
U.S. Department
of Commerce

|

I

National Bureau
of Standards

NBS

PUBLICATIONS

NATL INST OF STAND & TECH

A11107 5bD033

Computer Science
and Technology

NBS Special Publication 500-117, Volume 2

Selection and Use of

General-Purpose Programming
Languages — Program Examples

he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The

_ Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Center for Materials

Science.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and
chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference 'Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering^

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering^

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems
Engineering

The Center for Materials Science

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Center consists of the following Divisions:

Inorganic Materials

Fracture and Deformation^

Polymers
Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

^Located at Boulder, CO, with some elements at Gaithersburg, MD.

llTATIONAt BUREAql

OF STANDARDa
UBRART

Clcioo
Computer Science
and Technology

Vou ^ NBS Special Publication 500-117, Volume 2

c y Selection and Use of

General-Purpose Programming
Languages — Program Examples

John V. Cugini

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards

Ernest Ambler, Director

Issued October 1984

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 84-601120

National Bureau of Standards Special Publication 500-117, Volume 2

Natl. Bur Stand. (U.S.), Spec. Publ. 500-117, Vol. 2, 178 pages (Oct. 1984)

CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1984

For sale by Ihe Superintendent ol Documents, U S Government Printing Office, Washington. DC 20402

Selection and Use of General-Purpose Programming Languages
Volume 2 - Program Examples

John V. Cugini
Institute for Computer Sciences and Technology

National Bureau of Standards

ABSTRACT

Programming languages have been and will continue to be an
important instrument for the automation of a wide variety of
functions within industry and the Federal Government. Other
instruments, such as program generators, application packages,
query languages, and the like, are also available and their use
is preferable in some circumstances.

Given that conventional programming is the appropriate
technique for a particular application, the choice among the
various languages becomes an important issue. There are a great
number of selection criteria, not all of which depend directly on
the language itself. Broadly speaking, the criteria are based on
1) the language and its implementation, 2) the application to be
programmed, and 3) the user's existing facilities and software.

This study presents a survey of selection factors for the
major general-purpose languages: Ada*, BASIC, C, COBOL, FORTRAN,
Pascal, and PL/I. The factors covered include not only the
logical operations within each language, but also the advantages
and disadvantages stemming from the current computing
environment, e.g.f software packages, microcomputers, and
standards. The criteria associated with the application and the
user-'s facilities are explained. Finally, there is a set of
program examples to illustrate the features of the various
languages

.

This volume includes the program examples. Volume 1

contains the discussion of language selection criteria.

Ke y words ; Ada; alternatives to programming; BASIC; C;

COBOL; FORTRAN; Pascal; PL/I; programming language
features; programming languages; selection of programming
language

.

• Ada is a registered trademark of the U. S. Government,
Ada Joint Project Office.

ill

TABLE OF CONTENTS: Volume 2 - Program Examples

1.0 INTRODUCTION

.

1

2.0 ADA 9

3.0 BASIC 33
4.0 C 52
5.0 COBOL 74

6.0 FORTRAN 99
7.0 PASCAL 135
8.0 PL/I 155

FIGURES:

Figure 1 - Algorithm for Program Examples 2

Figure 2 - Input Data 3

Figure 3 - Queries and Output ^

iv

Page 1

1.0 INTRODUCTION

In this volume, we shall illustrate the general style of
each of the languages with a program. These programs are only
examples; they do not attempt to demonstrate the full capability
of each language. On the other hand, the application chosen is
complex enough that the programs do make significant use of
several important language features, such as reading a file,
interacting with a user, recursion, data abstraction,
manipulation of arrays, pointers, and character strings, and some
numeric calculation. Of particular note are the language
features for modularizing a program of moderate size (about 1000
lines). While no application can be completely lang uag e - ne u t r a 1

,

this variety of requirements implies a relatively unbiased
example. Finally, the application deals with a well-known realm
(family relationships) in order to facilitate understanding of
the programs

.

All of the programs solve the same problem, i.e., they
accept the same input and produce output as nearly equivalent as
possible. The input is a file of people, one person per record,
and a series of user queries. In the file, each person's father
and mother (if known), and spouse (if any) are identified. Given
this information, the user may then specify any two persons in
the file, and the program computes and displays the relationship
(e.g., brother-in-law, second cousin) between those two. Also,
based on the number and degree of common ancestors, the expected
value for the proportion of common genetic material between the
two is computed and displayed.

The algorithms and data structures employed are roughly
equivalent, but differ in detail owing to the language
differences being illustrated. Generally, user-defined names are
capitalized and language-defined keywords and identifiers are
written in lower-case. In all the programs a directed graph is

simulated, with the vertices representing people and the edges
representing different types of direct relationships. The only
direct relationships are parent, child, and spouse. Starting at
one vertex, a search is conducted to find the shortest path to

the other vertex. The types of edges encountered along the path,
together with some additional information, determine the
relationship. For instance, if the shortest path between XI and
X4 is that XI is child of X2 , X2 is spouse of X3 , and X3 is

parent of X4, this would show that XI and X4 are step-siblings.
It is assumed that the input file has already been validated and
is correct. The user's requests, however, are checked. The
algorithm to determine the shortest path is adapted from
[Baas78]. The overall algorithm is expressed by the pseudo-code
below.

All of the programs, except the one in BASIC, have compiled
and executed on at least one language processor which implements
the corresponding standard or base document. The COBOL program,
while conforming to both COBOL-74 and C0B0L-8x, is essentially a

COBOL-74 program, since it does not exploit any of the new
COBOL-Sx features.

Page 2

Figure 1 - Algorithm for Program Examples

for each record in input PEOPLE file do

establish entry in PERSON array
for all previous entries do

compare this entry to previous, looking for
i mm ediate relationships: parent, child, or spouse

if relationship found
establish link (edge) between these two persons

end if
end for

end for
graph is now built

while not request to stop
prompt and read next request

exit while-block if request to stop
if syntax of request OK

search for requested persons
if exactly one of each person found

if 1st person = 2nd person
display "identical to self"

else
find shortest path between the two persons
if no such path

display "unrelated"
else

analyze path for named relationships:
path initially composed of parent, child,

spouse edges
resolve child-parent and child-spouse-parent

to sibling
resolve child-child-... and parent-parent-...

to descendant (child*) or ancestor (parent'
resolve child*-sibling-parent* to cousin,

chi Id*- s ibl ing to nephew,
sibling-parent* to uncle

display consolidated relationships
compute proportion of common genetic material:

traverse ancestors of personl, zeroing out
traverse ancestors of personl, marking and

accumulating genetic contribution
traverse ancestors of person2, accumulating

overlap with personl
display results

end if
end i f

else
display "duplicate name" or "not found"

end if
else

display "invalid request"
end if

end while
display "done"

Page 3

This figure
program examples

Position

1-20
21-23

24
25-21
28-30
31-33

Figure 2 - Input Data

shows some of
were tested.

Contents

the Input data with which
The format of each record is:

the

Name of person
Unique 3-digit identifier
Gender of person
Identifier of father (000
Identifier of mother (000
Identifier of spouse (000

of person

if unknown)
if unknown)
if none or unknown)

Example of Input Data

John Smith
Mary Smith
Wilbur Finnegan
Mary Finnegan
James Smith
Wilma Smith
Marvin Hamlisch
Melvln Hamlisch
Martha Hamlisch
Murgatroyd Whatsis
Bentley Whatsis
Myrna Whozat
Bosworth Whatsis
K48
K43
K41
K42
K46
K45
K47
K44
Velorus Davis
Goldle Beacon
Ross Beacon
Velma Davis
Floyd Davis
Cindy Davis
David Beacon
Norma Cousins
Carmine Cousins
Maria Cousins
James Cousins
C. John Cousins
John Cousins
Janet Cousins
Richard Cousins
Paul Cousins
Marie Cousins

001M000000002
002F003000001
OlOMOOOOOOOll
OllFOOOOOOOlO
020M001002022
022F010011020
031M000032000
033M000032000
032F048043034
034M000000032
035M034036000
036F000000000
037M034036000
048M000000043
043F041042048
041M000000042
042F000000041
046M045000000
045M048043000
047M044000000
044M041042000
085M000000086
083F085086082
082M000000083
086F000000085
088M085084087
084F000000000
121M081 120000
053F082083055
051M000000052
052F000000051
054M051052000
055M051052053
073M055053074
074F140141073
077M073074000
078M073074000
079F073074000

Page 4

Figure 3 - Queries and Output

This figure gives some examples of the results of running
the programs

.

Enter two person-identifiers (name or number),
separated by semicolon. Enter "stop" to stop.

Incorrect request format: null field preceding semicolon.

Enter two pe r s on- i den t i f ie r s (name or number),
separated by semicolon. Enter "stop" to stop.

X ; X ; X
Incorrect request format: must be exactly one semicolon.

Enter two pe r s on- i den t i f i e r s (name or number),
separated by semicolon. Enter "stop" to stop.

X ; X

First person not found.
Second person not found.

Enter two person-identifiers (name or number),
separated by semicolon. Enter "stop" to stop.

Ill ; 111
Christopher Delmonte is identical to himself.

Enter two per s on- i den t i f i e r s (name or number),
separated by semicolon. Enter "stop" to stop.

G6;John Smith
G6 i s not re lated to John Sm

Enter two person-identi f ie rs (name or number)

,

separated by semicolon. Enter "stop to stop.
Carmine Cousins;lll
Duplicate names for fir St per son - use nume r i

c

Enter two person-identi f ie r s (name or number)

,

separated by semicolon. Enter "stop to stop.
163 ; 145
Shortest path between identifi ed persons:
Linda Lackluster i s child of
Millie Lackluster i s child of
Anna Pittypat i s parent of
Margaret Madison i s spouse of
Richard Madison i s child of
Victoria Pisces i s parent of
Maria Gotsocks is parent of
Elzbieta Gotsocks
Condensed path

:

Linda Lackluster i s niece of
Richard Madison is uncle of
Elzbieta Gotsocks
Proportion of common genetic material = O.OOOOOE+00

Figure 3 - Queries and Output (continued)

Enter two pe r s on- id en t i f i e r s (name or number)
separated by semicolon. Enter "stop" to stop.

094 ; 145
between personsShortest path

Nancy Powers
Maxine Powers
Floyd Davis
Velorus Davis
Goldie Beacon
Norma Cousins
John Cousins
Janet Cousins
Richard Madison
Victoria Pisces
Maria Gotsocks
Elzbieta Gotsocks
Condensed path:
Nancy Powers
Janet Cousins
Elzbieta Gotsocks
Proportion of common genetic material =

id en t i f i ed
is child of
i s child of
is child of
is parent of
is parent of
i s parent of
is spouse of
is child of
is child of
i s parent of
is parent of

i s 2nd half-
i s cousin of

of

0. OOOOOE+00

Enter two
separated
036;033
Shortest path
Myrna Whozat
Bentley Whatsis
Murgatroyd Whatsis
Martha Hamlisch
Melvin Hamlisch
Condensed path:
Myrna Whozat
Bentley Whatsis
Melvin Hamlisch
Proportion of common

pe r s on- i den t i f ie r s (name or number),
by semicolon. Enter "stop" to stop.

between identified persons
is parent of
1 s

is
is

1 s

is

child of
spouse of
parent of

mother of
step-brother of

genetic material = O.OOOOOE+00

Enter two person-identifiers (name or number),
separated by semicolon. Enter "stop" to stop.

031 ; 033
Shortest path between identified persons:
Marvin Hamlisch is child of
Martha Hamlisch is parent of

Melvin Hamlisch
Condensed path:
Marvin Hamlisch is half-brother of

Melvin Hamlisch
Proportion of common genetic material = 2.50000E-01

Page 6

Figure 3 - Queries and Output (continued)

Enter two pe r s on- i den t i f i e r s (name or number),
separated by semicolon. Enter "stop" to stop.

145 ; 090
Shortest path between identif

i

ed
Elzbieta Gotsocks is child of
Maria Gotsocks i s child of
U . Pisces is parent of
Richard Madison i s parent of
Janet Cousins is spouse of
John Cousins i s child of
Norma Cousins is child of
Goldie Beacon i s child of
Velorus Davis i s parent of
Floyd Davis i s parent of
Maxine Powers is spouse of
Tim Powers
Condensed path:
Elzbieta Gotsocks is cousin-in-law of
John Cousins is hal f - co u s in- in- la w once removed of
Tim Powers
Proportion of common genetic material = O.OOOOOE+00

Enter two pe r s on- i den t i f ie r s (name or number),
separated by semicolon. Enter "stop" to stop.

L6 ;R9
Shortest path between identifi ed persons
L6 is child of
L5 i s child of
L4 i s child of
L3 i s child of
L2 i s child of
LI i s child of
LO is parent of
Rl i s parent of
R2 i s parent of
R3 i s parent of
R4 is parent of
R5 i s parent of
R6 is parent of
R7 i s parent of
R8 is parent of
R9
Condensed path

:

L6 is 5th half-cousin 3 times removed of
R9
Proportion of common genetic material = 3.05176E-05

Page 7

Figure 3 - Queries and Output (continued)

Enter two pers
separated by s

Wl : R14

o n- id e n t i f i e r s (name or number),
emicolon. Enter "stop" to stop.

persons

:

Slhor te s t path between identified
Wl i s spouse of
LO Is parent of
Rl is parent of
R2 i s parent of
R3 is parent of
R4 is parent of
R5 is parent of
R6 i s parent of
R7 is parent of
R8 i s parent of
R9 is parent of
RIO is parent of
Rll is parent of
R12 is parent of
R13 is parent of
R14
Condensed path
Wl i s great*12-
R14
Proportion of common genetic material = O.OOOOOE+00

Enter two pe r s on- i den t i f ie rs (name
separated by semicolon

.

Enter "st
X8 ;L6
Shortest path between i dent if ied
X8 is child of
X7 i s child of
X6 i s child of
X5 i s child of
X4 is child of
X3 is spouse of
R4 is child of
R3 is child of

R2 is child of
Rl i s child of
LO i s parent of
LI i s parent of
L2 is parent of
L3 i s parent of
L4 is parent of
L5 is parent of
L6

or number)

,

I " to stop.

persons

Condensed
X8
R4
L6
Proportion

path
is great*3-grand-step-son of
is 3rd half-cousin 2 times removed of

of common genetic material = O.OOOOOE+00

Page 8

Figure 3 - Queries and Output (continued)

Enter two person-identifiers (name or number),
separated by semicolon. Enter "stop" to stop.

G5 ;G6
Shortest path between identified persons:
G5 is parent of
06
Condensed path:
G5 is mother of
G6
Proportion of common genetic material = 5.62500E-01

Enter two person-identifiers (name or number),
separated by semicolon. Enter "stop" to stop,

stop
End of re la t ion- f inde r .

Page 9

2.0 ADA

first compilation-unit #1 is package of global types and objects

package RELATION TYPES AND DATA is

MAX_PERSONS
NAME LENGTH

constant integer := 300;

constant integer := 20;
— every PERSON has a unique 3-digit IDENTIFIER
IDENTIF IER_LENGTH
BUFFER LENGTH

constant integer := 3;

constant integer := 60;

subtype NAME RANGE is

subtype IDENTIFIER RANGE is

subtype BUFFER_RANGE is

subtype NAME TYPE is

subtype BUFFER TYPE is

subtype MESSAGE TYPE is

subtype INDEX TYPE is

subtype COUNTER is

subtype DIGIT TYPE is

type REAL is

type IDENTIFIER TYPE is

IDENTIFIER LENGTH;

range 0. .MAX_PERSONS

;

range 0. . integer'last

;

ranee '0'
.

. '9'

;

— each person's record in the file identifies at most three
— others directly related: father, mother, and spouse
type GIVEN_IDENTIFIERS is (FATHER_IDENT, MOTHER_IDENT, SPOUSE_IDENT)

;

type RELATIVE ARRAY is array (GIVEN IDENTIFIERS) of IDENTIFIER TYPE;

NULL_IDENT

REQUESTJDK
"Request OK

REQUEST_TO_STOP
"stop

constant IDENTIF lERJTYPE :=

constant MESSAGEJTYPE :=

constant BUFFER TYPE :=

•OOO'

type GENDERJTYPE
type RELATION TYPE

is (MALE, FEMALE);

is (PARENT, CHILD, SPOUSE, SIBLING, UNCLE,

NEPHEW, COUSIN, NULL_RELATION)

;

— directed edges in the graph are of a given subtype
subtype EDGE_TYPE is RELATION_TYPE range PARENT. . SPOUSE

;

— A node in the graph (= PERSON) has either already been reached,
— is immediately adjacent to those reached, or farther away,

type REACHEDJTYPE is (REACHED, NEARBY, NOT_SEEN);

— each PERSON has a linked list of adjacent nodes, called neighbors

type NEIGHBOR_RECORD;
type NEIGHBOR_POINTER is access NEIGHBOR_RECORD;
type NEIGHBOR_RECORD is

record
NEIGHBOR_INDEX : INDEX_TYPE;
NEIGHBOR_EDGE : EDGE_TYPE;
NEXT_NEIGHBOR : NEIGHBOR_POINTER;

end record;

Page 10

— All relationships are captured in the directed graph of which
— each record is a node,
type PERSON_RECORD is

record
— static information - filled from PEOPLE file:

NAME : NAME_TYPE;
IDENTIFIER : IDENTIFIERJTYPE

;

GENDER : GENDERJTYPE

;

— IDENTIFIERS of immediate relatives - father, mother, spouse

RELATIVE_IDENTIFIER : RELATIVE_ARRAY;
— head of linked list of adjacent nodes
NEIGHBOR_LIST_HEADER : NEIGHBOR_POINTER;

— data used when traversing graph to resolve user request

:

REAL;
INDEX_TYPE;
EDGE_TYPE

;

REACHED TYPE;

DI STANCE_FROM_SOURCE
PATH_PREDECESSOR
EDGE_TO_PREDECESSOR
REACHED_STATUS

— data used to compute common genetic material
DESCENDANT_IDENTIFIER : IDENTIFIERJTYPE;
DESCENDANT_GENES : REAL;

end record;

— the PERSON array is the central repository of information
— about inter-relationships.
PERSON : array (INDEX_TYPE) of PERSON_RECORD;

— utility to truncate or fill with spaces
procedure COERCE_STRING (SOURCE : in string; TARGET : in out string);

end RELATION_TYPES_AND_DATA;

END SPECIFICATION BEGIN BODY

package body RELATION_TYPES_AND_DATA is

procedure COERCE_STRING (SOURCE : in string; TARGET : in out string) is

MANY SPACES : constant string (1..100) :=

begin
if SOURCE'length < TARGET'length then

TARGET (TARGET' first ..TARGET' first + SOURCE' length - 1) := SOURCE
TARGET (TARGET'first + SOURCE 'length .. TARGET'last) :=

MANY_SPACES (1 .. TARGET'length - SOURCE' length)

;

else — SOURCE longer than TARGET
TARGET := SOURCE (SOURCE 'first .. SOURCE 'first + TARGET'length - 1);

end if

;

end COERCE_STRING;
end RELATION TYPES AND DATA;

— new compilation-unit #2: main line of execution RELATE

with RELATION_TYPES_AND_DATA, text_io, sequent ial_io

;

use RELATION_TYPES_AND_DATA, text_io;

procedure RELATE is

— this is the format of records in the file to be read in

type FILE_GENDER is ('M', 'F');

type FILE_PERSON_RECORD is

record
NAME : NAMEJTYPE;
IDENTIFIER : IDENTIFIER_TYPE

;

— 'M' for MALE and 'F' for FEMALE
GENDER : FILE_GENDER;
RELATIVE_IDENTIFIER : RELATIVE_ARRAY;

end record;

— Instantiate generic package for file 10.

package PEOPLE_IO is

new sequential_io (ELEMENTJTYPE => FILE_PERSON_RECORD)

;

— These variables are used when establishing the PERSON array
— from the PEOPLE file.
PEOPLE : PEOPLE_IO . FILEJTYPE;
PEOPLE_RECORD : FILE_PERSON_RECORD;
CURRENT ,

NUMBER_OF_PERSONS
: INDEX_TYPE;

PREVIOUS_IDENT, CURRENT_IDENT
: "rDENTIFIER_TYPE;

RELATIONSHIP : GIVEN_IDENTIFIERS

;

— These variables are used to accept and resolve requests for
— RELATIONSHIP information.
BUFFER_INDEX, SEMICOLON_LOCATION

: BUFFER_RANGE

;

REQUEST_BUFFER : BUFFERJTYPE

;

PERS0N1_IDENT, PERS0N2_IDENT
: NAMEJTYPE;

PERS0N1_F0UND, PERS0N2_F0UND
: COUNTER;

ERROR_MESSAGE : MESSAGE_TYPE

;

PERS0N1_INDEX, PERS0N2_INDEX
: INDEX TYPE;

Page 12

— declare procedures directly Invoked from RELATE:

procedure LINK_RELATIVES (FROM_INDEX : in INDEXJTYPE

;

RELATIONSHIP : in GIVEN_IDENTIFIERS

;

TO_INDEX : in INDEXJTYPE)
is separate;

procedure PROMPT_AND_READ is separate;
procedure CHECK_REQUEST (REQUEST_STATUS : out MESSAGE_TYPE

;

SEMICOLON_LOCATION : out BUFFER_RANGE

)

is separate;
procedure BUFFER_TO_PERSON (PERSON_ID : in out NAME_TYPE

;

START_LOCATION,
STOP_LOCATION : in BUFFER_RANGE

)

is separate;
procedure SEARCH_FOR_REQUE STED_PERSONS

(PERS0N1_IDENT, PERS0N2_IDENT : in NAMEJTYPE

;

PERS0N1_INDEX, PERS0N2_INDEX : out INDEX_TYPE;
PERS0N1_F0UND, PERS0N2_F0UND : in out COUNTER)

is separate;
procedure FIND_RELATIONSHIP (TARGET_INDEX, SOURCE_INDEX : in INDEX_TYPE)

is separate;

— *** execution of main sequence begins here *** —

begin
PEOPLE_IO . open (PEOPLE, PEOPLE_IO . IN_FILE, "PEOPLE.DAT");
— CURRENT location in array being filled
CURRENT := 0;
— This loop reads in the PEOPLE file and constructs the PERSON
— array from it (one PERSON = one record = one array entry).
— As records are read in, links are constructed to represent the
— PARENT-CHILD or SPOUSE RELATIONSHIP. The array then implements
— a directed graph which is used to satisfy subsequent user
— requests. The file is assumed to be correct - no validation
— is performed on it.

READ_IN_PEOPLE:
while not PEOPLE_IO . end_of_file (PEOPLE) loop

PEOPLE_IO . read (PEOPLE, PEOPLE_RECORD)

;

CURRENT := CURRENT+1

;

— copy direct information from file to array
PERSON (CURRENT) . NAME := PEOPLE_RECORD . NAME;
PERSON (CURRENT) . IDENTIFIER := PEOPLE_RECORD . IDENTIFIER;
if PEOPLE_RECORD . GENDER = 'M' then

PERSON (CURRENT) . GENDER := MALE;
else

PERSON (CURRENT) . GENDER := FEMALE;
end if

;

PERSON (CURRENT) . RELATIVE_IDENTIFIER :=

PEOPLE_RECORD . RELATIVE_IDENTIFIER;
-- Location of adjacent persons as yet undetermined
PERSON (CURRENT) . NEIGHBOR_LIST_HEADER := null;
~ Descendants as yet undetermined
PERSON (CURRENT) . DESCENDANT_IDENTIFIER := NULL_IDENT;
CURRENT IDENT := PERSON (CURRENT) . IDENTIFIER;

— Compare this PERSON against all previously entered PERSONS
— to search for RELATIONSHIPS.

COMPARE_TO_PREVIOUS

:

for PREVIOUS in 1..CURRENT-1 loop
PREVIOUS_IDENT := PERSON (PREVIOUS) . IDENTIFIER;
RELATIONSHIP := FATHER_IDENT

;

— Search for father, mother, or spouse relationship in
— either direction between this and PREVIOUS PERSON.
— Assume at most one RELATIONSHIP exists.

TRY_ALL_RELATIONSHIPS

:

loop
if PERSON (CURRENT) . RELATIVE_IDENTIFIER (RELATIONSHIP) =

PREVIOUS_IDENT
then

LINK_RELATIVES (CURRENT, RELATIONSHIP, PREVIOUS);
exit TRY_ALL_RELATIONSHIPS

;

else
if CURRENT_IDENT =

PERSON (PREVIOUS) . RELATIVE_IDENTIFIER (RELATIONSHIP)
then

LINK_RELATIVES (PREVIOUS, RELATIONSHIP, CURRENT);

exit TRY_ALL_RELATIONSHIPS

;

end if

;

end if

;

if RELATIONSHIP < SPOUSE_IDENT then
RELATIONSHIP := GIVEN_IDENTIFIERS'succ(RELATIONSHIP)

;

else
exit TRY_ALL_RELATIONSHIPS

;

end if

;

end loop TRY_ALL_RELATIONSHIPS

;

end loop COMPARE_TO_PREVIOUS

;

end loop READ_IN_PEOPLE

;

NUMBER_OF_PERSONS := CURRENT;
PEOPLE_IO . close (PEOPLE);

— PERSON array is now loaded and edges between immediate relatives
— (PARENT-CHILD or SPOUSE-SPOUSE) are established.

— While-loop accepts requests and finds RELATIONSHIP (if any)

— between pairs of PERSONS

.

Page 14

READ_AND_PROCESS_REQUEST

:

loop
PROMPT_AND_READ

;

exit READ_AND_PROCESS_REQUEST when REQUEST_BUFFER = REQUEST_TO_STOP;
CHECK_REQUEST (ERROR_MESSAGE, SEMICOLON_LOCATION)

;

— Syntax check of request completed. Now either display error
— message or search for the two PERSONS.

if ERROR_MESSAGE = REQUEST_OK then
— Request syntactically correct -

— search for requested PERSONS.
BUFFER_TO_PERSON (PERS0N1_IDENT, 1, SEMICOLON_LOCATION - 1);
BUFFER_TO_PERSON (PERS0N2_IDENT

,
SEMICOLON_LOCATION + 1, BUFFER_LENGTH)

;

SEARCH_FOR_REQUESTED_PERSONS (PERS0N1_IDENT, PERS0N2_IDENT,
PERS0N1_INDEX, PERS0N2_INDEX,
PERS0N1_F0UND, PERS0N2_F0UND)

;

if (PERS0N1_F0UND = 1) and (PERS0N2_F0UND = 1) then
— Exactly one match for each PERSON - proceed to
— determine RELATIONSHIP, if any.
if PERS0N1_INDEX = PERS0N2_INDEX then

put (' ' & PERSON (PERS0N1_INDEX) . NAME &

is identical to ");

if PERSON (PERS0N1_INDEX) . GENDER = MALE then
put_line("himself .

")

;

else
put_line("herself

.

")

;

end if

;

else
FIND_RELATIONSHIP (PERS0N1_INDEX, PERS0N2_INDEX)

;

end if

;

else — either not found or more than one found
if PERS0N1_F0UND = 0 then

put_line (" First person not found.");
elsif PERS0N1_F0UND > 1 then

put_line (" Duplicate names for first person - use" &

numeric identifier.");
end if

;

if PERS0N2_F0UND = 0 then
put_line (" Second person not found.");

elsif PERS0N2_F0UND > 1 then
put_line (" Duplicate names for second person - use" &

numeric identifier.");
end if

;

end if; — processing of syntactically legal request
else

put_line (" Incorrect request format: " & ERROR_MESSAGE)

;

end if

;

end loop READ_AND_PROCESS_REQUEST

;

put_line (" End of relation-finder.");
end RELATE;

Page 15

new compilation-unit #3: procedures under RELATE

separate (RELATE)

procedure LINK_RELATIVES (FROM_INDEX : in INDEXJTYPE

;

RELATIONSHIP : in GIVEN_IDENTIFIERS

;

TO_INDEX : in INDEXJTYPE) is
— establishes cross-indexing between immediately related PERSONS.

procedure LINK_ONE_WAY (FROM_INDEX : in INDEX_TYPE;
THIS_EDGE : in EDGE_TYPE

;

TO_INDEX : in INDEXJTYPE) is
~ Establishes the NEIGHBOR_RECORD from one PERSON to another

NEW_NEIGHBOR : NEIGHBORJPOINTER

;

beg in

NEW_NEIGHBOR := new NEIGHBOR_RECORD
'(NEIGHBOR_INDEX => TO_INDEX,
NEIGHBOR_EDGE => THIS_EDGE,
NEXTJIEIGHBOR => PERSON (FROM_INDEX) . NEIGHBORJLIST_HEADER)

;

PERSON (FROM_INDEX) . NEIGHBOR_LIST_HEADER := NEW_NEIGHBOR;

end;

begin — execution of LINK_RELATIVES
if RELATIONSHIP = SPOUSE_IDENT then

LINKJDNEJWAY (FROM_INDEX, SPOUSE, TO_INDEX);
LINK_ONE_WAY (TO_INDEX, SPOUSE, FROM_INDEX);

else — RELATIONSHIP is father or mother
LINK_ONE_WAY (FROM_INDEX, PARENT, TO_INDEX);
LINKJ3NE_WAY (TO_INDEX, CHILD, FROM_INDEX);

end if

;

end LINK_RELATIVES;

separate (RELATE)

procedure PROMPT_AND_READ is
— Issues prompt for user-request, reads in request,
— blank-fills buffer, and skips to next line of input.

LAST_FILLED : natural;

begin
put_line (" ");

put_line (" ");

put_line (" Enter two person-identifiers (name or number),");
put_line (" separated by semicolon. Enter ""stop"" to stop.");

get~line (REQUEST_BUFFER, LAST_F ILLED)

;

COERCE_STRING (" ", REQUEST_BUFFER (LAST_FILLED+1 . . BUFFER_LENGTH))

;

end PROMPT AND READ;

Page 16

separate (RELATE)
procedure CHECK_REQUEST (REQUEST_STATUS : out MESSAGE_TYPE

;

SEMICOLON_LOCATION : out BUFFER_RANGE) is

— Performs syntactic check on request in buffer.

SEMICOLONJCOUNT : COUNTER;

PERS0N1_F IELD_EXISTS ,
PERS0N2_F IELD_EXI STS

: boolean;

beg in
REQUEST_STATUS := REQUEST_OK;
SEMICOLON_LOCATION := 1;

PERS0N1_FIELD_EXISTS := false;

PERS0N2_FIELD_EXISTS := false;
SEMICOLON_COUNT := 0;

for BUFFER_INDEX in BUFFER_RANGE loop

if REQUEST_BUFFER (BUFFER_INDEX) /= ' ' then
if REQUEST_BUFFER (BUFFER_INDEX) = ';' then

SEMICOLON_LOCATION := BUFFER_INDEX;
SEMICOLON_COUNT := SEMICOLONJCOUNT + 1;

else — Check for non-blanks before/after semicolon,

if SEMICOLONJCOUNT < 1 then
PERS0N1_FIELD_EXISTS := true;

else
PERS0N2_FIELD_EXISTS := true;

end if

;

end if;

end if

;

end loop;
— set REQUEST_STATUS, based on results of scan of REQUEST_BUFFER.
if SEMICOLON_COUNT /= 1 then

REQUEST_STATUS := "must be exactly one semicolon. ";

elsif not PERS0N1_FIELD_EXISTS then

REQUEST_STATUS := "null field preceding semicolon. ";

elsif not PERS0N2_FIELD_EXISTS then
REQUEST_STATUS := "null field following semicolon. ";

end if

;

end CHECK_REQUEST;

separate (RELATE)
procedure BUFFER_TO_PERSON (PERSON_ID : in out NAMEJIYPE

;

START_LOCATION,
STOPJ.OCATION : in BUFFERJIANGE) is

— fills in the PERSON_ID from the designated portion
— of the REQUEST_BUFFER.

FIRST_NON_BLANK : BUFFER_RANGE

;

begin
FIRST_NON_BLANK := STARTJ.OCATION;
while REQUEST_BUFFER (FIRST_NON_BLANK) = ' ' loop

FIRSTJJON_BLANK := FIRSTJS10N_BLANK + 1;

end loop

;

COERCE_STRING (REQUEST_BUFFER (FIRST_NON_BLANK. . STOP_LOCATION)

,

PERSON_ID);
end BUFFER TO PERSON;

separate (RELATE)
procedure SEARCH_FOR_REQUESTED_PERSONS

(PERS0N1_IDENT, PERS0N2_IDENT : in NAME_TYPE

;

PERS0N1_INDEX, PERS0N2_INDEX : out INDEX_TYPE;
PERS0N1_F0UND, PERS0N2_F0UND : in out COUNTER) is— SEARCH_FOR_REQUESTED_PERSONS scans through the PERSON array,

— looking for the two requested PERSONS. Match may be by NAME
— or unique IDENTIFIER-number

.

THIS_IDENT : NAMEJTYPE

;

begin
PERSON1_F0UND := 0;

PERS0N2_F0UND := 0;

PERS0N1_INDEX := 0;

PERS0N2_INDEX := 0;

SCAN_ALL_PERSONS

:

for CURRENT in 1. .NUMBER_OF_PERSONS loop
— THIS_IDENT contains CURRENT PERSON'S numeric IDENTIFIER
— left- justified , padded with blanks.
COERCE_STRING (" "

, THIS_IDENT);
for IDENTIFIER_INDEX in IDENTIFIER_RANGE loop

THIS_IDENT (IDENTIFIER_INDEX) :=

PERSON (CURRENT) . IDENTIFIER (IDENTIFIER_INDEX)

;

end loop;
— allow identification by name or number,
if (PERS0N1_IDENT = THIS_IDENT) or

(PERS0N1_IDENT = PERSON (CURRENT) . NAME)
then

PERS0N1_F0UND := PERS0N1_F0UND + 1;

PERS0N1_INDEX := CURRENT;
end if

;

if (PERS0N2_IDENT = THIS_IDENT) or

(PERS0N2_IDENr = PERSON (CURRENT) . NAME)

then
PERS0N2_F0UND := PERS0N2_F0UND + 1;

PERS0N2_INDEX := CURRENT;
end if;

end loop SCAN_ALL_PERSONS

;

end SEARCH FOR REQUESTED PERSONS;

Page 18

separate (RELATE)

procedure FIND_RELATIONSHIP (TARGET_INDEX, SOURCE_INDEX : in INDEXJTYPE)
— Finds shortest path (if any) between two PERSONS and
— determines their RELATIONSHIP based on immediate relations
— traversed in path. PERSON array simulates a directed graph,
— and algorithm finds shortest path, based on following
— weights: PARENT-CHILD edge = 1.0

SPOUSE-SPOUSE edge = 1.8

type SEARCH TYPE is (SEARCHING, SUCCEEDED, FAILED);

SEARCH_STATUS : SEARCH_TYPE

;

THIS_NODE, ADJACENT_NODE, BEST_NEARBY_INDEX, LAST_NEARBY_INDEX
INDEX_TYPE;
array (INDEX_TYPE) of INDEX_TYPE

;

EDGE_TYPE

;

NEIGHBOR_POINTER;
GIVEN_IDENTIFIERS

;

REAL;

NEARBY_NODE
THIS_EDGE
THIS_NEIGHBOR
RELATIONSHIP
MINIMAL DISTANCE

procedure PROCESS ADJACENT NODE (BASE NODE, NEXT NODE : in INDEX TYPE;

NEXT_BASE_EDGE
is separate;

procedure RESOLVE_PATH_TO_ENGLISH is separate;
procedure COMPUTE_COMMON_GENES (INDEXl, INDEX2 :

is separate;

in EDGE TYPE)

in INDEX TYPE)

begin — execution of FIND_RELATIONSHIP
— initialize PERSON-array for processing -

— mark all nodes as not seen
for PERSON_INDEX in 1 . . NUMBER_OF_PERSONS loop

PERSON (PERSON_INDEX) . REACHED_STATUS := NOT_SEEN;
end loop;

THIS_NODE := SOURCE_INDEX;
— mark source node as REACHED
PERSON (THIS_NODE) . REACHED_STATUS := REACHED;
PERSON (THIS_NODE) . DISTANCE_FROM_SOURCE := 0.0;
— no NEARBY nodes exist yet
LAST_NEARBY_INDEX := 0;

if THIS_NODE = TARGET_INDEX then
SEARCH_STATUS := SUCCEEDED;

else
SEARCH_STATUS := SEARCHING;

end if

;

Page 19

— Loop keeps processing closest-to-source , unREACHED node
— until target REACHED, or no more connected nodes.

SEARCH_FOR_TARGET

:

while SEARCH_STATUS = SEARCHING loop
— Process all nodes adjacent to THIS_NODE
THIS_NEIGHBOR := PERSON (THIS_NODE) . NEIGHBOR_LIST_HEADER

;

while THIS_NEIGHBOR /= null loop
PROCESS_ADJACENT_NODE (THIS_NODE

,

THIS_NEIGHBOR . NEIGHBOR_INDEX,
THIS_NEIGHBOR . NEIGHBOR_EDGE)

;

THISJJEIGHBOR := THIS_NEIGHBOR . NEXT_NEIGHBOR

;

end loop;

— All nodes adjacent to THIS_NODE are set. Now search for
— shortest-distance unREACHED (but NEARBY) node to process next.-

if LAST_NEARBY_INDEX = 0 then
SEARCH_STATUS := FAILED;

else — determine next node to process
MINIMAL_DI STANCE := l.Oe+18;
for PERSON_INDEX in 1 . . LAST_NEARBY_INDEX loop

if PERSON (NEARBY_NODE (PERSON_INDEX)) . DISTANCE_FROM_SOURCE
< MINIMALJDISTANCE

then
BEST_NEARBY_INDEX := PERSON_INDEX;
MINIMAL_DISTANCE :=

PERSON (NEARBY_NODE (PERSON_INDEX)) . DISTANCE_FROM_SOURCE

;

end if

;

end loop;
— establish new THIS_NODE
THIS_NODE := NEARBY_NODE (BEST_NEARBY_INDEX)

;

— change THIS_NODE from being NEARBY to REACHED
PERSON (THIS_NODE) . REACHED_STATUS := REACHED;
— remove THIS_NODE from NEARBY list

NEARBY_NODE (BEST_NEARBY_INDEX) := NEARBY_NODE (LAST_NEARBY_INDEX)

;

LAST_NEARBY_INDEX := LAST_NEARBY_INDEX - 1;

if THIS_NODE = TARGET_INDEX then

SEARCH_STATUS := SUCCEEDED;
end if

;

end if

;

end loop SEARCH_FOR_TARGET

;

— Shortest path between PERSONS now established. Next task is

— to translate path to English description of RELATIONSHIP.

if SEARCH_STATUS = FAILED then

put_line (' ' & PERSON (TARGET_INDEX) . NAME & " is not related to " &

PERSON (SOURCE_INDEX) . NAME);

else — success - parse path to find and display RELATIONSHIP

RESOLVE_PATH_TO_ENGLISH

;

COMPUTE_COMMON_GENES (SOURCE_INDEX, TARGET_INDEX)

;

end if

;

end FIND RELATIONSHIP;

I

;e 20

new compilation-unit #4: procedures under FIND_RELATIONSHIP

separate (RELATE . FIND_RELATIONSHIP)
procedure PROCESS_ADJACENT_NODE (BASEJJODE, NEXT_NODE : in INDEXJTYPE;

NEXT_BASE_EDGE : in EDGEJTYPE) is
— NEXT_NODE is adjacent to last-REACHED node (= BASE_NODE)

.

— if NEXT_NODE already REACHED, do nothing.
— If previously seen, check whether path thru BASE_NODE is
— shorter than current path to NEXT_NODE, and if so re-link
— next to base

.

— If not previously seen, link next to base node.

WEIGHT_THIS_EDGE, DISTANCE_THRU_BASE_NODE : REAL;

procedure LINK_NEXT_NODE_TO_BASE_NODE is
— link next to base by re-setting its predecessor index to
— point to base, note type of edge, and re-set distance
— as it is through base node.

begin ~ execution of LINK_NEXT_NODE_TO_BASE_NODE
PERSON (NEXT_NODE) . DISTANCE_FROM_SOURCE := DISTANCE_THRU_BASE_NODE
PERSON (NEXTJJODE) . PATH_PREDECESSOR := BASE_NODE

;

PERSON (NEXT_NODE) . EDGE_TO_PREDECESSOR := NEXT_BASE_EDGE

;

end LINK_NEXT_NODE_TO_BASE_NODE

;

begin — execution of PROCESS_ADJACENT_NODE
if PERSON (NEXT_NODE) . REACHED_STATUS /= REACHED then

if NEXT_BASE_EDGE = SPOUSE then
WEIGHT_THIS_EDGE := 1.8;

else
WEIGHT_THIS_EDGE := 1.0;

end if

;

DISTANCE_THRU_BASE_NODE := WEIGHT_THIS_EDGE +
PERSON (BASE_NODE) . DISTANCE_FROM_SOURCE

;

if PERSON (NEXTJJODE) . REACHED_STATUS = NOT_SEEN then
PERSON (NEXT_NODE) . REACHED_STATUS := NEARBY;
LAST_NEARBY_INDEX := LAST_NEARBY_INDEX + 1;

NEARBY_NODE (LAST_NEARBY_INDEX) := NEXT_NODE;
LINK_NEXT_NODE_TO_BASE_NODE

;

else ~ REACHED_STATUS = NEARBY
if DISTANCE_THRU_BASE_NODE

< PERSON (NEXT_NODE) . DISTANCE_FROM_SOURCE
then

LINK_NEXr_NODE_TO_BASE_NODE

;

end if

;

end if

;

end if

;

end PROCESS ADJACENT NODE;

Page 21

separate (RELATE . FIND_RELATIONSHIP

)

procedure RESOLVE_PATH_TO_ENGLISH is
-- RESOLVE_PATH_TO_ENGLISH condenses the shortest path to a
— series of RELATIONSHIPS for which there are English
— descriptions.

— Key persons are the ones in the RELATIONSHIP path which remain
— after the path is condensed.

type SIBLINGJIYPE is (STEP, HALF, FULL);

type KEY_PERSON_RECORD (RELATION_TO_NEXT : RELATION_TYPE := PARENT) is

record
PERSON_INDEX : INDEXJIYPE

;

GENERATION_GAP : COUNTER;
PROXIMITY : SIBLINGJTYPE

;

case RELATION_TO_NEXT is

when COUSIN => COUSIN_RANK : COUNTER;
when others => null;

end case;
end record;

— these variables are used to generate KEY_PERSONs
GENERATION_COUNT : COUNTER;

~

THIS_COUSIN_RANK : COUNTER;
THIS_PROXIMITY : SIBLINGJTYPE;

— these variables are used to condense the path
KEY_PERSON : array (INDEXJTYPE) of KEY_PERSON_RECORD

;

KEY_RELATION, LATER_KEY_RELATION, PRIMARY_RELATION,
NEXT_PRIMARY_RELATION : RELATION_TYPE

;

KEY_INDEX, LATER_KEY_INDEX, PRIMARY_INDEX
: INDEXJIYPE;

ANOTHER_ELEMENT_POSSIBLE : boolean;

function FULL_SIBLING (INDEXl, INDEX2 : in INDEXJTYPE)
return boolean is

— Determines whether two PERSONS are full siblings, i.e.,
— have the same two parents

.

begin
return

PERSON (INDEXl) . RELATIVE_IDENTIFIER (FATHER_IDENT) /= NULL_IDENT and
PERSON (INDEXl) . RELATIVE_IDENTIFIER (MOTHER_IDENT) /= NULL_IDENT and
PERSON (INDEXl) . RELATIVE_IDENTIFIER (FATHER_IDENT) =

PERSON (INDEX2) . RELATIVE_IDENTIFIER (FATHER_IDENT) and
PERSON (INDEXl) . RELATIVE_IDENTIFIER (MOTHER_IDENT) =

PERSON (INDEX2) . RELATIVE_IDENTIFIER (MOTHER_IDENT)

;

end FULL SIBLING;

Page 22

procedure CONDENSE_KEY_PERSONS (AT_INDEX : in INDEXJTYFE;
GAP_SIZE : in COUNTER) is

— CONDENSE_KEY_PERSONS condenses superfluous entries from the
— KEY_PERSON array, starting at AT_INDEX.

