
oi%oZTr' Computer Science ' nuot ^yalaa

oTSarr" and Technology

NBS Special Publication 500-117, Volume 1

Selection and Use of

General-Purpose Programming

Languages — Overview

he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The

Jf Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate

their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a

basis for the nation's physical measurement system, (2) scientific and technological services for industry and
government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau's technical work is performed by the National Measurement Laboratory, the National

Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Center for Materials

Science.

The National Measurement Laboratory

Provides the national systern of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community, in-

dustry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference 'Materials; and provides

calibration services. The Laboratory consists of the following centers:

• Basic Standards^
• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to

address national needs and to solve national problems; conducts research in

engineering and applied science in support of these efforts; builds and main-

tains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services; develops

test methods and proposes engineering standards and code changes; develops

and proposes new engineering practices; and develops and improves

mechanisms to transfer results of its research to the ultimate user. The
Laboratory consists of the following centers:

Applied Mathematics
Electronics and Electrical

Engineering-

Manufacturing Engineering

Building Technology
Fire Research

Chemical Engineering-

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of com-
puter technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant

Executive Orders, and other directives; carries out this mission by managing
the Federal Information Processing Standards Program, developing Federal

ADP standards guidelines, and managing Federal participation in ADP
voluntary standardization activities; provides scientific and technological ad-

visory services and assistance to Federal agencies; and provides the technical

foundation for computer-related policies of the Federal Government. The In-

stitute consists of the following centers:

Programming Science and
Technology
Computer Systems

Engineering

The Center for Materials Science

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information funda-

mental to the processing, structure, properties and performance of materials;

addresses the scientific basis for new advanced materials technologies; plans

research around cross-country scientific themes such as nondestructive

evaluation and phase diagram development; oversees Bureau-wide technical

programs in nuclear reactor radiation research and nondestructive evalua-

tion; and broadly disseminates generic technical information resulting from
its programs. The Center consists of the following Divisions:

Inorganic Materials

Fracture and Deformation^

Polymers
Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

'Located at Boulder, CO, with some elements at Gaithersburg, MD.

Computer Science
and Technology

Of STAiTOWI

acio

NBS Special Publication 500-117, Volume 1

Selection and Use of

General-Purpose Programming
Languages — Overview

John V. Cugini

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued October 1984

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This

publication series will report these NBS efforts to the Federal computer community as

well as to interested specialists in the academic and private sectors. Those wishing

to receive notices of publications in this series should complete and return the form

at the end of this publication.

Library of Congress Catalog Card Number: 84-601119

National Bureau of Standards Special Publication 500-117, Volume 1

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-117, Vol. 1, 81 pages (Oct. 1984)

CODEN: XNBSAV

us GOVERNMENT PRINTING OFFICE

WASHINGTON: 1984

For sale by Ihe Superintendent of Documents, U S Government Printing Office. Wastiington, DC 20402

PREFACE: Role of ICST

The Institute for Computer Sciences and Technology (ICST)
within the National Bureau of Standards (NBS) has a mission under
Public Law 89-306 (Brooks Act) to promote the "economic and
efficient purchase, lease, maintenance, operation, and
utilization of automatic data processing equipment by Federal
departments and agencies," Thus, ICST pursues a number of
different approaches to the problem of application development
and maintenance. When a potentially valuable technique first
appears, ICST may be involved in research and evaluation. Later
on, standardization of the results of such research, in
cooperation with voluntary industry standards bodies, may best
serve Federal interests. Finally, ICST helps Federal agencies
make practical use of existing standards and technology through
direct consulting and the development of supporting guidelines
and software.

The development and promotion of standard programming
languages provide an especially clear example of this cycle of
technological development. Through its activities within the
Conference on Data System Languages (CODASYL) , the Institute of
Electrical and Electronics Engineers Computer Society (lEEE/CS)

,

the International Standards Organization (ISO) , and committees
accredited by the American National Standards Institute (ANSI),
ICST has contributed to the design or standardization of most of
the prominent languages in use today.

Technical work within such organizations helps to promote
good language design. ICST represents Federal users' interests
by striving for the inclusion of language features which exploit
advances in programming technology and software engineering.

Beyond the advantages of a well-designed language,
standardization per se is valuable for several reasons. First
and foremost, good language standards make it easier and less
costly to transport software from one language processor to
another, either within the systems of a given vendor, or between
vendors. This capability is valuable not only for programs
written by end-users, but also encourages the development of
vendor-independent commercial software. Second, standards help
to preserve the value of programmers'* skills as they move from
one installation to another. There is no need for extensive
retraining in local dialects of COBOL, for instance. When a need
arises for hiring, there exists a large pool of programmers
knowledgable in the language. Third, programming language
standards allow the development of standard language bindings to
various application facilities, such as graphics, communications,
or database. Finally, standards provide stability to the
definition of a language. Thus, the large base of Federal
software is not threatened by arbitrary changes in language
implementation. Changes are introduced in a controlled way and
only after careful evaluation of the effect on existing programs.

Thus, ICST aims to achieve a reasonable balance between the
incorporation of improved techniques for software development and
maintenance on the one hand, and the protection of existing
applications on the other. Given the size of Federal data
processing (DP) operations, the achievement of such a balance is
a critical task. Billions of dollars are at stake, both in
ongoing development and maintenance activities and in the base of
existing software. The challenge is to take advantage of
potential savings in the former while minimizing costs for the
latter.

When ICST determines that a language can provide important
benefits for Federal users, and that a technically sound
specification exists, it recommends the language to the Secretary
of Commerce for adoption as a Federal Information Processing
Standard (FIPS) [NBS75] , [NBS80] , [NBSSOa] . The reasons for
accepting a language as the subject of a FIPS are based on much
the same criteria as described below for language selection. The
nature of the language, the applications typical of Federal
users, and the existing base of programs, machines, language
processors, and programming skills are all taken into account.

When a FIPS is issued, the Federal users of that standard
then receive a number of support services. They may request
official Federal interpretations from ICST as to the meaning of
the standard if a question arises about a particular
implementation [NBS81] . These interpretations are developed in
cooperation with language experts in Federal agencies. ICST
works closely with the General Services Admininstra tion's (GSA)
Federal Software Testing Center (FSTC) , which is responsible for
the validation of language processors claiming to conform to the
FIPS. FSTC maintains a list of certified language processors
[FSTC84] which have undergone validation. Finally, ICST
participates in national and international standards activities
for the FIPS languages and stands ready to assist agencies with
various language issues, such as the applicability of a language,
technical questions about the meaning of a standard, and
information on the likely development path for a given language
standard

.

iv

Selection and Use of General-Purpose Progranuning Languages
Volume 1 - Overview

John V. Cugini
Institute for Computer Sciences and Technology

National Bureau of Standards

ABSTRACT

Programming languages have been and will continue to be an
important instrument for the automation of a wide variety of
functions within industry and the Federal Government. Other
instruments, such as program generators, application packages,
query languages, and the like, are also available and their use
is preferable in some circumstances.

Given that conventional programming is the appropriate
technique for a particular application, the choice among the
various languages becomes an important issue. There are a great
number of selection criteria, not all of which depend directly on
the language itself. Broadly speaking, the criteria are based on
1) the language and its implementation, 2) the application to be
programmed, and 3) the user^'s existing facilities and software.

This study presents a survey of selection factors for the
major general-purpose languages: Ada*, BASIC, C, COBOL, FORTRAN,
Pascal, and PL/I. The factors covered include not only the
logical operations within each language, but also the advantages
and disadvantages stemming from the current computing
environment, e.g., software packages, microcomputers, and
standards. The criteria associated with the application and the
user's facilities are explained. Finally, there is a set of
program examples to illustrate the features of the various
languages.

This volume contains the discussion of language selection
criteria. Volume 2 comprises the program examples.

Key words

;

Ada; alternatives to programming; BASIC; C;
COBOL! FORTRAN; Pascal; PL/ I; programming language
features; programming languages; selection of programming
language.

* Ada is a registered trademark of the U. S. Government,
Ada Joint Project Office.

V

TABLE OF CONTENTS: Volume 1 - Overview

1.0 PURPOSE AND SCOPE 1
2.0 PROGRAMMING LANGUAGES - CRITERIA AND COMPARISON . . . 1

2.1 Language Factors 2

2.1.1 Syntactic Style (see Figure 1) 4

2.1.1.1 Statement Terminator 4

2.1.1.2 Fixed Or Free Format 6

2.1.1.3 Statement Labels . 6

2.1.1.4 Identifiers 6

2.1.1.5 Implicit Or Declared Entities 6

2.1.1.6 Program Length 7

2.1.2 Semantic Structure 7

2.1.2.1 Control Of Execution (see Figure 2) 7

2.1.2.1.1 Structured Programming 9
2.1.2.1.2 Blocks 9

2.1.2.1.3 Subroutines 9

2.1.2.1.4 Functions 10
2.1.2.1.5 Recursion 10
2.1.2.1.6 Generic Procedures 10
2.1.2.1.7 Exception Handling 11
2.1.2.1.8 Concurrency 11
2.1.2.2 Control Of Data (see Figure 3) 12
2.1.2.2.1 Storage Classes 12
2.1.2.2.2 External Data 14
2.1.2.2.3 Data Abstraction 14
2.1.2.3 Packages 15
2.1.3 Data Types And Manipulation 15
2.1.3.1 Checking And Coercion 15
2.1.3.2 Elementary Data 16
2.1.3.2.1 Numeric (see Figure 4) 16
2.1.3.2.2 Character (see Figure 5) 18
2.1.3.2.3 Logical (see Figure 6) 18
2.1.3.2.4 Bit (see Figure 7) 21
2.1.3.2.5 Pointer (see Figure 8) 21
2.1.3.3 Aggregate Data 21
2.1.3.3.1 Arrays (see Figure 9) 23
2.1.3.3.2 Files And I/O (see Figure 10) 25
2.1.3.3.3 Records (see Figure 11) 27
2.1.3.3.4 Sets (see Figure 12) • • • 29
2.1.4 Application Facilities (see Figure 13) 29
2.1.4.1 Reports 29
2.1.4.2 Database 32
2.1.4.3 Real-time 32
2.1.4.4 Communication 32
2.1.4.5 Graphics 33

vi

2.1.5 Program Implementation Control 33
2.1.6 Simplicity 34
2.1.7 Standardization (see Figure 14) 35
2.1.8 Performance 37
2.1.9 Software Availability 38
2.1.10 Software Development Support 39
2.1.10.1 Source Code Manipulation And Checking 40
2.1.10.2 Program Testing 41
2.1.10.3 Information And Analysis 42
2.2 Application Requirements (see Figures 15 and 16) . 4 2

2.2.1 Functional Operations 4 2

2.2.2 Size And Complexity 4 5

2.2.3 Number Of Programmers 46
2.2.4 Expertise 46
2.2.5 End-user Interaction 47
2.2.6 Reliability 47
2.2.7 Timeframe 48
2.2.8 Portability 48
2.2.9 Execution Efficiency 48
2.3 Installation Requirements 49
2.3.1 Language Availability 49
2.3.2 Compatibility With Existing Software 50
3.0 LANGUAGE SUMMARY (see Figure 17) 51
3.1 Ada 51
3.2 BASIC 51
3.3 C 53
3.4 COBOL 5 3

3.5 FORTRAN . 5 4

3.6 Pascal 55
3.7 PL/I 55
4.0 CONCLUSION 5 6

REFERENCES 57

ACKNOWLEDGMENTS 6 2

APPENDIX A ABBREVIATIONS

APPENDIX B SOURCES OF INFORMATION

B.l INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY . . . B-1
B.2 FEDERAL SOFTWARE TESTING CENTER B-1
B.3 NATIONAL TECHNICAL INFORMATION SERVICE B-2
B.4 X3 - INFORMATION AND PROCESSING SYSTEMS B-2
B.5 SC5 - PROGRAMMING LANGUAGES B-2
B.6 IEEE COMPUTER SOCIETY B-3
B.7 SPECIAL INTEREST GROUP ON PROGRAMMING LANGUAGES . . B-3

vii

APPENDIX C ALTERNATIVES TO CONVENTIONAL PROGRAMMING

C.l DATABASE MANAGEMENT SYSTEMS e . . . C-3
C.2 QUERY AND REPORT FACILITIES C-3
C.3 APPLICATION PACKAGES C-3
C.4 APPLICATION GENERATORS ... C-3
C.5 VERY HIGH-LEVEL LANGUAGES C-4
C.6 ASSEMBLER LANGUAGE C-4
C.7 MANUAL OPERATIONS C-4

FIGURES:

Figure 1 - Syntactic Style 5

Figure 2 - Control of Execution 8

Figure 3 - Control of Data 13
Figure 4 - Numeric Data and Manipulation 17
Figure 5 - Character Data and Manipulation 19
Figure 6 - Logical Data and Manipulation 20
Figure 7 - Bit Data and Manipulation 22
Figure 8 - Pointer Data and Manipulation 22
Figure 9 - Arrays 24
Figure 10 - Files and I/O 26
Figure 11 - Records 28
Figure 12 - Sets 30
Figure 13 - Application Facilities 31
Figure 14 - Standardization 36
Figure 15 - Language Factors vs. Application Requirements . 43
Figure 16 - Languages vs. Application Requirements 44
Figure 17 - Languages and Standards Bodies 52

viii

Page 1

1.0 PURPOSE AND SCOPE

Progranuning is a means to an end. In this report, we shall
assume that the end is the automation of some function performed
by an individual or an organization, such as a company or Federal
agency. The question, then, is "which programming language is
best for a given application?" Any discussion of programming and
programming languages must consider them within the general
context of data processing. It is not enough to know the logical
structure of the various languages. In order to make informed
choices, we must also take into account such factors as
portability, the availability of languages in various computing
environments (e.g., main-frames vs. micros), the availability of
software for the language, and so on. The purpose of this report
is to present and explain a set of language selection criteria
which DP managers and users may apply to their particular
situations. These criteria apply, of course, only when the
language of implementation is important to the user. Conversely,
if the user is purchasing a software package to be used strictly
as is, the language in which the package is written may be of no
concern.

For this report, the scope of consideration shall be limited
to conventional programming languages as the means for
implementing and maintaining an application system. It is
important to understand that programming is only one among many
application development techniques. Some of these alternative
techniques are described in Appendix C. Although this report
focuses on issues of language use and selection, it is by no
means implied that such alternatives are to be ruled out in favor
of a conventional programming approach.

2.0 PROGRAMMING LANGUAGES - CRITERIA AND COMPARISON

Choosing the appropriate language is a difficult process
because there are such a large number of relevant factors. The
purpose of this section is twofold: first to enumerate the most
significant of those factors, and second to organize them in such
a way that the relationships among them may be understood. We
will group language selection criteria into three broad
categories: 1) the properties of the various languages and of
their associated software, 2) the nature of the application being
programmed, and 3) the characteristics of the installation
involved in the work. The first set of criteria, based on
language properties, explain the features offered by the
different languages. These features must then be evaluated
against the requirements imposed by the application to be
programmed and the characteristics of the installation.

Language and application issues encompass both logical and
practical considerations. Logical properties are those that are
true by definition of the object in question: COBOL is defined
to have fixed-point decimal arithmetic; the specification of a

Page 2

payroll system requires that one of its functions is to compute
time-and-a-half for overtime. Conversely, it is a practical
consideration that COBOL is more widely available than SN0B0L4 or
that the payroll system will be run on three different vendors'
machines. All installation characteristics are assumed to be
practical. Within a category, logical criteria will be discussed
first, and then the practical criteria.

This distinction between logical and practical
considerations is important, since much of the literature on
language usage covers only the logical criteria. This is
understandable, in that the matching of the inherent properties
of a language with the logical definition of an application is
rightly seen as a central part of the selection process.
Nonetheless, DP managers operate under "real-world" constraints,
and even though a language may be a theoretically perfect match
for an application, there may be mundane but effective reasons
(e.g., none of the programmers knows the language, the language
is unavailable on the installation's hardware) for making another
choice.

Although this report lists and explains the various criteria
to be taken into account, it is up to each organization to decide
which are most important. For any given application, it is
unlikely that all the criteria will favor one language. When
weighing conflicting factors, one should evaluate both long-term
and short-term costs and benefits. For instance, changing from
one language to another will generate costs in the short term,
but whether these costs are justified depends on the prospects
for ongoing savings.

This report will cover Ada*, BASIC, C, COBOL, FORTRAN,
Pascal, and PL/I. These languages were chosen because they are
currently the most used by Federal agencies, or are likely to
become widely used. We recognize that there are other languages
(ALGOL, APL, FORTH, LISP, MODULA, MUMPS, PROLOG, SNOBOL, etc.)
with certain advantages, but these are either oriented to some
special application area or in less common use and so they are
not included here. The seven languages under study are not all
approved FIPS. Please see the preface and section 2.1.7 for
details on the role of FIPS and the status of standards for these
languages.

2.1 Language Factors

This section will compare various languages, first with
respect to their syntactic and semantic features, and then with
respect to implementation and environmental issues. We will
describe each language according to its definition in the
corresponding ANSI standard ([Ada83], [COB074] , [FORT78] ,

* Ada is a registered trademark of the Ua S. Government,
Ada Joint Project Office.

Page 3

[Pasc8 3] , and [PL/176]). In the case of BASIC and C, a
comprehensive language standard does not yet exist. The base
documents for these languages are given in [BASI84] and [Kern78]
(see section 2.1.7).

