
u
of AlllOb T7fll7Q

National Bureau
of Standards

Computer Science
and Technology

NBS

PUBLICATIONS

NBS Special Publication 500-118

A Guide
to Performance Evaluation

of Database Systems

1

Jy Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Center for Materials

Science.

he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essentisd services leading to accurate and uniform physical and
chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference 'Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and mciin-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement

capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems
Engineering

The Center for Materials Science

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Center consists of the following Divisions:

Inorganic Materials

Fracture and Deformation'

Polymers
Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

^Located at Boulder, CO, with some elements at Gaithersburg, MD.

Computer Science
and Technology

NBS Special Publication 500-118

A Guide

to Performance Evaluation

of Database Systems

Daniel R. Benigni, Editor
Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards
Gaithersburg, MD 20899

Prepared by:

S. Bing Yao
Alan R. Hevner
Software Systems Technology, Inc.

7100 Baltimore Avenue, Suite 206
College Park, MD 20740

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued December 1984

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for connputer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts tothe Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 84-601144

National Bureau of Standards Special Publication 500-118
Natl. Bur. Stand. (U.S.), Spec. Publ. 500-118, 54 pages (Dec. 1984)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1984

For sale by the Superintendent ol Documents. U S Government Printing Otiice. Washington. DC 20402

TABLE OF CONTENTS

Page

FOREWORD 2

1. INTRODUCTION 3

2. PERFORMANCE EVALUATION TECHNIQUES 6

2.1 Analytic Modelling 6

2.1.1 Queueing Models 6

2.1.2 Cost Models 6

2.2 Simulation Modelling 7

2.3 Benchmarking 8

3. A BENCHMARK METHODOLOGY FOR DATABASE SYSTEMS 12

3.1 Benchmark Design 12

3.1.1 System Configuration 14
3 .1.2 Test Data 14
3.1.3 Benchmark Workload 14
3.1.4 Experimental Design 15

3.2 Benchmark Execution 15

3.3 Benchmark Analysis 16

4. BENCHMARK DESIGN 17

4.1 System Configuration 17

4.1.1 Hardware Parameters 17
4.1.2 Software Parameters 17

4.2 Test Data 18

4.2.1 Constructing the Database 19
4.2.2 Database Size 21
4.2.3 Indexing 22

4.3 Benchmark Workload 23

4.3.1 Transactions 23
4.3.2 User-System Environment 24

-iii-

4.3.3 Job-Scripts Model 25
4.3.4 Background Load 27

4.4 Experimental Design 28

4.4.1 Performance Measurement 28
4.4.2 Experimental Variables 29

5. BENCHMARK EXECUTION 33

5.1 Benchmark Initialization 33

5.1.1 Loading 33
5.1.2 Timing 34

5.2 Benchmark Verification 34

5.3 Benchmark Testing 36

6. BENCHMARK ANALYSIS 38

7. SUMMARY AND CONCLUSIONS 41

-iv-

A GUIDE TO PERFORMANCE
EVALUATION OF DATABASE SYSTEMS

Daniel R. Benigni, Editor

This guide presents a generalized performance
analysis methodology for the benchmarking of data-
base systems. The methodology identifies criteria
to be utilized in the design, execution, and
analysis of a database system benchmark. This
generalized methodology can apply to most database
system designs. In addition, presenting a wide
variety of possible considerations in the design
and implementation of the benchmark, this metho-
dology can be applied to the evaluation of either
a single system with several configurations, or to
the comparison of several systems.

Key words: Benchmark execution; benchmark metho-
dology; benchmark workload; database systems;
DBMS; indexing; performance evaluation; query com-
plexity; response time.

-1-

FOREWORD

This report is one of a continuing series of NBS publi-
cations in the area of data management technology. It con-
centrates on performance evaluation, which is a key aspect
in the selection of database systems.

Benchmarking is one of several alternate methods of
performance evaluation. It can be an expensive undertaking.
However, this expense may be necessary for some applica-
tions, e.g. , those involving large databases or where
response time requirements are critical.

The purpose of this report is to provide a performance
evaluation methodology, or benchmarking framework, to assist
in the design and implementation of a wide variety of bench-
mark experiments. The methodology has been applied to three
different database systems representative of current mini-
computer, microcomputer, and database machine architectures.
Detailed results can be found in [YAO 84]

.

Other NBS publications addressing various aspects of
data management system selection include: FIPS PUB 77 [NBS
80] , NBS Special Publication 500-108 [GALL 84] , and a forth-
coming NBS publication on "Choosing a Data Management Ap-
proach." The advantages and disadvantages of benchmarking
and other techniques for evaluating computer systems are
discussed in NBS SP-500-113 [LETM 84]

.

References to commercial products as necessary to sur-
vey results of previous work on performance evaluation are
contained in this guideline. In no case does this imply
recommendation or endorsement by NBS.

-2-

1. INTRODUCTION

The rising popularity of database systems for the
management of data has resulted in an increasing number of
new systems entering the marketplace. As the number of
available systems grows the difficulty in choosing the sys-
tem which will best meet the requirements of a particular
application environment also increases. Database systems
have been implemented on many different computer architec-
tures: mainframes, minicomputers, microcomputers, and as
stand-alone database machines. The selection of a database
system from among these varied alternatives requires a
structured and comprehensive evaluation approach.

A complete evaluation methodology for database systems
must integrate both feature analysis and performance
analysis phases. The range of features and capabilities
that a database system may support is very large. Feature
lists for database systems have appeared in a number of ar-
ticles [CODA 76, AUER 81, WEIS 81a, WEIS 81b, BARL 81, DATE
81, SU 81a, SU 81b, BROD 82]

.

A feature analysis performs two functions; it first
serves as a winnowing process to eliminate those database
systems which are completely unsuitable for answering the
needs of a particular application; and second, it provides a
ranking of the surviving candidate systems. Feature
analysis is a widely used method of database system evalua-
tion. It has a number of significant advantages over other
methods of system evaluation.

1. A database system implementation is not required.
Analysis is based upon documentation. Little or no
system costs are involved in performing a feature
analysis. This is critical for users with no system
access

.

2. Feature analysis provides a structured first cut for
narrowing the range of potential database systems. A
large number of systems can be evaluated effectively
at one time. The result of a feature analysis should
be a small number of candidate systems. Performance
analysis, which is much more costly, need be per-
formed on only this small number of systems.

3. The list of features evaluated can be customized to

an organization's application environment and
presented at the level of detail desired by the
designer. Among these features are qualitative

-3-

aspects of a database system that cannot be quanti-
fied in terms of system performance. Examples in-
clude vendor support, documentation quality, securi-
ty, "user friendliness", and reliability. Benchmark
analysis cannot directly test the performance of
these features. Thus, feature analysis remains the
best method for their analysis.

In spite of these advantages, feature analysis should
not be used in isolation to evaluate and select database
systems. There are several reasons:

1. Feature analysis is a subjective exercise. Feature
importance coefficients and the system support rat-
ings needed in feature analysis are values which must
be provided by a knowledgeable design expert. Howev-
er, no two experts will come up with same values
given the same application environment. At best, the
feature analysis scores among different database sys-
tems should be viewed as rough indicators of the sys-
tems' applicability.

2. To obtain consistent scoring among different database
systems the evaluator must be equally well acquainted
with all systems. This places a great burden upon
one person to acquire this knowledge. If instead,
different persons grade different systems, then the
scoring consistency problems increase because grading
standards must be set and closely controlled.

3. The greatest disadvantage of feature analysis is that
no true system performance is measured. Feature
analysis is a paper exercise that cannot truly evalu-
ate how a system will perform in an organization''s
application environment.

The limitations of feature analysis introduce the need
for a more rigorous evaluation method that can provide ob-
jective, quantifiable differences among the candidate data-
base systems. Performance analysis provides this type of
evaluation.

The goals of performance analysis techniques are to
model a database system^'s behavior and gather performance
data. This is done to identify the system's strengths and
weaknesses fLUCA 71, FERR 81] . Performance analysis has
been utilized on database systems for two purposes. The
first is to evaluate a single system to determine the best
configuration, or running environment, for that system. For
example, new system algorithms (e.g., file management [STON

-4-

83] , query optimization [HEVN 79]) can be tested before ac-
tually implementing them in the system. In this way systems
can be "tuned" for their most efficient operating condition.
The other application of performance evaluation on database
systems has been to study two or more database systems, thus
providing a comparison of the systems^ performance.

Section 2 presents an overview of past research on the
performance evaluation of database systems. The purpose is

to suggest that benchmark analysis is the most comprehensive
technique for analyzing a single database system or compar-
ing multiple database systems. An overview of the complete
benchmark methodology is given in Section 3. The remainder
of the report discusses in detail the design, execution, and
analysis steps required in the benchmark methodology.

-5-

2. PERFORMANCE EVALUATION TECHNIQUES

The major methods of performance evaluation are Analyt-
ic Modelling, Simulation Modelling, and Benchmarking. A
brief description of each method and a survey of previous
work using the method for database system analysis is
presented. The advantages and disadvantages of using each
method are discussed.

2.1 Analytic Modelling

Analytic modelling represents a system by defining
equations that relate performance quantities to known system
parameters. The use of these equations allows a fast and
accurate means to evaluate system performance. Two models
that have been used predominantly to evaluate database sys-
tem performance are queueing models and cost models,

2,1,1 Queueing Models.