RECEIVE_INDEX, SEND_INDEX : INDEXJTYPE;

begin
RECEIVE_INDEX := AT_INDEX;

loop
RECEIVE_INDEX := RECEIVE_INDEX + 1;

SEND_INDEX := RECEIVE_INDEX + GAP_SIZE;

KEY_PERSON (RECEIVE_INDEX) := KEY_PERSON (SEND_INDEX)

;

exit when KEY_PERSON (SEND_INDEX) . RELAXION_TO_NEXT = NULL_RELATION;
end loop;

end CONDENSE_KEY_PERSONS;

procedure DISPLAY_RELATION (FIRST_INDEX, LAST_INDEX, PRIMARY_INDEX
: in INDEXJIYPE)

is separate;

begin — execution of RESOLVE_PATH_TO_ENGLISH
put_line (" Shortest path between identified persons: ");

THIS_NODE := TARGET_INDEX;
KEY_INDEX := 1;

— Display path and initialize KEY_PERSON array from path elements.
TRAVERSE_SHORTEST_PATH:

~

while THIS_NODE /= SOURCE_INDEX loop
put (' ' & PERSON (THIS_NODE) . NAME & " is ");

case PERSON (THIS_NODE) . EDGE_TO_PREDECESSOR is

when PARENT =>

put_line ("parent of");
KEY_PERSON (KEY_INDEX) :

=

(PERSON_INDEX => THIS_NODE,
GENERATION_GAP => 1,

PROXIMITY => FULL,
RELATION_TO_NEXT => PARENT);

when CHILD =>

put_line ("child of");
KEY_PERSON (KEY_INDEX) :

=

(PERSON_INDEX => THIS_NODE,
GENERATION_GAP => 1,

PROXIMITY => FULL,
RELATION_TO_NEXT => CHILD);

when SPOUSE =>

put_line ("spouse of");

KEY_PERSON (KEY_INDEX) :=

(PERSON_INDEX => THIS_NODE,
GENERATION_GAP => 0,

PROXIMITY => FULL,
RELATION_TO_NEXT => SPOUSE);

end case

;

KEY_INDEX := KEY_INDEX + 1;

THIS_NODE := PERSON (THIS_NODE) . PATH_PREDECESSOR;
end loop TRAVERSE SHORTEST PATH;

Page 23

put_line(' ' & PERSON (THIS_NODE) . NAME);
KEY_PERSON (KEY_INDEX) :=

(PERSON_INDEX => THIS_NODE,
GENERATION_GAP => 0,

PROXIMITY => FULL,
RELATION_TO_NEXT => NULL_RELATION)

;

KEY_PERSON (KEY_INDEX +1) :=

(PERSON_INDEX => 0,

GENERATION_GAP => 0,

PROXIMITY => FULL,
RELATION_TO_NEXT => NULL_RELATION)

;

— Resolve CHILD-PARENT and CHILD-SPOUSE-PARENT relations
— to SIBLING relations.
KEY_INDEX := 1;

FIND_SIBLINGS:
while KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT /= NULL_RELATION loop

if KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = CHILD then
LATER_KEY_RELATION := KEY_PERSON (KEY_INDEX + 1) . RELATION_TO_NEXT

;

if LATER_KEY_RELATION = PARENT then
— found either full or half SIBLINGS
if FULL_SIBLING (KEY_PERSON (KEY_INDEX) . PERSON_INDEX,

KEY_PERSON (KEY_INDEX + 2) . PERSON_INDEX)
then

THIS_PROXIMITY := FULL;

else
THIS_PROXIMITY := HALF;

end if

;

KEY_PERSON (KEY_INDEX) :
=

(PERSON_INDEX => KEY_PERSON (KEY_INDEX) . PERSON_INDEX,
GENERATION_GAP => 0,

PROXIMITY => THIS_PROXIMITY,
RELATION_TO_NEXT => SIBLING);

CONDENSE_KEY_PERSONS (KEY_INDEX, 1);

elsif (LATER_KEY_RELATION = SPOUSE) and

(KEY_PERSON (KEY_INDEX + 2) . RELATION_TO_NEXT = PARENT)
then — found step-SIBLINGs

KEY_PERSON (KEY_INDEX) :
=

(PERSON_INDEX => KEY_PERSON (KEY_INDEX) . PERSON_INDEX,
GENERATION_GAP => 0,

PROXIMITY => STEP,

RELATION_TO_NEXT => SIBLING);
CONDENSE_KEY_PERSONS (KEY_INDEX, 2);

end if; ~ LATER_KEY_RELATION = PARENT

end if; ~ RELATION_TO_NEXT = CHILD
KEY_INDEX := KEY_INDEX + 1;

end loop FIND_SIBLINGS

;

Page 24

— Resolve CHILD-CHILD-. . . and PARENT-PARENT-. . . relations to
—- direct descendant or ancestor relations.
KEY_INDEX := 1;

FIND_ANCESTORS_OR_DESCENDANTS

:

while KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT /= NULL_RELATION loop
if (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = CHILD) or

(KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = PARENT)
then

LATER_KEY_INDEX := KEY_INDEX + 1;

while KEY_PERSON (LATER_KEY_INDEX) . RELATION_TO_NEXr =

KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT loop
LATER_KEY_INDEX := LATER_KEY_INDEX + 1;

end loop;

GENERATION_COUNT := LATER_KEY_INDEX - KEY_INDEX;
if GENERATION_COUNT > 1 then — compress generations

KEY_PERSON (KEY_INDEX) . GENERATION_GAP := GENERATION_COUNT

;

CONDENSE_KEY_PERSONS (KEY_INDEX, GENERATIONjCOUNT - 1);
end if;

end if; ~ if RELATION_TO_NEXT = CHILD or PARENT
KEY_INDEX := KEY_INDEX + 1;

end loop FIND ANCESTORS OR DESCENDANTS;

Page

— Resolve CHILD-SIBLING-PARENT to COUSIN,
CHILD-SIBLING to NEPHEW,
SIBLING-PARENT to UNCLE.

KEY_INDEX := 1;

F IND_COUSINS_NE PHEWS_UNCLE S

:

while KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT /= NULL_RELATION loop
LATER_KEY_RELATION := KEY_PERSON (KEY_INDEX + 1) . RELATION_TO_NEXT

;

if (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = CHILD) and
(LATER_KEY_RELATION = SIBLING)

then ~ COUSIN or NEPHEW
if KEY_PERSON (KEY_INDEX + 2) . RELATION_TO_NEXT = PARENT then
— found COUSIN
if KEYJPERSON (KEY_INDEX) . GENERATION_GAP <

KEY_PERSON (KEY_INDEX + 2) . GENERATION_GAP
then

THIS_COUSIN_RANK :=

KEY_PERSON (KEY_INDEX) . GENERATION_GAP;
else

THIS_COUSIN_RANK :=

KEY_PERSON (KEY_INDEX + 2) . GENERATION_GAP;
end if

;

KEY_PERSON (KEY_INDEX) :
=

(PERSON_INDEX => KEY_PERSON (KEY_INDEX) . PERSON_INDEX,
GENERATION_GAP =>

abs (KEY_PERSON (KEY_INDEX) . GENERATION_GAP -

KEY_PERSON (KEY_INDEX + 2) . GENERATION_GAP)

,

PROXIMITY => KEY_PERSON (KEY_INDEX + 1) . PROXIMITY,

RELATION_TO_NEXT => COUSIN,
COUSINJRANK => THIS_COUSIN_RANK)

;

CONDENSE_KEY_PERSONS (KEY_INDEX, 2);
else — found NEPHEW

KEY_PERSON (KEY_INDEX) :
=

(PERSON_INDEX => KEY_PERSON (KEY_INDEX) . PERSON_INDEX,
GENERATION_GAP => KEY_PERSON (KEY_INDEX) . GENERATION_GAP,
PROXIMITY => KEY_PERSON (KEY_INDEX + 1) . PROXIMITY,
RELATION_TO_NEXT => NEPHEW);

CONDENSE_KEY_PERSONS (KEY_INDEX, 1);

end if

;

elsif KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = SIBLING and

LATER_KEY_RELATION = PARENT
then — found UNCLE

KEY_PERSON (KEY_INDEX) :
=

(PERSON_INDEX => KEY_PERSON (KEY_INDEX) . PERSON_INDEX,

GENERATION_GAP => KEY_PERSON (KEY_INDEX + 1) . GENERATION_GAP,
PROXIMITY => KEY_PERSON (KEY_INDEX) . PROXIMITY,

RELATION_TO_NEXT => UNCLE);
CONDENSE_KEY_PERSONS (KEY_INDEX, 1);

end if

;

KEY_INDEX := KEY_INDEX + 1;

end loop FIND COUSINS NEPHEWS UNCLES;

Page 26

— Loop below will pick out valid adjacent strings of elements
— to be displayed. KEY_INDEX points to first element,
— LATER_KEY_INDEX to laFt element, and PRIMARY_INDEX to the
— element which determines the primary English word to be used.
— Associativity of adjacent elements in condensed table
— is based on English usage.

KEY_INDEX := 1;

put_line (" Condensed path:");
CONSOLIDATE_ADJACENT_PERSONS

:

while KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT /= NULL_RELATION loop
KEY_RELATION := KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT

;

LATER_KEY_INDEX :=KEY_INDEX;
PRIMARY_INDEX := KEY_INDEX;
if KEYJPERSON (KEY_INDEX + 1) . RELATION_TO_NEXT /= NULL_RELATION then

' — seek multi-element combination
' ANOTHER_ELEMENT_POSSIBLE := true;

if KEY_RELATION = SPOUSE then
LATER_KEY_INDEX := LATER_KEY_INDEX + 1;

PRIMARY_INDEX := LATER_KEY_INDEX;
if (KEY_PERSON (LATER_KEY_INDEX) . RELATION_TO_NEXT = SIBLING) or

(KEY_PERSON (LATER_KEY_INDEX) . RELATION_TO_NEXT = COUSIN)

then — Nothing can follow SPOUSE-SIBLING or SPOUSE-COUSIN
ANOTHER_ELEMENT_POSSIBLE := false;

end if

;

end if

;

— PRIMARY_INDEX is now correctly set. Next if-statement
— determines if a following SPOUSE relation should be
— appended to this combination or left for the next
•— combination.
if ANOTHER_ELEMENT_POSSIBLE and

(KEY_PERSON (PRIMARY_INDEX + 1) . RELATION_TO_NEXT = SPOUSE)
— Only a SPOUSE can follow a Primary

then
— check primary preceding and following SPOUSE.
PRIMARY_RELATION :

=

KEY_PERSON (PRIMARY_INDEX) . RELATION_TO_NEXT

;

NEXT_PRIMARY_RELATION :
=

KEY_PERSON (PRIMARY_INDEX + 2) . RELATION_TO_NEXT

;

if (NEXT_PRIMARY_RELATION = NEPHEW or

NEXT_PRIMARY_RELATION = COUSIN or
NEXT_PRIMARY_RELATION = NULL_RELATION)

or (PRIMARY_RELATION = NEPHEW)
or ((PRIMARY_RELATION = SIBLING or

PRIMARY_RELATION = PARENT)
and NEXT_PRIMARY_RELATION /= UNCLE)

then — append following SPOUSE with this combination.
LATER_KEY_INDEX := LATER_KEY_INDEX + 1;

end if

;

end if

;

end if; — multi-element combination
DISPLAY_RELATION (KEY_INDEX, LATER_KEY_INDEX, PRIMARY_INDEX)

;

KEY_INDEX := LATER_KEY_INDEX + 1;

end loop CONSOLIDATE_ADJACENT_PERSONS

;

put_line (' ' & PERSON (KEY_PERSON (KEY_INDEX) . PERSON_INDEX) . NAME);
end; — RESOLVE PATH TO ENGLISH

new compilation-unit #5: procedures under RESOLVE_PATH_TO_ENGLISH

separate (RELATE . FIND_RELATIONSHIP . RESOLVE_PATH_TO_ENGLISH)
procedure DISPLAY_RELATION (FIRST_INDEX, LAST_INDEX, PRIMARY_INDEX

: in INDEX_TYPE) is
— DISPLAY_RELATION takes 1, 2, or 3 adjacent elements in the
— condensed table and generates the English description of

— the relation between the first and last + 1 elements.

INLAW : boolean;
THIS_PROXIMITY : SIBLINGJTYPE

;

THIS_GENDER : GENDERJTYPE

;

FIRST_RELATION, LAST_RELATION, PRIMARY_RELATION
: RELATION_TYPE

;

THIS_GENERATION_GAP
,
THIS_COUSIN_RANK

: COUNTER;

— need to instantiate package to display integer values

package COUNTER_IO is

new integer io (COUNTER);

Page 28

begin — execution of DISPLAY_RELATION
FIRST_RELATION := KEY_PERSON (FIRST_INDEX) . RELATION_TO_NEXT

;

LAST_RELATION := KEY_PERSON (LAST_INDEX) . RELATION_TO_NEXT

;

PRIMARY_RELATION := KEY_PERSON (PRIMARY_INDEX) . RELATION_TO_NEXT

;

— set THIS_PROXIMITY
if ((PRIMARY_RELATION = PARENT) and (FIRST_RELATION = SPOUSE)) or

((PRIMARY_RELATION = CHILD) and (LAST_RELATION = SPOUSE))
then

THIS_PROXIMITY := STEP;

elsif PRIMARY_RELATION = SIBLING or

PRIMARY_RELATION = UNCLE or

PRIMARY_RELATION = NEPHEW or

PRIMARY_RELATION = COUSIN
then

THISJPROXIMITY := KEY_PERSON (PRIMARY_INDEX) . PROXIMITY;

else
THIS_PROXIMITY := FULL;

end if

;

— set THIS_GENERATION_GAP
if PRIMARY_RELATION = PARENT or

PRIMARY_RELATION = CHILD or

PRIMARY_RELATION = UNCLE or

PRIMARY_RELATION = NEPHEW or
PRIMARY_RELATION = COUSIN

then
THIS_GENERATION_GAP := KEY_PERSON (PRIMARY_INDEX) . GENERATION_GAP;

else
THIS_GENERATION_GAP := 0;

end if

;

— set INLAW
INLAW := false;

if (FIRST_RELATION = SPOUSE) and
(PRIMARY_RELATION = SIBLING or

PRIMARY_RELATION = CHILD or

PRIMARY_RELATION = NEPHEW or

PRIMARY_RELATION = COUSIN)
then

INLAW := true;
elsif (LAST_RELATION = SPOUSE) and

(PRIMARY_RELATION = SIBLING or

PRIMARY_RELATION = PARENT or
PRIMARY_RELATION = UNCLE or

PRIMARY_RELATION = COUSIN)
then

INLAW := true;

end if

;

— set THIS_COUSIN_RANK
if PRIMARY_RELATION = COUSIN then

THIS_COUSIN_RANK := KEYJPERSON (PRIMARY_INDEX) . COUSIN_RANK;
end if

;

Page 29

— parameters are set - now generate display.

put (" " & PERSON (KEY_PERSON (FIRST_INDEX) . PERSON_INDEX) . NAME &
" is ");

if PRIMARY_RELATION = PARENT or
PRIMARY_RELATION = CHILD or

PRIMARY_RELATION = UNCLE or
PRIMARY_RELATION = NEPHEW

then
— display generation-qualifier
if THIS_GENERATION_GAP >= 3 then

put ("great");
if THIS_GENERATION_GAP > 3 then

put ("*");

COUNTER_IO . put (THIS_GENERATION_GAP - 2, width => 1);

end if

;

put ("-");

end if

;

if THIS_GENERATION_GAP >= 2 then
put ("grand-");

end if

;

elsif (PRIMARY_RELATION = COUSIN) and then (THIS_COUSIN_RANK > 1) then

COUNTER_IO . put (THIS_COUSIN_RANK, width => 1)

;

case THIS_COUSIN_RANK mod 10 is

when 1 => put ("st ");

when 2 => put ("nd ");

when 3 => put ("rd ");

when others => put ("th ");

end case

;

end if

;

if THIS_PROXIMITY = STEP then
put ("step-");

elsif THIS_PROXIMITY = HALF then
put ("half-");

end if

;

Page 30

THIS_GENDER := PERSON (KEY_PERSON (FIRST_INDEX)
case PRIMARY_RELATION is

when PARENT

when CHILD

PERSON INDEX) . GENDER;

when SPOUSE

when UNCLE

when NEPHEW

. when COUSIN
when others

end case;

if THIS GENDER = MALE then put ('"father");
else put (

' "mother")

;

end if

;

if THIS_GENDER = MALE then put (

' "son")

;

else put ([
"daughter")

;

end if

;

if THIS GENDER = MALE then put (["husband")

;

else put ([
"wife")

;

end if

;

if THIS_GENDER = MALE then put <[
"brother")

;

else put (^"sister");
end if

;

if THIS_GENDER = MALE then put ([
"uncle")

;

else put ([
"aunt")

;

end if

;

if THIS GENDER = MALE then put ([
"nephew")

;

else put (["niece")

;

end if

;

put ("cousin");
put ("null");

if INLAW then
put ("-in-law");

end if

;

if (PRIMARY_RELATION = COUSIN) and (THIS_GENERATION_GAP > 0) then
if THIS_GENERATION_GAP > 1 then

put (" ");

COUNTER_IO , put (THIS_GENERATION_GAP, width => 1);
put (" times removed");

else
put (" once removed");

end if

;

end if;

put_line (" of");

end DISPLAY RELATION;

new compilation-unit #5: procedures under FIND_RELATIONSHIP

eparate (RELATE . FIND_RELATIONSHIP)
rocedure COMPUTE_COMMON_GENES (INDEXl, INDEX2 : in INDEX_TYPE) i~ COMPUTE_COMMON_GENES assumes that each ancestor contributes— half of the genetic material to a PERSON. It finds common
— ancestors between two PERSONS and computes the expected
— value of the PROPORTION of common material.

COMMON_PROPORTION : REAL;

package REAL_IO is

new FLOAT_rO (REAL);

procedure ZERO_PROPORTION (ZERO_INDEX : in INDEXJTYPE) is
— ZERO_PROPORTION recursively seeks out all ancestors and— zeros them out.

THIS_NEIGHBOR : NEIGHBOR_POINTER

;

begin
PERSON (ZERO_INDEX) . DESCENDANT_GENES := 0.0;
THIS_NEIGHBOR := PERSON (ZERO_INDEX) . NEIGHBOR_LIST_HEADER

;

while THIS_NEIGHBOR /= null loop
if THIS_NEIGHBOR . NEIGHBOR_EDGE = PARENT then

ZERO_PROPORTION (THIS_NEIGHBOR . NEIGHBOR_INDEX)

;

end if

;

THIS_NEIGHBOR := THIS_NEIGHBOR . NEXTJJEIGHBOR;
end loop;

end ZERO_PR0P0RTION;

procedure MARK_PROPORTION (MARKER : in IDENTIFIER_TYPE

;

PROPORTION : in REAL;

MARKED_INDEX : in INDEXJTYPE) is

— MARK_PROPORTION recursively seeks out all ancestors and
— markJ them with the sender's PROPORTION of shared
— genetic material. This PROPORTION is diluted by one-half
— for each generation.

THIS_NEIGHBOR : NEIGHBOR_POINTER;

begin
PERSON (MARKED_INDEX) . DESCENDANT_IDENTIFIER := MARKER;
PERSON (MARKED_INDEX) . DESCENDANT_GENES :=

PERSON (MARKED_INDEX) . DESCENDANT_GENES + PROPORTION;

THIS_NEIGHBOR := PERSON (MARKED_INDEX) . NEIGHBOR_LIST_HEADER
while THIS_NEIGHBOR /= null loop

if THIS_NEIGHBOR . NEIGHBOR_EDGE = PARENT then

MARK_PROPORTION (MARKER, PROPORTION / 2.0,

THIS_NEIGHBOR . NEIGHBOR_INDEX)

;

end if

;

THISJJEIGHBOR := THIS_NEIGHBOR . NEXT_NEIGHBOR;

end loop;
end MARK PROPORTION;

Page 32

procedure CHECK_COMMON_PROPORTION
(COMMON_PRO PORTION : in out REAL;
MATCH_IDENTIFIER : in IDENTIFIERJCYPE

;

PROPORTION : in REAL;

ALREADYJCOUNTED : in REAL;
CHECK_INDEX : in INDEXJTYPE) is

— CHECK_COMMON_PROPORTION searches all the ancestors of
— CHECK INDEX to see if any have been marked, and if so
— adds the appropriate amount to COMMON_PROPORTION.

THIS_NEIGHBOR : NEIGHBOR_POINTER;
THIS CONTRIBUTION : REAL;

beg in

if PERSON (CHECK_INDEX) . DESCENDANT_IDENTIFIER = MATCH_IDENTIFIER then
— Increment COMMON_PROPORTION by the contribution of
— this common ancestor, but discount for the contribution
— of less remote ancestors already counted.
THIS_CONTRIBUTION := PERSON (CHECK_INDEX) . DESCENDANT_GENES

* PROPORTION;
COMMON_PROPORTION := COMMON_PROPORTION

+ THIS_CONTRIBUTION - ALREADY_COUNTED;
else

THIS_CONTRIBUTION := 0.0;

end if

;

THISJJEIGHBOR := PERSON (CHECK_INDEX) . NEIGHBOR_LIST_HEADER;
while THIS_NEIGHBOR /= null loop

if THISJJEIGHBOR . NEIGHBOR_EDGE = PARENT then
CHECK_COMMON_PROPORTION (COMMON_PROPORTION,

MATCH_IDENTIFIER, PROPORTION / 2.0,

THIS_CONTRIBUTION / 4.0,
THIS_NEIGHBOR . NEIGHBOR_INDEX)

;

end if;

THISJJEIGHBOR := THISJJEIGHBOR . NEXTJJEIGHBOR;
end loop;

end CHECK_COMMONJ>ROPORTION;

begin — COMPUTEj:OMMON_GENES
— First zero out all ancestors to allow adding. This is necessary
— because there might be two paths to an ancestor.
ZERO_PROPORTION (INDEXl);
— now mark with shared PROPORTION
MARKJ'ROPORTION (PERSON (INDEXl) . IDENTIFIER, 1.0, INDEXl);
COMMON_PROPORTION := 0.0;
CHECK_COMMON_PROPORTION (COMMONJ>ROPORTION,

PERSON (INDEXl) . IDENTIFIER, 1.0, 0.0, INDEX2);
put (" Proportion of common genetic material = ");

REAL_IO . put (COMMON_PROPORTION, fore => 1, aft => 5, exp => 3)

;

put_line (" ");

end COMPUTE COMMON GENES;

Page 33

3.0 BASIC

Because of the unavailability of a standard implementation, the BASIC program
could not be tested directly. However, a syntactically non-standard version,
which is believed to be logically equivalent, was tested.

10000 ! program-unit number 1

10010 !

10020 program RELATE
10030 !

10040 ! declare subs to be used by this program-unit
10050 !

10060 declare external sub FIND_RELATIONSHIP
10070 declare sub LINKJIELATIVES", LINK_0NE_WAY, PROMPT_AND_READ
10080 declare sub CHECK_REQUEST, SEARCH_FOR_REQUESTED_PERSONS
10090 !

10100 option base 1

10110 !

10120 ! Define global objects
10130 !

10140 data 300

10150 read MAX_PERS0NS
10160 !

10170 data 1, 2 ! for truth values
10180 read TRUE, FALSE
10190 !

10200 ! each PERSON'S record in the file identifies at most three
10210 ! others directly related: father, mother, and spouse
10220 data 1, 2, 3

10230 read FATHER_IDENT, M0THER_IDENT, SP0USE_IDENT
10240 !

10250 data M, F

10260 read MALE$, FEMALE $

10270 !

10280 data 000
10290 read NULL_IDENT$
10300 !

10310 data 1, 2, 3, 4, 5, 6, 7, 8

10320 read PARENT, CHILD, SPOUSE, SIBLING, UNCLE, NEPHEW
10325 read COUSIN, NULL_RELATI0N
10330 !

10340 ! A node in the graph (= PERSON) has either already been reached,

10350 ! is immediately adjacent to those reached, or farther away.

10360 data 1, 2, 3

10370 read REACHED, NEARBY, N0T_SEEN
10380 !

Page 34

10390
10400
10410

10420
10430
10440

10450
10460
10470

10480
10490
10500

10505
10510
10520
10530

10540
10550

10560
10570
10580

10590
10600
10610

10620
10630

I

dim
I

!

dim
I

I

dim
dim
!

I

dim
dim
I

I

dim
!

The following data arrays are the central repository of information
about inter-relationships. All relationships are captured in the
directed graph of which each record is a node.

static information - filled from PEOPLE file:
NAME$ (300), IDENTIFIER$ (300), GENDER$ (300)

IDENTIFIER$s of immediate relatives
RELATIVE IDENTIFIER$ (300,3)

father, mother, spouse

pointers to immediate neighbors in graph
NEIGHBORJCOUNT (300)
NEIGHBOR_INDEX (300,20), NEIGHB0R_EDGE (300,20)

data used when traversing graph to resolve user request:
DISTANCE_FR0M_S0URCE (300), PATH_PREDECESSOR (300)
EDGE_T0_PREDECESS0R (300), REACHED_STATUS (300)

data used to compute common genetic material
DESCENDANT IDENTIFIER$ (300), DESCENDANT GENES (300)

stop. Request OK
REQUEST TO STOP$, REQUEST 0K$

data
read
!

! end initialization
I

I

Page 35

10640 ! begin main line of execution
10650 !

10660 open #1: name "PE0PLE.DAT", access input, rectype native, &

& organization sequential
10670 !

10680 ! This loop reads in the PEOPLE file and constructs the person
10690 ! array from it (one person = one set of array entries).
10700 ! As records are read in, links are constructed to represent the
10710 ! PARENT-CHILD or SPOUSE RELATIONSHIP. The array then implements
10720 ! a directed graph which is used to satisfy subsequent user
10730 ! requests. The file is assumed to be correct - no validation
10740 ! is performed on it.

10750 !

10760 for CURRENT = 1 to MAX_PERS0NS
10770 read #1, if missing then exit for, &

& with "string*20, string*3, string*l, 3 of string*3": &

& NAME$ (CURRENT), IDENTIFIER$ (CURRENT), GENDER$ (CURRENT), &

& RELATIVE_IDENTIFIER$ (CURRENT, FATHER_IDENT) , &

& RELATIVE_IDENTIFIER$ (CURRENT, M0THER_IDENT) , &

& RELATIVE_IDENTIFIER$ (CURRENT, SPOUSE_IDENT

)

10780 let NAME$ (CURRENT) = rtrim$ (NAME$ (CURRENT))
10790 ! Location of adjacent persons as yet undetermined
10800 let NEIGHB0R_C0UNT (CURRENT) = 0

10810 ! Descendants as yet undetermined
10820 let DESCENDANT_IDENTIFIER$ (CURRENT) = NULL_IDENT$
10830 let CURRENT_IDENT$ = IDENTIFIER$ (CURRENT)
10840 ! Compare this PERSON against all previously entered PERSONS

10850 ! to search for RELATIONSHIPS.
10860 for PREVIOUS = 1 to CURRENT - 1

10870 let PREVIOUS_IDENT$ = IDENTIFIER$ (PREVIOUS)

10880 ! Search for father, mother, or spouse relationship in

10890 ! either direction between this and PREVIOUS person.
10900 ! Assume at most one RELATIONSHIP exists.

10910 for RELATIONSHIP = FATHER_IDENT to SP0USE_IDENT
10920 if RELATIVE_IDENTIFIER$ (CURRENT, RELATIONSHIP) &

& = PREVIOUS_IDENT$ then

10930 call LINK_RELATIVES (CURRENT, RELATIONSHIP, PREVIOUS)

10940 exit for
10950 elseif RELATIVE_IDENTIFIER$ (PREVIOUS, RELATIONSHIP) &

& = CURRENT_IDENT$ then

10960 call LINK_RELATIVES (PREVIOUS, RELATIONSHIP, CURRENT)
10970 exit for

10980 end if

10990 next RELATIONSHIP
11000 next PREVIOUS
11010 next CURRENT
11020 let NUMBER_OF_PERSONS = CURRENT - 1

11030 close #1

11040 !

11050 ! Person arrays are now loaded and edges between immediate relatives
11060 ! (PARENT-CHILD or SPOUSE-SPOUSE) are established.

11070 !

Page 36

11080 ! Do-loop accepts requests and finds relationship (if any)

11090 ! between pairs of PERSONS.
11110 do

11120 call PROMPT_AND_READ
11130 if REQUEST_BUFFER$ = REQUEST_T0_ST0P$ then exit do

11140 call CHECK_REQUEST (ERR0R_MESSAGE$, PERS0N1_IDENT$, PERS0N2_IDENT$

)

11150 !

11160 ! Syntax check of request completed. Now either display error
11170 ! message or search for the two PERSONS.

11180 !

11190 if ERR0R_MESSAGE$ = REQUEST_0K$ then
11200 ! request syntactically correct
11210 call SEARCH_F0R_REQUESTED_PERS0NS(PERS0N1_IDENT$, PERS0N2_IDENT$, &

& PERS0N1_INDEX, PERS0N2_INDEX, &

& PERS0N1_F0UND, PERS0N2_F0UND)
11220 if PERS0N1_F0UND = 1 and PERS0N2_F0UND = 1 then

11230 ! Exactly one match for each PERSON - proceed to

112A0 ! determine RELATIONSHIP, if any.

11250 if PERS0N1_INDEX = PERS0N2_INDEX then
11260 print " "; NAME$ (PERS0N1_INDEX) ;

" is identical to ";

11270 if GENDER$ (PERSON 1_INDEX) = MALE$ then

11280 print "himself."
11290 else
11300 print "herself."
11310 end if

11320 else
11330 call FIND_RELATIONSHIP &

& (PERS0N1_INDEX, PERS0N2_INDEX, NUMBER_0F_PERS0NS, &

& NAME$, IDENTIFIER$, GENDER$, RELATIVE_IDENTIFIER$, &

& NEIGHB0R_C0UNT, NEIGHBOR_INDEX, NEIGHB0R_EDGE , &

& DISTANCE_FR0M_S0URCE, PATH_PREDECESSOR, &

& EDGE_T0_PREDECESS0R
, REACHED_STATUS , &

& DESCENDANT_IDENTIFIER$, DESCENDANT_GENES

)

11340 end if

11350 else ! either not found or more than one found
11360 if PERS0N1_F0UND = 0 then
11370 print " First person not found."
11380 elseif PERS0N1_F0UND > 1 then
11390 print " Duplicate names for first person -";

11400 print " use numeric identifier."
11410 end if

11420 if PERS0N2_F0UND = 0 then
11430 print " Second person not found."
11440 elseif PERS0N2_F0UND > 1 then
11450 print " Duplicate names for second person -";

11460 print " use numeric identifier."
11470 end if

11480 end if

11490 else
11500 print " Incorrect request format: "; ERR0R_MESSAGE$
11510 end if

11520 loop
11530 print " End of relation-finder."
11540 stop
11550 !

11560 ! end of main line of execution; internal subs follow

Page 37

11570 !

11580 sub LINK_RELATIVES (FROM_INDEX, RELATIONSHIP, TO_INDEX)
11590 ! establishes cross-indexing between immediately related PERSONS.
11600 !

11610 if RELATIONSHIP = SPOUSE_IDENT then
11620 call LINK_ONE_WAY (FROM_INDEX, SPOUSE, TO_INDEX)
11630 call LINK_ONE_WAY (TO_INDEX, SPOUSE, FROM_INDEX)
11640 else ! RELATIONSHIP is father or mother
11650 call LINK_ONE_WAY (FROM_INDEX, PARENT, TO_INDEX)
11660 call LINK_ONE_WAY (TO_INDEX, CHILD, FROM_INDEX)
11670 end if

11680 end sub

11690 !

11700 sub LINK_ONE_WAY (FROM_INDEX, THIS_EDGE, TO_INDEX)
11710 ! Establishes the neighbor entries from one person to another
11720 !

11730 let NEXT_NEIGHBOR = NEIGHBOR_COUNT (FROM_INDEX) + 1

11 740 let NEIGHBOR_COUNT (FROM_INDEX) = NEXT_NEIGHBOR
11750 let NEIGHBOR_INDEX (FROM_INDEX, NEXT_NEIGHBOR) = TO_INDEX
11760 let NEIGHBOR_EDGE (FROM_INDEX, NEXT_NEIGHBOR) = THIS_EDGE
11770 end sub

11780 !

11790 sub PROMPT_AND_READ
11800 ! Issues prompt for user-request, reads in request,
11810 ! blank-fills buffer, and skips to next line of input.

11820 !

11830 print

11840 print " "

11850 print " Enter two person-identifiers (name or number),"
11860 print " separated by semicolon. Enter ""stop"" to stop."

11870 line input REQUEST_BUFFER$
11880 end sub
11890 !

11900 sub CHECK_REQUEST (REQUEST_STATUS $,
PERS0N1_IDENT$

,
PERS0N2_IDENT$)

11910 ! Performs syntactic check on request in buffer
11920 ! and fills in identifiers of the two requested persons.

11930 !

11940 let SEMICOLON_LOCATION = pos (REQUEST_BUFFER$,
";")

11950 let PERS0N1_IDENT$ = ltrim$ (rtrim$ &

& (REQUEST_BUFFER$ (1 : SEMICOLONJLOCATION - 1)))

11960 let PERS0N2_IDENT$ = ltrim$ (rtrim$ &

& (REQUEST_BUFFER$ (SEMICOLON_LOCATION + 1 : len (REQUEST_BUFFER$)))

)

11970 if SEMICOLON LOCATION = 0 or pos (PERS0N2 IDENT$, ";") <> 0 then

11980 let REQUEST_STATUS$
11990 el self PERSON1_IDENT

$

12000 let REQUEST_STATUS$
12010 elseif PERS0N2 IDENT$

must be exactly one semicolon."
then

null field preceding semicolon.'
" then

12020 let REQUEST_STATUS$ = "null field following semicolon.'

12030 else
12040 let REQUEST_STATUS$ = REQUEST_OK$
12050 end if

12060 end sub

12070 !

Page 38

12080 sub SEARCH FOR REQUESTED_PERSONS (PERSON 1_IDENT$, PERS0N2 IDENT$, &

& PERS0N1_INDEX, PERS0N2_INDEX, &

& PERS0N1_F0UND, PERS0N2_F0UND)
12090 ! SEARCH_FOR_REQUESTED_PERSONS scans through the PERSON array,
12100 ! looking for the two requested PERSONS. Match may be by NAME
12110 ! or unique IDENTIFIER-number
12120 !

12130 let PERSON 1_F0UND = 0

12140 let PERS0N2_F0UND = 0

12150 let PERS0N1_INDEX = 0

12160 let PERS0N2_INDEX = 0

12170 for CURRENT = 1 to NUMBER_OF_PERSONS
12180 ! allow identification by name or identifier
12190 if IDENTIFIER$ (CURRENT) = PERS0N1_IDENT$ &

& or NAME$ (CURRENT) = PERS0N1_IDENT$ then
12200 let PERS0N1_INDEX = CURRENT
12210 let PERS0N1_F0UND = PERS0N1_F0UND + 1

12220 end if

12230 if IDENTIFIER$ (CURRENT) = PERS0N2_IDENT$ &

& or NAME$ (CURRENT) = PERS0N2_IDENT$ then
12240 let PERS0N2_INDEX = CURRENT
12250 let PERS0N2_F0UND = PERS0N2_F0UND + 1

12260 end if

12270 next CURRENT
12280 end sub
12290 end ! of main program unit - external procedures follow
12300 I

Page 39

12310 ! program-unit number 2

12320 !

12330 external sub FIND_RELATIONSHIP &

& (TARGET_INDEX, S0URCE_INDEX, NUMBER_OF_PERSONS , &

& NAME$ (), IDENTIFIER$ (), GENDER$ (), RELATIVE_IDENTIFIER$ (,), &

& NEIGHB0R_COUNT (), NEIGHBOR_INDEX (,), NEIGHBOR_EDGE (,), &

& DISTANCE_FROM_SOURCE (), PATH_PREDECESSOR (), &

& EDGE_TO_ PREDECESSOR (), REACHED STATUS (), &

& DESCENDANT_IDENTIFIER$ (), DESCENDANT_GENES ())
12340 !

12350 ! Finds shortest path (if any) between two PERSONS and
12360 ! determines their RELATIONSHIP based on immediate relations
12370 ! traversed in path. PERSON array simulates a directed graph,
12380 ! and algorithm finds shortest path, based on following
12390 ! weights: PARENT-CHILD edge =1.0
12400 ! SPOUSE -SPOUSE edge = 1.8

12410 !

12420 ! declare subs and functions to be used by this program-unit
12430 !

12440 declare external sub COMPUTE_COMMON_GENES
12450 declare sub PROCESS_ADJACENT_NODE, LINK_NEXT_NODE_TO_BASE_NODE
12460 declare sub RESOLVE_PATH_TO_ENGLISH, CONDENSE_KEY_PERSONS
12465 declare sub DISPLAY_RELATION
12470 declare function SIBLING_PROXIMITY
12480 !

12483 option base 1

12487 !

12490 ! Define global objects
12500 !

12510 data 300

12520 read MAX_PERS0NS
12530 !

12540 data 1, 2 ! for truth values

12550 read TRUE, FALSE
12560 !

12570 ! each PERSON'S record in the file identifies at most three

12580 ! others directly related: father, mother, and spouse
12590 data 1, 2, 3

12600 read FATHER_IDENT, MOTHER_IDENT, SPOUSE_IDENT
12610 !

12620 data M, F

12630 read MALE$, FEMALE $

12640 !

12650 data 000
12660 read NULL_IDENT$
12670 !

12680 data 1, 2, 3, 4, 5, 6, 7, 8

12690 read PARENT, CHILD, SPOUSE, SIBLING, UNCLE, NEPHEW

12695 read COUSIN, NULL_RELATION
12700 !

12710 ! A node in the graph (= PERSON) has either already been reached,

12720 ! is immediately adjacent to those reached, or farther away.

12730 data 1, 2, 3

12740 read REACHED, NEARBY, NOT_SEEN

12750 !

Page 40

12760
12770
12780

12790
12800
12810
12820
12830
12840

12850
12860
12870
12880
12890
12900
12910
12920
12930

12940
12950
12960
12970
12980
12990

13000
13010
13020

13030
13040
13050

13060
13070
13080
13090
13100
13110

data 1, 2, 3 ! values for search status
read SEARCHING, SUCCEEDED, FAILED
I

data 1, 2, 3 ! values for sibling proximity
read STEP, HALF, FULL

The following arrays contain information on key persons.
Key persons are the ones in the RELATIONSHIP path which remain
after the path is condensed.

RELATI0N_T0_NEXT (300), PERS0N_INDEX (300), GENERATION_GAP (300)
PROXIMITY (300), C0USIN_RANK (300)

keeps track of current NEARBY nodes in graph search
NEARBY NODE (300)

dim
dim
I

j

dim

begin main line of execution of FIND_RELATIONSHIP

initialize PERSON-array for processing -

mark all nodes as not seen
for THIS_NODE = 1 to NUMBER_OF_PERSONS

let REACHED_STATUS (THIS_NODE) = NOT_SEEN
next THIS_NODE
!

let THIS_NODE = SOURCE_INDEX
! mark source node as REACHED
let REACHED_STATUS (THIS_NODE) = REACHED
let DISTANCE_FROM_SOURCE (THIS_NODE) = 0

! no nearby nodes exist yet
let LAST_NEARBY_INDEX = 0

if THIS_NODE = TARGET_INDEX then
let SEARCH_STATUS = SUCCEEDED

else
let SEARCH_STATUS = SEARCHING

end if
I

Page 41

13120 ! Loop keeps processing closest-to-source , unREACHED node
13130 ! until target REACHED, or no more connected nodes.
13140 do while SEARCH_STATUS = SEARCHING
13150 ! Process all nodes adjacent to THIS_NODE
13160 for THIS_NEIGHBOR = 1 to NEIGHB0R_C0UNT (THIS_N0DE)
13170 call PROCESS_ADJACENT_NODE (THIS_N0DE, &

& NEIGHBOR_INDEX (THIS_N0DE, THIS_NEIGHBOR) , &

& NEIGHB0R_EDGE (THIS_N0DE, THIS_NEIGHBOR)

)

13180 next THIS_NEIGHB0R
-"13190 ! All nodes adjacent to THIS_N0DE are set. Now search for

13200 ! shortest-distance unREACHED (but NEARBY) node to process next.
13210 if LAST_NEARBY_INDEX = 0 then
13220 let SEARCH_STATUS = FAILED
13230 else ! determine next node to process
13240 let M INIMAL_DISTANCE = l.OE+18
13250 ! now find closest unreached node
13260 for THIS_NEARBY_INDEX = 1 to LAST_NEARBY_INDEX
13270 let NEXT_N0DE = NEARBY_N0DE (THIS_NEARBY_INDEX)
13280 if DISTANCE_FR0M_S0URCE (NEXT_N0DE) < MINIMAL_DISTANCE then

13290 let BEST_NEARBY_INDEX = THIS_NEARBY_INDEX
13300 let MINIMALJDISTANCE = DISTANCE_FROM_SOURCE (NEXT_N0DE)

13310 end if

13320 next THIS_NEARBY_INDEX
13330 ! establish new THIS_N0DE
13340 let THIS_N0DE = NEARBY_N0DE (BEST_NEARBY_INDEX)
13350 ! change THISJJODE from being NEARBY to REACHED
13360 let REACHED_STATUS (THIS_N0DE) = REACHED
13370 ! remove THIS_N0DE from NEARBY list

13380 let NEARBY_N0DE (BEST_NEARBY_INDEX) = &

& NEARBY_N0DE (LAST_NEARBY_INDEX)
13390 let LAST_NEARBY_INDEX = LAST_NEARBY_INDEX - 1

13400 if THIS_N0DE = TARGET_INDEX then let SEARCH_STATUS = SUCCEEDED
13410 end if

13420 loop
13430 !

13440 ! Shortest path between PERSONS now established. Next task is

13450 ! to translate path to English description of RELATIONSHIP.

