply as the load increases.

142

4.6 Token Hold Time

The token hold timer aims at regulating channel access in such a way that no

single station will monopolize the ring. As a first attempt, let us assume that all active

stations transmit every data frame with an access class of 6. The effect on perfor-

mance of different token hold times is investigated. We have uncovered some interest-

ing peculiarities which are summarized in this section.

The simulated configuration is 100 active stations transmitting frames. The constant

parameters are as follows:

frame arrival type = POISSON
data length = 500 bytes

simulation time = 10 seconds

station delay = 100 microseconds

slot time = 250 microseconds

max_inter_solicit_count = 100

4.6.1 Moderate Load

We begin our experiment with a moderate system. The interarrival rate at each

station is 18.75 frames per second, generating a load of 75% of the channel capacity.

The network throughput and acquisition delay are plotted against token hold time

(Figures 12 and 13). We notice that frames are transmitted with greater efficiency for

longer token hold timers. In fact, increasing the length of the token hold timers does

not worsen performance. This is because a station will release its token when it fin-

ishes transmitting. The token will not be held until the exhaustion of the hold timer.

143

VPRYING TOKEN HOLD TirC (Moderate Load)
80. e Tir^Or.-GRPPH;| , , 22; 48: 31r-/1. S. T flB^l^yBA . , , , . , ,

B

N
D
M
Z
D
T
H

7B.0 r

74.0

72.0

70.0

66.0

fi6.0

Offered Load

Throushput

» »

2000. 4000.0 6000.0 6000.0 10000.0 12000.0 14000.0 16000.0
TOKEN HOLD TIhE (microsecond)

Figure 12 — Varying Token Hold Time (Moderate Load)

(Throughput versus Token Hold Time)

144

ypRYIHG TOKEM HOLD TlhE (Moderate Load)
35B.e Tirt^-GRPPHip-,-,—22:56:21^.8.T.—^ie/B4--r^

C
Q
U
z
s
z
T
z
o
N

D
E
L

Y

e
c

.8 -

.0

e.e

200.

e

isB.e

100.0 :

S0.e

* ^ ' *

2000. 4000.0 £000.0 G000.0 10000.0 12000.0 14000.0 16000.0
TOKEN HOLD TirE (microsecond)

Figure 13 — Varying Token Hold Time (Moderate Load)

(Acquisition Delay versus Token Hold Time)

145

4.6.2 Heavy Load

Our second experiment deals with an overload situation. The interarrival rate
at each station is 25 frames per second, generating a load of 100% of the channel capa-
city. The results are plotted in Figures H and 15. The performance improves by
lengthening the token hold time until the backlog of frames has been sent. The system
will be saturated then.

VfiRYING TOKEN HOLD Tirt (Heaviy Load)
105.0 TirC^-GRPPH;

, . . 23: 24; 4^-^.5.1 ^10/84—,-r-^,-p-r-^„

B
f)

N
D
U
Z
D
T
H

100.0

95.0

90.0

65.0

80.0

75.0

70.0

65.0

G0.0
2000. 4000.0 6000.0 6000.0 10000.0 12000.0 14000.0 16000.0

TOKDS HOLD TirC (microsecond)

Figure 14 — Varying Token Hold Time (Heavy Load)
(Throughput versus Token Hold Time)

146

VPRYING TOKEN HOLD TlfC (Hravu Load)
leee.e TI^fvO^-«*^:p-,A--^3:B5:57,-^.S.T.--^

A
C
O
u
X
8
z
T
Z
0
N

D
C
L
A
Y

1200.0

1000.0

400.0

I I 1
I ' ' '

000.

0

G00.0 ~

2000. 4000.0 6000.0 6000.0 10000.0 12000.0 14000.0 16000.0
TOKEN HOU) Tire (Microsecond)

Figure 15 — Varying Token Hold Time (Heavy Load)

(Acquisition Delay versus Token Hold Time)

For our simplified situation, i.e ihc system is equally loaded by each station and all

frames arc considered to be high priority, we suggest that exhaustive transmission is

more efficient. Channel bandwidth is utilized the most by allowing consecutive

transmissions from the same station without passing the token. However, a single busy

station monopolizing the channel is definitely a phenomenon that we want to avoid.

With the complexity of priority option, the design of such parameters has to be based

on the workload and the traffic pattern expected in the system.

147

4.7 Station Delay

It should not be a surprise that performance degrades as the station delay

increases. Recall that acquisition delay is a performance measure of each individual

station while network throughput is a perfomance measure of the network. The nega-

tive impact of increasing the station delay, which is a critical factor of a station, is

obviously shown in Figure 17. Every effort should be made to minimize the station

delay and the slot time as defined by IEEE 802.4.

Our configuration consists of 100 active stations. The constant parameters are:

frame arrival type = POISSON
frame interarrival rate = 25 frames/sec

data length = 500 bytes

simulation time = 10 seconds

token hold time = 4000 microseconds

max_inter_solicit_count = 100

The slot time is estimated to be about two times the station delay plus 50

microseconds. The results for varying station delays arc plotted in Figures 16 and 17.

148

VPRIN6 STPTIOH KLPY
120. e TirCyJOF-GRPPH; , , , ?! 1 54; 06 pW. 5.7^-^08/18/84 , . ,

,

B
A
N
D
U
I
D
T
H

110.0

100.0

90.0

80.0

70.0

Offered Load

Throushput

60.0
. I . i ^ 1 I . i ' J

60.0 80.0 100.0 120.0 140.0 160.0
SWIOH DCLPY (microsecond)

180. 0 200

Figure 16 — Varying Station Delay

(Throughput versus Station Delay)

149

VflRYING STRTION TJELPtf

eoa.B TIlC^-JGRflPH; , , , 22;Bg:45upH.S.T.. ,.aB/ig/94 . , . , . , ,

400.8
60.0 60.0 100.0 120.0 140.0 160.0 180.0 200

STf^TION KLPY (nScrosecond)

Figure 17 — Varying Station Delay

(Acquisition Delay versus Station Delay)

150

4.8 Additional Factors

In general, with the offered load fixed, we observe better performance measures

for a stable system, where insertion and deletion are not frequent events. One of the

reasons is that less bandwidth is wasted in processing these procedures. More impor-

tantly, the system adjusts itself better to a stable environment. In other words, a regu-

lar input process will be better handled by the protocol.

5. Concluaions

This paper has investigated performance characteristics of the 802.4 token bus

protocol. A comprehensive discussion on how the performance of the network is

affected by various system parameters has also been included. The intent of the

present study is not to predict the performance of any particular real network. Our
attempt is to characterize the behavior of the system. It is our hope that this perfor-

mance analysis can be used as a basis for understanding various aspects of the protocol

and serve to stimulate further interest and discussion in this area.

Due to the complexity of the system studied, discrete event simulation was determined

to be the appropriate modeling technique. The emphasis of the paper is the discussion

of the results. Therefore, the discussion of the methodology was brief. It is necessary,

however, that the reader understands the methodology to put the results in proper con-

text.

The insight we have for the token bus protocol is in accordance with results gained

from this performance study. Nevertheless, the simulation results serve to demonstrate

and quantify the impact of certain parameters critical for the system. It is, however,

difficult to ignore the implication on performance when considering different technolo-

gies.

Lastly, it is worth mentioning that the communication traffic considered in this study

was- of general form, i.e. all participating stations are active and have the same frame

interarrival rate. The designer of a local area network must understand the specific

communication traffic and workload to be able to make intelligent decisions.

151

References:

[BUX81]

|IEEE82l

(LARS80j

[RAHI83]

ISAUE81]

ISHOC79]

ISWEE83]

Bux, Werner, "Local-Area Subnetworks: A Performance Comparison",

IEEE Transactions on Communications, Vol. Com-29, No.

10, pp. 1465-1473, Oct. 1981

IEEE Standard 802.4 Token-Passing Bus Access Method and Physical

Layer Specifications - Draft F, July 1984

Larsen, R. L., Agre, J. R., and Agrawala, A. K., "A Comparative Evalua-

tion of Local Area Communication Technology", Computer
Performance Evaluation Users Group (CPEUG) 16th Meet-

ing (NBS-SP-500-65), pp. 87-97, Oct. 1980

Rahimi, S. K. and Jelatis, G. D., "Simulation Modelling of IEEE 802 Token
Bus Media Access Control Protocol", Proceedings of

Workshop Performance and Evaluation of Local Area Net-

work, pp. 127-154, March 24-25, 1983

Sauer, Charles H. and Chandy, K. Mani, "Computer Systems Performance

Modeling", Prentice-Hall, Inc., Englewood Cliffs, New Jersey

07632

Shoch, J. F. and Hupp, J. A., "Performance of an Ethernet Local Net-

work: A Preliminary Report", Proceedings of the Local

Area Communications Network Symposium, pp. 113-123,

May 1979V

Sweeton, David C, "Simulation Results for Factory Floor Networks",

Eleventh International Meeting, International Purdue

Workshop on Industrial Computer Systems, pp. 713-726,

Oct. 4, 1983

ITOEN83) Toense, Robert, "Performance Analysis of NBSNET", Proceeding of Per-

formance and Evaluation~bf Local Area Network, pp. 7-26,

March 24-25, 1983

152

PERFORMANCE ISSUES OF 802.4 TOKEN BUS LAN'S

prepared for

The Uorkshop on Analytical Modeling of IEEE 802.4 Token Bus
Session III: Performance Issues

April 29-30, 1985

by

Bruce A. Loyer
Motorola SPS
Phoenix, Arizona

Doron Kol ton
Motorola MSIL
Tel Aviv, Israel

ABSTRACT

This paper presents curves generated via
a so-ftware simulator that deal with sev-
eral aspects of 802.4 Token Bus per-for-

mance. The areas considered include

dependence on station address
allocation, the number of stations, the

cable length, the -frame length, the

number of stations transmitting, and the

token hold time. A brief description o-f

the simulator is first presented and
each area of performance impact is then

di scussed.

OUEI^IEU

As part of its program to provide 802.4
products, Motorola developed a network
simulator. The Token Bus Network Simu-
lator is a software tool used with the

specific objectives of:

1. 802.4 protocol verification and
development through identification
of deadlock, error, and failure
condi 1 1 ons.

Coded in Pascal, it is a discrete event
driven simulator providing predictions
of delay, throughput, and many other
performance measures as a function of
offered load. By varying system
parameters, it is possible to
characterize token bus network
performance through a series of
simulation runs. In the following para-
graphs, the effects of various
parameters are presented and the

following terminology is used:

Offered load - 'A oi bandwidth
requested by data

Throughput

THT6

Tirr

Queuing length

= X of bandwidth consumed
by data

= Priority 6 token hold
t ime

= Token rotation time

= Time from data request
to time data actually
sent

2. Aiding in the configuration and
fine-tuning of token bus networks.

3. Evaluating network performance.

4. Aiding in the design of ULSI
devices.

DEPENDENCE ON FR^E LENGTH

The maximum length of data frames trans-

mitted is a parameter negotiated at the

Transport Layer and may be affected by
the user's buffer management structure
(buffer size and allocation). It is

153

there-fope important to know how the

frame length impacts throughput.

An intuitive quess would be that larger
-frame sizes would provide best per-for-

mance because there is less overhead in

terms o-f headers, etc. Simulation shows
that, independent of token hold time,

throughput increases with increasing
frame length until a limit is reached
somewhere between 512 octets and 1024
octets. Above the 1024 octet frame
size, throughput is virtually the same
clear up to the 802.4 limit of 8191
octets. Exhibit 1 shows throughput
rolloff for frame sizes of 512 octets
and below, and Exhibit 2 shows nearly
identical throughput for frame sizes of

1024 octets and above. These results
show that if other system limitations
(such as buffer size) require files to

be broken up into smaller sizes, it will
not impact overall network performance
if a frame size of Ik octets is

mai ntai ned.

DEPENDENCE ON CABLE LENGTH

Token bus networks will be used in

applications varying from short (less
than 100 meters) distance carrier band
subnets to a broadband spine covering an

entire campus or factory of several
thousand meters. Modeling has shown
that performance in terms of token
rotation time is nearly identical for
1000 meter, 1500 meter, and 5000 meter
cables. Exhibit 3 shows that TRT in-

creases sharply above 80X offered load
for all cable lengths. The graph shows
that cable delay does not add signifi-
cantly to the token rotation time.

DEPENDENCE ON NUMBER OF STATIONS
TRmSMITTING WITH A FIXED NUMBER OF
NODES

Network performance can be simulated
with a few number of nodes each with a

heavy load or with many nodes each with
a small load. The latter case is more
representative of a real environment.
Exhibits 4 and 5 vary the number of

stations transmitting on a 100 node sys-

tem where al 1 nodes are members of the
logical ring.

Uhen the stations have a large token
hold time and can transmit all of their
frames, there is little difference in

throughput (Exhibit 4), token rotation
time, or quequing delay. Uhen THT6 is
short, such as 1 frame only, there is a
significant difference (Exhibit 5). The
thoughput at lOOX offered load is 90'A

with all 100 nodes transmitting, while
it drops to 78X with only 25 nodes
transroi tt i ng.

DEPENDENCE ON NUMBER OF STATIONS WITH
ALL NODES TRANSMITTING

The previous performance examples were
based on a fixed number of stations on

the cable, however, the number of sta-
tions transmitting was varied depending
on message load and other factors. To
test the impact of the number of trans-
mitting stations, several runs were made
with all stations transmitting and vary-
ing the number of total stations.

Exhibit 6 shows that system throughput
is relatively independent of the number
of stations.

Exhibit 7 shows that token rotation time
follows expected results in that TRT is

10 times longer for 100 stations than
for 10 stations. Note that the token
hold time is limited to one frame as
would be the case where TRT is desired
to be a minimum. Also note that TRT in-

creases drastically under heavy offered
1 oad.

Exhibit 8 shows quequing delay. It is

surprising to find that quequing was not
significantly longer for 100 stations.

DEPENDENCE ON HIGH PRIORITY TOKEN HOLD
TIME

The high priority token hold time (THT6)

is an important parameter that must be

optimized for every network. As this

number is increased, one would expect
better performance because each station

154

can transmit mort frames per token. One

also expects token rotation time to in-

crease iMhich can be a major limiting

•factor. The actual value o-f THT6 chosen

is a compromise between these two char-

acteristics.

Exhibits 9 and 10 show the relationship
between TKT6 and TRT. As expected,
having a short THT6 gives the worst
throughput under very heavy o-f-fered load
(curve A, Exhibit 9) but the shortest
TRT (curve A, Exhibit 10). However, it

can be seen in Exhibit 9 that when THTA
is made very long (transmi t-al 1 —frames)

,

throughput increases only SX at IQO'A

o-f-fered load (almost zero at lesser

loads) while TRT increases over 200X at

lOOX of-fered load (Exhibit 10). This
indicates that TKT6 should be set to a

low number (about 2 frames) to keep a

short TRT, unless a network has
extremely high utilization ()90X) and
TRT is not a critical parameter.
Additional work is needed in this area
to determine the effect of low priority
queues.

DEPENDENCE ON ADDRESS ALLOCATION

Because the token bus protocol has an

ordered ring, it is possible to assign

station address based on location in an

attempt to get more performance. Simu-
lation runs were made with addresses
aasigned by random allocation, cyclic

allocation, and hand allocation.

Throughput was almost identical in all
cases (Exhibit 11). However, under very
heavy offered load a significant differ-
ence is shown in token rotation time
(Exhibit 12). TRT can be minimized
under heavy loading conditions by
intelligently assigning station add-
resses.

SUMhWRY

The simulation results shown in this
paper are offered to the user to better
understand the attributes of the IEEE
802.4 Token Bus. Special thanks must go
to Doron Kolton of Motorola Semicon-
ductor Israel whose special efforts in

producing these results made this paper

possible.

REFERENCES

1. Kermien, Orly, 'Using Simulation for

the Token Bus Protocol Verifi-
cation,' Uorkshop on Analytic and
Simulation Modeling of IEEE 802.4
Token Bus, Session II, Apr 29-30,

1985.

2. Token-Passing Bus Access Method
and Physical Layer Specifications,
IEEE Std 802.4-1985, 1985.

155

DEPENDEN[E_DN_FRAME_LENGTH
1BEInacle5;[:abel_len3th=1500rn;

THTB-lfarmE;addrE55_a 1 1 neat I on-cyc 1 1 c;

EXHIBIT 1

t.H-l1 7.H-I1 SJE-11 B.H-11 7.K-I1 B.IE-11 9.K-I1 1JC-.M

DFFERED-LDAD

156

DEPENDEN[E_DN_FRAME_LENGTH
100node5;cahEl_lEngth=1500rn;

THTB-lf rameia rE55__a 1 1 neat ! nn-cyc lie;

EXHIBIT 2

DFFERED_LDAD

157

DEPENDEN[E_DN_[ABLE_LENETH
100nDdE5;"framE_l En5|th=512DctEt5;

THTG-I nf I n I tE;addrE55_a 1 1 neat I Qn-randam;

EXHIBIT 3

Ue-11 2.BE-81 iBt-m 5.IIC-ai B.BE-ei 7.eE-B1 a.eE-B1 ^.DE-gi 1JIE->BII

DFFERED_LDAD

158

0EPENDEN[E_DN_#5TATIDN_TRAN5MITTING
l00nndE5;frame_lEngth=512DctEt5;cahEl_lEngth=1500m;

THTG-I nf I n I tE;addrE55_a I I neat I an-cyc I In;

EXHIBIT 4

159

DEPENDEN[E_DN_#5TATIDN_TRAN5MITTING
100nadE5;frame_lEngth=512nctEt5;cahEl_lEnRth=1500m;

THTE-1f ramE;addrE55_a 1 1 neat I nn-cycT I c;

ijc«a -r
Z3
a.

iK-r
cr

7Jt-l1 - -

llf-11 - -

EXHIBIT 5

H 1- H h

A-25-5TATiaN5-tran5mlt

B-50-5TATIDN5-t

[-100-5TATIDN5-t ransm i

T

tlE-l1 2.U-I1 3.H-n V.C-II SlIE-11 tlt-ll TK-II aK-ll 9.K-I1 \Ml-H

DFFERED_LDAD

160

DEPENDEN[E_DN_NUMBER_0F_5TATiaN5
framE_lEngth=512nctets;cahel_lEngth=1500m;
THTE-lf ramEia rE5B_a 1 1 Dcat I nn-cyc lie;

EXHIBIT 6

DFFERED.LDAD

161

DEPENDENCE_nN_NUMBER_DF_5TATIDN5
FramE_l Ength=512octEts;cabe l_length=1500m;
THTG-lf ramE;a rE55_a 1 1 cat I on-cyc lie;

162

DEPENDENCE_DN_NUMBER_DF_5TATIDN5
framE_lEngth=512actet5;cahE i_l Ength=1500m;
THTE-1framE;addrE55_a 1 1 neat I nn-cyc I Ic;

EXHIBIT 8

DFFERED_LDAD

163

LO
II

i] cn

S DJ

u
DJ.