The dynamic behavior of a database system can be viewed
as a stochastic process and can be represented analytically
as a queueing model [CC»1P 78] . A database system is

modelled as a multiple resource system with jobs moving
through the system demanding services from the resource sta-
tions, Queueing analysis provides the performance measures
of system throughput, resource utilization, and job response
time [MIYA 75] . The database system workload can be charac-
terized by statistical parameters obtained from the database
requests [LEWI 76] , Because the database systems are usual-
ly quite complex, a queueing model normally can represent
only a portion of its dynamic behavior. This is demonstrat-
ed clearly by the attempt to analytically model the schedul-
ing of an IMS (IBM's Information Management System) database
system in [GAVE 76, LAVE 76], However, certain aspects of
database system processing are conducive to queueing model
analysis. For example, queueing models have been used to
analyze concurrency control algorithms [SMIT 80, POTI 80]
and data allocation in distributed database systems [COFF
81] .

2,1,2 Cost Models,

Cost analysis has been an effective way of obtaining
performance estimates for physical database structures. The
performance measures most easily obtained by cost analysis
are storage costs and average response time for queries.

-6-

Cost equations for inverted file systems have been developed
in [CARD 73] . Generalized cost models have been pioneered
in [YAO 74, 75, 77a, 77b] and further extended in [TEOR 76]
and [BATO 8 2] . The cost model approach has been used to
analyze the performance of query processing in various rela-
tional database systems [YAO 78, 79] . These models and cost
functions have been useful for performing critical path
analysis for database system applications. Hawthorne and
Dewitt [HAWT 82] have developed cost models to evaluate
query processing among different proposed database machine
designs. A performance analysis of hierarchical processing
in an IMS database system has been performed using cost
models [BANE 80]

.

Analytic modelling has proven useful in many areas of
database modelling. However, analytic models have some ma-
jor disadvantages. Queueing models are inadequate to model
the complete range of functionality found in a database sys-
tem. Cost modelling fails to account for the dynamic
behavior of the database system. For these reasons, analyt-
ic modelling has failed to receive wide acceptance as a tool
for modelling database systems.

2.2 Simulation Modelling

Most real world systems are too complex to allow real-
istic models to be evaluated analytically. Simulation is

the process of approximating the behavior of a system over a

period of time. The simulation model is used to gather data
as an estimate of the true performance characteristics of
the system. Simulation modelling has been applied to data-
base systems as illustrated in the following survey of
representative work performed in this area.

A database system simulator, PHASE II, has been
developed for the analysis of hierarchical data structures
[OWEN 71] . PHASE II is an effective tool for evaluating
hardware configurations, data structures, and search stra-
tegies. Another simulation model has been used to model the
UNIVAC DMS-1100 database system [GRIP 75] . Hulten and
Soderland designed the ART/DB simulation tool to investigate
a mult iprog rammed database system containing multiple CPUs
[HULT 77] . This simulation tool is written in SIMULA and
has an interactive interface.

A simulation model containing four modelling components
(application program, database system, operating system, and
hardware environment) was reported in [NAKA 75] . This simu-
lation tool has two major sections: a definition section and

-7-

a procedure section. The definition section describes the
system environment being simulated while the procedure sec-
tion represents the software system using an instruction set
prepared by the simulator. This type of programming inter-
face allows a user to modify the system parameters while
running a series of simulation programs. In another paper
an IDS simulator is described [APPL 73] . A DBMS evaluation
methodology through the integrated use of a limited proto-
type implementation for the DBMS design, a flexible measure-
ment facility, and a predictive model based on the DBMS pro-
totype was developed in [DEUT 79]

.

Similar to analytic models, simulation models are most
often used to study specific types of database system pro-
cessing. For example, recent simulation studies have
analyzed optimal granule size for database locking [RIES 77,
RIES 78] , centralized versus decentralized concurrency con-
trol algorithms [GARC 78], and run-time schema interpreta-
tion on a network database system [BARO 82]

.

Although simulation modelling can be useful in systems
which are too complex for analytic modelling methods, there
are some disadvantages [LAW 82] . The major concern is the
time and expense that are often necessary to develop a simu-
lation model. Stochastic simulation models also produce
only estimates of a model's "true" performance and the large
volume of results returned by a simulation often creates a
tendency to place more confidence in the results than may
actually be warranted. As the simulation grows more com-
plex, the difficulties in program verification increase
correspondingly, making the validity of the results more
difficult to determine.

2.3 Benchmarking

Benchmarking is used when a few database systems are to
be evaluated and compared. Benchmarking requires that the
systems be implemented so that experiments can be run under
similar system environments. Benchmarks are costly and time
consuming but provide the most valid performance results
upon which database systems can be evaluated. In database
benchmarking, a system configuration, a database, and a
workload to be tested are identified and defined. Then
tests are performed and results are measured and analyzed.
The workload can be either representative of the planned ap-
plication of the system (an application-specific benchmark)
or designed to allow for an overall system evaluation (a
general benchmark) . Running the workload on several systems
or several configurations of the same system will supply in-
formation which can be used to compare and evaluate the

-8-

separate systems or configurations.

Although simulation and analytic modelling have been
useful in modelling aspects of database system behavior,
benchmarking can apply to the complete database system func-
tionality. While both simulation and analytic modelling are
limited in the scope of their system testing, benchmarking
offers the chance to evaluate the actual database system
[GOFF 73]. Previous work on benchmarking database systems
has been performed for two primary purposes. On a single
database system, different implementation algorithms or dif-
ferent system configurations can be tested. For multiple
database systems, the performance of the different systems
on the same database and workload can be compared [DEAR 78]

.

Early database benchmark experiments concentrated on
the comparison of candidate commercial systems for a partic-
ular application. For example, in [SPIT 77] an evaluation
of three systems was described. The three systems tested
were System 2000 , GIM, and IMS-llOO . All three systems ran
on the UNIVAC CS-1100 computer system and were evaluated
utilizing a specially designed monitoring system; the MITRE
Performance Evaluation System, PES-1100. In [GLES 81], the
benchmarking of several commercial systems to find the best
system for the U.S. Public Health Service is described. One
other early article [HILL 77] documented a performance
analysis performed to select the best candidate system for
NASA's Flight Planning System,

In the academic environment several studies have been
performed on single database systems to evaluate performance
and test enhancements. The System R access path optimizer
is studied in [ASTR 80] . Benchmarks on the INGRES database
system were reported in [YOUS 79, KEEN 81]. In [HAWT 79]
detailed benchmarks were used to identify some possible
enhancements to improve the performance of INGRES. The
results of this study showed that dramatically increased
performance on INGRES could be achieved by implementing a

combination of extended memory, improved paging, and multi-
ple processors. A later article [STON 83] described the ef-
fects of four enhancements to the INGRES system. The
enhancements were dynamic compilation, microcoded routines,
a special purpose file system, and a special purpose operat-
ing system. The results showed that while all four enhance-
ments improved performance to some degree, the cost associ-
ated with the improvements were significant. While the com-
pilation and file system tactics produced a high return and
were relatively easy to accomplish, the microcode and spe-
cial operating systems resulted in somev^at less of an im-
provement, and at a high cost. In [STON 82] and [EPST 80]

the distributed INGRES database system was analyzed by

-9-

studying the performance results of queries.

More recently y comparisons of the performance of two or
more database systems have been published. System Develop-
ment Corporation has performed several comparison studies of
benchmarks of database systems on a DEC VAX system [LUND 82,
TEMP 82]. The first article compared ORACLE version 2.3.1
to the IDM-500 release 17. A report by Signal Technology,
Inc. (STI), [SIGN 82] showed a comparison of STi's OMNIBASE
to INGRES version 1.2/09. This article focused on specific
test results and did not attempt to make an overall com-
parison of the two systems.

Bitton, DeWitt, and Turbyfill have described a custom-
ized database, a comprehensive set of queries and a metho-
dology for systematically benchmarking relational databases
[BITT 83]. In this study, testing was done on a synthetic
database which was specifically designed for benchmarking.
The benchmark included selections, projections, joins, ag-
gregates, and updates on both the INGRES system, in two dif-
ferent configurations, and the IDM-500 database machine.
The INGRES database systems, the ^university' and 'commer-
cial" versions, were implemented on a VAX 11/750. The IDM-
500 database machine was connected to a PDF 11/70 host and
was studied both with and without a database accelerator.
The purpose of the study was to test and compare the four
configurations (two INGRES and two IDM) . Although the ori-
ginal study was performed only in the single-user environ-
ment, a later paper [BORA 84] extended the project to the
multiple user environment, by performing similar testing,
with multiple users, on the IDM-500 database machine and
ORACLE database system.

In [BOGD 83] an experiment in benchmarking a database
machine was reported. The purpose of the paper was to
present an approach to benchmarking database machines using
a generated database. The paper describes a database gen-
eration tool which allows the user to build a synthetic
(generated) database through an interactive interface. The
description of the testing was quite general. The system
configuration of the database machine was not fully
described. The testing in this research was limited to the
single-user case. The paper provided a summary of the test-
ing results and numerous graphs plotting the results.

While benchmarking can be a useful and important tech-
nique for database system evaluation? designing, setting up,
and running a benchmark is a difficAilt and time consuming
task. In order to aid in the development and analysis of
benchmarks it is essential that a generalized methodology be
designed. While some work in this area has been done [TUEL

-10-

75, RODR 75, WALT 76, BITT 83, BOGD 83], no one methodology
has provided the necessary robustness demanded of a general-
ized methodology. Most of the methods presented have been
either tied to a limited number of systems, or have not
rigorously addressed the possible testing variables and
design characteristics necessary for a generalized methodol-
ogy. In order to apply to many types of evaluation (e.g.,
general vs. specific, single system vs. many systems) , a
methodology must discuss many possible design and implemen-
tation features while providing guidance in the design of
any benchmark experiment. In the next section an overview
of the methodology is presented.