13460 if SEARCH_STATUS = FAILED then
13470 print " "; NAME$ (TARGET_INDE X) ;

" is not related to "; &

& NAME$ (S0URCE_INDEX)
13480 else
13490 ! success - parse path to find and display RELATIONSHIP

13500 call RES0LVE_PATH_T0_ENGLISH
13510 call C0MPUTE_C0MM0N_GENES (S0URCE_INDEX, TARGET_INDEX, &

& IDENTIFIER$, NEIGHB0R_C0UNT, NEIGHBOR_INDEX, NEIGHB0R_EDGE , &

& DESCENDANT IDENTIFIER$, DESCENDANT_GENES)

13520 end if

13530 exit sub

13540 !

13550 ! end of main line of execution of FIND_RELATIONSHIP
13560 !

Page 42

13570 sub PROCESS_ADJACENT_NODE (BASE_NODE, NEXT_NODE, NEXT_BASE_EDGE

)

13580 ! NEXT_NODE is adjacent to last-REACHED node (= BASE_NODE)

.

13590 ! if NEXT_NODE already REACHED, do nothing.
13600 ! If previously seen, check whether path thru BASE_NODE is

13610 ! shorter than current path to NEXT_N0DE, and if so re-link
13620 ! next to base.

13630 ! If not previously seen, link next to base node.
13640 !

13650 if NEXT_BASE_EDGE = SPOUSE then
13660 let WEIGHT_THIS_EDGE =1.8
13670 else
13680 let WEIGHT_THIS_EDGE =1.0
13690 end if

13700 !

13710 if REACHED_STATUS (NEXT_N0DE) <> REACHED then
13720 let DISTANCE_THRU_BASE_NODE &

& = WEIGHT_THIS_EDGE + DISTANCE_FR0M_S0URCE (BASE_NODE)
13740 if REACHED_STATUS (NEXTJNODE) = N0T_SEEN then
13750 let REACHED_STATUS (NEXT_N0DE) = NEARBY
13760 let LAST_NEARBY_INDEX = LAST_NEARBY_INDEX + 1

13770 let NEARBYJJODE (LAST_NEARBY_INDEX) = NEXT_N0DE
13780 ! link next to base by re-setting its predecessor index to

13790 ! point to base, note type of edge, and re-set distance
13800 ! as it is through base node.
13810 let DISTANCE_FR0M_S0URCE (NEXTJJODE) = DISTANCE_THRU_BASE_NODE
13820 let PATH_PREDECESSOR OJEXT_N0DE) = BASE_N0DE
13830 let EDGE_T0_PREDECESS0R (NEXT_N0DE) = NEXT_BASE_EDGE
13840 else ! REACHED_STATUS = NEARBY
13850 if DISTANCE_THRU_BASE_NODE < DISTANCE_FROM_SOURCE (NEXT_N0DE) then
13860 ! link next to base by re-setting its predecessor index to

13870 ! point to base, note type of edge, and re-set distance
13880 ! as it is through base node.
13890 let DISTANCE_FR0M_S0URCE (NEXT_N0DE) = DISTANCE_THRU_BASE_NODE
13900 let PATH_PREDECESSOR (NEXT_N0DE) = BASE_N0DE
13910 let EDGE_T0_PREDECESS0R (NEXT_N0DE) = NEXT_BASE_EDGE
13920 end if

13930 end if

13940 end if

13950 end sub

13960 !

Page 43

13970
13980
13990
14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
14100
14110
14120
14130
14140
14150
14160
14170

14180
14190
14200
14210
14220
14230
14240
14250
14260
14270
14280
14290
14300

14310
14320

14330

sub RES0LVE_PATH_T0_ENGLISH
RESOLVE_PATH_TO_ENGLISH condenses the shortest path to a

series of RELATIONSHIPS for which there are English
descriptions

.

Key persons are the ones in the RELATIONSHIP path which remain
after the path is condensed.

print " Shortest path between identified persons: "

let THIS_N0DE = TARGET_INDEX
! print path and initialize KEY_PERSON array from path elements,
! as shortest path is traversed,
let KEY_INDEX = 1

do until THIS_NODE = SOURCE_INDEX
let PERSON_INDEX (KEY_INDEX) = THIS_NODE
let PROXIMITY (KEY_INDEX) = FULL
let RELATION_TO_NEXT (KEY_INDEX) = EDGE_TO_PREDECESSOR (THIS_NODE)
print " "; NAME$ (THIS_NODE); tab (23); "is ";

if EDGE_TO_PREDECESSOR (THIS_NODE) = SPOUSE then
let GENERATION_GAP (KEY_INDEX) = 0

print "spouse of"

else
let GENERATION_GAP (KEY_INDEX) = 1

if EDGE_TO_PREDECESSOR (THIS NODE) = PARENT then

print "parent of"

else ! edge is child-type
print "child of"

end if

end if

let KEY_INDEX = KEY_INDEX + 1

let THIS NODE = PATH PREDECESSOR (THIS NODE)

loop
print
let PERSON INDEX

NAME$ (THIS_NODE)

_ (KEY_INDEX)

let RELATION_TO_NEXT (KEY_INDEX) _
let RELATION_TO_NEXT (KEY_INDEX + 1) = NULL_RELATION
I

= THIS_NODE
= NULL RELATION

Page 44

14340 ! Resolve CHILD-PARENT and CHILD-SPOUSE-PARENT relations

14350 ! to SIBLING relations.
14360 let KEY_INDEX = 1

14370 do until RELATI0N_T0_NEXT (KEYJENDEX) = NULL_RELATI0N
14380 if RELATI0N_T0_NEXT (KEY_INDEX) = CHILD then
14390 let LATER_KEY_RELATION = RELATI0N_T0_NEXT (KEY_INDEX + 1)

14400 if LATER_KEY_RELATION = PARENT then
14410 ! found either full or half SIBLINGS
14420 let GENERATION_GAP (KEY_INDEX) = 0

14430 let' RELATI0N_T0_NEXT (KEY_INDEX) = SIBLING
14440 let PROXIMITY (KEY_INDEX) = &

& SIBLING_PROXIMITY (PERSONJENDEX (KEY_INDEX) , &

& PERS0N_INDEX (KEY_INDEX +2))
14450 call CONDENSE_KEY_PERSONS (KEY_INDEX, 1)

14460 else
14470 if LATER_KEY_RELATION = SPOUSE and &

& RELATI0N_T0_NEXT (KEY_INDEX + 2) = PARENT then
14480 ! found step-siblings
14490 let GENERATION_GAP (KEY_INDEX) = 0

14500 let RELATI0N_T0_NEXT (KEY_INDEX) = SIBLING
14510 let PROXIMITY (KEY_INDEX) = STEP

14520 call C0NDENSE_KEY_PERS0NS (KEY_INDEX, 2)

14530 end if

14540 end if

14550 end if

14560 let KEY_INDEX = KEY_INDEX + 1

14570 loop
14580 !

14590 ! Resolve CHILD-CHILD-. . . and PARENT-PARENT-. . . relations to

14600 ! direct descendant or ancestor relations.
14610 let KEY_INDEX = 1

14620 do until RELATI0N_T0_NEXT (KEY_INDEX) = NULL_RELATI0N
14630 if RELATI0N_T0_NEXT (KEY_INDEX) = CHILD or &

& RELATI0N_T0_NEXT (KEY_INDEX) = PARENT then
14640 let LATER_KEY_INDEX = KEY_INDEX + 1

14650 do while RELATION_TO_NEXT (LATER_KEY_INDEX) &

& = RELATION_TO_NEXT (KEY_INDEX)
14660 let LATER_KEY_INDEX = LATER_KEY_INDEX + 1

14670 loop
14680 let GENERATI0N_C0UNT = LATER_KEY_INDEX - KEY_INDEX
14690 if GENERATI0N_C0UNT > 1 then ! compress generations
14700 let GENERATION_GAP (KEY_INDEX) = GENERATI0N_C0UNT
14710 call C0NDENSE_KEY_PERS0NS (KEY_INDEX, GENERATI0N_C0UNT -

14720 end if

14730 end if

14740 let KEY INDEX = KEY INDEX + 1

14750 loop
14760 !

Page 45

14770 ! Resolve CHILD-SIBLING-PARENT to COUSIN,
14780 ! CHILD-SIBLING to NEPHEW,
14790 ! SIBLING-PARENT to UNCLE.
14800 let KEY_INDEX = 1

14810 do until RELATION_TO_NEXT (KEY_INDEX) = NULL_RELATION
14820 let LATER_KEY_RELATION = RELATI0N_T0_NEXT (KEY_INDEX + 1)

14830 if RELATI0N_T0_NEXr (KEY_INDEX) = CHILD &

& and LATER_KEY_RELATION = SIBLING then
14840 ! found COUSIN or NEPHEW
14850 if RELATION_TO_NEXr (KEY_INDEX + 2) = PARENT then
14860 ! found cousin
14870 let GAPl = GENERATION_GAP (KEY_INDEX)
14880 let GAP2 = GENERATION_GAP (KEY_INDEX + 2)

14890 let C0USIN_RANK (KEY_INDEX) = min (GAPl, GAP2

)

14900 let GENERATIONJSAP (KEY_INDEX) = abs (GAPl - GAP2)

14910 let PROXIMITY (KEY_INDEX) = PROXIMITY (KEY_INDEX + 1)

14920 let RELATI0Njr0_NEXT (KEY_INDEX) = COUSIN
14930 call C0NDENSE_KEY_PERS0NS (KEY_INDEX, 2)

14940 else ! found NEPHEW

14950 let PROXIMITY (KEY_INDEX) = PROXIMITY (KEY_INDEX + 1)

14960 let RELATI0N_T0_NEXT (KEY_INDEX) = NEPHEW
14970 call C0NDENSE_KEY_PERS0NS (KEY_INDEX, 1)

14980 end if

14990 else
15000 if RELATI0N_T0_NEXT (KEY_INDEX) = SIBLING &

& and LATER_KEY_RELATION = PARENT then

15010 ! found UNCLE

15020 let GENERATIONJSAP (KEY_INDEX) = &

& GENERATION_GAP (KEY_INDEX + 1)

15030 let RELATION_TO_NEXT (KEY_INDEX) = UNCLE

15040 call CONDENSE_KEY_PERSONS (KEY_INDEX, 1)

15050 end if

15060 end if

15070 let KEY_INDEX = KEY_INDEX + 1

15080 loop
15090 !

Page 46

15100 ! Loop below will pick out valid adjacent strings of elements

15110 ! to be printed. KEY_INDEX points to first element,
15120 ! LATER_KEY_INDEX to last element, and PRIMARY_INDEX to the

15130 ! element which determines the primary English word to be used.

15140 ! Associativity of adjacent elements in condensed table
15150 ! is based on English usage.
15160 print " Condensed path:"
15170 let KEY_INDEX = 1

15180 do until RELATION_TO_NEXT (KEY_INDEX) = NULLJRELATION
15190 let KEY_RELATI0N = RELATION_TO_NEXT (KEY_INDEX)
15200 let LATER_KEY_INDEX, PRIMARY_INDEX = KEY_INDEX
15210 if RELATION_TO_NEXT (KEY_INDEX + 1) <> NULL_RELATI0N then

15220 ! seek multi-element combination
15230 let ANOTHER_ELEMENT_POSSIBLE = TRUE
15240 if KEY_RELATI0N = SPOUSE then
15250 let LATER_KEY__INDEX = LATER_KEY_INDEX + 1

15260 let PRIMARY_INDEX = LATER_KEY_INDEX
15270 if RELATI0N_T0_NEXT (LATER_KEY_INDEX) = SIBLING or &

& RELATI0N_T0_NEXT (LATER_KEY__INDEX) = COUSIN then
15280 ! nothing can follow spouse-sibling or spouse-cousin
15290 let ANOTHER_ELEMENT_POSSIBLE = FALSE
15300 end if

15310 end if

15320 ! PRIMARY_INDEX is now correctly set. Next if-statement
15330 ! determines if a following SPOUSE relation should be
15340 ! appended to this combination or left for the next
15350 ! combination.
15360 if RELATI0N_T0_NEXT (PRIMARY_INDEX + 1) = SPOUSE and &

& ANOTHER_ELEMENT_POSSIBLE = TRUE then
15370 ! Only a SPOUSE can follow a Primary
15380 ! check primary preceding and following SPOUSE.

15390 let PRIMARY_RELATION = RELATION_TO_NEXT (PRIMARY_INDEX)
15400 let NEXT_PRIMARY_RELATION = RELATION_TO_NEXT (PRIMARY_INDEX +
15410 if (NEXT_PRIMARY_RELATION = NEPHEW or &

& NEXT_PRIMARY_RELATION = COUSIN or &

& NEXr_PRIMARY_RELATION = NULL_RELATI0N) &

& or (PRIMARY_RELATION = NEPHEW) &

& or ((PRIMARY_RELATION = SIBLING or &

& PRIMARY_RELATION = PARENT) &

& and NEXT_PRIMARY_RELATION <> UNCLE) then
15420 ! append following SPOUSE with this combination
15430 let LATER_KEY_INDEX = LATER_KEY_INDEX + 1

15440 end if

15450 end if

15460 end if ! multi-element combination
15470 call DISPLAY_RELATION (KEY_INDEX, LATER_KEY_INDEX, PRIMARY_INDEX)
15480 let KEY_INDEX = LATER_KEY_INDEX + 1

15490 loop
15500 !

15510 print " "; NAME$ (PERS0N_INDEX (KEY_INDEX))
15520 end sub
15530 ! end of RESOLVE_PATH_TO_ENGLISH
15540 !

Page

15550 function SIBLING_PROXIMITY (INDEXl, INDEX2)
15560 ! Determines whether two PERSONS are full siblings, i.e.,
15570 ! have the same two parents

.

15580 if RELATIVE_IDENTIFIER$ (INDEXl, FATHER_IDENT) <> NULL_IDENT$ and
& RELATIVE_IDENTIFIER$ (INDEXl, M0THER_IDENT) <> NULL_IDENT$ and
& RELATIVE_IDENT1FIER$ (INDEXl, FATHER_IDENT) =

& RELATIVE_IDENTIFIER$ (INDEX2, FATHER_IDENT) and
& RELATIVE_IDENTIFIER$ (INDEXl, M0THER_IDENT) =

& RELATIVE_IDENTIFIER$ (INDEX2, M0THER_IDENT

)

15590 let SIBLINGJPROXIMITY = FULL
15600 else
15610 let SIBLING_PROXIMITY = HALF
15620 end if

15630 end function ! SIBLING_PROXIMITY
15640 !

15650 sub C0NDENSE_KEY_PERS0NS (AT_INDEX, GAP_SIZE)
15660 ! C0NDENSE_KEY_PERS0NS condenses superfluous entries from the
15670 ! key person array entries, starting at AT INDEX
15680 let RECEIVE_INDEX = AT_INDEX
15690 do
15700 let RECEIVE_INDEX = RECEIVE_INDEX + 1

15710 let SEND_INDEX = RECEIVE_INDEX + GAP_SIZE
15720 let RELATI0N_T0_NEXT (RECEIVE_INDEX) = RELATI0N_T0_NEXT (SEND
15730 let PERS0N_INDEX (RECEIVE_INDEX) = PERS0N_INDEX (SEND~

15740 let GENERATION_GAP (RECEIVE_INDEX) = GENERATION_GAP (SEND'

15750 let PROXIMITY (RECEIVE_INDEX) = PROXIMITY (SEND^

15760 let C0USIN_RANK (RECEIVE_INDEX) = C0USIN_RANK (SEND_

15770 loop until RELATION_TO_NEXT (SEND_INDEX) = NULL_RELATI0N
15780 end sub
15790 !

15800 sub DISPLAY_RELATION (FIRST_INDEX, LAST_INDEX, PRIMARY_INDEX)
15810 ! DISPLAYJRELATION takes 1, 2, or 3 adjacent elements in the

15820 ! condensed table and generates the English description of

15830 ! the relation between the first and last + 1 elements.
15840 !

15850 let FIRST_RELATION = RELATI0N_T0_NEXT (FIRST_INDEX)

15860 let LAST_RELATI0N = RELATI0N_T0_NEXT (LAST_INDEX)
15870 let PRIMARY_RELATION = RELATION_TO_NEXT (PRIMARY_INDEX)
15880 !

15890 ! set THIS_PROXIMITY
15900 if (PRIMARY_RELATION = PARENT and FIRST_RELATION = SPOUSE) or

& (PRIMARY_RELATION = CHILD and LAST_RELATION = SPOUSE) then

15910 let THIS_PROXIMITY = STEP
15920 else
15930 if PRIMARY_RELATION = SIBLING or &

& PRIMARY_RELATION = UNCLE or &

& PRIMARY_RELATION = NEPHEW or &

& PRIMARY_RELATION = COUSIN then

15940 let THIS_PROXIMITY = PROXIMITY (PRIMARY_INDEX)

15950 else
15960 let THIS_PROXIMITY = FULL
15970 end if

15980 end if

15990 !

&

&

&

&

&

ther

INDEX)
INDEX)
INDEX)
INDEX)
INDEX)

Page 48

16000
16010
&

&

&

&

16020
16030
16040

16050
16060
16070
16080
&

&

&

&

16090
16100
16110
&

&

&

&

16120
16130
16140

16150

16160
16170
16180
16190
16200

16210

16220
16230

16240
16250
16260

16270
16280
&

&

&

16290
16300
16310
16320
16330
16340
16350
16360
16370

! set THIS_GENERATION_GAP
if PRIMARY_RELATION = PARENT or

PRIMARY_RELATION = CHILD or

PRIMARY_RELATION = UNCLE or

PRIMARY_RELATION = NEPHEW or
PRIMARY RELATION = COUSIN then

let THIS_GENERATION_GAP = GENERATION_GAP (PRIMARY_INDEX)
else

let THIS_GENERATION_GAP = 0

end if
I

! set INLAW
if (FIRST_RELATION = SPOUSE) and &

(PRIMARY_RELATION = SIBLING or &

PRIMARY_RELATION = CHILD or &

PRIMARY_RELATION = NEPHEW or &

PRIMARY_RELATION = COUSIN) then
let INLAW = TRUE

else
if (LAST_RELATI0N = SPOUSE) and &

(PRIMARY_RELATION = SIBLING or &

PRIMARY_RELATION = PARENT or &

PRIMARY_RELATION = UNCLE or &

PRIMARY_RELATION = COUSIN) then

let INLAW = TRUE
else

let INLAW = FALSE
end if

end if

j

! set THIS_COUSIN_RANK
if PRIMARY_RELATION = COUSIN then

let THIS_COUSIN_RANK = C0USIN_RANK (PRIMARY_INDEX)
else

let THIS_COUSIN_RANK = 0

end if

!

! parameters are set - now generate display.

print NAME$ (PERSON INDEX (FIRST INDEX)); tab(23); "is

PRIMARY_RELATION = PARENT or &
PRIMARY_RELATION = CHILD or &

PRIMARY_RELATION = UNCLE or &

PRIMARY_RELATION = NEPHEW then
! print generation-qualifier
if THIS_GENERATION_GAP >= 3 then

print "great";
if THIS_GENERATION_GAP > 3 then

print "*"; str$ (THIS_GENERATION_GAP - 2);
end if

print "-";

end if

if THIS GENERATION GAP >= 2 then print "grand-";

Page 49

16380
16390
16400

16410
16420
16430

16440
16450
16460
16470
16480
16490
16500
16510
16520
16530

if THIS PROXIMITY

end if

elseif PRIMARY RELATION = COUSIN and THIS COUSIN RANK > 1 then
print str$ (THIS COUSIN RANK);

end select

print "step-";

select case mod (THIS_C0USIN RANK, 10)

case 3

print "rd
"

case else
print "th

"

case 2

print "nd
"

case 1

print "st
"

STEP then

16540 elseif THIS_PROXIMITY = HALF then
16550 print "half-";

16560 end if

16570 !

16580 let THIS GENDER$ = GENDER$ (PERSON INDEX (FIRST INDEX))
16590 select case PRIMARY RELATION
16600 case 1 ! PARENT
16610 if THIS GENDER$ = MALE$ then print "father"

;

else print "mother"

;

16620 case 2 ! CHILD
16630 if THIS GENDER$ = MALE$ then print "son"

;

else print "daughter"

;

16640 case 3 ! SPOUSE
16650 if THIS GENDER$ = MALE$ then print "husband"

;

else print "wife"

;

16660 case 4 ! SIBLING
16670 if THIS GENDER$ = MALE$ then print "brother"

;

else print "sister"

;

16680 case 5 ! UNCLE
16690 if THIS GENDER $ = MALE$ then print "uncle"

;

else print "aunt"

;

16700 case 6 ! NEPHEW
16710 if THIS GENDER$ = MALE$ then print "nephew"

;

else print "niece"

;

16720 case 7 ! COUSIN
16730 print "cousin";
16740 case else
16750 print "null";
16760 end select
16770 !

16780 if INLAW = TRUE then print "-in-law";
16790 !

16800 if PRIMARY_RELATION = COUSIN and THIS_GENERATION_GAP > 0 then

16810 if THIS_GENERATION_GAP > 1 then
16820 print THIS_GENERATION_GAP; "times removed";

16830 else
16840 print " once removed";
16850 end if

16860 end if

16870 !

16880 print " of"

16890 !

16900 end sub ! end of internal sub DISPLAY_RELATION
16910 end sub ! end of external sub FIND_RELATIONSHIP

16920 !

Page 50

16930 !
—— program-unit number 3 —

—

16940 !

16950 external sub COMPUTE_COMMON_GENES (INDEXl, INDEX2, IDENTIFIER$ (), &

& NEIGHB0R_C0UNT (), NEIGHBOR_INDEX (,), NEIGHB0R_EDGE (,), &

& DESCENDANT_IDENTIFIER$ (), DESCENDANT_GENES ())
16960 !

16970 ! C0MPUTE_C0MM0N_GENES assumes that each ancestor contributes
16980 ! half of the genetic material to a person. It finds common
16990 ! ancestors between two persons and computes the expected

17000 ! value of the PROPORTION of common material.
17010 !

17020 declare sub ZER0_PR0P0RTI0N, MARK_PR0P0RTI0N, CHECK_C0MM0N_PR0P0RTI0N
17030 !

17035 option base 1

17040 !

17045 data 1, 2, 3, 4, 5, 6, 7, 8

17050 read PARENT, CHILD, SPOUSE, SIBLING, UNCLE, NEPHEW
17055 read COUSIN, NULL_RELATION
17057 !

17060 ! Begin main line of execution of COMPUTE_COMMON_GENES
17065 !

17070 ! First zero out all ancestors to allow adding. This is necessary
17075 ! because there might be two paths to an ancestor.
17080 call ZEROJPROPORTION (INDEXl, 0)

17090 ! now mark with shared PROPORTION
17100 call MARK_PROPORTION (IDENTIFIER$ (INDEXl), 1.0, INDEXl, 0)
17110 let COMMON_PROPORTION =0.0
17120 call CHECK_C0MM0N_PR0P0RTI0N (C0MM0N_PR0PORTION, &

& IDENTIFIER$ (INDEXl), 1.0, 0.0, INDEX2, 0)
17130 print using " Proportion of common genetic material = #.#####^ ": &

& C0MM0N_PR0P0RTI0N
17140 !

17150 ! End main line of execution of C0MPUTE_C0MM0N_GENES
17160 !

17170 sub ZER0_PR0P0RTI0N (ZER0_INDEX, THIS_NEIGHB0R)
17180 ! ZER0_PR0PORTION recursively seeks out all ancestors and
17190 ! zeros them out
17200 let DESCENDANT_GENES (ZER0_INDEX) =0.0
17210 for THIS_NEIGHBOR = 1 to NEIGHBOR_COUNT (ZERO_INDEX)
17220 if NEIGHBOR_EDGE (ZERO_INDEX, THIS_NEIGHBOR) = PARENT then
17230 call ZER0_PR0PORTION &

& (NEIGHBOR_INDEX (ZERO_INDEX, THIS_NEIGHBOR)
, 0)

17240 end if

17250 next THIS_NEIGHBOR
17260 end sub ! ZERO_PROPORTION
17270 !

Page 51

17280 sub MARK_PROPORTION (MARKER$, PROPORTION, MARKED_INDEX, THIS_NEIGHBOR

)

17290 ! MARK_PROPORTION recursively seeks out all ancestors and
17300 ! marks them with the sender's PROPORTION of shared
17310 ! genetic material. This PROPORTION is diluted by one-half
17320 ! for each generation
17330 let DESCENDANT_IDENTIFIER$ (MARKED_INDEX) = MARKER$
17340 let DESCENDANT_GENES (MARKED_INDEX) = &

& DESCENDANT_GENES (MARKED_INDEX) + PROPORTION
17350 for THIS_NEIGHBOR = 1 to NEIGHBORjCOUNT (MARKED_INDEX)
17360 if NEIGHBOR_EDGE (MARKED_INDEX, THIS_NEIGHBOR) = PARENT then
17370 call MARK_PROPORTION (MARKER$, PROPORTION / 2.0, &

& NEIGHBOR_INDEX (MARKED_INDEX, THIS_NEIGHBOR) , 0)

17380 end if

17390 next THIS_NEIGHBOR
17400 end sub ! MARK_PROPORTION
17410 !

17420 sub CHECK_COMMON_PROPORTION (COMMON_PROPORTION, MATCH_IDENTIFIER$, &

& PROPORTION, ALREADYjCOUNTED, CHECK_INDEX, THIS_NEIGHBOR)
17430 ! CHECK_COMMON_PROPORTION searches all the ancestors of

17440 ! CHECK_INDEX to see if any have been marked, and if so

17450 ! adds the appropriate amount to COMMON_PROPORTION
17460 if DESCENDANT_IDENTIFIER$ (CHECK_INDEX) = MATCH_IDENTIFIER$ then

17470 ! Increment COMMON_PROPORTION by the contribution of

17480 ! this common ancestor, but discount for the contribution
17490 ! of less remote ancestors already counted
17500 let THISjCONTRIBUTION = DESCENDANT_GENES (CHECK_INDEX) * PROPORTION
17510 let COMMON_PROPORTION = COMMON_PROPORTION &

& + THISJCONTRIBUTION - ALREADY_COUNTED
17520 else
17530 let THIS_CONTRIBUTION =0.0
17540 end if

17550 for THIS_NEIGHBOR = 1 to NEIGHBORJCOUNT (CHECK_INDEX)
17560 if NEIGHBOR_EDGE (CHECK_INDEX, THIS_NEIGHBOR) = PARENT then

17570 call CHECK_COMMON_PROPORTION (COMMON_PROPORTION , &

& MATCH_IDENTIFIER$, PROPORTION / 2.0, &

& THISJCONTRIBUTION / 4.0, &

& NEIGHBOR_INDEX (CHECK_INDEX, THIS_NEIGHBOR) , 0)

17610 end if

17620 next THIS_NEIGHBOR
17630 !

17640 end sub ! end of internal sub CHECKjCOMMON_PROPORTION
17650 end sub ! end of external sub COMPUTE COMMON GENES

Page 52

4.0 C

The identifiers NULL and FILE are capitalized, even though they are supplied by

the standard run-time library, because identifiers in C are case-sensitive,
e.g., "null" is not equivalent to "NULL".

/* Bring in standard routines for run-time support */

//include <stdio.h>

/* Global types and objects */

typedef short int BOOLEAN;

//define TRUE 1

//define FALSE 0

//define EQUALS 0

//define NULL_ID "000"

//define NULLjCHR '\0'

//define MAX_PERS 300

//define NAME_LEN 20
/* every PERSON has a unique 3-digit IDENT */

//define ID_LEN 3

//define BUF_LEN 60

/* Use "+ 1" when treating type as variable-length - extra character
used to hold NULL_CHR termination character. */

typedef char NAMEJT'^P [NAME_LEN + 1];

typedef char BUF_TYPE [BUF_LEN + 1];
typedef char MSG_TYPE [40 +1];
typedef char ID_TYPE [ID_LEN +1];

typedef int INDXJTYP, COUNTER;

/* each person's record in the file identifies at most thre-

others directly related: father, mother, and spouse */

typedef short int GIVEN_ID;
//define FATHR_ID 0

//define MOTHR_ID 1

//define SPOUS_ID 2

//define MAX_GVEN 3

typedef IDJTYPE REL_ARRY [MAX_GVEN];

//define REQjDK "Request OK"
//define REQ_STOP "stop"

typedef char GNDR_TYP;
//define MALE 'M'

//define FEMALE 'F'

Page 53

typedef unsigned int REL_TYPE

;

/* Values defined as octal powers of two to facilitate comparisons
of one relation with several possibilities. */

//define PARENT 0001
#define CHILD 0002
#define SPOUSE 0004
#define SIBLING 0010
#define UNCLE 0020
//define NEPHEW 0040
//def ine COUSIN 0100
//define NULL REL 0200

/* directed edges in the graph are of a given type */

typedef RELJTYPE EDG_TYPE;

/* A node in the graph (= PERSON) has either already been reached,
is immediately adjacent to those reached, or farther away. */

typedef short int REACHJTY;
//define REACHED 1

//define NEARBY 2

//define NOT SEEN 3

/* each PERSON has a linked list of adjacent nodes, called neighbors */

typedef struct NBR_N0DE

{ INDXJTYP NBR_DEX;

EDGJTYPE NBR_EDGE

;

struct NBR_N0DE *NEXT_NBR;

}

NBR_REC, *NBR_PTR;

/* All relationships are captured in the directed graph of which

each record is a node . */

typedef struct

{

/* static information - filled from PEOPLE file: */

NAMEJIYP NAME

;

ID_TYPE IDENT;

GNDRJTYP GENDER

;

/* IDENTs of immediate relatives - father, mother, spouse */

REL_ARRY REL_ID;
/* head of linked list of adjacent nodes */

NBR_PTR NBR_HDR;
/* data used when traversing graph to resolve user request: */

float DIST_SRC

;

INDXJTYP PATHPRED;

EDGJTYPE EDG_PRED;
REACHJTY REACH_3T;

/* data used to compute common genetic material */

IDJTYPE DSC_ID;
float DSC_GENE

;

}

PERS REC;

Page 54

/« the PERSON array Is the central repository of Information
about inter-relatlonshlps . */

PERS_REC PERSON [MAX_PERS];
INDX_TYP NUM_PERS;

/* Key persons are the ones In the RELJSHIP path which remain
after the path is condensed. •/

typedef short int SIB_TYPE;
//define STEP 1

#define HALF 2
^define FULL 3

typedef struct

{ REL_TYPE
INDXJTYP
COUNTER
SIB_TYPE
COUNTER

}

KEY REC;

RELJIEXT;
PERS_DEX;
GEN_GAP;
PROXIMTY;
CUZ RANK;

/»»»»»*»»*» Main line of execution RELATE »«*»»»»»»»/

main (

)

{ /* These variables are used when establishing the PERSON array
from the PEOPLE file. »/

FILE
register INDXJTYP
IDJTYPE
GIVEN_ID
char

»fopen(), "PEOPLE;
CURRENT, PREVIOUS;
PREV_ID, CUR_ID;

RELJSHIP;
INP BUF [100];

/* These variables are used to accept and resolve requests for
RELJSHIP information. »/

COUNTER SEMI_LOC

;

BUFJTYPE REQ_BUF;
BUFJTYPE P1_IdENT, P2_IDENT;
COUNTER P1_F0UND, P2_F0UND;
MSGJTYPE ERR MSG;
INDXJTYP PI TNDEX, P2 INDEX;

Page 55

/* *** execution of main sequence begins here *** */

PEOPLE = fopen("PEOPLE. DAT", "r");

/* This loop reads in the PEOPLE file and constructs the PERSON
array from it (one PERSON == one record == one array entry).
As records are read in, links are constructed to represent the

PARENT-CHILD or SPOUSE REL_SHIP. The array then Implements
a directed graph which is used to satisfy subsequent user
requests. The file is assumed to be correct - no validation
is performed on it . */

READ_PEO:
for (CURRENT =0; ; CURRENT-H-)

{

/* copy direct information from file to array */

if (PXD_GETC (PERSON [CURRENT] . NAME, PEOPLE, NAME_LEN)
== EOF)

break;
FXD_GETC (PERSON [CURRENT] . IDENT, PEOPLE, ID_LEN);
FXD_GETC (&(PERSON [CURRENT] . GENDER), PEOPLE, 1);

for (REL_SHIP = FATHR_ID; REL_SHIP < MAX_GVEN; REL_SHIP-H-)
FXD_GETC (PERSON [CURRENT] . REL_ID [REL_SHIP] ,

PEOPLE, ID_LEN);
/* flush remainder of record */

fgets (1NP_BUF, 100, PEOPLE);
/* Location of adjacent persons as yet undetermined */

PERSON [CURRENT] . NBR_HDR = NULL;

/* Descendants as yet undetermined */

Stropy (PERSON [CURRENT] . DSC_ID, NULL_ID);

/* Compare this PERSON against all previously entered PERSONS

to search for REL_SHIPs . */

strcpy (CUR_ID, PERSON [CURRENT] . IDENT);

CMP_PREV:
for (PREVIOUS = 0; PREVIOUS < CURRENT; PREVIOUS-H-)

{

strcpy (PREV_ID, PERSON [PREVIOUS] . IDENT);

/* Search for father, mother, or spouse relationship in

either direction between this and PREVIOUS PERSON.

Assume at most one REL_SHIP exists. */

TRY_RELS

:

for (REL_SHIP = FATHR_ID; REL_SHIP < MAX_GVEN; REL_SHIP++)

{

if (STREQ (PREV_ID, PERSON [CURRENT] . REL_ID [REL_SHIP]))

{

LINK_REL (CURRENT, REL_SHIP, PREVIOUS);

break;

}

else
if (STREQ (CUR_ID, PERSON [PREVIOUS] . REL_ID [REL_SHIP]))

{

LINK_REL (PREVIOUS, REL_SHIP, CURRENT);

break;

}

} /* end TRY_RELS */

} /* end CMP_PREV */

} /* end READJPEO */

NUM_PERS = CURRENT;

fclose (PEOPLE);

Page 56

/* PERSON array is now loaded and edges between immediate relatives
(PARENT-CHILD or SPOUSE-SPOUSE) are established.

While-loop accepts requests and finds REL_SHIP (if any)

between pairs of PERSONS. */

PROC_REQ:
while (TRUE)

{

PROMPT (REQ_BUF);
if (STREQ (REQ_BUF, REQ_STOP))

break;
SEMI_LOC = CHK_RQST (REQ_BUF, ERR_MSG);

/* Syntax check of request completed. Now either display error *

message or search for the two PERSONS. */

if (STREQ (ERR_MSG, REQ_OK))

{ /* Request syntactically correct - search for requested PERSONS. */

REQ_BUF [SEMI_LOC] = NULL_CHR;
BUF_PERS (REQ_BUF, 0, P1_IDENT);

BUF_PERS (REQJBUF, SEMI_LOC + 1, P2_IDENT);
SEEK_PER (P1_IDENT, P2_IDENT, & P1_INDEX, & P2_INDEX,

& P1_F0UND, & P2_F0UND);
if (P1_F0UND == 1 && P2_F0UND == 1)

/* Exactly one match for each PERSON - proceed to

determine REL_SHIP, if any. */

if (P1_INDEX == P2_INDEX)
printf (" %ls is identical to %8s \n"

,

PERSON [P1_INDEX] . NAME,
(PERSON [P1_INDEX] . GENDER == MALE) ?

"himself." : "herself.");
else

FIND_REL (P1_INDEX, P2_INDEX);
else /* either not found or more than one found */

if (P1_F0UND == 0)
printf (" First person not found. \n");

else if (P1_F0UND > 1)

{

printf (" Duplicate names for first person -");

printf (" use numeric identif ier .\n")

;

}

if (P2_F0UND == 0)
printf (" Second person not found.\n");

else if (P2_F0UND > 1)

{

printf (" Duplicate names for second person -");

printf (" use numeric identif ier .\n")

;

}

} /* end processing of syntactically legal request */

else
printf (" Incorrect request format: %ls \n" , ERR_MSG);

} /* end PROC_REQ loop */
~

printf (" End of relation-finder. \n");

}

/* End of main line of RELATE */

Page 57

/* procedures under RELATE »/

FXD GETC (RECEIVER, SENDING, GET LEN)

char
FILE
int

•RECEIVER;
•SENDING;
GET LEN;

{ register int CHAR_CNT;

for (CHAR_CNT = 0;

CHAR_CNT++ < GET_LEN && (»RECEIVER++ = getc (SENDING)) ! = EOF ;) ;

if (CHAR_CNT >= GET_LEN)

{

•RECEIVER = NULL_CHR;
return !EOF;

}

else
return EOF;

STREQ (STRING1, STRING2)
/• compare for equality, ignore trailing spaces •/

register char •STRING 1 ,
•STRING2;

{ register char •LONGER;

for (; •STRING 1 == •STRING2; STRING STRING2++)

if (•STRING 1 == NULL_CHR)
return TRUE;

if (•STRING 1 == NULL_CHR)
LONGER = STRING2;

else
if (•STRING2 == NULL_CHR)

LONGER = STRING 1;

else
return FALSE;

for (; •LONGER++ =='';);
return (•—LONGER == NULL_CHR);

}

Page 58

LINK_REL (FROM_DEX, REL_SHIP, TO_INDEX)
/* establishes cross-indexing between immediately related PERSONS. */

register INDXJTYP FROM_DEX, TO_INDEX;

register GIVEN_ID REL_SHIP;

{ /* execution of LINK_REL */

if (REL_SHIP == SPOUS_ID)

{

LINK_ONE (FROMJDEX, SPOUSE, TO_INDEX);

LINK_ONE (TO_INDEX, SPOUSE, FROM_DEX);

}

else /* REL_SHIP is father or mother */

{

LINK_ONE (FROMJDEX, PARENT, TO_INDEX);
LIN-K_ONE (TO_INDEX, CHILD, FROM_DEX);

}

LINK_ONE (FROM_DEX, THIS_EDG, TO_INDEX)
/* Establishes the NBR_REC from one PERSON to another */

INDXJTYP FROMJDEX, TO_INDEX;

EDGJTYPE THIS_EDG;

{ register NBR_PTR NEWJ^BR;

NEW_NBR = (NBR_REC *) calloc(l, sizeof (NBR_REC))

;

NEW_NBR -> NBRJDEX = TO_INDEX;
NEW_NBR -> NBR_EDGE = THIS_EDG;
NEW_NBR -> NEXTJJBR = PERSON [FROM_DEX] . NBRJIDR;
PERSON [FROM_DEX] . NBR_HDR = NEW_NBR;

}

PROMPT (REQ_BUF)
/* Issues prompt for user-request, reads in request,

blank-fills buffer, and skips to next line of input. */

BUFJTYPE REQ_BUF

;

{

print f (" \n");
printf (** \n");

printf (" Enter two person-identifiers (name or number) ,\n");

printf (" separated by semicolon. Enter \"stop\" to stop.\n");
fgets (REQ_BUF, BUFJ.EN, stdin);
for (; *REQJBUF-H- != '\n'

;) ;

*~REQ BUF = '\0';

}

CHK_RQST (REQ_BUF, REQ_STAT)
/* Performs syntactic check on request in buffer. */

BUFJTYPE REQ_BUF;
MSGJCYPE REQ_STAT

;

{ COUNTER SEMI_LOC = 1,

SEMI_CNT = 0;

register COUNTER BUFJDEX;

BOOLEAN P1_EXIST = FALSE,
P2_EXIST = FALSE;

strcpy (REQ_STAT, REQJDK);
for (BUF_DEX = 0; BUF_DEX < BUF_LEN && REQ_BUF [BUF_DEX]; BUF_DEX-H-)

{

if (REQJBUF [BUFJDEX] != ' ')

if (REQ_BUF [BUFJDEX] == ';')

{

SEMI_LOC = BUFJ)EX;
SEMIj:NT = SEMIJCNT + 1;

}

else /* Check for non-blanks before/after semicolon. */

if (SEMIJCNT < 1)

P1_EXIST = TRUE;
else

P2_EXIST = TRUE;

}

/* set REQ_STAT, based on results of scan of REQ_BUF. */

if (SEMIJCNT != 1)

strcpy (REQ_STAT, "must be exactly one semicolon.");
else if (! Pl_EXIST)

strcpy (REQ_STAT, "null field preceding semicolon.");

else if (! P2_EXIST)
strcpy (REQ_STAT, "null field following semicolon.");

return SEMIj:.OC;

}

ByF_PERS (REQJ5UF, BUFJ)EX, PERS_ID)
/* fills in the PERS_ID from the designated portion

of the REQ_BUF, deleting leading blanks. */

BUFJTYPE REQ_BUF

;

register COUNTER BUFJDEX;
NAME TYP PERS ID;

for (; REQJBUF [BUFJ)EX++]
strcpy (PERS ID, &REQ_BUF

[

=='';);
—BUF DEX]);

Page 60

SEEK_PER (P1_IDENT, P2_IDENT, P1_INDEX, P2_INDEX,

P1_F0UND, P2_F0UND)
/» SEEK_PER scans through the PERSON array,

looking for the two requested PERSONS. Match may be by NAME
or unique IDENT-number. »/

BUFJTYPE P1_IDENT, P2_IDENT;

INDXJTYP »P1_INDEX, »P2_INDEX;

COUNTER »P1_F0UND, »P2_F0UND;

{ register INDXJTYP CURRENT;

*P1_INDEX =0;
»P2_INDEX = 0;

»P1_F0UND = 0;

»P2_F0UND =0;
SCAN_PER

:

for (CURRENT = 0; CURRENT < NUM PERS; CURRENT++)

{

/• allow identification by name or number. */

if (STREQ (P1_IDENT, PERSON [CURRENT] . IDENT) I I

STREQ (P1_IDENT, PERSON [CURRENT] . NAME))

{

(»P1_F0UND)++;
»P1_INDEX = CURRENT;

}

if (STREQ (P2_IDENT, PERSON [CURRENT] . IDENT) I I

STREQ (P2_IDENT, PERSON [CURRENT] . NAME))

{

(»P2_F0UND)++;
«P2_INDEX = CURRENT;

}

} /» end SCAN_PER loop »/

} /» end of SEEK PER »/

Page 61

FIND_REL (TARG_DEX, SRCEJDEX)
/* Finds shortest path (if any) between two PERSONS and

determines their REL_SHIP based on immediate relations
traversed in path. PERSON array simulates a directed graph,
and algorithm finds shortest path, based on following
weights: PARENT-CHILD edge - 1.0

SPOUSE-SPOUSE edge = 1.8 */

INDXJTYP

{ register INDXJTYP
INDXJTYP

register NBR_PTR
float

typedef short int

#define SEARCHNG

#define SUCCESS
//define FAILED

SRCHJTYP

/* begin execution of FINDJREL */

/* initialize PERSON-array for processing -

mark all nodes as not seen */

for (PERSJ)EX = 0; PERSJDEX < NUM_PERS; PERSJ)EX-H-)

PERSON [PERSJ)EX] . REACH_ST = NOT_SEEN;
THIS_NOD = SRCEJ)EX;
/* mark source node as REACHED */

PERSON [THISJJOD] . REACH_ST = REACHED;

PERSON [THISJJOD] . DIST_SRC = 0.0;

/* no NEARBY nodes exist yet */

LSTJJRBY = -1;

SRCH ST = (THIS NOD = TARGJ)EX) ? SUCCESS : SEARCHNG;

TARGJDEX, SRCEJDEX;

PERSJ)EX;
THISJJOD, BESTJ)EX, LSTJfRBY,
NRBY_ND [MAX_PERS];
THIS_NBR;
MINJ)IST;

SRCHJTYP;
1

2

3

SRCH ST;

Page 62

/* Loop keeps processing closest-to-source , unREACHED node
until target REACHED, or no more connected nodes. */

SEEKTARG:
while (SRCH_ST == SEARCHNG)

{ /* Process all nodes adjacent to THIS_NOD */

for (THIS_NBR = PERSON [THIS_NOD] . NBR_HDR;
THIS_NBR != NULL;

THIS_NBR = THISJJBR -> NEXT_NBR)
PROC_ADJ (THIS_NOD, THIS_NBR -> NBR_DEX, THIS_NBR -> NBR_EDGE,

NRBY_ND, &LST_NRBY);

/* All nodes adjacent to THIS_NOD are set. Now search for

shortest-distance tinREACHED (but NEARBY) node to process next. */

if (LST_NRBY == -1)

SRCH_ST = FAILED;

else /* determine next node to process */

{

MIN_DIST = l.OE+18;

for (PERS_DEX = 0; PERSJDEX <= LST_NRBY; PERS_DEX-++)

if (PERSON [NRBY ND [PERS DEX]] . DIST SRC < MIN DIST)

{

BEST_DEX = PERS_DEX;
MIN_DIST = PERSON [NRBY_ND [PERS_DEX]] . DIST SRC;

}

/* establish new THISJJOD */

THIS_NOD = NRBY_ND [BEST_DEX];
/* change THISJJOD from being NEARBY to REACHED */

PERSON [THIS_NOD] . REACH_ST = REACHED;
/* remove THISJJOD from NEARBY list */

NRBY_ND [BEST_DEX] = NRBYJID [LSTJJRBY—];

if (THISJJOD == TARGJDEX)
SRCH_ST = SUCCESS;

}

} /* end SEEKTARG loop */

/* Shortest path between PERSONS now established. Next task is

to translate path to English description of REL_SHIP. */

if (SRCH_ST == FAILED)
printf (" %ls is not related to %ls\n",

PERSON [TARGJ)EX] . NAME, PERSON [SRCE_DEX] . NAME);

else /* success - parse path to find and display REL_SHIP */

{

RESOLVE (SRCEJ)EX, TARGJ)EX);
CMPT GNS (SRCE DEX, TARG DEX);

}

} /* end FIND REL */

/* procedures under FIND_REL */

PROC_ADJ (BASENODE, NXT_NODE
, N_B_EDGE, NRBY_ND, LSTNRBY)

/* NXT_NODE is adjacent to last-REACHED node (== BASENODE).
If NXT_NODE already REACHED, do nothing.
If previously seen, check whether path thru BASENODE is

shorter than current path to NXT_NODE, and if so re-link
next to base

.