E u

I

^' En

njr— U
I— II

^ cn in

1=1 c
I

I

u m
Lu—; m
I I I UJ

^ rn ID
uLU_ m

LU nj

[=

IS
CS3

indHDnDdHi

iji

DJ !L OJ OJ

E E E
ro ru m
i_ i_

1^1
1

1 J

1
1

E E E E
1/1 m LP LT

c c c c
to rc m ra
1_ L i_

1

HD 1 1 Q

LD

i_n.

I I I en

°^ V

Ot— u
I— II o

^ cn IE

1=1 c
I

I

iLi m
Lu—i m
I I I OJ

LU rl._ in

LU

<

LU

165

DEPENDENCE_DN_ADDRE55_ALLnCATinN
100nndE5;cablE_lEngth=1500m;frame_lEngth=512nctEt5;

THTG-1framE;

^3_
LD

9.lt-l1 - -

EXHIBIT 11

A-RANDOfi_ALLDCATIDN

B-CYCLIC_ALLD[ATiDN

[-HAND_ALLD[ATIDN

1.IE-I1 ?JE-lt m-i) i>.S.-»\ SDE-gi G.8E-B1 7.BE-S1 8.aE-t1 9.gE-gi 1J[4

DFFERED.LDAD

166

DEPENDENCE_DN_ADDRE55_ALLD[ATIDN
100nnde5;cahle_lEnqth=1500m:framE_l Enqth=512DctEt5;

THTB-lnflnllE;

EXHIBIT 12

A-RANDDM_ALLD[ATIDN

B-[YCLIC_ALLDCATIDN

C-HAND_ALLDCATIDN

iK-n 2JC-I1 IK-II iic-r- sjE-n m-n tk-k m-t\ au-n i.aE<ii

OFFERED_LDAD

167

SIMULATION OF A TOKEN PASSING BUS
USING A STATIC LOGICAL RING

M.E. Ulug and N.R. Shapiro

General Electric Corporate Research and Development
Schenectady, New York, 12345

ABSTRACT

An explicit token passing static local area network (LAN) was simulated using the General

Purpose Simulation System (GPSS) on a VAX 780. Two types of token holding strategies

were simulated. The first strategy allows each station to transmit only one information packet

during a token holding time; the second allows each station to empty its buffer when it re-

ceives the token.

The results indicated that, for a given server utilization, both strategies produced the same
mean token rotation time. The strategy that allows each station to empty its buffer when it

gets the token results in approximately three times smaller mean waiting times at 50% bus

loading. This improvement in waiting time becomes greater as the bus loading is increased.

Regardless of which of the two strategies is used, the mean waiting time and token rota-

tion time are independent of the packet length distribution.

INTRODUCTION

A token passing bus LAN is one in which all the stations form a logical ring and the token

is passed from station to station along the ring.^'^ Such systems may involve either static or

dynamic logical rings. In the dynamic ring, the set of stations in the logical ring changes on a

demand basis; the set of stations that comprise the static ring, on the other hand, remains rel-

atively stable, with only malfunctioning stations allowed to exit the logical ring. Therefore, if

demand for the transmission media is great, the set of stations in the dynamic ring will grow

until it is equal to the size of the static ring. When demand is low, the dynamic ring will be a

smaller subset of the set of all stations that may enter the ring. (For the analysis of the

dynamic ring operation see reference 3.)

Explicit token passing bus systems with many stations suffer from large overheads and

long waiting times. This is because a great deal of time is wasted by passing tokens to sta-

tions that are not active. Moreover, in real-time systems the stations are allowed to transmit

only one information packet per token rotation in order to keep the bus access delays bound-

ed. The efficiency of the system improves when each station is allowed to empty its buffer

when it gets the token. (For the analysis of this multipacket transmission algorithm see refer-

ence 4.)

This paper presents computer simulations of the static token passing bus to compare the

performance of systems using these two types of token holding strategies. (For discussion of

analytical approaches to related questions, see references 1-6.)

SYSTEM MODEL

A 50-station network was modeled. Each station received packets at a Poisson rate of

G/50 packets/second, where G was the packet arrival rate for the system (which varied).

Both a deterministic and exponential packet length distribution were used, and a 5 Mb/s net-

work with packet lengths of 128 bytes was assumed. Thus, for the deterministic packet

168

length runs, packet transmission time was fixed at 205 /xs, and for the exponential distribu-

tion this was the distribution mean. In Experiment 1 a packet arrival rate of 40

packets/second/station was assumed. The token passing time was varied from 25 to 175 fis.

In Experiment 2 a fixed token passing delay of 175 /xs was assumed, and the packet arrival

rate was varied from 10 to 50 packets/ second/station.

The token packet is only 20 bytes long, and at 5 Mb/s it can be transmitted in 32 /xs.

However, this is only the transmission time. In reality, many other delays are involved in

passing a token; for example, delays are caused by processing time at stations, delays are

caused by the remodulator, and many delays result from the execution of the media access

protocol. Most of these occur in a random manner, as in the transmission of a "who fol-

lows" packet or in a complete logical ring reconfiguration.

In addition, delays are encountered in the execution of the link, network, and transport

level protocols. These result in the reduction of the available channel bandwidth. Some of

these delays are caused by CRC errors, redundant transmissions, acknowledgments, buffer

overflows, window closings, etc. In this experiment, certain worst case delays or reductions

in the channel bandwidth were assumed and were included in the token passing time. Clear-

ly, every LAN design and every implementation is diff'erent; the assumptions in these experi-

ments should not be regarded as representative of any one system.

Two different simulation models were used to assess two diff'erent token holding time al-

gorithms. The first model (reported below in experiments lA and 2A) allows each station

one packet transmission per token possession. All other arrivals are queued for later

transmission on a first come, first served basis.

A second algorithm modeled via the simulation (reported below in experiments IB and

2B) was one in which stations could, upon receipt of a token, transmit all queued packets.

However, arrivals during the token holding period were not transmitted, but were queued for

the next token holding period.

In each simulation examined a number of relevant network performance measures, in-

cluding

— Mean queueing delay: The average time spent in a station's queue awaiting transmission.

— Mean rotation time: The average token interarrival time across stations.

— Mean and maximum queue contents: Averaged across stations, the maximum queue size

and the average queue contents per rotation (calculated as the number of queue entries di-

vided by the number of rotations).

— Mean number of transmissions per rotation: Calculated as total transmissions divided by

number of rotations.

— Mean number of stations with >0 arrivals: Average number of stations with one or more

frames arriving for transmission per rotation.

Performance of the two types of simulated systems was assessed in terms of the above

variables as a function of token passing time and packet arrival rate. These data are reported

as Experiments 1 and 2, respectively, with each experiment divided into two parts, A and B,

to separate results from the two system types.

The minimum sampling period required to produce stable results was determined in pre-

liminary experiments. The standard 50-station configuration was used in this exploratory

work, with each station receiving packets at a rate of 40 per second. Sampling periods from

100 to 500 rotations were examined; no consistent upward or downward trends were evident

in the data in sampling periods from 300 to 500 rotations. Thus, the 500-rotation sampling

period was used in all experiments.

169

EXPERIMENT lA

This experiment examined the effect of token passing delay. Token-passing times of 25,

75, 125 and 175 /xs were used. This time included all station-to-station delays; that is, the to-

tal delay from the end of the last data frame to the receipt of the last bit of the token packet

by the new token holder.

Packet arrivals to individual stations were exponentially distributed with a mean of 40

packets per second. Each station was allowed one packet transmission per token holding

period.

Results

Figures 1-8 show the effect of token passing time on the various measures of LAN perfor-

mance for fixed and exponential frame lengths. As expected, increased token passing delays

result in corresponding increases in other system delays. Figure 1 shows this increase for

mean delay in the queue in milliseconds. Note that there is no difference in the times for the

fixed or exponential packet size distributions. Figure 2 shows the increase in the standard de-

viation of the delay.

Figure 3 gives token rotation times in milliseconds for the four token passing times, and

gives the fixed and exponential frame length distributions. This measure shows a linear in-

crease as a function of token passing delay. Note that there is no significant delay in the

times for the fixed and exponential packet size distributions. Figure 4 shows the standard de-

viation of the token rotation time. Note that the standard deviation of the packets with ex-

ponentially distributed sizes is considerably higher than those of fixed length. Also note that

the slope of these standard deviation curves is much smaller.

Figures 5 and 6 also show a performance decrement as the token passing delay is in-

creased. Mean queue length and maximum queue length both increase almost linearly as a

function of token passing delay.

The mean number of transmissions and the mean number of stations with packet arrivals

also increase as a function of token passing time (see Figures 7 and 8). This is probably a

consequence of the longer token rotation times for the increased token passing times— the

longer the token rotation, the more packet arrivals per rotation, and the more stations with

frames to transmit. This is also supported by the ratio of the two measures presented in these

figures. The ratio of the mean number of transmissions per rotation to the mean number of

FRAME LENGTH DISTRIBUTION
• n«m

60 80 100 120

TOKEN PASSING TIME
MO

(us)

Q

FRAME LENGTH DISTRIBUTION
• rim
A CXfOCMTIfL

60 80 100 120 140

TOKEN PASSING TIME (us)

IBO

Figure 1. Single packet transmission. 5 Mb/s,
40 packets/second/station, 50 stations,

205 ^s packet service time.

Figure 2. Single packet transmission. 5 Mb/s,

40 packets/second/station, 50 stations,

205 fjLS packet service time.

170

<E 5-

20

FRflflE LENGTH DISTRIBUTION

40 60 SO 100 120 140 160 160

TOKEN PASSING TIME I us)

FRfltlE LENGTH DISTRIBUTION
• rim
L Dracniit.

1 1 1 1 1 1 1
1

20 40 60 60 100 120 140 160 ISO

TOKEN PASSING TIME (us)

Figure 3. Single packet transmission. 5 Mb/s,
40 packets/second/station, 50 stations,

205 /jls packet service time.

Figure 4. Single packet transmission. 5 Mb/s,
40 packets/second/station, 50 stations,

205 ^s packet service time.

0.5

in 0.4
l—z
LJ
I—ZO 0.3o

nWE LENGTH DISTRIBUTION
• rig

—I 1
r I

1 1 1
1

40 60 80 100 120 140 160 180

TOKEN PASSING TIME (us)

TRflME LENGTH DISTRIBUTION
• ri«n)

60 80 100 120 140

TOKEN PASSING TIME (us)

Figure 5. Single packet transmission. 5 Mb/s,
40 packets/second/station, 50 stations,

205 /LIS packet service time.

Figure 6. Single packet transmission. 5 Mb/s,
40 packets/second/station, 50 stations,

205 fjLS packet service time.

30n

a: 25

FRftC LENGTH DISTRIBUTION

20 40 60 80 100 120 140 160 180

TOKEN PASSING TIME (us!

FRAME LENGTH DISTRIBUTION
• riKCD

60 80 100 120 140

TOKEN PASSING TIME (usl

160 180

Figure 7. Single packet transmission. 5 Mb/s,
40 packets/second/station, 50 stations,

205 /LIS packet service time.

Figure 8. Single packet transmission. 5 Mb/s,
40 packets/second/station, 50 stations,

205 ^ts packet service time.

171

stations with more than one arrival per rotation yields an index that reflects the average num-
ber of stations that had packets to be transmitted that were left over from a previous rotation.

This contributes, of course, to bus loading, because a station with a packet left over from a

previous rotation must transmit, whether or not it has received a new frame during the rota-

tion time.

EXPERIMENT IB

This experiment was identical to Experiment lA, except that the stations were allowed to

transmit the same number of frames that were in the buffer during token receipt. Once
again, we were interested in assessing the effects of various token passing delays.

Like Figures 1-8, Figures 9-16 show the effect of token passing time on the various mea-

sures of LAN performance for fixed and exponential frame lengths. Units of measure in the

figures are as previously described. When compared with each of the figures in the previous

experiment, Figures 9-16 illustrate the effect of the new system protocol allowing each station

to transmit any packets waiting in the station queue when the token is received. Comparing

the figures, the muhipacket protocol produces considerably shorter delay and delay variance at

the longer token passing times, and comparable delays and delay variance at the shortest to-

ken passing time. On all other measures, however, data from the multipacket protocol simu-

lations (Figures 11-16) are comparable to the data from the single packet protocol case (Fig-

ures 3-8). Note, however, that the standard deviations of the token rotation time in Fig-

ure 12 are generally larger than those of the comparable single packet transmission protocol,

shown in Figure 4. Finally, the mean delay and the token rotation time of the single- and

multiple-packet transmission algorithms are plotted and compared with each other in Fig-

ures 33 and 34.

The ratio of the measures in Figures 15 and 16 can be examined as in the previous experi-

ment; however, in this case the interpretation is slightly different. Recall that these data are

for the multipacket algorithm, which implies that a station will transmit all of the frames it

has queued when it receives the token. For these data the average number of frames

transmitted per rotation reflects the total contribution of one or more frames transmitted per

rotation per station. Thus the ratio reflects the average number of frames transmitted per sta-

tion per rotation.

Results

20 60 80 100 120 140 160 180 20 60 80 100 120 MO 160 180

TOKEN PRSSING TIME (us) TOKEN PRSSING TIME (usl

;ure 9. Multiple packet transmission. 5 Mb/s,

40 packets/second/station, 50 stations,

205 ixs packet service time.

Figure 10. Multiple packet transmission. 5 Mb/s,

40 packets/second/station, 50 stations,

205 ^s packet service time.

172

20 40 60 BO 100 120 140 160 180 20 40 60 80 100 120 140 160 180

TOKEN PASSING TIME (us) TOKEN PRSSING TIME (usl

Figure 11. Multiple packet transmission. 5 Mb/s,

40 packets/second/station, 50 stations,

205 /i,s packet service time.

0.0 I I
1 1 1 1 1 1

1

20 40 60 80 IK 120 140 160 180

TOKEN PRSSING TIME I us)

Figure 13. Multiple packet transmission. 5 Mb/s,

40 packets/second/station, 50 stations,

205 /xs packet service time.

Figure 12. Multiple packet transmission. 5 Mb/s,

40 packets/second/station, 50 stations,

205 /jls packet service time.

4-|

'•SH r
1 1 1 1 1 1

1

20 40 60 80 100 120 140 160 180

TOKEN PASSING TIME (us)

Figure 14. Multiple packet transmission. 5 Mb/s,

40 packets/second/station, 50 stations,

205 ^ts packet service time.

TOKEN PASSING TIME (us) TOKEN PASSING TIME (us)

Figure 15. Multiple packet transmission. 5 Mb/s, Figure 16. Multiple packet transmission. 5 Mb/s,

40 packets/second/station, 50 stations, 40 packets/second/station, 50 stations,

205 /iS packet service time. 205 /as packet service time.

173

EXPERIMENT 2A

The second experiment examined the relationship between packet arrival rate and the

standard set of network performance measures. Packet arrivals were the same for all stations.

Each station received 10, 20, 30, 40, or 50 packets/second, which corresponds to a system ar-

rival rate of 500 to 2500 packets/second. In this experiment the token passing time was taken

as 175 ijls.

Results

Simulation results for the single packet protocol are shown in Figures 17-24. As packet ar-

rival rate increased, mean waiting time in station queues (Figure 17), mean rotation time

(Figure 19), mean and maximum queue length (Figures 21 and 22), and mean number of

transmissions per rotation (Figure 23) all showed corresponding increases. As in the previous

experiments, there was no difference between the fixed and exponential packet size distribu-

tions. However, variance appears to be somewhat higher at the higher arrival rates for the

exponential packet length simulations, as evidenced by the higher standard deviations seen in

Figures 18 and 20.

FRAME LENGTH DISTRIBUTION
• figp

A oraenifL

20 30 10

MERN RRRIVRL RRTE (pkt/sec/stati.on)

FRAME LENGTH DISTRIBUTION
• nm
A oraonin.

20

MERN RRRIVRL RRTE (pkt/sec/stotLon)

Figure 17. Single packet transmission. 5 Mb/s,

175 IJLS token passing time, 50 sta-

tions, 205 fxs packet service time.

Figure 18. Single packet transmission. 5 Mb/s,
175 fis token passing time, 50 sta-

tions, 205 ^ts packet service time.

FRAME LENGTH DISTRIBUTION

10 20 30 iO

MERN RRRIVRL RRTE (pki/sec/staluon)

FRAME LENGTH DISTRIBUTION
• rtxa

1 1 1

20 30 40

MERN RRRIVRL RATE (pki/sec/sLotcon)

Figure 19. Single packet transmission. 5 Mb/s,
175 fxs token passing time, 50 sta-

tions, 205 fis packet service time.

Figure 20. Single packet transmission. 5 Mb/s,
175 fjLS token passing time, 50 sta-

tions, 205 fxs packet service time.

174

FRRME LENGTH DISTRIBUTION
• rim

0-) 1 1 1
1

10 20 30 40 SO

HERN RRRIVflL RATE Ipkt/sec/statLon)

0-1
r

1 1
1

10 20 30 40 50

MERN RRRIVRL RATE Ipkt/sec/sLotLon)

Figure 21. Single packet transmission. 5 Mb/s,
175 ^is token passing time, 50 sta-

tions, 205 yLis packet service time.