There is an ANSI standard and a FIPS for Minimal BASIC, a
subset of the language considered throughout this report.
Although many implementations conform to this standard, the
language it describes is so small that there are several
implementor-def ined enhancements. For C, we shall assume that
the standard input/output (I/O) library is available, but not the
UNIX* interface. A new version of COBOL is currently in the
approval process [COB083] , and its enhancements over the current
standard are noted. Where it is necessary to distinguish, we
shall refer to these two versions as "COBOL-74" and "C0B0L-8x".
Otherwise, the term "COBOL" may be assumed to apply to both
versions. Several of the language definitions have a number of
levels or subsets [PL/181] . In general, we shall compare the
most complete versions which are defined, and disregard lower
levels and subsets.

Bear in mind, then, that the status of the languages under
scrutiny varies considerably. There are as yet few
implementations of and little experience with the language
specifications for Ada and BASIC. At the other extreme, COBOL
and FORTRAN assumed their present shape years ago, and their
advantages and limitations are by now apparent. Although draft
standards exist for BASIC and C, these have not been formally
adopted, as is the case for the other languages.

It should be noted that we are comparing features as
directly suppor ted in the language. Clearly, most features can
be simulated with a greater or lesser degree of effort. Thus,
the absence of a logical data-type in BASIC, for instance, does
not prevent a programmer from setting up a character variable as
a switch and assigning "T" or "F" to it. Nonetheless, this puts
the burden on the user, rather than the language. In such cases,
then, we shall simply say that BASIC does not support logical
data, without intending to preclude the possibility of achieving
the same effect some other way.

Another point to keep clear is that we shall be concerned
with the facilities guaranteed to the user by standard-conforming
implementations of the language, whether or not these facilities
are built directly into the syntax of the language, or provided
indirectly, via standard runtime support. For our purposes then,
we shall simply say that both Ada and COBOL provide sequential
files, even though they are provided by means of predefined
generic packages in Ada and directly in the syntax of COBOL.
Conversely, we shall say that Ada does not "have" keyed files,
because even though there could be a package to support them, no
such package is required by the standard.

* UNIX is a trademark of Bell Laboratories.

Page 4

This survey is intended to convey the general capabilities
of each of the languages. A few specialized features (e.g., the
label data type in PL/I) have been omitted in the interest of
brevity.

This report takes a comparative approach when discussing the
languages: they are measured against each other rather than
against an abstract ideal. Thus, we shall emphasize the points
at which a given language differs from the prevailing pattern.
Generally, each section first describes the capability under
consideration, then notes the typical treatment (if any) of that
capability, and finally points out exceptions to the typical
case. Many of the sections have an associated figure. These
figures normally shou Id not be used in isolation from the
accompanying text"! Their purpose is to summarize the discussion
and serve as a reminder of which language has which feature; by
themselves, they may not convey fully accurate information.

Unfortunately, there is a great disparity in the terminology
used by the various language communities to describe similar
concepts. There is no consistent usage for terms such as
"block", "procedure", "identifier", or "name", e.g. In this
guide we have adopted the usage judged most prevalent. In those
sections where confusion is likely, the discussion is prefaced by
a brief, informal definition of the concept in question. This
definition is not meant to be authoritative, but merely serves to
avoid ambiguity.

2.1.1 Syntactic Style (see Figure 1) -

This category includes those features of the language which
determine the general appearance of the program, but have no
direct bearing on the ability to express control or data
structures.

2.1.1.1 Statement Terminator -

A statement in a language describes a single action or
object. Of the seven languages, only FORTRAN and BASIC use an
end-of-line to mark the end of a statement. For the other
languages, lines are not logically significant. In COBOL, the
beginning of a statement is denoted by a keyword and a sequence
of statements, called a sentence, is terminated by a period
("."). All the others use a semicolon (";") to delimit
statements. Nonetheless, all langu^es generally encourage the
convention of coding one statement per line. The rules for using
semicolons, especially within compound statements, are sometimes
confusing to novice programmers and so the ability to dispense
with them favors ease of writing.

Page 5

CM

c
o
•H

o
0)

to

<u

<u
to

(1>

iH
>i
4J

W
o
•H
4J

O
(0
4J

c
>i
CO

I

3

•H

o

o
ffl

o
u

W M
o w
o m
04

no

CO

g
Eh

I

0 <l>

1 c

0)

s
0) .

> c

<u o
c

W

(0

o

o

to

to

e

25

U

2:

0)

2

0)

(1)

£

25

N

to

>^
C
(0

o

00

1 rH
»M <0 u
0 <1> •H
1 c 4J rH

C 3
A4

0)

N
•H
to

c
«0

to

o <y

2S >H

to

<D O

to

o (y

to

o

to

o; o

to

<y o

CP
c
o

e
3
•H

O

cn

0^

o

s
3
•H

to to

0
x:

0>
c
o

l4

o
4-)

(0

c
•H
s
>^

•u

o
c

0) iH

0) rH
2M to ^ >1

•H •o
t-l CO cr> to u
0 4J

i"
to c <0

4J (0 u i <D rH a
•P OS g <D 3 0) rH rH <y

c c •H e
•s

U JQ as to

0 •H (0 « e M
e e Eli to •H x > rH -H *

iH J-> to o >^ u >
<U c B t7i 0

<0 E-i (1> to •D > 0
(tJ C u

to 1^ »J D PL.

Page 6

2.1.1.2 Fixed Or Free Format -

COBOL and FORTRAN both have conventions about which
character position in a line of source code must be used for
certain syntactic entities, such as labels, continuation, or the
start of a statement. In BASIC, every line must begin with a
line number, starting in the first position. Certainly it is

desirable that programs be written with some convention for
indenting? whether these conventions should be part of the
language is questionable, but there should be some mechanism for
enforcing an orderly style. Language-based editors and
pre ttypr inters may be used for this purpose.

2.1.1.3 Statement Labels -

FORTRAN, BASIC, and Pascal use numbers as statement labels.
Clearly, it is preferable to be able to name, rather than number,
locations within the code, as the other languages allow.

2.1.1.4 Identifiers -

Identifiers (often called names) are syntactic objects used
to denote various kinds of entities such as data, types, and
procedures. Only FORTRAN and C still limit identifiers to a
small number of characters (six and eight, respectively). This
is also a problem with many small versions of BASIC, some of
which limit the user to a mere two characters, but the proposed
standard will allow 31 characters. Either for reading or
writing, a low limit on the length of identifiers is a severe
hindrance to good programming. Some implementations allow a
large number of characters but only the few first are
significant. For instance, C will accept more than eight
characters, but may not recognize these additional characters.
This approach can be deceptive and counterproductive because
entities that appear to be different in the source code may
actually be the same.

There may be other restrictions on identifiers. Most of the
languages have a lengthy list of reserved words which must not be
used as identifiers. This restriction can cause confusion,
especially among inexperienced programmers. FORTRAN and PL/I
have no reserved words, and BASIC only a few.

2.1.1.5 Implicit Or Declared Entities -

Here is another case where ease of reading and of writing
tend to be opposed. Clearly, when writing it is easier to be
able to assume the existence of entities, such as variables, as
they are needed in the algorithm. This is allowed in FORTRAN,

Page 7

BASIC, and PL/I. On the other hand, by requiring a program
explicitly to declare all variables before they are referenced,
COBOL, Ada, Pascal, and C enforce a certain discipline that may
help when reading a program. Perhaps more importantly, this
requirement normally causes detection of the common programming
error of misspelled variable identifiers.

FORTRAN and BASIC have conventions that relate the spelling
of an identifier to its type, e.g, starting an integer identifier
with "I" or ending a string identifier with "$". Such self-typed
variables are useful in that they need not be explicitly declared
and yet their type is apparent throughout the program; that is,
a reader need not refer back to a declaration to determine the
type. FORTRAN and PL/I have a facility whereby the program can
set its own default typing conventions based on the spelling of
identifiers.

2.1.1.6 Program Length -

COBOL, and to a lesser extent, Ada and PL/I, encourage a

verbose style; FORTRAN programs, conversely, tend to be quite
concise. The other languages, BASIC, C, and Pascal, fall
somev^ere in between, but probably closer to FORTRAN. It is here
that we find a direct trade-off between ease of reading and
writing. FORTRAN and BASIC allow the programmer to get something
running with a minimum of syntactic overhead, but easily become
unreadable unless the programmer is careful. Conversely, COBOL
and Ada tend to be quite readable, but it takes a fair amount of
effort to produce even a simple program.

2.1.2 Semantic Structure -

Semantic structure encompasses those features of the
language which allow the programmer to build modules in the
program to represent algorithms or data entities or both.
Although the same effect can often be achieved without
structures, it is vital that the language allow programs to
express such structures in a natural way; this is important both
for reading and writing programs.

2.1.2.1 Control Of Execution (see Figure 2) -

Control of execution addresses the language features which
describe the algorithmic structure of the program. The
programmer uses these features to decompose the execution
sequence into logically related groups, so that the underlying
design is more clearly expressed.

Page 8

CM

C
o
•H
4J

O
<v
CD

(D

Q)
(0

C
o
•H
u
3
U

M-l

O

O
u
*i
c

8

3

1^

M

«0

o
CO

(0

00

I

o
o
u

•a

CO M
o w
a**
O ffl

M
04

(0

D
Eh

i

(0

(0

<0
•H

•H

(0

0)

0)

CO

CP
c
•H

no g
<v e
u (0

3 M
4J cyi

O O
3 U
U
4J

CO

tli

(0

0)

o
2

O
52

(1)

o
2

CO

o

c

c
H

iH
(0

C
i-i

<u

X

o

c

0)
4->

o

o

O

5
o

c
u
<D
4J

C

•ic

o

o
2

iH
(0

c
I-I

<u
4J

X

*

o

o

CO

O
o

m

(0

c

(D CO

c c
M 'H

•H 3
10 o
C »-i

dJ 3
4J CO
X

CO

CO

o

O
2

O
2

CO

CO

CO

(1)

CO

0)

o
2

o
2

o
2

O
2

O
2

CO

0)

c
u

C CO

M C\ O

rcj 4J

<u a

X

c
o
•H
CO

M
3
U
<U

CO

u
3

s

u
04

O
•H
I-I

c

CO

>1

O
2

O
2

•H

fii

O
2

CO

CO

(U

en
c

EC

C
o
•H
4J

a;

o
X

O
2

O
2

O
2

O
2

O
2

*
*
K
CO

CO

>4

>i
o
c

I-I

i-l

3

H
OU

(0

c
I-I

>1
C rH
•H C

O
u
o <y
U-l iH

3
4J J-> 0
<o <o e

iH iH e

o o I

rH iH fH
to

2 2 «

Page 9

2.1.2.1.1 Structured Programming -

We use the term "structured programming" in a narrow sense
to mean simply those language constructs which determine, at the
detailed level, the sequence of instruction execution, and which
encourage the development of well-organized source code. Such
features have found their way into virtually all the languages.
Except as noted below, all languages have a general purpose
if-then-else, looping, and selection (case) construct. FORTRAN
is the weakest in this regard; it has no single-exit select
construct, and its looping mechanism depends on a control
variable, not an arbitrary condition. COBOL-74^s looping
mechanism currently forces the performed code to be displaced out
of the normal sequence, but the proposed new standard will remedy
this. Other problems solved by the C0B0L-8x proposal are the
need for a delimiter to terminate an if-construc t, but not the
entire sentence (i.e., an END-IF) and the lack of a selection
construct.

Ada, BASIC, and C have a statement which explicitly exits
the current loop; this is useful for exiting a loop in a
controlled way, rather than using the GO TO.

2.1.2.1.2 Blocks -

Blocks allow the programmer to mark off certain sections of
code, such that it is treated as a single statement and, within
the block, data may be defined locally which cannot be accessed
from outside the block. Ada, C, and PL/I provide full block
structure. Pascal's blocks do not allow the definition of local
data. COBOL, FORTRAN, and BASIC do not provide this capability.

2.1.2.1.3 Subroutines -

Most languages provide a way to write subroutines which may
be invoked from one part of a program and then perform some task
or operate on passed parameters to return the results of the
computation. External subroutines may be separately compiled,
and typically communicate with their invoker through the passed
parameters. Internal (or nested) subroutines are part of the
same compilation unit as the invoker and typically have direct
access to the invoker's data, as well as to their own local data.

C does not provide subroutines as such; invoked procedures
are always external functions (see 2.1.2.1.4). Moreover, since
parameter passing is always by value, the programmer must pass
pointers if the function is to communicate results back to the
invoker, i.e., passing parameters by reference is not provided
directly, but must be simulated by the program. Pascal is weak
in that it does not provide for separate compilation; all its
subroutines are internal. FORTRAN has no mechanism for internal

Page 10

subroutines, COBOL-74 has external subroutines, but only a weak
form of internal subroutines (invoked with PERFORM) which do not
accept parameters and have no local data. C0B0L-8x has true
internal subroutines. BASIC has internal and external
subroutines, but the only local data for its internal subroutines
are the parameters, Ada and PL/I have both internal and external
subroutines.

2.1.2.1.4 Functions -

A function is a procedure which accepts parameters as input
and returns a value. It is normally invoked as part of the
evaluation of an expression. A function may be defined by the
programmer or it may be supplied by the implementation (so-called
intrinsic or built-in functions) as part of the standard run-time
support. For user-defined functions, the distinction between
external and internal described above for subroutines also
applies. Only COBOL does not have the concept of functions. All
the others allow the user to define such functions and require
some elementary functions to be supplied by standard
implementations of the language. Again, Pascal has no facility
for separate compilation of such procedures.

2.1.2.1.5 Recursion -

Recursion is the ability of a procedure (subroutine or
function) to invoke itself, either directly or indirectly. The
definition of the procedure in the source code serves as a
template and every time the procedure is invoked, the logical
effect is as if a new copy of the procedure (together with its
data) were created and its execution initiated. Recursion is
quite valuable for several classes of algorithms. Only COBOL and
FORTRAN do not have this feature.

2.1.2.1.6 Generic Procedures -

A generic procedure is a subroutine or function defined by
the user which is capable of applying the same algorithm to
parameters of different types. For example, a procedure which
returns the largest element in an array, regardless of the type
of element constituting the array, could be written, as opposed
to having to write a separate procedure for each type. Only Ada
and PL/I support this feature. Both allow the construction of
both subroutines and functions.

Page 11

2.1.2,1.7 Exception Handling -

Exception handling is the ability to have flow of control
automatically transferred to a special section of code when some
anomalous condition arises in the course of execution. The
section of code, usually called the exception handler, may then
attempt some remedial action. Languages with exception handling
define a list of exceptions which implementations must detect,
each identified by either a name or a numeric code. Typical
exceptions are division by zero, numeric overflow, subscript out
of range, faulty input, etc.

Ada, BASIC, and PL/I support exception handling. Ada and
BASIC syntactically associate an exception handler with a body of
code to be guarded; PL/I does this association dynamically by
executing an ON statement. All three languages have a special
statement which artificially causes an exception of a given type
to occur. COBOL has a less general capability of declaring a
procedure to be used upon the occurrence of certain I/O
exceptions. Also, COBOL provides a SIZE ERROR clause on
arithmetic statements for the detection of truncation, overflow,
and division by zero and on the CALL, STRING, and UNSTRING
statement for detection and correction of overflow.

2.1.2.1.8 Concurrency -

Concurrency (also called tasking or parallel processing) is

the ability of a program explicitly to designate certain sections
of code to be executed asynchronously. Logically, this means
that such parallel processes should not depend on each other for
their results and may be executed in any order relative to each
other. Typically, there is also a mechanism which allows the
programmer to synchronize these otherwise independent processes.
For example, if task 3 needs intermediate results from tasks 1

and 2, task 3 can be made to wait until those results are
available. Physically, concurrency may be implemented by
interleaved execution on a single processor, or by true
simultaneous execution on a multi-processor system. This mode of
execution is in contrast to the usual "single thread" flow of
control, in which, at any given time, the execution of a program
has advanced to a single unambiguous point.

Only Ada, with its tasking facilities, and BASIC, with its
real-time module, provide this feature. Note that COBOL provides
for communication between asynchronous processes (section
2.1.4.4), but does not provide, in the language, the means of
generating or controlling such processes. Although the FORTRAN
standard does not support concurrency, there is a draft standard
for Industrial Real-Time FORTRAN [IRTF84] , developed by the
European Workshop on Industrial Computer Systems Technical
Committee 1 (EWICS/TCl) and reviewed by Working Group 1,
Programming Language for the control of industrial processes
(ISO/TC97/SC5/WG1) , which is currently in the approval process

Page 12

within ISO/TC97/SC5 (see 2.1.4.3, below). This draft specifies
standard library routines, through which FORTRAN can perform
parallel processing.

2.1.2.2 Control Of Data (see Figure 3) -

This section discusses the mechanisms available to the
programmer for establishing the logical appearance of data within
the program. The concern here is not with actual data values and
operations, which are covered in section 2.1.3. Rather this
section deals with the extrinsic characteristics of data, such as
its scope, lifetime, and other logical properties.

2.1.2.2.1 Storage Classes -

Data can be established, stored, and deleted in various
ways. There are both logical and physical implications of each
technique. Usually, data is associated with the particular
program-unit (function or subroutine) in which it is defined and
all languages have rules about the treatment of such "local"
data. Typically, data declared in a procedure may be either
static or automatic. When data is static, its value is retained
between invocations of the procedure, and normally storage for it
is allocated only once before execution of the program. In the
case of automatic data, each invocation generates a new instance
of the data, and the usual implementation technique is for
storage to be allocated and de-allocated for each entry to and
exit from the procedure.

The default for all the languages is automatic, except for
COBOL, in which the default is static. C, FORTRAN, and PL/I
support static data, but Ada, BASIC and Pascal do not. COBOL has
an executable statement, CANCEL, which causes a fresh copy of a

designated subroutine to be used at the next invocation.
COBOL-Sx has a declarative phrase, INITIAL, which specifies that
the program-unit containing it is to be initialized upon each
entry. Both CANCEL and INITIAL give the effect of automatic.