-11-

3 . A BENCHMARK METHODOLOGY FOR DATABASE SYSTEMS

Managing a database requires a large, complex system
made up of hardware, software, and data components. A
benchmark methodology for database systems must consider a
wide variety of system variables in order to fully evaluate,
performance. Each variable must be isolated as much as pos-
sible to allow the effects of that variable, and only that
variable, to be evaluated. Because of the complex, interac-
tive nature of database systems it is often very difficult,
if not impossible, to do this. The benchmark methodology
developed here enables a designer to identify the key vari-
ables of a database system to be evaluated. In this section
a synopsis of the methodology is presented.

The benchmark methodology for database systems consists
of three stages:

1. Benchmark Design - Establishing the system environ-
ment for the benchmark; involves designing the system
configuration, test data, workload, and deciding on
the fixed and free variables of the benchmark stu-
dies.

2. Benchmark Execution - Performing the benchmark and
collecting the performance data.

3. Benchmark Analysis - Analyzing the performance
results on individual database systems and, if more
than one system is benchmarked, comparing performance
across several systems.

Figure 3.1 illustrates the methodology as a flow chart.
In this section, an overview of each phase is presented.
The remainder of the report will discuss each phase in de-
tail.

3.1 Benchmark Design

The design of a benchmark involves establishing the en-
vironment of the database system to be tested, and develop-
ing the actual tests to be performed. The four steps of the
benchmark design phase are described below. For a compara-
tive benchmark over several database systems, the benchmark
design must be invariant over all systems.

-12-

SYSTEM
CONFIGURATION

BENCHMARK
DESIGN

BENCHMARK
WORKLOAD

EXPERIMENTAL
DESIGN

BENCHMARK
EXECUTION

SYSTEM
1

SYSTEM 1

ANALYSIS

SYSTEM
2

SYSTEM 2

ANALYSIS

SYSTEM
n

BENCHMARK
ANALYSIS

SYSTEM n
ANALYSIS

COMPARATIVE
ANALYSIS OF

SYSTEMS

Figure 3.1: Database System Benchmark Methodology

-13-

3.1.1 System Configuration.

The hardware and software parameters, such as main
memory size, the number and speed of the disk drives,
operating system support for database system requirements,
and load scheduling policies will be determined in this
step. Often the hardware and software configuration is

given. This is usually the case when the database system is
to be added to an existing computing system. Also, many da-
tabase systems can be installed on only one or very few
types of operating systems. Cost is virtually always a fac-
tor and, for many applications, will be the primary deter-
minant of which system configuration is actually chosen.

The parameters related to configuration that can be
varied in the testing include maximum record length, the
blocking factor of data in the storage system (e.g. the
amount of data transferred by one disk access), the number
of allowable indexes on relations, the maximum size and
number of attribute values in an index, and the other types
of direct access retrievals and their costs.

3.1.2 Test Data.

Among the parameters considered here are the test data-
base, the background load, and the type and amount of index-
ing. The database on which the testing will be performed
can be generated using one of two methods. The traditional
method has been to use an already existing database, refor-
matting it for the benchmark needs. Recently, however, the
approach of generating a synthetic database has been gaining
popularity. Both techniques are discussed in Section 4.

3.1.3 Benchmark Workload.

A transaction load consists of several qualitative and
quantitative aspects. Some of the qualitative aspects re-
lating to transaction load are: the types of queries which
occur (e.g., simple retrieval on a single relation or com-
plex queries involving many files) , the possible modes used
for modification of the database (e.g., batch updates or in-
teractive updates) , the level of user-system interaction
(e.g., on-line or batch access), and whether or not users
commonly access the same data files. Some of the quantita-
tive aspects of the transaction load include: the percentage
of time that each type of database action is performed, the
average amount of data returned to a user per transaction,
the average number of users, and the number of users in-
volved in each type of transaction. Therefore, the transac-
tion load defines not only the number of users present in
the system, but also the quality and degree of activity

-14-

introduced into the system by each user.

3.1.4 Experimental Design .

In this important phase of the benchmark design, param-
eters are selected to be varied in the benchmark testing.
Values to be used for the parameters must also be defined.
It is very important to choose values that, while within
reason for the system being tested, push the system to its
performance limitations. Among the parameters to be con-
sidered are database size, background load, number of
indexes, query complexity, and number of simultaneous users.

It is also in this phase of the benchmark design that
the criteria to be used for evaluation are considered. It
is important to realize that the planned use of the system
to be selected will have a definite relationship to the main
measurement criteria on which the systems are evaluated.
For example, if the system is expected to be used heavily
and is likely to become CPU bound, system utilization or
throughput would most likely be the main measurement cri-
teria. On the other hand, if the system is more likely to

be run under a light or moderate workload, response time
would most likely be the most important criteria. The
selection of measurement criteria for the experimental
design is discussed in greater detail in Section 4.4.

3.2 Benchmark Execution

After the time-consuming and complex task of designing
the benchmark is completed, the next step is to execute the
experiments. It would make benchmarking a much less compli-
cated task if the benchmark could be implemented exactly as
designed on each individual system to be tested. In reali-
ty, this is seldom the case. Each system has its particular
design and limitations to be considered. The benchmark has
to be tailored to each specific system involved in the test-
ing. Benchmark execution involves the steps of benchmark
initialization, benchmark verification, and the actual
benchmark tests. These steps are explained further in Sec-
tion 5.

-15-

3.3 Benchmark Analysis

Benchmark experiments normally produce large amounts of
output data that are too burdensome to evaluate. The final
phase of a good benchmark experiment, therefore, must be a
concise summary of the results obtained. This summary
should point out the interesting results of the experiment
and attempt to explain the reasons behind those results. A
good summary will also present graphs relating testing
parameters to response measures and matrices comparing
results under varying variables. Benchmark analysis in-
volves forming the raw performance data into graphs and
tables that clearly illustrate observations and comparisons
on the systems benchmarked. Benchmark analysis is fully
described in Section 6.

Two types of benchmark analysis can be performed based
upon the objectives of the benchmark testing.

1. Individual System Analysis - For each tested system,
the data are analyzed to provide observations on the
performance of the database system under varying sys-
tem algorithms and conditions.

2. Comparative System Analysis - When multiple systems
are being studied, performance data can be compared.
This analysis should provide a basis to make state-
ments as to critical comparison among several data-
base systems.

-16-

4. BENCHMARK DESIGN

The benchmark design is made up of three areas which
provide input to the final step of experimental design.
These three areas; system configuration, test data, and the
benchmark workload; as well as other factors involved in the
experimental design, are discussed in this section.

4.1 System Configuration

System configuration consists of a wide variety of
parameters which relate to both hardware and software. The
hardware parameters include main memory size, the number and
speed of disk drives, and data blocking. The software
parameters include the operating system support, scheduling
policies, and query optimization. Below is a list of some
of the parameters considered in this phase and a brief dis-
cussion of each, A more detailed list of parameters can be
found in [SU 81a, SU 81b]

.

4.1,1 Hardware Parameters.

1. Main memory size consists of the number of bytes of

memory available for programs, user work areas, and

input/output buffers.

2. Secondary storage consists of the number and type of

disk drives. Parameters include disk capacity, seek
time, and data transfer speed.

3. The configuration and speed of the communication
lines in the system are important features that ef-

fect database system performance.

4. The speed of the CPU has an effect on the response

time since most database systems experience CPU sa-
turation conditions.

-17-

4.1.2 Software Parameters.

1. Memory page size has a direct effect on the locality
of data allocation. Large page size enhances the
clustering effect but requires larger buffer space.
Unfortunately most systems do not permit the user to
specify the page size as a parameter.

2. Indexing directly affects the data retrieval effi-
ciency. Index parameters should include the type of
index supported and any restrictions on the number of
indexes permitted.

3. Operating system support and scheduling are often
functions of the chosen operating system and are
therefore difficult to test.

4. The query optimization scheme utilized by the
software is not necessarily always the best method
available. Comparison of an alternative method can
often provide an interesting result. Although the
query optimization algorithm is internal to a data-
base system, some alternative algorithm's effect can
be simulated through carefully arranged queries.

5. Database system control algorithms, such as con-
currency control and recovery algorithms, may also be
tested as to their effect on performance. Some data-
base systems allow differing levels of control by
setting system parameters. New control algorithms
can be tested by adding the programs to the database
system.

Many of the hardware and software parameters listed
above are given, especially when the database system is to
be added to an existing computer system. Often a database
system can be installed on only one, or very few, types of
operating systems. Therefore, testing is further con-
strained in regard to the selection of configuration parame-
ters. It is usually difficult to vary database parameters
such as buffer size and page size.

4.2 Test Data

A database is represented on a logical level by a con-
ceptual schema that provides an overall view of the data and
data relationships in the system. At this level the data-
base is defined in terms of relations, records, attributes,
and domains (using relational terminology) . Hierarchical
and network systems can be described in the appropriate data
model terminology. At the physical level of representation
the size and storage requirements of the database system

-18-

must be considered. In addition to the storage required to
hold the data values in the database, access structures such
as indexes must be included in the storage costs. Also,
certain data may be duplicated for reliability or retrieval
efficiency.

4.2.1 Constructing the Database.

One of the major considerations in any benchmark exper-
iment is that of what test data will be used for the test-
ing. The database used in the testing must be implemented
on each of the candidate systems to be tested and after im-
plementation must remain constant over all systems. There
are basically two methods for obtaining a test database: us-
ing an already existing application database or developing a
synthetic database.