Figure 22. Single packet transmission. 5 Mb/s
175 ims token passing time, 50 sta

tions, 205 /xs packet service time.

FRAME LENGTH DISTRIBUTION

20 30

MEAN RRRIVRL RRTE (pkt/sec/statLon

)

10 20 30 40

MEAN ARRIVAL RATE (pkt/sec/stoLLon)

Figure 23. Single packet transmission. 5 Mb/s, Figure 24. Single packet transmission. 5 Mb/s
175 iJLS token passing time, 50 sta- 175 /xs token passing time, 50 sta

tions, 205 /xs packet service time. tions, 205 /xs packet service time.

EXPERIMENT 2B

This experiment was identical to Experiment 2A, except that the stations were allowed to

transmit the same number of frames that were in the buffer during token receipt. Once
again, we were interested in assessing the effects of various packet arrival rates.

Results

The results are presented in Figures 25-32. The same general trends were evident: As
packet arrival rate increased, mean queueing delay, token rotation times, queue lengths, and

transmissions and arrivals per rotation all increased. The increase in queueing delay, how-

ever, was much more subdued. In fact, the multipacket algorithm resulted in an almost

eightfold decrease in queueing delays (compare Figures 25 and 17). The two algorithms re-

sulted in comparable rotation times, but slightly higher variance in rotation time for the mul-

tipacket algorithm (see Figures 20 and 28). Finally, the mean delay and the token rotation

time of the single- and multiple-packet transmission algorithms are plotted and compared with

each other in Figures 35 and 36.

175

Figure 25. Multiple packet transmission. 5 Mb/s,
175 /Lis token passing time, 50 stations,

205 (xs packet service time.

Figure 26. Multiple packet transmission. 5 Mb/s,
175 fjis token passing time, 50 stations,

205 fxs packet service time.

10 20 30 W 50

MEAN RRRIVRL RATE (pUt/sec/statconl

Figure 27. Multiple packet transmission. 5 Mb/s,
175 /jls token passing time, 50 stations,

205 fxs packet service time.

LJ

g 0.5

FRflME LENGTH DISTRIBUTION

SO

MEAN RRRIVRL RATE (pkt/sec/stotLon)

Figure 28. Multiple packet transmission. 5 Mb/s,
175 /iS token passing time, 50 stations,

205 fxs packet service time.

5 0.6-

Z

FRAME LENGTH DISTRIBUTION
• r-i»ni

A DraoninL

10 20 30 40 50

MEAN RRRIVRL RRTE (pkt/sec/stotlon)

Figure 29. Multiple packet transmission. 5 Mb/s,
175 yLis token passing time, 50 stations,

205 fjiS packet service time.

FRAME LENGTH DISTRIBUTION
• rim

10 20 30 40 SO

MEAN ARRIVAL RRTE (pkt/sec/atotLon)

Figure 30. Multiple packet transmission. 5 Mb/s,

175 ^ts token passing time, 50 stations,

205 fxs packet service time.

176

Figure 31. Multiple packet transmission. 5 Mb/s,
175 /xs token passing time, 50 stations,

205 jxs packet service time.

Figure 32. Multiple packet transmission. 5 Mb/s,

175 IJ.S token passing time, 50 stations,

205 /AS packet service time.

(E
to
z:

PftCKtrr TRANSMISSION

—I

—

40 60 80 100 120 MO
TOKEN PRSSING TIME (us)

^ 10

PACKET TRANSMISSION

60 80 100 120 140

TOKEN PRSSING TIME (us)

Figure 33. Single vs multiple packet transmis-

sion. 5 Mb/s, 40 packets per second

per station, 50 stations, 205 /jls packet

service time.

Figure 34.

PACKET TRANSMISSION
• iimx

10 20 30 40 50

MEAN RRRIVRL RRTE (pkL/sec/stotton)

Figure 35. Single vs multiple packet transmis-

sion. 5 Mb/s, 175 /xs token passing

time, 50 stations, 205 /as packet ser-

vice time.

6

LJ 14

OC
I—O

Single vs multiple packet transmis-

sion. 5 Mb/s, 40 packets per second

per station, 50 stations, 205 /ts packet

service time.

PACKET TRANSMISSION
• 3IWLC

MERN RRRIVRL RRTE (pkt/sec/stoti-on)

Figure 36. Single vs multiple packet transmis-

sion. 5 Mb/s, 175 fis token passing

time, 50 stations, 205 /xs packet ser-

vice time.

177

CONCLUSIONS

The computer simulation of an explicit token passing static LAN with two types of token

holding time strategies has been conducted. The first strategy allows each station to transmit

only one information packet during a token holding time; the second strategy allows each sta-

tion to empty its buffer when it gets the token.

Results indicate that for a given server utilization both strategies produce exactly the same
mean token rotation time. The strategy that allows each station to empty its buffer when it

gets the token results in approximately three times smaller waiting times. This improvement
becomes greater as the bus loading is increased. However, in this case the bus access delays

are bounded at a higher level. The multipacket transmission algorithm, used with a limit

based on the token rotation time as observed by the individual stations, retains most of the

benefits resulting from this approach while maintaining a bound on the waiting time.

Computer simulation results indicate that the standard deviation of the token rotation

time for the strategy that allows each station to empty its buff"er is larger than that of the stra-

tegy that allows the transmission of one information packet per token rotation time.

The simulation results also show that the delay, delay variance, and the token rotation

time are independent of the distribution of the packet length for both strategies. However,

the standard deviation of token rotation time for the system operating with exponential dis-

tributed packet lengths is larger than that of those systems using fixed length packets.

ACKNOWLEDGMENTS

The authors would like to express their thanks to Mr. C.R. Stein, Miss M.R. Laliberte and

Dr. T. Saydam for their help and advice.

REFERENCES

1. Ulug, M.E., White, G.M., and Adams, W.J., "Bidirectional Token Flow System,"

Seventh Data Communications Symposium, Vol. 11, No. 4, Mexico City, October 198L

2. Ulug, M.E., "Calculation of Waiting Times for a Real Time Token Passing Bus,"

Proceedings of Computer Networking Symposium, Dec. 1983, Silver Spring, Maryland.

3. Ulug, M.E., "Calculation of Waiting Times for a Dynamic Token Passing Bus," Proceed-

ings of the Computer Networking Symposium, Dec. 1984, Gaithersburg, Maryland.

4. Ulug, M.E., "Comparison of Token Holding Time Strategies for a Static Token Pass-

ing Ring," Proceedings of the Computer Networking Symposium, Dec. 1984, Gaithersburg,

Maryland.

5. Konheim, A.G., and Meister, B. "Waiting Lines and Times in a System with Polling,"

JACM21, 470-490, July 1974.

6. Kleinrock, L. Queueing Systems, Vol. 1. Theory, Wiley-Interscience, New York, 1975.

178

Network Management Issues

Chairperson: Gary Workman
General Motors

A HIERARCHICAL POLICY FOR TIMER
ASSIGNMENTS IN IEEE 802.4 NETWORK

K.H. Muralidhar

Communications and Network Laboratory

Industrial Technology Institute

P.O. Box 1485

Ann Arbor MI - 48106.

ABSTRACT
Process oriented and critically timed communications requirements necessitates

a real-time, failure-proof network for factory automation. The ability to control the

accessing at the data link level by assigning priorities and timers make token passing

more advantageous in the factory environment. The performance of token passing

schemes depends greatly on the value of various timers that can be controlled at the

data link level. A hierarchical policy to assign values for various timers in token

passing access method in an optimization framework is reported. The basic idea in this

scheme is to decompose the decision making capability into two hierarchically arranged

levels. In the higher level, a centralized linear programming problem is solved to

maximize the overall bus utilization of the network. In the lower level, a distributed

integer programming problem is solved at each station to maximize the buffer

utilizations. The higher level problem is solved at a slower time scale compared to

lower level problem.

1. INTRODUCTION:

Factory of the future imposes integration of current automated machines in a

factory floor. This integration is achieved via data communications networks. Process

oriented and critically timed communications requirements necessitates a real-time,

failure proof network for factory automation [McGA85]. Several data communications

networks with different access methods exist for local area network environment. Some

of them are based on the contention schemes and some are based on token passing.

180

The deterministic nature of token passing access method, which guarantee the

time critical aspects of communication and high reliability at peak loads favor the token

passing access method for networks in factory environments. Further, ability to control

accessing at the data link level by assigning priorities and timers make token passing

access method even more advantageous in the factory environment.

The IEEE 802.4 committee [IEEE84] has defined a token passing scheme which

is suited for factory environments. The responsibility of the IEEE 802 committee is to

specify lower two layers of the ISO's OSI model to provide local area network

interconnection capability. However, the problem of inter-communication capability for

factory environments is addressed by Manufacturing Automation Protocol [MAP85]

specifications.

The performance of token passing schemes depends greatly on timer values

that can be assigned in a dynamic or quasi-static fashion at data link level. These

timers are: high-priority token holding timer and target rotation timers for other

priority classes. Various simulation results are reported in the literature [RAHI83,

ARCH84] to study the effects of these timers on the performance of token passing access

methods.

Several performance measures are defined for local area networks [STAL84].

The significant ones are network utilization and throughput. Network utilization is

defined as the ratio of throughput to capacity or bandwidth of the system. Throughput

is defined by the ratio of message transmission time to the sum of message transmission

time and overhead time. The overhead time in the case of token passing access method

comprise of, station delay, ring maintenance time, token passing time etc., which affect

the effective throughput of the network.

In this paper, a hierarchical policy to assign timer values in token passing

access method in an optimization framework is reported. The basic idea in this scheme

is to decompose the decision making capability into two hierarchically arranged levels.

In the higher level, a centralized linear programming problem is solved to maximize the

overall throughput of the network. In the lower level, a distributed integer

programming problem is solved at each station to maximize buffer utilization. In fact,

181

a buffer allocation problem is solved to achieve the intended buffer utilization. The

higher level problem is solved at a slower time scale compared to lower level problem.

The main features of this hierarchical policy are:

• consideration of multiple objectives such as, throughput and buffer

utilization independently in the optimization process;

• consideration of various attributes such as, load demand rates, priorities of

messages, priorities of stations etc., in developing cost functions in the

optimization problem;

• complexity reduction due to distributed lower level problem;

• cost effective due to exploitation of differences in time scales between higher

and lower level problems.

Additional details on this framework and applicability of this framework to other

problems of interest in data communications networks are reported in [MURA84].

Organization of this paper is as follows. Certain notations and definitions used

throughout this paper is given in section 2. In section 3, higher level problem is

formulated while lower level problem is formulated in section 4. Step-by-step algorithm

to assign timer values is given in section 5. In section 6, simulation results are given.

Finally, conclusions and some possible extensions to this method are given in section 7.

2. NOTATIONS AND DEFINITIONS:

Let 7V= { 1, 2, 3, . . . , N } be the set of stations in the logical ring formed in

the network. Let T^.^ be the maximum token holding time (time during which a

station is allowed to transmit messages) for station i G N. Let P= { 0, 2, 4, 6 } be the

set of possible priorities or access classes in the token bus. Let pCP, such that

p = { 0, 2, 4 }. Let be the target rotation timer for station i E N with a priority

mE p. Let T^ be the high priority token holding time for i G N.

Let C^. be the cost coefficient for station i G A^. C^. depends on factors such as.

182

priority of station, demand rates at station etc. Let L denote tlie slot time in the token
s

bus network. Let T be the maximum token rotation time tolerable in the network.

Let K be a constant which indicates minimum bus utilization required for the token bus

network. Let D^. denote the total load demand rate expressed in packets/sec and P^.

denote the priority cost for station i € N.

For a given access class jEP, let d^.-^ denote the average load demand rate in

packets/sec at station i E N. Let b^.-^ and y^.-^ denote the buffer in number of packets

allocated and cost coefficient defined in lower level problem for a priority jEP at

station i E N respectively. Let G^. denote a constant to transform the buffer allocated to

time units. G^. depends on various parameters such as, data size, data rate, maximum

distance between nodes, latency of the headend, and setup time required for packet

transmission at station i E N. Let B^. denote total buffer available at station i E N. Let

g:R —>• R denote the functional mapping between demand rate d^.-^ and buffer b A With

these notations and definitions, the two level problem to assign timers in the token bus

network can now be formulated.

3. HIGHER LEVEL PROBLEM:

As described earlier, timer assignment problem is decomposed into two levels; a

higher level problem and a lower level problem. Higher level problem deals with

selection of suitable token holding timers for active stations in the network. Before

actually formulating higher level problem, several considerations that influence the

formulation are described in the following.

In a typical factory environment, several different types of stations

characterized by machines attached to each node are present. In particular, the

network may consist of several programmable logic controllers, robots, numerical

control machines, and host computers. Due to the diversity in behavior and

requirements of these machines, the timer values that need to be set in these network

stations become different. Some of the parameters that influence the selection of timer

values are:

• priority of a station in the network. For instance, a host attached to a

183

network managing the network and other control functions may be

extremely important compared to either a programmable logic controller, or

a robot, or a numerical control machine. In such a situation, it would be

appropriate to assign a larger value for token holding time for that node;

• another important consideration in selecting timer values for stations is

amount of data required to be sent out of that station. This parameter is

useful in reducing overall queue lengths at those stations who have large

amount of data to be transmitted over the network. Further, reducing

queue lengths in the stations improves overall delay in the network;

• in a token bus network, throughput of the network depends largely on the

amount of time allowed for transmitting messages. In fact, throughput will

be maximum when this time is very large. However, it should be noted that

this may lead to very unfair situation of a station monopolizing the whole

network resources;

• from the network user point of view, there may be a requirement of

maximum time delay tolerable between successive capturing of token in the

network. This situation is of particular interest in the case of time critical

needs of factory environment. Such a requirement necessitates faster token

rotations in the network;

• in a factory environment, it is required to allow for each station to transmit

a few packets (especially emergency messages).

With the abovementioned considerations, higher level problem can be

formulated as an optimization problem to determine the maximum time a station can

transmit messages when they acquire token. The objective of this optimization problem

is to maximize overall throughput of the network. However, using the additive property

of throughput of a station, overall throughput of the network is maximized by

maximizing throughput of individual stations. Higher level problem can now be

formulated as a linear programming problem as.

N

max (3.1)

i=l
subject to

N
TR (3.2)

t=l

(n) T.^ >K'L y ieN (3.3)

18A

(m) T < D . y ieN • • • (3.4)

Cost coefficients C^. in (3.1) depends on the priority of station i and load

demand at the station i. A possible expression for C^. can be chosen as,

C. = P.-D. • • • (3.5)

expression for C^- in (3.5) indicates assignment of larger value for timer to those stations

which are prioritized in the network and for those stations which have larger amount of

data to be sent over the network.

Constraint (3.2) is imposed to take care of maximum rotation time tolerable.

Constraint (3.3) is imposed to ensure a minimum throughput from each station and to

enable stations to transmit at least a few packets. Constraint (3.4) is imposed from

efficiency consideration by assigning timer values to be enough to meet the demand.

It is clear from the problem formulation that solution to (3.1) maximizes

overall throughput of the network and at the same time satisfies several requirements in

a factory environment.

4. LOWER LEVEL PROBLEM:

In lower level problem, time allocated for message transmission by a- station is

further distributed among various access classes in a station. A solution to this problem

results in selection of appropriate target rotation times.

As described in the specifications, there are four different access classes in each

station. The priorities of these classes are given as 0, 2, 4, and 6. Associated with

priority 6 is high priority token holding timer which indicates maximum time allowed

for transmission of high priority packets. For other classes, there are target rotation

timers which dictate transmission of those priority packets.

As opposed to higher level problem, in lower level problem, timer assignment is

posed as a buffer utilization problem. This is due to the fact that in a factory network,

185

a protocol of the nature of MAP necessitate presence of transport layer protocol which

ensure a reliable end-to-end data transfer. Hence by limiting buffers available at data

link level to the extent that amount of packets can be transmitted when token is

acquired leads to efficient buffer utilization.

There are several considerations that are to be given while formulating lower

level problem. Some parameters that influence timer selection at this level are:

• how important an access class is for a station. This parameter changes

weight factor used for access class. Typically, a network control center may
have a smaller relative weights as opposed to a numerical control machine

station where cost of high access class is several orders larger than lower

access classes;

• another parameter is amount of data belonging to a particular access class

that is to be sent from a station;

• actual buffer available at a station.

With the abovementioned considerations, lower level problem can be

formulated as an optimization problem to determine buffer allocations and

corresponding timer values. A solution to this problem maximizes buffer utilization at a

station while satisfying constraints imposed at a station. Lower level problem is

formulated as a integer programming problem as,

max ^ y-^- h^^ • • • (4.1)

subject to

(0 E ^ ^ e • • • (4.2)

(u) 52 • < T .'^ V 2 e N • • . (4.3)

[in) h/ < d/-g • • • (4.4)

Cost coefficient y^-' in (4.1) can be selected based on various parameters such

as, how important an access class is, demand for each class etc. However, in the present

case, y -"^ = p -^ is what is selected as cost coefficient.

186

Constraint (4.2) follows from total buffer available at a station. Constraint

(4.3) is a goal coordination between higher level problem and lower level problem by not

letting timer values to exceed the solution obtained by solving higher level problem. G^.

in (4.3) depends on data rate and packet length used in the network. Constraint (4.4) is

imposed from actual load demand.

After obtaining a solution to (4.1), different timers in a station are assigned as

follows.

T^.^ = b • G . • . • (4.5)

N
T/= ET.' + V-G, V iep ••. (4.6)

i=l

Solution to lower level problem while maximizing buffer utilization, generate

timer values in a station.

5. HIERARCHICAL POLICY:

Solution to timer assignment problem is sought by obtaining solution to higher

level and lower level problems. It is evident from the problem formulations, higher level

problem is solved in a centralized fashion and lower level problem in a distributed

fashion. Some of the salient features of this hierarchical policy are described in the

following.

This scheme allows for multiple objectives to be considered independently in

the optimization process. In the present case, throughput and buffer utilization are

considered as objectives. By suitably decomposing the decision making capability to

various levels, additional objectives such as, fairness among stations, average delay for

packets can also be considered.