The languages with pointers (see 2.1.3.2.5, below), Ada, C,

Pascal, and PL/I, all allow the program explicitly to create and
destroy multiple instances of data to be addressed by the
pointer.

PL/ I also has a storage class, CONTROLLED, in which the
program explicitly creates and destroys instances of a data-type
according to a stack discipline (last-in, first -out). C has a
storage class REGISTER, which is logically similar to automatic,
but tells the compiler to attempt to maintain the data item in a
register for fast access.

Page 13

1

I

iH 1 *
ift
(u 1 CO

O 1 <u
CO 1

(d 1

04 1

j
1

1

¥
• 05 1 Ul

Eh I

• P5 1

O 1

• b 1

X 1

C 00 1

0 \ 1

•H ^ 1

•P I*» 1 (0

o 1 1

<u M 1

CQ § 1

0)

(D 1

O 1

<1) U 1

(0 '

j

(0
1 1 U 1 (1)

><
o

!

0
iH
0 0) U 1 <)(

M (0 M 1 (0

P 0 cn 1 <u

c 0*< 1

0 0 CQ 1

u U 1

Pk I

1

n
Q> <0 1 to

u TJ 1

3 <C 1 >*
0>
•H

*
(0

(1)

>^

(0

o

0}

(0

O
2

O

M

C ^
o (d

Ul

C

O

o

o

t-t

c
•H
O

o
2

5i

c
•H
o

o

o

o

o

*

(0

*
*
(0

K
K
*
to

o
2

O
!Z

Ul (0

fH

o

o
z

Z: Z

(0
•H

Ul

z

z

to

• • <u
•0 c a

to 0) 0
<u •H c
to (d <d 4J •H
to 0 0
«tJ 0 0 <d (d 0)

iH Ul 0 Ul g
U JJ rH 0) <d x:

0 Id 4J rH to c 0
0) g •H 1 CO cd 1 1

C7) Q JJ Ul •H c < Ul (D

(d (d 0^ Ul a; O4
M 3 to a;

ii
to >i

0 <o to 3 u P
X <d

a

z

z

to to to

0 0
>H z z

*
to <

0 0
z X z z z

to to to to

0 0) 0) 0)

z >*

«o to

(U c
C 0
•H -H

<u (d

I <D
Ul

Q) o
to

D

C »o
O <1)

Ul

(U (d
iH rH

O
S I

0) Ul

g
<u

3 I

<d iH 4J
UH (d CO

QJ <U 3
Q « S

* * *

JJ .H

Page 14

2.1.2.2.2 External Data -

A useful feature is the ability explicitly to declare some
data as external (also called common) and therefore accessible to
the entire program, including external subroutines and functions.
Ada, C, C0B0L-8X, FORTRAN, and PL/I all have this capability.
COBOL-Sx, FORTRAN, and PL/I, however, require that external data
be declared in every procedure which accesses it. Thus, it is
external in the sense that there is one copy of the data
available at run-time, but not in the sense that one copy of the
source code declarations is visible throughout the program, i.e.
the external data promotes run-time efficiency, but not ease of
source code development. COBOL- 7 4 does not support external data
and BASIC allows it only in its real-time module, not in the core
of the language. Since Pascal doesn't have external procedures,
it obviously has no mechanism for setting up data accessible to
such procedures.

2.1.2.2.3 Data Abstraction -

Data abstraction is a feature which is strongly
characteristic of the newer languages. Essentially, it is the
ability to describe data according to its logical (abstract)
meaning, rather than according to the way it is to be represented
internally. This is important both for scalar and aggregate
data. Taking a simple example, to define a data item as FLOAT (6)

merely stipulates that the item will contain real numbers of a
certain precision as values. To define the same item as VELOCITY
(where VELOCITY is elsewhere defined as FL0AT(6)), preserves more
information about the intended use of the item.

We can distinguish several levels of capability to define
data abstractly. The most basic is the ability to give a name to
a particular data type and thereafter use that name when defining
data items. This has two advantages: first, data items are
described in terms of their logical meaning, rather than their
physical implementation (VELOCITY as opposed to FL0AT(6)), and
secondly, if that implementation needs to be changed, it can be
done at one place in the program (e.g., by changing the
definition of VELOCITY to FLOAT (8)), and the change then
automatically propagates throughout the program. Ada, C (with
its TYPEDEF clause) , and Pascal all have this capability.

The next level of capability is for the language to
recognize user-defined types and automatically provide
type-checking (see 2.1.3.1, below) and some operations, such as
assignment and comparison, for them. Ada and Pascal provide
these features.

Finally, the user may wish to define new operations on the
data type. Ada provides many features to support this ability.
Pascal supports it only through the ability to define functions
and subroutines, using the new data type.

Page 15

2.1.2.3 Packages -

If we view semantic structure as a way of expressing a
program according to its logical behavior, rather than its
physical implementation, then packages represent the highest
level of abstraction. In packages, there is no need to declare
operations and data abstraction separately. Rather, the program
can define logically related data, data-types, and operations (as
specified in associated subroutines and functions) together in a
package. The package provides a logical environment which can
then be invoked by any program, or part of a program, needing
those capabilities. Packages could be built to support such
facilities as indexed files, relational databases, graph
manipulation, rational arithmetic, and so on. Only Ada provides
packages.

2.1.3 Data Types And Manipulation -

Perhaps the most salient feature serving to distinguish the
various languages is the choice of data types each offers and the
operations available on that data. While the older languages
concentrated on providing data types which would be appropriate
for their application domain, the newer languages, Ada in
particular, have provided mechanisms for the user to define his
own data types. This strategy has the advantages of user
flexibility and language economy, but the penalty of requiring
extra work for the user, and a potential degradation of
portability (e.g. , if each user defines fixed-point decimal
differently) . This section will consider only data types and
operations supplied directly by the standard implementations of
the language.

2.1.3,1 Checking And Coercion -

Strict type checking prevents certain classes of error from
being committed by programmers, in that the language allows only
some carefully restricted combinations of data types and
operations. Thus, type-checking emphasizes discipline and
control, and the avoidance of surprising results. The
disadvantage of this approach is that it is sometimes awkward to
perform operations which intuitively seem simple. Conversely,
type coercion allows a wide variety of interaction among data
types (automatic conversion) , giving the user more power and
flexibility, but is more subject to misuse.

Ada and Pascal take a rather strict approach, allowing only
a very few coercions. PL/I is at the other extreme; its
specification includes very complex semantics dealing with
conversion rules. The other languages fall somevAiere in-between,
allowing certain conversions, but forbidding those which are
plainly mistaken.

Page 16

2.1.3.2 Elementary Data -

Elementary data-types (also called scalar) are those which
represent a single indivisible value, as opposed to aggregate
types (covered below) which represent some combination of values.
Normally, the language standard simply describes the logical
properties associated with data defined as a certain type, but
not its underlying representation. In COBOL and PL/I, however,
the programmer may describe data with so-called "pictures", which
imply a character-oriented representation of the data.

2.1.3.2.1 Numeric (see Figure 4) -

All the languages can represent numeric data in some form.
PL/I is the most inclusive, covering all the types specified in
the other languages. All the languages have some form of
floating-point numbers, except COBOL. Most also provide a second
floating-point type with extra precision, but Pascal does not.
BASIC is notable in that its longer floating-point type is
defined in terms of decimal. Thus, the user may choose between
greater accuracy and predictability on the one hand, and
execution efficiency on the other. Fixed-point numbers are
available in PL/ I, Ada, BASIC, and of course COBOL. Ada's
fixed-point numbers are, however, defined as binary, rather than
decimal. An integer type which permits direct binary hardware
implementation is available in all the languages except COBOL-74
and BASIC. Of course, with fixed-point data the user can achieve
the logical effect of integer data. Complex numbers are provided
only in FORTRAN and PL/I.

All the languages provide the four elementary arithmetic
operations (addition, subtraction, multiplication, and division),
and comparisons (less-than, etc.) for numeric data. C and COBOL
are unique in providing special syntax for incrementing and
decrementing a variable, in addition to the general capability of
assigning the value of an arbitrary expression to a variable.
Pascal and C do not have exponentiation, and Ada provides
exponentiation only to an integer power. Beyond this, there is a
wide variety of functions provided for numeric data. BASIC,
FORTRAN, and PL/I have a large set of supplied functions,
including many transcendental functions (hyperbolic,
trigonometric and logarithmic). Pascal has a somev^at smaller
set, but still including some trigonometries and logarithmics.
Ada provides only absolute value and remainder functions. C and
COBOL provide none.

Page 17

CM

C
0

o

(0

<D

W

c
o
•H
4J

fO

iH
D
a
•rH

c

s

(0

(T3

4->

(0

O
O
•H

<D

s

0)

3

•H
PL4

H 1 x:\ 1
4J

tJ 1 0 0
PU 1 CQ m

<0

o
(0

U

<D U
W M
O W
o pa

PM

D

4J

O

O
pa

o
2

o
CQ

*

o
CQ

O

o
2

e
•H
o

Q

O
2

e
•H

o

o

(0 (0 CO to

0)

(0

(1)

o

to

o
2

>>
(d 1 u to

'D 1 (0

< 1 0
CQ Bin

5h

o

o

o
2

o

o
2;

to

to

o
!2

o
2:

c

s

0)

o
CO

to to to to >1
<v c

Ma

(0 to

<D c
0

a;

c
o

to to

0)

s

*
*

(Q to

0^
5h

a;

c
o

0

<D Q)

CO -tJ

•H C
•H

4J

to e
c

C > 0 0
•H iH c •H C
O (0 4-> •»-> D 0 4J •H

1

e c O •H cn to

<0 •» 4J C •H
0 <0 3 0

M C JJ iH •H on
0 -H P ' XI a. 4J

£ ^' M X C O *
CO (0 >i OJ (1) <D CO •»-> 0) •iH *\ 0 U X CT> iH c

(0 -H 0 0)

C Cn C b 'O s a S
0 •r-) C 0 3
l>3 PQ M u <: w

Page 18

2.1,3.2.2 Character (see Figure 5) -

All the languages provide a way of storing characters. Ada,
Pascal, and C use arrays to handle sequences of characters,
whereas the other languages treat the string as a special type of
aggregate. BASIC, C, and PL/I provide direct support for
variable-length strings (with a declared or default maximum
length); in the other languages, character strings are
inherently fixed-length. Pascal has very limited character
manipulation; only assignment and comparison are provided.

All the languages except Pascal support the concatenation of
several character items into one variable. All except C,
COBOL-74, and Pascal allow specification of a substring by
position (e.g., select the 2nd through 5th character in a
string). The proposed C0B0L-8x standard provides full substring
capability. COBOL and PL/I can retrieve (but not assign to) a
substring based on some delimiter in the string itself (e.g.,
select everything preceding the first comma).

BASIC, COBOL, FORTRAN, and PL/I all have a means of
searching for the occurrence of a character string within another
string. C, COBOL, and PL/ 1 provide a way to test whether
characters are alphabetic, all upper- or lower-case, or numeric.
COBOL-Bx and PL/I provide a facility to translate systematically
from one set of character values to another (e.g., translate all
A's to X, all B's to Y, all C's to Z).

All the languages (besides Pascal) provide one or more
mechanisms to convert between other data-types in the language
and equivalent character strings; COBOL's conversion from string
to number, however, requires prior specification of the format to
be converted from. Ada, C, FORTRAN, and PL/I achieve such
conversions by pseudo-IO statements, which, instead of accessing
a true external file, access a string variable. Ada, BASIC, and
PL/I provide conversion functions. COBOL and PL/I do many
conversions as a result of coercing one data-type to another upon
ass ig nmen t.

2.1.3.2.3 Logical (see Figure 6) -

Logical data is capable of taking on only two values, "true"
and "false", and serves as a condition which can be tested in
various control statements. Most of the languages have such a
type (also called boolean) , but support it in different ways.
Ada, Pascal, and FORTRAN support this type directly. BASIC does
not have logical data. COBOL has named conditions, which can
simulate the effect of logical data. C uses the numeric values
of zero and non-zero to stand for false and true. Finally, PL/I
has a BIT type (see below), which has only two values, 0 and 1,
and which can be used as a direct simulation of logical data.

Page 19

CM

CM

fH

CM

c
o
•H
4J

O
<u
(0

<l>

c
o
•H
4J

(0

D

•H
c
<a

s
•o
c
to

iS

Q

o
JJ

o
«J

(0

x:u

in

(U
u
3

•H
1^

At

<0

O
(0

c
•H
M
4J

CO

CO

M

c
•H
M
JJ

CO

5
o

X
•H

>1
(0 1 fO

'0 1 M X
<C 1 l-i •H

<

to (0 (0 tn CO (0

a;
5h

o

CO

*
o
iH
SI CO

u (0

u •H

<
Var

CO

O o o o

CO tn

O d) o
Z >H 2;

O o
5Z

o
2

•ic

«
CO

•O 1 0)

0) U 1 iH
(0 M 1 C XI CO CO

0 CO 1 •H «0

Q4< 1 •H
0 m 1 4J U
M 1 CO (0

a* 1 >

CO

0 0)0
g >H Z

CO

o
2

O o

••

c c CO Si
0 0 o

ro •H •H c >-i

•H 4J 4-> nj

nj 0)
JJ C C CO c CO
<0 0) •H 0 0
D> JJ M Ot o rj>

Q) •o c 4J c
l-t CO >i •H

X >-l

•H 0 3 4J
u CO CO

M
0) o
J .H

O J-i

\ e

aa ^
D <D

CO

CO CJ
<D

O
2S

o

o

o

o
z

to o
C M
O I

•H O

O 3
C a;

3 to

h a> u

c
o
z

I

o

3 O
to

CO to

c <i; to <u to to to 0) o
•H X (U 0) Q> u
Ul •H (U
4J 0 0 1

CO z z 0

I

o

3 O
0) M
to

PL*

CO

c
o
•H

3

to o
C H
o »

•H O
4-»

3 to

El, pL4

c to

+J •H C
(0 to nj

iH
to 0) o
c > 0)

to c s
u 0u

>irH
(a c

(t) to

u
jC (D

u> o
c <0

I x:
•o o
a;

X iH

iw a

C -H
•H >£ -H
4->

•H C

Page 20

1—1 1 4-' f/>

\ 1
/II O o

l-q 1 « >H

I

!

j

1

iH 1 <TJ

<0 1 CO

CO O 1 •H u o
9 CO 1

rT>O"
(0 1 U

9
1

, -I

CO
•

.

vH
.» Z 1 rH

g
1

<0

f\\J fO Ui

RT
•H /II >it

<Unw Sd *M

O 1 0
•P h 1 >—

1

f 1

j

CO
'

1

j o /M

<D 1—1 1 4J

O 1 <U 4-> /rtID
(Q CQ 1 £ -H o \j

(-1 rri

O 1 Irt rr^ 5r
<6U 1 z c 1 1

C! U oO 1
r) c

•H
1

4J 1 1 1

fft 1 \J D
!

1 •H (U

1 vi

U 1 (U rH /II u oB <rl CO
I

i ^ C
1

•El 1

I
\

•rH

e '0 1

0) U 1 >—

<

<0

(0 M 1

0 CO 1
«^ U

•p Qa< I

At

s 0 CQ 1 M
u 1 O
PU 1

tl^ 1

1

ai
r\

f—

1

(Tl

(0 1
r\ vi Vi *0

U 1 <l> d) 0 1

M < 1 ?H /Z •H
u

1
1 M >

+ -

w o
CO 1 c

cn g 1 0
D 1

•H M
Eh I 0 0 <D o
g

1

c 1 O
0) cb 1 (0 c CO > (U

c •rH iH cH 1 0 0 CO (0

•H D >S 1 4J iH •H *B i o a (TJ TJ O 3
U 1

•H e U c X crM

1

0 &

Page 21

Except for BASIC and COBOL, the languages allow storing the
result of a logical expression formed from logical data and
operators. All the languages allow combining conditions (as
opposed to data) with the logical operators and, or, and not
(conjunction, disjunction, and negation) . Ada also has the
"exclusive or". FORTRAN has the exclusive or and logical
equivalence. PL/I, in addition to specific syntax for
conjunction, disjunction, and negation, has a general purpose
BOOL function which may be used to obtain any of the 16 possible
boolean binary functions.

2.1.3.2.4 Bit (see Figure 7) -

Bit data is capable of taking on only two values, 0 and 1.
Normally, bit data is implemented directly on the hardware bit
structure of the underlying machine.

Only C and PL/I support bit data. As mentioned above, PL/I
also uses the bit type as its logical type. Both C and PL/I
allow bitwise logical operations on bit aggregates (i.e., the
operation is performed on pairs of bits, one from each aggregate
in corresponding positions), such as logical and, or, and not. C
also supports the exclusive-or operation and shifting. C uses
one (integer) machine word as the unit for bit-aggregation. PL/I
aggregates bits into strings of arbitrary length; the operations
available for character strings (concatenation, substring,
search) also apply to bit strings. Also, PL/I provides two
functions, SOME and EVERY, which test whether some bit or every
bit in a string has a value of 1. The FORTRAN standard [FORT78]
does not support bit data, but there is a draft standard for
Industrial Real-Time FORTRAN [IRTF84] which does provide bitwise
operations on integers, much like C (see section 2.1.4.3, below).

2.1.3.2.5 Pointer (see Figure 8) -

Pointer data is that which can be used to address, or point
to, other data objects. It is useful in constructing various
kinds of dynamic data structures, such as lists, stacks, trees,
graphs, and queues. The ability to allocate and free storage is

typically associated with this data type (see 2.1.2.2.1). Ada,
Pascal, C, and PL/I have these facilities; BASIC, COBOL, and
FORTRAN do not.