Application Database

The traditional method has been the use of real data
from an application database. By 'real data' is meant data
that is being used, or has previously been used, for appli-
cation purposes. If real data is to be used it must be for-
matted into the appropriate form for each system to be test-
ed. If several systems are to be tested, the data must be
formatted for each of the systems. If the database systems
involved in the testing are not all of the same type (e.g.
relational, hierarchical, or network) , this formating can
become a time consuming exercise in database design. Even
when the systems involved are the same type, the loading and
setting up of the database can produce unexpected problems.
The use of real data, however, demonstrates database system
performance on realistic application environments. This is
clearly the best method when the evaluation is done to
select a system for a known database environment.

Synthetic Database

The second method, the use of synthetic databases, has
been gaining popularity in recent studies. When using this
method, synthetic data is generated to make up a database
which easily lends itself to benchmark testing. Attributes
are allowed either integer or character values. Key attri-
butes are assigned unique integer values. For example, for
a relation with 10,000 tuples, the key attribute may take
the values 0, 1, ... , 9999. The numbers can be scrambled
using a random number generator. Other attributes are
designed so that they contain non-unique values. The main
purpose of these attributes is to provide a systematic way
of modelling a wide range of selectivity factors. For exam-
ple, a relation could be designed containing an attribute

-19-

with a uniform distribution of the values between 0 and 99.
By utilizing the random number generator to create 5000 oc-
currences of this attribute into a relation, then queries
can be easily designed with selec t ivit ies of 10%, 20%, ... ,

90%, or any other percentage that is of interest in testing.
Since the attribute has only 100 distinct values in the 5000
occurrences, 10% of the relation could be retrieved simply
by running the following queries (using SQL)

:

SELECT <all>
FROM <relation>
WHERE <attribute> < 10

or

SELECT <all>
FROM <relation>
WHERE <attribute> > 89

Such a design allows for much greater control over selec-
tivity and can lead to a more precise result.

A major concern with the use of synthetic databases
lies in the question of independence between attributes
within a relation. In order to be certain that the attri-
butes are truly independent each attribute within the rela-
tion must have an occurrence for each and every value of
every other attribute in the relation. For example, a rela-
tion with two attributes (attr_l and attr_2) containing
values 0 through 1 and 0 through 2 respectively would have
to contain the following records to demonstrate true attri-
bute independence [ULLM 82] .

-20-

Table 4.1: Independent Attributes

attr_l attr_2

0 0

0 1

0 2

1 0

1 1

1 2

Obviously as the size of the relation grows, maintaining
this independence leads to a very large relation.

While the use of a synthetic database does add a cer-
tain amount of control there are some drawbacks to using
synthetic data. Synthetic relations fail to incorporate the
complex data dependencies inherent to real data. For exam-
ple, in a real database attributes within a relation, such
as years of service and salary, have definite correlations
which synthetic databases do not provide. Another factor to
consider in choosing application vs. synthetic databases is
the purpose of the testing. If the benchmark is being per-
formed in order to select a system for a specific applica-
tion it would obviously be preferable to test some data that
would be used in the application. The use of a synthetic
database is most suitable when designing a general benchmark
over several database systems. However, the use of synthet-
ic data takes away a certain measure of real world applica-
bility present when using real data.

4.2.2 Database Size.

Database size is a key parameter and should be tested
at various levels. Database sizes, ^small' to ^large',
should be identified by studying the application system or
the testing environment. In its use here 'large' means the
largest database the application system is likely to use or
the largest database available for testing. The term
'small" represents the point where the best performance is

expected for the application. These points will often be
identified during the benchmark and should be estimated ini-
tially.

Benchmark testing should begin on the smallest test da-
tabase. By stepping to larger sizes, performance changes
can be readily noted. When large performance gaps are no-
ticed between database sizes additional database sizes may
be tested in order to discover the point where the database
size causes performance deterioration. Although availabili-
ty of data may often dictate how large a database is used in

-21-

the benchmark, it is important to set the upper size at an
adequate level to assure that possible applications will not
normally exceed that level. By identifying a higher level
than would normally be attained the effects of possible fu-
ture growth can be evaluated.

The choice of the sizes of the databases to be tested
will also be directly related to the system being tested and
the resources available. If the testing is to be done on
different configurations of one system, or comparing very
similar systems, it is quite likely that each system could
be tested on all of the sizes of the database to be tested.
If, on the other hand, the testing is comparing aspects of
systems of different sizes with differing capabilities, the
database sizes tested on one system may be limited to a sub- '

set of the sizes tested on a larger system (e,g,, micros and
minis) ,

4,2,3 Indexing.

It is important to test the effects that indexing has
on the performance of the systems being tested. Index lev-
els should be set that will allow the systems to show
differences in performance related to using the indexes.
The transactions in the benchmark workload should be
designed to highlight the potential performance benefits and
costs of using indexes.

Some of the possible index levels that could be select-
ed include:

0. No ind exinq . Studying results with no indexing pro-
vides a basis for comparison of the change in perfor-
mance when utilizing indexes and is therefore essen-
t ial.

Clustered indexe s on key attributes . A clustered in-
dex is an ind ex on an attribute whose data values are
stored in sequential order. Clustered indexes on
keys can be used effectively for retrieval and join
operations.

2 • Nonclustered indexes on secondary key attributes .

Secondary key indexes, if used properly, will enhance
the performance of queries that contain selection
conditions using these keys.

-22-

3. Complete indexing . Indexes are placed upon all at-
tributes in the database. The benefits of complete
indexing must be weighted against its costs.

Database systems can also
to provide combined indexe s

.

ranges over two or more fields
can be defined on attribute
together in queries.

be tested for their ability
A combined index is one that
[STON 74] . Combined indexes
groups that appear frequently

4.3 Benchmark Workload

The benchmark workload is the heart of the benchmark
experiment. While the system configuration and test data
define the running environment, the benchmark workload de-
fines the tests that will be run on this environment. By
choosing a variety of transactions and then modelling user
and system workloads by utilizing a job scripts model, a
variety of benchmark parameters can be tested. The job
scripts model is defined in Section 4.3.3. Transaction
types that should be considered in the testing are discussed
in the next section.

4.3.1 Transactions.

Each system, and each user on that system, is involved
in a variety of transactions. A transaction is defined here
as a well-defined user action on the database. In testing
a database system, a variety of transaction types should be
run. A benchmark should include the following types of
transactions:

1. Single -Relation Queries - These queries involve only
one relation. Testing on single relation queries
should include queries on different sizes of rela-
tions, queries retrieving all or part of a relation,
queries with and without indexes, and queries using
aggregates and sorting functions such as "group-by"
and "order-by".

2. Mult

i

-Relation Queries - These queries involve more
than one relation. Testing should include all of the
variables discussed in the single-relation queries.
A benchmark should also include testing on different
join methods and varying the number of relations that
are included in the query. Joins must be tested with
and without indexes, and with different sequences of
joining the relations.

-23-

Updates - Updates include functions such as modifica-
tion, insertion, and deletion. Testing on updates
must be performed carefully. These queries change
the state of the database. If the effects of the up-
dates are not removed, further testing on the data-
base will not be performed on exactly the same data.
Therefore the update effects must be removed from the
database before further testing.

4.3.2 User-System Environment.

The next consideration in the design of the benchmark
workload is the area of the user-system environment. This
environment is a combination of factors including whether
the system is on-line or batch, the frequency at which tran-
sactions enter the system, utilities offered by the system,
and the programming interface.

There are basically two methods of executing transac-
tions: batch and on-line.

1. Batch - A batch transaction is submitted and run with
no interaction between a user and his job during pro-
cessing .

2. On-line - An on-line transaction allows the user to
interact with the program.

The frequency at which transactions enter the system is

another factor that should be considered in the workload en-
vironment. Considerations regarding the amount of think
time between transactions, the number and type of transac-
tions, and the frequency of transactions on the system as
the number of users grow, all must be taken into account.
The job-scripts model defined in the next section is a con-
venient method of modelling these factors.

The utilities offered by the system are of prime con-
cern to the database administrator and their functionality
will be important to him. The utilities include creating,
loading, and extending a table, creating an index, database
dump, recovery, and checkpointing. User utilities may in-
clude sort packages, statistical routines, and graphics
packages that can be interfaced with the database system.

-24-

4.3.3 Job-Scripts Model.

A job scripts model will be utilized to model the tran-
saction load of the each user. By defining several distinct
transaction loads and running them concurrently, a multi-
user environment can be modelled.

A transaction load consists of several qualitative and
quantitative aspects. Some of the qualitative aspects re-
lating to transaction load are: the types of queries which
occur (e.g., simple retrieval on a single relation or com-
plex queries involving many relations) , the possible modes
used for modification of the database (e.g., update through
menu modification, batch updates, updates in conjunction
with queries), the level of user-system interaction (e.g.,
on-line vs. batch access) , and whether or not users commonly
access the same data files.

Some of the quantitative aspects of the transaction
load include: the percentage of time that each type of data-
base action is performed, the average amount of data re-
turned to a user per transaction, the average number of
users, and the number of users involved in each type of
transaction. Therefore, the transaction load defines not
only the number of users present in the system, but also the
quality and degree of activity introduced into the system by
each user.

Let a set of defined transactions be represented as T=

{ t(l), t(2), ... , t(n) } where t(i) represents the i-th
transaction.