Another feature of this scheme is consideration of parameters specific to a local

area network environment such as, factory automation network or office automation

network. In the present case, for an factory automation network, priority of a station

(based on whether machine attached to a station is network controller, or robot, or

ii

187

programmable logic controller etc.), load demand rates, and priorities of messages at

each station are considered.

In addition, throughput maximization (higher level problem) is solved as a

centralized problem and buffer allocation (lower level problem) a distributed one.

Information required for throughput maximization is of global in nature and the other

problem requires local information only. Further, buffer allocation problem also

requires results obtained by solving throughput maximization problem.

Lastly, decomposition of timer assignment problem into centralized and

distributed problems allows for exploiting time scale differences between the two.

Throughput maximization problem can be solved at a slower time scale compared to

buffer utilization problem. This is due to the fact that nature of changes in parameters

such as, how many stations in the network, overall demand rate at a station etc., are

very slow compared to changes in demand for prioritized messages at a station. his is

especially true in the case of time critical nature of factory automation networks. Hence

in order to provide a quick response to fastly changing parameters, buffer utilization

problem is solved in a distributed fashion using only local information. This property

provides a cost effective solution to timer assignment problem.

A step by step algorithm:

Step 1: At every T^^, solve linear programming problem (3.1) to obtain

T^/* V i E N using average demand rates, maximum tolerable token

rotation time, and minimum time allowed for each station to transmit

messages. Broadcast T^^ to all stations.

Step 2: At every t = n • T^^, solve integer programming problem to obtain

b^.-^ V iEN and j E P, using demand rates for each priority,

available buffers, and T^ value transmitted from higher level

problem.

Step 3: Compute T.^ V i e N, j 6 F, using (4.5 and 4.6).

188

Some remarks on this solution:

Remarkl: Solution is obtained with the presumption of existence of a

mechanism to transmit demand rates to network control center to

solve higher level problem. This can be achieved through a network

management function [IS084].

Remark2: Solution obtained is sensitive to both data rate and packet length

used in the network.

Remarks: Solution obtained is based on time average values averaged over

certain time intervals. Hence this hierarchical policy is a quasi-static

one.

Remark4: Solution is obtained under assumption of heavy load on the network

i.e. stations are always prepared to transmit a packet.

6. SIMULATION RESULTS:

A network shown in figure 1 is used for simulating this hierarchical policy.

For the sake of comparison, this scheme is simulated using standard mathematical

programming packages with three different values of maximum token rotation time

tolerable (T^ = 30msec, 60msec and 90msec). Some parameter values used in

simulation of the network are, slot-time = 45.6^sec, headend latency = 10//sec, packet

length = 1024 bytes, buffers available at each station = 16k, and data rate =
5Mbits/sec. Minimum throughput coefficient K wsis selected to be 5. Priority cost for

stations 1, 2, 3, and 4 were selected to be 1, 2, 3, and 4 respectively. Priority cost for

access classes 0, 2, 4, and 6 were selected to be 1, 2, 3, and 4 respectively.

Results for maximum token holding time T^-^ for each station with three

different values of T"^ for varying load demands are shown in figures 2-5. Whiie

changing load demand values for a station, other stations are assumed to have a

nominal load demand. It is evident from these figures that, as the maximum rotation

time requirement is smaller, T values for stations having lower priority in the network

189

becomes smaller decreasing overall throughput of the network. On the other hand,

when maximum rotation time requirement is larger, T-^ values for lower priority also

increases thus increasing overall throughput of the network.

In an another set of simulation, values of K were varied from 2.5 to 7,5.

Again, T^-^ values are computed for all stations. Results of for varying load

demands for each station with three different values of K are shown in figures 6-9.

Results of this simulation show that there is not much effect on throughput when K is

varied. This is due to the fact that a constraint of the form controls the

distribution of T^.^ values between lower and higher priority stations and has least effect

when K is varied with a constant T value.

Using simulation package reported in [PIME85], the network shown in figure 1

was simulated by assigning timers using this policy. T = 30secs and r = lOsecs were

used for updating timer values in this policy. Both throughput and bus-utilization is

shown in figure 10. It is evident from this graph that performance of the network can

be improved greatly using this policy for updating timers.

7. CONCLUSIONS:

A hierarchical policy for assigning timer values in a IEEE 802.4 network is

presented. This policy provides an ideal framework for considering multiple objectives.

Simulation results have shown considerable improvements in performance using this

policy for timer assignments which otherwise would have taken a very expensive

simulations to achieve proper timer values. This policy can be used to assign timers in

a quasi-static fashion to react to changes in parameters at a station. Computation of

these changes to parameters would have been extremely difficult using simulation

approach.

Several extensions to this policy are possible. Firstly, by changing lower level

objective function to include in its formulation the solution obtained in higher level

problem. This would result in a better goal harmony between the two problems.

Secondly, a performance evaluation of this hierarchical policy is required to analytically

190

determine time periods T^^ and t. Lastly, additional objectives can be included in

problem formulations.

Thus hierarchical policy for timer assignments in IEEE 802.4 network provides

an ideal framework for solving some parameter assignment problems to improve

performance of the network considerably.

191

REFERENCES

(IEEE84] IEEE Standard 802.4 Token Passing Bus Access Method and Physical

Layer Specifications, Draft F, July 1984.

[MAP85]

[IS084]

Manufacturing Automation Protocol, Version 2.0, March 1985.

ISO Standard 7498 Information Processing Systems - Open Systems

Interconnection - Basic Reference Model, Oct. 1984.

[McGA85] Susan L. McGarry, " Networking has a Job to do in the Factory",

Data Communications, Feb. 1985, pp 119-128.

[STAL84] William Stallings, " Local Network Performance", IEEE
Communications Magazine, Vol. 22, No. 2, Feb. 1984, pp 27-36.

[MURA84] K.H. Muralidhar, " Hierarchical Schemes for Routing and Flow
Control in Large Communication Networks", Ph.D Dissertation,

Department of Electrical and Computer Engineering, University of

Arizona, 1984.

[RAHI83] Said K. Rahimi and George D. Jelatis, " LAN Protocol Validation

and Evaluation", IEEE Journal on Selected Areas of

Communications, Vol. SAC-1, No. 5, Nov. 1983, pp 790-802.

[ARCH841 Jean-Luc Archambault, " An IEEE 802.4 Token Bus Network

Simulation", NBS IR 84-2966, National Bureau of Standards, Oct.

1984.

[PIME85] Juan R. Pimentel, " Simulation of IEEE Token Bus Protocol Using

SIMAN", to be presented at Workshop on Analytical and Simulation

Modeling of IEEE 802.4 Token Bus, NBS Gaithersburg, MD, April

29-30, 1985.

192

2
O

<

CO

O
fa

o

2

193

194

195

196

3l^ll-CnOH-N3>l01

197

198

199

200

z
o

<
H
CO

On

o

201

202

On the Stability of a Token Passing Network.

by Anastase Nakassis
Institute for Computer Science and Technology
National Bureau of Standards, Dept of Commerce.
Building 225, room B221.
Wash D.C. 20234.

Abstract : In what follows we will study the stability of token
passing networks with a fixed number of queues and we
will deduce the average rotation time for the token and
the average usage time per queue, under the assumption
that the system is stable. These results will then be
used to derive system parameters that will make the
network stable.

INTRODUCTION.

In what follows we plan to study the performance of a local area
network that implements the IEEE 802.4 standard (July 1984, draft F).
The questions that we will address and attempt to answer revolve
around the following theme

:

" Given the arrival and departure rates for every queue in the network,
and given the system's parameters (token holding times. Target
Rotation Times and token passing times) can we decide if the
network is stable?"

As we will see, there are cases in which we can decide if the
network is stable or not (a network is stable if and only if the
expected length of every queue in the network is finite) on the basis
of the information listed above. But, there are cases in which more
information is needed, i.e. we need to know the distribution of
the interarrival times and, possibly, the distribution of the size
of the messages in each queue.

In order to simplify this problem, we will study in what follows
networks with a fixed number of nodes/queues/stations and we will
study a generalization of the IEEE standard in order to ignore
details that are are not relevant to this work. We will assume then
that we have k queues named l,2,3,...,k, and that the token is passed
from queue 1 to queue 2, to queue 3, . . . ,to queue k, to queue 1, ...

and so on. By "token passing" we understand something more general
than what the term usually denotes (passing the token from one station
to the next). In this text, token passing means passing the "right of
transmission" and it takes place from queue to queue not from station
to station. Actually, this study does not distinguish between stations
and queues. The queues are either of high priority, in which case they
can retain the token for up to h[i] time units per rotation, or of low
priority in which case they can hold the token for up to TRT[i]-R time
units per rotation (TRT[i] being the queue's target rotation time and
R the duration of the previous rotation as seen by queue i). In what
follows we assume that we have been given two sequences

203

- h[i] and TRT[i] , i = l,2,3,4 k - such that:

1. If queue i is of high priority, then h[i] >0 and TRT[i]=0.
2. If queue i is not of high priority, then h[i]=0 and TRT[i] >0.

Evidently, h stands for token holding time and TRT for Target
Rotation Time and these two sequences fully describe the queues
of our network.

Notice that we do not make any assumption concerning the distribution
of high priority queues, although the IEEE 802.4 standard (July 1984,
draft F) on which this work is based does imply some distribution.

In what follows, we introduce a set of parameters needed in order to
describe the actual behavior of the network and an additional
assumption, item (7), that we need in order to describe the exact
conditions under which a station is passing the token. Indeed, the
following question arises: Assume that queue i has the token and a
message to send ; assume also that the queue has not exhausted the
time that it was allocated by the protocol, but that if it attempts
transmission, then it will exceed it. Will it attempt transmission
or not? Whatever the answer, this situation will drive a wedge
between the nominal and actual token usage times (i.e. the times the
protocol allocates and the actual usage times) and, in some
instances, it will greatly complicate the study of the network. For
this reason we will introduce item (7) whose purpose is to simplify
the network's behavior. Assume therefore that:

1. D is the time needed in order to pass the token from
queue to queue during a complete revolution,

2. a[i] is the expected number of arrivals at queue i during a time
unit

,

3. d[i] is the number of messages sent by queue i within a time unit,
(it is implicit in d ' s definition that all messages in

a given station are of the same length. This assumption
is not needed but it will be maintained for reasons of
simplicity of exposition. We note that when this
assumption is lifted, then the distribution of the
messages' lengths may, under the right circumstances,
affect the stability of the network)

.

4. f[i] is by definition a[i]/d[i],
5. T is the average time needed for a complete revolution,
6. T[i] is the average time queue i keeps the token during each

revolution, and
7. either of the following is true:

a. the system parameters are such that when the protocol assigns
to a queue a certain time t, then the queue will never exceed
this time. For most systems, this is tantamount to saying
that t is a multiple of d[i].

b. the queue length is seen as a continuous variable so that
each time t is used to its fullest extent.

c. the system parameters can be altered in such a way that:
cl . The original and the modified system behave in the same

way. For instance: assume that h[l]=2.5, that d[l]=l,
and that the system will attempt a transmission if it
has messages to send and it has not exhausted its
holding time. In that case we can assign to h[l] any
value in the interval (2,3] without modifying the

204

system's behavior. And that
c2 . the new system satisfies a. above

The assumptions under item (7) above are not always needed and
after each proof we will include remarks as to which expression(s)
and /or which part(s) of the proof depend on any of the above
assumptions

.

MAIN RESULTS.

We start by observing that even if some or all network queues are
unstable (the expected length of the corresponding queues tends to
infinity as time tends to infinity), all T[i]'s, i=l , 2 , 3 , . . . , k

,

are well defined. Indeed, by the protocol's very definition, the
token usage at any given queue i and during any rotation is bounded
by max { h [i] , TRT [i] -D} . Furthermore, since

T = SUM T[i] + D.
i

T is also finite.

Lemma 1. If all queues are stable, then

T=D/(1.0-SUM f[i]).
i

It ensues that a necessary condition for stability is
that the f[i]'s sum to less than one.

Proof: If the system is stable, then for each queue the number
of arrivals [messages put in the queue] must equal the
number of departures [messages transmitted]. In general,
the arrivals are no less than the departures and by
averaging we obtain d[i] *T[i] < =a[i] *T, or T[i] < =f [i] *T.

If queue i is stable, then T[i]=f[i]*T. We know that
stability or not

,

T=D+T[1]+T[2]+ +T[k]

Therefore, if all queues are stable, then

T=D+T(f [l]+f [2]+ ... +f[k]) and
T=D/(1 .0-f [l]-f [2]- ... -f[k]).

Moreover, T[i] =f [i]T=f [i] *D/ (1 . 0-f [1] -f [2] - ... -f[k]).

(end of Proof)

The problem is to ascertain if the system is stable. The values
for T and T[i] were obtained under this very assumption. But it may
well be that the parameters of the system are such that a particular
queue is not stable. For example, if T[i]>h[i]>0, then the holding
time is too small and the queue is unstable. As we will see below,
one can derive simple sufficient conditions for the system to be
stable. One may also find necessary conditions for system
stability. But, it is hard to find conditions that are both
sufficient and necessary. Indeed, as we will see shortly, the
token usage by the low priority queues depends not only on the
average birth and death rates, on the h[i]'s and the TRT[i]'s,
but also on the distribution of the token usage times for each queue.

205

Lemma 2. For a given T, a high priority queue i is stable provided
that h[i] >f [i] *T.

Proof: If the queue is a high priority queue, then during each
revolution it will keep the token for h[i] time units or
for as long as it needs it, whatever is less. But if
h[i]>f[i]*T, then it can not consistently hold it for
h[i] time units, because then the departures will exceed
the arrivals. Thus, whatever the queue's present length,
we are assured that sooner or later the queue will be empty
and it is quite obvious that the time at which the
queue will be empty has a finite expected value.
One can also see that if h[i]<f[i]*T, then the queue is
unstable and that in this case T[i]=h[i] < f [i] *T.
Finally, it remains to examine the case of h[i]=f[i]*T.
A statement about the queue stability cannot be made
unless one has more information on the arrival
distribution. We note though that in the Markov case,
when the birth and death rates are equal , the queue is
unstable. Furthermore, from an engineering point of view,
one can not know the precise values of our variables.
In other words, we can never know if we have equality
and we cannot distinguish between the case of h[i]=f[i]*T
and h[i] < f [i] *T.

(end of proof)

Remark: If condition (7) is not satisfied, then the lemma's sufficient
condition holds true, provided that a transmission will
always be attempted while messages are present and h is not
exhausted. On the other hand, the condition will not be
necessary unless a queue refrains from transmissions that
will result in token holding in excess of h[i]. This is
not only inconsistent with the current protocol, it is a
condition that can not be satisfied unless one knows ahead
of time the transmission's length. Nevertheless, we know that
the token cannot be held for more than h[i]+d[i] time units.
Given that our time is measured in increments of a quantum q,
and given that the actual holding time cannot exceed h[i]+
(last transmission's duration), we can state that if

T[i] >=h[i]+d[i]

,

then the queue is unstable.

Lemma 3 : Assume that the average token rotation time is T and that
a low priority queue, i, is unstable.
Then T+T[i] >=TRT[i]

.

Proof : If queue i is unstable, then it will use the token as
much as it can because its queue will have a tendency to
be longer as time passes and the probability that said
queue will clear tends to zero as time tends to infinity.
Let us assume that queue i is the last queue, and that
during rotation j, j=l,2,3,... , queue i held the token
for tTj] time units while all the other queues combined
held it for s[j] time units. Then we have:

t[j-l]+s[j]+t[j]+D> =TRT [i

]

for almost all j (that is for all j, j>l, for which queue
i is not empty and its length exceeds some constant length
m).

206

Therefore, if we take tlie averages we will obtain

T[i]+T>=TRT[i]

,

because E(t
[
j-1

])=T[i] and E(s [j] +t
[j] +D)=T

.

[E(.) is the expected value of whatever happens to
be within the parentheses]

.

(end of proof)

Remark: The assumptions in (7) are not needed provided that the
queue will not pass the token before it has exhausted all
allocated time, unless it is empty (therefore, the last
transmission may extend the actual holding time somewhat
beyond the difference between TRT[i] and the time
that elapsed between the previous token entry to queue i
and the present one).

Remark: Given that the actual token usage of a low priority queue
is affected by the token usage of every other queue, it is
quite difficult to establish if low prioriry queue i
unstable or not . Sometimes one may be able to show that
at least one low priority queue is unstable while being
unable to determine which ones actually are. What follows
are a few fairly straightforward observations:

If t[j-l] and t[j] are the actual token usage by low priori-
ty queue i during rotations j-1 and j, then

t[j-l]+D+t
[
j] <=TRT[i]

(if (7) does not hold, then t
[

j -1] +D+t
[
j] < TRT[i] +d[i])

.

Therefore, there is an obvious upper bound to the token
usage of low priority queue i, namely (TRT[i]-D)/2. 0.

Clearly, this bound is very crude and does not take in
consideration the rotations during which the other queues
are active. In any event, in order to have stability, it
is necessary that TRT [i] > =2 . 0*T[i] +D for every low priority
queue i

.

If the TRT and h values are such that it is admissible
to have each queue i hold the token for T[i] time units
in each rotation, then TRT[i] >=T+T[i] . Therefore, under
the conditions outlined above, and if one wishes that the
low priority queue be stable ragardless of the arrival/usage
patterns of the other queues, then for every low priority
queue i, one should choose a value TRT[i] such that:
TRT[i] >=T+T[i]

.

Finally, let us remark that up to this time we looked at
low priority queues in isolation. Given a set of values
for a[i], d[i], h[i], and TRT[i] , one can conceivably show
that for every admissible sequence of token usage times,
at least one low priority queue will be unstable while
there are sequences that make each specific queue stable.
It would therefore be useful to attempt to find inequalities
binding not a single queue's TRT, but all TRT's at the same
time. In other terms one might come with a function of all
the above quantities, p(a , d , h , TRT) , such that whenever p<0,
then any possible sequence of message arrivals (token usage)
would leave at least one queue unstable. To give an

207

example

:

Assume that a network consists of two low priority queues
with target rotation time R. Then for every
possible admissible sequence of token usage times, the
average token usage for one of the queues will be (R-D)/3
or less. Thus, unless R>=3.0*min{T[l] ,T[2] }+D, at least
one of the two queues will be unstable.