2.1.3.3 Aggregate Data -

Aggregation is any mechanism in the language for building up
a data structure out of smaller pieces, such as smaller
aggregates or elementary data, together with the operations
provided to manipulate these structures.

Page 22

CM

m

CN

o
•H
4J

O
a>
CO

c
o

Id

s

•H
c

e

i5

S
*i
•H
n

0)

9

•H

H 1 (0 c (0\ 1 •H 0)

M
1

St

O
(0

10

04

o
CQ
O
U

U

^3

n M
O CO

o ta
t-i

as

<

o

o

o

o
2

O
2

4:

<

2

O

z

o
z

<: rti\ \ \
z z z

z

z

c
(0 (0 (0 (0

<u x: ^ o 0)

s

z

CQ

0)

z

z

o
z

z

z

(0

z

z

<
z

o
z

<
z

z

o
M C S-l

u Id 0 (1)

g
0 >
1 CO *J

<0

> C
•H a> <u <u

(0 0 0) 6p •H (0 0
(0 H M O CO

Q <u •H O 4J M C
^ X M-l w 0P

•H
a<

•H
ns (D hi

M n
0)

n < m CO CO

in

CM

CO
9

H

c
o
•H
4J

O
<D
(0

0)

Q)
(0

c
o
•H

Id
rH
D
04
•H
c

i

"S
Id

Id

Id

O

c
•H

00

V4

3

Id

o
(0

Id

04

1

o

s
o
u

•a
0) u
W M
O CO
04<i:
O CQ
M
04

Id

<

(0

(0

O
Z

o
z

o
z

(0

0)

CO 1

g 1

D 1

Eh I

S 1

c
0

1 Id •H
*J

H 1 tfi Id

^
!

u o
0

g 1 iH
O 1 c iH

•H <:
0

•J 1 04

Page 2 3

2.1.3.3.1 Arrays (see Figure 9) -

Arrays are ordered collections of data of similar type.
Each element of an array can be addressed individually according
to some identifying scalar value (usually integer values, but
sometimes other types as well) . Arrays can be nested so as to
provide the effect of multidimensional entities.

All the languages support arrays in one way or another.
Only Ada and Pascal allow addressing by other than integer
values; addressing may also be done with so-called enumeration
types (any type with a set of discrete, ordered values) . BASIC
and COBOL-74 set a rather low limit of three on the number of
dimensions supported. C0B0L-8x will allow at least seven. C and
COBOL fix the lower bound subscript of arrays to 0 and 1,
respectively; the other languages allow the user to specify a
lower bound. Ada, BASIC, Pascal, PL/ I, and COBOL allow simple
array assignment. Comparison of two arrays (at least for
equality) is allowed only by Ada, COBOL, and PL/I. COBOL,
however, performs these operations by character, not by element.
C and FORTRAN provide no array operations.

Because of the potentially large number of values involved,
it is useful to be able to initialize arrays other than by
individual assignment to each element. Ada, C, COBOL, FORTRAN,
and PL/I provide a way of initializing arrays with a list of
values in the declaration of the array, although the COBOL
mechanism is less convenient than the others. C allows such
initialization only for external or static arrays, not for
automatic arrays (see section 2.1.2.2.1). Ada, COBOL- 8x,
FORTRAN, and PL/ 1 all have a simple way to set all elements of
the array to a single value in the array declarartion. The Ada
mechanism for initialization can also be used in executable
statements. Similarly, BASIC^s DATA statement can be used for
assigning a list of values to an array (albeit within a loop)

,

and COBOL- 8x and PL/ 1 can set all the elements to a single value
during execution.

BASIC and PL/I allow arithmetic and string operations on
arrays as a whole, as well as by individual element. For
example, the program may multiply the elements of one array to
those of another and store the result in a third array with a

single statement. PL/I always does such operations
element-by-element, but BASIC treats numeric arrays according to
the rules for matrix arithmetic.

COBOL is unique in providing a statement which automatically
searches an array for a given value. If the array is ordered, a
binary, as opposed to linear, search can be performed.

Page 24

c
o
•H
4J

O
o
(0

0)

(0

>i
<0

)^

<
I

4->

rH 1 •H 4-)

(0 1 e <u V) w
O 1

CO 1 iH o
m 1 w

1 0
c Di

<D U
O W
0 «
M
PL4

D
Eh

o
c

0)

c

CO (0 CO CO CO CO CO CO

0) 0) 0

e
•H

O
c

M
Q)

CP
0)
4J

c

0)

CH

0)

<D

c

CO

O

o
!2

*
CO

o

O

u
<u

to to

0) (V
4J >H

c

o

o
2

to

(1)

o

o
z

jj 0)
u •H 4J

Z3 e 0
nJ 1 •H U to to to

•H TD 1 o 0) 0)

< 1

no
Dis

o o
z z

to to

<U (U

CO

0) CO

o
z

CO

O <y

Z >H

o o
z z

CO CO

0 o
z z

o o
z z

CO

0
>H O\ z
o
z

o o
z z

CO CO

0
z

o
z

o
z

o
z

o
z

o
z

o
z

o
z

o
z

o
z

to

o <u

Z >H

o
z

o
z

*

to to to

0 <u <y <U 0
z >^ z

o
•Z

o
z

c
<u

s
<u
iH
o
I

>l4J
JQ C

I 0)

jj e

0) iH
E <U

a> I

<y Si
I

o c
c <u

s

C <D
•H

4J O
to C

U ^
o CO

o o
<0 -H

to c 4J

c 0 g <D to <u CO (0 *i

a; •s 0 •H •H 3 -H 3 •H
3 •H 4J *J iH rH iH rH o e

Tv
0 c (0 1 (0 U
CQ (0 c 0 N <U > <D e > <v •H CO CO

to to •f-t H 3 •H 3 *J

c W4 <u e •H ^ 4J rH <u

0 a 0) a c
O tyi

u J c s
•H •H c 0 > c o *

to M 0 4J 0 3 4J •H •ic *
c O >i to •H o VI •H fij

<u CO as W O c 4J

e x> o •H (0 CO CO

•H 3
Q 03 en <

Page 2 5

2.1.3.3.2 Files And I/O (see Figure 10) -

Files are organized collections of data which may exist
outside the program. Operations associated with files are
reading, writing, deleting and modifying elements of the file.
The latter two operations are often not available for sequential
f i le s

.

Sequential files are those in which the data exists in
linear order and can be accessed only with respect to the current
position in the file and to the beginning and end of the
sequence. All the languages support sequential files. COBOL is
unique in providing a facility to sort a file ordered by the
contents of any selected fields, generating a new sequential
file. Also, in COBOL, a group of files ordered by the same
fields may be merged to form one ordered file.

Relative files (also called "direct") are those in which
each position in the file is numbered sequentially, and may be
accessed by means of the identifying number. Only C and Pascal
do not support such files.

Finally, keyed files are those in which each element of the
file has an associated character string identifier, called its
key. The normal operations for keyed files are the ability to
access individual elements by key, and also to access them
sequentially in key order. BASIC, COBOL, and PL/I have keyed
f i les.

A file may be broadly classified as internal or external,
according to the nature of its constituent elements. Elements of
internal files typically are some type of data aggregate, often
records, with logically related components organized in one or a

few well-defined formats. They are usually encoded for efficient
I/O operations and used for long-term storage of data.

All the languages except C provide internal files. COBOL
and PL/I use records as the elements of the file. Ada and Pascal
support files composed of any defined data-type, including
records. BASIC and FORTRAN simply operate with lists of
variables or expressions which are implicitly treated as a unit
for file operations. BASIC also has a TEMPLATE which can be used
to impose a fixed format on the list.

External files are display oriented. Their elements are
usually strings of characters, called lines, in either fixed or

free format. Fixed format implies that the program explicitly
specifies the representation of data within the line to be input
or output. Free format implies that the character representation
of values is done automatically on output, and scanned and parsed
automatically on input. Typically, external files handle only
elementary data, not aggregates. They are useful for human
interaction and for data interchange between systems with
different internal representations of non-character data, such as
floating-point numbers.

Page 26

Pl4

•

Eh
•

Ce!,

O
•

• X
00\

c
0
•H

1

(J

o O
OQ

(0 O
u

<u

0)

w

u
o
H

c
(C

<u u
(0 05 H
(U 0 w
iH £ii<C
•H 0 CQ

u

1

o
r-t

Q)
U <
3
17^

CO

D
Eh

K

g

1 w CO

4J
CO o o 3 o

1 0 <1> 0) 0 0 v. a 0
>H o M M M

Si 3
O

(U

CO
a 4J *
>i D o o O o

<D 0 0 0 Eh \& !2 4J M M H H
>i D
C O
«c

4->

CO CO O o 3
0) 0) o 0 CO 0 0
>H >H z !2 •H M M 4J

3
O

JJ
•ic 3

CO CO
13 4J

CO CO u o 3 O
<u <l» <y <D 0 \ 3 0

?H o M M
3

CO o o o o o
& 0 0 0 c

52 0 M M M H M

Eh 4J 4J
CO CO CO 3 o O 3
(1> <u 0 CO (J \ 0z •H fan M M

3
O Ou

CH

<D

CU

CO
>^

CO Eh o o o o o
Q) <D 0 0

/T>H >i M M M M
C
<

o oc o \0 M "\ H
•H H
4J CO 4->

<CJ (U *J c o
N rH iH rH g <CJ •H
•H ro •H <u •H J-l e H
C -H fa 0 M o

> CP fa 0 iH iH
C •H u fa M <0

•s
<0 (1) •H >O 3 C VH C (U 0) 4J

«H >1 u ^ ^ X 0) c U
(U 0) <U M •H (0
rH W M «J < ^^ fa fa
•H o c X 0
1^ CO M w

(0

o
•H
> CO

JQ
<y g
U 3

M 4J
(0 'H
4: »

c >i
•H iH
(Q C
*J o
u
<i) CQ

O ^
>^ o
o ^

H a
c c
O M

Page 27

Ada, C, FORTRAN, and PL/I all support external files which
may have a fixed or free format both on input or output. BASIC
and Pascal do not have a mechanism for fixed format on input.
COBOL does not provide free format on input (not counting the
ACCEPT verb, which inputs only a single character string), a
serious impediment to interactive applications. The only free
format output it provides (with the DISPLAY verb) may not be
available for all files. Pascal provides free format input only
for numbers, not for booleans or character strings. All the
languages except FORTRAN and PL/I provide a way to read an entire
line (whose length is not known in advance) from a terminal as a
single character string. Ada, C, Pascal, and PL/I are all
capable of reading or writing part of a line as a single
operation. COBOL-74 and FORTRAN do not handle partial lines.
BASIC and C0B0L-8x can write, but not read, a partial line.

Finally, some languages have a way to do low-level I/O, in
which very small pieces of data, such as individual characters,
can be manipulated. Ada provides a syntactic framework for
low-level I/O which is fully specified in a device-dependent way.
Pascal and C can both access files one character at a time.

2.1.3.3.3 Records (see Figure 11) -

Records (also called "structures") are a way of grouping
together logically related data of different types. Very often,
file I/O is performed at the record level. Internal operations
normally associated with records are assignment, comparison, and
p arame te r-pass ing

.

Only BASIC and FORTRAN do not have a record type such as to
allow internal operations. The operations allowed on records in

C are quite limited; in particular, I/O cannot be done at the
record level, nor are any of the internal operations available.
C manipulates records almost solely through the use of pointers
to those records. The pointers can, of course, be assigned,
compared, and passed as parameters. Ada, COBOL, Pascal, and PL/I
all allow record assignment and parameter passing. In addition,
COBOL and PL/I allow assignment between elements of different
types of records, based on the correspondence of names of those
elements. Pascal does not have record comparison; Ada and PL/I
allow comparing only for equality or inequality; COBOL allows
ordered comparisons (less-than, etc.) as well, treating records
as character strings.

Most of the languciges support variable-format record
definitions (possibly of different lengths) for the same area of
storage; this is needed for handling files with formatted
records, but more than one such format. Ada and Pascal provide a

record definition wherein the contents of a particular field
(often called the record tag) determines which of several formats
applies. C, COBOL, FORTRAN and PL/I simply allow re-defining the
same area, leaving control to the programmer. FORTRAN also has

Page 28

m
a

«

CM

c
o
•H
JJ

o
o
(0

a;

0)

(0

0)

o
o

<1>

D
t7<

M r (0 V) (0\ 1 0)

•J 1

i

o

o
n
o
u

u

W M
O CO

o m

«3

<D

o

CO

(0

O

(0

<1>

(0

o

o

o

CO

0) o

o

o

(0

c

(D

c cr»
•H <o
t4-l Eh

&

s
c
•H flj

'O <
&

c
(0 (0 w •H

M-l

<D

C
•H flj

(1>

c
o

C C7>
•H (0

Q

(0 C U c
0 0 •H
•H O (0

0 4J ^ c s
o ITJ Si 0 c

»-l C a 0 0 e
0) <D 0) CO CO CO

a e M
O C -H

<u g •H •H
rH Si «J u c

M c (0 iH (0

c 0
&u CO 0) o rd O

0 CO 0 •H <1>

O '0 o
c Si (0H >

0)

U1

c
•H

CO
JJ

<0

E

o

c
0)
t-l

0)

«w
»M
•H

•o

iH

'g

<CJ

s

u
o
o

•o

0)

I

Page 29

"left-tabbing" to permit re-interpre tation of the same input
field. BASIC handles the problem not through a record
definition, but by providing for reading only part of a record
and then re-reading it.

2.1.3.3.4 Sets (see Figure 12) -

A set is an unordered collection of elements chosen from a
specified universe. The usual operations associated with sets
are testing whether an element belongs to a set, inserting or
deleting an element, testing whether one set is a subset of
another, and taking the union, intersection, difference, or
negation of sets. Also, it is possible to express a literal
value to be assigned or compared to a set variable with a set
constructor

,

Only Pascal directly supports the concept of a set. BASIC,
COBOL, and FORTRAN do not support this type at all. The other
languages have features which permit a rather direct simulation
and so we shall discuss them here even though their facilities
are defined at a less abstract level. Bit strings can be used in
PL/I (to simulate sets of integers only) , arrays of booleans in
the case of Ada, and C has bitwise operations on integers along
with the ability to define bit-fields. In the case of C and
Pascal, the size of the universal set can be quite small, often
limited to the word size of the machine. Although not all
operations are directly supported by these four languages, it is
usually straightforward to express a missing operation in terms
of those provided, e.g., the set difference, A - B, can be
computed as A AND (NOT B) . Ada, C, and PL/I all directly support
unary negation, but not set difference, nor subset testing.
Conversely, Pascal supports difference and subset testing, but
not negation.

2.1,4 Application Facilities (see Figure 13) -

Application facilities characterize the major semantic
functions of a language beyond those associated with particular
data-types. Also, these facilities tend to be closely related to

the external entities upon which the program operates and thus
visible to the end-user, as opposed to the internal features of
the language, visible only to the programmer.

2,1.4.1 Reports -

Only COBOL, with its report writer facility, directly
supports the generation of reports. The essential feature of
report writer is that the report's format is declared statically,
rather than generated as the result of an explicit algorithm.

Page 30

ro

C
o
•H
4J

O
Q)
W

<D

Q)

W

to

a»

D

•H

o
o
u

<D U
W H
O CO

O «
u

D
Eh

i

(0

Q

CO

4J

c
o

c
o

(1)

c
o

c
o
•H

c
<u

<u e

0)

CO (0

<

*J to

(0 73 m (0

Q r-{ a;

•H h
m

z

C
>i

(0 1 0) CO (0

iH M 0)

< 1

Boo

U
<

o
z

0)

0
z

(0 CO CO

CO CO CO CO CO CO CO

0 0) 0)

z >H

z z z z z

<\
z z z z z

0
z

CO

< <
z z z z z

o
z

CO

0) o
z

z

z

<
z

CO

c
o
•H
4J

<0

<u c
a o
O -H

c

0)

4J
c CO

0 <y
•H CO Eh 0
4J o <u

O c c Eh >i o
0) 0 4->

CO •H 4J •H
»-l o; JJ <U rH 4J
(1) IW (0 CO <0 to
4J »M CP X3 3 c
c •H <D D cr 0M Q z CO u

to

c
0 4J
•H to
4J <u

nj Eh

' c

.
^M C

C O
a) iH

iH

CO

>H

CO

z

<
z

CO CO CO CO

0
z >H >H >^

z

CO CO CO CO

0)
>H

iH
(U

D

4J

01

CO

c
(U

s
<l>

iH
<1>

I

0)
»H
D>
C
•H
CO

c
•H
CO

D

>i
m

Page 31

CN

c
o
•H

O
<u
m

o
o
m

•H
o
(0

c
o
•H
4J

o
•H
fH

&
I

m
iH

«)
kl

3
D>

•J

<0

o
(0

1

o

O
8

<u u
M M
O CO

O (Q
M

<0

o

o
!2

o

CO

<1>

>^

O
2

O

(0

M
o

o
S5

o
2:

o
!2

O
2

o
2

o

o
2

0)
CO

(0

0

o

o
2

o
53

o

o
2:

o
2

o

o
2:

(0

o

o

•ic

o
2

o

*
0 0 0
!S

10

(0

ki

CO to (0 0
(U M

c
•H

4J

U
0

(0 (M
<D <D 0 U-l

z O

e
0
•H
4J

<0

M
•H

'2

c
0

•s•f-l

JJ
«J

e o w (0
•H •H o
4J c •H
1 3
iH a
(0

0s u o

Page 3 2

2.1.4.2 Database -

While many language interfaces to database facilities are
commercially available (especially for COBOL and FORTRAN), no
standard currently exists for such interfaces. Standardization
work is furthest advanced for COBOL. ANS committee X3H2 has
primary responsibility for database standards within the U.S. It
may be expected that when X3H2 completes its work on a database
standard, bindings to the various languages will follow shortly
[Gall84] .