A job script represents a typical workload of an appli-
cation user on the system. Let S be a set of pre-defined
job scripts, s(i) , of the form:

s(i) = < t(j(l)), x(l), t(j(2)), x(2), ... , t(j(m)) >

where t(j(k)) is a transaction from the set T

and x(i) stands for the average think time found between
successive user transactions. The x(i) parameters can also
represent the interarrival times of transactions into the
system. Job scripts can be designed to characterize a par-
ticular type of user in the system. For example, a database
user may be described as retrieval intensive or update in-
tensive. In either case a job script can be designed for

that user by selecting transactions that best represent the
user's typical processing.

-25-

The job script model consists of two defined sets: the
job scripts, S =

{ s(l), s{2) , s(p)], and the set of
users, U =

{ u(l), u(2), ... , u(r) }. The workload for the
system is defined by the number of users on the system and
the assignment of users to job scripts. Each benchmark
study is parameterized by the mix of job scripts that the
systems execute. The assignment of users to one or more job
scripts provides a very effective and clear way to charac-
terize this job mix. An additional advantage of this job
scripts model is that it can be easily implemented by a test
generator program in the actual benchmark study.

A job script file for each user is read into a bench-
mark runner program that executes on the host computer sys-
tem. TFe runner executes the transactions in job script
order on the database system. This program also gathers
performance data from the database system by recording
statistics from hardware and software monitors. As an exam-
ple, the following performance data can be collected on a
database system for each transaction:

Parse time - The time required to parse the transac-
tion and send it for execution.

2. E xecution time - The time required to develop an ac-
cess strategy for a transaction.

3. Time to first record - Time until the first result
record is presented to the user.

4. T ime to last record - Time until the last result
record is presented to the user.

5. Number of records retrieved - The result size of the
transaction; the size in bytes of the records should
also be collected.

The benchmark runner algorithm can be outlined as fol-
lows:

Algorithm Runner:

Begin

Read Job-script-file into trans-array until EOF;

Open database system;

While (trans-array not empty) do

-26-

Read next transaction from trans-array;
Parse transaction and send to database system;
Execute transaction;
Record time statistics on:

t ime-to -parse
t ime -to -ex ec u te
time-to-fir St
time-to-last

;

Record size statistics on:
number of records in result
size of result records;

Print gathered statistics;

End wh i le ;

Close database system;

End of Algorithm.

For each benchmark test a job script is defined and ex-
ecuted on the different database systems to be tested.
Statistics for each transaction in the job script are print-
ed in a convenient format. For multi-user tests on the da-
tabases, multiple copies of the benchmark runner are run
simultaneously on separate job scripts. Statistics are
gathered for each job script.

4.3,4 Background Load.

The accurate evaluation of any system must take into
account the type and amount of non-database work being per-
formed by the host computer system. Based on typical system
usage, as defined by the application, a number of non-
database programs should be designed for background execu-
tion on the tested systems. These programs should be
modelled using a job script in much the same manner as the
user transaction loads. In this way measurements can be ob-
tained for the effects of the background load on the data-
base load, while the effects of the database load on the
background load can also be measured. By enlisting the job
script approach, parameters on the background load such as
arrival rate of the programs, type of programs in the back-
ground load (e.g., CPU-bound vs, I/O bound) and priority
given to programs in the background load, can be varied.
Different background loads can be utilized in identifying
system saturation points for the combined database and non-
database system loads.

-27-

4.4 Experimental Design

Now that the running environment and possible alterna-
tives for testing parameters have been defined, the parame-
ters to be used in the testing should be selected. In order
to properly evaluate the testing it will be necessary to set
fixed values for most parameters, while testing others at
various levels.

It is also at this stage of the benchmark design that
the performance criteria to be used for evaluation are con-
sidered. The evaluation criteria selected are an essential
key to understanding and correctly interpreting the bench-
mark results. In this section the selection of the measure-
ment criteria will be discussed, as well as a review of the
possible experimental parameters that can be varied in the
te St ing

,

4.4.1 Performance Measurement.

The relevant measures that may be considered for use in
the performance evaluation include system throughput, utili-
zation, and response time. Each of these will be dis-
cussed in the following paragraphs.

1. System throughput is defined as the average number of
transactions (e.g., queries) processed per unit time.
It stands to reason that as the number of queries on
the system increases, approaching a saturation level,
the system throughput will also increase. The
throughput is a good indicator of the capacity and
productivity of a system.

2. Utili zation of a resource is the fraction of the time
that the particular resource is busy. The main
resources involved with processing database calls are
the CPU, secbndary storage, and the communication
channels between them. Utilization, as with system
throughput, is directly related to the number of
transactions on the system at one time.

3. Response time can be taken to mean several different
things. First, the response time could be considered
as time -to-firs.t -record . In other words, from the
time the query enters the system until the time the
first record in the response is returned. Another
definition of response time could be time -to-last-

record . This is from the time the query enters the
system until the last record of the response is

-28-

available. Using this measurement would, of course,
cause the size of the result to influence the perfor-
mance measure. If the system is I/O bound the time
to retrieve and deliver the entire response could
eclipse the actual transaction processing time.

System throughput, utilization, and response time are
all related in some sense. All three measurements tend to
increase as the load on the system increases, but while a
high system throughput, and a high utilization rate are per-
ceived as desirable, a large response time carries a nega-
tive connotation.

Determining resource utilization and/or system
throughput can be a very easy, or very difficult task
depending upon the support offered by the system being test-
ed. Some systems provide tools which offer easily accessi-
ble statistics while others require a great deal of user in-
tervention using software tools to acquire the necessary in-
formation. Response time is usually the most readily avail-
able measure and is also the most user apparent. Because of
these facts response time is the measurement utilized in
most benchmarks.

The method used to perform the necessary calculations
in determining response time is often a function of the sup-
port offered by the system being tested. For example, a da-
tabase system running on an operating system which allows a
flexible interface could support a very detailed timing al-
gorithm, while a system with limited interfacing ability may
require the use of a much more general timing method (e.g.,
setting a time at query input and again at query completion
and recording the difference) .

4.4*2 Experimental Variables.

A number of important tests can be performed in the
benchmark by selecting and varying one or more dependent
variables. The possible parameters that could be selected
include

:

1. Database Size - Several sizes relevant to the system
being tested should be selected.

2. Query Complexity - Two factors are considered in

determining query complexity. Greater complexity of
the query predicate leads to increased parsing time
and increases the potential for query optimization.

-29-

within each query set, the predicate complexity is
increased by adding additional conditions. A method
of complexity classification has been developed by
Cardenas [CARD 7 3] . The complexity of a query predi-
cate increases in the following manner:

a. An atomic condition simply places a simple selec-
tion on a relation (e.g., Rela tionl .Attl = '10^).

b. An item condition is a disjunction (OR) of two
atomic conditions on the same attribute (e.g.,
Relationl.Attl = '10' OR Rela tionl .Attl = '20').

c. A record condition is a conjunction (AND) of two
item conditions (e.g., Relationl.Attl = '10' AND
Relationl .Att2 = 'ABC').

d. A query condition is a disjunction (OR) of record
conditions (e.g., Relationl.Attl = '10' OR
Relationl .Att2 = 'ABC').

Second, the number of relations involved in a query
indicates query complexity. More costly join opera-
tions are required when multiple relations are in-
volved .

Records Retrieved - The response time of a transac-
tion will depend greatly upon the number of records
in the query result.

Order of Query Execution - The different database
systems use internal memory as buffers for the
storage of needed indexes and intermediate results
during query execution. To test the effect of the
buffer memory on the order of query execution, job
scripts should be formed which consist of similar
transaction loads executed sequentially. This will
identify any efficiencies caused by buffering.

Indexing - Indexing should be tested at various lev-
els. The use of at least three levels of indexes is
recommended: no indexes, primary key indexes, and
complete indexes.

Sorting - Sorting costs should be tested. One method
of doing this is to add 'order by' clauses to the
query sets. By comparing sorted and unsorted
queries, the costs of sorting in the different data-
base systems can be determined.

-30-

7. Aggregation Functions - Aggregation functions should
be tested by adding 'count' or 'max' to the output
list.

8. Number of Users - Multiple users contend for database
system resources. This tends to increase the
response time and increase the throughput. To study
contention, tests should be run in which each user
runs an identical job script. Other tests would in-
clude different combinations of job scripts. Multi-
ple user tests will also test the database system's
capabilities to control concurrency. Concurrent up-
dates on the same data item will test the locking
protocols of the systems.

9. Background Load - Tests should include runs varying
the non-database jobs in the host computer system.
The number and type of jobs in the background can be
varied. Background jobs can be designed as CPU or
I/O intensive jobs. Tests can determine the effect
of these jobs on the performance of the database
queries. By measuring the performance of the back-
ground jobs under different query loads, the effect
of database jobs on the background jobs can also be
studied. This is called a reverse benchmar

k

.

10. Robustness - System performance should also be meas-
ured under controlled failure conditions in the sys-
tem. This includes simulating the conditions of loss
of power, disk failure, and software bugs. The capa-
bility to recover from these failures gracefully is

an important feature of any database system. This
includes the system's ability to recover on-going
transactions, and to back out such transactions and
request resubmission. Possible tests here include a
deadlock test (it may or may not be easy to induce
transaction deadlock) and disaster tests including a

failed disk (demonstrate by powering down the disk),
a failed system (power down the entire system) , and
an aborted transaction.