Lemma 4 : A sufficient condition for a network to be stable is that

a. f tO]+f [1]+. . .+f [k] be less than one, that
b. For all high priority queues, h[i]>f[i]*T, and that
c. for all low priority queues, TRT[i]> (l+f[i])T

where T=D/ (1-f [0] -f [1] - . .
. -f [k])

.

Proof : Let P be the average rotation time. If one or more queues
are unstable, then their average token usage per revolution
is f[i]P or less. Therefore,

P=T[0]+T[1]+. . .+T[k]+D<= (f [0]+f [1]+. . .+f [k])P+D

and if we solve for P, then we see that P<=T. Since
h[i]>f[i]T, h[i]>f[i]*P, and high priority queue i is
stable. Similarly, if i is a low priority queue, then
P+T[i] <=T+f [i]P<=T+f [i]T<TRT[i]

.

Therefore, according to our previous lemma, queue i cannot
be unstable.

(end of proof)

Remarks: (1) Condition (a) is necessary for stability (see Lemma 1.).
(2) Under most circumstances, condition (b) is also necessary

for stability, provided that (7) holds (see Lemma 2.).
When neither (b) nor (7) are true, then either we need
more information, or we can prove that the network is
unstable

.

(3) As we will see later, when this condition is not
satisfied, then either we need more information,
or we can prove that the network is unstable.

(4) The above lemma holds even if (7) is not true.

As noted above, the condition for stability on the low priority
queues is sufficient but not necessary. The reason for this is that
we have a complex scheme that determines how much token usage each
low priority queue gets at each rotation and as the following examples
will indicate, the stability or instability may hinge not only on the
average usage by the stable queues, but also on the distribution of
token usage.

Example 01 :

There are two high priority queues (0 and 2) and two low priority
queues (1 and 3). We assume that D=1.0, that TRT=8 . 0 for both
low priority queues, and that both high priority queues are stable
with average token usage 2.0 time units per revolution. Then the
following token usage sequences are possible:

a. Both low priority queues are saturated:

208

3
3
1

1

3

0
1

2
1

0

3

1

3

1

3

0
2
0
4
0 etc.

with T[0]=T[2J=2.0, T[l]=1.0, T[3]=1.5, and T=7 .

5

Both low priority queues are saturated.

4
0
4

0
4
0

2

2

2

1

0
1 etc

.

Again TtO]=T[2]=2.0 and T=7.5, but now T[l]=2.0 and T[3]=0.5.

c. Queue 3 is saturated, but 1 is not, and has the token usage pattern
shown below:

4 0 2 0
0 3 2 2
4 0 2 0 etc.

In this instance T[0] =T[2] =2 . 0 while T[l]=1.5, T[3]=1.0. and

(Keep in mind that since D=l, we can derive the holding times
for the low priority queues by usind their effective TRT's
which equal 8.0-1.0=7.0 ; when T is computed, we average the
actual token usage times and we then increment this average by D=1.0

A cursory examination of those examples shows that there are f values
for which queue 1 is unstable (example a) while for the same values
of f but different token usage queue 1 is stable (example c).
Please notice that the token usage patterns we exhibited cannot be
sustained unless restrictions are placed upon the mechanism
that creates messages to be sent; while the precise token usage
sequence that we exhibited cannot be sustained without unrealistic
assumptions are made for the message generating mechanism, what we
did was to exhibit a specific instance of a stable/unstable
system. It is quite possible that less restrictive mechanisms
may also produce stable/unstable systems, but in this case it would be
much harder to predict an exact token usage.

Exajnple 02

:

In the aJDOve example we exhibited patterns of token usage such that
for the same f[i]'s, h[i]'s, TRT[i]'s, and D, some of the low priority
queues may be stable or all may be unstable. It is natural then to
consider the following problem:

Assume a set of parameters and a pattern of token usage that makes
the system stable. Is there a different pattern that makes some of
the queues unstable?
Or, is it the case that if a pattern makes the system unstable, then
every other pattern will also make the system unstable but may
displace the instability from a set of queues Q to another

T=7.5.

).

209

set of queues Q*?

The following examples are meant to answer this question.

We assume that f [0] =f [23 =2/7 , that TRT [1] =TRT [3] =8 . 0

,

that D=1.0, and that h[0] =h[2] =4 . 0 . We will propose two usage
patterns based on the assumption that both low priority queues
are unstable. From these assumptions we will derive inequalities
for f[l] and f[3]. Finally, these inequalities will show that careful
choice of f[l] and f[3] will render one system stable, but the other
unstable in both low priority queues.

a. Assume the following pattern:

2 0 2 0
2 3 2 0
2 0 2 3

2 0 2 0

We see then that T=(4+l+7+l+7+i)/3=21/3=7.

f [0]=f [2]=2/7.

The instability of queues 1 and 3 implies that f[l] and f[3]
equal or exceed 1/7.

b. Assume the following pattern:

49/14 0/14 15/14 34/14
15/14 34/14 49/14 0/14
49/14 0/14 15/14 34/14 etc.

We see then that T=(49/14+15/14+34/14+l+15/14+34/14+49/14+l)/2=
=(98/ 14+ 1+98/ 14+1)/2=(7+1+7+1)/2=8.0, that

f [0]=(49/14+15/14)/16=(64/14)/16=4/14=2/7, that
f[2] = =2/7, and that

instability for queues 1 and 3 implies that f[l] and f[3] exceed
or equal (34/14)/16=(2/14+32/14)/16=l/112 + 2/14= 1/7 + 1/112.

Therefore, if f[l] and f[3] exceed 1/7 but are less than 1/7+1/112,
then the first token usage pattern implies instability, while the
second one implies stability.

CONCLUSIONS.

In what preceeded we ivestigated the stability properties of a token
passing network. Our investigation showed that given the ratios of
arrival/departure rates, it is possible to assign holding times and
target rotation times in a way that makes the network stable if and
only if the said ratios sum to less than one. Nevertheless, such
assignments may make our TRT ' s quite big and this is an unwelcome
feature. It means that if there ever is an activity peak, a low
priority queue may grab and hold the token for a long period of time.

Therefore, one is led to the problem of establishing stability, or
the lack thereof for a specific network with given holding times and

210

Target Rotation Times. Our results can, in some cases establish that
a given network (all or some queues of the network) is not stable.
Evidently, the most interesting case is the one that cannot be covered
by our results. As examples 1 and 2 indicate, it is quite unlikely
that we may establish stability or the lack thereof without assumptions
on the distribution of the token usage. Given the interdependencies
between the actual holding times of low priority queues (protocol
specification) as well as the fact that the actual holding time at
one queue may determine the length of the next, this appears to be
a difficult task. A practical approach may consist of running
simulations and/ or assuming a specific arrival pattern (for instance
a Markovian birth process). It also appears that better results may
be obtained through analytical models only if we reach a better
understanding of the token usage by the low priority queues.

Another subject that is worth examining more closely is the fact that
in a stable system the average rotation time is proportional to D.
At first the result seems wrong since it implies that if D=0, then
T=0. More careful consideration reveals that a stable system will
, sooner or later, reach a state when all queues are empty. At that
time, if D were zero, the token would perform infinitely many
rotations in a small amount of time, thereby driving the mean rotation
time to zero. Since T and all T[i]'s are, in a stable system, propo-
rtional to D, another research area is to examine why this relation
holds and what it implies for the design of networks. Specifically,
one would like to know the distribution of the rotation time as a
function of D. One would like to know if there is a range of values
for D over which the distribution of (rotation time)/D is independent
of D or, at least, not sensitive to changes in D. Simulation
results imply that such a range does exist but, as D increases, there
comes a moment at which the long rotations can not become any longer
and therefore small changes in D will have increasingly more severe
impact on the short rotations. Finally, a moment comes when the
network becomes unstable unless the system parameters are increased
whenever D is increased. Therefore, it would be a worthwhile project
to study, through simulations if necessary, the distribution of the
rotation time when all factors other than D are held constant. We
note that the rotation time as seen by queue i and the rotation time
as seen by queue j will not necessarily have the same distribution,
even though both rotations will have the same expected value, T.

Indeed, the simulations in appendix 2 show that the variance of
the rotation time as seen by queue i and the variance of the rotation
time as seen by queue j are not equal. A fortiori, the rotation time
as seen by i and the rotation time as seen by j do not have identical
distributions. Thus, even if one manages to derive the distribution
of the rotation times as seen by a specific queue of a specific
network, it is not obvious that a general model can be extracted from
such distributions.

APPENDIX 1

Proof of the statement that if a network consists of two low priority
queues with TRT's equal to R, then for every admissible sequence of
token usage times the average token usage of at least one queue is
(R-D)/3 or less, D being the time spent in token passing during each
rotation.

Consider an admissible sequence

211

x[l] y[l]
x[2] y[2]

x[i-l] y[i-l]
x[i] y[i]
x[.l+l] y[i+l]

Let S=R-D so that we can ignore D in what follows. Clearly, for each
i x[i]<=S and y[i]<=S. Given this, x[i]+y[i]<=S and y[i] +x[i+l] < =S

.

Indeed, if the y[i] (x[i+l]) is zero, this inequality is true while
if y[ii (x[i+l]) is positive the protocol guarantees that
x[i]+y[i]<=S (y[i]+x[i+l] < =S). By reasoning along the same lines,
we see that x[i]+y[i]+x[i+l] < =S, and that y[i]+x[i+l]+y[i+l] < =S for
all i=l,2,3,... . It ensues that if X and Y are the correspond
averages, then

2*Z+y<=S and X+2*Y<=S.

If X<=y, then 3*X<=S or X<=S/3.

Notice: The above results were obtained under the assumption that
condition (7) holds. If not, the inequalities will have to
be modified so that the extra time during which
the last message was sent will be properly accounted.

APPENDIX 2

In this appendix we will give the results of some simulations that we
carried out in order to investigate the subjects mentioned in the
conclusion above.

In order to examine the validity of the results presented above, I ran
several simulations of a token passing network. The simulations were
run via a rather simple C program, Ratest , which made the same simpli-
fying assumptions that this paper made. What follows are some of the
results obtained. The code of Ratest will be made available upon
request

.

In each simulation we assume that the mean arrival rate at a queue i

oscillates between two values, Ml[i] and M2[i]. not necessarily
distinct. The mean arrival rate remains the same for an interval of
mean length T, with T being equal to the mean rotation time under the
assumption of stability. The actual length of each of these intervals
is w*X+(l-w)*T, where X is an exponential random variable of mean value
T, and w is the measure of randomness for the determination of the
interval's length. At the end of each interval, the mean value will
remain the same with probability p (p=p[i]) and will change with
probability 1-p. During each interval of constant mean interarrival
rate M [M=M1 or M=M2] , the time between two successive arrivals is
r*Y+(l-r)*M, where Y is exponentially distributed with mean M, and r is
the measure of randomness for the message interarrival times.
Intervals with the same M value are thought to be logically contiguous
so that if the above computation gives an arrival time beyond the end
of the current interval, then the arrival will take place in some
future interval with the same M value. One way to visualize this
situation is the following paradigm:

212

Each queue is the outlet for a single CPU computer that
is executing two processes, PI and P2 . Once the CPU is given to a
process, this process will keep it for at least w*X+(l-w)*T time units.
At the end of this interval the process will either retain the CPU for
another interval of length w*X+(l-w)*T with probability p, or
relinquish the CPU to the other process with probability 1-p.
The probability p is supposed to be a function of the queue, but not
a function of the executing process. Each process is creating a new
message every r*Y+(l-r)*Mi time -units with i=l or 2. Clearly, when
the CPU is taken away from a process, the process has most likely
already done some of the work needed for the creation of the next
message and this work will be remembered when the process will get
the CPU back. Thus the activity periods of each process form, from
the process' point of view, a continuum.
Some of the results of the simulations run are given below.
Notice that in all instances we deal with a network of four
queues, two of which are of high priority (#1 and #3), while
the other two, #2 and #4, are of low priority. The time needed for
token passing from queue to queue is 3.5 and the time needed to send
a message is 1.0 time units for all queues and messages.
The results follow:

Simulation *1.

In this simulation w=r=0.0 and p=0.0 for each queue (arrivals and
CPU holding times and CPU switching probabilities are
deterministic). For queues 1 and 3 M1=M2=3.5 while for queues 2 and
4 M1=M2=6.8. The holding times are 60.0 and the target rotation times
are 130.0. All queues are supposed to be empty at the beginning of
the simulation. Theory predicts that this network should be stable
and indeed it is. The simulation shows that after 10004 rotations we
gathered the following statistics:

The time needed for the 10004 rotations was 1041359.00 time units.
The statistical profile of the network for the last 9000 rotations
is

:

mwait swait muse suse mqueue squeue twait tuse
104. 12 1 . 56 29. 75 0.65 21 . 39 0. 53 104. 12 29.75
104. 12 1 .68 15 . 31 0. 53 13. 11 0.42 104. 12 15. 31

104. 12 1 . 58 29. 75 0.66 21 . 38 0. 53 104. 12 29. 75
104. 12 1 .66 15. 31 0. 53 13. 12 0.43 104. 12 15.31

where each row describes a Single station and the explanation of each
column is given below

:

mwait
swait
muse
suse
mqueue

squeue
twait

tuse

average observed rotation time.
observed variance between token rotation times.
average observed token usage.
variation of the observed usage.
average observed queue length. This length is observed
whenever the token enters the station, even if the station
cannot use the token.
variance of the observed queue lengths.
value of mwait as predicted by theory and under the assumption
that the system is stable.
predicted value for muse. Same assumptions as above.

We observe that the rotation as seen by station 1 and the rotation
as seen by station 2 cannot have the same distribution because, as

the second column shows, they do not have the same variance.

213

Simulation #2.

The difference between the first and the second example lies in the
TRT values which are both equal to 112. In this case T*(l+f[i])
equals 119.43 and while our results cannot predict if the
network is stable, our examples imply that it is probably unstable.
Indeed, the token takes 1013080 time units to perform 10004 rotations
at the end of which there are over 1867 messages in queue 2 and 1926
in queue 4 while queues 1 and 3 are stable. The statistics obtained
from the last 9000 simulated rotations are:

mwait swait
101.31 11.20
101.31 20.22
101.31 11.21
101.31 20.20

muse suse
28.95 5.78
14.71 15.91
28.95 5.77
14.71 15.89

mqueue squeue
20.71 4.14

1040.15 482.86
20.77 4.11

1077.55 500.39

twait tuse
104.12 29.75
104.12 15.31
104.12 29.75
104.12 15.31

Simulation #3.

In the next simulation we raised Ml and M2 to 6.9 for the low priority
queues. While our results do not predict either stability or instabi-
lity, one might expect instability on the basis of our examples.
Nevertheless, the network turned out to be stable taking 1009136.00
time units for 10004 rotations. The statistics obtained for the last
9000 rotations were:

mwait swait
100.92 10.78
100.92 19.83
100.93 10.91
100.93 20.18

muse suse
28.83 5.68
14.63 15.33
28.84 5.83
14.63 15.37

mqueue squeue
20.70 4.06
29.90 9.72
20.71 4.17
28.82 9.19

twait tuse
100.93 28.84
100.93 14.63
100.93 28.84
100.93 14.63

An explanation is in order. If one were to examine the token usage
one would find that although the token arrival times are very regular,
the token usage oscillates between high and low values. Our example
was predicting instability if the token usage were regular and as it
turns out , regular arrivals of messages do not guarantee regular token
usage. The above results coupled with the explanation offered, suggest
that if we were to lower the holding time, then we could force a more
regular token usage and thus create an unstable network. Indeed, this
is what we do in the next simulation.

Simulation #4.

In this simulation all parameters are as above except for the token
holding times that are set equal to 29.0. The network turns out to
be unstable taking 986745.00 time units for 10004 rotations.
By the end of the last rotation queue 2 had over 1572 messages and queue
4 had 1558 messages. The statistics accummulated during the last 9000
rotations are given below:

mwait swait
98.67 10.63
98.67 12.63
98.67 10.63
98.67 12.63

muse suse
28.19 1.25
14.14 11.62
28.19 1.24
14.14 11.62

mqueue squeue
22.42 2.43

875.39 407.08
22.42 2.45

874.97 407.09

twait tuse
100.93 28.84
100.93 14.63
100.93 28.84
100.93 14.63

Simulation #5.

In this simulation w=r=0 and all p's are zero. The holding times

214

are 60.0 and the TRT ' s are 112.0. For the low priority queues M1=M2=6.8
while for the high priority queues Ml =3.0 and M2=4.2. Thus, we have the
same mean arrival values as in simulation #2 but we try to induce high
and low token usage times in the high priority queues by varying the
arrival rates. The network turns out to be stable taking 1041236.0
time units to complete 10004 rotations.
The statistics accummulated during the last 9000 ro-tations are as
follows

:

mwait swait
104.13 3.66
104.13 22.92
104.13 7.98
104.13 33.68

muse suse
29.75 9.93
15.31 15.37
29.75 12.91
15.31 15.32

mqueue squeue
22.06 7.30
23.22 6.04
22.27 9.55
21.09 5.25

twait tuse
104.13 29.75
104.13 15.31
104.13 29.75
104.13 15.31

Simulation #6.