2.1.4.3 Real-time -

Real-time applications are those in which the program is
controlling some activity for which time is an important
constraint, not simply in the sense of completion of the task,
but that the progress of the activity is tied to true physical
time. Typical examples are the control of machinery in a factory
or of devices in vehicles such as aircraft. This is in contrast
to such applications as file processing, in which only the
logical behavior is important and there is no strong dependence
on physical time.

To support such applications, a language must have a way of
expressing relationships to real time (either absolute time or
duration) and handling asynchronous events, such as interrupts.
Also, such applications usually involve concurrency (see
2.1.2.1.8, above). Only Ada, with its tasking facility, and
BASIC, in its real-time module, support real-time applications.
As mentioned above in the section on concurrency, there is a
draft standard for Industrial Real-Time FORTRAN [IRTF84] , which
provides real-time support.

2.1.4.4 Communication -

Communication is the ability for one process to pass
information to another process which may be executing
asynchronously. One process is a sender and the other a receiver
of a message. The actual transmission of the message may occur
at the same time for both processes, or the system may accept a
message from a sender and transmit it later to a receiver. Only
Ada, BASIC (in its real-time module), and COBOL provide this
facility. Ada and BASIC use synchronized messages (send and
receive at the same time) , while COBOL allows queueing of
messages.

Page 3 3

2.1.4.5 Graphics -

Graphics is the capability of manipulating visual objects
and properties, such as locations, lines, two- or
three-dimensional shapes, and colors. Typically, the main
interest is in generating displays on a graphics screen, and
accepting information from such a screen in terms of an indicated
location or area. ANS committee X3H3 has primary responsibility
for graphics within the US and they work closely with the
international standardization efforts of ISO/TC97/SC5/WG2 . The
BASIC standard incorporates a set of facilities from the ISO
draft standard for graphics. Work is under way for bindings of
most of the other languages to the draft standard, with FORTRAN
being the farthest advanced.

2.1.5 Program Implementation Control -

Some of the languages have features which enable the
programmer to control the compilation and execution process, so
as to tailor a program to a given machine, or to some
optimization goal. These features differ from those described
earlier in section 2,1 in that their primary goal is not to
define the logical behavior of the program; nonetheless, that
behavior is sometimes affected. The use of these features is not
without cost. By their nature, they usually involve non-portable
code. Some of their functions could be performed using system
control commands, thus limiting the program to a purely logical
description of the application. On the other hand, they do
provide a somev^at vendor-independent way of specifying common
implementation options.

Ada has a quite extensive set of facilities to control the
way programs are implemented. The two mechanisms provided are
so-called pragmas and representation clauses. Pragmas are
available to tell the compiler about the memory size of the
machine, to optimize storage space or time in general, and to

optimize storage for chosen data items, among other functions.
Representation clauses tell the compiler how to map certain
logical entities in the program to the underlying machine
architecture.

BASIC has an OPTION statement, some clauses of which are
logical in nature, but two have efficiency implications. The
program can specify the use of the standard ASCII collating
sequence for character comparison, or of the possibly different
native sequence. Also, the ARITHMETIC option determines whether
numeric operations will be performed according to a decimal model
defined in the standard, or an undefined native model.

COBOL' s CONFIGURATION SECTION has clauses to tell the
con^iler about available memory and to define the character
collating sequence. The segmentation feature tells the system
how to overlap storage when executing the program. The USAGE and

Page 3 4

SYNCHRONIZATION clauses determine
data items. Certain physical
areas may be specified in the I

SECTION.

the hardware representation of
properties of files and buffer
-0-CONTROL paragraph and FILE

Pascal's only feature for program implementation control is
the packed/unpacked attribute for data (packed implies using less
storage than unpacked). There is a compiler directive,
"forward", which is not for program implementation control (it is
a syntactic device to declare the existence of a procedure
farther on in the program) , but implementors may define their own
directives for such purposes, much like Ada's pragmas.

PL/I provides an OPTIONS statement, but the standard does
not define any particular options - this is left to implementors.
For describing files, PL/I's ENVIRONMENT attribute allows the
specification of implementation-dependent characteristics. Data
items may be specified as ALIGNED or UNALIGNED, directing that
data be either aligned on a storage boundary (usually implying
faster access) , or packed together regardless of boundaries (and
therefore using less space) .

As mentioned in section 2.1.2.2.1, C has a storage class
REGISTER, which informs the compiler to keep the data item stored
in a register for fast access, if possible.

FORTRAN has no facilities for program implementation
control.

2.1.6 Simplicity -

Language simplicity is difficult to measure quantitatively,
although there have been some attempts [Hals77] . We shall rely
on the intuitive notion that a language with relatively few
semantic concepts and syntax rules is simpler than one which
embodies several more sophisticated concepts, and more complex
syntactic expressions. Simplicity is not good, per se - complex
applications will likely require a complex language. Simplicity,
however, makes for easier learning and fewer errors in actual
use. Certainly, the goal is that a language be as simple as
possible, given the semantic domain it must cover.

BASIC is the simplest language under study. There are only
two data types available within a given program, variable-length
strings, and numbers. It is possible to perform I/O operations
with simple defaults that require no formatting. The convention
of one statement per line avoids some pitfalls that may arise
with statement separators and terminators.

FORTRAN and C also allow the writing of comparatively short,
straightforward programs, although there is a bit more syntactic
overhead than with BASIC.

Page 3 5

Pascal is somev^at more complex. Its structure is very
regular, which contributes to simplicity, but it requires
relatively elaborate declarations, and its rules governing
statement groupings and separators can lead to subtle program
errors.

Finally, Ada, COBOL, and PL/I must be rated as the most
complex of the languages. This is understandable, given the
applications for which they were designed. Nonetheless, it
requires substantially greater effort to master all the rules
governing the use of one of these languages.

2.1.7 Standardization (see Figure 14) -

The advantages of standardization have already been covered
in the preface and need not be repeated here. Factors which
support language standardization include the existence of a
formally sanctioned specification, present and future
availability of conforming implementations, and a mechanism for
conformance testing of language processors. Also relevant to
standardization is the availability of software tools to monitor
the conformance of programs to a language standard - see section
2.1.10.1, below.

Of the languages covered in this report, COBOL and FORTRAN
are the most thoroughly standardized. They have long been the
subject of ANSI standards activities, and conforming
implementations are widespread throughout the industry.
Furthermore, they have been adopted as FIPS, and implementations
are subject to validation by the General Service Administration's
Federal Software Testing Center (GSA/FSTC) . Although there are
ongoing efforts to revise these ANSI standards, it is likely that
future versions will be substantially compatible with the current
specifications. Note especially that the revision of COBOL is in
the later stages of the approval process within ANSI and ISO
[COB083] , ICST is actively considering the adoption of this new
version of COBOL as a FIPS.

Pascal and Ada are both recently adopted (1983) ANSI
standards and so there are fewer conforming implementations than
for COBOL and FORTRAN. It is highly likely that conforming
implementations will become widely available. Fortunately,
neither language has been subject to great differences in
implementation, in the case of Pascal because the original Pascal
report [Jens74] served as a de fac to standard, and in the case of
Ada, because the standard preceded actual implementations. At
the time of this report, ICST is actively considering the
adoption of Ada and Pascal as FIPS. Validation tests are
available for both languages. In the case of Ada, these are
formally administered by the Ada Validation Organization.

Page 36

c
o
•H
JJ
<0

N
•H

•D
M
rO

•O
C
<0

4J
W
I

(1>

u
3

•H

1

1

M 1 IT) VO O ON\ 1 o
J 1 53 rH ON
fU 1 ^ d ^ rH

•o o *
rH 1 <u r- ^ *
<0 1 c o^ ro in ro
O 1 c W • 00 00 03
CO 1 M CO o> rH o^
(0 1 rH W X rH rH
fU 1 a* M

(N
^0

c X 1 (L) 0) 'O
0 00 1 c c 0)
•H \ 1 c c c
4J ^ 1 c
O 1 iH fH «d
0) 1 1 rH
(0 J 1 "v—

O 1 K in \00
<u m 1 .H
0) O 1 • a^ 00 ON
w U 1 rH rH ro rH

(M ^ X ^ i-H ^

u

O

* o
cr> 00

ON 00

CO ON

•H
0 o

0)

c

rH
Pl4

H
H
CO

ON O
ro 00
in ON
iH rH

•H
o

•O 1 •o '0
<U U 1 <u <u a>
to M 1 c c c
0 to 1 c c c
a>< 1 <0 <0

0 ffl 1 rH iH rH
M 1 P4 04

1

1

Q TJ
Eh <

(0 1 c CO in c
1 c 1 rH 00 c

< 1 <0 00 ON
iH M H rH rH
CU s

— + -

o
CO
H

M
<C

c
to

fa -K
to

<o

•a M
C CO
<C 2
JJ <

£
M O
CO U

to
•U (U

OiMH
aMH

*

Page 37

The British Standards Institution (BSI) offers a Pascal
Compiler Validation Service. These tests however, are based on
the ISO standard for Pascal [IS083] , not the ANSI standard. The
ISO standard has two levels, level 0 being substantially the same
as the ANSI standard, and level 1 including an additional feature
(conformant arrays) which allows an invoked procedure to accept
an array of any size as a parameter.

There has been an ANSI standard for PL/I since 19 76.
Although those implementations developed since that time have
generally followed the standard, there have been relatively few
such implementations. No conprehensive validation tests are
available. In 1981, an ANSI standard was adopted for a subset of
PL/I, and this appears to be gaining more acceptance, not only
among mainframes and minis, but also for micros. Nonetheless, it
must be said that standardization for PL/I has not been as
effective as for the languages discussed above. The future
prospects, especially for the full language, are uncertain.

There is an ANSI standard, which has been adopted as a FIPS,
for Minimal BASIC, a very small subset of the language considered
throughout this report. FSTC is performing validations for the
Minimal BASIC standard. Although many implementations conform to
this standard, the language it describes is so small that there
are many imp lemen tor-defined enhancements. Furthermore, unlike
Pascal and Ada, in the absence of a de fac to standard, large
differences have evolved in BASIC implementations. The proposed
standard for a complete version of the language should help
remedy this situation, but full standardization is coming to
BASIC much later than to COBOL and FORTRAN. As a result it will
be a few years before the support for the BASIC standard can be
as comprehensive as for other languages. The experience with
Minimal BASIC gives grounds for optimism, but the acceptance of
full BASIC as a standard is not as assured as for Ada or Pascal.

Finally, development of an ANSI standard for C has begun
only recently. Like Pascal, the existence of a de facto standard
[KernTS] has helped forestall wide divergence in implementation,
but there are some differences, especially in the runtime
library. Indeed, one of the outstanding questions is the degree
to which a C standard will be divorced from UNIX runtime support.
No comprehensive validation test set yet exists. It is too early
in the process to be able to estimate the acceptance of a C

standard

.

2.1.8 Performance -

Strictly speaking, performance is a characteristic of a

given implementation of a language, not of a language as such.
Nonetheless, the nature of a language often encourages a certain
type of implementation strategy. For instance, language design
usually presents the problem of trading off a large number of
features against compiler size and speed. As a language

Page 38

implementation consumes more machine resources, it becomes more
expensive to implement a given application. Resources include
both storage and time and may be consumed during various phases
of processing, such as interpretation, compilation, and
execution. The relationship between language and performance may
be complex. For instance, a higher level language feature such
as assignment of entire arrays may place a greater burden on the
compiler, yet also facilitate run-time optimization. Of course
the relative importance of compiler efficiency vs. execution
efficiency depends on the application.

Generally speaking, C, FORTRAN, and Pascal require
relatively few resources. These languages were designed for both
easy compilation and rapid execution.

BASIC is often implemented with an interpreter, which of
course implies diminished overhead (no compilation) , but slow
execution. BASIC compilers are available, however, and such
implementations may be expected to be roughly comparable to
FORTRAN in performance.

The design goals for Ada are just the opposite as for an
interpreter. Given the elaborate mechanisms for declarations and
for linking packages together, compilation is likely to be rather
expensive. Ada programs are supposed to operate in a real-time
environment, however, and execution should be fairly efficient,
although some run-time detection of exceptions may be expensive.
Judgments about Ada's performance, however, must be tentative,
pending the accumulation of experience with actual
implementations.

Finally, COBOL and PL/I, as the largest languages under
study, have a relatively high cost for compilation and execution,
especially compilation. There are implementations of lower
levels of COBOL, and of the PL/I subset; these implementations
have an improved level of performance, as suggested by the fact
that they run on mini- and microcomputers.

2.1.9 Software Availability -

Sometimes, the easiest way to develop a program is to buy
one that has already been written. To the extent that re-usable
and supported code is available in one language rather than
another, it becomes advantageous to use that language, especially
if the purchased software must interact with user-written
programs

.

Ada, as a new language, does not have a significant software
base. The design goals of the language, however, place great
stress on re-usability of code, as epitomized in Ada's "package"
feature. It is reasonable to expect that, as the language comes
into use, a good deal of software will be available.

Page 3 9

Almost all systems programming for UNIX is done in C, and
hence there are many system routines available in that language
which may be accessed through the library mechanism, when C is
running under UNIX,

There are many application packages (see Appendix C)
available in COBOL, covering most common data processing
functions. It is often possible to buy a complete application
outright and then simply tailor and maintain the code.

FORTRAN, as the dominant language for scientific and
engineering applications, has extensive packages and libraries in
those areas. Especially in the field of mathematical software,
the base for FORTRAN is extremely strong.

In the realm of microcomputers, BASIC software currently
predominates. The spectrum of applications includes both
business data processing and some mathematical software. BASIC
software, however, is likely to be more dependent on a particular
system or implementation than the languages just mentioned,
because of the slow pace of standardization.

Pascal and PL/I offer less support in the area of existing
software, probably because the major application areas were
pre-empted by the earlier languages. Some Pascal software is
available, however, in the microcomputer arena.

2,1.10 Software Development Support -

A very important consideration in comparing languages is the
availability of software tools and features which assist
programmers in the construction and maintenance of programs.
Although some of these features are embedded in the languages
themselves, they are discussed here because they do not affect
the logical behavior or the performance of operational programs;
rather, their main purpose is to facilitate the human process of
software development and maintenance. Software development
support can also be implemented as part of a compiler or as an
external package - see [Houg82] , [Shah82] , and [NBS83] . An
external tool may apply to only one language, or it may be
language-independent.

It is difficult to present a detailed comparison of the
languages with respect to availability of software aids. That
availability changes over time, and depends strongly on the
vendor - neither factor a property of the language per se. The
following generalizations give an overall perspective, but users
are advised to make detailed inquiries when assessing support for
a given language.

Ada, as a new language, is not yet strongly supported by
software tools, but it is a central part of the Department of
Defense plan for Ada to sponsor the development of a broad range

Page 4 0

of such tools. It is a reasonable expectation that software
support will become widespread as Ada is adcpted and implemented.

Many microcomputer implementations of BASIC treat the
language as an integral part of the system, and as such offer
editing and debugging support (see below).

COBOL and FORTRAN, benefitting from their position as older
standardized languages, have a wide variety of commercially
available software support, although this is very often
vend or-dependent. GSA/FSTC offers some vendor-independent tools
to Federal agencies for COBOL.

Software development support for C, Pascal, and PL/I is less
extensive than for the other languages. Particular operating
systems may offer extra support, however. For instance, there
are several C-oriented facilities in UNIX, and MULTICS provides
tools for PL/I.

2.1.10.1 Source Code Manipulation And Checking -

This category covers all facilities which are directly
involved in the development and modification of source code.
Some languages have built-in features to incorporate pre-written
sections of code. This is extremely useful for implementing such
practices as standard data descriptions for files, etc. COBOL's
COPY feature has long been used for this purpose. C's "# include"
and PL/I^s "%INCLUDE" provide similar capability. Ada's package
facility (see 2.1.2.3, above), while more comprehensive than mere
source inclusion, nonetheless can perform much the same function.
C's "#define" statement and C0B0L-8x's REPLACE statement cause
systematic substitution of tokens within the source code. For
instance, an identifier can be uniformly changed throughout the
program.

External to the languages are such features as editors,
pre ttypr inters, and library managers. The UNIX command "cb", for
example, performs pre ttypr in ting for C programs. Library
managers are especially useful in large development projects
involving many programs. They help keep track of such matters as
which versions of code have been compiled, which modules depend
on others, etc. It is anticipated that a sophisticated library
management system will be available for Ada. This is reflected
in the standard's requirements regarding compilation.
Language-based editors are a relatively new and extremely
promising development. Such editors incorporate many of the
syntax rules of the language and thus are capable of
automatically generating syntactically correct code in response
to user commands. Typically, the code produced will also follow
built-in conventions for indenting and grouping of entities, i.e.
the usual pre ttypr inter functions.

Page 41

Finally, tools are available which check source code for
adherence to language standards and conventions. Some tools
allow individual installations to establish and enforce their own
conventions. Others, often built into compilers, monitor code
for conformance to the ANSI standard. The FTPS for COBOL and
FORTRAN require that vendors provide this facility with their
language processors when selling to the Federal Government. The
ANSI standards for Ada and Pascal also require implementations to
be capable of syntax -check ing . In the UNIX environment, the
program "lint" performs a portability check on C programs.
Finally, there is a utility [Hopk8 3] to do the same for Minimal
BASIC (not the proposed full version) .

2.1.10.2 Program Testing -

Software aids in the area of testing come from all three
sources of software tools: language-embedded, compiler-embedded,
and external. These aids are used to detect syntax and logic
errors in programs, but not to generate correct code.