If not previously seen, link next to base node. */

register INDXJTYP NXT_NODE;
INDXJTYP BASENODE, NRBY_ND[], *LST_NRBY;
EDGJTYPE N_B_EDGE

;

{ float WGHT_EDG, DIST_BAS;

/* begin execution of PROC_ADJ */

if (PERSON [NXT_NODE] . REACH_ST != REACHED)

{

WGHT_EDG = (N_B_EDGE == SPOUSE) ? 1.8 : 1.0;

DIST_BAS = WGHT_EDG + PERSON [BASENODE] . DIST_SRC;
if (PERSON [NXT_NODE] . REACH_ST == NOT_SEEN)

{

PERSON [NXT_NODE] . REACH_ST = NEARBY;

NRBY_ND [++ *LST_NRBY] = NXT_NODE

;

/* link next to base by re-setting its predecessor index to

point to base, note type of edge, and re-set distance
as it is through base node. */

PERSON [NXT_NODE] . DIST_SRC = DIST_BAS;
PERSON [NXTJJODE] . PATHPRED = BASENODE;
PERSON [NXT_NODE] . EDG_PRED = N_B_EDGE

;

}

else /* REACH_ST = NEARBY */

if (DISTJBAS < PERSON [NXTJJODE] . DIST_SRC)

{ /* link next to base by re-setting its predecessor index
point to base, note type of edge, and re-set distance

as it is through base node. */

PERSON [NXT_NODE] . DIST_SRC = DIST_BAS;
PERSON [NXTJJODE] . PATHPRED = BASENODE;

PERSON [NXT_NODE] . EDG_PRED = NJJDGE;
}

}

} /* end PROC ADJ */

Page 64

RESOLVE (SRCE_DEX, TARGJDEX)
/* RESOLVE condenses the shortest path to a

series of REL_SHIPs for which there are English

descriptions. */

INDX_TYP SRCE_DEX, TARG_DEX;

{ /* these variables are used to generate KEY_PERSs */

COUNTER GEN_CNT;

/* these variables are used to condense the path */

KEY_REC KEY_PERS [MAX_PERS]

;

RELJTYPE KEY_REL, LKEY_REL, PRIM_REL, NXT_PRIM;
register INDXJTYP KEY_DEX;
INDXJTYP LKEY_DEX, PRIM_DEX, THIS_NOD;

BOOLEAN SEEKMORE

;

/* begin execution of RESOLVE */

printf (" Shortest path between identified persons: \n");
/* Display path and initialize KEY_PERS array from path element

TRAVERSE:
for (THIS_NOD = TARG_DEX, KEY_DEX = 0; THIS_NOD != SRCEJDEX;

THIS_NOD = PERSON [THIS_NOD] . PATHPRED, KEY_DEX-H-)

{

printf (" %ls is ", PERSON [THIS_NOD] . NAME);
KEY_PERS [KEY_DEX] . PERS_DEX = THIS_NOD;
KEY_PERS [KEY_DEX] . PROXIMTY == FULL;
KEY_PERS [KEY_DEX] . REL_NEXT = PERSON [THIS_NOD] . EDG_PRED
switch (PERSON [THIS_NOD] . EDG_PRED)

{

case PARENT: printf ("parent of\n");
KEY_PERS [KEY_DEX] . GEN_GAP = 1;

break;
case CHILD : printf ("child of\n");

KEY_PERS [KEYJDEX] . GEN_GAP = 1;

break;
case SPOUSE: printf ("spouse of\n");

KEY_PERS [KEY_DEX] . GEN_GAP = 0;

break;

} /* end switch */

} /* end TRAVERSE loop */

printf (" %ls\n", PERSON [THIS_NOD] . NAME);
KEY_PERS [KEY_DEX] . PERSJDEX = THIS_NOD;
KEY_PERS [KEY_DEX] . REL_NEXT = NULL_REL;
KEY PERS [KEY DEX + 1] . REL NEXT = NULL REL;

Page 65

/* Resolve CHILD-PARENT and CHILD-SPOUSE-PARENT relations
to SIBLING relations. */

FIND_SIB:
for (KEYJDEX = 0; KEY_PERS [KEY DEX] . REL NEXT != NULL REL; KEY DEX-H-)

{
_ - _ _

if (KEY_PERS [KEY_DEX] . REL NEXT == CHILD)
{

LKEY_REL = KEY_PERS [KEY_DEX + 1] . REL_NEXT;
If (LKEY_REL == PARENT)

{ /* found either full or half SIBLINGS */

BOOLEAN FULL_SIB();

KEY_PERS [KEY_DEX] . PROXIMTY =

FULL_SIB (KEY_PERS [KEY_DEX] . PERS_DEX,
KEY_PERS [KEY_DEX + 2] . PERS_DEX)

? FULL : HALF;
KEY_PERS [KEY_DEX] . GEN_GAP = 0;

KEY_PERS [KEY_DEX] . REL_NEXT = SIBLING;
CONDENSE (KEY_DEX, 1, KEY_PERS);

}

else
if (LKEY_REL == SPOUSE

&& KEY_PERS [KEYJDEX + 2] . REL_NEXT == PARENT)
{ /* found step-SIBLINGs */

KEY_PERS [KEY_DEX] . GEN_GAP = 0;

KEY_PERS [KEY_DEX] . PROXIMTY = STEP;
KEY_PERS [KEYJDEX] . REL_NEXT = SIBLING;
CONDENSE (KEY_DEX, 2, KEY_PERS)

;

}

} /* end if RELJJEXT == CHILD */

} /* end FIND_SIB loop */

/* Resolve CHILD-CHILD-. . . and PARENT-PARENT-. . . relations to

direct descendant or ancestor relations. */

FIND_ANC:
for (KEY_DEX = 0; KEY_PERS [KEY_DEX] . REL_NEXT != NULL_REL; KEY_DEX-H-)

{

if (KEY_PERS [KEY_DEX] . RELJJEXT == CHILD | |

KEY_PERS [KEY_DEX] . REL_NEXT == PARENT)

{

for (LKEY_DEX = KEYJDEX + 1;

KEYJPERS [LKEY_DEX] . RELJJEXT == KEYJ>ERS [KEYJDEX] . RELJJEXT;
LKEY_DEX-H-)

;

GENJ:NT = LKEYJDEX - KEYJDEX;
if (GENJJNT > 1) /* compress generations */

{

KEYJ'ERS [KEYJDEX] . GEN_GAP = GENJINT;
CONDENSE (KEY_DEX, GENJ]NT - 1, KEY_PERS)

;

}

} /* end if RELJJEXT == CHILD or PARENT */

} /* end FIND ANC loop */

Page 66

/* Resolve CHILD-SIBLING-PARENT to COUSIN,
CHILD-SIBLING to NEPHEW,
SIBLING-PARENT to UNCLE. */

FIND_CUZ:
for (KEYJDEX = 0; KEY_PERS [KEY_DEX] . REL_NEXT != NULL_REL; KEY_DEX-H-)

{

LKEY_REL = KEY_PERS [KEYJDEX + 1] . REL_NEXT;

if (KEY_PERS [KEY_DEX] . REL_NEXT == CHILD && LKEY_REL == SIBLING)

{ /* COUSIN or NEPHEW */

if (KEY_PERS [KEY_DEX + 2] . REL_NEXr == PARENT)

{ /* found COUSIN */

COUNTER GAPl, GAP2;

GAPl = KEY_PERS [KEY_DEX] . GEN_GAP;
GAP2 = KEYJPERS [KEY_DEX + 2] . GEN_GAP;
KEY_PERS [KEY_DEX] . PROXIMTY = KEY_PERS [KEY_DEX + 1] . PROXIMTY;
KEY_PERS [KEY_DEX] . GEN_GAP

= (GAPl < GAP2) ? (GAP2 - GAPl) : (GAPl - GAP2);

KEY_PERS [KEY_DEX] . CUZ_RANK = (GAPl < GAP2) ? GAPl : GAP2;
KEY_PERS [KEYJDEX] . RELJ^EXT = COUSIN;
CONDENSE (KEY_DEX, 2, KEY_PERS)

;

}

else /* found NEPHEW */

{

KEY_PERS [KEYJDEX] . PROXIMTY = KEYJ>ERS [KEYJDEX + 1] . PROXIMTY;
KEY_PERS [KEYJ)EX] . REL_NEXT = NEPHEW;
CONDENSE (KEYJDEX, 1, KEYJ>ERS);

}

} /* end COUSIN or NEPHEW */

else

if (KEYJ>ERS [KEYJDEX] . RELJJEXT == SIBLING && LKEYJIEL == PARENT)

{ /* found UNCLE */

KEYJ>ERS [KEYJDEX] . GENJSAP = KEYJ'ERS [KEYJDEX + 1] . GENJSAP;
KEY_PERS [KEY_DEX] . RELJJEXT = UNCLE;
CONDENSE (KEYJDEX, 1, KEYJ'ERS);

}

} /* end FIND CUZ loop */

Page 67

/* Loop below will pick out valid adjacent strings of elements
to be displayed. KEY_DEX points to first element,
LKEY_DEX to last element, and PRIM_DEX to the
element which determines the primary English word to be used.
Associativity of adjacent elements in condensed table
is based on English usage. */

printf (" Condensed path:\n");
CONSLIDT

:

for (KEYJDEX = 0; KEY_PERS [KEY_DEX] . REL_NEXT != NULL_REL;
KEY DEX = LKEY DEX + 1)

{

KEY_REL = KEY_PERS [KEY_DEX] . RELJIEXT;
LKEY_DEX = KEY_DEX;
PRIMJDEX = KEY_DEX;
if (KEY_PERS [KEY_DEX + 1] . REL_NEXT != NULL_REL)

{ /* seek multi-element combination */

SEEKMORE = TRUE;

if (KEY_REL == SPOUSE)

{

PRIMJDEX = -H-LKEY_DEX;

/* Nothing can follow SPOUSE-SIBLING or SPOUSE-COUSIN */

SEEKMORE = ! (KEY PERS [LKEY DEX] . REL NEXT & (SIBLING
I
COUSIN));

}
_ - _

/* PRIMJDEX is now correctly set. Next if-statement
determines if a following SPOUSE relation should be

appended to this combination or left for the next

combination. */

if (SEEKMORE && KEY_PERS [PRIM_DEX + 1] . RELJJEXT == SPOUSE)

{ /* Only a SPOUSE can follow a Primary;

check primary preceding and following SPOUSE. */

PRIM_REL = KEY_PERS [PRIM_DEX] . REL_NEXT;
NXT_PRIM = KEY_PERS [PRIM_DEX + 2] . RELJJEXT;
if ((NXT_PRIM & (NEPHEW | COUSIN

I
NULL_REL))

I I
(PRIM_REL == NEPHEW)

II ((PRIM_REL & (SIBLING
|
PARENT)) && NXT_PRIM != UNCLE))

/* append following SPOUSE with this combination. */

LKEY_DEX-H-;

}

} /* end multi-element combination */

SHOW_REL (KEYJDEX, LKEY_DEX, PRIM_DEX, KEY_PERS);

} /* end CONSLIDT loop */

printf (" %ls\n", PERSON [KEYJ>ERS [KEYJ)EX] . PERSJ)EX] . NAME);

} /* end of RESOLVE */

Page 68

BOOLEAN FULL_SIB (INDEXl, INDEX2)
/* Determines whether two PERSONS are full siblings, I.e.,

have the same two parents. */

register INDX TYP INDEXl, INDEX2;

{

}

return
! STREQ (PERSON [INDEXl
! STREQ (PERSON [INDEXl

STREQ (PERSON [INDEXl] .

PERSON [INDEX2] .

STREQ (PERSON [INDEXl] .

PERSON [INDEX2] ,

. REL_ID [FATHR_ID], NULL_ID) &&

. REL_ID [MOTHR_ID] , NULL_ID) &&

REL_ID [FATHR_ID],
REL_ID [FATHR_ID]) &&
REL_ID [MOTHR_ID],
REL ID [MOTHR ID]);

CONDENSE (AT_INDEX, GAP_SIZE, KEY_PERS)
/* CONDENSE condenses superfluous entries from the

KEY PERS array, starting at AT INDEX. */

register INDXJIYP
COUNTER
KEY_REC

{ register INDXJTYP

do

{

AT_INDEX;
GAP_SIZE;

KEY_PERS [];

SEND DEX;

AT_INDEX-H-;

SEND_DEX = AT_INDEX + GAP_SIZE;
KEY_PERS [AT_INDEX] = KEY_PERS [SEND_DEX];

}

while (KEY PERS [SEND DEX] . REL NEXT != NULL REL);

Page 69

/* procedures under RESOLVE */

SHOW_REL (FRST_DEX, 1AST_DEX, PRIM_DEX, KEY_PERS)
/* SHOW_REL takes 1, 2, or 3 adjacent elements in the

condensed table and generates the English description of
the relation between the first and last + 1 elements. */

INDXJTYP
KEY_REC

BOOLEAN
SIBJTYPE
GNDRJTYP
short int
register REL_TYPE
COUNTER

FRST_DEX, LAST_DEX, PRIM_DEX;
KEY_PERS [];

INLAW;
THIS_PRX;
THIS_GND;
SUFFIX;
FRST_REL, LAST_REL, PRIM_REL;
THIS GAP, THIS CUZ

;

FRST_REL = KEY_PERS [FRST_DEX] . REL_NEXT;
LAST_REL = KEY_PERS [LAST_DEX] . REL_NEXT;
PRIM_REL = KEYJPERS [PRIM_DEX] . REL_NEXT;

/* set THIS_PRX */

if ((PRIM_REL == PARENT && FRST_REL = SPOUSE) ||

(PRIM_REL == CHILD && LAST_REL == SPOUSE))
THIS_PRX = STEP;

else
if (PRIM_REL & (SIBLING

I
UNCLE | NEPHEW I COUSIN))

THIS_PRX = KEY_PERS [PRIM_DEX] . PROXIMTY;

else
THIS_PRX = FULL;

/* set THIS_GAP */

if (PRIM_REL & (PARENT | CHILD | UNCLE I
NEPHEW I

COUSIN))

THIS_GAP = KEY_PERS [PRIM_DEX] . GEN_GAP;

else
THIS_GAP =0;

/* set INLAW */

INLAW = FALSE;
if (FRST_REL == SPOUSE && (PRIM_REL & (SIBLING | CHILD | NEPHEW

I
COUSIN)))

INLAW = TRUE;
else

if (LAST_REL == SPOUSE &&

(PRIM_REL & (SIBLING |
PARENT | UNCLE |

COUSIN)))

INLAW = TRUE;

/* set THIS_CUZ */

if (PRIM_REL == COUSIN)

THIS_CUZ = KEY_PERS [PRIM_DEX] . CUZ_RANK;

else
THIS CUZ = 0;

Page 70

/* parameters are set - now generate display. */

printf (" %ls is ", PERSON [KEY PERS [FRST_DEX] . PERSJDEX] . NAME);

if (PRIM_REL & (PARENT | CHILD T UNCLE | NEPHEW))

{ /* display generation-qualifier */

if (THIS_GAP >= 3)

{

printf ("great");
if (THIS_GAP > 3)

printf ("*%ld", THIS_GAP - 2);

printf ("-");

}

if (THIS_GAP >= 2)

printf ("grand-");

if (PRIM_REL == COUSIN && THIS_CUZ > 1)

{

printf ("%ld", THIS_CUZ);
SUFFIX = THIS_CUZ % 10;

switch (SUFFIX)

}

}

if (THIS_PRX == STEP)

printf ("step-");
else

if (THIS_PRX == HALF)
printf ("half-");

else

case 1: printf
case 2: printf

case 3: printf
default: printf

("st ")

("nd ")

("rd ")

("th ")

break;
break;

break;
break;

THIS_GND = PERSON [KEY_PERS [FRST_DEX] . PERS_DEX] . GENDER
switch (PRIM_REL)

{

case PARENT : if (THIS GND == MALE) printf (
' "father")

;

else printf ([
"mother")

;

break

;

case CHILD : if (THIS GND == MALE) printf (
' "son")

;

else printf (,
daughter);

break:;

case SPOUSE : if (THIS GND == MALE) printf (

' "husband")

;

else printf , wife);

break j

case SIBLING: if (THIS GND == MALE) printf (, brother)

;

else printf (
' "sister")

;

break

;

case UNCLE :
J £ / Tin X O O XTTV *jl A T T? \ir (THIS GND == MALE) printf , uncle)

;

else printf
[
"aunt ")

;

break;

case NEPHEW : if (THIS GND == MALE) printf (

' "nephew")

;

else printf <^"niece")

;

break;

case COUSIN : printf ("cousin");
break;

default : printf ("null");
break;

}

if (INLAW)

printf ("-in-law");

if (PRIM_REL == COUSIN && THIS_GAP > 0)

if (THIS_GAP > 1)

printf (" %ld times removed", THIS_GAP);

else
printf (" once removed");

printf (" of\n");
/* end of SHOW REL */

Page 72

/* procedures under FIND_REL */

CMPT_GNS (INDEXl, INDEX2)
/* CMPT_GNS assumes that each ancestor contributes

half of the genetic material to a PERSON. It finds common
ancestors between two PERSONS and computes the expected
value of the PROPORTN of common material. */

register INDXJTYP INDEXl, INDEX2;

{ float COM_PROP;

/* First zero out all ancestors to allow adding. This is necessary
because there might be two paths to an ancestor. */

ZERO_PRO (INDEXl);

/* now mark with shared PROPORTN */

MARK_PRO (PERSON [INDEXl] . IDENT, 1.0, INDEXl);
COM_PROP =0.0;
CHK_COM (& COM_PROP, PERSON [INDEXl] . IDENT, 1.0, 0.0, INDEX2);
printf (" Proportion of common genetic material = %1.5e \n",

COM_PROP);

} /* end of CMPT_GNS */

ZERO_PRO (ZERO_DEX)
/* ZERO_PRO recursively seeks out all ancestors and

zeros them out . */

register INDXJTYP ZEROJDEX;

{ register NBR_PTR THIS_NBR;

PERSON [ZERO_DEX] . DSC_GENE = 0.0;
for (THIS_NBR = PERSON [ZERO_DEX] . NBR_HDR;

THIS_NBR != NULL;
THIS_NBR = THIS_NBR -> NEXT NBR)

{

if (THIS_NBR -> NBR_EDGE == PARENT)
ZERO_PRO (THIS NBR -> NBR DEX);

}

} /* end of ZERO PRO */

MARK_PRO (MARKER, PROPORTN, MARK_DEX)
/* MARK_PRO recursively seeks out all ancestors and

marks them with the sender's PROPORTN of shared
genetic material. This PROPORTN is diluted by one-half
for each generation. */

IDJTYPE MARKER;
float PROPORTN;
INDXJTYP MARK_DEX;

{ register NBR_PTR THIS_NBR;

strcpy (PERSON [MARKJDEX] . DSC_ID, MARKER);
PERSON [MARK_DEX] . DSC_GENE += PROPORTN;
for (THIS_NBR = PERSON [MARK_DEX] . NBR_HDR;

THIS_NBR != NULL;

THIS_NBR = THIS_NBR -> NEXT NBR)

{

if (THISJJBR -> NBR_EDGE == PARENT)
MARK_PRO (MARKER, PROPORTN / 2.0, THIS NBR -> NBR DEX);

}

} /* end of MARK_PRO */

CHK_COM (COM_PTR, MATCH_ID, PROPORTN, COUNTED, CHKJDEX)
/* CHK_COM searches all the ancestors of

CHK_DEX to see if any have been marked, and if so

adds the appropriate amount to *COM_PTR. */

float *COM_PTR, PROPORTN, COUNTED;

IDJTYPE MATCH_ID;
INDXJTYP CHKJ)EX;

{ register NBR_PTR THIS_NBR;
register float CONTRIB;

if (STREQ (PERSON [CHK_DEX] . DSC_ID, MATCH_ID))

{ /* Increment *COM_PTR by the contribution of

this common ancestor, but discount for the contribution
of less remote ancestors already counted. */

CONTRIB = PERSON [CHK_DEX] . DSC_GENE * PROPORTN;

*COM PTR 4= CONTRIB - COUNTED;

}

else
CONTRIB =0.0;

for (THISJJBR = PERSON [CHKJ)EX] . NBRJIDR;
THIS_NBR != NULL;

THISJJBR = THISJJBR -> NEXTJJBR)

{

if (THISJJBR -> NBRJIDGE == PARENT)

CHKj:OM (COM_PTR, MATCH_ID, PROPORTN / 2.0,

CONTRIB / 4.0, THISJJBR -> NBRJ)EX);

}

} /* end of CHK COM */

Page 74

5.0 COBOL

In keeping with the general convention of the examples, language-supplied
keywords and identifiers are written in lower case in the program. To conform
strictly to the COBOL-74 standard, however, programs must use only upper-case
letters

.

* Compilation unit number 1

identification division,
program- id. RELATE.

environment division.

configuration section,
source-computer. VAX-11.
object-computer. VAX-11.

input-output section,
file-control

.

select PEOPLE assign to "PEOPLE.DAT",
file status is PEOPLE-STATUS

.

data division.

file section,
fd PEOPLE

label records are standard.
01 PEOPLE-RECORD.

05 NAME pic X(20).
05 IDENTIFIER pic 999.

*** "M" for MALE and "F" for FEMALE
05 GENDER pic X.

05 IMMEDIATE-RELATIONS.
10 RELATIVE-IDENTIFIER occurs 3 times pic 999.

working-storage section.

77 ARG-PERSONl-INDEX pic 999.
77 ARG-PERS0N2-INDEX pic 999.

01 PEOPLE -STATUS.
05 STATUS -1 pic X.

88 END-OF-PEOPLE-FILE value "1".

05 STATUS -2 pic X.

* Define global objects

01 TRUTH-VALUES.
05 IS-TRUE pic X value "T"

.

05 IS-FALSE pic X value "F".

01 SPECIAL-IDENT-VALUE.
05 NULL-IDENT pic 999 value 000.

* each person's record in the file identifies at most three
* others directly related: father, mother, and spouse
01 GIVEN-IDENTIFIERS.

01

05 FATHER-IDENT pic 9 value 1.

05 MOTHER-IDENT pic 9 val ue 2.

05 SPOUSE-IDENT pic 9 value 3.

GENDER-TYPE

.

05 MALE pic X value "M'

05 FEMALE pic X value "F'

T>T7T A T* T *^"M T>\7TiT7RELAl ION—TYPE

.

05 PARENT pic 9 value 1.

05 CHILD pic 9 value 2.

05 SPOUSE pic 9 value 3.

05 SIBLING pic 9 value 4.

05 UNCLE pic 9 value 5.

05 NEPHEW pic 9 value 6.

05 COUSIN pic 9 value 7.

05 NULL-RELATION pic 9 value 8.

* A node in the graph (= PERSON) has either already been reached,
* is immediately adjacent to those reached, or farther away.
01 REACHED-TYPE.

05 REACHED pic 9 value 1.

05 NEARBY pic 9 value 2.

05 NOT-SEEN pic 9 value 3.

Page 76

* the PERSON array is the central repository of information
* about inter-relationships.
* All relationships are captured in the directed graph of which
* each record is a node

.

01 PERSON-TABLE.
05 NUMBER-OF -PERSONS usage index.

05 PERSON occurs 300 times
indexed by CURRENT, PREVIOUS,

FROM-INDEX, TO-INDEX,
PERSON1-INDEX, PERS0N2-INDEX.

*** static information - filled from PEOPLE file:
10 NAME pic X(20).
10 IDENTIFIER pic 999.

10 GENDER pic X.
*** IDENTIFIERS of immediate relatives - father, mother, spouse

10 IMMEDIATE-RELATIONS.
15 RELATIVE-IDENTIFIER occurs 3 times indexed by RELATIONSHIP

pic 999.
*** pointers to immediate neighbors in graph

10 NEIGHBOR-COUNT pic 99.

10 NEIGHBOR-RECORD occurs 20 times indexed by NEXT-NEIGHBOR.

15 NEIGHBOR-INDEX usage index.
15 NEIGHBOR-EDGE pic 9.

*** data used when traversing graph to resolve user request:
10 DISTANCE-FROM-SOURCE pic 99999V9.
10 PATH-PREDECESSOR usage index.
10 EDGE-TO-PREDECESSOR pic 9.

10 REACHED-STATUS pic 9.

*** data used to compute common genetic material
10 DESCENDANT-IDENTIFIER pic 999.

10 DESCENDANT-GENES pic 9V99999999.

* These variables are used t

* RELATIONSHIP information.
01 RELATIONSHIP-WORK-ITEMS.

05 REQUEST-BUFFER
88 REQUEST-TO-STOP

05 PERSONl-IDENT
05 PERS0N2-IDENT
05 PERSON 1 -FOUND
05 PERS0N2-F0UND
05 ERROR-MESSAGE
05 REQUEST-OK

01 AUXILIARY-VARIABLES.
05 RELATION-LOOP-DONE

88 RELATION-LOOP-IS
05 TEMP-INDEX
05 THIS -EDGE
05 LEADING-SPACES
05 SEMICOLON-COUNT
05 CURRENT-IDENT
05 PREVIOUS-IDENT
05 TEMP-IDENT

accept and resolve requests for

pic X(60).
value "stop",
pic X(20).
pic X(20).
pic 999.

pic 999.
pic X(40).
pic X(40) value "Request OK".

pic X.

•DONE value "T".

usage index,

pic 9.

pic 99.

pic 99.

pic 999.

pic 999.

pic X(20).

Page 7 7

procedure division.
MAIN-LINE.

open input PEOPLE.

read PEOPLE at end perform NULL.

* This loop reads in the PEOPLE file and constructs the PERSON
* array from it (one PERSON = one record = one array entry).
* As records are read in, links are constructed to represent the
* PARENT-CHILD or SPOUSE RELATIONSHIP. The array then implements
* a directed graph which is used to satisfy subsequent user
* requests. The file is assumed to be correct - no validation
* is performed on it.

perform READ-IN-PEOPLE thru READ-IN-PEOPLE-EXIT
varying CURRENT from 1 by 1 until END-OF-PEOPLE-FILE.

set CURRENT down by 1.

set NUMBER-OF-PERSONS to CURRENT,
close PEOPLE.

* PERSON array is now loaded and edges between immediate relatives
* (PARENT-CHILD or SPOUSE-SPOUSE) are established.

perform PROMPT-AND-READ.

* While-loop accepts requests and finds RELATIONSHIP (if any)

* between pairs of PERSONS.

perform READ-AND-PROCESS-REQUEST thru READ-AND-PROCESS-REQUEST-EXIT

until REQUEST-TO-STOP,
display " End of relation-finder.",

stop run.

READ-IN-PEOPLE.
*** copy direct information from file to array

move corresponding PEOPLE-RECORD to PERSON (CURRENT),

move IMMEDIATE-RELATIONS of PEOPLE-RECORD

to IMMEDIATE -RELATIONS of PERSON (CURRENT).
*** Location of adjacent persons as yet undetermined

move zero to NEIGHBOR-COUNT of PERSON (CURRENT).
*** Descendants as yet undetermined

move NULL-IDENT to DESCENDANT-IDENTIFIER of PERSON (CURRENT),

move IDENTIFIER of PERSON (CURRENT) to CURRENT-IDENT.
*** Compare this PERSON against all previously entered PERSONS

*** to search for RELATIONSHIPS.
perform COMPARE-TO-PREVIOUS varying PREVIOUS from 1 by 1

until PREVIOUS not < CURRENT,

read PEOPLE at end perform NULL.

READ-IN-PEOPLE-EXIT.
exit.

NULL.

exit

.

Page 78

COMPARE-TO-PREVIOUS

.

move IDENTIFIER of PERSON (PREVIOUS) to PREVIOUS -IDENT.
*** Search for father, mother, or spouse relationship in
*** either direction between this and PREVIOUS PERSON.
*** Assume at most one RELATIONSHIP exists,

move IS-FALSE to RELATION-LOOP-DONE,
perform TRY-ALL-RELATIONSHIPS

varying RELATIONSHIP from FATHER-IDENT by 1

until RELATIONSHIP > SPOUSE-IDENT or RELATION-LOOP-IS-DONE.
TRY-ALL-RELATIONSHIPS

.

if RELATIVE-IDENTIFIER of PERSON (CURRENT, RELATIONSHIP) =

PREVIOUS-IDENT
set FROM-INDEX to CURRENT
set TO-INDEX to PREVIOUS
perform LINK-RELATIVES
move IS-TRUE to RELATION-LOOP-DONE

else
if CURRENT-IDENT =

RELATIVE-IDENTIFIER of PERSON (PREVIOUS, RELATIONSHIP)
set FROM-INDEX to PREVIOUS
set TO-INDEX to CURRENT

perform LINK-RELATIVES
move IS-TRUE to RELATION-LOOP-DONE.

LINK-RELATIVES.
* establishes cross-indexing between immediately related PERSONS.

if RELATIONSHIP = SPOUSE-IDENT
move SPOUSE to THIS -EDGE
perform LINK-ONE -WAY
set TEMP-INDEX to FROM-INDEX
set FROM-INDEX to TO-INDEX
set TO-INDEX to TEMP-INDEX
perform LINK-ONE-WAY

else
* RELATIONSHIP is father or mother

move PARENT to THIS -EDGE
perform LINK-ONE-WAY
move CHILD to THIS -EDGE

set TEMP-INDEX to FROM-INDEX
set FROM-INDEX to TO-INDEX
set TO-INDEX to TEMP-INDEX
perform LINK-ONE -WAY.

LINK-ONE -WAY.
*** Establishes the NEIGHBOR-RECORD from one PERSON to another

add 1 to NEIGHBOR-COUNT of PERSON (FROM-INDEX).
set NEXT-NEIGHBOR to NEIGHBOR-COUNT of PERSON (FROM-INDEX).
set NEIGHBOR-INDEX of PERSON (FROM-INDEX, NEXT-NEIGHBOR)

to TO-INDEX.
move THIS-EDGE

to NEIGHBOR-EDGE of PERSON (FROM-INDEX, NEXT-NEIGHBOR)

.

PROMPT-AND-READ.
* Issues prompt for user-request, reads In request,
* blank-fills buffer, and skips to next line of input.

display " ".

display " ".

display " Enter two person-identifiers (name or number),",
display " separated by semicolon. Enter ""stop"" to stop.",
move spaces to REQUEST-BUFFER,
accept REQUEST-BUFFER.

READ-AND-PROCE S S -RE QUE ST

.

perform CHECK-REQUEST.

*** Syntax check of request completed. Now either display error
*** message or search for the two PERSONS.

if ERROR-MESSAGE = REQUEST-OK
perform PROCESS-LEGAL-REQUEST

else
display " Incorrect request format: ", ERROR-MESSAGE,

perform PROMPT-AND-READ.
READ-AND-PROCE S S -REQUE ST-E XI T

.

exit

.

CHECK-REQUEST.
* Performs syntactic check on request in buffer
* and fills in identifiers of the two requested persons.

move zero to SEMICOLON-COUNT.
inspect RE QUE ST-BUFFER tallying SEMICOLON-COUNT

for all "
;

"

.

if SEMICOLON-COUNT not = 1

move "must be exactly one semicolon." to ERROR-MESSAGE

else
move zero to LEADING-SPACES
inspect REQUEST-BUFFER tallying LEADING-SPACES

for leading spaces
add 1 to LEADING-SPACES
unstring REQUEST-BUFFER delimited by ";"

into PERSONl-IDENT, TEMP-IDENT
with pointer LEADING-SPACES

if PERSONl-IDENT = spaces

move "null field preceding semicolon." to ERROR-MESSAGE

else
if TEMP-IDENT = spaces

move "null field following semicolon." to ERROR-MESSAGE

else
move zero to LEADING-SPACES
inspect TEMP-IDENT tallying LEADING-SPACES

for leading spaces

add 1 to LEADING-SPACES
unstring TEMP-IDENT into PERS0N2-IDENT

with pointer LEADING-SPACES

move REQUEST-OK to ERROR-MESSAGE.

Page 80

PROCE SS-LEGAL-REQUE ST

.

*** search for requested PERSONS.
move zero to PERSON 1-FOUND, PERS0N2-F0UND.
perform SCAN-ALL-PERSONS varying CURRENT from 1 by 1

until CURRENT > NUMBER-OF -PERSONS,
if PERSON1-FOUND = 1 and PERSON 2-FOUND = 1

*** Exactly one match for each PERSON - proceed to
*** determine RELATIONSHIP, if any.

if PERSONl-INDEX = PERS0N2-INDEX
if GENDER of PERSON (PERSONl-INDEX) = MALE

display " ", NAME of PERSON (PERSONl-INDEX),
is identical to himself."

else
display " ", NAME of PERSON (PERSONl-INDEX),

is identical to herself."
else

set ARG-PERSONl-INDEX to PERSONl-INDEX
set ARG-PERS0N2-INDEX to PERS0N2-INDEX
call "FINDREL" using

ARG-PERSONl-INDEX, ARG-PERS0N2-INDEX, PERSON-TABLE
else

*** either not found or more than one found
perform MISSING-OR-DUPLICATE-PERSONS

.

SCAN-ALL-PERSONS

.

if PERSONl-IDENT = NAME of PERSON (CURRENT) or

IDENTIFIER of PERSON (CURRENT)

set PERSONl-INDEX to CURRENT
add 1 to PERSONl-FOUND.

if PERS0N2-IDENT = NAME of PERSON (CLTIRENT) or

IDENTIFIER of PERSON (CURRENT)
set PERS0N2-INDEX to CURRENT
add 1 to PERS0N2-F0UND.

MISSING-OR-DUPLICATE-PERSONS.
if PERSONl-FOUND = zero

display " First person not found."
else

if PERSONl-FOUND > 1

display " Duplicate names for first person - use",
numeric identifier.",

if PERS0N2-F0UND = zero
display " Second person not found."

else
if PERS0N2-F0UND > 1

display " Duplicate names for second person - use"

,

numeric identifier.".

Page 81

* Compilation unit number 2

identification division,
program-id. FINDREL.

* Finds shortest path (if any) between two PERSONS and
* determines their RELATIONSHIP based on immediate relations
* traversed in path. PERSON array simulates a directed graph,
* and algorithm finds shortest path, based on following
* weights: PARENT-CHILD edge =1.0
* SPOUSE-SPOUSE edge = 1.8

environment division.

configuration section,
source-computer. VAX-11.
object-computer. VAX-11.

data division,
working-storage section.

* Define global objects

01 TRUTH-VALUES.
05 IS-TRUE pic X value "T"

.

05 IS-FALSE pic X value "F".

* each PERSON'S record in the file identifies at most three
* others directly related: father, mother, and spouse
01 GIVEN-IDENTIFIERS.

01

05 FATHER-IDENT pic 9 value 1.

05 MOTHER-IDENT pic 9 val ue 2.

05 SPOUSE -IDENT pic 9 value 3.

GENDER-TYPE.
05 MALE pic X value "M'

05 FEMALE pic X value "F'

RELATION-TYPE.

05 PARENT pic 9 value 1.

05 CHILD pic 9 value 2.

05 SPOUSE pic 9 value 3.

05 SIBLING pic 9 value 4.

05 UNCLE pic 9 value 5.

05 NEPHEW pic 9 value 6.

05 COUSIN pic 9 value 7.

05 NULL-RELATION pic 9 value 8.

Page 82

* A node in the graph (= PERSON) has either already been reached,
* is immediately adjacent to those reached, or farther away.
01 REACHED-TYPE

.

05 REACHED pic 9 value 1.

05 NEARBY pic 9 value 2.

05 NOT-SEEN pic 9 value 3.

01 SEARCH-TYPE.
05 SEARCHING pic 9 value 1.

05 SUCCEEDED pic 9 value 2.

05 FAILED pic 9 value 3.

SIBLING-TYPE.
05 STEP pic 9 value 1.

05 HALF pic 9 value 2.

05 FULL pic 9 value 3.

01 KEY-PERSON-TABLE.
05 KEY-PERSON occurs 300 times

indexed by KEY-INDEX, LATER-KEY-INDEX, PRIMARY-INDEX,
FIRST-INDEX, LAST-INDEX,
RECEIVE-INDEX, SEND-INDEX.

10 RELATION-TO-NEXT pic 9.

10 PERSON-INDEX usage index.
10 GENERATION-GAP pic 999.

10 PROXIMITY pic 9.

10 COUSIN-RANK pic 999.

01 AUXILIARY-VARIABLES.
*** these variables are used to find the shortest path

05 WEIGHT-THIS-EDGE pic 99V9.
05 DISTANCE-THRU-BASE-NODE pic 99999V9.
05 SEARCH-STATUS pic 9.

05 NEARBY-NODE usage index, occurs 300 times,
indexed by THIS-NEARBY-INDEX, BEST-NEARBY-INDEX, LAST-NEARBY-INDEX.

05 THIS-EDGE pic 9.

05 NEXT-BASE-EDGE pic 9.

05 MINIMAL-DISTANCE pic 9999999V9.
05 DISPLAY-BUFFER pic X(70).
05 DISPLAY-POINTER pic 99.

05 NULL-IDENT pic 999 value 000.

*** these variables are used to condense the path
05 KEY-RELATION pic 9.

05 LATER-KEY-RELATION pic 9.

05 PRIMARY-RELATION pic 9.

05 FIRST-RELATION pic 9.

05 LAST-RELATION pic 9.

05 NEXT-PRIMARY-RELATION pic 9.

05 GAP-SIZE pic 999.
05 ANOTHER-ELEMENT-POSSIBLE pic X.

88 ANOTHER-ELEMENT-IS-POSSIBLE value "T".

Page 83

*** these variables are used to generate KEY-PERSONs and for DISPLAY
05
05

05

05

05

05

05

05

05

05

05

05

05

GENERATION-COUNT
TEMP-NUMBER
THIS-COUSIN-RANK
THIS-PROXIMITY
THIS-GENDER
THIS-GENERATION-GAP
SUFFIX-INDICATOR
TWO-DIGIT-FIELD
INLAW
88 RELATION-IS-INLAW
MALE-NAME-VALUE S

.

pic 999.
pic 999.

pic 999.

pic 9.

pic X.

pic 999.

pic 9

.

pic Z9.

pic X.

value "T".

10 filler pic X(8) value "father
10 filler pic X(8) value " son
10 filler pic X(8) value "husband
10 filler pic X(8) value "brother
10 filler pic X(8) value "uncle
10 filler pic X(8) value "nephew
10 filler pic X(8) value "cousin
10 filler pic X(8) value "null
MALE-NAME-TABLE redefines MALE-NAME-VALUES.
10 PRIMARY-MALE-NAME pic X(8) occurs 8 times

indexed by MALE-INDEX.
FEMALE-NAME-VALUE S

.

10 filler pic X(8) value "mother

10 filler pic X(8) value "daughter
10 filler pic X(8) value "wife

10 filler pic X(8) value "sister
10 filler pic X(8) value "aunt
10 filler pic X(8) value "niece
10 filler pic X(8) value "cousin

10 filler pic X(8) value "null
FEMALE-NAME-TABLE redefines FEMALE-NAME-VALUES.

10 PRIMARY-FEMALE-NAME pic X(8) occurs 8 times

indexed by FEMALE-INDEX.

Page 84

linkage section.

77 PARM-TARGET-INDEX pic 999.

77 PARM-SOURCE-INDEX pic 999.

01 PERSON-TABLE.

05 NUMBER-OF -PERSONS usage index.
05 PERSON occurs 300 times

indexed by INDEXl, INDEX2, TARGET-INDEX, SOURCE-INDEX,
BASE -NODE, THIS -NODE, NEXT-NODE.

*** static information - filled from PEOPLE file:
10 NAME pic X(20).
10 IDENTIFIER pic 999.

10 GENDER pic X.
*** IDENTIFIERS of immediate relatives - father, mother, spouse

10 IMMEDIATE-RELATIONS.
15 RELATIVE-IDENTIFIER occurs 3 times indexed by RELATIONSHIP

pic 999.
*** pointers to immediate neighbors in graph

10 NEIGHBOR-COUNT pic 99.

10 NEIGHBOR-RECORD occurs 20 times indexed by THIS -NEIGHBOR.
15 NEIGHBOR-INDEX usage index.

15 NEIGHBOR-EDGE pic 9.

*** data used when traversing graph to resolve user request:
10 DISTANCE -FROM-SOURCE pic 99999V9.
10 PATH-PREDECESSOR usage index.
10 EDGE-TO-PREDECESSOR pic 9.