In simulations that follow, we attempt to gauge the amount of randomness
we may introduce by assigning to w and r non zero valus. Thus, the
parameters of this simulation are the same as the parameters of the
previous simulation except that r=0.20. Queue 4 is stable, but it is not
obvious if queue 2 is stable or not (experimentation with r>0.20
- r=0 . 25 , 0 . 30 , 0 . 40 - revealed that queue 2 becomes unstable while
queue 4 remains stable). In any event, it took 1039875.0 time units
for 10004 rotations at the end of which queue #2 had 163 messages and
queue #4 17. The accummulated statistics follow:

mwait swait
104.01 5.45
104.01 23.36
104.01 8.29
104.01 33.19

muse suse
29.73 10.19
15.28 15.44
29.71 12.79
15.29 15.34

mqueue squeue
21.78 7.14
112.67 44.62
22.02 9.14
21.11 5.58

twait tuse
104.13 29.75
104.13 15.31
104.13 29.75
104.13 15.31

Simulation #7

This simulation is identical to simulation #6 except that w=0.02 and
r=0.0. Even such a small randomization of the length of the intervals
during which the arrival rate is constant, is sufficient to destroy the
stability of the network. Indeed, the network takes 1020703.0 time units
to complete 10004 token rotations. At the end, queue #2 holds 1454
messages and queue #4 holds 1338. The rest of the statistics follow:

mwait swait
101.91 10.07
101.92 23.70
101.91 9.53
101.91 20.87

muse suse
29.12 8.67
14.83 15.13
29.12 7.90
14.85 15.13

mqueue squeue
21.03 6.13

353.37 408.81
20.95 5.44

1082.10 620.03

twait tuse
104.13 29.75
104.13 15.31
104.13 29.75
104.13 15.31

What follows is a trace of the queue changes. Whenever a queue'
length changes substantially, in this example by 150 messages or more,
we print the rotation number, the time this rotation started, and
the number of messages in queues #2 and #4. The current queue lengths
are then recorded and future queue lengths will be compared to the
current (recorded) queue lengths.

215

rotation time Q#2 Q#4
1806 186348 00 39 157
2166 222774 00 190 152
2463 252938 00 343 107
2847 291989 00 306 259
3017 309245 00 214 411
3198 327603 00 121 567
3379 345937 00 26 730
3914 400406 00 36 888
4205 429994 00 189 844
4416 451529 00 345 726
4579 468054 00 502 651
4836 494125 00 436 804
4968 507491 00 330 959
5151 526106 00 237 1112
5344 545688 00 162 1264
5503 561825 00 63 1418
5822 594360 00 0 1574
6234 636059 00 6 1725
7313 747352 00 16 1877
7622 778613 00 168 1845
7804 797123 00 325 1726
7978 814817 00 477 1637
8189 836148 00 629 1591
8318 849274 00 780 1485
8610 878968 00 934 1429
8820 900274 00 1091 1348
9140 932837 00 1017 1504
9432 962512 00 1170 1468
9657 985387 00 1325 1380

The above data suggest that each queue enters periods of stability and
periods of instability but that the periods of instability are longer
and deeper

.

Conclusion: The data from the above simulations support the results
that we derived in the main body of this work. They also
suggest that if the stability of some low priority queues
is conditioned upon the token usage by the high priority
queues, then only stringent conditions upon the message
arrival mechanism seem to produce stability. Thus, it
appears that as a practical matter one should choose
TRT[i] to be close to, if not bigger than, (1 . 0+f [i])*T.

216

IEEE 802.4 TOKEN BUS EMULATOR

by

Fred Sylvanus and Tuncay Saydam

University of Delaware

Department of Computer and Information Sciences

Newark, DE 19711

ABSTRACT
A performance evaluation facility which emulates Media Access Control

(^LA.C) portion of the IEEE 802.4 "token bus" standards is presented. The facil-

ity consists of an emulator that implements the J^/IAC components of the token

bus standards, and a representation of the physical layer of the standards as

required to logically interconnect the MAC peer entities. The emulator also

includes minimal implementations of the Logical Link Control and Network
Management facilities as required to generate and monitor network traffic and

initialize the emulator. Experiments intended to measure network delay under

several network loading scenarios as a function of MAC parameters are sug-

gested.

Introduction

The media access control standards included in the IEEE 802 standards for

Local Area Networks (LAN) specify the physical medium and modulation tech-

niques, the corresponding generalized LAN topologies, and the mechanisms for

arbitrating access to the network medium. Some examples of physical networks

for which Media Access Control (MAC) mechanisms are specified by the stan-

dards are physical bus topologies using coaxial cable as the interconnection

medium and physical ring topology using a fiber optic or twisted wire-pair

medium. Other components of the IEEE 802 standards (e.g. Logical Link Con-

trol (LLC) and network management) are independent of the communication

medium and access method.

The IEEE 802.4 portiqu of the standards defines standard mechanisms for a

physical bus topology which employs token passing to arbitrate access to the

medium, hereafter referred to as a "token bus". This paper describes research to

develop software which will emulate MAC portion of the IEEE 802.4 protocol

standards. The emulator is a facility being used for the investigation of token

bus performance features and to perform tuning of delay as a function of 802.4

protocol parameters. In particular, the components of network delay, as it

relates to the priority access mechanisms of IEEE 802.4 standards, will be exam-

ined.

Research Goals

The research being undertaken is directed at understanding the control

facilities of the EEEE 802.4 protocols, and to be in a position to predict network

performance under a variety of loading circumstances. By understand, we mean

understanding the behavior of the protocol to the extent that we can appropri-

ately manipulate tuning parameters made available in the standard. By control,

we refer to the manipulation of the boundedness of the protocol with respect to

217

delay, and the relationship of boundedness to network stability as a function of

loading. By prediction, we refer to the ability to accurately portray network per-

formance under circumstances that vary with respect to (1) classes of network

loading, (2) level of network loading, and (3) the degree of symmetry of network

loading. A sub-goal, with respect to predictive capability, is the ability to com-

pare our results with those of others performing related studies.

Network Loading

Local networks can be used to transport heterogeneous mixes of traffic

ranging from continuous or consistent flows of data to intermittent or unpredict-

able traffic loads. The volume of data transported in any of these mixes can be

both large or small, and the distribution of this network loading can vary in the

degree of symmetry of the loading among the stations participating in the net-

work.

Digital voice requires that delay be minimized to an extent that the repro-

duction of a human voice at the destination is of acceptable quality. This entails

an relatively consistent, uninterrupted flow of information to the destination, but

the volume may be relatively small due to voice compression techniques. Digi-

tized video places a similar set of demands on the local network, although the

volume of data may be larger, depending on the time and spatial resolution of

the video being transported over the network. In both cases, the continuity of the

representation at the destination is sensitive to network delay.

Process control applications may be continuous or intermittent depending

on the demands associated with various devices on the network (e.g. mechanical

controls, sensors). This application can also require strictly bounded network

delays, and delivery to be guaranteed by some supporting protocol level. Furth-

ermore, a wide mix of bounded delays may be associated with the various devices

being supported.

Network traffic generated by interactive interfaces places unpredictable

demands on the network, and the volume of traffic also varies widely depending

on the application (e.g. editors versus high resolution graphics). File transfer

may also be unpredictable, and involve larger amounts of data transfer, but the

associated traffic loading tends to be more consistent for longer periods of time

than that of interactive interfaces. Network delay may be a less critical for these

applications, but delay is still a concern of the network designer.

Metrics and Parameters

The traffic loading of local networks, mentioned above, represent what we

will call classes of network loading (not to be confused with IEEE 802.4 MAC
access classes) over which differing delay constraint are imposed. Several features

of the 802.4 standards provide parameters that can be used to tune networks

transporting various classes of data while potentially meeting corresponding delay

requirements.

The metrics that are used to evaluate the impact of these parameters are:

1. The maximum, mean, and variance of the delay incurred by Logical Link

Control (LLC) data units are gathered for each of the four EEEE 802.4

MAC access classes. This delay will include both queue waiting time and

transmission time.

2. The maximum, mean, and variance in token rotation times are gathered to

examine worst case bounds, and to validate the implementation of the

218

Two other metrics that will be available as a result of our research are

throughput (measured on a node by node basis rather than with respect to a par-

ticular application), and network utilization, which may serve to further validate

the implementation.

The existence of various access classes that correspond to (are mapped
from) traffic priority levels (i.e. Logical Link Control qualities of service) provide

a means of prioritizing classes of network loading. Thus, different classes of

traffic as outlined above can be placed in various MAC access classes during

experimentation by manipulating the parameter of LLC quality of service.

Within the MAC access classes, several loading schemes such as exhaustive,

non-exhaustive, or one-by-one queue depletion may also be examined by manipu-

lating token holding times for each MAC access class. The sensitivity of the

token holding time parameters with respect to delay metrics and token rotation

times for given loading patterns may also be established.

Scheduled Investigations

There are three experiments being undertaken related to the goals cited

above. An experiment investigating delay as a function of two classes of network

loading, digital voice mixed with a heavy load similar to file transfer, using

exhaustive \L\C access queue depletion is scheduled. The results will be com-

pared with corresponding analytical work being done at the University of

Delaware [Saydam&Sethi].

A second experiment involves a single loading class (e.g. digital voice) with

varying degrees of symmetry in loading.

The third experiment is used to fine tune a given loading scenario and,

thereby, evaluate the sensitivity of the delay metrics with respect to changes in

protocol parameters used during the tuning.

Emulation as a Evaluation Tool

Performance evaluation of systems in general can be pursued using any of

several tools including analysis, simulation, emulation and direct measurement.

Our decision to use emulation is based on our desires relative to the following

observations pertaining to the development of an emulator of the IEEE 802.4

token bus protocols:

• Due to the potentially low level of implementation, a more detailed

representation of the protocol is possible.

• Less abstraction from the actual protocol is required (i.e. a one-to-one map-

ping of all MAC components of the protocol specification to its representa-

tion is possible).

• Due to the level of implementation detail, emulation allows manipulation of

"hardware" parameters which possibly afifect system performance.

• Detailed software development is required, thereby accommodating goals

related to understanding the protocol.

The IEEE 802.4 Token Bus Emulator

Figure 1 depicts the relationship of the emulator implementation com-

ponents to the usual representation of IEEE 802 protocol layering. The imple-

mentation consists of five components that emulate the activity of the MAC por-

tion of 802.4 (IFM, ACM, RxM, TxM, and Timers), two components that handle

219

the LLC and NMT interfaces to the MAC (REQ and LND), and one component

that emulates the physical medium and interface with the MAC (BUS). The
emulator does not include the regenerative repeater component of MAC as

defined in the standard.

The IFM, ACM, RxM, and TxM emulate their corresponding part of the

MAC as specified in the standard. The Timers are interfaced directly to, and

driven by, atomic symbols present on the BUS. The REQ component handles the

generation of LLC and NMT requests at each station. The IND component fields

indications from the NLA.C at each station, and handles some emulation halting

conditions. The BUS component is the controller of the emulator, providing

interactive control of the emulator in addition to emulating the physical medium.

The time resolution of the model is to the level of an atomic bus symbol

(i.e. data, non-data symbols). This allows a complete implementation of the

token bus receive and transmit state machines. The emulator is synchronized by

the bus (i.e. each station sees the same atomic symbol each "cycle" of the bus),

and the implementation does not emulate the physical characteristics of propaga-

tion delays on the transmission medium.

The emulator incorporates the constraint of finite buffer space limitations

within the Interface Machine component of the MAC sublayer. Since this con-

straint is a function of physical implementations of the protocol, it is parametri-

cally alterable. Other parameters are included in the emulator to control the

length of a given emulation, and to establish other halting criteria such as the

number or types of LLC and NMT indications, or delay thresholds. Finally,

parameters that control traflBc generation (e.g. mean interarrival times,

minimum, maximum and mean packet lengths) are included.

Statistics pertaining to LLC packet delay times, calculated as the time in

queue plus transmission time, are maintained in the implementation of the Inter-

face Machine (IFM) portion of the emulator. A separate set of statistics are main-

tained for each of the four access class queues maintained by the IFM. Likewise,

throughput statistics are also maintained in the EFM. Token rotation time statis-

tics are maintained in the Access Control machine (ACM) portion of the emula-

tor. Statistics pertaining to MAC perceived errors are maintained in the Receive

Machine (RxM) implementation.

Emulator Implementation

This section consists of details of the actual implementation of the IEEE
802.4 MAC emulation software. Included are a discussion of the

sequential/concurrent aspects of the implementation, control and human inter-

face, module partitioning, and some efficiency considerations.

The time resolution of emulation is at the level of atomic bus symbols and

the "physical medium" was chosen as the synchronization mechanism. The

implementation is organized in a manner that permits event based synchroniza-

tion, or even message based synchronization between separate instantations of

MAC protocols entities. It was decided that the emulator would be a sequential

program because of the relative simplicity of such an implementation. A second

consideration was the efficiency that is required using this approach, due to the

fine time resolution of the emulator.

Figure 2 depicts the relationship of emulator components to the hierarchy

of control upon which the implementation is based. The emulator is controlled

from a single point, namely the BUS module, which handles interaction with an

emulator user, and controls the operation of the emulator. Operation consists of

220

(1) dispatching and fielding LLC and NMT requests and indications for each sta-

tion, (2) maintaining the physical state of the medium (i.e. the current bus sym-

bol), and (3) checking for thresholds related to emulator halting criteria.

Each network station, which consists of the MAC emulator components, is

an independent instance of those components (i.e. each station contains a private

set of \L\C objects). Although the emulator is implemented as a single sequen-

tial program, stations are implemented in such a way that, by using alternate

means of synchronization and data transfer, each station can be implemented as

an independent concurrent process. Because of this potential, the generation of

requests (by the REQ module) and the fielding of indications (by the IND
module) were included in the control portion of the emulator.

For each station there exists an instance of the REQ object, that controls

the generation of requests for a corresponding station. As mentioned above,

these requests are dispatched, by the BUS module, to the NLA.C portion (i.e. the

interface machine) of the corresponding station at the time they "arrive". There

is one instance of the IND module, which handles logging of indications received

from each station, and evaluates those indications in light of some of the halting

criteria established by a user of the emulator.

The process of controlling the emulation involves data transfer between the

control portion of the emulator and each MAC station at each atomic symbol

time or bus "cycle". Thus, during each "cycle" of the bus which is emulated,

input is provided to each MAC station in the form of (1) NMT or LLC requests

for that station, and (2) the current bus symbol. Outputs that are returned from

each MAC station includes (1) that station's contribution to (transmission on) the

bus during the next bus "cycle", and (2) any indications that may have been gen-

erated by the MAC layer in that station.

Emulator Control Components

As mentioned, the BUS module controls the operation of the emulator by

dispatching and handling requests and indications, checking for halting condi-

tions, and maintaining the state of the physical medium during emulation. This

module also includes the interactive control portion of the emulator, which is

described in the next section. From the interactive state, an emulator user can

manipulate or display the state of the emulation (including halting criteria), and

can initiate or continue the emulation.

When the emulator is running, it performs bus "cycles" until some halting

criterion is met. The emulator is synchronized using a round robin polling tech-

nique wherein the bus is the synchronizing component of the model. The follow-

ing steps are taken during each "cycle" of the bus:

1. For each station, requests that arrive from the NMT or LLC layers are

passed to the station MAC.

2. Each station is shown the current atomic symbol state of the bus for that

cycle. Likewise, each protocol entity is afforded the opportunity to contri-

bute a bus symbol for the next bus cycle.

3. Indications received from each station, if any, are logged in the audit trail.

At the end of the bus cycle, halting thresholds are checked to determine if

another "cycle" is to be emulated. If the emulator is halted, control passes back

to the interactive mode wherein an emulator user may again manipulate or

display the state of the emulation.

221

The request module (REQ) handles the generation of LLC data units that

are submitted to the MAC components (i.e. the interface machine) at each sta-

tion. As mentioned, there is a separate instance of this object for each station.

Each instance maintains independent information about the state of request gen-

lated in this module, as described below and depicted in Figure 4. This module
also provides interactive support for the generation of network management
(KMT) requests, which can also be queued for delivery to the MAC components

of any station.

The IND module fields indications from the MAC layer of the stations, and

handles the checking of thresholds for halting criteria related to indications.

Indications received from stations are logged in the audit trail during the bus

"cycle" they are received. Interactive manipulation of halting criteria based on

indications received from the stations is also encapsulated in this module.

MAC Station Components

The M\C station components of the emulator are developed according to

the corresponding parts of the IEEE 802.4 standards. The emulator includes five

modules in the implementation of the MAC layer: (1) the Interface Machine

(IFM), (2) the Access Control Machine (ACM), (3) the Receive Machine (RxM),

(4) the Transmit Machine (TxM), and (5) a Timers module as part of the ACM.

Figure 3 depicts the general organization of the implementation of the

interface Machine. The implementation supports parametrically bounded queues

for each of the four MAC access classes, and provides request-to-indication

sequencing for LLC requests queued for transmission on the network. It also

includes facilities which calculate LLC packet delay statistics on a station by sta-

tion basis, and tracks exceptions such as the number of LLC request refusals due

to exhaustion of interface machine queue space. The interface machine also

maintains a queue of MAC indications to be recorded at each bus "cycle" by the

IND module described above.

The access control machine is implemented per the standard, and in a

manner similar to that used by [Rahimi&Jelatis] with respect to mapping of the

protocol specification to the implementation, and the invocation of that code only

at "critical events". The implementation also allows interactive manipulation of

the state of the ACM, and includes facilities which calculate token rotation time

statistics on a station by station basis.

The receive machine is implemented per the standard, including the start-

delimiter, end-delimiter, and sil-act detection state machines. The implementa-

tion is parameterized with respect to the degree of hysteresis of the silent/active

bus detector state machine. Statistics including frequency of occurrence of

detected errors are also maintained in the receive machine (e.g. fcs error, non-

data symbol detected on non-octet boundary, bufiFer overflow).

The transmit machine and the timers are also implemented per the stan-

dard. Transmit machine state can be interactively viewed and manipulated

which provides a simple means of injecting errors into an emulation. Likewise,

timer values can be interactively viewed and manipulated.

Interactive Control

The emulator is controlled through an interactive, menu driven human
interface. Input to control the emulator can also be introduced from a command

222

input contained user designated disk files. This facilitates the set up of an emula-
tion and insures consistency when evaluating the effects of parameter changes

over several emulations.

Interactively, a user can:

1. View and/or manipulate the state of any MAC component module (e.g.

IFM, ACM, RxM) for any station.

2. Enqueue network management (NMT) requests for any station (e.g. gain

ring membership, group addresses).

3. Establish and modify parameters controlling the generation of LLC data

requests (e.g. mean interarrival time, mean and maximum data unit length)

for any station.