Only two languages, BASIC and COBOL, have debugging
statements. The effect of these statements can be turned off and
on, with a run-time switch in BASIC and a compile-time or
run-time switch in COBOL. They allow the user to trace the
effect of execution, and so help diagnose problems. C has a
related feature, conditional compilation, which allows the user
to tell the compiler whether to ignore or compile sections of
code; clearly, this can be of use in debugging.

As mentioned earlier, software development features usually
depend on the vendor, rather than the language. BASIC is unique,
however, in that it is very often implemented with an
interpreter. It is then quite common to find interactive
debugging provided. Such features as being able to interrupt and
resume execution, or to pause and display the current contents of
variables are typical in an interpretive environment.

Compiler and run-time diagnostics can be of great value when
testing code. [Shah8 2] covers many of the common features.
Especially for those languages without exception-handling
(section 2.1.2.1.7), it is important that the system provide
useful information when encountering anomalous run-time
conditions. Some vendors provide debugging facilities, often
geared to interactive program development, which apply to all the
languages implemented on their system. Of course, compile-time
diagnostics should also be easy to understand and should be
helpful in identifying problems. There are some rather
sophisticated tools available for such functions as analysis of
system dumps, static and dynamic control flow analysis, test
coverage, etc. See [Houg82] for a full description. Most of
these tools are oriented to FORTRAN or COBOL.

Page 4 2

2,1.10.3 Information And Analysis -

Compilers and external utilities can also be useful in
analyzing both the logical and performance characteristics of
programs. Such facilities as cross-reference tables for
identifiers, statistics on the uses of different types of
statements, object code listings, and statistics on storage and
time usage are all helpful in solving logic problems, and
analyzing performance. Again, it is difficult to draw any
general conclusions about the availability of such tools for the
various languages, other than to point out the predominance of
COBOL and FORTRAN as objects of such facilities.

2.2 Application Requirements (see Figures 15 And 16)

Now that we have examined what the languages under study
have to offer, we shall look at the criteria for analyzing the
application requirements. We shall proceed from those criteria
most closely bound up with the logical definition of the
application in question, to those determined by the environment
in which it is to be implemented. The description of each
criterion will refer back to those language features most
relevant to that requirement. The overall relationship between
application requirements and language factors is summarized in
Figure 15.

2.2.1 Functional Operations -

The most basic requirement is the ability to perform the
operations involved in the application. For instance, does the
application use fixed-point or floating-point calculation? Is
there a great deal of character string manipulation? Will the
application need interactive graphics? These requirements are
most commonly expressed by characterizing the application as
"business-oriented" (implying fixed-point decimal arithmetic,
character manipulation, and file-handling) or "scientific"
(implying array manipulation and numerical calculation). While
these descriptions have validity for some applications, they are
often oversimplifications. Systems analysts and designers should
carefully determine the full array of needed operations and
functions, and not rely too heavily on the use of two or three
simple categories.

The language features most relevant to these requirements
are the data types and application facilities. When no one
language appears adequate to the task, users should consider a
multi-language approach - although there are associated costs,
especially because of the lack of standardization of
inter-language capabilities. Bearing in mind their limitations,
we can make some broad generalizations about the suitability of
the various languages for certain classes of application.

Page 43

Figure 15 - Language Factors vs. Application Requirements
(see section 2.2)

This figure illustrates which language factors are most
relevant in fulfilling the various application requirements.
"XX" indicates that the factor is strongly supportive of the
requirement; "X" indicates a less important factor in satisfying
the requirement.

LANGUAGE FACTORS

APPLICATION
REQUIREMENTS

(1) 1 c
u 1 0 1 1 1

D 1 -H 1 C iH a
4J 1 4J

1 (D 0 1 c 0
O 1 (0 1 e vj 1 0 >1 rH ^
a 1 iH <D JJ 1 -H 4-> (U U
u 1 D w fH C 1 •H > 0
4J 1 a c <u a 0 1 (0 1 O iH
W 1 CO -H 0 -H e u >l 1 N 1 O •H 1 Q a.

1 <D C •H 4J M 4J 1 'H 1 C i:^ 1 a
O 1 a n] c rH 1 1 ro 1 <u fO 1

•H 1 >iS <0 iH e 0 O 1 U 1 S 1 V4 rH 1 u
JJ I EH O -H •H 1 (0 1 u 1 (0 •H 1 (0 4J

c 1 TJ •H O M +J rH 1 1 0 1 ^ (0 1 5 C
n) 1 (0 c iH (0 1 C 1 U-l 1 -p > 1 P 0)

S 1 4J n3 1 Ol [X4 0 e 1 (0 1 u 1 ^ < 1 UH g
(U 1 a 1 a 1 M 1 •H 1 -P 1 (U 1 0 1 0
w 1 Q 1 1^ 1 W 1 CO 1 1 CO 1 w

I

I

-+•

I

I

•+

Functional
Operations

XX XX

+ + +
X

+ +•

Size and
Complexity

XX XX

+ + +
XX

•+ +
Number of

Programmers
XX XX

+ + + +
XX XX XX

+ + +
XX X

+ +-

Expertise

End-user
Interaction

X XX
+ + + + + +

X

Reliability

Timeframe

XX XX XX

+ + + + + + + + +

XX XX XX X XX XX

Portability XX

Execution
Efficiency

XX

Page 44

CM
I

(N

C
o
•H
JJ

o
<u
(Q

0)

(0

c

§
<D

u
•H
3

c
o
•H
p
(0

o
•HH

<

>

(0

a
cn
c
10

ij

I

vo
H
<U
U
a

•H

•J

§
u

0) u
TO M
o to

o m

CO
Z EH

O Z
M W
< H
U «
M M
>J D
pit o

X
X

X
X

X
X

X

X
X

X
X

X X X
X

X
X

X
X

X
X

TO

<0

0)

U
<

•H Q) c
iH TO o B 0
as TO CO 'H
C <i) 4J
0 C 0) 1

•H 4J iH o
4J TO TO (0 3

>i a>
C pQ S CO W
D
1^

0)

(0

0)

0)

E
to

(0

to

0)

(0

X

X
X

X
X

u

a
i

(0

D
TO

4J

(1)

0)

TO

(0

U

X

X

X

X

X

X
X

X

X

X

X
X

X
X

c
o

ty»

c
o

4J
M
o

to

c
o

p

4J

o
x:
to

CP
c
o

X
X

X

X
X

X
X

X

X
X

TO C
0
•H >^ >i•H

14-1 i
4J JJ +J

X <u O •H •H
0 TO (0 iH E iH

u •H Q) •H •H

"& u cn 4J TO <u JQ ^
0

0 i~l 3 «J M-l

f
<D 1 c •H 0) 4J

^3 U Cu 73 (H E
•H 3 X C ^ •H 0
CO Eh

X
X

X
X

X

>1 X
o
c

C Q)

0 -H >1
•H Q a;
4J -H
3
O UH
o5 w
X
w

u
4J O

o a
a 3
a TO

3
TO 0)

0 <u

4J O
TO E

1 I

X X

Page 4 5

For information processing applications (business-type)

,

COBOL is clearly the language of choice. BASIC and PL/I, as well
as COBOL, support decimal arithmetic, character manipulation, and
sophisticated file-handling, and are therefore also reasonable
choices. BASIC^s lack of a record construct (see 2.1.3.3.3)
hanpers its use, especially for more complex applications.

FORTRAN offers the strongest support for scientific,
mathematical, and engineering applications, especially in the
extensive software available for purchase. PL/I and BASIC should
be considered, in that they have a large assortment of built-in
functions, extended precision floating-point numbers, and array
manipulation. PL/I supports conplex numbers as well.

Ada, C, and PL/I are suitable for systems programming, in
that they are typically implemented so as to allow fairly direct
access to the underlying machine, although only Ada directly
supports parallel processes (tasking)

.

Real-time applications (other than systems programming) may
be handled by Ada or BASIC. If the proposed standard for
Industrial Real-Time FORTRAN (see section 2.1.4.3) becomes widely
accepted, FORTRAN would also be a sensible option.

For educational applications, it is important that a
language allow clear and simple expression of the concepts being
taught. BASIC, for elementary concepts of computers and
programming, and Pascal, for more theoretical topics, are the
most suitable choices. Of course, education was the original
design goal of both languages.

2.2.2 Size And Complexity -

This criterion is concerned with the size and complexity of
the application (and presumably, therefore, of the programs) , to

be implemented. While size and complexity are not necessarily
linked, they are discussed together because the same language
features which help to manage one also help to manage the other.
Size is self-explanatory - number of lines of code may be taken
as an adequate metric. An application may be complex as a result
of especially sophisticated algorithms or data structures, or

because modules within the application interact in a large number
of ways. Real-time applications tend to be more complex than
those with sequential control. Similarly, the updating of master
files and databases is more complex than read-only operations.

For large, complex applications, language features which
support the creation and maintenance of code (software
availability and development support) or help the programmer to
express complex relationships (program structure) are especially
relevant. Ada is noteworthy as a language which had the
development of large, complex systems as an explicit design goal,
and many features of Ada reflect that goal. PL/I also provides

Page 46

useful features for attacking large applications, COBOL is
strong in the variety of software tools conmiercially available
for managing development and maintenance.

Conversely, for small (< 250 lines), simple applications, it
is desirable to use a language which does not incur an
unnecessarily large syntactic and conceptual overhead.
Simplicity therefore becomes a crucial property. BASIC and
FORTRAN are good choices for such applications. Pascal and C are
we 11 -suited for intermediate sized programs.

2.2.3 Number Of Programmers -

To the extent that a program or system is to be developed or
maintained by several individuals, it becomes important that the
code be readily understandable. Language features in the
categories of program structure, standardization, and software
development support are clearly relevant. The strong languages
in this area are Ada and COBOL. PL/I also has helpful features,
but suffers from weak standardization.

2.2.4 Expertise -

Unless an agency has the option of hiring new programmers,
it must reckon with the skills of its current staff. Using an
unfamiliar language will incur costs, either for training or for
having the work performed on contract. It is important to
balance short-term costs against potential long-term gains. If
there is likely to be an ongoing need for programmers skilled in
a given language, training can be a sound investment. And, of
course, some languages are much easier to learn than others.

Managers should also take into account whether the
application is to be implemented by professional programmers,
i.e., those whose primary job is programming, or by casual
programmers - those for whom programming is a secondary skill.
With the spread of microcomputers, casual programming is becoming
more common. Such programming is best done in a relatively
simple language, but also in a language which provides
application facilities directly to the user, since casual users
should not be expected to construct their own from more primitive
features. BASIC and FORTRAN are usually the best choices.

Professional programmers typically can make good use of more
sophisticated features. Ada, COBOL, and PL/I are more oriented
to this type of practice. Pascal and C are intermediate cases;
C, although relatively simple, is appropriate for systems
programmers. Typically, programming in C involves the
construction and use of sophisticated libraries of system
functions from C's simple repertoire of features.

Page 47

If new programmers are to be hired, then the available pool
of programmers skilled in a language becomes an important
consideration. One key advantage to strong standardization is
the creation of such a reservoir of expertise. Currently, COBOL
and FORTRAN are most widely known among professional programmers.
Pascal and BASIC are being used in educational environments, and
hence are also well-known.

2.2.5 End -user Interaction -

Batch processing can be equally well handled by all the
languages. Interactive processing, however, requires language
features to support that type of I/O operation. Also, it is
important that the run-time performance be adequate for quick
response to user actions.

BASIC strongly supports interactive applications, both in

its I/O and in having graphics capabilities. Also, the proposed
standard defines helpful run-time recovery in case of invalid
input. COBOL does not provide good I/O support for free format
data. Pascal also is weak in this regard. All the other
languages can perform reasonably well.

2.2.6 Reliability -

Certain applications perform critical functions which
require a great deal of reliability. Many real-time applications
fall into this class. An application involving the transfer of
large sums of money is another example. Program structure
features, especially exception-handling, help meet this
requirement. Type checking is also thought to be useful in early
detection of certain kinds of error. Software development
support and language simplicity can contribute to the
construction of correct programs.

As with size and complexity, reliability was one of the
major design goals for Ada, and consequently Ada offers the
strongest support for this goal, although its complexity may
contribute to errors among less experienced programmers. BASIC
has only a few simple data types and exception handling, so it
too is a good choice, Pascal offers strong type checking, but no
exception handling; PL/I offers exception handling but very
little type checking.

Page 48

2.2.7 Timeframe -

Some programs are written, executed a few times, and then
discarded. Others become part of a system which may be
operational for decades. Clearly, ease of writing is a dominant
concern in the first case, and ease of reading in the second.
Even for long-lived systems, however, development requirements
may differ. Sometimes there is a need for prototyping to get
some operational capability quickly? or, schedules may allow
more time for pre-implementa tion design. Program structure,
simplicity, software availability, and software development all
pertain to these goals. Also, the trade-off between compilation
and run-time performance will affect the two cases differently.
Finally, strong standardization is much more important to a
system with a long lifetime than to a short-term effort, since it
is very possible that the system will outlive the hardware on
which it is originally implemented.

For rapid development, BASIC, FORTRAN, and to a lesser
extent, C, are appropriate, with their emphasis on simplicity and
low syntactic overhead. Also, users can take advantage of the
considerable body of existing software available in these
languages. For long-lived systems, Ada, COBOL, Pascal, and PL/I
are usually better choices, with their emphasis on more detailed
declarations and elaborate compilation.

2.2.8 Portability -

Portability is used here in the narrow sense of being able
to re-use source code on different systems. A typical case in
which there is a strong requirment for portability would be a
central design agency writing code to be run at various field
installations. Of course, the achievement of portability always
depends strongly on proper management and coding practices on the
part of the user; the language alone cannot guarantee such a
result.

Clearly, standardization is the key criterion for this
requirement. At present, the strongest language standards are
for Ada, COBOL, FORTRAN, and Pascal; in the case of C, there is

relatively strong de fac to standardization.

2.2.9 Execution Efficiency -

Some applications place heavy demands on hardware resources
once they are in operation. Examples are systems with high
transaction rates, very large files or databases, and lengthy
numerical calculations. Meeting such requirements is largely a
matter of adequate hardware, but language performance and the
ability to guide compilers to efficient implementation are also
helpful. Ada, C, FORTRAN, and Pascal are likely to yield more

Page 49

efficient execution for internal (non-I/0) operations, although
this varies from one implementation to another. For I/O
efficiency, there is little indication of major differences among
the languages.

2,3 Installation Requirements

The last set of requirements are those imposed, not by the
application to be implemented, but by the existing and potential
resources of the installation doing the implementation. Very few
installations are able to consider each project de novo ; more
often, new systems must evolve smoothly from existing practice.
Nonetheless, DP managers should not neglect the possibility of
reaping long-term ongoing benefits simply to avoid some
short-term costs.

2.3,1 Language Availability -

The most basic issue is whether the installation has access
to a processor for a given language. Let us first consider the
traditional environment with one central large- or medium-size
machine. Given a project of any size, the cost of an additional
compiler can usually be justified if the language offers
substantial benefits over those already available. Language
processors may be obtained either from the hardware vendor or
from independent software firms, or accessed through timesharing.
Sometimes implementation includes the procurement of hardware,
and in these cases, language availability should be an important
factor in that decision. Very often, however, language selection
will be limited to those already available on an existing system.

The advent of microcomputers poses some new issues in the
choice of languages. It is much more likely that implementation
will include hardware acquisition, as compared to the use of
larger machines. The cost (per system, at least) of hardware and
software is likely to be relatively low - hence the choice among
languages can be a freer one. As with the procurement of large
systems, language availability for a proposed microconputer
should be carefully considered before purchase. The
microcomputer environment has been dominated by BASIC, C, Pascal,
and to some extent FORTRAN, It is no longer unusual, however, to
see implementations of COBOL or PL/I subsets, and at least one
complete implementation of COBOL exists, Ada implementations, of
course, are not as yet widespread in any class of machine, but
some are being developed for microcomputers as well as for large
machines.

Page 5 0

2.3.2 Compatibility With Existing Software -

Very often, new systems must interact with existing
software. Clearly, this interaction is simplified when the same
language is used. Problems may arise when two parts of a system
are written in different languages. The two most common ways
programs of different languages interact are 1) for one program
to call another as a subroutine, and 2) for one program to read
files written by another. Unfortunately, there are no
inter-language standards addressing these two areas, and users
must ensure that the actual implementations of the languages they
will employ are compatible for the intended purpose. Note that
Ada has an INTERFACE pragma, and COBOL an ENTER statement, whose
purpose is to allow communication with "foreign" code.

Page 51

3.0 LANGUAGE SUMMARY (SEE FIGURE 17)

In this section, we shall recapitulate briefly the topics
covered above for the various languages and point out their
special advantages and disadvantages. Also, the committee (s)
responsible for standardization are described. Volume 2 contains
program examples to help illustrate the style and approach each
language encourages.

3.1 Ada

The major design goal of Ada is the ability to handle large,
real-time applications, with a premium on reliability and
portability. The whole structure of the language is driven by
these requirements. Ada's tasking facilities and representation
clauses support efficient real-time operations. The extensive
data-type checking and exception-handling support reliability.
Ada's modularity features, such as packages and generics, support
the construction of large systems. And finally, the strong
commitment to standardization promotes portability. The result
is a language which is very well suited for that class of
applications.

Ada is clearly a "professional's" language. There is
significant overhead when learning the language or writing a
program. Using Ada, the programmer has the power to construct
complex data structures and algorithms. Ada is a big language
for big jobs. Rather than build many facilities into the
language, the choice was made to rely on Ada's extensibility.
Thus, the construction of application-specific packages is a
prerequisite to making good use of Ada in areas beyond those
originally envisioned.