A benchmark may be either application- specific, mean-
ing that it is intended primarily to evaluate the suitabili-
ty of the candidate database systems for a particular appli-
cation; or it can be more general, in which case the experi-
ment is intended to perform an overall evaluation. When
selecting parameters such as the types of transactions,
number of users, and background load, the type of benchmark
that is being performed will have a direct relation on the
parameters selected. For example, when selecting

-31-

transactions to be run, if the benchmark is application-
specific, the application environment would be studied and
transactions modelled to duplicate this environment. In the
more general case, a wide variety of transactions would be
used with the intention of including the spectrum of actions
typically performed in a user environment.

-32-

5. BENCHMARK EXECUTION

When the experiment has been formally defined the next
step is to implement the design on each of the candidate
systems. The actual execution of the benchmark can be bro-
ken into three phases: benchmark initialization, benchmark
verification, and benchmark testing.

5.1 Benchmark Initialization

Before any testing can be performed the benchmark must
first be initialized. During initialization the database is
prepared for testing and the benchmark runner program is
readied for use.

5.1.1 Loading.

The first step in preparing for the benchmark is to
load the database into each of the test systems. While
loading may seem like a simple step, this is often not the
case. In most benchmark experiments the database is

transferred from one system to each of the systems to be
tested. When this is the case caution must be used to avoid
inconsistencies in the databases. Any transfer of data
between two systems requires the use of transfer protocols.
When transferring a small amount of data the protocol
between the systems may handle the details quite well. Test
databases for benchmarking are usually quite large and
transferring can be a very lengthy task. While not major
factors, power failures, surges, and hardware malfunctions
can create inconsistencies in the transfer and result in in-
correct data.

If application data is used, the data must be reformat-
ted into a usable form for the test system. The reformating
of data can sometimes lead to unexpected problems which
result in either the loading of unusable data, or not being
able to load the data. If the data loaded into the test
system turns out to be incorrect it may have to be dumped
and the loading reinitialized with the necessary correc-
tions. When loading large databases this can be a costly
and time-consuming process.

Using a synthetic database does not eliminate the load-
ing problems. If the database is generated in one system
and subsequently transferred to the test systems, the same
concerns as above apply. If, on the other hand, the data-
base is generated on the test system, the consistency of the

-33-

test data must still be verified.

5.1,2 Timing.

It is also in this initialization phase that the timing
algorithm in the benchmark runner is chosen, designed, and
tested. In section 4 .3 a detailed discussion of the possi-
ble measurement criteria to be returned by the timing algo-
rithm is presented. In this phase the mechanism to be used
is considered and tested. In the analysis of a single sys-
tem, or compatible systems, the timing algorithm chosen
should provide as detailed results as possible. Whether
hardware monitors or software monitors are to be used, the
initialization phase should allow for the tuning and testing
of the tool.

When benchmarking several systems, the measurement cri-
teria chosen must be implemented across all systems. The
lack of ability to support a detailed timing algorithm by
one system will sometimes limit the criteria that can be
evaluated in comparisons. To insure that the timing method
chosen is imp lemen table across all test systems, the moni-
toring should be tested prior to any actual testing.

5.2 Benchmark Verification

Results obtained from benchmark experiments must be
verified in order to be of any value. Three types of verif-
ication are discussed below.

1. Equivalence Verification . Each transaction is coded
in the data manipulation language (e.g., SQL) of the
different systems to be tested. It must be verified
that the transactions are equivalent across all of
the different systems to be tested. This equivalence
can be tested by executing the transaction and check-
ing that the results are correct and identical on all
system. A more rigorous approach would be to prove,
via semantic proving techniques, that the transac-
tions are equivalent and will always produce identi-
cal results,

2. Optimum Performance Verification . In order to
achieve fairness in the benchmarking, it should be
verified that the transactions are coded so that the
best performance can be realized in a typical confi-
guration of each system. The existence and use of

-34-

access paths (e.g., index structures) should be as
close to identical as possible in the different sys-
tems. The systems will be set up with normal amounts
of processing power and storage as would be found in
a typical configuration. In this way, each system
will be shown in its 'best light'. A method of ac-
complishing this performance verification is to exe-
cute the transactions (after equivalence verifica-
tion) on each system and collect performance results.
Each vendor should be asked to evaluate the perfor-
mance of his system and to suggest ways to tune the
system for better performance.

3. Consistency Ver if ication . During the execution of
the benchmark experiments, a method for checking the
consistency of performance results should be included
in the experimental design. A consistency check con-
sists of running a particular benchmark more than
once and verifying that the performance results are
consistent between the runs. While not all benchmark
runs need to be duplicated, performing selected con-
sistency checks will provide some assurance that the
performance results are a function of the defined
system environment.

The implementation of each job script must be verified
both for correctness of its semantics and optimality of per-
formance. When multiple database systems are being tested,
the sccpe for verification measures is increased. In order
to verify that the proper transactions are being used, the
results of the queries (e.g., record counts, text of the re-
turned fields) can be compared across database systems. Any
discrepancies observed will trigger an inspection of the of-
fending scripts. Common errors are: a missing qualification
sub-clause, an improper sort order, or a syntactically
correct but semantically incorrect operator in a selection
clause

.

Scripts may be changed during the initial check-out
phase. A single benchmark experiment will run one or more
scripts simultaneously on a target database system. Each
script will be monitored so that the system response time
which it experiences can be recorded. Simultaneously,
statistics describing overall system throughput will be
recorded. The choice of scripts to run together vvill be
determined based upon the behavior in the database systems
that are being tested. This is one area in which it is ex-
pected that preliminary evaluation of the benchmark results
will feed back into the experiment, as new groups of scripts

-35-

will be suggested and tried out to probe specific perfor-
mance features.

The details involving the transaction verification, as
well as those involved with running the benchmark, will have
a direct relation on how well the results from each system
can be analyzed and compared to one another.

5.3 Benchmark Testing

Once the validity of the database has been assured, it
is time to begin planning the benchmark runs on each of the
systems to be tested. Differences between systems will
necessitate differences in the approach to each implementa-
tion. For example, the limitations of a particular system's
architecture may allow only a subset of the experiment to be
applied. So, while the methodology flowchart presented ear-
lier shows a clean interface between the design and execu-
tion phases, in reality this is rarely, if ever, the case
v^en implementing the benchmark on more than one system. It
will often be necessary to return to the design phase in
order to restrict or revise the planned testing on each par-
ticular system to be tested.

Any general design of a benchmark will encounter prob-
lems specific to a given environment. The variations of the
hardware and operating system environments, as well as the
particular database system, will cause the experiment to
vary from its original design. In an application-oriented
benchmark any system which lacks the functionality to per-
form all of the desired operations presumably has already
been eliminated during the features analysis phase. Howev-
er, a general benchmark may include a diverse set of sys-
tems, some of which cannot perform all of the tests, or may
perform limited versions of them.

The hardware involved can cause departures from what is
desired. If, for instance, there is a limited amount of
main storage available, the operating system and the data-
base system taken together may preclude the testing of any
type of background load altogether. Also, limited amounts
of main storage reduce the possible complexity of the data-
base system. Interaction between the various hardware/
operating system/ database system components can have
deleterious effects. For example, the conflicting seeks
used by an operating system and the DBMS system software are
shown to have degraded performance of benchmark tests run by
System Development Corporation [LUND 82]

.

In the case of a small computer database system, the
limited amount of main storage may not allow the database
system enough space to have the code to implement all of the
functions specified in the scripts. Aggregate functions
(e.g., MAX, MIN, AVERAGE) are not present in the query
languages of many database systems. More exotic (but use-
ful) operations such as an "outer join' are present in very
few of today's systems.

The benchmark tests must be carefully monitored during
their execution, and as knowledge is gained from the experi-
ments, it is expected that the original experiment will be
redesigned to take advantage of that knowledge. Hence, run-
ning the benchmarks is not a completely 'cut-and-d r ied'
task. Most of the benchmark involves running scripts
against each of the target systems, while varying individual
parameters of the systems. After each run, the results will
be scanned to verify that embedded consistency checks have
not uncovered any anomalies.

Once the experiments are running smoothly, the effort
of interpreting the data will begin, and henceforth, the
processes of gathering data and interpreting it can proceed
in parallel. The results obtained should suggest new combi-
nations of parameters and scripts, or variations on old
ones, which will be run to probe specific aspects of a
system's performance.

-37-

6. BENCHMARK ANALYSIS

The final phase of benchiftark ing is the analysis of
results. Benchmark testing often produces large amounts of
raw data which must be condensed and analyzed. Evaluation
of the data generated during benchmarking must begin before
the tests have been completed. This provides feedback dur-
ing the testing by suggesting which types of experiments
need to be repeated in more detail, or should be extended in
some way. Summarizing the meaningful information from these
results and discussing them in a report form is a key step
in the benchmark testing. Explanations are provided for any
significant findings and graphs and tables showing the com-
parison of results are included. Analyses are made on both
individual systems, comparing results by varying parameters,
and between systems, comparing one's results to the other's
results. The following section discusses some of the possi-
ble comparisons to be drawn when analyzing a single system
or when comparing several systems.

Each test parameter should be evaluated in as isolated
an environment as possible so that the results can be
directly attributable to the current configuration of param-
eters. A matrix of parameters to be evaluated (e.g., data-
base size, background load, etc.) should be designed and
performance benchmarks run for each combination.

When the testing is complete, results of each system
are thoroughly analyzed. The parameters defined as those to
be varied in the testing are to be monitored, and their
behavior summarized. Graphs are utilized to dem.onstrate
these behaviors. Graphs provide a clear, concise synopsis
of the relationship between parameters and should be util-
ized frequently in the analysis phase.

When evaluating a single system, a variety of comparis-
ons should be studied in order to identify interesting
results. Below are several possible comparisons and effects
that should be included in the analysis.