4. Establish halting criteria based on (a) the number and types of indications

received from stations, (b) thresholds of statistical information maintained

in either the stations or the control module, or (3) a count of bus cycles.

5. Inject a transmission error onto the medium by corrupting the value of the

current bus symbol for the next bus "cycle".

6. Initiate or continue the emulation.

7. Display statistical information collected in either the stations or the control

module.

Figure 4 depicts a sample of menu selections and the menu hierarchy provided to

a user of the emulator.

Software Engineering Considerations

The construction of a detailed implementation of the MAC portion of the

standard and the supporting emulation environment was accomplished using

some commonly accepted software engineering practices. The actual implementa-

tion environment is a Digital Equipment Corporation VAX 11/780 running VMS,
and the emulator is coded in Pascal which supports separate compilation, encap-

sulation, and information hiding. Thus, the support necessary for control and

data abstraction is used extensively. Each component of the MAC layer is encap-

sulated, including the interactive manipulation and display of component inter-

nals. Similarly, the request generation and indication handling are also encapsu-

lated.

Module partitioning is based on (1) the ability to map some modules

directly to/from the corresponding specifications in the IEEE 802.4 standards,

and (2) information hiding pertaining to the representation of the states of MAC
components and requests generators, etc. The decision to implement a sequen-

tial program was based on eflficiency considerations, and the use of "critical

events" was used to eliminate unnecessary state machine evaluations as in

[Rahimi&Jelatis]

.

Concluding Remarks

At the time of this writing, the current state of the research as outlined is

partiaUy complete. The IEEE 802.4 emulator is operational, pending further

testing, and the evaluations as detailed above are being performed.

References

[l] Rahimi, S.K. and Jelatis, G.D. "Lan Protocol Validation and Evaluation",

IEEE Journal on SAC. Vol 1, No. 5, Nov. 1983.

223

Phinney, T.L. and Jelatis, G.D. "Error Handling in the IEEE 802 Token
Passing Bus LAN", IEEE Journal on SAC. Vol 1, No. 5, Nov. 1983.

Saydam, T. and Sethi, A.S. "Performance Evaluation of Voice-Data Token
Ring LAN's with Random Priorities", Proceedings IEEE InfoCom 85,

March, 1985, Washington, D.C.

IEEE Draft Standard 802.4 "Token Passing Bus Access Method and Physi-

cal Layer Specification". Dec. 1982

224

u

W E-i <C E-i H O 2

o
Eh

O
u

2

M
o

o
E-i

o
u
CO
CO
w
u
u
<:

<:
H
Q
W
s

cn
Eh

W
O

O
U

o
EH

D
S
w

•

O
00

W
w
w
H

<u

u

•H

225

226

H

Q

U

Eh

w
w
u
u
< u

>

u
<:

oM
H

u H
H D
Q a
H

Q D
Cn
-H
fa

w
D
W
Da

227

INTERACTIVE INTERFACE

I Interactive Control Options

— flip/flop bus diags

-- view node states

— modify node states

— modify halting criteria

— add NMT requests

-- continue emulation

-- setup from disk file

~ save node states

corrupt bus signal

-- stop emulator

I State Modification Selections

-- modify REQ state

— modify TxM state

— modify RxA'l state

modify IFM state

modify ACM state

— modify TIMER limits

4 Request Generator (REQ) Options

LLC Request Generation

— flip/flop diagnostics

min packet length

— mean data unit length

mean interarrival time

I NMT Request Generation Options

-- initialize protocol

-- set timer limits

-- set group addresses

— gain ring membership

— leave ring membership

Figure 4

I'

I

'

' I

228

Discussion Group 1

Factory Automation

Moderator: Gary Workman

NOTES FROM THE FaCIOR^ AUTU^IATION APPLICATIONS SESSION

Bureau of Standards - U/30/b5

Attendees: Gary C. Workman, General Nbtors, toderator
Anatoly Moldovansky, A/B
Andy Luque , Tektronix
Joseph B. Rickert, Jr., Sytek
Sharon Heatley, NBS
Bruce A. Loyer, htotorola
Detler Leisengang, Siemens
Pete Mai pass, Contel , Note-taker

Speaker denoted by two initials:

GM: Let's begin by asking wtiat questions we want to answer.
BL: I'd like to discuss what sorts of network loadings and applications we
can expect. Are they huge factories, distributed systems?
AFi: What are the workloads? Are there differences in the timeliness of the
infonnation required

,
especially for factory versus office automation?

DL: I'm interested in differences in modems. Are they different than for
offices? Are any better for factories since they are more resistent to dust
and nasty working conditions?
AM: Another thing is that traffic is typically not characterized by a

fbisson distribution of arrivals. It is more often predictable or at least
deterministic. Uploads and downloads of information are non-standard.
GW: Another question is the distance that one can generalize from a
simulation

.

AM: We should think anout how a predictable arrival rate affects token bus.
AL: It's clear that peak l0c(s lend themselves to abnonnal conaitions. A
control system in a factory is not as concerned about maintaining a high
utilization, but rather in minimizing an end-to-end response time. We
expect to find at most a 20% utilization, but efficient use of the cable
plant is not required.
GW: The concern with El'E response is in the realm of connections. A
connectionless service is all that has been discussed so far in these
(meeting) proceedings. Buffer management, commuiications interfaces, etc.

are all involved with ETE questions.
AL: \es, ana implementation issues above LLC are what's important to the
customer, (not just the media access)...
GW: Let's try to divide the issues into 3-^ areas.
AM: There are just two: MAC layer and ETE with MAC layer.
(jW: We've found that the excessive overhead is in ISO layer 4 over the LLC.

In many applications you don't need the control, but need more timely
responses. We are investigating LLCS, trying to get an ack within one token
holding time. Ihis drops an orderof magnitude off the ISOM mechanisms. LLC

1C services are inadequate.
AL: Upper level protocol (HLP) requirements tend to drive wtiich of LLC 1 or

LLC 3 get responsibility.
JR: Loesn't the nunber of nodes also contribute to the delay?
GW: lies, you must have fewer nodes under token systems: less than 1i:>/channel

for real time control and reasonable response times. If, however, one only
needs to do monitoring, status and management, then eacn channel can support
over TOO nodes.

230

JR: Eo you need separate cables for single point ol failure protection?
GW: That also leads to questions of geographical dispersion of devices.
AL: Aren't they normally bourjded areas, say 100 feet square?
GW: In rolling mills, processes can extend over 200 feet and require 30 ms
or so response times almost surely. That is, ElE message delay and ack.
Ihi can be done in LLC3 or lower- IS04 can't make it.
SH: Do you mean that an application sends a request or notice and gets
"acked" in response?
GW: Getting the message delivered on the receiving end is an interface issue
there - not communications.
AL: A guy won't take 29 ms and give you 1 ms. Allocation is sharply divided.
What is the traffic in this environment? Deterministic?
GW: We hope it's pretty deterministic. Progress relate to each other and
they expect certain behavior. It has to be a bounaed problem.
AL: Lhder normal operations, sure, but what's build-able? If we can't meet
30 ms, then redesign caiimunications architecture to make it a different
problan wliich will handle both rotuine and emergency operations.
GW: It would be nice to have both 14 and lower level trananission : 14 allows
message segmentation for nunbers, etc., and LLC3 handles control messages.
AL: Cnly two selections: class 3 and ISO 4. Have you done any response time
trade-offs?
GW: class 3 is faster, ISO 4 has more services. \ou actually want both. Time
critical must be available, but some applications will need the combined
".c -vices.
AL: How are you going to assign priority when two or more messages arrive
simultaneously?
GW: Is there any concensus? Do we discuss separate or both from here out?
BL: Does every LAN need both?
JK: What's the penalty for losing the services with just class 3? Are you
ever sorry for not having ISO 4?

GW: "ies. When you go through a gateway the penalty is like direct dial
versus a rural operator. User applications requiring rouoin^ ^^.n^-rally use
the canmunications services to achieve it. Ihis should not be in the
programmer of applications realm of responsibility. Also, segmentation of
large messages also requires IS04.

AL: For geographically distributed applications, does timely service only
imply timely for "inside" users? Outside routing should cost more. It may
not be so time critical for those users either.
GW: Uploads and downloads sort of need IS04. Once completed, however, maybe
a device can choose what services it needs flexibly.
SH: Woula you send transport to all devices?
GW: Let's not be biased by HAP meetings.
?\A: tou could put multiple boards for multiple services on multiple channels
in the same communications interface to a device.
GW: At twice the cost...
AM: As I understand it, you can "Steal Bandwidth" - keep offered load low to

assure timely delivery. Ihis is done by keeping token overhead low, say 5%.

AL: tou could also use the four priority levels to play a game with arrival

times.
C*J: That's wtiere the issues of fairness and starvation come into play.

BL: Weren't the exanples (in the earlier performance session) paranoid cases

for the high priority examples (wl:iere starvation occurred)?

GW: In the exanple (Nakassis) you get 40 tokens, 1 get 5, and he gets 10.

It's fair in that at steady state you get far more than equal bandwidth. \ou

231

have to be careful in judging examples.
• • •

C^: Don't worry about the add/delete ol stations fran the bus: it's very
rare.
AL: Are there other constraints to bound the problem ol' the nunber of nodes?
SH: Such as more than two trying to talk at once?
GW: Each device knows when he talks. Master/ slave relationships are the norm
today, but not in the future.
SH: But is it realistic, the case of two nodes talking within 30 ms?
AM: When you talk about two nodes, consider the ETL: most delays are CPU

control system. We can conclude that 2 stations have probability p of
simultaneous arrivals, and it is not large.
SH: Do robots talk? In high speed machinery, how do you pull out
comminications from the processor machine, or at least get them cooroinated?
AM: Robots have a warning of imminent activity. Device must ack/nak
readiness. When a component is against a spindle with too much force, (the
normal pickup would be post-production inspection) revealing a deviation, so
tool settings would be modified (somewhat later) at manufacturing.
AL: Is there a primary device?
AM: tes, usually a cell controller, but canminications are required far

beyond that.
GW/AM: Interactions are point to point today. Braodcast is the most
sophisticated

.

AL: Is there parity within the cell?
AM: Peer to peer is approaching. It will be accomplished at the task level
and the device will execute independently with independent communications.
(jW: We are moving to an hierarchy of control with distribution of
commmications capability.
AL: For example, you have a PC oh your desk, but it wasn't economical to

equip you with an 800 MByte disk, so you hook up to the mainfrane down the

hall. \o\i communicate more to the central server than to peer users.
GW: "iou will get the disk later, however, then you will change to peer-peer
communications as principle comm activity. Work expands to use resources. We

are moving to distributed environments.
AL" : We moved more up and down our branch of the hierarchy before. In

organizations, the hierarchy is still there long after its usefulness was

reduced. Will the same thing happen in factory automation?
GW: Doubtful.
BL: Not every node will be able to talk to each other. Applications in

several places can communicate to the sane node. If the node reports off-net
status. .

.

(jW : tou will get an ack
BL: It will use ISO^ and be transparent to the device. Ihe network layer can

provide it.

AL: All this discussion has been with respect to traffic control within the

segment. With devices that only recognize networt layer, what if there is no

operator (Ref: previous allusion to direct dial vs. operator assist).
JR: Connection relays and transport layer will have to be at the device.
That's the way it will know what to do.
AL: 1S04 filters the MAC traffic.
GW: Control traffic only consunes a small %.

SH: What about downloading new programs?
GW: Now, the cell will be off while doing downloads. Later it will be

possible to send to reserve buffers vdiile the device is working.

232

SH: At the enci of the shif t?
GW: No. The cell controller has workstation capabilities (intelligence). If
tools break, etc. the cell can be reprogrammed to work around or do
alternate work.
SH: Can it be stored then reprogranmed?
AL: Really it's a change oi task.
AM: Machine tools run 24 hours in robot factories such as the Japanese.
AL: For non-time critical applications, can you go outside segmented comiii?

GW: A master systoTi is available for all cells, so asK/ receive works for all
units, but there are varying needs.
AL: A lot of semi-intelligent Lhat need a spoon? Feed quick before it starts
crying, ^ou still have response times.
Gfi: \ou have to look at the capacity of the overall network, which is some
function of t-1's and t-2's. What is the upper bouna on the segment? it is a

function of system comprehensiveness.
AM: If the need for info comes fraii shop-wide, then you need area-wide
sources, 'iou can do 3-4 area nets broadband, then one or so per local.
Broadband is required for high connectivity as is hierarchical control.
Q^i: Areas allow for geographically distributed cells with interconnections.
AL: ^ou need to manage in an integrated fashion. What's the overall level,
etc.?
GW: Network managanent is a much abused term. (1) application managenent is

outside comm., (2) canm also needs management, (3) configuration and
interfaces will need management. LAN management,? How do you combine into an

NCC (network control center), when that becomes a single point of failure?
AL: A key issue is whether to build up structure. Do you have an overall
control or do a distributewd

,
segment-wide control?

GW: Actually, it evolves from segments with separate controls. \ou learn how
to manage a segment and tiopefully the techniques will generalize to a cell

of segments.
SH: Lo you have a feel tor times?
GW: For sane devices, you have a 6 mile long reel oi instructions.

AM: \ou can't download all ol it. Dd chunks to memory. Wtien you want the

next chuink, it is fast: you have to emulate a reader now, but when you give

the device local storage...
AL: Downloads will become a regular activity.

GW: Tools are single channel now. It's tough to control the big picture.

SH: Wnat about cell centralized storage?
GW: Right now the environment is too nasty for current mass storage devices.
AL: Also, you can buy 256KB chips for $3, but a 20Mb hard disk is $5U0.

There is more capability when more requirements demand it. It's a never

ending spiral: having more leads to wanting even more.

AM: 1 suggest we identify key areas for more research: Problems with factory

networks

.

GW: So tar we have:

(1) Perfonriance of transport over LLC 1 (SH: NBS is doing as task)

(2) Extension of MAC to include LLC 3 services (intent is to minimize

response times)

DL:(3) Baseband vs. Broadband for control segment. (Criteria may be

different, as may the management strategy, even though the MAP

strategy is the same - European need is more for baseband: US has

more TV cable. For the distances and hierarchy of control, baseband

is cheaper. Cnly 15-20 nodes on the factory floor = baseband with

perhaps broadband between floors. TVien costs can be separated too)

233

(4) Are there limitations on 802.4 because of factory automation?
(a) Transport (a lot of traffic but infrequently) versus
(b) control (short, predictable, often, a few stations.
Utilization is kept small by upping data rate. All stuff is based
on traffic

.

(5) Need traffic analysis for control applications. Ihis is the starter
before you vary the other parameters.

(6) Vjhat's available? - modems/ baseband speeds especially. Currently,
Allen-Bradley & GM are seeing 20% utilization about max: what is the
throughput at 20% utilization? We can continue to simulate, but we
really need an idea - can Q'l & AB provide "requirements"? - yes
but very appl ication-specific . Would like to know now fast, how much
for both segment and cell

.

(7) Throughput for multiple segments.
(a) One station between segments leads to network managorient issues:

How much and where?
(b) bridges and relays and entire net management - can you fine tune

to optimize for this capital investment?
(c) simulate real-time net control too. Is it better to block

transmit or fragment long messages?
(d) For small station counts (15-20) what happens when you divide the

load into two nets? What is the impact? - Issue is the delay from
going over a bridge or relay.

(At this point we adjourned).

V

234

Discussion Group 2

Network Performance and Management

Moderator: Dan Stokesberry

DISCUSSION NOTES OF PERFORMANCE AND NETWORK MANAGEMENT

Three issues were identified at this discussion meeting attended
by seventeen (17) participants from ten (10) organizations. (The
attendance list is attached.) The three issues were the network
management, performance issues and load attributes.

Jade Chien of INI presented the goals, architecture and functions
of network management for the physical and link layers based on
the current work of IEEE 802.1.

The goals are: 1) start the network
2) make sure it works well
3) correct mistakes.

The architecture of LAN management is depicted below. It
consists of local and remote management capabilities. The Local
Management Entity (LME) of an agent station reports to the LME of
the master station based on events. The master station may set
parameters at agent stations based on reports from agent stations
and management requirements such as real time response, number of
stations and others.

236

Network Management functions are listed below:

1) to configure
2) to down load
3) to monitor
4) to change parameters based on performance of the network.
5) to respond to events

Jade believes that the performance issues are under the umbrella
of network management. In other words, the performance data is
mainly used for allowing the performance of management functions.

Karen Hsing of NBS thinks that the effect of management functions
on overall protocol performance ought to be of interest to users.

For performance issues, Steven Dimford of Comm Power proposed a
set of input and output variable for all simulations of 802.4
specifications. He is interested in comparing the simulation
results based on a baseline set of input and environment
variables. This idea was well received. Following is a list of
the proposed input and output variables.

INPUTS

0/ station 5, 50, 100, 200, 300. 400
Bandwidth 10Mb
Data length 64, 128. 256, 512, 1024, 2048, 4096, 8192
Number of active stations 10, 50. 100, 200, 300, 400
Preamble length 32 bits
Address size 2 or 6 bits
Address allocation Random, Cyclic, Hand
Frame arrival type P, C
Frame arrival rate
Station delay (latency)
Slot time
Token hold time
Maz_inter_solict_count
Queue depletion scheme (1, 2, 4, 6, all)
cable length
Amplifier delay
Headend delay
Buffer size
Ring Management
Static or dynamic

237

Physical location of station
Criteria for stopping
Error rate of channel
Failure rate of station

OUTPUTS

Worst
Mean
Var
S.D.
Token rotation time
Queue length
Queuing delay
Run of simulation
Difference between two equal time runs
Throughput
Bus utilization
Number of active stations
Priority levels
Stability definition

Steve offered to provide additional inputs to the proceeding entitled,
"Terminology Dictionary and Baseline Varibales for IEEE 802.4 Token
Bus LAN Simulation."

For load attributes, Professor Tuncay Saydam of The University of Dela
presented his view of load as follows.