The Ada Joint Program Office (AJPO) within the Department of
Defense is the sponsor for Ada and is primarily responsible for
development and maintenance of the language. Ada was adopted
under the canvass method of the ANSI procedures. AJPO has set up
the Ada Validation Organization (AVO) , which performs validation
testing on candidate Ada implementations.

Ada Joint Project Office
3D 139 (4 00AN)
The Pentagon
Washington DC 20 301

3.2 BASIC

BASIC was originally designed as a vehicle for teaching
students elementary concepts of computers and programming. The
goal was that meaningful results could be obtained with very
little detailed knowledge of the language or machine.

Page 52

m
c
o
•H
•p

o
<u
CO

o

(0

W
tt)

•H

•8

ffl

(0

M
nj

•O
c
(0

4J

w
(1)

C

I

a;
u
3

•H

H 1 rH\ 1

1 O
PU 1 X

o
fa

o
ffl

o
u

0) u
W M
O CO

O PQ

<0

<

oH
Eh

<
Eh m

(X(O

CO

ro

CO

to
CO

X

ro
X

00

U
Eh

CO
X
H
CO

00

U
Eh

CM
U
Eh

U
Eh

CM
u
Eh

(0 <D

CO M 4-)

U rH RJ •«-»

woes
w w flj eW «d 4J O
H Oh CO U

*
iO

U
CO

O
CO
H

>H
CO
<:

8
O
CQ
O

<D

4J

U U U

4J

C

fO o
< 1-3

u o

O »W

CO
uH
M

0)

o

Page 5 3

Furthermore, the language should provide meaningful diagnostic
messages in response to mistakes. These original goals have been
enlarged to include the incorporation of facilities in the
language to support the most common applications: data
processing and numeric calculation. Nonetheless, the language
has remained simple in concept; for instance, by default there
are only two data-types, variable-length character strings and
decimal floating-point numbers.

The result is a language for end-users: those for whom
programming is a secondary skill. BASIC^'s emphasis on good
diagnostics, run-time checking, and meaningful defaults all
support such use. The language is therefore an appropriate tool
for relatively simple interactive applications. BASIC remains a
good teaching tool at the introductory level; clearly it is not
meant to embody more advanced concepts of computer science, but
rather to provide a simple accessible way for beginners to learn
about programming.

The draft standard for BASIC has been developed jointly by
three committees, ANSI/X3J2, ECMA/TC21, and EWICS/TC2

.

Responsibility for BASIC within ISO is held by TC97/SC5/WG13

.

3.3 C

The main design goal of C is to enable relatively portable
systems programming. Consequently, C is a lower-level language
than the others considered here. The entities of the language
correspond closely to typical existing hardware, rather than to

more logical, problem-oriented concepts. Thus, the absence of
record I/O and the inclusion of bit operations on machine words
(presumably equivalent to the integer type) , register variables,
and incrementing and decrementing operations.

C would normally not be the best choice for applications
programming. Conversely, no other language is likely to be both
as portable and efficient for the development of systems
software, such as I/O drivers, compilers, utilities, etc. In
particular, C should be used wherever possible if the only
alternative is assembler language.

Formal standardization work on C started only recently.
ANSI committee X3J11 is currently developing a draft
specification.

3.4 COBOL

COBOL is, of course, the pre-eminent language for data
processing (business-type) applications, as it was designed to

be. Its support for file processing and editing is very strong.
As a secondary benefit, its very dominance in the DP arena

Page 5 4

assures that a great deal of COBOL-oriented commercial software
will be available. There are weaknesses in the language; in
particular it provides little support for interactive I/O and its
substring manipulation features are less extensive than might be
expected. Nonetheless, it is likely to remain the dominant
business language for the foreseeable future. While COBOL is
often thought of as a "main-frame" language, implementations are
becoming increasingly available on microcomputers. Many of these
compilers conform to one of the lower levels of the standard
[NBS75] , and users should be aware of which features are included
and excluded by a subset under consideration for purchase.

The development of COBOL is under the purview of the CODASYL
COBOL Committee, which publishes the proposed language
specification in the CODASYL COBOL Journal of Development. ANSI
committee X3J 4 has primary responsibility for standardization of
the results of this development activity. Internationally,
TC97/SC5/WG8 and ECMA/TC6 contribute to the development and
maintenance of COBOL. CODASYL" s address is:

CODASYL: CBEMA
311 First Street NW, Suite 500
Washington, DC 20001

3.5 FORTRAN

As COBOL dominates business applications, so FORTRAN has
come to dominate scientific, engineering, and mathematical
applications. FORTRAN offers a broad array of functions, complex
numbers, and perh^s most important, a very substantial base of
software. FORTRAN is the oldest of the languages under study,
and its age is reflected in several shortcomings, notably its
weak support for software maintenance. Also, there are no
language features to facilitate processing of arrays and no
recursive procedures, surprising omissions for a computational
language. While FORTRAN is quite suitable for applications of
moderate size, users should consider other languages when
embarking on a major development effort. FORTRAN is available on
a wide variety of machines. Although most implementations follow
the standard, some do not. Since the standard ensures support
for character string manipulation and some structured
programming, users are well-advised to stay with
standard-conforming processors.

ANSI committee X3J3 has primary responsibility for language
development and maintenance. Internationally, TC97/SC5/WG9

,

ECMA/TC8, and EWICS/TCl all contribute to the FORTRAN effort.

P ag e 5 5

3.6 Pascal

Pascal was designed as a vehicle for teaching programming
and computer science. Consequently, the language structure
reflects a concern for conceptual consistency and clarity.
Pascal has become quite successful in fulfilling this design
goal; it is probably the most common language used in college
level computer science courses. Certain features used in common
applications, but which are less important pedagog ic ally , were
omitted, e.g., string-handling, enhanced numeric data-types and
operations, and external procedures. Thus, Pascal is not
especially well suited to DP or scientific applications.
Moreover, the language is complex enough that it is not
appropriate for casual use. Pascal has been used successfully
for certain classes of systems programming, such as parsers,
which are not strongly dependent on the underlying hardware.

There is active effort on Pascal standardization in both the
national and international arena. Nationally, ANSI/X3J9 and the
ILSE Pascal Standards Committee have combined to form the Joint
Pascal Committee. Within ISO, TC97/SC5/WG4 has responsibility
for Pascal.

Within North America, the authorized distribution agent for
the Pascal Validation Suite developed by Professor Arthur Sale of
the University of Tasmania, and others, is:

Software Consulting Services
Ben Franklin Technology Center 125
Murray H, Goodman Campus
Lehigh University
Bethlehem PA 18 015
(215) 861-7920

The British Standards Institution offers a Pascal Validation
Service, which is based on the ISO standard.

3.7 PL/I

PL/I was designed to be a truly general-purpose programming
language: one which would support the great majority of end -user
and systems applications. Thus, the language contains a large
number of features: a wide assortment of data-types, strong file
support, and detailed control of storage. Moreover, all the
structuring features of modern languages are implemented, e.g. ,

blocks and recursion. PL/I is certainly capable of handling the
applications it was designed for. Because its features are
built-in and standardized, the language can be used for writing
portable programs, without recourse to libraries of user-defined
routines. Especially in the case of applications which overlap
several of the traditional categories (business, scientific,
systems) , the breadth of PL/I provides a unique advantage.
Because the language is so powerful, it is also large and

Page 5 6

complex^ The rules for defaults and data conversion are
difficult to master* Somewhat like Ada, PL/I is a powerful
language for use by professional programmers in large
applications. For simpler applications, simpler tools exist.

Unfortunately, the full PL/I standard has not been widely
implemented, so added to the complexity of the language itself is
the variation among compilers. As mentioned earlier, the PL/I
subset standard [PL/181] has achieved broader acceptance. ANSI
X3J1 and SC5/WG11 are the committees primarily responsible for
PL/ 1 standards.

4,0 CONCLUSION

When an application is to be implemented with conventional
programming, the choice of language can have a major effect on
the success of the project. Moreover, the user must carefully
consider the costs and benefits not only during development, but
also throughout the life of the application. In many cases,
maintenance costs exceed development costs. While it is not
possible to formulate a precise method for choosing the best
language, a review of the criteria presented in this report will
help at least to avoid the worst choices.

It can hardly be emphasized too strongly that users should
not ignore long-term costs and benefits. For small short-term
projects, the total risk is low in any case. But for larger
projects, many indirect criteria may become crucial. In
particular, it can be a decisive advantage when a language is
supported by strong standardization.

Page 5 7

REFERENCES

[Adas 3]

[Baa s78]

American National Standard Reference Manual for th e Ada
Pr og ramming Language ^ ANSI/MIL-STD-IS 15A-198 3 , American
National Standards Institute, New York NY, 1983.

Baase S., Compute r Algor ithms ; Introduction to
and Analysis, Add ison-Wesley, Reading MA~, 19 78.

[BASI84] Draft Proposed American National Standard for
and Business

De s ig n

BASIC,

[Bytes 3]

[ByteS4]

[COB074]

[C0B0S3]

[CompS3]

[Feue8 2]

[Feue8 4]

[FORT78]

[FranS4]

:fSTC84]

X3J2/84-26 , X3 Secretariat: Computer
Equipment Manufacturers Association, Washington DC,
June 1984

Byte , Vol. 8 No. 8, August 1983. This issue has several
useful articles on C and its implementations.

Byte , Vol. 9 No. 8, August 1984. This issue has several
useful articles on Modula-2.

Ame r ic an National Standard Programming Language COBOL ,

ANSI X3. 2 3-19 74, American National Standards Institute,
New York NY, 19 74.

Draft Proposed Ame r ic an National Standard Programming
Language COBOL, BSR X3 .23-198X, X3 Secretariat:

andComputer and Business Equipment
Association, Washington DC, 1983.

Manufacturers

Computers & Standa rds, Vol. 2 No. 2-3, 1983. This issue
is devoted entirely to the current state of programming
language standardization.

Feuer A. R. and Gehani N. H., "A Comparison of the
Programming Languages C and Pascal", ACM Computing
Surveys , Vol. 14 No. 1, March 1982.

Feuer A. R. and Gehani N. H., Compar ing and Assessing
Pr og ramming Languages , Prentice-Hall, Englewood Cliffs
NJ, 1984 . Collection of articles with detailed
comparison and evaluation of Ada, C, and Pascal. Also
contains articles on methodology of language
comparison.

Ame r ic an National Standard Programming Language
FORTRAN , ANSI X3 .9-1978 , American National Standards
Institute, New York NY, 19 78.

Frankel S,, Introduction to Software Packages , NBS
Special Publication 500-114, National Bureau of
Standards, Gaithersburg MD, April 1984.

Certified
Federal
198 4.

Compiler I^i^t, Report OIT/FSTC-84/004

,

SoTtware Testing Center, Falls Church VA, July

Page 58

[Gall84] Gallagher L. J. and Draper J. M. , Guide on Data Models
in the Selection and Use of Database Management
?ys terns y NBS Special Publication 500-108 , National
Bureau of Standards, Gaithersburg MD, January 1984.

[Ghez82] Ghezzi C, and Jazayeri M. , Programming Language
Concept s, John Wiley & Sons, New York NY, 1982. Very
up-to-date , emphasizes software engineering and
implementation issues, as well as language design.
Glossary gives overview of 20 languages. Detailed
programming examples in Ada, ALGOL 68, APL, LISP,
Pascal, and SIMULA 67.

[Hals77]

[Hech84]

[Hech8x]

[Hill80]

[Hopk83]

[Horo84]

[Houg82]

Halstead M. H., Elements of Software Science ,

- North Holland, New York NY, 1977
Elsevier

Hecht M. , Hecht H., and Press L., Microcomputers;
Introduction to Features and Uses , NBS Special
Publication 5013^110, National Bureau of Standards,
Gaithersburg MD, March 1984.

Hecht M. , Hecht H., and Press L., Microcomputer
Applications Programs for Software Deve lopment ,'

National Bureau of Standards, Gaithersburg MD,~ to Be
published.

Hill I. D. and Meek B. L., Programming Language
Standardisation , Ellis Horwood Limited, Chichester UK,
1980. Good overview of the history of and procedures
for international promulgation of language standards.
Chapters on ALGOL 60, BASIC, COBOL, FORTRAN, Pascal,
and PL/I.

Hopkins T. R. , "Algorithm 605 PBASIC: A Verifier
Program for American National Standard Minimal BASIC",
ACM Transactions on Mathematical Software, Vol. 9 No.
4, December 1983.

Horowitz E.

,

edition. Computer
Fundamentals of Programming Languages , 2nd

- - , iputer Science Press, Rockville MD, 1984.
Good overview of current language concepts and issues,
including less conventional topics such as
exception-handling, concurrency, functional
programming, data-flow programming, and object-oriented
programming. Discusses Ada, ALGOL, APL, CLU, Euclid,
FORTRAN, LISP, MESA, MODULA, Pascal, PL/I, SIMULA,
Smalltalk, SNOBOL, and VAL.

Houghton R. C, Software Development Tools, NBS Special
Publication 500-88 , National Bureau of Standards,
Gaithersburg MD, March 1982.

Page 5 9

[IRTF84] Industr ial Real-Time FORTRAN - App lication for the
control of industr ial processes , Draft International
Standard, ISO/DIS 7^6, ISO/TC97/SC5 Secretariat:
American National Standards Institute, New York NY,
1984.

[IS083]

[ISPS81]

[ISPS84]

[Jali84]

[Jens? 4]

[Kern7 8]

[Marts 2]

[MacL83]

[McGeSO]

Programming languag es - Pascal , ISO 718 5-198 3,
Standards Institution, London UK, 1983.

Br it ish

Information Systems Planning Service, Impact of the
Newer Programming Languages, ISPS-M81-03, International
Data Corporation, Framing Ram MA, March 1981. Short
survey paper covering Ada, ALGOL, APL, C, COBOL, Forth,
FORTRAN, Pascal, and PL/ I.

Information Systems Planning Service, New Programming
Languages , IDC #2483, International Data Corporation,
Framingham MA, May 1984. Short survey paper covering
Bliss, CLU, Concurrent Pascal, Dibol, Euclid, Jovial,
Lisp, Logo, Mesa, Modula-2, MUMPS, PROLOG, Simula 67,
Smalltalk, and SNOBOL.

Jalics P. J., "COBOL vs. PL/I: Some Performance
Comparisons", Communications of the ACM , Vol. 27 No. 3,
March 198 4.

Jensen K. and Wirth N., Pascal User Ma nu al and Report,
Spr inger-Verlag, New York NY, 19 74.

Kernighan B. W. and Ritchie D. M. , The C Programming
Language , Prentice-Hall, Englewood Cli ff s NJ, 1978

.

Martin J., Application Development without Programmers ,

Prentice-Hall, Englewood Cliffs NJ, 1982.

MacLennan B . J .

,

Design, Evaluation,
Principles of

and
Programming Languages:

Implementatio n, Holt7 Rineha r

t

and Winston, New York NY, 1983. Discusses design and
implementation issues in a thorough, practical, and
clear manner with many useful examples. Excellent
explanations of newer languages, such as FFP,
Smalltalk, and PROLOG. Also covers Ada, ALGOL-60,
FORTRAN, LISP, and Pascal.

McGettick A., The Definition of Pr ogramming Language s,

Cambridge Univerisity Press, Cambr idge UK, 198^.
Complete discussion of the technical problems of
defining (and hence standardizing) syntax and semantics
of programming languages. Covers ALGOL 60, ALGOL 68,
ALGOL W, BASIC, COBOL, FORTRAN, LISP, Pascal, and PL/I.

[NBS75] COBOL, FIPS PUB 21-1, National Bureau of Standards,
Gaithersburg MD, December 1975.

Page 6 0

[NBS80]

[NBSSOa]

[NBS81]

[NBS83]

[Pasc83]

[PL/176]

[PL/181]

[Prat84]

[Sainm69]

[SammB 1]

[Shah8 2]

[Tenn81]

Minimal BASIC, FIPS PUB 68, National Bureau of
Standards, Gaithersburg MD, September 1980.

FORTRAN , FIPS PUB 69, National Bureau of Standards,
Gaithersburg MD, September 1980.

Inte rpre tation Proc edures for Federal Information
Pr ocess ing Standard Programming Languages , FIPS PUB
29-1, NationaT Bureau of Standa"rds7 Gaithersburg MD,
December 1981.

Guideline

;

Compar ison
National
1983.

^ Framework for the Evaluation and
_ of Software Development Tools, FIPS PUB 99

,

Bureau of Standards, Gaithersburg MD, March

Ame r ic an National Standard Pascal Computer Programming
Language , ANSI/IEEE77M3 .9 7-19817 Institute of
Electr ic al and Electronics Engineers, New York NY,
1983.

American Nat ional Standard Programming Language PL/I ,

ANSI X3. 53-1976, American National Standards Institute,
New York NY, 19 76.

Ame rican Na tional Standard
Generar^Purpose Subset,
National Standard

s'

Programming Language PL/

I

AN SI XTTR-IfFTT Ame rTc an
Institute, New York NY, 1981.

Pratt T. W. , Programming Languages; Design and
Implementation , 2ncl ed it ion, Prentice-Hall, Eng lewood
Cliffs NJ, 1984. Very thorough, well-organized,
up-to-date text. Discusses both design and
implementation issues in detail. Covers Ada, APL,
COBOL, FORTRAN, LISP, Pascal, PL/I, and SN0B0L4.

Sammett J. E., Programming Languages; History and
Fundamentals, Prentice-Hall, Eng lewood Cliffs NJ, 19 69.
Classic work, although now somewhat out-of-date.
Practical orientation, thorough discussion of selection
criteria. Covers ALGOL60, COBOL, FORTRAN, JOVIAL, LISP
1.5, PL/I, SNOBOL, and many others.