10 REACHED-STATUS pic 9.

*** data used to compute common genetic material
10 DESCENDANT-IDENTIFIER pic 999.

10 DESCENDANT-GENES pic 9V99999999.

procedure division using

PARM-TARGET-INDEX, PARM-SOURCE-INDEX, PERSON-TABLE.
MAIN-LINE.

set TARGET-INDEX to PARM-TARGET-INDEX.
set SOURCE-INDEX to PARM-SOURCE-INDEX.

*** initialize PERSON-array for processing -

*** mark all nodes as not seen
perform MARK-AS-NOT-SEEN varying THIS-NODE from 1 by 1

until THIS-NODE > NUMBER-OF-PERSONS.
set THIS-NODE to SOURCE -INDEX.

*** mark source node as REACHED
move REACHED to REACHED-STATUS of PERSON (THIS-NODE).
move zero to DISTANCE -FROM-SOURCE of PERSON (THIS-NODE).

*** no nearby nodes exist yet
set LAST-NEARBY-INDEX to 1.

set LAST-NEARBY-INDEX down by 1.

if THIS-NODE = TARGET-INDEX
move SUCCEEDED to SEARCH-STATUS

else
move SEARCHING to SEARCH-STATUS.

*** Loop keeps processing closest-to-source , unREACHED node
*** until target REACHED, or no more connected nodes.

perform SEARCH-FOR-TARGET until SEARCH-STATUS not = SEARCHING.

Shortest path between PERSONS now established. Next task is
to translate path to English description of RELATIONSHIP,
if SEARCH-STATUS = FAILED

display " "
, NAME of PERSON (TARGET-INDEX) ,

" is not related to ",

NAME of PERSON (SOURCE-INDEX)
else

success - parse path to find and display RELATIONSHIP
perform RESOLVE-PATH-TO-ENGLISH
call "COMGENES" using

PARM-SOURCE-INDEX, PARM-TARGET-INDEX, PERSON-TABLE.
OF-FINDREL.
exit program.

MARK-AS-NOT-SEEN.
move NOT-SEEN to REACHED-STATUS of PERSON (THIS-NODE).

SEARCH-FOR-TARGET.
*** Process all nodes adjacent to THIS-NODE

perform PROCESS-ADJACENT-NODE varying THIS-NEIGHBOR from 1 by 1

until THIS-NEIGHBOR > NEIGHBOR-COUNT of PERSON (THIS-NODE).
*** All nodes adjacent to THIS-NODE are set. Now search for
*** shortest-distance unREACHED (but NEARBY) node to process next,

if LAST-NEARBY-INDEX = zero

move FAILED to SEARCH-STATUS
else

*** determine next node to process
move 9999999 to MINIMAL-DISTANCE
perform FIND-CLOSEST-UNREACHED-NODE varying THIS-NEARBY-INDEX

from 1 by 1 until THIS-NEARBY-INDEX > LAST-NEARBY-INDEX

*** establish new THIS-NODE
set THIS-NODE to NEARBY-NODE (BE ST-NEARBY-INDEX)

*** change THIS-NODE from being NEARBY to REACHED
move REACHED to REACHED-STATUS of PERSON (THIS-NODE)

*** remove THIS-NODE from NEARBY list

set NEARBY-NODE (BEST-NEARBY-INDEX) to NEARBY-NODE (LAST-NEARBY-INDEX)

set LAST-NEARBY-INDEX down by 1

if THIS-NODE = TARGET-INDEX
move SUCCEEDED to SEARCH-STATUS.

Page 86

PROCESS-ADJACENT-NODE

.

set BASE-NODE to THIS-NODE.
set NEXT-NODE to NEIGHBOR-INDEX of PERSON (BASE-NODE, THIS -NEIGHBOR)

.

move NEIGHBOR-EDGE of PERSON (BASE-NODE, THIS-NEIGHBOR)
to NEXT-BASE-EDGE.

*** NEXT-NODE is adjacent to last-REACHED node (= BASE-NODE).
*** if NEXT-NODE already REACHED, do nothing.
*** If previously seen, check whether path thru BASE -NODE is
*** shorter than current path to NEXT-NODE, and if so re-link
*** next to base.
*** If not previously seen, link next to base node,

if NEXT-BASE-EDGE = SPOUSE
move 1.8 to WEIGHT-THIS-EDGE

else
move 1.0 to WEIGHT-THIS-EDGE.

if REACHED-STATUS of PERSON (NEXT-NODE) not = REACHED
add WEIGHT-THIS-EDGE, DISTANCE-FROM-SOURCE of PERSON (BASE-NODE)

giving DISTANCE-THRU-BASE -NODE
if REACHED-STATUS of PERSON (NEXT-NODE) = NOT-SEEN

move NEARBY to REACHED-STATUS of PERSON (NEXT-NODE)
set LAST-NEARBY-INDEX up by 1

set NEARBY-NODE (LAST-NEARBY-INDEX) to NEXT-NODE
perform LINK-NEXT-NODE-TO-BASE-NODE

else
*** REACHED-STATUS = NEARBY

if DISTANCE-THRU-BASE-NODE
< DISTANCE-FROM-SOURCE of PERSON (NEXT-NODE)

per form LINK-NEXT-NODE -TO-BASE-NODE

.

LINK-NEXT-NODE-TO-BASE-NODE

.

*** link next to base by re-setting its predecessor index to
*** point to base, note type of edge, and re-set distance
*** as it is through base node,

move DISTANCE-THRU-BASE-NODE
to DISTANCE-FROM-SOURCE of PERSON (NEXT-NODE),

set PATH-PREDECESSOR of PERSON (NEXT-NODE) to BASE-NODE,

move NEXT-BASE-EDGE to EDGE-TO-PREDECESSOR of PERSON (NEXT-NODE)

.

FIND-CLOSEST-UNREACHED-NODE.
set NEXT-NODE to NEARBY-NODE (THIS-NEARBY-INDEX)

.

if DISTANCE-FROM-SOURCE of PERSON (NEXT-NODE) < MINIMAL-DISTANCE
set BEST-NEARBY-INDEX to THIS-NEARBY-INDEX
move DISTANCE-FROM-SOURCE of PERSON (NEXT-NODE) to MINIMAL-DISTANCE.

Page 87

RESOLVE-PATH-TO-ENGLISH.
*** RESOLVE-PATH-TO-ENGLISH condenses the shortest path to a
*** series of RELATIONSHIPS for which there are English
*** descriptions.

*** Key persons are the ones in the RELATIONSHIP path which remain
*** after the path is condensed.

display " Shortest path between identified persons: ".

set THIS-NODE to TARGET-INDEX.
*** Display path and initialize KEY-PERSON array from path elements,

perform TRAVERSE-SHORTEST-PATH varying KEY-INDEX from 1 by 1

until THIS-NODE = SOURCE-INDEX,
display " ", NAME of PERSON (THIS-NODE).
set PERSON-INDEX of KEY-PERSON (KEY-INDEX) to THIS-NODE.
move NULL-RELATION to RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX)

.

move NULL-RELATION to RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX + 1).

*** Resolve CHILD-PARENT and CHILD-SPOUSE-PARENT relations
*** to SIBLING relations.

perform FIND-SIBLINGS varying KEY-INDEX from 1 by 1

until RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) = NULL-RELATION.

*** Resolve CHILD-CHILD-... and PARENT-PARENT-... relations to
*** direct descendant or ancestor relations.

perform FIND-ANCESTORS-OR-DESCENDANTS varying KEY-INDEX from 1 by 1

until RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) = NULL-RELATION.

*** Resolve CHILD-SIBLING-PARENT to COUSIN,
*** CHILD-SIBLING to NEPHEW,
*** SIBLING-PARENT to UNCLE.

perform FIND-COUSINS-NEPHEWS-UNCLES varying KEY-INDEX from 1 by 1

until RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) = NULL-RELATION.

*** Loop below will pick out valid adjacent strings of elements
*** to be displayed. KEY-INDEX points to first element,
*** LATER-KEY-INDEX to last element, and PRIMARY-INDEX to the
*** element which determines the primary English word to be used.
*** Associativity of adjacent elements in condensed table
*** is based on English usage.

set KEY-INDEX to 1.

display " Condensed path:".
perform CONSOLIDATE-ADJACENT-PERSONS

until RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) = NULL-RELATION

set THIS-NODE to PERSON-INDEX of KEY-PERSON (KEY-INDEX).

display " ", NAME of PERSON (THIS-NODE).
*** end of RESOLVE-PATH-TO-ENGLISH

Page 88

TRAVERSE -SHORTEST-PATH

.

set PERSON-INDEX of KEY-PERSON (KEY-INDEX) to THIS-NODE.
move FULL to PROXIMITY of KEY-PERSON (KEY-INDEX)

.

move EDGE-TO-PREDECESSOR of PERSON (THIS-NODE)
to RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX)

.

if EDGE-TO-PREDECESSOR of PERSON (THIS-NODE) = SPOUSE
move zero to GENERATION-GAP of KEY-PERSON (KEY-INDEX)
display " NAME of PERSON (THIS-NODE), " is spouse of"

else

move 1 to GENERATION-GAP of KEY-PERSON (KEY-INDEX)
if EDGE-TO-PREDECESSOR of PERSON (THIS-NODE) = PARENT

display " " , NAME of PERSON (THIS-NODE), " is parent of"

else
** edge is child-type

display " ", NAME of PERSON (THIS-NODE), " is child of",

set THIS-NODE to PATH-PREDECESSOR of PERSON (THIS-NODE).

FIND-SIBLINGS.
if RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) = CHILD

move RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX + 1)

to LATER-KEY-RELATION
if LATER-KEY-RELATION = PARENT

** then found either full or half SIBLINGS
perform SET-UP-FULL-HALF-SIBLING

else
if LATER-KEY-RELATION = SPOUSE and

RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX + 2) = PARENT
** then found step-siblings

move zero to GENERATION-GAP of KEY-PERSON (KEY-INDEX)
move STEP to PROXIMITY of KEY-PERSON (KEY-INDEX)
move SIBLING to RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX)
move 2 to GAP-SIZE
perform CONDENSE-KEY-PERSONS.

SET-UP-FULL-HALF-SIBLING.
** Determines whether two PERSONS are full siblings, i.e.,
'** have the same two parents

.

set INDEXl to PERSON-INDEX of KEY-PERSON (KEY-INDEX),
set INDEX2 to PERSON-INDEX of KEY-PERSON (KEY-INDEX + 2).

if (NULL-IDENT not =

RELATIVE-IDENTIFIER of PERSON (INDEXl, FATHER-IDENT)
and RELATIVE-IDENTIFIER of PERSON (INDEXl, MOTHER-IDENT)

)

and (RELATIVE-IDENTIFIER of PERSON (INDEXl, FATHER-IDENT) =

RELATIVE-IDENTIFIER of PERSON (INDEX2, FATHER-IDENT))
and (RELATIVE-IDENTIFIER of PERSON (INDEXl, MOTHER-IDENT) =

RELATIVE-IDENTIFIER of PERSON (INDEX2, MOTHER-IDENT))
move FULL to PROXIMITY of KEY-PERSON (KEY-INDEX)

else
move HALF to PROXIMITY of KEY-PERSON (KEY-INDEX),

move zero to GENERATION-GAP of KEY-PERSON (KEY-INDEX),
move SIBLING to RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX),
move 1 to GAP-SIZE,
perform CONDENSE-KEY-PERSONS.

Page 89

FIND-ANCESTORS-OR-DESCENDANT S.

if RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) = CHILD or PARENT
perform NULL varying LATER-KEY-INDEX from KEY-INDEX by 1

until RELATION-TO-NEXT of KEY-PERSON (LATER-KEY-INDEX) not =

RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX)
set GENERATION-COUNT to LATER-KEY-INDEX
set TEMP-NUMBER to KEY-INDEX
subtract TEMP-NUMBER from GENERATION-COUNT
if GENERATION-COUNT > 1

*** compress generations
move GENERATION-COUNT to GENERATION-GAP of KEY-PERSON (KEY-INDEX)
subtract 1 from GENERATION-COUNT giving GAP-SIZE
perform CONDENSE-KEY-PERSONS.

FIND-COUSINS-NEPHEWS-UNCLES.
move RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX + 1)

to LATER-KEY-RELATION
if RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) = CHILD and

LATER-KEY-RELATION = SIBLING
*** then COUSIN or NEPHEW

if RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX + 2) = PARENT
perform FOUND-COUSIN

else
*** found NEPHEW

move PROXIMITY of KEY-PERSON (KEY-INDEX + 1) to

PROXIMITY of KEY-PERSON (KEY-INDEX)
move NEPHEW to RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX)
move 1 to GAP-SIZE
perform CONDENSE-KEY-PERSONS

else
if RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) = SIBLING and

LATER-KEY-RELATION = PARENT
*** then found UNCLE

move GENERATION-GAP of KEY-PERSON (KEY-INDEX + 1) to

GENERATION-GAP of KEY-PERSON (KEY-INDEX)
move UNCLE to RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX)
move 1 to GAP-SIZE
perform CONDENSE-KEY-PERSONS.

FOUND-COUSIN.
if GENERATION-GAP of KEY-PERSON (KEY-INDEX)

< GENERATION-GAP of KEY-PERSON (KEY-INDEX + 2)
move GENERATION-GAP of KEY-PERSON (KEY-INDEX)

to COUSIN-RANK of KEY-PERSON (KEY-INDEX)
else

move GENERATION-GAP of KEY-PERSON (KEY-INDEX + 2)

to COUSIN-RANK of KEY-PERSON (KEY-INDEX)

.

*** subtract moves in absolute value since GENERATION-GAP is unsigned
subtract GENERATION-GAP of KEY-PERSON (KEY-INDEX + 2)

from GENERATION-GAP of KEY-PERSON (KEY-INDEX),
move PROXIMITY of KEY-PERSON (KEY-INDEX + 1)

to PROXIMITY of KEY-PERSON (KEY-INDEX),

move COUSIN to RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX)

.

move 2 to GAP-SIZE,
perform CONDENSE-KEY-PERSONS.

NULL.

exit

.

Page 90

CONDENSE-KEY-PERSONS.
*** CONDENSE-KEY-PERSONS condenses superfluous entries from the
*** KEY-PERSON array, starting at KEY-INDEX.

set RECEIVE-INDEX to KEY-INDEX.
set RECEIVE-INDEX up by 1.

set SEND-INDEX to RECEIVE-INDEX.
set SEND-INDEX up by GAP-SIZE.
perform SLIDE -IT-DOWN varying RECEIVE-INDEX from RECEIVE-INDEX by 1

until RELATION-TO-NEXT of KEY-PERSON (RECEIVE-INDEX - 1)
= NULL-RELATION.

SLIDE-IT-DOWN.
move KEY-PERSON (SEND-INDEX) to KEY-PERSON (RECEIVE-INDEX).

set SEND-INDEX up by 1.

CONSOLIDATE-ADJACENT-PERSONS.
move RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX) to KEY-RELATION,
set LATER-KEY-INDEX, PRIMARY-INDEX to KEY-INDEX.
if RELATION-TO-NEXT of KEY-PERSON (KEY-INDEX + 1) not = NULL-RELATION

perform SEEK-MULTI -ELEMENT-COMBINATION,
set FIRST-INDEX to KEY-INDEX,
set LAST-INDEX to LATER-KEY-INDEX,
perform DISPLAY-RELATION,
set KEY-INDEX to LATER-KEY-INDEX,
set KEY-INDEX up by 1.

SEEK-MULTI -ELEMENT-COMB INATION.
move IS-TRUE to ANOTHER-ELEMENT-POSSIBLE,
if KEY-RELATION = SPOUSE

set LATER-KEY-INDEX up by 1

set PRIMARY-INDEX up by 1

if RELATION-TO-NEXT of KEY-PERSON (LATER-KEY-INDEX)
= SIBLING or COUSIN

then nothing can follow spouse-sibling or spouse-cousin
move IS-FALSE to ANOTHER-ELEMENT-POSSIBLE.

PRIMARY-INDEX is now correctly set. Next if-statement
determines if a following SPOUSE relation should be

appended to this combination or left for the next
combination

.

if RELATION-TO-NEXT of KEY-PERSON (PRIMARY-INDEX + 1) = SPOUSE

and ANOTHER-ELEMENT-IS-POSSIBLE
Only a SPOUSE can follow a Primary
check primary preceding and following SPOUSE,

move RELATION-TO-NEXT of KEY-PERSON (PRIMARY-INDEX)
to PRIMARY-RELATION

move RELATION-TO-NEXT of KEY-PERSON (PRIMARY-INDEX + 2)

to NEXT-PRIMARY-RELATION
if (NEXT-PRIMARY-RELATION = NEPHEW or COUSIN or NULL-RELATION)

or (PRIMARY-RELATION = NEPHEW)
or ((PRIMARY-RELATION = SIBLING or PARENT)

and NEXT-PRIMARY-RELATION not = UNCLE)

then append following SPOUSE with this combination,
set LATER-KEY-INDEX up by 1.

icifk

Page 91

DISPLAY-RELATION.
*** DISPLAY-RELATION takes 1, 2, or 3 adjacent elements in the
*** condensed table and generates the English description of
*** the relation between the first and last + 1 elements.

move RELATION-TO-NEXT of KEY-PERSON (FIRST-INDEX)
to FIRST-RELATION,

move RELATION-TO-NEXT of KEY-PERSON (LAST-INDEX)
to LAST-RELATION,

move RELATION-TO-NEXT of KEY-PERSON (PRIMARY-INDEX)
to PRIMARY-RELATION.

*** set THIS-PROXIMITY
if (PRIMARY-RELATION = PARENT and FIRST-RELATION = SPOUSE) or

(PRIMARY-RELATION = CHILD and LAST-RELATION = SPOUSE)
move STEP to THIS-PROXIMITY

else
if PRIMARY-RELATION = SIBLING or UNCLE or NEPHEW or COUSIN

move PROXIMITY of KEY-PERSON (PRIMARY-INDEX) to THIS -PROXIMITY
else

move FULL to THIS-PROXIMITY.
*** set THIS-GENERATION-GAP

if PRIMARY-RELATION = PARENT or CHILD or UNCLE or NEPHEW or COUSIN

move GENERATION-GAP of KEY-PERSON (PRIMARY-INDEX)
to THIS-GENERATION-GAP

else
move zero to THIS-GENERATION-GAP.

*** set INLAW
if (FIRST-RELATION = SPOUSE) and

(PRIMARY-RELATION = SIBLING or CHILD or NEPHEW or COUSIN)

move IS -TRUE to INLAW

else
if (LAST-RELATION = SPOUSE) and

(PRIMARY-RELATION = SIBLING or PARENT or UNCLE or COUSIN)

move IS -TRUE to INLAW
else

move IS-FALSE to INLAW.
*** set THIS-COUSIN-RANK

if PRIMARY-RELATION = COUSIN
move COUSIN-RANK of KEY-PERSON (PRIMARY-INDEX) to THIS-COUSIN-RANK

else
move zero to THIS-COUSIN-RANK.

Page 92

*** parameters are set - now generate display.

set THIS-NODE to PERSON-INDEX of KEY-PERSON (FIRST-INDEX),
move spaces to DISPLAY-BUFFER,
move 1 to DISPLAY-POINTER.
string " ", NAME of PERSON (THIS-NODE), " Is

"

delimited by size

Into DISPLAY-BUFFER with pointer DISPLAY-POINTER.
If PRIMARY-RELATION = PARENT or CHILD or UNCLE or NEPHEW

perform GENERATE-GENERATION-QUALIFIER
else

If (PRIMARY-RELATION = COUSIN) and (THIS-COUSIN-RANK > 1)

move THIS-COUSIN-RANK to IWO-DIGIT-FIELD
string TWO-DIGIT-FIELD delimited by size into DISPLAY-BUFFER

with pointer DISPLAY-POINTER
divide THIS-COUSIN-RANK by 10 giving TEMP-NUMBER

remainder SUFFIX-INDICATOR
if SUFFIX-INDICATOR = 1

string "st " delimited by size
Into DISPLAY-BUFFER with pointer DISPLAY-POINTER

else if SUFFIX-INDICATOR = 2

string "nd " delimited by size

into DISPLAY-BUFFER with pointer DISPLAY-POINTER
else if SUFFIX-INDICATOR = 3

string "rd " delimited by size
into DISPLAY-BUFFER with pointer DISPLAY-POINTER

else
string "th " delimited by size

into DISPLAY-BUFFER with pointer DISPLAY-POINTER.

if THIS-PROXIMITY = STEP

string "step-" delimited by size
into DISPLAY-BUFFER with pointer DISPLAY-POINTER

else
if THIS-PROXIMITY = HALF

string "half-" delimited by size
into DISPLAY-BUFFER with pointer DISPLAY-POINTER.

set THIS-NODE to PERSON-INDEX of KEY-PERSON (FIRST-INDEX),
move GENDER of PERSON (THIS-NODE) to THIS-GENDER.
set MALE-INDEX, FEMALE-INDEX to PRIMARY-RELATION,
if THIS-GENDER = MALE

string PRIMARY-MALE-NAME (MALE-INDEX) delimited by space

into DISPLAY-BUFFER with pointer DISPLAY-POINTER
else

string PRIMARY-FEMALE-NAME (FEMALE-INDEX) delimited by space

into DISPLAY-BUFFER with pointer DISPLAY-POINTER.

if RELATION-IS-INLAW
string "-in-law" delimited by size

into DISPLAY-BUFFER with pointer DISPLAY-POINTER.

Page 93

if (PRIMARY-RELATION = COUSIN) and (THIS-GENERATION-GAP > 0)
if THIS-GENERATION-GAP > 1

move THIS-GENERATION-GAP to TWO-DIGIT-FIELD
string " ", TWO-DIGIT-FIELD, " times removed"

delimited by size
into DISPLAY-BUFFER with pointer DISPLAY-POINTER

else
string " once removed" delimited by size

into DISPLAY-BUFFER with pointer DISPLAY-POINTER.

string " of" delimited by size

into DISPLAY-BUFFER with pointer DISPLAY-POINTER,
display DISPLAY-BUFFER.

GENERATE-GENERATION-QUALIFIER.
if THIS-GENERATION-GAP not < 3

string "great" delimited by size
into DISPLAY-BUFFER with pointer DISPLAY-POINTER

if THIS-GENERATION-GAP > 3

subtract 2 from THIS-GENERATION-GAP giving TWO-DIGIT-FIELD
string "*", TWO-DIGIT-FIELD, "-" delimited by size

into DISPLAY-BUFFER with pointer DISPLAY-POINTER
else

string "-" delimited by size

into DISPLAY-BUFFER with pointer DISPLAY-POINTER,

if THIS-GENERATION-GAP not < 2

string "grand-" delimited by size

into DISPLAY-BUFFER with pointer DISPLAY-POINTER.

«

Page 94

* Compilation unit number 3 —-

—

identification division,

program-id. COMGENES.

* COMGENES assumes that each ancestor contributes
* half of the genetic material to a PERSON. It finds common
* ancestors between two PERSONS and computes the expected
* value of the PROPORTION of common material.

environment division.

configuration section,

source-computer. VAX-11.
object-computer. VAX-11.

data division.
working- St orage section.

01 RELATION-TYPE.
05 PARENT pic 9 value 1.

05 CHILD pic 9 value 2.

05 SPOUSE pic 9 value 3.

05 SIBLING pic 9 value 4.

05 UNCLE pic 9 value 5.

05 NEPHEW pic 9 value 6.

05 COUSIN pic 9 value 7.

05 NULL-RELATION pic 9 value 8.

AUXILIARY-VARIABLES.
05 COMMON-PROPORTION
05 MATCH-IDENTIFIER
05 TEN-DIGIT-FIELD

pic 9V9999999999.
pic 999.

pic 9.999999999.

01 STACKED-VARIABLES.
*** used to simulate recursion

05 STACK-ENTRY occurs 50

10 PROPORTION
10 THIS-CONTRIBUTION
10 ALREADY-COUNTED
10 PERSON-INDEX
10 NEXT-NEIGHBOR

times indexed by STACK-INDEX,
pic 9V9999999999.
pic 9V9999999999.
pic 9V9999999999.
usage index,
pic 999.

»

Page 9 5

linkage section.

77 PARM-INDEXl pic 999.

77 PARM-INDEX2 pic 999.

01 PERSON-TABLE.
05 NUMBER-OF -PERSONS usage index.
05 PERSON occurs 300 times indexed by

INDEXl, INDEX2, THIS-NODE.
*** static information - filled from PEOPLE file:

10 NAME pic X(20).
10 IDENTIFIER pic 999.

10 GENDER pic X.
*** IDENTIFIERS of immediate relatives - father, mother, spouse

10 IMMEDIATE-RELATIONS.
15 RELATIVE-IDENTIFIER occurs 3 times indexed by RELATIONSHIP

pic 999.
*** pointers to immediate neighbors in graph

10 NEIGHBOR-COUNT pic 99.

10 NEIGHBOR-RECORD occurs 20 times indexed by THIS-NEIGHBOR.
15 NEIGHBOR-INDEX usage index.

15 NEIGHBOR-EDGE pic 9.

*** data used when traversing graph to resolve user request:
10 DISTANCE -FROM-SOURCE pic 99999V9.

10 PATH-PREDECESSOR usage index.

10 EDGE-TO-PREDECESSOR pic 9.

10 REACHED-STATUS pic 9.

*** data used to compute common genetic material
10 DESCENDANT-IDENTIFIER pic 999.

10 DESCENDANT-GENES pic 9V99999999.

Page 96

procedure division using
PARM-INDEXl, PARM-INDEX2, PERSON-TABLE.

MAIN-LINE.
set INDEXl to PARM-INDEXl.

set INDEX2 to PARM-INDEX2.
*** First zero out all ancestors to allow adding. This is necessary
*** because there might be two paths to an ancestor.

set STACK-INDEX to 1.

set PERSON-INDEX (STACK-INDEX) to INDEXl.

move zero to NEXT-NEIGHBOR (STACK-INDEX),
perform ZERO-PROPORTION until STACK-INDEX < 1.

*** now mark with shared PROPORTION
move IDENTIFIER of PERSON (INDEXl) to MATCH-IDENTIFIER,
set STACK-INDEX to 1.

set PERSON-INDEX (STACK-INDEX) to INDEXl.
move zero to NEXT-NEIGHBOR (STACK-INDEX).
move 1.0 to PROPORTION (STACK-INDEX).
perform MARK-PROPORTION until STACK-INDEX < 1.

*** traverse ancestor tree for INDEX2, summing overlap
*** with marked tree of INDEXl

move zero to COMMON-PROPORTION
set STACK-INDEX to 1.

set PERSON-INDEX (STACK-INDEX) to INDEX2.

move IDENTIFIER of PERSON (INDEXl) to MATCH-IDENTIFIER.
move zero to NEXT-NEIGHBOR (STACK-INDEX).
move 1.0 to PROPORTION (STACK-INDEX).
move zero to ALREADY-COUNTED (STACK-INDEX).
perform CHECK-COMMON-PROPORTION until STACK-INDEX < 1.

move COMMON-PROPORTION to TEN-DIGIT-FIELD.
display " Proportion of common genetic material = ", TEN-DIGIT-FIELD.

END-OF-COMGENES.
exit program.

ZERO-PROPORTION.
*** ZERO-PROPORTION recursively seeks out all ancestors and
*** zeros them out

.

set THIS-NODE to PERSON-INDEX (STACK-INDEX),
if NEXT-NEIGHBOR (STACK-INDEX) = zero

move zero to DESCENDANT-GENES of PERSON (THIS-NODE)
move 1 to NEXT-NEIGHBOR (STACK-INDEX),

perform NULL
varying THIS-NEIGHBOR from NEXT-NEIGHBOR (STACK-INDEX) by 1

until THIS-NEIGHBOR > NEIGHBOR-COUNT (THIS-NODE)
or NEIGHBOR-EDGE (THIS-NODE, THIS-NEIGHBOR) = PARENT,

if THIS-NEIGHBOR > NEIGHBOR-COUNT (THIS-NODE)
*** then no more ancestors

set STACK-INDEX down by 1

else
*** set up for next ancestor

set NEXT-NEIGHBOR (STACK-INDEX) to THIS-NEIGHBOR
add 1 to NEXT-NEIGHBOR (STACK-INDEX)
set STACK-INDEX up by 1

set PERSON-INDEX (STACK-INDEX)
to NEIGHBOR-INDEX (THIS-NODE, THIS-NEIGHBOR)

move zero to NEXT-NEIGHBOR (STACK-INDEX).

MARK-PROPORTION.
*** MARK-PROPORTION recursively seeks out all ancestors and
*** marks them with the sender's PROPORTION of shared
*** genetic material. This PROPORTION is diluted by one-half
*** for each generation.

set THIS-NODE to PERSON-INDEX (STACK-INDEX),
if NEXT-NEIGHBOR (STACK-INDEX) = zero

move MATCH-IDENTIFIER
to DESCENDANT-IDENTIFIER of PERSON (THIS-NODE)

add PROPORTION (STACK-INDEX)
to DESCENDANT-GENES of PERSON (THIS-NODE)

move 1 to NEXT-NEIGHBOR (STACK-INDEX),
perform NULL

varying THIS-NEIGHBOR from NEXT-NEIGHBOR (STACK-INDEX) by

until THIS-NEIGHBOR > NEIGHBOR-COUNT (THIS-NODE)
or NEIGHBOR-EDGE (THIS-NODE, THIS-NEIGHBOR) = PARENT,

if THIS-NEIGHBOR > NEIGHBOR-COUNT (THIS-NODE)
*** then no more ancestors

set STACK-INDEX down by 1

else
*** set up for next ancestor

set NEXT-NEIGHBOR (STACK-INDEX) to THIS-NEIGHBOR
add 1 to NEXT-NEIGHBOR (STACK-INDEX)
set STACK-INDEX up by 1

set PERSON-INDEX (STACK-INDEX)
to NEIGHBOR-INDEX (THIS-NODE, THIS-NEIGHBOR)

move zero to NEXT-NEIGHBOR (STACK-INDEX)

divide PROPORTION (STACK-INDEX - 1) by 2 giving
PROPORTION (STACK-INDEX)

.

Page 98

CHECK-COMMON-PROPORTION

.

*** CHECK-COMMON-PROPORTION searches all the ancestors of
*** CHECK-INDEX to see if any have been marked, and if so
*** adds the appropriate amount to COMMON-PROPORTION.

set THIS-NODE to PERSON-INDEX (STACK-INDEX),

if NEXT-NEIGHBOR (STACK-INDEX) = zero

move 1 to NEXT-NEIGHBOR (STACK-INDEX)
if DESCENDANT-IDENTIFIER of PERSON (THIS-NODE) = MATCH-IDENTIFIER

*** Increment COMMON-PROPORTION by the contribution of
*** this common ancestor, but discount for the contribution
*** of less remote ancestors already counted.

multiply DESCENDANT-GENES of PERSON (THIS-NODE)
by PROPORTION (STACK-INDEX)
giving THIS-CONTRIBUTION (STACK-INDEX)

compute COMMON-PROPORTION = COMMON-PROPORTION
+ THIS-CONTRIBUTION (STACK-INDEX)
- ALREADY-COUNTED (STACK-INDEX)

else
move zero to THIS-CONTRIBUTION (STACK-INDEX),

perform NULL
varying THIS-NEIGHBOR from NEXT-NEIGHBOR (STACK-INDEX) by 1

until THIS-NEIGHBOR > NEIGHBOR-COUNT (THIS-NODE)
or NEIGHBOR-EDGE (THIS-NODE, THIS-NEIGHBOR) = PARENT,

if THIS-NEIGHBOR > NEIGHBOR-COUNT (THIS-NODE)
*** then no more ancestors

set STACK-INDEX down by 1

else
*** set up for next ancestor

set NEXT-NEIGHBOR (STACK-INDEX) to THIS-NEIGHBOR
add 1 to NEXT-NEIGHBOR (STACK-INDEX)
set STACK-INDEX up by 1

set PERSON-INDEX (STACK-INDEX)
to NEIGHBOR-INDEX (THIS-NODE, THIS-NEIGHBOR)

move zero to NEXT-NEIGHBOR (STACK-INDEX)
divide PROPORTION (STACK-INDEX - 1) by 2 giving

PROPORTION (STACK-INDEX)
divide THIS-CONTRIBUTION (STACK-INDEX - 1) by 4 giving

ALREADY-COUNTED (STACK-INDEX).

NULL.

exit

.

Page 99

6.0 FORTRAN

In keeping with the general convention of the examples, language-supplied
keywords and identifiers are written in lower case in the program. To conform
strictly to the FORTRAN standard, however, programs must use only upper-case
letters

.

program RELATE

c Establish global constants

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

c Each PERSON'S record in the file identifies at most three

c others directly related: father, mother, and spouse

integer FATHID, MOTHID, SPOUID
parameter (FATHID = 1, MOTHID = 2, SPOUID = 3)

character REQOK*10, REQSTP*A

parameter (REQOK = 'Request OK', REQSTP = 'stop')

character MALE*1, FEMALE*!

parameter (MALE = 'M', FEMALE = 'F')

integer PARENT, CHILD, SPOUSE, SIBLNG,

1 UNCLE, NEPHEW, COUSIN, NULLRL

parameter (PARENT = 1, CHILD = 2, SPOUSE = 3, SIBLNG = 4,

1 UNCLE = 5, NEPHEW = 6, COUSIN = 7, NULLRL = 8)

c These common blocks hold the PERSON array, which is global to

c the entire program.

common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSC ID

Page 100

c The following data items constitute the PERSON array, which
c is the central repository of information about inter-relationships

c static information - filled from PEOPLE file

character* (NAMLEN) NAME (MAXPRS)
character* (IDLEN) IDENT (MAXPRS)
character* 1 GENDER (MAXPRS)

c IDENTs of immediate relatives - father, mother, spouse
character* (IDLEN) RELID (MAXPRS, MAXGVN)

c pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)
integer NBRDEX (MAXPRS, MAXNBR)
integer NBREDG (MAXPRS, MAXNBR)

c data used when traversing graph to resolve user request:
real DSTSRC (MAXPRS)
integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)
integer RCHST (MAXPRS)

c data used to compute common genetic material
character*(IDLEN) DSCID (MAXPRS)
real DSC GEN (MAXPRS)

c NUMPER keeps track of the actual number of persons
integer NUMPER

c *** end of declarations for common data ***

c These variables are used when establishing the PERSON array
c from the PEOPLE file.

integer CURRNT, PRVDEX
character*(IDLEN) PREVID, CURRID
integer RELSHP

c These variables are used to accept and resolve requests for

c RELSHP information.
BUFDEX, SEMLOC
REQBUF
PlIDNT, P2IDNT
PIFND, P2FND
ERRMSG
PIDEX, P2DEX
PRNOUN

integer
character*(BUFLEN)
character* (NAMLEN)
integer

character* (MSGLEN)
integer
character*?

Page 101

c *** execution of main sequence begins here ***

open (unit=10, file='PEOPLE. DAT' , status='old' , fortn='fonnatted'

)

c This loop reads in the PEOPLE file and constructs the PERSON

c array from it (one PERSON = one record = one array entry),

c As records are read in, links are constructed to represent the

c PARENT-CHILD or SPOUSE relationship. The array then implements
c a directed graph which is used to satisfy subsequent user

c requests. The file is assumed to be correct - no validation
c is performed on it.

do 110 CURRNT=1, MAXPRS

c copy direct information from file to array
read (unit=10, fmt='(a20, a3, al, 3a3)', end=lll)

1 NAME(CURRNT) , IDENT(CURRNT) , GENDER (CURRNT)

,

2 ((RELID(CURRNT,ITEMP), ITEMP=FATHID, SPOUID))

c Location of adjacent persons as yet undetermined
NBRCNT (CURRNT) = 0

c Descendants as yet undetermined
DSCID (CURRNT) = NULLID

c Compare this PERSON against all previously entered PERSONS

c to search for relationships.
CURRID = IDENT (CURRNT)

do 120 PRVDEX = 1, CURRNT -1
PREVI D = IDENT (PRVDEX)

c Search for father, mother, or spouse relationship in

c either direction between this and previous PERSON,

c Assume at most one relationship exists,

do 130 RELSHP = FATHID, SPOUID

if (PREVID .eq. RELID (CURRNT, RELSHP)) then

call LNKREL (CURRNT, RELSHP, PRVDEX)

goto 131

else if (CURRID .eq. RELID (PRVDEX, RELSHP)) then

call LNKREL (PRVDEX, RELSHP, CURRNT)

goto 131

end if

130 continue
131 continue
120 continue
110 continue
111 continue

NUMPER = CURRNT - 1

close (unit=10, status='keep')

PERSON array is now loaded and edges between immediate relatives

(PARENT-CHILD or SPOUSE-SPOUSE) are established.

Page 102

c Loop accepts requests and finds relationship (if any)

c between pairs of PERSONS.

200 continue
call PROMPT (REQBUF)
if (REQBUF .eq. REQSTP) goto 201

call CHKRQS (REQBUF, ERRMSG, PlIDNT, P2IDNT)

c Syntax check of request completed. Now either display error

c message or search for the two PERSONS.

if (ERRMSG .eq. REQOK) then

c Request syntactically correct - search for requested PERSONS
call SEEKPR (PlIDNT, P2IDNT, PIDEX, P2DEX,

1 PIFND, P2FND)

if (PIFND .eq. 1 .and. P2FND .eq. 1) then

c Exactly one match for each PERSON - proceed to

c determine relationship, if any.

if (PIDEX .eq. P2DEX) then
if (GENDER (PIDEX) .eq. MALE) then

PRNOUN = 'himself
else

PRNOUN = 'herself
end if

write (unit=*, fmt=9002) NAME (PIDEX), PRNOUN
9002 format (a22, ' is identical to ', a7, '.')

else

call FINDRL (PIDEX, P2DEX)
end if

else

c either not found or more than one found
if (PIFND .eq. 0) then

write (unit=*, fmt='(" First person not found.")')
else if (PIFND .gt. 1) then

write (unit=*,
1 fmt='(" Duplicate names for first person",
2 - use numeric identifier.")')

end if

if (P2FND .eq. 0) then

write (unit=*, fmt='(" Second person not found.")')
else if (P2FND .gt. 1) then

write (unit=*,
1 fmt='(" Duplicate names for second person",
2 " - use numeric identifier.")')

end if

end if

c end processing of syntactically legal request
else

write (unit=*, fmt=9004) ERRMSG
9004 format (' Incorrect request format: ', a40)

end if

goto 200
201 continue

write (unit=*, fmt='(" End of relation-finder.")')
c End of main line of RELATE

end

Page 103

c procedures under RELATE

subroutine LNKREL (FRMDEX, RELSHP, TODEX)

c establishes cross-Indexing between Immediately related PERSONS,
integer FRMDEX, TODEX, RELSHP

c Each person's record in the file Identifies at most three

c others directly related: father, mother, and spouse

integer FATHID, MOTHID, SPOUID
parameter (FATHID = 1, MOTHID = 2, SPOUID = 3)

integer PARENT, CHILD, SPOUSE, SIBLNG,

1 UNCLE, NEPHEW, COUSIN, NULLRL
parameter (PARENT = 1, CHILD = 2, SPOUSE = 3, SIBLNG = A,

1 UNCLE = 5, NEPHEW = 6, COUSIN = 7, NULLRL = 8)

if (RELSHP .eq. SPOUID) then

call LNKONE (FRMDEX, SPOUSE, TODEX)
call LNKONE (TODEX, SPOUSE, FRMDEX)

else

c RELSHP is father or mother
call LNKONE (FRMDEX, PARENT, TODEX)
call LNKONE (TODEX, CHILD, FRMDEX)

end if

end

Page 104

subroutine LNKONE (FRMDEX, THSEDG, TODEX)

c Establishes the NBR pointers from one PERSON to another
integer FRMDEX, TODEX, THSEDG

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)

parameter (NULLID = '000')

c These common blocks hold the PERSON array, which is global to

c the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSC GEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

c The following data items constitute the PERSON array, which
c is the central repository of information about inter-relationships.

c static information - filled from PEOPLE file
character* (NAMLEN) NAME (MAXPRS)
character* (IDLEN) IDENT (MAXPRS)
character*l GENDER (MAXPRS)

c IDENTs of immediate relatives - father, mother, spouse
character*(IDLEN) RELID (MAXPRS, MAXGVN)

c pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)
integer NBRDEX (MAXPRS, MAXNBR)
integer NBREDG (MAXPRS, MAXNBR)

c data used when traversing graph to resolve user request:

real DSTSRC (MAXPRS)
integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)
integer RCHST (MAXPRS)

c data used to compute common genetic material
character* (IDLEN) DSCID (MAXPRS)
real DSCGEN (MAXPRS)

c NUMPER keeps track of the actual number of persons
integer NUMPER

c *** end of declarations for common data ***

ITEMP = NBRCNT (FRMDEX) + 1

NBRCNT (FRMDEX) = ITEMP
NBRDEX (FRMDEX, ITEMP) = TODEX
NBREDG (FRMDEX, ITEMP) = THSEDG
end

subroutine PROMPT (REQBUF)

c Issues prompt for user-request, reads in request,
c blank-fills buffer, and skips to next line of input.

character*(*) REQBUF

write (unit=*, fmt=9001)

9001 format (/,' '

1 Enter two person- identifiers (name or number),'
2 /,' separated by semicolon. Enter "stop" to stop.')

c *** NOTE THAT THIS IS NOT A STANDARD WAY TO READ A LINE FROM

c *** THE TERMINAL (see section 12.9.5.2.1). THE STANDARD

c *** PROVIDES NO SUCH CAPABILITY.

read (unit=*, fmt='(a60)') REQBUF
end

subroutine CHKRQS (REQBUF, REQST, PlIDNT, P2IDNT)

c Performs syntactic check on request in buffer.

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,

1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULL ID* (IDLEN)

parameter (NULLID = '000')

character REQOK*10, REQSTP*4

parameter (REQOK = 'Request OK', REQSTP = 'stop')

character REQBUF* (BUFLEN) ,
REQST*(MSGLEN)

character* (NAMLEN) PlIDNT, P2IDNT, LTRIM

integer SEMLOC

SEMLOC = INDEX (REQBUF,';')

P2IDNT = REQBUF (SEMLOC+1 : BUFLEN)

set REQST, based on results of scan of REQBUF, and

fill in PlIDNT and P2IDNT.