238

Loac -Location

1) Queue level

2) Station level
i3) Network level

^Attributes Distrubution
1) inter arrival

2) length

3) type-

4) source and destinat:
pair

y^5) time critical response

Management
ata

voice
video
ix of above

Bulk behavior •*

1) bursty
2) non-bursty

^) constant

Symmetric
1) asymmetric

2) symmetric

'Blocking non-blocking

239

PERFORMANCE AND NETWORK MANAGEMENT ATTENDANCE LIST

NAME

1 . Robert Toense

2 . Stephen Dunford

3. Chuck Croft

4 . Tom McGowan

5 . John Meyer

6. Curtis Royster

7 . Fred Sylvanus

8. Karen Hsing

9. Jeff Bader

10. Steve Ritzman

11. Tony Capel

12. Charles Hartmann

13. Jade Y. Chen

14. Wayen A. Mack

15. Tuncay Saydam

16. Dan Stokesberry

17. Rob Rosenthal

AFFILIATION

National Bureau of Standards

Comm Power

SYSCON Corp.

Digital

ITI , University of Michigan

National Bureau of Standards

Autotoe Ltd. , and University
of Delaware

National Bureau of Standards

National Bureau of Standards

National Bureau of Standards

SECL, Chalk River

National Bureau of Standards

Industrial Networking/
Ungermann-Bass

Vance Systems

University of Delaware

National Bureau of Standards

National Bureau of Standards

240

TERMINOLOGY DICTIONARY AND BASELINE
VARIABLES FOR IEEE802.4 TOKEN

BUS LAN SIMULATION

prepared for

THE PERFORMANCE AND NETWORK MANAGEMENT COMMITTEE
OF THE WORKSHOP ON ANALYTICAL MODELING

OF IEEE 802.4 TOKEN BUS -

SESSION III: PERFORMANCE ISSUES
APRIL 29-30, 1985

by

STEPHEN DUNFORD
COMMUNICATIONS & POWER ENGINEERING, INC.

26560 AGOURA ROAD #101
CALABASAS, CA 91302

ABSTRACT

This working paper presents a first draft of a terminology
dictionary and a set of baseline variables to be used in simulation
modeling of IEEE 802.4 Token Bus so as to create a basis for
comparison in future workshops. It will be refined and expanded in
the future. Any suggestions and criticisms should be addressed to
Stephen Dunford at the above address.

OVERVIEW

As a part of the third session of the NBS workshop on IEEE 802.4
modeling, it was found that there was a need for a terminology
dictionary and a set of baseline variables for modelers of the
IEEE 802.4 token bus. The need for the data dictionary derives from
different interpretations of the vocabulary used in IEEE 802.4
simulation and analysis.

The baseline set of variables is a standard set of inputs for
IEEE 802.4 simulations and models so as to provide a means of
comparing simulation results. It also identifies a standard set of
outputs to be produced. In the future, this standard set of inputs
and outputs should be included in papers presented to NBS workshops.

241

TERMINOLOGY DICTIONARY

THT6 - Priority 6 token hold time

THT4 - Priority 4 token hold time

THT2 - Priority 2 token hold time

THTO - Priority 0 token hold time

TRT - Token rotation time

Queuing length

- Time from data request to time data actually
sent

Simulation time

- The number of seconds of simulated times of the
system

Number of stations

- The number of stations that have been granted
ring entrance after the logical ring was
initialized.

Acquisition Delay

Latency

The acquisition delay measured from the time
when a frame arrives at the transmit queue

V until the first bit is transmitted onto the
- wire.

The average delay in sending a data frame,
which includes the queuing delay, the token
delay, the station delay, and the transmit delay.

Total Offered Load

The total number of data bits generated
by all the active stations per second
(expressed in terms of percentage of channel
bandwidth)

.

242

Network Data Throughput

- The total number of data bits received at the
destinations per second (expressed in terms
of percentage of channel bandwidth).

243

BASELINE SET OF VARIABLES

Inputs

The following are some of the baseline variables to be used in
simulations of 802.4, so as to provide a means of comparison of the
different models:

Number of stations - 5, 50, 100, 200, 300, 400
Bandwidth
Data length
Number of active stations
Preamble length - 32 bits
Address size - 2 or 6 octets
Address allocation - Hand, Random, Cyclic
Frame arrival type - Constant, Poisson
Frame arrival rate
Station delay
Slot time
Token hold time (for all the different priority queues)
Max_inter_solicit_count
Queue depletion scheme (for all the different priority queues)
Cable length
Amplifier delay
Head end delay
Buffer sizes (for all the different priority queues)
Physical location of stations
Error rate of channel
Failure rate of stations
Criteria for stopping

V

244

Outputs

The following information are the standard outputs for an 802.4
simulation using the standard inputs:

Worst case
Mean
Var
S.D.

of

Token Hold Time (for all the different priority queues)
Token rotation timer
Queue lengths (for all the different priority queues)
Queue delays (for all the different priority queues)
Elapsed run of simulation
Machine run time of simulation
Throughput
Bus utilization
Number of active stations

245

SUMMARY AND CONCLUSIONS

This working paper is a starting point for a common set of
terminology and baseline variables to be used in 802.4 simulation. To
continue this effort, the author needs input from IEEE 802.4
simulators on the following:

• Terminology

• Types of input/output variables

• Values for the input/output variables

• General criticism

Please mail any remarks to:

STEPHEN DUNFORD
COMMUNICATIONS & POWER ENGINEERING, INC.

26560 AGOURA ROAD #101
CALABASAS, CA 91302

Special thanks must go to Jade Y. Chien of Ungermann-Bass for the use
of her paper on "Performance Analysis of the 802.4 Token Bus Media
Access Control Protocol."

*

246

Discussicn Group 3

Canpliance Testing

K. H. Mural idhar

Minutes of Special Interest Group Meeting on Conformance Testing

Moderator:

K.H. Muralidhar, Industrial Technology Institute

Members:

David J. Greenstein, GM Technical Center

Heinz Jauch, Western Digital Corporation

Orly Kremien, Motorola Semiconductor Israel Limited

Joseph P. Brazy, Syscon Corporation

In this meeting, three main aspects of conformance testing of IEEE 802.4 protocol were

discussed. The aspects discussed were, test architecture, test structure, and types of

testing. A brief description of each of the abovementioned items is given below.

Test Architecture: In order to take care of synchronization problems and level of

integration of protocols into chips, it was decided to have an application layer interface

for testing purposes. This would eliminate the requirement on vendors to provide a

separate interface at each layer for testing purpose. In addition, it was thought by

providing this interface, design of test management protocol would become easier.

However, no attempt was made to specify this application layer interface.

Test Structure: Main topics that were discussed here were, set of scenarios, testing

methodology, instrumentation, parameters, and topology.

Set of Scenarios: Two sets of scenarios were identified for conformance testing and they

are mandatory test scenarios and optional test scenarios. The

mandatory test scenarios must be capable of testing normal and some

abnormal behavior of implementation under test. Tests for those

abnormal events whose probability of occurence is very low can be

included in optional tests set. Main idea in this was to make the set

of scenarios reasonable.

Testing Methodology:

Not much was discussed on this topic. Encoder/Decoder approach

and Reference Implementation approach were identified as possible

methodologies for testing.

248

2

Instrumentation: A reasonable set of instruments to analyze physical specifications,

group delays, and protocol behavior was the main idea in this topic.

No attempt to list instruments that can be used was made.

Timers that need to be set, preamble length, and tolerance of signal

levels were identified as critical parameters for testing. It was decided

to have a capability to adjust these parameters using application layer

interface described earlier. Also, it was decided to have a range of

values for each parameter as opposed to a value. Further, tolerances

in these parameters were also thought to be specified.

It was decided to have some sort of cable simulator to test

implementations in a real world fashion. This should provide a

capability to realize distances that are used between stations (to

capture the implementation's behavior to frequency drifts, amplitude

drifts, group delays etc.) and large number of stations in the network.

Types of Testing: Three different types of testing were identified and they were,

acceptance testing, protocol testing, and multi-vendor testing.

Acceptance Testing:

In this type of testing, an implementation was tested against

mandatory requirements of a standard to check whether

implementation complies to it or not. A GO/NO-GO type of result

was expected out of this testing.

Protocol Testing: This testing helps validating a protocol for its behavior. This was

aimed at correcting protocol standards to eliminate bugs in protocol.

Actual methodology for protocol validation was not discussed.

Multi-Vendor Testing:

Depending on the requirements from customer/vendor, multi-vendor

testing of an implementation need to be conducted to ensure

interoperability. Details regarding testing of an implementation with

which other implementations were not discussed. However,

operability of an implementation in an multi-vendor environment

only does not imply conformance.

Parameters:

Topology:

249

Discussion Group 4

Simulation

Moderator: Juan Piinental

Page 1

Simulation Subgroup Summary 30APR85

The Simulation subgroup was moderated by J. Pimental (GMI) and attended
by about 15 workshop participants. Roughly 1/2 the time was used to
outline the main areas of concern for the subgroup, with some
discussion mixed in. Following that/ each of the points under 1 and 2

below were discussed (time ran out before areas 3 and 4 were reached).
Some consensus was reached in the discussion/ and the results are
summarized on the following pages.

NOTES FOR THE READER: The short time available didn't permit any
recommendations by the group/ so the following should be taken as
information only, not a plan of action at this stage. The last
section, "Editorial Notes"/ includes a few things that weren't properly
a part of the subgroup discussion but seem wise to mention in this
context

.

OUTLINE

1. 0 SIMULATION METHODOLOGY
1. 1 Intended Simulation User
1. 1. 1 Protocol Designer
1. 1. 2 System Designer
1. 1. 3 Network Designer
1. 2 Application Oriented Vs. Procedural Language
1. 3 Output Analysis
1. 4 Automatic Setup Of Modelling Blocks
2. 0 TRAFFIC CHARACTERIZATION
2. 1 Number And Type Of Station
2. 2 Arrival Rates
2. 3 Scope: Factory Automation
2. 4 Higher Layer Protocol Effect
2. 5 Burst / Peak Traffic
3. 0 MODEL COMPARISON
3. 1 Common Set Of Inputs
3. 2 Common Set Of Outputs
3. 3 User Interface
3. 4 Validation Against Experiments
4. 0 REQUIREMENTS FOR SIMULATION
4. 1 Scope Of Simulation
4. 2 Parameters
4. 3 Controls
5. 0 EDITORIAL NOTES
5. 1 Standard Terms And Definitions
5. 2 Area Of Concern Suggestions
5. 3 Subgroup Coordination Needs

251

simulation Subgroup Surnmary 30APR85
Page 2

1.0 SIMULATION METHODOLOGY
This area includes the structure of and design tools for the simulation
itself, separate from the user interface and I/O of a simulator. The
following areas were discussed as important determining factors.

1.1 Intended Simulation User
In the discussion, the user of the simulation was emphasized as the
main factor. Several user categories were identified - note that one
user might be in two (or all?) categories.

1.1.1 Protocol Designer - This is the person who attends IEEE 802
meetings, is interested in a simulation that allows changing the state
machine, and wants a simulator that talks the language of the IEEE
Standard

.

1.1.2 System Designer - Included here are the vendors of 802.4
compatible products, including (but not limited to) turnkey systems,
software, boards, and IC's. They want flexible interfaces to other
simulators or emulators, few changes to the state machine, and a highly
modular simulator (to allow "external" interfaces at many possible
points)

.

1.1.3 Network Designer - Under this category are implementors of a
working network, most likely with expertise in the application that the
network is used in, but not the network itself. They need to test
choices for the network topology and parameters, decide allocation of
resources, and interface the simulation to analytical models (we
envision the use of analysis when simulation is too slow or
investigates too few cases).

1.2 Application Oriented Vs. Procedural Language
This choice is driven on one side by strictly practical considerations
(cost, target machine available, existing expertise) and on the other
side by the ideal fit for the user. Of the three user groups of the
last section, protocol designers might use both language types, system
designers mostly procedural languages, and network designers mostly
application oriented languages.

1.3 Output Analysis
This area includes statistical analysis of the simulation results and
determining confidence intervals (no single method is recommended
here) .

1.4 Automatic Setup Of Modelling Blocks
This includes automatic (at least as far as possible) translation of
protocol specifications and system specifications into the model
without hand coding. Issues mentioned were: need for many or fast
changes to model (i.e. for system designer), need for high confidence
in fidelity of model, and use of ESTEL (sp?) for protocol
speci f ication

.

252

simulation Subgroup Summary 30APR85
Page 3

2.0 TRAFFIC CHARACTERIZATION
The next main area of concern discussed was getting a realistic traffic
model. This centered on abstract vs. detailed methods, and what the
target application should be.

2.1 Number And Type Of Station
It was agreed that number of stations (both in ring and transmitting)
and number of ports per station should be variable if realistic traffic
levels are to be simulated. No specific limits for these numbers were
recommended

.

2.2 Arrival Rates
A main point here was that the simulation should allow very realistic
arrival rates, as contrasted to smooth continuous distributions. A
second point brought up was whether actual logs (machine-readable) of
network traffic should be usable as input to the simulation.

2.3 Scope: Factory Automation
The group consensus was that the target application examined for
traffic data would be factory automation.

2.4 Higher Layer Protocol Effect
The higher layers in the OSI model each generate some network traffic
in executing their protocols, and the effect this has on traffic levels
at the upper MAC interface should be included in traffic
characterization.

2.5 Burst / Peak Traffic
Several comments were made concerning the discontinuous nature of
arrival rate distributions in factory and voice applications, for
example when a NC machine must be programmed, it requires a much higher
data rate through the network than during normal operation and status
reporting

.

3.0 MODEL COMPARISON
This area is important for synthesis of results from different
researchers in the field, and it was apparent from comments that many
attendees saw difficulty in comparing assumptions and results presented
at this workshop.

3.1 Common Set Of Inputs
A minimum set of conditions and variables used by all simulations.

3.2 Common Set Of Outputs
A minimum set of metrics and statistics (not including presentation).

3.3 User Interface
The presentation of results to the user and the setup of the simulation
by the user.

253

Page 4
Simulation Subgroup Summary 30APR85

3.4 Validation Against Experiments
The inputs and outputs of the simulation should allow testing of the
simulation against experimental results.

4.0 REQUIREMENTS FOR SIMULATION
This area overlaps methodology a little (the ends get mixed with the
means!). A good way to distinguish them is: requirements looks at the
simulator as a black box of sorts, while methodology jumps right into
that box.

4.1 Scope Of Simulation
For instance/ how much of the physical layer do we include in the
simulation? For some users, a simple delay might work, while others
may want much more detail. An issue brought up in Traffic
Characterization was how much higher layer effect to include.

4.2 Parameters
These are the variables that the simulation user can "tweak" to
investigate a response in the outputs of the simulation.

4.3 Controls
These have to do with the setup, flow and termination of the
simulation.

5.0 EDITORIAL NOTES
An appeal: this is just a start, as even the outline above is not a
full one. If you have any areas to add to it, or think an existing one
doesn't belong, don't hesitate to contribute your ideas. It would be
best to have some inputs before the next workshop, since time may be
limited again there. I'll leave the method up to the workshop
organizers (probably mail direct to other participants or the subgroup
moderators), best if there's some way to get one round of comment
before the next workshop.

The following are a few comments on areas that bear on this
subgroup.

5.1 Standard Terms And Definitions
A great need exists for common language in simulation and in 802.4
modelling as a whole. A facet of this is mentioned above in 3.1 and
3.2. Steve Dunford of Commpower is working on a contribution in this
area, and anyone else who can expand the list is encouraged to
contribute. As well, some survey of the literature in the area of
802.4 modelling should be done to avoid re-inventing the wheel.

5.2 Area Of Concern Suggestions
Everyone is encouraged to contribute suggestions for areas of concern:
an example might be to have as a goal some specific recommendations for
tools or a standard methodology, as well as conducting evaluations of
the same.

254

Page 5

Simulation Subgroup Summary 30APR85

5.3 Subgroup Coordination Needs
There are many common concerns with other subgroups (traffic
characterization/ for instance) and a coordinated effort is needed to
avoid duplicating work. A first area for this coordination may be in
writing a tutorial and glossary for 802.4 modelling/ especially to
smooth the way for newcomers to the field (and let's hope there will be
many !)

.

S. GOVERNMENT PRINTING OFFICEi 1 98 5 - 4 6 t " 1 0 5 / 2 0 t 6

1

255

NBS-114A (REV. 2-8C)

U.S. DEPT. OF COMM.

DID! lA/^DAniJIO nAXABIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS/SP-500/127

2. Performing Organ. Report No, 3. Publication Date

June 1985

4. TITLE AND SUBTITLE ^ ^ , j rp , i .Computer Science and Technology:
Workshop on Analytic and Simulation Modeling of IEEE 802.4 Token Bus

Local Area Networks

5. AUTHOR(S)

Robert Rosenthal, editor

6. PERFORMING ORGANIZATION (If joint or other tlian NBS. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS

U.S. DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

GAITHERSBURG, MD 20899

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

Same as item 6

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 85-600556

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less (actual summary of most significant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

Token bus Local area networking technology is anticipated for use by national and

international organizations seeking standard solutions for process control and

Laboratory and factory automation applications. Several token passing technologies

have been described; but, only one emerging standard, the IEEE 802.4 Token Bus

currently includes broadband communications utilizing a prioritized, robust and

deterministic access method. These workshop proceedings report the deliberations

of 39 participants from industry, academia, and the Federal Government who came to

NBS to 1) encourage modeling of 802.4, 2) to build competence and confidence in

802.4 technology, 3) to provide public knowledge about the behavior, characteristics

and performance of 802.4 and to highlight areas for further study on the NBS 802.4

test bed facility.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Analytic modeling; discret event simulation; emulation; Local Area Networks;

performance; simulation modeling; standards; token bus; testing.

13. AVAILABILITY

^ Unlimited

I I

For Official Distribution. Do Not Release to NTIS

[xHcOrder From Superintendent of Documents, U.S. Government Printing Off ice, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14, NO. OF
PRINTED PAGES

268

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Piease add my name to the announcement list of new pubUcations to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(NotificaUon key N-S03)

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

ana development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad
range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences SfX)nsored by NBS, NBS annual reports, and other
special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntar>' Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background
knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

.NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work jDerformed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