Sammett J. E., "An Overview of High-Level Languages",
Advances in Computers , vol. 20, ed. Yovits M. C.

,

Academic Press, New York NY, 1981.

Shahdad B. M. and Libster E., Compiler Features; A
Survey , NBS-GCR-82-418 , National Bureau of Standards,
Gaithersburg MD, 1982.

Tennent R. , Pr inc iples of Programming Languages ,

Prentice-Hall, Englewood Cliffs NJ, 1981. Formal,
mathematical approach, emphasizing Pascal, with some
discussion of ALGOL 68 , APL, LISP, SIMULA, and SNOBOL.

Page 61

[Tuck77] Tucker A. B., Programming Languages ^ McGraw-Hill, New
York NY, 1977. Practical orientation, with detailed
examples, selection criteria, and some performance
evaluation. Covers ALGOL60, COBOL, FORTRAN, PL/I, RPG,
and SNOBOL.

[Wass8 2] Wasserman A. I., "The Future of Programming",
Communications of the ACM, Vol. 25 No. 3, March 198 2.

[Vale7 4] Valentine S. ll.^ "Comparative Notes on ALGOL 68 and
PL/I", The Compute r Journal , Vol. 17 No. 4, November
19 74. ~ ~

[Zveg83] Zvegintzov N., "Nanotrends" , Datamation, Vol. 29 No. 8,
August 1983,

Page 6 2

' V ACKNOWLEDGMENTS

The following individual language experts graciously
consented to review this publication for technical accuracy and
general soundness of concept: John Caron, John Goodenough, John
Klensin, John A. N. Lee, Brian Meek, Donald Nelson, Jean Sammet,
and Donald Warren. Nils Brubaker, Al Deese, Brian Schaar, and
Henry Tom rendered timely and valuable assistance in testing the
program examples. All their efforts contributed strongly to this
report. The responsibility for whatever errors remain rests of
course with the author.

APPENDIX A

ABBREVIATIONS

Association for Computing Machinery, scientific and
technical association with broad interest in computers,
academic orientation,

Ada Joint Project Office, agency within Department of
Defense with primary responsibility for Ada standards,
sponsor of Ada as ANSI standard.

American National Standards Institute, organization
fostering voluntary national standards.

Ada Validation Organization, set up by AJPO to
administer validation of Ada implementations.

British Standards Institution, organization fostering
voluntary national standards in the United Kingdom,
offers Pascal Compiler Validation Service.

Computer and Business Equipment Manufacturers
Association, American trade association, provides
secretariat for X3

.

Conference on Data System Languages, committee
responsible for the development (but not
standardization) of COBOL specifications.

European Computer Manufacturers Association, European
trade association, participates actively in ISO/TC97
standardization activities.

European Workshop on Industrial Computer Systems,
organization concerned with language control of
real-time systems.

Federal Information Processing Standard, authorized by
the Department of Commerce to manage information
processing activities within the Federal Government,
developed and issued by ICST/NBS.

Page A-

2

FQTC Federal Software Testing Center, within GSA

,

administers validation tests for FIPS languages.

GSA General Services Administration, responsible for
property management within the Federal Government,
parent body of FSTC.

ICST Institute for Computer Sciences and Technology,
administers FIPS program for the Federal Government,
assists Federal agencies, performs research in
computers and networks,

lEEE/CS Institute of Electrical and Electronics Engineers
Computer Society, professional association with broad
interest in computer Se

ISO International Organization for Standardization,
organization fostering voluntary international
Standards.

NBS National Bureau of Standards, agency with primary
responsibility for measurement methods, standards, and

- data for physical and engineering sciences within the
Federal Government, parent body of ICST.

NTIS National Technical Information Service, sells technical
products developed for and within the Federal
Government.

SC5 Subcommittee 5 - Programming Languages, of ISO/TC97,
has primary responsibility for language standards
within ISO. Individual languages handled by working
groups (WG'^s) within SC5 (see Appendix B.5 concerning
re-organization) .

TC97 Technical Committee 97 - Information Processing
Systems, has primary responsibility for computer
standards within ISO, parent body of SC5 (see Appendix
B.5 concerning re-organization).

X3 X3 - Information Processing Systems, the American
National Standards Committee for computer standards
operating under the procedures of ANSI, Individual
languages handled by "J" technical subcommittees, e.g. ,

X3J1 for PL/I.

APPENDIX B

SOURCES OF INFORMATION

In addition to the organizations mentioned in section 3

which work with individual languages, there are several bodies
with a general interest in programming languages and computer
standards. Below is a brief description of the areas of concern
and mailing address and telephone number for the most prominent
of these bodies.

B.l INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY

The Institute for Computer Sciences and Technology (ICST)
within the National Bureau of Standards (NBS) has responsibility
for Federal Information Processing Standards, providing technical
assistance to Federal agencies, and conducting research in
computer and network technology. ICST participates actively in
voluntary industry standards development activities, including
programming languages. Within ICST, the Center for Programming
Science and Technology is responsible for programming language
standards.

Institute for Computer Science and Technology
Center for Programming Science and Technology
Data Management and Programming Languages Division
Building 225, Room A- 255
National Bureau of Standards
Gaithersburg, MD 20899
(301) 921-2431

B.2 FEDERAL SOFTWARE TESTING CENTER

The Federal Software Testing Center (FSTC) within the
General Services Administration (GSA) participates in the
administration of the GSA procurement regulations for the Federal
Government. In particular, FSTC maintains and applies validation
systems for the various languages approved for Federal use
(currently COBOL, FORTRAN, and Minimal BASIC). Also, FSTC
maintains a register [FSTC84] of implementations which have

Page B-2

undergone this validation process and are thus eligible for
Federal procurement. This register includes Ada compilers.

Federal Software Testing Center
Two Skyline Place, Suite 1100
5203 Leesburg Pike
Falls Church, VA 22041
(703) 756-6153

B.3 NATIONAL TECHNICAL INFORMATION SERVICE

The National Technical Information Service (NTIS) within the
Department of Commerce serves as a clearinghouse for technical
publications developed for and within the Federal Government.
ICST publications and software products are normally available
for purchase through NTIS.

National Technical Information Service
5 28 5 Port Royal Road
Springfield, VA 22161
(703) 487-4600

B.4 X3 - INFORMATION AND PROCESSING SYSTEMS

X3 is an American National Standards Committee operating
under the procedures of the American National Standards Institute
(ANSI). There are technical subcommittees within X3 (see Figure
15) for all the languages in this report except Ada. An ANSI
standard is voluntary. Participation by all those concerned with
standards (producers, consumers, and others) is encouraged. The
X3 secretariat is held by the Computer and Business Equipment
Manufacturers Association (CBEMA)

.

X3 Secretariat: CBEMA
311 First Street NW, Suite 500
Washington, DC 20001
(202) 737-8888

B.5 SC5 - PROGRAMMING LANGUAGES

SC5 is a subcommittee of the International Standards
Organization's (ISO) TC97 - Information Processing Systems. It
is the body which co-ordinates international development and
approval of language standards. The secretariat for ISO/TC97/SC5
is currently held by ANSI. At the time of this writing, TC97 is
being re-organized, and the language standardization work is

being assigned to two new subcommittees, SC21 - Information
Retrieval, Transfer, and Management for OSI and SC22
Application Systems Environments and Programming Languages.

Page B-3

SC5 Secretariat: ANSI
14 30 Broadway
New York, NY 10018
(212) 354-3347

B.6 IEEE COMPUTER SOCIETY

While traditionally more concerned with hardware issues, the
IEEE Computer Society (lEEE/CS) has recently taken a more active
role in programming languages. It is co-operating with X3 (see
above) on the standardization efforts for Pascal, Also, IEEE is
proposing standards for floating-point arithmetic which will have
important language implications,

IEEE Computer Society
1109 Spring Street, Suite 300
Silver Spring, MD 20910
(301) 589-8142

B.7 SPECIAL INTEREST GROUP ON PROGRAMMING LANGUAGES

The Special Interest Group on Programming Languages
(SIGPLAN) of the Association for Computing Machinery (ACM) is a
scientific and technical association devoted to the exploration
of various language issues. Their informal publication, "SIGPLAN
Notices", covers topics of current interest, ACM also publishes
a formal quarterly journal, "Transactions on Programming
Languages and Systems".

ACM Headquarters
11 West 4 2nd Street
New York, NY 100 36

(212) 869-7440

APPENDIX C

ALTERNATIVES TO CONVENTIONAL PROGRAMMING

Historically, high-level programming languages made possible
a great improvement in programmer productivity because they
allowed the user to express algorithms and data structures in a
comparatively problem-oriented way, as opposed to the hardware
orientation of machine and assembler languages [Samm69] . There
was, of course, a price to be paid: some loss in run-time
efficiency and, perhaps more important, the inability to access
directly all the hardware capabilities of a system. For
instance, the FORTRAN programmer, as such, cannot do fixed-point
decimal arithmetic, even if the hardware supports it.
Nonetheless, no one would seriously argue today that assembler
language should be used routinely for most applications; the
gain in programmer productivity far outweighs the costs just
mentioned.

Many experts believe that the practice of application
development and maintenance is now on the verge of a transition
comparable to that between assembler and high-level languages
[Mart82], [Wass82]. Traditionally, the task of the
programmer/analyst has been to devise algorithms that solve the
problem presented by the end-user. The programmer figures out
how to solve the problem and then expresses that solution in a

programming language. Techniques are becoming available (see
below) which will allow the programmer, or, better still, the
end-user, to state more or less formally what results are
desired. The system is then capable of producing these results
automatically. At no time does a human need to generate an
explicit algorithm. The new approach is usually described as
"functional" as distinguished from "procedural" programming.

The analogies with the previous transition to high-level
languages are apparent. Earlier, DP practitioners were freed
from thinking about irrelevant hardware details; now they may be
freed from thinking about irrelevant algorithmic details. For
instance, the end-user is interested in updating the personnel
file. The fine points of the associated merge algorithm are only
incidental to solving the problem. And, as before, there is a
price. It may be expected that there will be some degradation of
run-time efficiency. Again, there will be a loss of "fine
control" - users will depend on the stereotyped solutions built

Page C-2

into the new tools. Finally, just as high-level languages have
not abolished assembler programming, but merely restricted it to
those relatively few cases where machine efficiency and fine
control are critical, it is safe to predict that there will be a
continuing need for conventional programming for the foreseeable
future, both for some new development, and certainly for
maintenance of existing systems.

There is one aspect of this transition from conventional
programming to functional techniques which is not analogous to
the earlier transition from assembler language: almost all the
popular languages are now standardized to some degree, whereas
functional techniques are not. Thus a system written in
(standard) COBOL does not depend in a crucial way on the support
of any particular vendor, or on a given machine architecture.
The same cannot be said (yet) of many of the functional
approaches mentioned below.

When should one use conventional programming languages and
when functional techniques? This issue is a matter of some
debate; see [Marts 2] for an articulate statement of the
"pro-functional" position and [Zveg83] for a spirited rejoinder.
A short answer is that the smaller, simpler, and more typical the
application, the more susceptible it will be to the new
functional techniques. Also, functional techniques tend to be
associated with applications which are short-term or single-user
or both, because of their relative advantages with respect to
development time and required skills, and disadvantages with
respect to machine efficiency and standardization. Because of
the relatively short start-up time, the functional approach may
also prove valuable when a system is to be designed with the aid
of prototypes. Typically, the overhead of conventional
programming is too great to allow the development of software
only for the purpose of system design. On the other hand,
insofar as fine control, standardization, and run-time efficiency
are required, conventional programming is more likely to be the
better approach. For example, a large, long-lived, logically
complex system with high transaction rates would very likely not
be amenable to functional implementation techniques.

There is as yet no precise way to evaluate the complex
trade-offs involved in deciding between conventional programming
and functional techniques. ICST plans to keep these issues under
study and will issue more detailed guidance as experience with
the new techniques accumulates. Those interested in the
functional techniques should find the following publications
helpful: [HechSx] , [Hech8 4] .

The following sub-sections describe, very briefly, some of
the alternatives to conventional high-level programming as a
means of developing and maintaining applications. These
descriptions should not be taken as a detailed guideline on usage
and selection, but merely as an indication of the major
approaches which are currently available.

Page C-3

C.l DATABASE MANAGEMENT SYSTEMS

While it does not always constitute a complete application
development method, the use of a database management system
(DBMS) is often the basis for other techniques [Gall8 4] . For
instance, an automatic report generator may presuppose the
existence of a database from which the report is to be
constructed. Of course, DBMS facilities may also be accessed
from conventional programming languages. In either case, the
establishment of an integrated database for a functional area
will very often enable the use of more powerful software
development technologies.

C.2 QUERY AND REPORT FACILITIES

Query and report facilities are perhaps the best established
of the functional techniques. RPG and COBOL' s Report Writer have
been available for many years and provide good examples of the
functional approach. The user specifies the information to be
displayed and some indication of the desired format. The system
generates the required report. At no time, for instance, does
the user explicitly formulate the logic necessary to handle
control breaks or page headings. Many database management
systems have an associated query language that allows the user to
display information from the database. Query and reporting are
highly susceptible to a functional approach because they are, by
definition, read-only operations; the file or database is not
changed. Updating typically requires more control, such as
editing and internal consistency checking.

C.3 APPLICATION PACKAGES

Application packages are systems written to handle certain
common applications, such as payroll or inventory. Normally,
they are parameterized so that each user can tailor the system to
his particular specifications. To the extent that a user's
requirements are typical of the application, and the application
itself is a common one, it is likely that an adequate package
will be available. Conversely, highly specialized applications
probably should not be implemented with an application package.
See [Fran84] for further guidance.

C.4 APPLICATION GENERATORS

Application generators accept some high-level specification
of the work to be done and then produce programs (either source
or object code) to accomplish that task. If the generated code
is in source form, then, of course, the user is free to modify it
directly. Thus, there may still be a problem of source code

Page C-4

maintenance (and standardization) , unless the user is committed
to changing the application only through the generator itself.
Generators usually provide an escape mechanism, so that users can
code certain crucial parts of the system by hand.

C.5 VERY HIGH-LEVEL LANGUAGES

It is an open question which languages qualify as "very
high-level." In [Mart82], the term is applied to APL, NOMAD, and
MAPPER, because they provide powerful operations for data
manipulation not found in languages such as Pascal or PL/I.
Others use the term to refer to more research-oriented languages,
such as SETL and FFP [SammSl] . In any event, these languages
encourage a more functional (and therefore less procedural) style
of programming than do the traditional algorithmic languages.

C.6 ASSEMBLER LANGUAGE

Another alternative, albeit not a new one, to the use of
high-level languages is the use of assembler language. There
remain applications for which direct control over the hardware or
run-time efficiency is so important that assembler programming is
justified. We should stress that it is a rare application which
must be programmed completely in assembler. More often, a
relatively small piece of code accounts for a high percentage of
execution time, or is inherently machine-dependent. In such
cases, it is reasonable to program the critical section of code
in assembler, while most of the system is expressed in some
higher-level language. Note also that the "mid-level" language C
can often be used in place of true hardware-or iented assembler,
with comparable efficiency. C is covered below in detail.

C.7 MANUAL OPERATIONS

There is always some cost associated with automating an
application (e.g., for hardware, for the staff time to develop
and operate the system) . When a system is implemented through
conventional programming, this cost is not likely to be
negligible. Therefore, it is reasonable to ask whether
automating a given application is worth the effort. It is not
clear, for instance, that much is gained by having an appointment
schedule implemented on a personal computer rather than in a
notebook

.

NBS-n4A (REV. 2-8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS/SP-500-117/1

2. Performing Organ. Report No. 3. Publication Date

October 1984

4. TITLE AND SUBTITLE
Computer Science and Technology:

Selection and Use of General -Purpose Programming Languages--Overviev/

5. AUTHOR(S)

John V. Cugini

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Same as in item 6 above,

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 84-601119
Document descrlBes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-worcl or less factual summary of most significant information. If document includes a si gnificant

bibliography or literature survey, mention it here)

Programming languages have been and will continue to be an important instrument
for the automation of a wide variety of functions within industry and the Federal

Government. Other instruments, such as program generators, application packages,
query languages, and the like, are also available and their use is preferable in

some circumstances.
Given that conventional programming is the appropriate technique for a particu-

lar application, the choice among the various languages becomes an important issue.

There are a great number of selection criteria, not all of which depend directly on

the language itself. Broadly speaking, the criteria are based on 1) the language
and its implementation, 2) the application to be programmed, and 3) the user's
existing facilities and software.

This study presents a survey of selection factors for the major qeneral-nuroose
languages: Ada, BASIC, C, COBOL, FORTRAN, Pascal, and PL/I. The factors covered
include not only the logical operations within each language, but also the advantages
and disadvantages stemming from the current computing environment, e.g., software
packages, microcomputers, and standards. The criteria associated with the aonli ca-

tion and the user's facilities are explained. Finally, there is a set of proaram

examples to illustrate the features of the various languages.
This volume contains the discussion of language selection criteria. Volume 2

comprises the program examples
12. KEY WORDS (Six to twelve entries: alphabeti cal order: capitalize only proper names- and separate key words by semicolon s)

Ada; alternatives to programming; BASICT; C; COBOL; FORTRAN; Pascal; PL/I; program-
ming language features; programming languages: selection of programming language.

13. AVAILABILITY

Unlimited

For Official Distribution. Do Not Release to NTIS

[23 Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Q^] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

81

15. Price

USCOMM-DC 6043-P80

r

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication 500-.

Name

Company

Address

City State Zip Code

(NoUrication key N-S03)

Technical Publications

Periodicals

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. As a special service to subscribers each issue contains complete citations to

all recent Bureau publications in both NBS and non-NBS media. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background
knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled by the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper
copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