Page 106

if (SEMLOC .eq. 0 .or. INDEX (P2IDNT, ';') .ne. 0) then
REQST = 'must be exactly one semicolon.'

else

if (SEMLOC .eq. 1) then
PlIDNT = ' '

else

PlIDNT = REQBUF (1 : SEMLOC-1)
end if

if (PlIDNT .eq. ' ') then

REQST = 'null field preceding semicolon.'
else if (P2IDNT .eq. ' ') then

REQST = 'null field following semicolon.'
else

REQST = REQOK
PlIDNT = LTRIM (PlIDNT)
P2IDNT = LTRIM (P2IDNT)

end if

end if

end

character* (*) function LTRIM (STRING)

c LTRIM deletes leading spaces and returns the resulting value.

character* (*) STRING

do 100 ITEMP = 1, len(STRING)
if (STRING (ITEMP : ITEMP) .ne. ' ') goto 101

100 continue
101 continue

LTRIM = STRING (ITEMP : len(STRING))
end

subroutine SEEKPR (PlIDNT, P2IDNT, PIDEX, P2DEX,

1 PIFND, P2FND)
c SEEKPR scans through the PERSON array, looking for the two

c requested PERSONS. Match may be by NAME or unique IDENT-number

.

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

character* (NAMLEN) PlIDNT, P2IDNT
integer PIDEX, P2DEX, PIFND, P2FND

integer CURRNT

Page 107

c These common blocks hold the PERSON array, which is global to

c the entire program.
common /PEBINUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

c The following data items constitute the PERSON array, which
c is the central repository of information about inter-relationships

c static information - filled from PEOPLE file
character* (NAMLEN) NAME (MAXPRS)
character* (IDLEN) IDENT (MAXPRS)
character*l GENDER (MAXPRS)

c IDENTs of immediate relatives - father, mother, spouse
character*(IDLEN) RELID (MAXPRS, MAXGVN)

c pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS

)

integer NBRDEX (MAXPRS, MAXNBR)
integer NBREDG (MAXPRS, MAXNBR)

c data used when traversing graph to resolve user request:

real DSTSRC (MAXPRS)

integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS

)

integer RCHST (MAXPRS)

c data used to compute common genetic material
character* (IDLEN) DSCID (MAXPRS)

real DSCGEN (MAXPRS)

c NUMPER keeps track of the actual number of persons

integer NUMPER

c *** end of declarations for common data ***

PIDEX = 0

P2DEX = 0

PIFND = 0

P2FND = 0

do 100 CURRNT = 1, NUMPER

c allow identification by name or number,

if (PlIDNT .eq. IDENT (CURRNT) .or.

1 PlIDNT .eq. NAME (CURRNT)) then

PIFND = PIFND + 1

PIDEX = CURRNT
end if

if (P2IDNT .eq. IDENT (CURRNT) .or.

1 P2IDNT .eq. NAME (CURRNT)) then

P2FND = P2FND + 1

P2DEX = CURRNT
end if

100 continue
end

Page 108

subroutine FINDRL (TRGDEX, SRCDEX)

c Finds shortest path (if any) between two PERSONS and
c determines their relationship based on immediate relations
c traversed in path. PERSON array simulates a directed graph,

c and algorithm finds shortest path, based on following
c weights: PARENT-CHILD edge = 1.0

c SPOUSE-SPOUSE edge = 1.8

integer TRGDEX, SRCDEX

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

c A node in the graph (= PERSON) has either already been reached,
c is immediately adjacent to those reached, or farther away.

integer REACHD, NEARBY, NOSEEN
parameter (REACHD = 1, NEARBY = 2, NOSEEN = 3)

c These common blocks hold the PERSON array, which is global to

c the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

c The following data items constitute the PERSON array, which
c is the central repository of information about inter-relationships.

c static information - filled from PEOPLE file
character* (NAMLEN) NAME (MAXPRS)

character* (IDLEN) IDENT (MAXPRS)
character*l GENDER (MAXPRS)

c IDENTs of immediate relatives - father, mother, spouse

character* (IDLEN) RELID (MAXPRS, MAXGVN)
c pointers to immediate neighbors in graph

integer NBRCNT (MAXPRS)

integer NBRDEX (MAXPRS, MAXNBR)
integer NBREDG (MAXPRS, MAXNBR)

c data used when traversing graph to resolve user request:

real DSTSRC (MAXPRS)
integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)
integer RCHST (MAXPRS)

c data used to compute common genetic material
character*(IDLEN) DSCID (MAXPRS)

real DSCGEN (MAXPRS)

c NUMPER keeps track of the actual number of persons
integer NUMPER

c *** end of declarations for common data ***

Page 109

integer PERDEX, THSNOD, ADJNOD,
1 BSTDEX, LASTNR, NEARND (MAXPRS)
integer THSEDG, THSNBR
integer RELSHP
real HINDIS

integer SRCHNG, SUCCES, FAILED
parameter (SRCHNG = 1, SUCCES = 2, FAILED = 3)

integer SRCHST

c begin execution of FINDRL

c initialize PERSON-array for processing -

c mark all nodes as not seen

do 100 PERDEX = 1, NUMPER
RCHST (PERDEX) = NOSEEN

100 continue
THSNOD = SRCDEX

c mark source node as reached
RCHST (THSNOD) = REACHD
DSTSRC (THSNOD) =0.0

c no NEARBY nodes exist yet
LASTNR = 0

if (THSNOD .eq. TRGDEX) then
SRCHST = SUCCES

else
SRCHST = SRCHNG

end if

Page 110

c Loop keeps processing closest-to-source , unreached node
c until target reached, or no more connected nodes.
200 continue

if (SRCHST .ne. SRCHNG) goto 201

c Process all nodes adjacent to THSNOD
do 210 THSNBR = 1, NBRCNT (THSNOD)

call PROCAD (THSNOD, NBRDEX (THSNOD, THSNBR),
1 NBREDG (THSNOD, THSNBR), NEARND, LASTNR)

210 continue

c All nodes adjacent to THSNOD are set. Now search for

c shortest-distance unreached (but NEARBY) node to process next.

if (LASTNR .eq. 0) then

SRCHST = FAILED
else

c determine next node to process
HINDIS = l.OE+18
do 220 PERDEX = 1, LASTNR

if (DSTSRC (NEARND (PERDEX)) .It. HINDIS) then
BSTDEX = PERDEX
HINDIS = DSTSRC (NEARND (PERDEX))

end if

220 continue
c establish new THSNOD

THSNOD = NEARND (BSTDEX)
c change THSNOD from being NEARBY to reached

RCHST (THSNOD) = REACHD
c remove THSNOD from NEARBY list

NEARND (BSTDEX) = NEARND (LASTNR)
LASTNR = LASTNR - 1

if (THSNOD .eq. TRGDEX) SRCHST = SUCCES

end if

goto 200

201 continue

c Shortest path between PERSONS now established. Next task is

c to translate path to English description of relationship.
if (SRCHST .eq. FAILED) then

write (unit=*, fmt=9001) NAHE (TRGDEX), NAME (SRCDEX)

9001 format (a22, ' is not related to a20)
else

c success - parse path to find and display relationship
call RESOLV (SRCDEX, TRGDEX)

c compute proportion of common genetic material
call CHPTGN (SRCDEX, TRGDEX)

end if

end

Page 111

c procedures under FINDRL

subroutine PROCAD (BASNOD, NXTNOD, NBEDGE, NEARND, LASTNR)
c NXTNOD is adjacent to last-reached node (= BASNOD).
c If NXTNOD already reached, do nothing,
c If previously seen, check whether path thru BASNOD is
c shorter than current path to NXTNOD, and if so re-link
c next to base

.

c If not previously seen, link next to base node.

integer NXTNOD, BASNOD, NEARND(*), LASTNR
integer NBEDGE

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

c A node in the graph (— PERSON) has either already been reached,
c is immediately adjacent to those reached, or farther away.

integer REACHD, NEARBY, NOSEEN
parameter (REACHD = 1, NEARBY = 2, NOSEEN = 3)

c These common blocks hold the PERSON array, which is global to

c the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSC GEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

c The following data items constitute the PERSON array, which
c is the central repository of information about inter-relationships,

static information - filled from PEOPLE file
character* (NAMLEN) NAME (MAXPRS)
character*(IDLEN) IDENT (MAXPRS)
character*l GENDER (MAXPRS)

IDENTs of immediate relatives - father, mother, spouse
character* (IDLEN) RELID (MAXPRS, MAXGVN)

pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)

integer NBRDEX (MAXPRS, MAXNBR)

integer NBREDG (MAXPRS, MAXNBR)
data used when traversing graph to resolve user request

real DSTSRC (MAXPRS)

integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)

integer RCHST (MAXPRS)

data used to compute common genetic material
character*(IDLEN) DSCID (MAXPRS)

real DSCGEN (MAXPRS)

Page 112

c NUMPER keeps track of the actual number of persons
Integer NUMPER

c *** end of declarations for common data ***

real WGHTEG, DSTBAS

c begin execution of PROCAD
if (RCHST (NXTNOD) .ne. REACHD) then

if (NBEDGE .eq. SPOUSE) then
WGHTEG = 1.8

else
WGHTEG =1.0

end if

DSTBAS = WGHTEG + DSTSRC (BASNOD)

7 if (RCHST (NXTNOD) .eq. NOSEEN) then

c change status of THSNOD from not-seen to NEARBY
RCHST (NXTNOD) = NEARBY
LASTNR = LASTNR + 1

NEARND (LASTNR) = NXTNOD
c link next to base by re-setting its predecessor index to

c point to base, note type of edge, and re-set distance
c as it is through base node.

DSTSRC (NXTNOD) = DSTBAS
PATHPR (NXTNOD) = BASNOD
EDGPRD (NXTNOD) = NBEDGE

else

c RCHST is NEARBY
if (DSTBAS .It. DSTSRC (NXTNOD)) then

c link next to base by re-setting its predecessor index

c point to base, note type of edge, and re-set distance
c as it is through base node.

DSTSRC (NXTNOD) = DSTBAS
PATHPR (NXTNOD) = BASNOD
EDGPRD (NXTNOD) = NBEDGE

end if

end if

end if

end

subroutine RESOLV (SRCDEX, TRGDEX)
RESOLV condenses the shortest path to a series of
relationships for which there are English descriptions.

integer SRCDEX, TRGDEX

Establish global constants

integer MAXPRS, NA.MLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN =

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

character MALE*1, FEMALE*1
parameter (MALE = 'M', FEMALE = 'F')

integer PARENT, CHILD, SPOUSE, SIBLNG,
1 UNCLE, NEPHEW, COUSIN, NULLRL
parameter (PARENT = 1, CHILD = 2, SPOUSE = 3, SIBLNG = A,

1 UNCLE = 5, NEPHEW = 6, COUSIN = 7, NULLRL = 8)

sibling proximity can have three values

integer STEP, HALF, FULL
parameter (STEP = 1, HALF = 2, FULL = 3)

These common blocks hold the PERSON array, which is global t

the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

Page 114

c The following data items constitute the PERSON array, which
c is the central repository of information about inter-relationships

c static information - filled from PEOPLE file
character* (NAMLEN) NAME (MAXPRS)
character*(IDLEN) IDENT (MAXPRS)

character*l GENDER (MAXPRS)
c IDENTs of immediate relatives - father, mother, spouse

character* (IDLEN) RELID (MAXPRS, MAXGVN)

c pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)
integer NBRDEX (MAXPRS, MAXNBR)
integer NBREDG (MAXPRS, MAXNBR)

c data used when traversing graph to resolve user request:
real DSTSRC (MAXPRS)
integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)
integer RCHST (MAXPRS)

c data used to compute common genetic material
character*(IDLEN) DSCID (MAXPRS)
real DSCGEN (MAXPRS)

c NUMPER keeps track of the actual number of persons
integer NUMPER

c *** end of declarations for common data ***

c these variables are used to generate key-person data
integer GENCNT, THSCUZ
integer THSPRX

c these variables are used to condense the path

common /KEYPER/ RELNXT, PERDEX, GENGAP, PRXMTY, CUZRNK

c Key persons are the ones in the relationship path which
c after the path is condensed.

integer RELNXT (MAXPRS)

integer PERDEX (MAXPRS)
integer GENGAP (MAXPRS)
integer PRXMTY (MAXPRS)
integer CUZRNK (MAXPRS)

integer KEYREL, LATREL, PRIREL, NXTPRI
integer KEYDEX, LATDEX, PRIDE X, THSNOD
integer GAPl, GAP2

logical SEEKMR, FULSIB

Page 115

c begin execution of RESOLV
write (unit=*,

1 fmt='(" Shortest path between identified persons: ")')

c Display path and initialize key person arrays from path elements.
THSNOD = TRGDEX
do 100 KEYDEX = 1, MAXPRS

if (THSNOD .eq. SRCDEX) goto 101
PERDEX (KEYDEX) = THSNOD
PRXMTY (KEYDEX) = FULL
RELNXT (KEYDEX) = EDGPRD (THSNOD)

if (EDGPRD (THSNOD) .eq. SPOUSE) then
write (unit=*, fmt='(a22, " is spouse of")') NAME (THSNOD)

GENGAP (KEYDEX) = 0

else
GENGAP (KEYDEX) = 1

if (EDGPRD (THSNOD) .eq. PARENT) then
write (unit=*, fmt='(a22, " is parent of")')

1 NAME (THSNOD)

else
write (unit=*, fmt='(a22, " is child of")')

1 NAME (THSNOD)

end if

end if

THSNOD = PATHPR (THSNOD)

100 continue
101 continue

write (unit=*, fmt='(a22)') NAME (THSNOD)

PERDEX (KEYDEX) = THSNOD
RELNXT (KEYDEX) = NULLRL
RELNXT (KEYDEX + 1) = NULLRL

Page 116

c resolve CHILD-PARENT and CHILD-SPOUSE-PARENT relations

c to SIBLNG relations.
do 200 KEYDEX = 1, MAXPRS

If (RELNXT (KEYDEX) .eq. NULLRL) goto 201
if (RELNXT (KEYDEX) .eq. CHILD) then

LATREL = RELNXT (KEYDEX + 1)

if (LATREL .eq. PARENT) then

c found either full or half SIBLNGs
if (FULSIB (PERDEX (KEYDEX), PERDEX (KEYDEX + 2))) then

PRXMTY (KEYDEX) = FULL
else

PRXMTY (KEYDEX) = HALF
end if

GENGAP (KEYDEX) = 0

RELNXT (KEYDEX) = SIBLNG
call CONDNS (KEYDEX, 1)

else if (LATREL .eq. SPOUSE .and.

1 RELNXT (KEYDEX + 2) .eq. PARENT) then

c found step-SIBLNGs
GENGAP (KEYDEX) = 0

PRXMTY (KEYDEX) = STEP

RELNXT (KEYDEX) = SIBLNG
call CONDNS (KEYDEX, 2)

end if

end if

200 continue
201 continue

c resolve CHILD-CHILD-. . . and PARENT-PARENT-. . . relations to

c direct descendant or ancestor relations,
do 300 KEYDEX = 1, MAXPRS

if (RELNXT (KEYDEX) .eq. NULLRL) goto 301

if (RELNXT (KEYDEX) .eq. CHILD .or.

1 RELNXT (KEYDEX) .eq. PARENT) then
do 310 LATDEX = KEYDEX + 1, MAXPRS

if (RELNXT (LATDEX) .ne. RELNXT (KEYDEX)) goto 311

310 continue
311 continue

GENCNT = LATDEX - KEYDEX
if (GENCNT .gt. 1) then

c compress generations
GENGAP (KEYDEX) = GENCNT
call CONDNS (KEYDEX, GENCNT - 1)

end if

end if

300 continue
301 cont inue

Page 117

c resolve CHILD-SIBLNG-PARENT to COUSIN,

c CHILD-SIBLNG to NEPHEW,
C SIBLNG-PARENT to UNCLE,

do 400 KEYDEX = 1, MAXPRS
if (RELNXT (KEYDEX) .eq. NULLRL) goto AOl
LATREL = RELNXT (KEYDEX + 1)

if (RELNXT (KEYDEX) .eq. CHILD .and. LATREL .eq. SIBLNG) then

c found COUSIN or NEPHEW
PRXMTY (KEYDEX) = PRXMTY (KEYDEX + 1)

if (RELNXT (KEYDEX + 2) .eq. PARENT) then

c found COUSIN
GAPl = GENGAP (KEYDEX)

GAP2 = GENGAP (KEYDEX + 2)

GENGAP (KEYDEX) = abs (GAPl - GAP2)
CUZRNK (KEYDEX) = mln (GAPl, GAP2)

RELNXT (KEYDEX) = COUSIN
call CONDNS (KEYDEX, 2)

else

c found NEPHEW
RELNXT (KEYDEX) = NEPHEW
call CONDNS (KEYDEX, 1)

end if

else
if (RELNXT (KEYDEX) .eq. SIBLNG .and.

1 LATREL .eq. PARENT) then

c found UNCLE
GENGAP (KEYDEX) = GENGAP (KEYDEX + 1)

RELNXT (KEYDEX) = UNCLE

call CONDNS (KEYDEX, 1)

end if

end if

AGO continue
401 continue

Page 118

c Loop below will pick out valid adjacent strings of elements
c to be displayed. KEYDEX points to first element,
c LATDEX to last element, and PRIDEX to the

c element which determines the primary English word to be used,

c Associativity of adjacent elements in condensed table
c is based on English usage.

KEYDEX = 1

write (unit=*, fmt='(" Condensed path:")')
500 continue

if (RELNXT (KEYDEX) .eq. NULLRL) goto 501
KEYREL = RELNXT (KEYDEX)

LATDEX = KEYDEX
PRIDEX = KEYDEX
if (RELNXT (KEYDEX + 1) .ne. NULLRL) then

c . seek multi-element combination
SEEKMR = .true,
if (KEYREL .eq. SPOUSE) then

LATDEX = LATDEX + 1

PRIDEX = LATDEX
c Nothing can follow SPOUSE-SIBLNG or SPOUSE-COUSIN

SEEKMR = .not. (RELNXT (LATDEX) .eq. SIBLNG .or.

1 RELNXT (LATDEX) .eq. COUSIN)
end if

c PRIDEX is now correctly set. Next if-statement
c determines if a following SPOUSE relation should be

c appended to this combination or left for the next

c combination.
if (SEEKMR .and. RELNXT (PRIDEX + 1) .eq. SPOUSE) then

c Only a SPOUSE can follow a Primary.

C Check primary preceding and following SPOUSE.
PRIREL = RELNXT (PRIDEX)

NXTPRI = RELNXT (PRIDEX + 2)

if ((NXTPRI .eq. NEPHEW .or.

1 NXTPRI .eq. COUSIN .or.

2 NXTPRI .eq. NULLRL)
3 .or. (PRIREL .eq. NEPHEW)
4 .or. ((PRIREL .eq. SIBLNG .or. PRIREL .eq. PARENT)

5 .and. NXTPRI .ne. UNCLE)) then

c append following SPOUSE with this combination.
LATDEX = LATDEX + 1

end if

end if

end if

c end multi-element combination
call SHOWRE (KEYDEX, LATDEX, PRIDEX)
KEYDEX = LATDEX + 1

goto 500
501 continue

write (unit=*, fmt='(a22)') NAME (PERDEX (KEYDEX))

end
c end of RESOLV

logical function FULSIB (INDEXl, INDEX2)
Determines whether two PERSONS are full siblings, i.e.,
have the same two parents

.

integer INDEXl, INDEX2

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN

1 MSGLEN = 40, MAXNBR = 20, MAXGVN

character NULL1D*(IDLEN)
parameter (NULLID = '000')

integer FATHID, MOTHID, SPOUID
parameter (FATHID = 1, MOTHID = 2, SPOUID = 3)

3, BUFLEN = 60,

3)

These common blocks hold the PERSON array, which is global to

the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

The following data items constitute the PERSON array, which

is the central repository of information about inter-relationships

static information - filled from PEOPLE file

character* (NAMLEN) NAME (MAXPRS)
character* (IDLEN) IDENT (MAXPRS)

character*! GENDER (MAXPRS)
IDENTs of immediate relatives - father, mother, spouse

character* (IDLEN) RELID (MAXPRS, MAXGVN)

pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)

integer NBRDEX (MAXPRS, MAXNBR)

integer NBREDG (MAXPRS, MAXNBR)

data used when traversing graph to resolve user request:

real DSTSRC (MAXPRS)

integer PATHPR (MAXPRS)

integer - EDGPRD (MAXPRS)

integer RCHST (MAXPRS)

data used to compute common genetic material

character* (IDLEN) DSCID (MAXPRS)

real DSCGEN (MAXPRS)

NUMPER keeps track of the actual number of persons

integer ^
NUMPER

*** end of declarations for common data ***

FULSIB =

1 RELID (INDEXl, FATHID) .ne. NULLID .and.

2 RELID (INDEXl, MOTHID) .ne. NULLID .and.

3 RELID (INDEXl, FATHID) .eq. RELID (INDEX2, FATHID) .and.

4 RELID (INDEXl, MOTHID) .eq. RELID (INDEX2, MOTHID)

end

Page 120

subroutine CONDNS (ATDEX, GAPSIZ)

c CONDNS condenses superfluous entries from the
c key person arrays, starting at ATDEX.

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

integer PARENT, CHILD, SPOUSE, SIBLNG,
1 UNCLE, NEPHEW, COUSIN, NULLRL
parameter (PARENT = 1, CHILD = 2, SPOUSE = 3, SIBLNG = 4,

1 UNCLE = 5, NEPHEW = 6, COUSIN = 7, NULLRL = 8)

common /KEYPER/ RELNXT, PERDEX, GENGAP, PRXMTY, CUZRNK

c Key persons are the ones in the relationship path which remain
c after the path is condensed.

integer RELNXT (MAXPRS)
integer PERDEX (MAXPRS)
integer GENGAP (MAXPRS)
integer PRXMTY (MAXPRS)
integer CUZRNK (MAXPRS)

integer ATDEX, GAPSIZ, SENDEX, RCVDEX

RCVDEX = ATDEX
100 continue

RCVDEX = RCVDEX + 1

SENDEX = RCVDEX + GAPSIZ
RELNXT (RCVDEX) = RELNXT (SENDEX)
PERDEX (RCVDEX) = PERDEX (SENDEX)
GENGAP (RCVDEX) = GENGAP (SENDEX)
PRXMTY (RCVDEX) = PRXMTY (SENDEX)
CUZRNK (RCVDEX) = CUZRNK (SENDEX)

if (RELNXT (SENDEX) .ne. NULLRL) goto 100

end

c procedures under RESOLV

subroutine SHOWRE (FSTDEX, LSTDEX, PRIDEX)
c SHOWRE takes 1, 2, or 3 adjacent elements In the
c condensed table and generates the English description of
c the relation between the first and last + 1 elements.

c Establish global constants

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

character MALE*1, FEMALE*!
parameter (MALE = 'M' , FEMALE = 'F')

integer PARENT, CHILD, SPOUSE, SIBLNG,

1 UNCLE, NEPHEW, COUSIN, NULLRL
parameter (PARENT = 1, CHILD = 2, SPOUSE = 3, SIBLNG = 4,

1 UNCLE = 5, NEPHEW = 6, COUSIN = 7, NULLRL = 8)

c sibling proximity can have three values

integer STEP, HALF, FULL
parameter (STEP = 1, HALF = 2, FULL = 3)

c These common blocks hold the PERSON array, which is global to

c the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSC GEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

Page 122

c The following data items constitute the PERSON array, which
c is the central repository of information about inter-relationships

c static information - filled from PEOPLE file

character* (NAMLEN) NAME (MAXPRS)
character* (IDLEN) IDENT (MAXPRS)

character*! GENDER (MAXPRS)

c IDENTs of immediate relatives - father, mother, spouse
character* (IDLEN) RELID (MAXPRS, MAXGVN)

c pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)
integer NBRDEX (MAXPRS, MAXNBR)
integer NBREDG (MAXPRS, MAXNBR)

c data used when traversing graph to resolve user request:
real DSTSRC (MAXPRS)
integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)
integer RCHST (MAXPRS)

c data used to compute common genetic material
character* (IDLEN) DSCID (MAXPRS)
real DSC GEN (MAXPRS)

c NUMPER keeps track of the actual number of persons
integer NUMPER

common /KEYPER/ RELNXT, PERDEX, GENGAP, PRXMTY, CUZRNK

c Key persons are the ones in the relationship path which remain
c after the path is condensed.

integer
integer
integer
integer
integer

RELNXT (MAXPRS)
PERDEX (MAXPRS)
GENGAP (MAXPRS)
PRXMTY (MAXPRS)
CUZRNK (MAXPRS)

c *** end of declarations for common data ***

logical
integer
character
integer
character
integer
integer
character*75
integer

INLAW
THSPRX, THSGAP, THSCUZ
TW0DIG*2
SUFPTR
SUFCHR*12
FSTDEX, LSTDEX, PRIDEX
FSTREL, LSTREL, PRIREL

OUTBUF
OUTPTR

begin execution of SHOWRE

FSTREL = RELNXT (FSTDEX)
LSTREL = RELNXT (LSTDEX)
PRIREL = RELNXT (PRIDEX)

set THSPRX
if ((PRIREL .eq. PARENT .and. FSTREL .eq. SPOUSE) .or.

1 (PRIREL .eq. CHILD .and. LSTREL .eq. SPOUSE)) then
THSPRX = STEP

else
if (PRIREL .eq. SIBLNG .or. PRIREL .eq. UNCLE .or.

1 PRIREL .eq. NEPHEW .or. PRIREL .eq. COUSIN) then
THSPRX = PRXMTY (PRIDEX)

else
THSPRX = FULL

end if

end if

set THSGAP
if (PRIREL .eq. PARENT .or. PRIREL .eq. CHILD .or.

1 PRIREL .eq. UNCLE .or. PRIREL .eq. NEPHEW .or.

2 PRIREL .eq. COUSIN) then
THSGAP = GENGAP (PRIDEX)

else
THSGAP = 0

end if

set INLAW
if (FSTREL .eq. SPOUSE .and.

1 (PRIREL .eq. SIBLNG .or. PRIREL .eq. CHILD .or.

2 PRIREL .eq. NEPHEW .or. PRIREL .eq. COUSIN)) then

INLAW = .true.

else

if (LSTREL .eq. SPOUSE .and.

1 (PRIREL .eq. SIBLNG .or. PRIREL .eq. PARENT .or.

2 PRIREL .eq. UNCLE .or. PRIREL .eq. COUSIN)) then

INLAW = .true.

else
INLAW = .false,

end if

end if

set THSCUZ
if (PRIREL .eq. COUSIN) then

THSCUZ = CUZRNK (PRIDEX)

else
THSCUZ = 0

end if

Page 124

c parameters are set - now generate display.

OUTBUF = NAME (PERDEX (FSTDEX)) // ' is
'

OUTPTR = NAMLEN + 5

if (PRIREL .eq. PARENT .or. PRIREL .eq. CHILD .or.

1 PRIREL .eq. UNCLE .or. PRIREL .eq. NEPHEW) then

c display generation-qualifier
if (THSGAP .ge. 3) then

call APPEND (OUTBUF, OUTPTR, 'great')

if (THSGAP .gt. 3) then
write (unit=TWODIG, fmt='(i2)') THSGAP - 2

call APPEND (OUTBUF, OUTPTR, '*'
// TWODIG)

end if

call APPEND (OUTBUF, OUTPTR, '-')

end if

if (THSGAP .ge. 2) then
call APPEND (OUTBUF, OUTPTR, 'grand-')

end if

else
if (PRIREL .eq. COUSIN .and. THSCUZ .gt. I) then

c display cousin-degree
write (unit=TWODIG, fmt='(i2)') THSCUZ
call APPEND (OUTBUF, OUTPTR, TWODIG)
SUFPTR = mod (THSCUZ, 10)

if (SUFPTR .gt. 3) SUFPTR = 0

SUFPTR = 3 * SUFPTR + 1

SUFCHR = 'th St nd rd
'

call APPEND (OUTBUF, OUTPTR, SUFCHR (SUFPTR : SUFPTR +2))
end if

end if

if (THSPRX .eq. STEP) then
call APPEND (OUTBUF, OUTPTR, 'step-')

else
if (THSPRX .eq. HALF) then

call APPEND (OUTBUF, OUTPTR, 'half-')

end if

end if

Page 125

if (GENDER (PERDEX (FSTDEX)) .eq. MALE) then
goto (201,202,203,204,205,206,297,298), PRIREL

201 continue
call APPEND (OUTBUF, OUTPTR, 'father')
goto 300

202 continue
call APPEND (OUTBUF, OUTPTR, 'son')
goto 300

203 continue
call APPEND (OUTBUF, OUTPTR, 'husband')
goto 300

204 continue
call APPEND (OUTBUF, OUTPTR, 'brother')
goto 300

205 continue
call APPEND (OUTBUF, OUTPTR, 'uncle')
goto 300

206 continue
call APPEND (OUTBUF, OUTPTR, 'nephew')
goto 300

else

c gender is FEMALE
goto (251,252,253,254,255,256,297,298), PRIREL

251 continue
call APPEND (OUTBUF, OUTPTR, 'mother')

goto 300
252 continue

call APPEND (OUTBUF, OUTPTR, 'daughter')

goto 300
253 continue

call APPEND (OUTBUF, OUTPTR, 'wife')

goto 300
254 continue

call APPEND (OUTBUF, OUTPTR, 'sister')

goto 300
255 continue

call APPEND (OUTBUF, OUTPTR, 'aunt')

goto 300

256 continue
call APPEND (OUTBUF, OUTPTR, 'niece')

goto 300
end if

297 continue
call APPEND (OUTBUF, OUTPTR, 'cousin')

goto 300

298 continue
call APPEND (OUTBUF, OUTPTR, 'null')

goto 300

300 continue

Page 126

if (INLAW) call APPEND (OUTBUF, OUTPTR, '-in-law')

if (PRIREL .eq. COUSIN .and. THSGAP .gt. 0) then

if (THSGAP .gt. 1) then

write (unit=TWODIG, fmt='(i2)') THSGAP
call APPEND (OUTBUF, OUTPTR, ' '//TWODIG//' times removed')

else
call APPEND (OUTBUF, OUTPTR, ' once removed')

end if

end if

call APPEND (OUTBUF, OUTPTR, 'of')
write (unit=*, fmt='(a77)') OUTBUF
end

subroutine APPEND (STRING, PTR, ADDEND)

c APPEND appends the contents of ADDEND to STRING in the position
c indicated by PTR, and increments PTR

character STRING*(*), ADDEND*(*)
integer PTR, ADDLEN

ADDLEN = len (ADDEND)
STRING (PTR : PTR + ADDLEN - 1) = ADDEND
PTR = PTR + ADDLEN
end

c procedures under FINDRL

subroutine CMPTGN (INDEXl, INDEX2)

c CMPTGN assumes that each ancestor contributes
c half of the genetic material to a PERSON. It finds common
c ancestors between two PERSONS and computes the expected
c value of the proportion of common material.

integer INDEXl, INDEX2

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN

1 MSGLEN = AO, MAXNBR = 20, MAXGVN

character NULLID*(IDLEN)
parameter (NULLID = '000')

c These common blocks hold the PERSON array, which is global to

2 the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSC ID

= 3, BUFLEN = 60,
= 3)

Page 127

c The following data items constitute the PERSON array, which
c is the central repository of information about inter-relationships

c static information - filled from PEOPLE file
character* (NAMLEN) NAME (MAXPRS)
character*(IDLEN) IDENT (MAXPRS)
character*! GENDER (MAXPRS)

c IDENTs of immediate relatives - father, mother, spouse
character*(IDLEN) RELID (MAXPRS, MAXGVN)

c pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)
integer NBRDEX (MAXPRS, MAXNBR)
integer NBREDG (MAXPRS, MAXNBR)

c data used when traversing graph to resolve user request:
real DSTSRC (MAXPRS)
integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)
integer RCHST (MAXPRS)

c data used to compute common genetic material
character* (IDLEN) DSCID (MAXPRS)
real DSCGEN (MAXPRS)

c NUMPER keeps track, of the actual number of persons
integer NUMPER

c STACK is common to the routines which calculate genetic overlap,

c It is used to implement recursive traversal of the ancestor trees.

integer STKSIZ
parameter (STKSIZ =50)

common /STACK/ PROPTN, CONTRB, COUNTD, PERDEX, NXTNBR,

1 STKPTR

real PROPTN (STKSIZ)

real CONTRB (STKSIZ)

real COUNTD (STKSIZ)

integer PERDEX (STKSIZ)

integer NXTNBR (STKSIZ)

integer STKPTR

c *** end of declarations for common data ***

real CCMPRP

Page 128

c First zero out all ancestors to allow adding. This is necessary
c because there might be two paths to an ancestor.

STKPTR = 1

PERDEX (STKPTR) = INDEXl
NXTNBR (STKPTR) = 0

100 continue
call ZERPRO
if (STKPTR .ge. 1) goto 100

101 continue
c now mark with shared PROPTN

STKPTR =1 .

PERDEX (STKPTR) = INDEXl
NXTNBR (STKPTR) = 0

PROPTN (STKPTR) =1.0
200 continue

call MRKPRO (IDENT (INDEXl))

if (STKPTR .ge. 1) goto 200
201 continue
c traverse ancestor tree for INDEX2. summing overlap with
c marked tree of INDEXl

COMPRP =0.0
STKPTR = 1

PERDEX (STKPTR) = INDEX2
NXTNBR (STKPTR) = 0

PROPTN (STKPTR) =1.0
COUNTD (STKPTR) =0.0

300 continue
call CHKCOM (COMPRP, IDENT (INDEXl))
if (STKPTR .ge. 1) goto 300

301 continue
write (unit=*, fmt=9001) COMPRP

9001 formate Proportion of common genetic material = Ip, el2.5e2)
end

subroutine ZERPRO
c ZERPRO recursively seeks out all ancestors and

c zeros them out

.

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,

1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN =60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

integer PARENT, CHILD, SPOUSE, SIBLNG,
1 UNCLE, NEPHEW, COUSIN, NULLRL
parameter (PARENT = 1, CHILD = 2, SPOUSE = 3, SIBLNG = 4,

1 UNCLE = 5, NEPHEW = 6, COUSIN = 7, NULLRL = 8)

These conmon blocks hold the PERSON array, which is global to

the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,

1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

The following data items constitute the PERSON array, which
is the central repository of information about inter-relationship;

static information - filled from PEOPLE file
character* (NAMLEN) NAME (MAXPRS)
character* (IDLEN) IDENT (MAXPRS)
character*l GENDER (MAXPRS)

IDENTs of immediate relatives - father, mother, spouse

character* (IDLEN) RELID (MAXPRS, MAXGVN)
pointers to immediate neighbors in graph

integer NBRCNT (MAXPRS)

integer NBRDEX (MAXPRS, MAXNBR)

Integer NBREDG (MAXPRS, MAXNBR)
data used when traversing graph to resolve user request:

real DSTSRC (MAXPRS)

integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)

integer RCHST (MAXPRS) ,

data used to compute common genetic material
character* (IDLEN) DSCID (MAXPRS)

real DSCGEN (MAXPRS)

NUMPER keeps track of the actual number of persons

integer NUMPER

STACK is common to the routines which calculate genetic overlap.

It is used to implement recursive traversal of the ancestor trees

integer STKSIZ
parameter (STKSIZ = 50)

common /STACK/ PROPTN, CONTRB, COUNTD, PERDEX, NXTNBR,

1 STKPTR

real
real
real
integer
integer
integer

PROPTN
CONTRB
COUNTD
PERDEX
NXTNBR
STKPTR

(STKSIZ)
(STKSIZ)
(STKSIZ)
(STKSIZ)

(STKSIZ)

*** end of declarations for common data

Page 130

integer ZERDEX, THSNBR

ZERDEX = PERDEX (STKPTR)

if (NXTNBR (STKPTR) .eq. 0) then
DSCGEN (ZERDEX) = 0.0
NXTNBR (STKPTR) = 1

end if

do 100 THSNBR = NXTNBR (STKPTR), NBRCNT (ZERDEX)
if (NBREDG (ZERDEX, THSNBR) .eq. PARENT) goto 101

100 continue
101 continue

if (THSNBR .gt. NBRCNT (ZERDEX)) then

c no more ancestors from this person
STKPTR = STKPTR - 1

else

c set up for next ancestor
NXTNBR (STKPTR) = THSNBR + 1

STKPTR = STKPTR + 1

PERDEX (STKPTR) = NBRDEX (ZERDEX, THSNBR)
NXTNBR (STKPTR) = 0

end if

end

subroutine MRKPRO (MARKER)

c MRKPRO recursively seeks out all ancestors and
c marks them with the sender's proportion of shared
c genetic material. This proportion is diluted by one-half

c for each generation.

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MS GLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN

1 MSGLEN = 40, MAXNBR = 20, MAXGVN
3, BUFLEN
3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

integer PARENT, CHILD, SPOUSE, SIBLNG,
1 UNCLE, NEPHEW, COUSIN, NULLRL
parameter (PARENT = 1, CHILD = 2, SPOUSE = 3, SIBLNG = 4,

1 UNCLE = 5, NEPHEW = 6, COUSIN = 7, NULLRL = 8)

c These common blocks hold the PERSON array, which is global to

c the entire program.
common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DST3RC, PATHPR,

1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

The following data items constitute the PERSON array, which
is the central repository of information about inter-relationship

static information - filled
character* (NAMLEN)
character* (IDLEN)
character*!

from PEOPLE file
NAME (MAXPRS

)

IDENT (MAXPRS)
GENDER (MAXPRS)

IDENTs of immediate relatives - father, mother
character*(IDLEN) RELID (MAXPRS,

pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)
Integer NBRDEX (MAXPRS,
integer NBREDG (MAXPRS,

spouse
MAXGVN)

MAXNBR)
MAXNBR)

data used when traversing graph to resolve user request:
real DSTSRC (MAXPRS)
integer PATHPR (MAXPRS)

integer EDGPRD (MAXPRS)
integer RCHST (MAXPRS)

data used to compute common genetic material
character* (IDLEN) DSCID (MAXPRS)
real DSCGEN (MAXPRS)

NUMPER keeps track of the actual number of persons
integer NUMPER

STACK is common to the routines which calculate genetic overlap.

It is used to implement recursive traversal of the ancestor trees

integer STKSIZ
parameter (STKSIZ = 50)

common /STACK/ PROPTN, CONTRB, COUNTD, PERDEX, NXTNBR,

1 STKPTR

real
real
real

integer
integer
integer

PROPTN
CONTRB
COUNTD
PERDEX
NXTNBR
STKPTR

(STKSIZ)
(STKSIZ)

(STKSIZ)
(STKSIZ)
(STKSIZ)

*** end of declarations for common data ***

character* (IDLEN) MARKER
integer MRKDEX, THSNBR

Page 132

MRKDEX = PERDEX (STKPTR)

if (NXTNBR (STKPTR) .eq. 0) then
DSCID (MRKDEX) = MARKER
DSCGEN (MRKDEX) = DSCGEN (MRKDEX) + PROPTN (STKPTR)
NXTNBR (STKPTR) =1

end if

do 100 THSNBR = NXTNBR (STKPTR), NBRCNT (MRKDEX)
if (NBREDG (MRKDEX, THSNBR) .eq. PARENT) goto 101

100 continue
101 continue

if (THSNBR .gt. NBRCNT (MRKDEX)) then
c no more ancestors from this person

STKPTR = STKPTR - 1

else
c set up for next ancestor

NXTNBR (STKPTR) = THSNBR + 1

STKPTR = STKPTR + 1

PERDEX (STKPTR) = NBRDEX (MRKDEX, THSNBR)
NXTNBR (STKPTR) =0
PROPTN (STKPTR) = PROPTN (STKPTR - 1) / 2.0

end if

end

subroutine CHKCOM (COMPRP, MTCHID)

C CHKCOM searches all the ancestors of CHKDEX to see if any have
c been marked, and if so adds the appropriate amount to COMPRP.

integer MAXPRS, NAMLEN, IDLEN, BUFLEN,
1 MSGLEN, MAXNBR, MAXGVN
parameter (MAXPRS = 300, NAMLEN = 20, IDLEN = 3, BUFLEN = 60,

1 MSGLEN = 40, MAXNBR = 20, MAXGVN = 3)

character NULLID*(IDLEN)
parameter (NULLID = '000')

integer PARENT, CHILD, SPOUSE, SIBLNG,
1 UNCLE, NEPHEW, COUSIN, NULLRL
parameter (PARENT = 1, CHILD = 2, SPOUSE = 3, SIBLNG = 4,

1 UNCLE = 5, NEPHEW = 6, COUSIN = 7, NULLRL = 8)

c These common blocks hold the PERSON array, which is global to
c the entire program.

common /PERNUM/ NBRCNT, NBRDEX, NBREDG, DSTSRC, PATHPR,
1 EDGPRD, RCHST, DSCGEN, NUMPER

common /PERCHR/ NAME, IDENT, GENDER, RELID, DSCID

The following data items constitute the PERSON array, which
is the central repository of information about inter-relationships

static information - filled from PEOPLE file
character* (NAMLEN) NAME (MAXPRS)
character* (IDLEN) IDENT (MAXPRS)
character*! GENDER (MAXPRS)

IDENTs of immediate relatives - father, mother, spouse
character* (IDLEN) RELID (MAXPRS, MAXGVN)

pointers to immediate neighbors in graph
integer NBRCNT (MAXPRS)
integer NBRDEX (MAXPRS, MAXNBR)
integer NBREDG (MAXPRS, MAXNBR)

data used when traversing graph to resolve user request:
real DSTSRC (MAXPRS)
integer PATHPR (MAXPRS)
integer EDGPRD (MAXPRS)
integer RCHST (MAXPRS)

data used to compute common genetic material
character* (IDLEN) DSC ID (MAXPRS)
real DSCGEN (MAXPRS)

NUMPER keeps track of the actual number of persons
integer NUMPER

STACK is common to the routines which calculate genetic overlap.

It is used to implement recursive traversal of the ancestor trees

integer STKSIZ
parameter (STKSIZ = 50)

common /STACK/ PROPTN, CONTRB, COUNTD, PERDEX, NXTNBR,

1 STKPTR

real PROPTN (STKSIZ)

real CONTRB (STKSIZ)

real COUNTD (STKSIZ)

integer PERDEX (STKSIZ)

integer NXTNBR (STKSIZ)

integer STKPTR

*** end of declarations for common data ***

real COMPRP
character* (IDLEN) MTCHID

integer CHKDEX

Page 134

CHKDEX = PERDEX (STKPTR)

if (NXTNBR (STKPTR) .eq. 0) then
NXTNBR (STKPTR) = 1

if (DSCID (CHKDEX) .eq. MTCHID) then

c Increment COMPRP by the contribution of this
c common ancestor, but discount for the contribution
c of less remote ancestors already counted.