1. Response Time vs. Query Complexity . Under normal
conditions, the relationship between these two param-
eters should be an increase in response time as the
query becomes more complex due to an increase in
parsing and execution. This is shown when consider-
ing the time-to-first-record response time statistic.

-38-

2. Response Time vs . Records Retrieved. This relation-
ship should provide an interesting result regarding
the time relationship when retrieving increasing
numbers of records.

3. Response Time vs. Indexing . Indexing should have a
positive effect (decreasing response time) for most
queries but this is not always the case. Some index-
ing may actually cause the response time to increase
if the query accesses a large percentage of the rela-
tion (high hit ratio) .

4. Buffer ing . Efficient use of buffer space can some-
t imes lead to improved performance. However, this re-
quires the use of special buffer management algo-
rithms which are not implemented in most database
systems

.

5. Sorting . Sorting can be an expensive process. A
test showing the difference in a query when it is
sorted vs. when no sorting is required can identify
the system's strength in this area.

6. Aggregation . The resulting increase in cost as the
number of records retrieved increases using an aggre-
gate function should be documented.

7. Multi -user Results . The effects of multi-users on
the database are an important and realistic testing
parameter. The amount of increase in response time
as the number of users on the system increases should
be calculated and graphed.

8. Background Load Results . In much the same manner as
the multi-user environment, the background load can
have a dramatic effect on the response time. As the
background load increases the resulting increase in
response time on the database system workload should
be monitored.

9. Reverse Benchmark . The database workload will have
an effect on the performance of applications on host
computer systems. An analysis of this effect should
be performed.

Performance saturation points will occur when a system
shows a marked decrease in performance based upon a resource
becoming overloaded. System saturation points should be
identified and plotted for each of the systems tested. The
saturation level will be a function of the number of users,

-39-

types of workload, background load, and other tested parame-
ters. Therefore, an explanation of the saturation points on
each configuration and some comments regarding the level are
necessary to backup the graphs.

Finally, the end product of any benchmark experiment
should be a report which summarizes the interesting findings
of the testing, discusses the reasons behind the findings,
and draws comparisons between the systems tested. If any
possible solutions exist to problems identified in the
benchmark they should be recommended in writing. This re-
port should stress general, rather than specific, results
and therefore provide an overall evaluation of the systems.

-40-

7. SUMMARY AND CONCLUSIONS

This report has presented a general methodology for the
benchmarking of database systems. Previous projects on da-
tabase system benchmarks, surveyed in Section 2, have iden-
tified many different factors that influence database per-
formance. The objective in this report has been to describe
a framework into which these many database system parameters
can be fitted. Three principal phases of a database system
benchmark have been identified.

1. Benchmark design includes the design of the system
configuration, the test data, and the benchmark work-
load. These parameters are controlled in the experi-
mental design of the benchmark. Performance measures
and the means to gather the performance statistics
are selected.

2. Benchmark execution implements the design on one or
more database systems. This phase requires strict
verification procedures and may involve feedback for
improving the benchmark design.

3. Benchmark analysis is the phase in which the raw per-
formance data is studied and observations and conclu-
sions are made. Single system analysis and multiple
system comparisons form the result of the benchmark.

The design of a benchmark methodology is a complex
task. Previous work on database system benchmarks has been
applied to selected cases of interest. In this methodology
an attempt has been made to present a framework in an order-
ly, top-down fashion to assist the designer of a benchmark
experiment in the design and implementation of a benchmark.

In attempting to design a generalized, standard ap-
proach to benchmarking, the complexity of the actual task of
designing a specific benchmark must be taken into account.
No generalized methodology can provide a complete list of
considerations for the design of an actual experiment. In-
stead, the methodology can only provide the user with as
comprehensive a list of system parameters as possible. Each
experiment and each system has its own characteristics and
constraints. While the methodology will help the designer
by providing a comprehensive framework for the benchmark, it

is the designer's task to fit the particular aspects of each
database system, application environment, and operating

-41-

constraints into a viable benchmark study.

-42-

REFERENCES

[APPL 73] Applied Computer Research, "IDS Simulator - Func-
tional Description," Internal Report, Jan. 1973.

[ASTR 80] Astrahan, M. , Schkolnick, M. and Kim W. "Perfor-
mance of the System R Access Path Selection
Mechanism," Proceedings IFIP Conference, 1980.

[AUER 81] Auerbach Publishers Inc. Practica l Data Base
Management , Reston Publishing Company, 1981.

[BANE 80] Banerjee, J., Hsiao, D. and Ng , F. "Database
Transformation, Query Translation, and Performance
Analysis of a New Database Computer in Supporting
Hierarchical Database Management," IEEE Transac-
tions on Software Engineering , Vol. SE-6, No. 1,
January 1980.

[BARL 81] Barley, K. and Driscoll, J. "A Survey of Data-Base
Management Systems for Microcomputers," BYTE , No-
vember 1981.

[BARO 82] Baroody, A. and DeWitt, D. "The Impact of Run-Time
Schema Interpretation in a Network Data Model
DBMS," IEEE Transactions on Software Engineering ,

Vol. SE-8, No. 2, March 1982.

[BATO 82] Batory, D. "Optimal File Designs and Reorganiza-
tion Points," ACM Transactions on Database Sys -

tems , Vol. 7, No. 1, March 198 2.

[BITT 83] Bitton, H. Dewitt, D., and Turbyfill, C. "Bench-
marking Database Systems: A Systematic Approach,"
Computer Sciences Department Technical Report
#526, Computer Sciences Department, University of
Wisconsin, January 198 3.

[BOGD 83] Bogdanowicz, R., Crocker, M. , Hsaio, D., Ryder,
C. , Stone, v., and Strawser, P. "Experiments in
Benchmarking Relational Database Machines,"
Proceedings of the Third International Workshop on
Database Machines, Munich, West Germany, Sept.
1983.

[BORA 84] Boral, H., and Dewitt, D. "A Methodology for Data-
base System Performance Evaluation," Computer Sci-
ences Technical Report #532, Computer Sciences
Department, University of Wisconsin, January 1984.

[BROD 82] Brodie, M. and Schmidt, J. "Final Report of the

-43-

ANSI/X3/SPARC DBS-SG Relational Database Task
Group," Document SPARC-81-69 0 , ACM SIGMOD Record,
July 1982.

[CARD 73] Cardenas, A. "Evaluation and Selection of File Or-
ganization - A Model and System," Communications
of the ACM, Vol. 16, No. 9, 1973.

[CODA 76] CODASYL Systems Committee, Select ion and Acquisi-
tion of Data Base Management Systems , ACM, New
York, 19 76.

[COFF 81] Coffman, E., Gelenbe, E. and Plateau, B. "Optimi-
zation of the Number of Copies uin a Distributed
Data Base," IEEE Transactions on Software En-
gineer ing , Vol. SE-7, No. 1, January 1981.

[CCMP 78] Computer Surveys , Special Issue: Queueing Network
Models of Computer System Performance, Vol. 10,
No. 3, September 1978.

[DATE 81] Date, C. An Introduction to Database Systems ,

[DEAR 78]

Third Edition, Addison-Wesley Inc., 1981.

Dearnley, P. "Monitoring Database System Perfor-
mance," The Computer Journal , Vol. 21, No. 1,
1978.

[DEUT 79] Deutsch, Don "Modeling and Measurement Techniques
for the Evaluation of Design Alternatives in the
Implementation of Database Management Software,"
NBS Special Publication 500-49, U.S. Dept. of Com-
merce, National Bureau of Standards, July 1979.

[EPST 80] Epstein, R. and Stonebraker, M. "Analysis of Dis-
tributed Data Base Processing Strategies,"
Proceedings of the 6th VLDB, Montreal, Canada,
1980.

[FERR 78] Ferreri, D. Computer Systems Performance Evalua-
tion , Prentice-Hall Inc. , 1978.

[GALL 84] Gallagher, L.J., and Draper, J.M. Guide on Data
Models in the Selection and Use oT Database
Management Systems , NBS Special Publication 500-
108, January 1984.

[GARC 79] Garcia-Molina, H. "Performance of Update Algo-
rithms for Replicated Data in a Distributed Data-
base," Report STAN-CS-79-744 , Stanford University,
Dept. of Computer Science, 19 79.

-44-

[GAVE 76] Gaver, D. , Lavenberg, S. and Price, T. "Explorato-
ry Analysis of Access Path Length Data for a Data
Base Management System," IBM Journal of Research
and Development , Vol. 20, No. 5, Sept. 19 76.

[GLES 81] Gleser, M. , Bayard, J., and Lang, D. "Benchmarking
for the Best," Datamation , May 1981.

[GOFF 7 3] Goff, N. "The Case for Benchmarking," Computers
and Automation . May 19 73.

[GRIP 75] Griffith, W. "A Simulation Model for UNIVAC DMS-
1100 - More Than Just a Performance Evaluation
Tool," Proceedings of the Symposium on the Simula-
tion of Computer Systems, Boulder, Colorado, 19 75.

[HAWT 79] Hawthorn, P. and Stonebraker, M. "Performance
Analysis of a Relational Data Base Management Sys-
tem," Proceedings of the ACM SIGMOD Conference,
Boston, 1979.

[HAWT 82] Hawthorn, P. and DeWitt, D. "Performing Analysis
of Alternative Database Machine Architectures,"
IEEE Transactions on Software Engineer ing . Vol.
SE-8, No. 1, January 198 2.