CONTRB (STKPTR) = DSCGEN (CHKDEX) * PROPTN (STKPTR)
COMPRP = COMPRP + CONTRB (STKPTR) - COUNTD (STKPTR)

else
CONTRB (STKPTR) =0.0

end if

end if

do 100 THSNBR = NXTNBR (STKPTR), NBRCNT (CHKDEX)
if (NBREDG (CHKDEX, THSNBR) .eq. PARENT) goto 101

100 continue
101 continue

if (THSNBR .gt. NBRCNT (CHKDEX)) then

c no more ancestors from this person
STKPTR = STKPTR - 1

else

c set up for next ancestor
NXTNBR (STKPTR) = THSNBR + 1

STKPTR = STKPTR + 1

PERDEX (STKPTR) = NBRDEX (CHKDEX, THSNBR)
NXTNBR (STKPTR) = 0

PROPTN (STKPTR) = PROPTN (STKPTR - 1) / 2.0

COUNTD (STKPTR) = CONTRB (STKPTR - 1) / A.O

end if

end

Page 135

7.0 PASCAL

User-defined identifiers are written in mixed upper and lower case, rather than
all upper-case, because Pascal provides no separator character, such as "-" or
"_" for identifiers. Therefore, upper-case letters are used for readability,
e.g., EdgeToPredecessor is used in Pascal where EDGE_TO_PREDECESSOR is used in
most of the other languages.

program Relate (input, output, People);

const
MaxPersons = 300;
NameLength = 20;

{ every Person has a unique 3-digit Identifier }

IdentifierLength = 3;

BufferLength = 60;
RequestOk =

'Request OK
RequestToStop

'stop

type
IdentifierRange
Buf ferRange
NameRange
Dig it Type

NameType
BufferType
MessageType
IdentifierType
{ each Person's re
others directly

Givenldentif iers
RelativeArray
Counter

= 1. . Identif ierLength;
= 1 .. Buf ferLength

;

= 1. .NameLength;
= '0'..'9';

= packed array [NameRange] of char;
= packed array [Buf ferRange] of char;
= packed array [1..40] of char;
= array [Identif ierRange] of DigitType;
cord in the file identifies at most three
related: father, mother, and spouse }

= (Father Ident , Motherldent, Spouseldent)

;

= array [Givenldentif iers] of Identif ierType

;

= 0. .maxint

;

{ this is the format of records in the file to be read in }

FilePersonRecord = record

Name
Identifier

NameType

;

IdentifierType

;

{ 'M' for Male and 'F' for Female }

Gender
Relative Identifier
end;

char;

RelativeArray

Page 136

IndexType = 0. .MaxPersons

;

GenderType = (Male, Female);
RelationType = (Parent, Child, Spouse, Sibling, Uncle,

Nephew, Cousin, NullRelation)

;

{ directed edges in the graph are of a given type }

EdgeType = Parent .. Spouse;

{ A node in the graph (= Person) has either already been reached,
is immediately adjacent to those reached, or farther away. }

ReachedType = (Reached, Nearby, NotSeen);

{ each Person has a linked list of adjacent nodes, called neighbors }

NeighborPointer = "NeighborRe cord;

NeighborRecord = record
Neighborlndex : IndexType;
NeighborEdge : EdgeType;
NextNeighbor : NeighborPointer
end;

{ All Relationships are captured in the directed graph of which
each record is a node . }

PersonRecord = record

{ static information - filled from People file: }

Name : Name Type;
Identifier : IdentifierType

; ^

Gender : GenderType;

{ Identifiers of immediate relatives - father, mother, spouse }

Relativeldentif ier : RelativeArray

;

{ head of linked list of adjacent nodes }

NeighborListHeader : NeighborPointer;
{ data used when traversing graph to resolve user request: }

DistanceFromSource : real;
PathPredecessor : IndexType;
EdgeToPredecessor : EdgeType;
ReachedStatus : ReachedType;

{ data used to compute common genetic material }

Descendantldentif ier : Identif ierType

;

DescendantGenes : real
end;

var

{ The Person array is the central repository of information
about inter-relationships. }

Person : array [IndexType] of PersonRecord;

{ These variables are used when establishing the Person array
from the People file. }

People : file of FilePersonRecord;
Current, Previous, NumberOf Persons

: IndexType

;

Identif ier Index : Identif ierRange

;

Previous Ident , Current Ident , Nullldent
: Identif ierType

;

Relationship : Givenldentif iers

;

RelationLoopDone : boolean;

{ These variables are used to accept and resolve requests for
Relationship information. }

Bufferlndex, SemicolonLocation
: BufferRange;

RequestBuf fer : BufferType;
Personlldent, Person2ldent

: NameType;
PersonlFound, Person2Found

: Counter;
ErrorMessage : MessageType;
Personllndex, Person2lndex

: IndexType;

function IdentsEqual (Identa, Identb: IdentifierType) : boolean

{ Determines whether two numeric Person-Identifiers are equal

A function is necessary because the operator does not

work for arrays of anything but char. }

var
Index : 1. . Identif ierLength;

begin
IdentsEqual := true;

for Index := 1 to IdentifierLength do

if Identa [Index] <> Identb [Index] then
IdentsEqual := false

end; { IdentsEqual }

Page 138

procedure LinkRelatives (Fromlndex : IndexType;
Relationship : Givenldentif iers

;

To Index : IndexType);

{ establishes cross-indexing between innnediately related Persons. }

procedure LinkOneWay (Fromlndex : IndexType;

ThisEdge : EdgeType;
To Index : IndexType);

{ Establishes the NeighborRecord from one Person to another }

var
NewNeighbor : Neighbor Pointer

;

beg in
new (NewNeighbor);
with NewNeighbor^ do

begin
Neighbor Index := To Index;

NeighborEdge := ThisEdge;
NextNeighbor := Person [Fromlndex] . NeighborListHeader
end;

Person [Fromlndex] . NeighborListHeader := NewNeighbor
end;

begin { execution of LinkRelatives }

if Relationship = Spouseldent then
begin
LinkOneWay (Fromlndex, Spouse, To Index);
LinkOneWay (Toindex, Spouse, Fromlndex)
end

else { Relationship is Mother or Father }

begin
LinkOneWay (Fromlndex, Parent, Toindex);
LinkOneWay (Toindex, Child, Fromlndex)
end

end; { LinkRelatives }

procedure Prompt AndRead;

{ Issues prompt for user-request, reads in request,
blank-fills buffer, and skips to next line of input. }

var
Bufferlndex : BufferRange;

beg in
writeln (' ');

writeln (' ');

writeln (' Enter two person-identifiers (name or number),');
writeln (' separated by semicolon. Enter "stop" to stop.');
for Bufferlndex := 1 to BufferLength do

if eoln(input) then
RequestBuf fer [Bufferlndex] := ' '

else
read (input, RequestBuffer [Bufferlndex]);

readln(input)

end; { PromptAndRead }

procedure CheckRequest (var RequestStatus : MessageType;
var SemicolonLocation : Buf ferRange)

;

{ Performs syntactic check on request in buffer. }

var
Buffer Index : BufferRange;
SemicolonCount : Counter;
PersonlFieldExists , Person2FieldExists

: boolean;
beg in

RequestStatus := RequestOk;
PersonlFieldExists := false;
Person2FieldExists := false;
SemicolonCount := 0;

for Bufferlndex := 1 to BufferLength do
if RequestBuf fer [Bufferlndex] <> ' ' then

if RequestBuf fer [Bufferlndex] = ';' then
begin
SemicolonLocation := Bufferlndex;
SemicolonCount := SemicolonCount + 1

end
else { Check for non-blanks before/after semicolon. }

if SemicolonCount < 1 then
PersonlFieldExists := true

else
Person2FieldExists := true;

{ set RequestStatus, based on results of scan of RequestBuf

f

if SemicolonCount <> 1 then
RequestStatus := 'must be exactly one semicolon,

else
if not PersonlFieldExists then

RequestStatus :- 'null field preceding semicolon,
else

if not Person2FieldExists then

RequestStatus := 'null field following semicolon,
end; { CheckRequest }

procedure Buf ferToPerson (var Personid : NameType

;

StartLocation, StopLocation : Buf ferRange)

;

{ fills in the Personid from the designated portion

of the RequestBuffer . }

var
Bufferlndex : 1..61; { cannot say "BufferLength + 1"

}

Per sonIndex : NameRange;

begin
Bufferlndex := StartLocation;
while RequestBuf fer [Bufferlndex] = ' ' do

Bufferlndex := Bufferlndex + 1;

for Personlndex := 1 to NameLength do

if Bufferlndex > StopLocation then

Personid [Personlndex] := ' '

else
begin
Personid [Personlndex] := RequestBuf fer [Bufferlndex];

Bufferlndex := Bufferlndex + 1

end
end; { Buf ferToPerson }

Page lAO

procedure SearchForRequestedPersons (Personlldent , Person2Ident
var Personllndex, Person2Index : IndexType;
var PersonlFound , Person2Found : Counter);

{ SearchForRequestedPersons scans through the Person array,
looking for the two requested persons. Match may be by name
or unique identifier-number. }

var
Current : IndexType;
Thisldent : NameType;

Identifier Index : Identif ierRange

;

begin
PersonlFound := 0;

Person2Found := 0;

Thisldent :=
'

for Current := 1 to NumberOfPersons do

with Person [Current] do

begin
{ Thisldent contains Current Person's numeric Identifier

left-justified, padded with blanks. }

for IdentifierIndex := 1 to Identif ierLength do
Thisldent [Identif ier Index] := Identifier [Identif ier Index]

;

{ allow identification by name or number. }

if (Personlldent = Thisldent) or (Personlldent = Name) then

NameType

;

PersonlFound +
Current

1;

end:

begin
PersonlFound
Personllndex
end;

if (Person2ldent = Thisldent) or (Person2ldent = Name) then

beg in
Person2Found
Per son 2Index
end

end { with Person [Current] }

{ SearchForRequestedPersons }

Person2Found + 1;

Current

procedure FindRelationship (Targetlndex , Sourcelndex : IndexType);

{ Finds shortest path (if any) between two Persons and
determines their Relationship based on immediate relations
traversed in path. Person array simulates a directed graph,

and algorithm finds shortest path, based on following
weights: Parent-Child edge = 1.0

Spouse-Spouse edge =1.8 }

var
SearchStatus : (Searching, Succeeded, Failed);
Personlndex, ThisNode, AdjacentNode, BestNearby Index, LastNearby Index

IndexType

;

array [IndexType] of IndexType;
EdgeType;
NeighborPointer

;

Givenldentifiers

;

real;

NearbyNode
ThisEdge
ThisNeighbor
Relationship
MinimalDi stance

procedure ProcessAdjacentNode (BaseNode, NextNode : IndexType;
NextBaseEdge : EdgeType);

{ NextNode is adjacent to last-reached node (= BaseNode).
if NextNode already Reached , do nothing

.

If previously seen, check whether path thru base node is

shorter than current path to NextNode, and if so re-link
next to base

.

If not previously seen, link next to base node. }

var
WeightThisEdge , DistanceThruBaseNode

: real;

procedure LinkNextNodeToBaseNode

;

{ link next to base by re-setting its predecessor Index to

point to base, note type of edge, and re-set distance
as it is through base node. }

begin { execution of LinkNextNodeToBaseNode }

with Person [NextNode] do

begin
DistanceFromSource := DistanceThruBaseNode;
PathPredecessor := BaseNode;

EdgeToPredecessor := NextBaseEdge
end

end; { LinkNextNodeToBaseNode }

begin { execution of ProcessAdjacentNode }

with Person [NextNode] do

if Reached Status <> Reached then

begin
if NextBaseEdge = Spouse then

WeightThisEdge := 1.8

else
WeightThisEdge := 1.0;

DistanceThruBaseNode := WeightThisEdge +

Person [BaseNode] . DistanceFromSource;
if ReachedStatus = Not Seen then

begin
ReachedStatus := Nearby;

Last Nearby Index := LastNearbyIndex + 1;

NearbyNode [LastNearbylndex] := NextNode;

LinkNextNodeToBaseNode
end

else { ReachedStatus = Nearby }

if DistanceThruBaseNode < DistanceFromSource then

LinkNextNodeToBaseNode

;

end { if ReachedStatus <> Reached }

end; { ProcessAdjacentNode }

Page 142

procedure ResolvePathToEnglish;

{ ResolvePathToEnglish condenses the shortest path to a

series of Relationships for which there are English
descriptions . }

type

{ Key Persons are the ones in the Relationship path which remain
after the path is condensed. }

SiblingType = (Step, Half, Full);
KeyPersonRecord = record

Personlndex : IndexType

;

GenerationGap : Counter;
Proximity : SiblingType;
case RelationToNext : RelationType of

Parent, Child, Spouse, Sibling, Uncle, Nephew, NullRelation
: ();

Cousin : (CousinRank : Counter)
end;

var

{ these variables are used to condense the path }

KeyPerson : array [IndexType] of KeyPersonRecord;
KeyRelation, LaterKeyRelation

,
PrimaryRelation, NextPrimaryRelation

: RelationType;
GenerationCount : Counter;
Keylndex, LaterKey Index

,
Primarylndex

: IndexType;
AnotherElementPossible : boolean;

function FullSibling (Indexl, Index2 : IndexType) : boolean;

{ Determines whether two Persons are full siblings, i.e.,
have the same two Parents. }

var
Identlndex : 1. . Identif ierLength;

begin
with Person [Indexl] do

FullSibling :=

(not IdentsEqual (Relativeldentif ier [Fatherldent] , Nullldent)) and

(not IdentsEqual (Relat ive Ident if ier [Mother Ident] , Nullldent)) and

(IdentsEqual (Relativeldentifier [Fatherldent],
Person [Index2] . Relativeldentif ier [Fatherldent])) and

(IdentsEqual (Relativeldentif ier [Motherldent]

,

Person [Index2] . Relativeldentif ier [Motherldent]))

end; { FullSibling }

procedure CondenseKeyPersons (Atlndex : IndexType; GapSize : Counter);

{ CondenseKeyPersons condenses superfluous entries from the

KeyPerson array, starting at Atlndex. }

var
Receivelndex , Sendlndex : IndexType;

begin
Receivelndex := Atlndex;
repeat
Receivelndex := Receivelndex +1;
Sendlndex := Receivelndex + GapSize;
KeyPerson [Receivelndex] := KeyPerson [Sendlndex];

until KeyPerson [Sendlndex] . RelationToNext = NullRelation
end; { CondenseKeyPersons }

procedure DisplayRelation (Firstlndex, Lastlndex, Primarylndex
: IndexType);

{ DisplayRelation takes 1, 2, or 3 adjacent elements in the
condensed table and generates the English description of

the relation between the first and last + 1 elements. }

var
Inlaw : boolean;
ThisProximity : SiblingType;
ThisGender : GenderType

;

Suf fixindicator : 0..9;

FirstRelation , LastRelation
, PrimaryRelation

: RelationType

;

This Generat ionGap , This CousinRank
: Counter;

begin { execution of DisplayRelation }

FirstRelation := KeyPerson [Firstlndex] . RelationToNext

;

LastRelation := KeyPerson [Lastlndex] . RelationToNext;
PrimaryRelation := KeyPerson [Primarylndex] . RelationToNext;

{ set ThisProximity }

if ((PrimaryRelation = Parent) and (FirstRelation = Spouse)) or

((PrimaryRelation = Child) and (LastRelation = Spouse))

then
ThisProximity := Step

else

if PrimaryRelation in

[Sibling, Uncle, Nephew, Cousin]
then

ThisProximity := KeyPerson [Primarylndex] . Proximity

else
ThisProximity := Full;

{ set This GenerationGap }

if PrimaryRelation in [Parent, Child, Uncle, Nephew, Cousin]

then
ThisGenerationGap := KeyPerson [Primarylndex] . GenerationGap

else
ThisGenerationGap := 0;

{ set Inlaw }

Inlaw := false;
if (FirstRelation = Spouse) and

(PrimaryRelation in [Sibling, Child, Nephew, Cousin])

then
Inlaw := true;

if (LastRelation = Spouse) and
(PrimaryRelation in [Sibling, Parent, Uncle, Cousin])

then
Inlaw : = true

;

{ set This Cous inRank }

if PrimaryRelation = Cousin then

This CousinRank := KeyPerson [Primarylndex] . CousinRank

else
ThisCousinRank := 0;

144

{ parameters are set - now generate display. }

write (' Person [KeyPerson [Firstlndex] . Personlndex] . Name,
is ');

if PrimaryRelation in [Parent, Child, Uncle, Nephew] then
begin { write generation-qualifier }

if ThisGenerationGap >= 3 then
begin
write ('great');

if ThisGenerationGap > 3 then
write ('*', ThisGenerationGap - 2 : 1);

write ('-')

end;

if ThisGenerationGap >= 2 then
write ('grand-')

end

else
if (PrimaryRelation = Cousin) and (ThisCousinRank > 1) then

begin
write (ThisCousinRank : 1);

Suf fixindicator := ThisCousinRank mod 10;

case Suf fixindicator of

1 : write ('st ')

2 : write ('nd ');

3 : write ('rd ')

0, 4, 5, 6, 7, 8, 9

: write ('th ')

end

end;

if ThisProximity = Step then
write ('step-')

else

if ThisProximity = Half then
write ('half-');

ThisGender := Person [KeyPerson
case PrimaryRelation of

[Firstlndex] . Personlndex] . Gender

Parent :

Child :

Spouse :

Sibling :

Uncle ^ :

Nephew :

Cousin :

NullRelation :

end; { case }

if ThisGender =

else
if ThisGender =

else
if ThisGender =

else
if ThisGender =

else
if ThisGender =

else
if ThisGender =

else
write ('cousin'

write ('null')

Male then write
write

Male then write
write

Male then write
write

Male then write
write

Male then write
write

Male then write
write

);

'father')

'mother');

'son'

)

'daughter');
'husband'

)

'wif e')

;

'brother'

)

' sister')

;

'uncle'

)

'aunt')

;

'nephew'

)

'niece');

If Inlaw then
write ('-in-law');

if (PrimaryRelation = Cousin) and (ThisGenerationGap > 0) then
if ThisGenerationGap > 1 then

write (' ', ThisGenerationGap : 1, ' times removed')
else

write (' once removed');

writeln (' of)
end; { DisplayRelation }

begin { execution of ResolvePathToEnglish }

writeln (' Shortest path between identified persons: ');

ThisNode := Target Index;
KeyIndex := 1;

{ Display path and initialize KeyPerson array from path elements
while ThisNode <> Sourcelndex do
with Person [ThisNode] do

begin
write (' ', Name, ' is ');

case EdgeToPredecessor of

Parent : writeln ('parent of);
Child : writeln ('child of);
Spouse : writeln ('spouse of)

end;
KeyPerson [Keylndex] . Personlndex :=

KeyPerson [Keylndex] . RelationToNext :=

if EdgeToPredecessor = Spouse then
KeyPerson [Keylndex] . GenerationGap

else { Parent or Child }

KeyPerson [Keylndex] . GenerationGap
Keylndex := Keylndex + 1;

ThisNode := PathPredecessor
end;

writelnC ', Person [ThisNode] . Name);

KeyPerson [Keylndex] . Personlndex :=

KeyPerson [Keylndex] . RelationToNext :
=

KeyPerson [Keylndex +1] . RelationToNext :=

ThisNode;
EdgeToPredecessor

;

;= 0

;= 1;

ThisNode;
NullRelation;
NullRelation;

Page 146

{ Resolve Child-Parent and Child-Spouse-Parent relations
to Sibling relations. }

Keylndex := 1;

while KeyPerson [Keylndex] • RelationToNext Ky NullRelation do

with KeyPerson [Keylndex] do
begin
if RelationToNext = Child then

begin
LaterKeyRelation := KeyPerson [Keylndex +1] . RelationToNext;
if LaterKeyRelation = Parent then

{ found either full or half siblings }

begin
RelationToNext := Sibling;
if FullSibling (Personlndex,

KeyPerson [Keylndex +2] . Personlndex)
then

Proximity := Full
else

Proximity := Half;
CondenseKeyPersons (Keylndex, 1)
end { processing of full/half siblings }

else
if (LaterKeyRelation = Spouse) and

(KeyPerson [Keylndex +2] . RelationToNext = Parent)
then { found step-siblings }

begin
RelationToNext := Sibling;
Proximity := Step;
CondenseKeyPersons (Keylndex, 2)

end { processing of step-siblings }

end; { if RelationToNext = Child }

Keylndex := Keylndex + 1

end; { with KeyPerson [Keylndex] }

{ Resolve Child-Child-... and Parent-Parent-... relations to

direct descendant or ancestor relations. }

Keylndex := 1;

while KeyPerson [Keylndex] . RelationToNext <> NullRelation do

with KeyPerson [Keylndex] do
begin
if (RelationToNext = Child) or (RelationToNext = Parent) then

begin
LaterKeyIndex := Keylndex + 1;

while KeyPerson [LaterKey Index] . RelationToNext =

RelationToNext do
LaterKey Index := LaterKey Index + 1;

GenerationCount := LaterKeylndex - Keylndex;
if GenerationCount > 1 then

begin { compress generations }

GenerationGap := GenerationCount;
CondenseKeyPersons (Keylndex, GenerationCount - 1)

end
end; { if RelationToNext = Child or Parent }

Keylndex := Keylndex + 1

end; { with KeyPerson [Keylndex] }

Page 147

{ Resolve Child-Sib.Ting-Parent to Cousin,
Child-Sibling to Nephew,
Sibling-Parent to Uncle. }

KeyIndex 1;

while KeyPerson [Keylndex] . RelationToNext <> NullRelation do
with KeyPerson [Keylndex] do

begin
LaterKeyRelation := KeyPerson [Keylndex + 1] . RelationToNext;
if (RelationToNext = Child) and

(LaterKeyRelation = Sibling)
then { Cousin or Nephew }

if KeyPerson [Keylndex +2] . RelationToNext = Parent then

{ found Cousin }

begin
RelationToNext := Cousin;

Proximity := KeyPerson [Keylndex +1] . Proximity;
if GenerationCap < KeyPerson [Keylndex +2] . GenerationGap
then

CousinRank := GenerationGap
else

CousinRank := KeyPerson [Keylndex +2] . GenerationGap;
GenerationGap := abs (GenerationGap -

KeyPerson [Keylndex +2] . GenerationGap);
CondenseKey Per sons (Keylndex, 2)

end
else { found Nephew }

begin
RelationToNext := Nephew;
Proximity := KeyPerson [Keylndex + 1] . Proximity;

CondenseKeyPer sons (Keylndex, 1)

end
else { not Cousin or Nephew }

if (RelationToNext = Sibling) and (LaterKeyRelation = Parent)

then { found Uncle }

begin
RelationToNext := Uncle;

GenerationGap := KeyPerson [Keylndex + 1] • GenerationGap;

CondenseKeyPersons (Keylndex, 1)

end;

Keylndex := Keylndex + 1

end; { with KeyPerson [Keylndex] }

;e 148

{ Loop below will pick out valid adjacent strings of elements
to be displayed. Key Index points to first element,
LaterKeylndex to last element, and Primarylndex to the
element which determines the primary English word to be used.
Associativity of adjacent elements in condensed table
is based on English usage. }

KeyIndex := 1;

writeln (' Condensed path:');
while KeyPerson [Keylndex] . RelationToNext <> NullRelation do

begin
KeyRelation := KeyPerson [Keylndex] . RelationToNext;
LaterKeylndex := Keylndex;
Primarylndex := Keylndex;
if KeyPerson [Keylndex + 1] . RelationToNext <> NullRelation then

begin { seek multi-element combination }

AnotherElementPossible := true;

if KeyRelation = Spouse then
begin
LaterKeylndex := LaterKeylndex + 1;

Primarylndex := LaterKeylndex;
if (KeyPerson [LaterKeylndex] . RelationToNext = Sibling) or

(KeyPerson [LaterKeylndex] . RelationToNext = Cousin)
then { Nothing can follow Spouse-Sibling or Spouse-Cousin }

AnotherElementPossible := false
end;

{ Primarylndex is now correctly set. Next if-statement
determines if a following Spouse relation should be
appended to this combination or left for the next
combination. }

if AnotherElementPossible and
(KeyPerson [Primarylndex +1] . RelationToNext = Spouse)

{ Only a Spouse can follow a Primary }

then

begin { check primary preceding and following Spouse. }

PrimaryRelation :=

KeyPerson [Primarylndex] . RelationToNext;
NextPrimaryRelation :=

KeyPerson [Primarylndex +2] . RelationToNext;
if (NextPrimaryRelation in [Nephew, Cousin, NullRelation])

or (PrimaryRelation = Nephew)
or ((PrimaryRelation in [Sibling, Parent])

and (NextPrimaryRelation <> Uncle))

then { append following Spouse with this combination. }

LaterKeylndex := LaterKeylndex + 1

end { check primary preceding and following Spouse }

end; { multi-element combination }

DisplayRelation (Keylndex, LaterKeylndex, Primarylndex);
Keylndex := LaterKeylndex + 1

end; { while }

writeln (' Person [KeyPerson [Keylndex] . Personlndex] . Name)
end; , { ResolvePathToEnglish }

procedure Compute CommonGenes (Indexl, Index2 : IndexType);
{ ComputeCommonGenes assumes that each ancestor contributes

half of the genetic material to a Person. It finds common
ancestors between two Persons and computes the expected
value of the Proportion of common material. }

var
CommonProportion : real;

procedure ZeroProportion (Zerolndex : IndexType);

{ ZeroProportion recursively seeks out all ancestors and
zeros them out. }

var
ThisNelghbor : NeighborPolnter

;

begin
with Person [Zerolndex] do

begin
DescendantGenes := 0.0;
ThisNelghbor := NeighborLlstHeader
end;

while ThisNelghbor <> nil do
with ThisNelghbor" do

begin
if NeighborEdge = Parent then

ZeroProportion (Neighbor Index)

;

ThisNelghbor := NextNeighbor
end { with }

end; { ZeroProportion }

procedure MarkProportion (Marker : Identlf lerType

;

Proportion : real; Markedlndex : IndexType);

{ MarkProportion recursively seeks out all ancestors and
marks them with the sender's Proportion of shared
genetic material. This Proportion is diluted by one-half

for each generation. }

var
ThisNelghbor : NeighborPolnter;

begin
with Person [Markedlndex] do

begin
Descendantldentifier := Marker;
DescendantGenes := DescendantGenes + Proportion;
ThisNelghbor := NeighborLlstHeader
end;

\ih±le ThisNelghbor <> nil do

with ThisNelghbor" do

begin
if NeighborEdge = Parent then

MarkProportion (Marker, Proportion / 2.0,

Neighborlndex);

ThisNelghbor := NextNeighbor
end

end; { MarkProportion }

Page 150

procedure CheckCommonProportion
(var CommonProportlon : real;

Matchldentif ier : Identif ierType

;

Proportion : real;

AlreadyCounted : real;
Checklndex : IndexType);

{ CheckCommonProportion searches all the ancestors of

Checklndex to see if any have been marked, and if so
adds the appropriate amount to CommonProportlon. }

var
ThisNeighbor : NeighborPointer

;

ThisContribution : real;

begin
with Person [Checklndex] do

begin
if IdentsEqual (Descendantldentifier , Matchldentif ier) then

begin
{ Increment CommonProportlon by the contribution of

this common ancestor, but discount for the contribution
of less remote ancestors already counted. }

ThisContribution := DescendantGenes * Proportion;
CommonProportlon := CommonProportlon +

ThisContribution - AlreadyCounted
end

else
ThisContribution := 0.0;

ThisNeighbor := NeighborListHeader
end; { with Person [Checklndex] }

while ThisNeighbor O nil do
with ThisNeighbor" do

beg in

if NeighborEdge = Parent then
CheckCommonProportion (CommonProportlon

,

Matchldentif ier
,
Proportion / 2.0,

ThisContribution / 4.0,
Neighborlndex);

ThisNeighbor := NextNeighbor
end

end; { CheckCommonProportion }

begin { ComputeCommonGenes }

{ First zero out all ancestors to allow adding. This is necessary
because there might be two paths to an ancestor. }

ZeroProportion (Indexl);
{ now mark with shared Proportion }

MarkProportion (Person [Indexl] . Identifier, 1.0, Indexl);

CommonProportlon := 0.0;
CheckCommonProportion (CommonProportlon

,

Person [Indexl] . Identifier, 1.0, 0.0, Index2);
writeln (' Proportion of common genetic material =

CommonProportlon : 12)

end; { ComputeCommonGenes }

begin { execution of FindRelationshlp }

{ initialize Person-array for processing -

mark all nodes as not seen }

for Personlndex := 1 to NumberOf Persons do
Person [Personlndex] . ReachedStatus := NotSeen;

{ mark source node as Reached }

ThisNode := Sourcelndex;
with Person [ThisNode] do

begin
ReachedStatus := Reached;
DistanceFromSource := 0.0
end;

{ no Nearby nodes exist yet }

Last Nearby Index := 0;

if ThisNode = Targetlndex then
SearchStatus := Succeeded

else
SearchStatus := Searching;

{ Loop keeps processing closest-to-source , unreached node
until target Reached, or no more connected nodes. }

while SearchStatus = Searching do

begin

{ Process all nodes adjacent to ThisNode }

ThisNeighbor := Person [ThisNode] . NeighborListHeader

;

while ThisNeighbor <> nil do
with ThisNeighbor" do

begin
ProcessAd jacentNode (ThisNode, Neighborlndex

, NeighborEdge)

;

ThisNeighbor := NextNeighbor
end;

{ All nodes adjacent to ThisNode are set. Now search for

shortest-distance unreached (but Nearby) node to process next,

if LastNearbylndex = 0 then

SearchStatus := Failed
else

begin
MinimalDistance := l.Oe+18;
for Personlndex := 1 to LastNearbylndex do

with Person [NearbyNode [Personlndex]] do

if DistanceFromSource < MinimalDistance then
begin
BestNearbylndex := Personlndex;

MinimalDistance := DistanceFromSource
end;

{ Establish new ThisNode }

ThisNode := NearbyNode [BestNearbylndex];

{ change ThisNode from being Nearby to Reached }

Person [ThisNode] . ReachedStatus := Reached;

{ remove ThisNode from Nearby list }

NearbyNode [BestNearbylndex] := NearbyNode [LastNearbylndex];

LastNearbylndex := LastNearbylndex - 1;

if ThisNode = Targetlndex then

SearchStatus := Succeeded

end { determination of next node to process }

end; { while SearchStatus = Searching }

Page 152

{ Shortest path between Persons now established. Next task is

to translate path to English description of Relationship. }

if SearchStatus = Failed then
writeln (' Person [Targetlndex] . Name, ' is not related to

Person [Sourcelndex] . Name)
else { success ~ parse path to find and display Relationship }

beg in
ResolvePathToEnglish;
ComputeCommonGenes (Sourcelndex, Targetlndex)
end

end; { FindRelationship }

{ *** execution of main sequence begins here ***
}

begin
for Identifierlndex := 1 to IdentifierLength do

Nullldent [Identifierlndex] := '0';

reset (People);
{ Current location in array being filled }

Current := 0;

{ This loop reads in the People file and constructs the Person
array from it (one Person = one record = one array entry).
As records are read in, links are constructed to represent the

Parent-Child or Spouse relationship. The array then implements
a directed graph which is used to satisfy subsequent user

requests. The file is assumed to be correct - no validation
is performed on it. }

while not eof (People) do

begin
Current := Current+1;
with Person [Current] do

begin

{ copy direct information from file to array }

Name := People'' . Name;
Identifier := People" . Identifier;
if People" . Gender = 'M' then

Gender := Male
else

Gender := Female;
Relativeldentif ier := People" . Relativeldentif ier

;

{ Location of adjacent persons as yet undetermined }

NeighborListHeader := nil;

{ Descendants as yet undetermined. }

Descendantldentifier := Nullldent;
Current Ident := Identifier;

{ Compare this Person against all previously entered Persons
to search for Relationships. }

for Previous := 1 to (Current-1) do

begin
Previous Ident := Person [Previous] . Identifier;
RelatlonLoopDone := false;
Relationship := Fatherldent;
{ Search for father, mother, or spouse Relationship in

either direction between this and previous Person.

Assume at most one Relationship exists. }

repeat
If IdentsEqual (Relatlveldentlf ier [Relationship],

Previous Ident) then
begin
LlnkRelatlves (Current, Relationship, Previous);

RelatlonLoopDone := true
end

else
If IdentsEqual (Currentldent

,

Person [Previous] . Relatlveldentlf ier [Relationship])
then

begin
LlnkRelatlves (Previous, Relationship, Current);

RelatlonLoopDone := true

end;

If Relationship < Spouseldent then

Relationship := succ(Relatlonship)

else
RelatlonLoopDone := true;

until RelatlonLoopDone
end; { for Previous }

get(People)
end { with Person [Current] }

end; { while not eof (People) }

NumberOfPersons := Current;

{ Person array Is now loaded and edges between Immediate relatives

(Parent-Child or Spouse-Spouse) are established.

While-loop accepts requests and finds Relationship (if any)

between pairs of Persons. }

Page 154

reset(Input)

;

PromptAndRead

;

while RequestBuf fer <> RequestToStop do

{ The following code retrieves and validates a user request
for the Relationship between two identified Persons. }

begin
CheckRequest (ErrorMessage , SemicolonLocation)

;

{ Syntax check of request completed. Now either display error
message or search for the two Persons. }

if ErrorMessage = RequestOk then
begin { Request syntactically correct -

search for requested Persons. }

Buf ferToPerson (Personlldent
, 1, SemicolonLocation - 1);

Buf ferToPerson (Person2ldent , SemicolonLocation + 1, Buf ferLength)

;

SearchForRequestedPersons (Personlldent, Person2Ident

,

Per son 1 Index, Per son 2Index,

PersonlFound , Person2Found)

;

if (PersonlFound =1) and (Person2Found =1) then

{ Exactly one match for each Person - proceed to

determine Relationship, if any. }

if Personllndex = Person2lndex then
begin
write (' Person [Personllndex] . Name,

is identical to ');

if Person [Personllndex] . Gender = Male then

writeln('himself .

')

else
writeln('herself

)

end
else

FindRelationship (Personllndex, Person2lndex)
else { either not found or more than one found }

begin
if PersonlFound = 0 then

writeln (' First person not found.')
else

if PersonlFound > 1 then
writeln (' Duplicate names for first person - use',

numeric identifier.');
if Person2Found = 0 then

writeln (' Second person not found.')
else

if Person2Found > 1 then
writeln (' Duplicate names for second person - use',

numeric identifier.')
end

end { processing of syntactically legal request }

else
writeln (' Incorrect request format: ', ErrorMessage);

PromptAndRead
end; { while RequestBuf fer }

writeln (' End of relation-finder.');

end

.

Page 155

8.0 PL/I

In keeping with the general convention of the examples, language-supplied
keywords and identifiers are written in lower case in the program. To conform
strictly to the PL/I standard, however, programs must use only upper-case
letters. In the following program, the logical "Not" operator is represented by

the graphic character

RELATE: procedure options (main);

/* Begin declaration of global data */

declare
/* Used to index relative array, pointing to immediate relatives */

(FATHER_IDENT initial (1),
MOTHER_IDENT initial (2),
SPOUSE_IDENT initial (3),
/* Used as mnemonics to represent basic English-word relationships. */

PARENT initial (1),
CHILD initial (2),

SPOUSE initial (3),

SIBLING initial (4),
UNCLE initial (5),

NEPHEW initial (6),

COUSIN initial (7),
NULL_RELATION initial (8),

/* Used as mnemonics to represent status of nodes during search

for shortest path thru graph. */

REACHED initial (1),

NEARBY initial (2),

NOT_SEEN initial (3))

fixed binary (4,0),

/* Used as mnemonics to represent truth-values */

(TRUE initial ('I'b),

FALSE initial ('O'b))

bit (1),

/* Used to control user requests. */

(REQUEST_OK character (10) initial ('Request OK'),

REQUEST_TO_STOP character (4) initial ('stop')),

/* Used as mnemonics to represent GENDER */

(MALE initial ('M'),

FEMALE initial ('F'))

character (1);

Page 156

declare
/* the PERSON array is the central repository of information

about inter-relationships . */

/* All relationships are captured in the directed graph of which
each record is a node . */

01 PERSON dimension (1:300),
/* static information - filled from PEOPLE file: */

05 NAME character (20),
05 IDENTIFIER picture '999',

05 GENDER character (1),
/* IDENTIFIERS of immediate relatives - father, mother, spouse

05 RELATIVE_IDENTIFIER (1:3)
picture '999',

/* head of linked list of adjacent nodes */

05 NEIGHBOR_LIST_HEADER pointer,
/* data used when traversing graph to resolve user request: */

05 DISTANCE_FROM_SOURCE float decimal (6),
05 PATH_PREDECESSOR fixed binary (10,0),
05 EDGE_T0_PREDECESS0R fixed binary (4,0),
05 REACHED_STATUS fixed binary (4,0),
/* data used to compute common genetic material */

05 DESCENDANT_IDENTIFIER picture '999',

05 DESCENDANT GENES float decimal (6);

declare
/* each PERSON has a linked list of adjacent nodes, called neighbors */

01 NEIGHBOR_RECORD based (NEW_NEIGHBOR)

,

05 NEIGHBOR_INDEX fixed binary (10,0),
05 NEIGHBOR_EDGE fixed binary (4,0),
05 NEXT_NEIGHB0R pointer;

/* End declaration of global data. */

declare
/* This is the format of records in the file to be read in. */

01 PE0PLE_REC0RD,
05 NAME character (20),
05 IDENTIFIER picture '999',

/* 'M' for MALE and 'F' for FEMALE */

05 GENDER character (1),
05 RELATIVE_IDENTIFIER (1:3) picture '999';

declare
/* These variables are used when establishing the PERSON array

from the PEOPLE file. */

PEOPLE file record sequential input,
(CURRENT, PREVIOUS, NUMBER_OF_PERSONS

)

fixed binary (10,0),
(PREVIOUS_IDENT, CURRENT_IDENT)

picture '999',

NULL_IDENT picture '999' static initial (000),
RELATIONSHIP fixed binary (4,0),
RELATI0N_L00P_D0NE bit (1),
END OF PEOPLE bit (1);

Page 157

declare
/* These variables are used to accept and resolve requests for

RELATIONSHIP Information. */

sysin file record input environment (AREAD),
(BUFFER_INDEX, SEMICOLON_LOCATION)

fixed binary (10,0),
REQUEST_BUFFER character (60) varying,
(PERS0N1_IDENT, PERS0N2_IDENT)

character (20),
(PERSON1_F0UND, PERS0N2_F0UND)

fixed binary (10,0),
ERR0R_MESSAGE character (40),
(PERS0N1_INDEX, PERS0N2_INDEX)

fixed binary (10,0);

/* This on-block captures exceptions from the following code */

on end file (PEOPLE)
begin;
END_OF_PEOPLE = TRUE;

end;

Page 158

/* *** begin execution of main sequence RELATE *** */

open file (PEOPLE) title ('PEOPLE.DAT');
END_OF_PEOPLE = FALSE;
/* This loop reads in the PEOPLE file and constructs the PERSON

array from it (one PERSON = one record = one array entry).

As records are read in, links are constructed to represent the

PARENT-CHILD or SPOUSE RELATIONSHIP. The array then implements
a directed graph which is used to satisfy subsequent user

requests. The file is assumed to be correct - no validation
is performed on it. */

read file (PEOPLE) into (PEOPLE_RECORD)

;

READ_IN_PEOPLE:
do CURRENT = 1 to 300 while (~ END_OF_PEOPLE);

/* copy direct information from file to array */

PERSON (CURRENT) = PEOPLE_RECORD, by name;
/* Location of adjacent persons as yet undetermined. */

PERSON (CURRENT) . NEIGHBOR_LIST_HEADER = null();
/* Descendants as yet undetermined */

PERSON (CURRENT) . DESCENDANT_IDENTIFIER = NULL_IDENT;
CURRENT_IDENT = PERSON (CURRENT) . IDENTIFIER;

/* Compare this PERSON against all previously entered PERSONS
to search for RELATIONSHIPS. */

COMPARE_TO_PREVIOUS

:

do PREVIOUS = 1 to (CURRENT-1);
PREVIOUS_IDENT = PERSON (PREVIOUS) . IDENTIFIER;
RELATION_LOOP_DONE = FALSE;
/* Search for father, mother, or spouse relationship in

either direction between this and PREVIOUS PERSON.
Assume at most one RELATIONSHIP exists. */

TRY_ALL_RELATIONSHIPS

:

do RELATIONSHIP = FATHER_IDENT to SPOUSE_IDENT
while C RELATION_LOOP_DONE) ;

if PERSON (CURRENT) . RELATIVE_IDENTIFIER (RELATIONSHIP) =

PREVIOUS_IDENT then
do

;

call LINK_RELATIVES (CURRENT, RELATIONSHIP, PREVIOUS);
RELATION_LOOP_DONE = TRUE;
end;

else
if CURRENT_IDENT =

PERSON (PREVIOUS) . RELATIVE_IDENTIFIER (RELATIONSHIP)
then

do

;

call LINK_RELATIVES (PREVIOUS, RELATIONSHIP, CURRENT);

RELATION_LOOP_DONE = TRUE;
end;

end TRY_ALL_RELATIONSHIPS

;

end COMPARE_TO_PREVIOUS;
read file (PEOPLE) into (PEOPLE_RECORD)

;

end READ_IN_PEOPLE

;

NUMBER_OF_PERSONS = CURRENT - 1;

close file (PEOPLE);

/* PERSON array is now loaded and edges between immediate relatives
(PARENT-CHILD or SPOUSE-SPOUSE) are established.

Page 159

While-loop accepts requests and finds RELATIONSHIP (if any)
between pairs of PERSONS. */

call PROMPT_AND_READ();
READ_AND_PROCE SS_REQUE ST

:

do while (REQUESTJBUFFER ~= REQUEST_TO_STOP)

;

/* The following code retrieves and validates a user request
for the RELATIONSHIP between two identified PERSONS. */

call CHECK_REQUEST (ERROR_MESSAGE, SEMICOLON_LOCATION)

;

/* Syntax check of request completed. Now either display error
message or search for the two PERSONS. */

if ERROR_MESSAGE = REQUEST_OK then
do; /* Request syntactically correct -

search for requested PERSONS. */

call BUFFER_TO_PERSON (PERSON 1_I DENT, 1, SEMICOLON_LOCATION - 1);
call BUFFER_TO_PERSON (PERS0N2_IDENT

,
SEMICOLON_LOCATION + 1,

length (REQUEST_BUFFER));
call SEARCH_FOR_REQUESTED_PERSONS (PERS0N1_IDENT, PERS0N2_IDENT

,

PERSON1_INDEX, PERS0N2_INDEX,

PERS0N1_F0UND, PERS0N2_F0UND);

if (PERS0N1_F0UND = 1) & (PERS0N2_F0UND = 1) then

/* Exactly one match for each PERSON - proceed to

determine RELATIONSHIP, if any. */

if PERS0N1_INDEX = PERS0N2_INDEX then
if PERSON (PERS0N1_INDEX) . GENDER = MALE then

put skip list (' ' II PERSON (PERS0N1_INDEX) . NAME ||

' is identical to himself.');
else

put skip list (' ' II PERSON (PERSON 1_INDEX) . NAME ||

' is identical to herself.');
else

call FIND_RELATIONSHIP (PERS0N1_INDEX, PERSON2_INDE X) ;

•

else /* either not found or more than one found */

do

;

if PERS0N1_F0UND = 0 then

put skip list (' First person not found.');

else
if PERSON 1_F0UND > 1 then

put skip list (' Duplicate names for first person - use'
I I

' numeric identifier.');

if PERS0N2_F0UND = 0 then

put skip list (' Second person not found.');

else

if PERS0N2_F0UND > 1 then

put skip list (' Duplicate names for second person - use'
I I

' numeric identifier.');

end;

end; /* processing of syntactically legal request */

else

put skip list (' Incorrect request format: '
II ERROR_MESSAGE)

;

call PROMPT_AND_READ () ;

end READ_AND_PROCESS_REQUEST;
put skip list (' End of relation-finder.');

/* End execution of main sequence RELATE

Page 160

procedures under RELATE begin here */

LINK RELATIVES: procedure (FROM_INDEX, RELATIONSHIP, TO_INDEX);

/* begin execution of LINK_RELATIVES */

if RELATIONSHIP = SPOUSE_IDENT then

do

;

call LINK_ONE_WAY (FROM_INDEX, SPOUSE, TO_INDEX);
call LINK_ONE_WAY (TO_INDEX, SPOUSE, FROM_INDEX);
end;

else /* RELATIONSHIP is mother or father */

do

;

call LINK_ONE_WAY (FROM_INDEX, PARENT, TO_INDEX);
call LINK_ONE_WAY (TO_INDEX, CHILD, FROM_INDEX);
end;

LINK ONE WAY: procedure (FROM INDEX, THIS EDGE, TO INDEX);

FROM_INDEX fixed binary (10,0),
THIS_EDGE fixed binary (4,0),
TO_INDEX fixed binary (10,0);

declare
NEW_NEIGHBOR pointer;

/* begin execution of LINK_ONE_WAY */

allocate NEIGHBOR_RECORD set (NEW_NEIGHBOR)

;

NEW_NEIGHBOR -> NEIGHBOR_INDEX = TO_INDEX;
NEW_NEIGHBOR -> NEIGHBOR_EDGE = THIS_EDGE

;

NEW_NEIGHBOR -> NEXT_NEIGHBOR =

PERSON (FROM_INDEX) . NEIGHBOR_LIST_HEADER;
PERSON (FROM_INDEX) . NEIGHBOR_LIST_HEADER = NEW_NEIGHBOR;

end LINK_ONE_WAY;

end LINK_RELATIVES

;

PROMPT_AND_READ: procedure;
/* Issues prompt for user-request, reads in request,

blank-fills buffer, and skips to next line of input. */

declare
FROM_INDEX
RELATIONSHIP
TO INDEX

fixed binary (10,0),
fixed binary (4,0),
fixed binary (10,0);

declare

declare BUFFER_INDEX fixed binary (10,0),
SEMICOLON COUNT fixed binary (4,0);

/* begin execution of PROMPT_AND_READ */

put skip (2) list (' ')

put skip list (' Enter two person-identifiers (name or number),');
put skip list (' separated by semicolon. Enter "stop" to stop.');
put skip list (' ');

/* The use of sysin for record-oriented, rather than stream-oriented,
input may not be considered to be standard usage. It is done here
because stream input cannot recognize line boundaries, so as to

read an entire line from the terminal. */

read file (sysin) into (REQUESTJBUFFER);
end PROMPT_AND_READ;

CHECK_REQUEST: procedure (REQUESTJSTATUS ,
SEMICOLON_LOCATION)

;

/* Performs syntactic check on request in buffer. */

declare
REQUEST_STATUS character (40),
SEMICOLONJLOCATION fixed binary (10,0);

/* begin execution of CHECKREQUEST */

SEMICOLON_LOCATION = index (REQUESTJBUFFER, ';');

if SEMICOLON_LOCATION = 0
|

index (substr (REQUEST_BUFFER, SEMICOLON_LOCATION + 1), ';') > 0

then
REQUEST_STATUS = 'must be exactly one semicolon.';

else

if before (REQUESTJBUFFER, ';') = ' ' then

REQUEST_STATUS = 'null field preceding semicolon.';

else
if after (REQUEST_BUFFER, ';') = ' ' then

REQUEST STATUS = 'null field following semicolon.';

else
REQUEST_STATUS = REQUESTJ)K;

end CHECK_RE QUEST;

BUFFERjr0_PERS0N: procedure (PERSON_ID, STARTJLOCATION, STOPJ.OCATION)

;

/* fTlls in the PERSON_ID from the designated portion

of the REQUEST_BUFFER. */

declare
PERSON_ID character (20),
(START_L0CATI0N, STOPJLOCATION)

fixed binary (10,0);
declare

FIRSTJION_BLANK fixed binary (10,0);

/* begin execution of BUFFER_T0_PERS0N */

do FIRST_NONJBLANK = STARTJLOCATION to ST0PJ.0CATI0N

while (substr (REQUEST_BUFFER, FIRST_NON_BLANK, 1) = ' ');

end;

PERSON ID = substr (REQUESTJBUFFER, FIRSTJ^ON_BLANK,
STOP_LOCATION - FIRST_NON_BLANK +1);

end BUFFER TO PERSON;

Page 162

SEARCH_FOR_REQUESTED_PERSONS: procedure (PERS0N1_IDENT, PERS0N2_IDENT,
PERS0N1_INDEX, PERS0N2_INDEX,
PERS0N1_F0UND, PERS0N2_F0UND)

;

/* SEARCH_FOR_REQUESTED_PERSONS scans through the PERSON array,
looking for the two requested PERSONS. Match may be by NAME
or unique IDENTIFIER-number . */

declare
(PERS0N1_IDENT, PERS0N2_IDENT) character (20),
(PERS0N1_INDEX, PERS0N2_INDEX) fixed binary (10,0),
(PERS0N1_F0UND, PERS0N2_F0UND) fixed binary (10,0);

declare
THIS_IDENT character (20),
CURRENT fixed binary (10,0);

/* begin execution of SEARCH_FOR_REQUESTED_PERSONS */

PERSON1_F0UND =0;
PERS0N2_F0UND = 0;

SCAN_ALL_PERSONS

:

do CURRENT = 1 to NUMBER_OF_PERSONS

;

/* THIS_IDENT contains CURRENT PERSON'S numeric IDENTIFIER
left- justified , padded with blanks. */

THIS_IDENT = PERSON (CURRENT) . IDENTIFIER;
/* allow identification by name or number. */

if (PERS0N1_IDENT = THIS_IDENT)
|

(PERS0N1_IDENT = PERSON (CURRENT) . NAME)
then

do

;

PERS0N1_F0UND = PERS0N1_F0UND + 1;

PERS0N1_INDEX = CURRENT;
end;

if (PERS0N2_IDENT = THIS_IDENT)
|

(PERS0N2_IDENT = PERSON (CURRENT) . NAME)
then

do

;

PERS0N2_F0UND = PERS0N2_F0UND + 1;

PERS0N2_INDEX = CURRENT;
end;

end SCAN_ALL_PERSONS

;

end SEARCH_FOR_REQUESTED_PERSONS;

/* End of utility procedures under RELATE.

FIND_RELATIONSHIP does major work of program: determines
relationship between any two people In PERSON array. */

FIND_RELATIONSHIP: procedure (TARGET_INDEX, SOURCE_INDEX)

;

/* Finds shortest path (if any) between two PERSONS and
determines their RELATIONSHIP based on Immediate relations
traversed In path. PERSON array simulates a directed graph,
and algorithm finds shortest path, based on following
weights: PARENT-CHILD edge =1.0

SPOUSE-SPOUSE edge =1.8 */

declare
(TARGET_INDEX, SOURCE_INDEX) fixed binary (10,0);

declare
SEARCH_STATUS character (1),

/* values for SEARCH_STATUS */

(SEARCHING Initial ('?'),

SUCCEEDED initial ('!'),

FAILED initial ('X')) character (1),

(PERSON_INDEX, THIS_NODE, ADJACENT_NODE ,
BEST_NEARBY_INDEX,

LAST_NEARBY_INDEX) fixed binary (10,0),
NEARBY_NODE dimension (1:300) fixed binary (10,0),

THIS_EDGE fixed binary (4,0),
THIS_NEIGHBOR . pointer

,

RELATIONSHIP fixed binary (4,0),
MINIMAL_DI STANCE float decimal (6);

/* begin execution of FIND_RELATIONSHIP */

/* initialize PERSON-array for processing -

mark all nodes as not seen */

PERSON . REACHED_STATUS = NOT_SEEN;

/* mark source node as REACHED */

THIS_NODE = SOURCE_INDEX;
PERSON (THIS_NODE) . REACHED_STATUS = REACHED;

PERSON (THIS_NODE) . DISTANCE_FROM_SOURCE =0.0;
/* no NEARBY nodes exist yet */

LAST_NEARBY_INDEX = 0;

if THISJNODE = TARGET_INDEX then

SEARCH_STATUS = SUCCEEDED;
else

SEARCH STATUS = SEARCHING;

Page 164

/* Loop keeps processing closest-to-source , unREACHED node
until target REACHED, or no more connected nodes. */

SEARCH_FOR_TARGET

:

do while (SEARCH_STATUS = SEARCHING);
/* Process all nodes adjacent to THIS_NODE */

THIS_NEIGHBOR = PERSON (THIS_NODE) . NEIGHBOR_LIST_HEADER;
do while (THIS_NEIGHBOR ~= null());

call PROCESS_ADJACENT_NODE (THISJJODE,
THISJNEIGHBOR -> NEIGHBOR_INDEX,
THIS_NEIGHBOR -> NEIGHBOR_EDGE)

;

THIS_NEIGHBOR = THIS_NEIGHBOR -> NEXT_NEIGHBOR;
end;

/* All nodes adjacent to THIS_NODE are set. Now search for

shortest-distance unREACHED (but NEARBY) node to process next. */

if LAST_NEARBY_INDEX = 0 then
SEARCH_STATUS = FAILED;

else

do

;

MINIMAL_DISTANCE = l.Oe+18;
do PERSON_INDEX = 1 to LAST_NEARBY_INDEX;

if PERSON (NEARBY_NODE (PERSON_INDEX)) . DISTANCE_FROM_SOURCE
< MINIMAL_DISTANCE then

do;

BEST_NEARBY_INDEX = PERSON_INDEX;
MINIMAL_DI STANCE =

PERSON (NEARBY_NODE (PERSON_INDEX)) . DISTANCE_FROM_SOURCE

;

end;

end; /* PERSON_INDEX loop */

/* establish new THIS_NODE */

THIS_NODE = NEARBY_NODE (BEST_NEARBY_INDEX)

;

/* change THIS_NODE from being NEARBY to REACHED */

PERSON (THIS_NODE) . REACHED_STATUS = REACHED;
/* remove THIS_NODE from NEARBY list */

NEARBY_NODE (BEST_NEARBY_INDEX) = NEARBYJJODE (LAST_NEARBY_INDEX)

;

LAST_NEARBY_INDEX = LAST_NEARBY_INDEX - 1;

if THIS_NODE = TARGET_INDEX then
SEARCH_STATUS = SUCCEEDED;

end; /* determination of next node to process */

end SEARCH_FOR_TARGET;

/* Shortest path between PERSONS now established. Next task is

to translate path to English description of RELATIONSHIP. */

if SEARCH_STATUS = FAILED then

put skip list C PERSON (TARGET_INDEX) . NAME, ' is not related to

PERSON (SOURCE_INDEX) . NAME);
else /* success - parse path to find and display RELATIONSHIP */

do

;

call RESOLVE_PATH_TO_ENGLISH;
call COMPUTE_COMMON_GENES (SOURCE_INDEX, TARGET_INDEX)

;

end;

/* End execution of FIND RELATIONSHIP.

Page 165

Utility procedures begin here. */

PROCESS_ADJACENT_NODE: procedure (BASE_NODE, NEXT_NODE
,
NEXT_BASE_EDGE)

;

/* NEXT_NODE is adjacent to last-REACHED node (= BASE_NODE).
if NEXT_NODE already REACHED, do nothing.

~

If previously seen, check whether path thru BASE_NODE is
shorter than current path to NEXT_NODE, and if so re-link
next to base

.

If not previously seen, link next to base node. */
declare

(BASE_NODE, NEXT_NODE) fixed binary (10,0),
NEXT_BASE_EDGE fixed binary (4,0);

declare
(WEIGHT_THIS_EDGE

, DISTANCE_THRU_BASE_NODE

)

float decimal (6);

/* begin execution of PROCESS_ADJACENT NODE */

if PERSON (NEXT_NODE) . REACHED_STATUS ~= REACHED then
do

;

if NEXT_BASE_EDGE = SPOUSE then
WEIGHT_THIS_EDGE = 1.8;

else

WEIGHTJIHISJEDGE = 1.0;
DISTANCE_THRU_BASE_NODE = WEIGHT_THIS_EDGE +

PERSON (BASEJJODE) . DISTANCE_FROM_SOaRCE

;

if PERSON (NEXT_NODE) . REACHED_STATUS = NOT_SEEN then
do

;

PERSON (NEXTJIODE) . REACHED_STATUS = NEARBY;
LAST_NEARBY_INDEX = LAST_NEARBY_INDEX + 1;

NEARBY_NODE (LAST_NEARBY_INDEX) = NEXT_NODE

;

call LINK_NEXT_NODE_TO_BASE_NODE

;

end;
else /* REACHED_STATUS = NEARBY */

if DISTANCE_THRU_BASE_NODE <

PERSON (NEXT_NODE) . DISTANCE_FROM_SOURCE then
call LINK_NEXT_NODE_TO_BASE_NODE

;

end; /* if REACHED_STATUS not = REACHED */

LINK_NEXT_NODE_TO_BASE_NODE : procedure

;

/* link next to base by re-setting its predecessor index to

point to base, note type of edge, and re-set distance
as it is through base node. */

/* begin execution of LINK_NEXr_NODE_TO_BASE_NODE */

PERSON (NEXT_NODE) . DISTANCE_FROM_SOURCE = DISTANCE_THRU_BASE_NODE

;

PERSON (NEXT_NODE) . PATH_PREDECESSOR = BASE_NODE

;

PERSON (NEXT_NODE) . EDGE_TO_PREDECESSOR = NEXT_BASE_EDGE

;

end LINK_NEXT_NODE_TO_BASE_NODE;

end PROCESS_ADJACENT_NODE

;

/* End utility procedures under FIND_RELATIONSHIP.

Page 166

Begin two major procedures: RESOLVE_PATH_TO_ENGLISH and
COMPUTE_COMMON_GENES */

RESOLVE_PATH_TO_ENGLISH: procedure

;

/* RESOLVE_PATH_TO_ENGLISH condenses the shortest path to a

series of RELATIONSHIPS for which there are English
descriptions. */

/* Key persons are the ones in the RELATIONSHIP path which remain
after the path is condensed. */

declare
/* values for sibling proximity
(STEP initial ('S'),
HALF initial ('H'),

FULL initial ('F')) character (1);
declare

01 KEY PERSON dimension (1:300),
05

'

PERSON INDEX fixed binary (10,0),
05 GENERATION_GAP fixed binary (10,0),
05 PROXIMITY character (1),
05 RELATION TO NEXT fixed binary (4,0),
05 COUSIN RANK fixed binary (10,0);

declare
/* these variables are used to condense the path */

(KEY_RELATION, LATER_KEY_RELATION, PRIMARY_RELATION,
NEXT_PRIMARY_RELATION) fixed binary (4,0),
GENERATION_COUNT fixed binary (10,0),
(KEY_INDEX, LATER_KEY_INDEX, PRIMARY_INDEX)

fixed binary (10,0),
ANOTHER_ELEMENT_POSSIBLE bit (1);

/* begin execution of RESOLVE_PATH_TO_ENGLISH */

put skip list (' Shortest path between identified persons: ');

THIS_NODE = TARGET_INDEX;
/* Display path and initialize KEY_PERSON array from path elements

TRAVERSE_SHORTEST_PATH

:

do KEY_INDEX = 1 to 300 while (THIS_NODE ~= SOURCE_INDEX)

;

begin;
declare

EDGE_TYPE dimension (1:3) character (9) static
initial ('parent of, 'child of, 'spouse of);

put skip list (' '
II PERSON (THIS_NODE) . NAME || ' is '

||

EDGE_TYPE (PERSON (THIS_NODE) . EDGE_TO_PREDECESSOR))

;

end;
KEY_PERSON (KEY_INDEX) . PERSON_INDEX = THIS_NODE

;

KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT =

PERSON (THIS_NODE) . EDGE_TO_PREDECESSOR;
if PERSON (THIS_NODE) . EDGE_TO_PREDECESSOR = SPOUSE then

KEY_PERSON (KEY_INDEX) . GENERATIONjSAP = 0;

else
KEY_PERSON (KEY_INDEX) . GENERATIONjSAP = 1;

THIS_NODE = PERSON (THIS_NODE) . PATH_PREDECESSOR;
end TRAVERSE_SHORTEST_PATH;
put skip listC '

II PERSON (THIS_NODE) . NAME);

Page 167

KEY_PERSON (KEY_INDEX) . PERSON_INDEX = THIS_NODE

;

KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = NULL RELATION;
KEY_PERSON (KEY_INDEX + 1) . RELATION_TO_NEXT = NULL_RELATION;
/* Resolve CHILD-PARENT and CHILD-SPOUSE-PARENT relations

to SIBLING relations. */

FIND_SIBLINGS:
do KEY_INDEX = 1 to 300

while (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT ~= NULL_RELATION)

;

if KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = CHILD then
do

;

LATER_KEY_RELATION = KEY_PERSON (KEY_INDEX + 1) . RELATION_TO_NEXT

;

if LATER_KEY_RELATION = PARENT then
/* found either full or half SIBLINGS */

do

;

KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = SIBLING;
if FULL_SIBLING (KEY_PERSON (KEY_INDEX) . PERSON_INDEX,

KEY_PERSON (KEY_INDEX + 2) . PERSON_INDEX)
then

KEY_PERSON (KEY_INDEX) . PROXIMITY = FULL;
else

KEY_PERSON (KEY_INDEX) . PROXIMITY = HALF;
call CONDENSE_KEY_PERSONS (KEY_INDEX, 1);
end; /* processing of full/half SIBLINGS */

else

if (LATER_KEY_RELATION = SPOUSE) &

(KEY_PERSON (KEY_INDEX + 2) . RELATION_TO_NEXT = PARENT)
then /* found step-SIBLINGs */

do

;

KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = SIBLING;
KEY_PERSON (KEY_INDEX) . PROXIMITY = STEP;

call CONDENSE_KEY_PERSONS (KEY_INDEX, 2);
end; /* processing of step-SIBLINGs */

end; /* if RELATION_TO_NEXr = CHILD */

end FIND_SIBLINGS;
/* Resolve CHILD-CHILD-... and PARENT-PARENT-.. . relations to
direct descendant or ancestor relations. */

FIND_ANCESTORS_OR_DESCENDANTS

:

do KEY_INDEX = 1 to 300
while (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT ~= NULL_RELATION)

;

if (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = CHILD)
|

(KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXr = PARENT)
then

do

;

do LATER_KEY_INDEX = KEY_INDEX + 1 to 300
while (KEY_PERSON (LATER_KEY_INDEX) . RELATION_TO_NEXT =

KEYJPERSON (KEY_INDEX) . RELATION_TO_NEXT)

;

end;
GENERATIONJCOUNT = LATER_KEY_INDEX - KEY_INDEX;

If GENERATION_COUNT > 1 then

do; /* compress generations */

KEY_PERSON (KEY_INDEX) . GENERATION_GAP = GENERATIONJCOUNT

;

call CONDENSE_KEY_PERSONS (KEY_INDEX, GENERATION_COUNT - 1);

end;
end; /* if RELATIONJTOJJEXT = CHILD or PARENT */

end FIND ANCESTORS OR DESCENDANTS;

Page 168

/* Resolve CHILD-SIBLING-PARENT to COUSIN,

CHILD-SIBLING to NEPHEW,
SIBLING-PARENT to UNCLE. */

FIND_COUSINS_NEPHEWS_UNCLES

:

do KEY_INDEX = 1 to 300
while (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT ~= NULL_RELATION)

;

LATER_KEY_RELATION = KEY_PERSON (KEY_INDEX + 1) . RELATION_TO_NEXT

;

if (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = CHILD) &

(LATER_KEY_RELATION = SIBLING)

then /* COUSIN or NEPHEW */

If KEY_PERSON (KEY_INDEX + 2) . RELATION_TO_NEXT = PARENT then
/* found COUSIN */

do

;

KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = COUSIN;
KEY_PERSON (KEY_INDEX) . PROXIMITY =

KEYJPERSON (KEY_INDEX + 1) . PROXIMITY;
KEY_PERSON (KEY_INDEX) . COUSIN_RANK =

min (KEY_PERSON (KEY_INDEX) . GENERATION_GAP,
KEY_PERSON (KEY_INDEX + 2) . GENERATION_GAP)

;

KEY_PERSON (KEY_INDEX) . GENERATION_GAP =

abs (KEY_PERSON (KEY_INDEX) . GENERATION_GAP -

KEYJPERSON (KEY_INDEX + 2) . GENERATION_GAP)

;

call CONDENSE_KEY_PERSONS (KEY_INDEX, 2);
end;

else /* found NEPHEW */

do;

KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = NEPHEW;
KEY_PERSON (KEY_INDEX) . PROXIMITY =

KEY_PERSON (KEY_INDEX + 1) . PROXIMITY;
call CONDENSE_KEY_PERSONS (KEY_INDEX, 1);
end;

else /* not COUSIN or NEPHEW */

if (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = SIBLING) &

(LATER_KEY_RELATION = PARENT)
then /* found UNCLE */

do

;

KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT = UNCLE;
KEY_PERSON (KEY_INDEX) . GENERATION_GAP =

KEY_PERSON (KEY_INDEX + 1) . GENERATION_GAP;

call CONDENSE_KEY_PERSONS (KEY_INDEX, 1);
end;

end FIND COUSINS NEPHEWS UNCLES;

Page 169

/* Loop below will pick out valid adjacent strings of elements
to be displayed. KEY_1NDEX points to first element,
LATER_KEY_INDEX to last element, and PRIMARY_INDEX to the
element which determines the primary English word to be used.
Associativity of adjacent elements in condensed table
is based on English usage. */

KEY_INDEX = 1;

put skip list (' Condensed path:');
CONSOLIDATE_ADJACENT_PERSONS

:

do while (KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT ~= NULL_RELATION)

;

KEY_RELATION = KEY_PERSON (KEY_INDEX) . RELATION_TO_NEXT

;

LATER_KEY_INDEX = KEY_INDEX;
PRIMARY_INDEX = KEY_1NDEX;
if KEY_PERSON (KEY_INDEX + 1) . RELATION_TO_NEXT ~= NULL_RELATION then

do; /* seek multi-element combination */

AN0THER_ELEMENT_P0SS1BLE = TRUE;
if KEY_RELATION = SPOUSE then

do

;

LATER_KEY_INDEX = LATER_KEY_INDEX + 1;

PRIMARY_INDEX = LATER_KEY_INDEX;
if (KEYJPERSON (LATER_KEY_INDEX) . RELATION_TO_NEXT = SIBLING) |

(KEY_PERSON (LATER_KEY_INDEX) . RELATION_TO_NEXT = COUSIN)
then /* Nothing can follow SPOUSE-SIBLING or SPOUSE -COUSIN */

ANOTHER_ELEMENT_POSSIBLE = FALSE;

end;

/* PRIMARY_INDEX is now correctly set. Next if-statement
determines if a following SPOUSE relation should be

appended to this combination or left for the next

combination. */

if ANOTHER_ELEMENT_POSSIBLE &

(KEY_PERSON (PRIMARY_INDEX + I) . RELATION_TO_NEXT = SPOUSE)

/* Only a SPOUSE can follow a Primary */

then
do; /* check primary preceding and following SPOUSE. */

PRIMARY_RELATION
KEY_PERSON (PRIMARY_INDEX) . RELATION_TO_NEXT

;

NEXT_PRIMARY_RELATION =

KEY_PERSON (PRIMARY_INDEX + 2) . RELATION_TO_NEXT

;

if (NEXT_PRIMARY_RELATION = NEPHEW
|

NEXT_PRIMARY_RELATION = COUSIN
|

NEXT_PRIMARY_RELATION = NULL_RELATION

)

I
(PRIMARY_RELATION = NEPHEW)

I ((PRIMARY_RELATION = SIBLING I

PRIMARY_RELATION = PARENT)

& (NEXT_PRIMARY_RELATION ~= UNCLE))

then /* append following SPOUSE with this combination. */

LATER_KEY_INDEX = LATER_KEY_INDEX + 1;

end; /* check primary preceding and following SPOUSE */

end; /* multi-element combination */

call DISPLAY_RELATION (KEY_INDEX, LATER_KEY_INDEX, PRIMARY_INDEX)

;

KEY_INDEX = LATER_KEY_INDEX + 1;

end CONSOLIDATE_ADJACENT_PERSONS

;

put skip list (' '
II PERSON (KEY_PERSON (KEY_INDEX) . PERSON_INDEX) . NAME);

/* End execution of RESOLVE PATH_TO_ENGLISH.

e 170

Begin utility procedures for RESOLVE_PATH_TO_ENGLISH. */

FULL_SIBLING: procedure (INDEXl, INDEX2)
returns (bit(l));

/* Determines whether two PERSONS are full siblings, i.e.,
have the same two parents . */

declare
(INDEXl, INDEX2) fixed binary (10,0);

return
((PERSON (INDEXl) . RELATIVE_IDENTIFIER (FATHER_IDENT) ~= NULL_IDENT) &

(PERSON (INDEXl) . RELATIVE_IDENTIFIER (MOTHER_IDENT) ~= NULL_IDENT) &

(PERSON (INDEXl) . RELATIVE_IDENTIFIER (FATHER_IDENT) =

PERSON (INDEX2) . RELATIVE_IDENTIFIER (FATHER_IDENT)) &

(PERSON (INDEXl) . RELATIVE_IDENTIFIER (MOTHER_IDENT) =

PERSON (INDEX2) . RELATIVE_IDENTIFIER (MOTHER_IDENT)));

end FULL_SIBLING;

CONDENSE_KEY_PERSONS: procedure (AT_INDEX, GAP_SIZE);
/* CONDENSE_KEY_PERSONS condenses superfluous entries from the

KEY_PERSON array, starting at AT_INDEX. */

declare
AT_INDEX fixed binary (10,0),
GAP_SIZE fixed binary (10,0);

declare
(RECEIVE_INDEX, SENDJLNDEX) fixed binary (10,0);

/* begin execution of CONDENSE_KEY_PERSONS */

RECEIVE_INDEX = AT_INDEX + 1;

SEND_INDEX = RECEIVE_INDEX + GAP_SIZE;
KEY_PERSON (RECEIVE_INDEX) = KEY_PERSON (SEND_INDEX)

;

do while (KEY_PERSON (SEND_INDEX) . RELATION_TO_NEXT ~= NULL_RELATION)

;

RECEIVE_INDEX = RECEIVE_INDEX + 1;

SEND_INDEX = RECEIVE_INDEX + GAP_SIZE;
KEY_PERSON (RECEIVE_INDEX) = KEY_PERSON (SEND_INDEX)

;

end;

end CONDENSE KEY PERSONS;

* End utility procedures.

Begin DISPLAY_RELATION, which does major work of displaying
under RESOLVE_PATH_TO_ENGLISH. */

DISPLAY_RELATION: procedure (FIRST_INDEX, LAST_INDEX, PRIMARY_INDEX)

;

/* DISPLAY_RELATION takes 1, 2, or 3 adjacent elements in the
condensed table and generates the English description of
the relation between the first and last + 1 elements. */

declare
(FIRST_INDEX, LAST_INDEX, PRIMARY_INDEX) fixed binary (10,0);

declare
DISPLAYJBUFFER character (80) varying,
INLAW bit (1),
THIS_PROXIMITY character (1),
THIS_GENDER character (1),
SUFFIX_INDICATOR fixed binary (6,0),
(FIRST_RELATION, LAST_RELATI0N, PRIMARY_RELATION)

fixed binary (4,0),
(THIS_GENERATION_GAP, THIS_COUSIN_RANK)

fixed binary (10,0);

/* begin execution of DISPLAY_RELATION */

FIRST_RELATION = KEY_PERS0N (FIRST_INDEX) . RELATI0N_T0_NEXT

;

LAST_RELATI0N = KEY_PERS0N (LAST_INDEX) . RELATI0N_T0_NEXT

;

PRIMARYJRELATION = KEY_PERS0N (PRIMARY_INDEX) . RELATI0N_T0_NEXT

;

/* set THIS_PROXIMITY */

if ((PRIMARY_RELATION = PARENT) & (FIRST_RELATION = SPOUSE))
|

((PRIMARY_RELATION = CHILD) & (LAST_RELATION = SPOUSE))

then
THIS_PROXIMITY = STEP; •

else
if PRIMARY_RELATION = SIBLING

|

PRIMARY_RELATION = UNCLE
|

PRIMARY_RELATION = NEPHEW
|

PRIMARY_RELATION = COUSIN
then

THIS_PROXIMITY = KEY_PERSON (PRIMARY_INDEX) . PROXIMITY;

else
THIS_PROXIMITY = FULL;

/* set THIS_GENERATION_GAP */

if PRIMARY_RELATION = PARENT
|

PRIMARY_RELATION = CHILD
|

PRIMARY_RELATION = UNCLE |

PRIMARY_RELATION = NEPHEW
|

PRIMARY_RELATION = COUSIN
then

THIS_GENERATION_GAP = KEYJPERSON (PRIMARY_INDEX) . GENERATION_GAP

else
THIS GENERATION GAP = 0;

Page 172

/* set INLAW */

INLAW = FALSE;
if (FIRST_RELATION = SPOUSE) &

(PRIMARY_RELATION = SIBLING
I

PRIMARY_RELATION = CHILD
I

PRIMARY_RELATION = NEPHEW
|

PRIMARY_RELATION = COUSIN)
then

INLAW = TRUE;
if (LAST_RELATION = SPOUSE) &

(PRIMARY_RELATION = SIBLING
|

PRIMARY_RELATION = PARENT
|

PRIMARY_RELATION = UNCLE |

PRIMARY_RELATION = COUSIN)
then

INLAW = TRUE;
/* set THIS_COUSIN_RANK */

If PRIMARY_RELATION = COUSIN then
THIS_COUSIN_RANK = KEY_PERSON (PRIMARY_INDEX) . COUSIN_RANK;

else
THIS_COUSIN_RANK = 0;

/* parameters are set - now generate display. */

DISPLAY BUFFER =

' ' Tl PERSON (KEY_PERSON (FIRST_INDEX) . PERSON_INDEX) . NAME ||
' is ';

if PRIMARY_RELATION = PARENT
|

PRIMARY_RELATION = CHILD
|

PRIMARY_RELATION = UNCLE
|

PRIMARY_RELATION = NEPHEW
then

do; /* write generation-qualifier */

if THIS_GENERATION_GAP >= 3 then

do

;

DISPLAY_BUFFER = DISPLAY_BUFFER || 'great';
if THIS_GENERATION_GAP > 3 then

DISPLAY_BUFFER = DISPLAY_BUFFER
|

|
'*'

|

|

TRIM (THIS_GENERATION_GAP - 2);
DISPLAY_BUFFER = DISPLAYJBUFFER ||

'-';

end;

if THIS_GENERATION_GAP >= 2 then
DISPLAY_BUFFER = DISPLAY_BUFFER || 'grand-';

end;

else
if (PRIMARY_RELATION = COUSIN) & (THIS_COUSIN_RANK > 1) then

do

;

DISPLAY_BUFFER = DISPLAYJBUFFER || TRIM (THIS_COUSIN_RANK)

;

SUFFIX_INDICATOR = mod (THIS_COUSIN_RANK, 10);

if SUFFIX_INDICATOR > 3 then
SUFFIX_INDICATOR =0;

DISPLAYJBUFFER = DISPLAY_BUFFER
|

|

substr ('th St nd rd ', 3 * SUFFIX_INDICATOR + 1, 3);

end;

\

Page 173

if THIS_PROXIMITY = STEP then
DISPLAY_BUFFEPv = DISPLAYJBUFFER || 'step-';

else
If THISJPROXIMITY = HALF then

DISPLAY BUFFER = DISPLAY BUFFER || 'half-'

THIS_GENDER = PERSON (KEY_PERSON (FIRST_INDEX)
if PRIMARY_RELATION = PARENT then

if THIS_GENDER = MALE then DISPLAY_BUFFER =

else DISPLAYJBUFFER =

else if PRIMARY RELATION = CHILD then

. PERSON INDEX) . GENDER;

if THIS_GENDER = MALE
else

then DISPLAY_BUFFER
DISPLAY BUFFER

else if PRIMARY RELATION = SPOUSE then
MALE then DISPLAY_BUFFER

DISPLAY BUFFER
if THIS_GENDER
else _

else if PRIMARY_RELATION = SIBLING then
if THIS_GENDER = MALE then DISPLAYJBUFFER
else DISPLAYJBUFFER

else if PRIMARYJIELATION = UNCLE then
if THISJSENDER = MALE then DISPLAY_BUFFER
else DISPLAY_BUFFER

else if PRIMARYJIELATION = NEPHEW then

if THISJ3ENDER = MALE then DISPLAY_BUFFER
else DISPLAY_BUFFER

else if PRIMARYJIELATION = COUSIN then
DISPLAYJBUFFER

else

DISPLAY_BUFFER
DISPLAY_BUFFER

DISPLAY_BUFFER
DISPLAY_BUFFER

DISPLAY_BUFFER
DISPLAY_BUFFER

DISPLAY_BUFFER
DISPLAY_BUFFER

DISPLAY_BUFFER
DISPLAY_BUFFER

DISPLAYJBUFFER
DISPLAY BUFFER

_ DISPLAY_BUFFER

DISPLAY BUFFER = DISPLAY BUFFER

'father'

;

'mother'

;

' son'

;

'daughter'

;

'husband'

;

'wif e'

;

'brother'

;

'sister'

;

'uncle'

;

'aunt'

;

'nephew'

;

'niece'

;

'cousin'

;

'null'

;

if INLAW then
DISPLAYJBUFFER = DISPLAY_BUFFER || '-in-law';

if (PRIMARY_RELATION = COUSIN) & (THIS_GENERATION_GAP > 0) then

if THISJ3ENERATIONJ3AP > 1 then
DISPLAYJBUFFER = DISPLAYJBUFFER | |

' '
I I

TRIM (THISJ3ENERATIONJ3AP) il ' times removed';

else
DISPLAY BUFFER = DISPLAY BUFFER || ' once removed';

DISPLAY_BUFFER = DISPLAYJBUFFER ||
' of;

put skip list (DISPLAY_BUFFER);

Page 174

/* Begin utility procedure for DISPLAY_RELATION */

TRIM: procedure (NUMERIC_VALUE) returns (character (20) varying);
/* Returns character representation of numeric values

with no leading or trailing spaces. */

declare
NUMERIC_VALUE fixed binary (10,0);

declare
STRING_REPRESENTATION character (20),
(START_LOCATION, STOP_LOCATION)

fixed binary (10,0);
/* Begin execution of TRIM */

STRING_REPRESENTATION = NUMERIC_VALUE

;

do START_L0CATI0N = 1 to 20

while (substr (STRING_REPRESENTATION, START_L0CATI0N, 1) = ' ');

end;

do ST0P_L0CATI0N = 20 to 1 by -1

while (substr (STRING_REPRESENTATION, ST0P_L0CATI0N, 1) = ' ');

end;
' return (substr (STRING_REPRESENTATION, START_L0CATI0N,

ST0P_L0CATI0N - STARTJLOCATION +1));
end TRIM;

end DISPLAY_RELATION;

end RESOLVE_PATH_T0_ENGLI SH

;

/* C0MPUTE_C0MM0N_GENES is second major procedure (after
RESOLVE_PATH_TO_ENGLISH) under FIND_RELATIONSHIP. */

COMPUTE_COMMON_GENES: procedure (INDEXl, INDEX2);

/* COMPUTE_COMMON_GENES assumes that each ancestor contributes
half of the genetic material to a PERSON. It finds common

ancestors between two PERSONS and computes the expected
value of the PROPORTION of common material. */

declare
(INDEXl, INDEX2) fixed binary (10,0);

declare
C0MM0N_PR0P0RTI0N float decimal (6);

/* begin execution of C0MPUTE_C0MM0N_GENES */

/* First zero out all ancestors to allow adding. This is necessary
because there might be two paths to an ancestor. */

call ZERO_PROPORTION (INDEXl);
/* now mark with shared PROPORTION */

call MARK_PROPORTION (PERSON (INDEXl) . IDENTIFIER, 1.0, INDEXl);

COMMON_PROPORTION =0.0;
call CHECK_COMMON_PROPORTION (COMMONJPROPORTION,

PERSON (INDEXl) . IDENTIFIER, 1.0, 0.0, INDEX2)

;

put skip list (' Proportion of common genetic material = ');

put edit (C0MM0N_PR0PORTION) (e(13,5,6));

/* End execution of COMPUTE COMMON GENES.

Page 175

Begin utility procedures. */

ZERO_PROPORTION: procedure (ZERO_INDEX) recursive;
/* ZERO_PROPORTION recursively seeks out all ancestors and

zeros them out. */

declare
ZERO_INDEX fixed binary (10,0),
THIS_NEIGHBOR pointer;

/* begin execution of ZERO_PROPORTION */

PERSON (ZERO_INDEX) . DESCENDANT_GENES = 0.0;
THIS_NEIGHB0R = PERSON (ZERO_INDEX) . NEIGHBOR_LIST_HEADER

;

do while (THIS_NEIGHBOR ~= null());
if THIS_NEIGHBOR -> NEIGHBOR_EDGE = PARENT then

call ZERO_PROPORTION (THIS_NEIGHBOR -> NEIGHBOR_INDEX)

;

THISJJEIGHBOR = THIS_NEIGHBOR -> NEXTJJEIGHBOR;
end;

end ZERO_PROPORTION;

MARKPROPORTION: procedure (MARKER, PROPORTION, MARKED_INDEX) recursive;
/* MARK_PROPORTION recursively seeks out all ancestors and

marks them with the sender's PROPORTION of shared

genetic material. This PROPORTION is diluted by one-half
for each generation. */

declare
MARKER picture '999',

PROPORTION float decimal (6),
MARKED_INDEX fixed binary (10,0),
THIS_NEIGHBOR pointer

;

/* begin execution of MARK_PROPORTION */

PERSON (MARKED_INDEX) . DESCENDANT_IDENTIFIER = MARKER;

PERSON (MARKED_INDEX) . DESCENDANT_GENES
PERSON (MARKED_INDEX) . DESCENDANT_GENES + PROPORTION;

THISJJEIGHBOR = PERSON (MARKED_INDEX) . NEIGHBOR_LIST_HEADER;

do while (THIS_NEIGHBOR ~= null());

if THIS_NEIGHBOR -> NEIGHBOR_EDGE = PARENT then

call MARK_PROPORTION (MARKER, PROPORTION / 2.0,

THISJJEIGHBOR -> NEIGHBOR_INDEX)

;

THIS_NEIGHBOR = THISJJEIGHBOR -> NEXTJJEIGHBOR;
end;

end MARK PROPORTION;

Page 176

CHECK_COMMON_PROPORTION: procedure
(COMMON_PROPORTION, MATCH_IDENTIFIER, PROPORTION,
ALREADY_COUNTED, CHECK_INDEX) recursive;

/* CHECK_COMMON_PROPORTION searches all the ancestors of

CHECK_INDEX to see if any have been marked, and if so
adds The appropriate amount to COMMON_PROPORTION. */

declare
COMMON_PROPORTION float decimal (6),
MATCH_IDENTIFIER picture '999',

PROPORTION float decimal (6),
ALREADY_COUNTED float decimal (6),
CHECK_INDEX fixed binary (10,0),
THIS_NEIGHBOR pointer,
THIS_CONTRIBUTION float decimal (6);

/* begin execution of CHECK_COMMON_PROPORTION */

if PERSON (CHECK_INDEX) . DESCENDANT_IDENTIFIER = MATCH_IDENTIFIER then
/* Increment COMMON_PROPORTION by the contribution of

this common ancestor, but discount for the contribution
of less remote ancestors already counted. */

do

;

THIS_CONTRIBUTION = PERSON (CHECK_INDEX) . DESCENDANT_GENES
* PROPORTION;

COMMON_PROPORTION = COMMON_PROPORTION
+ THISJGONTRIBUTION - ALREADY_COUNTED;

end;

else
THISJGONTRIBUTION = 0.0;

THIS_NEIGHBOR = PERSON (CHECK_INDEX) . NEIGHBOR_LIST_HEADER;
do while (THIS_NEIGHBOR ~= null());

if THIS_NEIGHBOR -> NEIGHBOR_EDGE = PARENT then
call CHECK_COMMON_PROPORTION (COMMON_PROPORTION,

MATCH_IDENTIFIER, PROPORTION / 2.0,
THISJGONTRIBUTION / 4.0,

THISJJEIGHBOR -> NEIGHBOR_INDEX)

;

THIS_NEIGHBOR = THIS_NEIGHBOR -> NEXT_NEIGHBOR;
end;

end CHECKjGOMMON_PROPORTION;

end COMPUTEjGOMMON_GENES

;

end FIND RELATIONSHIP;

end RELATE;

NBS-n4A iREv. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO

NBS/SP-500-117/2

2. Performing Organ. Report No . 3. Publ ication Dare

October 1984

4. TITLE AND SUBTITLE ^ 4. r • -r , .Lomputer Science and Technology:

Selection and Use of General-Purpose Programming Languages--Program Examples

5. AUTHOR(S)
John V. Cugini

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struction sj

NATIONAL BUREAU OF STANDARDS

DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Fi nal

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Same as in item 6 above.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 84-601120

[^J Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or /ess factual summary of most si gnificant information. If document includes a significant

bi bliography or literature survey, mention it here)

Programming languages have been and will continue to be an important instrument
for the automation of a wide variety of functions within industry and the Federal
Government. Other instruments, such as program generators, application packages,
query languages, and the like, are also available and their use is preferable in

some circumstances.
Given that conventional programming is the appropriate technique for a particu-

lar application, the choice among the various languages becomes an important issue.
There are a great number of selection criteria, not all of which depend directly on

the language itself. Broadly speaking, the criteria are based on 1) the language
and its implementation, 2) the application to be programmed, and 3) the user's
existing facilities and software.

This study presents a survey of selection factors for the major general -purpose
languages: Ada, BASIC, C, COBOL, FORTRAN, Pascal, and PL/I. The factors covered
include not only the logical operations within each language, but also the advantages
and disadvantages stemming from the current computing environment, e.g
packages, microcomputers, and standards. The criteria associated with
tion and the user's facilities are explained. Finally, there is a set
examples to illustrate the features of the various languages.

This volume includes the program examples. Volume 1 contains the discussion of
li^nguagp t;p1prtinn rritpri;^ . _

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s/

Ada; alternatives to programming; BASIC; C; COBOL; FORTRAN; Pascal; PL/I; program-

ming 1 anguage features ; programming languages; selection of programming language.

software
the applica-

of program

13. AVAILABILITY

[]X] U n I i m i ted

gFor Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C
20402.

Q Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

178

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

N,ame

Company

Address

City State Zip Code

(Notification key N-S03)

•U.S. GOVERNMENT PRINTING OFFICE 1984 0-461-105/10087

I Technical Publications

Periodicals

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad
range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. As a special service to subscribers each issue contains complete citations to

all recent Bureau publications in both NBS and non-NBS media. Issued six times a year.

Nonperiodiccds

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented

by Executive Order 11717 (38 FR 12315, dated May II, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