[HEVN 79] Hevner, A. R. "The Optimization of Query Process-
ing on Distributed Database Systems," Ph.D.
Thesis, Database Systems Research Center Report
DB-80-02, Department of Computer Science, Purdue
University, December 1979.

[HILL 77] Hillman, H. "A Performance Analysis of Several
Candidate Computers for NASA's Flight Planning
System," MTR-4599, The MITRE Corporation, March
19 77 .

[HULT 77] Hulten, C. and Soderlund, L. "A Simulation Model
for Performance Analysis of Large Shared Data
Bases," Proceedings Third VLDB Conference, Tokyo,
1977.

[KEEN 81] Keenan, M. , "A Comparative Performance Evaluation
of Database Management Systems", EECS Dept.,
University of California, Berkeley, CA, 1981.

[LAVE 76] Lavenberg, S. and Shedler, G. "Stochastic Model-
ling of Processor Scheduling with Application to

Data Base Management Systems," IBM Journal of
Research and Development , Vol. 20, No. 5, Sept.
19 76 .

-45-

[LAW 8 2] Law, A. and Kelton, W. Simulation Modelling and
Analysis y McGraw-Hill Book Company, 198 2

.

[LETM 84] Letmanyi, Helen "Assessment of Techniques for
Evaluating Computer Systems for Federal Agency
Procurement," NBS Special Publication 500-113,
U.S. Dept. of Commerce, National Bureau of Stan-
dards, March 198 4.

[LEWI 76] Lewis, P. and Shedler, G. "Statistical Analysis of
Nonsta tionary Series of Events in a Data Base Sys-
tem, " IBM Journal of Research and Development ,

Vol. 20, No. 5, Sept. 19 76 .

[LUCA 71] Lucas, H. "Performance Evaluation and Monitoring,"
Computer Surveys , Vol. 3, No. 3, September 1971.

[LUND 82] Lund, E. and Kameny, I., "Preliminary Comparison
of Performance Results of ORACLE Release 2.3.1 on
VAX/VMS with IDM-500 Release 17 on VAX/UNIX", SDC
document SP-4158/000/00 .

[MIYA 75] Miyamoto, I. "Hierarchical Performance Analysis
Models for Database Systems," Proceedings First
VLDB Conference, Farmingham, 1975.

[NAKA 75] Nakamura, F., Yoshida, I. and Kondo, H. "A Simula-
tion Model for Data Base System Performance
Evaluation," Proceedings NCC, 1975.

[NBS 80] NBS Guideline for Planning and Management of Data-
base Applications , FIPS PUB 77, September r5"80.

[OWEN 71] Owen, P. "PHASE II: A Database Management Modeling
System," Proceedings of the IFIP Conference, 1971.

[POTI 80] Potier, D. and Leblanc, P. "Analysis of Locking
Policies in] Database Management Systems, Communi-
cation s of the ACM, Vol, 23, No. 10, October 1980.

[RIES 77] Ries, D. and Stonebraker, M. "Effects of Locking
Granularity in a Database Management System," ACM
Transactions on Database Systems , Vol. 2, No. 3,
September 19 77.

[RIES 79] Ries, D. and Stonebraker, M. "Locking Granularity
Revisited," ACM Transactions on Database Systems ,

Vol. 4, No. 2, June 19 79 .

[RODR 75] Rodriguez -Rose 11, J. and Hilderbrand, D. "A Fram-
work for Evaluation of Data Base Systems,"

-46-

Research Report RJ 1587, IBM San Jose, 1975.

[SIGN 82] Signal Technology, Inc., "OMNIBASE Test
Internal Report, 1982.

Results"

,

[SMIT 80] Smith, C. and Browne, J. "Aspects of Software
Design Analysis: Concurrency and Blocking,"
Proceedings of the Performance 80 Symposium,
Toronto, 1980.

[SPIT 77] Spitzer, J. and Patton, J. "Benchmark Analysis of
JSC's Database Management Systems," Proceedings
Spring 1977 ASTUTE Conference.

[STON 74] Stonebraker, M. "The Choice of Partial Inversions
and Combined Indices," Jounal of Computer Informa-
tion Science s, Vol. 3, No. 2, 1974.

[STON 80] Stonebraker, M. "Retrospective on a Database Sys-
tem," ACM Transaction on Database Systems , Vol. 5,
No. 2, 1980.

[STON 82] Stonebraker, M. et al. "Performance Analysis of
Distributed Data Base Systems," Memorandum No.
UCB/ERL M82/85, College of Engineering, University
of California, Berkeley, 1982.

[STON 83] Stonebraker, M. et al. "Performance Enhancements
to a Relational Database System," ACM Transactions
on Database Systems , Vol, 8, No. 2, June 198 3.

[SU 81a] Su, S. et al. "A DMS Cost/Benefit Decision Model:
Cost and Preference Parameters," Report NBS-GCR-
82-37 3, National Bureau of Standards, January
1981.

[SU 81b] Su, S. et al. "A DMS Cost/Benefit Decision Model:
Analysis, Comparison, and Selection of DBMS' s,"
Report NBS-GCR-8 2-37 5 , National Bureau of Stan-
dards, July 1981.

[TEMP 82] Temple ton, M. , Kameny, I., Kogan, D., Lund, E.,
Brill, D., "Evaluation of Ten Data Management Sys-
tems", SDC document TM-78 17/000/00

.

[TEOR 76] Teorey, T. and Das, K. "Application of an Analyti-
cal Model to Evaluate Storage Structures,"
Proceedings of ACM SIGMOD Conference, 19 76.

[TUEL 75] Tuel, W. and Rod rig uez -Rose 11 , J. "A Methodology
for Evaluation of Data Base Systems," IBM Research

-47-

Report RJ 1668, 1975.

[ULLM 82] Ullman, J. Pr inciples of Database Systems , Second
Edition, Computer Science Press, 1982.

[WALT 76] Walters, R. "Benchmark Techniques: A Constructive
Approach," The Computer Journal , Vol. 19, No. 1,
1976.

[WEIS 81a] Weiss, H. "Down-scaling DBMS to the Microworld,"
Mini -Micro Systems , April 1981.

[WEIS 81b] Weiss, H. "Which DBMS is Right for You?" Mini -

Micro Systems , October 1981.

[YAO 74] Yao, S. "Evaluation and Optimization of File Or-
ganizations through Analytic Modeling," PhD
Thesis, University of Michigan, 1974.

[YAO 75] Yao, S. and Merten, A. "Selection of File Organi-
zations through Analytic Modeling," Proceedings
First VLDB Conference, Framingham, 1975.

[YAO 77a] Yao, S. "An Attribute Based Model for Database Ac-
cess Cost Analysis," ACM Transactions on Database
Sys tems , Vol. 2, No. 1, 19 77.

[YAO 77b] Yao, S. "Approximating Block Accesses in Database
Organizations," Communications of the ACM , Vol.
20, No. 4, 1977.

[YAO 78] Yao, S. and DeJong, D. "Evaluation of Database Ac-
cess Paths," Proceedings of ACM SIGMOD Conference,
1978.

[YAO 79] Yao, S. "Optimization of Query Evaluation Algo-
rithms," ACM Transactions on Database Systems ,

Vol. 4, No. 2, 1979.

[YAO 84] Yao, S.B., Hevner, A., and Yu, S.T. "Architectural
Comparisons of Three Database Systems," Report
submitted to the National Bureau of Standards,
April 1984.

[YOUS 79] Youseffi, K. and Wong, E. "Query Processing in a

Relational Database System," Proceedings Fifth
VLDB, 19 79.

-48-

NBS-n4A (REV. 2-ac)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

iiDo/or-uuu/ 1 lo

2. Performing Organ. Report No. 3. Publ ication Date

uecemDer iyo4

4. TITLE AND SUBTITLE

Computer Science and Technology:
A Guide to Performance Evaluation of Database Systems

5. AUTHOR(S) Daniel R. Benigni, Editor
Prepared by: S. Bing Yao and Alan R. Hevner

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struct/on sj

Software Systems Technology, Inc.

7100 Baltimore Avenue, Suite 206
College Park, MD 20740

7. Contract/Grant No.

8. Type of Report & Period Covered

Fi nal

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

National Bureau of Standards
Department of Commerce
Gaithersburg, MD 20899

10. SUPPLEMENTARY NOTES Library of Congress Catalog Card Number: 84-601144

Related Documents: NBS-GCR-84-467 , Performance Evaluation of Database Systems - A

Benchmark Methodology by S. Bing Yao and Alan R. Hevner; NBS-GCR-84-468, An

Analysis of Three Database System Architectures Using Benchmarks by S. Bing Yao and
Document describes a computer program; SF-185, FlPS Software Summary, is attached. Alan R. HeVner

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

This guide presents a generalized performance analysis methodology for the bench-

marking of database systems. The methodology identifies criteria to be utilized

in the design, execution, and analysis of a database system benchmark. This

generalized methodology can apply to most database system designs. In addition,

presenting a wide variety of possible considerations in the design and implementa-

tion of the benchmark, this methodology can be applied to the evaluation of either

a single system with several configurations, or to the comparison of several

systems.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

benchmark execution; benchmark methodology; benchmark workload; database systems;

DBMS; indexing; performance evaluation; query complexity; response time.

13. AVAILABILITY

rXl Unlimited

I I

For Official Distribution, Do Not Release to NTIS

nXl Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

54

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(Nolirication key N-S03)

U.S. GOVERNMENT PRINTING OFFICE : 1984 0-461-105/10165

Il

Technical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. As a special service to subscribers each issue contains complete citations to

all recent Bureau publications in both NBS and non-NBS media. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-3%).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background
knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper
copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

